
r 

TSO Extensions Version 2 SC28-1883-4 

Procedures Language MVS/REXX Reference 



--------- -------- - ---- - - --- TSO Extensions Version 2 SC28-1883-4 

--------y-
Procedures Language MVS/REXX Reference 

( 

( 

(-



Fifth Edition (August 1991) 

This is a major revision of SC28-1883-3. See the Summary of Changes for a summary of the changes made 
to this manual. Technical changes or additions to the text and illustrations are indicated by a vertical line 
to the left of the change. 

This edition applies to Version 2 Release 3.1 of the TSO Extensions (TSO/E) Licensed Program, 5685-025, 
and to all subsequent releases and modifications until otherwise indicated in new editions or Technical 
Newsletters. The previous edition still applies to Version 2 Release 3 of rSO/E, 5685-025, and may be 
ordered using the temporary order number STOO-4633. Make sure you are using the correct edition for the 
level of the product. 

Order publications through your IBM representative or the IBM branch office serving your locality. 
Publications are not stocked at the address given below. 

A.form for readers' comments is provided at the back_of this publication. If the form has been removed, 
address your comments to: 

IBM Corporation, Department 058 
PO Box 950 
Poughkeepsie, NY 12602 
United States of America 

ta' FAX (United States & Canada): 914+296+6496 
ta' FAX (Other Countries): 001 +914+296+6496 

When you send information to IBM, you grant IBM a non-exclusive right to use Qr distribute the information ( 
in any way it believes appropriate without incurring any obligation to you. 

© Copyright International Business Machines Corporation 1988, 1991. All rights reserved. 
Note to U.S. Government Users - Documentation related to restricted rights - Use, duplication or 
disclosure is subject to restrictions set forth in GSA ADP Schedule Contract with IBM Corp. 

-_ ... ~ .. ------------.-------~--~. ---

I 

I 



( 

( 

... 

c 

Contents 

Chapter 1. Introduction ....................................... 1 
Who Should Read This Book .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 1 
What the SAA Solution Is ...................................... 1 

Supported Environments .................................... 2 
Common Programming Interface ............................... 2 

How to Use This Book ........................................ 3 
How to Read the Syntax Diagrams .............................. 5 
For Further REXX Information ................................. 6 

Chapter 2. Geneml Concepts ................................... 7 
Brief Description of the REstructured eXtended eXecutor Language ......... 7 
Where to Find More Information ................................. 8 
Structure and General Syntax .................................. . 

Characters ............................................ . 
Tokens .............................................. . 

9 
10 
10 

Implied Semicolons ....................................... 13 
Continuation!S ........................................... 14 

Expressions and Operators ................................... 14 
Expressions ............................................ 14 
Operators ............................................. 15 

String Concatenation .................................... 15 
Arithmetic ........................................... 16 
Comparison .......................................... 16 
Logical (Boolean) ...................................... 17 

Parentheses and Operator Precedence ......................... 18 
Examples ............................................ 19 

Clauses and Instructions ..................................... 19 
Null Clauses .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 19 
Labels ................................................ 20 
Instructions ............................................ 20 
Assignments ........................................... 20 
Keyword Instructions ...................................... 20 
Commands ............................................ 20 

Assignments and Symbols .................................... 21 
Constant Symbols ........................................ 22 
Simple Symbols ......................................... 22 
Compound Symbols ...................................... 22 
Stems ................................................ 23 

Notes .............................................. 24 
Commands to External Environments ............................ 25 

Environment ........................................... 25 
Commands ............................................ 25 
Host Commands and Host Command Environments ................. 26 
The TSO Host Command Environment .......................... 27 
The CONSOLE Host Command Environment ...................... 27 
The ISPEXEC and ISREDIT Host Command Environments ............. 28 
The CPICOMM and LU62 Host Command Environments .............. 28 

Pseudonym Files ....................................... 30 
Transaction Program Profiles .............................. 31 
Sample Transaction Programs ............................. 32 

The MVS Host Command Environment .......................... 33 
Host Command Environments for Linking to and Attaching Programs 34 

© Copyright IBM Corp. 1988. 1991 iii 



The LINK and ATIACH Host Command Environments .............. 35 
The LlNKMVS and ATTCHMVS Host Command Environments ........ 36 
The LlNKPGM and ATICHPGM Host Command Environments ........ 39 

Chapter 3. Keyword Instructions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 43 
ADDRESS ............................................... 44 
ARG ................................................... 46 
CALL .................................................. 48 
DO .................................................... 51 

Simple DO Group ........................................ 52 
Simple Repetitive Loops ................................... 52 
Controlled Repetitive Loops ................................. 52 
Conditional Phrases (WHILE and UNTIL) ........•................. 54 

DROP .................................................. 55 
EXIT ................................................... 56 
IF ..................................................... 57 
INTERPRET .............................................. 58 
ITERATE ................................................ 60 
LEAVE ................................................. 61 
NOP ................................................... 62 
NUMERIC ............................................... 63 
OPTIONS ................................................ 65 
PARSE ................................................. 66 
PROCEDURE ............................................. 69 
PULL .................................................. 71 
PUSH .................................................. 72 
QUEUE ................................................. 73 
RETURN ................................................ 74 
SAY ................................................... 75 
SELECT ................................................ 76 
SIGNAL ................................................. 77 
TRACE ................................................. 79 

Alphabetic Character (Word) Options ......................... 80 
Prefix Options ......................................... 80 
Numeric Options ....................................... 81 
Tracing Tips .......................................... 81 

A Typical Example ....................................... 82 
Format of TRACE Output ................................... 82 '".-/ 

UPPER ................................................. 84 

Chapter 4. Functions ....................................... 85 
Syntax ................................................. 85 
Calls to Functions and Subroutines .............................. 86 

Search Order ........................................... 87 
Errors During Execution .................................... 90 

Built-in Functions .......................................... 91 
ABBREV (Abbreviation) .................................... 92 
ABS (Absolute Value) .........................•........... 92 
ADDRESS ............................................. 93 
ARG (Argument) ......................................... 93 
BITAND (Bit by Bit AND) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 94 
BITOR (Bit by Bit OR) ..................................... 95 
BITXOR (Bit by Bit Exclusive OR) ............. :................ 95 ( . 
CENTER/CENTRE ........................................ 96 
COMPARE ............................................. 96 
CONDITION ............................................ 96 

iv TSO/E Version 2 MVS/REXX Reference 

------------------



( 

( 

( 

OJ 

c 

COPIES ............................................... 97 
C2D (Character to Decimal) ................................. 98 
C2X (Character to Hexadecimal) .............................. 98 
DATATYPE ............................................. 99 
DATE ................................................ 100 
DBCS (Double-Byte Character Set) ............................ 101 
DELSTR (Delete String) .................................... 102 
DELWORD (Delete Word) ................................... 102 
DIGITS ............................................... 102 
D2C (Decimal to Character) ................................. 103 
D2X (Decimal to Hexadecimal) ............................... 103 
ERRORTEXT ........................................... 104 
EXTERNALS ............................................ 104 
FIND ................................................. 105 
FORM ................................................ 105 
FORMAT .............................................. 105 
FUZZ ................................................ 106 
GETMSG .............................................. 107 
INDEX ................................................ 107 
INSERT ............................................... 107 
JUSTIFY .............................................. 108 
LASTPOS (Last Position) ................................... 108 
LEFT ................................................. 109 
LENGTH .............................................. 109 
LlNESIZE .............................................. 109 
LlSTDSI ............................................... 110 
MAX (Maximum) ......................................... 110 
MIN (Minimum) .......................................... 110 
MSG ................................................. 110 
OUTTRAP ............................................. 110 
OVERLAY., ............................................ 111 
POS (Position) .......................................... 111 
PROMPT .............................................. 111 
QUEUED .............................................. 111 
RANDOM .............................................. 112 
REVERSE ............................................. 113 
RIGHT ....................... ' ......................... 113 
SETLANG ............................................. 113 
SIGN ................................................. 113 
SOURCELINE ........................................... 114 
SPACE ............................................... 114 
STORAGE ............................................. 114 
STRIP ................................................ 114 
SUBSTR (Substring) ...................................... 115 
SUBWORD ............................................. 115 
SYMBOL .............................................. 116 
SYSDSN .............................................. 116 
SYSVAR .............................................. 116 
TIME ................................................. 116 
TRACE ............................................... 118 
TRANSLATE ............................................ 118 
TRUNC (Truncate) ........................................ 119 
USERID ............................................... 119 
VALUE 
VERIFY 
WORD 

120 
120 
121 

Contents V 



WORDINDEX ........................................... 121 
WORDLENGTH .......................................... 122 
WORDPOS (Word Position) .................................. 122 
WORDS ............................................... 122 
XRANGE (Hexadecimal Range) ............................... 123 
X2C (Hexadecimal to Character) .............................. 123 
X2D (Hexadecimal to Decimal) ............................... 124 

TSO/E External Functions .................................... 125 
GETMSG .............................................. 126 

Overview of Using GETMSG During a Console Session ............. 129 
Using the Command and Response Token (CART) and Mask ......... 130 

LISTDSI ............................................... 132 
Specifying Data Set Names ................................ 134 
Variables That L1STDSI Sets ............................... 135 
Reason Codes ........................................ 137 

MSG ................................................. 139 
OUTTRAP ............................................. 140 ,/ 

Additional Variables That OUTTRAP Sets ...................... 142 
PROMPT .............................................. 144 

Interaction of Three Ways to Affect Prompting ................... 145 
SETLANG ............................................. 147 
STORAGE ............................................. 149 
SYSDSN .............................................. 150 
SYSVAR .............................................. 152 

User Information ....................................... 152 
Terminallnformation .................................... 152 
Exec Information ....................................... 152 
System Information ..................................... 153~,j 
Language Information ................................... 155 
Console Session Information ............................... 156 
Relationship of CLiST Control Variables and SYSVAR Function ....... 158 

Chapter 5. Parsing for PARSE, ARG. and PUll ...................... 159 
Introduction .............................................. 159 

Parsing Words .......................................... 159 
Parsing Using String Patterns ................................ 160 
Parsing Using Numeric Patterns .............................. 160 
Parsing Arguments ....................................... 161 

Definition ............................................... 161 
Parsing Strings into Words .................................. 162 
Parsing with Literal String Patterns ............................ 163 
Parsing with Variable String Patterns ........................... 163 
Use of the Period as a Placeholder ............................ 164 
Parsing with Positional (Numeric) Patterns ....................... 164 
Parsing Multiple Strings .................................... 166 

Chapter 6. Numbers and Arithmetic ............................. 167 
Introduction .............................................. 167 
Definition 

Numbers ............................................. . 
Precision ............................................. . 
Arithmetic Operators ..................................... . 
Arithmetic Operation Rules-Basic Operators .................... . 

Addition and Subtraction ................................ . 

168 
168 
168 
169 
169 
169 

Multiplication ......................................... 170 
Division ............................ ' ................. 170 

vi TSO/E Version 2 MVS/REXX Reference 



~----------

Basic Operator Examples ................................. 171 
Arithmetic Operation Rules-Additional Operators .................. 171 

Power .............................................. 171 
Integer Division ........................................ 172 
Remainder ........................................... 172 
Additional Operator Examples .............................. 172 

Numeric Comparisons ..................................... 172 
Exponential Notation ...................................... 173 
Numeric Information ...................................... 175 
Whole Numbers ......................................... 175 
Numbers Used Directly by REXX .............................. 175 
Errors ................................................ 175 

Chapter 7. Conditions and Condition Traps ........................ 177 
Action Taken When a Condition Is Not Trapped .................. 178 
Action Taken When a Condition Is Trapped ..................... 178 

( Condition Information ................................... 180 

Chapter 8. U$ing REXX in OIffen:::nt ,Addl'e$l~ Spa,ces .................. 183 
Additional REXX Support ..................................... 184 

TSO/E REXX Programming Services ........................... 184 
TSO/E REXX Customizing Services ............................ 186 

Writing Execs That Run in Non-TSO/E Address Spaces ................. 187 
Running an Exec in a Non-TSO/E Address Space ..................... 188 
Writing Execs That Run in the TSO/E Address Space .................. 189 
Running an Exec in the TSO/E Address Space ....................... 191 

( Summary of Writing Execs for Different Address Spaces ................ 192 

Chapter 9. Reserved Keywords, Sp:ecial Variables, and Command Names 195 
Reserved Keywords ........................................ 195 
Special Variables , ......................................... 196 
Reserved Command Names ................................... 197 

Ghapter 10. TSO/IE REX X Commands ............................ 199 
DELSTACK .............................................. 200 

( 
DROPBUF ............................................... 201 
EXECIO ................................................. 203 
EXECUTIL ............................................... 215 
HE .................................... -................ 222 
HI ..................................................... 223 
HT .................................................... 224 
Immediate Commands ....................................... 225 
MAKEBUF ............................................... 226 
NEWSTACK .............................................. 228 
OBUF .................................................. 230 
OELEM ........................ , ..... , .... ,............. 232 
OSTACK ................................................ 234 
RT .................................................... 236 
SUBCOM ................................................ 237 
TE .................................................... 239 
TS .................................................... 240 

Ci Chapter 11. Debug Aids ..................................... 241 
Interactive Debugging of Programs .............................. 241 
Interrupting Execution and Controlling Tracing ...................... 244 

Interrupting Exec Processing ................................ 244 

Contents vii 



Considerations for Interrupting Exec Processing ................. 245 
Using the HE Immediate Command to Halt an Exec ............... 245 0 , 

Starting and Stopping Tracing ................................ 246 \.J 

Chapter 12. TSO/E REXX Programming Services .................... 249 
General Considerations for Calling TSO/E REXX Routines ............... 252 

Parameter Lists for TSO/E REXX Routines ....................... 253 
Specifying the Address of the Environment Block ................... 255 

Using the Environment Block Address Parameter ................. 255 
Using the Envit-onment Block for Reentrant Environments ........... 256 

Return Codes for TSO/E REXX Routines ......................... 257 
Exec Processing Routines - IRXJCL and IRXEXEC ................... 258 

The IRXJCL Routine ...................................... 258 
Using IRXJCL to Run a REXX Exec in MVS Batch ................. 258 
Invoking IRXJCL From a REXX Exec or a Program ................ 259 
Return Codes ......................................... 261 

The IRXEXEC Routine ..................................... 261 
Entry Specifications ..................................... 262 
Parameters .......................................... 263 
The Exec Block (EXECBLK) ................................ 266 
Format of Argument List .................................. 267 
The In-Storage Control Block (lNSTBLK) ....................... 268 
The Evaluation Block (EVALBLOCK) .......................... 270 
How IRXEXEC Returns Information About Syntax Errors ............ 272 
Return Specifications .................................... 273 
Return Codes ......................................... 273 

External Functions and Subroutines, and Function Packages ............. 276 
Interface for Writing External Function and Subroutine Code ........... 277 

Entry Specifications ..................................... 277 
Parameters .......................................... 277 
Argument List ......................................... 278 
Evaluation Block ....................................... 278 
Return Specifications .................................... 279 
Return Codes ......................................... 280 

Function Packages ....................................... 280 
Directory for Function Packages ............................ 282 
Specifying Directory Names in the Function Package Table .......... 287 

Variable Access Routine - IRXEXCOM ........................... 289 
Entry Specifications ..................... . . . . . . . . . . . . . . . . . . 290 
Parameters ............................................ 290 

The Shared Variable (Request) Block - SHVBLOCK ................ 291 
Function Codes (SHVCODE) ............................... 293 

Return Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 295 
Return Codes ........................................... 296 

Maintain Entries in the Host Command Environment Table - IRXSUBCM .... 297 
Entry Specifications ....................................... 298 
Parameters ............................................ 298 

Functions ............................................ 300 
Format of a Host Command Environment Table Entry .............. 300 

Return Specifications ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 301 
Return Codes ........................................... 301 

Trace and Execution Control Routine - IRXIC ....................... 302 r 
Entry Specifications ....................................... 302 ~ . 
Parameters ............................................ 303 
Return Specifications ..... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 304 
Return Codes ........................................... 304 

viii TSO/E Version 2 MVS/REXX Reference 



( 

( 

( 

c 

Get Result Routine - IRXRLT .................................. 305 
Entry Specifications .............. . . . . . . . . . . . . . . . . . . . . . . . . . 306 
Parameters ............................................ 306 
Functions .............................................. 308 
Return Specifications ...................................... 310 
Return Codes ........................................... 310 

SAY Instruction Routine - IRXSAY .............................. 313 
Entry Specifications ....................................... 313 
Parameters ............................................ 313 
Functions .............................................. 315 
Return Specifications ...................................... 315 
Return Codes ........................................... 315 

Halt Condition Routine - IRXHLT ............................... 316 
Entry Specifications ....................................... 316 
Parameters ............................................ 316 
Functions .............................................. 317 
Return Specifications ...................................... 318 
Return Codes ........................................... 318 

Text Retrieval Routine - IRXTXT 319 
Entry Specifications ....................................... 319 
Parameters .......... , ................................. 320 
Functions and Text Units ................................... 321 
Return Specifications ...................................... 323 
Return Codes ........................................... 323 

LlNESIZE Function Routine - IRXLlN ............................ 324 
Entry Specifications .................... . . . . . . . . . . . . . . . . . . . 324 
Parameters ............................................ 324 
Return Specifications ...................................... 325 
Return Codes ........................................... 326 

Chapter 13. TSO/E REXX Customizing Services ..................... 327 
Flow of REXX Exec Processing ................................. 328 

Initialization and Termination of a Language Processor Environment 328 
Types Of Language Processor Environments .................... 331 

Loading and Freeing a REXX Exec ............................. 331 
Processing of the REXX Exec ................................ 331 

Overview of Replaceable Routines .............................. 332 
Exit Routines ............................ : ................ 333 

Chapter 14. language Processor Environments ..................... 335 
Overview of Language Processor Environments ..................... 336 
Using the Environment Block .................................. 339 
When Environments are Automatically Initialized in TSO/E .............. 341 

Initializing Environments for User-Written TMPs ................... 342 
When Environments are Automatically Initialized in MVS ............... 343 
Types of Environments - Integrated and Not Integrated Into TSO/E ........ 344 
Characteristics of a Language Processor Environment ................. 346 
Flags and Corresponding Masks ................................ 351 
Module Name Table ........................................ 356 

Relationship of Fields in Module Name Table to Types of Environments 360 
Host Command Environment Table .............................. 361 
Function Package Table ...................................... 365 
Values Provided in the Three Default Parameters Modules .............. 369 
How IRXINIT Determines What Values to Use for the Environment 

Values IRXINIT Uses to Initialize Environments 
Chains of Environments and How Environments Are Located 

373 
373 
375 

Contents ix 



locating a language Processor Environment ..................... 378 
Changing the Default Values for Initializing an Environment ............. 381 

Providing Your Own Parameters Modules ...... , ................. 382 
Changing Values for ISPF ................................. 382 
Changing Values for TSO/E ................................ 382 
Changing Values for TSO/E and ISPF ......................... 383 
Changing Values for Non-TSO/E .........•.................. 384 

Considerations for Providing Parameters Modules .................. 385 
Specifying Values for Different Environments ....................... 386 

Parameters You Cannot Change .............................. 386 
Parameters You Can Use in Any language Processor Environment ...... 386 
Parameters You Can Use for Environments That Are. Integrated Into TSO/E 390 
Parameters You Can Use for Environments That Are Not Integrated Into 

TSO/E ............................................... 390 
Flag Settings for Environments Initialized for TSO/E and ISPF .......... 392 
Using SYSPROC and SYSEXEC for REXX Execs .................... 392 

Control Blocks. Created for a language Processor Environment ........... 395 
Format of the Environment Block (ENVBLOCK) .................... 395 
Format of the Parameter Block (PARMBlOCK) .................... 397 
Format of the Work Block Extension ............................ 398 
Format of the REXX Vector of External Entry Points ................. 401 

Changing the Maximum Number of Environments in an Address Space ...... 404 
Using the Data Stack in Different Environments ...................... 406 

Chapter 15. Initialization and Termination Routines ................... 411 
Initialization Routine - IRXINIT ................................ 412 

Entry Specifications ....................................... 412 
Parameters ............................................ 413 
Specifying How REXX Obtains Storage in the Envir.onment ............ 415 
How IRXINIT Determines What Values to Use for the Environment ....... 416 
Parameters Module and In-Storage Parameter list ................. 417 
Specifying Values for the New Environment ...................... 418 
Return Specifications ...................................... 420 
Output Parameters ....................................... 420 
Return Codes ............................................ 423 

Termination Routine - IRXTERM ............................... 425 
Entry Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 425 
Parameters ............................................ 425 
Return Specifications ...................................... 426 
Return Codes .......................... , ................ 426 

Chapter 16. Replaceable Routines and Exits ....................... 427 
Replaceable Routines ....................................... 430 

General Considerations .................................... 430 
Using the Environment Block Address .......................... 431 
Installing Replaceable Routines .............................. 432 

Exec Load Routine ......................................... 433 
Entry Specifications ..... ,.,............................... 434 
Parameters ....................... ;..................... 434 

Functions You Can Specify for Parameter 1 ..................... 436 
Format of the Exec Block ................................... 437 
Format of the In-Storage Control Block ........................... 439 (! 
Return Specifications ...... ,............................... 440 ~ 

Return Codes ........................................... 441 
Input/Output Routine ......................................... 442 

Entry Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 443 

X TSO/E Version 2 MVS/REXX Reference 



Parameters ............................................ 443 
Functions Supported for the 1/0 Routine ......................... 444 
Buffer and Buffer Length Parameters ........................... 447 

(. 
Line Number Parameter .................................... 448 
Data Set Information Block .................................. 448 
Return Specifications ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 451 
Return Codes ........................................... 451 

Host Command Environment Routine ............................. 453 
Entry Specifications ....... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 453 
Parameters ............................................ 454 
Error Recovery .......................................... 455 
Return Specifications ...... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 455 
Return Codes ........................................... 455 

Data Stack Routine ......................................... 457 
Entry Specifications ..... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 458 
Parameters ............................................ 458 
Functions Supported for the Data Stack Routine .................... 460 
Return Specifications .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 461 
Return Codes ........................................... 462 

Storage Management Routine .................................. 463 
Entry Specifications ....................................... 463 
Parameters ............................................ 464 
Return Specifications ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 465 
Return Codes ........................................... 465 

User 10 Routine ........................................... 466 
Entry Specifications ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 466 

( Parameters ............................................ 466 
Functions Supported for the User 10 Routine ...................... 468 
Return Specifications ..... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 468 
Return Codes ........................................... 469 

Message Identifier Routine .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 470 
Entry Specifications ....................................... 470 
Parameters ............................................ 470 
Return Specifications ..... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 470 
Return Codes ........................................... 470 

REXX Exit Routines ......................................... 471 
Exits for Language Processor Environment Initialization and Termination 471 
Exec Initialization and Termination Exits ......................... 472 
Exec Processing (IRXEXEC) Exit Routine ........................ 472 
Attention Handling Exit Routine ............................... 473 

.... Appendix A. Error Numbers .and Messages 475 

Appendix B. Double-Byte Character Set (DBCS) Support ............... 485 
General Description ........................................ 485 

Enabling DBCS Data Operations .............................. 486 
Pure DBCS Strings and Mixed SBCS/DBCS Strings ................. 486 
Mixed String Validation .................................... 486 
Instruction Examples ...................................... 487 

PARSE ............................................. 487 
PUSH and QUEUE ...................................... 488 

c SAY and TRACE ....................................... 488 
UPPER ............................................. 488 

DBCS Function Handling ..................................... 488 
Built-in Function Examples .................................. 490 

ABBREV ............................................ 490 

Contents xi 



COMPARE ........................................... 490 
COPIES ............................................. 490 ("\, 
DATATYPE ........................................... 490 ~.J 
FIND ............................................... 490 
INDEX, POS, and LASTPOS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 490 
INSERT and OVERLAY ................................... 491 
JUSTIFY ........ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 491 
LEFT, RIGHT, and CENTER ......................... ~ . . . . . . 491 
LENGTH ............................................. 491 
REVERSE ....... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 491 
SPACE ............................................. 492 
STRIP .............................................. 492 
SUBSTR and DELSTR ................................... 492 
SUBWORD and DELWORD ................................ 492 
TRANSLATE .......................................... 492 
VERIFY ............................................. 492 
WORD, WORDINDEX, and WORDLENGTH ...................... 493 
WORDS ............................................. 493 
WORDPOS ........................................... 493 

DBCS Processing Functions ................................... 494 
Counting Option ......................................... 494 

Function Descriptions ....................................... 494 
DBADJUST ............................................ 494 
DBBRACKET ........................................... 494 
DBCENTER ............................................ 495 
DBCJUSTIFY ........................................... 495 
DBLEFT ............................................... 496 
DBRIGHT .............................................. 496 
DBRLEFT .............................................. 497 
DBRRIGHT ........... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 497 
DBTODBCS ............................................ 498 
DBTOSBCS ............................................ 498 
DBUNBRACKET ......................................... 498 
DBVALIDATE ........................................... 499 
DBWIDTH ............................................. 499 

Appendix C. IRXTERMA Routine ................................ 501 
Entry Specifications ........................................ 501 
Parameters .............................................. 502 
Return Specifications ....................................... 503 
Return Codes ............................................. 503 

Appendix D. Writing REXX Execs to Perform MVS Operator Activities ...... 505 
Activating a Console Session and Issuing MVS Commands .............. 505 
Using the CONSOLE Host Command Environment .................... 505 
Processing Messages During a Console Session ..................... 507 
Using the CART to Associate Commands and Their Responses ........... 508 

Considerations for Multiple Applications ......................... 509 
Example of Determining Results From Commands in One Exec ......... 510 

Appendix E. Additional Variables That GETMSG Sets ................. 513 
Variables GETMSG Sets For the Entire Message ..................... 513 (,-
Variables GETMSG Sets For Each Line of Message Text ................ 517 " 

Bibliography ............................................. 519 
Related Publications ........................................ 519 

xii TSO/E Version 2 MVS/REXX Reference 



TSO/E Publications ..................................... 519 
SAA Publications ...................................... 519 
MVS/ESA Publications ................................... 519 
ISPF Publications .... ' .................................. 519 

index .................................................. 521 

( 

( 

(-

Contents xiii 



xiv TSO/E Version 2 MVS/REXX Reference 



(". 

( 

c 

Notic;es 

References in this publication to IBM products, programs or services do not imply 
that IBM intends to make these available in all countries in which IBM operates. 

Any reference to an IBM licensed program or other IBM product in this publication 
is not intended to state or imply that only IBM's program or other product may be 
used. Any functionally equivalent program which does not infringe any of IBM's 
intellectual property rights may be used instead of the IBM product. Evaluation and 
verification of operation in conjunction with other products, except those expressly 
designated by IBM, is the user's responsibility. 

IBM may have patents or pending patent applications covering subject matter in this 
document. The furnishing of this document does not give you any license to these 
patents. You can send license inquiries, in writing, to the IBM Director of 
Commercial Relations, IBM Corporation, Purchase, NY 10577. 

Pttogramrnh1Q interla(.~es 

Trademarks 

This book is intended to help customers to write programs in the REXX 
programming language and to use the programming and customizing services 
TSO/E provides for REXX processing. This book documents general-use 
programming interfaces and associated guidance information provided by TSO 
Extensions Version 2. 

General-use programming interfaces allow the customer to write programs that 
obtain the services of TSO Extensions Version 2. 

The programming interfaces include data areas and parameter lists. Unless 
otherwise stated, all fields in data areas/parameter lists are part of the 
programming interface. However, all "Reserved ... " fields are not part of the 
programming interface. 

The following terms, DENOTED BY AN ASTERISK (*), used in this publication, are 
trademarks of the IBM Corporation in the United States and/or other countries: 

• BookMaster 
• IBM 
• MVS/ESA 
• Operating System/2 
• OS/2 
• Operating System/400 
• OS/400 
• Systems Application Architecture 
• SAA 

© Copyright IBM Corp. 1988, 1991 xv 



xvi TSO/E Version 2 MVS/REXX Reference 



.. 

( 

c 

Summe::ury of Changes 

Summary of Changes 
for SC28-1883-4 

-~-~-------~~------

TSO Extensions Version 2 Release 3.1 

This major revision consists of changes to support TSO Extensions Version 2 
Release 3.1 (TSO/E 2.3.1). The previous edition still applies to TSO/E Version 2 
Release 3 and may be ordered using the temporary order number STOO-4633. 

New Information 

• Information has been added about four new host command environments; 
LlNKMVS, ATICHMVS, LlNKPGM, and ATICHPGM. The environments let you 
link to and attach unauthorized programs and pass multiple parameters. 

• Four TSO/E REXX programming routines have been added: 

IRXSAY lets you write a character string to the same output stream as the 
SAY instruction 

IRXHL T lets you query or reset the halt condition 

IRXTXT lets you retrieve the same text the TSO/E REXX interpreter uses for 
the ERRORTEXT built-in function and for certain options of the DATE built-in 
function 

IRXLlN lets you retrieve the same value the LlNESIZE built-in function 
returns. 

• An optional environment block address parameter has been added to many of 
the TSO/E REXX routines. The parameter lets high-level languages more easily 
specify the environment in which they want a routine to run. 

• An optional return code parameter has been added to many of the TSO/E REXX 
routines. The parameter lets high-level languages more easily obtain the return 
code from a routine. 

• Information about variable length parameter lists and specifying the address of 
the environment block has been added to Chapter 12, "TSO/E REXX 
Programming Services." 

• A new return code 32 has been added to many of the TSO/E REXX routines. The 
return code indicates that the parameter list passed to the routine is invalid. 

• Information about using the address of the environment block when you call 
replaceable routines has been added to Chapter 16, "Replaceable Routines and 
Exits." 

• A new return code 24 has been added to the 1/0 replaceable routine. 

• The get result routine, IRXRL T, has been updated to include two new functions 
for parameter 1; GETRL TE and GETEVAL. The GETRL TE function is the same 
as the GETRL T function, except GETRLTE provides support when REXX execs 
are nested. The GETEVAL function lets a compiler runtime processor obtain an 
evaluation block to handle the result from a compiled REXX exec. 

• A new function, PULLEXTR, has been added for parameter 1 of the data stack 
replaceable routine. PULLEXTR lets you bypass the data stack and read from 
the input stream. 

© Copyright IBM Corp. 1988, 1991 xvii 

-,".,~,.~ -., .. -----~--- .... ---... ----



• Information about sample transaction programs TSO/E provides in 
SYS1.SAMPLIB has been added to the description of the CPICOMM and LU62 
host command environments. 

• A new function, TSOID, has been added for parameter 1 of the user ID 
replaceable routine. TSOID returns the same value as the USERID built-in 
function in an environment that is integrated into TSO/E. 

• A new return code 4 has been added to the EXECIO command. 

• A new immediate command, HE (Halt Execution), has been added to 
Chapter 10, "TSO/E REXX Commands." Chapter 11, "Debug Aids" also 
contains information about how to use HE to halt the execution of execs. 

• Information has been added to the descriptions of the host command 
environments about the minimum and maximum values that can be set in the 
REXX special variable RC. 

Changed Information 

• The environment block (ENVBLOCK) has been updated to include the address of 
a compiler programming table and the address of an attention routine control 
block. 

• The work block extension has been updated to include three new fields: 

A fullword that lets a compiler runtime processor have an anchor for each 
compiled exec in an environment 

The address of the PARSE SOURCE string 

The length of the PARSE SOURCE string. 

• The REXX vector of external entry pOints has been updated to include the new 
TSO/E REXX programming services; IRXSAY, IRXHLT, IRXTXT, and IRXLlN. 

• The EXECIO command has been enhanced to allow you to open a data set 
without reading or writing any records. 

• The host command environment table in the three default parameters modules 
that TSO/E provides has been updated for the LlNKMVS, ATTCHMVS, LlNKPGM, 
and ATTCHPGM environments. 

• Information has been added about a new SAMPLIB member, TSOANCH, that 
you can use to change the maximum number of environments that can be 
initialized in an address space. 

Technical and editorial changes have been made throughout the book. 

xviii TSO/E Version 2 MVS/REXX Reference 



( 

( 

Summary of Changes 
for SC28-1883-3 
TSO Extensions Version 2 Release 3 

This major revision consists of changes to support TSO Extensions Version 2 
Release 3 (TSO/E 2.3). The previous edition still applies to TSO/E Version 2 
Release 2 and may be ordered using the temporary order number STOO-4464. 

New Information 

• Information has been added about two new host command environments, 
CPICOMM and LU62. The new environments let you write APPC/MVS 
transaction programs in REXX. The CPICOMM environment supports the SAA 
CPI Communications calls and the LU62 environment supports the APPC/MVS 
calls that are based on the SNA LU 6.2 architecture. 

• Information about the compression of REXX execs has been added to "Using 
SYSPROC and SYSEXEC for REXX Execs" on page 392. Execs in the SYSPROC 
system level or application level file that are stored in VLF are compressed. 

• Information has been added to Chapter 11, "Debug Aids" about different 
considerations for interrupting exec processing in TSO/E. 

Changed Information 

• In the default parameters module that TSO/E provides for TSO/E (IRXTSPRM), 
the NOLOADDD flag setting has been changed from 1 (on) to 0 (off). With this 
setting, the system now searches SYSEXEC followed by SYSPROC. Information 
about the new search order has been changed throughout the book. 

• The host command environment tables in the three parameters modules that 
TSO/E provides have been updated for the CPICOMM and LU62 environments. 

Technical and editorial changes have been made throughout the book. 

Summary of Changes 
for SC28-1883-2 
TSO Extensions Version 2 Release 2 

This major revision consists of changes to support TSO Extensions Version 2 
Release 2 (TSO/E 2.2). The previous edition still applies to TSO/E Version 2 
Release 1.0 and Release 1.1 and may be ordered using the temporary order number 
STOO-3808. 

New Information 

• The CONSOLE host command environment has been added. The environment 
lets you issue MVS system and subsystem commands. 

• Two TSO/E external functions have been added: 

GETMSG lets you retrieve messages that have been issued during a 
console session 

SETLANG lets you query and change the language in which the system 
displays REXX messages. 

Summary of Changes xix 



Appendix E, "Additional Variables That GETMSG Sets" has also been added to 
describes additional variables that the new GETMSG external function sets. 

• New arguments have been added to the TSO/E external function SYSVAR. The 
arguments return language and console session information. The arguments 
are SYSPLANG, SYSSLANG, SYSDTERM, SYSKTERM, SOLDISP, UNSDISP, 
SOLNUM, UNSNUM, MFTIME, MFOSNM, MFJOB, and MFSNMJBX. 

• Appendix D, "Writing REXX Execs to Perform MVS Operator Activities" has 
been added to provide information about the commands and REXX services 
TSO/E provides for running an extended MCS console session. 

• A new bit (bit 3) has been added to parameter 3 in the parameter list for the 
IRXEXEC routine. New return codes (20001 - 20099) have also been added for 
IRXEXEC. The new bit and return codes allow you to determine whether the 
language processor detected a syntax error in the exec. 

• New reason codes (25, 26, and 27) have been added to the initialization routine, 
IRXINIT. 

• Parameter 8 has been added to the initialization routine, IRXINIT, to let you 
specify how REXX obtains storage in the language processor environment. 

• A new function, TSOLOAD, has been added for parameter 1 of the exec load 
replaceable routine. 

Changed Information 

• The title of the book has been changed to TSO Extensions Version 2 Procedures 
Language MVSIREXX Reference. 

• The language field in the parameters module has been changed from 2 bytes to 
3 bytes and the language codes are now three character codes instead of two 
characters. 

• The value in the version field of the parameters modules has been changed 
from 0100 to 0200. 

• The values in the host command environment table in the default parameters 
modules that TSO/E provides have been changed for the new CONSOLE 
environment. 

Editorial and technical changes have been made throughout the book. 

Summary of Changes 
for SC28-1883-1 
TSO Extensions Version 2 

This major revision consists of changes to support TSO/E Version 2. 

New Information 

• A new language code (CN) for REXX messages has been added to support 
simplified Chinese. 

• A new section has been added to Chapter 8, "Using REXX in Different Address ( 
Spaces" that summarizes the instructions, functions, commands, and services 
you can use in a REXX exec. 

XX TSO/E Version 2 MVS/REXX Reference 



( 

• Information describing the differences between replaceable routines and exits 
and their use in TSO/E and non-TSO/E address spaces has been added. 

• Information has been added about how to define function packages that other 
IBM products provide for TSO/E REXX. 

Editorial and technical changes have been made throughout the book. 

Summary of Changes 
for SC28·1883·0 
as Updated February 10,1989 
by Technical Newsletter SN28·1293 

This Technical Newsletter, which supports TSO Extensions (TSO/E) Version 2, 
contains the following changes for TSO/E support of the REXX programming 
language. The newsletter also contains minor technical changes. 

• New information about how to initialize a language processor environment if 
you use a user-written terminal monitor program (TMP) 

• New values returned by the PARSE VERSION instruction for the language level 
description (3.46) and the language processor release date (30 Jun 1988). The 
new values support APAR OY17590 and are returned if you install the PTF that 
supports the APAR. If the PTF is not installed, the values returned are "3.45" 
and "20 Oct 1987." 

Summary of Changes 
for SC28· 1883·0 
TSO Extensions Version 2 

This book is a new book in the TSO/E Version 2 library. It contains reference 
information about TSO/E REXX. 

APAR Information 

The following APARs provide TSO/E REXX instructions, functions, and services that 
are described in this book. The instructions, functions, and services listed below 
can be used only if your installation installs the PTF that supports the particular 
APAR. 

• APAR OY17498 provides the TSO/E function MSG, which is described on page 
139. 

• APAR OY17590 provides the: 

Ability to enable and disable condition traps using the CALL instruction 
(CALL ON and CALL OFF). The CALL instruction is described on page 48. 
Chapter 7, "Conditions and Condition Traps" describes how to enable and 
disable condition traps. 

Ability to specify NAME trapname using the SIGNAL ON instruction. The 
SIGNAL instruction is described on page 77. Chapter 7, "Conditions and 
Condition Traps" describes how to enable and disable condition traps. 

I 

Summary of Changes xxi 



CONDITION built-in function, which is described on page 96. 

Ability to specify up to 20 expressions on the CALL instruction and on 
function calls, such as MAX and MIN. If the PTF for the APAR is not 
installed, the maximum number of expressions you can specify is 10. 

Exit routines for exec initialization and exec termination. The exits are 
described in "REXX Exit Routines" on page 471. 

• APAR OY17558 provides the SYS1.SAMPLIB members for coding the 
parameters modules IRXPARMS, IRXTSPRM, and IRXISPRM. The SAMPLIB 
members are: 

TSOREXX1 (for IRXPARMS) 
- TSOREXX2 (for IRXTSPRM) 
- TSOREXX3 (for IRXISPRM) 

• APAR OY17979 provides alternate entry point names for the TSO/E REXX 
external entry points. The alternate entry point names are less than six 
characters and allow FORTRAN programs to call the TSO/E REXX external entry /~-~ 

points. 

C:~ .. ,\ . . 

xxii TSO/E Version 2 MVS/REXX Reference 



Introduction 

Chapter 1. Introduction 

This introductory section: 

• Identifies the book's purpose and audience 
• Gives a brief overview of the Systems Application Architecture* (SAA *) solution 
• Explains how to use the book. 

Who Should Read This Book 
This book describes the TSO/E Procedures Language MVS/REXX interpreter 
(referred to as the interpreter or language processor) and the REstructured 
eXtended eXecutor (REXX) language. Together, the language processor and the 
REXX language are known as TSO/E REXX. This book is intended for experienced 
programmers, particularly those who have used a block-structured, high-level 
language (for example, PLII, Algol, or Pascal). 

This book is a reference rather than a tutorial. It assumes you are already familiar 
with REXX programming concepts. 

TSO/E REXX is the implementation of the SAA Procedures Language on the MVS 
system. Although TSO/E Version 2 provides support for REXX, you can run REXX 
programs (called REXX execs) in any MVS address space. That is, you can run a 
REXX exec in TSO/E and non-TSO/E address spaces. 

Descriptions include the use and syntax of the language and explain how the 
language processor "interprets" the language as a program is running. The book 
also describes TSO/E external functions and REXX commands you can use in a 
REXX exec, programming services that let you interface with REXX and the 
language processor, and customizing services that let you customize REXX 
processing and how the language processor accesses and uses system services, 
such as storage and I/O requests. 

'\ftfnat the SAA Soiution Is 
The SAA solution is based on a set of software interfaces, conventions, and 
protocols that provide a framework for designing and developing applications. 

The SAA Procedures Language has been defined as a subset of the REXX language. 
Its purpose is to define a common subset of the language that can be used on 
several environments. TSO/E REXX is the implementation of the SAA Procedures 
Language on the MVS system. If you plan on running your REXX programs on other 
environments, however, some restrictions may apply and you should review the 
publication SAA Common Programming Interface Procedures Language Reference. 

Systems Application Architecture is a trademark of the IBM Corporation. 

SAA is a trademark of the IBM Corporation. 

© Copyright IBM Corp. 1988, 1991 1 



Introduction 

The SAA solution: 

• Defines a common programming interface that you can use to develop 
applications that can be integrated with each other, and transported to run in 
multiple SAA environments 

• Defines common communications support that you can use to connect 
applications, systems, networks, and devices 

• Defines a common user access that you can use to achieve consistency in panel 
layout and user interaction techniques 

• Offers some applications and application development tools written by IBM. 

Supported Environments 
Several combinations of IBM hardware and software have been selected as SAA 
environments. These are environments in which IBM will manage the availability of 
support for applicable SAA elements, and the conformance of those elements to 
SAA specifications. The SAA environments are the following: /'--" 

\ 

• MVS "-. .../ 

TSO/E 
CICS 
IMS 

• VM/CMS 

• Operating System/400* (OS/400*) 

• Operating System/2* (OS/2*). 

Common Programming Interface 
As its name implies, the common programming interface (CPI) provides languages, 
commands, and calls that programmers can use to develop applications that take 
advantage of SAA consistency. These applications can be easily integrated and 
transported across the supported environments. 

The components of the interface currently fall into two general categories: 

• Languages 

Application Generator 
C 
COBOL 
FORTRAN 
PLII 
Procedures Language 
RPG. 

• Services 

Communications Interface 
Database Interface 

Operating System/400 is a trademark of the IBM Corporation. 

OS/400 is a trademark of the IBM Corporation. 

Operating System/2 is a trademark of the IBM Corporation. 

OS/2 Is a trademark of the IBM Corporation. 

2 TSO/E Version 2 MVS/REXX Reference 

I 
I 
I 



( 

c 

Dialog Interface 
Presentation Interface 
Query Interface 
Repository Interface. 

Introduction 

The CPI is not in itself a product or a piece of code. But-as a definition-it does 
establish and control how IBM products are being implemented, and it establishes a 
common base across the applicable SAA environments. 

Thus, when you want to create an application that can be used in more than one 
environment, you can stay within the boundaries of the CPI and obtain easier 
portability. (Naturally, the design of such applications should be done with 
portability in mind as welL) 

How to Use This Book 
The material in this book is arranged in chapters: 

1. Introduction 
2. General Concepts 
3. Keyword Instructions (in alphabetic order) 
4. Functions (in alphabetic order) 
5. Parsing (a method of dividing character strings, such as commands) 
6. Numbers and Arithmetic 
7. Conditions and Condition Traps 
8. Using REXX in Different Address Spaces 
9. Reserved Keywords, Special Variables, and Command Names 

10. TSO/E REXX Commands 
11. Debug Aids 
12. TSO/E REXX Programming Services 
13. TSO/E REXX Customizing Services 
14. Language Processor Environments 
15. Initialization and Termination Routines 
16. Replaceable Routines and Exits 

There are several appendixes covering: 

• Error Numbers and Messages 
• Double-Byte Character Set (DBCS) Support 
• IRXTERMA Routine 
• Writing REXX Execs to Perform MVS Operator Activities 
• Additional Variables That GETMSG Sets 

This introduction and Chapter 2, "General Concepts" provide general information 
about the REXX programming language. The two chapters provide an introduction 
to TSO/E REXX and describe the structure and syntax of the REXX language, the 
different types of clauses and instructions, the use of expressions, operators, 
assignments, and symbols, and issuing commands from a REXX exec. 

Other chapters in the book provide reference information about the syntax of the 
keyword instructions and built-in functions in the REXX language, and the external 
functions TSO/E provides for REXX programming. The keyword instructions, built-in 
functions, and TSO/E external functions are described in Chapter 3, "Keyword 
Instructions" and Chapter 4, "Functions." 

Chapter 1. Introduction 3 



Introduction 

Other chapters provide information that will help you use the different features of 
REXX and debug any problems you have in your REXX execs. These chapters 
include: 

• Chapter 5, "Parsing for PARSE, ARG, and PULL" 
• Chapter 6, "Numbers and Arithmetic" 
• Chapter 7, "Conditions and Condition Traps" 
• Chapter 9, "Reserved Keywords, Special Variables, and Command Names" 
• Chapter 11, "Debug Aids." 

TSO/E provides several REXX commands you can use for REXX processing. The 
syntax of these commands is described in Chapter 10, "TSO/E REXX Commands." 

Although TSO/E provides support for the REXX language, you can run REXX execs 
in any MVS address space (TSO/E and non-TSO/E). Chapter 8, "Using REXX in 
Different Address Spaces" describes various aspects of using REXX in TSO/E and 
non-TSO/E address spaces and any restrictions. 

In addition to REXX language support, TSO/E provides programming services you 
can use to interface with REXX and the language processor, and customizing 
services that let you customize REXX processing and how the language processor 
accesses and uses system services, such as 1/0 and storage. The programming 
services are described in Chapter 12, "TSO/E REXX Programming Services." The 
customizing services are introduced in Chapter 13, "TSO/E REXX Customizing 
Services" and are described in more detail in the following chapters: 

• Chapter 14, "Language Processor Environments" 
• Chapter 15, "Initialization and Termination Routines" 
• Chapter 16, "Replaceable Routines and Exits." 

Throughout the book, examples are provided that include data set names. When an 
example includes a data set name that is enclosed in single quotes, the prefix is 
added to the data set name. In the examples, the user 10 is the prefix. 

4 TSO/E Version 2 MVS/REXX Reference 

j 

c 



( 

( 

c 

Introduction 

How to Read the Syntax Diagrams 
Throughout this book, syntax is described using the structure defined below. 

• Read the syntax diagrams from left to right, from top to bottom, following the 
path of the line. 

The ~ symbol indicates the beginning of a statement. 

The ----. symbol indicates that the statement syntax is continued 
on the next line. 

The ~ symbol indicates that a statement is continued from 
the previous line. 

The ~ symbol indicates the end of a statement. 

Diagrams of syntactical units other than complete statements start 
with the ~ symbol and end with the ----. symbol. 

• Required items appear on the horizontal line (the main path). 

-STATEMENT---requi red-i telll'm---------..... 

• Optional items appear below the main path. 

-S TAT EM ENT--,.-------.--------...... 
L-oPtional-it~ 

• If you can choose from two or more items, they appear vertically, in a stack. 

If you must choose one of the items, one item of the stack appears on the main 
path. 

-STATEMENT---r==reqUired-choicel~ 
required-choice2 

... 

If choosing one of the items is optional, the entire stack appears below the main 
path. 

-STATEMENT·-...,----------,~--------l·-.. 
t==0Ptional-choicel~ 

optional-choice2 

• An arrow returning to the left above the main line indicates an item that can be 
repeated. 

~ 
-STATEMENT--repeatabl e-ite!mm---'-------..... 

A repeat arrow above a stack indicates that you can repeat the items in the 
stack. 

• Keywords appear in uppercase (for example, PARMI). They must be spelled 
exactly as shown. Variables appear in all lowercase letters (for example, 
pannx). They represent user-supplied names or values. 

• If punctuation marks, parentheses, arithmetic operators, or such symbols are 
shown, you must enter them as part of the syntax. 

Chapter 1. Introduction 5 



------ --------

Introduction 

The following example shows how the syntax is described: 

-PROCEDURE-.----------,-- ----~ ...... 

~EXPOSE~a..::JlJ 

For Further REXX Information 
The following lists, in alphabetical order, publications that are useful for 
programming in REXX: 

• The SAA Common Programming Interface Procedures Language Reference, 
SC26-4358, may be useful to more experienced REXX users who may wish to 
code portable programs. This book defines the SAA Procedures language. 
Descriptions include the use and syntax of the language as well as explanations 
on how the language processor interprets the language as a program is 
executing. 

• The TSOIE Version 2 Procedures Language MVSIREXX User's Guide, 
SC28-1882, introduces the instructions and functions the REXX language 
provides and explains how to write a REXX exec. It describes how to run a 
REXX exec in TSO/E foreground and background, in MVS batch using JCl, or in 
any address space. This book also highlights the major differences between the 
TSO/E CLIST language and the REXX language. 

• The TSOIE Version 2 Quick Reference, GX23-0026, is a reference summary that 
includes the syntax of the REXX keyword instructions, built-in functions, TSO/E 
external functions, and TSO/E REXX commands in a summary form. 

6 TSO/E Version 2 MVS/REXX Reference 



General Concepts 

( Chapter 2. General Concepts 

( 

c 

~.3rief Description of the REstructured eXtended eXecutor Language 
The REstructured eXtended eXecutor (REXX) language is a language particularly 
suitable for: 

• Command procedures 
• Application front ends 
• User-defined macros (such as editor subcommands) 
• Prototyping 
• Personal computing. 

Individual users 'can write programs for their own needs. 

It is a general purpose programming language like PLII. REXX has the usual 
"structured programming" instructions-IF, SELECT, DO WHILE, LEAVE, and so 
on-and a number of useful built-in functions. 

No restrictions are imposed by the language on program format. There can be 
more than one clause on a line, or a single clause can occupy more than one line. 
Indentation is allowed. Programs can, therefore, be coded in a format that 
emphasizes their structure, making them easier to read. 

There is no limit to the length of the values of variables, so long as all variables fit 
into the storage available. 

Symbols (variable names) are limited to a length of 250 characters. 

Compound symbols, such as 

NAME.X.Y 

(where X and Y can be the names of variables or can be constant symbols), may be 
used for constructing arrays and for other purposes. 

Issuing host commands from within a REXX program is an integral part of the REXX 
language. For example, in the TSO/E address space, you can use TSO/E commands 
in a REXX exec. The exec can also use ISPF commands and services if the exec 
runs in ISPF. In execs that run in both TSO/E and non-TSO/E address spaces, you 
can use the TSO/E REXX commands, such as MAKEBUF, DROPBUF, and 
NEWSTACK. You can also link to or attach programs. "Host Commands and Host 
Command Environments" on page 26 describes the different environments for using 
host services. 

TSO/E REXX execs can reside in a sequential data set or in a member of a 
partitioned data set (PDS). Partitioned data sets containing REXX execs can be 
allocated to either the system file SYSPROC (TSO/E address space only) or 
SYSEXEC. In the TSO/E address space, you can also use the TSO/E AL TUB 
command to define alternate exec libraries for storing REXX execs. For more 
information about allocating exec data sets, see TSOIE Version 2 Procedures 
Language MVSIREXX User's Guide. 

© Copyright IBM Corp. 1988, 1991 7 



----------_._-

General Concepts 

In TSO/E, you can invoke an exec explicitly using the EXEC command followed by 
the data set name and the "exec" keyword operand of the EXEC command. The 
"exec" keyword operand distinguishes the REXX exec from a TSO/E CLlST, which 
you also invoke using the EXEC command. 

You can invoke an exec implicitly by entering the member name of the exec. You 
can invoke an exec implicitly only if the PDS in which the exec is stored has been 
allocated to a system file (SYSPROC or SYSEXEC). SYSEXEC is a system file whose 
data sets can contain REXX execs only. SYSPROC is a system file whose data sets 
can contain either CLiSTs or REXX execs. If an exec is in a data set that is allocated 
to SYSPROC, the exec must start with a comment containing the characters "REXX" 
within the first line (line 1). This enables the TSO/E EXEC command to distinguish a 
REXX exec from a CLiST. For more information, see "Structure and General 
Syntax" on page 9. 

SYSEXEC is the default load ddname from which REXX execs are loaded. If your 
installation plans to use REXX, it is recommended that you store your REXX execs in 
data sets that are allocated to SYSEXEC. This makes them easier to maintain. For 
more information about the load ddname and searching SYSPROC or SYSEXEC, see 
"Using SYSPROC and SYSEXEC for REXX Execs" on page 392. 

REXX programs are executed by a language processor (interpreter). That is, the 
program is executed line-by-line and word-by-word, without first being translated to 
another form (compiled). The advantage of this to the user is that if the program 
fails with a syntax error of some kind, the point of failure is clearly indicated; 
usually, it will not take long to understand the difficulty and make a correction. 

When an exec is loaded into storage, the load routine checks for sequence numbers 
in the data set. The routine removes the sequence numbers during the loading 
process. For information about how the load routine checks for sequence numbers, 
see "Exec Load Routine" on page 433. 

Where to Find More Information 
This is the reference manual. Reference information is also available in a 
convenient summary form in the TSO/E Version 2 Quick Reference. 

You can find useful information in the TSO/E Version 2 Procedures Language 
MVS/REXX User's Guide. For any program written in the REstructured eXtended 
eXecutor (REXX) language, you can get information on how the language processor 
interprets the program or a particular instruction by using the REXX TRACE 
instruction. 

8 TSO/E Version 2 MVS/REXX Reference 

-------------~~~--.-------~-.~~~-----------

c 



( 

( 

General Concepts 

---------- ----------_._._-----
Structure and General Syntax 

If you store a REXX exec in a data set that is allocated to SYSPROC, the exec must 
start with a comment and the comment must contain the characters "REXX" within 
the first line (line 1) of the exec. This is known as the REX X exec identifier and is 
required in order for the TSO/E EXEC command to distinguish REXX execs from 
TSO/E CUSTs, which are also stored in SYSPROC. 

The characters "REXX" must be in the first line (line 1) even if the comment spans 
multiple lines. In Figure 1, example A on the left is correct. The program starts 
with a comment and the characters "REXX" are in the first line (line 1). Example B 
on the right is incorrect. The program starts with a comment. However, although 
the comment contains the characters "REXX," they are not in the first line (line 1). 

Example A (Correct) 

/* REXX program to check 
•.. The program then 

ADDRESS CPICOMM 

EXIT 

*/ 

Example B (Incorrect) 

/* This program checks 
... in REXX and 

ADDRESS CPICOMM 

EXIT 

Figure 1. Example of Using the REXX Exec Identifier 

*/ 

If the exec is in a data set that is allocated to a file containing REXX execs only, not 
CUSTs (for example, SYSEXEC), the comment including the characters "REXX" is 
not required. However, it is recommended that you start all REXX execs with a 
comment in the first column of the first line and include the characters "REXX" in 
the comment. In particular, this is recommended if you are writing REXX execs for 
use in other SAA environments. Including "REXX" in the first comment also helps 
users identify that the program is a REXX program and distinguishes a REXX exec 
from a TSO/E CUST. For more information about how the EXEC command 
processor distinguishes REXX execs and CUSTs, see TSOIE Version 2 Command 
Reference. 

A REXX program is built from a series of clauses that are composed of: 

• Zero or more blanks (which are ignored) 
• A sequence of tokens (see "Tokens" on page 10) 
• Zero or more blanks (again ignored) 
• A semicolon (;) delimiter that may be implied by line-end, certain keywords, or 

the colon (:) if it follows a single symbol. 

Conceptually, each clause is scanned from left to right before processing, and the 
tokens composing it are identified. Instruction keywords are recognized at this 
stage, comments are removed, and multiple blanks (except within literal strings) are 
converted to single blanks. Blanks adjacent to special characters (including 
operators, see page 13) are also removed. 

Chapter 2. General Concepts 9 



--------------

General Concepts 

Characters 

Tokens 

A character, the letter "Au, for example, differ$ from its coded representation or 
encoding. Various coded character sets (such as ASCII and EBCDIC) use different 
encodings. for the letter A (decimal values 65 and 193, respectively). This book uses 
characters to convey meanings and not to imply a specific character code, except 
where otherwise stated. The exceptions are certain built-in functions that convert 
between characters and their representations. The functions C2D, C2X, D2C, X2C, 
and XRANGE have a dependence on the character set in use. 

For information about Double-Byte Character Set characters, see Appendix B, 
"Double-Byte Character Set (DBCS) Support" on page 485 

Programs written in REXX are composed of tokens (of any length, up to an 
implementation-restricted maximum) that are separated by blanks or by the nature 
of the tokens themselves. The classes of tokens are: 

Comments: 
A sequence of characters (on one or more lines) delimited by /. and ./. 
Comments can contain other comments, as long as each begins and 
ends with the necessary delimiters. You can write comments anywhere 
in a program. The language processor ignores them (and, hence, they 
can be of any length), but they do act as separators. 

/* This is an example of a valid comment */ 
Literal Strings: 

A sequence including any characters and delimited by the single 
quotation mark (') or the double quotation mark ("). Use two consecutive 
double quotation marks ("") to represent a II character within a string 
delimited by double quotation marks. Similarly, use two consecutive 
single quotation marks (' , ) to represent a ' character within a string 
delimited by single quotation marks. A literal string is a constant and its 
contents are never modified when it is processed. 

A literal string with no characters (that is, a string of length 0) is called a 
null string. 

These are valid strings: 

'Fred' 
"Don't Panic!" 
'You shouldn' 't' 
" 

/* Same as "You shouldn't" */ 
/* The null string */ 

Implementation maximum: A literal string can contain up to 250 
characters. (But note that the length of computed results is limited only 
by the amount of storage available.) 

Note that a string followed immediately by a ( is considered to be the 
name of a function. If followed immediately by the symbol X or x, it is 
considered to be a hexadecimal string. 

10 TSO/E Version 2 MVS/REXX Reference 



( 

( 

General Concepts 

Hexadecimal Slrlngs: 

Symbols: 

Any sequence of zero or more hexadecimal digits (e-9, a-f, A-F), 
optionally separated by blanks, delimited by single or double quotation 
marks, and immediately followed by the symbol x or X (neither can be 
part of a longer symbol). A single leading 0 is added, if necessary, at the 
front of the string to make an even number of hexadecimal digits, which 
represent a character string constant formed by packing the 
hexadecimal codes given. The blanks, which may be present only at 
byte boundaries (and not at the beginning or end of the string), are to aid 
readability. The language processor ignores them. 

These are valid hexadecimal strings: 

'ABCD'x 
"ld ec fS"X 
"1 dS"x 

Implementation maximum: The packed length of a hexadecimal string 
cannot exceed 250 bytes. 

Symbols are groups of characters, selected from the: 

• English alphabetic characters (A-Z and a-z) 
• Numeric characters (e-9) 
• Characters @ # $ ¢ • ! ? and underscore. 

Any lowercase alphabetic character in a symbol is translated to 
uppercase (that is, lowercase a-z to uppercase A-Z). 

These are valid symbols: 

Fred 
A 1 bert • Hall 
WHERE? 

A symbol can be a label (see page 20) or a REXX keyword (see page 
195). If a symbol does not begin with a digit or a period, you can use it 
as a variable and can assign it a value. If you have not assigned it a 
value, its value is the characters of the symbol itself, translated to 
uppercase (that is, lowercase a-z to uppercase A-Z). Symbols that begin 
with a number or a period are constant symbols and cannot be assigned 
a value. A symbol may include other characters in one situation only. If 
the first part of a symbol starts with a digit (0-9) or a period, it may end 
with the sequence "E" or "e", followed immediately by an optional sign 
("_" or "+ "), followed immediately by one or more digits (which cannot 
be followed by any other symbol characters). The symbol thus defined 
may be a number in exponential notation. The sign in this context is part 
of the symbol and is not an operator. 

These are valid numbers in exponential notation: 

17.3E-12 
.e3e+9 

Implementation maximum: A symbol can consist of up to 250 characters. 
(But note that its value, if it is a variable, is limited only by the amount of 
storage available.) 

Chapter 2. General Concepts 11 



General Concepts 

Numbers: 

Operators: 

- .. ------------------------

These are character strings consisting of one or more decimal digits, C 
optionally pref(ix) ed by a plus or mid nus. sign I ' a~d oPAtionalblY includinl g a~: 
single period . that represents a eClma pOint. num er can a so 
have a power of ten suffixed in conventional exponential notation: an E 
(uppercase or lowercase), followed optionally by a plus or minus sign, 
then followed by one or more decimal digits defining the power of ten. 
Whenever a character string is used as a number, rounding may occur to 
a precision specified by the NUMERIC DIGITS instruction (default nine 
digits). See pages 167-175 for a full definition of numbers. 

Numbers can have leading blanks (before and after the sign, if any) and 
can have trailing blanks. Embedded blanks are not permitted. Note that 
a symbol (see preceding) or a literal string may be a number. A number 
cannot be the name of a variable. 

These are valid numbers: 

12 
'-17.9' 
127.0650 
73e+128 
, + 7.9E5 ' 

A whole number is a number that has a zero (or no) decimal part and 
that the language processor would not normally express in exponential 
notation. That is, it has no more digits before the decimal point than the 
current setting of NUMERIC DIGITS (the default is 9). 

Implementation maximum: The exponent of a number expressed in 
exponential notation can have up to nine digits. 

The special characters: + - \ / % * I & = ..., > < and the 
sequences >= <= \> \< \= >< <> == \== / / && II **...,> 
...,< ...,= ...,== » « »= \« .,« \» .,» «= /= /= are 
operator tokens (see page 15), with or without embedded blanks or 
comments. A few of these are also used in parsing templates, and the 
equal sign is also used to indicate assignment. Blanks (and comments) 
adjacent to operator characters have no effect on the operator; thus, 
operators constructed from more than one character can have 
embedded blanks and comments. One or more blank(s), where they 
occur in expressions but are not adjacent to another operator, also act 
as an operator. Blanks adjacent to operator characters are removed. 
Therefore, the following are identical in meaning. 

345>=123 
345 >=123 
345 >= 123 
345 > = 123 

Some of these characters may not be available in all character sets, and, 
if this is the case, appropriate translations may be used. In particular, 
the vertical bar or character is often shown as a split vertical bar. 

Note that throughout the language, the not character, "...,", is 
synonymous with the backslash ("\"). You can use the two characters 
interchangeably according to availability and personal preference. 

/-\ 
\>- ! 
,.../ 

( 

12 TSO/E Version 2 MVS/REXX Reference 



( 

General Concepts 

Special Characters: 

Implied Semicolons 

The characters. ; : ) ( together with the individual characters from 
the operators have special significance when found outside of strings. 
All these characters constitute the set of "special" characters. They all 
act as token delimiters, and blanks adjacent to any of these are 
removed, with the exception that a blank adjacent to the outside of a 
parenthesis is deleted only if it is also adjacent to another special 
character (unless this is a parenthesis and the blank is outside it, too). 
For example, the clause: 

'REPEAT' B + 3; 

is composed of six tokens-a literal string (' REPEAT'), a blank operator, a 
symbol (B, which may have a value), an operator (+), a second symbol 
(3, which is a number and a symbol), and the clause delimiter (;). The 
blanks between the B and the + and between the + and the 3 are 
removed. However, one of the blanks between the 'REPEAT' and the B 
remains as an operator. Thus, this clause is treated as though written: 

'REPEAT' B+3; 

Implementation maximum: During parsing of a clause, the internal form 
of a clause (which is approximately the same length as the visible form, 
except that extra blanks and comments are removed) cannot exceed 500 
characters. Note that this does not limit in any way the length of data 
that can be manipulated, which is dependent upon the amount of storage 
(memory) available. 

The last element in a clause is the semicolon delimiter. The language processor 
implies the semicolon in three cases: by a line-end, after certain keywords, and 
after a colon if it follows a single symbol. This means that you need to include 
semicolons only when there is more than one clause on a line or to terminate an 
instruction that ends with a comma. 

A line-end usually marks the end of a clause and, thus, a semicolon is implied at 
most end of lines. However, there are exceptions: 

• The line ends in the middle of a string 
• The line ends in the middle of a comment 
• The last noncomment token was the continuation character (denoted by a 

comma). 

In these situations, it is not considered the end of a clause and a semicolon is not 
implied. 

Semicolons are also implied automatically after certain keywords when they are 
used in the correct context. The keywords that have this effect are: ELSE, 
OTHERWISE, and THEN. These special cases reduce typographical errors 
significantly. 

Note: The two characters forming the comment delimiters, /* and "f, must not be 
split by a line-end (that is, f and • should not appear on different lines) since they 
could not then be recognized correctly: an implied semicolon would be added. The 
two characters forming a double quotation mark within a string are also subject to 
this line-end ruling. 

Chapter 2. General Concepts 13 



General Concepts 

Continuations 

----------------

One way to continue a clause onto the next line is to use the comma, which is 
referred to as the continuation character. The comma is functionally replaced by a 
blank, and, thus, no semicolon is implied. The continuation character cannot be 
used in the middle of a string or it will be processed as part of the string itself. The 
same situation holds true for comments. Note that the comma remains in execution 
traces. 

The following example shows how to use the continuation character to continue a 
clause. 

say 'You can use a comma', 
'to continue this clause.' 

This displays: 

----.-.-----------------------~-----------------.-.. --.------_._--_ .. -.--_ .... _-
Expressions and Operators 

Expressions 
Clauses can include expressions consisting of terms (strings, symbols, and function 
calls) interspersed with operators and parentheses. 

Terms include: 

• Literal Strings (delimited by quotation marks), which are constants 

• Symbols (no quotation marks), which are translated to uppercase. A symbol 
that does not begin with a digit or a period may be the name of a variable; in 
this case the value of that variable replaces the symbol as soon as it is needed 
during evaluation. Otherwise a symbol is treated as a constant string. A 
symbol can also be compound. 

• Function Invocations-see page 85-which are of the form: 

--CSymbol(J 
string( 

+ I 

~xpress;on~ 
Evaluation of an expression is left to right, modified by parentheses and by operator 
precedence in the usual algebraic manner (see "Parentheses and Operator 
Precedence" on page 18). Expressions are always wholly evaluated, unless an 
error occurs during evaluation. 

14 TSO/E Version 2 MVS/REXX Reference 

;f~' 
(. 
,~,_/ 



( 

( 

c 

Operators 

General Concepts 

All data is in the form of "typeless" character strings (typeless because it is not-as 
in some other languages-of a particular declared type, such as Binary, 
Hexadecimal, Array, and so forth). Consequently, the result of evaluating any 
expression is itself a character string. All terms and results (except arithmetic and 
logical expressions) may be the null string (a string of length 0). Note that REXX 
imposes no restriction on the maximum length of results, but there is usually some 
practical limitation dependent upon the amount of storage available to the language 
processor. 

The following pages describe how each operator (except for the prefix operators) 
acts on two terms, which may be symbols, strings, function calls, intermediate 
results, or SUb-expressions in parentheses. Each prefix operator acts on the term or 
SUb-expression that follows it. There are four types of operators: 

String Concatenation 
The concatenation operators combine two strings to form one string. The 
combination may occur with or without an intervening blank: 

(blank) Concatenate terms with one blank in between 

II Concatenate without an intervening blank 

(abuttal) Concatenate without an intervening blank 

You can force concatenation without a blank by using the II operator. 

The abuttal operator is assumed between terms that are not separated by another 
operator. This can occur when two terms are syntactically distinct, such as a literal 
string and a symbol, or when they are separated only by a comment. An example of 
syntactically distinct terms is: if Fred has the value '37.4', then Fred '%' evaluates to 
'37.4%'. Any comments between the terms are irrelevant. 

Examples: 

If the variable PETER has the value I, then (Fred) (Peter) evaluates to 37.41. 

In EBCDIC, the two adjoining strings, one hexadecimal and one literal, 

'cl c2'x'CDE' 

evaluate to 'ABCDE'. 

In the case of: 

Fred/* The NOT operator precedes Peter. */-,Peter 

there is no abuttal operator implied, and it is an invalid expression. However, 

(Fred)/* The NOT operator precedes Peter. */(-,Peter) 

results in an abuttal, and evaluates to 37.40 

Chapter 2. General Concepts 15 



General Concepts 

Arithmetic 

Comparison 

You can combine character strings that are valid numbers (see page 11) using the 
arithmetic operators: 

+ 

* 

I 

% 

/I 

** 

Prefix -

Prefix + 

Add 

Subtract 

Multiply 

Divide 

Divide and return the integer part of the result 

Divide and return the remainder (not modulo, since the result 
may be negative) 

Power (raise a number to a whole-number power) 

Negate the following term. Same as the subtraction 'O-term '. 

Take the following term as if it was the addition 'O+term'. 

See Chapter 6, "Numbers and Arithmetic" on page 167 for details of accuracy, the 
format of valid numbers, and the combination rules for arithmetic. Note that if an 
arithmetic result is shown in exponential notation, it is likely that rounding has 
occurred. 

The comparison operators return the value 1 if the result of the comparison is true, 
or 0 otherwise. 

The strict comparison operators all have one of the characters defining the operator 
doubled. The" = = ", '" = = ", " .... = =", and '" = =" operators test for strict 
equality or inequality between two strings. Two strings must be identical to be 
considered strictly equal. Similarly, the strict comparison operators such as "> > .. 
or "< <" carry out a simple character-by-character comparison, with no padding of 
either of the strings being compared. The comparison of the two strings is from left 
to right. If one string is shorter than and is a leading substring of another, then it is 
smaller (less than) the other. The strict comparison operators also do not attempt to 
perform a numeric comparison on the two operands. 

For all the other comparison operators, if both terms involved are numeric, a 
numeric comparison (in which leading zeros are ignored, and so forth) is effected. 
Otherwise, both terms are treated as character strings (leading and trailing blanks 
are ignored, and then the shorter string is padded with blanks on the right). 

Character comparison and strict comparison operations are both case-sensitive, 
and for both the exact collating order may depend on the character set used for the 
implementation. For example, in an EBCDIC environment, lowercase alphabetics 
precede uppercase, and the digits 0-9 are higher than all alphabetics. In an ASCII 
environment, the digits are lower than the alphabetics, and lowercase alphabetics 
are higher than uppercase alphabetics. 

16 TSO/E Version 2 MVS/REXX Reference 

r~ 

~J 



Logical (Boolean) 

------~-~-~ ~ 

General Concepts 

True if terms are strictly equal (identical) 

True if the terms are equal (numerically or when padded, 
and so forth) 

\==, ..... ==,/== True if the terms are NOT strictly equal (inverse of = =) 

Not equal (inverse of =) \=, ..... =,/= 

> 

< 

» 

« 

>< 

<> 

>= 

\<, ..... < 

»= 

\<<, ..... << 

<= 

\>, ..... > 

«= 

\», ..... >> 

Greater than 

Less than 

Strictly greater than 

Strictly less than 

Greater than or less than (same as not equal) 

Greater than or less than (same as not equal) 

Greater than or equal to 

Not less than 

Strictly greater than or equal to 

Strictly NOT less than 

Less than or equal to 

Not greater than 

Strictly less than or equal to 

Strictly NOT greater than 

Note: Throughout the language, the not character, "-,", is synonymous with the 
backslash ("\"). You can use the two characters interchangeably according to 
availability and personal preference. The backslash can appear in the following 
operators: \(prefix not), \=, \==, \<, \>, \«, and \». 

A character string is taken to have the value "false" if it is 0, and "true" if it is a 1. 
The logical operators take one ort),(Vo such values (values other than 0 or 1 are not 
allowed) and return 0 or 1 as appropriate: 

& AND 
Returns 1 if both terms are true. 

Inclusive OR 
Returns 1 if either term is true. 

&& Exclusive OR 
Returns 1 if either (but not both) is true. 

Prefix \, ..... Logical NOT 
Negates; 1 becomes 0 and vice-versa. 

Chapter 2. General Concepts 17 



-------- -- --------

General Concepts 

Parentheses and Operator Precedence 
Expression evaluation is from left to right; parentheses and operator precedence 
modify this: 

• When parentheses are encountered (other than those that identify function 
calls), the entire sUb-expression between the parentheses is evaluated 
immediately when the term is required. 

• When the sequence: 

terml operatorl term2 operator2 term3 ••• 

is encountered, and operator2 has a higher precedence than operatorl, .the 
expression (term2 operator2 term3 ... ) is evaluated first, applying the same rule 
repeatedly as necessary. 

Note, however, that individual terms are evaluated from left to right in the 
expression (that is, as soon as they are encountered). Only the order of 
operations is affected by the precedence rules. 

For example, * (multiply) has a higher priority than + (add), so 3+2*5 evaluates to 
13 (rather than the 25 that would result if strict left to right evaluation occurred). 
Likewise, the expression -3**2 evaluates to 9 (instead of -9) because the prefix 
minus operator has a higher priority than the power operator. 

The order of precedence of the operators is (highest at the top): 

\ ...... + 

** 

* 1 % /I 

+ . 

.. .. II (abuttal) 

> < 
» 

\= ..... = 
>< <> 
\> ..... > 
\< ..... < 

« 

\= = ...,== 
\> > ..... » 
\< < ..... « 
>= »= 
<= «= 
1= 1= = 

& 

1&& 

18 TSO/E Version 2 MVS/REXX Reference 

(prefix operators) 

(power) 

(multiply and divide) 

(add and subtract) 

(concatenation with/without blank) 

(comparison operators) 

(and) 

(or, exclusive or) 

\. 

./.\ 

\,.J 



(" 

( 

( 

( 

Examples 

General Concepts 

Suppose that the following symbols represent variables; with values as shown: 

A has the value '3' and DAY has the value 'Monday' 
~. 

Then: 

A+5 -> '8' 
A-4*2 -> 

, 
-5' 

A/2 -> 'loS' 
9.5**2 -> '9.25' 
(A+l»7 -> '0' /* that is, False */ , 1=11 -> 'I' /* that is, True */ , 1==11 -> '0' /* that is, False */ , 1...,==11 -> 'I' /* that is, True */ 
(A+1)*3=12 -> 'I' /* that is, True */ 
Today is Day -> 'TODAY IS Monday' 
, I f it is' day -> 'If it is Monday' 
Substr(Day,2,3) -> 'ond' /* Substr is a function */ 
'! 'xxx'!' -> '!XXX! ' 
'abc' « 'abd' -> 'I' /* that is, True */ 
'077' » '11' -> '0' /* that is, False */ 
'abc' » 'ab' -> 'I' /* that is, True */ 
'ab ' « 'abd' -> 'I' /* that is, True */ 
'000999' » '9E9999, -> 'I' /* that is, True */ 

Note: The last example would give a different answer if the" >" operator had been 
used rather than" > > ". Since 'OEOOOO' is a valid number in exponential notation, 
a numeric comparison is done; thus 'OEOOOO' and '000000' evaluate as equal. 

Note: The REXX order of precedence usually causes no difficulty because it is the 
same as in conventional algebra and other computer languages. There are two 
differences from common notations: 

• The prefix minus operator always has a higher priority than the power operator. 
• Power operators (like other operators) are evaluated left-to-right. 

For example: 

-3**2 9 /* not -9 */ 
-(2+1)**2 == 9 /* not -9 */ 
2**2**3 == 64 /* not 256 */ 

Clauses and Instructions 

Null Clauses 

Clauses can be subdivided into the following types: 

A clause consisting only of blanks or comments or both is a null clause and is 
completely ignored (except that if it includes a comment it is traced, if available). 

Note: A null clause is not an instruction; for example, putting an extra semicolon 
after the THEN or ELSE in an IF instruction is not equivalent to using a dummy 
instruction (as it would be in PUI). The NOP instruction is provided for this purpose. 

Chapter 2. General Concepts 19 



General Concepts 

Labels 

Instructions 

Assignments 

A clause that consists of a single symbol followed by a colon is a label. The colon 
acts as an implicit clause terminator, so no semicolon is required. Labels are used 
to identifyf'le targets of CALL instructions, SIGNAL instructions, and internal 
function calls. They can be traced selectively to aid debugging. 

Any number of successive clauses may be labels, thus permitting multiple labels 
before another type of clause. Duplicate labels are permitted, but since the search 
effectively starts at the top of the program, the control, following a CALL or SIGNAL 
instruction, is always passed to the first occurrence of the label. The duplicate 
labels occurring later can be traced but cannot be used as a target of a CALL, 
SIGNAL, or function invocation. 

An instruction consists of one or more clauses describing some course of action for 
the language processor to take. Instructions can be: assignments, keyword 
instructions, or commands. 

Single clauses of the form symbol = expression are instructions known as 
assignments. An assignment gives a variable a (new) value. See "Assignments 
and Symbols" on page 21. 

Keyword Instructions 

Commands 

A keyword Instruction is one or more clauses, the first of which starts with a 
keyword that identifies the instruction. These control the external interfaces, the 
flow of control, and so forth. Some instructions can include other (nested) 
instructions. In this example, the DO construct (DO, the group of instructions that 
follow it, and its associated END keyword) is considered a single keyword 
instruction. 

DO 

END 

instruction 
instruction 
instruction 

A subkeyword is a keyword that is reserved within the context of some particular 
instruction-for example, the symbols TO and WHILE in the DO instruction. 

Single clauses consisting of just an expression are instructions known as 
commands. The expression is evaluated and passed as a command string to the 
currently active environment. 

20 TSO/E Version 2 MVS/REXX Reference 

-----.. --.-~-

./ 



- ----------- - ------~--------

General Concepts 

Assignments and Symbols 

( 

A variable is an object whose value can change during the running of a REXX 
program. The process of changing the value of a variable is called assigning a new 
value to it. The value of a variable is a single character string, of any length, that 
may contain any characters. 

You can assign a new value to variables with the ARG, PARSE, or PULL 
instructions, but the most common way of changing the value of a variable is the 
assignment instruction itself. Any clause of the form: 

symbol =express i on; 

is taken to be an assignment. The result of express i on becomes the new value of 
the variable named by the symbol to the left of the equal sign. On TSO/E, if you omit 
expression, the variable is set to the null string. However, it is recommended that 
you explicitly set a variable to the null string: symbol = , '. 

Example: 

/* Next line gives "FRED" the value "Frederic" */ 
Fred=' Frederic' 

The symbol naming the variable cannot begin with a digit (0-9) or a period. (Without 
this restriction on the first character of a variable name, you could redefine a 
number; for example 3=4; would give a variable called 3 the value 4.) 

You can use a symbol in an expression even if you have not assigned it a value, 
because a symbol has a defined value at all times. A variable you have not 
assigned a value is uninitlallzed, and its value is the character(s) of the symbol 
itself, translated to uppercase (that is, lowercase a-z to uppercase A-Z). However, if 
it is a compound symbol, described under "Compound Symbols" on page 22, its 
value is the derived name of the symbol. 

Example: 

/* If "Freda" has not yet been assigned a value, */ 
/* then next line gives "FRED" the value "FREDA" */ 
Fred=Freda 

Symbols can be subdivided into four classes: constant symbols, simple symbols, 
compound symbols, and stems. Simple symbols can be used for variables where 
the name corresponds to a single value. Compound symbols and stems are used 
for more complex collections of variables, such as arrays and lists. 

Chapter 2. General Concepts 21 



General Concepts 

Constant Symbols 

Simple Symbols 

A constant symbol starts with a digit (0-9) or a period. 

You cannot change the value of a constant symbol. It is simply the string consisting 
of the characters of the symbol (that is, with any lowercase alphabetic characters 
translated to uppercase). 

These are constant symbols: 

77 
827.53 
.12345 
12e5 /* Same as 12E5 */ 
3D 

A simple symbol does not contain any periods and does not start with a digit (0.;.9). 

By default, its value is the characters of the symbol (that is, translated to 
uppercase). If the symbol has been assigned a value, it names a variable and its 
value is the value of that variable. 

These are simple symbols: 

FRED 
Whatagoodidea? 
112 

/* Same as WHATAGOODIDEA? */ 

Compound Symbols 
A compound symbol contains at least one period and at least two other characters. 
It cannot start with a digit or a period, and, if there is only one period, the period 
cannot be the last character. 

The name begins with a stem (that part of the symbol up to and including the first 
period), which is followed by parts of the name (delimited by periods) that are 
constant symbols, simple symbols, or nUll. You cannot use constant symbols with 
embedded signs (for example, 12.3E + 5) after a stem; this would make the whole 
compound symbol invalid. 

These are compound symbols: 

FRED.3 
Array. I.J 
AMESSY •• One.2. 

Before the symbol is used (that is, at the time of reference), the values of any simple 
symbols (I, J, and One in the example) are substituted into the symbol, thus 
generating a new, derived name. This derived name is then used just like a simple 
symbol. That is, its value is by default the derived name, or (if it has been used as 
the target of an assignment) its value is the value of the variable named by the 
derived name. 

The substitution into the symbol that takes place permits arbitrary indexing 
(subscripting) of collections of variables that have a common stem. Note that the 
values substituted can contain any characters (including periods). Substitution is 
done only once. 

22 TSO/E Version 2 MVS/REXX Reference 

(\ 
I , 

\",j 



( 

Stems 

General Concepts 

To summarize: the derived name of a compound variable that is referred to by the 
symbol 

50.51.52. --- .sn 

is given by 

d0.vl.v2. --- .vn 

where d0 is the uppercase form of the symbol 50, and vI to vn are the values of the 
constant or simple symbols 51 through sn. Any of the symbols sl-sn can be null. 
The values vl-vn can also be null and can contain any characters (in particular, 
lowercase characters are not translated to uppercase, blanks are not removed, and 
periods have no special significance). 

You can use compound symbols to set up arrays and lists of variables, in which the 
subscript is not necessarily numeric, thus offering great scope for the creative 
programmer. A useful application is to set up an array in which the subscripts are 
taken from the value of one or more variables, so effecting a form of associative 
memory ("content addressable"). 

Some examples follow in the form of a small extract from a REXX program: 

a=3 /* assigns '3' 
b=4 /* 
c='Fred' /* 
a.b='Fred' /* 
a.fred=5 /* 
a.c='Bill' /* 
c.c=a.fred /* 
x.a.b='Annie' /* 
say abc a.a a.b 
/* displays the string: 

to the variable 'A' */ 
'4' to 'B' */ 
'Fred' to 'C' */ 
'Fred' to 'A.4' */ 
'5' to 'A.FRED' */ 
'Bill' to 'A. Fred , */ 
'5' to 'C.Fred' */ 
'Annie' to 'X.3.4' */ 
a.c c.a a.fred x.a.4 

/* '3 4 Fred A.3 Fred Bill C.3 
*/ 

5 Annie' */ 
Implementation maximum: The length of a variable name, before and after 
substitution, cannot exceed 250 characters. 

A stem is a symbol that contains just one period, which is the last character. It 
cannot start with a digit or a period. 

These are stems: 

FRED. 
A. 

By default, the value of a stem is the characters of its symbol (that is, translated to 
uppercase). If the symbol has been assigned a value, it names a variable and its 
value is the value of that variable. 

Further, when a stem is used as the target of an assignment, all possible compound 
variables whose names begin with that stem receive the new value, whether they 
previously had a value or not. Following the assignment, a reference to any 
compound symbol with that stem returns the new value until another value is 
assigned to the stem or to the individual variable. 

Chapter 2. General Concepts 23 



-------------

General Concepts 

Notes 

For example: 

hole. = "empty" 
hole.9 = "full" 

say hole.l hole.mouse hole.9 

/* says "empty empty full" * / 
Thus, you can give a whole collection of variables the same value. For example, 

total. = e 
do forever 

say "Enter an amount and a name:" 
pull amount name 
if datatype(amount)=' CHAR' then leave 
total.name = total.name + amount 
end 

Note: You can always obtain the value that has been assigned to the whole 
collection of variables by using the stem. However, this is not the same as using a 
compound variable whose derived name is the same as the stem. For example, 

total. = e 
null = "" 
total.null = total.null + 5 
say total. total.null /* says "e 5" */ 
You can manipulate collections of variables, referred to by their stem, with the 
DROP and PROCEDURE instructions. DROP FRED. drops all variables with that stem 
(see page 55), and PROCEDURE EXPOSE FRED. exposes all possible variables with that 
stem (see page 69). 

1. When the ARG, PARSE, or PULL instruction changes a variable, the effect is 
identical to an assignment. Anywhere a value can be assigned, using a stem 
sets an entire collection of variables. 

2. Since an expression may include the operator =, and an instruction may 
consist purely of an expression (see next section), a possible ambiguity is 
resolved by the following rule: any clause that starts with a symbol and whose 
second token is (or starts with) an .. =" is an assignment, rather than an 
expression (or an instruction). This is not a restriction, since you can ensure the 
clause is processed as a command in several ways, such as by putting a null 
string before the first name, or by enclosing the first part of the expression in 
parentheses. 

Similarly, if you unintentionally use a REXX keyword as the variable name in an 
assignment, this should not cause confusion. For example, the clause: 

Address='le Downing Street'; 

is an assignment, not an ADDRESS instruction. 

24 TSO/E Version 2 MVS/REXX Reference 

c 



(' 

( 

General Concepts 

Commands to External Environments 

Environment 

Commands 

The system under which REXX programs run is assumed to include at least one 
active host command environment for processing commands. One of these is 
selected by default on entry to a REXX program. In TSO/E REXX, the environment 
for processing host commands is known as the host command environment. TSO/E 
provides different environments for TSO/E and non-TSO/E address spaces. You can 
change the environment by using the ADDRESS instruction. You can find out the 
name of the active environment by using the ADDRESS built-in function. The 
underlying operating system defines environments external to the REXX program. 

The host command environment selected depends on the caller. For example, if 
you invoke a REXX program from a TSO/E address space, the default host command 
environment that TSO/E provides for processing host commands is TSO. If you 
invoke an exec from a non-TSO/E address space, the default host command 
environment that TSO/E provides is MVS. 

TSO/E provides several host command environments for a TSO/E address space 
(TSO/E and ISPF) and for non-TSO/E address spaces. "Host Commands and Host 
Command Environments" on page 26 explains the different types of host commands 
you can use in a REXX exec and the different host command environments TSO/E 
provides for the processing of host commands. 

The environments are provided in the host command environment table, which 
specifies the host command environment name and the routine that is invoked to 
handle the command processing for that host command environment. You can 
provide your own host command environment and corresponding routine and define 
them to the host command environment table. "Host Command Environment Table" 
on page 361 describes the table in more detail. "Changing the Default Values for 
Initializing an Environment" on page 381 describes how to change the defaults 
TSO/E provides in order to define your own host command environments. You can 
also use the IRXSUBCM routine to maintain entries in the host command 
environment table (see page 297). 

To issue a command to the active host command environment, use a clause of the 
form: 

expression; 

The expression is evaluated, resulting in a character string (which may be the null 
string), which is then prepared as appropriate and submitted to the host command 
environment. (Enclose in quotation marks any part of the expression not to be 
evaluated.) 

The environment then processes the command (which may have side-effects). It 
eventually returns control to the language processor, after setting a return code. 
The language processor places this return code in the REXX special variable RC. 
For example, if the host command environment were TSO, the sequence: 

mydata = "PROGA.LOAD" 
"FREE DATASET("mydata")" 

Chapter 2. General Concepts 25 



General Concepts 

would result in the string FREE DATASET (PROGA. LOAD} being submitted to TSO/E. Of 
course, the simpler expression: 

"FREE DATASET(PROGA.LOAD}" 

would have the same effect in this case. 

Note: Whenever you issue a host command from a REXX program, it is 
recommended that you enclose the entire command in double quotation marks. See 
TSOIE Version 2 Procedures Language MVS/REXX User's Guide for a description of 
using single and double quotation marks in commands. 

On return, the return code from the FREE command is placed in the REXX special 
variable RC. The return code in RC is '0' if the FREE command processor 
successfully freed the data set or '12' if it did not. Whenever a host command is 
processed, the return code from the command is placed in the REXX special 
variable RC. 

Because of the return codes, errors and failures in commands can affect REXX 
processing if a condition trap for ERROR or FAILURE is ON (see Chapter 7, 
"Conditions and Condition Traps" on page 177). They may also cause the 
command to be traced if TRACE E or TRACE F is set. TRACE Normal is the same as 
TRACE F, and is the default-see page 79. 

Note: Remember that the expression is evaluated before it is passed to the 
environment. Enclose in quotation marks any part of the expression that Is not to be 
evaluated. 

Host Commands and Host Command Environments 
You can issue host commands from a REXX program. When the language processor 
processes a clause that it does not recognize as a REXX instruction or an 
assignment instruction, the language processor considers the clause to be a host 
command and routes the command to the current host command environment. The 
host command environment processes the command and then returns control to the 
language processor. 

For example, in REXX processing, a host command can be: 

• A TSO/E command processor, such as ALLOCATE, FREE, or EXEC 

• A TSO/E REXX command, such as NEWSTACK or aBUF 

• A program that you link to or attach 

• -An MVS system or subsystem command that you invoke during an extended 
MCS console session 

• An ISPF command or service 

• An SAA CPI Communications call or APPC/MVS call 

If a REXX exec contains 

FRED varl var2 

c 

\. 
j 

the language processor considers the clause to be a command and passes the 
clause to the current host command environment for processing. The host C' .. '" 

command environment processes the command,sets a return code in the REXX 
special variable RC, and returns control to the language processor. The return code 
set in RC is the return code from the host command you specified. For example, the 

26 TSO/E Version 2 MVS/REXX Reference 



( 

( 

( 

.• , 

General Concepts 

value in RC may be the return code from a TSO/E command processor, an ISPF 
command or service, or a program you attached. The return code may also be a -3, 
which indicates that the host command environment could not locate the specified 
host command (TSO/E command, CLlST, exec, attached or linked routine, ISPF 
command or service, and so on). Note that a return code of -3 is always returned if 
you issue a host command in an exec and the host command environment cannot 
locate the command. 

If a system abend occurs during a host command, the REXX special variable RC is 
set to the negative of the decimal value of the abend code. If a user abend occurs 
during a host command, the REXX special variable RC is set to the decimal value of 
the abend code. If no abend occurs during a host command, the REXX special 
variable RC is set to the decimal value of the return code from the command. 

Certain conditions may be raised depending on the value of the special variable RC: 

• If the RC value is negative, the FAILURE condition is raised. 
• If the RC value is positive, the ERROR condition is raised. 
• If the RC value is zero, neither the ERROR nor FAILURE conditions are raised. 

See Chapter 7, "Conditions and Condition Traps" for more information. 

If you issue a host command in a REXX exec, it is recommended that you enclose 
the entire command in double quotation marks, for example: 

"routine-name varl var2" 

TSO/E provides several host command environments that process different types of 
host commands. The fol/owing topics describe the different host command 
environments TSO/E provides for non-TSO/E address spaces and for the TSO/E 
address space (TSO/E and ISPF). 

The TSO Host Command Environment 
The TSO host command environment is available only to REXX execs that run in the 
TSO/E address space. Use the TSO host command environment to invoke TSO/E 
commands and services. You can also invoke aI/ of the TSO/E REXX commands, 
such as MAKEBUF and NEWSTACK, and invoke other REXX execs and CLiSTs. 
When you invoke a REXX exec in the TSO/E address space, the default initial host 
command environment is TSO. 

Note that the value that can be set in the REXX special variable RC for the TSO 
environment is a signed 24 bit number in the range -8,388,608 to +8,388,607 . 

The CONSOLE Host Command Environment 
The CONSOLE host command environment is available only to REXX execs that run 
in the TSO/E address space. Use the CONSOLE environment to invoke MVS system 
and subsystem commands during an extended MCS console session. To use the 
CONSOLE environment, you must have CONSOLE command authority. 

Before you can use the CONSOLE environment, you must first activate an extended 
MCS console session using the TSO/E CONSOLE command. After the console 
session is active, use ADDRESS CONSOLE to issue MVS system and subsystem 
commands. The CONSOLE environment lets you issue MVS commands from a 
REXX exec without having to repeatedly issue the CONSOLE command with the 
SYSCMD keyword. For more information about the CONSOLE environment and 

Chapter 2. General Concepts 27 



. __ ._-----_._-------- _. __ ._-----._ .•.. _ ... -

General Concepts 

related TSO/E services, see Appendix 0, "Writing REXX Execs to Perform MVS 
Operator Activities" on page 505. 

If you use ADDRESS CONSOLE and issue an MVS system or subsystem command 
before activating a console session, the CONSOLE environment will not be able to 
locate the command you issued. In this case, the REXX special variable RC is set to 
-3 and the FAILURE condition is raised. The -3 return code indicates that the host 
command environment could not locate the command you issued. In this case, the 
command could not be found because a console session is not active. 

Note that the value that can be set in the REXX special variable RC for the 
CONSOLE environment is a signed 31 bit number in the range -2,147,483,648 to 
+2,147,483,647. 

The ISPEXEC and ISREDIT Host Command Environments 
The ISPEXEC and ISREDIT host command environments are available only to REXX 
execs that run in ISPF. Use the environments to invoke ISPF commands and 
services, and ISPF edit macros. 

When you invoke a REXX exec from ISPF, the default initial host command 
environment is TSO. You can use the ADDRESS instruction to use an ISPF service. 
For example, to use the ISPF SELECT service, use the following instruction: 

ADDRESS ISPEXEC 'SELECT service' 

The ISREDIT environment lets you issue ISPF edit macros. In order to use ISREDIT, 
you must be in an edit session. 

Note that the value that can be set in the REXX special variable RC for the ISPEXEC 
and ISREDIT environments is a signed 24 bit number in the range -8,388,608 to 
+ 8,388,607. 

The CPICOMM and LU62 Host Command Environments 
The CPICOMM and LU62 host command environments are available to REXX execs 
that run in any MVS address space. The CPICOMM environment lets you use the 
SAA common programming interface (CPI) Communications calls. The LU62 
environment lets you use the APPC/MVS calls that are based on the SNA LU 6.2 
architecture. Using the two environments, you can write APPC/MVS transaction 
programs (TPs) in the REXX programming language. Using CPICOMM, you can 
write transaction programs in REXX that can be used in different SAA environments. 

The CPICOMM environment supports the starter set and advanced function set of 
the following SAA CPI Communications calls. For more information about each call 
and its parameters, see SAA Common Programming Interface Communications 
Reference. 

• CMACCP (Accept_Conversation) 
• CMALLC (Allocate) 
• CMCFM (Confirm) 
• CMCFMD (Confirmed) 
• CMDEAL (Deallocate) 
• CMECT (Extract_Conversation_Type) 
• CMEMN (Extract_Mode_Name) 
• CMEPLN (Extract_Partner_LU_Name) 
• CMESL (Extract_Sync_Level) 

28 TSO/E Version 2 MVS/REXX Reference 



( 

( 

c; 

"----------------

General Concepts 

• CMFLUS (Flush) 
• CMINIT (Initialize_Conversation) 
• CMPTR (Prepare_ To_Receive) 
• CMRCV (Receive) 
• CMRTS (Request_To_Send) 
• CMSCT (Set_Conversation_Type) 
• CMSDT (Set_Deallocate_Type) 
• CMSED (Set_Error_Direction) 
• CMSEND (Send_Data) 
• CMSERR (Send_Error) 
• CMSF (Setfill) 
• CMSLD (Set_Log_Data) 
• CMSMN (Set_Mode_Name) 
• CMSPLN (Set_Partner_LU_Name) 
• CMSPTR (Set_Prepare_To_Receive_Type) 
• CMSRC (Set_Return_Control) 
• CMSRT (Set_Receive_Type) 
• CMSSL (Set_Sync_Level) 
• CMSST (Set_Send_Type) 
• CMSTPN (Set_TP _Name) 
• CMTRTS (Test_Request_To_Send_Received) 

The LU62 environment supports the following APPC/MVS calls. These calls are 
based on the SNA LU 6.2 architecture and are referred to as APPC/MVS calls in this 
book. For more information about the calls and their parameters, see MVSIESA 
Application Development: Writing Transaction Programs for APPCIMVS. 

• ATBALLC (Allocate) 
• ATBCFM (Confirm) 
• ATBCFMD (Confirmed) 
• ATBDEAL (Deallocate) 
• ATBFLUS (Flush) 
• ATBGETA (Get_Attributes) 
• ATBGETC (Get_Conversation) 
• ATBGETP (Get_TP _Properties) 
• ATBGETT (Get_Type) 
• ATBPTR (Prepare_to_Receive) 
• ATBRCVI (Receive_Immediate) 
• ATBRCVW (Receive_and_Wait) 
• ATBRTS (Request_to_Send) 
• ATBSEND (Send_Data) 
• ATBSERR (Send_Error) 

Note: If you use the APPC/MVS calls, be aware that TSO/E REXX does not support 
data spaces or asynchronous processing. In addition, the buffer length limit for 
ATBRCVI, ATBRCVW, and ATBSEND is 16 megabytes. 

To use either an SAA CPI Communications call or an APPC/MVS call, specify the 
name of the call followed by variable names for each of the parameters. Separate 
each variable name by one or more blanks. For example: 

ADDRESS LU62 'ATBCFMD conversation_ID notify_type return_code' 

You must enclose the entire call in single or double quotation marks. You must also 
pass a variable name for each parameter. Do not pass actual values for the 
parameters. By enclosing the call in quotation marks, the language processor does 
not evaluate any variables and simply passes the expression to the host command 

Chapter 2. General Concepts 29 



-----------------------_._---------_._--------------_.------

General Concepts 

Pseudonym Files 

environment for processing. The CPICOMM or LU62 environment itself evaluates 
the variables and performs variable substitution. If you do not specify a variable for 
each parameter and enclose the call in quotation marks, you may have problems 
with variable substitution and receive unexpected results. 

As an example, the SAA CPI Communications call, CMINIT, has three parameters; 
conversation_id, sym_dest_name, and return_code. When you use CMINIT, specify 
three variables for the three parameters; for example, convid for the 
conversationJd parameter, symdest for the sym_dest_name parameter, and retcade 
for the return_code parameter. Before you use CMINIT, you can assign the value 
you want to use for the sym_dest_name parameter, such as CPINY17. 

/* REXX transaction program */ 

symdest = 'CPINY17' 

ADDRESS CPICOMM "CMINIT convid symdest retcode" 
IF retcode ~= CM_OK THEN 

ADDRESS CPICOMM "CMALLC convid retcode" 
IF retcode = CM_OK THEN 

EXIT 

In the example; you assign the variable symdest the value CPINY17. On the CMINIT 
call, you use the variable names for the parameters. The CPICOMM host command 
environment evaluates the variables and uses the value CPINY17 for the 
sym_dest_name parameter. 

When the call returns control to the language processor, the output variables whose 
names were specified on the call contain the returned values. In this example, the 
variable "convid" contains the value for the conversationJd parameter and 
"retcode" contains the value for the return_code parameter. 

On return, the REXX special variable RC is also set to one of the following: 

• The return code from the call, which equals the integer value of the return_code 
parameter 

• A -3 if the parameter list was incorrect or if the APPC/MVS call could not be 
found. 

Note that the value that can be set in the REXX special variable RC for the 
CPICOMM and LU62 environments is a signed 31 bit number in the range 
-2,147,483,648 to +2,147,483,647. 

Both the SAA CPI Communications calls and the APPC/MVS calls use pseudonyms 
for actual calls, characteristics, variables, and so on. For example, the return_code 
parameter for SAA CPI Communications calls can be the pseudonym CM_OK. The 
integer value for the CM_OK pseudonym is O. 

TSO/E provides two pseudonym files in SYS1.SAMPLIB that define the pseudonyms 
and corresponding integer values. The two pseudonym files TSO/E provides are: 

• REXAPPC1 for APPC/MVS calls 
• REXAPPC2 for SAA CPI Communications calls. 

30 TSO/E Version 2 MVS/REXX Reference 

/\ 
( ) ....... -

(
-~ 

./ 



( 

( 

c 

---------- --- ---

Genera. Concepts 

The sample pseudonym files contain REXX assignment statements that simplify 
writing transaction programs in REXX. You can copy either the entire pseudonym 
file or parts of the file into your transaction program. 

Transaction Program Profiles 
If you write a transaction program in REXX and you plan to run the program as an 
inbound TP, you have to create a transaction program profile for the exec. The 
profile is required for inbound or attached TPs. The transaction program profile 
consists of a set of JCL statements that you store in a TP profile data set on MVS. 
The following figures provide example JCL for transaction program profiles. For 
more information about TP profiles, see MVSIESA Planning: APPC Management. 

Figure 2 shows example JCL for an exec that you write for non-TSO/E address 
spaces. 

//JOBNAME JOB parameters 
//STEPNAME EXEC PGM=IRXJCL,PARM='exec_member_name argument' 
//SYSPRINT OD SYSOUT=A 
//SYSEXEC DD DSN=exec_data_set_name,DISP=SHR 
//SYSTSIN DD DSN=input_data_set_name,DISP=SHR 
//SYSTSPRT DD DSN=output_data_set_name,DISP=SHR 

Figure 2. Example JCL for TP Profile for a Non-TSOIE REXX Exec 

Figure 3 shows example JCL for an exec that you write for a TSO/E address space. 

//JOBNAME JOB parameters 
//STEPNAME EXEC PGM=IKJEFTB1,PARM='exec_member_name argument' 
//SYSPRINT DD SYSOUT=A 
//SYSEXEC DD DSN=exec_data_set_name,DISP=SHR 
//SYSTSPRT DD DSN=output_data_set_name,DISP=SHR 
//SYSTSIN DD DUMMY 

Figure 3. Example JCL for TP Profile for a TSOIE REXX Exec 

Chapter 2. General Concepts 31 



-----------.--~ ,~~'" 

General Concepts 

Sample Transaction Programs 
TSO/E provides sample transaction programs written in REXX and related 
information in SYS1.SAMPLIB. Figure 4 lists the member names of the samples 
and their description. For information about using the sample TPs, see the 
comments at the beginning of the outbound transaction program for the particular 
sample. For the SAA CPI Communications sample, the outbound TP is in member 
IRXCAO. For the APPC/MVS sample (based on the SNA lU 6.2 architecture), the 
outbound TP is in member IRXlAO. 

Figure 4. Sample APPCIMVS Transaction Programs in SYS1.SAMPLIB 

Sampllb 
Member 

IRXCAJ 

IRXCAP 

I RXCAS 

IRXLAJ 

IRXLAP 

IRXCAI 

IRXCAO 

IRXCKRC 

IRXLAI 

IRXLAO 

Description 

JCL to run REXX SAA CPI Communications sample program A 

JCL to add a TP profile for REXX SAA CPI Communications sample 
program A 

JCL to add side information for REXX SAA CPI Communications sample 
program A 

JCL to run REXX APPC/MVS sample program A 

JCL to add a TP profile for REXX APPC/MVS sample program A 

REXX SAA CPI Communications sample program A; inbound REXX 
transaction program 

REXX SAA CPI Communications sample program A; outbound REXX 
transaction program 

REXX subroutine to check return codes; used by sample REXX transaction 
programs 

REXX APPC/MVS sample program A; inbound REXX transaction program 

REXX APPC/MVS sample program A; outbound REXX transaction program 

32 TSO/E Version 2 MVS/REXX Reference 

c 



c' 

General Concepts 

The MVS Host Command Environment 
The MVS host command environment is available in any MVS address space. When 
you run a REXX exec in a non-TSO/E address space, the default initial host 
command environment is MVS. 

Note: When you invoke an exec in a TSO/E address space, TSO is the initial host 
command environment. 

In ADDRESS MVS, you can use a subset of the TSO/E REXX commands as follows: 

• DELSTACK 
• NEWSTACK 
• QSTACK 
• QBUF 
• QELEM 
• EXECIO 
• MAKEBUF 
• DROPBUF 
• SUBCOM 
• TS 
• TE 

Chapter 10, "TSO/E REXX Commands" on page 199 describes the commands. 

In ADDRESS MVS, you can also invoke another REXX exec using the ADDRESS 
MVS EXEC command. Note that this command is not the same as the TSO/E EXEC 
command processor. You can use one of the following instructions to invoke an 
exec. The instructions in the following example assume the current host command 
environment is not MVS. 

ADDRESS MVS "execname pI p2 ••• " 

ADDRESS MVS "EX execname pI p2 ••• " 

ADDRESS MVS "EXEC execname pI p2 ••• " 

If you use the ADDRESS MVS EXEC command to invoke another REXX exec, the 
system searches only the DO from which the calling exec was loaded. If the exec is 
not found in that DO, the search for the exec ends and the REXX special variable RC 
is set to -3. Note that the value that can be set in the REXX special variable RC for 
the MVS environment is a signed 31 bit number in the range -2,147,483,648 to 
+2,147,483,647. 

To invoke an unauthorized program from an exec, use one of the link or attach host 
command environments that are described in "Host Command Environments for 
Linking to and Attaching Programs" on page 34. 

All of the services that are available in ADDRESS MVS are also available in 
ADDRESS TSO. For example, if you run a REXX exec in TSO/E, you can use the 
TSO/E REXX commands (for example, MAKEBUF, NEWSTACK, QSTACK) in 
ADDRESS TSO. 

Chapter 2. General Concepts 33 



------------_._---_._--- . 

General Concepts 

Host Command Environments for Linking to and Attaching Programs 
TSO/E provides the LINK, LlNKMVS, and LlNKPGM host command environments 
that let you link to unauthorized programs on the same task level. TSO/E also 
provides the ATTACH, ATTCHMVS, and ATTCHPGM host command environments 
that let you attach unauthorized programs on a different task level. These link and 
attach environments are available to REXX execs that run in any address space. 

To link to or attach a program, specify the name of the program followed by any 
parameters you want to pass to the program. For example: 

ADDRESS LINKMVS "program pI p2 ••• pn" 

ADDRESS ATTCHPGM "program pI p2 ••• pn" 

Enclose the name of the program and any parameters in either single or double 
quotation marks. 

The host command environment routines for the environments use the following 
search order to locate the program: 

• Job pack area 

• ISPLLlB. If the user issued LlBDEF ISPLLlB ... , the system searches the new 
alternate library defined by UBDEF followed by the ISPLUB library. Note that 
this search is done only under TSO/E when both ISPF and AL TUB are active. 

• Task library and all preceding task libraries 

• Step library. If there is no step library, the job library is searched, if one exists. 

• Link pack area (LPA) 

• Link library. 

The differences between the environments are the format of the parameter list that 
the program receives, the capability of passing multiple parameters, variable 
substitution for the parameters, and the ability of the invoked program to update the 
parameters. 

For the LINK and ATTACH environments, you can specify only a single character 
string that gets passed to the program. The LINK and ATTACH environments do not 
evaluate the character string and do not perform variable substitution. The 
environments simply pass the string to the invoked program. The program can use 
the character string it receives. However, the program cannot return an updated 
string to the exec. 

For the LlNKMVS, LlNKPGM, ATTCHMVS, and ATTCHPGM environments, you can 
pass multiple parameters to the program. The environments evaluate the 
parameters you specify and perform variable substitution. That is, the environment 
determines the value of each variable. When the environment invokes the program, 
the environment passes the value of each variable to the program. The program 
can update the parameters it receives and return the updated values to the exec. 

34 TSO/E Version 2 MVS/REXX Reference 

,,r~ 

i 
'""j 



( 

( 

~ .. 

General Concepts 

After you link to or attach the program, the host command environment sets a return 
code in the REXX special variable RC. For all of the link and attach environments, 
the return code may be: 

• A -3 if the host command environment could not locate the program you 
specified 

• The return code that the linked or attached program set in register 15. 

Additionally, for the L1NKMVS, ATTCHMVS, L1NKPGM, and ATTCHPGM 
environments, the return code set in RC may be -2, which indicates that processing 
of the variables was not successful. Variable processing may have been 
unsuccessful because the host command environment could not: 

• Perform variable substitution before linking to or attaching the program 

• Update the variables after the program completed. 

For L1NKMVS and ATTCHMVS, you can also receive an RC value of -2 if the length 
of the value of the variable was larger than the length that could be specified in the 
signed halfword length field in the parameter list. The maximum value of the 
halfword length field is 32,767. 

Note that the value that can be set in the RC special variable for the LINK, L1NKMVS, 
and L1NKPGM environments is a signed 31 bit number in the range -2,147,483,648 to 
+2,147,483,647. The value that can be set in RC for the ATTACH, ATTCHMVS, and 
ATTCHPGM environments is a signed 24 bit number in the range -8,388,608 to 
+ 8,388,607. 

The following topics describe how to link to and attach programs using the different 
host command environments. 

The LINK and ATTACH Host Command Environments 
For the LINK and ATTACH environments, you can pass only a single character string 
to the program. Enclose the name of the program and the character string in either 
single or double quotation marks to prevent the language processor from 
performing variable substitution. For example: 

ADDRESS ATTACH 'TESTPGMA varid' 

The host command environment routines for LINK and ATTACH do not evaluate the 
character string you specify. The routine simply passes the character string to the 
program that it links to or attaches. The program can use the character string it 
receives. However, the program cannot return an updated string to the exec. 

Figure 5 on page 36 shows how the LINK or ATTACH host command environment 
routine passes a character string to a program. Register 1 points to a list that 
consists of two addresses. The first address points to a fullword that contains the 
address of the character string. The second address points to the length of the 
character string. 

Chapter 2. General Concepts 35 



---~------------------:--------.-----.------.-.. -- --------~-"--.---.--.-

General Concepts 

i • 
Parameter 1 

Address of character string 

i Parameter 2 • Length of character string 

Figure 5. Parameters for LINK and ATTACH Environments 

For example, suppose you use the following instruction: 

ADDRESS LINK 'TESMODA numberid payid' 

When the LINK host command environment routine links to the TESMODA program, 
the address of the character string points to the string: 

numberid payid 

The length of the character string is 14. In this example, if numberid and payid were 
REXX variables, no substitution is performed by the LINK host command 
environment. /' 

You can use the LINK or ATTACH environments and not specify a character string. 
For example: 

ADDRESS ATTACH "proga" 

In this case, the address of the character string is 0 and the length of the string is O. 

The LlNKMVS and ATTCHMVS Host Command Environments 
For the LlNKMVS and ATTCHMVS environments, you can pass multiple parameters .;<-\ 
to the program. Specify the name of the program followed by variable names for <.--I 
each of the parameters. Separate each variable name by one or more blanks .. For 
example: 

ADDRESS ATTCHMVS 'TESTPGMA varl var2 var3' 

For the parameters, specify variable names instead of the actual values. Enclose 
the name of the program and the variable names in either single or double 
quotation marks. By using the quotation marks, the language processor does not 
evaluate any variables. The language processor simply passes the expression to 
the host command environment for processing. The LlNKMVS or ATTCHMVS 
environment itself evaluates the variables and performs variable substitution. If you 
do not use a variable for each parameter and enclose the expression in quotation 
marks, you may have problems with variable substitution and receive unexpected 
results. 

After the LlNKMVS or ATTCHMVS environment routine evaluates the value of each 
variable, it builds a parameter list pointing to the values. The routine then links to 
or attaches the program and passes the parameter list to the program. 

36 TSO/E Version 2 MVS/REXX Reference 

o 



( 

( 

General Concepts 

Figure 6 on page 37 shows how the LlNKMVS or ATTCHMVS host command 
environment routine passes the parameters to the program. Register 1 contains the 
address of a parameter list, which consists of a list of addresses. Each address in 
the parameter list points to a parameter. The high order bit of the last address in 
the parameter list is set to 1 to indicate the end of the parameter list. 

Each parameter consists of a halfword length field followed by the parameter, which 
is the value of the variable you specified on the LlNKMVS or ATTCHMVS instruction. 
The halfword length field contains the length of the parameter, which is the length of 
the value of the variable. The maximum value of the halfword length field is 32,767. 

Parameter List 

i Parameter 1 - length 1 Parameter 1 

i Parameter 2 

- length 2 Parameter 2 

. 

. 

* i Parameter n ----11 ength n Parameter n 

* high order bit on 

Figure 6. Parameters for LlNKMVS and A TTCHMVS Environments 

As an example, suppose you want to attach the RTNWORK program and you want to 
pass two parameters; an order number (43176) and a code (CDETT76). When you 
use the ADDRESS ATTCHMVS instruction, specify variable names for the two 
parameters; for example, ordernum for the order number, 43176, and codenum for 
the code, CDETT76. Before you use ADDRESS ATTCHMVS, assign the values to the 
variable names. 

/* REXX program that attaches */ 

ordernum = 43176 
codenum = ICDETT76" 

ADDRESS ATTCHMVS "RTNWORK ordernum codenum" 

EXIT 

Chapter 2. General Concepts 37 



General Concepts 

-- ~ .. -------~------

In the example, you assign the variable ordernum the value 43176 and you assign 
the variable codenum the value CDETT76. On the ADDRESS ATICHMVS r-, 
instruction, you use the variable names for the two parameters. The ATICHMVS ~J~ 
host command environment evaluates the variables and passes the values of the 
variables to the RTNWORK program. In the parameter list, the length field for the 
first parameter (variable ordernum) is 5, followed by the character string 43176. The 
length field for the second parameter (variable codenum) is 7, followed by the 
character string CDETI76. 

On entry to the linked or attached program, the halfword length fields contain the 
actual length of the parameters. The linked or attached program can update the 
values of the parameters before it completes processing. The value that the 
program returns in the halfword length field determines the type of processing that 
lINKMVS or A TICHMVS performs. 

When the lINKMVS or ATICHMVS environment routine regains control, it 
determines whether or not to update the values of the REXX variables before 
returning to the REXX exec. To determine whether or not to update the value of a 
variable for a specific parameter, the lINKMVS or ATICHMVS environment checks 
the value in the halfword length field. Depending on the value in the length field, 
lINKMVS or A TICHMVS updates the variable, does not update the variable, or sets 
the variable to the null string. 

• If the value in the length field is less than 0, the lINKMVS or ATICHMVS 
environment does not update the variable for that parameter. 

• If the value in the length field is 0, the lINKMVS or ATICHMVS environment 
sets the variable for that parameter to the null string. /'\ 

• If the value in the length field is greater than 0, the lINKMVS or ATICHMVS \..._J 
environment updates the variable for that parameter with the value the program 
returned in the parameter list. If the length field is a positive number, lINKMVS 
or ATICHMVS simply updates the variable using the length in the length field. 

If the length specified in the length field is less than 500, TSO/E provides a 
storage area of 500 bytes regardless of the length of the value of the variable. 
For example, if the length of the value of the variable on entry to the program 
were 8 bytes, the halfword length field would contain the value 8. However, 
there are 500 bytes of storage available for the parameter itself. This allows the 
program to increase the length of the variable without having to obtain storage.. ~ 
If the invoked program changes the length of the variable, it must also update 
the length field. 

If the original length of the value is greater than 500 bytes, there is no additional 
space. For example, suppose you specify a variable whose value has a length 
of 620 bytes. The invoked program can return a value with a maximum length of 
620 bytes. TSO/E does not provide an additional buffer area. In this case, if you 
expect that the linked or attached program may want to return a larger value, 
pad the original value to the right with blanks. 

As an example, suppose you linkto a program called PGMCODES and pass a 
variable pcode that has the value PC7177. The lINKMVS environment evaluates the 
value of the variable pcode (PC7177) and builds a parameter list pointing to the 
value. The halfword length field contains the length of the value, which is 6, 
followed by the value itself. Suppose the PGMCODES program updates the PC7177 c. -.\. 
value to the value PC7177ADC3. When the PGMCODES program returns control to 
the lINKMVS environment, the program must update the length value in the 

38 TSO/E Version 2 MVS/REXX Reference 



( 

General Concepts 

halfword length field to 10 to indicate the actu.length of the value it is returning to 
the exec. 

You can use the LlNKMVS or ATTCHMVS environments and not specify any 
parameters. For example: 

ADDRESS ATTCHMVS 'workpgm' 

If you do not specify any parameters, register 1 contains an address that points to a 
parameter list. The high order bit is on in the first parameter address. The 
parameter address points to a parameter that has a length of O. 

The LlNKPGM and ATTCHPGM Host Command Environments 
For the LlNKPGM and ATTCHPGM environments, you can pass multiple parameters 
to the program. Specify the name of the program followed by variable names for 
each of the parameters. Separate each variable name by one or more blanks. For 
example: 

ADDRESS LINKPGM "WKSTATS varl var2" 

For the parameters, specify variable names instead of the actual values. Enclose 
the name of the program and the variable names in either single or double 
quotation marks. By using the quotation marks, the language processor does not 
evaluate any variables and simply passes the expression to the host command 
environment for processing. The LlNKPGM or ATTCHPGM environment itself 
evaluates the variables and performs variable substitution. If you do not use a 
variable for each parameter and enclose the expression in quotation marks, you 
may have problems with variable substitution and receive unexpected results. 

After the LlNKPGM or ATTCHPGM environment routine evaluates the value of each 
variable, it builds a parameter list pointing to the values. The routine then links to 
or attaches the program and passes the parameter list to the program. 

Figure 7 on page 40 shows how the LlNKPGM or A TTCHPGM host command 
environment routine passes the parameters to the program. Register 1 contains the 
address of a parameter list, which consists of a list of addresses. Each address in 
the parameter list points to a parameter. The high order bit of the last address in 
the parameter list is set to 1 to indicate the end of the parameter list . 

• 

Chapter 2. General Concepts 39 



--------------------------------

General Concepts 

Parameter List 

i Parameter 1 ~ Parameter 1 

i Parameter 2 
~ Parameter 2 

. . 

* i Parameter n -----.~I~ __ p_a_ra_m_e_te_r __ n __________ ~ 

* high order bit on 

Figure 7. Parameters for LlNKPGM and ATTCHPGM Environments 

Unlike the LlNKMVS and ATTCHMVS host command environments, the parameters 
for the LlNKPGM and ATTCHPGM environments do not have a length field. On 
output from the linked or attached routine, the value of the parameter is updated 
and the length of each parameter is considered to be the same as when the 
parameter list was created. The linked or attached routine cannot increase the 
length of the value of a variable that it receives. However, you can pad the length of 
the value of a variable with blanks to increase its length before you link to or attach 
a program. 

As an example, suppose you want to link to the RESLINE program and you want to 
pass one parameter, a reservation code of WK007816. When you use the ADDRESS 
LlNKPGM instruction, specify a variable name for the parameter; for example, 
revcode for the reservation code, WK007816. Before you use ADDRESS LlNKPGM, 
assign the value to the variable name. 

/* REXX program that links ••• */ 

rev code = 'WK007816' 

ADDRESS LINKPGM 'RESLINE rev code , 

EXIT 

c 

'\ 
) 

In the example, you assign the variable revcode the value WK007816. On the C' -,\, ' 

ADDRESS LlNKPGM instruction, you use the variable name for the parameter. The 
LlNKPGM host command environment evaluates the variable and passes the value 
of the variable to the RESLINE program. The length of the parameter (variable 

40 TSO/E Version 2 MVS/REXX Reference 



( 

General Concepts 

revcode) is 8. If the RESLINE program wanted to update the value of the variable 
and return the updated value to the REXX exec, the program could not return a 
value that is greater than 8 bytes. To allow the linked program to return a larger 
value, you could pad the value of the original variable to the right with blanks. For 
example, in the exec you could assign the value "WK007816 " to the revcode 
variable. The length would then be 15 and the linked program could return an 
updated value that was up to 15 bytes. 

You can use the LlNKPGM or ATTCHPGM environments and not specify any 
parameters. For example: 

ADDRESS ATTCHPGM "monbill" 

If you do not specify any parameters, register 1 contains an address that points to a 
parameter list. The high order bit is on in the first parameter address, but the 
address itself is O. 

Chapter 2. General Concepts 41 



--------~~---~-~------------------

c 
42 TSO/E Version 2 MVS/REXX Reference 

--.----~~~-~~~~~ 



~I 

Keyword Instructions 

f' Chapter 3. Keyword Instructions 

(-

( 

A keyword Instruction is one or more clauses, the first of which starts with a 
keyword that identifies the instruction. Some keyword instructions affect the flow of 
control, while others provide services to the programmer. Some keyword 
instructions, like DO, can include nested instructions. 

In the syntax diagrams on the following pages, symbols (words) in capitals denote 
keywords; other words (such as expression) denote a collection of tokens as defined 
previously. Note, however, that the keywords are not case dependent: the symbols 
If, If, and IF a" have the same effect. Note also that you can usually omit most of the 
clause delimiters (;) shown because they are implied by the end of a line. 

As explained on page 19, a keyword instruction is recognized only if its keyword is 
the first token in a clause, and if the second token does not start with an = 
character (implying an assignment) or a colon (implying a label). The keywords 
ELSE, END, OTHERWISE, THEN, and WHEN are recognized in the same situation. 
Note that any clause that starts with a keyword defined by REXX cannot be a 
command. Therefore, 

arg(fred) rest 

is an ARG keyword Instruction, not a command that starts with a call to the ARG 
built-in function. A syntax error results if the keywords are not in their correct 
position(s) in a DO, IF, or SELECT instruction. (The keyword THEN is also 
recognized in the body of an IF or WHEN clause.) In other contexts, keywords are 
not reserved and can be used as labels or as the names of variables (though this is 
generally not recommended). 

Certain other keywords, known as subkeywords, are reserved within the clauses of 
individual instructions. For example, the symbols VALUE and WITH are 
subkeywords in the ADDRESS and PARSE instructions, respectively. For details, 
refer to the description of the respective instruction. For a general discussion on 
reserved keywords, see page 195. 

Blanks adjacent to keywords have no effect other than to separate the keyword from 
the subsequent token. One or more blanks following VALUE are required to 
separate the expression from the subkeyword in the example following: 

ADDRESS VALUE expression 

However, no blank is required after the VALUE subkeyword in the following 
example, although it would add to the readability: 

ADDRESS VALUE'ENVIR' I I number 

@ Copyright IBM Corp. 1988. 1991 43 



, .. __ . -.-----------~ --------.. --.-------------~ 

ADDRESS 

ADDRESS 

ADDRESS temporarily or permanently changes the destination of commands. 

How to issue commands to the host and the different host command environments 
TSO/E provides are described in "Commands to External Environments" on 
page 25. 

To send a single command to a specified environment, code an environment, a 
literal string or a single symbol, which is taken to be a constant, followed by an 
expression. The expression is evaluated, and the resulting command string is 
routed to environment. After execution of the command, environment is set back to 
whatever it was before, thus temporarily changing the destination for a single 
command. 

Example: 

ADDRESS LINK "routine pI p2" /* TSO/E */ 
If you specify only environment, a lasting change of destination occurs: all 
commands that follow (clauses that are neither REXX instructions nor assignment 
instructions) are routed to the specified command environment, until the next 
ADDRESS instruction is executed. The previously selected environment is saved. 

Example: 

Address MVS 
"QBUF" 
"MAKEBUF" 

Similarly, you can use the VALUE form to make a lasting change to the environment. 
Here expression1 (which may be just a variable name) is evaluated, and the result 
forms the name of the environment. You can omit the subkeyword VALUE if 
expression1 does not begin with a symbol or literal string (that is, if it starts with a 
special character, such as an operator character or parenthesis). 

Example: 

ADDRESS ('ENVIR'llnumber) 

With no arguments, commands are routed back to the environment that was 
selected before the previous lasting change of environment was made, and the 
current environment name is saved. Repeated execution of ADDRESS alone 
therefore switches the command destination between two environments alternately. 

/ '\ 

j 

The two environment names are automatically saved across subroutine and internal C 
function calls. See the CALL instruction (page 48) for more details. 

44 TSO/E Version 2 MVS/REXX Reference 



( 

( 

~-- .. -.----.------. 

ADDRESS 

You can retrieve the current ADDRESS setting using the ADDRESS built-in function, 
described on page 93. 

TSO/E REXX provides several host command environments that you can use with 
the ADDRESS instruction. The environments allow you to use different TSO/E, MVS, 
and ISPF services. After the environment processes the host command, a return 
code from the command is set in the REXX special variable RC. The return code 
may be a -3, which indicates that the environment could not locate the command 
you specified. For more information about the environments you can use with the 
ADDRESS instruction and the return codes set in the special variable RC, see "Host 
Commands and Host Command Environments" on page 26. 

You can provide your own environments and/or routines that handle command 
processing in each environment. For more information, see "Host Command 
Environment Table" on page 361. 

Chapter 3. Keyword Instructions 45 



----~--------- ----- ------- ---------.. ---~----

ARG 

ARG 

ARG retrieves the argument strings provided to a program or internal routine and 
assigns them to variables. It is just a short form of the instruction 

. -PARSE UPPER ARGr"1Lr-----~---,--;­
template----! 

The template is a list of symbols separated by blanks or patterns or both. 

Unless a subroutine or internal function is being executed, the strings passed as 
para!",eters to the program are parsed into variables according to the rules 
described in the section on parsing (page 159). 

If a subroutine or internal function is being executed, the data used will be the 
argument string(s) passed to the routine by the caller. 

In either case, the strings passed are translated to uppercase (that is, lowercase a-z 
to uppercase A-Z) before they are processed. Use the PARSE ARG instruction if you 
do not desire uppercase translation. 

The ARG (and PARSE ARG) instructions can be executed as often as desired 
(typically with different templates) and always parse the same current input 
string(s). The only restrictions on the length or content of the data parsed are those 
the caller imposes. 

Example: 

/* String passed is "Easy Rider" */ 

Arg adjective noun • 

/* Now: ADJECTIVE contains 'EASY' 
/* NOUN contains 'RIDER' 

*/ 
*/ 

If you expect more than one string to be available to the program or routine, you can 
use a comma in the parSing template so each is selected in turn. 

Example: 

/* function is invoked by FRED('data X',l,5) */ 

Fred: Arg string, nurnl, nurn2 

/* Now: 
/* 
/* 

ST~lNG contains 'DATA X' 
NUMl contains 'I' 
NUM2 contains '5' 

*/ 
*/ 
*/ 

46 TSO/E Version 2 MVS/REXX Reference 

./~. 

\;., J 

it' .~. 

c 



-, 

,--- ----------~-----------

Notes: 

1. The ARG built-in function can also retrieve or check the argument string(s) to a 
REXX program or internal routine. See page 93. 

2. The source of the data being processed is also made available on entry to the 
program. See the PARSE instruction (SOURCE option) on page 67 for details. 

Chapter 3. Keyword Instructions 47 

~-- ------- ... ~.----.~-.-.. ------



----------------- -- ---- -- ---- ---

CALL 

CALL 

CALL invokes a routine (if you specify name) or controls the trapping of certain 
conditions (if you specify ON or OFF). 

To control trapping, you specify OFF or ON and the condition you want to trap. OFF 
turns off the specified condition trap. ON turns on the specified condition trap. All 
information on condition traps is contained in Chapter 7, "Conditions and Condition 
Traps" on page 177. 

To invoke a routine, specify name, a symbol or literal string that is taken as a 
constant. The name must be a symbol, which is treated literally, or a literal string. 
The routine invoked can be: 

• An internal routine 
• A built-in function. 
• An external routine 

If name is a string (that is, you specify name in quotation marks), the search for 
internal labels is bypassed, and only a built-in function or an external routine is 
invoked. Note that the names of built-in functions (and generally the names of 
external routines too) are in uppercase, and hence you should uppercase the name 
in the literal string. 

The invoked routine can optionally return a result, and so the CALL instruction is 
functionally identical to the clause: 

-resul t=name (----.--------,-......1--)-;­
Lexpression~ 

except that the variable RESULT becomes uninitialized if the routine invoked returns 
no result. 

If the subroutine returns a result, the result is stored in ~he REXX special variable 
RESULT, not the special variable RC. The REXX speci~1 variable RC is set when 

I 

\ 

j 

you issue host commands from an exec (see page 26);lbut RC is not set when you c-.-.\! 
use the CALL instruction. The three REXX special variables RESULT, RC, and SIGL 
are described in Chapter 9, "Reserved Keywords, Special Variables, and Command 
Names" on page 195. 

48 TSO/E Version 2 MVS/REXX Reference 

I' 
I 



( 

( 

(-

CALL 

TSO/E supports specifying up to 20 expressions, separated by commas. The 
expressions are evaluated in order from left to right and form the argument string(s) 
during execution of the routine. Any ARG or PARSE ARG instructions or ARG 
built-in function in the called routine accesses these strings, rather than those 
previously active in the calling program. You can omit expressions, if appropriate, 
by including "extra" commas. 

The CALL then causes a branch to the routine called name, using exactly the same 
mechanism as function calls. (See Note 1 on page 58 for information about using 
CALL with the INTERPRET instruction.) The section on functions (page 85) 
describes the order in which these are searched for but briefly is as follows: 

Internal routines: 
These are sequences of instructions inside the same program, starting at 
the label that matches name in the CALL instruction. If you specify the 
routine name in quotation marks, then an internal routine is not 
considered for that search order. The RETURN instruction completes the 
execution of an internal routine. 

Built-In routines: 
These are routines built into the language processor for providing 
various functions. They always return a string containing the result of 
the function. (See page 91.) 

External routines: 
Users can write or use routines that are external to the language 
processor and the calling program. An external routine can be coded in 
REXX or in any language that supports the system dependent interfaces. 
For information about using the system-dependent interfaces, see 
"External Functions and Subroutines, and Function Packages" on 
page 276. For information about the search order the system uses to 
locate external routines, see "Search Order" on page 87. If the CALL 
instruction invokes an external routine written in REXX as a subroutine, 
you can retrieve any argument strings with the ARG or PARSE ARG 
instructions or the ARG built-in function. 

During execution of an internal routine, all variables previously known are normally 
accessible. However, the PROCEDURE instruction can set up a local variables 
environment to protect the subroutine and caller from each other. The EXPOSE 
option on the PROCEDURE instruction can expose selected variables to a routine. 

Calling an external program as a subroutine is similar to calling an internal routine. 
The external routine, however, is an implicit PROCEDURE in that all the caller's 
variables are always hidden and the status of internal values (NUMERIC settings, 
and so forth) start with their defaults (rather than inheriting those of the caller). 

When control reaches an internal routine, the line number of the CALL instruction is 
available in the variable SIGL (in the caller's variable environment). This may be 
used as a debug aid, as it is, therefore, possible to find out how control reached a 
routine. Note that if the internal routine uses the PROCEDURE instruction, then it 
needs to EXPOSE SIGl to get access to the line number of the CALL. 

Eventually the subroutine should execute a RETURN instruction, and at that point 
control returns to the clause following the original CALL. If the RETURN instruction 
specified an expression, the variable RESULT is set to the value of that expression. 
Otherwise, the variable RESULT is dropped (becomes uninitialized). 

Chapter 3. Keyword Instructions 49 



CALL 

An internal routine can include calls to other internal routines, as well as recursive 
calls to itself. 

Example: 

/* Recursive subroutine execution ••• */ 
arg x 
call factorial x 
say x'! =, result 
exit 

factorial: procedure 
arg n 
if n=8 then return 1 
call factorial n-1 
return result * n 

/* calculate factorial by •• */ 
/* .. recursive invocation. */ 

During internal subroutine (and function) execution, all important pieces of 
information are automatically saved and are then restored upon return from the 
routine. These are: 

• The status of DO loops and other structures - Executing a SIGNAL while within 
a subroutine is "safe" because DO loops, and so forth, that were active when 
the subroutine was called are not deactivated (but those currently active within 
the subroutine are deactivated). 

• Trace action - Once a subroutine is debugged, you can insert a TRACE Off at 
the beginning of it, and this does not affect the tracing of the caller. Conversely, 
if you only wish to debug a subroutine, you can insert a TRACE Results at the 
start and tracing is automatically restored to the conditions at entry (for 
example, "Off") upon return. Similarly,? (interactive debug) and ! (command 
inhibition) are saved across routines. 

• NUMERIC settings (the DIGITS, FUZZ, and FORM of arithmetic operations, 
described on page 63) are saved and are then restored on return. A subroutine 
can therefore set the precision, and so forth, that it needs to use without 
affecting the caller. 

• ADDRESS settings (the current and previous destinations for commands - see 
the ADDRESS instruction on page 44) are saved and are then restored on 
return. 

• Condition traps (CALL ON and SIGNAL ON) are saved and then restored on 
return. This means that CALL ON, CALL OFF, SIGNAL ON, and SIGNAL OFF can 
be used in a subroutine without affecting the conditions the caller set up. 

• Condition Information - This is the information the CONDITION built-in function 
returns. See the CONDITION function on page 96. 

• Elapsed-time clocks - A subroutine inherits the elapsed-time clock from its 
caller (see the TIME function on page 116), but since the time clock is saved 
across routine calls, a subroutine or internal function can independently restart 
and use the clock without affecting its caller. For the same reason, a clock 
started within an internal routine is not available to the caller. 

• OPTIONS settings - ETMODE and EXMODE are saved and are then restored on 
return. For more information, see the OPTIONS instruction on page 65. 

Implementation maximum: The total nesting of control structures, which includes 
internal routine calls, may not exceed a depth of 250. 

50 TSO/E Version 2 MVS/REXX Reference 

) . 
c· .

... " .. 



DO 

( 

( 

-00 
Lrepetito~ Lcondit;onalJ 

repetitor: 

l To-exprtJ lBY-exprbJ lFOR-exprfJ 
FOREVER---------------i "fame=expri 

xpr~--------------~ 

conditional: / 
---rwHI LE-exprw--r--"~""" 

LuNTI L -expru~ 

DO groups instructions together and optionally executes them repetitively. During 
repetitive execution, a control variable (name) can be stepped through some range 
of values. 

Synlax Noles: 

• The exprr, expri, exprb, exprt, and exprf options (if present) are any expressions 
that evaluate to a number. The exprr and exprf options are further restricted to 
result in a nonnegative whole number. If necessary, the numbers are rounded 
according to the setting of NUMERIC DIGITS. 

• The exprw or expru options (if present) can be any expression that evaluates to 
1 or O. 

• The TO, BY, and FOR phrases can be in any order, if used, and are evaluated in 
the order in which they are written. 

• The instruction(s) can include assignments, commands, and keyword 
instructions (including any of the more complex constructs such as IF, SELECT, 
and the DO instruction itself). 

• The subkeywords TO, BY, FOR, WHILE and UNTIL are reserved within a DO 
instruction, in that they cannot be used as symbols in any of the expressions. 
FOREVER is also reserved, but only if it immediately follows the keyword DO. 

• The exprb option defaults to 1, if relevant. 

Chapter 3. Keyword Instructions 51 



--------------------------------

DO 

Simple DO Group 
If you specify neither repetitor nor conditional, the construct merely groups a 
number of instructions together. These are executed once. Otherwise, the group of 
instructions is a repetilive DO loop, and they are executed according to the repetitor 
phrase, optionally modified by the conditional phrase. 

In the following example, the instructions are executed once. 

Example: 

/* The two instructions between DO and END are both */ 
/* executed if A has the value 3. */ 
If a=3 then Do 

Simple Repetitive Loops 

a=a+2 
Say 'Smile!' 
End 

A simple repetitive loop is a repetitive DO loop in which the repetitor phrase is an 
expression that evaluates to a count of the iterations. 

If repetitor is omitted but there is a conditional or if the repetitor is FOREVER, the 
group of instructions is nominally executed "forever," that is, until the condition is 
satisfied or a REXX instruction is executed that ends the loop (for example, LEAVE). 

Note: For a discussion on conditional phrases, see "Conditional Phrases (WHILE 
and UNTIL)" on page 54. 

In the simple form of a repetitive loop, exprr is evaluated immediately (and must 
result in a nonnegative whole number), and the loop is then executed that many 
times. 

Example: 

/* This displays "Hello" five times */ 
Do 5 

say 'Hello' 
end 

Note that, similar to the distinction between a command and an assignment, if the 
first token of exprr is a symbol and the second token is (or starts with) an "=", the 
controlled form of repetitor is expected. 

Controlled Repetitive Loops 
The controlled form specifies a control variable, name, which is assigned an initial 
value (the result of expri, formatted as though '0' had been added) before the first 
execution of the instruction list. The variable is then stepped (by adding the result 
of exprb, at the bottom of the loop) each time the group of instructions is executed. 
The group is executed repeatedly while the end condition (determined by the result 
of exprt) is not met. If exprb is positive or zero, the loop is terminated when name is 
greater than exprt. If negative, the loop is terminated when name is less than exprt. 

The expri, exprt, and exprb options must result in numbers. They are evaluated 
once only, before the loop begins and before the control variable is set to its initial 
value. The default value for exprb is 1. If exprt is omitted, the loop executes 
indefinitely unless some other condition terminates it. 

52 TSO/E Version 2 MVS/REXX Reference 

--- -------------------------------------

c 



( 

( 

Example: 

Do 1=3 to -2 by -1 
say 
end 

/* Displays: */ 
/* 3 */ 
/* 2 */ 
/* 1 */ 
/* e */ 
/* -1 */ 
/* -2 */ 

The numbers do not have to be whole numbers: 

Example: 

X=e.3 
Do Y=X to X+4 by e.7 

say Y 
end 

/* Displays: */ 
/* e.3 */ 
/* I.e */ 
/* 1.7 */ 
/* 2.4 */ 
/* 3.1 */ 
/* 3.8 */ 

DO 

The control variable can be altered within the loop, and this may affect the iteration 
of the loop. Altering the value of the control variable is not normally considered 
good programming practice, though it may be appropriate in certain circumstances. 

Note that the end condition is tested at the start of each iteration (and after the 
control variable is stepped, on the second and subsequent iterations). Therefore, if 
the end condition is met immediately, the group of instructions can be skipped 
entirely. Note also that the control variable is referred to by name. If (for example) 
the compound name" A.I" is used for the control variable, altering "I" within the 
loop causes a change in the control variable. 

The execution of a controlled loop can be bounded further by a FOR phrase. In this 
case, you must specify exprf, and it must evaluate to a nonnegative whole number. 
This acts just like the repetition count in a simple repetitive loop, and sets a limit to 
the number of iterations around the loop if no other condition terminates it. like the 
TO and BY expressions, it is evaluated once only - when the DO instruction is first 
executed and before the control variable receives its initial value. like the TO 
condition, the FOR condition is checked at the start of each iteration. 

Example: 

Do Y=e.3 to 4.3 by e.7 for 3 
say Y 
end 

/* Displays: 
/* e.3 
/* I.e 
/* 1.7 

*/ 
*/ 
*/ 
*/ 

In a controlled loop, the name describing the control variable can be specified on 
the END clause. This name must match name in the DO clause in all respects 
except case (note that no substitution for compound variables is carried out); a 
syntax error results if it does not. This enables the nesting of loops to be checked 
automatically, with minimal overhead. 

Example: 

Do K=1 to 10 

End k /* Checks that this is the END for K loop */ 

Chapter 3. Keyword Instructions 53 



DO 

.-._----_._-----------------------------------

Nole: The NUMERIC settings may affect the successive values of the control 
variable, since REXX arithmetic rules apply to the computation of stepping the 
control variable. 

Conditional Phrases (WHILE and UNTIL) 
A conditional phrase, which may cause termination of the loop, can follow any of the 
forms of repetitor (none, FOREVER, simple, or controlled). If you specify WHILE or 
UNTIL, exprw or expru, respectively, is evaluated each time around the loop using 
the latest values of all variables (and must evaluate to either 0 or 1), and the loop is 
terminated if exprw evaluates to 0 or expru evaluates to 1. 

For a WHILE loop, the condition is evaluated at the top of the group of instructions, 
and for an UNTIL loop the condition is evaluated at the bottom-before the control 
variable has been stepped. 

Example: 

Do 1=1 to 19 by 2 until i>6 
say i 
end 

/* Displays: I, 3, 5, 7 */ 
Nole: Using the LEAVE or ITERATE instructions can also modify the execution of 
repetitive loops. 

~~~"""- Discontinue execution of DO 
.::::~:.ii>:~::::::i:.' ./~"'V" group if TO value is exceeded. I L...---""'I!l!r-----.t"::::> ~~~f~:~ft~f:~~ r! 

~~ :> Discontinue execution of DO 
~ group if WHILE condition Is ..... ---""'I!'!'!r-----¥~~~ not met. 

::: 

~ group if UNTIL condition Is 

I 
~~ :> Discontinue execution of DO 

~ ______ ~~ ______ ~~~~ met. 

~iil::::::::::::::::,:::.::::::::::::::::::::::::::::::::::::::::::::::::::":::::::i::::" 
Figure 8. Concept of a DO Loop 

54 TSO/E Version 2 MVS/REXX Reference 



DROP 

-I 

DROP 

+ -OROP.P---name@--.L.-..,....;.--------t ........ 

DROP "unassigns" variables, that is, restores them to their original uninitialized 
state. Each name identifies a variable you want to drop and must be a symbol that 
is a valid variable name, separated from any other name by one or more blanks or 
comments. 

Each variable specified is dropped from the list of known variables. The variables 
are dropped in sequence from left to right. It is not an error to specify a name more 
than once, or to DROP a variable that is not known. If an exposed variable is named 
(see the PROCEDURE instruction), the variable itself in the older generation is 
dropped. 

Example: 

j=4 
Orop a x.3 x.j 
/* Resets the variables: "A". "X.3". and "X.4" */ 
/* so that reference to them returns their name. */ 
Specifying a stem (that is, a symbol that contains only one period, as the last 
character), drops all variables starting with that stem. 

Example: 

Drop x. 
/* Resets all variables with names starting with "X." */ 

Chapter 3. Keyword Instructions 55 



EXIT 

EXIT 

--------

EXIT leaves a program unconditionally. Optionally EXIT returns a character string 
to the caller. The program is terminated immediately, even if an internal routine is 
currently being executed. If no internal routine is active, RETURN (see page 74) and 
EXIT are identical in their effect on the program that is being executed. 

If you specify expression, it is evaluated and the string resulting from the evaluation 
is passed back to the caller when the program terminates. 

Example: 

j=3 
Exit j*4 
/* Would exit with the string '12' */ 
If you do not specify expression, no data is passed back to the caller. If the program 
was called as an external function, this is detected as an error - either immediately 
(if RETURN was used), or on return to the caller (if EXIT was used). 

"Running off the end" of the program is always equivalent to the instruction EXIT, in / '\ 
that it terminates the whole program and returns no result string. ) 

Note: The language processor does not distinguish between invocation as a 
command on the one hand. and invocation as a subroutine or function on the other. 
If the program was invoked through a command interface, an attempt is made to 
convert the returned value to a return code acceptable by the host. The returned 
string must be a whole number whose value fits in a general register (that is, must 
be in the range -2**31 through 2**31-1). If the conversion fails. it is deemed to be a 
failure of the host interface and is thus not subject to trapping by SIGNAL ON 
SYNTAX. ~~\ 

\",,-,..,/ 

c 
56 TSO/E Version 2 MVS/REXX Reference 



-I 
I 

(' 

( 

( 

IF 

-I F-:-ex,press;on""TI. THEN""TI. instruction L J 
L;J L;J ELSETIinstruct;on 

... 
, 

IF conditionally processes an instruction or group of instructions depending on the 
evaluation of the expression. The expression must evaluate to 0 or 1. 

IF 

The instruction after the THEN is processed only if the result of the evaluation is 1. 
If you specify an ELSE, the instruction after the ELSE is processed only if the result 
of the evaluation is O. 

Example: 

if answer=' YES' then say 'OK!' 
else say 'Why not?' 

Remember that if the ELSE clause is on the same line as the last clause of the THEN 
part, you need a semicolon before the ELSE. 

Example: 

if answer=' YES , then say 'OK!'; else say 'Why not?' 

The ELSE binds to the nearest IF at the same level. You can use the NOP 
instruction to eliminate errors and possible confusion when IF constructs are 
nested, as in the following example. 

Example: 

If answer = 'YES' Then 
If name = 'FRED' Then 

say 'OK, Fred.' 
Else 

nop 
Else 

say 'Why not?' 

Notes: 

1. The instruction can be any assignment, command, or keyword instruction, 
including any of the more complex constructs such as DO, SELECT, or the IF 
instruction itself. A null clause is not an instruction, so putting an extra 
semicolon after the THEN or ELSE is not equivalent to putting a dummy 
instruction (as it would be in PLlI). The NOP instruction is provided for this 
purpose. 

2. The symbol THEN cannot be used within expression, because the keyword 
THEN is treated differently, in that it need not start a clause. This allows the 
expression on the IF clause to be terminated by the THEN, without a ";" being 
required. Were this not so, people used to other computer languages would 
experience considerable difficulties. 

Chapter 3. Keyword Instructions 57 



INTERPRET 

INTERPRET 

INTERPRET executes instructions that have been built dynamically by evaluating 
expression. 

The expression is evaluated and is then executed (interpreted) just as though the 
resulting string were a line inserted into the input file (and bracketed by a DO; and 
an END;). 

Any instructions (including INTERPRET instructions) are allowed, but note that 
constructions such as DO ... END and SELECT ... END must be complete. For 
example, a string of instructions being INTERPRETed cannot contain a LEAVE or 
ITERATE instruction (valid only within a repetitive DO loop) unless it also contains 
the whole repetitive DO ... END construct. 

A semicolon is implied at the end of the expression during execution, if one was not 
supplied. 

Example: 

data='FRED' 
interpret data '= 4' 
/* Will a) build the string "FRED = 4" */ 
/* b) execute FRED = 4; */ 
/* Thus the vari ab 1 e "FRED" wi 11 be set to "4" * / 

Example: 

data='do 3; say "Hello there!"; end' 
interpret data /* Would display: 

/* Hello there! 
/* Hello there! 
/* Hello there! 

Notes: 

*/ 
*/ 
*/ 
*/ 

1. Labels within the interpreted string are not permanent and are therefore 
ignored. Hence, executing a SIGNAL instruction from within an interpreted 
string causes immediate exit from that string before the label search begins. 

2. If you are new to the concept of the INTERPRET instruction and are getting 
results that you do not understand, you may find that executing it with TRACE R or 
TRACE I set is helpful. 

58 TSO/E Version 2 MVS/REXX Reference 

c 

o 



( 

... _-- -- ----------- ----

Example: 

/* Here we have a small program. */ 
Trace lnt 
name=' Kitty' 
indirect=' name' 
interpret 'say "Hello'" i nd i rect "' ! '" 

when run gives the trace: 

kitty 
3 *-* name='Kitty' 

>L> "Kitty" 
4 *-* indirect='name' 

>L> "name" 
5 *-* interpret 'say "Hello"' indirect"'!"' 

>L> "say "Hello"" 
>V> "name" 
>0> "say "Hello" name" 

11111"" >L> 
>0> "say "Hello" name"!"" 
*-* say "Hello" name"!" 
>L> 
>V> 
>0> 
>L> 
>0> 

"Hello· 
"Kitty" 
"Hello Kitty" 
"I" 
"Hello Kitty!" 

Hello Kittyl 

INTERPRET 

Here, lines 3 and 4 set the variables used in line 5. Execution of line 5 then 
proceeds in two stages. First the string to be interpreted is built up, using a 
literal string, a variable (INDIRECn, and another literal. The resulting pure 
character string is then interpreted, just as though it were actually part of the 
original program. Since it is a new clause, it is traced as such (the second *-* 
trace flag under line 5) and is then executed. Again a literal string is 
concatenated to the value of a variable (NAME) and another literal, and the final 
result (Hello Kitty!) is then displayed. 

3. For many purposes, the VALUE function (see page 120) can be used instead of 
the INTERPRET instruction. Line 5 in the last example could therefore have 
been replaced by: 

say "Hell 0" val ue( i ndi rect)"!" 

INTERPRET is usually only required in special cases, such as when more than 
one statement is to be interpreted at once. 

Chapter 3. Keyword Instructions 59 



ITERATE 

ITERATE 

ITERATE alters the flow within a repetitive DO loop (that is, any DO construct other 
than that with a simple DO). 

Execution of the group of instructions stops, and control is passed to the DO 
instruction just as though the END clause had been encountered. The control 
variable (if any) is incremented and tested, as usual, and the group of instructions is 
executed again, unless the DO instruction terminates the loop. 

If name is not specified, ITERATE steps the innermost active repetitive loop. If 
name is specified, it must be the name of the control variable of a currently active 
loop (which may be the innermost), and this is the loop that is stepped. Any active 
loops inside the one selected for iteration are terminated (as though by a LEAVE 
instruction). 

Example: 

do i=1 to 4 
if i=2 then iterate 
say i 
end 

/* Displays the numbers: 1, 3, 4 */ 

Notes: 

1. If specified, name must match the symbol naming the control variable in the DO 
clause in all respects except case. No substitution for compound variables is 
carried out when the comparison is made. 

2. A loop is active if it is currently being executed. If a subroutine is called (or an 
INTERPRET instruction is executed) during execution of a loop, the loop 
becomes inactive until the subroutine has returned or the INTERPRET 
instruction has completed. ITERATE cannot be used to step an inactive loop. 

3. If more than one active loop uses the same control variable, ITERATE selects 
the innermost loop. 

60 TSO/E Version 2 MVS/REXX Reference 

(f\ 
~~J 

c 



LEAVE 

(-

( 

( 

··1 

LEAVE 

----..,.tEAVE---..---...--- ------........ 
LnameOOJ 

LEAVE causes an immediate exit from one or more repetitive DO loops (that is, any 
DO construct other than a simple DO). 

Processing of the group of instructions is terminated, and control is passed to the 
instruction following the END clause, just as though the END clause had been 
encountered and the termination condition had been met normally. However, on 
exit, the control variable (if any) will contain the value it had when the LEAVE 
instruction was processed. 

If name is not specified, LEAVE terminates the innermost active repetitive loop. If 
name is specified, it must be the name of the control variable of a currently active 
loop (which may be the innermost), and that loop (and any active loops inside it) is 
then terminated. Control then passes to the clause following the END that matches 
the DO clause of the selected loop. 

Example: 

do i=1 to 5 
say i 
if i=3 then leave 
end 

/* Displays the numbers: 1, 2, 3 */ 

Notes: 

1. If specified, name must match the symbol naming the control variable in the DO 
clause in all respects except case. No substitution for compound variables is 
carried out when the comparison is made. 

2. A loop is active if it is currently being executed. If a subroutine is called (or an 
INTERPRET instruction is executed) during execution of a loop, the loop 
becomes inactive until the subroutine has returned or the INTERPRET 
instruction has completed. LEAVE cannot be used to terminate an inactive loop. 

3. If more than one active loop uses the same control variable, LEAVE selects the 
innermost loop. 

Chapter 3. Keyword Instructions 61 



----~------~~------"- ~--

NOP 

NOP 

NOP is a dummy instruction that has no effect. It can be useful as the target of a 
THEN or ELSE clause: 

Example: 

Select 
when a=b then nop /* Do nothing */ 
when a>b then say 'A > 8' 
otherwise say 'A < 8' 

end 

Note: Putting an extra semicolon instead of the NOP would merely inse.rt a null 
clause, which would be ignored. The second WHEN clause would be seen as the 
first instruction expected after the THEN, and hence would be treated as a syntax 
error. NOP is a true instruction, however, and is, therefore, a valid target for the 
THEN clause. 

62 TSO/E Version 2 MVS/REXX Reference 

o 



-
NUMERIC 

( 

( 

( '-/ 

... 

---~. -------------~ ... -, .. --

l\IUMERIC 

--NUMERIC DIGITS ;-
xpressionl 

FO 
SCIENTIFIC 
ENGINEERING------

expression2 

FUZZ 
xpression3 

NUMERIC changes the way in which arithmetic operations are carried out. The 
options of this instruction are described in detail on pages 167-175, but in summary: 

NUMERIC DIGITS 

controls the precision to which arithmetic operations and arithmetic built-in 
functions are evaluated. If you omit expression 1 , the precision defaults to 9 
digits. Otherwise, expression1 must evaluate to a positive whole number, 
rounded if necessary according to the current NUMERIC DIGITS setting, and 
must be larger than the current NUMERIC FUZZ setting. 

There is no limit to the value for DIGITS (except the amount of storage 
available), but note that high precisions are likely to be very expensive in CPU 
time. It is recommended that you use the default value wherever possible. 

You can retrieve the current NUMERIC DIGITS setting with the DIGITS built-in 
function. See "DIGITS" on page 102. 

NUMERIC FORM 

controls which form of exponential notation REXX uses for the result of 
arithmetic operations and arithmetic built-in functions. This may be either 
SCIENTIFIC (in which case only one, nonzero digit appears before the decimal 
point) or ENGINEERING (in which case the power of ten is always a multiple of 
three). The default is SCIENTIFIC. The FORM is set either directly by the 
subkeywords SCIENTIFIC or ENGINEERING or is taken from the result of 
evaluating the expression2 following VALUE. The result in this case must be 
either I SCIENTIFIC I or I ENGINEERING I. You can omit the subkeyword VALUE 
if the expression2 does not begin with a symbol or a literal string (that is, if it 
starts with a special character, such as an operator or parenthesis). 

You can retrieve the current NUMERIC FORM setting with the FORM built-in 
function. See "FORM" on page 105. 

NUMERIC FUZZ 

controls how many digits, at full precision, are ignored during a numeric 
comparison operation. If you omit expressionS, the default is 0 digits. 
Otherwise, expressionS must evaluate to zero or a positive whole number, 
rounded if necessary according to the current NUMERIC DIGITS setting, and 
must be smaller than the current NUMERIC DIGITS setting. 

Chapter 3. Keyword Instructions 63 



NUMERIC 

FUZZ temporarily reduces the value of DIGITS by the FUZZ value before every 
numeric comparison operation. The numbers being compared are subtracted 
from each other under a precision of DIGITS - FUZZ digits and this result is 
then compared with O. 

You can retrieve the current NUMERIC FUZZ setting with the FUZZ built-in 
function. See "FUZZ" on page 106. 

Nole: The three numeric settings are automatically saved across subroutine and 
internal function calls. See the CALL instruction (page 48) for more details. 

64 TSO/E Version 2 MVS/REXX Reference 

r{···". 

'J 



----
OPTIONS (-" 

(-

( 

( 

~-- .. -~---- --.~.----.-.----------.-

OPTIONS 

---------_._-_. __ . __ ._----

-oPTIONS--expression--;-----.. ~~ .. 

OPTIONS passes special requests or parameters to the language processor. For 
example, these may be language processor options or perhaps define a special 
character set. 

The expression is evaluated, and the result is examined one word at a time. If the 
language processor recognizes the words, then they are obeyed. Words that are not 
recognized are ignored and assumed to be instructions to a different processor. 

The language processor recognizes the following words: 

ETMODE 

NOETMODE 

EXMODE 

NOEXMODE 

Notes: 

specifies that literal strings containing DBCS characters are 
checked for being valid DBCS strings. 

specifies that literal strings containing DBCS characters are not 
checked for being valid DBCS strings. NOETMODE is the default. 

specifies that instructions, operators, and functions handle DBCS 
data in mixed strings on a logical character basis. DBCS data 
integrity is maintained. 

specifies that any data in strings is handled on a byte basis. The 
integrity of DBCS characters, if any, may be lost. NOEXMODE is the 
default. 

1. Because of the language processor's scanning procedures, you are advised to 
place an OPTIONS "ETMODE" instruction near the beginning of a program 
containing DBCS literal strings. 

2. To ensure proper scanning of a program containing DBCS literals, enter the 
words ETMODE, NOETMODE, EXMODE, and NOEXMODE as literal strings (that 
is, enclosed in quotation marks) in the OPTIONS instruction. 

3. The OPTIONS ETMODE and OPTIONS EXMODE settings are saved and restored 
across subroutine and function calls. 

4. To distinguish DBCS characters from one-byte EBCDIC characters, sequences 
of DBCS characters are enclosed with a shift-out (SO) character and a shift-in 
(SI) character. The hexadecimal values of the SO and SI characters are X'OE I 

and X I OF I , respectively. 

DBCS fields within a literal string, which are delimited by SO-81 characters, are 
excluded from the search for a closing quotation mark in literal strings. 

5. The words ETMODE, NOETMODE, EXMODE, and NOEXMODE can appear 
several times within the result. The one that takes effect is determined by the 
last valid one specified between the pairs ETMODE-NOETMODE and 
EXMODE-NOEXMODE. 

Chapter 3. Keyword Instructions 65 



PARSE 

----------------------------------------------------------------------------------PARSE 

PARSE assigns data (from various sources) to one or more variables according to 
the rules and templates described in the section on parsing (page 159). 

If specified, a template is a list of symbols separated by blanks or patterns or both. 

If you do not specify template, no variables are set but action is taken to get the data 
ready for parsing if necessary. Thus for PARSE PULL, a data string is removed from 
the queue, and for PARSE VALUE, expression is evaluated. For PARSE VAR, the 
specified variable is accessed. If it does not have a value, the NOVALUE condition 
is raised, if it is enabled. 

If you specify the UPPER option, the data to be parsed is first translated to 
uppercase (that is, lowercase a-z to uppercase A-Z). Otherwise, no uppercase 
translation takes place during the parsing. 

The data used for each variant of the PARSE instruction is: 

PARSEARG 

The string(s) passed to the program, subroutine, or function as the input 
argument list are parsed. (See the ARG instruction for details and examples.) 

Note: You can also retrieve or check the argument string(s) to a REXX program 
or internal routine with the ARG built-in function, described on page 93. 

PARSE EXTERNAL 

In TSO/E, PARSE EXTERNAL reads from the: 

• Terminal (TSO/E foreground) 
• Input stream, which is SYSTSIN (TSO/E background). 

In non-TSO/E address spaces, PARSE EXTERNAL reads from the input stream 
as defined by the file name in the INDO field in the module name table (see 
page 357). The system default is SYSTSIN. PARSE EXTERNAL returns a field 
based on the record that is read from the INDO file. If SYSTSIN has no data, the 
PARSE EXTERNAL instruction returns a null string. 

66 TSO/E Version 2 MVS/REXX Reference 

c 



(-

L 

-~------.~ -.-.- .~.------."-.~-

PARSE 

PARSE NUMERIC 

The current numeric controls (as set by the NUMERIC instruction, see page 63) 
are made available. These controls are in the order DIGITS FUZZ FORM. 

Example: 

Parse Numeric Varl 

After this instruction, Varl would be equal to: 90 SCIENTIFIC. See the 
NUMERIC instruction on page 63. Also refer to the built-in functions DIGITS, 
FORM, and FUZZ; see page 102, 105, and 106, respectively. 

PARSE PULL 

The next string from the external data queue is parsed. If the external data 
queue is empty, lines are read from the default input (typically the user's 
terminal). You can add data to the head or tail of the queue by using the PUSH 
and QUEUE instructions, respectively. You can find the number of lines 
currently in the queue with the QUEUED built-in function, described on page 111. 
The queue remains active as long as the language processor is active. Other 
programs in the system can alter the queue and use it as a means of 
communication with programs written in REXX. 

PULL and PARSE PULL read from the data stack. In TSO/E, if the data stack is 
empty, PULL and PARSE PULL read from the: 

• Terminal (TSO/E foreground) 
• Input stream, which is SYSTSIN (TSO/E background). 

In non-TSO/E address spaces, if the data stack is empty, PULL and PARSE PULL 
read from the input stream as defined by the file name in the INDO field in the 
module name table (see page 357). The system default is SYSTSIN. If SYSTSIN 
has no data, the PULL and PARSE PULL instructions return a null string. 

PARSE SOURCE 

The data parsed describes the source of the program being executed. 

The source string contains the following tokens: 

1. The characters TSO 

2. The string COMMAND, FUNCTION, or SUBROUTINE depending on whether 
the program was invoked as some kind of host command (for example, as 
an exec from TSO/E READY mode), or from a function call in an expression, 
or via the CALL instruction. 

3. 

4. 

5. 

6. 

7. 

Name of the exec in uppercase. If the name is not known, this token is a 
question mark (?). 

Name of the DO from which the exec was loaded. If the name is not known, 
this token is a question mark (?). 

Name of the data set from which the exec was loaded. If the name is not 
known, this token is a question mark (?). 

Name of the exec as it was invoked, that is, the name is not folded to 
uppercase. If the name is not known, this token is a question mark (?). 

Initial (default) host command environment in uppercase. For example, this 
token may be TSO or MVS. 

Chapter 3. Keyword Instructions 67 



PARSE 

8. Name of the address space in uppercase. For example, the value may be 
MVS (non-TSO/E) or TSO/E or ISPF. If the exec was invoked from ISPF, the 
address space name is ISPF. 

The value is taken from the parameter block (see page 350). Note that the 
initialization exit routines may change the name specified in the parameters 
module. If the name of the address space is not known, this token is a 
question mark (?). 

9. Eight character user token. This is the token that is specified in the 
PARSETOK field in the parameters module (see page 348). 

For example, the string parsed might look like one of the following: 

TSO COMMAND PROGA SYSXR07 EGGERS.ECE.EXEC ? TSO TSO/E ? 

TSO SUBROUTINE PROGSUB SYSEXEC ? ? TSO ISPF ? 

PARSE VALUE 

The expression is evaluated, and the result is the data that is parsed. Note that 
WITH is a subkeyword in this context and cannot be used as a symbol within 
expression. 

Thus, for example: 

PARSE VALUE time() WITH hours ':' mins ':' sees 

gets the current time and splits it up into its constituent parts. 

PARSE VAR name 

The value of the variable specified by name is parsed. The name must be a 
symbol that is valid as a variable name (that is, it cannot start with a period or a 
digit). Note that the variable name is not changed unless it appears in the 
template, so that for example: 

PARSE VAR string word! string 

removes the first word from string, puts it in the variable word1. and assigns the 
remainder back to string. Similarly /,(."\ 

PARSE UPPER VAR stri ng word! stri ng i", j 

in addition translates the data from string to uppercase before it is parsed. 

PARSE VERSION 

Information describing the language level and the date of the language 
processor is parsed. This consists of five words: 

• A word describing the language. which is the string "REXX370" 

• The language level description, for example, "3.46" 

• Three tokens describing the language processor release date, for example, 
"31 May 1988". 

c 
68 TSO/E Version 2 MVS/REXX Reference 



PROCEDURE 

( 

PROCEDURE 

.....-PROCEDURE---,---------,-- --...... >4. 

LEXroSE-L:U 

PROCEDURE protects variables within an internal routine (subroutine or function) 
by making them unknown to the instructions that follow it. On executing a RETURN 
instruction, the original variables environment is restored and any variables used in 
the routine (that were not exposed) are dropped. The PROCEDURE instruction must 
be the first instruction executed after the CALL or function invocation; that is, it must 
be the first instruction following the label. 

If you use the EXPOSE option, any variable specified by name is exposed, so that 
any reference to it (including setting and dropping) is made to the variables 
environment the caller owns. With the EXPOSE option you must specify at least one 
name, a symbol separated from any other name with one or more blanks. Any 
variables in the main program that are not exposed are still protected. Hence, some 
limited set of the caller's variables can be made accessible, and these variables can 
be changed (or new variables in this set can be created). All these changes are 
visible to the caller upon RETURN from the routine. 

The variables are exposed in sequence from left to right. It is not an error to specify 
a name more than once, or to specify a name that the caller has not used as a 
variable. 

Example: 

/* This is the main program */ 
j=l; x.1='a' 
call toft 
say j k m /* Displays "17M" 
exit 

toft: procedure expose j k x.j 

*/ 

say j k x.j /* Displays "1 K a" */ 
k=7; m=3 /* Note: "M" is not exposed * / 
return 

Note that if X.J in the EXPOSE list had been placed before J, the caller's value of J 
would not have been visible at that time, so X.1 would not have been exposed. 

Specifying a slem as name exposes this stem and a/l possible compound variables 
whose names begin with that stem. (A stem is a symbol containing just one period, 
which is the last character. See page 23.) 

Chapter 3. Keyword Instructions 69 



Example: 

lucky7:Procedure Expose i j a. b. 
/* This exposes "I", "J", and all variables whose */ 
/* names start with "A." or "B." */ 
A.I='7' /* This sets "A.I" in the caller's */ 

/* environment, even if it did not */ 
/* previously exist. */ 

Variables may be exposed through several generations of routines, if desired, by 
ensuring that they are included on all intermediate PROCEDURE instructions. 

Notes: 

1. Only one PROCEDURE instruction in each level of routine call is allowed. 

2. An internal routine need not include a PROCEDURE instruction, in which case 
the variables it is manipulating are those the caller "owns." 

See the CALL instruction and function descriptions on pages 48 and 85 for details 
and examples of how routines are invoked. 

70 TSO/E Version 2 MVS/REXX Reference 



( 

PUll 

------_. __ ... _ .. -.---_._-- ----------.----_._._--------------------
PUll 

-PULL---,..----...... -- ----~ ..... 
LtemPlate:J 

PULL reads a string from the head of the external data queue. It is just a short form 
of the instruction: 

--PARSE UPPER PULL L e:=J ;-
templat 

The current head-of-queue is read as one string. Without a template specified, no 
further action is taken (and the string is thus effectively discarded). If specified, a 
template is a list of symbols separated by blanks or patterns or both. The string is 
translated to uppercase (that is, lowercase a-z to uppercase A-Z) and then parsed 
into variables according to the rules described in the section on parsing (page 159). 
Use the PARSE PULL instruction if you do not desire uppercase translation. 

The TSO/E implementation of the external data queue is the data stack. REXX execs 
that run in TSO/E and non-TSO/E address spaces can use the data stack. In TSO/E, 
if the data stack is empty, PULL reads from the: 

• Terminal (TSO/E foreground) 
• Input stream, which is SYSTSIN (TSO/E background). 

In non-TSO/E address spaces, if the data stack is empty, PULL reads from the input 
stream as defined by the file name in the INDO field in the module name table (see 
page 357). The system default is SYSTSIN. If SYSTSIN has no data, the PULL 
instruction returns a null string. 

The length of each element you can place onto the data stack can be up to one byte 
less than 16 megabytes. 

Example: 

Say 'Do you want to erase the file? Answer Yes or No:' 
Pull answer . 
if answer='NO' then Say 'The file will not be erased.' 

Here the dummy placeholder Ie." is used on the template to isolate the first word the 
user enters. 

The QUEUED built-in function, described on page 111, returns the number of lines 
currently in the external data queue. 

Chapter 3. Keyword Instructions 71 



----------------------

PUSH 

PUSH 

PUSH stacks the string resulting from the evaluation of expression LIFO (Last In, 
First Out) onto the external data queue. 

If you do not specify expression, a null string is stacked. 

Note: The TSO/E implementation of the external data queue is the data stack. The 
length of an element in the data stack can be up to one byte less than 16 megabytes. 
The data stack contains one buffer initially, but you can create additional buffers 
using the TSO/E REXX command MAKEBUF. 

Example: 

a='Fred' 
push 
push a 2 

/* Puts a null line onto the queue */ 
/* Puts "Fred 2" onto the queue */ 

The QUEUED built-in function, described on page 111, returns the number of lines 
currently in the external data queue. 

72 TSO/E Version 2 MVS/REXX Reference 

c 



( 

QUEUE 

----_ .. _-_ .. _------_._---------_ ... ----.----------.. ----.--------------------------
QUEUE 

-QUEUE·--..-------..--- ----........... 
c==expression~ 

QUEUE appends the string resulting from expression to the tail of the external data 
queue. That is, it is added FIFO (First In, First Out). 

If you do not specify expression, a null string is queued. 

Note: The TSOJE implementation of the external ciata queue is the data stack. The 
length of an element in the data stack can be up to one byte less than 16 megabytes. 
The data stack contains one buffer initially, but you can create additional buffers 
using the TSO/E REXX command MAKEBUF. 

Example: 

a='Toft' 
queue a 2 /* Enqueues "Toft 2" */ 
queue /* Enqueues a null line behind the last */ 

The QUEUED built-in function, described on page 111, returns the number of lines 
currently in the external data queue. 

Chapter 3. Keyword Instructions 73 



RETURN 

RETURN 

RETURN returns control (and possibly a result) from a REXX program or internal 
routine to the point of its invocation. 

If no internal routine (subroutine or function) is active, RETURN and EXIT are 
identical in their effect on the program that is being executed. (See page 56.) 

If a subroutine is being executed (see the CALL instruction), expression (if any) is 
evaluated, control passes back to the caller, and the REXX special variable RESULT ( \ 
is set to the value of expression. If expression is omitted, the special variable 1,,-/ 
RESULT is dropped (becomes uninitialized). The various settings saved at the time 
of the CALL (tracing, addresses, and so forth) are also restored. (See page 48.) 

If a function is being executed, the action taken is identical, except that expression 
must be specified on the RETURN instruction. The result of expression is then used 
in the original expression at the point where the function was invoked. See the 
description of functions on page 85 for more details. 

If a PROCEDURE instruction was executed within the routine (subroutine or internal 
function), all variables of the current generation are dropped (and those of the 
previous generation are exposed) after expression is evaluated and before the 
result is used or assigned to RESULT. 

/ 

c 
74 TSO/E Version 2 MVS/REXX Reference 



SAY 

( 

( 

-SAy·---r------.,.-- ----........... 
c==expreSSion=:J 

SAY 

SAY writes to the output stream the result of evaluating expression. This typically 
displays the result to the user, but the output destination can depend on the 
implementation. The result of expression may be of any length. If you omit 
expression, the null string is written. 

If a REXX exec runs in TSO/E foreground, SAY displays the expression on the 
terminal. The result from the SAY instruction is formatted to the current terminal 
line width (as defined by the TSO/E TERMINAL command) minus 1 character. In 
TSO/E background, SAY writes the expression to the output stream, which is 
SYSTSPRT. 

If an exec runs in a non-TSO/E address space, SAY writes the expression to the 
output stream as defined by the OUTDO field in the module name table (see page 
357). The system default is SYSTSPRT. The ddname may be changed on an 
application basis or on a system basis. 

Example: 

data=Hl0 
Say data 'divided by 4 =>' data/4 
/* Displays: "100 divided by 4 => 25" */ 

Chapter 3. Keyword Instructions 75 



SELECT 

SELECT 

SELECT conditionally executes one of several alternative instructions. 

Each expression after a WHEN is evaluated in turn and must result in 0 or 1. If the 
result is 1, the instruction following the THEN (which may be a complex instruction 
such as IF, DO, or SELECT) is executed and control then passes to the END. If the 
result is 0, control passes to the next WHEN clause. 

If none of the WHEN expressions evaluates to 1, control passes to the instruction(s), 
if any, after OTHERWISE. In this situation, the absence of an OTHERWISE causes an 
error. 

Example: 

balance = balance - check 
Select 

when balance> e then 
say 'Congratulations! You still have' balance 'dollars left.' 

when balance = e then do 
say 'Warning, Balance is now zero! STOP all spending.' 
say "You cut it close this month! Hope you do not have any" 
say "checks left outstanding." 
end 

Otherwise 
say "You have just overdrawn your account." 
say "Your balance now shows" balance "dollars." 
say "Oops! Hope the bank does not close your account." 

end /* Select */ 

Notes: 

1. The instruction can be any assignment, command, or keyword instruction, 
including any of the more complex constructs such as DO, IF, or the SELECT 
instruction itself. 

2. A null clause is not an instruction, so putting an extra semicolon after a WHEN 
clause is not equivalent to putting a dummy instruction. The NOP instruction is 
provided for this purpose. 

3. The symbol THEN cannot be used within expression, because the keyword 
THEN is treated differently, in that it need not start a clause. This allows the 
expression on the WHEN clause to be terminated by the THEN without a; 
(delimiter) being required. 

76· TSO/E Version 2 MVS/REXX Reference 

\ 
j 

c 



SIGNAL. 

( 

"-SIGNAL ~---------------------.----;~ 
I---T-------r--xpress i onl-------------I 

VALUE 

FF~. ERROR FAILURE 
HALT----1 

OVALUE 
SYNTAX 

N1ERROR FAILURE 
HALT 
NOVALUE 
SYNTAX 

NAME--trapna 

SIGNAL 

SIGNAL causes an abnormal change in the flow of control (if you specify /abe/name 
or VALUE expression), or controls the trapping of certain conditions (if you specify 
ON or OFF). 

To control trapping, you specify OFF or ON and the condition you want to trap. OFF 
turns off the specified condition trap. ON turns on the specified condition trap. All 
information on condition traps is contained in Chapter 7, "Conditions and Condition 
Traps" on page 177. 

To change the flow of control, a label name is derived from /abe/name or taken from 
the result of evaluating the expression after VALUE. The /abe/name you specify 
must be a symbol, which is treated literally, or a literal string that is taken as a 
constant. You can omit the subkeyword VALUE if expression does not begin with a 
symbol or literal string (that is, if it starts with a special character, such as an 
operator or parenthesis). All active pending DO, IF, SELECT, and INTERPRET 
instructions in the current routine are then terminated (that is, they cannot be 
resumed). Control then passes to the first label in the program that matches the 
required string, as though the search had started from the top of the program. If 
/abe/name is a symbol, the match is done independently of alphabetic case, but 
otherwise the label must match exactly. 

Example: 

Signal fred; 1* Jump to label "FRED" below */ 

Fred: say 'Hi!' 

Chapter 3. Keyword Instructions 77 



SIGNAL 

Because the search effectively starts at the top of the program, if duplicates are 
present, control always passes to the first occurrence of the label in the program. 

When control reaches the specified label, the line number of the SIGNAL instruction 
is assigned to the special variable SIGL. This can aid debugging because you can 
use SIGL to determine the source of a jump to a label. 

For information about using SIGNAL with the INTERPRET instruction, see Note 1 on 
page 58. 

78 TSO/E Version 2 MVS/REXX Reference 

c 



TRACE 
(' 

( 

( 

,------_._._-- _ .. _._---

---TRACE-r--------y-------,r----r-j ....... 

Or, alternatively: 

All------I 
omnands-----I 
Error-------"'~ 

Fail urp-----! 
Intermediates 
Labe 1 s'-----I 
Normal----~ 

ff------I 
Results------1 
Scan-------.... 

---TRACE-...,-----------,.--- ---.. ~ ...... 
t--:---stri n91------I 
I------symbol------I 
'--T----r-~xpress ion 

TRACE 

TRACE is primarily used for debugging. It controls the tracing action taken (that is, 
how much is displayed to the user) during execution of a REXX program. The 
syntax of TRACE is more concise than that of other REXX instructions. The 
economy of key strokes for this instruction is especially convenient since TRACE is 
usually entered manually during interactive debugging. 

If specified, the number must be a whole number. 

The string or expression evaluates to: 

• A numeric option 
• One of the valid prefix or alphabetic character (word) options described in the 

following 
• Null. 

The symbol is taken as a constant, and is, therefore: 

• A numeric option 
• One of the valid prefix or alphabetic character (word) options described in the 

following. 

The option that follows TRACE or the result of evaluating expression determines the 
tracing action. If expression is used, you can omit the subkeyword VALUE as long 
as expression starts with a special character or operator (so it is not mistaken for a 
symbol or string). 

Chapter 3. Keyword Instructions 79 



------~--- ------------

TRACE 

Alphabetic Character (Word) Options 

Prefix Options 

Although you can enter the word in full, only the capitalized and boldfaced letter is 
needed; all characters following it are ignored. That is why these are referred to as 
alphabetic character options. 

TRACE actions correspond to the alphabetic character options as follows: 

All 

COI1IlIands 

Error 

Failure 

Intermediates 

Labels 

Normal 

Off 

Results 

Scan 

all clauses are traced (that is, displayed) before execution. 

all commands are traced before execution, and any error return 
code is displayed. 

any command resulting in an error or failure is traced after 
execution, together with the return code from the command. 

any command resulting in a negative return code is traced after 
execution. This is the same as the Normal option. 

all clauses are traced before execution. Intermediate results 
during evaluation of expressions and substituted names are also 
traced. 

labels passed during execution are traced. This is especially 
useful with debug mode, when the language processor pauses 
after each label. It is also convenient for the user to make note 
of all subroutine calls and signals. 

(Normal or Negative); any command resulting in a negative 
return code is traced after execution. This Is the default setting. 

nothing is traced, and the special prefix actions (see below) are 
reset to OFF. 

all clauses are traced before execution. Final results (contrast 
with Intermediates, preceding) of evaluating an expression are 
traced. Values assigned during PULL, ARG, and PARSE 
instructions are also displayed. This setllng Is recommended for 
general debugging. 

all remaining clauses in the data are traced without being 
executed. Basic checking (for missing ENDs and so forth) is 
carried out, and the trace is formatted as usual. This is valid 
only if the TRACE S clause itself is not nested in any other 
instruction (including INTERPRET or interactive debug) or in an 
internal routine. 

The prefixes I and? are valid either alone or with one of the alphabetic character 
options. Both prefixes may be specified, in any order, on one TRACE instruction. A 
prefix may be specified more than once, if desired. Each occurrence of a prefix on 
an instruction reverses the action of the previous prefix. The prefix(es) must 
immediately precede the option (no intervening blanks). 

80 TSO/E Version 2 MVS/REXX Reference 

c 



( 

( 

Numeric Options 

Tracing Tips 

c 

~~.-~-- --------_ .... _._------ -_ .. _._---

TRACE 

The prefixes I and? modify tracing and execution as follows: 

? is used to control interactive debug. During normal execution, a TRACE option 
prefixed with? causes interactive debug to be switched on. (See the separate 
section on page 241 for full details of this facility). While interactive debug is on, 
interpretation pauses after most clauses that are traced. For example, the 
instruction TRACE ?E makes the language processor pause for input after 
executing any command that returns an Error (that is, a nonzero return code). 

Any TRACE instructions in the file being traced are ignored. (This is so that you 
are not taken out of interactive debug unexpectedly.) 

When interactive debug is in effect, you can switch it off by issuing a TRACE 
instruction with a prefix 1. Repeated use of the 1 prefix, therefore, switches you 
alternately in and out of interactive debug. Or, you can turn off interactive debug 
at any time by issuing TRACE 0 or TRACE with no options. 

Note: The TSOIE REXX immediate command TS and the EXECUTIL TS 
command can also be used to enter interactive debug. See Chapter 10, coTSO/E 
REXX Commands" on page 199. 

is used to inhibit host command execution. During normal execution, a TRACE 
instruction prefixed with! causes execution of all subsequent host commands to 
be suspended. For example, TRACE !C causes commands to be traced but not 
executed. As each command is bypassed, the REXX special variable RC is set to 
O. This action may be used for debugging potentially destructive programs. 
(Note that this does not inhibit any commands issued manually while in 
interactive debug, which are always executed.) 

You can switch off command inhibition, when it is in effect, by issuing a TRACE 
instruction with a prefix I. Repeated use of the I prefix, therefore, switches you 
alternately in and out of command inhibition mode. Or, you can turn off 
command inhibition at any time by issuing TRACE 0 or TRACE with no options. 

If interactive debug is active and if the option specified is a positive whole number 
(or an expression that evaluates to a positive whole number), that number indicates 
the number of debug pauses to be skipped over. (See separate section on page 241, 
for further information.) However, if the option is a negative whole number (or an 
expression that evaluates to a negative whole number), all tracing, including debug 
pauses, is temporarily inhibited for the specified number of clauses. For example, 
TRACE -100 means that the next 100 clauses that would normally be traced are not, 
in fact, displayed. After that, traCing resumes as before. 

If interactive debug is not active, numeric options are ignored. 

1. When a loop is being traced, the DO clause itself is traced on every iteration of 
the loop. 

2. If no option is specified on a TRACE instruction, or if the result of evaluating the 
expression is nUll, the default tracing actions are restored. The defaults are 
TRACE N , command inhibition (!) off, and interactive debug (?) off. 

3. You can retrieve the trace actions currently in effect by using the TRACE built-in 
function, described on page 118. 

4. If available at the time of execution, comments associated with a traced clause 
are included in the trace, as are comments in a null clause, if you specify 
TRACE A, R, I, or S. 

Chapter 3. Keyword Instructions 81 



TRACE 

5. Commands traced before execution always have the final value of the command 
(that is, the string passed to the environment), and the clause generating it 
produced in the traced output. C 

6. Trace actions are automatically saved across subroutine and function calls. 
Se.e the CALL instruction (page 48) for more details. 

A Typical Example 
One of the most common traces you will use is: 

TRACE ?R 
/* Interactive debug is switched on if it was off, */ 
/* and tracing Results of expressions begins. */ 
Note: Tracing may be switched on, without requiring modification to a program, by 
using the EXECUTIL TS command. Tracing may also be turned on or off 
asynchronously, (that is, while an exec is running) using the TS and TE immediate 
commands from attention mode. See page 244 for the description of these facilities. 

Format of TRACE Output 
Every clause traced is displayed with automatic formatting (indentation) according 
to its logical depth of nesting and so forth. The language processor may replace 
any control codes in the encoding of data (for example, EBCDIC values less than 
'40'x or ASCII values less than '20'x) with a question mark (?) to avoid console 
interference. Results (if requested) are indented an extra two spaces and are 
enclosed in double quotes so that leading and trailing blanks are apparent. 

The first clause traced on any line is preceded by its line number. If the line number " 
is greater than 99999, it is truncated on the left and a prefix of ? indicates the 
truncation. For example, the line number 100354 is shown as ?99354. 

All lines displayed during tracing have a three-character prefix to identify the type of 
data being traced. These can be: 

*-* identifies the source of a single clause, that is, the data actually in the 
program. 

+++ identifies a trace message. This may be the nonzero return code from a 
command, the prompt message when interactive debug is entered, an 
indication of a syntax error when in interactive debug, or the traceback 
clauses after a syntax error in the program (see below). 

>>> identifies the result of an expression (for TRACE R) or the value assigned to 
a variable during parsing, or the value returned from a subroutine call. 

>.> identifies the value "assigned" to a placeholder during parsing (see page 
164). 

The following prefixes are only used if Intermediates (TRACE I) are being traced: 

>C> The data traced is the name of a compound variable, traced after 
substitution and before use, provided that the name had the value of a 
variable substituted into it. 

>F> The data traced is the result of a function call. 

>l> The data traced is a literal (string, uninitialized variable, or constant 
symbol). 

>0> The data traced is the result of an operation on two terms. 

82 TSO/E Version 2 MVS/REXX Reference 

o 



( 

c 

TRACE 

>P> The data traced is the result of a prefix operation. 

>V> The data traced is the contents of a variable. 

Following a syntax error that SIGNAL ON SYNTAX does not trap, the clause in error 
is always traced, as are any CALL or INTERPRET or function invocation clauses 
active at the time of the error. If an attempt to transfer control to a label that could 
not be found caused the error, that label is also traced. The special trace prefix +++ 
identifies these traceback lines. 

Chapter 3. Keyword Instructions 83 

--- ----_._. -- ._ .. _._- -~-.-.--------~~-



----~-------------------

UPPER 

UPPER 

UPPER translates the contents of one or more variables to uppercase. The 
variables are translated in sequence from left to right. 

The variable is a symbol, separated from any other variables by one or more blanks 
or comments. Specify only simple symbols and compound symbols. (See page 22.) 

Using this function is more convenient than repeatedly invoking the TRANSLATE 
built-in function. 

Example: 

a='Hello'; b='there' 
Upper a b 
say a b /* Displays "HELLO THERE" */ 
An error is signalled if a constant symbol or a stem is encountered. Using an 
uninitialized variable is not an error, and has no effect, except that it is trapped if 
the NOVALUE condition (SIGNAL ON NOVALUE) is enabled. 

84 TSO/E Version 2 MVS/REXX Reference 

c; 

c 



Functions 

("' Chapter 4. Functions 

<: 

( 

----
Syntax 

You can include function calls to internal and external routines in an expression 
anywhere that a data term (such as a string) would be valid, using the notation: 

--funct ion-name (-.------.-"'---)--­
LexpressionJ 

function-name is a literal string or a single symbol, which is taken to be a constant. 

There can be up to an implementation-defined maximum number of expressions, 
separated by commas, between the parentheses. In TSO/E, the implementation 
maximum is up to 20 expressions. These expressions are called the arguments to 
the function. Each argument expression may include further function calls. 

Note that the "(" must be adjacent to the name of the function, with no blank in 
between, or the construct is not recognized as a function call. (A blank operator 
would be assumed at this point instead.) Only a comment (which has no effect) can 
appear between the name and the left parenthesis. 

The arguments are evaluated in turn from left to right and they are all then passed 
to the function. This then executes some operation (usually dependent on the 
argument strings passed, though arguments are not mandatory) and eventually 
returns a single character string. This string is then included in the original 
expression just as though the entire function reference had been replaced by the 
name of a variable that contained that data. 

For example, the function SUBSTR is built-in to the language processor (see page 
115) and could be used as: 

NI='abcdefghijk' 
Z1='Part of NI is: 'Substr(NI,2,7} 
/* Sets ZI to 'Part of NI is: bcdefgh' */ 
A function call without any arguments must always include the parentheses; 
otherwise it would not be recognized as a function call. 

date() /* returns the date in the default format dd mon yyyy */ 

© Copyright IBM Corp. 1988. 1991 85 

-"""---- ------ -~-~~--.------------"----



.> .-~ •••• _ .. "------------------------

Functions 

Calls to Functions and Subroutines 
The function calling mechanism is identical to that for subroutines. The only 
difference between functions and subroutines is that functions must return data, 
whereas subroutines !'leed not. The following types of routines can be called as 
functions: 

Internal If the routine name exists as a label in the program, the current 
processing status is saved, so that it is later possible to return to the 
point of invocation to resume execution. Control is then passed to the 
first label in the program that matches the name. As with a routine 
invoked by the CALL instruction, various other status information 
(TRACE and NUMERIC settings and so forth) is saved too. See the CALL 
instruction (page 48) for details about this. 

If you are calling an internal routine as a function, you must specify an 
expression in any RETURN instruction to return from it. This is not 
necessary if it is called only as a subroutine. 

Example: 

/* Recursive internal function execution .•• */ 
arg x 
say x'! =' factorial(x) 
exit 

factorial: procedure /* calculate factorial by.. */ 
arg n /* .. recursive invocation. */ 
if n=O then return 1 
return factorial(n-l) * n 

FACTORIAL is unusual in that it invokes itself (this is known as 
"recursive invocation"). The PROCEDURE instruction ensures that a 
new variable n is created for each invocation. 

Note: When there is a search for a routine, the language processor 
currently scans the statements in the REXX program to locate the 
internal label. During the search, the language processor may 
encounter a syntax error. As a result, a syntax error may be raised on a 
statement different from the original line being processed. £ ~. 

Built-In These functions are always available and are defined in the next section 
of this manual. (See pages 91-124.) 

External You can write or make use of functions that are external to your program 
and to the language processor. An external function can be written in 
any language, including REXX, that supports the system dependent 
interfaces the language processor uses to invoke it. Again, when called 
as a function, it must return data to the caller. For information about 
writing external functions and subroutines and the system dependent 
interfaces, see "External Functions and Subroutines, and Function 
Packages" on page 276. 

Notes: 

1. Calling an external REXX program as a function is similar to calling 
an internal routine. The external routine is, however, an implicit 
PROCEDURE in that all the caller's variables are always hidden and 
the status of internal values (NUMERIC settings and so forth) start 
with their defaults (rather than inheriting those of the caller). 

86 TSO/E Version 2 MVS/REXX Reference 

o 



Search Order 

Functions 

2. Other REXX programs can be called as functions. You can use 
either EXIT or RETURN to leave the invoked REXX program. and in 
either case you must specify an expression. 

The search order for functions is: internal labels take precedence. then built-in 
functions. and finally external functions. 

Internal labels are not used if the function name is given as a string (that is. 
specified in quotation marks); in this case the function must be built-in or external. 
This lets you usurp the name of. say. a built-in function to extend its capabilities. yet 
still be able to invoke the built-in function when needed. 

Example: 

/* Modified DATE to return standard date by default */ 
date: procedure 

arg in 
if in=" then in='Standard' 
return 'DATE'(in) 

Built-In functions have uppercase names. and so the name in the literal string must 
be in uppercase for the search to succeed. as in the example. The same is usually 
true of external functions. 

External functions and subroutines have a system-defined search order. 

1. Check the following function packages defined for the language processor 
environment: 

• User function packages 
• Local function packages 
• System function packages. 

2. If the function was not found. the function search order flag (FUNCSOFL) is 
checked. The FUNCSOFL flag (see page 351) indicates whether load libraries 
are searched before the search for a REXX exec. 

If the flag is off. check the load libraries. If the function is not found. search for a 
REXX exec. 

If the flag is on. search for a REXX exec. If the function is not found. check the 
load libraries. 

Note: By default. the FUNCSOFL flag is off. which means that load libraries are 
searched before the search for a REXX exec. TSO/E uses the following order to 
search the load libraries: 

• Job pack area 

• ISPLUB. If the user issued LlBDEF ISPLLlB ...• the system searches the new 
alternate library defined by UBDEF followed by the ISPLUB library. Note 
that this search is done only under TSO/E when both ISPF and AL TUB are 
active. 

• Task library and all preceding task libraries 

Chapter 4. Functions 87 



Functions 

"" .,"_ .. _---------_._----------

• Step library. If there is no step library, the job library is searched, if one 
exists. 

• Link pack area (LPA) 

• Link library. 

The following describes the steps used to search for a REXX exec for a function 
call: 

a. Search the ddname from which the exec that is calling the function was 
loaded. For example, if the calling exec was loaded from the DO MYAPPL, 
the system searches MYAPPL for the function. 

Note: If the calling exec is running in a non-TSO/E address space and the 
exec (function) being searched for was not found, the search for an exec 
ends. Note that depending on the setting of the FUNCSOFL flag, the load 
libraries mayor may not have already been searched at this pOint. 

b. Search any exec libraries as defined by the TSO/E ALTUS command 

c. Check the setting of the NOLOADDD flag (see page 355). 

• If the NOLOADDD flag is off, search any data sets that are allocated to 
SYSEXEC. (SYSEXEC is the default system file in which you can store 
REXX execs; it is the default ddname specified in the LOADDD field in 
the module name table. See page 357). 

If the function is not found, search the data sets allocated to SYSPROC. 
If the function is not found, the search for an exec ends. Note that 
depending on the setting of the FUNCSOFL flag, the load libraries may 
or may not have already been searched at this point. 

• If the NOLOADDD flag is on, search any data sets that are allocated to 
SYSPROC. If the function is not found, the search for an exec ends. 
Note that depending on the setting of the FUNCSOFL flag, the load 
libraries mayor may not have already been searched at this point. 

Note: With the defaults that TSO/E provides, the NOLOADDD flag is off. 
This means that SYSEXEC is searched before SYSPROC. 

Figure 9 illustrates how a call to an external function or subroutine is handled. 
After the user, local, and system function packages, and optionally, the load 
libraries are searched, if the function or subroutine was not found, the system 
searches for a REXX exec. The search for an exec is shown in part 2 of the figure. 

88 TSO/E Version 2 MVS/REXX Reference 

C: 

/.\ 

"j 

c 



Functions 

START 

~ 
Search: 

I. User packages 
2. Local packages 
3. System packages 

Yes 
Was function found? 

No 
It 

(-
Is FUNCSOFL flag On 

Search for an exec . 
on or off? 

. 

Off 

Search load libraries. If exec was not 
found, search load 
libraries. 

~ Yes Was function found? 

( No 

Search for an exec. 

,It 

( ~ 
Yes 

Was function found? 

~ I Finish I Error 

Figure 9 (Part 1 of 2). External Routine Resolution and Execution 

c 
Chapter 4. Functions 89 



Functions 

~ 
SEARCH FOR AN EXEC 

~ 
Search DD from which 
calling exec was loaded. 

--

If exec was not found, 
is the calling exec 
executing in MVS? 

No 
,~ 

Search any exec libraries 
as defined by AL TLIB 
(for example, 
SYSUPROC). 

, 
If exec was not 
found, is NOLOADDD 
flag on or om 

Off 

Search library defined 
in LOADDD field (for 
example, SYSEXEC). 

I 

If exec was not found, 
search SYSPROC. 

Yes Search for exec ends. 
Exec not found. 

On 

I Search SYSPROC. I 

Figure 9 (Part 2 of 2). External Routine Resolution and Execution 

Errors During Execution 
If an external or built-in function detects an error of any kind, the language 
processor is informed, and a syntax error results. Execution of the clause that 
included the function call is. therefore, terminated. Similarly, if an external function 
fails to return data correctly, the language processor detects this and reports it as 
an error. 

If a syntax error occurs during the execution of an internal function, it can be 
trapped (using SIGNAL ON SYNTAX) and recovery may then be possible. If the 
error is not trapped, the program is terminated. 

90 TSO/E Version 2 MVS/REXX Reference 

o 



(' 

( 

( 

---- --- .. ----"-- --. -.---.-.---~-- .. ---.- _. ---_._-_._-----------------

Built-in Functions 
REXX provides a rich set of built-in functions. These include character 
manipulation, conversion, and information functions. 

Functions 

There are six built-in functions that only TSO/E and VM provide; EXTERNALS, FIND, 
INDEX, JUSTIFY, LlNESIZE, and USERID. If you plan to write REXX programs that 
run on other SAA environments, note that these functions are not available to all the 
environments. In this section, these six built-in functions are identified as non-SAA 
functions. 

In addition to the built-in functions, TSO/E also provides TSO/E external functions 
that you can use to perform different tasks. These functions are described in 
"TSO/E External Functions" on page 125. 

General notes on the built-in functions: 

• The parentheses in a function are always needed, even if no arguments are 
required. The first parenthesis must follow the name of the function with no 
space in between. 

• The built-in functions work internally with NUMERIC DIGITS 9 and NUMERIC 
FUZZ 0 and are unaffected by changes to the NUMERIC settings, except where 
stated. 

• Any argument named as a string may be a null string. 

• If an argument specifies a length, it must be a nonnegative whole number. If it 
specifies a start character or word in a string, it must be a positive whole 
number, unless otherwise stated. 

• Where the last argument is optional, you can always include a comma to 
indicate you have omitted it; for example, OATATYPE(l,), like OATATYPE(l) , would 
return NUM. 

• If you specify a pad character, it must be exactly one character long. 

• If a function has an option you can select by specifying the first character of a 
string, that character can be in upper- or lowercase. 

• Conversion between characters and hexadecimal involves the machine 
representation of character strings, and hence returns appropriately different 
results for ASCII and EBCDIC machines. The differences in output that result 
from EBCDIC-machine implementations are indicated, where appropriate, in the 
examples following. 

• A number of the functions described in this chapter support the Double-Byte 
Character Set (DBCS). A complete list and description of these functions is 
given in Appendix B, "Double-Byte Character Set (DBCS) Support" on 
page 485. 

Chapter 4. Functions 91 



Functions 

ABBREV (Abbreviation) 

returns 1 if info is equal to the leading characters of information and the length of 
info is not less than 1 ength. Returns 0 if either of these conditions is not met. 

If you specify length, it must be a nonnegative whole number. The default for length 
is the number of characters in info. 

Here are some examples: 

ABBREV('Print','Pri') -> 1 
ABBREV('PRINT','Pri') -> a 
ABBREV('PRINT','PRI',4) -> a 
ABBREV('PRINT','PRY') -> a 
ABBREV('PRINT',' ') -> 1 
ABBREV('PRINT',' ',1) -> 0 

Note: A null string always matches if a length of 0 (or the default) is used. This 
allows a default keyword to be selected automatically if desired; for example: 

say 'Enter option:'; pull option. 
select /* keyword1 is to be the default */ 

when abbrev('keyword1',option) then 
when abbrev('keyword2',option) then ••• 

otherwise nop; 
end; 

ABS (Absolute Value) 

returns the absolute value of number. The result has no sign and is formatted 
according to the current NUMERIC settings. 

Here are some examples: 

ABS('12.3') 
ABS(' -a.3a7') 

92 TSO/E Version 2 MVS/REXX Reference 

-> 
-> 

12.3 
0.307 

/-" 

c 



ADDRESS 

ARG (Argument) 

( 

=---------_.».-----------_. 

- ------_ ... -.~.~---~ 

Functions 

~ADDRESS()-----"""".""" 

returns the name of the environment to which commands are currently being 
submitted. Trailing blanks are removed from the result. 

Here are some examples: 

ADDRESS 0 -> 'TSO' /* default under TSO/E */ 
ADDRESS() -> 'MVS' /* default under MVS */ 

~ARG( 
Ln 

L.oPtlon=oJ 

I ) ... 

returns an argument string, or information about the argument strings to a program 
or internal routine. 

If you do not specify n, the number of arguments passed to the program or internal 
routine is returned. 

If you specify only n, the nth argument string is returned. If the argument string 
does not exist, the null string is returned. n must be a positive whole number. 

If you specify option, ARG tests for the existence of the nth argument string. The 
following are valid options. (Only the capitalized and boldfaced letter is needed; a" 
characters following it are ignored.) 

Exists returns 1 if the nth argument exists; that is, if it was explicitly specified 
when the routine was called. Returns 0 otherwise. 

Omi tted returns 1 if the nth argument was omitted; that is, if it was not explicitly 
specified when the routine was called. Returns 0 otherwise. 

Chapter 4. Functions 93 



Functions 

Here are some examples: 

/* following "Call name;" (no arguments) */ 
ARGO -> e 
ARG(1) -> " 
ARG(2) -> " 
ARG(1, 'e') -> e 
ARG(1, '0') -> 1 

/* following "Call name 'a',,'b';" */ 
ARGO -> 3 
ARG(1) -> 'a' 
ARG(2) -> " 
ARG(3) -> 'b' 
ARG(n) -> " /* for n>=4 */ 
ARG(1, 'e') -> 1 
ARG(2,' E') -> e 
ARG(2,'O') -> 1 
ARG(3, '0') -> e 
ARG(4, '0') -> 1 

Notes: 

1. The number of argument strings is the largest number n for which ARG(n, 'e'} 
would return 1. That is, it is the position of the last explicitly specified argument 
string. 

2. Programs called as commands can have only 0 or 1 argument strings. The 
program has 0 argument strings if it is called with the name only and has 1 
argument string if anything else (including blanks) is included with the 
command. 

3. You can retrieve and directly parse the argument strings to a program or 
internal routine with the ARG or PARSE ARG instructions. (See pages 46,66, 
and 159.) 

BIT AND (Bit by Bit AND) 

returns a string composed of the two input strings logically ANDed together, bit by 
bit. The length of the result is the length of the longer of the two strings. If no pad 
character is provided, the AND operation terminates when the shorter of the two 
strings is exhausted, and the unprocessed portion of the longer string is appended 
to the partial result. If pad is provided, it is used to extend the shorter of the two 
strings on the right, before carrying out the logical operation. The default for 
stri ng2 is the zero length (null) string. 

Here are some examples: 

BITANO('12'x} -> '12'x 
BITANO('73'x,'27'x} -> '23'x 
BITANO('13'x,'5555'x} -> '1155'x 
BITANO('13'x,'5555'x,'74'x} -> '1154'x 
BITANO('pQrS',,'BF'x) -> 'pqrs' /* EBCDIC */ 

94 TSO/E Version 2 MVS/REXX Reference 

f\ 
~) 

//'---""", 

\" ,/ 



-I 

( 

( 

Functions 

BITOR (Bit by Bit OR) 

--BITOR(string1 [ I) 
, Lstring2] [,pad] 

It .. 

returns a string composed of the two input strings logically ORed together, bit by bit. 
The length of the result is the length of the longer of the two strings. If no pad 
character is provided, the OR operation terminates when the shorter of the two 
strings is exhausted, and the unprocessed portion of the longer string is appended 
to the partial result. If pad is provided, it is used to extend the shorter of the two 
strings on the right, before carrying out the logical operation. The default for 
stri ng2 is the zero length (null) string. 

Here are some examples: 

BITOR( '12' x) 
BITOR('15'x,'24'x) 
BITOR('15'x,'2456'x) 
BITOR('15'x,'2456'x,'F9'x) 
BITOR('llll'x,,'4D'x) 
BITOR('Fred',,'49'x) 

BITXOR (Bit by Bit Exch.asive OR) 

-> 
-> 
-> 
-> 
-> 
-> 

'12'x 
'35'x 
'3556'x 
'35F6'x 
'5D5D'x 
'FRED' 

--BITXOR (s tri ngl [ -r-----r"'"T-....,----.r-' 

/* EBCDIC */ 

returns a string composed of the two input strings logically eXclusive ORed 
together, bit by bit. The length of the result is the length of the longer of the two 
strings. If no pad character is provided, the XOR operation terminates when the 
shorter of the two strings is exhausted. and the unprocessed portion of the longer 
string is appended to the partial result. If pad is provided, it is used to extend the 
shorter of the two strings on the right, before carrying out the logical operation. The 
default for string2 is the zero length (null) string. 

Here are some examples: 

BITXOR( '12'x) -> '12'x 
BITXOR('12'x,'22'x) -> '39'x 
BITXOR('1211'x,'22'x) -> '3911'x 
BITXOR('C711'x, '222222'x, , , ) -> 'E53362'x /* EBCDIC */ 
BITXOR('l111'x,'444444'x) -> '555544'x 
BITXOR('l111'x,'444444'x,'49'x) -> '555594'x 
BITXOR('llll'x,,'4D'x) -> '5C5C'x 

Chapter 4. Functions 95 

~-------.-.-.,- ... - .. ---.-.----



Functions 

CENTER/CENTRE 

COMPARE 

CONDITION 

returns a string of length length with string centered in it, with pad characters 
added as necessary to make up length. The default pad character is blank. If the 
string is longer than 1 ength, it is truncated at both ends to fit. If an odd number of 
characters are truncated or added, the right-hand end loses or gains one more 
character than the left-hand end. 

Here are some examples: 

CENTER{abc,7} -> 
, ABC , 

CENTER{abc,8,'-'} -> 
, --ABC--- , 

CENTRE{'The blue sky',8} -> 'e blue s' 
CENTRE{'The blue sky',7} -> 'e blue ' 

Note: This function can be called either CENTRE or CENTER, which avoids errors 
due to the difference between the British and American spellings. 

returns 0 if the strings, stringl and string2, are identical. Otherwise, returns the 
position of the first character that does not match. The shorter string is padded on 
the right with pad if necessary. The default pad character is a blank. 

Here are some examples: 

COMPARE{'abc','abc'} -> e 
COMPARE{'abc','ak'} -> 2 
COMPARE { 'ab ',' ab'} -> e 
COMPARE{'ab ','ab',' , } -> e 
COMPARE{'ab ','ab','x'} -> 3 
COMPARE{'ab-- ','ab','-'} -> 5 

returns the condition information associated with the current trapped condition. 
(See Chapter 7, "Conditions and Condition Traps" on page 177 for a description of 
condition traps.) You can request four pieces of information: 

• The name of the current trapped condition 
• Any descriptive string associated with that condition 

96 TSO/E Version 2 MVS/REXX Reference 

f" 

o 



(' 

( 

( 
COPIES 

(/ 

Functions 

• The instruction processed as a result of the condition trap (CALL or SIGNAL) 
• The status of the trapped condition. 

Request this information by using the following options. (Only the capitalized and 
boldfaced letter is needed; all characters following it are ignored.) 

Cond it i on name 

Description 

Instruction 

Status 

returns the name of the current trapped condition. 

returns any descriptive string associated with the current 
trapped condition. See page 180 for the list of possible strings. 
If no description is available, returns a null string. 

returns either CALL or SIGNAL, the keyword for the instruction 
processed when the current condition was trapped. This is the 
default if you omit option. 

returns the status of the current trapped condition. This can 
change during processing, and is either: 

ON - the condition is enabled 

OFF - the condition is disabled 

DELAY - any new occurrence of the condition Is delayed. 

If no condition has been trapped (that is, there is no current trapped condition), then 
the CONDITION function returns a null string in all four cases. 

Here are some examples: 

CONDITION(} -> 'CALL' /* perhaps */ 
CONDITION (' C') -> 'FAILURE' 
CONDITION ( 'I') -> 'CALL' 
CONDITION (' D') -> 'FailureTest' 
CONDITION ( 'S') -> 'OFF' /* perhaps */ 

Note: The CONDITION function returns condition information that is saved and 
restored across subroutine calls (including those a CALL ON condition trap causes). 
Therefore, once a subroutine invoked with CALL ON trapname has returned, the 
current trapped condition reverts to the condition before the CALL took place. 
CONDITION returns the values it returned before the condition was trapped. 

-COP I ES (stri ng ,I)fs-'W.;..,: - ........... 

returns n concatenated copies of string. n must be a nonnegative whole number. 

Here are some examples: 

COPIES(' abc' ,3) 
COPIES('abc',e) 

-> 
-> 

'abcabcabc' 
" 

Chapter 4. Functions 97 



------------------------------

Functions 

C2D (Character to Decimal) 

returns the decimal value of the binary representation of string. If the result cannot 
be expressed as a whole number, an error results. That is, the result must not have 
more digits than the current setting of NUMERIC DIGITS. If you specify n, it is the 
length of the returned result. If you do not specify n, string is processed as an 
unsigned binary number. 

If string is null, returns '0'. 

Here are some examples: 

C2D( '99'X) 
C2D('81'X) 
C2D(' FF81 , X) 
C2D( 'a') 

-> 
-> 
-> 
-> 

9 
129 

65499 
129 /* EBCDIC */ 

If you specify n, the string is taken as a signed number expressed in n characters. 
The number is positive if the leftmost bit is off, and negative, in two's complement 
notation, if the leftmost bit is on. The string is padded on the left with 'OO'x 
characters (note, not "sign-extended"), or truncated on the left to n characters. If n 
is 0, C2D always returns O. 

Here are some examples: 

C2D( '81'X,1) -> -127 
C2D( '81'X,2) -> 129 
C2D(' FF81' X,2) -> -127 
C2D('FF81'X,l) -> -127 
C2D(' FF7F' X,I) -> 127 
C2D(' F981 , X,2) -> -3967 
C2D(' Fe81'X,l) -> -127 
C2D(' 9931' X,9) -> 9 

/' '\. 

'\ 
Implementation maximum: The input string cannot have more than 250 characters ''''-..j 

that are significant in forming the final result. Leading sign characters ('OO'x and 
'FF'x) do not count towards this total. 

C2X (Character to Hexadecimal) 

returns a string, in character format, that represents string converted to 
hexadecimal. The returned string contains twice as many bytes as the input string. 
For example, on an EBCDIC system, C2X(1) returns 'Fl' because the EBCDIC 
representation of the character 1 is 'F1 'X. 

The string returned uses uppercase alphabetics for the values A-F and does not 
include blanks. If string is null, returns a null string. The string can be of any 
length. 

98 TSO/E Version 2 MVS/REXX Reference 

--- -- -------- ---------

c 



('\ 

DATATYPE 

( 

( 

( 

'I 
, 

functions 

Here are some examples: 

C2X('72s') -> 'F7F2A2' /* 'C6F7C6F2C1F2'X in EBCDIC */ 
/* 'F9F1F2F3'X in EBCDIC */ C2X('6123'X) -> '6123' 

I+-OATATYPE(string L e=J) 
. .typ 

returns NUM if you specify only string and if string is a valid REXX number (any 
format) that can be added to 0 without error; returns CHAR if string is not valid. 

If you specify type, returns 1 if string matches the type; otherwise returns O. If 
string is null, returns 0 (except when type is X, which returns 1). The following are 
valid types. (Only the capitalized and boldfaced letter is needed; all characters 
following it are ignored.) 

Alphanumeric 

Binary 

C 

Dbcs 

Lowercase 

Mixed case 

Number 

Symbol 

Uppercase 

Whole number 

heXadecimal 

returns 1 if string contains only characters from the ranges a-z, 
A-Z, and 0-9. 

(Binary or Bits); returns 1 if string contains only the characters 0 
or 1 or both. 

returns 1 if string is a mixed SBCS/DBCS string. 

returns 1 if stri ng is a pure DBCS string enclosed by SO and SI 
bytes. 

returns 1 if string contains only characters from the range a-z. 

returns 1 if string contains only characters from the ranges a-z and 
A-Z. 

returns 1 if stri ng is a valid REXX number. 

returns 1 if stri ng contains only characters that are valid in REXX 
symbols (see page 11). Note that both uppercase and lowercase 
alphabetics are permitted. 

returns 1 if stri ng contains only characters from the range A-Z. 

returns 1 if string is a REXX whole number under the current 
setting of NUMERIC DIGITS. 

returns 1 if string contains only characters from the ranges a-f, 
A-F, 0-9, and blank (as long as blanks appear only between pairs of 
hexadecimal characters). Also returns 1 if string is a null string. 

Chapter 4. Functions 99 



Functions 

DATE 

Here are some examples: 

DATATYPE(' 12 '} -> 'NUM' 
DATATYPE(' ') -> 'CHAR' 
DATATYPE('123*'} -> 'CHAR' 
DATATYPE('12.3'.'N'} -> 1 
DATATYPE('12.3'.'W'} -> a 
DATATYPE('Fred','M'} -> 1 
DATATYPE(".'M') -> a 
DATATYPE('Fred','l'} -> a 
DATATYPE('?2aK'.'s') -> 1 
DATATYPE('BCd3'.'X'} -> 1 
DATATYPE('BC d3'.'X'} -> 1 

Note: The DATATYPE function tests the meaning or type of characters in a string, 
independent of the encoding of those characters (for example, ASCII or EBCDIC and 
so forth). 

returns, by default, the local date in the format: dd mon yyyy (for example, 27 Aug 
1988), with no leading zero or blank on the day. For mon, the first three characters of 
the English name of the month are used. 

You can use the following options to obtain specific formats. (Only the capitalized 
and boldfaced letter is needed; all characters following it are ignored.) 

Base (Base or Basedate); returns the number of complete days (that is, not 
including the current day) since and including the base date, January 1, 
0001, in the format: dddddd (no leading zeros). The expression 
DATE( 'B'}j /7 returns a number in the range 0-6, where 0 is Monday and 
6 is Sunday. 

Thus, this function can be used to determine the day of the week 
independent of the national language in which you are working. 

Note: The origin of January 1, 0001 is based on the Gregorian calendar. 
Though this calendar did not exist prior to 1582, Base is calculated as if it 
did: 365 days per year, an extra day every four years except century 
years, and leap centuries if the century is divisible by 400. It does not 
take into account any errors in the calendar system that created the 
Gregorian calendar originally. 

Century returns the number of days, including the current day, since January 1 of 
the last year that is a multiple of 100 in the format: ddddd (no leading 
zeros). Example: if a call is made to DATE(C) on June 30, 1988, the 
number of days from January 1, 1900 to June 30, 1988 is returned. 

Days returns the number of days, including the current day, so far in this year 
in the format: ddd (no leading zeros) 

European returns date in the format: dd/mmlyy 

Julian returns date in the format: yyddd 

100 TSO/E Version 2 MVS/REXX Reference 

- -----~--- ... ~-----

I 

I 
I 

C~ ,,/ 

/--"-

c 



( --
.. ' 

(-

( 

-, 

Functions 

Month returns full English name of the current month, for example, August 

Normal returns date in the format: dd man yyyy. This is the default. 

Ordered returns date in the format: yy/mm/dd (suitable for sorting, and so forth) 

Standard (Standard or Sorted); returns date in the format: yyyymmdd (suitable for 
sorting, and so forth) 

Usa returns date in the format: mm/dd/yy 

Weekday returns the English name for the day of the week, in mixed case. For 
example, Tuesday. 

Here are some examples: 

DATE 0 -> '27 Aug 1988' /* perhaps */ 
DATE ( 'B') -> 725975 
DATE ( '0') -> 249 
DATE ( 'E') -> '27/98/88' 
DATE( 'M') -> 'August' 
DATE('N'} -> '27 Aug 1988' 
DATE ( 'O'} -> '88/98/27' 
DATE('S'} -> '19889827' 
DATE('U'} -> '98/27/88' 
DATE ( 'W'} -> 'Saturday' 

Note: The first call to DATE or TIME in one clause causes a time stamp to be made 
that is then used for all calls to these functions in that clause. Hence, multiple calls 
to any of the DATE and/or TIME functions in a single expression or clause are 
guaranteed to be consistent with each other. 

Dacs (Double-ayte Character Set) 

------- -----------

The following are all part of DBCS processing functions. See page 485. 

OBAOJUST 
OBBRACKET 
OBCENTER 
OBCJUSTIFY 
OBLEFT 

OBRIGHT 
OBRLEFT 
OBRRIGHT 
OBTOOBCS 
OBTOSBCS 

OBUNBRACKET 
OBVALIOATE 
OBWIDTH 

Chapter 4. Functions 101 



--~,----~,-,--,-"---------~-,, --------~-,~", --,~,,---,--,-,--,---~, 

Functions 

DELSTR (Delete String) 

returns string after deleting length characters beginning at the nth character. If you 
omit length, it defaults to the remaining characters in string. If n is greater than the 
length of string, returns string unchanged. n must be a positive whole number. 

Here are some examples: 

DElSTR('abcd',3} 
DELSTR('abcde',3,2) 
DELSTR('abcde',6) 

DELWORD (Delete Word) 

-> 
-> 
-> 

'ab' 
'abe' 
'abcde' 

{.. .,.' ••• h 

~:,-.----OELWORO{string,n Coo]) 
, ,,' ',l'en'gth ' , 

''::-,' 

.... 

returns string after deleting length blank-delimited words, beginning at the nth 
word. If you omit length, it defaults to the remaining words in string. n must be a 
positive whole number. If n is greater than the number of words in string, returns 

.rC"\, 

./ 

string unchanged. The string deleted includes any blanks following the final word "'-_j 
involved. 

Here are some examples: 

DELWORD('Now is the time' ,2;2} -> 'Now time' 
DElWORD('Now is the time ',3} -> 'Now is ' 
DELWORD('Now is the time',S) -> 'Now is the time' 

DIGITS .I'f\ "j 

returns the current setting of NUMERIC DIGITS. 

Here is an example: 

DIGITSO -> 9 /* by default * / 

c 
102 TSO/E Version 2 MVS/REXX Reference 



(~ 

---- --.~.---------.. -~-----

Functions 

D2C (Decimal to Character) 

I oo---D2C (whol enoober 

returns a string, in character format, that represents wholenumber, a decimal 
number, converted to binary. If you specify n, it is the length of the final result in 
characters. If you specify n, after conversion, the input string is sign-extended to the 
required length. If the number is too big to fit into n characters, then the result is 
truncated on the left. 

If you omit n, wholenumber must be a nonnegative number and the result length is as 
needed; therefore, the returned result has no leading 'OO'x characters. 

Here are some examples: 

D2C(9) -> 
, , 

1* '89'x is unprintable in EBCDIC */ 
D2C(129) -> 'a' /* '81'x is an EBCDIC 'a' */ 
D2C(129,l) -> 'a' /* '81'x is an EBCDIC 'a' */ 
D2C(129,2) -> ' a' /* '8881'x is EBCDIC' a' */ 
D2C(257,1) -> ' , /* 'al'x is unprintable in EBCDIC */ 
D2C(-127,l) -> 'a' /* '81'x is EBCDIC 'a' */ 
D2C(-127,2) -> ' a' /* 'FF'x is unprintable EBCDIC; */ 

/* '81'x is EBCDIC 'a' */ 
D2C(-1.4) -> ' /* 'FFFFFFFF'x is unprintable in EBCDIC */ 
D2C(12,O) -> " /* " is a null string */ 

Implementation maximum: The output string may not have more than 250 
significant characters, though a longer result is possible if it has additional leading 
sign characters ('OO'x and 'FF'x). 

D2X (Decimal to Hexadecimal) 

returns a string, in character format, that represents wholenumber, a decimal 
number, converted to hexadecimal. The returned string uses uppercase alphabetics 
for the values A-F and does not include blanks. 

If you specify n, it is the length of the final result in characters. If you specify n, after 
conversion the input string is sign-extended to the required length. If the number is 
too big to fit into n characters, it is truncated on the left. 

If you omit n, wholenumber must be a nonnegative number.and the returned result 
has no leading '0' characters. 

Chapter 4. Functions 103 

.~------ .. -.-.... --.----



( 

Functions 

ERRORTEXT 

EXTERNALS 
(Non-BAA Function) 

Here are some examples: 

D2X(9) -> '9' 
D2X(129) -> 'Sl' 
D2X(129,1} -> '1' 
D2X(129,2) -> 'Sl' 
D2X{129,4} -> '99Sl' 
D2X{257,2) -> '91' 
D2X{-127,2) -> 'Sl' 
D2X(-127,4} -> ' FFS1' 
D2X(12,9) -> " 

Implementation maximum: The output string may not have more than 500 
significant hexadecimal characters, though a longer result is possible if it has 
additional leading sign characters (0 and F). 

returns the error message associated with error number n. The n must be in the 
range 0-99, and any other value is an error. Returns the null string if n is in the 
allowed range but is not a defined REXX error number. See Appendix A, "Error 
Numbers and Messages" on page 475 for a complete description of error numbers 
and messages. 

Here are some examples: 

ERRORTEXT (16 ) 
ERRORTEXT{ 69) 

-> 
-> 

'Label not found' 
" 

EXTERNALS is a non-SAA built-in function provided only by TSO/E and VM. 

always returns a O. For example: 

EXTERNALS{) -> 9 /* Always */ 

In VM, the EXTERNALS function returns the number of elements in the terminal 
input buffer (system external event queue). In TSO/E, there is no equivalent buffer. 
Therefore, in the TSO/E implementation of REXX, the EXTERNALS function always 
returns a O. 

104 TSO/E Version 2 MVS/REXX Reference 

!\ 
\._j 

,/ 

/ "'. 
< .. _-_J 

C: 



FIND 
(Non-SAA Function) 

FORM 

( 

FORMAT 

(~ 

Functions 

FIND is a non-SAA built-in function provided only by TSO/E and VM. 

WORDPOS is the preferred built-in function for this type of word search. See page 
122 for a complete description. 

I -FIND(string.phrase)------t· ....... 

returns the word number of the first word of phrase found in string or returns 0 If 
phrase is not found or if there are no words in phrase. The phrase is a sequence of 
blank-delimited words. Multiple blanks between words in phrase or string are 
treated as a single blank for the comparison. 

Here are some examples: 

FIND('now is the time'.'is the time') 
FIND('now is the time','is the') 
FIND('now is the time','is time ') 

-FORM()'. ..... -' 
:'; .>~, 

-> 
-> 
-> 

returns the current setting of NUMERIC FORM. 

Here is an example: 

FORM 0 -> 'SCIENTIFIC' /* by default */ 

2 
2 
<:I 

~f9lif.,A.'f(number--o--...,;.;;...,~~""-.....,-.....,-----'--...,;.;;...,-'--~~.....,--'T"'"lL.....,..,"""y; 
-.~' ":. 

returns number, rounded and formatted. 

The number is first rounded and formatted to standard REXX rules, just as though the 
operation "number+O" had been carried out. If you specify only number, the result 
is precisely that of this operation. If you specify any other options, the number is 
formatted as follows. 

The before and after options describe how many characters are used for the 
integer part and decimal part of the result, respectively. If you omit either or both of 
these, the number of characters used for that part is as needed. 

Chapter 4. Functions 105 



Functions 

FUZZ 

If before is not large enough to contain the integer part of the number (plus the sign 
for a negative number), an error results. If before is too large, the number is 
padded on the left with blanks. If after is not the same size as the decimal part of 
the number, the number is rounded (or extended with zeros) to fit. Specifying 0 
causes the number to be rounded to an integer. 

Here are some examples: 

FORMAT( '3' ,4} -> 3' 
FORMAT('l.73',4,9} -> 2' 
FORMAT('l.73',4,3} -> 1.739' 
FORMAT('-.76',4,1} -> -9.8' 
FORMAT('3.93',4} -> 3.93' 
FORMAT(' - 12.73',,4} -> '-12.7399' 
FORMATe' - 12.73'} -> '-12.73' 
FORMAT( 'a.99a'} -> 'a' 

The first three arguments are as described above. In addition, expp and expt 
control the exponent part of the result: expp sets the number of places for the 
exponent part; the default is to use as many as needed. The expt sets the trigger 
point for use of exponential notation. If the number of places needed for the integer 
part exceeds expt, exponential notation is used. Likewise, exponential notation is 
used if the number of places needed for the decimal part exceeds twice expt. The 
default is the current setting of NUMERIC DIGITS. If expt is 0, exponential notation 
is always used unless the exponent would be O. If expp is 0, no exponent is 
supplied, and the number is expressed in "simple" form with added zeros as 
necessary (this overrides a 0 value of expt if necessary). Otherwise, if expp is not 
large enough to contain the exponent, an error results. If the exponent would be 0 
in this case (a nonzero expp), then expp + 2 blanks are supplied for the exponent part 
of the result. 

Here are some examples: 

FORMAT ( '12345. 73' .,,2,2) 
FORMAT('12345.73',,3,.a) 
FORMAT( '1.234573' "3,,a) 
FORMAT('12345.}3' ",3,6) 
FORMAT('1234567e5',,3,a} 

-> 
-> 
-> 
-> 
-> 

'1.234573E+a4' 
'l.235E+4' 
'1.235' 
'12345.73' 
'1234567aaaaa.99a' 

returns the current setting of NUMERIC FUZZ. 

Here is an example: 

FUZZ 0 -> a /* by default */ 

106 TSO/E Version 2 MVS/REXX Reference 

/$ '\ 

<,--... / 

c 



GETMSG 

INDEX 
(Non-BAA Function) 

( 
INSERT 

( 

c 

----------- ---

Functions 

GETMSG is a TSO/E external function. See page 126. 

INDEX is a non-SAA built-in function provided only by TSO/E and VM. 

P~S is the preferred built-in function for obtaining the position of one string in 
another. Refer to page 111 for a complete description. 

I -. INDEX{haystack,needle L.· -.J.) . 
• start 

returns the character position of one string, needle, in another, haystack, or returns 
o if the string needle is not found. By default the search starts at the first character 
of haystack (start is of the value 1). You can override this by specifying a different 
start point, which must be a positive whole number. 

Here are some examples: 

INDEX{'abcdef','cd') -> 3 
INOEX{'abcdef','xd') -> a 
INOEX{'abcdef','bc',3) -> a 
INOEX('abcabc','bc',3) -> 5 
INOEX{'abcabc','bc',6) -> a 

inserts the string new, padded to length 1 ength, into the string target after the nth 
character. If specified, n must be a nonnegative whole number. If n is greater than 
the length of the target string, padding is added before the string new also. The 
default pad character is a blank. The default value for n is 0, which means insert 
before the beginning of the string. 

Here are some examples: 

INSERT{' ','abcdef'.3) 
INSERT('123','abc',5,6) 
INSERT{'123','abc',5,6,'+') 
INSERT{'123','abc') 
INSERT{'123'.'abc' •• 5.'-') 

-> 
-> 
-> 
-> 
-> 

'abc def' 
'abc 123 
'abc++123+++' 
'123abc' 
'123--abc' 

Chapter 4. Functions 107 



Functions 

JUSTIFY 
(Non-BAA Function) 

JUSTIFY is a non-SAA built-in function provided only by TSO/E and VM. 

returns stri ng formatted by adding pad characters between blank-delimited words 
to justify to both margins. This is done to width length (length must be 
nonnegative). The default pad character is a blank. 

The string is first normalized as though SPACE(string} had been executed (that is, 
multiple blanks are converted to single blanks, and leading and trailing blanks are 
removed). If length is less than the width of the normalized string, the string is then 
truncated on the right and any trailing blank is removed. Extra pad characters are 
then added evenly from left to right to provide the required length, and the blanks 
between words are replaced with the pad character. 

Here are some examples: 

JUSTIFY('The blue sky',14} 
JUSTIFY (' The blue sky' ,8) 
JUSTIFY('The blue sky',9} 
JUSTIFY('The blue sky' ,9,'+'} 

-> 
-> 
-> 
-> 

'The blue sky' 
'The blue' 
'The blue' 
'The++blue' 

LASTPOS (Last Position) 

returns the position of the last occurrence of one string, needle, in another, 
haystack. (See also the P~S function.) Returns 0 if needle is the null string or is not 
found. By default the search starts at the last character of haystack and scans 
backwards. You can override this by specifying start, the pOint at which the 
backwards scan starts. start must be a positive whole number and defaults to 
LENGTH(haystack} if larger than that value or omitted. 

Here are some examples: 

LASTPOS(' ','abc def ghi'} 
LASTPOS(' ','abcdefghi'} 
LASTPOS('xy','efgxyz'} 
LASTPOS(' ','abc def ghi',7) 

108 TSO/E Version 2 MVS/REXX Reference 

~> 

-> 
-> 
-> 

8 
e 
4 
4 

1= 
I 

o 

o 



( 

( 

( 

c 

LEFT 

LENGTH 

LlNESIZE 
(Non·SAA Function) 

......--LEFT(string.length L ..... OOJ ) 
• pad 

... 

Functions 

returns a string of length length, containing the leftmost length characters of string. 
The string returned is padded with pad characters (or truncated) on the right as 
needed. The default pad character is a blank. length must be nonnegative. The 
LEFT function is exactly equivalent to: 

--SUBSTR(string.l.length L =oJ) 
.-pad 

Here are some examples: 

LEFT( 'abc d' .8) -> 

LEFT('abc d'.8,'.') -> 
LEFT( 'abc def' .7) -> 

returns the length of string. 

Here are some examples: 

LENGTH('abcdefgh') -> 8 
LENGTH('abc defg') -> 8 
LENGTH ( , ') -> e 

.. 

'abc d 
'abc d ••• ' 
'abc de' 

" ", 

LlNESIZE is a non-SAA built-in function provided only by TSO/E and VM. 

returns the current terminal line width minus 1 (the point at which the language 
processor breaks lines displayed using the SAY instruction). 

If the REXX exec is running in TSO/E background (that is, on the JCL EXEC 
statement PGM = IKJEFT01), LlNESIZE always returns the value 131. 

If the exec is running in a non-TSO/E address space, LlNESIZE returns the logical 
record length of the OUTDO file (the default file is SYSTSPRT). The OUTDO file is 
specified in the module name table (see page 357). 

Chapter 4. Functions 109 



Functions 

LlSTDSI 

MAX (Maximum) 

MIN (Minimum) 

MSG 

OUTTRAP 

LlSTDSI is a TSO/E external function. See page 132. 

returns the largest number from the list specified, formatted according to the current 
setting of NUMERIC DIGITS. You can specify up to 20 numbers, and can nest calls to 
MAX if more arguments are needed. 

Here are some examples: i: 

MAX{12,6,7,9} 
MAX{17.3,19,17.03} 
MAX{-7,-3.-4.3} 
MAX{I,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,MAX(20,21}) 

-> 12 
-> 19 
-> -3 
-> 21 

returns the smallest number from the list specified, formatted according to the 
current setting of NUMERIC DIGITS. You can specify up to 20 numbers, and can nest 
calls to MIN if more arguments are needed. 

Here are some examples: 

MIN{12.6,7,9} -> 6 
MIN{17.3,19,17.03} -> 17.63 
MIN{-7,-3,-4.3} ->-7 
MIN{21,20,19,18,17,16,15,14,13,12,11,16,9.8,7,6,5,4,3,MIN(2,1» -> 1 

MSG is a TSO/E external function. See page 139. 

OUTTRAP is a TSO/E external function. See page 140. 

110 TSO/E Version 2 MVS/REXX Reference 

/' ." 
\... /' 

c 



OVERLAY 

(' 

POS (Position) 

( 

( 

PROMPT 

QUEUeD 

Function. 

--oVERLAY(new,target -,-[----------~I )-
' ...... [---.]--r[-. --'----,-II 

n '[length] [,pad] 

returns the string target, which, starting at the nth character, is overlaid with the 
string new, padded or truncated to length length. If you specify length, it must be 
positive or zero. The default value for length is the length of new. If n is greater than 
the length of the target string, padding is added before the new string. The default 
pad character is a blank, and the default value for n is 1. If you specify n, it must be 
a positive whole number. 

Here are some examples: 

OVERLAY(' ','abcdef',3) 
OVERLAY('. ','abcdef',3,2) 
OVERLAY('qq', 'abed') 
OVERLAY('qq','abcd',4) 
OVERLAY ( , 123' , 'abc' ,5,6, '+' ) 

-> 
-> 
-> 
-> 
-> 

'ab def' 
'abo ef' 
'qqcd' 
'abcqq' 
'abc+123+++' 

returns the position of one string, needle, in another, haystack. (See also the INDEX 
and LASTPOS functions.) Returns 0 if needle is the null string or Is not found. By 
default the search starts at the first character of haystack (that is, the value of start 
is 1). You can override this by specifying start (which must be a positive whole 
number), the point at which the search starts. 

Here are some examples: 

POS('day','Saturday') 
POS('x','abc def ghi') 
POSe' ','abc def ghi') 
POSe' ','abc def ghi',5) 

-> 
-> 
-> 
-> 

6 
a 
4 
8 

PROMPT is a TSO/E external function. See page 144. 

--QUEUED ()--'------.,.--.. ~ ... c 

returns the number of lines remaining in the external data queue at the time when 
the function is invoked. 

Chapter 4. Functions 111 



Functions 

RANDOM 

The TSO/E implementation of the external data queue is the data stack. If no lines 
are remaining in the data stack, PULL or PARSE PULL reads from the: 

• Terminal (TSO/E foreground) or input stream SYSTSIN (TSO/E background) 

• Input stream as defined by the INDO field in the module name table (see page 
357). The system default is SYSTSIN (non-TSO/E address space). The ddname 
can be changed on an application basis or on a system basis. 

Here is an example: 

QUEUEDO -> 5 /* Perhaps */ 

returns a quasi-random nonnegative whole number in the range min to max 
inclusive. If you specify max or mi n or both, max minus mi n cannot exceed 100000. 
min and max default to 0 and 999, respectively. To start a repeatable sequence of 
results, use a specific seed as the third argument, as described in Note 1. This seed 
must be a whole number. 

Here are some examples: 

RANDOM 0 -> 305 
RANDOM(5,8) -> 7 
RANDOM (2) -> 0 /* 0 to 2 */ 
RANDOM(2,) -> 747 1* 2 to 999 */ 
RANDOM(.,1983) -> 123 /* reproducible */ 

Noles: 

1. To obtain a predictable sequence of quasi-random numbers, use RANDOM a 
number of times, but specify a seed only the first time. For example, to simulate 
forty throws of a six-sided, unbiased die: 

sequence = RANDOM(l,6,12345) /* any number would */ 
/* do for a seed */ 

do 39 
sequence = sequence RANDOM(l,6) 
end 

say sequence 

The numbers are generated mathematically, using the initial seed, so that as far 
as possible they appear to be random. Running the program again produces 
the same sequence; using a different initial seed almost certainly produces a 
different sequence. If you do not supply a seed, the first time RANDOM is called, 
one is randomly assigned; and hence your program usually gives different 
results each time it is run. 

o 
'I~~J 

2. The random number generator is global for an entire program; the current seed C 
is not saved across internal routine calls. . .. \ 

3. The actual random number generator used may differ from implementation to 
implementation. 

112 TSO/E Version 2 MVS/REXX Reference 



REVERSE 
(~i 

RIGHT 

( 
SETLANG 

SIGN 

( 

~------ ------~~-

---_ .... _---------- ------------ ------------

Functions 

-REVERSE{string)----........ 

returns string, swapped end for end. 

Here are some examples: 

REVERSE(' ABc. ') 
REVERSE(' XYZ ') 

-> 
-> 

, .cBA' 
, ZYX' 

-RIGHT{string,length [ d:J) 
,pa 

... 

returns a string of length length containing the rightmost length characters of 
string. The string returned is padded with pad characters (or truncated) on the left 
as needed. The default pad character is a blank. length must be nonnegative. 

Here are some examples: 

RIGHT('abc d' ,8) -> 
, 

abc d' 
RIGHT('abc def',5) -> 'c def' 
RIGHT ('12' .5. 'a') -> 'aaa12' 

SETLANG is a TSO/E external function. See page 147. 

returns a number that indicates the sign of number. number is first rounded 
according to standard REXX rules, just as though the operation "number+O" had 
been carried out. Returns '-1' if number is less than 0; returns '0' if it is 0; and 
returns '1' if it is greater than O. 

Here are some examples: 

SIGN{'12.3') 
SIGN(' -a.3el'} 
SIGN{e.a} 

-> 
-> 
-> 

1 
-1 
e 

I 

Chapter 4. Functions 113 



IOUIICILitl 

IPACI 

returns the line number of the final line in the source file if you omit n, or returns the 
nth line in the source file if you specify n. If specified, n must be a positive whole 
number and must not exceed the number of the final line in the source file. 

Here are some examples: 

SOURCELINE() -> 1a 
SOURCELINE(l) -> '/* This is a la-line REXX program */' 

returns the blank-delimited words in string with n pad characters between each 
word. If you specify n, it must be nonnegative. If it is 0, all blanks are removed. 
Leading and trailing blanks are always removed. The default for n is 1, and the 
default pad character is a blank. 

Here are some examples: 

SPACE('abc def ') 
SPACE(' abc def',3) 
SPACE('abc def ',I) 
SPACE('abc def ',a) 
SPACE('abc def ',2,'+') 

-> 
-> 
-> 
-> 
-> 

'abc def' 
'abc def' 
'abc def' 
'abcdef' 
'abc++def' 

STORAGE is a TSO/E external function. See page 149. 

returns string with leading or trailing characters or both removed, based on the 
option you specify. The following are valid options. (Only the capitalized and 
boldfaced letter is needed; all characters following it are ignored.) 

Both removes both leading and trailing characters from string. This is the 
default. 

Leading removes leading characters from string. 

114 TSO/E Version 2 MVS/REXX Reference 

c 

c 



, ., 

~~~-.... ~-.. ~.-' --_ .... __ .. _-_. -.--.---~---. 

Tra il ; ng removes trai Ii ng characters from s t r; ng. 

The third argument, char, specifies the character to be removed, and the default is a 
blank. If you specify char, it must be exactly one character long. 

Here are some examples: 

STRIP( , ab c ' } -> 'ab c' 
STRIP( , ab c ' , 'L'} -> 'ab c 

, 
STRIP( , ab c ' , 't'} -> 

, 
ab c' 

STRIP('12.7eee'"e} -> '12.7' 
STRIP('ee12.7ee'"e} -> '12.7' 

SUBSTR (Substring) 

(-

(-

(- SUBWORD 

~SUBSTR(string,n [ I } ~ .. 

[length] 
, 

[,pad] .. ' 

returns the substring of stri ng that begins at the nth character and is of length 
length, padded with pad if necessary. n must be a positive whole number. If n is 
greater than LENGTH(stri ng), then only pad characters are returned. 

If you omit 1 ength, the rest of the string is returned. The default pad character is a 
blank. 

Here are some examples: 

SUBSTR('abc',2) -> 
SUBSTR('abc',2,4} -> 
SUBSTR('abc',2,6,'.'} -> 

'bc' 
'bc ' 
'bc •••• ' 

Note: In some situations the positional (numeric) patterns of parsing templates are 
more convenient for selecting substrings, especially if more than one substring is to 
be extracted from a string. 

returns the substring of string that starts at the nth word, and is of length length, 
blank-delimited words. n must be a positive whole number. If you omit length, it 
defaults to the number of remaining words in stri ng. The returned string never has 
leading or trailing blanks, but includes all blanks between the selected words. 

Here are some examples: 

SUBWORD('Now is the time' ,2,2) 
SUBWORD('Now is the time',3} 
SUBWORD('Now is the time',5} 

-> 
-> 
-> 

'is the' 
'the time' , , 

Chapter 4. Functions 115 



Functions 

SYMBOL 

SYSDSN 

SYSVAR 

TIME 

returns the state of the symbol named by name. Returns' BAD' if name is not a valid 
REXX symbol. Returns 'VAR' if it is the name of a variable (that is, a symbol that 
has been assigned a value). Otherwise returns' LIT', indicating that it is either a 
constant symbol or a symbol that has not yet been assigned a value (that is, a 
literal). 

As with symbols in REXX expressions, lowercase characters in name are translated 
to uppercase and substitution in a compound name occurs if possible. 

Note: You should specify name as a literal string (or derived from an expression) to 
prevent substitution before it is passed to the function. 

Here are some examples: 

/* following: Drop A.3; J=3 */ 
SYMBOL('J') -> 'VAR' 
SYMBOL(J) -> 'LIT' /* has tested "3" */ 
SYMBOL('a.j') -> 'LIT' /* has tested "A.3" */ 
SYMBOL (2) -> 'LIT' /* a constant symbol */ 
SYMBOL('*') -> 'BAD' /* not a valid symbol */ 

SYSDSN is a TSO/E external function. See page 150. 

SYSVAR is a TSO/E external function. See page 152. 

returns the local time in the 24-hour clock format: 'hh:mm:ss' (hours, minutes, and 
seconds) by default; for example, '94:41:37'. 

You can use the following options to obtain alternative formats, or to gain access to 
the elapsed-time clock. (Only the capitalized and boldfaced letter is needed; all 
characters following it are ignored.) 

Civil returns hh:mmxx, the time in Civil format, in which the hours may take 
the values 1 through 12, and the minutes the values 00 through 59. The 
minutes are followed immediately by the letters "am" or "pm" to 
distinguish times in the morning (midnight 12:00am through 11:59am) 
from noon and afternoon (noon 12:00pm through 11:59pm). The hour has 
no leading zero. The minute field shows the current minute (rather than 
the nearest minute) for consistency with other TIME results. 

116 TSO/E Version 2 MVS/REXX Reference 

c 



( 

( 

( 

Functions 

Elapsed returns sssssssss.uuuuuu, the number of seconds. microseconds since 
the elapsed-time clock was started or reset (see below). The number 
has no leading zeros, and is not affected by the setting of NUMERIC 
DIGITS. The fractional part always has six digits. 

Hours returns up to two characters giving the number of hours since midnight 
in the format: hh (no leading zeros or blanks, except for a result of 0). 

Long returns time in the format: hh:mm:ss.uuuuuu (uuuuuu is the fraction of 
seconds, in microseconds). The first eight digits of the result follow the 
same rules as for the Normal form, and the fractional part is always six 
digits. 

Minutes returns up to four characters giving the number of minutes since 
midnight in the format: mmmm (no leading zeros or blanks, except for a 
result of 0). 

Nonnal returns the time in the default format hh:mm:ss, as described previously. 
The hours can have the values 00 through 23, and minutes and seconds, 
00 through 59; all these are always two digits. Any fractions of seconds 
are ignored (times are never rounded up). This is the default. 

Reset returns sssssssss.uuuuuu, the number of seconds. microseconds since 
the elapsed-time clock (described later) was started or reset and also 
resets the elapsed-time clock to zero. The number has no leading zeros, 
and is not affected by the setting of NUMERIC DIGITS. The fractional 
part always has six digits. 

Seconds returns up to five characters giving the number of seconds since 
midnight in the format: sssss (no leading zeros or blanks, except for a 
result of 0). 

Here are some examples: 

TIME('l'} -> '16:54:22.123456' /* Perhaps */ 
TIMEO -> '16:54:22' 
TIME(' H'} -> '16' 
TIME( 'M'} -> '1014' /* 54 + 60*16 */ 
TIME(' S') -> '60862' /* 22 + 60*(54+60*16} */ 
TIME ( 'N'} -> '16:54:22' 
TIME( 'e') -> '4:54pm' 

The elapsed-time clock: 

The elapsed-time clock may be used for measuring real time intervals. On the first 
call to the elapsed-time clock, the clock is started, and both TIME ( , E') and TIME ( 'R' ) 
return O. 

The clock is saved across internal routine calls, which is to say that an internal 
routine inherits the time clock its caller started. Any timing the caller is dOing is not 
affected, even if an internal routine resets the clock. An example of the 
elapsed-time clock: 

time('E') -> 0 /* The first call */ 
/* pause of one second here */ 
time('E') -> 1.002345 /* or thereabouts */ 
/* pause of one second here */ 
time('R') -> 2.004690 /* or thereabouts */ 
/* pause of one second here */ 
time('R') -> 1.002345 /* or thereabouts */ 

Chapter 4. Functions 117 



'unctlona 

TRACE 

TRANSLATE 

Note: See the note under DATE about consistency of times within a single clause. 
The elapsed-time clock is synchronized to the other calls to TIME and DATE, so 
multiple calls to the elapsed-time clock in a single clause always return the same 
result. For the same reason, the interval between two normal TIME/DATE results 
may be calculated exactly using the elapsed-time clock. 

Implementation maximum: Should the number of seconds in the elapsed time 
exceed nine digits (equivalent to over 31.6 years), an error will result. 

returns trace actions currently in effect. 

If option is supplied, it must be one of the valid prefixes (? or!) and/or alphabetic 
character options (that is, starting with A, C, E, F, I, L, N, 0, R, or S) associated with 
the TRACE instruction. (See the TRACE instruction, on page 79, for full details.) 
The function uses option to alter the effective trace action (like tracing Labels, and 
so forth). Unlike the TRACE instruction, the TRACE function alters the trace action 
even if interactive debug is active. 

Unlike the TRACE instruction, option cannot be a number. 

Here are some examples: 

TRACE() -> 
TRACE ( , 0 ' ) -> 
TRACE('?I') -> 

'?R' /* maybe */ 
'?R' /* also sets tracing off */ 
'0' /* now in interactive debug */ 

returns string with each character translated to another character or unchanged. 
You can also use this function to reorder the characters in string. 

The output table is tableo and the input translate table is tablei. TRANSLATE 
searches tablei for each character in string. If the character is found, then the 
corresponding character in tableo is used in the result string; if there are duplicates 
in tablei, the first (leftmost) occurrence is used. If the character is not found, the 
original character in stri ng is used. The result string is always the same length as 
string. The tables can be of any length. 

o 

/ 

\ 

If you specify neither translate table, string is simply translated to uppercase (that C 
is, lowercase a-z to uppercase A-Z). Otherwise, tablei defaults to 
XRANGE ( 'aa' x. ' FF' x), and tab 1 eo defaults to the null stri ng and is padded with pad or 
truncated as necessary. The default pad is a blank. 

118 TSO/E Version 2 MVS/REXX Reference 



Here are some examples: 

TRANSLATE('abedef') 
TRANS LATE ( , abbe' , , &' , , b ' ) 
TRANSLATE('abedef','12','ee') 
TRANSLATE('abedef','12','abed','.') 
TRANSLATE('4123','abed','1234') 

-> 
-> 
-> 
-> 
-> 

'ABCDEF' 
'a&&e' 
'ab2dlf' 
'12 •• ef' 
'dabe' 

Functions 

Note: The last example shows how to use the TRANSLATE function to reorder the 
characters in a string. In the example, the la8"t character of any four-character string 
specified as the second argument would be moved to the beginning of the string. 

TRUNC (Truncate) 

( 

( 

USE RID 

( 
(Non-SAA Function) 

,---_.- ... _--- ---

I oo---TRUNC(number [:oJ ) 
,n 

• returns the integer part of number, and n decimal places. The default n is zero and 
returns an integer with no decimal point. If you specify n, it must be a nonnegative 
whole number. The number is first rounded according to standard REXX rules, just 
as though the operation "number+O" had been carried out. The number is then 
truncated to n decimal places (or trailing zeros are added if needed to make up the 
specified length). The result is never in exponential form. 

Here are some examples: 

TRUNC(12.3) -> 12 
TRUNC(127.e9782,3} -> 127.e97 
TRUNC(127.1,3) -> 127.We " 

TRUNC(127,2} -> 127.ee 

Note: The number is rounded according to the current setting of NUMERIC DIGITS if 
necessary before the function processes it. 

USERID is a non-SAA built-in function provided only by TSO/E and VM. 

"'~.?:';~: ,,~ ;·~.P, ~:. ~ .. ;.~;;/ 

-USERID()-' ----, . .,...~',..;\J::.; ,~,,:E; 
o":~ /::" .,,' .~: 

returns the TSO/E user 10, if the REXX exec is running in the TSO/E address space. 
For example: 

USERID(} -> 'ARTHUR' /* Maybe */ 

If the exec is running in a non-TSO/E address space, USERID returns one of the 
following values: 

• User 10 specified 
• Stepname specified 
• Jobname specified 

Chapter 4. Functions 119 

• 



Functions 

VALUE 

VERIFY 

The value that USERIO returns is the first one that does not have a null value. For 
example, if the user 10 is null but the stepname is specified, USERIO returns the 
value of the stepname. 

TSO/E allows you to replace the routine (module) that is called to determine the 
value the USERIO function returns. This is known as the user 10 replaceable routine 
and is described in "User 10 Routine" on page 466. In general, you can replace the 
routine only in non-TSO/E address spaces. Chapter 16, "Replaceable Routines and 
Exits" describes replaceable routines in detail and any exceptions to this rule. 

returns the value that the symbol name represents. An error results if name is not a 
valid REXX symbol. Note that the SYMBOL function can test for the validity of a 
symbol, and takes the same form of argument. like symbols appearing normally in 
REXX expressions, lowercase characters in name are translated to uppercase (that 
is, lowercase a-z to uppercase A-Z) and substitution in a compound name occurs If 
possible. 

Here are some examples: 

/* following: Drop A3; A33=7; J=3; fred='J' */ 
VALUE('fred') -> 'J' /* looks up "FRED" */ 
VALUE(fred) -> '3' /* looks up "J" */ 
VALUE('a'j) -> 'A3' 
VALUE('a'jIU) -> '7' 

Note: The VALUE function is typically used when a variable contains the name of 
another variable, or a name is constructed dynamically; for example, 
VALUE(' LINE' index). It is not useful to specify all of name as a quoted string; the 
symbol is then constant and the data between the quotation marks could replace the 
whole function call. (For example, fred=VALUE(' j ') is always identical to the 
assignment fred=j). 

returns a number that, by default, indicates whether string is composed only of 
characters from reference; returns 0 if all characters in string are in reference, or 
returns the position of the first character in string not in reference. 

The third argument, option, can be any expression that results in a string starting 
with Nor M that represents either Nomatch (the default) or Match. Only the first 
character of option is significant and it can be in upper- or lowercase, as usual. If 
you specify Match, returns the position of the first character in string that Is in 
reference, or returns 0 if none of the characters are found. 

120 TSO/E Version 2 MVS/REXX Reference 

,&\, 

'".j 



WORD 

WORDINDEX 

(-

c 

Functions 

The default for start is 1, thus, the search starts at the first character of string. You 
can override this by specifying a different start point, which must be a positive 
whole number. 

Always returns 0 if stri ng is nUll, or if start is greater than LENGTH (str; ng). If 
reference is nUll, returns 0 if you specify Match, otherwise returns 1. 

Here are some examples: 

VERIFY('123','1234567899') -> 9 
VERIFY('lZ3','1234567899') -> 2 
VERIFY('AB4T', '1234567899') -> 1 
VERIFY('AB4T','1234567899','M') -> 3 
VERIFY('AB4T', '1234567899', 'N') -> 1 
VERIFY('lP3Q4','1234567899',,3) -> 4 
VERIFY('AB3CD5', '1234567899', 'M',4) -> 6 

-WORD(string,n) ... 

returns the nth blank-delimited word in string or returns the null string if fewer than 
n words are in string. n must be a positive whole number. This function is exactly 
equivalent to SUBWORD(string,n,l). 

Here are some examples: 

WORD('Now is the time',3) 
WORD('Now is the time',5) 

-> 'the' 
-> " 

-WORD INDEX (str; ng,n)....;.,......;.,..-....... 
. ~. . ~ ": : 

returns the position of the first character in the nth blank-delimited word in string or 
returns 0 if fewer than n words are in string. n must be a positive whole number. 

Here are some examples: 

WORDINDEX('Now ;s the time',3) 
WORDINDEX('Now is the time',6) 

-> 
-> 

8 
9 

Chapter 4. Functions 121 



Functions 

WORDLENGTH 

returns the length of the nth blank-delimited word in string or returns 0 if fewer than 
n words are in string. n must be a positive whole number. 

Here are some examples: 

WORDLENGTH{'Now is the time',2) 
WORDLENGTH{'Now comes the time',2) 
WORDLENGTH{'Now is the time',6) 

-> 
-> 
-> 

2 
5 
e 

WORDPOS (Word Position) 

WORDS 

returns the word number of the first word of phrase found in string or returns 0 if 
phrase contains no words or if phrase is not found. Multiple blanks between words 
in either phrase or string are treated as a single blank for the comparison, but 
otherwise the words must match exactly. 

By default the search starts at the first word in string. You can override this by 
specifying start (which must be positive), the word at which to start the search. 

Here are some examples: 

WORDPOS('the','now is the time') -> 3 
WORDPOS('The','now is the time') -> e 
WORDPOS('is the','now is the time') -> 2 
WORDPOS{'is the','now is the time') -> 2 
WORDPOS('is time ','now is the time') -> e 
WORDPOS('be','To be or not to be') -> 2 
WORDPOS('be','To .be or not to be',3) -> 6 

returns the number of blank-delimited words in string. 

Here are some examples: 

WORDS('Now is the time') 
WORDS ( , ') 

-> 
-> 

4 
e 

122 TSO/E Version 2 MVS/REXX Reference 

I: 
I 

c 



( 

( 

Functions 

XRANGE (Hexadecimal Range) 

I ~XRANGE (L ] [ (Io:J) 
_ start ,en 

.... 

returns a string of all one-byte codes between and including the values start and 
end. The default value for start is 'OO'x, and the default value for end is 'FF'x. If 
start is greater than end, the values wrap from 'FF'x to 'OO'x. If specified, start and 
end must be single characters. 

Here are some examples: 

XRANGE ( , a ' , , f' ) -> 
XRANGE('G3'x,'G7'x) -> 
XRANGE(,'G4'x) -> 
XRANGE('i','j') -> 
XRANGE('FE'x,'G2'x) -> 

'abcdef' 
'G3G4G5G6G7'x 
'GGGIG2G3G4'x 
'898A8B8C8D8E8F9091'x /* EBCDIC */ 
'FEFFG00IG2'x 

X2C (Hexadecimal to Character) 

-------_. __ . ------_._---

I ........ ,,>x2~(hexstrin9}.. .. .. 

returns a string, in character format, that represents hexstri ng converted to 
character. The returned string is half as many bytes as the original hexstring. 
hexstring can be of any length. You can optionally add blanks to hexstring (at byte 
boundaries only, not leading or trailing) to aid readability; they are ignored. 

If hexstri ng is null, returns a null string. 

If necessary, hexstring is padded with a leading 0 to make an even number of 
hexadecimal digits. 

Here are some examples: 

X2C('F7F2 A2') -> 
X2C('F7f2a2') -> 
X2C('F') -> 

'72s' 
'725' , , 

/* EBCDIC */ 
/* EBCDIC */ 
/* '0F' is unprintable EBCDIC */ 

Chapter 4. Functions 123 



Functions 

X2D (Hexadecimal to Decimal) 

returns the decimal representation of hexstring. The hexstring is a string of 
hexadecimal characters. If the result cannot be expressed as a whole number, an 
error results. That is, the result must not have more digits than the current setting 
of NUMERIC DIGITS. 

You can optionally add blanks to hexstring (at byte boundaries only, not leading or 
trailing) to aid readability; they are ignored. 

If hexstri ng is null, returns' 0'. 

If you do not specify n, hexstring is processed as an unsigned binary number. 

Here are some examples: 

X2D( 'aE') -> 14 
X2D( '81') -> 129 
X2D(' FBI') -> 3969 
X2D(' FFS1') -> 654a9 
X2D('c6 fa'X) -> 249 

If you specify n, the given hexstring is padded on the left with 'O's (note, not 
"sign-extended"), or truncated on the left to n characters. The resulting string of n 
hexadecimal digits is taken to be a signed binary number: positive if the leftmost bit 
is off, and negative, in two's complement notation, if the leftmost bit is on. If n is 0, 
X2D returns O. 

Here are some examples: 

X2D('81',2) -> -127 
X2D('81',4) -> 129 
X2D(' F9S1' ,4) -> -3967 
X2D(' F9S1' ,3) -> 129 
X2D(' FaSI' ,2) -> -127 
X2D('F9S1',l) -> 1 
X2D( 'a931 , ,a) -> a 

Implementation maximum: The input string may not have more than 500 
hexadecimal characters that will be significant in forming the final result. Leading 
sign characters (0 and F) do not count towards this total. 

124 TSO/E Version. 2 MVS/REXX Reference 

(If . .. ". 

\~.c~ 

c 



( 

-----------.-".---~-- .. ----- ----

Functions 

------ -
TSO/E External Functions 

TSO/E provides the following external functions you can use to perform different 
tasks: 

• GETMSG 
• L1STOSI 
• MSG 
• OUTTRAP 
• PROMPT 
• SETLANG 
• STORAGE 
• SYSOSN 
• SYSVAR 

You can use the SETLANG and STORAGE external functions in REXX execs that run 
in any address space, TSO/E and non-TSO/E. You can use the other external 
functions only in REXX execs that run in the TSO/E address space. 

The following topics describe the TSO/E external functions. For general information 
about the syntax of function calls, see "Syntax" on page 85. 

In this section, examples are provided that show how to use the TSO/E external 
functions. The examples may include data set names. When an example includes a 
data set name that is enclosed in single quotes, the prefix is added to the data set 
name. In the examples, the user 10 is the prefix. 

Note: If you customize REXX processing and use the initialization routine IRXINIT, 
you can initialize a language processor environment that is not integrated into 
TSO/E (see page 344). You can use the SETLANG and STORAGE external functions 
in any type of language processor environment. You can use the other TSO/E 
external functions only if the environment is integrated into TSO/E. Chapter 13, 
"TSO/E REXX Customizing Services" describes customization and language 
processor environments in more detail. 

Chapter 4. Functions 125 



Functions 

GETMSG 

GETMSG returns a function code that replaces the function call and retrieves, in 
variables, a message that has been issued during a console session. Figure 10 on 
page 127 lists the function codes that GETMSG returns. 

Use GETMSG during an extended MCS console session that you established using 
the TSO/E CONSOLE command. Use GETMSG to retrieve messages that are routed ,/ '\ 
to the user's console but that are not being displayed at the user's terminal. The 
message can be either solicited (a command response) or unsolicited (other system 
messages), or either. GETMSG retrieves only one message at a time. The 
message itself may be more than one line. Each line of message text is stored in 
successive variables. For more information, see the description of the msgstem 
argument on page 127. 

To use GETMSG, you must: 

• Have CONSOLE command authority 

• Have solicited or unsolicited messages stored rather than displayed at the 
terminal during a console session. Your installation may have set up a console 
profile for you so that the messages are not'>displayed. You can also use the 
TSO/E CONS PROF command to specify that solicited or unsolicited messages 
should not be displayed during a console session. 

• Issue the TSO/E CONSOLE command to activate a console session. 

You can use the GETMSG function only in REXX: execs that run in the TSO/E address 
space. 

Environment Customlzation Considerations ---------------, 

If you use IRXINIT to initialize language processor environments, note that you 
can use GETMSG only in environments that are integrated into TSO/E (see page 
344). 

c 
126 TSO/E Version 2 MVS/REXX Reference 

i 

i ~ 



( 

( 

Functions 

Figure 10 lists the function codes that replace the function call. The GETMSG 
function raises the SYNTAX condition if you specify an incorrect argument on the 
function call or you specify too many arguments. A SYNTAX condition is also raised 
if a severe error occurs during GETMSG processing. 

Figure 10. Function Codes for GETMSG That Replace the Function Call 

Function 
Code 

o 
4 

8 

12 

16 

Description 

GETMSG processing was successful. GETMSG retrieved the message. 

GETMSG processing was successful. However, GETMSG did not retrieve 
the message. 

There are several reasons why GETMSG may not be able to retrieve the 
message based on the arguments you specify on the function call. GETMSG 
returns a function code of 4 if one of the following occurs: 

• No messages were available to be retrieved 

• The messages did not match the search criteria you specified on the 
function call 

• You specified the time argument and the time limit expired before the 
message was available. 

GETMSG processing was successful. However, you pressed the attention 
interrupt key during GETMSG processing. GETMSG did not retrieve the 
message. 

GETMSG processing was not successful. A console session is not active. 
The system issues a message that describes the error. You must issue the 
TSO/E CONSOLE command to activate a console session. 

GETMSG processing was not successful. The console session was being 
deactivated while GETMSG was processing. The system issues a message 
that describes the error. 

The arguments you can specify on the GETMSG function are: 

msgstem the stem of the list of variables into which GETMSG places the message 
text. To place the message text into compound variables, which allow 
for indexing, msgstem should end with a period (for example, "messg. "). 
GETMSG places each line of the retrieved message into successive 
variables. For example, if GETMSG retrieves a message that has three 
lines of text, GETMSG places each line of message text into the 
variables messg.l, messg.2, messg.3. GETMSG stores the number of 
lines of message text in the variable ending in 0, messg.0. 

If msgstem does not end with a period, the variable names are appended 
with consecutive numbers. For example, suppose you specify msgstem 
as "conmsg" (without a period). If GETMSG retrieves a message that 
has two lines of message text, GETMSG places the text into the 
variables conmsgl and conmsg2. The variable conmsg0 contains the 
number of lines of message text, which is 2. 

In addition to the variables into which GETMSG places the retrieved 
message text, GETMSG also sets additional variables. The additional 
variables relate to the field names in the message data block (MOB) for 
MVS/ESA* System Product Version 4. For more information about 

• MVS/ESA is a trademark of the IBM Corporation. 

Chapter 4. Functions 127 



Functions 

msglype 

these variables, see Appendix E, "Additional Variables That GETMSG 
Sets" on page 513. 

the type of message you want to retrieve. Specify one of the following 
values for msgtype: 

• SOL 
indicates that you want to retrieve a solicited message. A solicited 
message is the response from an MVS system or subsystem 
command. 

• UNSOL 
indicates that you want to retrieve an unsolicited message. An 
unsolicited message is any message that is not issued in response 
to an MVS system or subsystem command. For example, an 
unsolicited message may be a message that another user sends 
you or a broadcast message. 

• EITHER 
indicates that you want to retrieve either type of message (solicited 
or unsolicited). If you do not specify the msgtype argument, 
EITHER is the default. 

carl the command and response token (CART). The CART is a token that 
lets you associate MVS system commands and subcommands with their 
responses. When you issue an MVS system or subsystem command, 
you can specify a CART on the command invocation. To use GETMSG 
to retrieve a particular message that is in direct response to the 
command invoked, specify the same CART value. 

mask 

GETMSG uses the CART you specify as a search argument to obtain the 
message. If you specify a CART, GETMSG compares the CART you 
specify with the CARTs for the messages that have been routed to the 
user's console. GETMSG retrieves the message, only if the CART you 
specify matches the CART associated with the message. Otherwise, no 
message is retrieved. 

The cart argument is used only if you are retrieving solicited 
messages, that is, the value for the msgtype argument is SOL. The 
CART is ignored if you specify UNSOL or EITHER for msgtype. 

The cart argument is optional. If you do not specify a CART, GETMSG 
retrieves the oldest message that is available. The type of message 
retrieved depends on the msgtype argument. 

For cart, you can specify a character string of 1-8 characters or a 
hexadecimal string of 1-16 hexadecimal digits. For example: 

'CID7D7CIF4F9F4Fl'X 

If you specify less than 8 characters or less than 16 hexadecimal digits, 
the value is padded on the right with blanks. If you specify more than 8 
characters or more than 16 hexadecimal digits, the value is truncated to 
the first 8 characters or 16 digits and no error message is issued. 

For more information, see "Using the Command and Response Token 
(CART) and Mask" on page 130. 

search argument that GETMSG uses as a mask with the cart argument 
for obtaining a message. If you specify a mask, GETMSG ANDs the 
mask value with the CART value that you specify on the GETMSG 
function. GETMSG also ANDs the mask with the CARTs associated with 

128 TSO/E VerSion 2 MVS/REXX Reference 

c 



( 

lime 

( 

Functions 

the messages that have been routed to the user's console. GETMSG 
then compares the results of the AND operations. If a comparison 
matches, GETMSG retrieves the message. Otherwise, no message is 
retrieved. 

The mask argument is valid only if you are retrieving solicited messages 
and are using a CART. That is, mask is valid only if you specify SOL for 
msgtype and you specify the cart argument. 

The mask argument is optional. If you do not specify a mask, GETMSG 
does not use a mask value when comparing CART values. 

For mask, you can specify a character string of 1-8 characters or a 
hexadecimal string of 1-16 hexadecimal digits. For example: 

'FFFFFFFF00000000'X 

If you specify less than 8 characters or less than 16 hexadecimal digits, 
the value is padded on the right with blanks. If you specify more than 8 
characters or more than 16 hexadecimal digits, the value is truncated to 
the first 8 characters or 16 digits and no error message is issued. 

For more information, see "Using the Command and Response Token 
(CART) and Mask" on page 130. 

the amount of time, in seconds, that GETMSG should wait, if the 
requested message has not yet been routed to the user's console. If 
you specify a time value and the time expires before the message is 
routed to the user's console, GETMSG does not retrieve the message. 
Otherwise, if the message is available before thetime expires, 
GETMSG retrieves the message. 

If you do not specify time, GETMSG uses a time value of 0 seconds. If 
the message has not been routed to the user's console, GETMSG does 
not retrieve the message. 

Overview of Using GETMSG During a Console Session 

( 

.-"'_ ... _-,-------------

You can use the GETMSG external function with the TSO/E CONSOLE and 
CONSPROF commands and the CONSOLE host command environment to write 
REXX execs that perform MVS operator activities from TSO/E. Using the TSO/E 
CONSOLE command, you can activate an extended MCS console session with MCS 
console services. After you activate a console session, you can then use the TSO/E 
CONSOLE command and the CONSOLE host command environment to issue MVS 
system and subsystem commands. You can use the TSO/E CONS PROF command to 
specify that messages that are routed to the user's console during a console 
session are not to be displayed at the user's terminal. You can then use the 
GETMSG external function to retrieve messages that are not being displayed and 
perform different types of processing. 

The TSO/E external function SYSVAR has various arguments you can use to 
determine the type of processing you want to perform. For example, using SYSVAR, 
you can determine the console session options currently in effect, such as whether 
solicited and unsolicited messages are being displayed. If you want to display a 
message that GETMSG retrieved, you can use SYSVAR arguments to obtain 
information about displaying the message. For example, you can determine 
whether certain information, such as a time stamp, should be displayed with the 
message. For more information, see "SYSVAR" on page 152. 

Your installation may customize TSO/E to display certain types of information at the 
terminal in different languages. Your installation can define a primary and 

Chapter 4. Functions 129 



Functions 

secondary language for the display of information. The language codes for the 
primary and secondary languages are stored in the user profile table (UPT). If your 
installation customizes TSO/E for different languages, messages that are routed to 
the user's console during a console session and that are displayed at the user's 
terminal are displayed in the user's primary or secondary language. However, if 
you specify that messages are not displayed at the terminal and you then use 
GETMSG to retrieve the message, the message you retrieve is not in the user's 
primary or secondary language. The message you retrieve is in US English. For 
information about customizing TSO/E for different languages, see TSOIE Version 2 
Customization. 

For more information about writing execs to perform MVS operator tasks from 
TSO/E, see Appendix 0, "Writing REXX Execs to Perform MVS Operator Activities" 
on page 505. 

Using the Command and Response Token (CART) and Mask 
The command and response token (CART) is a keyword and subcommand for the 
TSO/E CONSOLE command and an argument on the GETMSG function. You can use 
the CART to associate MVS system and subsystem commands you issue with their 
corresponding responses. 

To associate MVS system and subsystem commands with their responses, when 
you issue an MVS command, specify a CART on the command invocation. The 
CART is then associated with any messages that the command issues. During the 
console session, solicited messages that are routed to your user's console should 
not be displayed at the terminal. Use GETMSG to retrieve the solicited message 
from the command you issued. When you use GETMSG to retrieve the solicited 
message, specify the same CART that you used on the command invocation. 

If several programs use the CONSOLE command's services and run simultaneously 
in one TSO/E address space, each program must use unique CART values to ensure 
it retrieves only messages that are intended for that program. You should issue all 
MVS system and subsystem commands with a CART. Each program should 
establish an application identifier that the. program uses as the first four bytes of the 
CART. Establishing application identifiers is useful when you use GETMSG to 
retrieve messages. On GETMSG, you can use both the cart and mask arguments to 
ensure you retrieve only messages that begin with the application identifier. 
Specify the hexadecimal digits FFFFFFFF for at least the first four bytes of the mask 
value. For example, for the mask, use the value 'FFFFFFFFOOOOOOOO'X. 

For the cart argument, specify the application identifier as the first four bytes 
followed by blanks to pad the value to eight bytes. For example, if you use a four 
character application identifier of APPL, specify 'APPL ' for the CART. If you use 
a hexadecimal application identifier of C19793F7, specify 'C19793F7'X for the CART. 
GETMSG ANDs the mask and CART values you specify, and also ANDs the mask 
with the CART values for the messages. GETMSG compares the results of the AND 
operations, and if a comparison matches, GETMSG retrieves the message. 

You may also want to use CART values if you have an exec using console services 
that calls a second exec that also uses console services. The CART ensures that 
each exec retrieves only the messages intended for that exec. 

Using different CART values in one exec is useful in order to retrieve the responses 
from specific commands and perform appropriate processing based on the 
command response. In general, it is recommended that your exec uses a CART for 
issuing commands and retrieving messages. For more information about console 

130 TSO/E Version 2 MVS/REXX Reference 

/ 

c 



( 

---------- ---

Functions 

sessions and how to use the CART, see Appendix D, "Writing REXX Execs to 
Perform MVS Operator Activities" on page 505. 

Examples 

The following are some examples of using GETMSG. 

1. You want to retrieve a solicited message in variables starting with the stem 
"CONSMSG .. " You do not want GETMSG to wait if the message has not yet 
been routed to the user's console. Specify GETMSG as follows: 

msg = GETMSG('CONSMSG.','SOL') 

2. You want to retrieve a solicited message in variables starting with the stem 
"DISPMSG .. " You want GETMSG to wait up to 2 minutes (120 seconds) for the 
message. Specify GETMSG as follows: 

mcode = getmsg('dispmsg.','sol'",12e) 

3. You issued an MVS command using a CART value of 'C1D7D7D3F2F9F6F8'X. 
You want to retrieve the message that was issued in response to the command 
and place the message in variables starting with the stem "DMSG." You want 
GETMSG to wait up to 1 minute (60 seconds) for the message. Specify GETMSG 
as follows. 

msgrett = getmsg('dmsg','sol','CID7D7D3F2F9F6F8'X,,6e) 

4. Your exec has defined an application identifier of APPL for using CARTs. 
Whenever you issue an MVS command, you specify a CART of APPLxxxx, where 
xxxx is a four digit number. For example, for the first MVS command, you use a 
CART of APPL0001. For the second MVS command, you use a CART of 
APPL0002, and so on. 

You want to use GETMSG to retrieve solicited messages that are intended only 
for your exec. You can specify the mask and cart arguments to ensure that 
GETMSG retrieves only messages that are for the MVS commands your exec 
invoked. Specify 'FFFFFFFFeeeeeeee'x for the mask. Specify 'APPL 
(padded with blanks to 8 characters) for the CART. You also want to wait up to 
30 seconds for the message. 

conmess = getmsg('msgc.','sol','APPL ','FFFFFFFFeeeeeeee'X,3e) 

Chapter 4. Functions 131 



Functions 

LlSTDSI 

LlSTDSI returns one of the following function codes that replace the function call, 
and retrieves information about a data set's allocation, protection, and directory and 
stores it in specific variables. Figure 11 shows the function codes that replace the 
function call. 

Figure 11. Function Codes for LlSTDSI That Replace the Function Call 

Function 
Code 

o 
4 

16 

Description 

LlSTDSI processing was successful. Data set information was retrieved. 

LlSTDSI processing was successful. However, some data set information is 
unavailable. All data set information, other than directory information, can 
be considered valid. 

LlSTDSI processing was not successful. An error occurred. None of the 
variables containing information about the data set can be considered valid, 
except for SYSREASON. The SYSREASON variable contains the LlSTDSI 
reason code (see page 137). 

If LlSTDSI causes a syntax error (for example, if you specify too many arguments), a 
function code is not returned. In addition, none of the LlSTDSI variables are set 
correctly. 

The variables in which LlSTDSI stores data set information are described in 
Figure 12 on page 135. 

The arguments you can specify on the LlSTDSI function are: 

data-set-name the name of the data set about which you want to retrieve 
information. This can be the name of a sequential data set or a 
PDS. See "Specifying Data Set Names" on page 134 for more 
information. 

location specifies how you want the data set (as specified in data-set-name) 
located. You can specify location, only if you specify a data set 
name, not a filename. For location, specify one of the following 
values. If you do not specify either VOLUME or PREALLOC, the 
system locates the data set through catalog search. 

• VOLUME(serial ID) 
specifies the serial number of the volume where the data set is 
located. 

• PREALLOC 
specifies that the location of the specified data set is 
determined by allocating the data set, rather than through a 
catalog search. PREALLOC allows data sets that have been 

132 TSO/E Version 2 MVS/REXX Reference 

\, j 

(~: 



( 

( 

c 

filename 

type 

directory 

recall 

Functions 

previously allocated to be located without searching a catalog 
and allows unmounted volumes to be mounted. 

the name of an allocated file (ddname) about which you want to 
retrieve information. 

for type, you must specify the word "FILE" if you specify filename 
instead of data-set-name. If you do not specify FILE, LlSTOSI 
assumes that you specified a data-set-name. 

indicates whether or not you want directory information for a 
partitioned data set (POS). For directory, specify one of the 
following: 

• DIRECTORY 
indicates that you want directory information. 

• NODI RECTORY 
indicates that you do not want directory information. If you do 
not require directory information, NOOIRECTORY can 
significantly improve processing. NOOIRECTORY is the 
default. 

indicates whether or not you want to recall a data set migrated by 
Data Facility Hierarchical Storage Manager (OFHSM). For recall, 
specify one of the following: 

• RECALL 
indicates that you want to recall a data set migrated by 
OFHSM. The system recalls the data set regardless of its level 
of migration or the type of device to which it has been 
migrated. 

• NO RECALL 
indicates that you do not want to recall a data set. If the data 
set has been migrated, the system stores an error message. 

If you do not specify either RECALL or NO RECALL, the system 
recalls the data set only if it has been migrated to a direct 
access storage device (OASO). 

You can use LlSTOSI to obtain information about a data set that is available on 
OASO. LlSTOSI does not directly support data that is on tape. LlSTOSI supports 
generation data group (GOG) data sets, but does not support relative GOG names. 

You can use the LlSTOSI function only in REXX execs that run in the TSO/E address 
space. 

Environment Customlzatlon Considerations --------------, 

If you use IRXINIT to initialize language processor environments, note that you 
can use L/STOSI only in environments that are integrated into TSO/E (see page 
344). 

You can use the LlSTOSI information to determine whether the data set is the right 
size or has the right organization or format for a given task. You can also use the 
L/STOSI information as input to the ALLOCATE command, for example, to create a 
new data set using some attributes from the old data set while modifying others. 

Chapter 4. Functions 133 



Functions 

If you use LlSTDSI to retrieve information about a VSAM data s~t, LlSTDSI stores 
only the volume seriallD (in variable SYSVOLUME), the device unit (in variable 
SYSUNIT), and the data set organization (in variable SYSDSORG). 

If you use LlSTDSI to retrieve information about a multiple volume data set, LlSTDSI 
stores information for the first volume only. Similarly, if you specify a file name or 
you specify PREALLOC for location and you have other data sets allocated to the 
same file name, the system may not retrieve information for the data set you 
wanted. 

Specifying Data Set Names 
On the LlSTDSI function, if you use data-set-name instead of filename, you can 
specify the name of a sequential data set or a partitioned data set (PDS). You can 
specify the data-set-name in any of the following ways: 

• Fully-qualified data set name - The extra quotation marks prevent TSO/E from 
adding your prefix to the data set name. 

x = LISTDSI(H'sysl.proj.new'H} 

x = LISTDSI(" 'sysl.proj.new" '} 

• Non fully-qualified data set name that follows the naming conventions - When 
there is only one set of quotation marks or no quotation marks, TSO/E adds your 
prefix to the data set name. 

x = LISTDSI('myrexx.exec'} 

x = LISTDSI(myrexx.exec} 

• Variable name that represents a fully-qualified or non fully-qualified data set 
name - The variable name must not be enclosed in quotation marks because 
quotation marks prevent variable substitution. An example of using a variable 
for a fully-qualified data set name is: 

/* REXX program for ...• */ 

varl = H' sys1.proj .monthly "' 

dsinfo = LISTDSI(varl} 

EXIT 

134 TSO/E Version 2 MVS/REXX Reference 

C' 
~j 



() 

( 

<-

C 

~~~~- ..... _--' - .. ~~~ 

Functions 

Variables That LlSTDSI Sets 
Figure 12 describes the variables that LlSTDSI sets. For VSAM data sets, only the 
variables SYSVOLUME, SYSUNIT, and SYSDSORG are accurate; all other variables 
are set to question marks. 

Figure 12 (Page 1 of 2). Variables That LlSTDSI Sets 

Variable 

SYSDSNAME 

SYSVOLUME 

SYSUNIT 

SYSDSORG 

SYSRECFM 

SYSLRECL 

SYSBLKSIZE 

SYSKEYLEN 

SYSALLOC 

SYSUSED 

SYSPRIMARY 

SYSSECONDS 

SYSUNITS 

SYSEXTENTS 

SYSCREATE 

Contents 

Data set name 

Volume serial 10 

Device unit on which volume resides 

Data set organization: 

PS - Physical sequential 
PSU - Physical sequential unmovable 
DA - Direct organization 
DAU - Direct organization unmovable 
IS - Indexed sequential 
ISU - Indexed sequential unmovable 
PO - Partitioned organization 
POU - Partitioned organization unmovable 
VS -VSAM 
?11 - Unknown 

Record format; three-character combination of the following: 

U - Records of undefined length 
F - Records of fixed length 
V - Records of variable length 
T - Records written with the track overflow feature of 

the device (3375 and 3380 do not support track 
overflow) 

B - Records blocked 
S - Records written as standard or spanned 

variable-length blocks 
A - Records contain ASCII printer control characters 
M - Records contain machine code control characters 
? - Unknown 

Logical record length 

Block size 

Key length 

Allocation, in space units 

Allocation used, in space units 

Primary allocation in space units 

Secondary allocation in space units 

Space units: 

CYLINDER - Space units in cylinders 
TRACK - Space units in tracks 
BLOCK - Space units in blocks 
???????? - Space units are unknown 

Number of extents allocated 

Creation date 
Year/day format, for example: 1990/102 

Chapter 4. Functions 135 



Functions 

Figure 12 (Page 2 of 2). Variables That LlSTDSI Sets 

Variable 

SYSREFDATE 

SYSEXDATE 

SYSPASSWORD 

SYSRACFA 

SYSUPDATED 

SYSTRKSCYL 

SYSBLKSTRK 

SYSADIRBLK 

SYSUDIRBLK 

SYSMEMBERS 

SYSREASON 

SYSMSGLVL1 

SYSMSGLVL2 

136 TSO/E Version 2 MVS/REXX Reference 

Conlents 

Last referenced date 
Year/day format, for example: 1990/107 
(Specifying DIRECTORY causes the date to be updated) 

Expiration date 
Year/day format, for example: 1990/365 

Password indication: 

NONE - No password protection 
READ - Password required to read 
WRITE - Password required to write 

RACF indication: 

NONE - No RACF protection 
GENERIC - Generic profile covers this data set 
DISCRETE - Discrete profile covers this data set 

Change indicator: 

YES - Data set has been updated 
NO - Data set has not been updated 

Tracks per cylinder for the unit identified in the SYSUNIT variable 

Blocks per track for the unit identified in the SYSUNIT variable 

Directory blocks allocated - returned only for partitioned data sets 
when DIRECTORY is specified 

Directory blocks used - returned only for partitioned data sets when 
DIRECTORY is specified 

Number of members - returned only for partitioned data sets when 
DIRECTORY Is specified 

LlSTDSI reason code 

First level message if an error occurred 

Second level message if an error occurred 

I 



Reason Codes 

c' 

( 

(/ 

------------ -~---- --------

Functions 

Reason codes from the LlSTDSI function appear in variable SYSREASON. Figure 13 
shows the LlSTDSI reason codes. 

Figure 13. LlSTDSI Reason Codes 

Reason Code 

o 

2 

3 

4 

5 

6 

7 

8 

9 

11 

12 

13 

14 

17 

18 

19 

20 

21 

22 

23 

24 

25 

27 

28 

29 

Description 

Normal completion. 

Error parsing the function. 

Dynamic allocation processing error. 

The data set is a type that cannot be processed. 

Error determining UNIT name. 

Data set not cataloged. 

Error obtaining the data set name. 

Error finding device type. 

The data set does not reside on a direct access storage device. 

DFHSM migrated the data set. NORECAL.L prevents retrieval. 

Directory information was requested, but you lack authority to 
access the data set. 

VSAM data sets are not supported. 

The data set could not be opened. 

Device type not found in unit control block (UC8) tables. 

System or user abend occurred. 

Partial data set information was obtained. 

Data set resides on multiple volumes. 

Device type not found in eligible device table (EDT). 

Catalog error trying to locate the data set. 

Volume not mounted. 

Permanent I/O error on volume. 

Data set not found. 

Data set migrated to non-DASD device. 

No volume serial is allocated to the data set. 

The ddname must be one to eight characters. 

Data set name or ddname must be specified. 

Chapter 4. Functions 137 



Functions 

Examples 

The following are some examples of using LlSTDSI. 

1. To set variables with information about data set USERID.WORK.EXEC, use the 
LlSTDSI function as follows: 

x = LISTDSI{work.exec} 
SAY 'Function code from LISTDSI is: 
SAY 'The data set name is: 
SAY 'The device unit on which the volume resides 
SAY 'The record format is: 
SAY 'The logical record length is: 
SAY 'The block size is: 
SAY 'The allocation in space units is: 
SAY 'Type of RACF protection is: 

Output from the example might be: 

Function code from LISTDSI is: 
The data set name is: 
The device unit on which the volume resides is: 
The record format is: 
The logical record length is: 
The block size is: 
The allocation in space units is: 
Type of RACF protection is: 

X 

, sysdsname 
is:' sysunit 

, sysrecfm 
, sys1rec1 
, sysblksize 
, sysalloc 
, sysracfa 

a 
USERID.WORK.EXEC 
3389 
VB 
255 
6124 
33 
GENERIC 

2. To retrieve information about the DO called APPLPAY, you can use LlSTDSI as 
follows: 

ddinfo = LISTDSI{"app1pay" "FILE"} 

3. Suppose you want to retrieve information about a PDS called 
SYS1.APPL.PAYROLL, including directory information. You do not want the PDS 
to be located through a catalog search, but have the location determined by the 
allocation of the data set. You can specify LlSTDSI as follows: 

/* REXX program for •••• */ 

var1 = '" sys1.app1.payroll "' 
i nfod = "di rectory" 

pdsinfo = LISTDSI(var1 infod "prealloc"} 

EXIT 

In the example, the variable var1 was assigned the name of the PDS 
(SYS1.APPL.PAYROLL). Therefore, in the LlSTDSI function call, var1 is not 
enclosed in quotes to allow for variable substitution. Similarly, the variable 
infod was assigned the value "directory," so in the LlSTDSI function, infod 
becomes the word "directory." The PREALLOC argument is enclosed in quotes 
to prevent any type of substitution. After the language processor evaluates the 
LlSTDSI function, it results in the following function call being processed: 

LISTDSI('sys1.app1.payro11' directory prea1loc} 

138 TSO/E Version 2 MVS/REXX Reference 

c 



(-

( 

MSG 

Functions 

--MSG( CO . J)--
ptlon 

MSG returns the value ON or OFF, which indicates the status of the displaying of 
TSO/E messages. That is, MSG indicates whether or not TSO/E messages are 
being displayed while the exec is running. 

Using MSG, you can control the display of TSO/E messages from TSO/E commands 
and TSO/E external functions. Use the following options to control the display of 
TSO/E informational messages. Informational messages are automatically 
displayed unless an exec uses MSG(OFF) to inhibit their display. 

ON returns the previous status of message issuing (ON or OFF) and allows 
TSO/E informational messages to be displayed while an exec is running. 

OFF returns the previous status of message issuing (ON or OFF) and inhibits the 
display of TSO/E informational messages while an exec is running. 

Here are some examples: 

msgstat = MSGO 
stat = MSG('off') 

-> 'OFF' /* returns current setting (OFF) */ 
-> 'ON' /* returns previous setting (ON) and 

inhibits message display */ 

You can use the MSG function only in REXX execs that run in the TSO/E address 
space. 

Environment Customlzatlon Considerations ---------------, 

If you use IRXINIT to initialize language processor environments, note that you 
can use MSG only in environments that are integrated into TSO/E (see page 
344). 

When an exec uses the MSG(OFF) function to inhibit the display of TSO/E messages, 
messages are not issued while the exec runs and while functions and subroutines 
called by that exec run. The displaying of TSO/E messages resumes if you use the 
MSG(ON) function or when the original exec ends. If an exec invokes another exec 
or CLIST using the EXEC command, message issuing status from the invoking exec 
is not carried over into the newly-invoked program. The newly-invoked program 
automatically displays TSO/E messages, which is the default. 

The MSG function is functionally equivalent to the CONTROL MSG and CONTROL 
NOMSG statements for TSO/E CLlSTs. 

Note: In non-TSO/E address spaces, you cannot control message output using the 
MSG function. However, if you use the TRACE OFF keyword instruction, messages 
do not go to the output file (SYSTSPRT, by default). 

Chapter 4. Functions 139 

------- -------------



Functions 

OUTTRAP 

Examples 

The following are some examples of using MSG. 

1. To inhibit the display of TSO/E informational messages while an exec is 
running, use MSG as follows: 

mS9_status = MSG("OFF") 

2. To ensure that messages associated with the TSO/E TRANSMIT command are 
not displayed before including the TRANSMIT command in an exec, use the 
MSG function as follows: 

IF MSG() = 'OFF' THEN, 
"TRANSMIT node.userid DA(myrexx.exec)" 

ELSE 
DO 

x = MSG("OFF") 
"TRANSMIT node.userid DA(myrexx.exec)" 

END 

""-OUTTRAP(-r-E-------------.,...,Ir )--... 

. v:~name~L.----------:....,..""-r'1 
~----'r-r--------r' 

, L1naxJ [,I 
LconcatJ 

OUTTRAP returns the name of the variable in which trapped output is stored, or if 
trapping is not in effect, OUTTRAP returns the word off. 

You can use the following arguments to trap lines of command output into 
compound variables or a series of numbered variables, or to turn trapping off that 
was previously started. 

off specify the word OFF to turn trapping off. 

varna me the stem of the compound variables or the variable prefix assigned to 
receive the command output. Compound variables contain a period and 
allow for indexing, but lists of variables with the same prefix cannot be 
accessed by an index in a loop. 

max the maximum number of lines to trap. You can specify a number, an 
asterisk in quotation marks ('.'), or a blank. If you specify'·' or a blank, 
all the output is trapped. The default is 999,999,999. 

concat indicates how output should be trapped. For eoneat, specify one of the 
following: 

• CONCAT 
indicates that output from commands be trapped in consecutive order 
until the maximum number of lines is reached. For example, if the C'''. 
first command has three lines of output, they are stored in variables . 
ending in 1, 2, and 3. If the second command has two lines of output, 

140 TSO/E Version 2 MVS/REXX Reference 



c' 

( 

( 

( 

Functions 

they are stored in variables ending in 4 and 5. The default order for 
trapping is CONCAT. 

• NOCONCAT 
indicates that output from each command be trapped starting at the 
variable ending in 1. For example, if the first command has three 
lines of output, they are stored in variables ending in 1, 2, and 3. If 
another command has two lines of output, they replace the first 
command's output in variables 1 and 2. 

Lines of output are stored in successive variable names (as specified by varname) 
concatenated with integers starting with 1. All unused variables display their own 
names. The number of lines that were trapped is stored in the variable name 
followed by o. For example, if you specify cmdout. as the varname, the number of 
lines stored is in: 

cmdout.G 

If you specify cmdout as the varname, the number of lines stored is in: 

cmdoute 

An exec can use these variables to display or process TSO/E command output. 
Error messages from TSO/E commands are trapped, but other types of error 
messages are sent to the terminal. Trapping, once begun, continues from one exec 
to other invoked execs or CLiSTs. Trapping ends when the original exec ends or 
when trapping is turned off. 

You can use the OUTIRAP function only in REXX execs that run in the TSO/E 
address space. 

Environment Customlzatlon Considerations --------------, 

If you use IRXINIT to initialize language processor environments, note that you 
can use OUTIRAP only in environments that are integrated into TSO/E (see 
page 344). 

To trap the output of TSO/E commands under ISPF, you must invoke an exec with 
command output after ISPF or one of its services has been invoked. 

OUTIRAP may not trap all of the output from a TSO/E command. The output that the 
OUTTRAP function traps depends on the type of output that the command produces. 
For example, the TSO/E command OUTPUT PRINT(*) directs the output from a job to 
your terminal. The OUTIRAP external function traps messages from the OUTPUT 
PRINT(*) command, but does not trap the job output itself that is directed to the 
terminal. 

In general, the OUTIRAP function traps all output from a TSO/E command. For 
example, OUTIRAP traps broadcast messages from LlSTBC, the list of allocated 
data sets from LlSTALC, catalog entries from LlSTCAT, and so on. 

If you plan to write your own command processors for use in REXX execs, and you 
plan to use the OUTIRAP external function to trap command output, note the 
following. The OUTIRAP function does not trap command output that is sent to the 
terminal by a TPUT or WTO macro. However, OUTIRAP does trap output from the 
PUTLINE macro with DATA or INFOR keywords. Therefore, if you write any 

Chapter 4. Functions 141 

----_ ... _-------_. 



Functions 

command processors, you may want to use the PUTLINE macro rather than the 
TPUT or WTO macros. TSOIE Version 2 Programming Guide describes how to write 
a TSO/E command processor. For information about the PUTLINE macro, see ( 
TSOIE Version 2 Programming Services. "~~_7/ 

Additional Variables That OUTTRAP Sets 
In addition to the variables that store the lines of output, OUTIRAP stores 
information in the following variables: 

varnameO 
contains the largest index into which output was trapped. The number in this 
variable cannot be larger than varnameMAX or varnameTRAPPED. 

varnameMAX 
contains the maximum number of output lines that can be trapped. 

varnameTRAPPED 
contains the total number of lines of command output. The number in this 
variable can be larger than varnameO or varnameMAX. 

varnameCON 
contains the status of the concat argument, which is either CONCAT or 
NOCONCAT. 

Examples 

The following are some examples of using OUTIRAP. 

1. This example shows the resulting values in variables after the following 
OUTIRAP function is processed. 

x = OUTTRAP(IABCI ,4,ICONCAT") 

Command 1 has three lines of output. 

ABce --> 3 
ABC I --> output line I 
ABC2 --> output line 2 
ABC3 --> output line 3 
ABC4 --> ABC4 
ABCMAX --> 4 
ABCTRAPPED --> 3 
ABC CON --> CONCAT 

Command 2 has two lines of output. The second line is not trapped. 

ABce --> 4 
ABCI --> command I output line I 
ABC2 --> command I output line 2 
ABC3 --> command I output line 3 
ABC4 --> command 2 output line 1 
ABCMAX --> 4 
ABCTRAPPED --> 5 
ABC CON --> CON CAT 

142 TSO/E Version 2 MVS/REXX Reference 



c 

Functions 

2. This example shows the resulting values in variables after the following 
OUTTRAP function is processed. 

x = OUTTRAP{"XYZ.",4,"NOCONCAT") 

Command 1 has three lines of output. 

xyz.e --> 3 
XYZ.l --> output line 1 
XYZ.2 --> output line 2 
XYZ.3 --> output line 3 
XYZ.4 --> XYZ.4 
XYZ.MAX --> 4 
XYZ.TRAPPED --> 3 
XYZ.CON --> NOCONCAT 

Command 2 has two lines of output. 

xyz.e --> 2 
XYZ.l --> command 2 output line 1 
XYZ.2 --> command 2 output line 2 
XYZ.3 --> command 1 output line 3 
XYZ.4 --> XYZ.4 
XYZ.MAX --> 4 
XYZ.TRAPPED --> 2 
XYZ.CON --> NOCONCAT 

3. To determine if trapping Is in effect: 

x = OUTTRAP{} 
SAY x /* If the exec is trapping output, displays the */ 

/* variable name; if it is not trapping output. */ 
/* displays OFF */ 

4. To trap output from commands in consecutive order into the stem 

output. 

use one of the following: 

x = OUTTRAP{"output.", '*' , "CONCAT") 

x = OUTTRAP{"outpUt. ") 

x = OUTTRAP{loutput.I .. ICONCAT") 

5. To trap 6 lines of output into the variable pr~fix 1 i ne and not concatenate the 
output: 

x = OUTTRAP{line.6,INOCONCAT") 

6. To suppress all command output: 

x = OUTTRAP{loutput".0) 

Chapter 4. Functions 143 



Functions 

PROMPT 

7. Allocate a new data set like an existing one and if the allocation is successful, 
delete the existing data set. If the allocation is not successful, display the r 
trapped output from the ALLOCATE command. '-.; 

x = OUTTRAP{lvar.") 
"ALLOC DA{new.data) LIKE{old.data} NEW" 
IF RC = fl THEN 

"DELETE old.data" 
ELSE 

DO i = 1 TO var.fl 
SAY var.i 

END 

If the ALLOCATE command is not successful, error messages are trapped in the 
following compound variables. 

VAR.1 = error message 
VAR.2 = error message 
VAR.3 = error message 

PROMPT returns the value ON or OFF, which indicates the setting of prompting for the 
exec. 

You can use the following options to set prompting on or off for interactive TSO/E 
commands, provided your profile allows for prompting. Only when your profile 
specifies PROMPT, can prompting be made available to TSO/E commands issued In 
an exec. 

ON returns the previous setting of prompt (ON or OFF) and sets prompting on for 
TSO/E commands issued within an exec. 

OFF returns the previous setting of prompt (ON or OFF) and sets prompting off for 
TSO/E commands issued within an exec. 

Here are some examples: 

promset = PROMPT{) 

setprom = PROMPT("ON") 

-> 

-> 

'OFF' 

'OFF' 

/* returns current setting (OFF) */ 

/* returns previous setting (OFF) 
and sets prompting on */ 

You can use the PROMPT function only in REXX execs that run in the TSO/E address 
space. 

Environment Customlzation Considerations -------------, 

If you use IRXINIT to initialize language processor environments, note that you 
can use PROMPT only in environments that are integrated into TSO/E (see page 
344). 

((", 

\,.~-~ 

C'" 
/ 

144 TSO/E Version 2 MVS/REXX Reference 



( 

Functions 

You can set prompting for an exec using the PROMPT keyword of the TSO/E EXEC 
command or the PROMPT function. The PROMPT function overrides the PROMPT 
keyword of the EXEC command. For more information about situations when one 
option overrides the other, see "Interaction of Three Ways to Affect Prompting" on 
page 145. 

When an exec sets prompting on, prompting continues in other functions and 
subroutines called by the exec. Prompting ends when the PROMPT(OFF) function is 
used or when the original exec ends. When an exec invokes another exec or CLiST 
with the EXEC command, prompting in the new exec or CLiST depends on the 
setting in the profile and the use of the PROMPT keyword on the EXEC command. 

If the data stack is not empty, commands that prompt retrieve information from the 
data stack before prompting a user at the terminal. To prevent a prompt from 
retrieving information from the data stack, issue a NEWSTACK command to create a 
new data stack for the exec. 

Note: When your TSO/E profile specifies NOPROMPT, no prompting is allowed in 
your terminal session even though the PROMPT function returns ON. 

Interaction of Three Ways to Affect Prompting 
You can control prompting within an exec in three ways: 

1. TSO/E profile 

The TSO/E PROFILE command controls whether prompting is allowed for TSO/E 
commands in your terminal session. The PROMPT operand of the PROFILE 
command sets prompting on and the NOPROMPT operand sets prompting off. 

2. TSO/E EXEC command 

When you invoke an exec with the EXEC command, you can specify the 
PROMPT operand to set prompting on for the TSO/E commands issued within 
the exec. The default is NOPROMPT. 

3. PROMPT external function 

You can use the PROMPT function to set prompting on or off within an exec. 

Figure 14 shows how the three ways to affect prompting interact and the final 
outcome of various interactions. 

Figure 14 (Page 1 of 2). Different Ways Prompting is Affected 

Interaction 

PROFILE PROMPT 
EXEC PROMPT 
PROMPT(ON) 

PROFILE PROMPT 
EXEC NOPROMPT 
PROMPT(ON) 

PROFILE PROMPT 
EXEC NOPROMPT 
PROMPTO 

PROFILE PROMPT 
EXEC NOPROMPT 
PROMPT(OFF) 

Prompting 

X 

X 

No Prompting 

X 

X 

Chapter 4. Functions 145 



Functions 

Figure 14 (Page 2 of 2). Different Ways Prompting is Affected 

Interaction 

PROFILE PROMPT 
EXEC PROMPT 
PROMPTO 

PROFILE PROMPT 
EXEC PROMPT 
PROMPT(OFF) 

PROFILE NOPROMPT 
EXEC PROMPT 
PROMPT(ON) 

PROFILE NOPROMPT 
EXEC NOPROMPT 
PROMPT(ON) 

PROFILE NOPROMPT 
EXEC PROMPT 
PROMPT(OFF) 

PROFILE NOPROMPT 
EXEC NOPROMPT 
PROMPT(OFF) 

PROFILE NOPROMPT 
EXEC PROMPT 
PROMPTO 

PROFILE NOPROMPT 
EXEC NOPROMPT 
PROMPTO 

Examples 

Prompting 

X 

The following are some examples of using PROMPT. 

No Prompting 

X 

X 

X 

X 

X 

X 

X 

1. To check if prompting is available before issuing the interactive TRANSMIT 
command, use the PROMPT function as follows: 

"PROFILE PROMPT" 
IF PROMPTO = 'ON' THEN. 

"TRANSMIT" 
ELSE 

DO 
x = PROMPT('ON') 
"TRANSMIT" 

END 

2. Suppose you want to use the LlSTDS command in an exec and want to ensure 
that prompting is done to the terminal. First check whether the data stack is 
empty. If the data stack is not empty, use the NEWSTACK command to create a 
new data stack. Use the PROMPT function before issuing the LlSTDS command. 

IF QUEUED() > a THEN 
"NEWSTACK" 

ELSE NOP 
x = PROMPT('ON') 
"LISTDS" 

146 TSO/E Version 2 MVS/REXX Reference 

c 

c 



SETlANG 

( 

( 

( 

~~---- .,.-------------

Functions 

~ .... ---,.~SETLANG( )--_"-44 
-Llangcod~ 

SETLANG returns a three character code that indicates the language in which REXX 
messages are currently being displayed. Figure 15 shows the language codes that 
replace the function call and the corresponding languages for each code. 

You can optionally specify one of the language codes as an argument on the 
function to set the language in which REXX messages are displayed. In this case, 
SETLANG returns the code of the language in which messages are currently 
displayed and changes the language in which subsequent REXX messages will be 
displayed. 

Figure 15. Language Codes for SETLANG Function That Replace the Function Call 

Language 
Code 

CHS 

CHT 

DAN 

DEU 

ENP 

ENU 

ESP 

FRA 

JPN 

KOR 

PTB 

Language 

Simplified Chinese 

Traditional Chinese 

Danish 

German 

US English - all uppercase 

US English - mixed case (upper and lowercase) 

Spanish 

French 

Japanese 

Korean 

Brazilian Portuguese 

Here are some examples: 

curlang = SETLANG() -> 'ENU' /* returns current language (ENU) */ 

oldlang = SETLANG{"ENp l ) -> 'ENU' /* returns current language (ENU) 
and sets language to US English 
uppercase (ENP) */ 

You can use the SETLANG function in an exec that runs in any MVS address space 
(TSO/E and non-TSO/E). 

After an exec uses SETLANG to set a specific language, any REXX message the 
system issues is displayed in that language. If the exec calls another exec (either 
as a function or subroutine or using the TSO/E EXEC command), any REXX 
messages are displayed in the language you specified on the SETLANG function. 
The language specified on SETLANG is used as the language for displaying REXX 
messages until another SETLANG function is invoked or the environment in which 
the exec is running terminates. 

Chapter 4. Functions 147 



Function. 

Notes: 

1. The default language for REXX messages depends on the language feature that C,';, 
is installed on your system. The default language is in the language field of the 
parameters module (see page 347). You can use the SETLANG function to 
determine and set the language for REXX messages. 

2. The language codes you can specify on the SETLANG function also depend on 
the language features that are installed on your system. If you specify a 
language code on the SETLANG function and the corresponding language 
feature is not installed on your system, SETLANG does not issue an error 
message. However, if the system needs to display a REXX message and cannot 
locate the message for the particular language you specified, the system issues 
an error message. The system then tries to display the REXX message in US 
English. 

3. Your installation can customize TSO/E to display certain information at the 
terminal in different languages. Your installation can define a primary and 
secondary language for the display of information. The language codes for the 
primary and secondary languages are stored in the user profile table (UPT). ." . ./ 
You can use the TSO/E PROFILE command to change the languages specified in 
the UPT. 

The languages stored in the UPT do not affect the language in which REXX 
messages are displayed. The language for REXX messages is controlled only 
by the default in the language field of the parameters module and the SETLANG 
function. 

For information about customizing TSO/E for different languages and the types 
of information that are displayed in different languages, see TSOIE Version 2 
Customization. 

4. The SYSVAR external function has the SYSPLANG and SYSSLANG arguments 
that return the user's primary and secondary language stored in the UPT. You 
can use the SYSVAR function to determine the setting of the user's primary and 
secondary language. You can then use the SETLANG function to set the 
language in which REXX messages are displayed to the same language as the 
primary or secondary language specified for the user. See "SYSVAR" on 
page 152 for more information. 

Examples 

The following are some examples of using SETLANG. 

1. To check the language in which REXX messages are currently being displayed, 
use the SETLANG function as follows: 

currlng = SETLANG{) /* for example, returns ENU */ 

c 
148 TSO/E Version 2 MVS/REXX Reference 



STORAGE 

(. 

( 

Functions 

2. The SYSPLANG argument of the SYSVAR function returns the user's primary 
language that is stored in the user profile table (UPT). 

The following example uses the SYSVAR function to determine the user's 
primary language and then uses the SETLANG function to check the language in 
which REXX messages are displayed. If the two languages are the same, no 
processing is performed. If the languages are different, the exec uses the 
SETLANG function to set the language for REXX messages to the same 
language as the user's primary language. 

/* REXX ••• */ 

proflang = SYSVAR('SYSPLANG') 
rexxlang = SETLANG() 
IF proflang ~ rexxlang THEN 

newlang = SETLANG(proflang) 

ELSE NOP 

EXIT 

/* check primary language in UPT 
/* check language for REXX messages 

/* set language for REXX messages 
/* to user's primary language 
/* otherwise, no processing needed 

--.,.. STORAGE(address -..,.----------------.,----,-)-
L-,-~--_,__r--_r----' , L ....... -.. =:J. 

. ,d,ata·. 

*/ 
*/ 

*/ 
*/ 
*/ 

STORAGE returns length bytes of data from the specified address in storage. The 
address is a character string containing the hexadecimal representation of the 
storage address from which data is retrieved. 

Optionally, you can specify length, which is the decimal number of bytes to be 
retrieved from address. The default length is one byte. When length is 0, STORAGE 
returns a null character string. 

If you specify data, STORAGE returns the information from address and then 
overwrites the storage starting at address with data you specified on the function 
call. The data is the character string to be stored at address. The length argument 
has no effect on how much storage is overwritten; the entire data is written. 

You can use the STORAGE function in REXX execs that run in any MVS address 
space (TSO/E and non-TSO/E). 

If the STORAGE function tries to retrieve or change data beyond the storage limit, 
only the storage up to the limit is retrieved or changed. 

Note: Virtual storage addresses may be fetch protected, update protected, or may 
not be defined as valid addresses to the system. Any particular invocation of the 
STORAGE function may fail if it references a non-existent address, attempts to 
retrieve the contents of fetch protected storage, or attempts to update non-existent 
storage or is attempting to modify store protected storage. In all cases, a null string 
is returned to the REXX exec. 

The STORAGE function returns a null string if any part of the request fails. Because 
the STORAGE function can both retrieve and update virtual storage at the same 

Chapter 4. Functions 149 

-----~-.. -.--.. -----.--. 



Functions 

SVSDSN 

time, it is not evident whether the retrieve or update caused the null string to be 
returned. In addition, a request for retrieving or updating storage of a shorter length ~ 

might have been successful. When part of arequest fails, the failure point is on a ~j 
decimal 2048 boundary. 

Examples 

The following are some examples of using STORAGE. 

1. To r'etrieve 25 bytes of data from address 000AAE35, use the STORAGE function 
as follows: 

storret = STORAGE(eeeAAE35,25) 

2. To replace the data at address 0035041 F with 'TSO/E REXX'. use the following 
STORAGE function: 

storrep = STORAGE(ee35D41F,,'TSO/E REXX') 

This example first returns one byte of information found at address 0035041F 
and then replaces the data beginning at address 0035041F with the characters 
'TSO/E REXX·. 

Note: Information is retrieved before it is replaced. 

SYSOSN returns one of the following messages that indicates whether the specified 
dsname exists and is available for use. The dsname can be the name of a 
sequential or partitioned data set or a data set member. 

OK /* data set or member is available */ 
MEMBER NOT FOUND 
MEMBER SPECIFIED, BUT DATASET IS NOT PARTITIONED 
DATASET NOT FOUND 
ERROR PROCESSING REQUESTED DATASET 
PROTECTED DATASET /* data set is RACF-protected */ 
VOLUME NOT ON SYSTEM 
INVALID DATASET NAME, dsname 
MISSING DATASET NAME 
UNAVAILABLE DATASET /* another user has an exclusive ENQ 

on the specified data set */ 

You can use the SYSOSN function only in REXX execs that run in the TSO/E address 
space. 

Environment Customizatlon Considerations -------------, 

If you use IRXINIT to initialize language processor environments, note that you 
can use SYSOSN only in environments that are integrated into TSO/E (see page 
344). c 

150 TSO/E Version 2 MVS/REXX Reference 



( 

( 

c 

Functions 

You can specify the dsname in any of the following ways: 

• Fully-qualified data set name - The extra quotation marks prevent TSO/E from 
adding your prefix to the data set name. 

x = SYSDSN{I'sys1.proj.new'") 

x = SYSDSN{" 'sysl.proj.new" ') 

• Non fully-qualified data set name that follows the naming conventions - When 
there is only one set of quotation marks or no quotation marks, TSO/E adds your 
prefix to the data set name. 

x = SYSDSN('myrexx.exec') 

x = SYSDSN(myrexx.exec) 

• Variable name that represents a fully-qualified or non fully-qualified data set 
name - The variable name must not be enclosed in quotation marks because 
quotation marks prevent variable substitution. 

x = SYSDSN(variable) 

If the specified data set has been migrated. SYSDSN attempts to recall it. 

Examples 

The following are some examples of using SYSDSN. 

1. To determine the availability of PROJ.EXEC{MEM1): 

x = SYSDSN{"proj.exec(meml)") 
IF x = 'OK' THEN 

CALL routinel 
ELSE 

CALL routine2 

2. To determine the availability of DEPT.REXX.EXEC: 

s = SYSDSN (" I dept. rexx. exec "') 
say s 

Chapter 4. Functions 151 ' 



Functions 

SYSVAR 

User Information 

SYSVAR returns information about MVS, TSO/E, and the current session, such as 
levels of software available, your logon procedure, and your user 10. The 
information returned depends on the arg_name value specified on the function call. 
The arg_name values are divided into the following categories of information: user, 
terminal, exec, system, language, and console session information. The different 
categories are described below. 

Use the following arguments to obtain information related to the user. 

SYSPREF 

SYSPROC 

SYSUID 

the prefix as defined in the user profile. The prefix is the string that 
is prefixed to data set names that are not fully-qualified. The prefix 
is usually the user's user 10. You can use the TSO/E PROFILE 
command to change the prefix. 

the name of the logon procedure for the current session. You can 
use the SYSPROC argument to determine whether certain 
programs, such as the TSO/E session manager, are available to the 
user. For exampie, suppose your installation has the logon 
procedure SMPROC for the session manager. The exec can check 
that the user logged on using SMPROC before invoking a routine 
that uses session manager. Otherwise, the exec can display a 
message telling the user to log on using the SMPROC logon 
procedure. 

the user 10 under which the current TSO/E session is logged on. 
The SYSUID argument returns the same value that the USERID 
built-in function returns in TSO/E. 

Terminal Information 

Exec Information 

Use the following arguments to obtain information related to the terminal. 

SYSLTERM 

SYSWTERM 

number of lines available on the terminal screen. In the 
background, SYSL TERM returns O. 

width of the terminal screen. In the background, SYSWTERM 
returns 132. 

Use the following arguments to obtain information related to the exec. 

SYSENV indicates whether the exec is running in the foreground or 
background. SYSENV returns the following values: 

• FORE - exec is running in the foreground 
• BACK - exec is running in the background 

You can use the SYSENV argument to make logical decisions based 
on foreground or background processing. 

152 TSO/E Version 2 MVS/REXX Reference 

c 

"\ 



(/ 

( 

Ci 

SYSICMD 

SYSISPF 

SYSNEST 

SYSPCMD 

SYSSCMD 

System Information 

Functions 

the name by which the user implicitly invoked the exec that is 
currently processing. If the user invoked the exec explicitly, 
SYSICMD returns a null value. 

indicates whether or not ISPF dialog manager services are 
available for the exec. SYSISPF returns the following values: 

• ACTIVE - ISPF services are available 
• NOT ACTIVE - ISPF services are not available 

Indicates whether the exec was invoked from another program, 
such as an exec or CLiST. The invocation could be either implicit 
or explicit. SYSNEST returns YES if the exec was invoked from 
another program; otherwise, it returns NO. 

the name or abbreviation of the TSO/E command processor that the 
exec most recently processed. 

The initial value that SYSPCMD returns depends on how you 
invoked the exec. If you invoked the exec using the TSO/E EXEC 
command, the initial value returned is EXEC. If you invoked the 
exec using the EXEC subcommand of the TSO/E EDIT command, 
the initial value returned is EDIT. 

You can use the SYSPCMD argument with the SYSSCMD argument 
for error and attention processing to determine where an error or 
attention interrupt occurred. 

the name or abbreviation of the TSO/E subcommand processor that 
the exec most recently processed. 

The initial value that SYSSCMD returns depends on how you 
invoked the exec. If you invoked the exec using the TSO/E EXEC 
command, the initial value returned is null. If you invoked the exec 
using the EXEC subcommand of the TSO/E EDIT command, the 
initial value returned is EXEC. 

The SYSPCMD and SYSSCMD arguments are interdependent. After 
the initial invocation, the values that SYSPCMD and SYSSCMD 
return depend on the TSO/E command and subcommand 
processors that were most recently processed. For example, if 
SYSSCMD returns the value EQUATE, which is a subcommand 
unique to the TEST command, the value that SYSPCMD returns 
would be TEST. 

You can use the SYSPCMD and SYSSCMD arguments for error and 
attention processing to determine where an error or attention 
interrupt occurred. 

Use the following arguments to obtain information related to the system. 

SYSCPU the number of seconds of central processing unit (CPU) time used 
during the session in the form: seconds.hundredths-of-seconds. 

You can use the SYSCPU argument and the SYSSRV argument, 
which returns the number of system resource manager (SRM) 
service units, to evaluate the: 

• Performance of applications 
• Duration of a session. 

Chapter 4. Functions 153 



Functions 

SYSHSM 

SYSLRACF 

SYSRACF 

SYSSRV 

SYSTSOE 

indicates the status of the Data Facility Hierarchical Storage 
Manager (DFHSM). SYSHSM returns the following values: 

• A null value if DFHSM is not installed and active 

• AVAILABLE if a release of DFHSM before Version 1 Release 3 
is installed and active 

• A 4 digit number in the following format if DFHSM Version 1 
Release 3 or later is installed and active. 

2 9 2 9 (DFHSM Version 2 Release 2.9) 

I I I I """,.t,,, ..... , 
release number 
version number 

indicates the level of RACF installed. SYSLRACF returns the 
following values: 

• A null value if RACF is not installed 

• A 4 digit number in the following format if RACF is installed. 

1 e 8 e (RACF Version 1 Release 8.9) 

1 I I I ","",.t,., ..... , 
release number 
vers i on number 

indicates the status of RACF. SYSRACF returns the following 
values: 

• AVAILABLE if RACF is installed and available 

• NOT AVAILABLE if RACF is installed but is not available 

• NOT INSTALLED if RACF is not installed. 

the number of system resource manager (SRM) service units used 
during the session. 

You can use the SYSSRV argument and the SYSCPU argument, 
which returns the number of seconds of CPU time used, to evaluate 
the: 

• Performance of applications 
• Duration of a session. 

the version, release, and modification level of TSO/E installed in 
the following format: 

2 e 3 1 (TSO/E Version 2 Release 3.1) 

I. I I I """"t'''. number release number 
. versi on number 

154 TSO/E Version 2 MVS/REXX Reference 

/\ 
I 
'-/ 

c 



( 

( 

Functions 

Language Information 
Use the following arguments to obtain information related to the display of 
information in different languages. 

SYSOTERM 

SYSKTERM 

SYSPLANG 

SYSSLANG 

indicates whether or not the user's terminal supports Oouble-Byte 
Character Set (OBCS). SYSOTERM returns the following values: 

• YES - Terminal supports OBCS 
• NO - Terminal does not support OBCS 

The SYSOTERM argument is useful if you want to display messages 
or other information to the user and the information contains OBCS 
characters. 

indicates whether or not the user's terminal supports Katakana. 
SYSKTERM returns the following values: 

• YES - Terminal supports Katakana 
• NO - Terminal does not support Katakana 

The SYSKTERM argument is useful if you want to display messages 
or other information to the user and the information contains 
Katakana characters. 

a three character code that indicates the user's primary language 
stored in the user profile table (UPT). For more information, see 
"Using the SYSPLANG and SYSSLANG Arguments." 

a three character code that indicates the user's secondary 
language stored in the user profile table (UPT). For more 
information, see "Using the SYSPLANG and SYSSLANG 
Arguments." 

Using the SYSPLANO and SYSSLANO Arguments: Your installation can customize 
TSO/E to display certain types of information at the terminal In different languages. 
Your installation can define a primary and secondary language for the display of 
information. The language codes for the primary and secondary language are 
stored in the user profile table (UPT). You can use the TSO/E PROFILE command to 
change the languages specified in the UPT. 

The SYSPLANG and SYSSLANG arguments return the three character language 
codes for the user's primary and secondary language that are stored in the UPT. 
The arguments are useful if you want to display messages or other information to 
the user in the primary or secondary language. The language codes that SYSVAR 
returns depend on the language support and codes that your installation has 
defined. TSOIE Version 2 Customization describes how to customize TSO/E for 
different languages, the types of informati.on that are displayed in different 
languages, and language codes. 

TSO/E also provides the SETLANG external function that lets you determine and set 
the language in which REXX messages are displayed. SETLANG has no effect on 
the languages that are stored in the UPT. However, you can use both SETLANG and 
SYSVAR together for language processing. For example, you can use the SYSVAR 
function with the SYSPLANG or SYSSLANG argument to determine the language 
code stored in the UPT. You can then use the SETLANG function to set the language 
in which REXX messages are displayed to the same language as the user's primary 
or secondary language. See "SETLANG" on page 147 for more information. 

Chapter 4. Functions 155 



Functions 

Console Session Information 
The console session arguments let you obtain information related to running an 
extended MCS console session that you have established using the TSO/E 
CONSOLE command. 

The SOLDISP, UNSDISP, SOLNUM, and UNSNUM arguments provide information 
about the options that have been specified for a console session. The arguments 
relate to keywords on the TSO/E CONSPROF command. You can use the arguments 
to determine what options are in effect before you issue MVS system or subsystem 
commands or use the GETMSG function to retrieve a message. 

The MFTIME, MFOSNM, MFJOB, and MFSNMJBX arguments provide information 
about messages that are issued during a console session. These arguments are 
useful if you use the GETMSG external function to retrieve messages that are not 
displayed at the terminal and you want to display a particular message that was 
retrieved. The arguments indicate whether certain types of information should be 
displayed with the message, such as the time stamp. 

For information about console sessions, see Appendix 0, "Writing REXX Execs to 
Perform MVS Operator Activities" on page 505. 

SOLDISP 

UNSDISP 

SOLNUM 

UNSNUM 

indicates whether or not solicited messages that are routed to a 
user's console during a console session are to be displayed at the 
user's terminal. Solicited messages are responses from MVS 
system and subsystem commands that are issued during a console 
session. SOLDISP returns the following values: 

• YES - solicited messages are displayed 
• NO - solicited messages are not displayed 

indicates whether or not unsolicited messages that are routed to a 
user's console during a console session are to be displayed at the 
user's terminal. Unsolicited messages are messages that are not 
direct responses from MVS system and subsystem commands that 
are issued during a console session. UNSDISP returns the 
following values: 

• YES - unsolicited messages are displayed 
• NO - unsolicited messages are not displayed 

the size of the message table that contains solicited messages (that 
is, the number of solicited messages that can be stored). The 
system stores the messages in the table during a console session if 
you specify that solicited messages are not to be displayed at the 
terminal. You can use the TSO/E CONSPROF command to change 
the size of the table. For more information, see TSOIE Version 2 
System Programming Command Reference. 

the size of the message table that contains unsolicited messages 
(that is, the number of unsolicited messages that can be stored). 
The system stores the messages in the table during a console 
session if you specify that unsolicited messages are not to be 
displayed at the terminal. You can use the TSO/E CONSPROF 
command to change the size of the table. For more information, 
see TSOIE Version 2 System Programming Command Reference. 

156 TSO/E Version 2 MVS/REXX Reference 

c 



CI 

( 

( 

( 

MFTIME 

MFOSNM 

MFJOB 

MFSNMJBX 

indicates whether or not the user requested that the time stamp 
should be displayed with system messages. MFTIME returns the 
following values: 

• YES - time stamp should be displayed 
• NO - time stamp should not be displayed 

indicates whether or not the user requested that the originating 
system name should be displayed with system messages. 
MFOSNM returns the following values: 

• YES - originating system name should be displayed 
• NO - originating system name should not be displayed 

indicates whether or not the user requested that the originating job 
name or job 10 of the issuer should be displayed with system 
messages. MFJOB returns the following values: 

• YES - originating job name should be displayed 
• NO - originating job name should not be displayed 

indicates whether or not the user requested that the originating 
system name and job name should nol be displayed with system 
messages. MFSNMJBX returns the following values: 

• YES - originating system name and job name should not be 
displayed 

• NO - originating system name and job name should be 
displayed 

Note: MFSNMJBX is intended to override the values of MFOSNM 
and MFJOB. The value for MFSNMJBX may not be consistent with 
the values for MFOSNM and MFJOB. 

You can use the SYSVAR function only in REXX execs that run in the TSO/E address 
space. Use SYSVAR to determine various characteristics in order to perform 
different processing within the exec. 

Environment Customlzatlon Considerations -------------, 

If you use IRXINIT to initialize language processor environments, note that you 
can use SYSVAR only in environments that are integrated into TSO/E (see page 
344). 

Examples 

The following are some examples of using SYSVAR. 

1. To display whether the exec is running in the foreground or background: 

SAY SYSVAR("sysenv") /* Displays FORE or BACK */ 
2. To find out the level of RACF installed: 

level = SYSVAR(lsyslracf") /* Returns RACF level */ 

Chapter 4. Functions 157 



Functions 

3. To determine if the prefix is the same as the user 10: 

IF SYSVAR(lsyspref") = SYSVAR(lsysuid") THEN 

ELSE 

EXIT 

4. Suppose you want to use the GETMSG external function to retrieve a solicited 
message. Before using GETMSG, you want to save the current setting of 
message displaying and use the TSO/E CONSPROF command so that solicited 
messages are not displayed. After GETMSG processing, you want to restore the 
previous setting of message displaying. 

/* REXX program ••• */ 

mdisp = SYSVAR("SOLDISP") 
"CONSPROF SOLDISPLAY(NO)" 

/* Save current message setting */ 
/* Inhibit message display */ 

msg = GETMSG('cons','sol','APP9996',,69) /* Retrieve message */ 

*/ "CONSPROF SOLDISPLAY(lmdi sp")" /* Restore message setting 

EXIT 

Relationship 01 CLiST Control Variables and SYSVAR Function 
The information that the SYSVAR external function returns is similar to the 
information stored in CLiST control variables for TSO/E CLiSTs. The SYSVAR 
external function does not support all the CLiST control variables. SYSVAR 
supports only the arg_name values described in this topic. 

Some CLiST control variables do not apply to REXX. Other CLiST control variables 
duplicate other REXX functions. SYSVAR does not support the following CLiST 
control variables. However, for these CLiST control variables, there is an 
equivalent function in REXX, which is listed below. 

SYSDATE ===> DATE(usa) 
SYSJDATE ==> DATE(jul ian) 
SYSSDATE => DATE (ordered) 
SYSSTIME ==> SUBSTR(TIME(normal),1,5) 
SYSTIME ==> TIME(normal) or TIME() 

158 TSO/E Version 2 MVS/REXX Reference 

\",.~ ... j 

c 



( 

c 

Parsing 

III a 

Chapter 5. Parsing for PARSE, ARG, and PUll 

~ntrodudion 

Parsing Words 

PARSE, ARG, and PULL allow a selected string to be parsed (split up) and assigned 
into variables, under the control of a template. The various mechanisms in the 
template allow a string to be split up into words (delimited by blanks), or by explicit 
matching of patterns or numeric position-for example to extract data from 
particular columns of a record read from a file. 

This section first gives some informal examples of how to use the parsing template, 
then describes the mechanisms used. 

Here are some examples that illustrate how parsing works. 

The simplest form of a parsing template consists of a list of variable names. The 
data being parsed is split up into words (characters delimited by blanks), and each 
word from the data is assigned to a variable in sequence. The final variable is 
treated differently in that it is assigned whatever is left of the original data and may, 
therefore, contain several words, and possibly leading and trailing blanks. 

Parse value 'This is a sentence.' with vi v2 v3 
/* is equivalent to: */ 
vi = "This"; v2 = "is"; v3·"a sentence." 

In this example, vi would get the value This, v2 would get the value is, and v3 would 
get a sentence. 

Leading blanks and trailing blanks are removed from each word in the string before 
the word is assigned to a variable, except for the word or group of words assigned 
to the last variable. Variables set in this manner (vi and v2 in the example above) 
will never have leading or trailing blanks. But the last variable (v3 in the example) 
could have both leading and trailing blanks, if extra blanks were specified before a 
or after sentence. 

For example, 

Parse value 'This is a sentence.' with vi v2 v3 
/* is equivalent to: */ 
vi = "This"; v2· "is"; v3 .:" a sentence." 

In this example, vi would get the value This, v2 would get the value is, and v3 would 
get a sentence. 

In addition, if you use PARSE UPPER (or the ARG or PULL instruction), the whole 
string is translated into uppercase (that is, lowercase a-z to uppercase A-Z) before 
parsing begins. 

Note that all variables mentioned in a template are always given a new value; if 
there are fewer words in the data than variables in the template, the unused 
variables are set to nUll. 

© Copyright IBM Corp. 1988. 1991 159 



Parsing 

Parsing Using String Patterns 
You can use a string in a template to split up the data: 

Parse value 'To be, or not to be?' with wI ',' w2 
/* causes the data to be scanned for the comma, */ 
/* then split at that point, thus: */ 
wI = "To be"; w2 = " or not to be?" 

wI is set to To be, and w2 is set to or not to be? A string used in this way is called 
a pattern. Note that the pattern itself (and only the pattern) is removed from the 
data. In fact, each section is treated in just the same way as the whole string was in 
the previous example, and so either section can be split up into words. 

Parse value 'To be, or not to be?' with wI ',' w2 w3 w4 
/* is equivalent to: */ 
wI = "To be"; w2 = "or"; w3 = "not"; w4 = "to be?" 

w2 and w3 get the values or and not, and w4 gets the remainder: to be? If you 
specified UPPER on the instruction, all the variables would be translated to 
uppercase. 

If the string in these examples did not contain a comma, the pattern would 
effectively "match" the end of the string: so the variable to the left of the pattern 
would get the entire input string, and the variables to the right would be set to nUll. 
Note that a null string is never found; it always matches the end of the string. 

You can specify the pattern as a variable by putting the variable name in 
parentheses. The following instructions, therefore, have the same effect as the last 
example: 

comma=', ' 
Parse value 'To be, or not to be?' with wI (comma) w2 w3 w4 

Parsing Using Numeric Patterns 
The third type of parsing mechanism is the numeric pattern. This works in the same 
way as the string pattern except that it specifies a column number. So: 

Parse value 'Flying pigs have wings' with xl 5 x2 
/* splits the data at column 5. Equivalent to */ 
xl = "Flyi"; x2 = "ng pigs have wings" 

splits the data at column 5, and xl becomes Flyi and x2 starts at column 5 and 
becomes ng pigs have wings. 

More than one pattern is allowed, so for example: 

Parse value 'Flying pigs have wings' with xl 5 x2 10 x3 
/* splits the data at columns 5 and 10. Equivalent to */ 
xl = "Flyi"; x2 = "ng pi"; x3 = lOgs have wings" 

splits the data at columns 5 and 10, and x2 becomes ng pi and x3 becomes gs have 
wings. 

The numbers can be relative to the last number used, so 

Parse value 'Flying pigs have wings' with xl 5 x2 +5 x3 

has exactly the same effect as the last example: here the +5 can be thought of as 
specifying the length of the data to be assigned to x2. 

160 TSO/E Version 2 MVS/REXX Reference 

c 



( 

( 

.. -. ----.-----~~--

Parsing 

String patterns and numeric patterns can be mixed (in effect the beginning of a 
string pattern just specifies a variable column number) and some very powerful 
things can be done with templates. The "Definition" section (following) describes in 
more detail how the various mechanisms interact. 

Parsing Arguments 

. -
Definition 

Finally, it is possible to parse more than one string. For example, an internal 
function can have more than one argument string. To get at each string in turn, you 
just put a comma in the parsing template. For example, if the invocation of the 
function "FRED" was: 

fred('This is the first string',2) 

the instruction 

PARSE ARG first, second 
/* is equivalent to */ 
first = "This is the first string"; second = "2" 

The variable fi rst contains the string "This is the first string". The variable second 
contains the string "2". Between the commas you can put a normal template, with 
patterns, and so forth, to do more complex parsing on each of the argument strings . 

This section describes the rules that govern parsing. 

In its most general form, a template consists of alternating pattern specifications 
and variable names. The pattern specifications and variable names are used 
strictly in sequence from left to right, and are used once only. In practice, various 
simpler forms are used in which either variable names or patterns can be omitted; 
we can, therefore, have variable names without patterns in between, and patterns 
without intervening variable names. 

In general, the value assigned to a variable is that sequence of characters in the 
input string between the point that is matched by the pattern on its left and the point 
that is matched by the pattern on its right. 

If the first item in a template is a variable, there is an implicit pattern on the left that 
matches the start of the string, and similarly if the last item in a template is a 
variable, there is an implicit pattern on the right that matches the end of the string. 
Hence the simplest template consists of a single variable name, which, in this case, 
is assigned the entire input string. 

Setting a variable during parsing is identical to setting a variable in an assignment. 
It is, therefore, possible to set an entire collection of compound variables during 
parsing. (See pages 22 and 23.) When a variable follows another variable, the 
action taken is the same for all kinds of patterns; this action is described under 
"Parsing Strings into Words" on page 162. 

Chapter 5. Parsing for PARSE, ARG, and PULL 161 



Parsing 

The constructs that appear as patterns fall into two categories: 

• String patterns that act by searching for a matching string 
- Literal patterns 
- Variable patterns. 

• Numeric (positional) patterns that specify a position in the data 
Absolute patterns 

- Relative patterns. 

For the following examples, assume that the following string is being parsed (note 
that all blanks are significant): 

'This is the data which, I think, is scanned.' 

Parsing Strings into Words 
If a variable is followed by another variable, a special action is taken. This is 
similar to the pattern' , (a single blank) being between them, except that leading 
blanks at the current position in the input data are skipped over before the search 
for the next blank takes place. This means that the value assigned to the left-hand 
variable is the next word in the string and has neither leading nor trailing blanks. 

Thus the template: 

wI w2 w3 rest ',' 

results in: 

wI = "This" 
w2 = '-is'" 
w3 = "the" 
rest = "data whi ch" 

Note that the final variable (rest in this example) could have had both leading 
blanks and trailing blanks, since only the blank that delimits the previous word is 
removed from the data. 

Also observe that this example is not the same as specifying explicit blanks as 
patterns, as the template: 

wI ' , w2 ' , w3 ' , rest ',' 

(in fact) results in: 

wI = "This" 
w2 = "is" 
w3 = "" (null) 
rest = "the data whi ch" 

since the third pattern would match the third blank in the data. 

Note: Quotation marks are not part of the value. They are shown here and in 
following examples only to indicate leading or trailing blanks. 

In general then, when a variable is followed by another variable, parsing of the input 
by tokenization into words is implied. 

162 TSO/E Version 2 MVS/REXX Reference 

c 

o 



o 

( 

~~~-- ... 

Parsing 

Parsing with Literal String Patterns 
Literal patterns cause scanning of the input data string to find a sequence that 
matches the value of the literal. Literals are expressed as a quoted string. 

When the template: 

w1 ',' w2 ',' rest 

is used to parse the example string, the result is: 

w1 = "This is the data which" 
w2 = " I think" 
rest =" is scanned." 

Here the string is parsed using a template that asks that each of the variables 
receive a value corresponding to a portion of the original string between commas; 
the commas are given as quoted strings. Note that the patterns (in this example, the 
commas) themselves are removed from the data being parsed. 

A different parse would result with the template: 

w1 ',' w2 ',' w3 ',' rest 

which would result in: 

w1 = "This is the data which" 
w2 = " I think" 
w3 =" is scanned." 
rest = "" (null) 

This illustrates an important rule. When a match for a pattern cannot be found in the 
input string, it instead "matches" the end of the string. Thus, no match was found 
for the third ',' in the template, and so w3 was assigned the rest of the string. 
Because the pattern on its left had already reached the end of the string, rest was 
assigned a null value. 

A null pattern (a string of length 0) can be used to match the end of the data 
explicitly. This is mainly useful with positional patterns (described later). 

Note that aI/ variables that appear in a template are assigned a new value. 

Parsing with Variable String Patterns 
It is sometimes desirable to specify a matching pattern by using a variable instead 
of a literal string. You can do this by placing the name of the variable to serve as 
the pattern in parentheses. The variable can be one that has been set earlier in the 
parsing process, so, for example: 

input="L/look for/1 H)" 
parse var input verb 2 delim +1 string (delim) rest 

sets: 

verb "L" 
del im "/" 
string = "look for" 
rest "1 18" 

Chapter 5. Parsing for PARSE, ARG, and PULL 163 

------.-.---.-.----



Use of the Period as a Placeholder 
The symbol consisting of a single period acts as a placeholder in a template. It has 
exactly the same effect as a variable name, except that no variable is set. It is 
especially useful as a "dummy variable" in a list of variables or to collect unwanted 
information at the end of a string. Thus, when the template: 

••• word4 • 

is used to parse the same example string: 

'This is the data which, I think, is scanned.' 

the result is: 

word4 = "data" 

That is, the fourth word (data) is extracted from the string and placed in the variable 
word4. 

Parsing with Positional (Numeric) Patterns 
Positional patterns can be used to cause the parsing to occur on the basis of 
position within the string, rather than on its contents. They take the form of signed 
or unsigned whole numbers and can cause the matching operation to "back up" to 
an earlier position in the data string. "Backing up" can only occur when positional 
patterns are used. 

Unsigned numbers in a template refer to a particular character column in the input. 
For example, when the template 

sl 19 s2 29 s3 

is used to parse the example string, this results in 

sl = "This is " 
s2 = "the data w" 
s3 = "hich, I think, is scanned." 

Here sl is assigned characters from the first through the ninth character, and s2 
receives input characters 10 through 19. The final variable, s3, is assigned the 
remainder of the input. 

Signed numbers can be used as patterns to indicate movement relative to the 
character position at which the previous pattern match occurred. 

If a signed number is specified, the position used for the next match is calculated by 
adding or subtracting the number given to the last matched position. The last 
matched position is the position of the first character of the last match, whether 
specified numerically or by a string. For example, the instructions: 

a = '123456789' 
parse var a 3 wi +3 w2 3 w3 

result in: 

wi = "345" 
w2 = "6789" 
w3 = "3456789" 

The +3 in this case is equivalent to the absolute number 6 in the same position and 
specifies the length of the data to be assigned to the variable wI. 

164 TSO/E Version 2 MVS/REXX Reference 

'\ 
j 

c 



c 

( 

( 

Parsing 

This example also illustrates the effects of a pattern that implies movement to a 
character position to the left of, or to the point where matching has already 
occurred. Movement is from column 6, the starting position for w2, to column 3, the 
starting position for w3. The variable on the left is assigned characters through the 
end of the input, and the variable on the right is, as usual, assigned characters 
starting at the position dictated by the pattern. 

The following PARSE instruction assigns the same values to w1, w2, and w3 as 
above: 

a = '123456789' 
parse var a 3 wi +3 w2 -3 w3 

3 specifies the starting position for wi, column 3. +3 tells you to move 3 positions to 
the right of the starting position of wl. This is the starting position of w2, column 6. 
-3 tells you to move 3 positions to the left of the starting position of w2. This is the 
starting position of w3, column 3. 

This is useful for making multiple assignments: 

parse var x 1 wi 1 w2 1 w3 

assigns the (entire) value of x to wi, w2, and w3. (The first "1" here could be omitted 
as it is effectively the same as the impliCit starting pattern described at the 
beginning of this section.) 

If a positional pattern specifies a column that is greater than the length of the data, it 
is equivalent to specifying the end of the data (that is, no padding takes place). 
Similarly, if a pattern specifies a column to the left of the first column of the data, 
this is not an error but instead is taken to specify the first column of the data. 

Any pattern match sets the "last position" in a string to which a relative positional 
pattern can refer. The "last position" set by a literal pattern is the position at which 
the match occurred; that is, the position in the data of the first character in the 
pattern. The first character in this case is not removed from the parsed data. Thus 
the template: 

',' -1 x +1 

1. Finds the first comma in the input (or the end of the string if there is no comma). 

2. Backs up one position. 

3. Assigns one character (the character immediately preceding the comma or end 
of string) to the variable x. 

A possible application of this is looking for abbreviations in a string. Thus the 
instruction: 

/* Ensure options have leading blank and are uppercase */ 
parse upper value' 'opts with' PR' +1 prword ' , 

sets the variable prword to the first word in opts that starts with PR or sets it to null if 
no such word exists. Note that + 0 is a valid positional pattern. 

Chapter 5. Parsing for PARSE, ARG, and PULL 165 



Parsing 

When a literal pattern is followed by a signed (+ 1-) positional pattern, the literal 
string IS NOT REMOVED from the data being parsed. Instead it is parsed into the 
first variable following the literal pattern. Thus the following two cases: 

a='This is the data which, I think, is scanned.' 

CASE 1: parse var a 'which' +5 y 
CASE 2: parse var a 'which' x +5 y 

result in: 

CASE 1: y = ", I think, is scanned." 
CASE 2: x = "whi ch" 

y = ", I think, is scanned." 

Note: If a number in a template is preceded by a "+" or a "-," this is taken to be a 
signed positional pattern. There can be blanks between the sign and the number, 
since initial scanning removes blanks adjacent to special characters. 

Parsing Multiple Strings 
A parsing template can parse multiple strings if you use the special pattern comma 
(,) in the template. Each comma is an instruction to the parser to move on to the 
next string. Other patterns and variables can be specified for each string parsed, as 
usual. The only time multiple strings are available is in the ARG (or PARSE ARG) 
instruction. When an internal function or subroutine is invoked it can have several 
argument strings, and a comma is used to access each in turn. Thus the template: 

wordl stringl, string2, nurn 

puts the first word of the first argument string into wordl, the rest of that string into 
stringl, and the next two strings into string2 and nurn. If insufficient strings are 
specified in the invocation, unused variables are set to null. Similarly, if only one 
string is available (as on the other PARSE variations), then any variables that follow 
a comma pattern are set to nUll. 

166 TSO/E Version 2 MVS/REXX Reference 

i 

I' 

c 



---------~,,~.-~.--~-

Numbers and Arithmetic 

IS 

(~. Chapter 6. Numbers and Arithmetic 

( 

( 

C 

Introduction 

REXX defines the usual arithmetic operations (addition, subtraction, multiplication, 
and division) in as "natural" a way as possible. What this really means is that the 
rules followed are those that are conventionally taught in schools and colleges. 

During the design of these facilities, however, it was found that unfortunately the 
rules used vary considerably (indeed much more than generally appreciated) from 
person to person and from application to application and in ways that are not always 
predictable. The arithmetic described here is, therefore, a compromise that 
(although not the simplest) should provide acceptable results in most applications. 

Numbers (that is, character strings used as input to REXX arithmetic operations and 
built-in functions) can be expressed very flexibly. Leading and trailing blanks are 
permitted, and exponential notation can be used. Some valid numbers are: 

12 /* a whole number */ 
'-76' /* a signed whole number */ 

12.76 /* decimal places */ 
, + 8.883' /* blanks around the sign and so forth */ 

17. /* same as "17" * / 
.5 /* same as "8.5" */ 

4E9 /* exponential notation */ 
8.73e-7 /* exponential notation */ 

(Exponential notation means that the number includes a power of ten following an E 
that indicates how the decimal point is shifted. Thus 4E9 above is just a short way of 
writing 4000000000, and 8.73e-7 is short for 0.000000073.) 

The arithmetic operators include addition (+), subtraction (-), multiplication (*), 
power (**), division (/), prefix plus( + ), and prefix minus(-). In addition, there are two 
further division operators: integer divide (%) divides and returns the integer part; 
remainder (/I) divides and returns the remainder. 

The result of an arithmetic operation is formatted as a character string according to 
definite rules. The most important of these rules are as follows (see the "Definition" 
section for full details): 

• Results are calculated up to some maximum number of significant digits (the 
default is 9, but you can alter this with the NUMERIC DIGITS instruction to give 
whatever accuracy you need). Thus if a result requires more than 9 digits, it 
would normally be rounded to 9 digits. For example, the division of 2 by 3 would 
result in 0.666666667 (it would require an infinite number of digits for perfect 
accuracy). 

• Except for division and power, trailing zeros are preserved (this is in contrast to 
most popular calculators, which remove all trailing zeros). So, for example: 

2.48 + 2 -> 4.48 
2.48 - 2 -> 8.48 
2.48 * 2 -> 4.88 
2.48 / 2 -> 1.2 

This behavior is desirable for most calculations (especially financial 
calculations). 

© Copyright IBM Corp. 1988, 1991 167 



._-----_._-- --

Numbers and Arithmetic 

Definition 

Numbers 

Precision 

If necessary, you can remove trailing zeros with the STRIP function (see page 
114), or by division by 1. 

• A zero result is always expressed as the single digit O. 

• Exponential form is used for a result depending on the setting of NUMERIC 
DIGITS (the default is 9). If the number of places needed before the decimal 
point exceeds the NUMERIC DIGITS setting, or the number of places after the 
point exceeds twice the NUMERIC DIGITS setting, the number will be expressed 
in exponential notation: 

le6 * le6 
1 / 3E1e 

-> lE+12 /* not leeeeeeeeeeee */ 
-> 3.33333333E-ll /* not e.eeeeeeeeee333333333 */ 

A precise definition of the a.rithmetic facilities of the REXX language is given here. 

A number in REXX is a character string that includes one or more decimal digits, 
with an optional decimal point. (See "Exponential Notation" on page 173 for an 
extension of this definition.) The decimal point may be embedded in the number, or 
may be prefixed or suffixed to it. The group of digits (and optional decimal point) 
constructed this way can have leading or trailing blanks and an optional sign (+ or 
-) that must come before any digits or decimal point. The sign can also have 
leading or trailing blanks. 

Therefore, number is defined as: 

Where: 
sign is either '+' or '-' 
blanks are one or more spaces 

§i9its 
igits.digits 

.digits,----t 
igits.-----I 

digits are one or more of the decimal digits e-9. 
Note that a single period alone is not a valid number. 

The maximum number of significant digits that can result from an operation is 
controlled by the instruction: 

--NUMERIC DIGITS'---,r----. -Jr--;---
~xpressl0n 

expression is evaluated and must result in a positive whole number. This defines 
the precision (number of significant digits) to which calculations are carried out. 
Results are rounded to that precision, if necessary. 

If you do not specify expression in this instruction, or if no NUMERIC DIGITS 
instruction has been executed since the start of a program, the default precision is 
used. The REXX standard for the default precision is 9. 

168 TSO/E Version 2 MVS/REXX Reference 

------------------- --------------_.-- ---



( 

( 

------- -- -~~~--~---- - ~- ---

Numbers and Arithmetic 

Note that NUMERIC DIGITS can set values below the default of nine. Use small 
values. however. with care-the loss of precision and rounding thus requested 
affects all REX>< computations. including. for example. the computation of new 
values for the control variable in DO loops. 

Arithmetic Operators 
REX>< arithmetic is performed by the operators + . - . * • / • % • /I • and ** (add. 
subtract. multiply. divide. integer divide. remainder. and power). which all act on 
two terms. and the prefix plus and minus operators. which both act on a single term. 
This section describes the way in which these operations are carried out. 

Before every arithmetic operation. the term or terms being operated upon have 
leading zeros removed (noting the position of any decimal point. and leaving just 
one zero if all the digits in the number are zeros). They are then truncated (if 
necessary) to DIGITS + 1 significant digits (the extra digit is a "guard" digit) before 
being used in the computation. The operation is then carried out under up to double 
that precision, as described under the individual operations that follow. When the 
operation is completed. the result is rounded if necessary to the preciSion specified 
by the NUMERIC DIGITS instruction. 

Every operation is carried out in such a way that no errors will be introduced except 
during the final rounding of the result to the specified significance. (That is. input 
data is first truncated to the appropriate significance (NUMERIC DIGITS + 1) before 
being used in the computation. and then divisions and multiplications are carried 
out to double that precision. as needed.) 

Rounding is done in the "traditional" manner. The digit to the right of the least 
significant digit in the result (the "guard digit") is inspected and values of 5 through 
9 are rounded uP. and values of 0 through 4 are rounded down. Even/odd rounding 
would require the ability to calculate to arbitrary precision at all times and is. 
therefore. not the mechanism defined for REXX. 

A conventional zero is supplied in front of the decimal point if otherwise there would 
be no digit before it. Significant trailing zeros are retained for addition. subtraction. 
and multiplication. according to the rules that follow. except that a result of zero is 
always expressed as the single digit O. For division. trailing zeros are removed 
after rounding. 

The FORMAT built-in function (see page 105) allows a number to be represented in 
a particular format if the standard result provided does not meet your requirements. 

Arithmetic Operation Rules-Basic Operators 
The basic operators (addition. subtraction. multiplication. and division) operate on 
numbers as follows. All numbers have insignificant leading zeros removed before 
being used in computation. 

Addition and Subtraction 
If either number is zero. the other number. rounded to NUMERIC DIGITS digits. if 
necessary. is used as the result (with sign adjustment as appropriate). Otherwise. 
the two numbers are extended on the right and left as necessary, up to a total 
maximum of DIGITS + 1 digits (the number with the smaller absolute value may. 
therefore. lose some or all of its digits on the right) and are then added or 
subtracted as appropriate. 

Chapter 6. Numbers and Arithmetic 169 



Numbers and Arithmetic 

Multiplication 

Division 

Example: 

becomes: 

xXX.xxx + yy.yyyyy 

xxx.xxx00 
+ 0yy.yyyyy 

zzz.zzzzz 

The result is then rounded to the current setting of NUMERIC DIGITS if necessary 
(taking into account any extra 'carry' digit on the left after addition, but otherwise 
counting from the position corresponding to the most significant digit of the terms 
being added or subtracted), and any insignificant leading zeros are removed. 

The prefix operators are evaluated using the same rules; the operations 
"+number" and "-number" are calculated as "0+ number" and "O-number", 
respectively. 

The numbers are multiplied together ("long multiplication") resulting in a number 
that may be as long as the sum of the lengths of the two operands. 

Example: 

xxx.xxx * yy.yyyyy 

becomes: zzzzZ.zzzzzzzz 

The result is then rounded, counting from the first significant digit of the result, to 
the current ~etting of NUMERIC DIGITS. 

For the division: 

yyy / xxxxx 

the following steps are taken: First the number yyy is extended with zeros on the 
right until it is larger than the number xxxxx (with note being taken of the change in 
the power of ten that this implies). Thus, in this example, yyy might become yyy99. 
Traditional long division then takes place. This might be written: 

zzzz 

xxxxx I yyyG0 

The length of the result (zzzz) is such that the rightmost z is at least as far right as 
the rightmost digit of the (extended) y number in the example. During the division, 
the y number is extended further as necessary. The z number may increase up to 
NUMERIC DIGITS + 1 digits, at which pOint the division stops and the result is 
rounded. Following completion of the division (and rounding if necessary), 
insignificant trailing zeros are removed. 

170 TSO/E Version 2 MVS/REXX Reference 

r' 
~"',j 

c 



(\ 

( 

Numbers and Arithmetic 

Basic Operator Examples 
Below are some examples that illustrate the main implications of the rules just 
described: 

/* With: Numeric digits 5 */ 
12+7.(:)(:) -> 19.(:)(:) 
1.3-1.(:)7 -> (:).23 
1.3-2.(:)7 -> -(:).77 
1.2(:)*3 -> 3.6(:) 
7*3 -> 21 
8.9*(:).8 -> (:).72 
1/3 -> (:).33333 
2/3 -> (:).66667 
5/2 -> 2.5 
1/1(:) -> (:).1 
12/12 -> 1 
8.(:)/2 -> 4 

Note: With all the basic operators, the position of the decimal point in the terms 
being operated upon is arbitrary. The operations may be carried out as integer 
operations with the exponent being calculated and applied afterwards. Therefore, 
the significant digits of a result are not in any way dependent on the position of the 
decimal point in either of the terms involved in the operation. 

Arithmetic Operation Rules-Additional Operators 

Power 

The power (**), integer divide (%), and remainder (/I) operators rules follow. 

The ** (power) operator raises a number to a power, which may be positive, 
negative, or zero. The power must be a whole number. If negative, the absolute 
value of the power is used, and then the result is inverted (divided into 1). For 
calculating the result, the number is effectively multiplied by itself for the number of 
times expressed by the power, and finally trailing zeros are removed (as though the 
result were divided by one). 

In practice (see Note 1 on page 172 for rationale), the result is calculated by the 
process of left-to-right binary reduction. For x**n: n is converted to binary, and a 
temporary accumulator is set to 1. If n = 0 the calculation is complete. (Thus, x**(:) 
= 1 for all x, including (:)**(:).) Otherwise each bit (starting at the first nonzero bit) is 
inspected from left to right. If the current bit is 1, the accumulator is multiplied by x. 
If all bits have now been inspected, the calculation is complete; otherwise the 
accumulator is squared and the next bit is inspected for multiplication. When the 
calculation is complete, the temporary result is ready for djvision by or into 1 to 
provide the final answer. 

The multiplications and division are done under the normal REXX arithmetic 
combination rules, detailed below. Note that a number is rounded to the current 
setting of NUMERIC DIGITS before the first multiplication, and intermediate results 
are rounded after each subsequent multiplication. 

Chapter 6. Numbers and Arithmetic 171 

-------- --------------



Numbers and Arithmetic 

Integer Division 

Remainder 

The % (Integer divide) operator divides two numbers and returns the integer part of 
the result. The result returned is defined to be that which would result from 
repeatedly subtracting the divisor from the dividend while the dividend is larger 
than the divisor. During this subtraction, the absolute values of both the dividend 
and the divisor are used: the sign of the.final result is the same as that which would 
result if normal division were used. Note that this operator may not give the same 
result as truncating normal division (which could be affected by rounding). 

The 1/ (remainder) operator returns the remainder from integer division, which is 
defined as being the residue of the dividend after the operation of calculating 
integer division as just described. The sign of the remainder, if nonzero, is the 
same as that of the original dividend. 

Additional Operator Examples 
Following are some examples using the power, integer divide, and remainder 
operators just described: 

/* Again with: Numeric digits 5 */ 
2**3 -> 8 
2**-3 -> 
1.7**8 -> 
2%3 -> 

2.1//3 -> 
10%3 -> 

10//3 -> 

-10/ /3 -> 

10.2//1 -> 

10//0.3 -> 

Notes: 

0.125 
69.758 
o 
2.1 
3 
1 

-1 
0.2 
0.1 

1. A particular algorithm for calculating powers is used, since it is efficient (though 
not optimal) and considerably reduces the number of actual multiplications 
performed. It, therefore, gives better performance than the simpler definition of 
repeated multiplication. Since results may differ from those of repeated 
multiplication, the algorithm is defined here. 

2. The integer divide and remainder operators are defined so that they can be 
calculated as a by-product of the standard division operation. The division 
process is ended as soon as the integer result is available; the residue of the 
dividend is the remainder. 

Numeric Comparisons 
The comparison operators are listed on page 17. You can use any of these for 
comparing numeric strings. However, you should not use = =, \= =, ..., = =, > >, 
\ > >, ..., > >, < <, \ < < , and..., < < to compare numeric values because 
leading/trailing blanks and leading zeros are significant with these operators. 

A comparison of numeric values is effected by subtracting the two numbers 
(calculating the difference) and then comparing the result with O. That is, the 
operation: 

A ? B 

where? is any numeric comparison operator, is identical to: 

(A - B) ? '0' 

172 TSO/E Version 2 MVS/REXX Reference 

----------------------------

./ \ 
I . 

,J 

c 



( 

c' 

Numbers and Arithmetic 

It is, therefore, the difference between two numbers, when subtracted under REXX 
subtraction rules, that determines their equality. 

Comparison of two numbers is affected by a quantity called "fuzz," which is set by 
the instruction: 

--NUMERIC FUZZ--rr---.-]-r--;---
L-expresslon 

Here expression must result in a whole number that is zero or positive. This FUZZ 
number controls the amount by which two numbers may differ before being 
considered equal for the purpose of comparison. The default is O. 

The effect of FUZZ is to temporarily reduce the value of DIGITS by the FUZZ value 
for each numeric comparison operation. That is, the numbers are subtracted under 
a precision of DIGITS - FUZZ digits during the comparison. Clearly FUZZ must be 
less than DIGITS. 

Thus if DIGITS = 9, and FUZZ = 1, the comparison is carried out to S significant 
digits, just as though NUMERIC DIGITS 8 had been put in effect for the duration of 
the operation. 

Example: 

Numeric digits 5 
Numeric fuzz a 
say 4.9999 = 5 
say 4.9999 < 5 
Numeric fuzz 1 
say 4.9999 = 5 
say 4.9999 < 5 

Exponential Notation 

/* Displays a 
/* Displays 1 

/* Displays 1 
/* Displays a 

*/ 
*/ 

*/ 
*/ 

The description of numbers above describes "pure" numbers, in the sense that the 
character strings that describe numbers could be very long. For example: 

laaaaaaaaaa * laaaaaaaaaa 
would give 

laaaaaaaaaaaaaaaaaaaa 
and 

.aaaaaaaaaal * .aaaaaaaaaal 
would give 

a.aaaaaaaaaaeeaeeeeeeeel 
For both large and small numbers some form of exponential notation is useful, both 
to make long numbers more readable, and to make execution possible in extreme 
cases. In addition, exponential notation is used whenever the "simple" form would 
give misleading information. 

For example: 

numeric digits 5 
say 54321*54321 
would display 295aSeeeae if long form were used. This is clearly misleading, and so 
the result is expressed as 2.95eSE+9 instead. 

Chapter 6. Numbers and Arithmetic 173 



Numbers and Arithmetic 

The definition of "numbers" is, therefore, extended as: 

~.---~-r--------~~Idigits----~~----------'-T---~~ 

signT---~r-' igits.digits 
.digits---I 
igits.--...J 

E~igits 
lsignJ 

The integer following the E represents a power of ten that is to be applied to the 
number, and the E can be in uppercase or lowercase. 

Here are some examples: 

12E11 = 12aaaaaaaaaaa 
12E-5 = a.aaa12 
-12e4 = -12aaaa 

The above numbers are valid for input data at all times. The results of calculations 
are returned in either conventional or exponential form depending on the setting of 
DIGITS. If the number of places needed before the decimal point exceeds DIGITS, 
or the number of places after the point exceeds twice DIGITS, exponential form is ',- j 

used. The exponential form generated by REXX always has a sign following the E in 
order to improve readability. An exponential part of E + 0 will never be generated. 

You can explicitly convert numbers to exponential form, or force them to be 
displayed in "long" form, by using the FORMAT built-in function, described on page 
105. 

You can control whether Scientific or Engineering notation is to be used by using the / ~ 
instruction: 

--NUMERIC FORM---..-------------------r-;---
SCI ENTI FIC-----l 
ENGINEERING----i 

L....y------.--express ion 

The default setting of FORM is SCIENTIFIC. 

Scientific notation adjusts the power of ten so there is a single nonzero digit to the 
left of the decimal point. Engineering notation causes powers of ten to always be 
expressed as a multiple of 3: the integer part may, therefore, range from 1 through 
999. 

/* after the instruction */ 
Numeric form scientific 

123.45 * 1e11 -> 1.2345E+13 

/* after the instruction */ 
Numeric form engineering 

123.45 * 1e11 -> 12.345E+12 

174 TSO/E Version 2 MVS/REXX Reference 

o 



( 

Numbers and Arithmetic 

Numeric Information 

Whole Numbers 

The current settings of the NUMERIC options can be found by using the built-in 
functions DIGITS, FORM, and FUZZ. These functions return the current settings of 
NUMERIC DIGITS, NUMERIC FORM, and NUMERIC FUZZ, respectively. 

Within the set of numbers REXX understands, it is useful to distinguish the subset 
defined as whole numbers. A whole number in REXX is a number that has a 
decimal part that is all zeros (or that has no decimal part). In addition, it must be 
possible to express its integer part simply as digits within the precision set by the 
NUMERIC DIGITS instruction. REXX would express larger numbers in exponential 
notation, after rounding, and, hence, these could no longer be safely described or 
used as whole numbers. 

Numbers Used Directly by REXX 

Errors 

As discussed, numbers are always rounded (if necessary) according to the setting of 
NUMERIC DIGITS during any arithmetic operation. Similarly, when REXX directly 
uses a number (which has not necessarily been involved in an arithmetic operation), 
the same rounding is also applied. 

In the following cases, the number used must be a whole number and an 
implementation restriction on the largest number that can be used may apply: 

• The positional patterns in parsing templates 
• The power value (right hand operand) of the power operator 
• The values of exprr and exprf in the DO instruction 
• The values given for DIGITS or FUZZ in the NUMERIC instruction 
• Any number used in the option in the TRACE instruction. 

Two types of errors may occur during arithmetic: 

• Overflow/Underflow 

This error occurs if the exponential part of a result would exceed the range that 
the language processor can handle, when the result is formatted according to 
the current settings of NUMERIC DIGITS and NUMERIC FORM. The language 
defines a minimum capability for the exponential part, namely the largest 
number that can be expressed as an exact integer in default precision. Since 
the default precision is 9, implementations must support exponents at least as 
large as 999999999. 

Since this allows for (very) large exponents, overflow or underflow is treated as 
a terminating "syntax" error. 

• Insufficient storage 

Storage is needed for calculations and intermediate results, and on occasion an 
arithmetic operation may fail due to lack of storage. This is considered a 
terminating error as usual, rather than an arithmetical error. 

Chapter 6. Numbers and Arithmetic 175 



176 TSO/E Version 2 MVS/REXX Reference 



Conditions and Condition Traps 

Chapter 7. Conditions and Condition Traps 

CALL and SIGNAL modify the flow of execution in a REXX program by using 
condition traps. Condition traps are turned on or off using the ON or OFF 
subkeywords of the SIGNAL and CALL instructions (see "CALL" on page 48 and 
"SIGNAL" on page 77). 

-,-CALL J jOFF-conditionl-----------r-;--­
LSIGNAL LoN--conditionl-,--------r-' 

L-NAME--trapnam~ 

condition and trapname are symbols that are taken as constants. Following one of 
these instructions, a condition trap is set to either ON (enabled) or OFF (disabled). 
The initial setting for all condition traps is OFF. 

If a condition trap is enabled and the specified condition occurs, control passes to 
the routine or label trapname. SIGNAL or CALL is used, depending on whether the 
most recent trap for the condition was set using SIGNAL ON or CALL ON, 
respectively. 

The conditions and their corresponding events, which can be trapped, are: 

ERROR 
raised if a command indicates an error condition upon return. It is also raised if 
any command indicates failure and neither CALL ON FAILURE nor SIGNAL ON 
FAILURE is set. The condition is raised at the end of the clause that invoked the 
command, but is ignored if the ERROR condition trap is already in the delayed 
state. 

In TSO/E, SIGNAL ON ERROR traps all positive return codes, and negative 
return codes only if CALL ON FAILURE and SIGNAL ON FAILURE are not set. 

Note: In TSO/E, a command is not only a TSO/E command processor. See 
"Host Commands and Host Command Environments" on page 26 for a 
definition of host commands. 

FAILURE 
raised if a command indicates a failure condition upon return. The condition is 
raised at the end of the clause that invoked the command, but is ignored if the 
FAILURE condition trap is already in the delayed state. 

In TSO/E, SIGNAL ON FAILURE traps all negative return codes from commands. 

HALT 

© Copyright IBM Corp. 1988. 1991 

raised if an external attempt is made to interrupt execution of the program. 
For example, the TSO/E REXX immediate command HI (Halt Interpretation) or 
the EXECUTIL HI command raises a halt condition. The HE (Halt Execution) 
immediate command does not raise a halt condition. See "Interrupting 
Execution and Controlling Tracing" on page 244. 

177 



Conditions and Condition Traps 

NOVALUE 
raised if an uninitialized variable is used: 

• As a term in an expression 
• As the name following the VAR subkeyword of the PARSE instruction 
• As an unassigned variable pattern in a parsing template. 

This condition may be specified only for SIGNAL ON. 

SYNTAX 
raised if any language processing error is detected. This includes all kinds of 
processing errors, including true syntax errors and "run-time" errors, such as 
attempting an arithmetic operation on non-numeric terms. This condition may 
only be specified for SIGNAL ON. 

Any ON or OFF reference to a condition trap replaces the previous state (ON, OFF, 
or DELAY, and any trapname) of that condition trap. Thus, a SIGNAL ON HALT 
replaces any current CALL ON HALT, a CALL ON or SIGNAL ON with a new trap 
name replaces any previous trap name, any OFF reference disables the trap for 
CALL or SIGNAL, and so on. 

Action Taken When a Condition Is Not Trapped 
When a condition trap is currently disabled (OFF) and the specified condition occurs, 
the default action depends on the condition: 

• For HALT and SYNTAX, the execution of the program ends, and a message (see 
Appendix A, "Error Numbers and Messages" on page 475) describing the 
nature of the event that occurred usually indicates the condition. 

• For all other conditions, the condition is ignored and its state remains OFF. 

Action Taken When a Condition Is Trapped 
When a condition trap is currently enabled (ON has been specified), the trap is in 
effect. So, when the specified condition occurs, instead of the usual flow of control, 
a "CALL trapname" or "SIGNAL trapname" is executed automatically (that is, 
passes control to a label or routine). The label or routine given control depends on 
whether you used the NAME trapname option when you enabled the condition trap. 

If you did not explicitly specify a trapname, control is passed to the label or routine 
that matches the name of the condition itself (ERROR, FAILURE, HALT, NOVALUE, 
or SYNTAX). 

For example, the instruction call on error enables the condition trap for the ERROR 
condition. If the condition occurred, then a call to the routine identified by the name 
ERROR is made. The instruction call on error name cOl11llanderror would enable 
the trap and call the routine COMMANDERROR if the condition occurred. 

If you specified trapname after the NAME subkeyword of the CALL ON or SIGNAL 
ON instruction, control is passed to the label or routine specified, rather than the 
name of the condition. 

The sequence of events, once a condition has been trapped, varies depending on 
whether a SIGNAL or CALL is executed: 

• If the action taken is a SIGNAL, execution of the current instruction ceases c. _~. 
immediately, the condition is disabled (set to OFF), and the SIGNAL takes place 
in exactly the same way as usual (see page 77). 

178 TSO/E Version 2 MVS/REXX Reference 



C: 

( 

( 

( 

-------.------.-~-

Conditions and Condition Traps 

If any new occurrence of the condition is to be trapped, a new CALL ON or 
SIGNAL ON instruction for the condition is required to re-enable it once the label 
is reached. For example, if SIGNAL ON SYNTAX is enabled when a SYNTAX 
condition occurs, then if the SIGNAL ON SYNTAX label name is not found, a 
normal syntax error termination occurs. 

• If the action taken is a CALL, the CALL is made in the usual way (see page 48) 
except that the special variable RESULT is not affected by the call. If the routine 
should RETURN any data, then the returned character string is ignored. 

Note that CALL ON can only occur at clause boundaries. Because these 
conditions (ERROR, FAILURE, and HALT) can arise during execution of an 
INTERPRET instruction, execution of the INTERPRET may be interrupted and 
later resumed if CALL ON was used. 

Before the CALL is made, the condition trap is put into a delayed state. This 
state persists until the RETURN from the CALL, or until an explicit CALL (or 
SIGNAL) ON (or OFF) is made for the condition. This delayed state prevents a 
premature condition trap at the start of the routine called to process a condition 
trap. When a condition trap is in the delayed state it remains enabled, but if the 
condition is trapped again any action (including the updating of the condition 
information) is delayed until one of the following events occurs: 

1. A CALL ON or SIGNAL ON, for the delayed condition, is executed. In this 
case a CALL or SIGNAL takes place immediately after the new CALL ON or 
SIGNAL ON instruction has been executed. 

2. A CALL OFF or SIGNAL OFF, for the delayed condition, is executed. In this 
case the condition trap is disabled and the default action for the condition 
occurs at the end of the CALL OFF or SIGNAL OFF instruction. 

3. A RETURN is made from the subroutine. In this case the condition trap is no 
longer delayed and the subroutine is called again immediately. 

On RETURN from the CALL, the original flow of execution is resumed (that is, 
the flow is not affected by the CALL). 

Noles: 

1. In all cases, the condition is raised (and the current instruction terminated) 
immediately upon detection of the error. Therefore, the instruction during 
which an event occurs may be only partly executed. For example, if 
SYNTAX is raised during the evaluation of the expression in an assignment, 
the assignment does not take place. Note that ERROR, FAILURE, and HALT 
can occur only at clause boundaries, but could arise in the middle of an 
INTERPRET instruction. 

2. The state (ON, OFF, or DELAY, and any trapname) of each condition trap is 
saved on entry to a subroutine and is then restored on RETURN. This 
means that CALL ON, CALL OFF, SIGNAL ON, and SIGNAL OFF can be used 
in a subroutine without affecting the conditions set up by the caller. See the 
CALL instruction (page 48) for details of other information that is saved 
during a subroutine call. 

3. The state of condition traps is not affected when an external routine is 
invoked by a CALL, even if the external routine is a REXX program. On 
entry to any REXX program, all condition traps have an initial setting of OFF. 

4. While user input is executed during interactive tracing, all conditions are set 
OFF so that unexpected transfer of control does not occur should (for 
example) the user accidentally use an uninitialized variable while SIGNAL 
ON NOVALUE is active. For the same reason, a syntax error during 

Chapter 7. Conditions and Condition Traps 179 



Conditions and Condition Traps 

Condition Information 

interactive tracing does not cause exit from the program, but is trapped 
specially and then ignored after a message is given. 

5. Certain execution errors are detected by the system interface either before 
execution of the program starts or after the program has exited. SIGNAL 
ON SYNTAX cannot trap these errors. 

6. If a trap is enabled using CALL ON, the routine can be an internal, built-in, 
or external function. 

Note that labels are clauses consisting of a single symbol followed by a colon. 
Any number of successive clauses can be labels; therefore, multiple labels are 
allowed before another type of clause. 

When any condition is trapped and causes a SIGNAL (or CALL), this becomes the 
current trapped condition, and certain condition information associated with it is 
recorded. You can inspect this information by using the CONDITION built-in function 
(see "CONDITION" on page 96). 

The condition information includes: 

• The name of the current trapped condition 
• The instruction executed as a result of the condition trap (CALL or SIGNAL) 
• The status of the trapped condition 
• Any descriptive string associated with that condition. 

The descriptive string varies, depending on the condition trapped. 

ERROR The string that was processed and resulted in the error condition. 

FAILURE The string that was processed and resulted inthe failure condition. 

HALT Any string associated with the halt request. This can be the null string 
if no string was provided. 

NOVALUE The derived name of the variable whose attempted reference caused 
the NOVALUE condition. The NOVALUE condition trap can be enabled 
only using SIGNAL ON. 

SYNTAX Any string the language processor associated with the error. This can 
be the null string if no specific string is provided. Note that the special 
variables RC and SIGL provide information on the nature and position 
of the processing error. The SYNTAX condition trap can only be 
enabled using SIGNAL ON. 

The current condition information is replaced when control is passed to a label as 
the result of a condition trap (CALL ON or SIGNAL ON). Condition information is 
saved and restored across subroutine or function calls, including one due to a CALL 
ON trap. A routine invoked by a CALL ON, therefore, can access the appropriate 
condition information. Any previous condition information is still available after the 
routine returns. 

180 TSO/E Version 2 MVS/REXX Reference 

c 

, I 
',,- ,/ 



C: 

(' 

(-

c 

Conditions and Condition Traps 

The Special Variable Re 

For ERROR and FAILURE, the REXX special variable RC is set to the command 
return code before control is transferred to the condition label. The return code may 
be the return code from a TSO/E command processor or a routine (such as, a CLlST, 
REXX exec, program, and so on) that caused the ERROR or FAILURE condition. The 
return code may also be a -3, which indicates that the command could not be found. 
For more information about issuing commands and their return codes, see "Host 
Commands and Host Command Environments" on page 26. 

For SIGNAL ON SYNTAX, RC is set to the syntax error number. 

The Special Variable SIGL 

When any transfer of control due to a SIGNAL (or CALL) takes place, the line 
number of the clause currently executing is stored in the REXX special variable 
SIGL. This Is especially useful for SIGNAL ON SYNTAX when the number of the line 
in error can be used, for example, to control an editor. Typically, code following the 
SYNTAX label may PARSE SOURCE to find the source of the data, then invoke an 
editor to edit the source file positioned at the line in error. Note that in this case the 
program has to be reinvoked before any changes made in the editor can take effect. 

Alternatively, SIGL can be used to help determine the cause of an error (such as the 
occasional failure of a function call) as in the following example: 

/* Standard handler for SIGNAL ON SYNTAX */ 
syntax: 

say 'REXX error' rc 'in line' sig1':' errortext(rc) 
say source1ine(sig1) 
trace ?r; nop 

This code first displays the error code, line number, and error message. It then 
displays the line in error, and finally drops into debug mode to let you inspect the 
values of the variables used at the line in error. 

Chapter 7. Conditions and Condition Traps 181 

~--~ ... __ ._-----



-"----------~--- --""-----~~-

182 TSO/E Version 2 MVS/REXX Reference 



Using REXX in Different Address Spaces 

11 • I C' Chapter 8. Using REXX in Different Address Spaces 

( 

(-

TSO/E Version 2 provides support for the REXX programming language in any MVS 
address space. You can run REXX execs in the TSO/E address space and in any 
non-TSO/E address space, such as CICS or IMS. 

The REXX language consists of keyword instructions and built-in functions that you 
use in a REXX exec. The keyword instructions and built-in functions are described 
in Chapter 3, "Keyword Instructions" and Chapter 4, "Functions," respectively. 

TSO/E also provides TSO/E external functions and REXX commands you can use in 
a REXX exec. The functions are described in "TSO/E External Functions" on 
page 125. The TSO/E REXX commands provide additional services that let you: 

• Control 1/0 processing to and from data sets 
• Perform data stack requests 
• Change characteristics that control how a REXX exec runs 
• Check for the existence of a specific host command environment. 

Chapter 10, "TSO/E REXX Commands" describes the commands. 

In an exec, you can use any of the keyword instructions and built-in functions 
regardless of whether the exec runs in a TSO/E or non-TSO/E address space. There 
are, however, differences in the TSO/E external functions, commands, and 
programming services you can use in an exec depending on whether the exec will 
run in a TSO/E address space or in a non-TSO/E address space. For example, you 
can use the TSO/E external function SETLANG in an exec that runs in any MVS 
address space. However, you can use the LlSTDSI external function only in execs 
that run in a TSO/E address space. The following topics describe the services you 
can use in execs that run in TSO/E and non-TSO/E address spaces: 

• "Writing Execs That Run in Non-TSO/E Address Spaces" on page 187 
• "Writing Execs That Run in the TSO/E Address Space" on page 189. 

TSO/E provides the TSO/E environment service, IKJTSOEV, that lets you create a 
TSO/E environment in a non-TSO/E address space. If you use IKJTSOEV and then 
run a REXX exec in the TSO/E environment that is created, the exec can contain 
TSO/E external functions, commands, and services that an exec running in a TSO/E 
address space can use. That is, the TSO host command environment (ADDRESS 
TSO) is available to the exec. TSOIE Version 2 Programming Services describes 
the TSO/E environment service and the different considerations for running REXX 
execs within the environment. 

TSO/E REXX is the implementation of the SAA Procedures Language on the MVS 
system. By using the keyword instructions and functions that are defined for the 
SAA Procedures Language, you can write REXX programs that can run in any of the 
supported SAA environments. See SAA Common Programming Interface 
Procedures Language Reference for more information. 

© Copyright IBM Corp. 1988. 1991 183 



Using REXX in Different Address Spaces 

----------------------------------------------
Additional REXX Support 

In addition to the keyword instructions, built-in functions, and TSO/E external 
functions and REXX commands, TSO/E Version 2 provides programming services 
you can use to interface with REXX and the language processor and customizing 
services that let you customize REXX processing and how system services are 
accessed and used. 

TSO/E REXX Programming Services 
The REXX programming services that TSO/E provides in addition to REXX language 
support are: 

IRXEXCOM - Variable Aceess 
The variable access routine IRXEXCOM lets you access and manipulate the 
current generation of REXX variables. Unauthorized commands and programs 
can invoke IRXEXCOM to inspect, set, and drop REXX variables. "Variable 
Access Routine - IRXEXCOM" on page 289 describes IRXEXCOM. 

IRXSUBCM - Maintain Host Command Environments 
The IRXSUBCM routine is a programming interface to the host command 
environment table. The table contains the names of the environments and 
routines that handle the processing of host commands. You can use IRXSUBCM 
to add, change, and delete entries in the table and to query entries. "Maintain 
Entries in the Host Command Environment Table - IRXSUBCM" on page 297 
describes the IRXSUBCM routine. 

IRXIC - Trace and Execution Control 
The trace and execution control routine IRXIC is an interface to the immediate 
commands HI, HT, RT, TS, and TE. A program can invoke IRXIC In order to use 
one of these commands to affect the processing and tracing of REXX execs. 
"Trace and Execution Control Routine - IRXIC" on page 302 describes the 
routine. 

IRXRL T - Get Result 
You can use the get result routine, IRXRLT, to get the result from a REXX exec 
that was invoked with the IRXEXEC routine. If you write an external function or 
subroutine that is link edited into a load module, you can use IRXRLT to obtain 
storage to return the result to the calling exec. The IRXRLT routine also lets a 
compiler runtime processor obtain an evaluation block to handle the result from 
a compiled REXX exec. "Get Result Routine - IRXRL T" on page 305 describes 
the IRXRLT routine. 

IRXJCL and IRXEXEC - Exec Processing 
You can use the IRXJCL and IRXEXEC routines to invoke a REXX exec in any 
address space. The two routines are programming interfaces to the language 
processor. You can run an exec in MVS batch by specifying IRXJCL as the 
program name on the JCL EXEC statement. You can invoke either IRXJCL or 
IRXEXEC from an application program, including a REXX exec, in any address 
space to invoke a REXX exec. "Exec Processing Routines - IRXJCL and 
IRXEXEC" on page 258 describes the IRXJCL and IRXEXEC routines. 

184 TSO/E Version 2 MVS/REXX Reference 

~~~- -~-~---------~- ---_._---



C-, 
.-

( 

( 

( 

c 

Using REXX in Different Address Spaces 

External Functions and Subroutines, and Function Packages 
You can write your own external functions and subroutines to extend the 
programming capabilities of the REXX language. You can write external 
functions or subroutines in REXX. You can also write external functions or 
subroutines in any programming language that supports the system-dependent 
interfaces that the language processor uses to invoke the function or subroutine. 

You can also group frequently used external functions and subroutines into a 
package, which allows for quick access to the packaged functions and 
subroutines. If you want to include an external function or subroutine in a 
function package, the function or subroutine must be link edited into a load 
module. "External Functions and Subroutines, and Function Packages" on 
page 276 describes the system-dependent interfaces for writing external 
functions and subroutines and how to define function packages. 

IRXSAY - SAY Instruction Routine 
The SAY instruction routine, I RXSAY, lets you write a character string to the 
same output stream as the REXX SAY keyword instruction. "SAY Instruction 
Routine - IRXSAY" on page 313 describes the IRXSAY routine. 

IRXHL T - Halt Condition Routine 
The halt condition routine, IRXHLT, lets you query or reset the halt condition. 
"Halt Condition Routine - IRXHLT" on page 316 describes the IRXHLT routine. 

IRXTXT - Text Retrieval Routine 
The text retrieval routine, IRXTXT, lets you retrieve the same text that the TSO/E 
REXX interpreter uses for the ERRORTEXT built-in function and for certain 
options of the DATE built-in function. For example, using IRXTXT, a program can 
retrieve the name of a month or the text of a syntax error message. "Text 
Retrieval Routine - IRXTXT" on page 319 describes the IRXTXT routine. 

IRXLlN - LlNESIZE Function Routine 
The L1NESIZE function routine, IRXLlN, lets you retrieve the same value that the 
L1NESIZE built-in function returns. "L1NESIZE Function Routine - IRXLlN" on 
page 324 describes the IRXLlN routine. 

Chapter 8. Using REXX in Different Address Spaces 185 



Using REXX in Different Address Spaces 

TSO/E REXX Customizing Services 
In addition to the programming support to write REXX execs and REXX 
programming services that allow you to interface with REXX and the language 
processor,TSO/E also provi~es services you can use to customize REXX 
processing. Many services let you change how an exec is processed and how the 
language processor interfaces with the system to access and use system services, 
such as storage and 1/0. Customization services for REXX processing include the 
following: 

Environment Characteristics 
TSO/E provides various routines and services that allow you to customize the 
environment in which the language processor processes a REXX exec. This 
environment is known as the language processor environment and defines 
various characteristics relating to how execs are processed and how system 
services are accessed and used. TSO/E provides default environment 
characteristics that you can change and also provides a routine you can use to 
define your own environment. 

Replaceable Routines 
When a REXX exec runs, various system services are used, such as services for 
loading and freeing an exec, 1/0, obtaining and freeing storage, and data stack 
requests. TSO/E provides routines that handle these types of system services. 
The routines are known as replaceable routines because you can provide your 
own routine that either replaces the system routine or that performs 
pre-processing and then calls the system routine. 

Exit Routines 
You can provide exit routines to customize various aspects of REXX processing. 

Information about the different ways in which you can customize REXX processing 
are described in chapters 13 - 16. 

186 TSO/E Version 2 MVS/REXX Reference 

I 

c 

C···"· .,.t, _ 



c 

Using REXX in Different Address Spaces 

------- ---------------.----------------------------------------
Writing Execs That Run in Non-TSO/E Address Spaces 

As described above, you can run REXX execs in any MVS address space (both 
TSO/E and non-TSO/E). Execs that run in TSO/E can use several TSO/E external 
functions, commands, and programming services that are not available to execs that 
run in a non-TSO/E address space. "Writing Execs That Run in the TSO/E Address 
Space" on page 189 describes writing execs for TSO/E. 

If you write a REXX exec that will run in a non-TSO/E address space, you can use 
the following in the exec: 

• All keyword instructions that are described in Chapter 3, "Keyword 
Instructi ons" 

• All built-in functions that are described in Chapter 4, "Functions." 

• The TSO/E external functions SETLANG and STORAGE. See "TSO/E External 
Functions" on page 125 for more information. 

• The following TSO/E REXX commands: 

MAKEBUF - to create a buffer on the data stack 

DROPBUF - to drop (discard) a buffer that was previously created on the 
data stack with the MAKEBUF command 

NEWSTACK - to create a new data stack and effectively isolate the current 
data stack that the exec is using 

DELSTACK - to delete the most current data stack that was created with the 
NEWSTACK command 

OBUF - to query how many buffers are currently on the active data stack 

OELEM - to query how many elements are on the data stack above the most 
recently created buffer 

OSTACK - to query the number of data stacks that are currently in existence 

EXECIO - to read data from and write data to data sets. Using EXECIO, you 
can read data from and write data to the data stack or stem variables. 

TS (Trace Start) - to start tracing REXX execs. Tracing lets you control exec 
processing and debug problems. 

TE (Trace End) - to end tracing of REXX execs 

SUBCOM - to determine whether a particular host command environment is 
available for the processing of host commands. 

The commands are described in Chapter 10, "TSO/E REXX Commands." 

• Invoking an exec 

You can invoke another REXX exec from an exec using the following instructions 
(the examples assume that the current host command environment is MVS): 

"execname pI p2 ••• " 

"EX execname pI p2 ••• " 

"EXEC execname pI p2 ••• " 

See "Commands to External Environments" on page 25 about using host 
commands in a REXX exec. 

Chapter 8. Using REXX in Different Address Spaces 187 

------_. - -----



Using REXX In Different Address Spaces 

• Linking to and attaching programs 

You can use the LINK, LlNKMVS, and LlNKPGM host command environments to ( 
link to unauthorized programs. For example: ~ __ /1 

ADDRESS LINK "program pl p2 ••• " 

You can use the ATTACH, ATTCHMVS, and ATTCHPGM host command 
environments to attach unauthorized programs. For example: 

ADDRESS ATTACH "program pl p2 ••• " 

For more information about linking to and attaching programs, see "Host 
Command Environments for Linking to and Attaching Programs" on page 34. 

• TSO/E REXX programming services. 

In any address space, you can use the REXX programming services, such as 
IRXEXEC and IRXJCL, IRXEXCOM, and IRXIC. The services are described in 
Chapter 12, "TSO/E REXX Programming Services." 

Running an Exec in aNon .. TSO/E Address Space 
You can invoke a REXX exec in a non-TSO/E address space using the IRXJCL and 
IRXEXEC routines, which are programming interfaces to the language processor. 

To execute an exec in MVS batch, use the IRXJCL routine. In the JCL, specify 
IRXJCL as the program name (PGM =) on the JCL EXEC statement. On the EXEC 
statement, specify the member name of the exec and the argument in the PARM 
field. Specify the name of the data set that contains the member on a DD statement. 
For example: 

//STEPl EXEC PGM=IRXJCl,PARM='PAYEXEC week hours' 
//SYSEXEC DO DSN=USERID.REXX.EXEC,DISP=SHR 

You can also invoke IRXJCL from a program (for example, a PUI program) to invoke 
a REXX exec. 

You can invoke the IRXEXEC routine from a program in order to invoke a REXX 
exec. "Exec Processing Routines - IRXJCL and IRXEXEC" on page 258 describes 
IRXJCL and IRXEXEC in more detail and provides several examples. 

If you want to invoke an exec from another exec that is running in a non-TSO/E 
address space, use one of the following instructions (the examples assume that the 
current host command environment is not MVS): 

ADDRESS MVS "execname pl p2 ••• " 

ADDRESS MVS "EX execname pl p2 ••• " 

ADDRESS MVS "EXEC execname pl p2 ••• " 

See "Host Commands and Host Command Environments" on page 26 for more 
information about the different environments for issuing host commands. 

188 TSO/E Version 2 MVS/REXX Reference 

c 



( 

( 

-'- .. --~--~----~------

Writing Execs That Run in the TSO/E Address SJlac:e 
If you write a REXX exec that will run in the TSO/E address space, there are 
additional TSO/E external functions and TSO/E commands and services you can use 
that are not available to execs that run in a non-TSO/E address space. For execs 
that run in the TSO/E address space, you can use the following: 

• All keyword instructions that are described in Chapter 3, "Keyword 
Instructions" 

• All built-in functions that are described in Chapter 4, "Functions." 

• All of the TSO/E external functions, which are described in "TSO/E External 
Functions" on page 125. 

You can use the SETLANG and STORAGE external functions in execs that run in 
any address space (TSO/E and non-TSO/E). However, you can use the other 
TSO/E external functions only in execs that run in the TSO/E address space. 

• The following TSO/E REXX commands: 

MAKEBUF - to create a buffer on the data stack 

DROPBUF - to drop (discard) a buffer that was previously created on the 
data stack with the MAKEBUF command 

NEWSTACK - to create a new data stack and effectively isolate the current 
data stack that the exec is using 

DELST ACK - to delete the most current data stack that was created with the 
NEWSTACK command 

OBUF - to query how many buffers are currently on the active data stack 

OELEM - to query how many elements are on the data stack above the most 
recently created buffer 

OSTACK - to query the number of data stacks that are currently in existence 

EXECIO - to read data from and write data to data sets. Using EXECIO, you 
can read data from and write data to the data stack or stem variables. 

SUBCOM - to determine whether a particular host command environment is 
available for the processing of host commands 

EXECUTIL - to change various characteristics that control how a REXX exec 
is processed. You can use EXECUTIL in an exec or CLlST, and from TSO/E 
READY mode and ISPF. 

Immediate commands, which are: 

- HE (Halt Execution) - halt execution of the exec 

- HI (Halt Interpretation) - halt interpretation of the exec 

- TS (Trace Start) - start tracing of the exec 

- TE (Trace End) - end tracing of the exec 

Chapter 8. Using REXX In Different Address Spaces 189 



Using REXX in Different Address Spaces 

- HT (Halt Typing) - suppress terminal output that the exec generates 

- RT (Resume Typing) - resume terminal output that was previously 
suppressed. 

You can use the TS and TE immediate commands in a REXX exec to start 
and end tracing. You can use any of the immediate commands if an exec is 
running in TSO/E and you press the attention interruption key. When you 
enter attention mode, you can enter an immediate command. The 
commands are described in Chapter 10, "TSO/E REXX Commands." 

• Invoking an exec 

You can invoke another REXX exec using the TSO/E EXEC command processor. 
For more information about the EXEC command, see TSOIE Version 2 
Command Reference. 

• Linking to and attaching programs 

You can use the LINK, L1NKMVS, and L1NKPGM host command environments to 
link to unauthorized programs. For example: 

ADDRESS LINK "program pi p2 "," 

You can use the ATIACH, ATICHMVS, and ATICHPGM host command 
environments to attach unauthorized programs. For example: 

ADDRESS ATTACH "program pi p2 "," 

For more information about linking to and attaching programs, see "Host 
Command Environments for Linking to and Attaching Programs" on page 34. 

• Interactive System Productivity Facility (ISPF) 

You can invoke REXX execs from ISPF. You can also write ISPF dialogs in the 
REXX programming language. If an exec runs in ISPF, it can use ISPF services 
that are not available to execs that are invoked from TSO/E READY mode. In an 
exec, you can use the ISPEXEC and ISREDIT host command environments to 
use ISPF services. For example, to use the ISPF SELECT service, use: 

ADDRESS ISPEXEC 'SELECT service' 

You can use ISPF services only after ISPF has been invoked. 

• TSO/E commands 

You can use any TSO/E command in a REXX exec that runs in the TSO/E 
address space. That is, from ADDRESS TSO, you can issue any unauthorized 
and authorized TSO/E command. For example, the exec can issue the 
ALLOCATE, TEST,PRINTDS, FREE, SEND, and L1STBC commands. TSOIE 
Version 2 Command Reference and TSOIE Version 2 System Programming 
Command Reference describe the syntax of TSO/E commands. 

• TSO/E programming services 

If your REXX exec runs in the TSO/E address space, you can use various TSO/E 
service routines. For example, your exec can call a module that Invokes a 
TSO/E programming service, such as the parse service routine (IKJPARS); 
TSO/E I/O service routines, such as PUTLINE and PUTGET; message handling 
routine (IKJEFF02); and the dynamic allocation interface routine (DAIR). These 
TSO/E programming services are described in TSOIE Version 2 Programming 
Services. 

190 TSO/E Version 2 MVS/REXX Reference 

! 
I, 
I' 
! 

/~ '\ 
/ , 
, / 

''''-_J 

c 



( 

Using REXX In Different Address Spaces 

• TSO/E REXX programming services 

In any address space, you can use the TSO/E REXX programming services, 
such as IRXEXEC and IRXJCL, IRXEXCOM, and IRXIC. The services are 
described in Chapter 12, "TSO/E REXX Programming Services." 

• Interaction with CUSTs. 

In TSO/E, REXX execs can invoke CUSTs and can also be invoked by CUSTs. 
CUST is a command language and is described in TSOIE Version 2 CLiSTs. 

----------------------
Running an Exec in the TSO/E Address Space 

You can invoke a REXX exec in the TSO/E address space in several ways. To 
invoke an exec in TSO/E foreground, use the TSO/E EXEC command processor to 
either implicitly or explicitly invoke the exec. TSOIE Version 2 Procedures 
Language MVSIREXX User's Guide describes how to invoke an exec in TSO/E 
foreground. 

You can run a REXX exec in TSO/E background. In the JCl, specify IKJEFT01 as the 
program name (PGM =) on the JCL EXEC statement. On the EXEC statement, 
specify the member name of the exec and any arguments in the PARM field. For 
example, to execute an exec called TEST4 that is in data set 
USERID.MYREXX.EXEC, use the following JCL: 

IITSOBATCH EXEC PGM=IKJEFT81,DYNAMNBR=30,REGION=4096K,PARM='TEST4' 
IISYSEXEC DD DSN=USERID.MYREXX.EXEC,DISP=SHR 

You can also invoke an exec implicitly or explicitly in the input stream of the 
SYSTSIN DO statement. 

IITSOBATCH 
IISYSEXEC 
IISYSTSPRT 
IISYSTSIN 

%TEST4 
1* 
II 

EXEC PGM=IKJEFT01,DYNAMNBR=30,REGION=4096K 
DD DSN=USERID.MYREXX.EXEC,DISP=SHR 
DD SYSOUT=A 
DD * 

See TSOIE Version 2 Procedures Language MVSIREXX User's Guide for more 
information about invoking execs. 

From a program that is written in a high level programming language, you can use 
the TSO service facility to invoke the TSO/E EXEC command in order to process a 
REXX exec. TSOIE Version 2 Programming Services describes the TSO service 
facility in detail. 

You can also invoke a REXX exec from an application program using the exec 
processing routines IRXJCL and IRXEXEC. Although IRXJCl and IRXEXEC are 
primarily used in non-TSO/E address spaces, they are programming interfaces to 
the language processor that you can use to run an exec in any address space, 
including TSO/E. For example, in an assembler or Pl/I program, you could invoke 
IRXJCL or IRXEXEC to process a REXX exec. 

Chapter 8. Using REXX in Different Address Spaces 191 



Using REXX in Different Address Spaces 

The IRXEXECroutlne gives you more flexibility in processing an exec. For example, 
if you want to preload an exec in storage and then process the preloaded exec, you 
can use IRXEXEC. "Exec Processing Routines - IRXJCL and IRXEXEC" on 
page 258 describes the IRXJCL and IRXEXEC interfaces in detail. 

Note: You cannot invoke a REXX exec as authorized in either the foreground or the 
background. 

Summary of Writing Execs for Different Address Spaces 
Figure 16 summarizes the REXX keyword instructions, built-in functions, TSO/E 
external functions, TSO/E REXX commands, and other services you can use for 
execs that run in TSO/E and non-TSO/E address spaces. An X in the TSO/E or 
non-TSO/E columns indicates that the entry can be used in REXX execs that run in 
that address space. 

Note: You can use the TSO/E environment service, IKJTSOEV, to create a TSO/E 
environment in a non-TSO/E address space. If you run a REXX exec in the TSO/E 
environment you created, the exec can contain TSO/E commands, external 
functions, and services that an exec running in a TSO/E address space can use. For 
more information about the TSO/E environment service and the different 
considerations for running REXX execs within the environment, see TSOIE Version 2 
Programming Services. 

Figure 16 (Page 1 of 2). Summary of Using Instructions, Functions, Commands, and 
Services 

Instruction, Function, Command, Service TSO/E Non-TSO/E 

Keyword instructions (page 43) X X 

Built-in functions (page 91) X X 

TSO/E external functions (page 125) 

GETMSG X 

LlSTDSI X 

MSG X 

OUTTRAP X 

PROMPT X 

SETLANG X X 

STORAGE X X 

SYSDSN X 

SYSVAR X 

TSO/E REXX commands (page 199) 

DELSTACK X X 

DROPBUF X X 

EXECIO X X 

EXECUTIL X 

HE (from attention mode only) X 

HI (from attention mode only) X 

HT (from attention mode only) X 

192 TSO/E Version 2 MVS/REXX Reference 

;1'~ ... 

,,~ 

;'-", 

~_/ 

£'''' 
G 



--- --.. _-----------

Using REXX in Different Address Spaces 

Figure 16 (Page 2 of 2). Summary of Using Instructions, Functions, Commands, and 

C' 
Services 

Instruction, Function, Command, Service TSO/E Non-TSO/E 

MAKEBUF X X 

NEWSTACK X X 

QBUF X X 

QELEM X X 

QSTACK X X 

RT (from attention mode only) X 

SUBCOM X X 

TE X X 

TS X X 

Miscellaneous services 

(- Invoking another exec X X 

Linking to programs X X 

Attaching programs X X 

ISPF services X 

TSO/E commands, such as ALLOCATE and PRINTDS X 

TSO/E service routines, such as DAIR and IKJPARS X 

TSO/E REXX programming services, such as IRXJCL, X X 

( IRXEXEC, and IRXEXCOM (page 249) 

Interacting with TSO/E CLiSTs X 

Issuing MVS system and subsystem commands during X 
an extended MCS console session 

SAA CPI Communications calls X X 

APPC/MVS calls X X 

( 

Chapter 8. Using REXX in Different Address Spaces 193 



194 TSO/E Version 2 MVS/REXX Reference 

,I' ,_/' 



( 

( 

Keywords, Variables, and Command Names 

Chapter 9. Reserved Keywords, Special Variables, and 
Command Names 

-

You can use keywords as ordinary symbols in many situations where there is no 
ambiguity. The precise rules are given here. 

There are three special variables: Re, RESULT, and SIGL. 

TSO/E provides several TSO/E REXX commands whose names are reserved. 

This chapter describes the reserved keywords, special variables, and reserved 
command names. 

Reserved Keywords 
The free syntax of REXX implies that some symbols are reserved for the language 
processor's use in certain contexts. 

Within particular instructions, some symbols may be reserved to separate the parts 
of the instruction. These symbols are referred to as keywords. Examples of REXX 
keywords are the WHILE in a DO instruction, and the THEN (which acts as a clause 
terminator in this case) following an IF or WHEN clause. 

Apart from these cases, only simple symbols that are the first token in a clause and 
that are not followed by an "=" or ":" are checked to see if they are instruction 
keywords. You can use the symbols freely elsewhere in clauses without their being 
taken to be keywords. 

It is not, however, recommended for users to execute host commands or 
subcommands with the same name as REXX keywords (QUEUE, for example). This 
can create problems for programmers whose REXX programs might be used for 
some time and in circumstances outside their control, and who wish to make the 
program absolutely "watertight. H 

In this case, a REXX program may be written with (at least) the first words in 
command lines enclosed in quotes. 

Example: 

'LISTDS' ds_name 

This also has the advantage of being more efficient, and with this style, you can use 
the SIGNAL ON NOVALUE condition to check the integrity of an exec. 

In TSO/E, single quotes are often used in TSO/E commands, for example, to enclose 
the name of a fully qualified data set. In any REXX execs that run in TSO/E, you may 
want to enclose an entire host command in double quotes. This ensures that the 
language processor processes the expression as a host command. For example: 

"ALLOCATE DA{'prefix.proga.exec') FILE(SYSEXEC) SHR REUSE" 

© Copyright IBM Corp. 1988, 1991 195 



Keywords, Variables, and Command Names 

Special Variables r'\ 
There are three special variables that the language processor can set automatically: '\..cJ 

Re is set to the return code from any executed host command (or 
subcommand). Following the SIGNAL events SYNTAX, ERROR, and 
FAILURE, RC is set to the code appropriate to the event: the syntax 
error number (see Appendix A, "Error Numbers and Messages") or 
the command return code. RC is unchanged following a NOVALUE or 
HALT event. 

RESULT 

SIGL 

Note: Host commands issued manually from debug mode do not 
cause the value of RC to change. 

The special variable RC can also be set to a -3 if the host command 
could not be found. See "Host Commands and Host Command 
Environments" on page 26 for information about issuing commands 
from an exec. 

The TSO/E REXX commands also return a value in the special variable 
RC. Some of the commands return the result from the command. For 
example, the aSUF command returns the number of buffers currently 
on the data stack in the special variable RC. The commands are 
described in Chapter 10, "TSO/E REXX Commands." 

is set by a RETURN instruction in a subroutine that has been called, if 
the RETURN instruction specifies an expression. If the RETURN 
instruction has no expression, RESULT is dropped (becomes 
uninitialized.) 

contains the line number of the clause currently executing when the 
last transfer of control to a label took place. (A SIGNAL, a CALL, an 
internal function invocation, or a trapped error condition could cause 
this.) 

None of these variables has an initial value. You can alter them, just as with any 
other variable, and they can be accessed using the variable access routine 
IRXEXCOM (page 289). The PROCEDURE and DROP instructions also affect these 
variables in the usual way. 

Certain other information is always available to a REXX program. This includes the 
name by which the program was invoked and the source of the program (which is 
available using the PARSE SOURCE instruction-see page 67). The data that PARSE 
SOURCE returns is: 

1. The character string TSO 

2. The call type (command, function, or subroutine) 

3. Name of the exec in uppercase 

4. Name of the DO from which the exec was loaded, if known 

5. Name of the data set from which the exec was loaded, if known 

6. Name of the exec as invoked (that is, not folded to uppercase) 

7. Initial (default) host command environment 

8. Name of the address space in uppercase 

9. Eight character user token 

196 TSO/E Version 2 MVS/REXX Reference 

,/ '\ 

c 



( 

( 

( 

~~~~~~--- --------~-----------

Keywords, Variables, and Command Names 

In addition, PARSE VERSION (see page 68) makes available the version and date of 
the language processor code that is running. The built-in functions TRACE and 
ADDRESS return the current trace setting and host command environment name, 
respectively. 

Finally, you can obtain the current settings of the NUMERIC function using the 
DIGITS, FORM, and FUZZ built-in functions. 

Reserved Command Names 
TSO/E provides TSO/E REXX commands that you can use for REXX processing. The 
commands are described in Chapter 10, "TSO/E REXX Commands." The names of 
these commands are reserved for use by TSO/E, and it is recommended that you do 
not use these names for names of your REXX execs, CLiSTs, or load modules. The 
names are: 

• DELSTACK 
• DROPBUF 
• EXECIO 
• EXECUTIL 

• HE 
• HI 
• HT 
• MAKEBUF 
• NEWSTACK 
• QBUF 
• QELEM 
• QSTACK 

• RT 
• SUBCOM 

• TE 
• TS 

Chapter 9. Reserved Keywords, Special Variables, and Command Names 197 



I 

198 TSO/E Version 2 MVS/REXX Reference 



( 

(j 

TSO/E REXX Commands 

Chapter 10. TSO/E REXX Commands 

TSO/E Version 2 provides TSO/E REXX commands to perform different services, 
such as 110 and data stack requests. The TSO/E REXX commands are not the same 
as TSO/E command processors, such as ALLOCATE and PRINTDS. In general, you 
can only use these commands in REXX execs (in any address space), not in CLlSTs 
or from TSO/E READY mode. The exceptions are the EXECUTIL command and the 
immediate commands HE, HI, HT, RT, TE, and TS. 

You can use the EXECUTIL command in the TSO/E address space only. In general, 
you can use EXECUTIL in an exec or a CLlST, from TSO/E READY mode, or from 
ISPF. The description of the EXECUTIL command on page 215 describes the 
different operands and any exceptions about using them. 

You can use the TS (Trace Start) and TE (Trace End) immediate commands in an 
exec that runs in any address space. In the TSO/E address space, you can use any 
of the immediate commands (HE, HI, HT, RT, TE, and TS) if you are executing a 
REXX exec and press the attention interrupt key. When you enter attention mode, 
you can enter one of the immediate commands. 

The TSO/E REXX commands perform services, such as: 

• Controlling 1/0 processing of information to and from data sets (EXECIO) 

• Performing data stack services (MAKEBUF, DROPBUF, OBUF, OELEM, 
NEWSTACK, DELSTACK, OSTACK) 

• Changing characteristics that control the execution of an exec (EXECUTIL and 
the immediate commands) 

• Checking for the existence of a host command environment (SUBCOM). 

Note: The names of the TSO/E REXX commands are reserved for use by TSO/E. It 
is recommended that you do not use these names for names of your REXX execs, 
CLlSTs, or load modules. 

Environment Customlzatlon Considerations -------------, 

If you customize REXX processing using the initialization routine IRXINIT, you 
can initialize a language processor environment that is not integrated into TSO/E 
(see page 344). Most of the TSO/E REXX commands can be used in any type of 
language processor environment. The EXECUTIL command can be used only if 
the environment is integrated into TSO/E. You can use the immediate 
commands from attention mode only if the environment is integrated into TSO/E. 
You can use the TS and TE immediate commands in a REXX exec that executes 
in any type of language processor environment (integrated or not integrated into 
TSO/E). Chapter 13, "TSO/E REXX Customizing Services" describes 
customization and language processor environments in more detail. 

In this chapter, examples are provided that show how to use the TSO/E REXX 
commands. The examples may include data set names. When an example includes 
a data set name that is enclosed in single quotes, the prefix is added to the data set 
name. In the examples, the user 10 is the prefix. 

© Copyright IBM Corp. 1988. 1991 199 

---...... -------------



DELSTACK 

DELSTACK 

deletes the most recently created data stack that was created by the NEWSTACK 
command, and all elements on it. If a new data stack was not created, DELSTACK 
removes all the ilements from the original data stack. 

The DELSTACK command can be used in REXX execs that execute In both the 
TSO/E address space and non-TSO/E address spaces. 

The exec that creates a new data stack with the NEWST ACK command can delete 
the data stack with the DELSTACK command, or an external function or subroutine 
that is written in REXX and that is called by that exec can issue a DELSTACK 
command to delete the data stack. 

Examples 

1. To create a new data stack for a called routine and delete the data stack when 
the routine returns, use the NEWSTACK and DELSTACK commands as follows: 

"NEWSTACK" 
CALL subl 
"DELSTACK" 

EXIT 

subl: 
PUSH ••• 
QUEUE ••• 
PULL ••• 
RETURN 

/* data stack 2 created */ 

/* data stack 2 deleted */ 

2. After creating multiple new data stacks, to find out how many data stacks were 
created and delete all but the original data stack, use the NEWSTACK, QSTACK, 
and DELSTACK commands as follows: 

II NEWSTACK II 

"NEWSTACK" 

"NEWSTACK" 
"QSTACK" 
times = RC -
DO times 

"DELSTACK" 
END 

/* data stack 2 created */ 

/* data stack 3 created */ 

/* data stack 4 created */ 

1 /* set times to the number of new data stacks created */ 
/* delete all but the original data stack */ 
/* delete one data stack */ 

200 TSO/E Version 2 MVS/REXX Reference 

c 

c 



DROPBUF 

(-

(-

--~--~~. - ._._- ~------

DROPBUF 

.... -~DROPBuF-TL-n-J,...--.... 4 

removes the most recently created data stack buffer that was created with the 
MAKEBUF command, and all elements on the data stack in the buffer. To remove a 
specific data stack buffer and all buffers created after it, issue the DROPBUF 
command with the number (n) of the buffer. 

The DROPBUF command can be issued from REXX execs that execute in both the 
TSO/E address space and non-TSO/E address spaces. 

Operand: The operand for the DROPBUF command is: 

n specifies the number of the first data stack buffer you want to drop. DROPBUF 
removes the specified buffer and all buffers created after it. If n is not specified, 
only the most recently created buffer is removed. If you issue DROPBUF 0, all 
buffers that were created on the data stack with the MAKEBUF command and all 
elements that were put on the data stack are removed. DROPBUF 0 effectively 
clears the data stack. 

Note: The data stack initially contains one buffer. You can create additional 
buffers using the MAKEBUF command. The DROPBUF command removes only 
buffers (and elements within a buffer) that were explicitly created with 
MAKEBUF. 

If processing was not successful, the DROPBUF command sets one of the following 
return codes in the REXX special variable Re. 

Return 
Code 

1 

2 

Meaning 

An invalid number n was specified. For example, n was A1. 

The specified buffer does not exist. For example, you get a return code of 2 
if aBUF = 4 and you specify DROPBUF 6. 

Chapter 10. TSO/E REXX Commands 201 



DROPBUF 

Example 

A subroutine (sub2) in a REXX exec (execc) issues the MAKEBUF command to 
create four buffers. Before the subroutine returns, it removes buffers two and above 
and all elements within the buffers. 

/* REXX program */ 
execc: 

exit 
sub2: 

CALL sub2 

"MAKEBUF" 
QUEUE A 
"MAKEBUF" 
QUEUE B 
QUEUE C 
"MAKEBUF" 
QUEUE 0 
"MAKEBUF" 
QUEUE E 
QUEUE F 

"DROPBUF 2" 
RETURN 

/* buffer 1 created */ 

/* buffer 2 created */ 

/* buffer 3 created */ 

/* buffer 4 created */ 

/* buffers 2 and above deleted */ 

202 TSO/E Version 2 MVS/REXX Reference 

o 



c 

(~\ 

( 

EXEelO 

~XECIO-C:!~ 

bISKW--ddna 

-DISKR-,-ddna:me-r----rr-------------------I 
ISKRu-J 

controls the input and output (110) of information to and from a data set. Information 
can be read from a data set to the data stack for serialized processing or to a list of 
variables for random processing. Information from the data stack or a list of 
variables can be written to a data set. 

The EXECIO command can be used in REXX execs that execute in both the TSO/E 
address space and non-TSO/E address spaces. 

You can use the EXECIO command to do various types of I/O tasks, such as copy 
information to and from a data set in order to add, delete, or update the information. 

An I/O data set must be either sequential or a single member of a PDS. Before the 
EXECIO command can perform I/O to or from the data set, the data set must be 
allocated to a file that is specified on the EXECIO command. The EXECIO command 
does not perform the allocation. 

When performing I/O with a system data set that is available to multiple users, 
allocate the data set as OLD before issuing the EXECIO command, in order to have 
exclusive use of the data set. 

When you use EXECIO, you must ensure that you use quotes around any operands, 
such as DISKW, STEM, FINIS, or LIFO. Using quotes prevents the possibility of the 
operands being substituted as variables. For example, if you assign the variable 
stem to a value in the exec and then issue EXECIO with the STEM option, if STEM is 
not enclosed in quotes, it will be substituted with its assigned value. 

Chapter 10. TSO/E REXX Commands 203 



EXECIO 

Operands for Reading from lita Set: The operands for the EXECIO command to 
read from ata set are as follows: 

Ii s 
the number of lines to be processed. This operand can be a specific decimal 
number or an arbitrary number indicated by *. When the operand is * and 
EXECIO is reading from a data set, input is read until EXECIO reaches the end 
of the data set. 

If you specify a value of zero (0), no I/O operations are performed unless you 
also specify either OPEN, FINIS, or both OPEN and FINIS. 

• If you specify OPEN and the data set is closed, EXECIO opens the data set 
but does not read any lines. If you specify OPEN and the data set is open, 
EXECIO does not read any lines. 

In either case, if you also specify a non-zero value for the linenum operand, 
EXECIO sets the current record number to the record number indicated by 
the linenum operand. 

Note: By default, when a file is opened, the current record number is set to 
the first record (record 1). The current record number is the number of the 
next record EXECIO will read. However, if you use a non-zero linenum 
value with the OPEN operand, EXECIO sets the current record number to the 
record number indicated by linenum. 

• If you specify FINIS and the data set is open, EXECIO does not read any 
lines, but EXECIO closes the data set. If you specify FINIS and the data set 
is not already opened, EXECIO does not open the data set and then close it. 

• If you specify both OPEN and FINIS, EXECIO processes the OPEN first as 
described above. EXECIO then processes the FINIS as described above. 

DISKR 
opens a data set for input (if it is not already open) and reads the specified 
number of lines from the data set and places them on the data stack. If the 
STEM operand is specified, the lines are placed in a list of variables instead of 
on the data stack. 

When a data set is open for input, you cannot write information back to the same 
data set. 

The data set is not automatically closed unless: 

• The task, under which the data set was opened, ends 

• The last language processor environment associated with the task, under 
which the data set was opened, is terminated (see page 328 for information 
about language processor environments). 

DISKRU 
opens a data set for update (if it is not already open) and reads the specified 
number of lines from the data set and places them on the data stack. If the 
STEM operand is specified, the lines are placed in a list of variables instead of 
on the data stack. 

When a data set is open for update, the last record read can be changed and 
then written back to the data set one line at a time with a corresponding EXECIO 

r 
I 

',~/ 

J 
/' 

DISKW command. Typically, you open a data set for update when you want to r£ .. "\ 
modify information in the data set. V 

204 TSO/E Version 2 MVS/REXX Reference 



c' 

( 

( 

EXECIO 

The data set is not automatically closed unless: 

• The task, under which the data set was opened, ends 

• The last language processor environment associated with the task, under 
which the data set was opened, is terminated. 

After a data set is open for update (by issuing a DISKRU as the first operation 
against the data set), you can use either DISKR or DISKRU to fetch subsequent 
records for update. 

ddname 
the name of the file to which the sequential data set or member of the PDS was 
allocated. You must allocate the file before you can issue EXECIO. 

linenum 
the line number in the data set at which EXECIO is to begin reading. 

When a data set is open for input or update, the current record number is the 
number of the next record to be read. When linenum specifies a record number 
earlier than the current record number in an open data set, the data set must be 
closed an~ reopened to reposition the current record number at linenum. When 
this situation occurs and the data set was not opened at the same task level as 
that of the executing exec, attempting to close the data set at a different task 
level results in an EXECIO error. The linenum operand must not be used in this 
case. 

Specifying a value of zero (0) for linenum is equivalent to not specifying the 
linenum operand. In either case, EXECIO begins reading the file as follows: 

• If the file was already opened, EXECIO begins reading with the line 
following the last line that was read 

• If the file was just opened, EXECIO begins reading with the first line of the 
file. 

FINIS 
close the data set after the EXECIO command completes. A data set can be 
closed only if it was opened at the same task level as the exec issuing the 
EXECIO command. 

You can use FINIS with a lines value of 0 to have EXECIO close an open 
data set without first reading a record. 

Because the EXEC command (when issued from TSO/E READY mode) is 
attached by the TSO/E terminal monitor program (TMP), data sets opened 
by a REXX exec are typically closed automatically when the top level exec 
ends. Good programming practice, however, would be to explicitly close all 
data sets when finished with them. 

OPEN 
opens the specified data set if it is not already open. You can use OPEN 
with a lines value of 0 to have EXECIO do one of the following: 

• Open a data set without reading any records 

• Set the current record number (that is, the number of the next record 
EXECIO will read) to the record number indicated by the linenum 
operand, if you specify a value for linenum. 

Chapter 10. TSO/E REXX Commands 205 



EXECIO 

STEM var-name 
the stem of the list of variables into which information is to be placed. To 
place information in compound variables, which allow for indexing, the C 
var-name should end with a period, myvar., for example. When three Iines'J 
are read from the data set, they are placed in myvar.l. myvar.2. myvar.3. 
The number of variables in the list is stored in myvar.e. 

When var-name doesn't end with a period, the variable names are 
appended with numbers, but they cannot be accessed by an index in a loop. 

LIFO 
places information on the data stack in LIFO (\ast in first out) order. 

FIFO 
places information on the data stack in FIFO (first in first out) order. FIFO is 
the default when neither LIFO or FIFO is specified. 

SKIP 
reads the specified number of lines but does not place them on the data 
stack or in variables. When the number of lines is *, EXECIO skips to the 
end of the data set. 

Operands lor Writing to a Data Set: The operands for the EXECIO command that 
write to a data set are as follows: 

lines 
the number of lines to be written. This operand can be a specific decimal 
number or an arbitrary number indicated by *. If you specify a value of zero (0), 
no 110 operations are performed unless you also specify either OPEN, FINIS, or 
both OPEN and FINIS. 

• If you specify OPEN and the data set Is closed, EXECIO opens the data set 
but does not write any lines. If you specify OPEN and the data set is open, 
EXECIO does not write any lines. 

• If you specify FINIS and the data set is open, EXECIO does not write any 
lines, but EXECIO closes the data set. If you specify FINIS and the data set 
is not already opened, EXECIO does not open the data set and then close it. 

• If you specify both OPEN and FINIS, EXECIO processes the OPEN first as 
described above. EXECIO then processes the FINIS as described above. 

When EXECIO writes an arbitrary number of lines from the data stack, It stops 
only when it reaches a null line. If there is no null line on the data stack In an 
interactive TSO/E address space, EXECIO waits for input from the terminal and 
stops only when it receives a null line. See note below. 

When EXECIO writes an arbitrary number of lines from a list of compound 
variables, it stops when it reaches a null value or an uninitialized variable (one 
that displays its own name). 

The Oth variable has no effect on controlling the number of lines written from 
variables. 

Nole: EXECIO running in TSO/E background or in a non-TSO/E address space 
has the same use of the data stack as an exec that runs in the TSO/E 
foreground. If an EXECIO * DISKW ... command is executing In the background 

, 
<..:,-

or in a non-TSO/E address space and the data stack becomes empty before a C 
null line is found (which would terminate EXECIO), EXECIO goes to the input ..' 
stream as defined by the INDO field in the module name table (see page 357). 
The system default is SYSTSIN. When end-of-file is reached, EXECIO ends. 

206 TSO/E Version 2 MVS/REXX Reference 



( 

EXECIO 

DISKW 
opens a data set for output (if it was not already open) and writes the specified 
number of lines to the data set. The lines can be written from the data stack or, 
if the STEM operand is specified, from a list of variables. 

You can use the DISKW operand to write information to a different data set from 
the one opened for input, or to update, one line at a time, the same data set 
opened for update. When a data set is opened for update, you can use DISKW 
to rewrite the last record read. The lines value must be 1 when doing an 
update. 

The data set is not automatically closed unless: 

• The task, under which the data set was opened, ends. 

• The last language processor environment associated with the task, under 
which the data set was opened, is terminated. 

Notes: 

1. The length of an updated line is set to the length of the line it replaces. 
When an updated line is longer than the line it replaces, information that 
extends beyond the replaced line is truncated. When information is shorter 
than the replaced line, the line is padded with blanks to attain the original 
line length. 

2. When using EXECIO to write to more than one member of the same PDS, 
only one member of the PDS should be open at a time for output. 

3. Do not use the MOD attribute when allocating a member of a PDS to which 
you want to append information. You can use MOD only when appending 
information to a sequential data set. To append information to a member of 
a PDS, rewrite the member with the additional records added. 

ddname 
the name of the file to which the sequential data set or member of the PDS was 
allocated. You must allocate the file before you issue the EXECIO command. 

FINIS 
close the data set after the EXECIO command completes. A data set can be 
closed only if it was opened at the same task level as the exec issuing the 
EXECIO command. 

You can use FINIS with a lines value of 0 to have EXECIO close an open 
data set without first writing a record. 

Because the EXEC command (when issued from TSO/E READY mode) is 
attached by the TMP, data sets opened by a REXX exec are typically closed 
automatically when the top level exec ends. Good programming practice, 
however, would be to explicitly close all data sets when finished with them. 

OPEN 
opens the specified data set if it is not already open. You can use OPEN 
with a lines value of 0 to have EXECIO open a data set without writing any 
records. 

STEM vaT-name 
the stem of the list of variables from which information is to be written. To 
write information from compound variables, which allow for indexing, the 
vaT-name should end with a period, myvar., for example. When three lines 
are written to the data set, they are taken from myvar.l. myvar.2. myvar.3. 
When * is specified as the number of lines to write, the EXECIO command 

Chapter 10. TSO/E REXX Commands 207 



EXECIO 

stops writing information to the data set when it finds a null line or an 
uninitialized compound variable. In this case, if the list contained 10 
compound variables, the EXECIO command stops at myvar.ll. 

The Oth variable has no effect on controlling the number of lines written 
from variables. 

When var-name does not end with a period, the variable names must be 
appended with consecutive numbers, such as myvarl, rnyvar2, rnyvar3. 

Closing Data Sets: If you specify FINIS on the EXECIO command, the data set is 
closed after EXECIO completes processing. If you do not specify FINIS, the data set 
is closed when one of the following occurs: 

• The task, under which the data set was opened, is terminated, or 

• The last language processor environment associated with the task, under which 
the data set was opened, is terminated (even if the task itself is not terminated). 

In general, if you use the TSO/E EXEC command to invoke a REXX exec, any data 
sets that the exec opens are closed when the top level exec completes. For' 
example, suppose you are executing an exec (top level exec) that invokes another 
exec. The second exec uses EXECIO to open a data set and then returns control to 
the first exec without closing the data set. The data set is still open when the top 
level exec regains control. The top level exec can then read the same data set 
continuing from the point where the nested exec finished EXECIO processing. When 
the original exec (top level exec) ends, the data set is automatically closed. 

Figure 17 on page 209 is an example of two execs that show how a data set 
remains open. The first (top level) exec, EXEC1, allocates a file and then calls 
EXEC2. The second exec (EXEC2) opens the file, reads the first three records, and 
then returns control to EXEC1. Note that EXEC2 does not specify FINIS on the 
EXECIO command, so the file remains open. 

When the first exec EXEC1 regains control, it issues EXECIO and gets the fourth 
record because the file is still open. If EXEC2 had specified FINIS on the EXECIO 
command, EXEC1 would have read the first record. In the example, both execs run 
at the same task level. 

208 TSO/E Version 2 MVS/REXX Reference 

c 



c\ 

( 

( 

( 

FIRST EXEC ---- EXECl 

/* REXX exec (EXECI) invokes another exec (EXEC2) to open a 
/* file. EXECI then continues reading the same file. 
say 'Executing the first exec EXECI' 
"ALLOC FI(INPUTDD) DA(MYINPUT) SHR REUSE" /* Allocate input file 
/* 
/* 
/* 
/* 
/* 
/* 
/* 
/* 
/* 

Now invoke the second exec (EXEC2) to open the INPUTDD file. 
The exec uses a call to invoke the second exec. You can 
also use the TSO/E EXEC command. which would have the 
same result. 
If EXEC2 opens a file and does not close the file before 
returning control to EXECI. the file remains open when 
control is returned to EXECI. 

say 'Invoking the second exec EXEC2' 

*/ 
*/ 

*/ 
*/ 
*/ 
*/ 
*/ 
*/ 
*/ 
*/ 
*/ 
*/ 

call exec2 /* Call EXEC2 to open file */ 
say 'Now back from the second exec EXEC2. Issue another EXECIO.' 
"EXECIO 1 DISKR INPUTDD (STEM X." 
say x.I 
say 'Now close the file' 

/* EXECIO reads record 4 */ 

"EXECIO a DISKR INPUTDD (FINIS" /* Close file so it can be freed */ 
/* 
/* 
/* 
/* 
/* 
/* 
/* 
/* 

Note: The above EXECIO command to close the file is optional. 
When the top level exec completes. the file would be closed 
automatically. 
However, in order to "free" the file (as shown below using 
the FREE command). you must first close the file before you 
free it. 

"FREE FI(INPUTDD)" 
EXIT a 

/* 
/* 
/* 
/* 

SECOND EXEC ---- EXEC2 

REXX exec (EXEC2) opens the file INPUTDD. reads 3 records. and 
then returns to the invoking exec (EXECI). The exec (EXEC2) 
returns control to EXECI without closing the INPUTDD file. 

say "Now in the second exec EXEC2" 

*/ 
*/ 
*/ 
*/ 
*/ 
*/ 
*/ 
*/ 

*/ 
*/ 
*/ 
*/ 

DO I = 1 to 3 /* Read & display first 3 records */ 
"EXECIO 1 DISKR INPUTDD (STEM Y." 
say y.1 

END 
Say 'Leaving second exec EXEC2. Three records were read from file.' 
EXIT a 

Figure 17. Example of Closing Data Sets With EXECIO 

EXECIO 

Chapter 10. TSO/E REXX Commands 209 



EXECIO 

Return Codes: After the EXECIO command runs, it sets the REXX special variable 
RC to one of the following return codes: 

Return 
Code 

Meaning 

o Normal completion of requested operation 

1 Data was truncated during DISKW operation 

2 End-of-file reached before the specified number of lines were read during a 
DISKR or DlSKRU operation. This does not occur if * is used for number of 
lines because the remainder of the file is always read. 

4 During a DISKR or DISKRU operation, an empty data set was found in a 
concatenation of data sets. The file was not successfully opened and no 
data was returned. 

20 Severe error. EXECIO completed unsuccessfully and a message is issued. 

Examples 

1. This example copies an entire existing sequential data set named 
USERID.MY.lNPUT into a member of an existing PDS named 
DEPT5.MEMO(MAR22), and uses the ddnames DATAIN and DATAOUT 
respectively. 

"ALLOC DA(my.input) F(datain) SHR REUSE", 
"ALLOC DA('dept5.memo(mar22)') F(dataout) OLD" 
"NEWSTACK" /* Create a new data stack for input only */ 

"EXECIO * DISKR datain (FINIS" 
QUEUE" /* Add a null line to indicate the end of information */ 
"EXECIO * DISKW dataout (FINIS" 

"DELSTACK" /* Delete the new data stack */ 
"FREE F(datain dataout)" 

2. This example copies an arbitrary number of lines from existing sequential data 
set USERID.TOTALDATA into a list of compound variables with the stem DATA., 
and uses the ddname INPUTDD: 

ARG lines 
"ALLOC DA(total.data) F(inputdd) SHR REUSE" 
"EXECIO" lines "DISKR inputdd (STEM data." 
SAY data.O 'records were read.' 

3. To update the second line in data set DEPT5.EMPLOYEE.LlST in file UPDATEDD, 
allocate the data set as OLD to guarantee exclusive update. 

"ALLOC DA('dept5.employee.list') F(updatedd) OLD" 
"EXECIO 1 DISKRU updatedd 2" 
PULL line 
PUSH 'Crandall, Amy AMY 5500' 
"EXECIO 1 DISKW updatedd (FINIS" 
"FREE F(updatedd)" 

210 TSO/E Version 2 MVS/REXX Reference 

c 

c 



(~ 

( 

(. 

(/ 

EXECIO 

4. The following example scans each line of a data set whose name and size is 
specified by the user. The user is given the option of changing each line as it 
appears. If there is no change to the line, the user presses the ENTER key to 
indicate that there is no change. If there is a change to the line, the user types 
the entire line with the change and the new line is returned to the data set. 

PARSE ARG name numlines /* Get data set name and size from user */ 

"ALLOC DA("name") F(updatedd) OLD" 
eof = 'NO' /* Initialize end-of-file flag */ 

DO i = 1 to numlines WHILE eof = no 
'EXECIO 1 DISKRU updatedd' /* Queue the next line on the stack */ 
IF RC = 2 THEN /* Return code indicates end-of-file */ 

eof = 'YES' 
ELSE 

DO 
PARSE PULL line 
SAY 'Please make changes to the following line.' 
SAY 'If you have no changes, press ENTER.' 

END 

SAY line 
PARSE PULL newline 
IF newline = " THEN NOP 
ELSE 

END 

DO 
PUSH newline 
"EXECIO 1 DISKW updatedd" 

END 

5. This example reads from the data set allocated to INDO to find the first 
occurrence of the string "Jones". Upper and lowercase distinctions are ignored. 
The example demonstrates how to read and search one record at a time. For 
better performance, you can read all records to the data stack or to a list of 
variables, search them, and then return the updated records. 

done = 'no' 

DO WHILE done = 'no' 
"EXECIO 1 DISKR indd" 
IF RC = e THEN /* Record was read */ 

DO 
PULL record 
lineno = lineno + 1 /* Count the record */ 
IF INDEX(record,'JONES') ~= e THEN 

DO 
SAY 'Found in record' lineno 
done = 'yes' 
SAY 'Record = ' record 

END 
ELSE NOP 

END 
ELSE 

done = 'yes' 
END 
EXIT e 

Chapter 10. TSO/E REXX Commands 211 



EXECIO 

6. This exec copies records from data setUSERID.MY.INPUT to the end of data set 
USERID.MY.OUTPUT. Neither data set has been allocated to a ddname. It 
assumes that the input data set has no null liries. 

"ALLOC DA(my.input) F(indd) SHR REUSE" 
"ALLOC DA(my.output) F(outdd) MOD REUSE" 

SAY 'Copying ••• ' 

"EXECIO * DISKR indd (FINIS" 
QUEUE" /* Insert a null line at the end to indicate end of file */ 
"EXECIO * DISKW outdd (FINIS" 

SAY 'Copy complete.' 
"FREE F(indd outdd)" 

EXIT G 

7. This exec reads five records from the data set allocated to MYINDD starting with 
the third record. It strips trailing blanks from the records, and then writes any 
record that is' longer than 20 characters. The file is not closed when the exec is 
finished. 

"EXECIO 5 DISKR myindd 3" 

DO i = 1 to 5 
PARSE PULL line 
stripline = STRIP(line,t) 
len = LENGTH(stripline) 

IF len > 29 THEN 
SAY 'Line' stripline 'is long.' 

ELSE NOP 
END 

/* The file is still open for processing */ 

EXIT G 

8. This exec reads the first 100 records (or until EOF) of the data set allocated to 
INVNTORY. Records are placed on the data stack in LIFO order. If fewer than 
100 records are read, a message is issued. 

eofflag = 2 /* Return code to indicate end of file */ 

"EXECIO lEle DISKR invntory (LIFO" 
return_code = RC 

IF return_code ~= eofflag THEN 
SAY 'Premature end of file.' 

ELSE 
SAY 'lee Records read.' 

EXIT return_code 

212 TSO/E Version 2.MVS/REXX Reference 

/' .. "\ 

c 



(-

(-

EXECIO 

9. This exec erases any existing data from the data set FRED.WORKSET.FILE by 
opening the data set and then closing it without writing any records. By doing 
this, EXECIO just writes an end-of-file marker, which erases any existing 
records in the data set. 

In this example, the data set from which you are erasing records must not be 
allocated with a disposition of MOD. If you allocate the data set with a 
disposition of MOD, the EXECIO OPEN followed by the EXECIO FINIS results in 
EXECIO just rewriting the existing end-ot-tile marker. 

"ALLOCATE DA('fred.workset.file') F(outdd) OLD REUSE" 

"EXECIO e DISKW outdd (OPEN" /* Open the OUTDO file for writing, 
but do not write a record */ 

"EXECIO e DISKW outdd (FINIS" /* Close the OUTDO file. This basically 
completes the erasing of any existing 
records from the OUTDO file. */ 

Note that in this example, the EXECIO ... (OPEN command followed by the EXECIO 
... (FINIS command is equivalent to: 

"EXECIO e DISKW outdd (OPEN FINIS" 

10. This exec opens the data set MY.INVNTORY without reading any records. The 
exec then uses a main loop to read records trom the data set and process the 
records. 

"ALLOCATE DA('my.invntory') F(indd) SHR REUSE" 
"ALLOCATE DA( 'my.avail. file') F(outdd) OLD REUSE" 

"EXECIO e DISKR indd (OPEN" 

eof = 'NO' 
avail_count = e 

DO WHILE eof = 'NO' 
"EXECIO 1 DISKR indd (STEM line." 
IF RC = 2 THEN 

eof = 'YES' 
ELSE 

DO 

/* Open INDO file for input, but 
do not read any records 

/* Initialize end-of-file flag 
/* Initialize counter 

/* Loop until the EOF of input file 
/* Read a line 
/* If end of file is reached, 
/* set the end-of-file (eof) flag 
/* Otherwise,' a record is read 

IF INDEX(line.l,'AVAILABLE') THEN /* Look for records 
marked "available" 

DO /* "Available" record found 

*/ 

*/ 
*/ 

*/ 
*/ 
*/ 
*/ 
*/ 

*/ 
*/ 

"EXECIO 1 DISKW outdd" /* Write record to available file */ 
avail_count = avail_count + 1 /* Increment "available" counter */ 

END 

END 
END 

"EXECIO e OISKR indd (FINIS" 
"EXECIO e OISKW outdd (FINIS" 

EXIT a 

/* Close INDO file that is currently open */ 
/* Close OUTDO file if file is currently 

open. If the OUTDO file is not open, */ 
the EXECIO command has no effect. */ 

Chapter 10. TSO/E REXX Commands 213 



EXECIO 

11. This exec opens the data set MV.wRKFILE and sets the current record number 
to record 8 so that the next EXECIO DISKR command begins reading at the 
eighth record. 

"ALLOC DA('my.wrkfile') F(indd) SHR REUSE" 

"EXECIO e DISKR indd 8 (OPEN" 

"EXECIO e DISKR indd (FINIS" 

/* Open INDO file for input and set 
current record number to 8. */ 

/* Call subroutine to read record on to the 
data stack. The next record EXECIO reads 
is record 8 because the previous EXECIO 
set the current record number to 8. */ 

/* Close the INDO file. */ 

214 TSO/E Version 2 MVS/REXX Reference 



EXECUTIL 

( 

~EXECUTIL EX 

TS 
TE 
HT 

ECDD(--r=::CLOSE 
. NOCLOSE 

EXECUTll 

I ) 

T 
I 
E NAME NAME (function-name) 

LSYSNAME(sys-name)J LDD(SyS-dd)J 

SE ARCHDD 

lets you change various characteristics that control how an exec processes in the 
TSO/E address space. You can use EXECUTIL: 

• In a REXX exec 

• From TSO/E READY mode 

• From ISPF - the ISPF command line or the ISPF option that lets you enter a 
TSO/E command or CUST 

• In a CUST. You can use EXECUTIL in a CUST to affect exec processing. 
However, it has no effect on CUST processing 

You can also use EXECUTIL with the HI, HT, RT, TS, and TE operands from a 
program that is written in a high-level programming language by using the TSO 
service facility. From READY mode or ISPF, the HI, HT, and RT operands are not 
applicable because an exec is not currently running. 

Use EXECUTIL to: 

• Specify whether the system exec library (the default is SYSEXEC) is to be closed 
after the exec is located or is to remain open 

• Start and end tracing of an exec 

• Halt the interpretation of an exec 

• Suppress and resume terminal output from an exec 

• Change entries in a function package directory 

• Specify whether or not the system exec library (the default is SYSEXEC) is to be 
searched in addition to SYSPROC. 

Additional Considerations for Using EXECUriL 

• All of the EXECUTIL operands are mutually exclusive, that is, you can only 
specify one of the operands on the command. 

• The HI, HT, RT, TS, and TE operands on the EXECUTIL command are also, by 
themselves, immediate commands. Immediate commands are commands you 
can issue from the terminal if an exec is running in TSO/E and you press the 
attention interrupt key and enter attention mode. When you enter attention 
mode, you can enter an immediate command. Note that HE (Halt Execution) is 
an immediate command, but HE is not a valid operand on the EXECUTIL 
command. 

Chapter 10. TSO/E REXX Commands 215 



EXECUTll 

Note: You can also use the TSO/E REXX commands TS (Trace Start) and TE 
(Trace End) in a REXX exec that runs in any address space (TSO/E and 
non-TSO/E). For information about the TS command, see page 240. For 
information about the TE command, see page 239. 

• In general, EXECUTIL works on a language processor environment basis. That 
is, EXECUTIL affects only the current environment in which EXECUTIL is issued. 
For example, if you are in split screen in ISPF and issue EXECUTIL TS from the 
second ISPF screen to start tracing, only execs that are invoked from that ISPF 
screen are traced. If you invoke an exec from the first ISPF screen, the exec is 
not traced. 

Using the EXECDD and SEARCHDD operands may affect subsequent language 
processor environments that are created. For example, if you issue EXECUTIL 
SEARCH DO from TSO/E READY mode and then invoke ISPF, the new search 
order defined by EXECUTIL SEARCH DO may be in effect for the ISPF session 
also. This depends on whether your installation has provided its own 
parameters modules IRXTSPRM and IRXISPRM and the values specified in the 
load module. 

EXECDD(CLOSE) or EXECDD(NOCLOSE) 
Specifies whether or not the system exec library is to be closed after the system 
locates the exec but before the exec runs. 

CLOSE causes the system exec library, whose default name is SYSEXEC, to be 
closed after the exec is located but before the exec runs. You can change this 
condition by issuing the EXECUTIL EXECDD(NOCLOSE) command. 

NOCLOSE causes the system exec library to remain open. This is the default 
condition and can be changed by issuing the EXECUTIL EXECDD(CLOSE) 
command. The selected option remains in effect until it is changed by the 
appropriate EXECUTIL command, or until the current environment is terminated. 

Notes: 

1. The EXECDD operand affects the ddname specified in the LOADDD field in 
the module name table. The default is SYSEXEC. "Module Name Table" on 
page 356 describes the table. 

2. If you specify EXECDD(CLOSE), the exec library (DO specified in the 
LOADDD field) is closed immediately after an exec is loaded. 

Any libraries defined using the ALTLIB command are not affected by the 
EXECDD operand. SYSPROC is also not affected. 

TS Use TS (Trace Start) to start tracing execs. Tracing lets you interactively control 
the processing of an exec and debug problems. For more information about the 
interactive debug facility, see Chapter 11, "Debug Aids" on page 241. 

If you issue EXECUTIL TS from READY mode or ISPF, tracing is started for the 
next exec you invoke. Tracing is then in effect for that exec and any other execs 
it calls. Tracing ends: 

• When the original exec completes 
• If one of the invoked execs specifies EXECUTIL TE 
• If one of the invoked execs calls a CLlST, which specifies EXECUTIL TE 
• If you enter attention mode while an exec is running and issue the TE 

immediate command. 

If you use EXECUTIL TS in an exec, tracing is started for all execs that are 
running. This includes the current exec that contains EXECUTIL TS, any execs it 
invokes, and any execs that were running when the current exec was invoked. 

216 TSO/E Version 2 MVS/REXX Reference 

/ 



c 

EXECUTll 

Tracing remains active until all execs that are currently running complete or an 
exec or CUST contains EXECUTIL TE. 

For example, suppose exec A calls exec B, which then calls exec C. If exec B 
contains the EXECUTIL TS command, tracing is started for exec B and remains 
in effect for both exec C and exec A. Tracing ends when exec A completes. 
However, if one of the execs contains EXECUTIL TE, tracing ends for all of the 
execs. 

If you use EXECUTIL TS in a CLlST, tracing is started for all execs that are 
running, that is, for any exec the CLiST invokes or execs that were running 
when the CUST was invoked. Tracing ends when the CLiST and all execs that 
are currently running complete or if an exec or CUST contains EXECUTIL TE. 
For example, suppose an exec calls a CUST and the CUST contains the 
EXECUTIL TS command. When control returns to the exec that invoked the 
CUST, that exec is traced. 

You can use EXECUTIL TS from a program by using the TSO service facility. 
For example, suppose an exec calls a program and the program encounters an 
error. The program can invoke EXECUTIL TS using the TSO service facility to 
start tracing all execs that are currently running. 

You can also press the attention interrupt key, enter attention mode, and then 
enter TS to start tracing or TE to end traCing. You can also use the TS command 
(see page 240) and TE command (see page 239) in an exec. 

TE Use TE (Trace End) to end tracing execs. The TE operand is not really 
applicable in READY mode because an exec is not currently running. However, 
if you issued EXECUTIL TS to trace the next exec you invoke and then issued 
EXECUTIL TE, the next exec you invoke is not traced. 

If you use EXECUTIL TE in an exec or CUST, tracing is ended for all execs that 
are currently running. This includes execs that were running when the exec or 
CLiST was invoked and execs that the exec or CLiST calls. For example, 
suppose exec A calls CLiST B, which then calls exec C. If tracing was on and 
CLiST B contains EXECUTIL TE, tracing is ended and execs C and A are not 
traced. 

You can use EXECUTIL TE from a program by using the TSO service facility. 
For example, suppose tracing has been started and an exec calls a program. 
The program can invoke EXECUTIL TE using the TSO service facility to end 
tracing of all execs that are currently running. 

You can also press the attention interrupt key, enter attention mode, and then 
enter TE to end tracing. You can also use the TE immediate command in an 
exec (see page 239). 

HT Use HT (Halt Typing) to suppress terminal output generated by an exec. The 
exec continues running. HT suppresses any output generated by REXX 
instructions or functions (for example, the SAY instruction) and REXX 
informational messages. REXX error messages are still displayed. Normal 
terminal output resumes when the exec completes. You can also use EXECUTIL 
RT to resume terminal output. 

HT has no effect on CLiSTs or commands. If an exec invokes a CUST and the 
CLiST generates terminal output, the output is displayed. If an exec invokes a 
command, the command displays messages. 

Use the HT operand in either an exec or CLiST. You can also use EXECUTIL HT 
from a program by using the TSO service facility. If the program invokes 
EXECUTIL HT, terminal output from all execs that are currently running is 

Chapter 10. TSO/E REXX Commands 217 



EXECUTIL 

suppressed. EXECUTll HT is not applicable from READY mode or ISPF because 
no execs are currently running. 

If you use EXECUTll HT in an exec, output is suppressed for all execs that are 
running. This includes the current exec that contains EXECUTll HT, any execs 
the exec invokes, and any execs that were running when the current exec was 
invoked. Output is suppressed until all execs that are currently running 
complete or an exec or CUST contains EXECUTll RT. 

If you use EXECUTIL HT in a CUST, output is suppressed for all execs that are 
running, that is, for any exec the CUST invokes or execs that were running 
when the CUST was invoked. Terminal output resumes when the CUST and all 
execs that are currently running complete or if an exec or CUST contains 
EXECUTll RT. 

For example, suppose exec A calls CUST B, which then calls exec C. If the 
CUST contains EXECUTll HT, output is suppressed for both exec A and exec C. 

If you use EXECUTll HT and want to display terminal output using the SAY 
instruction, you must use EXECUTll RT before the SAY instruction to resume 
terminal output. 

RT Use RT (Resume Typing) to resume terminal output that was previously 
suppressed. Use the RT operand in either an exec or CUST. You can also use 
EXECUTll RT from a program by using the TSO service facility. If the program 
invokes EXECUTll RT, terminal output from all execs that are currently running 
is resumed. EXECUTll RT is not applicable from READY mode or ISPF because 
no execs are currently running. 

If you use EXECUTll RT in an exec or CUST, typing is resumed for all execs that / '\ 
are running. ',,- / 

HI Use HI (Haltlnterpretation) to halt the interpretation of all execs that are 
currently running in the language processor environment. From either an exec 
or a CUST, EXECUTll HI halts the interpretation of all execs that are currently 
running. If an exec calls a CUST and the CUST contains EXECUTll HI, the exec 
that invoked the CUST stops processing. 

EXECUTll HI is not applicable from READY mode or ISPF because no execs are 
currently running. 

You can use EXECUTll HI from a program by using the TSO service facility. If 
the program invokes EXECUTll HI, the interpretation of all execs that are 
currently running is halted. 

If an exec enables the halt condition trap and the exec includes the EXECUTIL HI 
command, the interpretation of the current exec and all execs the current exec 
invokes is halted. However, any execs that were running when the current exec 
was invoked are not halted. These execs continue running. For example, 
suppose exec A calls exec B and exec B specifies EXECUTll HI and also 
contains a SIGNAL ON HALT instruction (with a HALT: label). When EXECUTll 
HI is processed, control is given to the HALT subroutine. When the subroutine 
completes, exec A continues processing at the statement that follows the call to 
exec B. For more information, see Chapter 7, "Conditions and Condition 
Traps." 

RENAME 
Use EXECUTll RENAME to change entries in a function package directory. A 
function package directory contains information about the functions and 
subroutines that make up a function package. See "External Functions and 
Subroutines, and Function Packages" on page 276 for more information. 

c 
218 TSO/E Version 2 MVS/REXX Reference 



(~' 

( 

(-

EXECUTll 

A function package directory contains the following fields for each function and 
subroutine: 

• Func-name -- the name of the external function or subroutine that is used 
in an exec. 

• Addr -- the address, in storage, of the entry point of the function or 
subroutine code. 

• Sys-name -- the name of the entry point in a load module that corresponds 
to the code that is called for the function or subroutine. 

• Sys-dd -- the name of the DD from which the function or subroutine code is 
loaded. 

You can use EXECUTIL RENAME with the SYSNAME and DD operands to 
change an entry in a function package directory as follows: 

• Use the SYSNAME operand to change the sys-name of the function or 
subroutine in the function package directory. When an exec invokes the 
function or subroutine, the routine with the new sys-name is invoked. 

• Use 'EXECUTIL RENAME NAME(function-name) without the SYSNAME and 
DD operands to flag the directory entry as null. This causes the search for 
the function or subroutine to continue because a null entry is bypassed. The 
system will then search for a load module and/or an exec. See page 87 for 
the complete search order. 

EXECUTIL RENAME clears the addr field in the function package directory to 
X I 00 I. When you change an entry, the name of the external function or 
subroutine is not changed, but the code that the function or subroutine invokes 
is replaced. 

You can use EXECUTIL RENAME to change an entry so that different code is 
used and then change it back and restore the original entry. 

NAME(functlon-name) 
Specifies the name of the external function or subroutine that is used in an 
exec. This is also the name in the tunc-name field in the directory entry. 

SYSNAME(sys-name) 
Specifies the name of the entry point in a load module that corresponds to 
the package code that is called for the function or subroutine. If SYSNAME 
is omitted, the sys-name field in the package directory is set to blanks. 

DD(sys-dd) 
Specifies the name of the DD from which the package code is loaded. If DD 
is omitted, the sys-dd field in the package directory is set to blanks. 

SEARCHDD(YES/NO) 
Specifies whether the system exec library (the default is SYSEXEC) should be 
searched when execs are implicitly invoked. YES indicates that the system 
exec library (SYSEXEC) is searched, and if the exec is not found, SYSPROC is 
then searched. NO indicates that SYSPROC only is searched. 

EXECUTIL SEARCHDD lets you dynamically change the search order. The new 
search order remains in effect until you issue EXECUTIL SEARCHDD again, the 
language processor environment terminates, or you use ALTUS. Subsequently 
created environments inherit the same search order unless explicitly changed 
by the invoked parameters module. 

Chapter 10. TSO/E REXX Commands 219 



EXECUTIL 

Al TUB affects how EXECUTll operates to determine the search order. If you 
use the Al TUB command to indicate that user-level, application-level, or 
system-level libraries are to be searched, Al TUB operates on an application (~ 
basis. For more information about the Al TUB command, see TSOIE Version 2 -" 
Command Reference. 

Note: EXECUTll SEARCHDD generally affects the current language processor 
environment in which it is invoked. For example, if you are in split 
screen in ISPF and issue EXECUTIL SEARCHDD from the second ISPF 
screen to change the search order, the changed search order affects 
execs invoked from that ISPF screen. If you invoke an exec from the first 
ISPF screen, the changed search order is not in effect. 

However, if you issue EXECUTIL SEARCHDD from TSO/E READY mode, 
when you invoke ISPF, the new search order may also be in effect for 
ISPF. This depends on whether your installation has provided its own 
parameters modules IRXTSPRM and IRXISPRM and the values specified 
in the load module. 

Return Codes: EXECUTll returns the following return codes. 

Return Code Meaning 

o Processing successful. 

12 Processing unsuccessful. An error message has been issued. 

Examples 

1. Your installation uses both SYSEXEC and SYSPROC to store REXX execs and 
CUSTs. All of the execs you work with are stored in SYSEXEC and your CUSTs 
are stored in SYSPROC. Currently, your system searches SYSEXEC and 
SYSPROC and you do not use Al TUB. 

You want to work with CUSTs only and do not need to search SYSEXEC. To 
change the search order and have the system search SYSPROC only, use the 
following command: 

EXECUTIl SEARCHDD(NO) 

c 
220 TSO/E Version 2 MVS/REXX Reference 



(~/ 

EXECUTIL 

2. You are updating a REXX exec and including a new internal subroutine. You 
want to trace the subroutine to test for any problems. In your exec, include 
EXECUTIL TS at the beginning of your subroutine and EXECUTIL TE when the 
subroutine returns control to the main program. For example: 

/* REXX program */ 
MAINRTN: 

CALL SUBRTN 
"EXECUTIL TE" 

EXIT 
/* Subroutine follows */ 
SUBRTN: 
"EXECUTIL TS" 

RETURN 

3. You want to invoke an exec and trace it. The exec does not contain EXECUTIL 
TS or the TRACE instruction. Instead of editing the exec and including 
EXECUTIL TS or a TRACE instruction, you can enter the following from TSO/E 
READY mode: 

EXECUTIL TS 

When you invoke the exec, the exec is traced. When the exec completes 
processing, tracing is off. 

4. Suppose an external function called PARTIAL is part of a function package. You 
have written your own function called PARTIAL or a new version of the external 
function PARTIAL and want to execute your new PARTIAL function instead of the 
one in the function package. Your new PARTIAL function may be an exec or 
may be stored in a load module. You must flag the entry for the PARTIAL 
function in the function package directory as null in order for the search to 
continue to execute your new PARTIAL function. To flag the PARTIAL entry in 
the function package directory as null, use the following command: 

EXECUTIL RENAME NAME(PARTIAL) 

When you execute the function PARTIAL, the null entry for PARTIAL in the 
function package directory is bypassed. The system will continue to search for 
a load module and/or exec that is called PARTIAL. 

Chapter 10. TSO/E REXX Commands 221 



HE 

I HE 

HE (Halt Execution) is an immediate command you can use to halt the execution of a 
REXX exec. The HE immediate command is available only if an exec is running in 
TSO/E and you press the attention interrupt key to enter attention mode. You can 

"enter HE in response to the REXX attention prompting message, IRX09201. 

HE does not set the halt condition, which is set by the HI (Halt Interpretation) 
immediate command. If you need to halt the execution of an exec, it is 
recommended that you use the HI immediate command whenever possible. HE is 
useful if an exec is processing an external function or subroutine written in a 
programming language other than REXX and the function or subroutine goes into a 
loop. 

For more information about how to use the HE immediate command, see 
Chapter 11, "Debug Aids" on page 241. 

Example 

You are running an exec in TSO/E. The exec invokes an external subroutine and the 
subroutine goes into a loop. To halt execution of the exec, press the attention '\ 
interrupt key. The system issues the REXX attention prompting message that asks" ./ 
you to enter either a null line to continue or an immediate command. Enter HE to 
halt execution. 

c 
222 TSO/E Version 2 MVS/REXX Reference 



c 

( 

( 

.. ··---HIII---.· .... • 

HI (Halt Interpretation) is an immediate command you can use to halt the 
interpretation of all currently executing execs. The HI immediate command is 
available only if an exec is running in TSO/E and you press the attention interrupt 
key to enter attention mode. You can enter HI in response to the REXX attention 
prompting message, IRX09201. 

HI 

After you enter HI, exec processing ends or control passes to a routine or label if the 
halt condition trap has been turned on in the exec. For example, if the exec 
contains a SIGNAL ON HALT instruction and exec processing is interrupted by HI, 
control passes to the HALT: label in the exec. See Chapter 7, "Conditions and 
Condition Traps" for information about the halt condition. 

Example 

You are running an exec in TSO/E that is in an infinite loop. To halt interpretation of 
the exec, press the attention interrupt key. The system issues the REXX attention 
prompting message that asks you to enter either a null line to continue or an 
immediate command. Enter HI to halt interpretation. 

Chapter 10. TSO/E REXX Commands 223 



HT 

HT 

HT (Halt Typing) is an immediate command you can use to suppress terminal output 
that an exec generates. The HT immediate command is available only if an exec is 
running in TSO/E and you press the attention interrupt key to enter attention mode. 
You can enter HT in response to the REXX attention prompting message, IRX092010 

After you enter HT, the exec that is running continues processing, but the only 
output that is displayed at the terminal is output from TSO/E commands that the 
exec issues. All other output from the exec is suppressed. 

Example 

You are running an exec in TSO/E that calls an internal subroutine to display a line 
of output from a loop that repeats many times. Before the exec calls the subroutine, 
the exec displays a message that lets you press the attention interrupt key and then 
suppress the output by entering HT. When the loop is completed, the subroutine 
issues EXECUTIL RT to redisplay output. 

/* REXX program */ 

SAY 'To suppress the output that will be displayed,' 
SAY 'press the attention interrupt key and' 
SAY 'enter HT.' 
CALL printout 

EXIT 

printout: 
DO i = 1 to 19999 

SAY 'The outcome is' 
END 
"EXECUTIL RT" 
RETURN 

224 TSO/E Version 2 MVS/REXX Reference 

j 

/' 

c 

i 
I 
I 
) 



(-

( 

Immediate Commands 

Immediate Commands 
Immediate commands are commands you can use if you are running a REXX exec in 
TSO/E and you press the attention interrupt key to enter attention mode. When you 
enter attention mode, the system displays the REXX attention prompting message, 
IRX09201. In response to the message, you can enter an immediate command. The 
immediate commands are: 

• HE - Halt Execution 
• HI - Halt Interpretation 
• HT - Halt Typing 
• RT - Resume Typing 
• TE - Trace End 
• TS - Trace Start 

TE and TS are also TSO/E REXX commands you can use in a REXX exec that runs in 
any address space. That is, TE and TS are available from the TSO and MVS host 
command environments. 

Except for HE, when you enter an immediate command from attention mode in 
TSO/E, the system processes the command as soon as control returns to the exec 
but before the next statement in the exec is interpreted. For the HE immediate 
command, the system processes the command before control returns to the exec. 

For information about the syntax of each immediate command, see the description 
of the command in this chapter. 

Chapter 10. TSO/E REXX Commands 225 



MAKEBUF 

MAKEBUF 

Use the MAKEBUF command to create a new buffer on the data stack. The 
MAKEBUF command can be issued from REXX execs that execute in both the TSO/E 
address space and non-TSO/E address spaces. 

Initially, the data stack contains one buffer, which is known as buffer O. You create 
additional buffers using the MAKEBUF command. MAKEBUF returns the number of 
the buffer it creates in the REXX special variable RC. For example, the first time an 
exec issues MAKEBUF, it creates the first buffer and returns a 1 in the special 
variable RC. The second time MAKEBUF is used, it creates another buffer and 
returns a 2 in the special variable RC. 

To remove buffers from the data stack that were created with the MAKEBUF 
command, use the DROPBUF command (see page 201). 

After the MAKEBUF command executes, it sets the REXX special variable RC to the 
number of the buffer it created. 

Return 
Code 

1 

2 

3 

n 

Meaning 

One buffer created on the data stack (MAKEBUF issued once) 

Two buffers created on the data stack (MAKEBUF issued twice) 

Three buffers created on the data stack (MAKEBUF Issued three times) 

n buffers created on the data stack (MAKEBUF issued n times) 

226 TSO/E Version 2 MVS/REXX Reference 



( 

( 

MAKEBUF 

Example 

An exec (execa) places two elements. elem1 and elem2. on the data stack. The 
exec calls a subroutine (sub3) that also places an element. elem3. on the data stack. 
The exec (execa) and the subroutine (sub3) each create a buffer on the data stack so 
they do not share their data stack information. Before the subroutine returns. it 
uses the DROPBUF command to remove the buffer it created. 

/* REXX program to ••• */ 
execa: 

"MAKEBUF" /* buffer created */ 
SAY 'The number of buffers created is' RC /* RC = 1 */ 
PUSH eleml 
PUSH eleml 
CALL sub3 

exit 
sub3: 

"MAKEBUF" 
PUSH elem3 

"DROPBUF" 

RETURN 

/* second buffer created */ 

/* second buffer created is deleted */ 

Chapter 10. TSO/E REXX Commands 227 



NEWSTACK 

NEWSTACK 

creates a new data stack and basically hides or isolates the current data stack. 
Elements on the previous data stack cannot be accessed until a DELST ACK 
command is issued to delete the new data stack and any elements remaining in it. 

The NEWSTACK command can be used in REXX execs that execute in both the 
TSO/E address space and non-TSO/E address spaces. 

After an exec issues the NEWSTACK command, any element that is placed on the 
data stack with a PUSH or QUEUE instruction is placed on the new data stack. When 
an exec calls a routine (function or subroutine), that routine also uses the new data 
stack and cannot access elements on the previous data stack, unless it issues a 
DELSTACK command. If you issue a NEWSTACK command, you must issue a 
corresponding DELSTACK command in order to delete the data stack that 
NEWSTACK created. 

When there are no more elements on the new data stack, PULL obtains information 
from the terminal (TSO/E address space) or the input stream (non-TSO/E address 
space), even though elements remain in the previous data stack (in non-TSO/E 
address spaces, the default input stream is SYSTSIN). In order to access elements 
on the previous data stack, issue a DELSTACK command. If a new data stack was 
not created, DELSTACK removes all elements from the original data stack. 

Multiple new data stacks can be created, but only elements on the most recently 
created data stack are accessible. To find out how many data stacks have been 
created, use the QSTACK command. 

If multiple language processor environments are chained together in a non-TSO/E 
address space and a new data stack is created with the NEWSTACK command, the 
new data stack is available only to execs that execute in the language processor 
environment in which the new data stack was created. The other environments in 
the chain cannot access the new data stack. 

228 TSO/E Version 2 MVS/REXX Reference 

\. ... / 

./ 

c 



( 

(~ 

NEWSTACK 

Example. 

1. To protect elements placed on the data stack from a subroutine that might also 
use the data stack, you can use the NEWSTACK and DELSTACK commands as 
follows: 

PUSH elementl 
PUSH element2 

nNEWSTACK" 
CALL sub 
"DELSTACK" 

1* data stack 2 created *1 

1* data stack 2 deleted *1 

PULL stackelem 

PULL stackelem 
EXIT 

2. To put elements on the data stack and prevent the elements from being used as 
prompts for a TSO/E command, use the NEWSTACK command as follows: 

"PROFILE PROMPT" 
x = PROMPT("ON") 
PUSH eleml 
PUSH elem2 
"NEWSTACK" 
-ALLOCATE" 

1* data stack 2 created *1 
1* prompts the user at the terminal for input. *1 

"DELSTACK" 1* data stack 2 deleted *1 
3. To use MVS batch to execute an exec named ABC, which is a member in 

USERID.MYREXX.EXEC, use program IRXJCL and include the exec name after 
the PARM parameter on the EXEC statement. 

IIMVSBATCH EXEC PGM=IRXJCL, 
II PARM='ABC' 
IISYSTSPRT DO DSN=USERID. IRXJCL.OUTPUT .DISP=OLD 
IISYSEXEC DD DSN=USERID.MYREXX.EXEC,DISP=SHR 

Exec ABC creates a new data stack and then put two elements on the new data 
stack for module MODULE3. 

"NEWSTACK" 
PUSH eleml 
PUSH elem2 
ADDRESS LINK "module3" 

"DELSTACKH 

1* data stack 2 created *1 

1* data stack 2 deleted *1 

Chapter 10. TSO/E REXX Commands 229 



QBUF 

aBUF 

queries the number of buffers that were created on the data stack with the 
MAKEBUF command. The aBUF command returns the number of buffers in the 
REXX special variable RC. If you have not issued MAKEBUF to create any buffers 
on the data stack, aBUF sets the special variable RC to O. 

You can use the aBUF command in REXX execs that run in both the TSO/E address 
space and non-TSO/E address spaces. 

aBUF returns the current number of data stack buffers created by an exec and by 
other routines (functions and subroutines) the exec calls. You can issue aBUF from 
the calling exec or from a called routine. For example, if an exec issues two 
MAKEBUF commands and then calls a routine that issues another MAKEBUF 
command, aBUF returns 3 in the REXX special variable RC. 

The following table shows how aBUF sets the REXX special variable RC. 

Return 
Code 

o 
1 

2 

n 

Examples 

Meaning 

No buffers created on the data stack (MAKEBUF was not issued) 

One buffer created on the data stack (MAKEBUF was issued once) 

Two buffers created on the data stack (MAKEBUF was issued twice) 

n buffers created on the data stack (MAKEBUF was issued n times) 

1. If an exec creates two buffers on the data stack using the MAKEBUF command, 

'-.. 

deletes one buffer using the DROPBUF command, and then issues the aBUF .'1' '\ 

command, RC is set to 1. 

"MAKEBUF" /* buffer created */ 

"MAKEBUF" /* second buffer created */ 

"DROPBUF" /* second buffer created is deleted */ 
"QBUF" 
SAY 'The number of buffers created is' RC /* RC = 1 */ 

c 
230 TSO/E Version 2 MVS/REXX Reference 



aBUf 

2. Suppose an exec uses MAKEBUF to create a buffer and then calls a routine that 
also issues MAKEBUF. The called routine then calls another routine that issues 
two MAKEBUF commands to create two buffers. If either of the called routines 
or the original exec issues the aBUF command, aBUF sets the REXX special 
variable RC to 4. 

"DROPBUF G" 
"MAKEBUF" 

/* delete any buffers MAKEBUF created */ 

SAY 'Buffers created = 
CALL subl 
"QBUF" 
SAY 'Buffers created = 
EXIT 

subl: 
"MAKEBUF u 

SAY 'Buffers created = 
CALL sub2 
"QBUF" 
SAY 'Buffers created = 
RETURN 

sub2: 
"MAKEBUF" 
SAY 'Buffers created = 

"MAKEBUF" 
SAY 'Buffers created = 
RETURN 

, RC 

' RC 

' RC 

' RC 

' RC 

' RC 

/* create one buffer */ 
/* RC = 1 */ 

/* RC = 4 */ 

/* create second buffer */ • /* RC = 2 */ 

/* RC = 4 */ 

/* create third buffer */ 
/* RC = 3 */ 

/* create fourth buffer */ 
/* RC = 4 */ 

Chapter 10. TSO/E REXX Commands 231 



~ ~ ~-- ._---_._--

QELEM 

QELEM 

queries the number of data stack elements that are in the most recently created 
data stack buffer (that is. in the buffer that was created by the MAKEBUF command). 
The number of elements is returned in the REXX special variable RC. When 
MAKEBUF has not been issued to create a buffer. OELEM returns the number 0 in 
the special variable RC. regardless of the number of elements on the data stack. 
Thus when OBUF returns O. OELEM also returns O. 

The OELEM command can be issued from REXX execs that execute in both the 
TSO/E address space and in non-TSO/E address spaces. 

OELEM only returns the number of elements in a buffer that was explicitly created 
using the MAKEBUF command. You can use QELEM to coordinate the use of 
MAKEBUF. Knowing how many elements are in a data stack buffer can also be 
useful before an exec issues the DROPBUF command. because DROPBUF removes 
the most recently created buffer and all elements in it. 

The QELEM command returns the number of elements in the most recently created 
buffer. The ~UEUED built-in function (see page 111) returns the total number of 
elements in the data stack, not including buffers. 

After the OELEM command processes, the REXX special variable RC contains one 
of the following return codes: 

Return 
Code 

o 

2 

3 

n 

Meaning 

Either the MAKEBUF command has not been issued or the buffer that was 
most recently created by MAKEBUF contains no elements. 

MAKEBUF has been issued and there is one element in the current buffer. 

MAKEBUF has been issued and there are two elements in the current 
buffer. 

MAKEBUF has been issued and there are three elements in the current 
buffer. 

MAKEBUF has been issued and there are n elements in the current buffer. 

232 TSO/E Version 2 MVS/REXX Reference 

(. ~: 
./ 



c 

QELEM 

Examples 

1. If an exec creates a buffer on the data stack with the MAKEBUF command and 
then puts three elements on the data stack, the OELEM command returns the 
number 3. 

"MAKEBUF" 
PUSH one 
PUSH two 
PUSH three 
"QELEM" 

/* buffer created */ 

SAY 'The number of elements in the buffer is' RC /* RC = 3 */ 
2. Suppose an exec creates a buffer on the data stack, puts two elements on the 

data stack, creates another buffer, and then puts one element on the data stack. 
If the exec issues the OELEM command, OELEM returns the number 1. The 
QUEUED function, however, which returns the total number of elements on the 
data stack, returns the number 3. 

"MAKEBUF" /* buffer created */ 
QUEUE one 
PUSH two 
"MAKEBUF" 
PUSH one 
"QELEM" 

/* second buffer created */ 

SAY 'The number of elements in the most recent buffer is' RC /* 1 */ 
SAY 'The total number of elements is' QUEUED() /* returns 3 */ 

3. To check whether a data stack buffer contains elements before you remove the 
buffer, use the result from the OELEM command in an IF/THEN/ELSE 
instruction. 

"QELEM" 
NUMELEM = RC /* assign value of RC to variable NUMELEM */ 
IF NUMELEM = a THEN 

"DROPBUF" /* delete most recently created buffer */ 
ELSE 

DO NUMELEM 
PULL elem 
SAY elem 

END 

Chapter 10. TSO/E REXX Commands 233 



QSTACK 

QSTACK 

queries the number of data stacks in existence for an exec that is running. aSTACK 
returns the number of data stacks in the REXX special variable RC. The value 
aSTACK returns indicates the total number of data stacks, including the original 
data stack. If you have not issued a NEWSTACK command to create a new data 
stack, aSTACK returns 1 in the special variable RC for the original data stack. 

You can use the aSTACK command In REXX execs that run in both the TSO/E 
address space and in non-TSO/E address spaces. 

aSTACK returns the current number of data stacks created by an exec and by other 
routines (functions and subroutines) the exec calls. You can issue aSTACK from the 
calling exec or from a called routine. For example, if an exec issues one 
NEWSTACK command and then calls a routine that issues another NEWSTACK 
command, and none of the new data stacks are deleted with the DELSTACK 
command, aSTACK returns 3 in the REXX special variable RC. 

The following table shows how QSTACK sets the REXX special variable RC. 

Return 
Code 

Meaning 

1 Only the original data stack exists 

2 One new data stack and the original data stack exist 

3 Two new data stacks and the original data stack exist 

n n - 1 new data stacks and the original data stack exist 

Example. 

1. Suppose an exec creates two new data stacks using the NEWSTACK command 
and then deletes one data stack using the DELSTACK command. If the exec 
issues the aSTACK command, aSTACK returns 2 in the REXX special variable 
RC. 

"NEWSTACK" /* data stack 2 created */ 

"NEWSTACK U /* data stack 3 created */ 

"DELSTACK" /* data stack 3 deleted */ 
II QSTACK" 
SAY 'The number of data stacks is' RC /* RC = 2 */ 

234 TSO/E Version 2 MVS/REXX Reference 

o 



( 

( 

( - . 
.. 

QSTACK 

2. Suppose an exec creates one new data stack and then calls a routine that also 
creates a new data stack. The called routine then calls another routine that 
creates two new data stacks. When either of the called routines or the original 
exec issues the aSTACK command, aSTACK returns 5 in the REXX special 
variable RC. The data stack that is active is data stack 5. 

uNEWSTACKn /* data stack 2 created */ 
CALL subl 
"QSTACK" 
SAY 'Data stacks =' RC /* RC = 5 */ 
EXIT 

subl: 
"NEWSTACK" /* data stack 3 created */ 
CALL sub2 
nQSTACKn 
SAY 'Data stacks =' RC /* RC = 5 */ 
RETURN 

sub2: 
"NEWSTACK" /* data stack 4 created */ 

"NEWSTACK" /* data stack 5 created * / . 
II QSTACK" 
SAY 'Data stacks =' RC /* RC = 5 */ 
RETURN 

Chapter 10. TSO/E REXX Commands 235 



-------.~ ... ~ ... -- - .... -~ .. _---_. __ .. _-- -.-.. -- .. -~.~. 

AT 

RT 

RT (Resume Typing) is an immediate command you can use to resume terminal 
output that was previously suppressed. The RT immediate command is available 
only if an exec is running in TSO/E and you press the attention interrupt key to enter 
attention mode. You can enter RT in response to the REXX attention prompting 
message, I RX09201. Terminal output that the exec generated after you issued the 
HT command and before you issued the RT command is lost. 

Example 

You are running an exec in TSO/E and have suppressed typing with the HT 
command. You now want terminal output from the exec to display at your terminal. 

To resume typing, press the attention interrupt key. The system issues the REXX 
attention prompting message that asks you to enter either a null line to continue or 
an immediate command. Enter RT to resume typing. 

236 TSO/E Version 2 MVS/REXX Reference 

c 

j 

o 



SUBCOM 

(-

( 

SUBCOM 

---------

"----SUBCOM-" --eenvname-e -_ ..... 

queries the existence of a specified host command environment. SUBCOM 
searches the host command environment table for the named environment and sets 
the REXX special variable RC to 0 or 1. When RC contains 0, the environment 
exists. When RC contains 1, the environment does not exist. 

You can use the SUBCOM command in REXX execs that run in both the TSO/E 
address space and non-TSO/E address spaces. 

Before an exec runs, a default host command environment is defined to process the 
commands that the exec issues. You can use the ADDRESS keyword instruction 
(see page 44) to change the environment to another environment as long as the 
environment is defined in the host command environment table. Use the SUBCOM 
command to determine whether the environment is defined in the host command 
environment table for the current language processor environment. You can use 
the ADDRESS built-in function to determine the name of the environment to which 
host commands are currently being submitted (see page 93). 

Operand: The one operand for the SUBCOM command is: 

envname 
the name of the host command environment for which SUBCOM is to search. 

When you invoke an exec from TSO/E, the following default host command 
environments are available: 

• TSO (the default environment) 
• CONSOLE 
• CPICOMM 
• LU62 
• MVS 
• LINK 
• ATIACH 
• LlNKPGM 
• ATICHPGM 
• LlNKMVS 
• ATICHMVS 

Chapter 10. TSO/E REXX Commands 237 



SUBCOM 

When you run an exec in a non-TSO/E address space, the ·following default host 
command environments are available: 

• MVS (the default environment) 
• CPICOMM 
• LU62 
• LINK 
• ATTACH 
• L1NKPGM 
• ATTCHPGM 
• L1NKMVS 
• ATTCHMVS 

When you invoke an exec from ISPF, the following default host command 
environments are available: 

• TSO (the default environment) 
• CONSOLE 
• ISPEXEC 
• ISREDIT 
• CPICOMM 
• LU62 
• MVS 
• LINK 
• ATTACH 
• L1NKPGM 
• ATTCHPGM 
• L1NKMVS 
• ATTCHMVS 

The SUBCOM command sets the REXX special variable RC to indicate the existence 
of the specified environment. 

ReValue Description 

o The host command environment exists. 

1 The host command environment does not exist. 

Example 

To check whether the ISPEXEC environment is available before using the ADDRESS 
instruction to change the environment, use the SUBCOM command as follows: 

"SUBCOM ispexec" 
IF RC = 0 THEN 

ADDRESS ispexec 
ELSE NOP 

238 TSO/E Version 2 MVS/REXX Reference 

/\ 



c\ 

TE 

--_._--_ .. _-_ .. _-............. ~"". -- .. . 

TE 

TE-.~"'~""" 

TE (Trace End) is an immediate command you can use to end tracing REXX execs. 
The TE immediate command is available if an exec is running in TSO/E and you 
press the attention interrupt key to enter attention mode. You can enter TE in 
response to the REXX attention prompting message, IRX09201. The exec continues 
processing, but tracing is off. 

TE is also a TSO/E REXX command you can use in a REXX exec that runs in any 
address space. That is, TE is available from the TSO and MVS host command 
environments. 

If you are running in interactive debug, you can also use TE without entering 
attention mode to end tracing. 

Example 

You have an exec that calls an internal subroutine. The subroutine is not 
processing correctly and you want to trace it. At the beginning of the subroutine, 
you can insert a TS command to start tracing. At the end of the subroutine, before 
the RETURN instruction, insert the TE command to end tracing before control 
returns to the main exec. 

Chapter 10. TSO/E REXX Commands 239 

--_ ... __ ... -



TS 

TS 

TS (Trace Start) is an immediate command you can use to start tracing REXX execs. 
Tracing lets you control the execution of an exec and debug problems. The TS 
immediate command is available if an exec is running in TSO/E and you press the 
attention interrupt key to enter attention mode. You can enter TS in response to the 
REXX attention prompting message, IRX09201. The exec continues processing and 
tracing is started. 

TS is also a TSO/E REXX command you can use in a REXX exec that runs in any 
address space. That is, TS is available from the TSO and MVS host command 
envi ronments. 

InTSO/E foreground, trace output is written to the terminal. In TSO/E background, 
trace output is written to the output stream, SYSTSPRT. In non-TSO/E address 
spaces, trace output is written to the output stream as defined by the OUTDO field in 
the module name table (see page 357). The system default is SYSTSPRT. 

To end tracing, you can use the TRACE OFF instruction or the TE immediate 
command. You can also use TE in the exec to stop tracing at a specific point. If you 
are running in interactive debug, you can use TE without entering attention mode to / ~. 

end tracing.", 

For more information about tracing, see the TRACE instruction on page 79 and 
Chapter 11, "Debug Aids." 

Example 

You are running an exec in TSO/E and the exec is not processing correctly. To start 
tracing the exec, press the attention interrupt key. The system issues the REXX 
attention prompting message that asks you to enter either a null line to continue or 
an immediate command. Enter TS to start tracing. 

240 TSO/E Version 2 MVS/REXX Reference 



( 

( 

( 

Debug Aids 

Chapter 11. Debug Aids 

In addition to the TRACE instruction, described on page 79, there are the following 
debug aids: 

• The interactive debug facility 

• The TSO/E REXX immediate commands: 

HE - Halt Execution 
HI - Halt Interpretation 
TS - Trace Start 
TE - Trace End 

You can use the immediate commands if a REXX exec is running in the TSO/E 
address space and you press the attention interrupt key. In attention mode, you 
can enter HE, HI, TS, or TE. You can also use the TS and TE immediate 
commands in a REXX exec that runs in any address space. That is, TS and TE 
are available from both ADDRESS MVS and ADDRESS TSO. 

• The TSO/E REXX command EXECUTIL with the following operands: 

HI - Halt Interpretation 
TS - Trace Start 
TE - Trace End 

You can use the EXECUTIL command in an exec that runs in the TSO/E address 
space. You can also use EXECUTIL from TSO/E READY mode and ISPF and In a 
TSO/E CLiST. You can use EXECUTIL with the HI, TS, or TE operands in a 
program written in a high-level programming language using the TSO service 
facility. See "EXECUTIL" on page 215 for more information. 

• The trace and execution control routine IRXIC. You can invoke IRXIC from a 
REXX exec or any program that runs in any address space in order to use the 
following TSO/E REXX immediate commands: 

HI - Halt Interpretation 
TS - Trace Start 
TE - Trace End 
HT - Halt Typing 
RT - Resume Typing 

See "Trace and Execution Control Routine - IRXIC" on page 302 for more 
information. 

----.. ----
Interactive Debugging of Programs 

The debug facility permits interactively controlled execution of a REXX exec. 

Changing the TRACE action to one with a prefix? (for example, TRACE ?A or the 
TRACE built-in function) turns on interactive debug and indicates to the user that 
interactive debug is active. You can interactively debug REXX execs in the TSO/E 
address space from your terminal session. 

© Copyright IBM Corp. 1988. 1991 241 



Debug Aids 

Further TRACE instructions in the exec are ignored, and the language processor 
pauses after nearly all instructions that are traced at the terminal (see the following 
for exceptions). When the language processor pauses, three debug actions are 
available: 

1. Entering a null line (with no characters, including no blanks) makes the 
language processor continue execution until the next pause for debug input. 
Repeatedly entering a null line, therefore, steps from pause point to pause 
point. For TRACE ?A, for example, this is equivalent to single-stepping through 
the exec. 

2. Entering an equal sign (=), with no blanks, makes the language processor 
re-execute the clause last traced. For example: if an IF clause is about to take 
the wrong branch, you can change the value of the variable(s) on which it 
depends, and then re-execute it. 

Once the clause has been re-executed, the language processor pauses again. 

3. Anything else entered is treated as a line of one or more clauses, and 
processed immediately (that is, as though DO; line; END; had been inserted in (-
the exec). The same rules apply as in the INTERPRET instruction (for example, ,/ 
DO-END constructs must be complete). If an instruction has a syntax error in it, 
a standard message is displayed and you are prompted for input again. 
Similarly, all the other SIGNAL conditions are disabled while the string is 
processed to prevent unintentional transfer of control. 

During execution of the string, no tracing takes place, except that nonzero return 
codes from host commands are displayed. Host commands are always 
executed (that is, they are not affected by the prefix I on TRACE instructions), 
but the variable RC is not set. / " 

\ 

Once the string has been processed, the language processor pauses again for J 
further debug input, unless a TRACE instruction was entered. In this latter case, 
the language processor immediately alters the tracing action (if necessary) and 
then continues executing until the next pause point (if any). Therefore, to alter 
the tracing action (from All to Results, for example) and then re-execute the 
instruction, you must use the built-in function TRACE (see page 118). For 
example, CALL TRACE I changes the trace action to "I" and allows re-execution 
of the statement after which the pause was made. Interactive debug is turned 
off, when it is in effect, if a TRACE instruction uses a prefix, or at any time, when "\ 
a TRACE 0 or TRACE with no options is entered. 

You can use the numeric form of the TRACE instruction to allow sections of the 
exec to be executed without pause for debug input. TRACE n (that is, positive 
result) allows execution to continue, skipping the next n pauses (when 
interactive debug is or becomes active). TRACE -n (that is, negative result) 
allows execution to continue without pause and with tracing inhibited for n 
clauses that would otherwise be traced. 

The trace action selected by a TRACE instruction is saved and restored across 
subroutine calls. This means that if you are stepping through an exec (for example, 
after using TRACE ?R to trace Results) and then enter a subroutine in which you have 
no interest, you can enter TRACE 0 to turn tracing off. No further instructions in the 
subroutine are traced, but on return to the caller, tracing is restored. 

Similarly, if you are interested only in a subroutine, you can put a TRACE ?R 
instruction at its start. Having traced the routine, the original status of tracing is 
restored and, therefore, (if tracing was off on entry to the subroutine) tracing (and 
interactive debug) is turned off until the next entry to the subroutine. 

C",\,' .". I 

242 TSO/E Version 2 MVS/REXX Reference 



c 

( 

(' 

('" 

Debug Aids 

You can switch tracing on (without modifying an exec) using the command 
EXECUTIL TS. You can also switch tracing on or off asynchronously, (that is, while 
an exec is running) using the TS and TE immediate commands. See page 244 for 
the description of these facilities. 

Because you can execute any instructions in interactive debug, you have 
considerable control over execution. 

Some examples: 

Say expr /* displays the result of evaluating the */ 
/* expression. */ 

name=expr 

Trace 0 

Trace ?A 

Trace l 

exit 

/* alters the value of a variable. 

/* (or Trace with no options) turns off 
/* interactive debug and all tracing. 

/* turns off interactive debug but continues 
/* tracing all clauses. 

/* makes the language processor pause at labels 
/* only. This is similar to the traditional 
/* "breakpoint" function, except that you 
/* do not have to know the exact name and 
/* spelling of the labels in the exec. 

/* terminates execution of the exec. 

Do i=1 to Ie /* displays ten elements of the array stem. 
say stem. i 
end 

*/ 

*/ 
*/ 

*/ 
*/ 

*/ 
*/ 

*/ 
*/ 
*/ 

*/ 

*/ 

Exceptions: Some clauses cannot safely be re-executed, and therefore, the 
language processor does not pause after them, even if they are traced. These are: 

• Any repetitive DO clause, on the second or subsequent time around the loop 

• All END clauses (not a useful place to pause in any case) 

• All THEN, ELSE, OTHERWISE, or null clauses 

• All RETURN and EXIT clauses 

• All SIGNAL and CALL clauses (the language processor pauses after the target 
label has been traced) 

• Any clause that raises a condition that CALL ON or SIGNAL ON traps (the pause 
takes place after the target label for the CALL or SIGNAL has been traced) 

• Any clause that causes a syntax error. (These can be trapped by SIGNAL ON 
SYNTAX, but cannot be re-executed.) 

Chapter 11. Debug Aids 243 



-----.. ~~~~.--~~----.---

Debug Aids 

Interrupting Execution and Controlling TraCing 
The following topics describe how you can interrupt the processing of a REXX exec 
and how you can start and stop tracing an exec. 

Interrupting Exec Processing 
You can interrupt the language processor during processing in several ways: 

• In the TSO/E address space, you can use the HI (Halt Interpretation) immediate 
command or the EXECUTIL HI command to halt the interpretation of execs. HI 
and EXECUTIL HI cause the interpretation of all REXX execs that are currently 
running to be halted, as though a halt condition had been raised. This is 
especially useful when an exec gets into a loop and you want to end processing. 

If an exec is running, you can press the attention interrrupt key and enter 
attention mode. In attention mode, you can enter HI to halt the interpretation of 
the exec. 

You can use EXECUTIL with the HI operand in a REXX exec. You can also use 
EXECUTIL HI in a TSO/E CLIST or in a program that is written in a high-level 
programming language using the TSO service facility. 

When an HI interrupt halts the interpretation of an exec, the data stack is 
cleared. You can trap an HI interrupt by enabling the halt condition using either 
the CALL ON or SIGNAL ON instruction (see Chapter 7, "Conditions and 
Condition Traps"). 

• In any address space (TSO/E and non-TSO/E), you can call the trace and 
execution control routine, IRXIC, to invoke the HI immediate command and halt 
the interpretation of all REXX execs that are currently running. You can inVOke 
IRXIC from an exec or other program in any address spaces. 

• In the TSO/E address space, you can use the HE (Halt Execution) immediate 
command to halt the execution of an exec. If an exec is running, you can press 
the attention interrrupt key and enter attention mode. In attention mode, you 
can enter HE to halt the exec. 

From attention mode, the HI immediate command is processed as soon as control 
returns to the exec, but before the next statement in the exec is interpreted. For the 
HE immediate command, the system processes the command before control returns 
to the exec. 

If the exec is processing an external function or subroutine written in a 
programming language other than REXX or the exec is processing a host command, 
when you halt exec interpretation using HI, the halt is not processed until the 
function, subroutine, or command returns to the calling exec. That is, the function, 
subroutine, or command completes processing before exec processing is 
interrupted. 

The HE immediate command is useful if an exec invokes an external function or 
subroutine that is written in a programming language other than REXX and the 
function or subroutine cannot return to the invoking exec (for example, because it 
goes into a loop). HE is also useful for certain host commands that may hang and 
cannot return to the exec, for example, the commands available under ADDRESS 
MVS. 

244 TSO/E Version 2 MVS/REXX Reference 

c 

c 



c 

( 

( 

Debug Aids 

In these cases, the HI immediate command cannot halt the exec because HI is not 
processed until the function, subroutine, or command returns to the exec. However, 
the HE immediate command is processed immediately and halts the exec. 

For more information, see "Using the HE Immediate Command to Halt an Exec." 

Considerations for Interrupting Exec Processing 
If you are running a REXX exec in TSO/E and press the attention interrupt key to 
interrupt exec processing, there are several considerations of which you should be 
aware. 

• Considerations for interrupting a host command that is running in a REXX exec. 

Unless a command provides its own attention processing, if a host command is 
processing and you press the attention interrupt key, the language processor 
terminates the command and returns a value of -1 in the REXX special variable 
RC. In this case, the language processor does not display a message that lets 
you enter an immediate command, such as TS (Trace Start) or HI (Halt 
Interpretation). 

• Considerations for interrupting a REXX exec that is running under ISPF. 

When the language processor gives control to an ISPF or ISPF/PDF service (for 
example, the SELECT service) and you press the attention interrupt key, 
attention processing is under the control of ISPF. For example, if ISPF Is 
processing a command using the SELECT service and you press the attention 
interrupt key, ISPF displays a message that the command was terminated and 
then terminates the screen. In this case, the language processor does not 
display a message that lets you enter an immediate command, such as TS 
(Trace Start) or HI (Halt Interpretation) and ISPF sets the REXX special variable 
RC. 

Note that when ISPF is active and the language processor is in control, whether 
or not the language processor displays the message that allows you to enter an 
immediate command depends on how ISPF was started. For example, if ISPF is 
started using the ISPSTART command with the TEST operand, ISPF attention 
processing is disabled and, therefore, the language processor's attention 
processing is also disabled. 

(_. Using the HE Immediate Command to Halt an Exec 
In the TSO/E address space, you can use the HE (Halt Execution) immediate 
command to halt the execution of a REXX exec. You can use the HE immediate 
command only if you are running an exec in TSO/E and you press the attention 
interrupt key and enter attention mode. When you enter attention mode, the system 
displays the REXX attention prompting message, IRX09201. You can enter HE in 
response to the message. 

If you need to stop the processing of a REXX exec, it is recommended that you use 
the HI immediate command instead of HE whenever possible. 

Note that unlike the other immediate commands, HE is not a valid operand on the 
EXECUTIL command, nor does the trace and execution control routine, IRXIC, 
support the HE command. 

If you have nested execs and use the HE immediate command, HE works differently 
for execs you invoke from TSO/E READY mode compared to execs you invoke from 
ISPF. As an example, suppose you have an exec (EXECA) that calls another exec 
(EXECS). While the EXECB exec is running, you enter attention mode and enter the 

Chapter 11. Debug Aids 245 



I 
I 
I 
I 
I 
I 
I 

Debug Aids 

HE immediate command to halt execution. The HE immediate command works as 
follows: 

• If you invoked the EXECA exec from ISPF, the HE immediate command halts the 
execution of both the EXECS exec and the EXECA exec. 

• If you invoked the EXECA exec from TSO/E READY, the HE immediate command 
halts the execution of the currently running exec, which is EXECS. The top-level 
exec (EXECA) mayor may not be halted depending on how the EXEC A exec 
invoked EXECS. 

If EXECA invoked EXECS using the TSO/E EXEC command, the HE 
immediate command does not halt the execution of EXECA. For example, 
suppose EXECA used the following command to invoke EXECS: 

ADDRESS TSO "EXEC 'winston.workds.rexx(execb), exec" 

When you enter HE while the EXECS exec is running, the EXECS exec is 
halted and control returns to EXECA. In this case, the TSO/E EXEC 
command terminates and the REXX special variable RC is set to 12. The 
EXECA exec continues processing at the clause following the TSO/E EXEC 
command. 

If EXECA invoked EXECS using either a subroutine call (CALL EXECS) or a 
function call (X = EXECS(arg», the following occurs. The EXECS exec is 
halted and control returns to the calling exec, EXECA. In this case, EXECS 
is prematurely halted and the calling exec (EXECA) raises the SYNTAX 
condition because the function or subroutine failed. 

If you use the HE immediate command and you halt the execution of an external 
function, external subroutine, or a host command, note the following. The function, 
subroutine, or command does not regain control to perform its normal cleanup 
processing. Therefore, its resources could be left in an inconsistent state. If the 
function, subroutine, or command requires cleanup processing, it should be covered 
by its own recovery ESTAE, which performs any required cleanup and then 
percolates. 

Starting and Stopping Tracing 
The following describes how to start and stop tracing an exec. 

You can start tracing REXX execs in several ways: 

• You can use the TRACE instruction to start tracing. For more information, see 
"TRACE" on page 79. 

• In the TSO/E address space, you can use the TS (Trace Start) immediate 
command or the EXECUTIL TS 'command to start tracing. If an exec is running 
and you press the attention interrupt key, after you enter attention mode, you 
can enter TS to start tracing. 

You can use EXECUTIL with the TS operand in a REXX exec. You can also use 
EXECUTIL TS in a TSO/E CLiST or in a program that is written in a high-level 
programming language by using the TSO service facility. 

c 

TS or EXECUTIL TS puts the REXX exec into normal interactive debug. You can 
then execute REXX instructions; for example, to display variables or EXIT. 
Interactive debug is helpful if an exec is looping. You can inspect the exec and C~) 
step through the execution before deciding whether or not to continue 
execution. 

246 TSO/E Version 2 MVS/REXX Reference 



c 

(, 

( 

( 

(, : 
/ 

Debug Aids 

• In any address space (TSO/E and non-TSO/E), you can use the TS (Trace Start) 
immediate command in a REXX exec to start tracing. The trace output is written 
to the: 

Terminal (TSO/E foreground) 
- Output stream SYSTSPRT (TSO/E background) 
- Output stream, which is usually SYSTSpRT (non-TSO/E address space). 

In any address space, you can call the trace and execution control routine IRXIC 
to invoke the TS immediate command. You can invoke IRXIC from an exec or 
other program in any address space. 

You can end tracing in several ways: 

• You can use the TRACE OFF instruction to end tracing. For more information, 
see "TRACE" on page 79. 

• In the TSO/E address space, you can use the TE (Trace End) immediate 
command or the EXECUTIL TE command to end tracing. If an exec is running 
and you press the attention interrupt key, after you enter attention mode, you 
can enter TE to end tracing. 

You can use EXECUTIL with the TE operand in a REXX exec. You can also use 
EXECUTIL TE in a TSO/E CLiST or in a program that is written in a high-level 
programming language by using the TSO service facility. 

TE or EXECUTIL TE has the effect of executing a TRACE 0 instruction. The 
commands are useful if you want to end tracing when you are not in interactive 
debug. 

• In any address space (TSO/E and non-TSO/E), you can use the TE (Trace End) 
immediate command in a REXX exec to end tracing. 

In any address space, you can call the trace and execution control routine IRXIC 
to invoke the TE immediate command. You can invoke IRXIC from an exec or 
other program in any address spaces. 

For more information about the HI, TS, and TE immediate commands and the 
EXECUTIL command, see Chapter 10, "TSO/E REXX Commands." 

For more information about the trace and execution control routine IRXIC, see 
"Trace and Execution Control Routine - IRXIC" on page 302. 

Chapter 11. Debug Aids 247 



248 TSO/E Version 2 MVS/REXX Reference 



Programming Services 

c\ Chapter 12. TSO/E REXX Programming Services 

( 

(-

In addition to the REXX language instructions and built-in functions, and the TSO/E 
external functions and REXX commands that are provided for writing REXX execs, 
TSO/E provides programming services for REXX processing. Some programming 
services are routines that let you interface with REXX and the language processor. 

In addition to the TSO/E REXX programming services that are described in this 
chapter, TSO/E also provides various routines that let you customize REXX 
processing. These are described beginning in Chapter 13, "TSO/E REXX 
Customizing Services." TSO/E also provides replaceable routines that handle 
system services. The routines are described in Chapter 16, "Replaceable Routines 
and Exits." Whenever you invoke a TSO/E REXX routine, there are general 
conventions relating to registers that are passed on the call, parameter lists, and 
return codes the routines return. "General Considerations for Calling TSO/E REXX 
Routines" on page 252 highlights several major considerations about calling REXX 
routines. 

The REXX programming services TSO/E provides are summarized below and are 
described in detail in the individual topics in this chapter. 

IRXJCL and IRXEXEC Routines: IRXJCL and IRXEXEC are two routines that you can 
use to run a REXX exec in any MVS address space. Both IRXEXEC and IRXJCL are 
programming interfaces to the language processor. 

You can use IRXJCL to run a REXX exec in MVS batch by specifying IRXJCL as the 
program name (PGM = ) on the JCL EXEC statement. You can also invoke IRXJCL 
from a REXX exec or a program in any address space to run a REXX exec. 

You can invoke IRXEXEC from a REXX exec or a program in any address space to 
run a REXX exec. Using IRXEXEC instead of the IRXJCL routine or, in TSO/E, the 
EXEC command processor to invoke an exec provides more flexibility. For 
example, you can preload the exec in storage and then use IRXEXEC to run the 
exec. "Exec Processing Routines - IRXJCL and IRXEXEC" on page 258 describes 
the IRXJCL and IRXEXEC programming interfaces in mQre detail. 

External Functions and Subroutines, and Function Packages: You can extend the 
capabilities of the REXX programming language by writing your own external 
functions and subroutines that you can then use in REXX execs. You can write an 
external function or subroutine In REXX. For performance reasons, you can write 
external functions and subroutines in either assembler or a high-level programming 
language and store them in a load library. You can also group frequently used 
external functions and subroutines into a function package, which provides quick 
access to the packaged functions and subroutines. When a REXX exec calls an 
external function or subroutine, the function packages are searched before load 
libraries or exec data sets, such as SYSEXEC and SYSPROC. The complete search 
order is described on page 87. 

© Copyright IBM Corp. 1988. 1991 249 



------~- -----~--~--~--~-~-----~ 

Programming Services 

If you write external functions and subroutines in any programming language other 
than REXX, the language must support the system-dependent interfaces that the (-------'1 
language processor uses to invoke the function or subroutine. If you want to include '--/ 
an external function or subroutine in a function package, the function or subroutine 
must be link edited into a load module. "External Functions and Subroutines, and 
Function Packages" on page 276 describes the system-dependent interfaces for 
writing external functions and subroutines and how to create function packages. 

Variable Access: TSO/E provides the IRXEXCOM variable access routine that lets 
unauthorized commands and programs access and manipulate REXX variables. 
Using IRXEXCOM, you can inspect, set, or drop variables. IRXEXCOM can be called 
in both the TSO/E and non-TSO/E address spaces. "Variable Access Routine -
IRXEXCOM" on page 289 describes IRXEXCOM in detail. 

Note: TSO/E also provides the IKJCT441 routine that lets authorized and 
unauthorized commands and programs access REXX variables. IKJCT441 can be 
used only in the TSO/E address space and is described in TSOIE Version 2 
Programming Services. 

Maintain Host Command Environments: When a REXX exec runs, there is at least 
one host command environment available for processing host commands. When an 
exec begins running, an initial environment is defined. You can change the host 
command environment using the ADDRESS instruction (see page 44). 

When the language processor processes an instruction that is a host command, it 
first evaluates the expression and then passes the command to the active host 
command environment for processing. A specific routine defined for the host 
command environment handles the command processing. TSO/E provides several 
host command environments for execs that run in non-TSO/E address spaces and in 
the TSO/E address space (for TSO/E and ISPF). "Commands to External 
Environments" on page 25 describes how you issue commands to the host and the 
different environments TSO/E provides for MVS (non-TSO/E), TSO/E, and ISPF. 

The valid host command environments, the routines that are invoked to handle 
command processing within each environment, and the initial environment that is 
available to a REXX exec when the exec begins running are defined in a host 
command environment table. You can customize REXX processing to define your 
own host command environment and provide a routine that handles command 
processing for that environment. Chapter 13, "TSO/E REXX Customizing Services" 
on page 327 describes how to customize REXX processing in more detail. 

TSO/E also provide the IRXSUBCM routine that lets you access the entries in the 
host command environment table. Using IRXSUBCM, you can add, change, and 
delete entries in the table and also query the values for a particular host command 
environment entry. "Maintain Entries in the Host Command Environment Table -
IRXSUBCM" on page 297 describes the IRXSUBCM routine in detail. 

250 TSO/E Version 2 MVS/REXX Reference 

\. 
I 

j 

\" -./ 

o 



c 

(--

( 

Programming Services 

Trace and Execution Control: TSO/E provides the trace and .execution control 
routine, IRXIC, that lets you use the HI, HT, RT, TS, and TE commands to control the 
processing of REXX execs. For example, you can invoke IRXIC from a program 
written in assembler or a high-level language to control the tracing and execution of 
execs. "Trace and Execution Control Routine - IRXIC" on page 302 describes the 
IRXIC routine in detail. 

Get Result Routine: TSO/E provides the get result routine, IRXRLT, that lets you 
obtain the result from a REXX exec that was invoked using the IRXEXEC routine. 
You can also use IRXRL T if you write external functions and subroutines in a 
programming language other than REXX. IRXRL T lets your function or subroutine 
code obtain a large enough area of storage to return the result to the calling exec. 
The IRXRLT routine also lets a compiler runtime processor obtain an evaluation 
block to handle the result from a compiled REXX exec. "Get Result Routine -
IRXRL T" on page 305 describes the IRXRLT routine in detail. 

SAY Instruction Routine: The SAY instruction routine, IRXSAY, lets you write a 
character string to the same output stream as the REXX SAY keyword instruction. 
"SAY Instruction Routine - IRXSAY" on page 313 describes the IRXSAY routine in 
detail. 

Halt Condition Routine: The halt condition routine, IRXHL T, lets you query or reset 
the halt condition. "Halt Condition Routine - IRXHLT" on page 316 describes the 
IRXHLT routine in detail. 

Text Retrieval Routine: The text retrieval routine, IRXTXT, lets you retrieve the 
same text that the TSO/E REXX interpreter uses for the ERRORTEXT built-in function 
and for certain options of the DATE built-in function. For example, using IRXTXT' a 
program can retrieve the name of a month or the text of a syntax error message. 
"Text Retrieval Routine - IRXTXT" on page 319 describes the IRXTXT routine in 
detail. 

LlNESIZE Function Routine: The LlNESIZE functidn routine, IRXLlN, lets you 
retrieve the same value that the LlNESIZE built-in function returns. "LlNESIZE 
Function Routine - IRXLlN" on page 324 describes the IRXLlN routine in detail. 

Chapter 12. TSO/E REXX Programming Services 251 



Programming Services 

General Considerations for Calling TSO/E· REXX Routines 
Each topic in this book that describes the different TSO/E REXX routines describes 
how to use the routine, including entry and return specifications and parameter lists. 
The following topics provide general information about calling TSO/E REXX 
routines. 

All TSO/E REXX routines, except for the initialization routine, IRXINIT, cannot run 
without a language processor environment being available. A language processor 
environment is the environment in which REXX operates, that is, in which the 
language processor processes a REXX exec. REXX execs and TSO/E REXX routines 
run in a language processor environment. 

The system automatically initializes a language processor environment in the 
TSO/E and non-TSO/E address spaces by calling the initialization routine, IRXINIT. 
In TSO/E, an environment is initialized during logon processing for TSO/E READY 
mode. During your TSO/E session, you can invoke an exec or use a TSO/E REXX 
routine. The exec or routine runs in the environment that was created during logon 
processing. 

If you invoke ISPF, the system initializes another language processor environment 
for the ISPF screen. If you split the ISPF screen, a third environment is initialized 
for that screen. In ISPF, when you invoke an exec or TSO/E REXX routine, the exec 
or routine runs in the language processor environment from which it was invoked. 

The system automatically terminates the three language processor environments It 
initializes as follows: 

• When you return to one screen in ISPF, the environment for the second screen 
is terminated 

• When you end ISPF and return to TSO/E READY mode, the environment for the 
first ISPF screen is terminated 

• When you log off of TSO/E, the environment for TSO/E READY mode is 
terminated. 

In non-TSO/E address spaces, the system does not automatically initialize a 
language processor environment at a specific pOint, such as when the address 
space is activated. When you invoke either the IRXJCL or IRXEXEC routine to run 
an exec, the system automatically initializes an environment if an environment does 
not already exist. The exec then runs in that environment. The exec can then 
invoke a TSO/E REXX routine, such as IRXIC, and the routine runs in the same 
environment in which the exec is running. Chapter 14, "Language Processor 
Environments" describes environments in more detail, when they are Initialized, 
and the different characteristics that make up an environment. 

You can explicitly call the initialization routine, IRXINIT, to initialize language 
processor environments. Calling IRXINIT lets you customize the environment and 
how execs and services are processed and used. Using IRXINIT, you can create 
several different environments in an address space. IRXINIT is primarily intended 
for use in non-TSO/E address spaces, but you can also use it in TSO/E. 
Customization information is described in more detail in Chapter 13, "TSO/E REXX 
Customizing Services." 

252 TSO/E Version 2 MVS/REXX Reference 

'\ 
I 

) 

o 



c 

.. ( ' ..... 

( 

Programming Services 

If you explicitly call IRXINIT to initialize environments, whenever you call a TSO/E 
REXX routine, you can specify in which language processor environment you want 
the routine to run. During initialization, IRXINIT creates several control blocks that 
contain information about the environment. The main control block is the 
environment block, which represents the language processor environment. If you 
use IRXINIT and initialize several environments and then want to call a TSO/E REXX 
routine to run in a specific environment, you can pass the address of the 
environment block for the environment on the call. When you call the TSO/E REXX 
routine, you can pass the address of the environment block either in register ° or in 
the environment block address parameter in the parameter list if the routine 
supports the parameter. By using the TSO/E REXX customizing services and the 
environment block, you can customize REXX processing and also control in which 
environment you want TSO/E REXX routines to run. For more information, see 
"Specifying the Address of the Environment Block" on page 255. 

The following information describes some general conventions about calling TSO/E 
REXX routines: 

• The REXX vector of external entry points is a control block that contains the 
addresses of the TSO/E REXX routines and the system-supplied and 
user-supplied replaceable routines. The vector lets you easily access the 
address of a specific routine in order to invoke the routine. See "Control Blocks 
Created for a Language Processor Environment" on page 395 for more 
information about the vector. 

• All calls are in 31 bit addressing mode. 

• All data areas may be above 16 megabytes in virtual storage. 

• For most of the TSO/E REXX routines, you pass a parameter list on the call. 
Register 1 contains the address of the parameter list, which consists of a list of 
addresses. Each address in the parameter list points to a parameter. The high 
order bit of the last parameter address must be a binary 1. If you do not use a 
parameter, you must pass either binary zeros (for numeric data or addresses) 
or blanks (for character data). For more information, see "Parameter Lists for 
TSO/E REXX Routines." 

• On calls to the TSO/E REXX routines, you can pass the address of an 
environment block to specify in which particular language processor 
environment you want the routine to run. For more information, see "Specifying 
the Address of the Environment Block" on page 255. 

• Specific return codes are defined for each TSO/E REXX routine. Some common 
return codes include 0, 20, 28, and 32. For more information, see "Return Codes 
for TSO/E REXX Routines" on page 257. 

Parameter Lists for TSO/E REXX Routines 
Most of the TSO/E REXX routines have parameter lists. The parameters provide 
information to the routine about what type of processing you want to perform and 
also provide a way for the routine to return information to the program that called it. 
All the parameter lists are passed to the routines in the same manner. Figure 18 on 
page 254 shows the format of the parameter lists for the TSO/E REXX routines. A 
description of the parameter list follows the figure. 

Chapter 12. TSO/E REXX Programming Services 253 



Programming Services 

Parameter Li st Parameter 1 

i Parameter 1 ~ Parameter value 

Parameter 2 

i Parameter 2 
~ Parameter value 

. 

. 

Parameter n 

* i Parameter n -----.~~I ____ p_a_r_am_e_t_e_r_v_a_l_ue ______________ ~ 

* high order bit on 

Figure 18. Overview of Parameter Lists for TSOIE REXX Routines 

Register 1 contains an address that points to a parameter list. The parameter list 
consists of a list of addresses. Each address in the parameter list points to a 
parameter. This is illustrated on the left side of the diagram in Figure 18. The end 
of the parameter list (the list of addresses) is indicated by the high order bit of the 
last address being set to a binary 1. 

The parameters themselves are shown on the right side of the diagram in Figure 18. 
The parameter value may be the data itself or it may be an address that points to 
the data. 

All of the parameters for a specific routine may not be required. That is, some 
parameters may be optional. Because of this, the parameter lists are of variable 
length and the end of the parameter list must be indicated by the high order bit 
being set on in the last address. 

If there is an optional parameter you do not want to use and there are parameters 
after it you want to use, you can specify the address of the optional parameter in the 
parameter list, but set the optional parameter itself to either binary zeros (for 
numeric data or addresses) or to blanks (for character data). Otherwise, you can 
simply end the parameter list at the parameter before the optional parameter by 
setting the high order bit on in the preceding parameter's address. 

For example, suppose a routine has seven parameters and parameters 6 and 7 are 
optional. You do not want to use parameter 6, but you want to use parameter 7. In 
the parameter list, specify the address of parameter 6 and set the high order bit on 

254 TSO/E Version 2 MVS/REXX Reference 

'\ 
j 

c 



c 

( 

( 

( 

Programming Services 

in the address of parameter 7. For parameter 6 itself, specify 0 or blanks, 
depending on whether the data is numeric or character data. 

As another example, suppose the routine has seven parameters, parameters 6 and 
7 are optional, and you do not want to use the optional parameters (parameters 6 
and 7). You can end the parameter list at parameter 5 by setting the high order bit 
of the address for parameter 5 on. 

The individual descriptions of each routine in this book describe the parameters, the 
values you can specify for each parameter, and whether a parameter is optional. 

Specifying the Address of the Environment Block 
You can explicitly call the initialization routine, IRXINIT, to initialize a language 
processor environment in an address space. If you explicitly call IRXINIT to 
initialize an environment, you can optionally specify this environment when you 
invoke any of the TSO/E REXX routines. The environment block represents the 
environment in which you want the routine to run. Generally, you can specify the 
address of the environment block: 

• Using the environment block address parameter in the routine's parameter list 
• In register O. 

If you specify the environment block address in the parameter list, TSO/E REXX 
uses the address you specify and ignores the contents of register O. However, 
TSO/E does not validate the address you specify in the parameter list. Therefore, 
you must ensure that you pass a correct address or unpredictable results may 
occur. For more information, see "Using the Environment Block Address 
Parameter." 

If you do not specify an address in the environment block address parameter, the 
TSO/E REXX routine checks register 0 for the address of an environment block. If 
register 0 contains the address of a valid environment block, the routine runs in the 
environment represented by that environment block. If the address is not valid, the 
routine locates the current non-reentrant environment and runs in that environment. 
If register 0 contains a 0, the routine immediately searches for the last non-reentrant 
environment created, thereby eliminating the processing required to check whether 
register 0 contains a valid environment block address. 

If you use IRXINIT to initialize reentrant environments, see "Using the Environment 
Block for Reentrant Environments" on page 256 for information about running in 
reentrant environments. 

Using the Environment Block Address Parameter 
The parameter lists of most of the TSO/E REXX routines contain the environment 
block address parameter. This parameter lets you specify the address of the 
environment block that represents the environment in which you want the routine to 
run. If you use the environment block address parameter, the routine uses the 
address you specify and ignores the contents of register O. Additionally, the routine 
does not check the address you specify. Therefore, you must ensure that you pass a 
correct environment block address or unpredictable results may occur. For 
example, if you specify an invalid address, the routine may return with a return code 
of 28, which indicates a language processor environment could not be located. In 
other cases, processing could abend. 

Chapter 12. TSO/E REXX Programming Services 255 



Programming Services 

You could also specify an address for an environment that exists, but the address 
may be for a different environment than the one you want to use. In this case, the 
routine may run successfully, but the results will not be what you expected. For 
example, suppose you have four environments initialized in an address space; 
environments 1, 2, 3, and 4. You want to invoke the trace and execution control 
routine, IRXIC, to halt the interpretation of execs in environment 2. However, when 
you invoke IRXIC, you specify the address of the environment block for environment 
4, instead of environment 2. IRXIC completes successfully, but the interpretation of 
execs is halted in environment 4, rather than in environment 2. This is a subtle 
problem that may be difficult to determine. Therefore, if you use the environment 
block address parameter, you must ensure the address you specify is correct. 

If you do not want to pass an address in the environment block address parameter, 
specify a value of O. Also, the parameter lists for the TSO/E REXX routines are of 
variable length. That is, register 1 pOints to a list of addresses and each address in 
the list points to a parameter. The end of the parameter list is indicated by the high 
order bit being on in the last address in the parameter list. If you do not want to use 
the environment block address parameter and there are no other parameters after it 
that you want to use, you can simply end the parameter list at a preceding 
parameter. For more information about parameter lists, see "Parameter Lists for 
TSO/E REXX Routines" on page 253. 

If you are using the environment block address parameter and you are having 
problems debugging an application, you may want to set the parameter to 0 for 
debugging purposes. This lets you determine whether any problems are a result of 
this parameter being specified incorrectly. 

Using the Environment Block for Reentrant Environments 
If you want to use a reentrant environment, you must explicitly call the initialization 
routine, IRXINIT, to initialize the environment. TSO/E REXX automatically initializes 
non-reentrant environments only. When you invoke IRXINIT to initialize a reentrant 
environment, you must set the RENTRANT flag on (see page 354). 

An application program would use a reentrant environment when it wants to isolate 
itself and its characteristics from other application programs. For example, an 
application program may provide a storage management routine, but does not want 
any other program to use the storage management routine. To ensure this, you /' ". 
would use IRXINIT to initialize the environment and set the RENTRANT flag on. 
When the RENTRANT flag is on, the environment is not added to the existing chain 
of environments. Instead, the environment is an independent entry isolated from all 

. other environments. 

The system routines do not locate reentrant environments. Additionally, if you use 
IRXINIT to find an environment, IRXINIT finds non-reentrant environments only, not 
reentrant environments. You can use a reentrant environment that you have 
initialized only by explicitly passing the address of the environment block for the 
reentrant environment when you call a TSO/E REXX programming routine. If you 
want to invoke a TSO/E REXX routine to run in a reentrant environment, you must 
pass the address of the environment block for the reentrant environment on the call 
to the routine. You can pass the address either in the parameter list (in the 
environment block address parameter) or in register O. 

If you do not explicitly pass an environment block address, the routine locates the 
current non-reentrant environment and runs in that environment. 

256 TSO/E Version 2 MVS/REXX Reference 



( 

( 

( 

Programming Services 

Each task that is using REXX must have its own language processor environment. 
Two tasks cannot simultaneously use the same language processor environment for 
REXX processing. 

Return Codes for TSO/E REXX Routines 
The TSO/E REXX routines return a return code in register 15 that indicates whether 
or not processing was successful. The parameter lists for most of the routines also 
have a return code parameter that lets you specify a fullword field in which to 
receive the return code. The return code parameter lets high-level languages more 
easily obtain return code information. If you provide this parameter, the routine 
returns the return code in both the return code parameter and in register 15. If the 
parameter list you pass to the routine is invalid, the return code is returned in 
register 15 only. 

Each TSO/E REXX routine has specific return codes. The individual topics in this 
book describe the return codes for each routine. Figure 19 shows the common 
return codes that most of the TSO/E REXX routines use. 

Figure 19. Common Return Codes for TSOIE REXX Routines 

Return 
Code 

o 
20 

28 

32 

Description 

Successful processing. 

Error occurred. Processing was unsuccessful. The requested service was 
either partially completed or was terminated. An error message may be 
written to the error message field in the environment block. If the NOPMSGS 
flag is off for the environment, the message is also written to the output DO 
that is defined for the environment or to the terminal. 

For some errors, an alternate message may also be issued. Alternate 
messages are printed only if the AL TMSGS flag is on for the environment. The 
NOPMSGS and ALTMSGS flags are described in the topic "Flags and 
Corresponding Masks" on page 351. 

If multiple errors occurred and multiple error messages were issued, all error 
messages are written to the output DO or to the terminal. Additionally, the 
first error message is stored in the environment block. 

A service was requested, but a valid language processor environment could 
not be located. The requested service is not performed. 

Processing was not successful. The parameter list is not valid. The 
parameter list contains either too few or too many parameters, or the high 
order bit of the last address in the parameter list is not set to 1 to indicate the 
end of the parameter list. 

Chapter 12. TSO/E REXX Programming Services 257 



IRXJCL and IRXEXEC 

Exec Processing Routines - IRXJCL and IRXEXEC 
This topic provides information about the IRXJCL and IRXEXEC routines, which you 
can use to run REXX execs. You can use IRXJCL to run a REXX exec in MVS batch 
from JCL. You can also call IRXJCL from a REXX exec or a program that is running 
in any address space to run an exec. 

You can call the IRXEXEC routine from a REXX exec or program that is running in 
any address space to run an exec. IRXEXEC provides more flexibility than IRXJCL. 
With IRXJCL, you can pass the name of the exec and one argument on the call. 
Using IRXEXEC, you can, for example, pass multiple arguments or preload the exec 
in storage. 

The following topics describe each routine. If you use either IRXJCL or IRXEXEC to 
run a REXX exec in TSO/E foreground or background, note that you cannot invoke 
the REXX exec as authorized. 

Note: To permit FORTRAN programs to caIlIRXEXEC, TSO/E provides an alternate I'''' 
entry point for the IRXEXEC routine. The alternate entry point name is IRXEX. 

The IRXJCL Routine 
You can use IRXJCL to run a REXX exec in MVS batch. You can also call1RXJCL 
from a REXX exec or a program in any address space to run an exec. 

Using IRXJCL to Run a REXX Exec in MVS Batch 
To run an exec in MVS batch, specify IRXJCL as the program name (PGM = ) on the 
JCL EXEC statement. Specify the member name of the exec and one argument you 
want to pass to the exec in the PARM field on the EXEC statement. You can specify 
only the name of a member of a PDS. You cannot specify the name of a sequential 
data set. The PDS must be allocated to the DO specified in the LOADDD field of the 
module name table. The default is SYSEXEC. Figure 20 shows example JCL to 
invoke the exec MYEXEC. 

//STEPI EXEC PGM=IRXJCL,PARM='MYEXEC Al b2 C3 d4' 
//* 
/ /STEPLIB 
//* Next DD is the data set equivalent to terminal input 
//SYSTSIN DD DSN=xxx.xxx.xxx.DISP=SHR •••• 
//* 
//* Next DD is the data set equivalent to terminal output 
//SYSTSPRT DD DSN=xxx.xxx.xxx.DISP=OLD, ••• 
//* 
//* Next DD points to a library of execs 
//* that include MY EXEC 
//SYSEXEC DD DSN=xxx.xxx.xxx.DISP=SHR 

Figure 20. Example of Invoking an Exec from a JCL EXEC Statement Using IRXJCL 

Note: If you want output to be routed to a printer, specify the IISYSTSPRT DO 
statement as: 

//SYSTSPRT DD SYSOUT=A 

As Figure 20 shows, the exec MYEXEC is loaded from DO SYSEXEC. SYSEXEC is 
the default setting for the name of the DO from which an exec is to be loaded. In the 

258 TSO/E Version 2 MVS/REXX Reference 

"-
\ 

c 



( 

IRXJCL and IRXEXEC 

example, one argument is passed to the exec. The argument can consist of more 
than one token. In this case, the argument is: 

Al b2 C3 d4 

When the PARSE ARG keyword instruction is processed in the exec (for example, 
PARSE ARG EXVARS), the value of the variable EXVARS is set to the argument 
specified on the JCL EXEC statement. The variable EXVARS is set to: 

Al b2 C3 d4 

The MYEXEC exec can perform any of the functions that an exec running in a 
non-TSO/E address space can perform. See "Writing Execs That Run in Non-TSO/E 
Address Spaces" on page 187 for more information about the services you can use 
in execs that run in non-TSO/E address spaces. 

IRXJCL returns a return code as the step completion code. However, the step 
completion code is limited to a maximum of 4095, in decimal. If the return code is 
greater than 4095 (decimal), the system uses the rightmost three digits of the 
hexadecimal representation of the return code and converts it to decimal for use as 
the step completion code. See "Return Codes" on page 261 for more information. 

Invoking IRXJCL From a REXX Exec or a Program 
You can also call IRXJCL from an exec or a program to run a REXX exec. On the 
call to IRXJCL, you pass the address of a parameter list in register 1. 

Environment Customlzation Considerations -------------, 

If you use the IRXINIT initialization routine to initialize language processor 
environments, you can specify the environment in which you want IRXJCL to run. 
On the call to IRXJCL, you can optionally specify the address of the environment 
block for the environment in either the parameter list or in register o. 

For more information about specifying environments and how routines 
determine the environment in which to run, see "Specifying the Address of the 
Environment Block" on page 255. 

Entry Specifications: For the IRXJCL routine, the contents of the registers on entry 
are: 

Register 0 

Register 1 

Address of an environment block (optional) 

Address of the parameter list passed by the caller 

Registers 2-12 Unpredictable 

Register 13 

Register 14 

Register 15 

Address of a register save area 

Return address 

Entry point address 

Chapter 12. TSO/E REXX Programming Services 259 



--- ~- ~-- - ~~--~~.---~~-----~- ~- - -~ 

IRXJCL and IRXEXEC 

Parameters: In register 1, you pass the address of a parameter list, which consists 
of one address. The high order bit of the address in the parameter list must be set 
to 1 to indicate the end of the parameter list. Figure 21 describes the parameter for 
I RXJCL. 

Figure 21. Parameter for Calling the IRXJCL Routine 

Parameter 

Parameter 1 

Number of 
Bytes 

variable 

Description 

A buffer, which consists of a halfword length field 
followed by a data field. The first two bytes of the 
buffer is the length field that contains the length of the 
data that follows. The length does not include the two 
bytes that specify the length itself. 

The data field contains the name of the exec, followed 
by one or more blanks, followed by the argument (if 
any) to be passed to the exec. You can pass only one 
argument on the call. ( '\ 

Figure 22 shows an example PUI program that invokes IRXJCL to run a REXX exec. 
Note that the example is for PUI Version 2. 

JClXMPl : Procedure Options (Main); 
/* Function: Call a REXX exec from a Pl/I program using IRXJCl */ 

DCl IRXJCl EXTERNAL OPTIONS(RETCODE, ASSEMBLER); 
DCl 1 PARM_STRUCT, /* Parm to be passed to IRXJCl */ 

5 PARM_lNG BIN FIXED (l5), /* length of the parameter */ 
5 PARM_STR CHAR (3B); /* String passed to IRXJCl */ 

DCl PlIRETV BUILTIN; /* Defines the return code built-in*/ 
PARM_lNG = lENGTH(PARM_STR); /* Set the length of string */ 

/* */ 
PARM_STR = 'JClXMP2 This is an arg to exec'; /* Set string value 

FETCH IRXJCl; 
CAll IRXJCl (PARM_STRUCT); 

In this case, call the exec named 
JClXMP2 and pass argument: 
'This is an arg to exec' */ 

/* load the address of entry point */ 
/* Call IRXJCl to execute the REXX 

exec and pass the argument */ 
PUT SKIP EDIT ('Return code from IRXJCl was:', PlIRETV) (a, f(4»; 

END ; 

/* Print out the return code from 
exec JClXMP2. 

/* End of program 

Figure 22. Example PLI/ Version 2 Program Using IRXJCL 

*/ 
*/ 

Return Specifications: For the IRXJCL routine, the contents of the registers on 
return are: 

Registers 0-14 Same as on entry 

Register 15 .: Return code 
I 

260 TSO/E Version 2 MVS/REXX Reference 

" 

/ '\ 
( . 

".~j 

C~' 
" - I 



c 

(/ 

( 

Return Codes 

IRXJCL and IRXEXEC 

If IRXJCL encounters an error, it returns a return code. If you invoke IRXJCL from 
JCL to run an exec in MVS batch, IRXJCL returns the return code as the step 
condition code. If you call IRXJCL from an exec or program, IRXJCL returns the 
return code in register 15. Figure 23 describes the return codes. 

Figure 23. Return Codes for IRXJCL Routine 

Return 
Code 

Description 

o Processing was successful. Exec processing completed. 

20 Processing was not successful. The exec was not processed. 

20021 

Other 

Notes: 

An invalid parameter was specified on the JCL EXEC statement or the 
parameter list passed on the call to IRXJCL was incorrect. Some possible 
errors could be that a parameter was either blank or null or the name of the 
exec was not valid (more than eight characters long). 

If you run an exec in MVS batch and a return code of 20021 is returned, the 
value 3637, in decimal, is returned as the step completion code. For more 
information, see note 2 below. 

Any other return code not equal to 0, 20, or 20021 is the return code from the 
REXX exec on the RETURN or EXIT keyword instruction. For more 
information, see the two notes below. 

1. No distinction is made between the REXX exec returning a value of 0, 20, or 
20021 on the RETURN or EXIT instruction and IRXJCL returning a return code of 
0, 20, or 20021. 

2. IRXJCL returns a return code as the step completion code. However, the step 
completion code is limited to a maximum of 4095, in decimal. If the return code 
is greater than 4095 (decimal), the system uses the rightmost three digits of the 
hexadecimal representation of the return code and converts it to decimal for use 
as the step completion code. For example, suppose the exec returns a return 
code of 8002, in decimal, on the RETURN or EXIT instruction. The value 8002 
(decimal) is X '1 F42' in hexadecimal. The system takes the rightmost three 
digits of the hexadecimal value (X' F42') and converts it to decimal (3906) to use 
as the step completion code. The step completion code that is returned is 3906, 
in decimal. 

The IRXEXEC Routine 
Use the IRXEXEC routine to run an exec in any MVS address space. 

Note: To permit FORTRAN programs to caIlIRXEXEC, TSO/E provides an alternate 
entry point for the IRXEXEC routine. The alternate entry point name is IRXEX. 

Most users do not need to use IRXEXEC. In TSO/E, you can invoke execs implicitly 
or explicitly using the TSO/E EXEC command. You can also run execs in TSO/E 
background. If you want to invoke an exec from a program that is written in a high 
level programming language, you can use the TSO service facility to invoke the 
EXEC command. You can run an exec in MVS batch using JCL and the IRXJCL 
routine. 

You can also call the IRXJCL routine from a REXX exec or a program that is running 
in any address space to invoke an exec. However, the IRXEXEC routine gives you 
more flexibility. For ex,ample, you can preload the REXX exec in storage and pass 

Chapter 12. TSO/E REXX Programming Services 261 



IRXJCL and IRXEXEC 

the address of the preloaded exec to IRXEXEC. This is useful if you want to run an 
exec multiple times to avoid the exec being loaded and freed whenever it is ./ 
invoked. You may also want to use your own load routine to load and free the exec. "-___ j 

If you use the TSO/E EXEC command, you can pass only one argument to the exec. 
The argument can consist of several tokens~ Similarly, if you call IRXJCL from an 
exec or program, you can only pass one argument. By using IRXEXEC, you can 
pass multiple arguments to the exec and each argument can consist of multiple 
tokens. If you pass multiple arguments, you must not set bit 0 (the command bit) in 
parameter 3. 

If you use IRXEXEC, one parameter on the call is the user field. You can use this 
field for your own processing. 

Entry Specifications 

Environment Customlzation Considerations ---------------, 

If you use the IRXINIT initialization routine to initialize language processor 
environments, the following information provides several considerations about 
calling IRXEXEC. 

When you call IRXEXEC, you can specify the environment in which you want 
IRXEXEC to run. On the call to IRXEXEC, you can optionally specify the address 
of the environment block for the environment in either the parameter list or in 
register O. 

If you do not pass an environment block address or IRXEXEC determines the 
address is not valid, IRXEXEC locates the current environment and runs in that 
environment. "Chains of Environments and How Environments Are Located" on 
page 375 describes how environments are located. If a current environment 
does not exist or the current environment was initialized on a different task and 
the TSOFL flag is off in that environment, a new language processor 
environment is initialized. The exec runs in the new environment. Before 
IRXEXEC returns, the language processor environment that was created is 
terminated. 

For more information about specifying environments and how routines 
determine the environment in which to run, see "Specifying the Address of the 
Environment Block" on page 255. 

For the IRXEXEC routine, the contents of the registers on entry are: 

Register 0 

Register 1 

Address of an environment block (optional) 

Address of the parameter list passed by the caller 

Registers 2-12 Unpredictable 

Register 13 

Register 14 

Register 15 

Address of a register save area 

Return address 

Entry point address 

262 TSO/E Version 2 MVS/REXX Reference 

""I 

c 



Parameters c 

(' 

( ..... ' 

" .' 

IRXJCL and IRXEXEC 

In register 1, you pass the address of a parameter list, which consists of a list of 
addresses. Each address in the parameter list pOints to a parameter. The high 
order bit of the last address in the parameter list must be set to 1 to indicate the end 

. of the parameter list. For more information about passing parameters, see 
"Parameter Lists for TSO/E REXX Routines" on page 253. 

• 

Figure 24 describes the parameters for IRXEXEC. 

Figure 24 (Page 1 of 4). Parameters for IRXEXEC Routine 

Parameter 

Parameter 1 

Parameter 2 

Number 
of Bytes 

4 

4 

Description 

Specifies the address of the exec block (EXECBLK). The 
exec block is a control block that describes the exec to be 
loaded. It contains information needed to process the 
exec, such as the DO from which the exec is to be loaded 
and the name of the initial host command environment 
when the exec starts running. "The Exec Block 
(EXECBLK)" on page 266 describes the format of the exec 
block. 

If the exec is preloaded and you pass the address of the 
preloaded exec in parameter 4, specify an address of 0 for 
this parameter. If you specify both parameter 1 and 
parameter 4, IRXEXEC uses the value in parameter 4 and 
ignores this parameter (parameter 1). 

Specifies the address of the arguments for the exec. The 
arguments are arranged as a vector of addressllength 
pairs followed by X'FFFFFFFFFFFFFFFF'. "Format of 
Argument List" on page 267 describes the format of the 
arguments . 

Chapter 12. TSO/E REXX Programming Services 263 



IRXJCL and IRXEXEC 

Figure 24 (Page 2 of 4). Parameters for IRXEXEC Routine 

Parameter 

Parameter 3 

Parameter 4 

Number 
of Bytes 

4 

4 

264 TSO/E Version 2 MVS/REXX Reference 

Description 

A fullword of bits that IRXEXEC uses as flags. IRXEXEC 
uses bits 0, 1, 2, and 3 only. The remaining bits are 
reserved. Bits 0, 1, and 2 are mutually exclusive. 

PARSE SOURCE returns a token indicating how the exec 
was invoked. The bit you set on in bit positions 0, 1, or 2 
indicates the token that PARSE SOURCE uses. For 
example, if you set bit 2 on, PARSE SOURCE returns the 
token SUBROUTINE. 

If you set bit 1 on, the exec must return a result. If you set 
either bit 0 or 2 on, the exec can optionally return a result. 

Use bit 3 to indicate how IRXEXEC should return 
information about a syntax error in the exec. 

The description of each bit is as follows: 

• Bit 0 - This bit must be set on if the exec is being 
invoked as a "command"; that Is, the exec Is not 
being invoked from another exec as an external 
function or subroutine. If you pass more than one 
argument to the exec, do not set bit 0 on. 

• Bit 1 - This bit must be set on if the exec Is being 
invoked as an external function (a function call). 

• Bit 2 - This bit must be set on if the exec is being 
invoked as a subroutine. 

• Bit 3 - This bit must be set on If you want IRXEXEC to 
return extended return codes in the range 20001 -
20099. 

If a syntax error occurs, IRXEXEC returns a value In 
the range 20001 - 20099 in the evaluation block, 
regardless of the setting of bit 3. If bit 3 is on and a 
syntax error occurs, IRXEXEC returns with a return 
code in the range 20001 - 20099 that matches the 
value returned in the evaluation block. If bit 3 is off 
and a syntax error occurs, IRXEXEC returns with 
return code O. 

For more information, see "How IRXEXEC Returns 
Information About Syntax Errors" on page 272. 

Specifies the address of the in-storage control block 
(INSTBLK), which defines the structure of a preloaded 
exec in storage. The INSTBLK contains pOinters to each 
statement in the exec and the length of each statement. 
"The In-Storage Control Block (INSTBLK)" on page 268 
describes the control block. 

This parameter is required if the caller of IRXEXEC has 
preloaded the exec. Otherwise, this parameter must be O. 
If you specify this parameter, IRXEXEC ignores parameter 
1 (address of the exec block). 

./ \ 

o 



IRXJCl and IRXEXEC 

C 
Figure 24 (Page 3 of 4). Parameters for IRXEXEC Routine 

Parameter Number Description 
of Bytes 

Parameter 5 4 Specifies the address of the command processor 
parameter list (CPPL) if you call IRXEXEC from the TSO/E 
address space. If you do not pass the address of the 
CPPL (you specify an address of 0), TSO/E builds the 
CPPL without a command buffer. 

If you call IRXEXEC from a non-TSO/E address space, 
specify an address of O. 

Parameter 6 4 Specifies the address of an evaluation block 
(EVALBLOCK). IRXEXEC uses the evaluation block to 
return the result from the exec that was specified on 
either the RETURN or EXIT instruction. "The Evaluation 
Block (EVALBLOCK)" on page 270 describes the format of 

(- the evaluation block, how IRXEXEC uses the parameter, 
and whether or not you should provide an EVALBLOCK on 
the call. 

If you do not want to provide an evaluation block, specify 
an address of O. If you do not provide an evaluation block, 
you must use the get result routine, IRXRL T, to obtain the 
result from the exec. 

Parameter 7 4 Specifies the address of an eight byte field that defines a 
work area for the IRXEXEC routine. In the eight byte field, 
the: 

( • First four bytes contain the address of the work area 
• Second four bytes contain the length of the work area . 

The work area is passed to the language processor to use 
for processing the exec. If the work area is too small, 
IRXEXEC returns with a return code of 20 and a message 
is issued that indicates an error. The minimum length 
required for the work area is X '1800' bytes. 

If you do not want to pass a work area, specify an address 
of o. In this case, IRXEXEC obtains storage for its work 

( 
area or calls the replaceable storage routine specified in 
the GETFREER field for the environment, if you provided a 
storage routine. 

Parameter 8 4 Specifies the address of a user field. IRXEXEC does not 
use or check this pointer or the user field. You can use 
this field for your own processing. 

If you do not want to use a user field, specify an address 
of O. 

Parameter 9 4 The address of the environment block that represents the 
environment in which you want IRXEXEC to run. This 
parameter is optional. 

If you specify a non-zero value for the environment block 
address parameter, IRXEXEC uses the value you specify 
and ignores register o. However, IRXEXEC does not 
check whether the address is valid. Therefore, you must 
ensure the address you specify is correct or unpredictable 

( results can occur. For more information, see "Specifying 

--
the Address of the Environment Block" on page 255. 

Chapter 12. TSO/E REXX Programming Services 265 



IRXJCL and IRXEXEC 

Figure 24 (Page 4 of 4). Parameters for IRXEXEC Routine 

Parameter 

Parameter 10 

The Exec Block (EXECBLK) 

Number 
of Bytes 

4 

Description 

A four byte field that IRXEXEC uses to return the return 
code. 

The return code parameter is optional. If you use this 
parameter, IRXEXEC returns the return code in the 
parameter and also in register 15. Otherwise, IRXEXEC 
uses register 15 only. If the parameter list Is invalid, the 
return code is returned in register 15 only. "Return 
Codes" on page 273 describes the return codes. 

If you do not want to use the return code parameter, you 
can end the parameter list at a preceding parameter. Set 
the high order bit on in the preceding parameter's 
address. For more information about parameter lists, see 
"Parameter Lists for TSO/E REXX Routines" on page 253. 

The exec block (EXECBLK) is a control block that describes the exec to be loaded. If 
the exec is not preloaded, you must build the exec block and pass the address in 
parameter 1 on the call to IRXEXEC. You need not pass an exec block if the exec is 
preloaded. 

Note: If you want to preload the exec, you can use the system-supplied exec load 
routine IRXLOAD or your own exec load replaceable routine (see page 433). 

TSO/E provides a mapping macro IRXEXECB for the exec block. The mapping 
macro is in SYS1.MACLIB. Figure 25 describes the format of the exec block. 

Figure 25 (Page 1 of 2). Format of the Exec Block (EXECBLK) 

Offset 
(Decimal) 

o 

8 

12 

16 

24 

Number 
01 Bytes 

8 

4 

4 

8 

8 

266 TSO/E Version 2 MVS/REXX Reference 

Field 
Name 

ACRYN 

LENGTH 

MEMBER 

DDNAME 

Description 

An eight character field that identifies the exec 
block. It must contain the character string 
'IRXEXECB'. 

Specifies the length of the exec block in bytes. 

Reserved: 

Specifies the member name of the exec If the 
exec is In a partitioned data set. If the exec is 
in a sequential data set, this field must be 
blank. 

Specifies the name of the DO from which the 
exec is loaded. An exec cannot be loaded from 
a DO that has not been allocated. The ddname 
you specify must be allocated to a data set 
containing REXX execs or to a sequential ,data 
set that contains an exec. 

If this field is blank, the exec is loaded from the 
DO specified in the LOADDD field of the module 
name table (see page 357). The default is 
SYSEXEC. 

C, .~I 

c 



C' 

('-

( 

IRXJCL and IRXEXEC 

Figure 25 (Page 2 of 2). Format of the Exec Block (EXECBLK) 

Offset Number Field Description 
(Decimal) of Bytes Name 

32 8 SUBCOM Specifies the name of the initial host command 
environment when the exec starts running. 

If this field is blank, the environment specified 
in the INITIAL field of the host command 
environment table is used. For TSO/E and 
ISPF, the default is TSO. For a non-TSO/E 
address space, the default is MVS. The table is 
described in "Host Command Environment 
Table" on page 361. 

40 4 DSNPTR Specifies the address of a data set name that 
the PARSE SOURCE instruction returns. The 
name usually represents the name of the exec 
load data set. The name can be up to 54 
characters long (44 characters for the fully 
qualified data set name, 8 characters for the 
member name, and 2 characters for the left 
and right parentheses). 

If you do not want to specify a data set name, 
specify an address of O. 

44 4 DSNLEN Specifies the length of the data set name that is 
pOinted to by the address at offset + 40. The 
length can be 0-54. If no data set name is 
specified, the length is O. 

An exec cannot be loaded from a data set that has not been allocated. The ddname 
you specify (at offset +24 in the exec block) must be allocated to a data set 
containing REXX execs or to a sequential data set that contains an exec. 

The fields at offset +40 and +44 in the exec block are used only for input to the 
PARSE SOURCE instruction and are for informational purposes only. 

Loading of the exec is done as follows: 

• If the exec is preloaded, loading is not performed. 

• If you specify a ddname in the exec block, IRXEXEC loads the exec from that DO. 
You also specify the name of the member in the exec block. 

• If you do not specify a ddname in the exec block, IRXEXEC loads the exec from 
the DO specified in the LOADDD field in the module name table for the language 
processor environment (see page 357). The default is SYSEXEC. If you 
customize the environment values TSO/E provides or use the initialization 
routinEl.lRXINIT, the DO may be different. See Chapter 14, "Language 
Processor Environments" for customizing information. 

Format of Argument List 
Parameter 2 points to the arguments for the exec. The arguments are arranged as a 
vector of addressllength pairs, one for each argument. The first four bytes are the 
address of the argument string. The second four bytes are the length of the 
argument string, in bytes. The vector must end in X I FFFFFFFFFFFFFFFF I. There is 
no limit on the number of arguments you can pass. Figure 26 shows the format of 
the argument list. TSO/E provides a mapping macro IRXARGTB for the vector. The 
mapping macro is in SYS1.MACLIB. 

Chapter 12. TSO/E REXX Programming Services 267 



IRXJCL and IRXEXEC 

Figure 26. Format of the Argument List 

Offset Number Field Name Description 
(Dec) of Bytes 

0 4 ARGSTRING_PTR Address of argument 1 

4 4 ARGSTRING_LENGTH Length of argument 1 

8 4. ARGSTRING_PTR Address of argument 2 

12 4 ARGSTRING_LENGTH Length of argument 2 

16 4 ARGSTRING_PTR Address of argument 3 

20 4 ARGSTRING_LENGTH Length of argument 3 

x 4 Address of argument n 

x+4 4 ARGSTRING_LENGTH Length of argument n 

x+8 8 X'FFFFFFFFFFFFFFFF' 

The In-Storage Control Block (INSTBLK) 
Parameter 3 points to the in-storage control block (INSTBLK). The in-storage control 
block defines the structure of a preloaded exec in storage. The INSTBLK contains 
pOinters to each record in the exec and the length of each record. 

If you preload the exec in storage, you must pass the address of the in-storage 
control block (parameter 4). You must provide the storage, format the control block, 
and free the storage after IRXEXEC returns. IRXEXEC only reads information from 
the in-storage control block. IRXEXEC does not change any of the information. 

To preload an exec into storage, you can use the exec load replaceable routine 
IRXLOAD. If you provide your own exec load replaceable routine, you can use your 
routine to preload the exec. "Exec Load Routine" on page 433 describes the 
replaceable routine. 

If the exec is not preloaded, you must specify an address of 0 for the in-storage 
control block parameter (parameter 4). 

The in-storage control block consists of a header and the records in the exec, which 
are arranged as a vector of address/length pairs. Figure 27 shows the format of the 
in-storage control block header. Figure 28 on page 270 shows the format of the 
vector of records. TSO/E provides a mapping macro IRXINSTB for the in-storage 
control block. The mapping macro is in SYS1.MACLIB. 

268 TSO/E Version 2 MVS/REXX Reference 

C 

/ ". 



IRXJCL and IRXEXEC 

Figure 27. Format of the Header for the In-Storage Control Block 

0 Offset Number Field Description 
(Decimal) of Bytes Name 

_ c 

0 8 ACRONYM An eight character field that identifies the 
control block. The field must contain the 
characters'IRXINSTB'. 

8 4 HDRLEN Specifies the length of the in-storage control 
block header only. The value must be 128 
bytes. 

12 4 Reserved. 

16 4 ADDRESS Specifies the address of the vector of records. 
See Figure 28 on page 270 for the format of 
the addressllength pairs. 

If this field is 0, the exec contains no records. 

20 4 USEDLEN Specifies the length of the address/length 

(- vector of records in bytes. This is not the 
number of records. The value is the number of 
records multiplied by 8. 

If this field is 0, the exec contains no records. 

24 8 MEMBER Specifies the name of the exec. This is the 
name of the member in the partitioned data set 
from which the exec was loaded. If the exec 
was loaded from a sequential data set, this field 
must be blank. 

( 
The PARSE SOURCE instruction returns the 
folded member name you specify. If this field is 
blank, the member name that PARSE SOURCE 
returns is a question mark (1). 

32 8 DDNAME Specifies the name of the DD that represents 
the exec load data set from which the exec was 
loaded. 

40 8 SUBCOM Specifies the name of the initial host command 
environment when the exec starts running. 

( 
48 4 Reserved. 

52 4 DSNLEN Specifies the length of the data set name that is 
specified at offset + 56. If a data set name is 
not specified, this field must be O. 

56 72 DSNAME A 72 byte field that contains the name of the 
data set, if known, from which the exec was 
loaded. The name can be up to 54 characters 
long (44 characters for the fully qualified data 
set name, 8 characters for the member name, 
and 2 characters for the left and right 
parentheses). The remaining bytes of the field 
(2 bytes plus four fullwords) are not used. They 
are reserved and contain binary zeros. 

Chapter 12. TSO/E REXX Programming Services 269 

--------~". ----_._----_.-



IRXJCL and IRXEXEC 

At offset + 16 in the in-storage control block header, the field pOints to the vector of 
records that are in the exec. The records are arranged as a vector of 
address/length pairs. Figure 28 shows the format of the address/length pairs. Cc 
The addresses point to the text of the record to be processed. This can be one or 
more REXX clauses, parts of a clause that are continued with the REXX continuation 
character (the continuation character is a comma), or a combination of these. The 
address is the actual address of the record. The length is the length of the record in 
bytes. 

Figure 28. Vector of Records for the In-Storage Control Block 

Offset Number Field Description 
(Decimal) of Bytes Name 

0 4 STMT@ Address of record 1 

4 4 STMTLEN Length of record 1 

8 4 STMT@ Address of record 2 

12 4 STMTLEN Length of record 2 

16 4 STMT@ Address of record 3 

20 4 STMTLEN Length of record 3 

x 4 STMT@ Address of record n 

x+4 4 STMTLEN Length of record n 

The Evaluation Block (EVALBLOCK) 
The evaluation block is a control block that IRXEXEC uses to return the result from 
the exec. The exec can return a result on either the RETURN oJ EXIT instruction.­
For example, the REXX instruction 

RETURN varl 

returns the value of the variable VAR1. IRXEXEC returns the value of VAR1 in the 
evaluation block. 

If the exec you are running will return a result, specify the address of an evaluation 
block when you call IRXEXEC (parameter 6). You must obtain the storage for the 
control block yourself. 

If the exec does not return a result or you want to ignore the result, you need not 
allocate an evaluation block. On the call to IRXEXEC, you must pass all of the 
parameters. Therefore, specify an address of 0 for the evaluation block. 

If the result from the exec fits into the evaluation block, the data is placed into the 
block (EVDATA field) and the length of the block is updated (ENVLEN field). If the 
result does not fit into the area provided in the evaluation block, IRXEXEC: 

• Places as much of the result that will fit into the evaluation block in the EVDATA 
field 

• Sets the length of the result field (EVLEN) to the negative of the length that is 
required to store the complete result. 

270 TSO/E Version 2 MVS/REXX Reference 

. ------.-.-----

,.<'--" 

',J 

c 



( 

( 

IRXJCl and IRXEXEC 

The result is not lost. The system has its own evaluation block that it uses to store 
the result. If the evaluation block you passed to IRXEXEC is too small to hold the 
complete result, you can then use the IRXRL T (get result) routine. Allocate another 
evaluation block that is large enough to hold the result and call IRXRLT. On the call 
to the IRXRL T routine, you pass the address of the new evaluation block. IRXRLT 
copies the result from the exec that was stored in the system's evaluation block into 
your evaluation block and returns. "Get Result Routine - IRXRL T" on page 305 
describes the routine in more detail. 

If you call IRXEXEC and do not pass the address of an evaluation block, and the 
exec returns a result, you can use the IRXRLT routine after IRXEXEC completes to 
obtain the result. 

To summarize, if you call IRXEXEC to run an exec that returns a result and you pass 
the address of an evaluation block that is large enough to hold the result, IRXEXEC 
returns the result in the evaluation block. In this case, IRXEXEC does not store the 
result in its own evaluation block. 

If IRXEXEC runs an exec that returns a result, the result is stored in the system's 
evaluation block if: 

• The result did not fit into the evaluation block that you passed on the call to 
IRXEXEC, or 

• You did not specify the address of an evaluation block on the call. 

You can then obtain the result by allocating a large enough evaluation block and 
calling the IRXRLT routine to get the result. The result is available until one of the 
following occurs: 

• IRXRLT is called and successfully obtains the result 

• Another REXX exec runs in the same language processor environment, or 

• The language processor environment is terminated. 

Note: The language processor environment is the environment in which the 
language processor processes the exec. See Chapter 14, "Language Processor 
Environments" for more information about the initialization and termination of 
environments and customization services. 

The evaluation block consists of a header and data, which contains the result. 
Figure 29 on page 272 shows the format of the evaluation block. Additional 
information about each field is described after the table. 

TSO/E provides a mapping macro IRXEVALB for the evaluation block. The mapping 
macro is in SYS1.MACLIB. 

Chapter 12. TSO/E REXX Programming Services 271 



IRXJCL and IRXEXEC 

Figure 29. Format of the Evaluation Block 

Offset Number Field 
(Decimal) of Bytes Name 

0 4 EVPAD1 

4 4 EVSIZE 

8 4 EVLEN 

12 4 EVPAD2 

16 n EVDATA 

Description 

A fullword that must contain X'OO'. This field is 
reserved and is not used. 

Specifies the total size of the evaluation block in 
doublewords. 

On entry, this field is not used and must be set to 
X' 00 I. On return, it specifies the length of the 
result, in bytes, that is returned. The result is 
returned in the EVDATA field at offset + 16. 

A fullword that must contain X' 00'. This field is 
reserved and is not used. 

The field in which IRXEXEC returns the result 
from the exec. The length of the field depends on 
the total size specified for the control block in the 
EVSIZE field. The total size of the EVDATA field 
is: 

EVSIZE * 8 - 16 

It is recommended that you use 250 bytes for the 
EVDATA field. 

For information about the values IRXEXEC 
returns, if the language processor detects a 
syntax error in the exec, see "How IRXEXEC 
Returns Information About Syntax Errors." 

If the result does not fit into the EVDATA field, IRXEXEC stores as much of the result 
as it can into the field and sets the length field (EVLEN) to the negative of the 
required length for the result. You can then use the IRXRLT routine to obtain the 
result. See "Get Result Routine - IRXRLT" on page 305 for more information. 

On return, if the result has a length of 0, the length field (EVLEN) is 0, which means 
the result is null. If no result is returned on the EXIT or RETURN instruction, the 
length field contains X '80000000 , . 

G 

If you invoke the exec as a "command" (bit 0 is set on in parameter 3), the result the ""-~ 
exec returns must be a numeric value. The result can be from -2,147,483,648 
through + 2,147,483,647. If the result is not numeric or is greater than or less than 
the valid values, this indicates a syntax error and the value 20026 is returned in the 
EVDATA field. 

How IRXEXEC Returns Information About Syntax Errors 
If the language processor detects a syntax error in the exec, IRXEXEC returns the 
following: 

• A value of 20000 plus the REXX error number in the EVDATA field of the 
evaluation block. 

• A value of 5 for the length of the result in the EVLEN field of the evaluation 
block. 

The REXX error numbers are between 1 and 99. Therefore, the range of values that C 
IRXEXEC can return for a syntax error are 20001 - 20099. The REXX error numbers 
correspond to the REXX message numbers. For example, error 26 corresponds to 

272 TSO/E Version 2 MVS/REXX Reference 



o 
the REXX message IRX00261. For error 26, IRXEXEC returns the value 20026 in the 
EVDATA field. The REXX error messages are described in Appendix A, "Error 
Numbers and Messages." 

The exec you run may also return a value on the RETURN or EXIT instruction in the 
range 20001 - 20099. IRXEXEC returns the value from the exec in the EVDATA field 
of the evaluation block. To determine whether the value in the EVDATA field is the 
value from the exec or the value related to a syntax error, use bit 3 in parameter 3 
of the parameter list. Bit 3 lets you enable the extended return codes in the range 
20001 - 20099. 

If you set bit 3 off, and the exec processes successfully but the language processor 
detects a syntax error, the following occurs. IRXEXEC returns a return code of 0 in 
register 15. IRXEXEC also returns a value of 20000 plus the REXX error number in 
the EVDATA field of the evaluation block. In this case, you cannot determine 
whether the exec returned the 200xx value or whether the value represents a syntax 
error. 

If you set bit 3 on and the exec processes successfully but the language processor 
detects a syntax error, the following occurs. IRXEXEC sets a return code in register 
15 equal to 20000 plus the REXX error message. That is, the return code in register 
15 is in the range 20001 - 20099. IRXEXEC also returns the 200xx value in the 
EVDATA field of the evaluation block. If you set bit 3 on and the exec processes 
without a syntax error, IRXEXEC returns with a return code of 0 in register 15. If 
IRXEXEC returns a value of 20001 - 20099 in the EVDATA field of the evaluation 
block, that value must be the value that the exec returned on the RETURN or EXIT 
instruction. 

By setting bit 3 on in parameter 3 of the parameter list, you can check the return 
code from IRXEXEC to determine whether a syntax error occurred. 

Return Specifications 

Return Codes 

For the IRXEXEC routine, the contents of the registers on return are: 

Register 0 Address of the environment block. 

If IRXEXEC returns with return code 100 or 104, register 0 contains 
the abend and reason code. "Return Codes" describes the return 
codes and how IRXEXEC returns the abend and reason codes for 
return codes 100 and 104. 

Registers 1-14 Same as on entry 

Register 15 Return code 

Figure 30 shows the return codes for the IRXEXEC routine. IRXEXEC returns the 
return code in register 15. If you specify the return code parameter (parameter 10), 
IRXEXEC also returns the return code in the parameter. 

Chapter 12. TSO/E REXX Programming Services 273 



IRXJCL and IRXEXEC 

Figure 30 (Page 1 of 2). IRXEXEC Return Codes 

Return Code 

o 

20 

32 

100 

104 

Description 

Processing was successful. The exec has completed processing. 

If the exec returns a result, the result mayor may not fit into the 
evaluation block. You must check the length field (EVLEN). 

On the call to IRXEXEC, you can set bit 3 in parameter 3 of the 
parameter list to indicate how IRXEXEC should handle information 
about syntax errors. If IRXEXEC returns with return code 0 and bit 3 is 
on, the language processor did not detect a syntax error. In this case, 
the value IRXEXEC returns in the EVDATA field of the evaluation block 
is the value the exec returned. 

If IRXEXEC returns with return code 0 and bit 3 is off, the language 
processor mayor may not have detected a syntax error. If IRXEXEC 
returns a value of 20001 - 20099 in the evaluation block, you cannot 
determine whether the value represents a syntax error or the value 
was returned by the exec. 

For more information, see "How IRXEXEC Returns Information About 
Syntax Errors" on page 272. 

Processing was not successful. An error occurred. The exec has not 
been processed. The system issues an error message that describes 
the error. 

Processing was not successful. The parameter list is not valid. The 
parameter list contains either too few or too many parameters, or the 
high order bit of the last address In the parameter list is not set to 1 to 
indicate the end of the parameter list. 

Processing was not successful. A system abend occurred during 
IRXEXEC processing. 

The system issues one or more messages that describe the abend. In 
addition, register 0 contains the abend code and the abend reason 
code. The abend code is returned In the low order two bytes of 
register O. The abend reason code Is returned in the high order two 
bytes of register O. If the abend reason code is greater than two bytes, 
only the low order two bytes of the abend reason code are returned. 
See MVSIESA System Codes for information about the abend codes 
and reason codes. 

Processing was not successful. A user abend occurred during 
IRXEXEC processing. 

The system issues one or more messages that describe the abend. In 
addition, register 0 contains the abend code and the abend reason 
code. The abend code is returned in the low order two bytes of 
register O. The abend reason code is returned in the high order two 
bytes of register o. If the abend reason code is greater than two bytes, 
only the low order two bytes of the abend reason code are returned. 
See MVSIESA System Codes for information about the abend codes 
and reason codes. 

274 TSO/E Version 2 MVS/REXX Reference 

c 

'\ 
) 

C',,\ , , 



( 

( 

IRXJCl and IRXEXEC 

Figure 30 (Page 2 of 2). IRXEXEC Return Codes 

Return Code 

20001 - 20099 

Description 

Processing was successful. The exec completed processing, but the 
language processor detected a syntax error. The return code that 
IRXEXEC returns in register 15 is the value 20000 plus the REXX error 
number. The REXX error numbers are between 1 and 99 and 
correspond to the REXX message numbers. For example, error 26 
corresponds to the REXX message IRX00261. The REXX error 
messages are described in Appendix A, "Error Numbers and 
Messages" on page 475. 

IRXEXEC returns a return code of 20001 - 20099 only if bit 3 in 
parameter 3 is set on when you call IRXEXEC. IRXEXEC also returns 
the same 200xx value in the EVDATA field of the evaluation block. 

For more information about syntax errors, see "How IRXEXEC Returns 
Information About Syntax Errors" on page 272. 

Note: The language processor environment is the environment in which the exec 
runs. If IRXEXEC cannot locate an environment in which to process the exec, an 
environment is automatically initialized. If an environment was being initialized and 
an error occurred during the initialization process, IRXEXEC returns with return 
code 20, but an error message is not issued. 

Chapter 12. TSO/E REXX Programming Services 275 

------~ - .... -.. -..... ~ .. ------



Functions, Subroutines, Function Packages 

External Functions and Subroutines, and Function Packages 
You can write your own external functions and subroutines, which allow you to 
extend the capabilities of the REXX language. You can write external functions or 
subroutines that supplement the built-in functions or TSO/E external functions that 
are provided. You can also write a function to replace one of the functions that is 
provided. For example, if you want a new substring function that performs 
differently from the SUBSTR built-in function, you can write your own substring 
function and name it STRING. Users at your installation can then use the STRING 
function in their execs. 

You can write external functions or subroutines in REXX. You can store the exec 
containing the function or subroutine in: 

• The same PDS from which the calling exec is loaded 

• An alternative exec library as defined by ALTUB (TSO/E address space only). 

• A data set that is allocated to SYSEXEC (SYSEXEC is the default load ddname 
used for storing REXX execs) 

• A data set that is allocated to SYSPROC (TSO/E address space only). 

You can also write an external function or subroutine in assembler or a high-level 
programming language. You can then store the function or subroutine in a load 
library, which allows for faster access of the function or subroutine. By default, load 
libraries are searched before any exec libraries, such as SYSEXEC and SYSPROC. 
The language in which you write the exec must support the system-dependent 
interfaces that the language processor uses to invoke the function or subroutine. 

For faster access of a function or subroutine, and therefore better performance, you 
can group frequently used external functions and subroutines in function packages. 
A function package is basically a number of external functions and subroutines that 
are grouped or packaged together. To include an external function or subroutine in 
a function package, the function or subroutine must be link edited into a load 
module. If you write a function or subroutine as a REXX exec and the exec is 
interpreted (that is, the TSO/E REXX interpreter executes the exec), you cannot 
include the function or subroutine in a function package. However, if you write the 
function or subroutine in REXX and the REXX exec is compiled, you can include the 
exec in a function package because the compiled exec can be link edited into a load 
module. For information about compiled execs, see the appropriate compiler 
publ ications. 

When the language processor is processing an exec and encounters a function call 
or a call to a subroutine, the language processor searches the function packages 
before searching load libraries or exec libraries, such as SYSEXEC and SYSPROC. 
"Search Order" on page 87 describes the complete search order. 

The topics in this section describe: 

• The system-dependent interfaces that the language processor uses to invoke 
external functions or subroutines. If you write a function or subroutine in a 
programming language other than REXX, the language must support the 
interface. 

• How to define function packages. 

276 TSO/E Version 2 MVS/REXX Reference 

c 



( 

.~~----.~~--'--.---

F~lnctions, Subroutines, Function Packages 

Interface for Writing External Function and Subroutine Code 
If you write an external function or subroutine in a programming language other 
than REXX, the language must support the system-dependent interfaces that the 
language processor uses to invoke the function or subroutine. This topic describes 
the system interfaces for writing external functions and subroutines. You can write 
the function or subroutine in assembler or any high-level programming language 
that can be called by an MVS LINK. 

The interface to the code is the same whether the code is called as a function or as 
a subroutine. The only difference is how the language processor handles the result 
after your code completes and returns control to the language processor. Before 
your code gets control, the language processor allocates a control block called the 
evaluation block (EVALBLOCK). The address of the evaluation block is passed to 
the function or subroutine code. The function or subroutine code places the result 
into the evaluation block, which is returned to the language processor. If the code 
was called as a subroutine, the result in the evaluation block is placed into the 
REXX special variable RESULT. If the code was called as a function, the result in 
the evaluation block is used in the interpretation of the REXX instruction that 
contained the function. 

The following topics describe the contents of the registers when the function or 
subroutine code gets control and the parameters the code receives. 

Entry Specifications 
When the code for the external function or subroutine gets control, the contents of 
the registers are: 

Register 0 

Register 1 

Address of the environment block 

Address of the external function parameter list (EFPL) 

Registers 2·12 Unpredictable 

Register 13 

Register 14 

Register 15 

Address of a register save area 

Return address 

Entry point address 

( - Parameters 

( .•... 

When the external function or subroutine gets control, register 1 points to the 
external function parameter list. Figure 31 describes the parameter list. TSO/E 
provides a mapping macro, IRXEFPL, for the external function parameter list. The 
mapping macro is in SYS1.MACLIB. 

Figure 31 (Page 1 of 2). External Function Parameter List 

Offset Number Description 
(Decimal) of Bytes 

0 4 Reserved. 

4 4 Reserved. 

8 4 Reserved. 

12 4 Reserved. 

Chapter 12. TSO/E REXX Programming Services 277 



Functions, Subroutines, Function Packages 

Argument List 

Evaluation Block 

Figure 31 (Page 2 of 2). External Function Parameter List 

Oftset 
(Decimal) 

16 

20 

Number 
of Bytes 

4 

4 

Description 

An address that points to the parsed argument list. Each 
argument is represented by an addressllength pair. The 
argument list is terminated by X' FFFFFFFFFFFFFFFF' . 
Figure 32 on page 278 shows the format of the argument list. 

If there were no arguments included on the function or 
subroutine call, the address points to X' FFFFFFFFFFFFFFFF'. 

An address that points to a fullword. The fullword contains the 
address of an evaluation block (EVALBLOCK). You use the 
evaluation block to return the result of the function or 
subroutine. Figure 33 on page 279 describes the evaluation 
block. 

Figure 32 shows the format of the parsed argument list the function or subroutine 
code receives at offset + 16 (decimal) in the external function parameter list. The 
figure is an example of three arguments. TSO/E provides a mapping macro 
IRXARGTB for the argument list. The mapping macro is in SYS1.MACLIB. 

Figure 32. Format of the Argument List - Three Arguments 

Oftset Number Field Name Description 
(Dec) of Bytes 

0 4 ARGSTRING_PTR Address of argument 1 

4 4 ARGSTRING_LENGTH Length of argument 1 

8 4 ARGSTRING_PTR Address of argument 2 

12 4 ARGSTRING_LENGTH Length of argument 2 

16 4 ARGSTRING_PTR Address of argument 3 

20 4 ARGSTRING_LENGTH Length of argument 3 

24 8 X'FFFFFFFFFFFFFFFF' 

In the argument list, each argument consists of the address of the argument and its 
length. The argument list is terminated by X' FFFFFFFFFFFFFFFF' . 

Before the function or subroutine code is called, the language processor allocates a 
control block called the evaluation block (EVALBLOCK). The address of the 
evaluation block is passed to your function or subroutine code at offset +20 in the 
external function parameter list. The function or subroutine code computes the 
result and returns the result in the evaluation block. 

The evaluation block consists of a header and data, in which you place the result 
from your function or subroutine code. Figure 33 shows the format of the evaluation 
block. 

TSO/E provides a mapping macro IRXEVALB for the evaluation block. The mapping 
macro is in SYS1.MACLIB. 

Note: The IRXEXEC routine also uses an evaluation block to return the result from 
an exec that is specified on either the RETURN or EXIT instruction. The format of 
the evaluation block that IRXEXEC uses is identical to the format of the evaluation 

278 TSO/E Version 2 MVS/REXX Reference 

------------- -----~-- ~-- --~--~------ ---

c 



( 

(/ 

Functions, Subroutines, Function Packages 

block passed to your function or subroutine code. "The Evaluation Block 
(EVALBLOCK)" on page 270 describes the control block for IRXEXEC. 

Figure 33. Format of the Evaluation Block 

Offset Number Field 
(Decimal) of Bytes Name 

0 4 EVPAD1 

4 4 EVSIZE 

8 4 EVLEN 

12 4 EVPAD2 

16 n EVDATA 

Description 

A fullword that contains X' 00'. This field is 
reserved and is not used. 

Specifies the total size of the evaluation block in 
doublewords. 

On entry, this field is set to X '80000000' , which 
indicates no result is currently stored in the 
evaluation block. On return, specify the length of 
the result, in bytes, that your code is returning. 
The result is returned in the EVDATA field at 
offset + 16. 

A fullword that contains X' 00'. This field is 
reserved and is not used. 

The field in which you place the result from the 
function or subroutine code. The length of the 
field depends on the total size specified for the 
control block in the EVSIZE field. The total size 
of the EVDATA field is: 

EVSIZE * 8 - 16 

The function or subroutine code must compute the result, move the result into the 
EVDATA field (at offset + 16), and update the EVLEN field (at offset + 8). The 
EVDATA field of the evaluation block that TSO/E passes to your code is 250 bytes. 
Because the evaluation block is passed to the function or subroutine code, the 
EVDATA field in the evaluation block may be too small to hold the complete result. 
If the evaluation block is too small, you can call the IRXRLT (get result) routine to 
obtain a larger evaluation block. Call IRXRL T using the GETBLOCK function. 
IRXRLT creates the new evaluation block and returns the address of the new block. 
Your code can then place the result in the new evaluation block. You must also 
change the parameter at offset + 20 in the external function parameter list to point 
to the new evaluation block. For information about using IRXRL T, see "Get Result 
Routine - IRXRLT" on page 305. 

Functions must return a result. Subroutines may optionally return a result. If a 
subroutine does not return a result, it must return a data length of X'80000000' in 
the EVLEN field in the evaluation block. 

Return Specifications 
When your function or subroutine code returns control, the contents of the registers 
must be: 

Registers 0-14 Same as on entry 

Register 15 Return code 

Chapter 12. TSO/E REXX Programming Services 279 



Functions, Subroutines, Function Packages 

Return Codes 
Your function or subroutine code must return a return code in register 15. Figure 34 C 
shows the return codes. ...j 

Figure 34. Return Codes From Function or Subroutine Code (in Register 15) 

Return 
Code 

Description 

o Function or subroutine code processing was successful. 

If the called routine is a function, the function must return a value in the 
EVDATA field of the evaluation block. The value replaces the function call. If 
the function does not return a result in the evaluation block, a syntax error 
occurs with error number 44. See Appendix A, "Error Numbers and 
Messages" on page 475 for information about the error numbers and their 
corresponding messages. 

If the called routine is a subroutine, the subroutine can optionally return a 
value in the EVDATA field of the evaluation block. The REXX special variable 
RESULT is set to the returned value. 

Non-zero Function or subroutine code processing was not successful. The language 
processor stops processing the REXX exec that called your function or 
subroutine with an error code of 40, unless you trap the error with a SYNTAX 
trap. See Appendix A, "Error Numbers and Messages" on page 475 for 
information about the error numbers and their corresponding messages. 

Function Packages 
Function packages are basically several external functions and subroutines that are 
grouped or packaged together. When the language processor processes a function 
call or a call to a subroutine, the language processor searches the function 
packages before searching load libraries or exec libraries, such as SYSEXEC and 
SYSPROC. Grouping frequently used external functions and subroutines in a 
function package allows for faster access to the function and subroutine, and 
therefore, better performance. "Search Order" on page 87 describes the complete 
search order the language processor uses to locate a function or subroutine. 

TSO/E supports three types of function packages. Basically, there are no 
differences between the three types, although the intent of the design is as follows: 

• User packages, which are function packages that an individual user may write to 
replace or supplement certain system-provided functions. When the function 
packages are searched, the user packages are searched before the local and 
system packages. 

• Local packages, which are function packages that a system support group or 
application group may write. Local packages may contain functions and 
subroutines that are available to a specific group of users or to the entire 
installation. Local packages are searched after the user packages and before 
the system packages. 

• System packages, which are function packages that an installation may write for 
system-wide use or for use in a particular language processor environment. 
System packages are searched after any user and local packages. 

280 TSO/E Version 2 MVS/REXX Reference 

c 



( 

( 

Functions, Subroutines, Function Packages 

To provide function packages, there are several steps you must perform: 

1. You must first write the individual external functions and subroutines you want 
to include in a function package. If you want to include an external function or 
subroutine in a function package, the function or subroutine must be link edited 
into a load module. If you write the function or subroutine in REXX and the 
REXX exec is interpreted (that is, the TSO/E REXX interpreter executes the 
exec), you cannot include the function or subroutine in a function package. 
However, if you write the external function or subroutine in REXX and the REXX 
exec is compiled, you can include the function or subroutine in a function 
package because the compiled exec can be link edited into a load module. For 
information about compiled execs, see the appropriate compiler publications. 

If you write the external function or subroutine in a programming language other 
than REXX, the language you use must support the system-dependent interfaces 
that the language processor uses to invoke the function or subroutine. 
"Interface for Writing External Function and Subroutine Code" on page 277 
describes the interfaces. 

2. After you write the individual functions and subroutines, you must write the 
directory for the function package. You need a directory for each individual 
function package. 

The function package directory is contained in a load module. The directory 
contains a header followed by individual entries that define the names and/or 
the addresses of the entry points of your function or subroutine code. "Directory 
for Function Packages" on page 282 describes the directory for function 
packages. 

3. The name of the entry point at the beginning of the directory (the function 
package name) must be specified in the function package table for a language 
processor environment. "Function Package Table" on page 365 describes the 
format of the table. After you write the directory, you must define the directory 
name in the function package table. There are several ways you can do this 
depending on the type of function package you are defining (user, local, or 
system) and whether you are providing only one or several user and local 
function packages. 

If you are providing a local or user function package, you can name the function 
package directory IRXFLOC (local package) or IRXFUSER (user package). 
TSO/E provides these two "dummy" directory names in the three default 
parameters modules IRXPARMS, IRXTSPRM, and IRXISPRM. By naming your 
local function package directory IRXFLOC and your user function package 
directory IRXFUSER, the external functions and subroutines in the packages are 
automatically available to REXX execs that run in non-TSO/E and the TSO/E 
address space. 

If you write your own system function package or more than one local or user 
function package, you must provide a function package table containing the 
name of your directory. You must also provide your own parameters module 
that points to your function package table. Your parameters module then 
replaces the default parameters module that the system uses to initialize a 
default language processor environment. "Specifying Directory Names in the 
Function Package Table" on page 287 describes how to define directory names 
in the function package table. 

Note: If you explicitly call the IRXINIT routine, you can pass the address of a 
function package table containing your directory names on the call. 

Chapter 12. TSO/E REXX Programming Services 281 



Functions, Subroutines, Function Packages 

TSO/E provides the IRXEFMVS and IRXEFPCK system function packages. The two 
function packages provide the TSO/E external functions, which are described in r" 
"TSO/E External Functions" on page 125, The IRXEFMVS and IRXEFPCK system '-j 
function packages are defined in the default parameters modules TSO/E provides 
(see page 369). 

Other IBM products may also provide system function packages that you can use for 
REXX processing in TSO/E and MVS. If you install a product that provides a system 
function package for TSO/E REXX, you must change the function package table and 
provide your own parameters modules. The product itself supplies the individual 
functions in the function package and the directory for their function package. In 
order to use the functions" you must do the following: 

1. Change the function package table. The function package table contains 
information about the user, local, and system function packages for a particular 
language processor environment. Figure 71 on page 365 shows the format of 
the table. Add the name of the function package directory to the entries in the 
table. You must also change the SYSTEM_TOTAL and SYSTEM_USED fields in 
the table header (offsets +28 and +32). Increment the value in each field by 1 
to indicate the additional function package supplied by the IBM product. 

2. Provide your own IRXTSPRM, IRXISPRM, or IRXPARMS parameters module. 
The function package table is part of the parameters module that the system 
uses to initialize language processor environments. You need to code one or 
more parameters modules depending on whether you want the function package 
available to REXX execs that run in ISPF only, TSO/E only, TSO/E and ISPF, 
non-TSO/E only, or any address space. 

Chapter 14, "Language Processor Environments" describes environments, their 
characteristics, and the format of the parameters modules. In the same chapter, 
"Changing the Default Values for Initializing an Environment" on page 381 
describes how to provide your own parameters modules. 

Directory for Function Packages 
After you write the code for the functions and subroutines you want to group in a 
function package, you must write a directory for the function package. You need a 
directory for each individual function package you want defined. 

The function package directory is contained in a load module. The name of the 
entry point at the beginning of the directory is the function package directory name. 
The name of the directory is specified only on the CSECr. In addition to the name of 
the entry point, the function package directory defines each entry point for the 
individual functions and subroutines that are part of the function package. The 
directory consists of two parts; a header followed by individual entries for each 
function and subroutine included in the function package. Figure 35 on page 283 
shows the format of the directory header. Figure 36 on page 284 illustrates the 
rows of entries in the function package directory. TSO/E provides a mapping macro, 
IRXFPDIR, for the function package directory header and entries. The mapping 
macro is in SYS1.MACLIB. 

282 TSO/E Version 2 MVS/REXX Reference 

\, ,/ 

o 



c 

( 

--~~-~-----~-

Functions, Subroutines, Function Packages 

Figure 35. Format of the Function Package Directory Header 

OHsel 
(Decimal) 

o 

8 

12 

16 

20 

Number 
of Byles 

8 

4 

4 

4 

4 

Descrlplion 

An eight byte character field that must contain the character 
string'IRXFPACK'. 

Specifies the length, in bytes, of the header. This is the offset 
from the beginning of the header to the first entry in the 
directory. This must be a fullword binary number equivalent 
to decimal 24. 

The number of functions and subroutines defined in the 
function package (the number of rows in the directory). The 
format is a fullword binary number. 

A fullword of X '00'. 

Specifies the length, in bytes, of an entry in the directory 
(length of a row). This must be a fullword binary number 
equivalent to decimal 32. 

In the function package table for the three default parameters modules (IRXPARMS, 
IRXTSPRM, and IRXISPRM), TSO/E provides two "dummy" function package 
directory names: 

• IRXFLOC for a local function package 
• IRXFUSER for a user function package 

If you create a local or user function package, you can name the directory IRXFLOC 
and IRXFUSER, respectively. By using IRXFLOC and IRXFUSER, you need not 
create a new function package table containing your directory names. 

If you are creating a system function package or several local or user packages, you 
must define the directory names in a function package table. "Specifying Directory 
Names in the Function Package Table" on page 287 describes how to do this in 
more detail. 

You must link edit the external function or subroutine code and the directory for the 
function package into a load module. You can link edit the code and directory into 
separate load modules or into the same load module. Place the data set with the 
load modules in the search sequence for an MVS LOAD. For example, the data set 
can be in the data set concatenation for either a STEPUB or JOBUB, or you can 
install the data set in the UNKLST or LPAUB. 

In the TSO/E address space, you can use the EXECUTIL command with the RENAME 
operand to dynamically change entries in a function package (see page 215 for 
information about EXECUTIL). If you plan to use the EXECUTIL command to change 
entries in the function package you provide, you should not install the function 
package in the LPAUB. 

Chapter 12. TSO/E REXX Programming Services 283 



Functions, Subroutines, Function Packages 

Format of Entries in the Directory: Figure 36 shows two rows (two entries) in a 
function package directory. The first entry starts immediately after the directory 
header. Each entry defines a function or subroutine in the function package. The 
individual fields are described following the table. 

Figure 36. Format of Entries in Function Package Directory 

Offset Number Field Name Description 
(Decimal) of Bytes 

0 8 FUNC-NAME The name of the first function or subroutine 
(entry) in the directory. 

8 4 ADDRESS The address of the entry point of the function 
or subroutine code (for the first entry). 

12 4 Reserved. 

16 8 SYS-NAME The name of the entry pOint in a load 
module that corresponds to the function or 
subroutine code (for the first entry). 

24 8 SYS-DD The ddname from which the function or 
subroutine code is loaded (for the first 
entry). 

32 8 FUNC-NAME The name of the second function or 
subroutine (entry) in the directory. 

40 4 ADDRESS The address of the entry point of the function 
or subroutine code (for the second entry). 

44 4 Reserved. 

48 8 SYS-NAME The name of the entry point in a load 
module that corresponds to the function or 
subroutine code (for the second entry). 

56 8 SYS-DD The ddname from which the function or 
subroutine code is loaded (for the second 
entry). 

The following describes each entry (row) in the directory. 

FUNC-NAME 
The eight character name of the external function or subroutine. This is the 
name that is used in the REXX exec. The name must be in uppercase, left 
justified, and padded to the right with blanks. 

If this field is blank, the entry is ignored. 

ADDRESS 
A four byte field that contains the address, in storage, of the entry point of the 
function or subroutine code. This address is used only if the code has already 
been loaded. 

If the address is 0, the sys-name and, optionally, the sys-dd fields are used. An 
MVS LOAD will be issued for sys-name from the DO sys-dd. 

If the address is specified, the sys-name and sys-dd fields for the entry are 
ignored. 

Reserved 
A four byte field that is reserved. 

284 TSO/E Version 2 MVS/REXX Reference 

('\ 
\.._j 

o 



C-
-."" 

( 

( 

SYS-NAME 
An eight byte character name of the entry point in a load module that 
corresponds to the function or subroutine code to be called for the fune-name. 
The name must be in uppercase, left justified, and padded to the right with 
blanks. 

If the address is specified, this field can be blank. If an address of 0 is specified 
and this field is blank, the entry is ignored. 

SYS-DD 
An eight byte character name of the DD from which the function or subroutine 
code is loaded. The name must be in uppercase, left justified, and padded to the 
right with blanks. 

If the address is 0 and this field is blank, the module is loaded from the link list. 

Example 01 a Function Package Directory: Figure 37 on page 286 shows an 
example of a function package directory. The example is explained following the 
figure. 

Chapter 12. TSO/E REXX Programming Services 285 



Functions, Subroutines, Function Packages 

IRXFUSER CSECT 
DC CL8'IRXFPACK' 
DC FL4'24' 
DC FL4'4' 
DC FL4'O' 
DC FL4'32' 

* 
DC CL8'MYFl 
DC FL4'O' 
DC FL4'O' 
DC CL8'ABCFUNl ' 
DC CL8'FUNCTDD1' 

* 
DC CL8'MYF2 
DC FL4'O' 
DC FL4'O' 
DC CL8'ABCFUN2 ' 
DC CL8' 

* 
DC CL8'MYS3 
DC AL4(ABCSUB3) 
DC FL4'O' 
DC CL8'ABCFUN3 ' 
DC CL8'FUNCTDD3' 

* 
DC CL8'MYF4 
DC VL4(ABCFUNC4) 
DC FL4'O' 
DC CL8' 
DC CL8' 
SPACE 2 

ABCSUB3 EQU * 

String identifying directory 
Length of header 
Number of rows in directory 
Word of zeros 
Length of directory entry 
Start of definition of first entry 
Name used in exec 
Address of preloaded code 
Reserved field 
Name of entry point 
DD from which to load entry point 
Start of definition of second entry 
Name used in exec 
Address of preloaded code 
Reserved field 
Name of entry point 
DD from which to load entry point 
Start of definition of third entry 
Name used in exec 
Address of preloaded code 
Reserved fi e 1 d 
Name of entry point 
DD from which to load entry point 
Start of definition of fourth entry 
Name used in exec 
Address of preloaded code 
Reserved field 
Name of entry point 
DD from which to load entry point 

* Subroutine code for subroutine MYS3 
* 
* End of subroutine code 

END IRXFUSER 

- - - - - New Object Module - - - - -

ABCFUNC4 CSECT 
* Function code for function MYF4 
* 
* End of function code 

END ABCFUNC4 

Figure 37. Example of a Function Package Directory 

286 TSO/E Version 2 MVS/REXX Reference 

\'" ~/ 

c 



c 

Functions, Subroutines, Function Packages 

In Figure 37, the name of the function package directory is IRXFUSER, which is one 
of the "dummy" function package directory names TSO/E provides in the default 
parameters modules. Four entries are defined in this function package: 

• MYF1, which is an external function 
• MYF2, which is an external function 
• MYS3, which is an external subroutine 
• MYF4, which is an external function 

If the external function MYF1 is called in an exec, the load module with entry point 
ABCFUN1 is loaded from DD FUNCTDD1. If MYF2 is called in an exec, the load 
module with entry point ABCFUN2 is loaded from the linklist because the sys-dd 
field is blank. 

The load modules for MYS3 and MYF4 do not have to be loaded. The MYS3 
subroutine has been assembled as part of the same object module as the function 
package directory. The MYF4 function has been assembled in a different object 
module, but has been link edited as part of the same load module as the directory. 
The assembler, linkage editor, and loader have resolved the addresses. 

If the name of the directory is not IRXFLOC or IRXFUSER, you must specify the 
directory name in the function package table for an environment. "Specifying 
Directory Names in the Function Package Table" describes how you can do this. 

When a language processor environment is initialized, either by default or when 
IRXINIT is explicitly called, the load modules containing the function package 
directories for the environment are automatically loaded. The modules for the 
external function and subroutine code are loaded when an exec calls the function or 
subroutine. All modules that are loaded remain loaded until the last exec running 
under the task under which the modules were loaded finishes processing. 

Specifying Directory Names in the Function Package Table 
After you write the function and subroutine code and the directory, you must define 
the directory name in the function package table. The function package table 
contains information about the user, local, and system function packages that are 
available to REXX execs running in a specific language processor environment. 
Each environment that is initialized has its own function package table. "Function 
Package Table" on page 365 describes the format of the table. 

The parameters module (and the PARMBLOCK that is created) defines the 
characteristics for a language processor environment and contains the address of 
the function package table (in the PACKTB field). In the three default modules that 
TSO/E provides (IRXPARMS, IRXTSPRM, and IRXISPRM), the function package table 
contains two "dummy" function package directory names: 

• IRXFLOC for a local function package 
• IRXFUSER for a user function package 

If you name your local function package directory IRXFLOC and your user function 
package directory IRXFUSER, the external functions and subroutines in your 
package are then available to execs that run in non-TSO/E, TSO/E, and ISPF. There 
is no need for you to provide a new function package table. 

If you provide a system function package or several local or user packages, you 
must then define the directory name in a function package table. To do this, you 
must provide your own function package table. You must also provide your own 

Chapter 12. TSO/E REXX Programming Services 287 



Functions, Subroutines, Function Packages 

IRXPARMS. IRXTSPRM. and/or IRXISPRM load module depending on whether you 
want the function package available to execs running in non-TSO/E. TSO/E. or ISPF. 

You first write the code for the function package table. You must include the default 
entries provided by TSO/E. The IRXPARMS. IRXTSPRM. and IRXISPRM modules 
contain the default directory names IRXEFMVS, IRXFLOC, and IRXFUSER. In 
addition, the IRXTSPRM and IRXISPRM modules also contain the default IRXEFPCK 
directory name. "Function Package Table" on page 365 describes the format of the 
function package table. 

You must then write the code for one or more parameters modules. The module 
you provide depends on whether the function package should be made available to 
execs that run in ISPF only, TSO/E only, TSO/E and ISPF, non-TSO/E only, or any 
address space. "Changing the Default Values for Initializing an Environment" on 
page 381 describes how to create the code for your own parameters module and 
which modules you should provide. 

288 TSO/E Version 2 MVS/REXX Reference 

j 

o 



c 

( 

------- -------

Variable Access (IRXEXCOM) 

----_. __ ._._ ... _--_. 
Variable Access Routine - IRXEXCOM 

The language processor provides an interface whereby called commands and 
programs can easily access and manipulate the current generation of REXX 
variables. Any variable can be inspected, set, or dropped; if required, all active 
variables can be inspected in turn. Names are checked for validity by the interface 
code, and optionally substitution into compound symbols is carried out according to 
normal REXX rules. Certain other information about the program that is running is 
also made available through the interface. 

TSO/E REXX provides two variable access routines you can call to access and 
manipulate REXX exec variables: 

• IRXEXCOM 
• IKJCT441 

The IRXEXCOM variable access routine lets unauthorized commands and programs 
access and manipulate REXX variables. IRXEXCOM can be used in both the TSO/E 
and non-TSO/E address spaces. IRXEXCOM can be used only if a REXX exec has 
been enabled for variable access in the language processor environment. That is, 
an exec must have been invoked, but is not currently being processed. For 
example, you can invoke an exec that calls a routine and the routine can then 
invoke IRXEXCOM. When the routine calls IRXEXCOM, the REXX exec is enabled 
for variable access, but it is not being processed. If a routine calls IRXEXCOM and 
an exec has not been enabled, IRXEXCOM returns with an error. 

Note: To permit FORTRAN programs to call IRXEXCOM, TSO/E provides an 
alternate entry point for the IRXEXCOM routine. The alternate entry point name is 
IRXEXC. 

A program can access IRXEXCOM using either the CALL or LINK macro 
instructions, specifying IRXEXCOM as the entry point name. You can obtain the 
address of the IRXEXCOM routine from the REXX vector of external entry points. 
"Format of the REXX Vector of External Entry Points" on page 401 describes the 
vector. 

If a program uses IRXEXCOM, it must create a parameter list and pass the address 
of the parameter list in register 1. 

Environment Customlzation Considerations --------------, 

If you use the IRXINIT initialization routine to initialize language processor 
environments, you can specify the environment in which you want IRXEXCOM to 
run. On the call to IRXEXCOM, you can optionally specify the address of the 
environment block for the environment in either the parameter list or in register 
o. 

For more information about specifying environments and how routines 
determine the environment in which to run, see "Specifying the Address of the 
Environment Block" on page 255. 

Chapter 12. TSO/E REXX Programming Services 289 

.--------------~--



Variable Access (lRXEXCOM) 

The IKJCT441 routine lets authorized and unauthorized commands and programs 
access REXX variables. IKJCT441 can be used in the TSO/E address space only. r 
You can use IKJCT441 to access REXX or CLiST variables depending on whether the ~,~i 
program that calls IKJCT441 was called by a REXX exec or a CLiST. TSOIE Version 
2 Programming Services describes IKJCT441. 

Entry Specifications 

Parameters 

For the IRXEXCOM routine, the contents of the registers on entry are: 

Register 0 

Register 1 

Address of an environment block (optional) 

Address of the parameter list passed by the caller 

Registers 2-12 Unpredictable 

Register 13 

Register 14 

Register 15 

Address of a register save area 

Return address 

Entry point address 

In register 1, you pass the address of a parameter list, which consists of a list of 
addresses. Each address in the parameter list points to a parameter. The high 
order bit of the last address in the parameter list must be set to 1 to indicate the end 
of the parameter list. For more information about passing parameters, see 
"Parameter Lists for TSO/E REXX Routines" on page 253. 

Figure 38 describes the parameters for IRXEXCOM. 

Figure 38 (Page 1 of 2). Parameters for IRXEXCOM 

Parameter 

Parameter 1 

Parameter 2 

Parameter 3 

Parameter 4 

Number 
of Bytes 

8 

4 

4 

32 

Description 

An eight byte character field that must contain the 
character string 'IRXEXCOM'. 

Parameter 2 and parameter 3 must be identical, that is, 
they must be at the same location in storage. This means 
that in the parameter list pOinted to by register 1, the 
address at offset +4 and the address at offset +8 must be 
the same. Both addresses in the parameter list may be 
set to O. 

Parameter 2 and parameter 3 must be identical, that is, 
they must be at the same location in storage. This means 
that in the parameter list pointed to by register 1, the 
address at offset +4 and the address at offset +8 must be 
the same. Both addresses in the parameter list may be 
set to O. 

The first shared variable (request) block (SHVBLOCK) in a 
chain of one or more request blocks. The format of the 
SHVBLOCK is described in "The Shared Variable 
(Request) Block - SHVBLOCK." 

290 TSO/E Version 2 MVS/REXX Reference 

---- -------------------------------------

c 



Variable Access (IRXEXCOM) 

Figure 38 (Page 2 of 2). Parameters for IRXEXCOM 

Parameter 

Parameter 5 

Parameter 6 

Number 
of Bytes 

4 

4 

Description 

The address of the environment block that represents the 
environment in which you want IRXEXCOM to run. This 
parameter is optional. 

If you specify a non-zero value for the environment block 
address parameter, IRXEXCOM uses the value you 
specify and ignores register O. However, IRXEXCOM does 
not check whether the address is valid. Therefore, you 
must ensure the address you specify is correct or 
unpredictable results can occur. For more information, 
see "Specifying the Address of the Environment Block" on 
page 255. 

A four byte field that IRXEXCOM uses to return the return 
code. 

The return code parameter is optional. If you use this 
parameter, IRXEXCOM returns the return code in the 
parameter and also in register 15. Otherwise,IRXEXCOM 
uses register 15 only. If the parameter list is invalid, the 
return code is returned in register 15 only. "Return 
Codes" on page 296 describes the return codes. 

If you do not want to use the return code parameter, you 
can end the parameter list at a preceding parameter. Set 
the high order bit on in the preceding parameter's 
address. For more information about parameter lists, see 
"Parameter Lists for TSO/E REXX Routines" on page 253. 

The Shared Variable (Request) Block - SHVBLOCK 

-------_._---------

Parameter 4 is the first shared variable (request) block in a chain of one or more 
blocks. Each SHVBLOCK in the chain must have the structure shown in Figure 39 
on page 292. 

Chapter 12. TSO/E REXX Programming Services 291 



Variable Access (IRXEXCOM) 

******************************************************** 
* SHVBLOCK: Layout of shared-variable PLIST element 
******************************************************** 
SHVBLOCK OSECT 
SHVNEXT OS A Chain pOinter (S if last block) 
SHVUSER OS F Available for private use, except during 
* "Fetch Next" when it identifies the 
* length of the buffer pointed to by SHVNAMA. 
SHVCOOE OS CLl Individual function code indicating 
* the type of variable access request 
* (S,F,O,s,f,d,N, or P) 
SHVRET OS XLl Individual return code flags 

OS H'S' Reserved, should be zero 
SHVBUFL OS F Length of 'fetch' value buffer 
SHVNAMA OS A Address of variable name 
SHVNAML OS F Length of variable name 
SHVVALA OS A Address of value buffer 
SHVVALL OS F Length of value 
SHVBLEN EQU *-SHVBLOCK (length of this block = 32) 

SPACE 
* 
* Function Codes (Placed in SHVCOOE): 
* 
* (Note that the symbolic name codes are lowercase) 
SHVSTORE EQU C'S' Set variable from given value 
SHVFETCH EQU C'F' Copy value of variable to buffer 
SHVOROPV EQU C'O' Drop variable 
SHVSYSET EQU C's' Symbolic name Set variable 
SHVSYFET EQU C'f' Symbolic name Fetch variable 
SHVSYORO EQU C'd' Symbolic name Drop variable 
SHVNEXTV EQU C'N' Fetch "next" variable 
SHVPRIV EQU C'P' Fetch private information 

SPACE 
* 
* 
* 

Return Code Flags (Stored in SHVRET): 

SHVCLEAN EQU X'SS' Execution was OK 
SHVNEWV EQU X'91' Variable did not exist 
SHVLVAR EQU X'S2' Last variable transferred 
SHVTRUNC EQU X'S4' Truncation occurred during 
SHVBAON EQU X'SS' Invalid variable name 
SHVBAOV EQU X'19' Value too long 

(for "N") 
"Fetch" 

SHVBAOF EQU X'SS' Invalid function code (SHVCOOE) 

Figure 39. Request Block (SHVBLOCK) 

292 TSO/E Version 2 MVS/REXX Reference 

o 

(\ 

\ 

'\ 
! 

,/ 

,.1' '\ 

'-'-. 

c 



C\ 

( 

( 

f 

Variable Access (IRXEXCOM) 

Figure 40 describes the SHVBLOCK. TSO/E provides a mapping macro, IRXSHVB, 
for the SHVBLOCK. The mapping macro is in SYS1.MACLIB. The services you can 
perform using IRXEXCOM are specified in the SHVCODE field of each SHVBLOCK. 
"Function Codes (SHVCODE)" describes the values you can use. 

"Return Codes" on page 296 describes the return codes from the IRXEXCOM 
routine. 

Figure 40. Format of the SHVBLOCK 

OHset Number Field Name Description 
(Decimal) of Bytes 

0 4 SHVNEXT Specifies the address of the next SHVBLOCK 
in the chain. If this is the only SHVBLOCK in 
the chain or the last one in a chain, this field 
is O. 

4 4 SHVUSER Specifies the length of a buffer pointed to by 
the SHVNAMA field. This field is available for 
the user's own use, except for a "FETCH 
NEXT" request. A FETCH NEXT request uses 
this field. 

8 SHVCODE A one byte character field that specifies the 
function code, which indicates the type of 
variable access request. "Function Codes 
(SHVCODE)" describes the valid codes. 

9 SHVRET Specifies the return code flag, whose values 
are shown in Figure 39 on page 292. 

10 2 Reserved. 

12 4 SHVBUFL Specifies the length of the "Fetch" value 
buffer. 

16 4 SHVNAMA Specifies the address of the variable name. 

20 4 SHVNAML Specifies the length of the variable name. 
The maximum length of a variable name is 
250 characters. 

24 4 SHVVALA Specifies the address of the value buffer. 

28 4 SHVVALL Specifies the length of the value. This is set 
for a "Fetch." 

Function Codes (SHYCODE) 
The function code is specified in the SHVCODE field in the SHVBLOCK. 

Three function codes (S, F, and D) may be given either in lowercase or in 
uppercase: 

Lowercase (The Symbolic interface). The names must be valid REXX symbols (in 
mixed case if desired), and normal REXX substitution will occur in 
compound variables. 

Uppercase (The Direct interface). No substitution or case translation takes place. 
Simple symbols must be valid REXX variable names (that is, in 
uppercase and not starting with a digit or a period), but in compound 
symbols any characters (including lowercase, blanks, and so on) are 
permitted following a valid REXX stem. 

Chapter 12. TSO/E REXX Programming Services 293 



--_._-------

Variable Access (IRXEXCOM) 

Note: The Direct interface should be used in preference to the Symbolic interface 
whenever generality is desired. 

The other function codes, Nand P, must always be given in uppercase. The specific 
actions for each function code are as follows: 

Sand s Set variable. The SHVNAMA/SHVNAML addressllength pair describes 
the name of the variable to be set, and SHWALA/SHVVALL describes 
the value which is to be assigned to it. The name is validated to ensure 
that it does not contain invalid characters, and the variable is then set 
from the value given. If the name is a stem, all variables with that stem 
are set, just as though this were a REXX assignment. SHVNEWV is set if 
the variable did not exist before the operation. 

F and f Fetch variable. The SHVNAMAlSHVNAML addressllength pair describes 
the name of the variable to be fetched. SHVVALA specifies the address 
of a buffer into which the data is copied, and SHVBUFL contains the 
length of the buffer. The name is validated to ensure that it does not 
contain invalid characters, and the variable is then located and copied to 
the buffer. The total length of the variable is put into SHWALL, and if the 
value was truncated (because the buffer was not big enough), the 
SHVTRUNC bit is set. If the variable is shorter than the length of the 
buffer, no padding takes place. If the name is a stem, the initial value of 
that stem (if any) is returned. 

SHVNEWV is set if the variable did not exist before the operation. In this 
case, the value copied to the buffer is the derived name of the variable 
(after substitution, and so on) - see page 22. 

D and d Drop variable. The SHVNAMA/SHVNAML addressllength pair describes 
the name of the variable to be dropped. SHVVALA/SHVVALL are not 
used. The name is validated to ensure that it does not contain invalid 
characters, and the variable is then dropped, if it exists. If the name 
given is a stem, all variables starting with that stem are dropped. 

N Fetch Next variable. This function may be used to search through all the 
variables known to the language processor (that is, all those of the 
current generation, excluding those "hidden" by PROCEDURE 
instructions). The order in which the variables are revealed is not 
specified. 

The language processor maintains a pointer to its list of variables, which 
is reset to point to the first variable in the list whenever: 

• A host command is issued, or 
• Any function other than "N" is processed using the IRXEXCOM 

interface. 

294 TSO/E Version 2 MVS/REXX Reference 

/ 



( 

( 

p 

Return Specifications 

Variable Access (IRXEXCOM) 

Whenever an N (Next) function is processed, the name and value of the 
next variable available are copied to two buffers supplied by the caller. 

SHVNAMA specifies the address of a buffer into which the name is to be 
copied, and SHVUSER contains the length of that buffer. The total length 
of the name is put into SHVNAML, and if the name was truncated 
(because the buffer was not big enough) the SHVTRUNC bit is set. If the 
name is shorter than the length of the buffer, no padding takes place. 
The value of the variable is copied to the user's buffer area using exactly 
the same protocol as for the Fetch operation. 

If SHVRET has SHVLVAR set, the end of the list of known variables has 
been found, the internal pointers have been reset, and no valid data has 
been copied to the user buffers. If SHVTRUNC is set, either the name or 
the value has been truncated. 

By repeatedly executing the N function (until the SHVLVAR flag is set), a 
user program may locate all the REXX variables of the current 
generation. 

Fetch private information. This interface is identical to the F fetch 
interface, except that the name refers to certain fixed information items 
that are available. Only the first letter of each name is checked (though 
callers should supply the whole name), and the following names are 
recognized: 

ARG 

SOURCE 

VERSION 

Fetch primary argument string. The first argument string 
that would be parsed by the ARG instruction is copied to 
the user's buffer. 

Fetch source string. The source string, as described for 
PARSE SOURCE on page 67, is copied to the user's buffer. 

Fetch version string. The version string, as described for 
PARSE VERSION on page 68, is copied to the user's buffer. 

For the IRXEXCOM routine, the contents of the registers on return are: 

Registers 0-14 Same as on entry 

Register 15 Return code 

The output from IRXEXCOM is stored in each SHVBLOCK. 

Chapter 12. TSO/E REXX Programming Services 295 



Variable Access (IRXEXCOM) 

Return Codes 
Figure 41 shows the return codes for the IRXEXCOM routine. IRXEXCOM returns 
the return code in register 15. If you specify the return code parameter (parameter 
6), IRXEXCOM also returns the return code in the parameter. 

Figure 39 on page 292 shows the return code flags that are stored in the SHVRET 
field in the SHVBLOCK. 

Figure 41. Return Codes from IRXEXCOM (In Register 15) 

Return 
Code 

-2 

-1 

o 
28 

32 

n 

Description 

Processing was not successful. Insufficient storage was available for a 
requested SET. Processing was terminated. Some of the request blocks 
(SHVBLOCKs) may not have been processed and their SHVRET bytes will be 
unchanged. 

Processing was not successful. Entry conditions were not valid for one of the 
following reasons: 

• The values in the parameter list may have been incorrect, for example, 
parameter 2 and parameter 3 may not have been identical 

• A REXX exec was not currently running 

• Another task is accessing the variable pool 

• A REXX exec is currently running, but is not enabled for variable access. 

Processing was successful. 

Processing was not successful. A language processor environment could not 
be located. 

Processing was not successful. The parameter list is not valid. The 
parameter list contains either too few or too many parameters, or the high 
order bit of the last address in the parameter list is not set to 1 to Indicate the 
end of the parameter list. 

Any other return code not equal to -2, -1, 0, 28, or 32 is a composite formed by 
the logical OR of SHVRETs, excluding SHVNEWV and SHVLVAR. 

296 TSO/E Version 2 MVS/REXX Reference 

~\ 
I , 

\..J 

o 



c\ 

( 

--------------

IRXSUBCM Routine 

-------------------_._--
Maintain Entries in the Host Command Environment Table 
IRXSUBCM 

Use the IRXSUBCM routine to maintain entries in the host command environment 
table. The table contains the names of the valid host command environments that 
REXX execs can use to process host commands. In an exec, you can use the 
ADDRESS instruction to direct a host command to a specific environment for 
processing. The host command environment table also contains the name of the 
routine that is invoked to handle the processing of commands for each specific 
environment. "Host Command Environment Table" on page 361 describes the table 
in more detail. 

Note: To permit FORTRAN programs to caIlIRXSUBCM, TSO/E provides an 
alternate entry point for the IRXSUBCM routine. The alternate entry point name is 
IRXSUB. 

Using IRXSUBCM, you can add, delete, update, or query entries in the table. You 
can also use IRXSUBCM to dynamically update the host command environment 
table while a REXX exec is running. 

A program can access IRXSUBCM using either the CALL or LINK macro 
instructions, specifying IRXSUBCM as the entry point name. You can obtain the 
address of the IRXSUBCM routine from the REXX vector of external entry pOints. 
"Format of the REXX Vector of External Entry Points" on page 401 describes the 
vector. 

If a program uses IRXSUBCM, it must create a parameter list and pass the address 
of the parameter list in register 1. 

IRXSUBCM changes or queries the host command environment table for the current 
language processor environment, that is, for the environment in which it runs (see 
"General Considerations for Calling TSO/E REXX Routines" on page 252 for 
information). IRXSUBCM affects only the environment in which it runs. Changes to 
the table take effect immediately and remain in effect until the language processor 
environment is terminated. 

Chapter 12. TSO/E REXX Programming Services 297 



IRXSUBCM Routine 

Environment Customlzatlon Considerations --------------, 

If you use the IRXINIT initialization routine to initialize language processor 
environments, you can specify the environment in which you want IRXSUBCM to 
run. On the call to IRXSUBCM, you can optionally specify the address of the 
environment block for the environment in either the parameter list or in register 
o. 

For more information about specifying environments and how routines 
determine the environment in which to run, see "Specifying the Address of the 
Environment Block" on page 255. 

If the environment in which IRXSUBCM runs is part of a chain of environments 
and you use IRXSUBCM to change the host command environment table, the 
following applies: 

• The changes do not affect the environments that are higher in the chain or 
existing environments that are lower in the chain. 

• The changes are propagated to any language processor environment that is 
created on the chain after IRXSUBCM updates the table. 

Entry Specifications 

Parameters 

For the IRXSUBCM routine, the contents of the registers on entry are: 

Register 0 

Register 1 

Address of an environment block (optional) 

Address of the parameter list passed by the caller 

Registers 2-12 Unpredictable 

Register 13 

Register 14 

Register 15 

Address of a register save area 

Return address 

Entry point address 

In register 1, you pass the address of a parameter list, which consists of a list of 
addresses. Each address in the parameter list points to a parameter. The high 
order bit of the last address in the parameter list must be set to 1 to indicate the end 
of the parameter list. For more information about passing parameters, see 
"Parameter Lists for TSO/E REXX Routines" on page 253. 

Figure 42 describes the parameters for IRXSUBCM. 

298 TSO/E Version 2 MVS/REXX Reference 

-----------------_.----_._---

o 



C" 

(' 

( 

,., - ,--~ ~---

IRXSUBCM Routine 

Figure 42. Parameters for IRXSUBCM 

Parameter 

Parameter 1 

Parameter 2 

Parameter 3 

Parameter 4 

Parameter 5 

Parameter 6 

Number 
of Bytes 

8 

4 

4 

8 

4 

4 

Description 

The function to be performed. The name of the function 
must be left justified and padded to the right with blanks. 
The valid functions are: 

• ADD 
• DELETE 
• UPDATE 
• QUERY 

Each function is described after the table in "Functions." 

The address of a string. On both input and output, the 
string has the same format as an entry in the host 
command environment table. "Format of a Host 
Command Environment Table Entry" on page 300 
describes the entry in more detail. 

The length of the string (entry) that is pointed to by 
parameter 2. 

The name of the host command environment. The name 
must be left justified and padded to the right with blanks. 

The address of the environment block that represents the 
environment in which you want IRXSUBCM to run. This 
parameter is optional. 

If you specify a non-zero value for the environment block 
address parameter, IRXSUBCM uses the value you 
specify and ignores register o. However, IRXSUBCM does 
not check whether the address is valid. Therefore, you 
must ensure the address you specify is correct or 
unpredictable results can occur. For more information, 
see "Specifying the Address of the Environment Block" on 
page 255. 

A four byte field that IRXSUBCM uses to return the return 
code. 

The return code parameter is optional. If you use this 
parameter, IRXSUBCM returns the return code in the 
parameter and also in register 15. Otherwise,IRXSUBCM 
uses register 15 only. If the parameter list is invalid, the 
return code is returned in register 15 only. "Return 
Codes" on page 301 describes the return codes. 

If you do not want to use the return code parameter, you 
can end the parameter list at a preceding parameter. Set 
the high order bit on in the preceding parameter's 
address. For more information about parameter lists, see 
"Parameter Lists for TSO/E REXX Routines" on page 253. 

Chapter 12. TSO/E REXX Programming Services 299 



IRXSUBCM Routine 

Functions 
Parameter 1 contains the name of the function IRXSUBCM is to perform. The 
functions are: 

ADD 
Adds an entry to the table using the values specified on the call. IRXSUBCM 
does not check for duplicate entries. If a duplicate entry is added and then 
IRXSUBCM is called to delete the entry, IRXSUBCM deletes the duplicate entry 
and leaves the original one. 

DELETE 
Deletes the last occurrence of the specified entry from the table. 

UPDATE 
Updates the specified entry with the new values specified on the call. The entry 
name itself (the name of the host command environment) is not changed. 

QUERY 
Returns the values associated with the last occurrence of the entry specified on 
the call. 

Format of a Host Command Environment Table Entry 
Parameter 2 points to a string that has the same format as an entry (row) in the host 
command environment table. Figure 43 shows the format of an entry. TSO/E 
provides a mapping macro IRXSUBCT for the table entries. The mapping macro is 
in SYS1.MACLIB. "Host Command Environment Table" on page 361 describes the 
table in more detail. 

Figure 43. Format of an Entry in the Host Command Environment Table 

Onset Number Field Description 
(Decimal) of Bytes Name 

0 8 NAME The name of the host command environment. 

8 8 ROUTINE The name of the host command environment 
routine that is invoked to handle the processing 
of host commands in the specified environment. 
The host command environment routine is one 
of the replaceable routines. See "Host 
Command Environment Routine" on page 453 
for information about writing the routine. 

16 16 TOKEN A user token that is passed to the routine when 
it is invoked. 

For the ADD, UPDATE, and QUERY functions, the length of the string (parameter 3) 
must be the length of the entry. 

For the DELETE function, the address of the string (parameter 2) and the length of 
the string (parameter 3) must be O. 

300 TSO/E Version 2 MVS/REXX Reference 

o 

/' '1 
\"j 

-" 
\",j' 

o 

---------------- ---------



(" 

(~' 

( 

IRXSUBCM Routine 

Return Specifications 

Return Codes 

For the IRXSUBCM routine, the contents of the registers on return are: 

Registers 0-14 Same as on entry 

Register 15 Return code 

Figure 44 shows the return codes for the IRXSUBCM routine. IRXSUBCM returns 
the return code in register 15. If you specify the return code parameter (parameter 
6), IRXSUBCM also returns the return code in the parameter. 

Figure 44. Return Codes for IRXSUBCM 

Return 
Code 

0 

8 

20 

28 

32 

Description 

Processing was successful. 

Processing was not successful. The specified entry was not found in the table. 
A return code of 8 is used only for the DELETE, UPDATE, and QUERY 
functions. 

Processing was not successful. An error occurred. A message that explains 
the error is also issued. 

Processing was not successful. A language processor environment could not 
be located. 

Processing was not successful. The parameter list is not valid. The 
parameter list contains either too few or too many parameters, or the high 
order bit of the last address in the parameter list is not set to 1 to Indicate the 
end of the parameter list. 

Chapter 12. TSO/E REXX Programming Services 301 



IRXIC Routine 

Trace and Execution Control Routine - IRXIC 
Use the IRXIC routine to control the tracing and execution of REXX execs. A 
program can call IRXIC to use the following REXX immediate commands: 

• HI (Halt Interpretation) - to halt the interpretation of REXX execs 

• HT (Halt Typing) - to suppress terminal output that REXX execs generate 

• RT (Resume Typing) - to restore terminal output you previously suppressed 

• TS (Trace Start) - to start tracing of REXX execs 

• TE (Trace End) - to end tracing of REXX execs. 

The immediate commands are described in Chapter 10, "TSO/E REXX Commands." 

A program can access IRXIC using either the CALL or LINK macro instructions, 
specifying IRXIC as the entry point name. You can obtain the address of the IRXIC 
routine from the REXX vector of external entry points. "Format of the REXX Vector 
of External Entry Points" on page 401 describes the vector. 

If a program uses IRXIC, the program must create a parameter list and pass the 
address of the parameter list in register 1. 

Environment Customlzatlon Considerations ---------------, 

If you use the IRXINIT initialization routine to initialize language processor 
environments, you can specify the environment in which you want IRXIC to run. 
On the call to IRXIC, you can optionally specify the address of the environment 
block for the environment in either the parameter list or in register O. 

For more information about specifying environments and how routines 
determine the environment in which to run, see "Specifying the Address of the 
Environment Block" on page 255. 

IRXIC affects only the language processor environment in which it runs. 

Entry Specifications 
For the IRXIC routine, the contents of the registers on entry are: 

Register 0 

Register 1 

Address of an environment block (optional) 

Address of the parameter list passed by the caller 

Registers 2-12 Unpredictable 

Register 13 

Register 14 

Register 15 

Address of a register save area 

Return address 

Entry pOint address 

302 TSO/E Version 2 MVS/REXX Reference 

c 



Parameters 

( 

{ 

( 

IRXle Routine 

In register 1, you pass the address of a parameter list, which consists of a list of 
addresses. Each address in the parameter list points to a parameter. The high 
order bit of the last address in the parameter list must be set to 1 to indicate the end 
of the parameter list. For more information about passing parameters, see 
"Parameter Lists for TSO/E REXX Routines" on page 253. 

Figure 45 describes the parameters for IRXle. 

Figure 45. Parameters for IRXIC 

Parameter 

Parameter 1 

Parameter 2 

Parameter 3 

Parameter 4 

Number 
of Bytes 

4 

4 

4 

4 

Description 

The address of the name of the command you want IRXIC 
to process. The valid command names are HI, HT, RT, TS, 
and TE. The command names are described below. 

The length of the command name that parameter 1 pOints 
to. 

The address of the environment block that represents the 
environment in which you want IRXIC to run. This 
parameter is optional. 

If you specify a non-zero value for the environment block 
address parameter, IRXIC uses the value you specify and 
ignores register O. However, IRXIC does not check 
whether the address is valid. Therefore, you must ensure 
the address you specify is correct or unpredictable results 
can occur. For more information, see "Specifying the 
Address of the Environment Block" on page 255. 

A four byte field that IRXIC uses to return the return code. 

The return code parameter is optional. If you use this 
parameter, IRXIC returns the return code in the parameter 
and also in register 15. Otherwise, IRXIC uses register 15 
only. If the parameter list is invalid, the return code is 
returned in register 15 only. "Return Codes" on page 304 
describes the return codes. 

If you do not want to use the return code parameter, you 
can end the parameter list at a preceding parameter. Set 
the high order bit on in the preceding parameter's 
address. For more information about parameter lists, see 
"Parameter Lists for TSO/E REXX Routines" on page 253. 

The valid command names that you can specify are: 

HI (Halt Interpretation) 
The halt condition is set. Between instructions, the language processor checks 
whether it should halt the interpretation of REXX execs. If HI has been issued, 
the language processor stops interpreting REXX execs. HI is reset if a halt 
condition is enabled or when no execs are running in the environment. 

HT (Halt Typing) 
When the halt typing condition is set, output that REXX execs generate is 
suppressed (for example, the SAY instruction does not display its output). HT 
does not affect output from any other part of the system and does not affect error 
messages. HT is reset when the last exec running in the environment ends. 

Chapter 12. TSO/E REXX Programming Services 303 



IRXle Routine 

RT (Resume Typing) 
Resets the halt typing condition. Output from REXX execs is restored. 

TS (Trace Start) 
Starts tracing of REXX execs. 

TE (Trace End) 
Ends tracing of REXX execs. 

Return Specifications 

Return Codes' 

For the IRXIC routine, the contents of the registers on return are: 

Registers 0-14 Same as on entry 

Register 15 Return code 

Figure 46 shows the return codes for the IRXIC routine. IRXIC returns the return 
code in register 15. If you specify the return code parameter (parameter 4), IRXIC 
also returns the return code in the parameter. 

Figure 46. Return Codes for IRXIC 

Return 
Code 

o 
20 

28 

32 

Description 

Processing was successful. 

Processing was not successful. An error occurred. The system issues a 
message that explains the error. 

Processing was not successful. IRXle could not locate a language processor 
environment. 

Processing was not successful. The parameter list is not valid. The 
parameter list contains either too few or too many parameters, or the high 
order bit of the last address in the parameter list is not set to 1 to indicate the 
end of the parameter list. 

304 TSO/E Version 2 MVS/REXX Reference 

/ " \ 

o 

-----~---------------- --- -------------~------------------



( 

( 

(-

Get Result Routine· IRXRL T 

Get Result Routine - IRXRL T 
Use the IRXRLT (get result) routine to obtain: 

• The result from an exec that was processed by calling the IRXEXEC routine. 

You can call the IRXEXEC routine to run a REXX exec. The exec can return a 
result using the RETURN or EXIT instruction. When you call1RXEXEC, you can 
optionally pass the address of an evaluation block that you have allocated. If 
the exec returns a result, IRXEXEC places the result in the evaluation block. 
"The IRXEXEC Routine" on page 261 describes IRXEXEC in detail. 

The evaluation block that you pass to IRXEXEC may be too small to hold the 
complete result. If so, IRXEXEC places as much of the result that will fit into the 
evaluation block and sets the length field in the block to the negative of the 
length required for the complete result. If you call1RXEXEC and the complete 
result cannot be returned, you can allocate a larger evaluation block, and call 
the IRXRLT routine and pass the address of the new evaluation block to obtain 
the complete result. You can also call1RXEXEC and not pass the address of an 
evaluation block. If the exec returns a result, you can then use the IRXRLT 
routine to obtain the result. 

• A larger evaluation block to return the result from an external function or 
subroutine that you have written in a programming language other than REXX. 

You can write your own external functions and subroutines. You can write 
external functions and subroutines in REXX or in any programming language 
that supports the system-dependent interfaces. If you write your function or 
subroutine in a programming language other than REXX, when your code is 
called, it receives the address of an evaluation block that the language 
processor has allocated. Your code returns the result it calculates in the 
evaluation block. "Interface for Writing External Function and Subroutine Code" 
on page 277 describes the system interfaces for writing external functions and 
subroutines and how you use the evaluation block. 

If the evaluation block that your function or subroutine code receives is too 
small to store the result, you can call the IRXRLT routine to obtain a larger 
evaluation block. You can then use the new evaluation block to store the result 
from your function or subroutine. 

• An evaluation block that a compiler runtime processor can use to handle the 
result from a compiled REXX exec. 

A compiler runtime processor can also use IRXRLT to obtain an evaluation 
block in order to handle the result from a compiled REXX exec that is currently 
running. The evaluation block that IRXRLT returns has the same format as the 
evaluation block for IRXEXEC or for external functions or subroutines. For 
information about when a compiler runtime processor might require an 
evaluation block, see TSOIE Version 2 Customization. 

For information about the format of the evaluation block, see the following topics: 

"The IRXEXEC Routine" on page 261 
"Interface for Writing External Function and Subroutine Code" on page 277. 

Chapter 12. TSO/E REXX Programming Services 305 



Get Result Routine - IRXRL T 

Environment Customlzatlon Considerations --------------, 

If you use the IRXINIT initialization routine to initialize language processor 
environments, you can specify the environment in which you want IRXRLT to 
run. On the call to IRXRLT, you can optionally specify the address of the 
environment block for the environment in either the parameter list or in register 
o. 

For more information about specifying environments and how routines 
determine the environment in which to run, see "Specifying the Address of the 
Environment Block" on page 255. 

Entry Specifications 

Parameters 

For the IRXRLT routine, the contents of the registers on entry are: 

Register 0 

Register 1 

Address of an environment block (optional) 

Address of the parameter list passed by the caller 

Registers 2-12 Unpredictable 

Register 13 

Register 14 

Register 15 

Address of a register save area 

Return address 

Entry point address 

In register 1, you pass the address of a parameter list, which consists of a list of 
addresses. Each address in the parameter list points to a parameter. The high 
order bit of the last address in the parameter list must be set to 1 to indicate the end 
of the parameter list. For more information about passing parameters, see 
"Parameter Lists for TSO/E REXX Routines" on page 253. 

Figure 47 describes the parameters for IRXRLT. 

306 TSO/E Version 2 MVS/REXX Reference 

o 

'\ 

j 



Get Result Routine - IRXRl T 

Figure 47 (Page of 2). Parameters for IRXRLT 

(~ Parameter Number Description 
.--,/ of Bytes 

Parameter 1 8 The function to be performed. The name of the function 
must be left justified, in uppercase, and padded to the 
right with blanks. The valid functions are summarized 
below and are described in "Functions" on page 308. 

GETBLOCK 
Obtain a larger evaluation block for the external 
function or subroutine that is running. The GETBLOCK 
function is valid only when an exec is currently running. 

GETRLT 
Obtain the result from the last REXX exec that was 
processed in the current language processor 
environment. The GETRL T function is valid only if an 
exec is not currently running. 

( GETRLTE 
Obtain the result from the last REXX exec that was 
processed in the current language processor 
environment. The GETRL TE function is the same as 
GETRLT, except that GETRLTE provides support when 
REXX execs are nested. 

GETEVAL 
Obtain an evaluation block in order to handle the result 
from a compiled REXX exec. The GETEVAL function is 
intended for use only by a compiler runtime processor 

(, and is valid only when a compiled exec is currently 
running. 

Parameter 2 4 The address of the evaluation block. On input, this 
parameter is used only for the GETRL T and GETRL TE 
functions. The parameter is not used for the GETBLOCK 
and GETEVAL functions. On input, specify the address of 
an evaluation block that is large enough to hold the result 
from the exec. 

On output, this parameter is used only for the GETBLOCK 

(- and GETEVAL functions. The parameter is not used for 
the GETRL T and GETRL TE functions. 

• On output for the GETBLOCK function, the parameter 
returns the address of a larger evaluation block that 
the function or subroutine code can use to return a 
result. 

• On output for the GETEVAL function, the parameter 
returns the address of an evaluation block that the 
compiler runtime processor can use for the compiled 
exec that is currently running. 

Parameter 3 4 The length, in bytes, of the data area in the evaluation 
block. This parameter is used on input for the GETBLOCK 
and GETEVAL functions only. Specify the size needed to 
store the result from the exec that is currently running. 

This parameter is not used for the GETRL T and GETRL TE 
functions. 

('" 

Chapter 12. TSO/E REXX Programming Services 307 



Get Result Routine· IRXRLT 

Functions 

Figure 47 (Page 2 of 2). Parameters for IRXRLT 

Parameter 

Parameter 4 

Parameter 5 

Number 
of Bytes 

4 

4 

Description 

The address of the environment block that represents the 
environment in which you want IRXRL T to run. This 
parameter is optional. 

If you specify a non-zero value for the environment block 
address parameter, IRXRLT uses the value you specify 
and ignores register O. However, IRXRL T does not check 
whether the address is valid. Therefore, you must ensure 
the address you specify is correct or unpredictable results 
can occur. For more information, see "Specifying the 
Address of the Environment Block" on page 255. 

A four byte field that IRXRL T uses to return the return 
code. 

The return code parameter is optional. If you use this 
parameter, IRXRL T returns the return code in the 
parameter and also in register 15. Otherwlse,IRXRLT 
uses register 15 only. If the parameter list is invalid, the 
return code is returned in register 15 only. "Return 
Codes" on page 310 describes the return codes. 

If you do not want to use the return code parameter, you 
can end the parameter list at a preceding parameter. Set 
the high order bit on in the preceding parameter's 
address. For more information about parameter lists, see 
"Parameter Lists for TSO/E REXX Routines" on page 253. 

Parameter 1 contains the name of the function IRXRLT is to perform. The functions 
are described below. 

GETBLOCK 
Use the GETBLOCK function to obtain a larger evaluation block for the external 
function or subroutine thatis running. 

You can write external functions and subroutines in REXX or in any 
programming language that supports the system-dependent interfaces. If you 
write an external function or subroutine in a programming language other than 
REXX, when your code is called, it receives the address of an evaluation block. 
Your code can use the evaluation block to return the result. 

For your external function or subroutine code, if the value of the result does not 
fit into the evaluation block your code receives, you can call IRXRLT to obtain a 
larger evaluation block. Call IRXRL T with the GETBLOCK function. When you 
caIlIRXRLT, specify the length of the data area that you require in parameter 3. 
IRXRL T allocates a new evaluation block with the specified data area size and 
returns the address of the new evaluation block in parameter 2. IRXRLT also 
frees the original evaluation block that was not large enough for the complete 
result. Your code can then use the new evaluation block to store the result. See 
"Interface for Writing External Function and Subroutine Code" on page 277 for 
more information about writing external functions and subroutines and the 
format of the evaluation block. 

Note that you can use the GETBLOCK function only when an exec is currently 
running in the language processor environment. 

308 TSO/E Version 2 MVS/REXX Reference 

---------------- ----------

c·.··"···,, . ! 



(-

( 

Get Result Routine - IRXRL T 

GETRLT and GETRLTE 
You can use either the GETRLT or GETRLTE function to obtain the result from 
the last REXX exec that was processed in the language processor environment. 
If you use the IRXEXEC routine to run an exec and then need to invoke IRXRLT 
to obtain the result from the exec, invoke IRXRL T with the GETRL Tor GETRLTE 
function. You can use the GETRL T function only if an exec is not currently 
running in the language processor environment. You can use the GETRLTE 
function regardless of whether or not an exec is currently running in the 
environment, which provides support for nested REXX execs. 

When you call IRXEXEC, you can allocate an evaluation block and pass the 
address of the evaluation block to IRXEXEC. IRXEXEC returns the result from 
the exec in the evaluation block. If the evaluation block is too small, IRXEXEC 
returns the negative length of the area required for the result. You can allocate 
another evaluation block that has a data area large enough to store the result 
and call IRXRLT and pass the address of the new evaluation block in parameter 
2. IRXRLT returns the result from the exec in the evaluation block. 

You can call1RXEXEC to process an exec that returns a result and not pass the 
address of an evaluation block on the call. To obtain the result, you can use 
IRXRLT after IRXEXEC returns. You must allocate an evaluation block and pass 
the address on the call to IRXRL T. 

If you call IRXRLT to obtain the result (GETRLT or GETRLTE function) and the 
evaluation block you pass to IRXRL T is not large enough to store the result, 
IRXRLT: 

• Places as much of the result that will fit into the evaluation block 

• Sets the length of the result field in the evaluation block to the negative of 
the length required for the complete result. 

If IRXRL T cannot return the complete result, the result is not lost. The result is 
still stored in a system evaluation block. You can then allocate a larger 
evaluation block and call IRXRLT again specifying the address of the new 
evaluation block. This is more likely to occur if you had called IRXEXEC without 
an evaluation block and then use IRXRL T to obtain the result from the exec that 
executed. It can also occur if you miscalculate the area required to store the 
complete result. 

The result from the exec is available until one of the following occurs: 

• You successfully obtain the result using the IRXRL T routine 

• Another REXX exec is invoked in the same language processor environment 

• The language processor environment is terminated. 

Note: The language processor environment is the environment in which REXX 
execs and routines run. See "General Considerations for Calling TSO/E REXX 
Routines" on page 252 for information. Chapter 14, "Language Processor 
Environments" provides more details about environments and customization 
services. 

You can use the GETRLT function to obtain the result from a REXX exec only if 
an exec is not currently running in the language processor environment. For 
example, suppose you use the IRXEXEC routine to run an exec and the result 
from the exec does not fit into the evaluation block. After IRXEXEC returns 
control, you can invoke the IRXRLT routine with the GETRLT function to get the 
result from the exec. At this point, the REXX exec is no longer running in the 
environment. 

Chapter 12. TSO/E REXX Programming Services 309 



Get Result Routine - IRXRL T 

You can use the GETRLTE function regardless of whether or not a REXX exec is 
currently running in the language processor environment. For example, I~ 

GETRLTE is useful in the following situation. Suppose you have an exec that ~J 

calls an external function that is written in assembler. The external function 
(assembler program) uses the IRXEXEC routine to invoke a REXX exec. 
However, the result from the invoked exec is too large to be returned to the 
external function in the evaluation block. The external function can allocate a 
larger evaluation block and then use IRXRLT with the GETRLTE function to 
obtain the result from the exec. At this point, the original exec that called the 
external function is still running in the language processor environment. 
GETRLTE obtains the result from the last exec that completed in the 
environment, which, in this case, is the exec the external function invoked. 

For more information about running an exec using the IRXEXEC routine and the 
evaluation block, see "The IRXEXEC Routine" on page 261. 

GETEVAL 
The GETEVAL function is intended for use by a compiler runtime processor. 
GETEVAL lets a compiler runtime processor obtain an evaluation block 
whenever it has to handle the result from a compiled REXX exec that is 
currently running. The GETEVAL function is supported only when a compiled 
exec is currently running in the language processor environment. 

Note that if you write an external function or subroutine in a programming 
language other than REXX and your function or subroutine code requires a 
larger evaluation block, you should use the GETBLOCK function, not the 
GETEVAL function. 

Return Specifications 

Return Codes 

For the IRXRLT get result routine, the contents of the registers on return are: 

Registers 0-14 Same as on entry 

Register 15 Return code 

IRXRLT returns a return code in register 15. If you specify the return code 
parameter (parameter 5), IRXRLT also returns the return code in the parameter. 

Figure 48 shows the return codes if you call IRXRLT with the GETBLOCK function. 
Additional information about certain return codes is provided after the tables. 

Figure 48. IRXRLT Return Codes for the GETBLOCK Function 

Return 
Code 

o 

20 

28 

32 

Description 

Processing was successful. IRXRL T allocated a new evaluation block and 
returned the address of the evaluation block. 

Processing was not successful. A new evaluation block was not allocated. 

Processing was not successful. A valid language processor environment 
could not be located. 

Processing was not successful. The parameter list is not valid. The 
parameter list contains either too few or too many parameters, or the high 
order bit of the last address in the parameter list is not set to 1 to indicate the 
end of the parameter list. 

310 TSO/E Version 2 MVS/REXX Reference 

---------- ---------

/ 

/ \. 

/ 

c 



( 

( 

( 

Get Result Routine - IRXRl T 

Figure 49 on page 311 shows the return codes if you call IRXRLT with the GETRLT 
or GETRL TE function. 

Figure 49. IRXRLT Return Codes for the GETRLT and GETRLTE Functions 

Return 
Code 

o 

20 

28 

32 

Description 

Processing was successful. A return code of 0 indicates that IRXRL T 
completed successfully. However, the complete result may not have been 
returned. 

Processing was not successful. IRXRL T could not perform the requested 
function. The result is not returned. 

Processing was not successful. A valid language processor environment 
could not be located. 

Processing was not successful. The parameter list is not valid. The 
parameter list contains either too few or too many parameters, or the high 
order bit of the last address in the parameter list is not set to 1 to indicate the 
end of the parameter list. 

Figure 50 shows the return codes if you call1RXRLT with the GETEVAL function. 

Figure 50. IRXRLT Return Codes for the GETEVAL Function 

Return 
Code 

o 

20 

28 

32 

Description 

Processing was successful. IRXRL T allocated an evaluation block and 
returned the address of the evaluation block. 

Processing was not successful. An evaluation block was not allocated. 

Processing was not successful. A valid language processor environment 
could not be located. 

Processing was not successful. The parameter list is not valid. The 
parameter list contains either too few or too many parameters, or the high 
order bit of the last address in the parameter list is not set to 1 to indicate the 
end of the parameter list. 

Return Code 0 for the GETRLT and GETRLTE Functions: If you receive a return 
code of 0 for the GETRLT or GETRLTE function, IRXRLT completed successfully but 
the complete result may not have been returned. IRXRLT returns a return code of 0 
if: 

• The entire result was stored in the evaluation block. 

• The data field (EVDATA) in the evaluation block was too small. IRXRLT stores 
as much of the result as it can and sets the length field (EVLEN) in the 
evaluation block to the negative value of the length that is required. 

• No result was available. 

Chapter 12. TSO/E REXX Programming Services 311 



Get Result Routine· IRXRL T 

Return Code 20: If you receive a return code of 20 for the GETBLOCK, GETRL T, 
GETRLTE, or GETEVAL function, you may have incorrectly specified the function 
name in parameter 1. 

If you receive a return code of 20 for the GETBLOCK function, some possible errors 
could be: 

• The length you requested (parameter 3) was not valid. Either the length was a 
negative value or exceeded the maximum value. The maximum is 16 
megabytes minus the length of the evaluation block header. 

• The system could not obtain storage. 

• You called IRXRLT with the GETBLOCK function and an exec was not running in 
the language processor environment. 

If you receive a return code of 20 for the GETRLT function, some possible errors 
could be: 

• The address of the evaluation block (parameter 2) was 0 

• The evaluation block you allocated was not valid. For example, the EVLEN field 
was less than O. 

If you receive a return code of 20 for the GETEVAL function, some possible errors 
could be: 

• The length you requested (parameter 3) was not valid. Either the length was a 
negative value or exceeded the maximum value. The maximum is 16 
megabytes minus the length of the evaluation block header. 

• The system could not obtain storage. 

• You called IRXRLT with the GETEVAL function and a compiled exec was not 
currently running in the language processor environment. The GETEVAL 
function is intended for a compiler runtime processor and can be used only 
when a compiled REXX exec is currently running. 

312 TSO/E Version 2 MVS/REXX Reference 

( \ 

-j 

'- ../ 

,/ "\ 
,) 

o 

------~--- ----------



C--·, 
, ~ .. ' 

( 

- ---------------

IRXSAY Routine 

SAY Instruction Routine - IRXSAY 
The SAY instruction routine, IRXSAY, lets you write a character string to the same 
output stream as the REXX keyword instruction SAY. For example, in TSO/E 
foreground, you can write a string to the terminal. "SAY" on page 75 describes the 
SAY keyword instruction. 

A program can access IRXSAY using either the CALL or LINK macro instructions, 
specifying IRXSAY as the entry point name. You can obtain the address of the 
IRXSAY routine from the REXX vector of external entry points. "Format of the REXX 
Vector of External Entry Points" on page 401 describes the vector. 

If a program uses IRXSAY, it must create a parameter list and pass the address of 
the parameter list in register 1. 

Environment Customizatlon Considerations -------------, 

If you use the IRXINIT initialization routine to initialize language processor 
environments, you can specify the environment in which you want IRXSAY to 
run. On the call to IRXSAY, you can optionally specify the address of the 
environment block for the environment in either the parameter list or in register 
o. 

For more information about specifying environments and how routines 
determine the environment in which to run, see "Specifying the Address of the 
Environment Block" on page 255. 

Entry SpeCifications 

Parameters 

For the IRXSAY routine, the contents of the registers on entry are: 

Register 0 

Register 1 

Address of an environment block (optional) 

Address of the parameter list passed by the caller 

Registers 2-12 Unpredictable 

Register 13 

Register 14 

Register 15 

Address of a register save area 

Return address 

Entry point address 

In register 1, you pass the address of a parameter list, which consists of a list of 
addresses. Each address in the parameter list points to a parameter. The high 
order bit of the last address in the parameter list must be set to 1 to indicate the end 
of the parameter list. For more information about passing parameters, see 
"Parameter Lists for TSO/E REXX Routines" on page 253. 

Figure 51 describes the parameters for IRXSAY. 

Chapter 12. TSO/E REXX Programming Services 313 



IRXSAY Routine 

Figure 51. Parameters for IR XSA Y 

Parameter 

Parameter 1 

Parameter 2 

Parameter 3 

Parameter 4 

Parameter 5 

Number 
of Bytes 

8 

4 

4 

4 

4 

314 TSO/I: Version 2 MVSIREXX Reference 

Description 

The function to be performed. The name of the function 
must be in uppercase, left justified, and padded to the 
right with blanks. The valid functions are: 

• WRITE 
• WRITEERR 

"Functions" on page 315 describes the functions in more 
detail. 

The address of a fullword in storage that points to an input 
buffer containing a string. The caller supplies the string, 
which is a string of bytes that you want IRXSAY to write to 
the output stream. . 

There are no restrictions on the contents of the string. 
However, the target device for displaying the data may 
limit the characters you can specify. 

The length, in bytes, of the string that is pointed to by 
parameter 2. 

The address of the environment block that represents the 
environment in which you want IRXSAY to run. This 
parameter is optional. 

If you specify a non-zero value for the environment block 
address parameter, IRXSAY uses the value you specify 
and ignores register O. However, IRXSAY does not check 
whether the address is valid. Therefore, you must ensure 
the address you specify is correct or unpredictable results 
can occur. For more information, see "Specifying the 
Address of the Environment Block" on page 255. 

A four byte field that IRXSAY uses to return the return 
code. 

The return code parameter is optional. If you use this 
parameter, IRXSAY returns the return code in the 
parameter and also in register 15. Otherwise, I RXSAY 
uses register 15 only. If the parameter list is invalid, the 
return code is returned in register 15 oniy. "Return 
Codes" on page 315 describes the return codes. 

If you do not want to use the return code parameter, you 
can end the parameter list at a preceding parameter. Set 
the high order bit on in the preceding parameter's 
address. For more information about parameter lists, see 
"Parameter Lists for TSO/E REXX Routines" on page 253. 

,/ '\ 

/ 

c 



( 

Functions 

IRXSA Y Routine 

Parameter 1 contains the name of the function IRXSAY is to perform. The functions 
are: 

WRITE 
Specifies that you want I RXSAY to write the input string you provide to the 
output stream. In environments that are not integrated into TSO/E, the output is 
directed to the file specified in the OUTDO field in the module name table. The 
default OUTDO file is SYSTSPRT. 

In environments that are integrated into TSO/E, the output is directed to a 
terminal (TSO/E foreground) or to SYSTSPRT (TSO/E background). 

WRITEERR 
Specifies that you want IRXSAY to write the input string you provide to the 
output stream to which error messages are written. 

The settings for the NOMSGWTO and NOMSGIO flags control message 
processing in a language processor environment. The flags are described in 
"Flags and Corresponding Masks" on page 351. 

Return Specifications 

Return Codes 

For the IRXSAY routine, the contents of the registers on return are: 

Reglslers 0-14 Same as on entry 

Reglsler 15 Return code 

Figure 52 shows the return codes for the IRXSAY routine. IRXSAY returns the 
return code in register 15. If you specify the return code parameter (parameter 5), 
IRXSAY also returns the return code in the parameter. 

Figure 52. Return Codes for IRXSAY 

Return 
Code 

0 

8 

20 

28 

32 

Description 

Processing was successful. The input string was written to the output stream. 

Processing was successful. However, the input string was not written to the 
output stream because Halt Typing (HT) is in effect. 

Processing was not successful. An error occurred and the requested function 
is not performed. The system may issue a message that describes the error. 

Processing was not successful. A language processor environment could not 
be located. 

Processing was not successful. The parameter list is not valid. The 
parameter list contains either too few or too many parameters, or the high 
order bit of the last address in the parameter list is not set to 1 to indicate the 
end of the parameter list. 

Chapter 12. TSO/E REXX Programming Services 315 



I 
I 
I 
I 
I 

IRXHL T Routine 

Halt Condition Routine - IRXHL T 
The halt condition routine, IRXHLT, lets you query or reset the hait condition. Using 
IRXHLT, you can determine whether a halt condition has been set, for example, with 
the HI immediate command. You can also reset the halt condition. 

A program can access IRXHL T using either the CALL or LINK macro instructions, 
specifying IRXHLT as the entry point name. You can obtain the address of the 
IRXHLT routine from the REXX vector of external entry points. "Format of the REXX 
Vector of External Entry Points" on page 401 describes the vector. 

If a program uses IRXHLT, it must create a parameter list and pass the address of 
the parameter list in register 1. 

Environment Customlzation Considerations -------------, 

If you use the IRXINIT initialization routine to initialize language processor 
environments, you can specify the environment in which you want IRXHLT to 
run. On the call to IRXHLT, you can optionally specify the address of the 
environment block for the environment in either the parameter list or in register 
o. 

For more information about specifying environments and how routines 
determine the environment in which to run, see "Specifying the Address of the 
Environment Block" on page 255. 

Entry Specifications 

Parameters 

For the IRXHLT routine, the contents of the registers on entry are: 

Register 0 

Register 1 

Address of an environment block (optional) 

Address of the parameter list passed by the caller 

Registers 2-12 Unpredictable 

Register 13 

Register 14 

Register 15 

Address of a register save area 

Return address 

Entry point address 

In register 1, you pass the address of a parameter list, which consists of a list of 
addresses. Each address in the parameter list pOints to a parameter. The high 
order bit of the last address in the parameter list must be set to 1 to indicate the end 
of the parameter list. For more information about passing parameters, see 
"Parameter Lists for TSO/E REXX Routines" on page 253. 

Figure 53 describes the parameters for IRXHLT. 

316 TSO/E Version 2 MVS/REXX Reference . 

-----------

/ \. 



( 

( 
Functions 

(: 

~--- -,---"----_ .. _-_._--------

IRXHl.T Routine 

Figure 53. Parameters for IRXHLT 

Parameter 

Parameter 1 

Parameter 2 

Parameter 3 

Number 
of Bytes 

8 

4 

4 

Description 

The function to be performed. The name of the function 
must be left justified, in uppercase, and padded to the 
right with blanks. The valid functions are: 

• TESTHLT 
• CLEARHLT 

"Functions" on page 317 describes the functions in more 
detail. 

The address of the environment block that represents the 
environment in which you want IRXHLT to run. This 
parameter is optional. 

If you specify an environment block address, IRXHL T uses 
the value you specify and ignores register O. However, 
IRXHL T does not check whether the address is valid. 
Therefore, you must ensure the address you specify is 
correct or unpredictable results can occur. 

You can also use register 0 to specify the address of an 
environment block. If you use register 0, IRXHLT checks 
whether the address is valid. For more information, see 
"Specifying the Address of the Environment Block" on 
page 255. 

A four byte field that IRXHL T uses to return the return 
code. 

The return code parameter is optional. If you use this 
parameter, IRXHL T returns the return code in the 
parameter and also in register 15. Otherwise,IR.XHLT 
uses register 15 only. "Return Codes" on page 318 
describes the return codes. 

If you do not want to use the return code parameter, you 
can end the parameter list at a preceding parameter. Set 
the high order bit on in the preceding parameter's 
address. For more information about parameter lists, see 
"Parameter Lists for TSO/E REXX Routines" on page 253. 

Parameter 1 contains the name of the function IRXHL T is to perform. The functions 
are: 

TESTHLT 
Determines whether the halt condition has been set. For example, the halt 
condition may be set by the HI immediate command, the EXECUTIL HI 
command, or the trace and execution control routine, IRXIC. 

Return codes 0 and 4 from IRXHL T indicate whether or not the halt condition has 
been set. See "Return Codes" on page 318 for more information. 

CLEARHLT 
Resets the halt condition. 

Chapter 12. TSO/E REXX Programming Services 317 



IRXHLT Routine 

Return Specifications 

Return Codes 

For the IRXHLT routine, the contents of the registers on return are: 

Registers 0-14 Same as on entry 

Register 15 Return code 

Figure 54 shows the return codes for the IRXHL T routine. IRXHLT returns the return 
code in register 15. If you specify the return code parameter (parameter 3), IRXHLT 
also returns the return code in the parameter. 

Figure 54. Return Codes for IRXHLT 

Return 
Code 

o 

4 

20 

Description 

Processing was successful. For the TESTHL T function, a return code of 0 
indicates the halt condition was tested and the condition has not been set. 
This means that REXX exec processing will continue. 

For the CLEARHL T function, a return code of 0 indicates the halt condition was 
successfully reset. 

Processing was successful. A return code of 4 is used only for the TESTHL T 
function. The return code indicates the halt condition was tested and the 
condition has been set. This means that REXX processing will be halted, for 
example, just as if EXECUTIL HI were processed. 

Processing was not successful. An error occurred and the requested function 
is not performed. IRXHL T returns a return code of 20 if the function you 
specify in parameter 1 is invalid. 

28 Processing was not successful. A language processor environment could not 
be located. 

32 Processing was not successful. The parameter list is not valid. The 
parameter list contains either too few or too many parameters, or the high 
order bit of the last address in the parameter list is not set to 1 to indicate the 
end of the parameter list. 

318 TSO/E Version 2 MVS/REXX Reference 

-------- -------------,----------------------

/ 



(-

( 

IRXTXT Routine 

The text retrieval routine, I RXTXT, lets you retrieve the same text the TSO/E REXX 
interpreter uses for several options of the DATE bUilt-in function and for the 
ERRORTEXT built-in function. Using IRXTXT, you can retrieve the: 

• English names for the days of the week, in mixed case (for example, Thursday) 

• English names for the months of the year, in mixed case (for example, August) 

• Abbreviated English names for the months of the year, in mixed case (for 
example, Aug) 

• Text of a REXX syntax error message. For example, for error number 26 
(message IRX00261), the message text is: 

Invalid whole number 

A program can access IRXTXT using either the CALL or LINK macro instructions, 
specifying IRXTXT as the entry point name. You can obtain the address of the 
IRXTXT routine from the REXX vector of external entry points. "Format of the REXX 
Vector of External Entry Points" on page 401 describes the vector. 

If a program uses IRXTXT, it must create a parameter list and pass the address of 
the parameter list in register 1. 

Environment Customlzallon Considerations -------------, 

If you use the IRXINIT initialization routine to initialize language processor 
environments, you can specify the environment in which you want IRXTXT to run. 
On the call to IRXTXT, you can optionally specify the address of the environment 
block for the environment in either the parameter list or in register O. 

For more information about specifying environments and how routines 
determine the environment in which to run, see "Specifying the Address of the 
Environment Block" on page 255. 

Entry Specifications 
For the IRXTXT routine, the contents of the registers on entry are: 

Register 0 

Register 1 

Address of an environment block (optional) 

Address of the parameter list passed by the caller 

Registers 2·12 Unpredictable 

Register 13 

Register 14 

Register 15 

Address of a register save area 

Return address 

Entry point address 

Chapter 12. TSO/E REXX Programming Services 319 



IRXTXT Routine 

Parameters 
In register 1, you pass the address of a parameter list, which consists of a list of n 
addresses. Each address in the parameter list points to a parameter. The high ~ 

order bit of the last address in the parameter list must be set to 1 to indicate the end 
of the parameter list. For more information about passing parameters, see 
"Parameter Lists for TSO/E REXX Routines" on page 253. 

Figure 55 describes the parameters for IRXTXT. 

Figure 55 (Page 1 of 2). Parameters for IRXTXT 

Parameter 

Parameter 1 

Parameter 2 

Parameter 3 

Parameter 4 

Parameter 5 

Number 
of Bytes 

8 

4 

4 

4 

4 

Description 

The function to be performed. The name of the function 
must be left justified, in uppercase, and padded to the 
right with blanks. The valid functions are: 

• DAY 
• MTHLONG 
• MTHSHORT 
• SYNTXMSG 

"Functions and Text Units" on page 321 describes the 
functions in more detail. 

A fullword binary field that contains the text unit 
corresponding to the function in parameter 1. The text 
unit you specify depends on the function you use in 
parameter 1 and the corresponding value you want 
IRXTXT to return. "Functions and Text Units" on page 321 
describes the text units in more detail. 

The address of an area in storage to hold the text that 
IRXTXT retrieves. 

The length of the area in storage that is pOinted to by 
parameter 3. It is recommended that you provide a large 
buffer area to hold the result, for example, 250 bytes. If 
the buffer is too small to hold the returned text, IRXTXT 
returns with return code 20. 

On output, IRXTXT updates parameter 4 to contain the 
length of the actual text It returns. 

The address of the environment block that represents the 
environment in which you want IRXTXT to run. This 
parameter is optional. 

If you specify a non-zero value for the environment block 
address parameter, IRXTXT uses the value you specify 
and ignores register O. However, IRXTXT does not check 
whether the address is valid. Therefore, you must ensure 
the address you specify is correct or unpredictable results 
can occur. For more information, see "Specifying the 
Address of the Environment Block" on page 255. 

,/ '\ 

o 
320 TSO/E Version 2 MVS/REXX Reference 



IRXTXT Routine 

Figure 55 (Page 2 of 2). Parameters for IRXTXT 

Parameter 

Parameter 6 

Number 
of Bytes 

4 

Description 

A four byte field that IRXTXT uses to return the return 
code. 

The return code parameter is optional. If you use this 
parameter, IRXTXT returns the return code in the 
parameter and also in register 15. Otherwise, I RXTXT 
uses register 15 only. If the parameter list Is Invalid, the 
return code is returned in register 15 only. "Return 
Codes" on page 323 describes the return codes. 

If you do not want to use the return code parameter, you 
can end the parameter list at a preceding parameter. Set 
the high order bit on in the preceding parameter's 
address. For more information about parameter lists, see 
"Parameter Lists for TSO/E REXX Routines" on page 253. 

(", 
Functions and Text Units 

------ -----------------

Parameter 1 contains the name of the function IRXTXT is to perform. Parameter 2 
specifies the text unit you want IRXTXT to retrieve for the particular function. The 
functions and their corresponding text units you can request are described below: 

DAY 
The DAY function returns the English name of a day of the week, in mixed case. 
The names that IRXTXT retrieves are the same values the TSO/E REXX 
interpreter uses for the DATE(Weekday) function. 

The name of the day that IRXTXT retrieves depends on the text unit you specify 
in parameter 2. Figure 56 shows the text units for parameter 2 and the 
corresponding day IRXTXT retrieves for each text unit. For example, if you want 
IRXTXT to return the value Saturday, you would specify text unit 3. 

Figure 56. Text Unit and Day Returned - DA Y Function 

Text Unit Name of Day Returned 

1 Thursday 

2 Friday 

3 Saturday 

4 Sunday 

5 Monday 

6 Tuesday 

7 Wednesday 

MTHLONG 
The MTHLONG function returns the English name of a month, in mixed case. 
The names that IRXTXT retrieves are the same values the TSO/E REXX 
interpreter uses for the DATE(Month) function. 

The name of the month that IRXTXT retrieves depends on the text unit you 
specify in parameter 2. Figure 57 shows the text units for parameter 2 and the 
corresponding name of the month IRXTXT retrieves for each text unit. For 
example, if you wanted IRXTXT to return the value April, you would specify text 
unit 4. 

Chapter 12. TSO/E REXX Programming Services 321 



IRXTXT Routine 

Figure 57. Text Unit and Month Returned - MTHLONG Function 

Text Unit Name of Month Returned 

January 

2 February 

3 March 

4 April 

5 May 

6 June 

7 July 

8 August 

9 September 

10 October 

11 November 

12 December 

MTHSHORT 
The MTHSHORT function returns the first three characters of the English name 
of a month, in mixed case. The names that IRXTXT retrieves are the same 
values the TSO/E REXX interpreter uses for the month in the DATE(Normal) 
function. 

The abbreviated name of the month that IRXTXT retrieves depends on the text 
unit you specify in parameter 2. Figure 58 shows the text units for parameter 2 
and the corresponding abbreviated names of the month that IRXTXT retrieves 
for each text unit. For example, if you wanted IRXTXT to return the value Sep, 
you would specify text unit 9. 

Figure 58. Text Unit and Abbreviated Month Returned - MTHSHORT Function 

Text Unit Abbreviated Name of Month Returned 

Jan 

2 Feb 

3 Mar 

4 Apr 

5 May 

6 Jun 

7 Jul 

8 Aug 

9 Sap 

10 Oct 

11 Nov 

12 Dec 

SYNTXMSG 
The SYNTXMSG function returns the message text for a specific REXX syntax 
error message. The text that IRXTXT retrieves is the same text the ERRORTEXT 
function returns. 

322 TSO/E Version 2 MVS/REXX Reference 

o 

c 



( 

IRXTXT Routine 

The message text that IRXTXT retrieves depends on the text unit you specify in 
parameter 2. For the text unit, specify the error number corresponding to the 
error message. For example, error number 26 corresponds to message 
IRX00261. The message text for IRX00261 is: 

Invalid whole number 

This is the value the SYNTXMSG function returns if you specify text unit 26. 

The values 1-99 are reserved for error numbers. However, not all of the values 
are used for REXX syntax error messages. Appendix A, "Error Numbers and 
Messages" on page 475 describes the REXX error numbers and messages. If 
you specify a text unit in the range 1-99 and the value is not supported, IRXTXT 
returns a string of length O. 

Return Specifications 

Return Codes 

For the IRXTXT routine, the contents of the registers on return are: 

Registers 0-14 Same as on entry 

Register 15 Return code 

Figure 59 shows the return codes for the IRXTXT routine. IRXTXT returns the return 
code in register 15. If you specify the return code parameter (parameter 6), IRXTXT 
also returns the return code in the parameter. 

Figure 59. Return Codes for IRXTXT 

Return 
Code 

Description 

o Processing was successful. IRXTXT retrieved the text you requested and 
placed the text into the buffer area. 

20 Processing was not successful. An error occurred and the requested function 
is not performed. IRXTXT does not retrieve the text. You may receive a return 
code of 20 if the: 

28 

32 

• Buffer is too small to hold the complete text 

• Function you specified for parameter 1 is invalid 

• Text unit you specified for parameter 2 is invalid for the particular function 
you requested in parameter 1. 

Processing was not successful. A language processor environment could not 
be located. 

Processing was not successful. The parameter list is not valid. The 
parameter list contains either too few or too many parameters, or the high 
order bit of the last address in the parameter list is not set to 1 to indicate the 
end of the parameter list. 

Chapter 12. TSO/E REXX Programming Services 323 



IRXLlN Routine 

LINESIZE Function Routine - IRXLIN 
The LlNESIZE function routine, IRXLlN, lets you obtain the same value that the 
LlNESIZE built-in function returns. "LlNESIZE" on page 109 describes the built-in 
function. 

A program can access IRXLlN using either the CALL or LINK macro instructions, 
specifying IRXLlN as the entry point name. You can obtain the address of the 
IRXLlN routine from the REXX vector of external entry points. "Format of the REXX 
Vector of External Entry Points" on page 401 describes the vector. 

If a program uses IRXLlN, it must create a parameter list and pass the address of 
the parameter list in register 1. 

Environment Customlzation Considerations ------------..., 

If you use the IRXINIT initialization routine to initialize language processor 
environments, you can specify the environment in which you want IRXLlN to run. 
On the call to IRXLlN, you can optionally specify the address of the environment' 
block for the environment in either the parameter list or in register O. 

For more information about specifying environments and how routines 
determine the environment in which to run, see "Specifying the Address of the 
Environment Block" on page 255. 

Entry Specifications 

Parameters 

For the IRXLlN routine, the contents of the registers on entry are: 

Register 0 

Register 1 

Address of an environment block (optional) 

Address of the parameter list passed by the caller 

Registers 2-12 Unpredictable 

Register 13 

Register 14 

Register 15 

Address of a register save area 

Return address 

Entry point address 

In register 1, you pass the address of a parameter list, which consists of a list of 
addresses. Each address in the parameter list points to a parameter. The high 
order bit of the last address in the parameter list must be set to 1 to indicate the end 
of the parameter list. For more information about passing parameters, see 
"Parameter Lists for TSO/E REXX Routines" on page 253. 

Figure 60 describes the parameters for IRXLlN. 

324 TSO/E Version 2 MVS/REXX Reference 

C,. " 
-j 

o 



( 

( 

IRXLlN Routine 

Figure 60. Parameters for IRXLlN 

Parameter 

Parameter 1 

Parameter 2 

Parameter 3 

Parameter 4 

Return SpeCifications 

Number 
of Bytes 

8 

4 

4 

4 

Description 

The function to be performed. The function name must be 
left justified, in uppercase, and padded to the right with 
blanks. The only valid function is LlNESIZE, which returns 
the same value that the LlNESIZE built-in function returns. 

IRXLlN returns the LlNESIZE value in this parameter. 
IRXLlN returns the same value that the LlNESIZE built-in 
function returns. "LlNESIZE" on page 109 describes the 
built-in function. 

The value IRXLlN returns in this parameter is valid only if 
the return code is O. 

The address of the environment block that represents the 
environment in which you want IRXLlN to run. This 
parameter is optional. 

If you specify an environment block address, IRXLlN uses 
the value you specify and ignores register O. However, 
IRXLlN does not check whether the address is valid. 
Therefore, you must ensure the address you specify is 
correct or unpredictable results can occur. 

You can also use register 0 to specify the address of an 
environment block. If you use register 0, IRXLlN checks 
whether the address is valid. For more information, see 
"Specifying the Address of the Environment Block" on 
page 255. 

A four byte field that IRXLlN uses to return the return 
code. 

The return code parameter is optional. If you use this 
parameter, IRXLlN returns the return code in the 
parameter and also in register 15. Otherwise,IRXLlN 
uses register 15 only. "Return Codes" on page 326 
describes the return codes. 

If you do not want to use the return code parameter, you 
can end the parameter list at a preceding parameter. Set 
the high order bit on in the preceding parameter's 
address. For more information about parameter lists, see 
"Parameter Lists for TSO/E REXX Routines" on page 253. 

For the IRXLlN routine, the contents of the registers on return are: 

Registers 0-14 Same as on entry 

Register 15 Return code 

Chapter 12. TSO/E REXX Programming Services 325 



IRXLIN Routine 

Return Codes 
Figure 61 shows the return codes for the IRXLlN routine. IRXLlN returns the return 
code in register 15. If you specify the return code parameter (parameter 4), IRXLlN 
also returns the return code in the parameter. 

Figure 61. Return Codes for IRXLlN 

Return 
Code 

o 

20 

28 

32 

Description 

Processing was successful. IRXLlN returned the LlNESIZE value in parameter 
2. 

Processing was not successful. You may have specified an invalid function 
(parameter 1). The only valid function is LlNESIZE. 

Processing was not successful. A language processor environment could not 
be located. 

Processing was not successful. The parameter list is not valid. The 
parameter list contains either too few or too many parameters, or the high 
order bit of the last address in the parameter list is not set to 1 to indicate the 
end of the parameter list. 

326 TSO/E Version 2 MVS/REXX Reference 

~\ 

~-) 

/ '\ 
( . 

,j 

c 

---~-----



c' 

( 

( 

In addition to the instructions, functions, and commands for writing a REXX exec and 
the programming services that interface with REXX and the language processor, 
TSO/E also provides customizing services for REXX processing. The customizing 
services let you change how REXX execs are processed and how system services 
are accessed and used. 

The REXX language itself, which consists of instructions and built-in functions, is 
address space independent. The language processor, which interprets a REXX 
exec, processes the REXX language instructions and functions in the same manner 
in any address space. However, when a REXX exec executes, the language 
processor must interface with different host services, such as 1/0 and'storage. MVS 
address spaces differ in how they access and use system services, for example, 
how they use and manage 110 and storage. Although these differences exist, the 
language processor must run in an environment that is not dependent on the 
address space in which it is executing an exec. The environment must allow REXX 
execs to execute independently of the way in which an address space handles 
system services. The TSO/E REXX customizing routines and services provide an 
interface between the language processor and underlying host services and allow 
you to customize the environment in which the language processor processes REXX 
execs. 

TSO/E REXX customizing services include the following: 

Environment Characteristics 
TSO/E provides various routines and services that allow you to customize the 
environment in which the language processor executes a REXX exec. This 
environment is known as the language processor environment and defines 
various characteristics relating to how execs are processed and how system 
services are accessed and used. TSO/E provides default environment 
characteristics that you can change and also provides a routine you can use to 
define your own environment. 

Replaceable Routines 
When a REXX exec executes, various system services are used, such as 
services for loading and freeing an exec, performing 1/0, obtaining and freeing 
storage, and handling data stack requests. TSO/E provides routines that handle 
these types of system services. The routines are known as replaceable routines 
because you can provide your own routine that replaces the system routine. 

Exit Routines 
You can provide exit routines to customize various aspects of REXX processing. 

The topics in this chapter introduce the major interfaces and customizing services. 
The following chapters describe the customizing services in more detail: 

• Chapter 14, "Language Processor Environments" describes how you can 
customize the environment in which the language processor executes a REXX 
exec and accesses and uses system services. 

• Chapter 15, "Initialization and Termination Routines" describes the IRXINIT and 
IRXTERM routines that TSO/E provides to initialize and terminate language 
processor environments. 

© Copyright IBM Corp. 1988. 1991 327 



Customizing Services 

• Chapter 16, "Replaceable Routines and Exits" describes the routines you can 
provide that access system services, such as 110 and storage, and the exits you ~ 

can use to customize REXX processing. IV 

Flow of REXX Exec Processing 

No environment? 
Initialize a new 
environment. 

Terminate environment 
if one was initialized 

Figure 62 shows the processing of a REXX exec in any MVS address space. 

Load exec 

I/O 

Data stack services 

Storage 

User ID 

Message ID 

Execute host commands 

Replaceable 
Routines 

TSO/E services 

MVS services 

Figure 62. Overview of REXX Exec Processing in Any Address Space 

As shown in the figure, before the language processor executes a REXX exec, a 
language processor environment must exist. After an environment is located or 
initialized, the exec is loaded into storage and is then executed. While an exec is 
executing, the language processor may need to access different system services, 
for example, to handle data stack requests or for 110 processing. The system 
services are handled by routines that are known as replaceable routines. The 
following topics describe the initialization and termination of language processor 
environments, the loading and freeing of an exec, and the replaceable routines. In 
addition, there are several exits you can provide to customize REXX processing. 
The exits are summarized on page 471. 

Initialization and Termination of a Language Processor Environment 

'\ 
j 

Before the language processor can process a REXX exec, a language processor 
environment must exist. A language processor environment is the environment in 
which the language processor "interprets" or processes the exec. This environment 0 
defines characteristics relating to how the exec is processed and how the language '-
processor accesses system services. 

328 TSO/E Version 2 MVS/REXX Reference 



( 

-------- ---- -~---~-

Customizing Services 

A language processor environment defines various characteristics, such as: 

• The search order used to locate commands and external functions and 
subroutines 

• The ddnames for reading and writing data and from which REXX execs are 
loaded 

• The host command environments you can use in an exec to execute host 
commands (that is, the environments you can specify using the ADDRESS 
instruction) 

• The function packages (user, local, and system) that are available to execs that 
execute in the environment and the entries in each package 

• Whether execs that execute in the environment can use the data stack or can 
perform I/O operations 

• The names of routines that handle system services, such as I/O operations, 
loading of an exec, obtaining and freeing storage, and data stack requests. 
These routines are known as replaceable routines. 

Note: The concept of a language processor environment is different from that of a 
host command environment. The language processor environment is the 
environment in which a REXX exec executes. This includes how an exec is loaded, 
how commands, functions, and subroutines are located, and how requests for 
system services are handled. A host command environment is the environment to 
which the language processor passes commands for execution. The host command 
environment handles the execution of host commands. The host command 
environments that are available to a REXX exec are one characteristic of a language 
processor environment. For more information about executing host commands from 
a REXX exec, see "Commands to External Environments" on page 25. 

TSO/E automatically initializes a language processor environment in both the TSO/E 
and non-TSO/E address spaces by calling the initialization routine IRXINIT. TSO/E 
terminates a language processor environment by calling the termination routine 
IRXTERM. 

In the TSO/E address space, IRXINIT is called to initialize a default language 
processor environment when a user logs on and starts a TSO/E session. When a 
user invokes ISPF, another language processor environment is initialized. The ISPF 
environment is a separate environment from the one that is initialized when the 
TSO/E session is started. Similarly, if you enter split screen mode in ISPF, another 
language processor environment is initialized for the second ISPF screen. 
Therefore, at this point, three separate language processor environments exist. If 
the user invokes a REXX exec from the second ISPF screen, the exec executes 
within the language processor environment that was initialized for that second 
screen. If the user invokes the exec from TSO/E READY mode, it executes within 
the environment that was initialized when the user first logged on. 

When the user returns to a single ISPF screen, the IRXTERM routine is called to 
automatically terminate the language processor environment that is associated with 
the second ISPF screen. Similarly, when the user exits from ISPF and returns to 
TSO/E READY mode, the system calls IRXTERM to terminate the environment 
associated with the ISPF screen. When the user logs off from TSO/E, that language 
processor environment is then terminated. 

In non-TSO/E address spaces, a language processor environment is not 
automatically initialized at a specific point, such as when the address space is 

Chapter 13. TSO/E REXX Customizing Services 329 



Customizing Services 

activated. An environment is initialized when either the IRXEXEC or IRXJCL 
routines are called to execute a REXX exec, if an environment does not already 
exist. 

As described above, many language processor environments can exist in an 
address space. A language processor environment is associated with an MVS task 
and environments can be chained together. This is discussed in more detail in 
Chapter 14, "Language Processor Environments" on page 335. 

Whenever a REXX exec is invoked in any address space, the system first 
determines whether or not a language processor environment exists. If an 
environment does exist, the REXX exec executes in that environment. If an 
environment does not exist, the system automatically initializes one by calling the 
IRXINIT routine. For example, if you are logged on to TSO/E and issue the TSO/E 
EXEC command to execute a REXX exec, the system checks whether a language 
processor environment exists. An environment was initialized when you logged on 
to TSO/E, therefore, the exec executes in that environment. If you execute a REXX 
exec in MVS batch by specifying IRXJCL as the program name (PGM = ) on the JCL 
EXEC statement, a language processor environment is initialized for the execution 
of the exec. When the exec completes processing, the environment is terminated. 

If either IRXJCL or IRXEXEC is called from a program, the system first determines 
whether or not a language processor environment already exists. If an environment 
exists, the exec executes in that environment. If an environment does not exist, an 
environment is initialized. When the exec completes, the environment is 
terminated. "Chains of Environments and How Environments Are Located" on 
page 375 describes how the system locates a previous environment in the TSO/E 
and non-TSO/E address spaces. 

TSO/E provides default values that are used to define a language processor 
environment. The defaults are provided in three parameters modules that are load 
modules. The load modules contain the default characteristics for initializing 
language processor environments for TSO/E (READY mode), ISPF, and non-TSO/E 
address spaces. The parameters modules are: 

• IRXTSPRM (for TSO/E) 
• IRXISPRM (for ISPF) 
• IRXPARMS (for non-TSO/E) 

You can provide your own parameters modules in order to change the default 
values that are used to initialize a language processor environment. Your load 
modules are then used instead of the default modules provided by TSO/E. The 
parameters modules are described in detail in Chapter 14, "Language Processor 
Environments. " 

You can also explicitly invoke IRXINIT to initialize a language processor 
environment and define the environment characteristics on the call. Although 
IRXINIT is primarily intended for use in non-TSO/E address spaces, you can call it in 
any address space. When you call IRXINIT, you specify any or all of the 
characteristics you want defined for the language processor environment. Using 
IRXINIT gives you the flexibility to define your own environment, and therefore, 
customize how REXX execs execute within the environment and how system 
services are handled. If you explicitly call IRXINIT, you must use the IRXTERM 
routine to terminate that environment. The system does not automatically terminate 
an environment that you initialized by explicitly calling IRXINIT. Chapter 15, 

330 TSO/E Version 2 MVS/REXX Reference 

-----------------------

/ '\, 
( I 

"j 

c 



c 

( 

( 

-- -.~------

Customizing Services 

"Initialization and Termination Routines" on page 411 describes the IRXINIT and 
IRXTERM routines. 

Types Of Language Processor Environments 
There are two types of language processor environments; environments that are 
integrated into TSO/E and environments that are not integrated into TSO/E. If an 
environment is integrated into TSO/E, REXX execs that run in the environment can 
use TSO/E commands and services. If an environment is not integrated into TSO/E, 
execs that run in the environment cannot use TSO/E commands and services. 

When a language processor environment is automatically initialized in the TSO/E 
address space, the environment is integrated into TSO/E. When an environment is 
automatically initialized in a non-TSO/E address space, the environment is not 
integrated into TSO/E. Environments that are initialized in non-TSO/E address 
spaces cannot be integrated into TSO/E. Environments that are initialized in the 
TSO/E address space mayor may not be integrated into TSO/E. 

Many TSO/E customizing routines and services are only available to language 
processor environments that are not integrated into TSO/E. "Types of Environments 
- Integrated and Not Integrated Into TSO/E" on page 344 describes the types of 
language processor environments in more detail. 

Loading and Freeing a REXX Exec 
After a language processor environment has been located or one has been 
initialized, the exec must be loaded into storage in order for the language processor 
to process it. After the exec executes, it must be freed. The exec load routine loads 
and frees REXX execs. The default exec load routine is IRXLOAD. 

The exec load routine is one of the replaceable routines that you can provide to 
customize REXX processing. You can provide your own exec load routine that 
either replaces the system default or that performs pre-processing and then calls 
the default routine IRXLOAD. The name of the load routine is defined for each 
language processor environment. You can only provide your own load routine in 
language processor environments that are not integrated into TSO/E. 

Note: If you use the IRXEXEC routine to execute a REXX exec, you can preload the 
exec in storage and pass the address of the preloaded exec on the call to IRXEXEC. 
In this case, the exec load routine is not called to load the exec. "Exec Processing 
Routines - IRXJCL and IRXEXEC" on page 258 describes the IRXEXEC routine and 
how you can preload an exec. 

Processing of the REXX Exec 
After the REXX exec is loaded into storage, the language processor is called to 
process (interpret) the exec. During processing, the exec can issue commands, call 
external functions and subroutines, and request various system services. When the 
language processor processes a command, it first evaluates the expression and 
then passes the command to the host for execution. The specific host command 
environment handles command execution. When the exec calls an external function 
or subroutine, the language processor searches for the function or subroutine. This 
includes searching any function packages that are defined for the language 
processor environment in which the exec is executing. 

When system services are requested, specific routines are called to perform the 
requested service (for example, obtaining and freeing storage, 110, and data stack 
requests). TSO/E provides routines for these services that are known as 

Chapter 13. TSO/E REXX Customizing Services 331 



-.~-.-~-- - .. ~.~---

Customizing Services 

replaceable routines because you can provide your own routine that replaces the 
system routine. "Overview of Replaceable Routines" on page 332 summarizes the 
routines. 

Overview of Replaceable Routines 
When a REXX exec executes, various system services are used, such as services 
for loading and freeing the exec, 110, obtaining and freeing storage, and handling 
data stack requests. TSO/E provides routines that handle these types of system 
services. These routines are known as replaceable routines because you can 
provide your own routine that replaces the system routine. You can only provide 
your own replaceable routines in language processor environments that are not 
integrated into TSO/E (see page 344). 

Your routine can check the request for a system service, change the request if 
needed, and then call the system-supplied routine to actually perform the service. 
Your routine can also terminate the request for a system service or perform the 
request itself instead of calling the system-supplied routine. 

Replaceable routines are defined on a language processor environment basis and 
are specified in the parameters module for an environment (see page 346). 

Fig\ure 63 provides a brief description of the functions your replaceable routine must 
perform. Chapter 16, "Replaceable Routines and Exits" on page 427 describes 
each replaceable routine in detail, its input and output parameters, and return 
codes. 

Figure 63. Overview of Replaceable Routines 

Replaceable Routine 

Exec load 

Read input and write 
output (1/0) 

Data stack 

Storage management 

User 10 

Message identifier 

Host command 
environment 

332 TSO/E Version 2 MVS/REXX Reference 

Description 

The exec load routine is called to load a REXX exec into 
storage and to free the exec when it is no longer needed. 

The I/O routine is called to read a record from or write a 
record to a specified ddname. For example, this routine is 
called for the SAY instruction, for the PULL instruction (when 
the data stack is empty), and for the EXECIO command. The 
routine is also called to open and close a data set. 

This routine is called to handle any requests for data stack 
services. For example, it is called for the PULL, PUSH, and 
QUEUE instructions and for the MAKEBUF and OROPBUF 
commands. 

This routine is called to obtain and free storage. 

This routine is called to obtain the user 10. The result that it 
obtains is returned by the USERIO built-in function. 

This routine determines if the message identifier (message 10) 
is displayed with a REXX error message. 

This routine is called to handle the execution of a host 
command for a particular host command environment. 

c 

~~~~~--~~~~~~- .. - .. ~- -----.-~--.--.- .~.~--.. ~~~-



Exit Routines 

( 

( 

Customizing Services 

To provide your own replaceable routine, you must do the following: 

• Write the code for the routine. Chapter 16, "Replaceable Routines and Exits" 
on page 427 describes each routine in detail. 

• Define the routine name to a language processor environment. 

If you use IRXINIT to initialize a new environment, you can pass the names of 
your routines on the call. 

Chapter 14, "Language Processor Environments" on page 335 describes the 
concepts of replaceable routines and their relationship to language processor 
environments in more detail. 

The replaceable routines that TSO/E provides are external interfaces that you can 
call from a program in any address space. For example, a program can call the 
system-supplied data stack routine to perform data stack operations. If you provide 
your own replaceable data stack routine, a program can call your routine to perform 
data stack operations. You can call a system-supplied or user-supplied replaceable 
routine only if a language processor environment exists in which the routine can 
execute. 

------------.---.--,--------~-.. --.,.----, .. 

TSO/E also provides several exit routines you can use to customize REXX 
processing. Several exits have fixed names. Other exits do not have a fixed name. 
You supply the name of these exits on the call to IRXINIT or by changing the 
appropriate default parameters modules that TSO/E provides. Chapter 16, 
"Replaceable Routines and Exits" on page 427 describes the exits in more detail. A 
summary of each exit follows. 

• IRXINITX -- Pre-environment initialization exit routine. The exit receives 
control whenever IRXINIT is called to initialize a new language processor 
environment. It gets control before IRXINIT evaluates any parameters. 

• IRXITTS or IRXITMV -- Post-environment initialization exit routines. IRXITTS is 
for environments that are integrated into TSO/E and IRXITMV is for 
environments that are not integrated into TSO/E. The IRXITTS or IRXITMV exit 
receives control whenever IRXINIT is called to initialize a new language 
processor environment. It receives control after IRXINIT initializes a new 
environment but before IRXINIT completes. 

• IRXTERMX -- Environment termination exit routine. The exit receives control 
whenever IRXTERM is called to terminate a language processor environment. It 
gets control before IRXTERM starts termination processing. 

• Attention handling exit routine -- The exit receives control whenever a REXX 
exec is executing in the TSO/E address space (in a language processor 
environment that is integrated into TSO/E) and an attention interruption occurs. 

• Exec initialization -- The exit receives control after the variable pool for a 
REXX exec has been initialized but before the language processor processes 
the first clause in the exec. 

• Exec termination -- The exit receives control after a REXX exec has completed 
processing but before the variable pool has been terminated. 

• Exit for the IRXEXEC routine (exec processing exit) -- The exit receives control 
whenever the IRXEXEC routine is called to execute a REXX exec. The IRXEXEC 
routine can be explicitly called by a user or called by the system to execute an 

Chapter 13. TSO/E REXX Customizing Services 333 



Customizing Services 

exec. IRXEXEC is always called by the system to handle exec execution. For 
example, if you use IRXJCL to execute an exec in MVS batch, IRXEXEC is called ~\ 

to execute the exec. If you provide an exit for IRXEXEC, the exit is invoked. U 
The exit routines for REXX processing are different from the replaceable routines 
that are described in the previous topic. You can provide replaceable routines only 
in language processor environments that are not integrated into TSO/E. Except for 
the attention handling exit, you can provide exits in any type of language processor 
environment (integrated and not integrated into TSO/E). Note that for 
post-environment initialization, you use IRXITTS for environments that are 
integrated into TSO/E and IRXITMV for environments that are not integrated into 
TSO/E. 

You can use the attention handling exit only in an environment that is integrated into 
TSO/E. 

334 TSO/E Version 2 MVS/REXX Reference 

/--- '"'" 
! \ 

c 



( 

( 

As described in Chapter 13, "TSO/E REXX Customizing Services," a language 
processor environment is the environment in which the language processor 
"interprets" or processes a REXX exec. Such an environment must exist before an 
exec can run. 

The topics in this chapter explain language processor environments and the default 
parameters modules in more detail. They explain the various tasks you can perform 
to customize the environment in which REXX execs run. This chapter describes: 

• Different aspects of a language processor environment and the characteristics 
that make up such an environment. The chapter explains when the system 
invokes the initialization routine, IRXINIT, to initialize an environment and the 
values IRXINIT uses to define the environment. The chapter describes the 
values TSO/E provides in the default parameters modules and how to change 
the values. It also describes what values you can and cannot specify in the 
TSO/E address space and in non-TSO/E address spaces. 

• The various control blocks that are defined when a language processor 
environment is initialized and how you can use the control blocks for REXX 
processing. 

• How language processor environments are chained together. 

• How the data stack is used in different language processor environments. 

Nole: The control blocks created for a language processor environment provide 
information about the environment. You can obtain information from the control 
blocks. However, you must not change any of the control blocks. If you do, 
unpredictable results may occur. 

© Copyright IBM Corp. 1988, 1991 335 

----_ ... _------_._---_. 



Language Processor Environments 

Overview of Language Processor Environments 
The language processor environment defines various characteristics that relate to 
how execs are processed and how system services are accessed and used. Some 
of the environment characteristics include the following: 

• The language in which the system displays REXX messages 

• The ddnames from which input is read, to which output is written, and from 
which REXX execs are fetched 

• The names of several replaceable routines that you can provide for system 
services, such as 1/0 processing, loading REXX execs, and processing data 
stack requests 

• The names of exit routines that the system invokes at different points in REXX 
processing, such as when the IRXEXEC routine is invoked or when a user enters 
attention mode in TSO/E 

• The names of host command environments and the corresponding routines that 
process commands for each host command environment 

• The function packages that are available to execs that run in the environment 

• The subpool the system uses for storage allocation 

• The name of the address space 

• Bit settings (flags) that define many characteristics, such as: 

Whether the environment is integrated into TSO/E (that is, whether execs 
running in the environment can use TSO/E commands and services) 

The search order for commands and for functions and subroutines 

Whether the system displays primary and alternate messages 

"Characteristics of a Language Processor Environment" on page 346 describes the 
environment characteristics. 

The REXX language itself is address space independent. For example, if an exec 
includes a DO loop, the language processor processes the DO loop in the same 
manner regardless of whether the exec runs in TSO/E or in a non-TSO/E address 
space. However, when the language processor processes a REXX exec, various 
host services are used, such as 1/0 and storage.MVS address spaces differ in how 
they access and use system services, such as 1/0 and storage management. 
Although these differences exist, the REXX exec must run in an environment that is 
not dependent on the particular address space in which the exec was invoked. 
Therefore, a REXX exec runs in a language processor environment, which is an 
environment that can be customized to support how each address space accesses 
and uses host services. 

When a language processor environment is initialized, different routines can be 
defined that the system invokes for system services, such as obtaining and freeing 
storage and handling 1/0 requests. The language processor environment provides 
for consistency across MVS address spaces by ensuring that REXX execs run 
independently of the way in which the system accesses system services. At the 
same time, the language processor environment provides flexibility to handle the 
differences between the address spaces and also lets you customize how REXX 
execs are processed and how the system accesses and uses system services. 

336 TSO/E Version 2 MVS/REXX Reference 

o 



c 

(-

( 

( 

~-'----'-'-----' ---------------~ 

Language Processor Environments 

Initialization of an Environment: The initialization routine, IRXINIT, initializes 
language processor environments. The system calls IRXINIT in both TSO/E and 
non-TSO/E address spaces to automatically initialize an environment. Because the 
system automatically initializes language processor environments, users need not 
be concerned with setting up such an environment, changing any values, or even 
that the environment exists. The language processor environment allows 
application programmers and system programmers to customize the system 
interfaces between the language processor and host services. "When Environments 
are Automatically Initialized in TSO/E" on page 341 describes when the system 
automatically initializes an environment in the TSO/E address space. "When 
Environments are Automatically Initialized in MVS" on page 343 describes when 
the system initializes environments in non-TSO/E address spaces. 

When the system calls IRXINIT to automatically initialize an environment, the 
system uses default values. TSO/E provides three default parameters modules 
(load modules) that contain the parameter values IRXINIT uses to initialize three 
different types of language processor environments. The three default parameters 
modules are: 

• IRXTSPRM (for a TSO/E session) 
• IRXISPRM (for ISPF) 
• IRXPARMS (for non-TSO/E address spaces) 

"Characteristics of a Language Processor Environment" on page 346 describes the 
parameters module that contains all of the characteristics for defining a language 
processor environment. "Values Provided in the Three Default Parameters 
Modules" on page 369 describes the defaults TSO/E provides in the three 
parameters modules. You can change the default parameters that TSO/E provides 
by providing your own load modules. "Changing the Default Values for Initializing 
an Environment" on page 381 describes how to change the parameters. 

You can also explicitly invoke IRXINIT and pass the parameter values for IRXINIT to 
use to initialize the environment. Using IRXINIT gives you the flexibility to 
customize the environment in which REXX execs run and how the system accesses 
and uses system services. 

Chains of Environments: Many language processor environments can exist in a 
particular address space. A language processor environment is associated with an 
MVS task. There can be multiple environments associated with one task. Language 
processor environments are chained together in a hierarchical structure and form a 
chain of environments where each environment on a chain is related to the other 
environments on that chain. Although many environments can be associated with 
one MVS task, each individual language processor environment is associated with 
one and only one MVS task. Environments on a particular chain may share various 
resources, such as data sets and the data stack. "Chains of Environments and How 
Environments Are Located" on page 375 describes the relationship between 
language processor environments and MVS tasks and how environments are 
chained together. 

Chapter 14. Language Processor Environments 337 



language Processor Environments 

Maximum Number at Environments: Although there can be many language 
processor environments initialized in a single address space, there is a default 
maximum. The load module IRXANCHR contains an environment table that defines 
the maximum number of environments for one address space. The default 
maximum is not a specific number of environments. The maximum number of 
environments depends on the number of chains of environments and the number of 
environments defined on each chain. The default maximum should be sufficient for 
any address space. However, if a new environment is being initialized and the 
maximum has already been used, IRXINIT completes unsuccessfully and returns 
with a return code of 20 and a reason code of 24. If this error occurs, you can 
change the maximum value by providing a new IRXANCHR load module. "Changing 
the Maximum Number of Environments in an Address Space" on page 404 
describes the IRXANCHR load module and how to provide a new module. 

Control Blocks: When IRXINIT initializes a new language processor environment, 
IRXINIT creates a number of control blocks that contain information about the 
environment. The main control block that IRXINIT creates is called the environment 
block (ENVBLOCK). Each language processor environment is represented by its 
environment block. The environment block contains pointers to other control blocks 
that contain information about the parameters that define the environment, the 
resources within the environment, and the exec currently running in the 
environment. "Control Blocks Created for a Language Processor Environment" on 
page 395 describes all of the control blocks that IRXINIT creates. IRXINIT creates 
an environment block for each language processor environment that it creates. 
Except for the initialization routine, IRXINIT, all REXX execs and services cannot 
operate without an environment being available. 

Note About Changing Any Control Blocks --------------, 

You can obtain information from the control blocks. However, you must not 
change any of the control blocks. If you do, unpredictable results may occur. 

338 TSO/E Version 2 MVS/REXX Reference 

c 



( 

-•...... - .-._ .. _---_._ .. -_ .. __ .. __ ._ ...... - _ .... _ ... _.- -_ ..•......... -.... _._.-.... _.-._ .•... _-_._--

The main control block that IRXINIT creates for a language processor environment 
is the environment block. The environment block represents the language 
processor environment and points to other control blocks that contain information 
about the environment. 

The environment block is known as the anchor that all callable interfaces to REXX 
use. All REXX routines, except for the IRXINIT initialization routine, cannot run 
unless an environment block exists, that is, a language processor environment must 
exist. When IRXINIT initializes a new language processor environment, IRXINIT 
always returns the address of the environment block in register O. (If you explicitly 
invoke the IRXINIT routine, IRXINIT also returns the address of the environment 
block in the parameter list.) You can also use IRXINIT to obtain the address of the 
environment block for the current non-reentrant environment (see page 412). 
IRXINIT returns the address in register 0 and also in a parameter in the parameter 
list. 

The address of the environment block is useful for calling a REXX routine or for 
obtaining information from the control blocks that IRXINIT created for the 
environment. If you invoke any of the TSO/E REXX routines (for example, IRXEXEC 
to process an exec or the variable access routine IRXEXCOM), you can optionally 
pass the address of an environment block to the routine in register O. By passing 
the address of an environment block, you can specify in which specific environment 
you want either the exec or the service to run. This is particularly useful if you use 
the IRXINIT routine to initialize several environments on a chain and then want to 
process a TSO/E REXX routine in a specific environment. When you invoke the 
routine, you can pass the address of the environment block in register O. 

If you invoke a TSO/E REXX routine and do not pass the address of an environment 
block in register 0, the routine runs: 

• In the last environment on the chain under the current task (non-TSO/E address 
space) 

• In the last environment on the chain under the current task or a parent task 
(TSO/E address space). 

If you invoke the IRXEXEC or IRXJCL routine and a language processor environment 
does not exist, the system calls IRXINIT to initialize an environment in which the 
exec will run. When the exec completes processing, the system terminates the 
newly created environment. 

If you are running separate tasks simultaneously and two or more tasks are running 
REXX, each task must have its own environment block. That is, you must initialize a 
language processor environment for each of the tasks. 

Chapter 14. Language Processor Environments 339 



._--.- ---- - --- ---_._---

Using the Environment Block 

The environment block points to several other control blocks that contain the 
parameters IRXINIT used in defining the environment and the addresses of TSO/E 
REXX routines, such as IRXINIT, IRXEXEC, and IRXTERM, and replaceable routines. 
You can access these control blocks to obtain this information. The control blocks 
are described in "Control Blocks Created for a Language Processor Environment" 
on page 395. 

Note About Changing Any Control Blocks ---------------, 

You can obtain information from the control blocks. However, you must not 
change any of the control blocks. If you do, unpredictable results may occur. 

340 TSO/E Version 2 MVS/REXX Reference 

c 

'\ 
\ 

~ 

/""\ 
\",_ . ../ 

c 

---- .----.--.---~--------



c 

( 

(~ 

Environments Initialized in 1S0/E 

When Environments are Automatically Initialized in TSO/E 
The initialization routine, IRXINIT, initializes a language processor environment. 
The system calls IRXINIT to automatically initialize a default environment when a 
user logs on to TSO/E and when a user invokes ISPF. 

When a user logs on to TSO/E, the system calls IRXINIT as part of the logon process 
to automatically initialize a language processor environment for the TSO/E session. 
The initialization of a language processor environment is transparent to the user. 
After users log on to TSO/E, they can simply invoke a REXX exec without performing 
any other tasks. 

Nole: If your installation uses a user-written terminal monitor program (TMP) 
instead of the TMP provided by TSO/E, the system does not automatically initialize a 
language processor environment. See "Initializing Environments for User-Written 
TMPs" on page 342 for information about the tasks you must perform to initialize a 
language processor environment in order to run REXX execs. 

Similarly, when a user invokes ISPF from TSO/E, the system calls the IRXINIT 
routine to automatically initialize a language processor environment for ISPF, that 
is, for the ISPF screen. The second language processor environment is separate 
from the environment that IRXINIT initialized for the TSO/E session. If the user 
enters split screen in ISPF, IRXINIT initializes a third language processor 
environment for the second ISPF screen. At this point, three separate language 
processor environments exist. If the user invokes a REXX exec from the second 
ISPF screen, the exec runs under the third language processor environment, that is, 
the environment IRXINIT initialized for the second ISPF screen. If the user invokes 
the exec from the first ISPF screen, the exec runs under the second language 
processor environment. 

The termination routine, IRXTERM, terminates a language processor environment. 
Continuing the above example, when the user returns to one screen in ISPF, the 
system calls the IRXTERM routine. IRXTERM terminates the third language 
processor environment that the system initialized for the second ISPF screen. 
Similarly, when the user exits from ISPF and returns to TSO/E READY mode, 
IRXTERM terminates the language processor environment for the first ISPF screen. 
In TSO/E READY mode, the first language processor environment still exists. At this 
point, if the user invokes a REXX exec from READY mode, the exec runs under the 
environment that IRXINIT initialized during TSO/E logon. When the user logs off, 
IRXTERM terminates the language processor environment for the TSO/E session. 

To summarize, the IRXINIT routine automatically initializes a language processor 
environment when a user logs on to TSO/E and whenever an ISPF screen is 
initialized. Each environment that IRXINIT initializes is separate from another 
environment. The IRXTERM routine automatically terminates the language 
processor environment for an ISPF screen when the screen session ends and 
terminates the environment created at TSO/E logon when the user logs off. 

You can also invoke the IRXINIT routine to initialize a language processor 
environment. On the call to IRXINIT, you specify values you want defined for the 
new environment. Using IRXINIT gives you the ability to define a language 
processor environment and customize how REXX execs run and how the system 
accesses and uses system services. Using IRXINIT to initialize environments is 
particularly important in non-TSO/E address spaces where you may want to provide 
replaceable routines to handle system services. However, you may want to use 
IRXINIT in TSO/E in order to create an environment that is similar to a non-TSO/E 

Chapter 14. Language Processor Environments 341 



Environments Initialized In TSO/E 

address space to test any replaceable routines or REXX execs you have developed 
for non-TSO/E. 0\ 

If you explicitly invoke IRXINIT to initialize a language processor environment, you 
must invoke the IRXTERM routine to terminate the environment. The system does 
not terminate language processor environments that you initialized by calling 
IRXINIT. Information about IRXINIT and IRXTERM is described later in this chapter. 
Chapter 15, "Initialization and Termination Routines" provides reference 
information about the parameters and return codes for IRXINIT and IRXTERM. 

Initializing Environments for User-Written TMPs 

\...~ 

If your installation uses a user-written terminal monitor program (TMP) instead of 
the TMP provided by TSO/E, the system does not automatically initialize a language 
processor environment in the TSO/E address space when a user logs on to TSO/E. 
That is, the system does not initialize a language processor environment for TSO/E 
READY mode. A language processor environment is required for processing REXX 

,;'- ~, execs. To allow users to invoke REXX execs from TSO/E READY mode, your 
user-written TMP must invoke the initialization routine, IRXINIT, to initialize a \,-, _ / 
language processor environment. To initialize the environment, the TMP must do 
the following: 

• Invoke the initialization routine, IRXINIT, to initialize a language processor 
environment. The environment must be integrated into TSO/E, that is, the 
TSOFL flag must be on. On the call to IRXINIT, you can provide parameters that 
are equivalent to the default values that TSO/E provides in the IRXTSPRM 
default parameters module. 

• If the TMP is not using the STACK ENVIRON=CREATE service to obtain a new 
ECT (that is, the user-written TMP is obtaining its own storage for the ECT), the 
TMP must ensure that the ECTEXTPR field is set to zeros. If the TMP is using 
the STACK ENVIRON = CREATE service to obtain the ECT, you should not set 
the ECTEXTPR field. 

• When all user-written TMP processing is completed, you must invoke the 
termination routine, IRXTERM, to terminate the language processor 
environment that IRXINIT initialized. The system does not automatically 
terminate the environment. 

The following topics in this chapter describe the characteristics of a language 
processor environment, the different types of environments, and the default 
parameters modules that TSO/E provides. Chapter 15, "Initialization and 
Termination Routines" describes the initialization and termination routines IRXINIT 
and IRXTERM. 

342 TSO/E Version 2 MVS/REXX Reference 

c 



c 

( 

( 

;,,' 
,; J 

As described in the previous topic, the system automatically initializes a language 
processor environment in the TSO/E address space whenever a user logs on to 
TSO/E and when a user invokes ISPF. After a TSO/E session has been started, 
users can simply invoke a REXX exec and the exec runs in the language processor 
environment in which it was invoked. 

In non-TSO/E address spaces, the system does not automatically initialize language 
processor environments at a specific point, such as when the address space is 
activated. The system initializes an environment whenever you invoke the IRXJCL 
or IRXEXEC routine to invoke a REXX exec if an environment does not already exist 
on the current task. 

TSO/E provides the TSO/E environment service, IKJTSOEV, that lets you create a 
TSO/E environment in a non-TSO/E address space. If you invoke IKJTSOEV to 
create a TSO/E environment, IKJTSOEV also initializes a REXX language processor 
environment within that TSO/E environment. IKJTSOEV initializes the language 
processor environment only if another language processor environment does not 
already exist in that address space. See TSOIE Version 2 Programming Services 
for more information about the TSO/E environment service, IKJTSOEV. 

You can run a REXX exec in MVS batch by specifying IRXJCL as the program on the 
JCL EXEC statement. You can invoke either the IRXJCL or IRXEXEC routines from a 
program in any address space to invoke an exec. "Exec Processing Routines -
IRXJCL and IRXEXEC" on page 258 describes the two routines in detail. 

When the IRXJCL or IRXEXEC routine is called, the routine determines whether a 
language processor environment already exists. (As discussed previously, more 
than one environment can be initialized in a single address space. The 
environments are chained together in a hierarchical structure). IRXJCL or IRXEXEC 
do not invoke IRXINIT to initialize an environment if an environment already exists. 
The routines use the current environment to run the exec. "Chains of Environments 
and How Environments Are Located" on page 375 describes how language 
procesSor environments are chained together and how environments are located. 

If either IRXEXEC or IRXJCL invoke the IRXINIT routine to initialize an environment, 
after the REXX exec completes processing, the system calls the IRXTERM routine to 
terminate the environment that IRXINIT initialized. 

Note: If several language processor environments already exist when you invoke 
IRXJCL or IRXEXEC, you can pass the address of an environment block in register 0 
on the call to indicate the environment in which the exec should run. See "Using the 
Environment Block" on page 339 for more information. 

Chapter 14. Language Processor Environments 343 



Type. of Environments 

Types of Environments - Integrated and Not Integrated Into T80/E (\ 
There are two types of language processor environments: ~.J 

• Environments that are integrated into TSO/E 
• Environments that are not integrated into TSO/E. 

The type of language processor environment that IRXINIT initializes depends on the 
address space in which IRXINIT creates the environment. Whether or not a 
language processor environment is integrated into TSO/E is determined by the 
setting of the TSOFL flag (see page 351). The TSOFL flag is one characteristic 
(parameter) that IRXINIT uses to initialize a new environment. If the TSOFL flag is 
off, the new environment is not integrated into TSO/E. If the flag is on, the 
environment is integrated into TSO/E. 

In non-TSO/E address spaces, language processor environments cannot be 
integrated into TSO/E. Therefore, when the system automatically initializes an 
environment in a non-TSO/E address space, the TSOFL flag is off. Similarly, if you 
explicitly invoke the initialization routine (IRXINIT) to initialize an environment in a 
non-TSO/E address space, the TSOFL flag must be off. 

In the TSO/E address space, a language processor environment mayor may not be 
integrated into TSO/E; that is, the TSOFL flag can be on or off. When the system 
automatically initializes an environment in the TSO/E address space, the 
environment is integrated into TSO/E (the TSOFL flag is on). If you explicitly invoke 
the initialization routine, IRXINIT, to initialize an environment in the TSO/E address 
space, the environment mayor may not be integrated into TSO/E. That is, the 
TSOFL flag can be on or off. You may want to initialize an environment in the TSO/E 
address space that is not integrated into TSO/E. This lets you initialize an 
environment that is the same as an environment for a non-TSO/E address space. 
By doing this, for example, you can test REXX execs you have written for a 
non-TSO/E address space. 

The type of language processor environment affects two different aspects of REXX 
processing: 

• The functions, commands, and services you can use in a REXX exec itself 

• The different characteristics (parameters) that define the language processor 
environment that IRXINIT initializes. 

The following topics describe the two aspects of REXX processing. 

Functions, Commands, and Services in an Exec: The type of language processor 
environment in which a REXX exec runs affects the kinds of functions, commands, 
and services you can use in the exec itself. If the exec runs in an environment that 
is integrated into TSO/E, you can use TSO/E commands, such as ALLOCATE, TEST, 
and PRINTDS in the exec. You can also use TSO/E programming services, such as 
the parse service routine (IKJPARS) and the dynamic allocation interface routine 
(DAIR). The TSO/E programming service routines are described in TSOIE Version 2 
Programming Services. In addition, the exec can use all the TSO/E external 
functions, ISPF services, and can invoke and be invoked by CLiSTs. 

If an exec runs in an environment that is not integrated into TSO/E, the exec cannot 
contain TSO/E commands or the TSO/E service routines, such as IKJPARS and 
DAIR, or use ISPF services or CLiSTs. The exec can use the TSO/E external 
functions SET LANG and STORAGE only. The exec cannot use the other TSO/E 

344 TSO/E Version 2 MVS/REXX Reference 

--.-------

c 



( 

--~-- -----~--~---

external functions, such as MSG and OUTTRAP. Chapter 8, "Using REXX in 
Different Address Spaces" describes the instructions, functions, commands, and 
services you can use in REXX execs that you write for TSO/E and for non-TSO/E 
address spaces. 

Different Characteristics for the Environment: When IRXINIT initializes a language 
processor environment, IRXINIT defines different characteristics for the 
environment. The three parameters modules TSO/E provides (lRXTSPRM, 
IRXISPRM, and IRXPARMS) define the default values for initializing environments. 
If you provide your own parameters module or explicitly invoke the initialization 
routine (IRXINIT), the characteristics you can define for the environment depend on 
the type of environment. 

Some characteristics can be used for any type of language processor environment. 
In some cases, the values you specify may differ depending on the environment. 
Other characteristics can be specified only for environments that are integrated into 
TSO/E or for environments that are not integrated into TSO/E. For example, you can 
provide your own replaceable routines only for environments that are not integrated 
into TSO/E. TSO/E also provides exit routines for REXX processing. In general, you 
can provide exits for any type of language processor environment (integrated and 
not integrated into TSO/E). One exception is the attention handling exit, which is 
only for environments that are integrated into TSO/E. Chapter 16, "Replaceable 
Routines and Exits" describes the replaceable routines and exits in more detail. 

"Specifying Values for Different Environments" on page 386 describes the 
environment characteristics you can specify for language processor environments 
that either are or are not integrated into TSO/E. 

Chapter 14. Language Processor Environments 345 



Environment Characteristics 

Characteristics of a language ProceSSOi tEnVh'OifU'nent 
When IRXINIT initializes a language processor environment, IRXINIT creates several 
control blocks that contain information about the environment. One of the control 
blocks is the parameter block (PARMBLOCK). The parameter block contains the 
parameter values that IRXINIT used to define the environment, that is, the 
parameter block contains the characteristics that define the environment. The block 
also contains the addresses of the module name table, the host command 
environment table, and the function package table, which contain additional 
characteristics for the environment. 

TSO/E provides three default parameters modules, which are load modules that 
contain the values for initializing language processor environments. The three 
default modules are IRXPARMS (MVS), IRXTSPRM (TSO/E), and IRXISPRM (ISPF). 
"Values Provided in the Three Default Parameters Modules" on page 369 shows the 
default values that TSO/E provides in each of these modules. A parameters module 
consists of the parameter block (PARMBLOCK), the module name table, the host 
command environment table, and the function package table. Figure 64 shows the 
format of the parameters module. 

Parameters Module 

Parameter Block 
(PARMBLOCK) 

t--

I~ 
Module Name Table 

Host Command 
Environment Table 

-
Function Package Table 

Figure 64. Overview of Parameters Module 

Figure 65 shows the format of PARMBLOCK. Each field is described in more detail 
following the table. The end of the PARMBLOCK must be indicated by 
X' FFFFFFFFFFFFFFFF I. The format of the module name table, host command 
environment table, and function package table are described in subsequent topics. 

346 TSO/E Version 2 MVS/REXX Reference 

" '\ 

c 



( 

( 

Figure 65. Format of the Parameter Block (PARMBLOCK) 

Offset Number Field Name Description 
(Decimal) of Bytes 

0 8 ID Identifies the parameter block 
(PARMBLOCK). 

8 4 VERSION Identifies the version of the parameter block. 

12 3 LANGUAGE Language code for REXX messages. 

15 1 RESERVED Reserved. 

16 4 MODNAMET Address of module name table. 

20 4 SUBCOMTB Address of host command environment 
table. 

24 4 PACKTB Address of function package table. 

28 8 PARSETOK Token for PARSE SOURCE instruction. 

36 4 FLAGS A fullword of bits that IRXINIT uses as flags 
to define characteristics for the environment. 

40 4 MASKS A fullword of bits that IRXINIT uses as a 
mask for the setting of the flag bits. 

44 4 SUBPOOL Number of the subpool for storage 
allocation. 

48 8 ADDRSPN Name of the address space. 

56 8 The end of the PARMBLOCK must be 
indicated by X I FFFFFFFFFFFFFFFF I. 

The following information describes each field in the PARMBLOCK. If you change 
any of the default parameters modules that TSO/E provides or you use IRXINIT to 
initialize a language processor environment, read "Changing the Default Values for 
Initializing an Environment" on page 381, which provides information about 
changing the different values that define an environment. 

ID An eight byte character field that is used only to identify the parameter block 
that IRXINIT creates. The field name is ID. 

The value that TSO/E provides in the three default parameters modules is 
IRXPARMS. You must not change the value in the ID field in any of the 
parameters modules. 

VersIon 
A four byte character field that identifies the version of the parameter block for a 
particular release and level of TSO/E. The field name is VERSION. 

The value that TSO/E provides in the three default parameters modules is 0200. 
You must not change the Version field in any of the parameters modules. 

Language Code 
A three byte field that contains a language code. The field name is LANGUAGE. 

The language code identifies the language in which REXX messages are 
displayed. The default that TSO/E provides in all three parameters modules is 
ENU, which is the language code for US English in mixed case (upper and 
lowercase). The possible values are: 

• CHS - Simplified Chinese 
• CHT - Traditional Chinese 
• DAN - Danish 

Chapter 14. Language Processor Environments 347 



Environment Characteristics 

• DEU - German 
• ENP - US English in uppercase 
• ENU - US English in mixed case (upper and lowercase) 
• ESP - Spanish 
• FRA - French 
• JPN - Japanese (Kanji) 
• KOR - Korean 
• PTB - Brazilian Portuguese 

Reserved 
A one byte field that is reserved. 

Module Name Table 
A four byte field that contains the address of the module name table. The field 
name is MODNAMET. 

The table contains the ddnames for reading and writing data and for loading 
REXX execs, the names of several replaceable routines, and the names of 
several exit routines. "Module Name Table" on page 356 describes the table in ('"' 
detail. \,_ y' 

Host Command Environment Table 
A four byte field that contains the address of the host command environment 
table. The field name is SUBCOMTB. 

The table contains the names of the host command environments for processing 
host commands. These are the environments that REXX execs can specify 
using the ADDRESS instruction. "Commands to External Environments" on 
page 25 describes how to issue host commands from a REXX exec and the 
different environments TSO/E provides for command processing. 

The table also contains the names of the routines that are invoked to handle the 
processing of commands that are issued in each host command environment. 
"Host Command Environment Table" on page 361 describes the table in detail. 

Function Package Table 
A four byte field that contains the address of the function package table for 
function packages. The field name is PACKTB. "Function Package Table" on 
page 365 describes the table in detail. 

Token for PARSE SOURCE 
An eight byte character string that contains the value of a token that the PARSE 
SOURCE instruction uses. The field name is PARSETOK. The default that 
TSO/E provides in all three parameters modules is a blank. 

This token is the last token of the string that PARSE SOURCE returns. Every 
PARSE SOURCE instruction processed in the environment returns the token. 

Flags 
A fullword of bits that IRXINIT uses as flags. The field name is FLAGS. 

The flags define certain characteristics for the new language processor 
environment and how the environment and execs running in the environment 
operate. 

In addition to the flags field, t~e parameter following the flags is a mask field 
that works together with the flags. The mask field is a string that has the same 
length as the flags field. Each bit position in the mask field corresponds to a bit 
position in the flags field. IRXINIT uses the mask field to determine whether it 
should use or ignore the corresponding flag bit. 

348 TSO/E Version 2 MVS/REXX Reference 

c 



( 

(' 

(-

( 

Environment CharacteristlcI 

The description of the mask field on page 350 describes the bit settings for the 
mask field and how the value for each flag is determined. 

Figure 66 summarizes each flag. "Flags and Corresponding Masks" on 
page 351 describes each of the flags in more detail and the bit settings for each 
flag. The mapping of the parameter block (PARMBLOCK) includes the mapping 
of the flags. TSO/E provides a mapping macro IRXPARMB for the parameter 
block. The mapping macro is in SYS1.MACLIB. 

Figure 66 (Page 1 of 2). Summary of Each Flag Bit in the Parameters Module 

BII Flag Name Descrlplion 
P081110n 
Number 

0 TSOFL Indicates whether the new environment is to be integrated 
into TSO/E. 

1 Reserved This bit is reserved. 

2 CMDSOFL Specifies the search order the system uses to locate a 
command. 

3 FUNCSOFL Specifies the search order the system uses to locate 
functions and subroutines. 

4 NOSTKFL Prevents REXX execs running in the environment from using 
any data stack functions. 

5 NOREADFL Prevents REXX execs running in the environment from 
reading any input file. 

6 NOWRTFL Prevents REXX execs running in the environment from 
writing to any output file. 

7 NEWSTKFL Indicates whether a new data stack is initialized for the new 
environment. 

8 USERPKFL Indicates whether the user function packages that are 
defined for the previous language processor environment 
are also available in the new environment. 

9 LOCPKFL Indicates whether the local function packages that are 
defined for the previous language processor environment 
are also available in the new environment. 

10 SYSPKFL Indicates whether the system function packages that are 
defined for the previous language processor environment 
are also available in the new environment. 

11 NEWSCFL Indicates whether the host command environments <as 
specified in the host command environment table) that are 
defined for the previous language processor environment 
are also available in the new environment. 

12 CLOSEXFL Indicates whether the data set from which REXX execs are 
obtained is closed after an exec is loaded or remains open. 

13 NOESTAE Indicates whether a recovery ESTAE is permitted under the 
environment. 

14 RENTRANT Indicates whether the environment is initialized as either 
reentrant or non-reentrant. 

15 NOPMSGS Indicates whether primary messages are printed. 

16 ALTMSGS Indicates whether alternate messages are printed. 

17 SPSHARE Indicates whether the subpool specified in the SUBPOOL 
field is shared across MVS tasks. 

Chapter 14. Language Processor Environments 349 



Environment Characteristics 

Figure 66 (Page 2 of 2). Summary of Each Flag Bit in the Parameters Module 

Bit 
Position 
Number 

Flag Name Description 

18 

19 

20 

21 

22 

STORFL Indicates whether REXX execs running in the environment 
can use the STORAGE function. 

NOLOADDD Indicates whether the DO specified in the LOADDD field in 
the module name table is searched for execs. 

NOMSGWTO Indicates whether REXX messages are processed normally 
in the environment or if they should be routed to a file. 

NOMSGIO Indicates whether REXX messages are processed normally 
in the environment or if they should be routed to a JCL 
listing. 

Reserved The remaining bits are reserved. 

Mask 
A fullword of bits that IRXINIT uses as a mask for the setting of the flag bits. The 
flags field is described on page 348. 

The field name is MASKS. The mask field is a string that has the same length 
as the flags field. Each bit position in the mask field corresponds to a bit in the 
same position in the flags field. IRXINIT uses the mask field to determine 
whether it should use or ignore the corresponding flag bit. For a given bit 
position, if the value in the mask field is: 

• 0 - the corresponding bit in the flags field is ignored (that is, the bit is 
considered nUll) 

• 1 - the corresponding bit in the flags field is used. 

Subpool Number 
A fullword of binary numbers that specifies the number of the subpool in which 
storage is allocated for the entire language processor environment. The field 
name is SUBPOOL. The default value in the IRXPARMS module is O. The value 
can be from 0 - 127. 

In the IRXTSPRM and IRXISPRM modules, the default is 78 (in decimal). For 
environments that are integrated into TSO/E (see page 344), the subpool 
number must be 78. 

Address Space Name 
An eight byte character field that specifies the name of the address space. The 
field name is ADDRSPN. TSO/E provides the following defaults: 

• IRXPARMS module - MVS 
• IRXTSPRM module - TSO/E 
• IRXISPRM module - ISPF 

X'FFFFFFFFFFFFFFFF' 
The end of the parameter block is indicated by X' FFFFFFFFFFFFFFFF'. 

350 TSO/E Version 2 MVS/REXX Reference 

o 

o 



(~ 

( 

-- ----------- -------------------

_ .. _._, •• w~._,~",.~ __ '''''_.~." ._ •...•. , _ ..... _ .. ~~._,_ " .......... ff~' ... ' , ..... _ ... _ .~_. ______ ~. ___ ........... ~ ......... _ ... ffl._. __ ' ___ ... ___ • ______ .... ~_~ .. .,W _ _.~ ...... _ 

Fh!ilgS and Con·eSp(~*l(Ung Masks 
This topic describes the flags field. 

TSOFL 
The TSOFL flag indicates whether IRXINIT should integrate the new language 
processor environment into TSO/E. That is, the flag indicates whether or not 
REXX execs that run in the environment can use TSO/E services and 
commands. 

0- The environment is not integrated into TSO/E. 

1 - The environment is integrated into the TSO/E. 

You can initialize an environment in the TSO/E address space and set the 
TSOFL flag off. In this case, any REXX execs that run in the environment must 
not use any TSO/E commands or services. If they do, unpredictable results can 
occur. 

Setting the TSOFL off for an environment that is initialized in the TSO/E address 
space lets you provide your own replaceable routines for different system 
services, such as I/O and data stack requests. It also lets you test REXX execs 
in an environment that is similar to a language processor environment that is 
initialized in a non-TSO/E address space. 

If the TSOFL flag is on, there are many values that you cannot specify in the 
parameter block. "Specifying Values for Different Environments" on page 386 
describes the parameters you can use for environments that are integrated into 
TSO/E and for environments that are not integrated into TSO/E. 

Reserved 
This bit is reserved. 

CMDSOFL 
The CMDSOFL flag is the command search order flag. The flag specifies the 
search order the system uses to locate a command that is issued from an exec. 

0- Search for modules first, followed by REXX execs, followed by CLiSTs 
(TSO/E address space only). The ddname the system uses to search for 
REXX execs is specified in the LOADDD field in the module name table. 

1 - Search for REXX execs first, followed by modules, followed by CLiSTs 
(TSO/E address space only). Theddname the system uses to search for 
REXX execs is specified in the LOADDD field in the module name table. 

FUNCSOFL 
The FUNCSOFL flag is the function/subroutine search order flag. The flag 
specifies the search order the system uses to locate functions and subroutines 
that an exec calls. 

0- Search load libraries first. If the function or subroutine is not found, 
search for a REXX exec. 

1 - Search for a REXX exec. If the exec is not found, search the load 
libraries. 

Chapter 14. Language Processor Environments 351 

--------,------------



Flags and Masks 

NOSTKFL 
The NOSTKFL flag is the no data stack flag. Use the flag to prevent REXX execs 0 
running in the environment from using any data stack functions.;,. , .. ' 

0- A REXX exec can use any data stack functions. 

1 - Requests for data stack functions are processed as though the data 
stack were empty. Any data that is pushed (PUSH) or queued (QUEUE) is 
lost. A PULL operates as though the data stack were empty. The QSTACK 
command returns a O. The NEWSTACK command seems to work, but a new 
data stack is not created and any subsequent data stack operations operate 
as if the data stack is permanently empty. 

NOREADFL 
The NOREADFL flag is the no read flag. Use the flag to prevent REXX execs 
from reading any input file using either the EXECIO command or the 
system-supplied 110 replaceable routine IRXINOUT. 

0- Reads from any input file are permitted. 

1 - Reads from any input file are not permitted. 

NOWRTFL 
The NOWRTFL flag is the no write flag. Use the flag to prevent REXX execs from 
writing to any output file using either the EXECIO command or the 
system-supplied 110 replaceable routine IRXINOUT. 

0- Writes to any output file are permitted. 

1 - Writes to any output file are not permitted. 

NEWSTKFL 
The NEWSTKFL flag is the new data stack flag. Use the flag to specify whether 
IRXINIT should initialize a new data stack for the language processor 
envi ronment. If IRXINIT creates a new data stack, any REXX exec or other 
program that runs in the new environment cannot access any data stacks for 
previous environments. Any subsequent environments that are initialized under 
this environment will access the data stack that was most recently created by 
the NEWSTKFL flag. The first environment that is initialized on any chain of 
environments is always initialized as though the NEWSTKFL flag is on, that is, 
IRXINIT automatically creates a new data stack. 

When you terminate the environment that is initialized, the data stack that was 
created at the time of initialization is deleted regardless of whether the data 
stack contains any elements. All data on the data stack is lost. 

0- IRXINIT does not create a new data stack. However, if this is the first 
environment being initialized on a chain, IRXINIT automatically initializes a 
data stack. 

1 -IRXINIT creates a new data stack during the initialization of the new 
language processor environment. The data stack will be deleted when the 
environment is terminated. 

"Using the Data Stack in Different Environments" on page 406 describes the 
data stack in different environments. 

Note: The NOSTKFL overrides the setti ng of the NEWSTKFL. c 
352 TSO/E Version 2 MVS/REXX Reference 



C.·," 
/' 

( 

---_ .. _-_._--

Flags and Masks 

USERPKFL 
The USERPKFL flag is the user package function flag. The flag determines 
whether the user function packages that are defined for the previous language 
processor environment are also available to the new environment. 

0- The user function packages from the previous environment are added to 
the user function packages for the new environment. 

1 - The user function packages from the previous environment are not 
added to the user function packages for the new environment. 

LOCPKFL 
The LOCPKFL flag is the local function package flag. The flag determines 
whether the local function packages that are defined for the previous language 
processor environment are also available to the new environment. 

0- The local function packages from the previous environment are added 
to the local function packages for the new environment. 

1 - The local function packages from the previous environment are not 
added to the local function packages for the new environment. 

SYSPKFL 
The SYSPKFL flag is the system function package flag. The flag determines 
whether the system function packages that are defined for the previous 
language processor environment are also available to the new environment. 

0- The system function packages from the previous environment are added 
to the system function packages for the new environment. 

1 - The system function packages from the previous environment are not 
added to the system function packages for the new environment. 

NEWSCFL 
The NEWSCFL flag is the new host command environment table flag. The flag 
determines whether the environments for issuing host commands that are 
defined for the previous language processor environment are also available to 
execs running in the new environment. 

0- The host command environments from the previous environment are 
added to the host command environment table for the new environment. 

1 - The host command environments from the previous environment are 
not added to the host command environment table for the new environment. 

CLOSEXFL 
The CLOSEXFL flag is the close data set flag. The flag determines whether the 
data set (specified in the LOADDD field in the module name table) from which 
execs are fetched is closed after the exec is loaded or remains open. 

The CLOSEXFL flag is needed if you are editing REXX execs and then running 
the changed execs under the same language processor environment. If the data 
set is not closed, results may be unpredictable. 

0- The data set is opened once and remains open. 

1 - The data set is opened for each load and then closed. 

Chapter 14. Language Processor Environments 353 



Flags and Masks 

NOESTAE 
The NOESTAE flag is the no ESTAE flag. The flag determines whether a 
recovery ESTAE is established under the environment. 

o -IRXINIT establishes a recovery ESTAE. 

1 -IRXINIT does not establish a recovery ESTAE. 

When IRXINIT initializes the environment, iRXINIT first temporarily establishes a 
recovery ESTAE regardless of the setting of the NOESTAE flag. However, if the 
NOESTAE flag is on, IRXINIT removes the recovery ESTAE for the environment 
before IRXINIT finishes processing. 

RENTRANT 
The RENTRANT flag is the initialize reentrant language processor environment 
flag. The flag determines whether IRXINIT initializes the new environment as a 
reentrant or a non-reentrant environment. 

0- IRXINIT initializes a non-reentrant language processor environment. 

1-IRXINIT initializes a reentrant language processor environment. 

For information about reentrant environments, see "Using the Environment 
Block for Reentrant Environments" on page 256. 

NOPMSGS 
The NOPMSGS flag is the primary messages flag. The flag determines whether 
REXX primary messages are printed in the environment. 

0- Primary messages are printed. 

1 - Primary messages are not printed. 

ALTMSGS 
The ALTMSGS flag is the alternate messages flag. The flag determines whether 
REXX alternate messages are printed in the environment. 

0- Alternate messages are not printed. 

1 - Alternate messages are printed. 

Nole: Alternate messages are also known as secondary messages. 

SPSHARE 
The SPSHARE flag is the sharing subpools flag. The flag determines whether 
the subpool specified in the SUBPOOL field in the module name table should be 
shared across MVS tasks. 

0- The subpool is not shared. 

1 - The subpool is shared. 

If the subpool is shared, REXX uses the same subpool for all of these tasks. 

STORFL 
The STORFL flag is the STORAGE function flag. The flag controls the STORAGE 
external function and indicates whether REXX execs running in the environment 
can use the STORAGE function. 

0- Execs can use the STORAGE external function. 
1 - Execs cannot use the STORAGE external function. 

354 TSO/E Version 2 MVS/REXX Reference 

,~ '\ 
I ,) \ ' ,-----

o 



c! 

( 

(-

.. ~-~ ... -----

Flags and Masks 

NOLOADDD 
The NOLOADDD flag is the exec search order flag. The flag controls the search 
order for REXX execs. The flag indicates whether or not the system should 
search the data set specified in the LOADDD field in the module name table. 

0- The system searches the DD specified in the LOADDD field. 

1 - The system does not search the DD specified in the LOADDD field. 

With the defaults that TSO/E provides, the NOLOADDD flag is off (0), which 
means the system searches the DD specified in the LOADDD field. The default 
ddname is SYSEXEC. If the language processor environment is integrated into 
TSO/E, the system searches SYSEXEC followed by SYSPROC. For more 
information, see "Using SYSPROC and SYSEXEC for REXX Execs" on page 392. 

"Search Order" on page 87 describes the complete search order TSO/E uses to 
locate an exec. 

NOMSGWTO 
The NOMSGWTO flag controls whether REXX error messages are processed 
normally (that is, issued using the WTO service), or whether the messages are 
routed to a file in a language processor environment that is not integrated into 
TSO/E. SYSTSPRT is the default file name. 

0- REXX error messages are processed normally. 
1 - REXX error messages are routed to the SYSTSPRT file. 

NOMSGIO 
The NOMSGIO flag controls whether REXX error messages with I/O are 
processed normally (that is, issued to the OUTDD), or whether the messages. 
are routed to the JCL listing in a language processor environment that is not 
integrated into TSO/E. 

0- REXX error messages are processed normally. 
1 - REXX error messages are routed to the JCL listing. 

Reserved 
The remaining bits are reserved. 

Chapter 14. Language Processor Environments 355 



--------- --------_ .. _-- -

Module Name Table 

Module Name Table 
The module name table contains the names of: 

• The DDs for reading and writing data 
• The DO from which to load REXX execs 
• Replaceable routines 
• Several exit routines. 

In the parameter block, the MODNAMET field points to the module name table (see 
page 346). 

Figure 67 shows the format of the module name table. Each field is described in 
detail following the table. The end of the table is indicated by 
X I FFFFFFFFFFFFFFFF I. TSO/E provides a mapping macro IRXMODNT for the 
module name table. The mapping macro is in SYS1.IVIACLIB. 

Figure 67. Format of the Module Name Table 

OHset Number Field Name Description 
(Decimal) of Bytes 

0 8 INDO The DO from which the PARSE EXTERNAL 
instruction reads input data. 

8 8 OUTDO The DO to which data is written for either a 
SAY instruction, for REXX error messages, or 
when tracing is started. 

16 8 LOADDD The DO from which REXX execs are fetched. 

24 8 IOROUT The name of the input/output (1/0) replaceable 
routine. 

32 8 EX ROUT The name of the exec load replaceable routine. 

40 8 GETFREER The name of the storage management 
replaceable routine. 

48 8 EXECINIT The name of the exec initialization exit routine. 

56 8 ATINROUT The name of an attention handling exit routine. 

64 8 STACKRT The name of the data stack replaceable 
routine. 

72 8 IRXEXECX The name of the exit routine for the IRXEXEC 
routine. 

80 8 IDROUT The name of the user 10 replaceable routine. 

88 8 MSGIDRT The name of the message identifier 
replaceable routine. 

96 8 EXECTERM The name of the exec termination exit routine. 

104 8 The end of the module name table must be 
indicated by X I FFFFFFFFFFFFFFFF I. 

Each field in the module name table is described below. You can specify some 
fields for any type of language processor environment. You can use other fields 
only for environments that are integrated into TSO/E or for environments that are 
not integrated into TSO/E. The description of each field below indicates the type of 
environment for which you can use the field. "Relationship of Fields in Module 
Name Table to Types of Environments" on page 360 summarizes the fields in the 
module name table and the environments for which you can specify each field. 

356 TSO/E Version 2 MVS/REXX Reference 

o 

~ 

,/ 

r , 



c\ INDO 
Specifies the name of the DD from which the PARSE EXTERNAL instruction 
reads input data (in a language processor environment that is not integrated 
into TSO/E). The system default is SYSTSIN. 

If the environment is integrated into TSO/E (the TSOFL flag is on), the system 
ignores any value you specify for INDD. In TSO/E foreground, TSO/E uses the 
terminal. In the background, TSO/E uses the input stream, which is SYSTSIN. 

OUTDO 
Specifies the name of the DD to which data is written for a SAY instruction, for 
REXX error messages, or when tracing is started (in a language processor 
environment that is not integrated into TSO/E). The system default is 
SYSTSPRT. 

If the environment is integrated into TSO/E (the TSOFL flag is on), the system 
ignores any value you specify for OUTDD. In TSO/E foreground, TSO/E uses the 
terminal. In the background, TSO/E uses the output stream, which is 
SYSTSPRT. 

LOADDD 
Specifies the name of the DO from which REXX execs are loaded. The default is 
SYSEXEC. You can specify a ddname in any type of language processor. 
environment (integrated or not integrated into TSO/E). 

In TSO/E, you can store REXX execs in data sets that are allocated to SYSEXEC 
or SYSPROC. If you store an exec in a data set that is allocated to SYSPROC, 
the exec must start with a comment containing the characters REXX within the 
first line (line 1). This is required in order to distinguish REXX execs from 
CLiSTs that are also stored in SYSPROC. 

In data sets that are allocated to SYSEXEC, you can store REXX execs only, not 
CLiSTs. If you store an exec in SYSEXEC, the exec need not start with a 
comment containing the characters "REXX." However, it is recommended that 
you start all REXX programs with a comment regardless of where you store 
them. SYSEXEC is useful for REXX execs that follow the SAA Procedures 
Language standards and that will be used on other SAA environments. 

The NOLOADDD flag (see page 355) controls whether or not the system 
searches the DO specified in the LOADDD field. 

• If the NOLOADDD flag is off, the system searches the DO specified in the 
LOADDD field. If the language processor environment is integrated into 
TSO/E and the exec is not found, the system then searches SYSPROC. 

• If the NOLOADDD flag is on, the system does not search the DD specified in 
the LOADDD field. However, if the language processor environment is 
integrated into TSO/E, the system searches SYSPROC. 

In the default parameters modules that is provided for TSO/E (IRXTSPRM), the 
NOLOADDD mask and flag settings indicate that SYSEXEC is searched before 
SYSPROC. (Note that prior to TSO/E 2.3, the default settings indicated that 
SYSPROC only was searched). In the default parameters module for ISPF 
(lRXISPRM), the defaults indicate that the environment inherits the values from 
the previous environment, which is the environment initialized for TSO/E. By 
default, the system searches the ddname specified in the LOADDD field 
(SYSEXEC). To use SYSPROC exclusively, you can provide your own 
parameters module or use the EXECUTIL SEARCH DO command. For more 
information, see "Using SYSPROC and SYSEXEC for REXX Execs" on page 392. 

Chapter 14. Language Processor Environments 357 



Module Name Table 

IOROUT 
Specifies the name of the routine that is called for input and output operations. 
The routine is called for: 

• The PARSE EXTERNAL, SAY, and TRACE instructions when the exec is 
running in an environment that is not integrated into TSO/E 

• The PULL instruction when the exec is running in an environment that is not 
integrated into TSO/E and the data stack is empty 

• Requests from the EXECIO command 

• Issuing REXX error messages 

You can specify an 110 replaceable routine only in language processor 
environments that are not integrated into TSO/E. For more information about 
the replaceable routine, see "lnputlOutput Routine" on page 442. 

EXROUT 
Specifies the name of the routine that is called to load and free a REXX exec. 
The routine returns the structure that is described in "The In-Storage Control 
Block (INSTBLK)" on page 268. The specified routine is called to load and free 
this structure. 

You can specify an exec load replaceable routine only in language processor 
environments that are not integrated into TSO/E. For more information about 
the replaceable routine, see "Exec Load Routine" on page 433. 

GETFREER 
Specifies the name of the routine that is called when storage is to be obtained 
or freed. If this field is blank, TSO/E storage routines handle storage requests 
and use the GETMAIN and FREE MAIN macros when larger amounts of storage 
must be handled. 

You can specify a storage management replaceable routine only in language 
processor environments that are not integrated into TSO/E. For more 
information about the replaceable routine, see "Storage Management Routine" 
on page 463. 

EXECINIT 
Specifies the name of an exit routine that gets control after the system initializes 
the REXX variable pool for a REXX exec, but before the language processor 
processes the first clause in the exec. The exit differs from other standard 
TSO/E exits. The exit does not have a fixed name. You provide the exit and 
specify the routine's name in the EXECINIT field. "REXX Exit Routines" on 
page 471 describes the exec initialization exit. 

You can provide an exec initialization exit in any type of language processor 
environment (integrated or not integrated into TSO/E). 

ATTN ROUT 
Specifies the name of an exit routine that is invoked if a REXX exec is 
processing in the TSO/E address space (in an environment that is integrated 
into TSO/E), and an attention interruption occurs. The attention handling exit 
differs from other standard TSO/E exits. The exit does not have a fixed name. 
You provide the exit and specify the routine's name in the ATTNROUT field. 
"REXX Exit Routines" on page 471 describes the attention handling exit. 

You can provide an attention handling exit only in a language processor 
environment that is integrated into TSO/E. 

358 TSO/E VerSion 2 MVS/REXX Reference 

o 

c' 



c 

( 

(/ 

--------- ------- -- -------------------------

STACKRT 
Specifies the name of the routine that the system calls to handle all data stack 
requests. 

You can specify a data stack replaceable routine only in language processor 
environments that are not integrated into TSO/E. For more information about 
the replaceable routine, see "Data Stack Routine" on page 457. 

IRXEXECX 
Specifies the name of an exit routine that is invoked whenever the IRXEXEC 
routine is called to run an exec. You can use the exit to check the parameters 
specified on the call to IRXEXEC, change the parameters, or decide whether or 
not IRXEXEC processing should continue. 

The exit differs from other standard TSO/E exits. The exit does not have a fixed 
name. You provide the exit and specify the routine's name in the IRXEXECX 
field. 

You can provide an exit for the IRXEXEC routine in any type of language 
processor environment (integrated or not integrated into TSO/E). For more 
information about the exit, see "REXX Exit Routines" on page 471. 

IDROUT 
Specifies the name of a replaceable routine that the system calls to obtain the 
user 10. The USERID built-in function returns the result that the replaceable 
routine obtains. 

You can specify a user 10 replaceable routine only in language processor 
environments that are not integrated into TSO/E. For more information about 
the replaceable routine, see "User 10 Routine" on page 466. 

MSGIDRT 
Specifies the name of a replaceable routine that determines whether the system 
should display the message identifier (message 10) with a REXX error message. 

You can specify a message identifier replaceable routine only in language 
processor environments that are not integrated into TSO/E. For more 
information about the replaceable routine, see "Message Identifier Routine" on 
page 470., 

EXECTERM 
Specifies the name of an exit routine that gets control after the language 
processor processes a REXX exec, but before the system terminates the REXX 
variable pool. The exit differs from other standard TSO/E exits. The exit does 
not have a fixed name. You provide the exit and specify the routine's name in 
the EXECTERM field. "REXX Exit Routines" on page 471 describes the exit in 
more detail. 

You can provide an exec termination exit in any type of language processor 
environment (integrated or not integrated into TSO/E). 

X'FFFFFFFFFFFFFFFF' 
The end of the module name table must be indicated by X' FFFFFFFFFFFFFFFF'. 

Chapter 14. Language Processor Environments 359 



Module Name Table 

Relationship of Fields in Module Name Table to Types of Environments 
You can specify certain fields in the module name table regardless of the type of 
language processor environment. You can define other fields only if the language 
processor environment is integrated into TSO/E or the environment is not integrated 
into TSO/E. 

Figure 68 lists each field in the module name table and indicates the type of 
environment where you can specify the field. An X in the Integrated Into TSO/E 
column indicates you can use the field for a language processor environment that is 
integrated into TSO/E. An X in the Not Integrated Into TSO/E column indicates you 
can use the field for a language processor environment that is not integrated into 
TSO/E. 

Figure 68. Summary of Fields in Module Name Table and Types of Environments 

Field Name In Module Name Table Integrated Not Integrated 
Into TSO/E Into TSO/E 

INDD - ddname from which PARSE EXTERNAL X 
reads input. 

OUTDD - ddname to which data is written. X 

LOADDD - ddname from which execs are fetched. X X 

10ROUT - name of input/output (I/O) replaceable X 
routine. 

EXROUT - name of exec load replaceable routine. X 

GETFREER - name of storage management X 
replaceable routine. 

EXECINIT - name of exec initialization exit routine. X X 

ATTN ROUT - name of attention handling exit X 
routine. 

STACKRT - name of data stack replaceable X 
routine. 

IRXEXECX - name of exec processing exit for the X X 
IRXEXEC routine. 

IDROUT - name of user 10 replaceable routine. X 

MSGIDRT - name of message ID replaceable X 
routine. 

EXECTERM - name of exec termination exit X X 
routine. 

360 TSO/E Version 2 MVS/REXX Reference 

------------------------------

o 

\ 
) 

;'-\ 

',,--~ 

o 



( 

(. 

-----_ .............. __ .... _._---

Host Command Environment Table 

The host command environment table contains the names of environments for 
processing commands. The table contains the names you can specify on the 
ADDRESS instruction. In the parameter block, the SUBCOMTB field points to the 
host command environment table (see page 346). 

The table contains the environment names (for example, TSO, MVS, LINK, and 
ATTACH) that are valid for execs that run in the language processor environment. 
The table also contains the names of the routines that the system invokes to handle 
"commands" for each host command environment. 

You can add, delete, update, and query entries in the host command environment 
table using the IRXSUBCM routine. For more information, see "Maintain Entries in 
the Host Command Environment Table - IRXSUBCM" on page 297 . 

. When a REXX exec runs, the exec has at least one active host command 
environment that processes host commands. When the REXX exec begins 
processing, a default environment is available. The default is specified in the host 
command environment table. In the REXX exec, you can use the ADDRESS ' 
instruction to change the host command environment. When the language 
processor processes a command, the language processor first evaluates the 
expression and then passes the command to the host command environment for 
processing. A specific routine that is defined for that host command environment 
then handles the command processing. "Commands to External Environments" on 
page 25 describes how to issue commands to the host. 

In the PARMBLOCK, the SUBCOMTB field points to the host command environment 
table. The table consists of two parts; the table header and the individual entries in 
the table. Figure 69 on page 362 shows the format of the host command 
environment table header. The first field in the header points to the first host 
command environment entry in the table. Each host command environment entry is 
defined by one row in the table. Each row contains the environment name, 
corresponding routine to handle the commands, and a user token. Figure 70 on 
page 363 illustrates the rows of entries in the table. TSO/E provides a mapping 
macro IRXSUBCT for the host command environment table. The mapping macro is 
In SYS1.MACLIB. 

\ 

Chapter 14. Language Processor Environments 381 



Host Command Environment Table 

Figure 69. Format of the Host Command Environment Table Header 

Offset Number Field Name Description ~, 

(Decimal) of Bytes U 
0 4 ADDRESS Specifies the address of the first entry in 

the table. The address is a fullword 
binary number. Figure 70 on page 363 
illustrates each row of entries in the 
table. Each row of entries in the table 
has an eight byte field (NAME) that 
contains the name of the environment, a 
second eight byte field (ROUTINE) that 
contains the name of the corresponding 
routine, followed by a sixteen byte field 
(TOKEN) that is a user token. 

4 4 TOTAL Specifies the total number of entries in 
the table. This number is the total of the 
used and unused entries in the table and :'."~ 

is a fullword binary number. 
\ 
' ..... ./ 

8· 4 USED Specifies the number of valid entries in 
-

the table. The number is a fullword 
binary number. All valid entries begin at 
the top of the table and are then followed 
by any unused entries. The unused 
entries must be on the bottom of the 
table. 

12 4 LENGTH Specifies the length of each entry in the 
table. This is a fullword binary number. " 

16 4 INITIAL Specifies the name of the initial host j 

command environment. This is the 
default environment for any REXX exec 
that is invoked and that is not invoked as 
either a function or a subroutine. The 
INITIAL field is used only if you call the 
exec processing routine IRXEXEC to run 
a REXX exec and you do not pass an 
initial host command environment on the 
call. "Exec Processing Routines - /' ~"\ 

/ 
IRXJCL and IRXEXEC" on page 258 
describes the IRXEXEC routine and its 
parameters. 

20 8 Reserved. The field is set to blanks. 

28 8 The end of the table header must be 
indicated by X I FFFFFFFFFFFFFFFF I. 

(, .) 
../ 

362 TSO/E Version 2 MVS/REXX Reference 

-----------------------_ .. --- ._-_ ...... __ .. _----_ ..• _------



C' 

( 

( 

( 

( 

Figure 70 shows three rows (three entries) in the host command environment table. 
The NAME, ROUTINE, and TOKEN fields are described in more detail after the table. 

Figure 70. Format of Entries in Host Command Environment Table 

Offset Number Field Description 
(Decimal) of Bytes Name 

0 8 NAME The name of the first environment (entry) in the 
table. 

8 8 ROUTINE The name of the routine that the system invokes 
to handle the processing of host commands in 
the envi ronment specified at offset + O. 

16 16 TOKEN A user token that is passed to the routine (at 
offset + 8) when the routine is invoked. 

32 8 NAME The name of the second environment (entry) in 
the table. 

40 8 ROUTINE The name of the routine that the system invokes 
to handle the processing of host commands in 
the environment specified at offset + 32. 

48 16 TOKEN A user token that is passed to the routine (at 
offset + 40) when the routine is invoked. 

64 8 NAME The name of the third environment (entry) in the 
table. 

72 8 ROUTINE The name of the routine that the system invokes 
to handle the processing of host commands in 
the environment specified at offset + 64. 

80 16 TOKEN A user token that is passed to the routine (at 
offset + 72) when the routine is invoked. 

The following describes each entry (row) in the table. 

NAME 
An eight byte field that specifies the name of the host command environment 
defined by this row in the table. The string is eight characters long, left justified, 
and is padded with blanks. 

If the REXX exec uses the 

ADDRESS name 

instruction, and the value name in not in the table, no error is detected. 
However, when the language processor tries to locate the entry in the table to 
pass a command and no corresponding entry is found, the language processor 
returns with a return code of -3, which indicates an error condition. 

ROUTINE 
An eight byte field that specifies the name of a routine for the entry in the NAME 
field in the same row in the table. This is the routine to which a string is passed 
for this environment. The field is eight characters long, left justified, and is 
padded with blanks. 

If the language processor locates the entry in the table, but finds this field blank 
or cannot locate the routine specified, the language processor returns with a 
return code of -3. This is equivalent to the language processor not being able to 
locate the host command environment name in the table. 

Chapter 14. Language Processor Environments 363 



Host Command Environment Table 

TOKEN 
A sixteen byte field that is stored in the table for the user's use (a user token). 
The value in the field is passed to the routine specified in the ROUTINE field 
when the system calls the routine to process a command. The field is for the 
user's own use. The language processor does not use or examine this token 
field. 

When a REXX exec is running in the language processor environment and a host 
command environment must be located, the system searches the entire host 
command environment table from bottom to top. The first occurrence of the host 
command environment in the table is used. If the name of the host command 
environment that is being searched for matches the name specified in the table (in 
the NAME field), the system calls the corresponding routine specified in the 
ROUTINE field of the table. 

364 TSO/E Version 2 MVS/REXX Reference 

o 

o 

-----------------------------------------------



The function package table contains information about the function packages that 
are available for the language processor environment. 

An individual user or an installation can write external functions and subroutines. 
For faster access of a function or subroutine, you can group frequently used external 
functions and subroutines in function packages. A function package is a number of 
external functions and subroutines that are grouped together. Function packages 
are searched before load libraries and execs (see page 87). 

There are three types of function packages: 

• User function packages 
• Local function packages 
• System function packages. 

User function packages are searched before local packages. Local function 
packages are searched before any system packages. 

To provide a function package, there are several steps you must perform, including 
writing the code for the external function or subroutine, providing a function 
package directory for each function package, and defining the function package 
directory name in the function package table. "External Functions and Subroutines, 
and Function Packages" on page 276 describes function packages in more detail 
and how you can provide user, local, and system function packages. 

In the parameter block, the PACKTB field points to the function package table (see 
page 346). The table contains information about the user, local, and system function 
packages that are available for the language processor environment. The function 
package table consists of two parts; the table header and table entries. Figure 71 
shows the format of the function package table header. The header contains the 
total number of user, local, and system packages, the number of user, local, and 
system packages that are used, and the length of each function package name, 
which is always 8. The header also contains three addresses that point to the first 
table entry for user, local, and system function packages. The table entries specify 
the individual names of the function packages. 

The table entries are a series of eight character fields that are contiguous. Each 
eight character field contains the name of a function package, which is the name of 
a load module containing the directory for that function package. The function 
package directory specifies the individual external functions and subroutines that 
make up one function package. "Directory for Function Packages" on page 282 
describes the format of the function package directory in detail. 

Figure 72 on page 368 illustrates the eight character fields that contain the function 
package directory names for the three types of function packages (user, local, and 
system). 

TSO/E provides a mapping macro for the function package table. The name of the 
mapping macro is IRXPACKT. The mapping macro is in SYS1.MACLIB. 

Chapter 14. Language Processor Environments 365 



Function Package TabJe 

Figure 71 (Page 1 of 2). Function Package Table Header 

onset Number Field Name Description 
(Decimal) of Bytes ( \ 

, ) 

.. J 

0 4 USER_FIRST Specifies the address of the first user 
function package entry. The address 
pOints to the first field in a series of 
eight character fields that contain the 
names of the function package 
directories for user packages. 
Figure 72 shows the series of 
directory names. 

4 4 USER_TOTAL Specifies the total number of user 
package table entries. This is the total 
number of function package directory 
names that are pointed to by the 
address at offset + o. 
You can use the USER_TOTAL field to 
specify the maximum number of user 
function packages that can be defined \. ;/ 

for the environment. You can then use 
the USER_USED field at offset +8 to 
specify the actual number of packages 
that are available. 

8 4 USER_USED Specifies the total number of user 
package table entries that are used. 
You can specify a maximum number 
(total) in the USER_TOTAL field at 
offset + 4 and specify the actual 
number of user function packages that 
are used in the USER_USED field. 

12 4 LOCAL_FIRST Specifies the address of the first local 
function package entry. The address 
points to the first field in a series of 
eight character fields that contain the 
names of the function package 
directories for local packages. 
Figure 72 shows the series of 
directory names. 

16 4 LOCAL_TOTAL Specifies the total number of local 
package table entries. This is the total 
number of function package directory 
names that are pointed to by the 
address at offset + 12. 

You can use the LOCAL_TOTAL field to 
specify the maximum number of local 
function packages that can be defined 
for the environment. You can then use 
the LOCAL_USED field at offset + 20 to 
specify the actual number of packages 
that are available. 

20 4 LOCAL_USED Specifies the total number of local 
package table entries that are used. 
You can specify a maximum number 
(total) in the LOCAL_TOTAL field at 
offset + 16 and specify the actual o 
number of local function packages that 
are used in the LOCAL_USED field. 

366 TSO/E Version 2 MVS/REXX Reference 



Figure 71 (Page 2 of 2). Function Package Table Header 

C Offset Number Field Name Description 
(Decimal) of Bytes 

24 4 SYSTEMflRST Specifies the address of the first 
system function package entry. The 
address points to the first field in a 
series of eight character fields that 
contain the names of the function 
package directories for system 
packages. Figure 72 shows the series 
of directory names. 

28 4 SYSTEM_TOTAL Specifies the total number of system 
package table entries. This is the total 
number of function package directory 
names that are pointed to by the 
address at offset + 24. 

( You can use the SYSTEM_TOTAL field 
to specify the maximum number of 
system function packages that can be 
defined for the environment. You can 
then use the SYSTEM_USED field at 
offset + 32 to specify the actual 
number of packages that are available. 

32 4 SYSTEM_USED Specifies the total number of system 
package table entries that are used. 
You can specify a maximum number 

(-~ 
(total) in the SYSTEM_TOTAL field at 
offset + 28 and specify the actual 
number of system function packages 
that are used in the SYSTEM_USED 
field. 

36 4 LENGTH Specifies the length of each table 
entry, that is, the length of each 
function package directory name. The 
length is always 8. 

40 8 The end of the table is indicated by 

( X'FFFFFFFFFFFFFFFF'. 

( 

Chapter 14. Language Processor Environments 367 



Figure 72 shows the function package table entries that are the names of the 
directories for user, local, and system function packages. 

User Function Package Entries 

+0 +8 +16 

Function Package Function Package 
Directory 1 Directory 2 

Function Package • • • Directory 3 

+x 

Function Package 
Directory n 

Local Function Package Entries 

+0 +8 +16 

Function Package Function Package 
Directory 1 Directory 2 

Function Package • • • Directory 3 

+x 

Function Package 
Directory n 

System Function Package Entries 

+0 +8 + 16 

Function Package Function Package 
Directory 1 Directory 2 

Function Package · . . 
Directory 3 

+x 

Function Package 
Directory n 

Figure 72. Function Package Table Entries - Function Package Directories 

The table entries are a series of eight character fields. Each field contains the name 
of a function package directory. The directory is a load module that, when loaded, 
contains information about each external function and subroutine in the function 
package. "Directory for Function Packages" on page 282 describes the format of 
the function package directory in detail. 

The function package directory names in each eight character field must be left 
justified and padded with blanks. 

368 TSO/E Version 2 MVS/REXX Reference 

.~----~~ -.----~~-- ---

OJ 
'j 

" \ 

o 



c 

Field Name 

10 
VERSION 

( 
LANGUAGE 
PARSETOK 
FLAGS (MASKS) 

TSOFL 
CMOSOFL 
FUNCSOFL 
NOSTKFL 
NOREAOFL 
NOWRTFL 
NEWSTKFL 
USERPKFL 

( LOCPKFL 
SYSPKFL 
NEWSCFL 
CLOSEXFL 
NOESTAE 
RENTRANT 
NOPMSGS 
ALTMSGS 
SPSHARE 
STORFL 
NOLOAOOO 
NOMSGWTO 
NOMSGIO 

SUBPOOL 
AOORSPN 

Figure 73 shows the default values that TSO/E provides in each of the three default 
parameters modules. "Characteristics of a Language Processor Environment" on 
page 346 describes the structure of the parameters module in detail. 

In the figure, the LANGUAGE field contains the language code ENU for US English in 
mixed case (upper and lowercase). The default parameters modules may contain a 
different language code depending on whether one of the language features has 
been installed on your system. See page 347 for information about the different 
language codes. 

In the figure, the value of each flag setting is followed by the value of its 
corresponding mask setting, in parentheses. 

Note: Figure 73 shows the default values TSO/E provides in the parameters 
modules. It is not a mapping of a parameters module. For information about the 
format of a parameters module, see "Characteristics of a Language Processor 
Environment" on page 346. TSO/E provides the IRXPARMB mapping macro for the 
parameter block and the IRXMODNT, IRXSUBCT, and IRXPACKT mapping macros 
for the module name table, host command environment table, and function package 
table respectively. 

IRXPARMS (MYS) IRXTSPRM (TSO/E) IRXISPRM (ISPF) 

IRXPARMS IRXPARMS IRXPARMS 
0200 0200 0200 
ENU ENU 

0(1) 1 (1) 1 (1) 
0(1) 0(1) 0(0) 
0(1) 0(1) 0(0) 
0(1) 0(1) 0(0) 
0(1) 0(1) 0(0) 
0(1) 0(1) 0(0) 
0(1) 0(1) 1 (1) 
0(1) 0(1) 0(0) 
0(1) 0(1) 0(0) 
0(1) 0(1 ) 0(0) 
0(1) 0(1) 0(0) 
0(1) 0(1) 0(0) 
0(1) 0(1) 0(0) 
0(1) 0(1) 0(0) 
0(1) 0(1) 0(0) 
1 (1) 1 (1) 0(0) 
0(1) 1 (1) 1 (1) 
o (1) 0(1) 0(0) 
0(1) 0(1) 0(0) 
0(1) 0(1) 0(0) 
0(1) 0(1) 0(0) 
0 78 78 
MVS TSO/E ISPF 
FFFFFFFFFFFFFFFF FFFFFFFFFFFFFFFF FFFFFFFFFFFFFFFF 

Figure 73 (Part 1 of 4). Values TSOIE Provides in the Three Default Parameters Modules 

Chapter 14. Language Processor Environments 369 

--~~--.- --.--.-. --------_. 



----_ ... _. __ ._-_._ .. _. 

Default Parameters Modules 

Field Name In Module Name Table IRXPARMS (MVS) IRXTSPRM (TSO/E) IRXISPRM (ISPF) 

INDO SYSTSIN SYSTSIN 0 OUTDO SYSTSPRT SYSTSPRT 
LOADDD SYSEXEC SYSEXEC 
IOROUT 
EXROUT 
GETFREER 
EXECINIT 
ATTN ROUT 
STACKRT 
IRXEXECX 
IDROUT 
MSGIDRT 
EXECTERM 

FFFFFFFFFFFFFFFF FFFFFFFFFFFFFFFF FFFFFFFFFFFFFFFF 

Figure 73 (Part 2 of 4). Values TSOIE Provides in the Three Default Parameters Modules 
" 

o 
370 TSO/E Version 2 MVS/REXXReference 



Default Parameters Modules 

Field Name In Host Command IRXPARMS (MYS) IRXTSPRM (TSO/E) IRXISPRM (ISPF) 

C' 
Environment Table 

TOTAL 9 11 13 
USED 9 11 13 
LENGTH 32 32 32 
INITIAL MVS TSO TSO 

FFFFFFFFFFFFFFFF FFFFFFFFFFFFFFFF FFFFFFFFFFFFFFFF 
Entry 1 

NAME MVS MVS MVS 
ROUTINE I RXSTAM IRXSTAM I RXSTAM 
TOKEN 

Entry 2 
NAME LINK TSO TSO 
ROUTINE IRXSTAM IRXSTAM I RXSTAM 
TOKEN 

Entry 3 
NAME ATTACH LINK LINK 
ROUTINE IRXSTAM I RXSTAM I RXSTAM 

(~ 
.. 

TOKEN 
Entry 4 

NAME CPICOMM ATTACH ATTACH 
ROUTINE IRXAPPC I RXSTAM IRXSTAM 
TOKEN 

Entry 5 
NAME LU62 CONSOLE ISPEXEC 
ROUTINE IRXAPPC I RXSTAM I RXSTAM 
TOKEN 

Entry 6 
NAME LlNKMVS CPICOMM ISREDIT (C ROUTINE IRXSTAMP IRXAPPC I RXSTAM 
TOKEN 

Entry 7 
NAME L1NKPGM LU62 CONSOLE 
ROUTINE IRXSTAMP I RXAPPC IRXSTAM 
TOKEN 

Entry 8 
NAME ATTCHMVS LlNKMVS CPICOMM 
ROUTINE IRXSTAMP IRXSTAMP I RXAPPC 
TOKEN 

<. 
Entry 9 

NAME ATTCHPGM LINKPGM LU62 
ROUTINE IRXSTAMP IRXSTAMP IRXAPPC 
TOKEN 

Entry 10 
NAME ATTCHMVS L1NKMVS 
ROUTINE I RXSTAMP IRXSTAMP 
TOKEN 

Entry 11 
NAME ATTCHPGM L1NKPGM 
ROUTINE IRXSTAMP IRXSTAMP 
TOKEN 

Entry 12 
NAME ATTCHMVS 
ROUTINE IRXSTAMP 
TOKEN 

, Entry 13 
NAME ATTCHPGM 

( ROUTINE IRXSTAMP 
TOKEN 

Figure 73 (Part 3 of 4). Values TSOIE Provides in the Three Default Parameters Modules 

Chapter 14. Language Processor Environments 371 

-~.,,-~.-~---.- _.-



Field Name In Function Package Table IRXPARMS (MVS) IRXTSPRM (TSO/E) IRXISPRM (ISPF) 

USER_TOTAL 1 r\ 
USER_USED 1 ~j 
LOCAL_TOTAL 1 
LOCAL_USED 1 1 1 
SYSTEM_TOTAL 1 2 2 
SYSTEM_USED 1 2 2 
LENGTH 8 8 8 

FFFFFFFFFFFFFFFF FFFFFFFFFFFFFFFF FFFFFFFFFFFFFFFF 
Entry 1 

NAME IRXEFMVS IRXEFMVS IRXEFMVS 
Entry 2 

NAME IRXFLOC IRXEFPCK IRXEFPCK 
Entry 3 

NAME IRXFUSER IRXFLOC I RXFLOC 
Entry 4 

NAME IRXFUSER IRXFUSER 
"" 

/ " Figure 73 (Part 4 of 4). Values TSOIE Provides in the Three Default Parameters Modules 
" 

"- / 

o 
372 TSO/E Version 2 MVS/REXX Reference 



( 

( 

~' "."" ~ i 
. ;"l' 

",'j 

When the system calls IRXINIT to automatically initialize a language processor 
environment, IRXINIT must first determine what values to use for the environment. 
IRXINIT uses the values that are defined in one of the three default parameters 
modules that TSO/E provides and the values that are defined for the previous 
language processor environment. 

IRXINIT always identifies a previous language processor environment. If an 
environment has not been initialized in the address space, IRXINIT uses the values 
in the default parameters module IRXPARMS as the previous environment. The 
following topics describe how IRXINIT determines the values for a new environment 
when the system calls IRXINIT to automatically initialize an environment in the 
TSO/E and non-TSO/E address spaces. "Chains of Environments and How 
Environments Are Located" on page 375 describes how any TSO/E REXX routine 
locates a previous environment. 

Note: If you call1RXINIT to initialize an environment, IRXINIT evaluates the 
parameters you pass on the call and the parameters defined for the previous 
environment. "Initialization Routine - IRXINIT" on page 412 describes how 
IRXINIT determines what values to use when a user explicitly calls the IRXINIT 
routine. 

Values IRXINIT Uses to Initialize Environments 
When the system calls IRXINIT to automatically initialize an environment in the 
TSO/E address space, IRXINIT determines what values to use for defining the 
environment from two sources: 

• The default parameters module IRXTSPRM or IRXISPRM 
• The previous environment. 

During logon processing, IRXINIT initializes a language processor environment for 
the TSO/E session. IRXINIT first checks the values in the default parameters module 
IRXTSPRM. If the value is provided (that is, the value is not null), IRXINIT uses that 
value. If the value in the parameters module is null, IRXINIT uses the value from the 
previous environment. In this case, an environment does not exist, so IRXINIT uses 
the value from the IRXPARMS parameters module. IRXINIT computes each 
individual value using this method and then initializes the environment. 

The following types of parameter values are considered to be null: 

• A character string is null if it contains only blanks or has a length of zero 
• An address is null if the address is 0 
• A binary number is null if it has the value X'8000000Q' 
• A bit setting is null if its corresponding mask is O. 

For example, in IRXTSPRM, the PARSETOK field is null. When IRXINIT determines 
what value to use for PARSETOK, it finds a null field in IRXTSPRM. IRXINIT then 
checks the PARSETOK field in the previous environment. A previous environment 
does not exist, so IRXINIT takes the value from the IRXPARMS module. In this case, 
the PARSETOK field in IRXPARMS is nUll, which is the value that IRXINIT uses for 
the environment. If an exec running in the environment contains the PARSE 
SOURCE instruction, the last token that PARSE SOURCE returns is a question mark. 

After IRXINIT determines all of the values, IRXINIT initializes the new environment. 

Chapter 14. Language Processor Environments 373 

.-~~-... ,--~~-- .. ,-,-----._. __ ._---



Environment Values Used 

When a user invokes ISPF from the TSO/E session, the system calls IRXINIT to 
initialize a new language processor environment for ISPF. IRXINIT first checks the C 
values provided in the IRXISPRM parameters module. If a particular parameter has:.; 
a null value, IRXINIT uses the value from the previous environment. In this case, the 
previous environment is the environment that IRXINIT initialized for the TSO/E 
session. For example, in the IRXISPRM parameters module, the mask bit 
(CMDSOFL_MASK) for the command search order flag (CMDSOFL) is o. A mask of 0 
indicates that the corresponding flag bit is null. Therefore, IRXINIT uses the flag 
setting from the previous environment, which in this case is O. 

As the previous descriptions show, the parameters defined in all three parameters 
modules can have an effect on any language processor environment that is 
initialized in the address space. 

When IRXINIT automatically initializes a language processor environment in a 
non-TSO/E address space, IRXINIT uses the values in the parameters module 
IRXPARMS only. 

If you call the IRXINIT routine to initialize a language processor environment, you 
can pass parameters on the call that define the values for the environment. See 
Chapter 15, "Initialization and Termination Routines" for information about IRXINIT. 

374 TSO/E Version 2 MVS/REXX Reference 

o 



( _ . 
.. 

.--~----.-~. _. __ .,---_._----

-~~----------.-------

f},:n~~h'onments Are LoeB.ted 
As described in previous topics, many language processor environments can be 
initialized in one address space. A language processor environment is associated 
with an MVS task. There can be several language processor environments 
associated with a single task. This topic describes how non-reentrant environments 
are chained together in an address space. 

Language processor environments are chained together in a hierarchical structure 
to form a chain of environments. The environments on one chain are interrelated 
and share system resources. For example, several language processor 
environments can share the same data stack. However, separate chains within a 
single address space are independent. 

Although many language processor environments can be associated with a single 
MVS task, each individual environment is associated with only one task. The last 
environment on a particular chain is the environment in which REXX execs will run 
under that task. 

Figure 74 illustrates three language processor environments that form one chain. 

~ 
Environment 1 

'--
Environment 2 

~ 

'----
Environment 3 

Figure 74. Three Language Processor Environments in a Chain 

The first environment initialized was environment 1. When IRXINIT initializes the 
second environment, the first environment is considered to be the previous 
environment (the parent environment). Environment 2 is chained to environment 1. 
Similarly, when IRXINIT initializes the third environment, environment 2 is 
considered to be the previous environment. Environment 2 is the parent 
environment for environment 3. 

Chapter 14. Language Processor Environments 375 



Chains of En'Vironments 

Different chains can exist in one address space. Figure 75 illustrates two separate 
tasks, task 1 and task 2. Each task has a chain of environments. For task 1, the 
chain consists of two language processor environments. For task 2, the chain has 
only one language processor environment. The two environments on task 1 are 
interrelated and share system resources. The two chains are completely separate 
and independent. 

Task 2 

~ Environment 1 Environment 1 

'--- Environment 2 

Figure 75. Separate Chains on Two Different Tasks 

As discussed previously, language processor environments are associated with an 
MVS task. Under an MVS task, IRXINIT can initialize one or more language 
processor environments. The task can then attach another task. IRXINIT can be 
called under the second task to initialize a language processor environment. The 
new environment is chained to the last environment under the first task. Figure 76 
on page 377 illustrates a task that has attached another task and how the language 
processor environments are chained together. 

376 TSO/E Version 2 MVS/REXX Reference 

o 

o 



Chains of Environrnents 

Task 1 

+1 Environment 1 I 

Environment 2 I 

Attach 

Task 2 , 

Environment 3 I 

Y Environment 4 I 

Figure 76. One Chain of Environments For Attached Tasks 

As shown in Figure 76, task 1 is started and IRXINIT initializes an environment 
(environment 1). IRXINIT is invoked again to initialize a second language processor 
environment under task 1 (environment 2). Environment 2 is chained to 
environment 1. If you invoke a REXX exec within task 1, the exec runs in 
environment 2. 

Task 1 then attaches another task. task 2. IRXINIT is called to initialize an 
environment. IRXINIT locates the previous environment, which is environment 2, 
and chains the new environment (environment 3) to its parent (environment 2). 
When IRXINIT is called again, IRXINIT chains the fourth environment (environment 
4) to its parent (environment 3). At this point, four language processor 
environments exist on the chain. 

Chapter 14. Language Processor Environments 377 



Chains of Environments 

Locating a Language Processor Environment 
Whenever you invoke a REXX exec or routine, the exec or routine must run in a 
language processor environment. The one exception is the initialization routine, 
IRXINIT, which initializes environments. 

In the TSO/E address space, the system always initializes a default language 
processor environment when you log on to TSO/E and when you invoke iSPF. If you 
invoke a REXX exec from TSO/E, the exec runs in the language processor 
environment in which you invoked it. Similarly, if you call a REXX programming 
routine from TSO/E, the routine also runs in the environment in which you called it. 

If you invoke an exec using the IRXJCL or IRXEXEC routine, a language processor 
environment mayor may not already exist. If an environment does not exist on the 

Current task (non-TSO/E address space), or 
Current task or a parent task (TSO/E address space) 

the system calls the IRXINIT routine to initialize an environment before the exec 
runs. Otherwise, the system locates the previous environment and the exec runs in " ./ 
that envi ronment. 

IRXINIT always locates a previous language processor environment. If an 
environment does not exist on the current task or on a parent task, IRXINIT uses the 
values in the IRXPARMS parameters module as the previous environment. 

A language processor environment must already exist if you call the TSO/E REXX 
programming routines IRXRLT, IRXSUBCM, IRXIC, IRXEXCOM, and IKJCT441 or the 
replaceable routines. These routines do not invoke IRXINIT to initialize a new 
environment. If an environment does not already exist and you call one of these 
routines, the routine completes unsuccessfully with a return code. See Chapter 12, 
"TSO/E REXX Programming Services" for information about the TSO/E REXX 
programming routines and Chapter 16, "Replaceable Routines and Exits" for 
information about the replaceable routines. 

When IRXINIT initializes a new language processor environment, IRXINIT creates a 
number of control blocks that contain information about the environment and any 
REXX exec currently running in the environment. The main control block is the /' 
environment block (ENVBLOCK), which points to other control blocks, such as the 
parameter block (PARMBLOCK) and the work block extension. "Control Blocks 
Created for a Language Processor Environment" on page 395 describes the control 
blocks that IRXINIT creates for each language processor environment. 

The environment block represents its language processor environment and is the 
anchor that the system uses on calls to all REXX routines. Whenever you call a 
REXX routine, you can pass the address of an environment block in register 0 on the 
call. By passing the address, you can specify in which language processor 
environment you want the routine to run. For example, suppose you invoke the 
initialization routine, IRXINIT, in a non-TSO/E address space. On return, IRXINIT 
returns the address of the environment block for the new environment in register O. 
You can store that address for future use. Suppose you call1RXINIT several times to 
initialize a total of four environments in that address space. If you then want to call 
a TSO/E REXX routine and have the routine run in the first environment on the 
chain, you can pass the address of the first environment's environment block on the 
call. 

378 TSO/E Version 2 MVS/REXX Reference 

c 



( 

( 

You can also pass the address of the environment block in register 0 to all REXX 
replaceable routines and exit routines. 

When a routine is called, the routine must determine in which environment to run. 
The routine locates the environment as follows: 

1. The routine checks register 0 to determine whether the address of an 
environment block was passed on the call. If an address was passed, the 
routine determines whether the address points to a valid environment block. 
The environment block is valid if: 

• The environment is either a reentrant or non-reentrant environment on the 
current task (non-TSO/E address space) 

• The environment is either a reentrant or non-reentrant environment on the 
current task or on a parent task (TSO/E address space). 

2. If register 0 does not contain the address of a valid environment block, the 
routine that is called: 

• Searches for a non-reentrant environment on the current task (non-TSO/E 
address space) 

• Searches for a non-reentrant environment on the current task (TSO/E 
address space). If the routine cannot find a non-reentrant environment on 
the current task, the routine searches for a non-reentrant environment on a 
parent task. If the routine finds an environment on either the current task or 
a parent task and the TSOFL flag is off, the routine runs in that environment. 
If the routine finds an environment and the TSOFL flag is on, the routine 
uses the ENVBLOCK whose address is in the ECTENVBK field in the ECT. 

3. If the routine could not find an environment using the previous steps, the next 
step depends on what routine was called. 

• If one of the REXX programming routines or the replaceable routines was 
called, a language processor environment is required in order for the 
routine to run. The routine ends in error. The same occurs for the 
termination routine, IRXTERM. 

• If IRXEXEC or IRXJCL were called, the routine invokes IRXINIT to initialize a 
new environment. 

• If IRXINIT was called, IRXINIT uses the IRXPARMS parameters module as 
the previous environment. 

Chapter 14. Language Processor Environments 379 



Chains of Environments 

The IRXINIT routine initializes a new language processor environment. Therefore, 
IRXINIT does not need to locate an environment in which to run. However,IRXINIT (\ 
does locate a previous environment in order to determine what values to use when " .~ 
defining the new environment. The following summarizes the steps IRXINIT takes to 
locate the previous environment: 

1. If register 0 contains the address of a valid environment block, IRXINIT uses that 
environment as the previous environment. 

2. If a non-reentrant environment exists on the current task, IRXINIT uses the last 
non-reentrant environment on the task as the previous environment. 

3. Otherwise, IRXINIT locates the parent task. If a non-reentrant environment 
exists on any of the parent tasks, IRXINIT uses the last non-reentrant 
environment on the task as the previous environment. 

4. If IRXINIT cannot find an environment, IRXINIT uses the values in the default 
parameters module IRXPARMS as the previous environment. 

"Initialization Routine - IRXINIT" on page 412 describes how the IRXINIT routine 
determines what values to use when you explicitly caIlIRXINIT. 

380 TSO/E Version 2 MVS/REXX Reference 



c 

( 

(: 

'"-.--"-------.~---~ .. - .. -----

De'IauU Va6ues fer 
TSO/E provides default values in three parameters modules (load modules) for 
initializing language processor environments in non-TSO/E, TSO/E, and ISPF. In 
most cases, your installation probably need not change the default values. 
However, if you want to change one or more parameter values, you can provide 
your own load module that contains your values. 

Note: You can also call the initialization routine, IRXINIT, to initialize a new 
environment. On the call, you can pass the parameters whose values you want to 
be different from the previous environment. If you do not specifically pass a 
parameter, IRXINIT uses the value defined in the previous environment. See 
"Initialization Routine - IRXINIT" on page 412 for more information. 

This topic describes how to create a load module containing parameter values for 
initializing an environment. You should also refer to "Characteristics of a Language 
Processor Environment" on page 346 for information about the format of the 
parameters module. 

To change one or more default values that IRXINIT uses to initialize a language 
processor environment, you can provide a load module containing the values you 
want. You must first write the code for a parameters module. TSO/E provides three 
samples in SYS1.SAMPLIB that are assembler code for the default parameters 
modules. The member names of the samples are: 

• TSOREXX1 (for IRXPARMS - MVS) 
• TSOREXX2 (for IRXTSPRM - TSO/E) 
• TSOREXX3 (for IRXISPRM - ISPF) 

When you write the code, be sure to include the correct default values for any 
parameters you are not changing. For example, suppose you are adding several 
function packages to the IRXISPRM module for ISPF. In addition to coding the 
function package table, you must also provide all of the other fields in the 
parameters module and their default values. "Values Provided in the Three Default 
Parameters Modules" on page 369 shows the default parameter values for 
IRXPARMS, IRXTSPRM, and IRXISPRM. 

After you create the code, you must assemble the code and then link edit the object 
code. The output is a member of a partitioned data set. The member name must be 
either IRXPARMS, IRXTSPRM, or IRXISPRM depending on the load module you are 
providing. You must then place the data set with the IRXPARMS, IRXTSPRM, or 
IRXISPRM member in the search sequence for an MVS LOAD macro. The 
parameters modules that TSO/E provides are in the LPALlB, so you could place 
your data set in a logon STEPLlB, a JOBUB, or in linklist. 

If you provide an IRXPARMS load module, your module may contain parameter 
values that cannot be used in language processor environments that are integrated 
into TSO/E. When IRXINIT initializes an environment for TSO/E, IRXINIT uses the 
IRXTSPRM parameters module. However, if a parameter value in IRXTSPRM is 
null, IRXINIT uses the value from the IRXPARMS module. Therefore, if you provide 
your own IRXPARMS load module that contains parameters that cannot be used in 
TSO/E, you must place the data set in either a STEPLIB or JOBLIB that is not 
searched by the TSO/E session. For more information about the values you can 
specify for different types of environments, see "Specifying Values for Different 
Environments" on page 386. 

Chapter 14. Language Processor Environments 381 



Changing Default Values 

The new values you specify in your own load module are not available until the 
current language processor environment is terminated and a new environment is C 
initiat',ized. FtorTeSxOa/mEPle, ~f you provide a load module for TSO/E (lRXTSPRM), you .'.} 
mus og on 0 agam. 

Providing Your Own Parameters Modules 
There are various considerations for providing your own parameters modules. The 
different considerations depend on whether you want to change a parameter value 
only for an environment that is initialized for ISPF, for environments that are 
initialized for both the TSO/E and ISPF sessions, or for environments that are 
initialized in a non-TSO/E address space. The following topics describe changing 
the IRXISPRM, IRXTSPRM, and IRXPARMS values. 

TSO/E provides the following samples in SYS1.SAMPLIB that you can use to code 
your own load modules: 

• TSOREXX1 (for IRXPARMS - MVS) 
• TSOREXX2 (for IRXTSPRM - TSO/E) 
• TSOREXX3 (for IRXISPRM - ISPF) 

Changing Values for ISPF 
If you want to change a default parameter value for language processor 
environments that are initialized for ISPF, you should provide your own IRXISPRM 
module. IRXINIT only locates the IRXISPRM load module when IRXINIT is 
initializing a language processor environment for ISPF. IRXINIT does not use 
IRXISPRM when initializing an environment for either a TSO/E session or for a 
non-TSO/E address space. 

When you create the code for the load module, you must specify the new values you 
want for the parameters you are changing and the default values for all of the other 
fields. "Values Provided in the Three Default Parameters Modules" on page 369 
shows the defaults that TSO/E provides in the IRXISPRM parameters module. 

After you assemble and link edit the code, place the data set with the IRXISPRM 
member in the search sequence for an MVS LOAD. For example, you can put the 
data set in a logon STEPLIB or linklist. The new values are not available until 
IRXINIT initializes a new language processor environment for ISPF. For example, if 
you are currently using ISPF, you must return to TSO/E READY mode and then 
invoke ISPF again. When the system calls IRXINIT to initialize an environment for 
ISPF, IRXINIT locates your load module and initializes the environment using your 
values. 

There are many fields in the parameters module that are intended for use only if an 
environment is not being integrated into TSO/E. There are also several flag settings 
that you must not change in the IRXISPRM parameters module for ISPF. See 
"Specifying Values for Different Environments" on page 386 for information about 
which fields you can and cannot specify. 

Changing Values for TSO/E 
If you want to change a default parameter value for environments that IRXINIT 
initializes for TSO/E only, you probably have to code both a new IRXTSPRM module 
(for TSO/E) and a new IRXISPRM module (for ISPF). This is because most of the C 
fields in the default IRXISPRM parameters module are nUll, which means that " 
IRXINIT uses the value from the previous environment. The previous environment is . . 
the one that IRXINIT initializes for the TSO/E session. 

382 TSO/E Version 2 MVS/REXX Reference 



Changing Default Values 

For example, in the default IRXTSPRM module (for TSO/E), the USERPKFL, 
LOCPKFL and SYSPKFL flags are O. This means the user, local, and system 
function packages defined for the previous environment are also available to the 
environment IRXINIT initializes for the TSO/E session. In the default IRXISPRM 
module (for ISPF), the masks for these three flags are 0, which means IRXINIT uses 
the flag settings from the previous environment. IRXINIT initialized the previous 
environment (TSO/E) using the IRXTSPRM module. Suppose you do not want the 
function packages from the previous environment available to an environment that 
IRXINIT initializes for TSO/E. However, when IRXINIT initializes an environment for 
ISPF, the function packages defined for the TSO/E environment should also be 
available in ISPF. You must code a new IRXTSPRM module and specify a setting of 
1 for the USERPKFL, LOCPKFL, and SYSPKFL flags. You must code a new 
IRXISPRM module and specify a setting of 1 for the following mask fields: 

• USERPKFL_MASK 
• LOCPKFL_MASK 
• SYSPKFL_MASK 

When you code the new load modules, you must include the default values for all of 
the other parameters. "Values Provided in the Three Default Parameters Modules" 
on page 369 shows the defaults TSO/E provides. 

Changing Values for TSO/E and ISPF 
If you want to change a default parameter value for language processor 
environments that IRXINIT initializes for TSO/E and ISPF, you may be able to simply 
provide your own IRXTSPRM module for TSO/E and use the default IRXISPRM 
module for ISPF. Whether or not you need to create one or two parameters modules 
depends on the specific parameter value you want to change and whether that field 
is null in the IRXISPRM default module. If the field is null in IRXISPRM, when 
IRXINIT initializes a language processor environment for ISPF, IRXINIT uses the 
value from the previous environment (TSO/E), which is the value in the IRXTSPRM 
module. 

For example, suppose you want to change the setting of the NOLOADDD flag so that 
the system searches SYSPROC only when you invoke an exec. The value in the 
default IRXTSPRM (TSO/E) module is 0, which means the system searches 
SYSEXEC followed by SYSPROC. In the default IRXISPRM (ISPF) module, the mask 
for the NOLOADDD flag is 0, which means IRXINIT uses the value defined In the 
previous environment. You can code a IRXTSPRM load module and specify 1 for the 
NOLOADDD flag. You do not need to create a new IRXISPRM module. When 
IRXINIT initializes a language processor environment for ISPF, IRXINIT uses the 
value from the previous environment. 

You may need to code two parameters modules for IRXTSPRM and IRXISPRM 
depending on the parameter you want to change and the default value in IRXISPRM. 
For example, suppose you want to change the language code. You must code two 
modules because the value in both default modules is ENU. Code a new IRXTSPRM 
module and specify the language code you want. Code a new IRXISPRM module 
and specify either a null or the specific language code. If you specify a nUll, IRXINIT 
uses the language code from the previous environment, which is TSO/E. 

You also need to code both an IRXTSPRM and IRXISPRM load module if you want 
different values for TSO/E and ISPF. 

Chapter 14. Language Processor Environments 383 



Changing Default Values 

If you provide your own load modules, you must also include the default values for 
all of the other fields as provided in the default modules. "Values Provided in the C 
Three Default Parameters Modules" on page 369 shows the defaults provided in, ~ 
IRXTSPRM and IRXISPRM. 

After you assemble and link edit the code, place the data set with the IRXTSPRM 
member (and IRXISPRM member if you coded both modules) in the search 
sequence for an MVS LOAD. For example, you can put the data sets in a logon 
STEPUB or linklist. The new values are not available until IRXINIT initializes a new 
language processor environment for TSO/E and for ISPF. You must log on to TSO/E 
again. During logon, IRXINIT uses your IRXTSPRM load module to initialize the 
environment. Similarly, IRXINIT uses your IRXISPRM module when you invoke 
ISPF. 

There are many fields in the parameters module that you must not change for 
certain parameters modules. See "Specifying Values for Different Environments" 
on page 386 for information about the values you can specify. 

Changing Values for Non-TSO/E 
If you want to change a default parameter value for language processor 
environments that IRXINIT initializes in non-TSO/E address spaces, code a new 
IRXPARMS module. In the code, you must specify the new values you want for the 
parameters you are changing and the default values for all of the other fields. 
"Values Provided in the Three Default Parameters Modules" on page 369 shows the 
defaults TSO/E provides in the IRXPARMS parameters module. 

There are many fields in the parameters module that are intended for use in 
language processor environments that are not integrated into TSO/E. If you provide 
IRXPARMS with values that cannot be used in TSO/E, provide the IRXPARMS 
module only for non-TSO/E address spaces. When you assemble the code and link 
edit the object code, you must name the output member IRXPARMS. You must then 
place the data set with IRXPARMS in either a STEPUB or JOBUB that is not 
searched by the TSO/E session. You can do this using JeL. You must ensure that 
the data set is not searched by the TSO/E session. 

If you provide your own IRXPARMS module that contains parameters values that 
must not be used by environments that are integrated into TSO/E (for example, 
TSO/E and ISPF), and IRXINIT locates the module when initializing a language 
processor environment in the TSO/E address space, IRXINIT may terminate or 
errors may occur when TSO/E users log on to TSO/E or invoke ISPF. For example, 
you can provide your own replaceable routines only in language processor 
environments that are not integrated into TSO/E. The values for the replaceable 
routines in the three default parameters modules are null. You can code your own 
IRXPARMS load module and specify the names of one or more replaceable routines. 
However, your module must not be in the TSO/E search order. When IRXINIT is 
invoked to initialize a language processor environment for TSO/E, IRXINIT finds a 
null value for the replaceable routine in the IRXTSPRM parameters module. IRXINIT 
then uses the value from the previous environment, which, in this case, is the value 
in IRXPARMS. 

Note: In the TSO/E address space, you can call IRXINIT and initialize an 
environment that is not integrated into TSO/E. See "Types of Environments -
Integrated and Not Integrated Into TSO/E" on page 344 about the two types of 
envi ronments. 

384 TSO/E Version 2 MVS/REXX Reference 

--------

o 



c 

('\ 

Changing Default Values 

For more information about the parameters you can use in different language 
processor environments, see "Specifying Values for Different Environments" on 
page 386. 

Considerations for Providing Parameters Modules 
The previous topics describe how to change the default parameter values that 
IRXINIT uses to initialize a language processor environment. You can provide your 
own IRXISPRM, IRXTSPRM, and IRXPARMS modules for ISPF, TSO/E, and 
non-TSO/E. Generally, if you want to change environment values for REXX execs 
that run from ISPF, you can simply provide your own IRXISPRM parameters module. 
To change values for TSO/E only or for TSO/E and ISPF, you may have to create 
only a IRXTSPRM module or both the IRXTSPRM and IRXISPRM modules. The 
modules you have to provide depend on the parameter you are changing and the 
value in the IRXISPRM default module. 

If you provide an IRXPARMS module and your module contains parameter values 
that cannot be used in environments that are integrated into TSO/E, you must 
ensure that the module is available only to non-TSO/E address spaces, not to TSO/E 
and ISPF. 

Before you code your own parameters module, review the default values that TSO/E 
provides. In your code, you must include the default values for any parameters you 
are not changing. In the ISPF module IRXISPRM, many parameter values are nUll, 
which means IRXINIT obtains the value from the previous environment. In this case, 
the previous environment was defined using the IRXTSPRM values. If you provide a 
IRXTSPRM module for TSO/E, check how the module affects the definition of 
environments for ISPF. 

TSO/E provides three samples in SYS1.SAMPLIB that are assembler code samples 
for the three parameters modules. The member names of the samples are: 

• TSOREXX1 (for IRXPARMS - MVS) 
• TSOREXX2 (for IRXTSPRM - TSO/E) 
• TSOREXX3 (for IRXISPRM - ISPF) 

Chapter 14. Language Processor Environments 385 



Values for Different Environments 

Specifying Values for Different Environments 
As described in the previous topic ("Changing the Default Values for Initializing an 
Environment"), you can change the default parameter values IRXINIT uses to 
initialize a language processor environment by providing your own parameters 
modules. You can also call the initialization routine, IRXINIT, to initialize a new 
environment. When you call1RXINIT, you can pass parameter values on the call. 
Chapter 15, "Initialization and Termination Routines" describes IRXINIT and its 
parameters and return codes. 

Whether you provide your own load modules or invoke IRXINIT directly, you cannot 
change some parameters. You can use other parameters only in language 
processor environments that are not integrated into TSO/E or in environments that 
are integrated into TSO/E. In addition, there are some restrictions on parameter 
values depending on the values of other parameters in the same environment and 
on parameter values that are defined for the previous environment. This topic 
describes the parameters you can and cannot use in the two types of language 
processor environments. The topic also describes different considerations for using 
the parameters. For more information about the parameters and their descriptions, 
see "Characteristics of a Language Processor Environment" on page 346. 

Parameters You Cannot Change 
There are two parameters that have fixed values and that you cannot change. The 
parameters are: 

ID The value must be IRXPARMS. If you provide your own load module, you 
must specify IRXPARMS for the 10. If you call IRXINIT, IRXINIT ignores 
any value you pass and uses the default IRXPARMS. 

VERSION The value must be 0200. If you provide your own load module or call 
IRXINIT, specify 0200 for the version. 

Parameters You Can Use in Any Language Processor Environment 
There are several parameters that you can specify in any language processor 
environment. That is, you can use these parameters in environments that are 
integrated into TSO/E and in environments that are not integrated into TSO/E. The 
following describes the parameters and any considerations for specifying them. 

LANGUAGE 
The language code. The default is ENU for US English in mixed case (upper and 
lowercase). 

PARSETOK 
The token for the PARSE SOURCE instruction. The default is a blank. 

ADDRSPN 
The name of the address space. TSO/E provides the following defaults: 

• IRXPARMS - MVS 
• IRXTSPRM - TSO/E 
• IRXISPRM - ISPF 

Note: You can change the address space name for any type of language 

/ 

fProcessor environment. If you write applications that examine the PARMBLOCK C' '. ' 

or an environment and perform processing based on the address space name, 
you must ensure that any changes you make to the ADDRSPN field do not affect 
your application programs. 

386 TSO/E Version 2 MVS/REXX Reference 



( 

( 

( 

Values for Different Environments 

FLAGS 
The FLAGS field is a fullword of bits that are used as flags. You can specify any 
of the flags in any environment. However, the value you specify for each flag 
depends on the purpose of the flag. In addition, there are some restrictions for 
various flag settings depending on the flag setting in the previous environment. 

The following explains the different considerations for the setting of some flags. 
See page 348 for details about each flag. 

Note: If your installation uses ISPF, there are several considerations about the 
flag settings for language processor environments that are initialized for ISPF. 
See "Flag Settings for Environments Initialized for TSO/E and ISPF" on page 392 
for more information. 

TSOFL 
The TSOFL flag indicates whether the new environment is integrated into 
TSO/E. 

If IRXINIT is initializing an environment in a non-TSO/E address space, the 
flag must be off (set to 0). The TSOFL flag must also be off if the environment 
is being initialized as a reentrant environment. You can initialize reentrant 
environments only by explicitly calling the IRXINIT routine. 

If IRXINIT is initializing an environment in the TSO/E address space, the 
TSOFL flag can be on or off. If the flag is on, the environment is integrated 
into TSO/E. REXX execs that run in the environment can use TSO/E 
commands, such as ALLOCATE and PRINTDS, and TSO/E programming 
services that are described in TSOIE Version 2 Programming Services (for 
example, the parse service routine and TSO/E I/O service routines, such as 
PUTGET). The exec can also use ISPF services and can call and be called by 
TSO/E CLlSTs. 

If the flag is off, the environment is not integrated into TSO/E. In this case, 
REXX execs cannot use TSO/E commands, TSO/E programming services, or 
ISPF services, or interact with CLlSTs. If the exec contains these type of 
services, unpredictable results can occur. 

If the TSOFL flag is on (the environment is integrated into TSO/E), then: 

• The RENTRANT flag must be off (set to 0) 

• The names of the replaceable routines in the module name table must be 
blank. You cannot provide replaceable routines in environments that are 
integrated into TSO/E. 

Note that the module name table also includes several fields for the 
names of REXX exit routines (for example, EXECINIT, ATTN ROUT, 
IRXEXECX, and EXECTERM). If the environment is integrated into TSO/E 
(TSOFL flag is on), you can specify the exits in the module name table. 

• The INDO and OUTDO fields in the module name table must be the 
defaults SYSTSIN and SYSTSPRT 

• The subpool number in the SUBPOOL field must be 78, in decimal. 

The TSOFL flag cannot be on (set to 1) if a previous language processor 
environment in the environment chain has the TSOFL flag off. 

NEWSTKFL 
The NEWSTKFL flag indicates whether or not IRXINIT initializes a new data 
stack for the new environment. 

Chapter 14. Language Processor Environments 387 



Values for Different Environments 

If you set the NEWSTKFL off for the new environment that IRXINIT is 
initializing, you must ensure that the SPSHARE flag is on in the previous 
environment. The SPSHARE flag determines whether the subpool is shared 
across MVS tasks. If the NEWSTKFL flag is off for the new environment and 
the SPSHARE flag is off in the previous environment, an error occurs when 
IRXINIT tries to initialize the new environment. 

Module Name Table 
The module name table contains the ddnames for reading and writing data and 
for loading REXX execs, and the names of replaceable routines and exit 
routines. The fields you can specify in any address space are described below. 
You can use the replaceable routines only in: 

• Non-TSO/E address spaces 

• The TSO/E address space if the language processor environment is 
initialized with the TSOFL flag off (the environment is not integrated with 
TSO/E). 

The module name table also contains fields for several REXX exits. The fields 
are EXECINIT for the exec initialization exit, ATTNROUT for the attention 
handling exit, I RXEXECX for the exec processing exit (for the IRXEXEC routine), 
and EXECTERM for the exec termination exit. You can specify exits for exec 
initialization (EXECINIT), exec processing (IRXEXECX), and exec termination 
(EXECTERM) in any type of language processor environment. You can provide 
an attention handling exit (ATTN ROUT) only for environments that are integrated 
into TSO/E. 

LOADDD 
The name of the DO from which the system loads REXX execs. The default 
TSO/E provides in all three parameters modules is SYSEXEC. (See "Using 
SYSPROC and SYSEXEC for REXX Execs" on page 392 for more information 
about SYSEXEC in the TSO/E address space). 

The DO from which the system loads REXX execs depends on the name 
specified in the LOADDD field and the setting of the TSOFL and NOLOADDD 
flags. If the TSOFL flag is on, the language processor environment is 
initialized in the TSO/E address space and is integrated into TSO/E (see page 
351). In TSO/E, you can store REXX execs in data sets that are allocated to 
SYSPROC or to the DO specified in the LOADDD field (the default is 
SYSEXEC). The NOLOADDD flag (see page 355) indicates whether the 
system searches SYSPROC only or whether the system searches the DO 
specified in the LOADDD field (SYSEXEC) first, followed by SYSPROC. 

If the TSOFL flag is off, the system loads REXX execs from the DO specified in 
the LOADDD field. 

Nole: For the default parameters modules IRXTSPRM and IRXISPRM, the 
NOLOADDO flag is off (0). Therefore, the system searches SYSEXEC 
followed by SYSPROC. To have the system search SYSPROC exclusively, 
you can provide your own parameters module. TSO/E users can also use the 
EXECUTIL command to dynamically change the search order. "EXECUTIL" 
on page 215 describes the EXECUTIL command. 

o 

( "\ 

The system opens the specified DO the first time a REXX exec is loaded. The 
DO remains open until the environment under which it was opened is 
terminated. If you want the system to close the DO after each REXX exec is C .. · ~: 
fetched, you must set the CLOSEXFL flag on (see page 353). Users can also 
use the EXECUTIL command to dynamically close the DO. Note that the 
system may close the data set at certain points. 

388 TSO/E Version 2 MVS/REXX Reference 



("/ 

( 

( 

( 

~~.-.---

Values for Different Environments 

See "Using SYSPROC and SYSEXEC for REXX Execs" on page 392 for more 
information about SYSPROC and SYSEXEC. 

EXECINIT 
The name of an exit routine that gets control after the system initializes the 
REXX variable pool for a REXX exec, but before the language processor 
starts processing the exec. 

IRXEXECX 
The name of an exit routine that is invoked whenever the IRXEXEC routine is 
called. 

EXECTERM 
The name of an exit routine that is invoked after a REXX exec has completed 
processing, but before the system terminates the REXX variable pool. 

Host Command Environment Table 
The table contains the names of the host command environments that are valid 
for the language processor environment and the names of the routines that the 
system calls to process commands for the host command environment. 

When IRXINIT creates the host command environment table for a new language 
processor environment, IRXINIT checks the setting of the NEWSCFL flag. The 
NEWSCFL flag indicates whether or not the host command environments that are 
defined for the previous language processor environment are added to the table 
that is specified for the new environment. If the NEWSCFL flag is 0, IRXINIT 
creates the table by copying the host command environment table from the 
previous environment and concatenating the entries specified for the new 
environment. If the NEWSCFL flag is 1, IRXINIT creates the table using only the 
entries specified for the new environment. 

Function Package Table 
The function package table contains information about the user, local, and 
system function packages that are available in the language processor 
environment. "Function Package Table" on page 365 describes the format of the 
table in detail. 

When IRXINIT creates the function package table for a new language processor 
environment, IRXINIT checks the settings of the USERPKFL, LOCPKFL, and 
SYSPKFL flags. The three flags indicate whether or not the user, local, and 
system function packages that are defined for the previous language processor 
environment are added to the function package table that is specified for the new 
environment. If a particular flag is 0, IRXINIT copies the function package table 
from the previous environment and concatenates the entries specified for the 
new environment. If the flag is 1, IRXINIT creates the function package table 
using only the entries specified for the new environment. 

Chapter 14. Language Processor Environments 389 



Values for Different Environments 

Parameters You Can Use for Environments That Are Integrated Into TSO/E 
There is one parameter that you can use only if a language processor environment 
is initialized in the TSO/E address space and the TSOFL flag is on. The parameter 
is the ATINROUT field in the module name table. The ATTNROUT field specifies the 
name of an exit routine for attention processing. The exit gets control if a REXX 
exec is running in the TSO/E address space and an attention interruption occurs. 
"REXX Exit Routines" on page 471 describes the attention handling exit. 

The ATTNROUT field must be blank if the new environment is not being integrated 
into TSO/E, that is, the TSOFL flag is off. 

Parameters You Can Use for Environments That Are Not Integrated Into 
TSO/E 

There are several parameters that you can specify only if the environment is not 
integrated into TSO/E (the TSOFL flag is off). The following describes the 
parameters and any considerations for specifying them. 

SUBPOOL 
The subpool number in which storage is allocated for the entire language 
processor environment. In the parameters module IRXPARMS, the default is O. 
You can specify a number from 0 - 127. 

If the environment is initialized in the TSO/E address space and the TSOFL flag 
is on, the subpool number must be 78, in decimal. 

Module Name Table 
The module name table contains the names of DDs for reading and writing data 
and for loading REXX execs, and the names of replaceable routines and exit 
routines. The fields you can specify if the environment is not integrated into 
TSO/E (the TSOFL flag is off) are described below. 

INDO 
The name of the DD from which the PARSE EXTERNAL instruction reads 
input data. The default is SYSTSIN. 

If IRXINIT initializes the environment in the TSO/E address space and the 
TSOFL flag is on, IRXINIT ignores the ddname. 

If the specified DD is opened by a previous language processor environment, 
even an environment on a higher task, and the INDD value for the new 
environment is obtained from the previous environment, the new 
environment uses the DeB of the previous environment. Sharing of the DeB 
in this way means: 

• A REXX exec running in the new environment reads the record that 
follows the record the previous environment read. 

• If the previous environment runs on a higher task and that environment is 
terminated, the new environment reopens the DD. However, the original 
position in the DD is lost. 

390 TSO/E Version 2 MVS/REXX Reference 

------~. 

o 



( 

(. 

,"'~. = __ =_.~m_~_ ~ ______ . __ ...... _. ____ _ 

Values for Different Environments 

OUTDD 
The name of the DD to which data is written for a SAY instruction, when 
tracing is started, or for REXX error messages. The default is SYSTSPRT. 

If IRXINIT initializes the environment in the TSO/E address space and the 
TSOFL flag is on, IRXINIT ignores the ddname. 

If you initialize two environments by calling IRXINIT and explicitly pass the 
same ddname for the two different environments, when the second 
environment opens the DD, the open fails. The open fails because the data 
set can only be opened once. The OPEN macro issues an ENQ exclusively 
for the ddname. 

IOROUT 
The name of the input/output (I/O) replaceable routine. "Input/Output 
Routine" on page 442 describes the routine in detail. 

If the environment is initialized in the TSO/E address space and the TSOFL 
flag is on, this field must be blank. 

EXROUT 
The name of the load exec replaceable routine. "Exec Load Routine" on 
page 433 describes the routine in detail. 

If the environment is initialized in the TSO/E address space and the TSOFL 
flag is on, this field must be blank. 

GETFREER 
The name of the storage management replaceable routine. "Storage 
Management Routine" on page 463 describes the routine in detail. 

If more than one language processor environment is initialized on the same 
task and the environments specify a storage management replaceable 
routine, the name of the routine must be the same. If the name of the routine 
is different for two environments on the same task, an error occurs when 
IRXINIT tries to initialize the new environment. 

If the environment is initialized in the TSO/E address space and the TSOFL is 
on, the GETFREER field must be blank. 

STACKRT 
The name of the data stack replaceable routine. "Data Stack Routine" on 
page 457 describes the routine in detail. 

If the environment is initialized in the TSO/E address space and the TSOFL 
flag is on, this field must be blank. 

IDROUT 
The name of the user ID replaceable routine. The system calls the routine 
whenever an exec uses the USERID built-in function. "User ID Routine" on 
page 466 describes the routine in detail. 

If the environment is initialized in the TSO/E address space and the TSOFL 
flag is on, this field must be blank. 

MSGIDRT 
The name of the message identifier replaceable routine. The system calls 
the routine to determine whether message IDs are displayed. "Message 
Identifier Routine" on page 470 describes the routine in detail. 

If the environment is initialized in the TSO/E address space and the TSOFL 
flag is on, this field must be blank. 

Chapter 14. Language Processor Environments 391 



Flag Settings for Environments Initialized for TSO/E and ISPF 
If your installation uses ISPF, there are several considerations about flag settings 
for language processor environments that are initialized for TSO/E and ISPF. In the 
default IRXISPRM parameters module for ISPF, most of the mask settings for the 
flags parameters are 0, which means IRXINIT uses the values from TSO/E 
(IRXTSPRM module). If you provide your own IRXISPRM load module, you should 
not change the mask values for the following flags. The mask values for these flags 
should be O. 

• CMDSOFL - command search order flag 
• FUNCSOFL - function and subroutine search order flag 
• NOSTKFL - no data stack flag 
• NOREADFL - no read (input file) flag 
• NOWRTFL - no write (output file) flag 
• NEWSTKFL - new data stack flag 
• NOESTAE - recovery ESTAE flag 
• RENTRANT - reentrant/non-reentrant flag 
• SPSHARE - subpool sharing flag 

The values for these flags in ISPF should be the same as the values that IRXINIT 
uses when initializing an environment for the TSO/E session. When IRXINIT 
initializes an environment for ISPF, IRXINIT uses the values defined for the previous 
environment (TSO/E) because the mask settings are O. Using the same values for 
these flags for both TSO/E and ISPF prevents any processing problems between the 
ISPF and TSO/E sessions. 

If you do want to change one of the flag values, change the value in the IRXTSPRM 
parameters module for TSO/E. The change is inherited by ISPF when IRXINIT 
initializes an environment for the ISPF screen. For example, suppose you want to 
change the search order the system uses for locating external functions and 
subroutines. The FUNCSOFL flag controls the search order. You can provide a 
IRXTSPRM parameters module for TSO/E and change the flag setting. ISPF inherits 
the changed flag setting when IRXINIT initializes an environment. 

Using SYSPROC and SYSEXEC for REXX Execs 
In the module name table, the LOADDD field (see page 357) contains the name of 
the DO from which REXX execs are fetched. The default TSO/E provides for 
non-TSO/E, TSO/E, and ISPF is SYSEXEC. If you customize REXX processing either 
by providing your own parameters modules or explicitly calling IRXINIT to initialize 
an environment, it is recommended that you use the ddname SYSEXEC. The TSO/E 
REXX documentation refers to this DO as SYSEXEC. 

In TSO/E, you can store both interpreted and compiled REXX execs in data sets that 
are allocated to either SYSPROC or SYSEXEC. You can use SYSPROC for both 
TSO/E CLiSTs and REXX execs. SYSEXEC is for REXX execs only. If an exec is in a 
data set that is allocated to SYSPROC, the exec must start with a comment 
containing the characters REXX within the first line (line 1). This is required in order 
for the TSO/E EXEC command to distinguish REXX execs from CLiSTs. The TSO/E 
Version 2 Procedures Language MVS/REXX User's Guide describes how to allocate 
execs to SYSPROC and SYSEXEC. For information about compiled execs, see the 
appropriate compiler publications. 

In the parameters module, the NOLOADDD flag (see page 350) controls the search 
order for REXX execs. The flag indicates whether or not the system searches the 
DO specified in the LOADDD field (SYSEXEC). With the defaults that TSO/E 

392 TSO/E Version 2 MVS/REXX Reference 

o 

c 



( 

( 

( 

.. ~.,.~. _._. ---~-.• --.--.. ---. 

Values for Different Environments 

provides, the system searches SYSEXEC first, followed by SYSPROC. The system 
searches SYSPROC only if the language processor environment is integrated into 
TSO/E. 

If your installation plans to use REXX, it is recommended that you store your execs 
in data sets that are allocated to SYSEXEC, rather than using SYSPROC. Using 
SYSEXEC makes it easier to maintain your REXX execs. If your installation uses 
many CUSTs and does not plan to have a large number of REXX execs, you may 
want to use SYSPROC only and not use SYSEXEC. To use SYSPROC only, you can 
provide your own IRXTSPRM parameters module for TSO/E or use the EXECUTIL 
SEARCHDD command. 

If you provide your own IRXTSPRM parameters module, specify the following values 
for the NOLOADDD mask and flag fields: 

• NOLOADDD_MASK-1 
• NOLOADDD fLAG - 1 

With these values, the system does not search SYSEXEC and searches SYSPROC 
only. You can make your parameters module available on a system-wide basis for 
your entire installation. You can also make your module available only to a specific 
group of users by making it available only on a logon level. You can place your 
IRXTSPRM module in a data set specified in the STEPUB concatenation in the logon 
procedure. You must ensure that the data set is higher in the concatenation than 
any other data set that contains IRXTSPRM. See TSOIE Version 2 Customization for 
more information about logon procedures. 

You need not provide your own IRXISPRM parameters module for ISPF because the 
NOLOADDD mask value in the default IRXISPRM module is 0, which means IRXINIT 
uses the flag setting from the previous environment. In this case, the previous 
environment is the value from the IRXTSPRM module you provide. 

You can also use the EXECUTIL command with the SEARCHDD operand to change 
the search order and have the system search SYSPROC only. You can use 
EXECUTIL SEARCHDD(NO) in a start-up CUST or REXX exec that is part of a logon 
procedure. Users can also use EXECUTIL SEARCHDD(NO) to dynamically change 
the search order during their TSO/E and ISPF sessions. For more information about 
the EXECUTIL command, see Chapter 10, "TSO/E REXX Commands." 

In TSO/E, you can also use the TSO/E ALTUB command to define alternate exec 
libraries in which to store implicitly executed REXX execs. Using ALTUB, you can 
specify alternate libraries on the user, application, or system level and activate and 
deactivate individual exec libraries as needed. For more information about using 
ALTUB, see TSOIE Version 2 Procedures Language MVSIREXX User's Guide. 

If a REXX exec in the SYSPROC system level or application level file is stored in the 
VLF data repository, the exec is compressed. In general, compression eliminates 
comment text and leading and trailing blanks, and replaces blank lines with null 
lines, which preserves the line numbering in the exec. For comments, the system 
removes the comment text but keeps the beginning and ending comment delimiters 
1* and *1. This preserves the exec line numbering if the comment spans more than 
one line. Blanks and comments within literal strings (delimited by either single or 
double quotation marks) are not removed. Blanks or comments within a 
Double-Byte Character Set (DBCS) string are not removed. 

Chapter 14. Language Processor Environments 393 



Values for Different Environments 

If the system compresses the exec, it replaces the first line of the exec (the 
comment line containing the characters "REXX") with the comment /*%NOCOMMENT*/. Cl 
If you review a dump of VLF, the /*%NOCOMMENT* / comment is an indicator that the '_j 
exec is compressed. 

If the system finds an explicit occurrence of the characters SOURCELINE outside of a 
comment in the exec, it does not compress the exec. For example, if you use the 
SOURCE LINE built-in function, the exec is not compressed. If you use a variable 
called" ASOURCELlNE1," the system does not compress the exec because it locates 
the characters SOURCELINE within that variable name. Note that the system does 
compress the exec if the exec contains a "hidden" use of the characters SOURCE LINE. 
For example, you may concatenate the word SOURCE and the word LINE and then use 
the INTERPRET instruction to interpret the concatenation or you may use the 
hexadecimal representation of SOURCELINE. In these cases, the system 
compresses the exec because the characters SOURCELINE are not explicitly found. 

Compression provides a potential performance benefit by reducing the amount of 
VLF virtual storage required for storing the exec. If you do not want certain execs 
stored in VLF to be compressed, you can allocate the exec data set to SYSEXEC or 
the SYSPROC user level file. You can also prevent compression by including the 
character string SOURCELINE in the exec, outside of a comment. TSOIE Version 2 
Programming Guide describes the potential benefits of exec compression. 

394 TSO/E Version 2 MVS/REXX Reference 

o 



c 

( 

Control Blocks 

Control Blocks Created for a Language Processor Environment 
When IRXINIT initializes a new language processor environment, IRXINIT creates a 
number of control blocks that contain information about the environment. The main 
control block is the environment block (ENVBLOCK). The environment block 
contains pointers to: 

• The parameter block (PARMBLOCK), which is a control block containing the 
parameters IRXINIT used to define the environment. The parameter block 
IRXINIT creates has the same format as the parameters module. 

• The user field that was passed on the call to IRXINIT if IRXINIT was explicitly 
invoked by a user 

• The work block extension, which is a control block that contains information 
about the REXX exec that is currently running 

• The REXX vector of external entry points, which contains the addresses of the 
REXX routines TSO/E provides, such as IRXINIT, IRXTERM, REXX programming 
routines, and replaceable routines. For replaceable routines, the vector 
contains the addresses of both the system-supplied routines and any 
user-supplied routines. 

• The TSO/E REXX routine that encountered the first error and issued the first 
error message in the environment. 

• The compiler programming table, which identifies compiler runtime processors 
and corresponding compiler interface routines. 

Note About Changing Any Control Blocks ---------------, 

You can obtain information from the control blocks. However, you must not 
change any of the control blocks. If you do, unpredictable results may occur. 

Format of the Environment Block (ENVBLOCK) 
Figure 77 on page 396 shows the format of the environment block. TSO/E provides 
a mapping macro, IRXENVB, for the environment block. The mapping macro is in 
SYS1.MACLIB. 

When IRXINIT initializes a new language processor environment, IRXINIT returns 
the address of the new environment block in register 0 and in parameter 6 in the 
parameter list. You can use the environment block to locate information about a 
specific environment. For example, the environment block points to the REXX 
vector of external entry points that contains the addresses of routines that perform 
system services, such as 110, data stack, and exec load. Using the control blocks 
lets you easily call one of the routines. 

Chapter 14. Language Processor Environments 395 



Control Blocks 

Figure 77 (Page 1 of 2). Format of the Environment Block 

Offset Number Field Name Description n 
(Decimal) of Bytes 0 
0 8 10 An eight character field that identifies the 

environment block. The field contains the 
characters 'ENVBLOCK'. 

8 4 VERSION A four byte field that contains the version number 
of the environment block. The version number is 
0100. 

12 4 LENGTH The length of the environment block. The number 
is 320, in decimal. 

16 4 PARMBLOCK The address of the parameter block 
(PARMBLOCK). See "Format of the Parameter 
Block (PARMBLOCK)" on page 397 for more 
information. 

20 4 USERFIELO The address of the user field that is passed to " 

IRXINIT if you explicitly called IRXINIT. You pass 
"-.. / 

the user field in parameter 4 (see "Initialization 
Routine - IRXINIT" on page 412 for information 
about the parameters). You can use this field for 
your own processing. The TSO/E REXX services do 
not use this field. 

24 4 WORKBLOK_EXT The address of the current work block extension. If 
an exec is not currently running in the environment, 
the address is O. See "Format of the Work Block 
Extension" on page 398 for details about the work 
block extension. 

28 4 IRXEXTE The address of the REXX vector of external entry 
pOints. See "Format of the REXX Vector of External 
Entry Points" on page 401 for details about the 
vector. 

32 4 ERROR_CALL@ The address of the TSO/E REXX routine that 
encountered the first error in the language 
processor environment and that issued the first 
error message. The error could have occurred 
while an exec was running or when a particular '\ 
service was requested in the environment. ~ 

36 4 Reserved. 

40 8 ERROR_MSGIO An eight character field that contains the message 
10 of the first error message the system issued in 
the language processor environment. The 
message relates to the error encountered by the 
routine that is pointed to at offset + 32. 

48 80 PRIMARY _ERROR_MESSAGE An 80 character field that contains the primary 
error message (the message text) for the message 
10 at offset + 40. 

128 160 ALTERNATE_ERROR_MESSAGE A 160 character field that contains the alternate 
error message (the message text) for the message 
10 at offset + 40. 

C 

396 TSO/E Version 2 MVS/REXX Reference 



( 

( 

Figure 77 (Page 2 of 2). Format of the Environment Block 

Offset 
(Decimal) 

288 

292 

Number 
of Bytes 

4 

4 

Field Name 

COMPGMTB 

Description 

The address of the compiler programming table for 
the language processor environment. The table 
identifies a compiler runtime processor and 
corresponding compiler interface routines. If a 
compiler programming table is not available to the 
language processor environment, this field is O. 
For information about the compiler programming 
table, see TSOIE Version 2 Customization. 

The address of an attention handling routine control 
block. The attention handling exit can optionally 
use this control block to communicate with REXX 
attention processing. For more information about 
the control block, see TSOIE Version 2 
Customization. 

The following topics describe the format of the parameter block (PARMBLOCK), the 
work block extension, and the vector of external entry points. 

Format of the Parameter Block (PARMBLOCK) 
The parameter block (PARMBLOCK) contains information about the parameters that 
IRXINIT used to define the environment. The environment block points to the 
parameter block. 

Figure 78 shows the format of the parameter block. TSO/E provides a mapping 
macro, IRXPARMB, for the parameter block. The mapping macro is in 
SYS1.MACLIB. 

The parameter block has the same format as the parameters module. See 
"Characteristics of a Language Processor Environment" on page 346 for 
information about the parameters module and a complete description of each field. 

Figure 78 (Page 1 of 2). Format of the Parameter Block (PARMBLOCK) 

Offset Number Field Name Description 
(Decimal) of Bytes 

0 8 10 An eight character field that identifies the 
parameter block. The field contains the 
characters 'IRXPARMS·. 

8 4 VERSION A four byte field that contains the version 
number of the parameter block in EBCDIC. 
The version number is 0200. 

12 3 LANGUAGE Language code for REXX messages. 

15 Reserved. 

16 4 MODNAMET Address of the module name table. See 
"Module Name Table" on page 356 for a 
description of the table. 

20 4 SUBCOMTB Address of the host command environment 
table. See "Host Command Environment 
Table" on page 361 for a description of the 
table. 

Chapter 14. Language Processor Environments 397 

.~~-~, '~"~--~~.-'----.--.-.-------



Control Blocks 

Figure 78 (Page 2 of 2). Format of the Parameter Block (PARMBLOCK) 

onset Number Field Name Description 
(Decimal) of Bytes 

24 4 PACKTB Address of the function package table. See 
"Function Package Table" on page 365 for a 
description of the table. 

28 8 PARSETOK Token for the PARSE SOURCE instruction. 

36 4 FLAGS A fullword of bits that represent the flags that 
IRXINIT used in defining the environment. 
The flags in the parameter block are in the 
same order as in the parameters module. 
See "Flags and Corresponding Masks" on 
page 351 for a complete description of the 
flags. 

40 4 MASKS A fullword of bits that represent the mask 
settings of the flag bits that IRXINIT used in 
defining the environment. The masks are in 
the same order as in the parameters module. 
See "Flags and Corresponding Masks" on 
page 351 for a complete description of the 
flags and their corresponding masks. 

44 4 SUBPOOL Number of the subpool for storage allocation. 

48 8 ADDRSPN Name of the address space. 

56 8 The end of the parameter block is indicated 
by X I FFFFFFFFFFFFFFFF I. 

Format of the Work Block Extension 
The work block extension contains information about the REXX exec that is currently 
running. The environment block points to the work block extension. 

When IRXINIT first initializes a new environment and creates the environment block, 
the address of the work block extension in the environment block is O. The address 
is 0 because a REXX exec is not yet running in the environment. At this point, 
IRXINIT is only initializing the environment. 

When an exec starts running in the environment, the environment block is updated 
to point to the work block extension describing the exec. If an exec is running and 
invokes another exec, the environment block is updated to point to the work block 
extension for the second exec. The work block extension for the first exec still 
exists, but the environment block does not point to it. When the second exec 
completes and returns control to the first exec, the environment block is changed 
again to point to the work block extension for the original exec. 

The work block extension contains the parameters that are passed to the IRXEXEC 
routine to invoke the exec. You can call1RXEXEC explicitly to invoke an exec and 
pass the parameters on the call. If you use IRXJCL, implicitly or explicitly invoke an 
exec in TSO/E, or run an exec in TSO/E background, the IRXEXEC routine always 
gets control to run the exec. "Exec Processing Routines - IRXJCL and IRXEXEC" , 
on page 258 describes the IRXEXEC routine in detail and each parameter that 
IRXEXEC receives. 

398 TSO/E Version 2 MVS/REXX Reference 

o 

o 



Control Blocks 

Figure 79 on page 399 shows the format of the work block extension. TSO/E 

(~' 
provides a mapping macro, IRXWORKB, for the work block extension. The mapping 
macro is in SYS1.MACLIB. 

Figure 79 (Page 1 of 2). Format of the Work Block Extension 

Offset Number Field Name Description 
(Decimal) of Bytes 

0 4 EXECBLK The address of the exec block 
(EXECBLK). See "The Exec Block 
(EXECBLK)" on page 266 for a 
description of the control block. 

4 4 ARGTABLE The address of the arguments for the 
exec. The arguments are arranged as 
a vector of addressllength pairs 
followed by X' FFFFFFFFFFFFFFFF '. 
See" Format of Argument List" on 
page 267 for a description of the 

(- argument list. 

8 4 FLAGS A fullword of bits that IRXEXEC uses as 
flags. IRXEXEC uses bits 0, 1, 2, and 3 
only. The remaining bits are reserved. 
Bits 0, 1, and 2.are mutually exclusive. 

• Bit 0 - If the bit is on, the exec 
was invoked as a "command" (that 
is, the exec was not invoked from 
another exec as an external 

(" 
function or subroutine). 

• Bit 1 - If the bit is on, the exec 
was invoked as an external 
function (a function call). 

• Bit 2 - If the bit is on, the exec 
was invoked as a subroutine using 
the CALL instruction. 

• Bit 3 - If the bit is on and a syntax 
error occurs, IRXEXEC returns a 
return code from 20001 - 20099. If 

(- the bit is off and a syntax error 
occurs, IRXEXEC returns with 
return code O. For more 
information about bit 3, see page 
264. 

12 4 INSTBLK The address of the in-storage control 
block (INSTBLK). See "The In-Storage 
Control Block (INSTBLK)" on page 268 
for a description of the control block. 

16 4 CPPLPTR The address of the command 
processor parameter list (CPPL) if you 
invoked the exec from the TSO/E 
address space. If you invoked the exec 
from a non-TSO/E address space, the 
address is O. 

(~ 
20 4 EVALBLOCK The address of the evaluation block 

(EVALBLOCK). See "The Evaluation 
Block (EVALBLOCK)" on page 270 for 
a description of the control block. 

Chapter 14. Language Processor Environments 399 

... __ .. ,-_.",,_-...-



Control Blocks 

Figure 79 (Page 2 of 2). Format of the Work Block Extension 

Offset Number Field Name Description f\ 
(Decimal) of Bytes ~j 
24 4 WORKAREA The address of an eight byte field that 

defines a work area for the IRXEXEC 
routine. See Figure 24 on page 263 
for more information about the work 
area. 

28 4 USERFIELD The address of the user field that is 
passed to IRXEXEC if you explicitly 
called IRXEXEC. You pass the address 
of the user field in parameter 8 (see 
"The IRXEXEC Routine" on page 261 
for information about the parameters). 
You can use this field for your own 
processing. Any of the REXX services 
do not use this field. 

32 4 RTPROC A fullword that is available for use by a 
REXX compiler runtime processor. 
This field allows a compiler runtime 
processor to have an anchor that is 
unique for each compiled REXX exec 
that runs within a language processor 
environment. A compiler runtime 
processor can use this field for its own 
purpose. TSO/E REXX does not check 
or change this field. 

36 4 SOURCE_ADDRESS The address of the PARSE SOURCE 
string for the exec currently 
processing. This is the string that the 
PARSE SOURCE instruction would 
return . 

40 4 SOURCE_LENGTH . The length of the PARSE SOURCE 
string that is pointed to by the 
SOURCE_ADDRESS field at offset + 36 
(decimal). 

/ 

"'-./ 

C:.' .. . 

400 TSO/E Version 2 MVS/REXX Reference 



Control Blocks 

Format of the REXX Vector of External Entry Points 
The REXX vector of external entry points is a control block that contains the 
addresses of REXX programming routines and replaceable routines. The 
environment block points to the vector. Figure 80 on page 402 shows the format of 
the vector of external entry points. TSO/E provides a mapping macro, IRXEXTE, for 
the vector. The mapping macro is in SYS1.MACLIB. 

The vector allows you to easily access the address of a particular TSO/E REXX 
routine in order to call the routine. The table contains the number of entries in the 
table followed by the entry points (addresses) of the routines. 

Each REXX external entry point has an alternate entry point to permit FORTRAN 
programs to call the entry point. The external entry points and their alternates are: 

Primary Entry Point Name 

IRXINIT 
IRXLOAD 
IRXSUBCM 
IRXEXEC 
IRXINOUT 
IRXJCL 
IRXRLT 
IRXSTK 
IRXTERM 
IRXIC 
IRXUID 
IRXTERMA 
IRXMSGID 
IRXEXCOM 
IRXSAY 
IRXERS 
IRXHST 
IRXHLT 
I RXTXT 
IRXLlN 
IRXRTE 

Alternate Entry Point Name 

IRXINT 
IRXLD 
IRXSUB 
IRXEX 
IRXIO 
IRXJCL (same) 
IRXRL T (same) 
IRXSTK (same) 
IRXTRM 
IRXIC (same) 
IRXUID (same) 
IRXTMA 
IRXMID 
IRXEXC 
IRXSA Y (same) 
IRXERS (same) 
IRXHST (same) 
IRXHL T (same) 
IRXTXT (same) 
IRXLlN (same) 
IRXRTE (same) 

For the replaceable routines, the vector provides two addresses for each routine. 
The first address is the address of the replaceable routine the user supplied for the 
language processor environment. If a user did not supply a replaceable routine, the 
address points to the default system routine. The second address points to the 
default system routine. Chapter 16, "Replaceable Routines and Exits" on page 427 
describes replaceable routines in detail. 

Chapter 14. Language Processor Environments 401 



Control Blocks 

Figure 80 (Page 1 of 2). Format of REXX Vector of External Entry Points 

OHset Number Field Name Description 0 (DeCimal) of Bytes 

0 4 ENTRY_COUNT The total number of entry points 
included in the vector. The number is 
26. 

4 4 IRXINIT The address of the initialization routine, 
IRXINIT. 

8 4 LOAD_ROUTINE The address of the user-supplied exec 
load replaceable routine for the 
language processor environment. This 
is the routine that is specified in the 
EXROUT field of the module name 
table. If a replaceable routine is not 
specified, the address points to the 
system-supplied exec load routine, 
IRXLOAD. 

12 4 IRXLOAD The address of the system-supplied 
exec load routine, IRXLOAD. 

16 4 IRXEXCOM The address of the variable access 
routine,IRXEXCOM. 

20 4 IRXEXEC The address of the exec processing 
routine, IRXEXEC. 

24 4 10_ROUTINE The address of the user-supplied I/O 
replaceable routine for the language 
processor environment. This is the /" 'i routine that is specified in the 10ROUT ( 
field of the module name table. If a "- / 
replaceable routine is not specified, the 
address points to the system-supplied 
I/O routine, IRXINOUT. 

28 4 IRXINOUT The address of the system-supplied I/O 
routine, IRXINOUT. 

32 4 IRXJCL The address of the IRXJCL routine. 

36 4 IRXRLT The address of the IRXRL T (get result) /,f ~\ 

routine. 
"c ./ 

40 4 STACK_ROUTINE The address of the user-supplied data 
stack replaceable routine for the 
language processor environment. This 
is the routine that is specified in the 
ST ACKRT field of the module name 
table. If a replaceable routine is not 
specified, the address pOints to the 
system-supplied data stack routine, 
IRXSTK. 

44 4 IRXSTK The address of the system-supplied 
data stack handling routine, IRXSTK. 

48 4 IRXSUBCM The address of the host command 
environment routine, IRXSUBCM. 

52 4 IRXTERM The address of the termination routine, 

0 IRXTERM. 

56 4 IRXIC The address of the trace and execution 
control routine, IRXIC. 

402 TSO/E Version 2 MVS/REXX Reference 

-~.--------- .--~--
--,.,-_ ... ,---



Control Blocks 

Figure 80 (Page 2 of 2). Format of REXX Vector of External Entry Points 

C Onset Number Field Name Description 
(Decimal) of Bytes 

60 4 MSGIO_ROUTINE The address of the user-supplied 
message 10 replaceable routine for the 
language processor environment. This 
is the routine that is specified in the 
MSGIORT field of the module name 
table. If a replaceable routine is not 
specified, the address points to the 
system-supplied message 10 routine, 
IRXMSGIO. 

64 4 IRXMSGIO The address of the system-supplied 
message 10 routine, IRXMSGIO. 

68 4 USERIO_ROUTINE The address of the user-supplied user 
10 replaceable routine for the language 

( processor environment. This is the 
routine that is specified in the 10ROUT 
field of the module name table. If a 
replaceable routine is not specified, the 
address points to the system-supplied 
user 10 routine, IRXUIO. 

72 4 IRXUIO The address of the system-supplied 
user 10 routine, IRXUIO. 

76 4 IRXTERMA The address of the termination routine, 
IRXTERMA. (- 80 4 IRXSAY The address of the SAY instruction 
routine, I RXSAY. 

84 4 IRXERS The address of the external routine 
search routine, IRXERS. The IRXERS 
routine is a REXX compiler 
programming routine and is described 
in TSOIE Version 2 Customization. 

88 4 IRXHST The address of the host command 

( 
search routine, IRXHST. The IRXHST 
routine is a REXX compiler 
programming routine and is described 
in TSOIE Version 2 Customization. 

92 4 IRXHLT The address of the halt condition 
routine, IRXHL T. 

96 4 I RXTXT The address of the text retrieval 
routine, IRXTXT. 

100 4 IRXLlN The address of the LlNESIZE built-in 
function routine, IRXLlN. 

104 4 IRXRTE The address of the exit routing routine, 
IRXRTE. The IRXRTE routine is a REXX 
compiler programming routine and is 
described in TSOIE Version 2 
Custom iza tion. 

(-

Chapter 14. Language Processor Environments 403 

.-~~--"' .. ---- - ..... __ . __ ._--_. 



Maximum Number of Environments 

Changing the Maximum Number of Environments In an Address 
Space 

Within an address space, language processor environments are chained together to 
form a chain of environments. There can be many environments on a single chain. 
You can also have more than one chain of environments in a single address space. 
There is.a maximum number of environments that can be initialized at one time in 
an address space. The maximum is not a specific number because the maximum 
depends on the number of chains in an address space and the number of 
environments on each chain. The default maximum TSO/E provides should be 
sufficient for any address space. However, if IRXINIT initializes a new environment 
and the maximum number of environments has been reached, IRXINIT completes 
unsuccessfully and returns with a return code of 20 and a reason code of 24. If this 
error occurs, you can change the maximum value. 

The maximum number of environments the system can initialize in an address 
space is defined in an environment table known as IRXANCHR. To change the 
number of environment table entries, you can use the TSOANCH sample that TSO/E 
provides in SYS1.SAMPLIB or you can create your own IRXANCHR load module. 
The TSOANCH sample is a System Modification Program/Extended (SMP/E) user 
modification (USER MOD) to change the number of language processor 
environments in an address space. The prolog of TSOANCH has instructions for 
using the sample job. The SMP/E code that is included in the TSOANCH sample 
handles the installation of the load module. 

If you create your own IRXANCHR load module, you must assemble the code and 
then link edit the module as non-reentrant and reusable. You can place the data set 
in a STEPLIB or JOBLlB, or in the linklist. The data set cannot be in the LPALIB. 

Figure 81 on page 405 describes the environment table. TSO/E provides a 
mapping macro, IRXENVT, for the environment table. The mapping macro is in 
SYS1.MACLIB. 

The environment table consists of a table header followed by table entries. The 
header contains the 10, version, total number of entries, number of used entries, 
and the length of each entry. Following the header, each entry is 40 bytes long. 

404 TSO/E Version 2 MVS/REXX Reference 

~ 
( \ 

~) 

o 

-------,------------- ------~-------~--~--------.--~-



~~~- ------~----

Maximum Number of Environments 

Figure 81. Format of the Environment Table 

C OHset Number Field Name Description 
(Decimal) of Bytes 

0 8 ID An eight character field that identifies the 
environment table. The field contains the 
characters 'IRXANCHR'. 

8 4 VERSION The version of the environment table. The 
value must be 0100 in EBCIDC. 

12 4 TOTAL Specifies the total number of entries in the 
environment table. 

16 4 USED Specifies the total number of entries in the 
environment table that are used. 

20 4 LENGTH Specifies the length of each entry in the 
environment table. The length of each entry 

(- is 40 bytes. 

24 8 Reserved. 

32 40 FIRST The first environment table entry. Each entry 
is 40 bytes long. The remaining entries 
follow. 

( 

(-

Chapter 14. Language Processor Environments 405 

~~---------.------.-.-------



Data Stack In Environments 

Using the Data Stack in Different Environments 
The data stack is a repository for storing data for use by a REXX exec. You can 
place elements on the data stack using the PUSH and QUEUE instructions, and,take 
elements off of the data stack using the PULL instruction. You can also use TSO/E 
REXX commands to manipulate the data stack. For example, you can use the 
MAKEBUF command to create a buffer on the data stack and then add elements to 
the data stack. You can use the QELEM command to query how many elements are 
currently on the data stack above the most recently created buffer. Chapter 10, 
"TSO/E REXX Commands" describes the REXX commands for manipulating the data 
stack. TSOIE Version 2 Procedures Language MVSIREXX User's Guide describes 
how to use the data stack and associated commands. 

The data stack is associated with one or more language processor environments. 
The data stack is shared among all REXX execs that run within a specific language 
processor environment. 

/""\ 

A data stack mayor may not be available to REXX execs that run in a particular ',,- ./ 
language processor environment. Whether or not a data stack is available depends 
on the setting of the NOSTKFL flag (see page 352). When IRXINIT initializes an 

'environment and the NOSTKFL flag is on, IRXINIT does not create a data stack or 
make a data stack available to the language processor environment. Execs that run 
in the environment cannot use a data stack. 

If the NOSTKFL flag is off, either IRXINIT initializes a new data stack for the new 
environment or the new environment shares a data stack that was initialized for a 
previous environment. Whether IRXINIT initializes a new data stack for the new 
environment depends on: 

• The setting of the NEWSTKFL (new data stack) flag, and 

• Whether the environment is the first environment that IRXINIT is initializing on a 
chain. 

Note: The NOSTKFL flag takes precedence over the NEWSTKFL flag. If the 
NOSTKFL flag is on, IRXINIT does not create a data stack or make a data stack 
available to the new environment regardless of the setting of the NEWSTKFL flag. 

If the environment is the first environment on a chain, IRXINIT automatically 
initializes a new data stack regardless of the setting of the NEWSTKFL flag. 

Nole: If the NOSTKFL is on, IRXINIT does not initialize a data stack. 

If the environment is not the first one on the chain, IRXINIT determines the setting of 
the NEWSTKFL flag. If the NEWSTKFL flag is off, IRXINIT does not create a new data 
stack for the new environment. The language processor environment shares the 
data stack that was most recently created for one of the parent environments. If the 
NEWSTKFL flag is on, IRXINIT creates a new data stack for the language processor 
environment. Any REXX execs that run in the new environment can access only the 
new data stack for this environment. Execs cannot access any data stacks that 
IRXINIT created for any parent environment on the chain. 

Environments can only share data stacks that were initialized by environments that 
are higher on a chain. 

406 TSO/E Version 2 MVS/REXX Reference 



(-

( 

--------~---------------

If IRXINIT creates a data stack when it initializes an environment, the system deletes 
the data stack when that environment is terminated. The data stack is deleted at 
environment termination regardless of whether any elements are on the data stack. 
All elements on the data stack are lost. 

Figure 82 shows three environments that are initialized on one chain. Each 
environment has its own data stack, that is, the environments do not share a data 
stack. 

--.. Environment 1 

-
Environment 2 

~ 

- Environment 3 

~ 

~ 

Data Stack for 
Environment 1 

Data Stack for 
Environment 2 

Data Stack for 
Environment 3 

Figure 82. Separate Data Stacks for Each Environment 

When environment 1 was initialized, it was the first environment on the chain. 
Therefore, a data stack was automatically created for environment 1. Any REXX 
execs that execute in environment 1 access the data stack associated with 
envi ronment 1. 

When environment 2 and environment 3 were initialized, the NEWSTKFl flag was 
set on, indicating that a data stack was to be created for the new environment. The 
data stack associated with each environment is separate from the stack for any of 
the other environments. If an exec executes, it executes in the most current 
environment (environment 3) and only has access to the dats stack for environment 
3. 

Chapter 14. Language Processor Environments 407 



Data Stack In Environments 

Figure 83 shows two environments that are initialized on one chain. The two 
envi ronments share one data stack. 

Data Stack 

Environment 1 

Environment 2 J 
Figure 83. Sharing of the Data Stack Between Environments 

When environment 1 was initiali~ed, it was the first environment on the chain. 
Therefore, a data stack was automatically created. When environment 2 was 
initialized, the NEWSTKFL flag was off indicating that a new data stack should not be 
created. Environment 2 shares the data stack that was created for environment 1. 
Any REXX execs that execute in either environment use the same data stack. 

Suppose a third language processor environment was initialized and chained to 
environment 2. If the NEWSTKFL flag is off for the third environment, it would use 
the data stack that was most recently created on the chain. That is, it would use the 
data stack that was created when environment 1 was initialized. All three 
environments would share the same data stack. 

As described, several language processor environments can share one data stack. 
On a single chain of environments, one environment can have its own data stack 
and other environments can share a data stack. Figure 84 on page 409 shows 
three environments on one chain. When environment 1 was initialized, a data stack 
was automatically created because it is the first environment on the chain. 
Environment 2 was initialized with the NEWSTKFL on, which means a new data 
stack was created for environment 2. Environment 3 was initialized with the 
NEWSTKFL off, so it uses the data stack that was created for environment 2. 

408 TSO/E Version 2 MVS/REXX Reference 



(' 

~ Environment I 

'--

~ 
Environment 2 

'-- Environment 3 

u 
u 

Data Stack in Environments 

Data Stack for 
Environment I 

Data Stack for 
Environments 2 and 3 

Figure 84. Separate Data Stack and Sharing of a Data Stack 

Environments can be created without having a data stack, that is, the NOSTKFL is 
on. Referring to Figure 84, suppose environment 2 was initialized with the 
NOSTKFL on, which means a new data stack was not created and the environment 
does not share the first environment's (environment 1) data stack. If environment 3 
is initialized with the NOSTKFL off (meaning a data stack should be available to the 
environment), and the NEWSTKFL is off (meaning a new data stack.s not created for 
the new environment), environment 3 shares the data stack created for environment 
1. 

When a data stack is shared between multiple language processor environments, 
any REXX execs that execute in any of the environments use the same data stack. 
This sharing can be useful for applications where a parent environment needs to 
share information with another environment that is lower on the environment chain. 
At other times, a particular exec may need to use a data stack that is not shared 
with any other execs that are executing on different language processor 
environments. TSO/E REXX provides the NEWSTACK command that creates a new 
data stack and that basically hides or isolates the original data stack. Suppose two 
language processor environments are initialized on one chain and the second 
environment shares the data stack with the first environment. If a REXX exec 
executes in the second environment, it shares the data stack with any execs that are 
running in the first environment. The exec in environment 2 may need to access its 
own data stack that is private. In the exec, you can use the NEWSTACK command to 
create a new data stack. The NEWSTACK command creates a new data stack and 
hides all previous data stacks that were originally accessible and all data that is on 
the original stacks. The original data stack tS referred to as the primary stack. The 
new data stack that was created by the NEWSTACK command is known as the 
secondary stack. Secondary data stacks are private to the language processor 
environment in which they were created. That is, they are not shared between two 
different envi ronments. 

Chapter 14. Language Processor Environments 401 



Data Stack in Environments 

Figure 85 shows two language processor environments that share one primary data 
stack. When environment 2 was initialized, the NEWSTKFL was off indicting that it 
shares the data stack created for environment 1. When an exec was executing in 
environment 2, it issued the NEWSTACK command to create a secondary data stack. 
After NEWSTACK is issued, any data stack requests are only performed against the 
new secondary data stack. The primary stack is isolated from any execs executing 
in environment 2. 

~1~ ____ En_v_ir_o_nm_en __ t_I __ ~~--~.~ 
Data stack shared 
with Environment 2 

Environment 2 

• ! 
I 
I 
I __________________ J 

Data stack for 
Environment 2 only 
(created by 
NEWSTACK 
command) 

Figure 85. Creating a New Data Stack with the NEWST ACK Command 

If an exec executing in environment 1 issues the NEWSTACK command to create a 
secondary data stack, the secondary data stack is available only to REXX execs that 
execute in environment 1. Any execs that execute in environment 2 cannot access 
the new data stack created for environment 1. 

TSO/E REXX also provides the DELSTACK command that you use to delete any 
secondary data stacks that were created using NEWSTACK. When the secondary 
data stack is no longer required, the exec can issue DELSTACK to delete the 
secondary stack. At this point, the primary data stack that is shared with 
environment 1 is accessible. 

TSO/E REXX provides several other commands you can use for data stack functions. 
For example, an exec can use the QSTACK command to find out the number of data 
stacks that exist for the language processor environment. Chapter 10, "TSO/E 
REXX Commands" on page 199 describes the different stack-oriented commands 
that TSO/E REXX provides, such as NEWSTACK and DELSTACK. 

410 TSO/E Version 2 MVS/REXX Reference 

c 

C'""i 
, , , 



c\ 

(-

lnitialization and Termination Routines 

~nitian;r::at~on and Termination Routines 

This chapter provides information about how to use the initialization routine, 
IRXINIT, and the termination routine, IRXTERM. 

Use the initialization routine, IRXINIT, to either initialize a language processor 
environment or obtain the address of the environment block for the current 
non-reentrant environment. Use the termination routine, IRXTERM, to terminate a 
language processor environment. Chapter 8, "Using REXX in Different Address 
Spaces" on page 183 provides general information about how the initialization and 
termination of environments relates to REXX processing. Chapter 14, "Language 
Processor Environments" on page 335 describes the concept of a language 
processor environment in detail, the various characteristics you can specify when 
initializing an environment, the default parameters modules, and information about 
the environment block and the format of the environment block. 

© Copyright IBM Corp. 1988. 1991 411 



Initialization Routine 

Initialization Routine - IRXINIT 
Use IRXINIT to either initialize a new language processor environment or oDtam me 
address of the environment block for the current non-reentrant environment. 

Note: To permit FORTRAN programs to call IRXINIT, TSO/E provides an alternate 
entry point for the IRXINIT routine. The alternate entry point name is IRXINT. 

If you use IRXINIT to obtain the address of the current environment block, IRXINIT 
returns the address in register 0 and also in the sixth parameter. 

If you use IRXINIT to initialize a language processor environment, the 
characteristics for the new environment are based on parameters that you pass on 
the call and values that are defined for the previous environment. Generally, if you 
do not pass a specific parameter on the call, IRXINIT uses the value from the 
previous environment. 

IRXINIT always locates a previous environment as follows. On the call to IRXINIT, 
you can pass the address of an environment block in register O. IRXINIT then uses 
this environment as the previous environment if the environment is valid. If register 
o does not contain the address of an environment block, IRXINIT locates the 
previous environment. If IRXINIT locates a previous environment, IRXINIT uses that 
environment as the previous environment. If IRXINIT cannot locate an environment, 
I'AXINIT uses the load module IRXPARMS as the previous environment. 

"Chains of Environments and How Environments Are Located" on page 375 
describes in detail how IRXINIT locates a previous environment. A previous 
environment is always identified regardless of the parameters you specify on the 
call to IRXINIT. 

Using IRXINIT, you can initialize a reentrant or a non-reentrant environment, which 
is determined by the setting of the RENTRANT flag bit. If you use IRXINIT to 
initialize a reentrant environment and you want to chain the new environment to a 
previous reentrant environment, you must pass the address of the environment 
block for the previous reentrant environment in register O. 

If you use IRXINIT to locate a previous environment, you can locate only the current 
non-reentrant environment. IRXINIT does not locate a reentrant environment. 

Entry Specifications 
For the IRXINIT initialization routine, the contents of the registers on entry are: 

Register 0 

Register 1 

Address of an environment block (optional) 

Address of the parameter list passed by the caller 

Registers 2·12 Unpredictable 

Register 13 

Register 14 

Register 15 

Address of a register save area 

Return address 

Entry point address 

412 TSO/E Version 2 MVS/REXX Reference 

o 



Parameters 

~--- --' ---_. ~-.'-.--.--------~ 

Initialization Routine 

You can pass the address of an environment block in register O. In register 1, you 
pass the address of a parameter list, which consists of a list of addresses. Each 
address in the parameter list points to a parameter. 

The first seven parameters are required. Parameter 8 and parameter 9 are 
optional. The high order bit of the last address in the parameter list must be set to 1 
to indicate the end of the parameter list. If IRXINIT does not find the high order bit 
set on in either the address for parameter 7 or in the addresses for parameters 8 or 
9, which are optional parameters, IRXINIT does not initialize the environment and 
returns with a return code of 20 and a reason code of 27. See "Output Parameters" 
on page 420 for more information. 

Figure 86 describes the parameters for IRXINIT. For general information about 
passing parameters, see "Parameter Lists for TSO/E REXX Routines" on page 253. 

Figure 86 (Page 1 of 2). Parameters for IRXINIT 

Parameter 

Parameter 1 

Parameter 2 

Parameter 3 

Number 
01 Bytes 

8 

8 

4 

Description 

The function IRXINIT is to perform: 

INITENVB 
To initialize a new environment. 

FINDENVB 
To obtain the address of the environment block for the 
current non-reentrant environment. IRXINIT returns the 
address of the environment block in register 0 and in 
parameter 6. IRXINIT does not initialize a new 
environment. 

The name of a parameters module that contains the values 
for initializing the new environment. The module is 
described in "Parameters Module and In-Storage 
Parameter List" on page 417. 

If the name of the parameters module is blank, IRXINIT 
assumes that all fields in the parameters module are null. 

IRXINIT provides two ways in which you can pass 
parameter values; the parameters module and the address 
of an in-storage parameter list, which is parameter 3. A 
complete description of how IRXINIT computes each 
parameter value and the flexibility of passing parameters is 
described in "How IRXINIT Determines What Values to Use 
for the Environment" on page 416. 

The address of an in-storage parameter list, which is an 
area in storage containing parameters that are equivalent 
to the parameters in the parameters module. The format of 
the in-storage list is identical to the format of the 
parameters module. "Parameters Module and In-Storage 
Parameter List" on page 417 describes the parameters 
module and in-storage parameter list. 

For parameter 3, you can specify an address of 0 for the 
address of the in-storage parameter list. However, the 
address in the address list that pOints to this parameter 
cannot be O. 

If the address of parameter 3 is 0, IRXINIT assumes that all 
fields in the in-storage parameter list are nUll. 

Chapter 15. Initialization and Termination Routines 413 



Initialization Routine 

Figure 86 (Page 2 of 2). Parameters for IRXINIT 

Parameter 

Parameter 4 

Parameter 5 

Parameter 6 

Parameter 7 

Parameter 8 

Parameter 9 

Number 
of Bytes 

4 

4 

4 

4 

4 

4 

414 TSO/E Version 2 MVS/REXX Reference 

Description 

The address of a user field. IRXINIT does not use or check 
this pOinter or the field. You can use this field for your own 
processing. 

Reserved. This parameter must be set to 0, but the 
address that points to this parameter cannot be o. 
IRXINIT uses this parameter for output only. The parameter 
contains the address of the environment block. If you use 
the FINDENVB function (parameter 1) to locate an 
environment, parameter 6 contains the address of the 
environment block for the current non-reentrant 
environment. If you use the INITENVB function (parameter 
1) to initialize a new environment, IRXINIT returns the 
address of the environment block for the newly created 
environment in parameter 6. 

For either FINDENVB or INITENVB, IRXINIT also returns the 
address of the environment block in register O. Parameter 
6 lets high level languages obtain the environment block 
address in order to examine Information in the environment 
block. 

IRXINIT uses this parameter for output only. IRXINIT 
returns a reason code for the IRXINIT routine in this field 
that indicates why the requested function did not complete 
successfully. Figure 89 on page 420 describes the reason 
codes that IRXINIT returns. 

Parameter 8 is an optional parameter that lets you specify 
how REXX obtains storage in the language processor 
environment. Specify 0 if you want the system to reserve a 
default amount of storage workarea. 

If you want to pass a storage workarea to IRXINIT, specify 
the address of an extended parameter list. The extended 
parameter list consists of the address (a ful/word) of the 
storage workarea and the length (a fullword) of the 
workarea, followed by X I FFFFFFFFFFFFFFFF I. For more 
information about parameter 8 and storage, see 
"Specifying How REXX Obtains Storage in the 
Environment" on page 415. 

Although parameter 8 is optional, it is recommended that 
you specify an address of 0 if you do not want to pass a 
storage workarea to IRXINIT. 

A four byte field that IRXINIT uses to return the return code. 

The return code parameter is optional. If you use this 
parameter, IRXINIT returns the return code in the 
parameter and also in register 15. Otherwise, IRXINIT uses 
register 15 only. If the parameter list is invalid, the return 
code is returned in register 15 only. "Return Codes" on 
page 423 describes the return codes. 

If you do not want to use the return code parameter, you 
can end the parameter list at a preceding parameter. Set 
the high order bit on in the preceding parameter's address. 
For more information about parameter lists, see 
"Parameter Lists for TSO/E REXX Routines" on page 253. 

o 

/ 

o 



c\ 

(-

Initialization Routine 

Specifying How REXX Obtains Storage in the Environment 
On the call to IRXINIT, parameter 8 is an optional parameter. You can use 
parameter 8 to specify how REXX obtains storage in the language processor 
environment for the processing of REXX execs. 

If you specify 0 for parameter 8, during the initialization of the environment, the 
system reserves a default amount of storage for the storage workarea. If you have 
provided your own storage management replaceable routine, the system calls your 
routine to obtain this storage workarea. Otherwise, the system obtains storage 
using GETMAIN. When the environment that IRXINIT is initializing is terminated, the 
system automatically frees the storage. The system frees the storage by either 
calling your storage management replaceable routine or using FREEMAIN, 
depending on how the storage was obtained. 

You can also pass a storage workarea to IRXINIT. For parameter 8, specify an 
address that points to an extended parameter list. The extended parameter list is 
an addressllength pair that contains the address (a fullword) of the storage 
workarea and the length (a fullword) of the storage area, in bytes. The 
addressllength pai r must be followed by X I FFFFFFFFFFFFFFFF I to indicate the end 
of the extended parameter list. Figure 87 shows the extended parameter list. 

Full word Full word 

i Extended 
r--+ Pannlist i Storage Length of 

r-- workarea storage 

t PannI FFFFFFFFFFFFFFFF 

t Parm2 

J Parm3 

t Pann4 

.t Parm5 
Storage t Parm6 workarea 

t Pann7 

t Parm8 r---

*t Pann9 

* high order bit on 

Figure 87. Extended Parameter List - Parameter 8 

The storage workarea you pass to IRXINIT is then available for REXX processing in 
the environment that you are initializing. The storage workarea must remain 
available to the environment until the environment is terminated. After you 
terminate the language processor environment, you must also free the storage 

Chapter 15. Initialization and Termination Routines 415 



Initialization Routine 

workarea. The system does not free the storage you pass to IRXINIT when you 
terminate the environment. 

You can also specify that a reserved storage workarea should not be initialized for 
the environment. The system then obtains and frees storage whenever storage is 
required. To specify that a storage workarea should not be initialized, for 
parameter 8, specify the address of the extended parameter list as described above. 
In the extended parameter list, specify 0 for the address of the storage workarea 
and 0 for the length of the storage workarea. Again, the address/length pair must 
be followed by X I FFFFFFFFFFFFFFFF I to indicate the end of the extended 
parameter list. Specifying that REXX should run without a reserved storage 
workarea is not recommended because of possible performance degradation. 
However, this option may be useful if available storage is low and you want to 
initialize a language processor environment with a minimal amount of storage at 
initialization time. 

In the extended parameter list, you can also specify 0 for the address of the storage 
workarea and -1 for the length of the workarea. This is considered a null entry and 
IRXINIT ignores the extended parameter list entry. This is equivalent to specifying 
an address of 0 for parameter 8, and the system reserves a default amount of 
workarea storage. 

In general, 3 pages (12K) of storage is needed for the storage workarea for normal 
exec processing, for each level of exec nesting. If there is insufficient storage 
available in the storage workarea, REXX calls the storage management routine to 
obtain additional storage if you provided a storage management replaceable 
routine. Otherwise, the system uses GETMAIN and FREEMAIN to obtain and free 
storage. For more information about the replaceable routine, see "Storage 
Management Routine" on page 463. 

How IRXINIT Determines What Values to Use for the Environment 
IRXINIT first determines the values to use to initialize the environment. After all of 
the values are determined, IRXINIT initializes the new environment using the 
values. 

On the call to IRXINIT, you can pass parameters that define the environment in two 
ways. You can specify the name of a parameters module (a load module) that 
contains the values IRXINIT uses to initialize the environment. In addition to the 
parameters module, you can also pass an address of an area in storage that 
contains the parameters. This area in storage is called an in-storage parameter list 
and the parameters it contains are equivalent to the parameters in the parameters 
module. 

The two methods of paSSing parameter values give you flexibility when calling 
IRXINIT. You can store the values on disk or build the parameter structure in 
storage dynamically. The format of the parameters module and the in-storage 
parameter list is the same. You can pass a value for the same parameter in both 
the parameters module and the in-storage parameter list. 

When IRXINIT computes what values to use to initialize the environment, IRXINIT 
takes values from four sources using the following hierarchical search order: 

1. The in-storage list of parameters that you pass on the call. 

If you pass an in-storage parameter list and the value in the list is not null, 
IRXINIT uses this value. Otherwise, IRXINIT continues. 

416 TSO/E Version 2 MVS/REXX Reference 

c 



c 

Initialization Routine 

2. The parameters module, the name of which you pass on the call. 

If you pass a parameters module and the value in the module is not null, IRXINIT 
uses this value. Otherwise, IRXINIT continues. 

3. The previous environment. 

IRXINIT copies the value from the previous environment. 

4. The IRXPARMS parameters module if a previous environment does not exist. 

If a parameter has a null value, IRXINIT continues to search until it finds a non-null 
value. The following types of parameters are defined to be null: 

• A character string is null if it either contains only blanks or has a length of zero 
• An address is null if its value is 0 
• A binary number is null if it has the value X'80000000' 
• A given bit is null if its corresponding mask is O. 

On the call to IRXINIT, if the address of the in-storage parameter list is 0, all values 
in the list are defined as nUll. Similarly, if the name of the parameters module is 
blank, all values in the parameters module are defined as nUll. 

You need not specify a value for every parameter in the parameters module or the 
in-storage parameter list. If you do not specify a value, IRXINIT uses the value 
defined for the previous environment. You need only specify the parameters whose 
values you want to be different from the previous environment. 

Parameters Module and In-Storage Parameter List 
The parameters module is a load module that contains the values you want IRXINIT 
to use to initialize a new language processor environment. TSO/E provides three 
default parameters modules (lRXPARMS, IRXTSPRM, and IRXISPRM) for initializing 
environments in non-TSO/E, TSO/E, and ISPF. "Characteristics of a Language 
Processor Environment" on page 346 describes the parameters modules. 

On the call to the IRXINIT, you can optionally pass the name of a parameters module 
that you have created. The parameters module contains the values you want 
IRXINIT to use to initialize the new language processor environment. On the call, 
you can also optionally pass the address of an in-storage parameter list. The format 
of the parameters module and the in-storage parameter list is identical. 

Figure 88 shows the format of a parameters module and in-storage list. The format 
of the parameters module is identical to the default modules TSO/E provides. 
"Characteristics of a Language Processor Environment" on page 346 describes the 
parameters module and each field in detail. The end of the table must be indicated 
by X' FFFFFFFFFFFFFFFF' . 

Figure 88 (Page 1 of 2). Parameters Module and In-Storage Parameter List 

Offset 
(DeCimal) 

o 

8 

12 

15 

Number 
of Bytes 

8 

4 

3 

Field Name Description 

ID Identifies the parameter block 
(PARMBLOCK). 

VERSION Identifies the version of the parameter block. 
The value must be 0200. 

LANGUAGE Language code for REXX messages. 

RESERVED Reserved. 

Chapter 15. Initialization and Termination Routines 417 



Initialization Routine 

Figure 88 (Page 2 of 2). Parameters Module and In-Storage Parameter List 

Offset Number Field Name Description 
(Decimal) of Bytes 

16 4 MODNAMET Address of module name table. The module 
name table contains the names of DDs for 
reading and writing data and fetching REXX 
execs, the names of the replaceable 
routines, and the names of several exit 
routines. 

20 4 SUBCOMTB Address of host command environment 
table. The table contains the names of the 
host command environments that are 
available and the names of the routines that 
process commands for each host command 
environment. 

24 4 PACKTB Address of function package table. The 
table defines the user, local, and system 
function packages that are available to REXX 
execs running in the environment. 

28 8 PARSETOK Token for PARSE SOURCE instruction. 

36 4 FLAGS A fullword of bits used as flags to define 
characteristics for the environment. 

40 4 MASKS A fullword of bits used as a mask for the 
setting of the flag bits. 

44 4 SUBPOOL Number of the subpool for storage 
allocation. 

48 8 ADDRSPN Name of the address space. 

56 8 The end of the parameter block must be 
X'FFFFFFFFFFFFFFFF'. 

Specifying Values for the New Environment 
If you use IRXINIT to initialize a new language processor environment, the 
parameters you can specify on the call depend on: 

• Whether the environment is being initialized in a non-TSO/E address space or in 
the TSO/E address space, and 

• If the environment is being initialized in the TSO/E address space, whether the 
environment is to be integrated into TSO/E (TSOFL flag setting). 

You can use many parameters only if the environment is initialized in a non-TSO/E 
address space or if the environment is initialized in TSO/E, but is not integrated into 
TSO/E (the TSOFL flag is off). Other parameters are intended only for use in the 
TSO/E address space where the environment is integrated into TSO/E (the TSOFL 
flag is on). The following information highlights different parameters. For more 
information about the values you can and cannot specify and various considerations 
for parameter values, see "Specifying Values for Different Environments" on 
page 386. 

When you caIlIRXINIT, you cannot specify the 10 and VERSION. If you pass values 
for the 10 or VERSION parameters, IRXINIT ignores the value and uses the default. 

At offset + 36 in the parameters module, the field is a fullword of bits that IRXINIT 
uses as flags. The flags define certain characteristics for the new language 

418 TSO/E Version 2 MVS/REXX Reference 

o 

\. 

/ 

( \ 
.... _) 



c.· .. 1 

/ 

( 

~nitiaiization Routine 

processor environment and how the environment and execs running in the 
environment operate. In addition to the flags field, the parameter following the flags 
is a mask field that works together with the flags. The mask field is a string that has 
the same length as the flags field. Each bit position in the mask field corresponds to 
a bit in the same position in the flags field. IRXINIT uses the mask field to determine 
whether it should use or ignore the corresponding flag bit. 

The description of the mask field on page 350 describes the bit settings for the mask 
field in detail. Figure 66 on page 349 summarizes each flag. "Flags and 
Corresponding Masks" on page 351 describes each of the flags in more detail and 
the bit settings for each flag. 

For a given bit position, if the value in the mask field is: 

• 0 - IRXINIT ignores the corresponding bit in the flags field (that is, IRXINIT 
considers the bit to be nUll) 

• 1 - IRXINIT uses the corresponding bit in the flags field. 

When you call IRXINIT, the flag settings that IRXINIT uses depend on the: 

• Bit settings in the flag and mask fields you pass in the in-storage parameter list 

• Bit settings in the flag and mask fields you pass in the parameters module 

• Flags defined for the previous environment 

• Flags defined in IRXPARMS if a previous environment does not exist. 

IRXINIT uses the following order to determine what value to use for each flag bit: 

• IRXINIT first checks the mask setting in the in-storage parameter list. If the 
mask is 1, IRXINIT uses the flag value from the in-storage parameter list. 

• If the mask in the in-storage parameter list is 0, IRXINIT then checks the mask 
setting in the parameters module. If the mask in the parameters module is 1, 
IRXINIT uses the flag value from the parameters module. 

• If the mask in the parameters module is 0, IRXINIT uses the flag value defined 
for the previous environment. 

• If a previous environment does not exist, IRXINIT uses the flag setting from 
IRXPARMS. 

If you call1RXINIT to initialize an environment that is not integrated into TSO/E (the 
TSOFL flag is off), you can specify a subpool number (SUBPOOL field) from 0 - 127. 
IRXINIT does not check the number you provide. If the number is not 0 - 127, 
IRXINIT does not fail. However, when storage is used in the environment, an error 
occurs. 

If you call1RXINIT to initialize an environment in the TSO/E address space and the 
environment is integrated into TSO/E, you must provide a subpool number of 78 
(decimal). If the number is not 78, IRXINIT returns with a reason code of 7 in 
parameter 7. 

For detailed information about the parameters you can specify for initializing a 
language processor environment, see "Specifying Values for Different 
Environments" on page 386. 

The end of the parameter block must be indicated by X I FFFFFFFFFFFFFFFF I. 

Chapter 15. Initialization and Termination Routines 419 



Initialization Routine 

Return Specifications 
For the IRXINIT initialization routine, the contents of the registers on return are: 

Register 0 

Register 1 

Contains the address of the new environment block if IRXINIT 
initialized a new environment, or the address of the environment 
block for the current non-reentrant environment that IRXINIT 
located. 

If you called IRXINIT to initialize a new environment and IRXINIT 
could not initialize the environment, register 0 contains the same 
value as on entry. If you called IRXINIT to find an environment and 
IRXINIT could not locate the environment, register 0 contains a O. 

If IRXINIT returns with return code 100 or 104, register 0 contains 
the abend and reason code. "Return Codes" on page 423 
describes the return codes and how IRXINIT returns the abend and 
reason codes for return codes 100 and 104. 

Address of the parameter list. 

IRXINIT uses three parameters (parameters 6, 7, and 9) for output 
only (see Figure 86 on page 413). "Output Parameters" describes 
the three output parameters. 

Registers 2-14 Same as on entry 

Register 15 Return code 

Output Parameters 
The parameter list for IRXINIT contains three parameters that IRXINIT uses for 
output only (parameters 6, 7, and 9). Parameter 6 contains the address of the 
environment block. If you called IRXINIT to locate an environment, parameter 6 
contains the address of the environment block for the current non-reentrant 
environment. If you called IRXINIT to initialize an environment, parameter 6 
contains the address of the environment block for the new environment. Parameter 
6 lets high level programming languages obtain the address of the environment 
block in order to examine information in the environment block. 

Parameter 9 is an optional parameter you can use to obtain the return code. If you 
specify parameter 9, IRXINIT returns the return code in parameter 9 and also in 
register 15. 

Parameter 7 contains a reason code for IRXINIT processing. The reason code 
indicates whether or not IRXINIT completed successfully. If IRXINIT processing was 
not successful, the reason code indicates the error. Figure 89 describes the reason 
codes IRXINIT returns. Note that these reason codes are not the same as the 
reason codes that are returned because of a system or user abend. A system or 
user abend results in a return code of 100 or 104 and an abend code and abend 
reason code in register O. See "Return Codes" on page 423 for a description of 
return codes 100 and 104. 

Figure 89 (Page 1 of 3). Reason Codes for IRXINIT Processing 

Reason 
Code 

o 

Description 

Successful processing. 

Unsuccessful processing. The type of function to be performed (parameter 1) 
was not valid. The valid functions are INITENVB and FINDENVB. 

420 TSO/E Version 2 MVS/REXX Reference 

o 

\. 

o 



C-\ 
j 

( 

( 

--_._- . -- _ .. - -~--------. ----_. -- -~-- --_.... --- ---- _ .. _----

Initialization Routine 

Figure 89 (Page 2 of 3). Reason Codes for IRXINIT Processing 

Reason 
Code 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

Description 

Unsuccessful processing. The TSOFL flag is on, but TSO/E is not active. 

IRXINIT evaluated all of the parameters for initializing the new environment. 
This reason code indicates that the environment is being initialized in a 
non-TSO/E address space, but the TSOFL flag is on. The TSOFL flag must be 
off for environments initialized in non-TSO/E address spaces. 

Unsuccessful processing. A reentrant environment was specified for an 
environment that was being integrated into TSO/E. If you are initializing an 
environment in TSO/E and the TSOFL flag is on, the RENTRANT flag must be 
off. In this case, both the TSOFL and RENTRANT flags were on. 

Unsuccessful processing. The environment being initialized was to be 
integrated into TSO/E (the TSOFL flag was on). However, a routine name was 
specified in the module name table that cannot be specified if the 
environment is being integrated into TSO/E. If the TSOFL flag is on, you can 
specify only the following routines in the module name table: 

• An attention exit (A TTNROUT field) 
• An exit for IRXEXEC (IRXEXECX field) 
• An exec initialization exit (EXECINIT field) 
• An exec termination exit (EXECTERM field). 

Unsuccessful processing. The value specified in the GETFREER field in the 
module name table does not match the GETFREER value in the current 
language processor environment under the current task. 

If more than one environment is initialized on the same task and the 
environments specify a storage management replaceable routine (GETFREER 
field), the name of the routine must be the same for the environments. 

Unsuccessful processing. The value specified for the length of each entry in 
the host command environment table is incorrect. This is the value specified 
in the SUBCOMTB_LENGTH field in the table. See "Host Command 
Environment Table" on page 361 for information about the table. 

Unsuccessful processing. An incorrect subpool number was specified for an 
environment being integrated into TSO/E. The subpool number must be 78 
(decimal). 

Unsuccessful processing. The TSOFL flag for the new environment is on. 
However, the flag in the previous environment is off. The TSOFL flag cannot 
be on if a previous environment in the chain has the TSOFL flag off. 

Unsuccessful processing. The new environment specified that the data stack 
is to be shared (NEWSTKFL is off), but the SPSHARE flag in the previous 
environment is off, which means that storage is not to be shared across 
tasks. If you have the NEWSTKFL off for the new environment, you must 
ensure that the SPSHARE flag in the previous environment is on. 

Unsuccessful processing. The IRXINITX exit routine returned a non-zero 
return code. IRXINIT stops initialization. 

Unsuccessful processing. The IRXITTS exit routine returned a non-zero 
return code. IRXINIT stops initialization. 

Unsuccessful processing. The IRXITMV exit routine returned a non-zero 
return code. IRXINIT stops initialization. 

Unsuccessful processing. The REXX I/O routine or the replaceable 110 
routine is called to initialize I/O when IRXINIT is initializing a new language 
processor environment. The 110 routine returned a non-zero return code. 

Chapter 15. Initialization and Termination Routines 421 



Initialization Routine 

Figure 89 (Page 3 of 3). Reason Codes for IRXINIT Processing 

Reason 
Code 

14 

15 

16 

20 

21 

22 

23 

24 

25 

26 

27 

Description 

Unsuccessful processing. The REXX data stack routine or the replaceable 
data stack routine is called to initialize the data stack when IRXINIT is 
initializing a new language processor environment. The data stack routine 
returned a non-zero return code. 

Unsuccessful processing. The REXX exec load routine or the replaceable 
exec load routine is called to initialize exec loading when IRXINIT is 
initializing a new language processor environment. The exec load routine 
returned a non-zero return code. 

Unsuccessful processing. REXX failed to initialize the TSO service facility 
command/program invocation platform. 

Unsuccessful processing. Storage could not be obtained. 

Unsuccessful processing. A module could not be loaded into storage. 

Unsuccessful processing. The IRXINIT routine could not obtain serialization 
for a system resource. 

Unsuccessful processing. A recovery ESTAE could not be established. 

Unsuccessful processing. The maximum number of environments has 
already been initialized in the address space. The number of environments 
is defined in the environment table. See "Changing the Maximum Number of 
Environments in an Address Space" on page 404 for more information about 
the environment table. 

Unsuccessful processing. The extended parameter list (parameter 8) passed 
to IRXINIT was not valid. The end of the extended parameter list must be 
indicated by X I FFFFFFFFFFFFFFFF I. 

Unsuccessful processing. The values specified in the extended parameter 
list (parameter 8) were incorrect. Either the address of the storage workarea 
or the length of the storage workarea was 0, or the length was a negative 
value. 

Reason code 26 is not returned if: 

• Both the address and length of the storage workarea are 0, which are 
valid values. 

• The address of the storage workarea is 0 and the length is -1, which is 
considered a valid null entry. 

Unsuccessful processing. An incorrect number of parameters were passed to 
IRXINIT. IRXINIT returns reason code 27 if it cannot find the high order bit on 
in the last address of the parameter list. In the parameter list, you must set 
the high order bit on in either the address of parameter 7 or in the address of 
parameter 8 or parameter 9, which are optional parameters. 

Note: If you set the high order bit on in a parameter prior to parameter 7, 
IRXINIT does not return reason code 27. The high order bit indicates the end 
of the parameter list. Because IRXINIT detects the end of the parameter list 
before parameter 7, it cannot return a reason code because parameter 7 is 
the reason code parameter. In this case, IRXINIT returns only a return code 
of 20 in register 15 indicating an error. 

422 TSO/E Version 2 MVS/REXX Reference 

c 



c Return Codes 

(-

( 

( '- .. 

initialization Routine 

IRXINIT returns different return codes for finding an environment and for initializing 
an environment. IRXINIT returns the return code in register 15. If you specify the 
return code parameter (parameter 9), IRXINIT also returns the return code in the 
parameter. 

Figure 90 shows the return codes if you call IRXINIT to find an environment. 

Figure 90. IRXINIT Return Codes for Finding an Environment 

Return 
Code 

0 

4 

20 

28 

100 

104 

Description 

Processing was successful. IRXINIT located the current non-reentrant 
environment. IRXINIT initialized the environment under the current task. 

Processing was successful. IRXINIT located the current non-reentrant 
environment. IRXINIT initialized the environment under a previous task. 

Processing was not successful. An error occurred. Check the reason code 
that IRXINIT returns in parameter 7. 

Processing was successful. There is no current non-reentrant environment. 

Processing was not successful. A system abend occurred while IRXINIT was 
locating the environment. The environment is not found. 

The system may issue one or more messages that describe the abend. In 
addition, register 0 contains the abend code and the abend reason code. 
IRXINIT returns the abend code in the low order two bytes of register O. 
IRXINIT returns the abend reason code in the high order two bytes of register 
O. If the abend reason code is greater than two bytes, IRXINIT returns only the 
low order two bytes of the abend reason code. See MVSIESA System Codes 
for information about the abend codes and reason codes. 

Processing was not successful. A user abend occurred while IRXINIT was 
locating the environment. The environment is not found. 

The system may issue one or more messages that describe the abend. In 
addition, register 0 contains the abend code and the abend reason code. 
IRXINIT returns the abend code in the low order two bytes of register O. 
IRXINIT returns the abend reason code in the high order two bytes of register 
O. If the abend reason code is greater than two bytes, IRXINIT returns only the 
low order two bytes of the abend reason code. See MVSIESA System Codes 
for information about the abend codes and reason codes. 

Chapter 15. Initialization and Termination Routines 423 



Initialization Routine 

Figure 91 shows the return codes if you call1RXINIT to initialize an environment. 

Figure 91. IRXINIT Return Codes for Initializing an Environment 

Return 
Code 

o 

Description 

Processing was successful. IRXINIT initialized a new language processor 
environment. The new environment Is not the first environment under the 
current task. 

4 Processing was successful. IRXINIT initialized a new language processor 
environment. The new environment is the first environment under the current 
task. 

20 Processing was not successful. An error occurred. Check the reason code 
that IRXINIT returns in the parameter list. 

100 Processing was not successful. A system abend occurred while IRXINIT was 
initializing the environment. The environment Is not initialized. 

The systen:' may issue one or more messages that describe the abend. In 
addition, register 0 contains the abend code and the abend reason code. 
IRXINIT returns the abend code in the low order two bytes of register O. 
IRXINIT returns the abend reason code in the high order two bytes of register 
O. If the abend reason code is greater than two bytes, IRXINIT returns only the 
low order two bytes of the abend reason code. See MVSIESA System Codes 
for information about the abend codes and reason codes. 

104 Processing was not successful. A user abend occurred while IRXINIT was 
initializing the environment. The environment is not initialized. 

The system may issue one or more messages that describe the abend. In 
addition, register 0 contains the abend code and the abend reason code. 
IRXINIT returns the abend code in the low order two bytes of register O. 
IRXINIT returns the abend reason code in the high order two bytes of register 
O. If the abend reason code is greater than two bytes, IRXINIT returns only the 
low order two bytes of the abend reason code. See MVSIESA System Codes 
for information about the abend codes and reason codes. 

424 TSO/E Version 2 MVS/REXX Reference 

---~~------

o 

c 



c 

c' 

( 

(/ 

~-~-----.~.- - ----~--- - .-----_.--._----------------.--

Termination Routine 

Termination Routine IRXTERM 
Us.~ the IRXTERM routine to terminate a language processor environment. 

Note: To permit FORTRAN programs to call IRXTERM, TSO/E provides an alternate 
entry point for the IRXTERM routine. The alternate entry point name is IRXTRM. 

You can optionally pass the address of the environment block in register 0 that 
represents the environment you want terminated. IRXTERM then terminates the 
language processor environment pointed to by register O. The environment must 
have been initialized on the current task. 

If you do not specify an environment block address in register 0, IRXTERM locates 
the last environment that was created under the current task and terminates that 
envi ronment. 

When IRXTERM terminates the environment, IRXTERM closes all open data sets that 
were opened under that environment. IRXTERM also deletes any data stacks that 
you created under the environment using the NEWSTACK command. 

IRXTERM does not terminate an environment under anyone of the following 
conditions: 

• The environment was not initialized under the current task 

• An active exec is currently running in the environment 

• The environment was the first environment initialized under the task and other 
environments are still initialized under the task. 

The first environment initialized on a task must be the last environment terminated 
on that task. The first environment is the anchor environment because all 
subsequent environments that are initialized on the same task share information 
from the first environment. Therefore, all other environments on a task must be 
terminated before you terminate the first environment. If you use IRXTERM to 
terminate the first environment and other environments on the task still exist, 
IRXTERM does not terminate the environment and returns with a return code of 20. 

Entry Specifications 

Parameters 

For the IRXTERM termination routine, the contents of the registers on entry are: 

Register 0 Address of an environment block (optional) 

Registers 1·12 Unpredictable 

Register 13 

Register 14 

Register 15 

Address of a register save area 

Return address 

Entry point address 

You can optionally pass the address of the environment block for the language 
processor environment you want to terminate in register O. There is no parameter 
list for IRXTERM. 

Chapter 15. Initialization and Termination Routines 425 



Termination Routine 

Return Specifications 

Return Codes 

For the IRXTERM termination routine, the contents of the registers on return are: 

Register 0 If you passed the address of an environment block, IRXTERM 
returns the address of the environment block for the previous 
environment. If you did not pass an address, register 0 contains the 
same value as on entry. 

If IRXTERM returns with return code 100 or 104, register 0 contains 
the abend and reason code. "Return Codes" describes the return 
codes and how IRXTERM returns the abend and reason codes for 
return codes 100 and 104. 

Registers 1·14 Same as on entry 

Register 15 Return code 

Figure 92 shows the return codes for the IRXTERM routine. 

Figure 92. Return Codes for IRXTERM 

Return 
Code 

o 

4 

20 

Description 

IRXTERM successfully terminated the environment. The terminated 
environment was not the last environment on the task. 

IRXTERM successfully terminated the environment. The terminated 
environment was the last environment on the task. 

IRXTERM could not terminate the environment. 

28 The environment could not be found. 

100 A system abend occurred while IRXTERM was terminating the language 
processor environment. The system tries to terminate the environment again. 
If termination is still unsuccessful, the environment cannot be used. 

The system may issue one or more messages that describe the abend. In 
addition, register 0 contains the abend code and the abend reason code. 
IRXTERM returns the abend code in the low order two bytes of register O. 
IRXTERM returns the abend reason code in the high order two bytes of 
register O. If the abend reason code is greater than two bytes, IRXTERM 
returns only the low order two bytes of the abend reason code. See MVSIESA 
System Codes for information about the abend codes and reason codes. 

104 A user abend occurred while IRXTERM was terminating the language 
processor environment. The system tries to terminate the environment again. 
If termination is still unsuccessful, the environment cannot be used. 

The system may issue one or more messages that describe the abend. In 
addition, register 0 contains the abend code and the abend reason code. 
IRXTERM returns the abend code in the low order two bytes of register O. 
IRXTERM returns the abend reason code in the high order two bytes of 
register O. If the abend reason code is greater than two bytes, IRXTERM 
returns only the low order two bytes of the abend reason code. See MVSIESA 
System Codes for information about the abend codes and reason codes. 

426 TSO/E Version 2 MVS/REXX Reference 

o 

"\ 
\, j 

o 



0'/ 
. ./ 

( 

Replaceable Routines and Exits 

iliiiMi. a r uu ._1111111 

Chapter' 16. Replaceable Routines and Exits 

When a REXX exec runs, different system services are used for obtaining and 
freeing storage, handling data stack requests, loading and freeing the exec, and 1/0. 
TSO/E provides routines for these system services. The routines are called 
replaceable routines because you can provide your own routines that replace the 
system-supplied routines. You can provide your own routines for non-TSO/E 
address spaces. In the TSO/E address space, you can provide your own routines 
only if the language processor environment is initialized with the TSOFL flag off. 
The TSOFL flag (see page 351) indicates whether or not the language processor 
environment is integrated with TSO/E services. "Types of Environments -
Integrated and Not Integrated Into TSO/E" on page 344 describes the two types of 
envi ronments. 

In addition to defining your own replaceable routines to replace the routines that 
TSO/E provides, you can use the interfaces as described in this chapter to call any 
of the TSO/E-supplied routines to perform system services. You can call the 
routines in any address space, that is, in any type of language processor 
environment. You can also write your own routine to perform a system service 
using the interfaces described for the routine. A program can then call your own 
routine in any address space to perform that particular service. 

In addition to replaceable routines, TSO/E also provides several exits you can use 
to customize REXX processing. The exits let you customize the initialization and 
termination of language processor environments, exec processing itself, and 
attention interrupts. Unlike the replaceable routines that you can replace only in 
language processor environments that are nol integrated into TSO/E, you can 
provide REXX exits in any type of environment (integrated and not integrated into 
TSO/E). One exception is the attention handling exit for attention interrupts. The 
exit applies only to TSO/E, so you can specify the exit only in an environment that is 
integrated into TSO/E. 

This chapter describes each of the replaceable routines and the exits that TSO/E 
provides for REXX processing. 

Replaceable Routines: If you provide a replaceable routine that will replace the 
system-supplied routine, your routine can perform some pre-processing and then 
call the system-supplied routine to actually perform the service request. If the 
replaceable routine you provide calls the system-supplied routine, your replaceable 
routine must act as a filter between the call to your routine and your routine calling 
the system-provided routine. Pre-processing can include checking the request for 
the specific service, changing the request, or terminating the request. Your routine 
can also perform the requested service itself and not call the system-supplied 
routine. 

The routines that you can replace and the functions your routine must perform, if 
you replace the system-supplied routine, are summarized below. "Replaceable 
Routines" on page 430 describes each routine in more detail. 

Exec Load 
Called to load an exec into storage and free an exec when the exec completes 
processing. The exec load routine is also called to determine whether an exec 
is currently loaded and to close a specified data set. 

© Copyright IBM Corp. 1988, 1991 427 



Replaceable Routines and Exits 

1/0 
Called to read a record from or write a record to a specified ddname. The 1/0 
routine is also called to open a specified DO. For example, the routine is called 0 
for the SAY and PUll instructions (if the environment is not integrated into' .. 
TSO/E) and for the EXECIO command. 

Host Command Environment 
Called to process all host commands for a specific host command environment. 

Data Stack 
Called to handle any requests for data stack services. 

Storage Management 
Called to obtain and free storage. 

User 10 
Called to obtain the user 10. The USERID built-in function returns the result that 
the user 10 routine obtains. 

Message Identifier 
Called to determine whether the message identifier (message 10) is displayed 
with a REXX error message. 

Replaceable routines are defined on a language processor environment basis. You 
define the names of the routines in the module name table. To define your own 
replaceable routine to replace the system-supplied routine, you must do the 
following: 

• Write the code for the routine. The individual topics in this chapter describe the 
interfaces to each replaceable routine. 

• Define the routine name to a language processor environment. For 
environments that are initialized in non-TSO/E address spaces, you can provide 
your own IRXPARMS parameters module that IRXINIT uses instead of the 
default IRXPARMS module. In your module, specify the names of your 
replaceable routines. You can also call1RXINIT to initialize an environment and 
pass the name of your module name table that includes the names of your 
replaceable routines. 

In the TSO/E address space, you can call IRXINIT to initialize an environment 
and pass the name of your module name table that includes the names of the 
replaceable routines. When you caIlIRXINIT, the TSOFL flag in the parameters 
module must be off, so the environment is not integrated into TSO/E. 

"Changing the Default Values for Initializing an Environment" on page 381 
describes how to provide your own parameters module. "Initialization Routine 
- IRXINIT" on page 412 describes IRXINIT. 

You can also call any of the system-supplied replaceable routines from a program to 
perform a system service. You can also write your own routine that user-written 
programs can call to perform a service. This chapter describes the interfaces to the 
system routines. 

428 TSO/E Version 2 MVS/REXX Reference 

'\ 
) 

(' '\ 

o 



o 

( 

Replaceable Routines and Exits 

Exit Routines: In addition to the replaceable routines, there are several exits you 
can use to customize REXX processing. Some of the exits have fixed names. Other 
exits do not have a fixed name. You name the exit yourself and then specify the 
name in the module name table. The exits are briefly described below. "REXX Exit 
Routines" on page 471 describes each exit in more detail. 

• Pre-environment initialization - use to customize processing before the 
IRXINIT initialization routine initializes a language processor environment. 

• Post-environment initialization - use to customize processing after the IRXINIT 
initialization routine has initialized an environment, but before IRXINIT 
completes processing. 

• Environment termination - use to customize processing when a language 
processor environment is terminated. 

• Exec initialization - use to customize processing after the variable pool has 
been created and before the exec begins processing. 

• Exec termination - use to customize processing after an exec completes 
processing and before the variable pool is deleted. 

• Exec processing - use to customize exec processing before an exec is loaded 
and runs. 

• Attention handling - use to customize attention interrupt processing in TSO/E. 

Unlike the replaceable routines, which you can define only in language processor 
environments that are not integrated into TSO/E, you can provide the exits in any 
type of environment. One exception is the attention handling routine, which is only 
applicable to the TSO/E address space (in an environment that is integrated into 
TSO/E). See "REXX Exit Routines" on page 471 for more information about the 
exits. 

Chapter 16. Replaceable Routines and Exits 429 



Replaceable Routines and Exits 

Replaceable Routines 
The following topics describe each of the TSO/E REXX replaceable routines. The 
documentation describes how the system-supplied routines work, the input they 
receive, and the output they return. If you provide your own routine that replaces 
the system-supplied routine, your routine must handle all of the functions that the 
system-supplied routine handles. 

The replaceable routines that TSO/E provides are programming routines that you 
can call from a program in any address space. The only requirement for invoking 
one of the system-supplied routines is that a language processor environment must 
exist in which the routine runs. The language processor environment can either be 
integrated or not integrated into TSO/E. For example, an application program can 
call the system-supplied data stack routine to perform data stack operations or call 
the 110 routine to perform 110. 

You can also write your own routines to handle different system services. For 
example, if you write your own exec load routine, a program can call your routine to 
load an exec before calling IRXEXEC to invoke the REXX exec. Similar to the 
system-supplied routines, if you write your own routine, an application program can 
call your routine in any address space as long as a language processor 
environment exists in which the routine can run. The environment can either be 
integrated or not integrated into TSO/E. 

You could also write your own routine that application programs can call to perform 
a system service, and have your routine call the system-supplied routine. Your 
routine could act as a filter between the call to your routine and your routine calling 
the system-supplied routine. For example, you could write your own exec load 
routine that verifies a request, allocates a system load file, and then invokes the 
system-supplied exec load routine to actually load the exec. 

General Considerations 
This topic provides general information about the replaceable routines. 

• If you provide your own replaceable routine, your routine is called in 31 bit 
addressing mode. Your routine may perform the requested service itself and 
not call the system-supplied routine. Your routine can perform pre-processing, 
such as checking or changing the request or parameters, and then call the 
corresponding system-supplied routine. If your routine calls the system routine 
to actually perform the request, your routine must call the system routine in 31 
bit addressing mode also. 

• When the system calls your replaceable routine, your routine can use any of the 
system-supplied replaceable routines to request system services. 

• The addresses of the system-supplied and any user-supplied replaceable 
routines are stored in the REXX vector of external entry points (see page 401). 
This allows a caller external to REXX to call any of the replaceable routines, 
either the system-supplied or user-supplied routines. For example, if you want 
to preload a REXX exec in storage before using the IRXEXEC routine to invoke 
the exec, you can call the IRXLOAD routine to load the exec. IRXLOAD is the 
system-supplied exec load routine. If you provide your own exec load routine, 
you can also use your routine to preload the exec. 

• When a replaceable routine is invoked by the system or by an application 
program, the contents of register 0 mayor may not contain the address of the 

430 TSO/E Version 2 MVS/REXX Reference 

o 



c 

(.-

( 

Replaceable Routines and Exits 

environment block. For more information, see "Using the Environment Block 
Address" on page 431. 

Using the Environment Block Address 
If you provide a user-supplied replaceable routine that replaces a system-supplied 
replaceable routine, when the system calls your routine, it passes the address of the 
environment block for the current environment in register O. If your user-supplied 
routine then invokes the system-supplied routine, it is recommended that you pass 
the environment block address you received to the system-supplied routine. When 
you invoke the system-supplied routine, you can pass the environment block 
address in register O. Some replaceable routines also have an optional 
environment block address parameter that you can use. 

If your user-supplied routine passes the environment block address in the 
parameter list, the system-supplied routine uses the address you specify and 
ignores register o. Additionally, the system-supplied routine does not validate the 
address you pass. Therefore, you must ensure that your user-supplied routine 
passes the same address it received in register 0 when it got control. 

If your user-supplied routine does not specify an address in the environment block 
address parameter or the replaceable routine does not support the parameter, the 
system-supplied routine checks register 0 for the environment block address. If 
register 0 contains the address of a valid environment block, the system-supplied 
routine runs in that environment. If the address in register 0 is not valid, the 
system-supplied routine locates and runs in the current non-reentrant environment. 

If your user-supplied routine does not pass the environment block address it 
received to the system-supplied routine, the system-supplied routine locates the 
current non-reentrant environment and runs in that environment. This mayor may 
not be the environment in which you want the routine to run. Therefore, it is 
recommended that you pass the environment block address when your 
user-supplied routine invokes the system-supplied routine. 

An application program running in any address space can call a system-supplied or 
user-supplied replaceable routine to perform a specific service. On the call, the 
application program can optionally pass the address of an environment block that 
represents the environment in which the routine runs. The application program can 
pass the environment block address in register 0 or in the environment block 
address parameter if the replaceable routine supports the parameter. Note the 
following for application programs that invoke replaceable routines: 

• If an application program invokes a system-supplied replaceable routine and 
does not pass an environment block address, the system-supplied routine 
locates the current non-reentrant environment and runs in that environment. 

• If an application program invokes a user-supplied routine. either the application 
program must provide the environment block address or the user-supplied 
routine must locate the current environment in which to run . 

. Chapter 16. Replaceable Routines and Exits 431 

-----~ -----



Replaceable Routines and Exits 

Installing Replaceable Routines 
If you write your own replaceable routine, you must link edit the routine as a .1'\ 
separate load module. You can link edit all your replaceable routines in a separate U 
load library or in an existing library that contains other routines. The routines can 
reside in: 

• The link pack area (LPA) 
• Linklist (LNKLlST) 
• A logon STEPLIB. 

The replaceable routines must be reentrant, refreshable, and reusable. The 
characteristics for the routines are: 

• State: Problem program 
• Not APF authorized 
• AMODE(31), RMODE(ANY) 

432 TSO/E Version 2 MVS/REXX Reference 

o 



c 

( _. 
--

Exec Load Routine 

Exec load Routine 
The system calls the exec load routine to load and free REXX execs. The system 
also calls the routine: 

• To close any input files from which execs are loaded 
• To check whether an exec is currently loaded in storage 
• When a language processor environment is initialized and terminated. 

The name of the system-supplied exec load routine is IRXLOAD. 

Note: To permit FORTRAN programs to call IRXLOAD, TSO/E provides an alternate 
entry pOint for the IRXLOAD routine. The alternate entry point name is IRXLD. 

When the exec load routine is called to load an exec, the routine reads the exec 
from the DD and places the exec into a data structure called the in-storage control 
block (INSTBLK). "Format of the In-Storage Control Block" on page 439 describes 
the format of the in-storage control block. When the exec load routine is called to 
free an exec, the exec frees the storage that the previously loaded exec occupied. 

The name of the exec load routine is specified in the EXROUT field in the module 
name table for a language processor environment. "Module Name Table" on 
page 356 describes the format of the module name table. 

The system calls the exec load routine when: 

• A language processor environment is initialized. During environment 
initialization, the exec load routine initializes the REXX exec load environment. 

• The IRXEXEC routine is called and the exec is not preloaded. See "The 
IRXEXEC Routine" on page 261 for information about using IRXEXEC. 

• The exec that is currently running calls an external function or subroutine and 
the function or subroutine is an exec. (This is an internal call to the IRXEXEC 
routine.) 

• An exec that was loaded needs to be freed. 

• The language processor environment that originally opened the DD from which 
execs are loaded is terminating and all files associated with the environment 
must be closed. 

The system-supplied load routine, IRXLOAD, tests for numbered records in the file. 
If the records of a file are numbered, the routine removes the numbers when it loads 
the exec. A record is considered to be numbered if: 

• The record format of the file is variable and the first eight characters of the first 
record are numeric, or 

• The record format of the file is fixed and the last eight characters of the first 
record are numeric. 

If the first record of the file is not numbered, the routine loads the exec without 
making any changes. 

Any user-written program can call IRXLOAD to perform the functions that IRXLOAD 
supports. You can also write your own exec load routine and call the routine from 
an application program in any address space. For example, if you have an 
application program that calls the IRXEXEC routine to run a REXX exec, you may 
want to preload the exec into storage before calling IRXEXEC. To preload the exec, 

Chapter 16. Replaceable Routines and Exits 433 



Exec Load Routine 

your application program can call IRXLOAD. The program can also call your own 
exec load routine. 

If you are writing an exec load routine that will be used in environments in which 
compiled REXX execs run, note that your exec load routine may want to invoke a 
compiler interface load routine. For information about the compiler interface load 
routine and when it can be invoked, see TSOIE Version 2 Customization. 

Entry Specifications 

Parameters 

For the exec load replaceable routine, the contents of the registers on entry are 
described below. The address of the environment block can be specified in either 
register 0 or in the environment block address parameter in the parameter list. For 
more information, see "Using the Environment Block Address" on page 431. 

Register 0 

Register 1 

Address of the current environment block 

Address of the parameter list 

Registers 2·12 Unpredictable 

Register 13 

Register 14 

Register 15 

Address of a register save area 

Return address 

Entry point address 

Register 1 contains the address of a parameter list, which consists of a list of 
addresses. Each address in the parameter list points to a parameter. The high 
order bit of the last address in the parameter list must be set to 1 to indicate the end 
of the parameter list. For more information about passing parameters, see 
"Parameter Lists for TSO/E REXX Routines" on page 253. 

Figure 93 describes the parameters for the exec load routine. 

Figure 93 (Page 1 of 3). Parameters for the Exec Load Routine 

Parameter 

Parameter 1 

Number 
of Bytes 

8 

Description 

The function to be performed. The function name is left 
justified, in uppercase, and padded to the right with 
blanks. The valid functions are: 

• INIT 
• LOAD 
• TSOLOAD 
• FREE 
• STATUS 
• CLOSEDD 
• TERM 

The functions are described in "Functions You Can 
Specify for Parameter 1" on page 436. 

434 TSO/E Version 2 MVS/REXX Reference 

C, " 'J 



( 

Figure 93 (Page 2 of 3). Parameters for the Exec Load Routine 

Parameler 

Parameter 2 

Parameter 3 

Parameter 4 

Number 
of Byles 

4 

4 

4 

Descrlpllon 

Specifies the address of the exec block (EXECBLK). The 
exec block is a control block that describes the exec to be 
loaded (LOAD or TSOLOAD), to be checked (STATUS), or 
the DO to be closed (CLOSEDD). "Format of the Exec 
Block" on page 437 describes the exec block. 

For the LOAD, TSOLOAD, STATUS, and CLOSEDD 
functions, this parameter must contain a valid exec block 
address. For the other functions, this parameter is 
ignored. 

Specifies the address of the in-storage control block 
(INSTBLK), which defines the structure of a REXX exec in 
storage. The in-storage control block contains pOinters to 
each record in the exec and the length of each record. 
"Format of the In-Storage Control Block" on page 439 
describes the control block. 

The exec load routine uses this parameter as an input 
parameter for the FREE function only. The routine uses 
the parameter as an output parameter for the LOAD, 
TSOLOAD, STATUS, and FREE functions. The parameter 
is ignored for the INIT, TERM, and CLOSEDD functions. 

As an input parameter for the FREE function, the 
parameter contains the address of the in-storage control 
block that represents the exec to be freed. As an output 
parameter for the FREE funetion, the parameter contains a 
o indicating the exec was freed. If the exec could not be 
freed, the return code in either register 15 or the return 
code parameter (parameter 5) indicates the error 
condition. "Return Codes" on page 441 describes the 
return codes. 

As an output parameter for the LOAD, TSOLOAD, or 
STATUS functions, the parameter returns the address of 
the in-storage control block that represents the exec that 
was: 

• Just loaded (LOAD or TSOLOAD function) 
• Previously loaded (STATUS function) 

For the LOAD, TSOLOAD, and STATUS functions, the 
routine returns a value of 0 if the exec is not loaded. 

The address of the environment block that represents the 
environment in which you want the exec load replaceable 
routine to run. This parameter is optional. 

If you specify a non-zero value for the environment block 
address parameter, the exec load routine uses the value 
you specify and ignores register O. However, the routine 
does not check whether the address is valid. Therefore, 
you must ensure the address you specify is correct or 
unpredictable results can occur. For more information, 
see "Using the Environment Block Address" on page 431. 

Chapter 16. Replaceable Routines and Exits 435 



Exec Load Routine 

Figure 93 (Page 3 of 3). Parameters for the Exec Load Routine 

Parameter 

Parameter 5 

Number 
of Bytes 

4 

Description 

A four byte field that the exec load replaceable routine 
uses to return the return code. 

The return code parameter is optional. If you use this 
parameter, the exec load routine returns the return code 
in the parameter and also in register 15. Otherwise, the 
routine uses register 15 only. If the parameter list is 
invalid, the return code is returned in register 15 only. 
"Return Codes" on page 441 describes the return codes. 

If you do not want to use the return code parameter, you 
can end the parameter list at a preceding parameter. Set 
the high order bit on in the preceding parameter's 
address. For more information about parameter lists, see 
"Parameter Lists for TSO/E REXX Routines" on page 253. 

Functions You Can Specify for Parameter 1 
The functions that can be specified in parameter 1 are described below. 

INIT 
The routine performs any initialization that is required. During the initialization 
of a language processor environment, the system calls the exec load routine to 
initialize load processing. 

LOAD 
The routine loads the exec specified in the exec block from the ddname specified 
in the exec block. "Format of the Exec Block" on page 437 describes the exec 
block. 

The routine returns the address of the in-storage control block (parameter 3) that 
represents the loaded exec. "Format of the In-Storage Control Block" on 
page 439 shows the format of the in-storage control block. 

TSOLOAD 
The routine loads the exec specified in the exec block from the current list of 
ddnames that TSO/E is using to search for REXX execs. For example, the 
routine may search load libraries, any exec libraries as defined by the TSO/E 
ALTUB command, and SYSEXEC and SYSPROC. The complete search order is 
described on page 87. 

You can use the TSOLOAD function only in the TSO/E address space in a 
language processor environment that is integrated into TSO/E. TSOLOAD 
requires an environment that is integrated into TSO/E because TSOLOAD 
requests that the exec load routine use the current TSO/E search order to locate 
the exec. 

The TSOLOAD function is intended for use if you call the system-supplied exec 
load routine (lRXLOAD) in TSO/E. TSOLOAD gives you the flexibility to search 
more than one DO to locate a REXX exec compared to the LOAD function, which 
only searches the DD specified in the exec block. You can also use the 
TSOLOAD function if you write your own exec load routine and then call your 
routine from application programs running in TSO/E. 

TSOLOAD is not intended for language processor environments that are not 
integrated into TSO/E. Therefore, if you provide an exec load routine to replace 
the system-supplied exec load routine in the module name table, your routine 
that replaces the system routine need not handle the TSOLOAD request. This is 

436 TSO/E Version 2 MVS/REXX Reference 

(j 



( 

( 

- ------- -------

Exec load Routine 

because you can replace the system-supplied exec load routine only in 
environments that are not integrated into TSO/E. 

For the TSOLOAD function, the exec load routine returns the: 

• DD from which the exec was loaded. The routine returns the ddname in the 
exec block (at offset + 24) that you provide on the call. 

• Address of the in-storage control block in parameter 3 of the parameter list. 
The control block represents the loaded exec. 

FREE 
The routine frees the exec represented by the in-storage control block that is 
pointed to by parameter 3. 

STATUS 
The routine determines whether the exec specified in the exec block is currently 
loaded in storage from the ddname specified in the exec block. If the exec is 
loaded, the routine returns the address of the in-storage control block in 
parameter 3. The address that the routine returns is the same address that was 
returned for the LOAD function when the routine originally loaded the exec into 
storage. 

TERM 
The routine performs any cleanup prior to termination of the language processor 
environment. When the language processor environment that originally opened 
the DD terminates, all files associated with the environment must be closed. 

CLOSEDD 
The routine closes the data set specified in the exec block. 

The CLOSEDD function allows you to free and reallocate data sets. Only data 
sets that were opened on the current task can be closed. 

Format of the Exec Block 
The exec block (EXECBLK) is a control block that describes the: 

• Exec to be loaded (LOAD or TSOLOAD function) 

• Exec to be checked (STATUS function) 

• DD to be closed (CLOSEDD function) 

If a user-written program calls IRXLOAD or your own exec load routine, the program 
must build the exec block and pass the address of the exec block on the call. TSO/E 
provides a mapping macro, IRXEXECB, for the exec block. The mapping macro is in 
SYS1.MACLIB. Figure 94 describes the format of the exec block. 

Figure 94 (Page 1 of 2). Format of the Exec Block 

OHset 
(Decimal) 

o 

8 

12 

Number 
01 Bytes 

8 

4 

4 

Field 
Name 

ACRYN 

LENGTH 

Description 

An eight character field that identifies the exec 
block. The field must contain the character 
string 'IRXEXECB'. 

Specifies the length of the exec block, in bytes. 

Reserved. 

Chapter 16. Replaceable Routines and Exits 437 



Exec Load Routine 

Figure 94 (Page 2 of 2). Format of the Exec Block 

Offset Number Field Description 0 (Decimal) of Bytes Name 

16 8 MEMBER Specifies the member name of the exec if the 
exec is in a partitioned data set. If the exec is 
in a sequential data set, this field is blank. 

For the TSOLOAD function, the member name 
is required. 

24 8 DDNAME For a LOAD request, the field specifies the 
ddname from which the exec is to be loaded. 
For a TSOLOAD request, this field is used only 
for output; it is ignored on input. On output, the 
field contains the ddname from which the exec 
was loaded. For a STATUS request, the field 
specifies the ddname from which the exec 
being checked was loaded. For a CLOSEDD 
request, the field specifies the ddname to be / 

closed. .J 
An exec cannot be loaded from a DO that has 
not been allocated. The ddname specified 
must be allocated to a data set containing 
REXX execs or to a sequential data set that 
contains an exec. 

For the LOAD and STATUS functions, this field 
can be blank. In these cases, the ddname in 
the LOADDD field of the module name table is 
used. 

I 

/ 

32 8 SUBCOM Specifies the name of the initial host command \, 

environment when the exec starts running. 

If this field is blank, the environment specified 
in the INITIAL field of the host command 
environment table is used. 

40 4 DSNPTR Specifies the address of a data set name that 
the PARSE SOURCE instruction returns. The 
name usually represents the name of the exec 
load data set. The name can be up to 54 ". " 
characters long (44 characters for the fully 
qualified data set name, 8 characters for the 
member name, and 2 characters for the left 
and right parentheses). The field can be blank. 

Note: For concatenated data sets, the field 
may contain the name of the first data set in 
the sequence, although the exec was loaded 
from a data set other than the first one in the 
sequence. 

44 4 DSNLEN Specifies the length of the data set name that is 
pointed to by the address at offset + 40. The 
length can be 0-54. If no data set name is 
specified, the length is O. 

An exec cannot be loaded from a data set that has not been allocated. The ddname 

0 specified (at offset + 24) must be allocated to a data set containing REXX execs or to 
a sequential data set that contains an exec. The fields at offset +40 and +44 in the 
exec block are used only for input to the PARSE SOURCE instruction and are for 
informational purposes only. 

438 TSO/E Version 2 MVS/REXX Reference 



c 

( 

(' 

( 

(." 
---

------------

Exec load Routine 

For the LOAD and STATUS functions, if a ddname is not specified in the exec block 
(at offset +24), the routine uses the ddname in the LOADDD field in the module 
name table for the language processor environment. The environment block 
(ENVBLOCK) points to the PARMBLOCK, which contains the address of the module 
name table. 

Format of the In-Storage Control Block 
The in-storage control block defines the structure of an exec in storage. It contains 
pointers to each record in the exec and the length of each record. 

the in-storage control block consists of a header and the records in the exec, which 
are arranged as a vector of address/length pairs. Figure 95 shows the format of the 
in-storage control block header. Figure 96 on page 440 shows the format of the 
vector of records. TSO/E provides a mapping macro, IRXINSTB, for the in-storage 
control block. The mapping macro is in SYS1.MACLIB. 

Figure 95 (Page 1 of 2). Format of the In-Storage Control Block Header 

Offset Number Field Name Description 
(Decimal) of Bytes 

0 8 ACRONYM An eight character field that identifies the 
control block. The field must contain the 
characters 'IRXINSTB'. 

8 4 HDRLEN Specifies the length of the in-storage control 
block header only. The value must be 128 
bytes. 

12 4 Reserved. 

16 4 ADDRESS Specifies the address of the vector of 
records. See Figure 96 on page 440 for the 
format of the addressllength pairs. 

If this field is 0, the exec contains no 
statements. 

20 4 USERLEN Specifies the length of the addressllength 
vector of records in bytes. This is not the 
number of records. The value is the number 
of records multiplied by 8. 

If this field is 0, the exec contains no 
statements. 

24 8 MEMBER Specifies the name of the exec. This is the 
name of the member in the partitioned data 
set from which the exec was loaded. If the 
exec was loaded from a sequential data set, 
this field is blank. 

The PARSE SOURCE instruction returns the 
folded member name. If this field is blank, 
the member name that PARSE SOURCE 
returns is a question mark (?). 

32 8 DDNAME Specifies the ddname that represents the 
exec load DD from which the exec was 
loaded. 

40 8 SUBCOM Specifies the name of the initial host 
command environment when the exec starts 
running. 

Chapter 16. Replaceable Routines and Exits 439 



Exec Load Routine 

Figure 95 (Page 2 of 2). Format of the In-Storage Control Block Header 

Offset 
(Decimal) 

48 

52 

56 

Number 
of Bytes 

4 

4 

72 

Field Name 

DSNLEN 

DSNAME 

Description 

Reserved. 

Specifies the length of the data set name 
that is specified at offset + 56. If a data set 
name is not specified, this field is O. 

A 72 byte field that contains the name of the 
data set, if known, from which the exec was 
loaded. The name can be up to 54 
characters long (44 characters for the fully 
qualified data set name, 8 characters for the 
member name, and 2 characters for the left 
and right parentheses). The remaining 
bytes of the field (2 bytes plus four 
fullwords) are not used. They are reserved 
and contain binary zeros. 

At offset + 16 in the in-storage control block header, the field points to the vector of 
records that are in the exec. The records are arranged as a vector of 
address/length pairs. Figure 96 shows the format of the address/length pairs. 

The addresses point to the text of the record to be processed. This can be one or 
more REXX clauses, parts of a clause that are continued with the REXX continuation 
character (the continuation character is a comma), or a combination of these. The 
address is the actual address of the record. The length is the length of the record in 
bytes. 

Figure 96. Vector of Records for the In-Storage Control Block 

Offset Number Field Description 
(Decimal) of Bytes Name 

0 4 STMT@ Address of record 1 

4 4 STMTLEN Length of record 1 

8 4 STMT@ Address of record 2 

12 4 STMTLEN Length of record 2 

16 4 STMT@ Address of record 3 

20 4 STMTLEN Length of record 3 

x 4 STMT@ Address of record n 

y 4 STMTLEN Length of record n 

Return Specifications 
For the exec load routine, the contents of the registers on return are: 

Registers 0-14 Same as on entry 

Register 15 Return code 

440 TSO/E Version 2 MVS/REXX Reference 

" \ ! 
I 

\«J 

(f·'\· 

'=J 



c Return Codes 

( 

____ cc~cccc_cc ~CC_~ __ _ 

Exec l.oad Routine 

Figure 97 shows the return codes for the exec load routine. The routine returns the 
return code in register 15. If you specify the return code parameter (parameter 5), 
the exec load routine also returns the return code in the parameter. 

Figure 97. Return Codes for the Exec Load Replaceable Routine 

Return 
Code 

-3 

o 
4 

20 

28 

32 

Description 

The exec could not be located. The exec is not loaded. 

Processing was successful. The requested function completed. 

The specified exec is not currently loaded. A return code of 4 is used for the 
STATUS function only. 

Processing was not successful. The requested function is not performed. A 
return code of 20 occurs if: 

• A ddname was not specified and was required (LOAD, STATUS, and 
CLOSEDD functions) 

• The TSOLOAD function was requested, but the current language processor 
environment is not integrated into TSO/E 

• The ddname was specified, but the DO has not been allocated 

• An error occurred during processing. 

The system also issues an error message that describes the error. 

Processing was not successful. A language processor environment could not 
be located. 

Processing was not successful. The parameter list is not valid. The 
parameter list contains either too few or too many parameters, or the high 
order bit of the last address in the parameter list is not set to 1 to indicate the 
end of the parameter list. 

Chapter 16. Replaceable Routines and Exits 441 



110 Routine 

Input/Output Routine 
The inputloutput (1/0) replaceable routine is also called the read input/write output 
data routine. The system calls the 110 routine to: 

• Read a record from a specified DD 
• Write a record to a specified DD 
• Open aDD. 

The DD must be allocated to either a sequential data set or a single member of a 
partitioned data set. The name of the system-supplied 1/0 routine is IRXINOUT. 

Note: To permit FORTRAN programs to call IRXINOUT, TSO/E provides an alternate 
entry point for the IRXINOUT routine. The alternate entry point name is IRXIO. 

If a read is requested, the routine returns a pointer to the record that was read and 
the length of the record. If a write is requested, the caller provides a pointer to the 
record to be written and the length of the record. If an open is requested, the ./ '\ 
routine opens the file if the file is not yet open. The routine also returns a pointer to ( ./ 
an area in storage containing information about the file. You can use the IRXDSIB 
mapping macro to map this area. The mapping macro is in SYS1.MACLIB. 

You specify the name of the 1/0 routine in the 10ROUT field in the module name 
table. "Module Name Table" on page 356 describes the format of the module name 
table. I/O processing is based on the aSAM access method. 

The I/O routine is called for: 

• Initialization. When IRXINIT initializes a language processor environment, the 
system calls the I/O replaceable routine to initialize I/O processing. 

• Open, when: 

You use the LlNESIZE built-in function in an exec 

Before the language processor does any output. 

• For input, when: 

A PULL or a PARSE PULL instruction is processed, and the data stack is 
empty, and the language processor environment is not integrated into 
TSO/E (see page 344). 

A PARSE EXTERNAL instruction is processed in a language processor 
environment that is not integrated into TSO/E (see page 344). 

The EXECIO command is processed 

A program outside of REXX calls the I/O replaceable routine for input of a 
record. 

• For output, when: 

A SAY instruction is processed in a language processor environment that is 
not integrated into TSO/E (see page 344). 

Error messages must be written 

Trace (interactive debug facility) messages must be written 

A program outside of REXX calls the I/O replaceable routine for output of a 
record. 

442 TSO/E Version 2 MVS/REXX Reference 

c 



c 

( 

( .. i 

110 Routine 

• Termination. When the system terminates a language processor environment, 
the 1/0 replaceable routine is called to cleanup 1/0. 

Entry Specifications 

Parameters 

For the 1/0 replaceable routine, the contents of the registers on entry are described 
below. The address of the environment block can be specified in either register 0 or 
in the environment block address parameter in the parameter list. For more 
information, see "Using the Environment Block Address" on page 431. 

Register 0 

Register 1 

Address of the current environment block 

Address of the parameter list 

Registers 2·12 Unpredictable 

Register 13 

Register 14 

Register 15 

Address of a register save area 

Return address 

Entry point address 

Register 1 contains the address of a parameter list, which consists of a list of 
addresses. Each address in the parameter list points to a parameter. The high 
order bit of the last address in the parameter list must be set to 1 to indicate the end 
of the parameter list. For more information about passing parameters, see 
"Parameter Lists for TSO/E REXX Routines" on page 253. 

Figure 98 describes the parameters for the 1/0 routine. 

Figure 98 (Page 1 of 2). Input Parameters for the 110 Replaceable Routine 

Parameler 

Parameter 1 

Parameter 2 

Parameter 3 

Number 
of Byles 

8 

4 

4 

Descripllon 

The function to be performed. The function name is left 
justified, in uppercase, and padded to the right with 
blanks. The valid functions are: 

• INIT 
• OPENR 
• OPENW 
• OPENX 
• READ 
• READX 
• WRITE 
• TERM 
• CLOSE 

"Functions Supported for the 110 Routine" on page 444 
describes the functions in more detail. 

Specifies the address of the record read, the record to be 
written, or the data set information block, which is an area 
in storage that contains information about the file (see 
page 448). 

Specifies the length of the data in the buffer pOinted to by 
parameter 2. On output for an open request, parameter 3 
may contain the length of the data set information block. 
"Buffer and Buffer Length Parameters" on page 447 
describes the buffer and buffer length in more detail. 

Chapter 16. Replaceable Routines and Exits 443 

,-c~_-~ .. -.-_· ___ ~ -.----- .. ---



------ --- -----

1/0 Routine 

Figure 98 (Page 2 of 2). Input Parameters for the I/O Replaceable Routine 

Parameter 

Parameter 4 

Parameter 5 

Parameter 6 

Parameter 7 

Number 
of Bytes 

8 

4 

4 

4 

Description 

An eight character string that contains the name of a 
preallocated input or output DO. The DO must be either a 
sequential data set or a single member of a PDS. If a 
member of a PDS is to be used, the DO must be 
specifically allocated to the member of the PDS. 

If the input or output file is not sequential, the I/O routine 
returns a return code of 20. 

For a read operation, this parameter is used on output and 
specifies the absolute record number of the last logical 
record read. For a write to a DO that is opened for update, 
it can be used to provide a record number to verify the 
number of the record to be updated. Verification of the 
record number can be bypassed by specifying a O. 

This parameter is not used for the INIT, OPENR, OPENW, 
OPENX, TERM, or CLOSE functions. See "Line Number 
Parameter" on page 448 for more information, 

The address of the environment block that represents the 
environment in which you want the I/O replaceable 
routine to run. This parameter is optional. 

If you specify a non-zero value for the environment block 
address parameter, the I/O routine uses the value you 
specify and ignores register O. However, the routine does 
not check whether the address is valid. Therefore, you 
must ensure the address you specify is correct or 
unpredictable results can occur. For more information, 
see "Using the Environment Block Address" on page 431. 

A four byte field that the I/O replaceable routine uses to 
return the return code. 

The return code parameter is optional. If you use this 
parameter, the I/O routine returns the return code in the 
parameter and also in register 15. Otherwise, the routine 
uses register 15 only. If the parameter list is invalid, the 
return code is returned in register 15 only. "Return 
Codes" on page 451 describes the return codes. 

If you do not want to use the return code parameter, you 
can end the parameter list at a preceding parameter. Set 
the high order bit on in the preceding parameter's 
address. For more information about parameter lists, see 
"Parameter Lists for TSO/E REXX Routines" on page 253. 

Functions Supported for the 1/0 Routine 
The function to be performed by the 110 routine is specified in parameter 1. The 
valid functions are described below. 

INIT 
The routine performs any initialization that is required. During the initialization 
of a language processor environment, the 110 routine is called to initialize 110 
processing. 

444 TSO/E Version 2 MVS/REXX Reference 

/ 

/' " / \ 

( '\ 

c 



( 

(-~/ 

-----. ------ ------" . -------._-------------

110 Routine 

OPENR 
The routine opens the specified DD for a read operation if the DD is not already 
open. The ddname is specified in parameter 4. 

The 1/0 routine returns the address of the data set information block in 
parameter 3. "Data Set Information Block" on page 448 describes the block in 
more detail. 

OPENW 
The routine opens the specified DD for a write operation if the DD is not already 
open. The ddname is specified in parameter 4. 

The 110 routine returns the address of the data set information block in 
parameter 3. "Data Set Information Block" on page 448 describes the block in 
more detail. 

OPENX 
The routine opens the specified DD for an update operation if the DD is not 
already open. The ddname is specified in parameter 4. 

The 1/0 routine returns the address of the data set information block in 
parameter 3. "Data Set Information Block" on page 448 describes the block in 
more detail. 

READ 
The routine reads data from the DD specified in parameter 4. It returns the data 
in the buffer pointed to by the address in parameter 2. It also returns the number 
of the record that was read in the line number parameter (parameter 5). 

The READ and READX functions are equivalent, except that the data set is 
opened differently. Subsequent read operations to the same data set can be 
done using either the READ or READX function because they do not reopen the 
data set. 

If the data set to be read is closed, the routine opens it for input and then 
performs the read. 

READX 
The routine reads data from the DD specified in parameter 4. It returns the data 
in the buffer pointed to by the address in parameter 2. It also returns the number 
of the record that was read in the line number parameter (parameter 5). 

If the data set to be read is closed, the routine opens it for update and then 
performs the read. 

The READ and READX functions are equivalent, except that the data set is 
opened differently. Subsequent read operations to the same data set can be 
done using either the READ or READX function because they do not reopen the 
data set. 

WRITE 
The routine writes data from the specified buffer to the specified DD. The buffer 
is pointed to by the address in parameter 2 and the ddname is specified in 
parameter 4. 

If the data set is closed, the routine first opens it for output and then writes the 
record. For sequential data sets, if the data set is allocated as OLD, the first 
record that is written after the data set is opened is written as record number 1. 
If a sequential data set is allocated as MOD, the record is added at the end of the 
data set. 

Note: MOD cannot be used to append data to a member of a PDS. You can use 
MOD only when appending information to a sequential data set. To append 

Chapter 16. Replaceable Routines and Exits 445 



--- ------------ .. _. ---

1/0 Routine 

information to a member of a PDS, rewrite the member with the additional 
records added. 

When a data set is opened for update, the WRITE function is used to rewrite the 
last record that was retrieved by the READ or READX function. You can 
optionally use the line number parameter (parameter 5) to ensure that the 
number of the record being updated agrees with the number of the last record 
that was read. 

TERM 
The routine performs cleanup and closes any opened data sets. 

CLOSE 
The routine closes the DD specified in parameter 4. The CLOSE function permits 
data sets to be freed and reallocated. 

The CLOSE function is allowed only from the task under which the data set was 
opened. If CLOSE is requested from a different task, the request is ignored and 
a return code of 20 is returned. 

446 TSO/E Version 2 MVS/REXX Reference 

o 

J 

"\ 

) 

C· "'." " ' 



c 

(/ 

1/0 Routine 

Buffer and Buffer length Parameters 
Parameter 2 specifies the address of a buffer and parameter 3 specifies the buffer 
length. These two parameters are not used for the INIT, TERM, and CLOSE 
functions. 

On input for a WRITE function, the buffer address points to a buffer that contains the 
record to be written. The buffer length parameter specifies the length of the data to 
be written from the buffer. The caller must provide the buffer address and length. 

For the WRITE function, if data is truncated during the write operation, the 110 
routine returns the length of the data that was actually written in the buffer length 
parameter. A return code of 16 is also returned. 

On output for a READ or READX function, the buffer address points to a buffer that 
contains the record that was read. The buffer length parameter specifies the length 
of the data being returned in the buffer. 

For a READ or READX function, the 110 routine obtains the buffer needed to store 
the record. The caller must copy the data that is returned into its own storage 
before calling the 110 routine again for another request. The buffers are reused for 
subsequent 110 requests. 

On output for an OPENR, OPENW, or OPENX function, the buffer address points to 
the data set information block, which is an area in storage that contains information 
about the file. "Data Set Information Block" on page 448 describes the format of 
this area. TSO/E provides a mapping macro, IRXDSIB, that you can use to map the 
buffer area returned for an open request. 

For an OPENR, OPENW, or OPENX function, all of the information in the data set 
information block does not have to be returned. The buffer length must be large 
enough for all of the information being returned about the file or unpredictable 
results can occur. The data set information block buffer must be large enough to 
contain the flags field and any fields that have been set, as indicated by the flags 
field (see page 448). 

REXX does not check the content of the buffer for valid or printable characters. Any 
hexadecimal characters may be passed. 

The buffers that the I/O routine returns are reserved for use by the environment 
block (ENVBLOCK) under which the original I/O request was made. The buffer 
should not be used again until: 

• A subsequent I/O request is made for the same environment block, or 

• The 1/0 routine is called to terminate the environment represented by the 
environment block (TERM function), in which case, the I/O buffers are freed and 
the storage is made available to the system. 

Any replaceable I/O routine must conform to this procedure to ensure that the exec 
that is currently running accesses valid data. 

If you provide your own replaceable 110 routines, your routine must support all of 
the functions that the system-supplied 110 routine performs. All open requests must 
open the specified file. However, for an open request, your replaceable I/O routine 
need only fill in the data set information block fields for the logical record length 
(LRECL) and its corresponding flag bit. These fields are DSIB_LRECL and 

Chapter 16. Replaceable Routines and Exits 447 



-----------

1/0 Routine 

DSIB_LRECLfLAG. The language processor needs these two fields to determine 
the line length being used for its write operations. The language processor will 
format all of its output lines to the width that is specified by the LRECL field. Your 
routine can specify a LRECL (DSIB_LRECL field) of 0, which means that the 
language processor will format its output using a width of 80 characters, which is 
the default. 

When the 110 routine is called with the TERM function, all buffers are freed. 

Line Number Parameter 
The line number parameter (parameter 5) is not used for the INIT, OPENR, OPENW, 
OPENX, TERM, or CLOSE functions. The parameter is used as an input parameter 
for the WRITE function and as an output parameter for the READ and READX 
functions. 

If you are writing to a DO that is opened for update, you can use this parameter to 
verify the record being updated. The parameter must be either: 

• A non-zero number that is checked against the record number of the last record 
that was read for update. This ensures that the correct record is updated. If the 
record numbers are identical, the record is updated. If not, the record is not 
written and a return code of 20 is returned. 

• 0 -- No record verification is done. The last record that was read is 
unconditionally updated. 

If you are writing to a DO that is opened for output, the line number parameter is 
ignored. 

On output for the READ or READX functions, the parameter returns the absolute 
record number of the last logical record that was read. 

Data Set Information Block 
The data set information block is a control block that contains information about a 
file that the 110 replaceable routine opens. For an OPENR, OPENW, or OPENX 
function request, the 110 routine returns the address of the data set information 
block in parameter 3. TSO/E provides a mapping macro IRXDSIB you can use to 
map the block. The mapping macro is in SYS1.MACLIB. 

Figure 99 on page 449 shows the format of the control block. 

448 TSO/E Version 2 MVS/REXX Reference 

\ 

o 



1/0 Routine 

Figure 99 (Page 1 of 2). Format of the Data Set Information Block 

C\ OHset Number Field Name Descripllon 
(Decimal) of Bytes 

0 8 ID An eight character string that identifies the 
information block. It contains the characters 
'IRXDSIB'. 

8 2 LENGTH The length of the data set information block. 

10 2 Reserved. 

12 8 DDNAME An eight character string that specifies the 
ddname for which information is being 
returned. This is the DD that the 110 routine 
opened. 

20 4 FLAGS A fullword of bits that are used as flags. Only 
the first nine bits are used. The remaining bits 
are reserved. 

( The flag bits indicate whether or not 
information is returned in the fields at offset 
+ 24 - offset + 42. Each flag bit corresponds 
to one of the remaining fields in the control 
block. Information about how to use the flag 
bits and their corresponding fields is provided 
after the table. 

24 2 LRECL The logical record length (LRECL) of the data 
set. This field is required. 

Note: The LRECL field and its corresponding 

(' flag bit (at offset + 20) are the last required 
/ fields to be returned in the data set 

information block. The remaining fields are 
not required. 

26 2 BLKSZ The block size (BLKSIZE) of the data set. 

28 2 DSORG The data set organization (DSORG) of the data 
set. 

• '0200' - Data set is partitioned. 
• '0300' - Data set is partitioned and 

(~' unmovable. 
• '4000' - Data set is sequential. 
• '4100' - Data set is sequential and 

unmovable. 

30 2 RECFM The record format (RECFM) of the data set. 

• 'F' - Fixed 
• 'FB' - Fixed blocked 
• 'V' - Variable 
• 'VB' - Variable blocked 

32 4 GET_CNT The total number of records read by the GET 
macro for this DCB. 

36 4 PUT_CNT The total number of records written by the PUT 
or PUTX macro for this DCB. 

("'-~ 

Chapter 16. Replaceable Routines and Exits 449 



110 Routine 

Figure 99 (Page 2 of 2). Format of the Data Set Information Block 

Offset Number Field Name Description 
(Decimal) of Bytes 

40 IO_MODE The mode in which the DCB was opened. 

• 'R' - open for READ (uses GET macro) 

• 'X' - open for READX (update uses GET 
and PUTX macros) 

• 'W' - open for WRITE (uses PUT macro) 

• 'L' - open for exec load (uses READ 
macro) 

41 1 CC Carriage control information. 

• 'A' - ANSI carriage control 
• 'M' - machine carriage control 
• ' , - no carriage control 

42 TRC IBM 3800 Printing Subsystem character set 
control information. 

• 'Y' - character set control characters are 
present 

• 'N' - character set control characters are 
not present 

43 1 Reserved. 

44 4 Reserved. 

At offset + 20 in the data set information block, there is a fullword of bits that are 
used as flags. Only the first nine bits are used. The remaining bits are reserved. 
The bits are used to indicate whether or not information is returned in each field in 
the control block starting at offset + 24. A bit must be set on if its corresponding 
field is returning a value. If the bit is set off, its corresponding field is ignored. 

The flag bits are: 

• The LRECL flag. This bit must be on and the logical record length must be 
returned at offset + 24. The logical record length is the only data set attribute 
that is required. The remaining eight attributes starting at offset + 26 in the 
control block are optional. 

• The BLKSIZE flag. This bit must be set on if you are returning the block size at 
offset +26. 

• The DSORG flag. This bit must be set on if you are returning the data set 
organization at offset + 28. 

• The RECFM flag. This bit must be set on if you are returning the record format 
at offset + 30. 

• The GET flag. This bit must be set on if you are returning the total number of 
records read at offset + 32. 

• The PUT flag. This bit must be set on if you are returning the total number of 
records written at offset + 36. 

• The MODE flag. This bit must be set on if you are returning the mode in which 
the DCB was opened at offset + 40. 

• The CC flag. This bit must be set on if you are returning carriage control 
information at offset +41. 

450 TSO/E Version 2 MVS/REXX Reference 

0 

i-- "-
} 

/ 

() 

o 



C
~-\ 

./ 

( 

( 

110 

• The TRe flag. This bit must be set on if you are returning IBM 3800 Printing 
Subsystem character set control information at offset + 42. 

Return SpeCifications 

Return Codes 

For the 1/0 routine, the contents of the registers on return are: 

Registers 0-14 Same as on entry 

Register 15 Return code 

Figure 100 shows the return codes for the I/O routine. The routine returns the 
return code in register 15. If you specify the return code parameter (parameter 7), 
the I/O routine also returns the return code in the parameter. 

Figure 100 (Page 1 of 2). Return Codes for the 110 Replaceable Routine 

Return 
Code 

o 

4 

8 

12 

16 

20 

24 

28 

Description 

Processing was successful. The requested function completed. 

For an OPENR, OPENW, or OPENX request, the DCB was successfully opened. 
The 1/0 routine returns the address of an area of storage that contains 
information about the file. The address is returned in the buffer address 
parameter (parameter 2). You can use the IRXDSIB mapping macro to map 
this area. 

Processing was successful. For a READ, READX, or WRITE, the DCB was 
opened. 

For an OPENR, OPENW, or OPENX, the DCB was already open in the 
requested mode. The I/O routine returns the address of an area of storage 
that contains information about the file. The address is returned in the buffer 
address parameter (parameter 2). You can use the IRXDSIB mapping macro 
to map this area. 

This return code is used only for a READ or READX function. Processing was 
successful. However, no record was read because the end-of-file (EOF) was 
reached. 

An OPENR, OPENW, or OPENX request was issued and the DCB was already 
open, but not in the requested mode. The I/O routine returns the address of an 
area of storage that contains information about the file. The address is 
returned in the buffer address parameter (parameter 2). You can use the 
IRXDSIB mapping macro to map this area. 

Output data was truncated for a write or update operation (WRITE function). 
The I/O routine returns the length of the data that was actually written in 
parameter 3. 

Processing was not successful. The requested function is not performed. One 
possibility is that a DD name was not specified. An error message that 
describes the error is also issued. 

Processing was not successful. During an OPENR, OPENX, READ, or READX 
function, an empty data set was found in a concatenation of data sets. The file 
was not successfully opened. The requested function is not performed. 

ProceSSing was not successful. A language processor environment could not 
be located. 

Chapter 16. Replaceable Routines and Exits 451 



1/0 Routine 

Figure 100 (Page 2 of 2). Return Codes for the 110 Replaceable Routine 

Return 
Code 

32 

Description 

Processing was not successful. The parameter list is not valid. The 
parameter list contains either too few or too many parameters, or the high 
order bit of the last address in the parameter list is not set to 1 to indicate the 
end of the parameter list. 

452 TSO/E Version 2 MVS/REXX Reference 

o 



c\ 

( 

c 

(" 

o 

Host Command Environment Routine 

Host Command Environment Routine 
The host command environment replaceable routine is called to process all host 
commands for a specific host command environment (see page 26 for the definition 
of "host commands"). A REXX exec may contain host commands to be processed. 
When the language processor processes an expression that it does not recognize as 
a keyword instruction or function, it evaluates the expression and then passes the 
string to the active host command environment. A specific environment is in effect 
when the command is processed. The host command environment table 
(SUBCOMTB table) is searched for the name of the active host command 
environment. The corresponding routine specified in the table is then called to 
process the string. For each valid host command environment, there is a 
corresponding routine that processes the command. 

In an exec, you can use the ADDRESS instruction to route a command string to a 
specific host command environment and therefore to a specific host command 
environment replaceable routine. 

The names of the routines that are called for each host command environment are 
specified in the ROUTINE field of the host command environment table. "Host 
Command Environment Table" on page 361 describes the table. 

You can provide your own replaceable routine for anyone of the default 
environments provided. You can also define your own host command environment 
that handles certain types of "host commands" and provide a routine that processes 
the commands for that environment. 

Entry Specifications 
For a host command environment routine, the contents of the registers on entry are 
described below. For more information about register O. see "Using the 
Environment Block Address" on page 431. 

Register 0 Address of the current environment block 

Register 1 Address of the parameter list 

Registers 2-12 Unpredictabl e 

Register 13 Address of a register save area 

Register 14 Return address 

Register 15 Entry point address 

Chapter 16. Replaceable Routines and Exits 453 



Host Command Environment Routine 

Parameters 
Register 1 contains the address of a parameter list, which consists of a list of 
addresses. Each address in the parameter list points to a parameter. All 
parameters are passed on the call. The high order bit of the last address in the 
parameter list must be set to 1 to indicate the end of the parameter list. Figure 101 
describes the parameters for a host command environment replaceable routine. 

Figure 101. Parameters for a Host Command Environment Routine 

Parameter 

Parameter 1 

Parameter 2 

Parameter 3 

Parameter 4 

Parameter 5 

Number 
of Bytes 

8 

4 

4 

4 

4 

Description 

The name of the host command environment that is to 
process the string. The name is left justified, in 
uppercase, and padded to the right with blanks. 

Specifies the address of the string to be processed. REXX 
does not check the contents of the string for valid or 
printable characters. Any characters can be passed to the 
routine. REXX obtains and frees the storage required to 
contain the string. 

Specifies the length of the string to be processed. 

Specifies the address of the user token. The user token is 
a sixteen byte field in the SUBCOMTB table for the 
specific host command environment. "Host Command 
Environment Table" on page 361 describes the user token 
field. 

Contains the return code of the host command that was 
processed. This parameter is used only on output. The 
value is a signed binary number. 

After the host command environment replaceable routine 
returns the value, REXX converts it into a character 
representation.of its equivalent decimal number. The 
result of this conversion is placed into the REXX special 
variable RC and is available to the exec that invoked the 
command. Positive binary numbers are represented as 
unsigned decimal numbers. Negative binary numbers are 
represented as signed decimal numbers. For example: 

• If the command's return code is X I FFFFFF3E I , the 
special variable RC contains -193. 

• If the command's return code is X I OOOOOOOC I , the 
special variable RC contains 12. 

If you provide your own host command environment 
routines, you should establish a standard for the return 
codes that your routine issues and the contents of this 
parameter. If a standard is used, execs that issue 
commands to a particular host command environment can 
check for errors in command processing using consistent 
REXX instructions. With the host command environments 
that TSO/E provides, a return code of -3 in the REXX 
special variable RC indicates the environment could not 
locate the host command. The -3 return code is a 
standard return code for host commands that could not be 
processed. If your routine processes an invalid 
command, it is recommended that you return 
X I FFFFFFFE I as the return code, which means the REXX 
special variable RC will contain a -3. 

454 TSO/E Version 2 MVS/REXX Reference 

c 



( 

(/ 

Error Recovery 

Host Command Environment Routine 

When the host command environment routine is called, an error recovery routine 
(ESTAE) is in effect. The one exception is if the language processor environment 
was initialized with the NOESTAE flag set on. In this case, an ESTAE is not in effect 
unless the host command environment replaceable routine establishes its own 
ESTAE. 

Unless the replaceable routine establishes its own ESTAE, REXX traps all abends 
that occur. This includes abends that occur in any routines that are loaded by the 
host command environment replaceable routine to process the command to be 
executed. If an abend occurs and the host command environment routine has not 
established a new level of ESTAE, REXX: 

• Issues message IRX0250E if a system abend occurred or message IRX0251E if a 
user abend occurred 

• Issues message IRX0255E 

The language processor is restarted with a FAILURE condition enabled. See 
Chapter 7, "Conditions and Condition Traps" for information about conditions and 
condition traps. The special variable RC will be set to the decimal equivalent of the 
abend code as described in Figure 101 on page 454 for the return code parameter 
(parameter 5). 

Return Specifications 

Return Codes 

------_._--- -"------

For a host command environment routine, the contents of the registers on return 
are: 

Registers 0-14 Same as on entry 

Register 15 Return code 

Figure 102 shows the return codes for the host command environment routine. 
These are the return codes from the replaceable routine itself, not from the 
command that the routine processed. The command's return code is passed back in 
parameter 5. See Chapter 7, "Conditions and Condition Traps" for information 
about ERROR and FAILURE conditions and condition traps. 

Figure 102 (Page 1 of 2). Return Codes for the Host Command Environment Routine 

Return Code 

S-13 

-1 - -12 

o 

1 - 12 

Description 

If the value of the return code is -13 or less than -13, the routine 
requested that the HOSTFAIL flag be turned on. This is a TRACE 
NEGATIVE condition and a FAILURE condition is trapped in the exec. 

If the value of the return code is from -1 to -12 inclusive, the routine 
requested that the HOSTERR flag be turned on. This is a TRACE 
ERROR condition and an ERROR condition is trapped in the exec. 

No error condition was indicated by the routine. No error conditions 
are trapped (for example, to indicate a TRACE condition). 

If the value of the return code is 1 - 12 inclusive, the routine requested 
that the HOSTERR flag be turned on. This is a TRACE ERROR 
condition and an ERROR condition is trapped in the exec. 

Chapter 16. Replaceable Routines and Exits 455 



Host Command Environment Routine 

Figure 102 (Page 2 of 2). Return Codes for the Host Command Environment Routine 

Return Code 

~13 

456 TSO/E Version 2 MVS/REXX Reference 

Description 

If the value of the return code is 13 or greater than 13, the routine 
requested that the HOSTFAIL flag be turned on. This is a TRACE 
NEGATIVE condition and a FAILURE condition is trapped in the exec. 

o 

o 



o 

Data Stack Routine 

... _ ... - .. --....................... - .... --.. ---
Data Stack Routine 

The data stack routine is called to handle any requests for data stack services. The 
routine is called when an exec wants to perform a data stack operation or when a 
program needs to process data stack-related operations. The routine is called for 
the following: 

• PUSH 
• PULL 
• QUEUE 
• QUEUE DO 
• MAKEBUF 
• DROPBUF 
• NEWSTACK 
• DELSTACK 
• QSTACK 
• QBUF 
• QELEM 
• MARKTERM 
• DROPTERM 

The name of the system-supplied data stack routine is IRXSTK. If you provide your 
own data stack routine, your routine can handle all of the data stack requests or 
your routine can perform pre-processing and then call the system routine, IRXSTK. 
If your routine handles the data stack requests without calling the system-supplied 
routine, your routine must manipulate its own data stack. 

If your data stack routine performs pre-processing and then calls the system routine 
IRXSTK, your routine must pass the address of the environment block for the 
language processor environment to IRXSTK. 

An application running in any address space can invoke IRXSTK to operate on the 
data stack. The only requirement is that a language processor environment has 
been initialized. 

Parameter 1 indicates the type of function to be performed against the data stack. If 
the data stack routine is called to pull an element off the data stack (PULL function) 
and the data stack is empty, a return code of 4 indicates an empty data stack. 
However, you can use the PULLEXTR function to bypass the data stack and read 
from the input stream (for example, from the terminal in TSO/E foreground). 

If the data stack routine is called and a data stack is not available, all services 
operate as if the data stack were empty. A PUSH or QUEUE will seem to work, but 
the pushed or queued data is lost. QSTACK returns a O. NEWSTACK will seem to 
work, but a new data stack will not be created and any subsequent data stack 
functions will operate as if the data stack is permanently empty. 

The maximum string that can be placed on the data stack is one byte less than 16 
megabytes. REXX does not check the content of the string, so the string can contain 
any hexadecimal characters. 

If multiple data stacks are associated with a single language processor 
environment, all data stack operations are performed on the last data stack that was 
created under the environment. If a language processor environment is initialized 
with the NOSTKFL flag off, a data stack is always available to execs that run in that 
environment. The language processor environment might not have its own data 

Chapter 16. Replaceable Routines and Exits 457 



Data Stack Routine 

stack. The environment might share the data stack with its parent environment 
depending on the setting of the NEWSTKFL flag when the environment is initialized. 

If the NEWSTKFL flag is on, a new data stack is initialized for the new environment. 
If the NEWSTKFL flag is off and a previous environment on the chain of 
environments was initialized with a data stack, the new environment shares the data 
stack with the previous environment on the chain. "Using the Data Stack in Different 
Environments" on page 406 describes how the data stack is shared between 
language processor environments. 

The name of the data stack replaceable routine is specified in the STACKRT field in 
the module name table. "Module Name Table" on page 356 describes the format of 
the module name table. 

Entry Specifications 

o 

For the data stack replaceable routine, the contents of the registers on entry are 
described below. The address of the environment block can be specified in either C-" 
register 0 or in the environment block address parameter in the parameter list. For ... / 

Parameters 

more information, see "Using the Environment Block Address" on page 431. 

Register 0 

Register 1 

Address of the current environment block 

Address of the parameter list 

Registers 2-12 Unpredictable 

Register 13 

Register 14 

Register 15 

Address of a register save area 

Return address 

Entry point address 

Register 1 contains the address of a parameter list, which consists of a list of 
addresses. Each address in the parameter list points to a parameter. The high 
order bit of the last address in the parameter list must be set to 1 to indicate the end 
of the parameter list. For more information about passing parameters, see 
"Parameter Lists for TSO/E REXX Routines" on page 253. 

Figure 103 describes the parameters for the data stack routine. 

Figure 103 (Page 1 of 3). Parameters for the Data Stack Routine 

Parameter 

Parameter 1 

Number 
of Bytes 

8 

Description 

The function to be performed. The function name is left 
justified, in uppercase, and padded to the right with 
blanks. The valid functions are: 

PUSH 
QUEUE 
MAKEBUF 
NEWSTACK 
QSTACK 
QELEM 
DROPTERM 

PULL 
PULLEXTR 
QUEUED 
DROPBUF 
DELSTACK 
QBUF 
MARKTERM 

"Functions Supported for the Data Stack Routine" on 
page 460 describes the functions in more detail. 

458 TSO/E Version 2 MVS/REXX Reference 

----------.~~~---.-~---~ 

o 



C--" 
- / 

Data Stack Routine 

Figure 103 (Page 2 of 3). Parameters for the Data Stack Routine 

Parameter 

Parameter 2 

Parameter 3 

Parameter 4 

Parameter 5 

------------------

Number 
01 Bytes 

4 

4 

4 

4 

Description 

The address of a fullword in storage that pOints to a data 
stack element, a parameter string, or a fullword of zeros. 
The use of this parameter depends on the function 
requested. If the function is DROPBUF, the parameter 
points to a character string containing the number of the 
data stack butter from which to start deleting data stack 
elements. 

If the function is a function that places an element on the 
data stack (for example, PUSH), the address points to a 
string of bytes that the calier wants to place on the data 
stack. There are no restrictions on the string. The string 
can contain any combination of hexadecimal characters. 

For PULL and PULLEXTR, this parameter is not used on 
input. On output, it specifies the address of the string that 
was returned. For PULL, the string was pulled from the 
data stack. For PULLEXTR, the string was read from the 
input stream, for example, the terminal or the SYSTSIN 
file. It is recommended that you do not change the 
original string and that you copy the original string into 
your own dynamic storage. In addition, the original string 
will no longer be valid when another data stack operation 
is performed. 

The length of the string pointed to by the address in 
parameter 2. 

A fullword binary number into which the result from the 
call is stored. The value is the result of the function 
performed and is valid only when the return code from the 
routine is O. For more information about the results that 
can be returned in parameter 4, see the descriptions of 
the supported functions below and the individual 
descriptions of the data stack commands in this book. 

The address of the environment block that represents the 
environment in which you want the data stack replaceable 
routine to run. This parameter is optional. 

If you specify a non-zero value for the environment block 
address parameter, the data stack routine uses the value 
you specify and ignores register O. However, the routine 
does not check whether the address is valid. Therefore, 
you must ensure the address you specify is correct or 
unpredictable results can occur. For more information, 
see "Using the Environment Block Address" on page 431. 

Chapter 16. Replaceable Routines and Exits 459 



Data Stack Routine 

Figure 103 (Page 3 of 3). Parameters for the Data Stack Routine 

Parameter 

Parameter 6 

Number 
of Bytes 

4 

Description 

A four byte field that the data stack replaceable routine 
uses to return the return code. 

The return code parameter is optional. If you use this 
parameter, the data stack routine returns the return code 
in the parameter and also in register 15. Otherwise, the 
routine uses register 15 only. If the parameter list is 
invalid, the return code is returned in register 15 only. 
"Return Codes" on page 462 describes the return codes. 

If you do not want to use the return code parameter, you 
can end the parameter list at a preceding parameter. Set 
the high order bit on in the preceding parameter's 
address. For more information about parameter lists, see 
"Parameter Lists for TSO/E REXX Routines" on page 253. 

Functions Supported for the Data Stack Routine 
The function to be performed by the data stack routine is passed in parameter 1. 
The valid functions are described below. The functions operate on the currently 
active data stack. For more information about each of the functions, see the 
individual descriptions of the corresponding data stack commands in this book. 

PUSH 
Adds an element to the top of the data stack. 

PULL 
Retrieves an element off the top of the data stack. 

PULLEXTR 
Bypasses the data stack and reads a string from the input stream. In TSO/E 
foreground, PULLEXTR reads from the terminal. In TSO/E background, 
PULLEXTR reads from SYSTSIN. In non-TSO/E address spaces, the PULLEXTR 
function reads from the input stream as defined by the INDO field in the module 
name table. The default is SYSTSIN. 

PULLEXTR is useful if the data stack is empty or you want to bypass the data 
stack entirely. For example, suppose you use the PULL function and the data 
stack routine returns with a return code of 4, which indicates that the data stack 
is empty. You can then use the PULLEXTR function to read a string from the 
input stream. 

QUEUE 
Adds an element at the logical bottom of the data stack. If there is a buffer on 
the data stack, the element is placed immediately above the buffer. 

QUEUED 
Returns the number of elements on the data stack, not including buffers. 

MAKEBUF 
Places a buffer on the top of the data stack. The return code from the data stack 
routine is the number of the new buffer. The data stack initially contains one 
buffer (buffer 0), but MAKEBUF can be used to create additional buffers on the 
data stack. The first time MAKEBUF is issued for a data stack, the value 1 is 
returned. 

460 TSO/E Version 2 MVS/REXX Reference 

o 

,/\ 
I , 

( .. \,'1 
" j 



c 

---- .~-. --- .~.-~ 

Data Stack Routine 

DROPBUFn 
Removes all elements from the data stack starting from the "nnth buffer. All 
elements that are removed are lost. If n is not specified, the last buffer that was 
created and all subsequent elements that were added are deleted. 

For example, if MAKEBUF was issued six times (that is, the last return code from 
the MAKEBUF function was 6), and the command 

DROPBUF 2 

is issued, five buffers are deleted. These are buffers 2, 3, 4, 5, and 6. 

DROPBUF 0 removes everything from the currently active data stack. 

NEWSTACK 
Creates a new data stack. The previously active data stack can no longer be 
accessed until a DELST ACK is issued. 

DELSTACK 
Deletes the currently active data stack. All elements on the data stack are lost. 
If the active data stack is the primary data stack (that is, only one data stack 
exists and a NEWSTACK was not issued), all elements on the data stack are 
deleted, but the data stack is still operational. 

QSTACK 
Returns the number of data stacks that are available to the running REXX exec. 

QBUF 
Returns the number of buffers on the active data stack. If the data stack contains 
no buffers, a 0 is returned. 

QELEM 
Returns the number of elements from the top of the data stack to the next buffer. 
If OBUF = 0, then OELEM = o. 

MARKTERM 
Marks the top of the active data stack with the equivalent of a TSO/E terminal 
element, which is an element for the TSO/E input stack. The data stack now 
functions as if it were just initialized. The previous data stack elements cannot 
be accessed until a DROPTERM is issued. If you issue a MARKTERM, you must 
issue a corresponding DROPTERM in order to delete the terminal element that 
MARKTERM created. 

MARKTERM is available only to calling programs to put a terminal element on 
the data stack. It is not available to REXX execs. 

DROPTERM 
Removes all data stack elements that were added after a MARKTERM was 
issued, including the terminal element created by MARKTERM. The data stack 
status is restored to the same status prior to the MARKTERM. 

DROPTERM is available only to calling programs to remove a terminal element 
from the data stack. It is not available to REXX execs. 

Return Specifications 
For the data stack routine, the contents of the registers on return are: 

Registers 0-14 Same as on entry 

Register 15 Return code 

Chapter 16. Replaceable Routines and Exits 461 



Data Stack Routine 

Return Codes 
Figure 104 shows the return codes for the data stack routine. These are the return 
codes from the routine itself. They are not the return codes from any of the TSO/E 
REXX commands, such as NEWSTACK, DELSTACK, and OSUF that are issued. The 
command's return code is placed into the REXX special variable RC, which the exec 
can retrieve. 

The data stack routine returns the return code in register 15. If you specify the 
return code parameter (parameter 6), the routine also returns the return code in the 
parameter. 

Figure 104. Return Codes for the Data Stack Replaceable Routine 

Return 
Code 

o 
4 

8 

20 

28 

32 

Description 

Processing was successful. The requested function completed. 

The data stack is empty. A return code of 4 is used only for the PULL function. 

A terminal marker, created by the MARKTERM function, was not on the active 
data stack. A return code of 8 is used only for the DROPTERM function. 

Processing was not successful. An error condition occurred. The requested 
function is not performed. An error message describing the error may be 
issued. 

If there is no error message, REXX may have been invoked authorized. You 
cannot invoke a REXX exec or REXX service as authorized in either TSO/E 
foreground or background. 

Processing was not successful. A language processor environment could not 
be located. 

Processing was not successful. The parameter list is not valid. The 
parameter list contains either too few or too many parameters, or the high 
order bit of the last address in the parameter list is not set to 1 to indicate the 
end of the parameter list. 

462 TSO/E Version 2 MVS/REXX Reference 

o 

o 



~-----"- ----------

Storage Mana.gement Routine 
REXX storage routines handle storage and have pools of storage available to satisfy 
storage requests for REXX processing. If the pools of storage available to the REXX 
storage routines are depleted, the routines then call the storage management 
routine to request more storage. 

You can provide your own storage management routine that interfaces with the 
REXX storage routines. If you provide your own storage management routine, when 
the pools of storage are depleted, the REXX storage routines will call your storage 
management routine for storage. If you do not provide your own storage 
management routine, GETMAIN and FREE MAIN are used to handle storage 
requests. Providing your own storage management routine gives you an alternative 
to the system using GETMAIN and FREEMAIN. 

The storage management routine is called to obtain or free storage for REXX 
processing. The routine supplies storage that is then managed by the REXX storage 
routines. 

The storage management routine is called when: 

• REXX processing requests storage and a sufficient amount of storage is not 
available in the pools of storage the REXX storage routines use 

• Storage needs to be freed. Storage may need to be freed when a language 
processor environment is terminated or when the REXX storage routines 
determine that a particular block of storage can be freed. 

Specify the name of the storage management routine in the GETFREER field in the 
module name table. "Module Name Table" on page 356 describes the format of the 
module name table. 

Entry Specifications 
For the storage management replaceable routine, the contents of the registers on 
entry are described below. For more information about register 0, see "Using the 
Environment Block Address" on page 431. 

Register 0 

Register 1 

Address of the current environment block 

Address of the parameter list 

Registers 2-12 Unpredictable 

Register 13 

Register 14 

Register 15 

Address of a register save area 

Return address 

Entry point address 

Chapter 16. Replaceable Routines and Exits 463 



Storage Management Routine 

Parameters 
Register 1 contains the address of a parameter list, which consists of a list of 
addresses. Each address in the parameter list points to a parameter. All 
parameters are passed on the call. The high order bit of the last address in the 
parameter list must be set to 1 to indicate the end of the parameter list. Figure 105 
describes the parameters for the storage management routine. 

Figure 105. Parameters for the Storage Management Replaceable Routine 

Parameter 

Parameter 1 

Parameter 2 

Parameter 3 

Parameter 4 

Parameter 5 

Number 
of Bytes 

8 

4 

4 

4 

4 

Description 

The function to be performed. The name is left justified, in 
uppercase, and padded to the right with blanks. The 
following functions are valid: 

GET 
Obtain storage above 16 megabytes in virtual storage 

GETLOW 
Obtain storage below 16 megabytes in virtual storage 

FREE 
Free storage 

Specifies the address of storage. This parameter is 
required as an input parameter for the FREE function. It 
specifies the address of storage the routine should free. 

This parameter is used as an output parameter for the 
GET and GETLOW functions. The parameter specifies the 
address of storage the routine obtained. 

Specifies the length of storage to be freed or that was 
obtained. On input for the FREE function, this specifies 
the length of the storage to be freed. This is the length of 
the storage pointed to by parameter 2. 

On output for the GET and GETLOW functions, the 
parameter specifies the length of storage the routine 
obtained. 

Specifies the length of storage to be obtained. This 
parameter is used as an input parameter for the GET and 
GETLOW functions. It specifies the length of storage that 
is being requested. The length of storage that is actually 
obtained is returned in parameter 3. 

This parameter is not used for the FREE function. 

The TSO/E storage routines will use the length returned in 
parameter 3. 

Specifies the subpool number from which storage should 
be obtained. This parameter is used as input for all 
functions. 

464 TSO/E Version 2 MVS/REXX Reference 

o 

( \ , , 

.~j 



------- -~,-~~---.----.-.-- ~-.-.-----

Storage Management Routine 

Return Specifications 

Return Codes 

For the storage management replaceable routine, the contents of the registers on 
return are: 

Registers 0-14 Same as on entry 

Register 15 Return code 

Figure 106 shows the return codes for the storage management routine. 

Figure 106. Return Codes for the Storage Management Replaceable Routine 

Return 
Code 

o 
20 

Description 

Processing was successful. The requested function completed. 

Processing was not successful. An error condition occurred. Storage was not 
obtained or freed. An error message that describes the error is also issued. 

Chapter 16. Replaceable Routines and Exits 465 



User ID Routine 

-------------_._-----_ .. _._--_._---_ .. _---_ .. __ .. _--
User 10 Routine 

The user 10 routine returns the same value as the USERIO built-in function. The 
system calls the user 10 replaceable routine whenever the USERIO bUilt-in function 
is issued in a language processor environment that is not integrated into TSO/E. 
The routine then returns either the user 10, stepname, or jobname. The name of the 
system-supplied user 10 routine is IRXUIO. 

The name of the user 10 replaceable routine is specified in the 10ROUT field in the 
module name table. "Module Name Table" on page 356 describes the format of the 
module name table. 

Entry Specifications 

Parameters 

For the user 10 replaceable routine, the contents of the registers on entry are 
described below. The address of the environment block can be specified in either 
register 0 or in the environment block address parameter in the parameter list. For 
more information, see "Using the Environment Block Address" on page 431. 

Register 0 

Register 1 

Address of the current environment block 

Address of the parameter list 

Registers 2-12 Unpredictable 

Register 13 

Register 14 

Register 15 

Address of a register save area 

Return address 

Entry point address 

Register 1 contains the address of a parameter list, which consists of a list of 
addresses. Each address in the parameter list pOints to a parameter. The high 
order bit of the last address in the parameter list must be set to 1 to indicate the end 
of the parameter list. For more information about passing parameters, see 
"Parameter Lists for TSO/E REXX Routines" on page 253. 

Figure 107 on page 467 describes the parameters for the user 10 routine. 

466 TSO/E Version 2 MVS/REXX Reference 

o 



Ci 

( 

User ~D Routine 

Figure 107. Parameters for the User ID Replaceable Routine 

Parameter 

Parameter 1 

Parameter 2 

Parameter 3 

Parameter 4 

Parameter 5 

Number 
of Byles 

8 

4 

4 

4 

4 

Description 

The function to be performed. The function name is left 
justified, in uppercase, and padded to the right with 
blanks. The valid functions are USERIO and TSOIO. 
"Functions Supported for the User 10 Routine" on 
page 468 describes the functions in detail. 

An address of storage into which the routine places the 
user 10. On output, the area that this address points to 
contains a character representation of the user 10. 

The length of storage pOinted to by the address in 
parameter 2. On input, this value is the maximum length 
of the area that is available to contain the 10. The length 
supplied is 160 bytes. 

The routine must change this parameter and return the 
actual length of the character string it returns. If the 
routine returns a 0, the USERIO built-in function returns a 
null value. 

If the routine copies more characters into the storage area 
than the storage provided, REXX may abend and any 
results will be unpredictable. 

The address of the environment block that represents the 
environment in which you want the user 10 replaceable 
routine to run. This parameter is optional. 

If you specify a non-zero value for the environment block 
address parameter, the user 10 routine uses the value you 
specify and ignores register O. However, the routine does 
not check whether the address is valid. Therefore, you 
must ensure the address you specify is correct or 
unpredictable results can occur. For more information, 
see "Using the Environment Block Address" on page 431. 

A four byte field that the user 10 replaceable routine uses 
to return the return code. 

The return code parameter is optional. If you use this 
parameter, the user 10 routine returns the return code in 
the parameter and also in register 15. Otherwise, the 
routine uses register 15 only. If the parameter list is 
invalid, the return code is returned in register 15 only. 
"Return Codes" on page 469 describes the return codes. 

If you do not want to use the return code parameter, you 
can end the parameter list at a preceding parameter. Set 
the high order bit on in the preceding parameter's 
address. For more information about parameter lists, see 
"Parameter Lists for TSO/E REXX Routines" on page 253. 

Chapter 16. Replaceable Routines and Exits 467 



User 10 Routine 

Functions Supported for the User ID Routine 
The function to be performed by the user 10 routine is specified in parameter 1. The 
valid functions are described below. 

USE RID 
Returns the same value that the USERIO built-in function would return in an 
environment that is not integrated into TSO/E. The value returned may be a user 
10, a stepname, or a jobname. You can use the USERIO function only in 
environments that are not integrated into TSO/E. 

TSOID 
Returns the same value that the USERIO built-in function would return in an 
environment that is integrated into TSO/E. The value returned is the TSO/E user 
10. You can use the TSOIO function only in a TSO/E address space in an 
environment that is integrated into TSO/E. 

The TSOIO function is intended for use if an application program calls the user 10 
routine, IRXUIO, in a language processor environment that is integrated into 
TSO/E in order to obtain the user 10. You can also use the TSOIO function if you 
write your own user 10 routine and then call your routine from application 
programs running in environments that are integrated into TSO/E. 

TSOIO is intended only for language processor environments that are integrated 
into TSO/E. Because you can replace the user 10 routine only in environments 
that are not integrated into TSO/E, your replaceable routine does not have to 
support the TSOIO function. 

Return Specifications 
For the user 10 replaceable routine, the contents of the registers on return are: 

Registers 0-14 Same as on entry 

Register 15 Return code 

468 TSO/E Version 2 MVS/REXX Reference 

-------- .--.-~ --~-------

o 

\ 

/ 

c 



Return Codes 

User ID Routine 

Figure 108 shows the return codes for the user ID routine. The routine returns the 
return code in register 15. If you specify the return code parameter (parameter 5), 
the user ID routine also returns the return code in the parameter. 

Figure 108. Return Codes for the User 10 Replaceable Routine 

Return 
Code 

o 

20 

28 

32 

Description 

Processing was successful. The user 10 was returned or a null character 
string was returned. 

Processing was not successful. Either parameter 1 (function) was not valid or 
parameter 3 (length) was less than or equal to O. The user 10 was not 
obtained. 

Processing was not successful. The language processor environment could 
not be located. 

Processing was not successful. The parameter list Is not valid. The 
parameter list contains either too few or too many parameters, or the high 
order bit of the last address In the parameter list Is not set to 1 to indicate the 
end of the parameter list. 

Chapter 16. Replaceable Routines and Exits 469 



Message Identifier Routine 

Message Identifier Routine 
The message identifier replaceable routine is called to determine if the message 
identifier (message 10) is to be displayed with an error message. The name of the 
system-supplied message identifier routine is IRXMSGIO. 

Note: To permit FORTRAN programs to call1RXMSGIO, TSO/E provides an 
alternate entry point for the IRXMSGIO routine. The alternate entry point name is 
IRXMIO. 

The routine is called whenever a message is to be written when a REXX exec or 
REXX routine (for example, IRXEXCOM or IRXIC) is running in: 

• A non-TSO/E address space, or 

• The TSO/E address space in a language processor environment that was not 
integrated into TSO/E (the TSOFL flag is off). 

The name of the message identifier replaceable routine is specified in the MSGIORT 
field in the module name table. "Module Name Table" on page 356 describes the 
format of the module name table. 

Entry Specifications 

Parameters 

For the message identifier routine, the contents of the registers on entry are 
described below. For more information about register 0, see "Using the 
Environment Block Address" on page 431. 

Register 0 Address of the current environment block 

Registers 1-12 Unpredictable 

Register 13 

Register 14 

Register 15 

Address of a register save area 

Return address 

Entry point address 

There is no parameter list for the message identifier routine. Return codes are used 
to return information to the caller. 

Return Specifications 

Return Codes 

For the message identifier replaceable routine, the contents of the registers on 
return are: 

Registers 0-14 Same as on entry 

Register 15 Return code 

Figure 109 shows the return codes for the message identifier routine. 

Figure 109. Return Codes for the Message Identifier Replaceable Routine 

Return Code Description 

o Display the message identifier (message 10) with the message. 

Non-zero Do not display the message identifier (message 10) with the message. 

470 TSO/E Version 2 MVS/REXX Reference 

------,---

o 

( \ 
. ,j 



C· ./ 

c 

Exit Routines 

-------------._ .... _. __ ._. __ .. __ ._ .. __ ... _-
REXX Exit Routines 

There are many exit routines you can use to customize REXX processing. The exits 
differ from other exit routines that TSO/E provides, such as exits for TSO/E 
command processors. Some of the REXX exits have fixed names while others you 
name yourself. Several exits receive parameters on entry and others receive no 
parameters. 

Generally, you use exit routines to customize a particular command or function on a 
system-wide basis. You use the REXX exits to customize different aspects of REXX 
processing on a language processor environment basis. The following highlights 
the exits you can use for REXX. TSO/E Version 2 Customization describes the exits 
in more detail. However, many of the exits receive the parameters that a caller 
passed on a call to a REXX routine, such as IRXINIT and IRXEXEC. Therefore, you 
will need to use both the TSO/E Version 2 Customization book and this book for 
complete information. 

Some of the REXX exits do not have fixed names. You supply the name yourself and 
then define the name in the appropriate fields in the module name table. In the 
module name table, you also define the names of replaceable routines you provide. 
However, unlike the replaceable routines, which you can provide only in language 
processor environments that are not integrated into TSO/E, you can use the REXX 
exits in any type of environment (integrated and not integrated into TSO/E). One 
exception is the attention handling exit, which is available only in TSO/E (in an 
environment that is integrated into TSO/E). 

Exits for Language Processor Environment Initialization and Termination 
There are four exits you can use to customize the initialization and termination of 
language processor environments in any address space. The names of the four 
exits are fixed. If you provide one or more of these exits, the exit is invoked 
whenever the IRXINIT and IRXTERM routines are called. The exits are invoked 
whenever a user explicitly calls IRXINIT and IRXTERM or when the system 
automatically calls the routines to initialize and terminate a language processor 
environment. The exits are briefly described below. TSO/E Version 2 
Customization provides more information about each exit. Chapter 15, 
"Initialization and Termination Routines" on page 411 describes the IRXINIT and 
IRXTERM routines and their parameters. 

IRXINITX 
This is the pre-environment initialization exit routine. The exit is invoked 
whenever the initialization routine IRXINIT is called to initialize a new language 
processor environment. The exit receives control before IRXINIT evaluates any 
parameters to use to initialize the environment. The exit routine receives the 
same parameters that IRXINIT receives. 

You can provide a pre-environment initialization exit in any type of language 
processor environment (integrated and not integrated into TSO/E). 

IRXITTS or IRXITMV 
There are two post-environment initialization exit routines: 

• IRXITTS for environments that are integrated into TSO/E (the TSOFL flag is 
on) 

• IRXITMV for environments that are not integrated into TSO/E (the TSOFL flag 
is off). 

Chapter 16. Replaceable Routines and Exits 471 



Exit Routines 

The IRXITTS exit is invoked whenever IRXINIT is called to initialize a new 
environment and the environment is to be integrated into TSO/E. The IRXITMV 
exit is invoked whenever IRXINIT is called to initialize a new environment and 
the environment is not to be integrated into TSO/E. The exits receive control 
after IRXINIT has initialized the language processor environment and has 
created the control blocks for the environment, such as the environment block 
and the parameter block. The exits do not receive any parameters. 

IRXTERMX 
This is the environment termination exit routine. The exit is invoked whenever 
the termination routine IRXTERM is called to terminate a language processor 
environment. The exit receives control before IRXTERM terminates the 
environment. The exit does not receive any parameters. 

You can provide an environment termination exit in any type of language 
processor environment (integrated and not integrated into TSO/E). 

o 

Exec Initialization and Termination Exits /- \ 
You can provide exits for exec initialization and termination. The exec initialization " J 
exit is invoked after the variable pool for a REXX exec has been initialized, but 
before the language processor processes the first instruction in the exec. The exec 
termination exit is invoked after a REXX exec has completed, but before the variable 
pool for the exec has been terminated. 

The exec initialization and termination exits do not have fixed names. You name the 
exits yourself and define the names in the following fields in the module name table: 

• EXECINIT - for the exec initialization exit 
• EXECTERM - for the exec termination exit 

The two exits are used on a language processor environment basis. You can 
provide an exec initialization and exec termination exit in any type of environment 
(integrated and not integrated into TSO/E). You define the exit names in the module 
name table by: 

• Providing your own parameters module that replaces the default module, or 

• Calling IRXINIT to initialize a language processor environment and passing the 
module name table on the call. 

"Changing the Default Values for Initializing an Environment" on page 381 
describes how to provide your own parameters module. Chapter 15, "Initialization 
and Termination Routines" on page 411 describes the IRXINIT routine. 

Exec Processing (IRXEXEC) Exit Routine 
You can provide an exec processing exit that is invoked whenever the IRXEXEC 
routine is called to invoke a REXX exec. The IRXEXEC routine can be explicitly 
called by a user or called by the system to invoke an exec. IRXEXEC is always 
called by the system to handle exec processing. For example, if you run a REXX 
exec in TSO/E using the EXEC command, the IRXEXEC routine is called to invoke 
the exec. If you provide an exit routine for IRXEXEC, the exit is invoked. 

The exit for the IRXEXEC routine does not have a fixed name. You name the exit 
yourself and define the name in the IRXEXECX field in the module name table. 

472 TSO/E Version 2 MVS/REXX Reference 

o 



c 

(-\ 

Exit Routines 

The exit is used on a language processor environment basis. You can provide an 
exec processing exit in any type of environment (integrated and not integrated into 
TSO/E). You define the exit name in the module name table by: 

• Providing your own parameters module that replaces the default module, or 

• Calling IRXINIT to initialize a language processor environment and passing the 
module name table on the call. 

"Changing the Default Values for Initializing an Environment" on page 381 
describes how to provide your own parameters module. Chapter 15, "Initialization 
and Termination Routines" on page 411 describes the IRXINIT routine. 

The exit is invoked before the IRXEXEC routine loads the exec, if the exec is not 
preloaded, and before IRXEXEC evaluates any parameters passed on the call. 

Attention Handling Exit Routine 
You can provide an attention handling exit routine that is invoked whenever an exec 
is running in the TSO/E address space (in a language processor environment that is 
integrated into TSO/E) and an attention interruption occurs. The exit does not have 
a fixed name. You name the exit yourself and define the name in the ATTNROUT 
field in the module name table. 

The exit is used on a language processor environment basis. You can provide an 
attention handling exit in the TSO/E address space only, in an environment that is 
integrated into TSO/E (the TSOFL flag is on). You define the exit name in the 
module name table by: 

• Providing your own parameters module that replaces the default IRXTSPRM or 
IRXISPRM module, or 

• Calling IRXINIT to initialize a language processor environment and passing the 
module name table on the call. 

"Changing the Default Values for Initializing an Environment" on page 381 
describes how to provide your own parameters module. Chapter 15, "Initialization 
and Termination Routines" on page 411 describes the IRXINIT routine. 

The exit is invoked when a REXX exec is running and the user presses the attention 
interrupt key (usually the PA 1 key). The exit gets control before REXX attention 
processing issues the prompting message, IRX09201, that asks the user to enter a 
null line to continue exec processing or one of the immediate commands. The exit 
is useful if your installation users are unfamiliar with TSO/E READY mode. 

You can write an exit to: 

• Halt the interpretation of the exec using either the EXECUTIL HI command or the 
IRXIC routine 

• Request that REXX attention processing not display the attention prompting 
message 

• Prohibit the use of the HE immediate command during REXX attention 
processing. 

For information about how the attention handling exit can communicate with REXX 
attention processing, see TSOIE Version 2 Customization. 

Chapter 16. Replaceable Routines and Exits 473 



Exit Routines 

If you provide an attention handling exit routine. the exit should not invoke any 
authorized commands or programs. Additionally. any unauthorized commands or 
programs that the exit invokes should be invoked from an unauthorized TSO service 
facility environment. Otherwise. unpredictable results may occur. 

To invoke an unauthorized command or program from an unauthorized TSO service 
facility environment. you can request the TSO service facility to set up an 
unauthorized TSO service facility environment for the command or program 
invocations. For information about using the TSO service facility, see TSOIE 
Version 2 Programming Services. 

474 TSO/E Version 2 MVS/REXX Reference 

o 

( 
'~ / 

f' 
I I 

\._-j 

c 



() 

IRX00031 <,- IRX00051 

...... ..... 
A.ppendix Afl Error Numbers and Messages 

The error numbers produced by syntax errors during processing of REXX execs are 
in the range 3-49. These error numbers correspond to the TSO/E REXX messages 
IRX0003 - IRX0049. For example, error 26 corresponds to message number IRX0026. 
The error number (3-49) is also the value that is placed in the REXX special variable 
RC when SIGNAL ON SYNTAX event is trapped. 

Three of the error messages can be generated by the external interfaces to the 
language processor either before the language processor gains control or after 
control has left the language processor. Therefore, you cannot trap these errors 
using SIGNAL ON SYNTAX. The error numbers involved are: 

• 3 (IRX0003) 

• 5 (IRX0005) if the initial requirements for storage could not be met 

• 26 (IRX0026) if, on exit, the returned string could not be converted to form a valid 
return code. 

Similarly, error 4 (IRX0004) can be trapped only by SIGNAL ON HALT. 

In addition to the syntax error mel:!sages that are described in this appendix, the 
system may issue other types of error messages. For information about these 
messages, see one of the appropriate publications: 

• TSOIE Version 2 Messages 

• MVSIESA System Messages Volume 1 

• MVSIESA System Messages Volume 2 

!j:OWOlJill f:!.,'r'll'r nmnilil~ execname, UIl'!' fin: PrQgram 
,s ~!'Ireadable 

In this case, the message explaining the error 
is issued, followed by this message stating 
that the program was interrupted. 

Explanation: The exec could not be read. The 
most likely reason for this error is if you called 
IRXEXEC and passed a pre-loaded exec that 
was in error. The language processor could 
not read the format of the exec. 

System Action: Exec processing terminates. 

User Re.ponse: Check the format of the exec 
you are passing or contact your system 
programmer for assistance. 

Audience: REXX user 

Detected & Issued by: Language processor 

IRXOOQ4. Error running execname, line nn: Program 
ill'l~Elrnlp:el:il 

\ 

explanation: The system interrupted 
execution of the exec. Usually this is due to 
your issuing the HI (halt interpretation) 
immediate command or EXECUTIL HI. The 
message can also be issued if another error 
occurred and exec processing was terminated. 

© Copyright IBM Corp. 1988, 1991 

System Action: Exec processing terminates. 

U.er Re.pon.e: If you issued an HI command 
or EXECUTIL HI, continue as planned. 
Otherwise, if an error caused exec processing 
to terminate, check the other error message 
and correct the problem. 

Audience: REXX user 

Detected & Issued by: Language processor 

IflXOOQ51 i\/h.'lchine storage exhausted 

Explanation: While attempting to process an 
exec. the language processor was unable to 
get the storage needed for its work areas and 
variables. This may have occurred because a 
program that called IRXEXEC or an exec has 
already used up most of the available storage 
itself, or because a program or exec did not 
terminate properly, but instead, went into a 
loop. 

System Action: Exec processing terminates. 

475 



IRX00061 - IRX00101 

User Response: If a program invoked 
IRXEXEC, check how the program obtains and 
frees storage. Also, check whether the 
program or exec is looping. Contact your 
system programmer for assistance. 

Audience: REXX user 

Detected & Issued by: Language processor 

IRX00061 Error running execname, line nn: 
Unmatched" /*" or quote 

Explanation: The language processor 
reached the end of the file (or the end of data 
in an INTERPRET instruction) without finding 
the ending "*1" for a comment or the ending 
quote for a literal string. 

System Action: Exec processing terminates. 

User Response: Edit the exec and add the 
closing "*1" or quote. You can also insert a 
TRACE SCAN at the top of your program and 
rerun it. The resulting output should show 
where the error exists. 

Audience: REXX user 

Detected & Issued by: Language processor 

111)(00071 Error running execname, line nn: WHEN or 
OTHERWISE expected 

Explanation: The language processor expects 
a series of WHENs and an OTHERWISE within 
a SELECT instruction. This message is issued 
when any other instruction is found or if all 
WHEN expressions are found to be false and 
an OTHERWISE is not present. The error is 
often caused by forgetting the DO and END 
instructions around the list of instructions 
following a WHEN. For example: 

WRONG RIGHT 

Select 
When a=b then 

Say 'A equals 8' 
exit 

Otherwise nop 
end 

Select 
When a=b then DO 

Say 'A equals 8' 
exit 
end 

Otherwise nop 
end 

System Action: Exec processing terminates. 

User Response: Make the necessary 
corrections in the exec. 

Audience: REXX user 

Detected & Issued by: Language processor 

476 TSO/E Version 2 MVS/REXX Reference 

IRX00081 Error running execname, line nn: 
Unexpected THEN or ELSE 

Explanation: The language processor found a 
THEN or an ELSE that does not match a 
corresponding IF clause. This situation is 
often caused by forgetting to put an END or 
DO-END in the THEN part of a complex 
IF-THEN-ELSE construction. For example: 

WRONG 
If a=b then do; 

Say EQUALS 
exit 

else 
Say NOT EQUALS 

RIGHT 

If a=b then do; 
Say EQUALS 
exit 
end 

else 
Say NOT EQUALS 

System Action: Exec processing terminates. 

User Response: Make the necessary 
corrections in the exec. 

Audience: REXX user 

Detected & Issued by: Language processor 

IRX00091 Error running execname, line nn: 
Unexpected WHEN or OTHERWISE 

Explanation: The language processor found a 
WHEN or OTHERWISE instruction outside of a 
SELECT construction. You may have 
accidentally enclosed the instruction in a 
DO-END construction by leaving off an END 
instruction, or you may have tried to branch to 
it with a SIGNAL instruction, which cannot 
work because the SELECT is then terminated. 

System Action: Exec processing terminates. 

User Response: Make the necessary 
corrections in the exec. 

Audience: REXX user 

Detected & Issued by: Language processor 

IRX00101 Error running 9xecname, line nn: 
Unexpected or unmatched END 

Explanation: The language processor found 
more END instructions in your exec than DO or 
SELECT instructions, or the ENDs were placed 
so that they did not match the DOs or 
SELECTs. This message can occur if you try 
to signal into the middle of a loop. In this 
case, the END will be unexpected because the 
previous DO will not have been executed. 
Remember also, that SIGNAL terminates any 
current loops, so it cannot be used to Jump 
from one place inside a loop to another. 

This message can also occur if you place an 
END immediately after a THEN or ELSE 
construction. 

o 

;/\ 
\,~~ 



c 

c 

IIlX00111 

System Action: Exec processing terminates. 

User Response: Make the necessary 
corrections in the exec. It may be helpful to 
use TRACE SCAN to show the structure of the 
exec and make it more obvious where the 
error is. Putting the name of the control 
variable on END instructions that close 
repetitive loops can also help you locate this 
kind of error. 

Audience: REXX user 

Detected & Issued by: Language processor 

Error furmin~ eXflcname, line nn: Control 
stack full 

Explanation: This message is issued if you 
exceed the limit of 250 levels of nesting of 
control structures (DO-END, IF-THEN-ELSE, 
etc.). 

This message could be caused by a looping 
INTERPRET instruction, such as: 

line='INTERPRET line' 
INTERPRET line 

These lines would loop until they exceeded the 
nesting level limit and this message would be 
issued. Similarly, a recursive subroutine that 
does not terminate correctly could loop until it 
causes this message. 

System Action: Exec processing terminates. 

User Response: Make the necessary 
corrections in the exec. 

Audience: REXX user 

Detected & Issued by: Language processor 

IRX00121 Error running axecname, line nn: Clause> 
500 characters 

Explanation: You exceeded the limit of 500 
characters for the length of the internal 
representation of a clause. 

If the cause of this message is not obvious to 
you, it may be due to a missing quote that has 
caused a number of lines to be included in one 
long string. In this case, the error probably 
occurred at the start of the data included in the 
clause traceback (flagged by + + + on the 
terminal). 

The internal representation of a clause does 
not include comments or multiple blanks that 
are outside of strings. Note also that any 
symbol (name) gains two characters in length 
in the internal representation. 

System Action: Exec processing terminates. 

User Response: Make the necessary 
corrections in the exec. 

.~~ .. ---~~,---.--------.---.--~--

IRX00111 - IRX00151 

Audience: REXX user 

Detected & Issued by: Language processor 

IRX00131 Error running execname, line nn: Invalid 
character in data 

Explanation: The language processor found 
an invalid character outside of a literal 
(quoted) string. Valid characters are: 

• Alphamerics 

A-Z a-z 0-9 

• Name Characters 

@#$¢.?!-

• Special Characters 

&*()_+ =\-.'H;:<,>/I 

System Action: Exec processing terminates. 

User Response: Make the necessary 
corrections in the exec. 

Audience: REXX user 

Detected & Issued by: Language processor 

IRX00141 Errol' running execname, line nn: 
Incomplete DO/SEI..ECTIIF 

Explanation: The language processor 
reached the end of the file (or end of data for 
an INTERPRET instruction) and found that 
there is a DO or SELECT without a matching 
END, or an IF that is not followed by a THEN 
clause. 

System Action: Exec processing terminates. 

User Response: Make the necessary 
corrections in the exec. You can use TRACE 
SCAN to show the structure of the program, 
thereby making it easier to find where the 
missing END or THEN should be. Putting the 
name of the control variable on ENDs that 
close repetitive loops can also help you locate 
this kind of error. 

Audience: REXX user 

Detected & Issued by: Language processor 

IRX00151 Error running execname, line nn: Invalid 
hex constant 

Explanation: For the language processor, 
hexadecimal constants cannot have leading or 
trailing blanks and can have imbedded blanks 
at byte boundaries only. The following are all 
valid hexadecimal constants: 

X'13' 
X'A3C2 lc34' 
X'lde8' 

Appendix A. Error Numbers and Messages 477 



IRX00161 - I RX00201 

You may have incorrectly typed one of the 
digits, for example, typing a letter 0 instead of 
the number 0 or the letter I for number 1. This 
message can also occur if you follow a string 
by the 1-character symbol X (the name of the 
variable X), when the string is not intended to 
be taken as a hexadecimal specification. In 
this case, use the explicit concatenation 
operator {I D to concatenate the string to the 
value of the symbol. 

System Action: Exec processing terminates. 

User Response: Make the necessary 
corrections in the exec. 

Audience: REXX user 

Detected & Issued by: Language processor 

IRX00161 Error running exeename, line nn: label not 
found 

Explanation: The language processor could 
not find the label specified by a SIGNAL 
instruction or a label matching an enabled 
condition when the corresponding (trapped) 
event occurred. You may have incorrectly 
typed the label or forgotten to include it. 

System Action: Exec processing terminates. 

User Response: Make the necessary 
corrections in the exec. 

Audience: REXX user 

Detected & Issued by: Language processor 

IRXOOl1l Error running axeename, line nn: 
Unexpected PROCEDURE 

Explanation: The language processor 
encountered a PROCEDURE instruction in an 
invalid position. This could occur because: 

• No internal routines are active 

• A PROCEDURE instruction has already 
been encountered in the internal routine, 
or 

• The PROCEDURE instruction was not the 
first instruction executed after the CALL or 
function invocation. 

This error can be caused by "dropping 
through" to an internal routine, rather than 
invoking it with a CALL or a function call. 

System Action: Exec processing terminates. 

User Response: Make the necessary 
corrections in the exec. 

478 TSO/E Version 2 MVS/REXX Reference 

Audience: REXX user 

Detected & Issued by: Language processor 

IRXOO181 Error running execname, line nn: THEN 
expected 

Explanation: All IF and WHEN clauses must 
be followed by a THEN clause. Another clause 
was found before a THEN instruction was 
found. 

System Action: Exec processing terminates. 

User Response: Insert a THEN clause 
between the IF or WHEN clause and the 
following clause. 

Audience: REXX user 

Detected & Issued by: Language processor 

IRX00191 Error running exeename, line nn: String 01' 

symbol expected 

Explanation: The language processor 
expected a symbol following the keywords 
CALL, SIGNAL, SIGNAL ON, or SIGNAL OFF 
but none was found. You may have omitted 
the string or symbol, or you may have inserted 
a special character (such as a parenthesis) in 
it. 

System Action: Exec processing terminates. 

User Response: Make the necessary 
corrections in the exec. 

Audience: REXX user 

Detected & Issued by: Language processor 

IRXOO201 Error running execname, line nn: Symbol 
expected 

Explanation: The language processor either 
expected a symbol following the END, 
ITERATE, LEAVE, CALL, SIGNAL, NUMERIC, 
PARSE, or PROCEDURE keywords or expected 
a list of symbols following the DROP, UPPER, 
or PROCEDURE (with EXPOSE option) 
keywords. A symbol or list of symbols was not 
found. 

System Action: Exec processing terminates. 

User Response: Make the necessary 
corrections in the exec. 

Audience: REXX user 

Detected & Issued by: Language processor 

------------~ ----

o 



c 

(~ 

( " 

/ 

r.:~f1i(,1:l tl~i!n,;~,~nq ~::Jye<Dn;'H:1rt. t;t\;·:~ -' if;' "::~r.; 

d.a~·~. ,::'':l~ i!!'r>!~'~ 1'!-'7 ·(:j;-UriS:(~ 

Explanation: You have followed a clause, 
such as SELECT or NOP, by some data other 
than a comment. 

System Action: Exec processing terminates. 

User Response: Make the necessary 
corrections in the exec. 

Audience: REXX user 

Detected & Issued by: Language processor 

'., ~. 

Explanation: A character string that has 
unmatched SO-SI pairs (that is, an SO without 
an SI) or an odd number of bytes between the 
SO-51 characters was scanned with OPTIONS 
ETMODE in effect. 

System Action: Exec processing terminates. 

User Response: Correct the invalid character 
string in the exec. 

Audience: REXX user 

Detected & Issued by: Language processor 

Explanation: A character string that has 
unmatched SO-51 pairs (that is, an SO without 
an SI) or an odd number of bytes between the 
SO-51 characters was processed with 
OPTIONS EXMODE in effect. 

System Action: Exec processing terminates. 

User Response: Correct the invalid character 
string in the exec. 

Audience: REXX user 

Detected & Issued by: Language processor 

Explanation: The language processor issues 
this message when: 

• The action specified on a TRACE 
instruction or the argument to the built-in 
function starts with a letter that is not a 
valid alphabetic character option. The 
valid options are A, C, E, F, I, L, N, 0, R, or 
S. 

• An attempt is made to request TRACE 
SCAN when inside any control 
construction or while in interactive debug. 

System Action: Exec processing terminates. 

User Response: Make the necessary 
corrections in the exec. 

Audience: REXX user 

Detected & Issued by: Language processor 

Explanation: The language processor 
expected a particular sub-keyword at this 
position in an instruction and something else 
was found. For example, the NUMERIC 
instruction must be followed by the 
sub-keyword DIGITS, FUZZ, or FORM. If 
NUMERIC is followed by anything else, this 
message is issued. 

System Action: Exec processing terminates. 

User Response: Make the necessary 
corrections in the exec. 

Audience: REXX user 

Detected & Issued by: Language processor 

Explanation: The language processor found 
an expression that did not evaluate to a whole 
number or that was greater than the limit, for 
these uses, of 999 999 999. The expression 
appeared in the NUMERIC instruction, a 
parsing positional pattern, or the right hand 
term of the exponentiation (**) operator. 

This message can also be issued if the return 
code passed back from an EXIT or RETURN 
instruction (when an exec is called as a 
command, rather than as a function or 
subroutine) is not a whole number or will not 
fit in a general register. You may have 
incorrectly typed the name of a symbol so that 
it is not the name of a variable in the 
expression on any of these instructions. This 
might be true, for example, if you entered 
"EXIT CR" instead of "EXIT RC." 

System Action: Exec processing terminates. 

User Response: Make the necessary 
corrections in the exec. 

Audience: REXX user 

Detected & Issued by: Language processor 

Appendix A. Error Numbers and Messages 479 



I RX00271 IRX0031I 

IRX00271 Error running execname, line nn: Invalid 
DO syntax 

Explanation: The language processor found a 
syntax error in the DO .instruction. You might 
have used BY or TO twice or used BY, TO, or 
FOR when you did not specify a control 
variable. 

System Action: Exec processing terminates. 

User Response: Make the necessary 
corrections in the exec. 

Audience: REXX user 

Detected & Issued by: Language processor 

IRX00281 Error running exec name, line nn: Invalid 
lEAVE or ITERATE 

Explanation: The language processor 
encountered an invalid LEAVE or ITERATE 
instruction. The instruction was invalid 
because: 

• No loop is active, or 

• The name specified on the instruction 
does not match the control variable of any 
active loop. 

Note that internal routine calls and the 
INTERPRET instruction protect DO loops by 
making them inactive. Therefore, for example, 
a LEAVE instruction in a subroutine cannot 
affect a DO loop in the calling routine. 

This message can occur if you use the SIGNAL 
instruction to transfer control within or into a 
loop. A SIGNAL instruction terminates all 
active loops and any ITERATE or LEAVE 
instruction issued then would cause this 
message to be issued. 

System Action: Exec processing terminates. 

User Response: Make the necessary 
corrections in the exec. 

Audience: REXX user 

Detected & Issued by: Language processor 

IRX00291 Error running execname, line nn: 
Environment name too long 

Explanation: The language processor 
encountered a host command environment 
name specified on an ADDRESS instruction 
that is longer than the limit of 8 characters. 

System Action: Exec processing terminates. 

480. TSO/E Version 2 MVS/REXX Reference 

User Response: Specify the host command 
environment name on the ADDRESS 
instruction correctly. 

Audience: REXX user 

Detected & Issued by: Language processor 

!RXOO~OI Error running execname, line nn: Name or 
string> 250 characters 

Explanation: The language processor found a 
variable or a literal (quoted) string that is 
longer than the limit. 

The limit for names is 250 characters, 
following any substitutions. A possible cause 
of this error is the use of a period (.) in a 
name, causing an unexpected substitution. 

The limit for a literal string is 250 characters. 
This error can be caused by leaving off an 
ending quote (or putting a single quote in a 
string) because several clauses can be 
included in the string. For example, the string 
'don't' should be written as 'don" t I or 
"don't". 

If this is not the case, you can create a larger 
string using concatenation. For example: 

a = " ••• character string < 256 characters ••• " 
b = " ... character string < 256 characters •• ," 
c = a II b 

System Action: Exec processing terminates. 

User Response: Make the necessary 
corrections in the exec. 

Audience: REXX user 

Detected & Issued by: Language processor 

----------------------------------------
IRXOO31I Error running execname, line nn: Name 

starts with numeric or ..... 

Explanation: The language processor found a 
symbol whose name begins with a numeric 
digit or a period (.). The REXX language rules 
do not allow you to assign a value to a symbol 
whose name begins with a numeric digit or a 
period because you could then redefine 
numeric constants, which would be 
catastrophic. 

System Action: Exec processing terminates. 

User Response: Rename the variable 
correctly. It is recommended to start a 
variable name with an alphabetic character, 
but some other characters are allowed. 

Audience: REXX user 

Detected & Issued by: Language processor 

o 

( ", 
I , 

\. .; 

c 



c 

(-' 

(--

- --- -------

IRX0032.1 Errol' funning execname, line nn: Invalid 
use of stem 

Explanation: The exec attempted to change 
the value of a symbol that is a stem. (A stem 
is that part of a symbol up to the first period. 
You use a stem when you want to affect all 
variables beginning with that stem.) This may 
be in the UPPER instruction where the action 
in this case is unknown, and therefore in error. 

System Acllon: Exec processing terminates. 

User Response: Change the exec so that it 
does not attempt to change the value of a 
stem. 

Audience: REXX user 

Detected & Issued by: Language processor 

!RX00331 Error running execname, line nn: Invalid 
""li'.pression result 

Explanation: The language processor 
encountered an expression result that is 
invalid in its particular context. The result 
may be invalid because an illegal FUZZ or 
DIGITS value was used in a NUMERIC 
instruction (FUZZ can~ot become larger than 
DIGITS). 

System Action: Exec processing terminates. 

User Response: Make the necessary 
corrections in the exec. 

Audience: REXX user 

Detected & Issued by: Language processor 

E.nor fUlI'Il'Ilng execnamt?, line rm: logic~1 

value not 0 01' 1 

Explanation: The language processor found 
an expression in an IF. WHEN. DO WHILE, or 
DO UNTIL phrase that did not result in a 0 or 1. 
Any value operated on by a logical operator 
( ....... \, I. &. or &&) must result in a 0 or 1. For 
example, the phrase If result then exit rc 
will fail if result has a value other than 0 or 1. 
Thus. the phrase would be better written as If 
result ...... =e then exit rc. 

System Action: Exec processing terminates. 

User Response: Make the necessary 
corrections in the exec. 

Audience: REXX user 

Detected & Issued by: Language processor 

IRX00351 Error rl.ln!'!h~~ execname, !~n\? nn: ilfl", .. hd 
expression 

Explanation: The language processor found a 
grammatical error in an expression. You 
might have ended an expression with an 
operator. had two adjacent operators with no 
data in between, or included special 
characters (such as operators) in an intended 
character expression without enclosing them 
in quotes. For example, the message is 
issued if you have the following clause in an 
exec: 

answer = x ++ 5 

System Action: Exec processing terminates. 

User Response: Make the necessary 
corrections in the exec. 

Audience: REXX user 

Detected & Issued by: Language processor 

Explanation: The language processor found 
an unmatched parenthesis within an 
expression. You will get this message if you 
include a single parenthesis in a command 
without enclosing it in quotes. 

System Action: Exec processing terminates. 

User Response: Make the necessary 
corrections in the exec. 

Audience: REXX user 

Detected & Issued by: Language processor 

Explanallon: The language processor found a 
comma (.) outside a routine invocation or too 
many right parentheses in an expression. You 
will get this message if you include a comma 
in a character expression without enclosing it 
in quotes. For example. the instruction: 

Say Enter A, B, or C 

should be written as: 

Say 'Enter A. B, or C' 

System Action: Exec processing terminates. 

User Response: Make the necessary 
corrections in the exec. 

Audience: REXX user 

Detected & Issued by: Language processor 

Appendix A. Error Numbers and Messages 481 



IRX00381 - I RX00431 

IRX00381 Error running execname, line nn: Invalid 
template or paRern 

Explanation: The language processor found 
an invalid special character, for example %, 
within a parsing template, or the syntax of a 
variable trigger was incorrect (no symbol was 
found after a left parenthesis). This message 
is also issued if the WITH sub-keyword is 
omitted in a PARSE VALUE instruction. 

System Action: Exec processing terminates. 

User Response: Make the necessary 
corrections in the exec. 

Audience: REXX user 

Detected a Issued by: Language processor 

l~lXOIl39! Error WI'li"liI19 eX13cname, line> no: 
Evalua«lol'l S!acK overflow 

Explanation: The language processor was not 
able to evaluate the expression because it is 
too complex (many nested parentheses, 
functions, etc.). 

System Action: Exec processing terminates. 

User Response: Break up the expressions by 
assigning sub-expressions to temporary 
variables. 

Audience: REXX user 

Detected a Issued by: Language processor 

IRX00401 Error funning sxecname, iine nn: Incor!,l:!Jt~~1 

call to routine 

Explanation: The language processor 
encountered an incorrectly used call to a 
built-in or external routine. You may have 
passed invalid data (arguments) to the routine. 
This is the most common possible cause and 
is dependent on the actual routine. If a routine 
returns a non-zero return code, the language 
processor issues this message and passes 
back its return code of 20040. 

If you were not trying to invoke a routine, you 
may have a symbol or a string adjacent to a 
"(" when you meant it to be separated by a 
space or an operator. This causes it to be 
seen as a function call. For example, 
TIME{4+5) should be written as TIME*(4+5). 

System Action: Exec processing terminates. 

User Response: Make the necessary 
corrections in the exec. 

Audience: REXX user 

Detected a Issued by: Language processor 

482 TSO/E Version 2 MVS/REXX Reference 

IRX0041I Error running exeoname, line nn: Bad 
arithmetic conversion 

Explanation: The language processor found a 
term in an arithmetic expression that was not 
a valid number or that had an exponent 
outside the allowed range of -999 999 999 to 
+ 999 999 999. 

You may have incorrectly typed a variable 
name, or included an arithmetic operator in a 
character expression without putting it in 
quotes. For example, you should write the 
command EXECIO • DlSKW OUTDO (FINIS as: 

'EXECIO * DISKW OUTDO (FINIS' 

Otherwise, the language processor tries to 
multiply "EXECIO" by "DlSKW." 

System Action: Exec proceSSing terminates. 

User Response: Make the necessary 
corrections in the exec. 

Audience: REXX user 

Delected a Issued by: Language processor 

~r~;{{jfl'lll~ Errol' ru~mh1i4 eXOGrwm(~, IiWl~ I1n: 
A,il:hmetic oll'lllrnCW/!.II'H:.lierflo\'1/' 

Explanation: The language processor 
encountered a result of an arithmetic 
operation that required an exponent greater 
than the limit of 9 digits (more than 999 999 
999 or less than -999 999 999). 

This error can occur during evaluation of an 
expression (often as a result of trying to divide 
a number by 0), or during the stepping of a DO 
loop control variable. 

System Action: Exec processing terminates. 

User Response: Make the necessary 
corrections in the exec. 

Audience: REXX user 

Detected a Issued by: Language processor 

IRX00431 El'r~r i'unni"g e,xecnamo, 111'i~ 111'1: R(~"Ul1'le 

noi fOlJnd 

Explanation: The language processor was 
unable to find a routine called in your exec. 
You invoked a function within an expression or 
in a subroutine invoked by CALL, but the 
specified label is not in the program or is not 
the name of a built-in function. TSO/E is also 
unable to locate it externally. 

The simplest, and probably most common, 
cause of this error is typing the name 
incorrectly. Another possibility may be that 
one of the function packages is not available. 

o 

~\ 
I 
\-- / 

'\ 
j 

(-'\. 
\"-j/ 

o 



c 

(-

---.--~-----

If you were not trying to invoke a routine, you 
may have put a symbol or string adjacent to a 
u(n when you meant it to be separated by a 
space or operator. The language processor 
would process that as a function invocation. 
For example, the string 3(4+ 5) should be 
written as 3*(4+5). 

System Action: Exec processing terminates. 

User Response: Make the necessary 
corrections in the exec. 

Audience: REXX user 

Detected & Issued by: Language processor 

Explanation: The language processor invoked 
an external routine within,an expression. The 
routine seemed to end without error, but it did 
not return data for use in the expression. 

This may be due to using the STORAGE 
function to read storage you are not allowed to 
read. In this case, the STORAGE function does 
not return any data. 

System Action: Exec processing terminates. 

User Response: Make the necessary 
corrections in the exec. 

Audience: REXX user 

Detected & Issued by: Language processor 

Explanation: An exec has been called as a 
function, but an attempt is being made to 
return (by a RETURN; instruction) without 
passing back any data. Similarly, an internal 
routine, called as a function, must end with a 
RETURN instruction specifying an expression. 

System Action: Exec processing terminates. 

User Response: Make the necessary 
corrections in the exec. 

Audience: REXX user 

Detected & Issued by: Language processor 

Explanation: The language processor 
terminates exec processing because some 
system service, such as user input or output or 
manipulation of the data stack has failed to 
work correctly. 

System Action: Exec processing terminates. 

User Response: Ensure that your input is 
correct and that your exec is working 
correctly. Contact your system programmer 
for assistance. 

Audience: REXX user 

Detected & Issued by: Language processor 

Explanation: The language processor carries 
out numerous internal self-consistency checks. 
It issues this message if it encounters a 
severe error. 

System Action: Exec processing terminates. 

User Response: Contact your system 
programmer for assistance. Report any 
occurrence of this message to your IBM 
representative. 

Appendix A. Error Numbers and Messages 483 



o 

484 TSO/E Version 2 MVS/REXX Reference 

---~--... -. 



Dees Support 

~.k';i!iIt ·ii8I111;lllltlR.li6mlli'~ T .. M did LII&I2i!:US~ o App~ndix BM Double .. Byte Character Set {DBCS} Support 

Double-Byte Character Sets (DBCS) are used to support languages that have more 
characters than can be represented by eight bits (such as Korean Hangeul and 
Japanese Kanji). REXX has a full range of DBCS functions and handling techniques. 

These include: 

• String handling capabilities with DBCS characters 

• OPTIONS modes that handle DBCS not only as literal strings, but also in data 
operations 

• A number of functions that specifically support the processing of DBCS 
character strings 

• Defined DBCS enhancements to current instructions and functions. 

Note: The use of DBCS does not affect the meaning of the built-in functions as 
described in Chapter 4, "Functions" on page 85. There we described how the 
characters in a result are obtained from the characters of the arguments by such 
actions as selecting, concatenating, and padding. The appendix describes how the 
resulting characters are represented as bytes. This internal representation will not 
normally be seen if the results are printed. It may be seen if the results are 
displayed on certain terminals. 

The following characteristics help define the rules used by DBCS to represent the 
extended character set: 

• Each DBCS character consists of two bytes 

• There are no DBCS control characters 

• The codes are within the ranges defined below, and show the valid DBCS code 
for the DBCS Blank. 

Figure 110. DBCS Ranges 

Byte EBCDIC 

1st X'41' to X'FE' 

2nd X'41' to X'FE' 

DBCS Blank X'4040' 

• DBCS alphanumeric/special symbols 

© Copyright IBM Corp. 1988. 1991 

A DBCS contains double-byte representation of alphanumeric and special 
symbols corresponding to those of the Single-Byte Character Set (SBCS). In 
EBCDIC, the first byte of a double-byte alphanumeric/special symbol is X'42' 
and the second is the same hex code as the corresponding EBCDIC code. 

Here are some examples: 

X'42Cl' ;s an EBCDIC double-byte A 
X'4281' ;s an EBCDIC double-byte a 
X'427D' ;s an EBCDIC double-byte quote 

485 



DBCS Support 

• No case translation 

In general, there is no concept of lowercase and uppercase in DBCS. 

• Notation conventions 

Throughout this Appendix, the following notational conventions will be used: 

DBCS character ->.A .B .C .D 
SBCS character -> abc d e 
DBCS Blank -> 
EBCDIC Shift-out (X'8E') -> < 
EBCDIC Shift-in (X'8F') -> > 

Note: In EBCDIC, the shift-out (SO) and shift-in (51) characters are used to 
distinguish DBCS characters from SBCS characters. 

Enabling DBCS Data Operations 
The OPTIONS instruction is used to control how REXX regards DBCS data. DBCS 
operations are enabled using the EXMODE option. (See the OPTIONS instruction on 
page 65 for more information.) 

Pure DBCS Strings and Mixed SBCS/DBCS Strin$Js 
A pure DBCS string consists of only DBCS characters. A mixed SBCS/DBCS string 
is formed by a combination of SBCS and DBCS characters. In EBCDIC, the SO and 
SI are used to bracket the DBCS data and distinguish it from the SBCS data. Since 
the SO and SI are only needed in the mixed strings, they are not associated with the 
pure DBCS strings. 

In EBCDIC: 

Pure DBCS string 
Mixed string 
Mixed string 

Mixed String Validation 

-> 
-> 
-> 

.A.B.C 
ab<.A.B> 
<.A.B> 

The validation of mixed strings depends on the instruction, operator, or function. If 
an invalid mixed string is used in one that does not allow invalid mixed strings 
under DBCS enabled mode, it causes a SYNTAX ERROR. 

The following rules must be followed for mixed string validation: 

• DBCS strings must be an even number of bytes in length. 

EBCDIC only 

• SO and SI must be 'paired' in a string. 

• Nesting of SO or SI is not permitted. 

These examples show some possible misuses: 

'ab<cd' -> 
'<.A<.B>.C> -> 
'<.A.BC>' -> 

INVALID - not paired 
INVALID - nested 
INVALID - odd byte length 

When a variable is created/modified/referred in a REXX program under OPTIONS 
EXMODE, it is validated whether it contains correct mixed string or not. When a 

486 TSO/E Version 2 MVS/REXX Reference 

o 

C) 



( 

( 

referred variable contains invalid mixed string, it depends on the 
instruction/function/operator whether it causes a syntax error. 

The ARG, PARSE, PULL, PUSH, QUEUE, SAY, TRACE, and UPPER instructions all 
require valid mixed strings with OPTIONS EXMODE in effect. 

Instruction Examples 

PARSE 

Here are some examples that illustrate how instructions work with DBCS. 

In EBCDIC: 

xl = '<><.A.B>< •. ><. E><. F><> , 

PARSE VAR xl wI 
wI -> '<><.A.B>< •• ><.E><.F><>' 

PARSE VAR xl I wI 
wI -> '<><.A.B>< .• ><. E><. F><> , 

PARSE VAR xl wI 
wI -> '<.A.B>' 

The leading and trailing SO and S1 are unnecessary for word parsing 
and thus they are stripped off. However, one pair is still 
needed in order for a valid mixed OBCS string to be returned. 

PARSE VAR xl • w2 
w2 -> '<. ><. E><. F><> , 

Here the first blank delimited the word and the SO is added to the 
string to ensure the OBCS blank and the valid mixed string. 

PARSE VAR xl wI w2 
wI -> '<.A.B>' 
w2 -> '<. ><.E><.F><>' 

PARSE VAR xl wI w2 
wI -> '<.A.B>' 
w2 -> '<.E><.F>' 

The word delimiting allows for unnecessary SO and 51 to be dropped. 

x2 = 'abc<>def <.A.B><><.C.O>' 

PARSE VAR x2 wI " w2 
wI -> 'abc<>def <.A.B><><.C.O>' 
w2 -> " 

PARSE VAR x2 wI '<>' w2 
wI -> 
w2 -> 

'abc<>def <.A.B><><.C.O>' 
" 

PARSE VAR x2 wI '<><> , w2 
wI -> 'abc<>def <.A.B><><.C.O>' 
w2 -> " 

Note that for the last three examples all of ' " , < > ' , and '< > < > ' are a null 
character (a string of length 0). When parsing, the null character matches the end of 
string. For this reason, w1 is assigned the value of the entire string and w2 is 
assigned the null string. 

Appendix B. Double-Byte Character Set (DBCS) Support 487 



PUSH and QUEUE 

SAY and TRACE 

UPPER 

You use the PUSH and QUEUE instructions to add entries to the data stack. 
Because an element on the data stack can be up to 1 byte less than 16 megabytes, 
truncation will probably never occur. However, if truncation splits a DBCS string, 
REXX will ensure that the integrity of the SO-51 pairing will be kept under OPTIONS 
EXMODE. 

The SAY and TRACE instructions write information to either the user's terminal or 
the output stream (the default is SYSTSPRT). Similar to the PUSH and QUEUE 
instructions, REXX ensures the SO-51 pairs are kept for any data that is separated to 
meet the requirements of the terminal line size or the OUTDO file. 

When the data is split up in shorter lengths, again the DBCS data integrity is kept 
under OPTIONS EXMODE. In EBCDIC, if the terminal line size is less than 4, the 
string will be treated as SBCS data, as 4 is the minimum for mixed string data. 

Under OPTIONS EXMODE, the UPPER instruction translates only SBCS characters 
in contents of one or more variables to uppercase, but it never translates DBCS 
characters. If the content of a variable is not valid mixed string data, no 
uppercasing will occur. 

Some built-in functions can handle DBCS. The functions that deal with word 
delimiting and length determining conform with the following rules under OPTIONS 
EXMODE: 

1. Counting characters-Logical character lengths will be used when counting the 
length of a string (that is, one byte for one SBCS logical character, while two 
bytes for one DBCS logical character). In EBCDIC, SO and 51 are considered to 
be transparent, and not counted, for every string operation. J 

2. Character extraction from a string-Characters are extracted from a string on a 
logical character basis. In EBCDIC, leading SO arid trailing 51 are not 
considered as part of one DBCS character. For instance, I.A I and I.B I are 
extracted from I < .A.B > I, and SO and 51 are added to each DBCS character 
when they are finally preserved as completed DBCS characters. When multiple 
characters are consecutively extracted from a string, SO and 51 that are 
between characters are also extracted. For example, I.A > <.B' is extracted 
from' <.A > <.B > ' , and when the string is finally used as a completed string, 
the SO will prefix and the 51 will suffix it to give' <.A > <.B > ' . 

Here are some EBCDIC examples: 

S 1 = 'abe<>def' 

SUBSTR(Sl,3,1) 
SUBSTR(Sl,4,l) 
SUBSTR(Sl,3,2) 

S2 = '<><.A.B><>' 

-> 
-> 
-> 

SUBSTR(S2,1,1) -> 
SUBSTR(S2 ,2~ 1) -> 
SUBSTR(S2,1,2) -> 
SUBSTR(S2,1,3,'x') -> 

'e' 
'd' 
'e<>d' 

'<.A>' 
'<.B>' 
'<.A.B>' 
'<.A.B><>x' 

o 

'\. 

j 

488 TSO/E Version 2 MVS/REXX Reference 

----------------~~- ----- --- ------- --------



0 

C~ 
/ 

c 

oecs Support 

S3 = 'abc<><.A.B>' 

SUBSTR(S3,3,1) -> 'c' 
SUBSTR(S3,4,1) -> '<.A>' 
SUBSTR(S3,3,2) -> 'c<><.A>' 
OELSTR(S3,3,1) -> 'ab<><.A.B>' 
OELSTR(S3,4,1) -> 'abc<><.B>' 
OELSTR(S3,3,2) -> 'ab<.B>' 

3. Character concatenatlon-String concatenation can only be done with valid 
mixed strings. In EBCDIC, adjacent 51/50 or 50/51 which are a result of the 
string concatenation are removed. Even during implicit concatenation as in the 
DELSTR function, unnecessary SO and 51 are removed. 

4. Character comparison-Valid mixed strings are used when comparing strings on 
a character basis. A DBCS character is always considered greater than a SBCS 
if they are compared. In all but the strict comparisons, SBCS blanks, DBCS 
blanks, and leading andlor trailing contiguous 50151 or 51/50 in EBCDIC are 
removed. SBCS blanks may be added if the lengths are not identical. 

In EBCDIC, contiguous 50/51 and 51150 between nonblank characters are also 
removed for comparison. 

Note: The strict comparison operators do not cause syntax errors even if 
invalid mixed strings are specified. 

In EBCDIC: 

'<.A>' '<.A. >' -> true 
'<><><.A>, '<.A><><>, -> true 
'<> <.A>' = '<.A>' -> true 

'<.A><><.B>' = '<.A.B>' -> true 
'abc' < 'ab<. >' -> false 

5. Word extraction from a strlng-'Word' means that characters in a string are 
delimited by a SBCS or DBCS blank. 

In EBCDIC, leading andlor trailing contiguous SOISI and 51/50 are also 
removed when words are separated in a string, but contiguous 50/51 and 51/50 
in a word are not removed or separated for word operations. Leading andlor 
trailing contiguous 50151 and 51150 of a word are not removed if they are 
among words that are extracted at the same time. 

In EBCDIC: 

WI = '<>< •• A. .B><.C •• 0><>' 

SUBWORO(WI,I,I) 
SUBWORO(WI,I,2) 
SUBWORO(WI,3,1) 
SUBWORO(WI,3) 

-> 
-> 
-> 
-> 

'<.A>' 
'<.A. 
'<.0>' 
'<.0>' 

. .B><.C>' 

W2 = '<.A .• B><.C><> <.0>' 

SUBWORO(W2.2,l) 
SUBWORO(W2.2,2) 

-> 
-> 

'<.8><.C>' 
'<.B><.C><> <.D>' 

Appendix B. Double-Byte Character Set (DBCS) Support 489 



OBCS Support 

Built-in Function Examples 

ABBREV 

COMPARE 

COPIES 

DATATYPE 

FIND 

Examples for built-in functions, those that support DBCS and follow the rules 
defined, are given in this section. For full function descriptions and the syntax 
diagrams, refer to Chapter 4, "Functions" on page 85. 

In EBCDIC: 

ABBREV('<.A.B.C>'.'<.A.B>') -> 1 
ABBREV('<.A.B.C>'.'<.A.C>'} -> a 
ABBREV('<.A><.B.C>'.'<.A.B>'} -> 1 
ABBREV('aa<>bbccdd','aabbcc') -> 1 

Applying the 'Character comparison' and 'Character extraction from a string' rules. 

In EBCDIC: 

COMPARE('<.A.B.C>'.'<.A.B><.C>'} 
COMPARE('<.A.B.C>'.'<.A.B.D>') 
COMPARE('ab<>cde','abcdx'} 
COMPARE{'<.A><>'.'<.A>','<. >') 

-> a 
-> 3 
-> 5 
-> a 

Applying the 'Character concatenation for padding', the 'Character extraction from a 
string', and 'Character comparison' rules. 

In EBCDIC: 

COPIES('<.A.B>',2} 
COPIES('<.A><.B>'.2) 
COPIES{'<.A.B><>'.2} 

-> '<.A.B.A.B>' 
-> '<.A><.B.A><.B>' 
-> '<.A.B><.A.B><>' 

Applying the 'Character concatenation' rule. 

DATATYPE{'<.A.B>') -> 'CHAR' 
DATATYPE{'<.A.8>','D') -> 1 
DATATYPE{'<.A.B>','C') -> 1 
DATATYPE{'a<.A.B>b'.'D') -> a 
DATATYPE{ia<.A.B>b','C') -> 1 
DATATYPE{iabcde'.'C') -> a 
DATATYPE{'<.A.B'.'C'} -> a 

Note: If string is invalid mixed string and 
"C" or "0" is specified as type, a is returned. 

FIND{'<.A •• B.C> abc','<.B.C> abc'} -> 2 
FIND('<.A •• 8><.C> abc','<.B.C> abc') -> 2 
FIND('<.A ..• B> abc'.'<.A> <.B>'} -> 1 

Applying the 'Word extraction from a string' and 'Character comparison' rules. 

INDEX, POS, and LASTPOS 
INDEX('<.A><.B><><.C.D.E>' ,'<.D.E>') 
POS('<.A>','<.A><.B><><.A.D.E>') 
LASTPOS('<.A>' ,'<.A><.8><><.A.D.E>') 

-> 
-> 
-> 

4 
1 
3 

Applying the 'Character extraction from a string' and 'Character comparison' rules. 

490 TSO/E VerSion 2 MVS/REXX Reference 

c 

~-~ 
: ' 

(\ 
j ccj 



o ... 

~.-----.- ~-.. --. -------~ 

[lacs Support 

INSERT and OVERLAY 

JUSTIFY 

In EBCDIC: 

INSERT('a','b<><.A.B>',l) 
INSERT('<.A.B>','<.C.O><>',2) 
INSERT('<.A.B>','<.C.O><><.E>',2) 
INSERT('<.A.B>','<.C.O><>',3,,'<.E>') 

QVERLAY('<.A.B>','<.C.O><>',2) 
QVERLAY('<.A.B>','<.C.D><><.E>',2) 
QVERLAY('<.A.B>','<.C.O><><.E>',3) 
QVERLAY('<.A.8>','<.C.O><>',4,,'<.E>') 
QVERLAY('<.A>','<.C.D><.E>',2) 

-> 'ba<><.A.B>' 
-> '<.C.O.A.8><>' 
-> '<.C.O.A.B><><.E>' 
-> '<.C.O><.E.A.B>' 

-> '<.C.A.B>' 
-> '<.C.A.B>' 
-> '<.C.O><><.A.B>' 
-> '<.C.O><.E.A.B>' 
-> '<.C.A><.E>' 

Applying the 'Character extraction from a string' and 'Character comparison' rules. 

JUSTIFY ( '<>< •• A ••• B><.C •• 0>' ,10, 'p') 
-> '<.A>ppp<.B><.C>ppp<.D>' 

JUSTIFY (' <><. .A. • • B><. C. .0>',11,' p') 
-> '<.A>pppp<.B><.C>ppp<.D>, 

JUSTIFY( '<>< •• A ••• B><.C •• 0>',10, '<. P>') 
-> '<.A.P.P.P.B><.C.P.P.P.D>' 

JUSTIFY (' <><. X. .A. • .8><. C. .0>',11,' <. P>') 
-> '<.X.P.P.A.P.P.B><.C.P.P.D>' 

Applying the 'Character concatenation for padding' and 'Character extraction from a 
string' rules. 

LEFT, RIGHT, and CENTER 

LENGTH 

REVERSE 

In EBCDIC: 

LEFT('<.A.B.C.D.E>',4) -> 
LEFT (' a<>' ,2) -> 
LEFT( '<.A>' ,2, '*') -> 
RIGHT('<.A.B.C.D.E>',4) -> 
RIGHT{'a<>',2) -> 
CENTER('<.A.B>',10,'<.E>') -> 
CENTER('<.A.B>',ll,'<.E>') -> 
CENTER('<.A.B>',lG,'e') -> 

'<.A.B.C.D>' 
'a<> ' 
'<.A>*' 
'<.B.C.D.E>' 
, a' 
'<.E.E.E.E.A.B.E.E.E.E>' 
'<.E.E.E.E.A.B.E.E.E.E.E>' 
'eeee<.A.B>eeee' 

Applying the 'Character concatenation' for padding and 'Character extraction from a 
string' rules. 

In EBCDIC: 

LENGTH{'<.A.B><.C.D><>') -> 4 

Applying the 'Counting characters' rule. 

In EBCDIC: 

REVERSE('<.A.B><.C.D><>') -> '<><.D.C><.B.A>' 

Applying the 'Character extraction from a string' and 'Character concatenation' 
rules. 

Appendix B. Double-Byte Character Set (DBCS) Support 491 



DBCS Support 

SPACE 

STRIP 

In EBCDIC: 

SPACE{'a<.A.B •• C.0>',1) -> 'a<.A.B> <.C.O>' 
SPACE{'a<.A><>< •• C.0>',1,'x') -> 'a<.A>x<.C.O>' 
SPACE{'a<.A>< •• C.0>',1,'<.E>') -> 'a<.A.E.C.D>' 

Applying the 'Word extraction from a string' and 'Character concatenation' rules. 

In EBCDIC: 

STRIP{'<><.A><.B><.A><>',,'<.A>') -> '<.B>' 

Applying the 'Character extraction from a string' and 'Character concatenation' 
rules. 

SUBSTR and DELSTR 
In EBCDIC: 

SUBSTR{'<><.A><><.B><.C.0>',1,2) -> 
OELSTR{'<><.A><><.B><.C.D>',1,2) -> 
SUBSTR{'<.A><><.B><.C.0>',2,2) -> 
OELSTR{'<.A><><.B><.C.0>',2,2) -> 
SUBSTR('<.A.B><>',1,2} -> 
SUBSTR{'<.A.B><>',1} -> 

'<.A><><.B>' 
'<><.C.O>' 
'<.B><.C>' 
'<.A><><.O>' 
'<.A.B>' 
'<.A.B><>' 

Applying the 'Character extraction from a string' and 'Character concatenation' 
rules. 

SUBWORD and DELWORD 

TRANSLATE 

VERIFY 

In EBCDIC: 

SUBWORO{ '<>< •• A ••• B><.C •• 0>' ,1,2} 
OELWORO{ '<>< •• A ••• B><.C •• 0>' ,1,2) 
SUBWORO{ '<><.A ••• B><.C •• 0>' ,1,2} 
OELWORO('<><.A ••• B><.C •• 0>',1,2} 
SUBWORO{'<.A •• B><.C><> <.0>',1,2) 
OELWORO{'<.A •• B><.C><> <.0>',1,2) 

-> 
-> 
-> 
-> 
-> 
-> 

'<.A. . .B><.C>' 
'<><. .0>' 
'<.A. . .B><.C>' 
'<><.0>' 
'<.A • • B><.C>' 
'<.0>' 

Applying the 'Word extraction from a string' and 'Character concatenation' rules. 

In EBCDIC: 

-> '<.A.B.C>d' TRANSLATE{'abcd','<.A.B.C>','abc') 
TRANSLATE{'abcd','<><.A.B.C>','abc') 
TRANSLATE{'abcd','<><.A.B.C>','ab<>c') 
TRANSLATE('a<>bcd','<><.A.B.C>','ab<>c') -> 
TRANSLATE('a<>xcd','<><.A.B.C>','ab<>c') -> 

-> '<.A.B.C>d' 
-> '<.A.B.C>d' 

'<.A.B.C>d' 
'<.A>x<.C>d' 

Applying the 'Character extraction from a string', 'Character comparison', and 
'Character concatenation' rules. 

In EBCDIC: 

VERIFY('<><><.A.B><><.X>','<.B.A.C.O.E>') -> 3 

Applying the 'Character extraction from a string' and 'Character comparison' rules. 

492 TSO/E Version 2 MVS/REXX Reference 

( \ 
.') 

- --- ------------_._----



(/ 

WORD, WORDINDEX, and WORDLENGTH 
In EBCDIC: 

WORDS 

WORDPOS 

x = '<>< •• A ••• B><.C • • 0>' 

WORD(X,l) -> '<.A>' 
WORDINDEX(X,l) -> 2 
WORD LENGTH (X, I) -> I 

Y = '<><.A. .B><.C. .0>' 

WORD(Y,I) -> '<.A>' 
WORDINDEX(Y,l) -> 1 
WORDLENGTH(Y,I) -> I 

Z = '<.A .B><.C> <.0>' 

WORD(Z,2) 
WORDINDEX(Z,2) 
WOROLENGTH(Z,2) 

-> 
-> 
-> 

'<.B><.C>' 
3 
2 

Applying the 'Word extraction from a string' and 'Counting characters' (for 
WORDINDEX and WORDLENGTH) rules. 

In EBCDIC: 

x = '<>< •. A ••• B><.C •• 0>' 

WOROS(X) -> 3 

Applying the 'Word extraction from a string' rule. 

In EBCDIC: 

WORDPOS('<.B.C> abc','<.A •• B.C> abc') -> 2 
WOROPOS('<.A.B>','<.A.B •• A.B>< •• B.C •• A.B>',3) -> 4 

Applying the 'Word extraction from a string' and 'Character comparison' rules. 

Appendix B. Double-Byte Character Set (DBCS) Support 493 



Decs Support 

oacs Processing Functions 

Counting Option 

This section describes the functions that support DBC5 mixed string. These 
functions handle mixed strings regardless of the OPTIONS mode. 

Note: When used with DBC5 functions, length is always measured in bytes (as 
opposed to LENGTH(string) which is measured in characters). 

In EBCDIC, when specified in the functions, the counting option can be used to 
control whether or not the SO and 51 are considered present when determining the 
length. If uY" is specified, SO and 51 within mixed strings are counted. UN" 
specifies NOT to count the SO and 51, and is the default. 

Function Descriptions 

DBBRACKET 

-nBAOJUST (stri 09 2 "perot i ,.,:::J 

In EBCDIC, adjusts all contiguous 51-SO and SO-51 characters in string based on 
the operatlon specified. The following are valid operations. Only the capitalized 
and boldfaced letter is needed; all characters following it are ignored. 

Blank 

Remove 

changes contiguous characters to blanks (X' 4040'). 

removes contiguous characters, and is the default. 

Here are some EBCDIC examples: 

DBADJUST('<.A><.B>a<>b','B') 
DBADJUST('<.A><.B>a<>b','R') 
DBADJUST('<><.A.B>' ,'B'} 

-> 
-> 
-> 

'<.A •• B>a b' 
'<.A.B>ab' 
'< •• A.B>' 

In EBCDIC, adds SO-51 brackets to a pure DBC5 string. If stri ng is not a pure 
DBC5 string, a SYNTAX error results. That is, the input string must be an even 
number of bytes in length and each byte must be a valid DBC5 value. 

Here are some EBCDIC examples: 

DBBRACKET('.A.B') 
DBBRACKET('abc') 
DBBRACKET('<.A.B>') 

-> 
-> 
-> 

'<.A.B>' 
SYNTAX error 
SYNTAX error 

494 TSO/E Version 2 MVS/REXX Reference 

C~ ,\ ~ - - . 

( -\. 

i\...~/ 



o 

c 

(~' 

--DBCENTER(string.length-'L-::::~:~::======:==Ir-)---I~ ...... 

• Lpad] L. opt ion] 

returns a string of length length with string centered in it, with pad characters 
added as necessary to make up length. The default pad character is a blank. If the 
string is longer than length, it will be truncated at both ends to fit. If an odd number 
of characters are truncated or added, the right hand end loses or gains one more 
character than the left hand end. 

Option is used to control the counting rule. "Y" will count SO and 51 within mixed 
strings as one each. "N" will not count the SO and 51 and is the default. 

Here are some EBCDIC examples: 

DBCENTER('<.A.B.C>'.4) -> ' <.B> ' 
DBCENTER('<.A.B.C>',3) -> ' <.B>' 
DBCENTER('<.A.B.C>',le,'x') -> 'xx<.A.B.C>xx' 
DBCENTER('<.A.B.C>',le,'x'.'Y') -> 'x<.A.B.C>x' 
DBCENTER('<.A.B.C>',4,'x','Y') -> '<.B>' 
DBCENTER('<.A.B.C>',5,'x','Y') -> 'x<.B>' 
DBCENTER('<.A.B.C>',8,'<.P>') -> ' <.A.B.C> ' 
DBCENTER( '<.A.B.C>' ,9, '<. P>') -> ' <.A.B.C.P>' 
DBCENTER('<.A.B.C>',le.'<.p>') -> '<.P.A.B.C.P>' 
DBCENTER('<.A.B.C>',12,'<.P>','Y') -> '<.P.A.B.C.P>' 

formats string by adding pad characters between nonblank characters to justify to 
both margins and length of bytes length (length must be nonnegative). Rules for 
adjustments are the same as for the JUSTIFY function. The default pad character is 
a blank. 

Option is used to control the counting rule. "Y" will count SO and 51 within mixed 
strings as one. "N" will not count the SO and 51 and is the default. 

Appendix B. Double-Byte Character Set (DBCS) Support 495 



OSCS Support 

DBlEfT 

DBRIGH1' 

Here are some examples: 

DBCJUSTIFY('<><AA BB><CC>I,29,,'YI) 
-> I <AA> <BB> <CC> I 

DBCJUSTI FY (' <>< AA BB>< CC> I ,29, I <XX> I , I Y I ) 
-> I <AAXXXXXXBBXXXXXXCC> I 

DBCJUSTIFY( ,<>< AA BB>< CC>I,21,'<XX>','Y') 
-> '<AAXXXXXXBBXXXXXXCC> I 

DBCJ UST I FY ( , <>< AA BB>< CC>I,11,'<XX>','YI) 
-> '<AAXXXXBS> ' 

DBCJUSTIFY (' <>< AA BB>< CC>',ll,'<XX>','N') 
-> '<AAXXBBXXCC> I 

returns a string of length length containing the leftmost length characters of string. 
The string returned is padded with pad characters (or truncated) on the right as 
needed. The default pad character is a blank. 

Option is used to control the counting rule. "V" will count SO and SI within mixed 
strings as one each. uN" will not count the SO and SI and is the default. 

Here are some EBCDIC examples: 

DBlEFT(' ab<.A.B>',4) -> 'ab<.A>' 
DBlEFT('ab<.A.B>',3) -> 'ab I 
DBlEFT('ab<.A.B>',4,' x ','Y') -> 'abxx' 
DBlEFT('ab<.A.B>' ,3, 'x', 'V') -> 'abx' 
DBlEFT(' ab<.A.B>' ,8, '<. P>') -> 'ab<.A.B.P>' 
DBlEFT (' ab<.A.B>' ,9, '<. P> ') -> 'ab<.A.B.P> I 
DBlEFT('ab<.A.B>' ,8, '<.P>', 'Y') -> 'ab<.A.B>' 
DBlEFT('ab<.A.B>',9,'<.P>I,'Y') -> 'ab<.A.B> I 

--DBRH.(, ~----------------~---.-)----~.~. 

returns a string of length 1 ength containing the rightmost 1 ength characters of 
string. The string returned is padded with pad characters (or truncated) on the left 
as needed. The default pad character is a blank. 

Option is used to control the counting rule. uV" will count SO and SI within mixed 
strings as one each. uN" will not count the SO and SI and is the default. 

496 TSO/E Version 2 MVS/REXX Reference 

o 

() 



c 

C: 

c 

Ci 

Here are some EBCDIC examples: 

DBRIGHT('ab<.A.B>',4) -> '<.A.B>' 
DBRIGHT('ab<.A.B>',3) -> ' <.B>' 
DBRIGHT('ab<.A.B>',5,'x'.'Y') -> 'x<.B>' 
DBRIGHT('ab<.A.B>'.10.'x','Y') -> 'xxab<.A.B>' 
DBRIGHT(' ab<.A.B>' ,a, '<. P>') -> '<.P>ab<.A.B>' 
DBRIGHT('ab<.A.B>',9,'<.P>') -> ' <.P>ab<.A.B>' 
DBRIGHT('ab<.A.B>',a,'<.p>','y') -> 'ab<.A.B>' 
DBRIGHT('ab<.A.B>',ll,'<.P>','Y') -> ab<.A.B>' 
DBRIGHT('ab<.A.B>',12,'<.P>','Y') -> '<.P>ab<.A.B>' 

--DBRlEFT(string, lengthl--r------,r- --... ~ ...... 
L,optiono=J 

returns the remainder from the DBLEFT function of string. If length is greater than 
the length of string, a null string is returned. 

Option is used to control the counting rule. "Y" will count SO and SI within mixed 
strings as one each. "N" will not count the SO and SI and is the default. 

Here are some EBCDIC examples: 

DBRlEFT('ab<.A.B>',4) -> '<.B>' 
DBRlEFT('ab<.A.B>',3) -> '<.A.B>' 
DBRlEFT('ab<.A.B>',4,'Y') -> '<.A.B>' 
DBRlEFT('ab<.A.B>',3,'Y') -> '<.A.B>' 
DBRlEFT('ab<.A.B>',a) -> " 
DBRlEFT('ab<.A.B>',9,'Y') -> " 

returns the remainder from the DBRIGHT function of string. If length is greater 
than the length of string, a null string is returned. 

Option is used to control the counting rule. "Y" will count SO and SI within mixed 
strings as one each. "N" will not count the SO and SI and is the default. 

Here are some EBCDIC examples: 

DBRRIGHT('ab<.A.B>',4) -> 'ab ' 
DBRRIGHT{' ab<.A.B>',3) -> lab<.A>' 
DBRRIGHT{l ab<.A.B>',5) -> 'a ' 
DBRRIGHT{'ab<.A.B>',4,'Y'} -> 'ab<.A>' 
DBRRIGHT{'ab<.A.B>',5,'Y'} -> 'ab<.A>' 
DBRRIGHT{'ab<.A.B>',a) -> " 
DBRRIGHT{lab<.A.B>',a,'YI) -> II 

Appendix B. Double-Byte Character Set (DBCS) Support 497 



Dacs Support 

DBTODBCS 

DaUNBRACKET 

converts all passed, valid SBCS characters (including the SBCS blank) within string 
to the corresponding DBCS equivalents. Other single-byte codes and all DBCS 
characters are not changed. In EBCDIC, SO and SI brackets are added and 
removed where appropriate. 

Here are some EBCDIC examples: 

DBTODBCS('Rexx 1988') -> '<.R.e.x.x •• 1.9.8.8>' 
OBTOOBCS( '<.A> <. B>') -> '<.A •• B>' 

Note: In the above examples, the" .x" is the DBCS character corresponding to a 
SBCS "x". 

converts all passed, valid DBCS characters (including the DBCS blank) within string 
to the corresponding SBCS equivalents. Other DBCS characters and all SBCS 
characters are not changed. In EBCDIC, SO and SI brackets are removed where 
appropriate. 

Here are some EBCDIC examples: 

DBTOSBCS('<.S.d>/<.2.-.1>') -> 'Sd/2-1' 
DBTOSBCS('<.X •• Y>') -> '<.X> <.Y>' 

Note: In the above examples, the" .d" is the DBCS character corresponding to a 
SBCS "d". But the ",X" and" .Y" do not have an SBCS corresponding character, 
and are not converted. 

In EBCDIC, removes the SO-SI brackets from a pure DBCS string enclosed by SO 
and SI brackets. If the string is not bracketed, a SYNTAX error results. 

Here are some EBCDIC examples: 

OBUNBRACKET( '<.A.B>') -> '.A.B' 
OBUNBRACKET('ab<.A>') -> SYNTAX error 

498 TSO/E Version 2 MVS/REXX Reference 

o 



c 

(' 
/ 

~~-~~ ,----.--~--.. ---_ ... --~~-

nacs 

-DBVALIDATE(stringl--r----..- -_ .... 
[,'c,J 

returns 1 if the string is a valid mixed string or SBCS string. Otherwise, 0 is 
returned. Mixed string validation rules are: 

1. Only valid DBCS character codes 

2. DBCS string is an even number of bytes in length 

3. EBCDIC only - Proper SO-Sl pairing. 

In EBCDIC, if C is omitted. only the leftmost byte of each DBCS character is checked 
to see that it falls in the valid range for the implementation it is being run on (that is, 
in EBCDIC, the leftmost byte range is from X'41' to X'FE'). 

Here are some EBCDIC examples: 

x='abc<de' 

DBVALIDATE('ab<.A.B>') -> 1 
DBVALIDATE{x) -> e 

y='CIC20Ell121314eF'X 

DBVALIDATE(y) -> 1 
DBVALIDATE(y,'C') -> e 

returns the length of string in bytes. 

Option is used to control the counting rule. "Y" will count SO and SI within mixed 
strings as one each. UN" will not count the SO and SI and is the default. 

Here are some EBCDIC examples: 

DBWIDTH('ab<.A.B>','Y') 
DBWIDTH('ab<.A.B>','N') 

-> 
-> 

8 
6 

Appendix B. Double-Byte Character Set (DBCS) Support 499 



o 

500 TSO/E Version 2 MVS/REXX Reference 



c 

(~ 

( 

~- ~---------~ ----

The IRXTERMA routine terminates a language processor environment. IRXTERMA 
differs from the IRXTERM termination routine. IRXTERM terminates a language 
processor environment only if no active REXX execs are currently running in the 
environment. IRXTERMA terminates all active REXX execs under a language 
processor environment, and optionally terminates the environment. If you 
customize REXX processing and initialize a language processor environment using 
the IRXINIT initialization routine, when you terminate the environment, it is 
recommended that you use the IRXTERM termination routine. IRXTERM is 
described in "Termination Routine - IRXTERM" on page 425. 

Note: To permit FORTRAN programs to call IRXTERMA, TSO/E provides an 
alternate entry point for the IRXTERMA routine. The alternate entry point name is 
IRXTMA. 

On the call to IRXTERMA, you specify whether IRXTERMA should terminate the 
environment in addition to terminating all active execs that are currently running in 
the environment. You can optionally pass the address of the environment block that 
represents the environment in which you want IRXTERMA to run. You can pass the 
address either in parameter 2 or in register O. If you do not pass an environment 
block address, IRXTERMA locates the current non-reentrant environment that was 
created at the same task level and runs in that environment. 

IRXTERMA does not terminate an environment if: 

• The environment was not initialized under the current task 

• The environment was the first environment initialized under the task and other 
environments are still initialized under the task. 

However, IRXTERMA does terminate all active execs running in the environment. 

IRXTERMA invokes the exec load routine to free each exec in the environment. The 
exec load routine is the routine identified by the EXROUT field in the module name 
table, which is one of the parameters for the initialization routine, IRXINIT. All 
execs in the environment are freed regardless of whether or not they were 
pre-loaded before the IRXEXEC routine was called. IRXTERMA also frees the 
storage for each exec in the environment. 

For the IRXTERMA termination routine, the contents of the registers on entry are: 

Register 0 

Register 1 

Address of an environment block (optional) 

Address of the parameter list passed by the caller 

Registers 2-12 Unpredictable 

Register 13 

Register 14 

Register 15 

© Copyright IBM Corp. 1988. 1991 

Address of a register save area 

Return address 

Entry point address 

501 



IRXTERMA Routine 

Parameters 
In register 1, you pass the address of a parameter list, which consists of a list of 
addresses. Each address in the parameter list points to a parameter. The high 
order bit of the last addre,ss in the parameter list must be set to 1 to indicate the end 
of the parameter list. For more information about passing parameters, see 
"Parameter Lists for TSO/E REXX Routines" on page 253. 

Figure 111 shows the parameters for IRXTERMA. 

Figure 111. Parameters for IRXTERMA 

Parameter 

Parameter 1 

Parameter 2 

Number 
of Bytes 

4 

4 

Description 

A fullword field in which you specify whether you want to 
terminate the environment in addition to terminating all 
active execs running in the environment. Specify one of the 
following: 

• 0 - terminates all execs and the environment 

• X '80000000' - terminates all execs, but does not 
terminate the environment. 

The address of the environment block that represents the 
environment you want IRXTERMA to terminate. This 
parameter is optional. 

If you specify an environment block address, IRXTERMA uses 
the value you specify and ignores register O. However, 
IRXTERMA does not check whether the address is valid. 
Therefore, you must ensure the address you specify is 
correct or unpredictable results can occur. 

If you do not want to use this parameter, you cannot simply 
specify an address of O. If you specify 0, IRXTERMA tries to 
use 0 as a valid address and fails with a return code of 28. In 
order to not use this parameter, end the parameter list at 
parameter 1 by setting the high order bit on in the address 
that points to parameter 1. 

You can also use register 0 to specify the address of an 
environment block. If you use register 0, 'RXTERMA checks 
whether the address is valid. If the address is valid. 
IRXTERMA terminates that environment. Otherwise. 
IRXTERMA locates the current non-reentrant environment 
that was created at the same task level and terminates that 
environment. 

502 TSO/E Version 2 MVS/REXX Reference 

o 

C) 

(\ 
\ 

"-

( \ 
... ~j 



o 

C! 

(0 

IRXTERMA Routine 

-----------------_.-

For the IRXTERMA termination routine, the contents of the registers on return are: 

Register 0 If you passed the address of an environment block in register 0, 
IRXTERMA returns the address of the environment block for the 
previous environment. If you did not pass an address in register 0, 
the register contains the same value as on entry. 

If IRXTERMA returns with return code 100 or 104, register 0 
contains the abend and reason code. "Return Codes" describes 
the return codes and how IRXTERMA returns the abend and reason 
codes for return codes 100 and 104. 

Registers 1-14 Same as on entry 

Register 15 Return code 

Figure 112 shows the return codes for the IRXTERMA routine. 

Figure 112. Return Codes for IRXTERMA 

Return 
Code 

0 

4 

20 

28 

100 

104 

Description 

Processing was successful. If IRXTERMA also terminated the environment, 
the environment was not the last environment on the task. 

Processing was successful. If IRXTERMA also terminated the environment, 
the environment was the last environment on the task. 

Processing was not successful. IRXTERMA could not terminate the 
environment. 

Processing was not successful. The environment could not be found. 

Processing was not successful. A system abend occurred while IRXTERMA 
was terminating the environment. IRXTERMA tries to terminate the 
environment again. If termination is still unsuccessful, the environment 
cannot be used. 

The system may issue one or more messages that describe the abend. In 
addition, register 0 contains the abend code and the abend reason code. 
IRXTERMA returns the abend code in the low order two bytes of register O. 
IRXTERMA returns the abend reason code in the high order two bytes of 
register O. If the abend reason code is greater than two bytes, IRXTERMA 
returns only the low order two bytes of the abend reason code. See MVSIESA 
System Codes for information about the abend codes and reason codes. 

Processing was not successful. A user abend occurred while IRXTERMA was 
terminating the environment. IRXTERMA tries to terminate the environment 
again. If termination is still unsuccessful, the environment cannot be used. 

The system may issue one or more messages that describe the abend. In 
addition, register 0 contains the abend code and the abend reason code. 
IRXTERMA returns the abend code in the low order two bytes of register O. 
IRXTERMA returns the abend reason code in the high order two bytes of 
register O. If the abend reason code is greater than two bytes, IRXTERMA 
returns only the low order two bytes of the abend reason code. See MVSIESA 
System Codes for information about the abend codes and reason codes. 

Appendix C. IRXTERMA Routine 503 



I 

./ 

( 
I 

" 

504 TSO/E Version 2 MVS/REXX Reference 



c 
From TSO/E, you can establish an extended MCS console session using the TSO/E 
CONSOLE command. After you activate a console session, you can issue MVS 
system and subsystem commands and obtain command responses. This appendix 
describes the different commands and functions you can use in REXX execs to set 
up and use a console session. 

TSO/E provides the CONSOLE command that lets you perform MVS operator 
activities from your TSO/E session. You use the CONSOLE command to activate an 
extended MCS console session. After you activate a console session, you can then 
issue MVS system and subsystem commands and obtain command responses. The 
MVS system and subsystem commands you can use during a console session 
depend on the MVS command authority defined for the user console. For more 
information, see MVSIESA Planning: Operations. 

To activate a console session, use the TSO/E CONSOLE command with the 
ACTIVATE keyword, for example: 

CONSOLE ACTIVATE 

After you activate a console session, you can use the CONSOLE command with the 
SYSCMD keyword to issue MVS system and subsystem commands from a REXX 
exec. For example: 

"CONSOLE SYSCMD(system_command}" 

You need not activate the console session from within the REXX exec. You could 
use the CONSOLE command from TSO/E READY mode to activate a console session 
and then invoke an exec that issues MVS system and subsystem commands. 

To deactivate a console session, use the CONSOLE command with the DEACTIVATE 
keyword, for example: 

CONSOLE DEACTIVATE 

To use the TSO/E CONSOLE command, you must have CONSOLE command 
authority. For more information, see TSOIE Version 2 System Programming 
Command Reference. 

TSO/E provides the CONSOLE host command environment that lets you issue MVS 
system and subsystem commands from a REXX exec. Using the CONSOLE 
environment eliminates the need for you to repeatedly use the TSO/E CONSOLE 
command with the SYSCMD keyword to issue MVS commands. With ADDRESS 
CONSOLE, you need only enter the name of the command. 

© Copyright IBM Corp. 1988. 1991 505 



Execs for MVS Operator Activities 

You can use ADDRESS CONSOLE to issue a single MVS system or subsystem 
command, for example: 

ADDRESS CONSOLE "system_command" 

You can also use ADDRESS CONSOLE and then issue several MVS system or 
subsystem commands from the CONSOLE host command environment, for example: 

/* REXX program ••• */ 

"CONSOLE ACTIVATE" 

ADDRESS CONSOLE 
"mvs_cmdl" 

"mvs_cmd2" 

EXIT 

If you have established CONSOLE as the host command environment and you want 
to enter TSO/E commands, use the ADDRESS TSO instruction to change the host 
command environment to TSO. The following example shows how to use the 
ADDRESS instruction to change between the TSO and CONSOLE host command 
envi ronments. 

/* REXX program */ 

"tso_cmd" /* initial environment is TSO 
"CONSOLE ACTIVATE" 

*/ 

ADDRESS CONSOLE 
"mvs_cmd" 

/* change environment to CONSOLE for all commands */ 

"mvs_cmd" 
ADDRESS TSO tso_cmd 

ADDRESS TSO 
"tso_cmd" 

/* change environment to TSO for one command */ 

/* change environment to TSO for all commands */ 

ADDRESS CONSOLE mvs_cmd /* change environment to CONSOLE for one command */ 

"CONSOLE DEACTIVATE" 

EXIT 

For more information about using the ADDRESS keyword instruction, see 
"ADDRESS" on page 44. 

o 

To use the CONSOLE host command environment, you must have CONSOLE rf\. 
command authority. You must also activate a console session before using ~ . ./ 
ADDRESS CONSOLE. If you use ADDRESS CONSOLE and issue an MVS command 
before you activate a console session, the CONSOLE environment will not be able to 

506 TSO/E Version 2 MVS/REXX Reference 



o 

Execs for MVS Operator Activities 

locate the command you issued. In this case, the REXX special variable RC is set to 
-3 and the FAILURE condition occurs. The -3 return code indicates that the host 
command environment could not locate the command. In this case, the environment 
could not locate the command because a console session is not active. 

The MVS system and subsystem commands you can use during a console session 
depend on the MVS command authority defined for the user console. For more 
information, see MVS/ESA Planning: Operations. 

You can use the TSO/E CONSPROF command to control the processing of messages 
during a console session. Like the CONSOLE command, you must have CONSOLE 
command authority to use the CONSPROF command. 

Usually, you issue the CONSPROF command to tailor a console profile before 
activating a console session. However, you can also use CONSPROF during a 
console session to change the profile settings. 

There are two types of messages that are routed to the user's console: 

• Solicited messages, which are messages that are responses to MVS system and 
subsystem commands that were issued during the console session. 

• Unsolicited messages, which are any messages that are not direct responses to 
MVS system or subsystem commands. For example, an unsolicited message 
can be a message that another user sends you or a broadcast message. 

You can use the CONS PROF command with the SOLDISPLAY and UNSOLDISPLAY 
keywords to specify whether solicited messages and unsolicited messages should 
be displayed at the terminal or saved for later retrieval. See TSOIE Version 2 
System Programming Command Reference for more information about the 
CONSPROF command. 

If messages are not displayed at the terminal during a console session, you can use 
the TSO/E external function GETMSG to retrieve messages. Using GETMSG, you 
can retrieve either solicited or unsolicited messages. For more information, see 
"GETMSG" on page 126. 

The TSO/E external function SYSVAR has the SOLDISP and UNSDISP arguments 
that relate to the SOLDISPLAY and UNSOLDISPLAY keywords on the CONSPROF 
command. You can use these SYSVAR arguments to determine whether or not 
solicited and unsolicited messages are being displayed. For more information, see 
"SYSVAR" on page 152. 

If messages are not displayed at the terminal, the system stores the messages in 
message tables. The system stores solicited messages in the solicited message 
table and unsolicited messages in the unsolicited message table. You can use the 
SOLNUM and UNSNUM arguments of the TSO/E external function SYSVAR (see 
page 152) to determine the current size of the message tables. You can also use the 
CONSPROF command to change the current size of each table. The size you specify 
cannot exceed the maximum size set by your installation in SYS1.PARMLIB 
(member IKJTSOxx). If you do not specify the table size, TSO/E uses the default that 
your installation defines in SYS1.PARMLIB (member IKJTSOxx). 

Appendix D. Writing REXX Execs to Perform MVS Operator Activities 507 



----- --- -- ---

Execs for MVS Operator Activities 

If you write execs that retrieve messages using GETMSG rather than displaying the 
messages at the terminal, note the following. 

• If a message table exceeds 100% capacity, any new messages are not routed to 
the user's console until you resolve the message capacity situation. 

• TSO/E provides two exits for the CONSOLE command that your installation can 
use to handle the capacities of the message tables. An exit is invoked when a 
message table reaches 80% capacity. Another exit is invoked when a table 
reaches 100% capacity. If your installation provides CONSOLE exits, an exit 
may be invoked during processing of the exec if the message tables reach 80% 
or 100% capacity. Exit processing depends on the exits that your installation 
provides. TSOIE Version 2 Customization describes the exits for the CONSOLE 
command and how to set up the sizes for the message tables. 

If you retrieve messages using the GETMSG function and then want to display the 
message to the user, you can use the SYSVAR external function to obtain 
information related to displaying the message. The MFTIME, MFOSNM, MFJOB, 
and MFSNMJBX arguments of the SYSVAR function indicate whether the user ("'. 
requested that certain types of information should be displayed with the message, \, j 

such as the time stamp or the originating job name. For more information about the 
arguments, see "SYSVAR" on page 152. To obtain information, such as the time 
stamp or originating job name, you can use the additional MOB variables that the 
GETMSG function sets. For more information, see Appendix E, "Additional 
Variables That GETMSG Sets." 

and Their Responses 
The command and response token (CART) is a keyword on the TSO/E CONSOLE 
command and an argument on the GETMSG external function .. You can use the 
CART to associate MVS system and subsystem commands your exec issues with the 
corresponding responses from the commands that are routed to the user's console. 
In order to use a CART to associate commands and their responses, solicited 
messages that are routed to the user's console should not be displayed at the 
terminal. You must store solicited messages and then retrieve the messages using 
the GETMSG function. 

When you issue an MVS system or subsystem command with a CART, the CART is 
associated with any messages (responses) that the command issues. When you use 
GETMSG to retrieve responses from the MVS command, use the same CART on the 
GETMSG function. 

If you issue MVS commands during a console session and have never specified a 
CART, the default CART value is 'OOOOOOOOOOOOOOOO'X. Once you specify a CART, 
the CART remains in effect for all subsequent MVS commands you issue until you 
specify a different CART. 

You can use a CART in different ways depending on how you issue MVS system and 
subsystem commands in the exec. If you use the CONSOLE command with the 
SYSCMO keyword to issue an MVS command, you can use the CART keyword on 
the CONSOLE command to specify a CART. For example: 

"CONSOLE SYSCMD(system_conmand) CART(AP999932)" 

In the example, the CART value AP090032 is used for all subsequent MVS 
commands until you use another CART. 

508 TSO/E Version 2 MVS/REXX Reference 



c 

(' 

If you use the CONSOLE host command environment, you can specify the CART in 
several ways. If you use ADDRESS CONSOLE to issue a single MVS system or 
subsystem command and you want to use a CART, first use ADDRESS CONSOLE 
and specify the word CART followed by the CART value. You must separate the 
word CART and the CART value with a blank. Then use ADDRESS CONSOLE and 
specify the command. For example: 

ADDRESS CONSOLE "CART AP129349" 
ADDRESS CONSOLE "system_command" 

Again, the CART is used for all subsequent MVS system and subsystem commands 
until you use another CART value. 

You can also use ADDRESS CONSOLE to change the host command environment 
for all subsequent commands. If you want to use a CART for specific commands, 
enter the word CART followed by a blank, followed by the CART value. The CART 
remains in effect until you use another CART value. 

For example, suppose you use ADDRESS CONSOLE to issue a series of MVS 
commands. For the first command, you want to use a CART of APP50000. For the 
second command, you want to use a CART of APP50001. For the third, fourth, and 
fifth commands, you want to use a CART of APP522. For the remaining commands, 
you want to use a CART of APP5100. You could specify the CART values as follows: 

/* REXX program */ 

ADDRESS CONSOLE 
"CART APP59gee" 
"mvs_cmdl" 

"CART APP5eee1" 
"mvs_cmd2" 

"CART APP522" 
"mvs_cmd3" 
"mvs_cmd4" 
"mvs_cmd5" 

"CART APP51ee" 
"mvs_cmd6" 

EXIT 

Considerations for Multiple Applications 
If you have two or more programs that issue MVS system and subsystem commands 
during a console session and the programs will run simultaneously in a user's 
TSO/E address space, the programs must use CART values to ensure they retrieve 
messages intended only for their program. If two programs that use the CONSOLE 
command's services coexist in one TSO/E address space, you should be aware of 
the following: 

• You should issue all MVS system and subsystem commands with a CART. 

• Use the first 4 bytes of the CART as an application identifier. Installations 
should establish standards so that each program uses an identifier that 
identifies the program. Whenever the program uses a CART, the CART should 
begin with the four byte identifier. 

Appendix D. Writing REXX Execs to Perform MVS Operator Activities 509 



Execs for MVS Operator Activities 

• You should not display solicited messages at the terminal. Each application 
should use GETMSG to explicitly retrieve solicited messages intended for that 
application. 

• You cannot selectively retrieve unsolicited messages. You can have unsolicited 
messages displayed or you can have one application retrieve all unsolicited 
messages using GETMSG. 

• When you use GETMSG to retrieve a solicited message, you can use the mask 
argument with the cart argument as follows. Use a MASK of 
'FFFFFFFFOOOOOOOO'X. The CART should contain the application identifier as the 
first four bytes. For more information about using a MASK, see "GETMSG j

, on 
page 126. 

You may also want to use CART values if you have an exec that calls a second exec 
and both execs issue MVS commands during a console session. You could 
establish a four byte application identifier for each exec and then use the CART and 
MASK on the GETMSG function to retrieve solicited messages intended for that 
exec. You could also simply use unique CART values. 

Example of Determining Results From Commands in One Exec 
You can use CART values in one exec to determine the results from particular 
commands. For example, if you issue MVS commands and want to perform different 
processing based on each command, use a unique CART value for each command 
invocation. When you use GETMSG to retrieve solicited messages from a specific 
command, specify the same CART that you used when you invoked the command. 

The following illustrates the use of the CART for determining the results of two 
specific commands. From TSO/E READY mode, activate a console session and then 
start two system printers (PRT1 and PRT2). Specify a unique CART for each START 
command. After you start the printers, call the CHKPRT exec and pass the value of 
the CART as an argument. For example: 

READY 

CONSPROF SOLDISP(NO) SOLNUM(4GG) 
CONSOLE ACTIVATE 
CONSOLE SYSCMD($S PRT1) CART('PRTIGGG1') 
CONSOLE SYSCMD($S PRT2) CART('PRT2GGG2') 
EXEC MY.EXEC(CHKPRT) 'PRTIGGG1' EXEC 
EXEC MY.EXEC(CHKPRT) 'PRT2SGG2' EXEC 

The exec you invoke (CHKPRT) checks whether or not the printers were started 
successfully. The exec uses the arguments you pass on the invocation (CART 
values) as the CART on the GETMSG function. Figure 113 on page 511 shows the 
example exec. 

510 TSO/E Version 2 MVS/REXX Reference 

o 

'\ 
I I \J 



c 

c 

/* REXX exec to check start of printers */ 
ARG CARTVAL 

Execs for MVS Operator Activities 

GETCODE = GETMSG('PRTMSG.','SOL',CARTVAL,,68) 
IF GETCODE = 8 THEN 

DO 
IF POS('$HASP888',PRTMSG.l) ~= 8 THEN 

SAY "Printer started successfully." 
ELSE 

DO INDXNUM = 1 TO PRTMSG.8 
SAY PRTMSG.INDXNUM 

END 
END 

ELSE 
SAY "GETMSG error retrieving message. Return code is" GETCODE 

EXIT 

Figure 113. Example Exec (CHKPRT) to Check Start of Printers 

For more information about the GETMSG function, see page 126. For more 
information about the TSO/E CONSOLE command, see TSOIE Version 2 System 
Programming Command Reference. 

Appendix D. Writing REXX Execs to Perform MVS Operator Activities 511 



512 TSO/E Version 2 MVS/REXX Reference 

o 

\ 
j 



c 

(~/ 

c 

(-

.Additional GETMSG Variables 

l\dditional Var~ab~es "That GETMSG Sets 

The TSO/E external function GETMSG retrieves a message that has been issued 
during a console session and stores the message in variables. On the call to 
GETMSG, you specify the msgstem argument. GETMSG places each line of the 
message text it retrieves into successive variables identified by the msgstem you 
specify. For more information about GETMSG, see "GETMSG" on page 126. 

In addition to the variables into which GETMSG places the retrieved message (as 
specified by the msgstem argument), GETMSG sets other variables that contain 
additional information about the message that was retrieved. One set of variables 
relates to the entire message itself (that is, to all lines of message text that GETMSG 
retrieves, regardless of how many lines of text the message has). "Variables 
GETMSG Sets For the Entire Message" describes these variables. 

The second set of variables is an array of variables that GETMSG sets for each line 
of message text that GETMSG retrieves. "Variables GETMSG Sets For Each line of 
Message Text" on page 517 describes these variables. 

GETMSG sets specific variables that relate to the entire message that it retrieves. 
GETMSG sets these variables, regardless of how many lines of text the retrieved 
message contains. 

The names of the variables that GETMSG sets correspond to the field names in the 
message data block (MOB) in MVS/ESA System Product Version 4. The variable 
names consist of the msgstem you specified on the call to GETMSG followed by the 
name of the field in the MOB. That is, TSO/E uses the name of the field in the MOB 
as the suffix for the variable name and concatenates the MOB field name to the 
msgstem. For example, one field in the MOB is MOBLEN, which is the length of the 
MOB. If you specify msgstem as "CONSMSG." (with a period), REXX returns the 
length of the MOB in the variable: 

CONSMSG.MDBlEN 

If you specify msgstem as "CMSG" (without a period), the variable name would be 
CMSGMOBLEN. 

Figure 114 describes the variables GETMSG sets for a message that it retrieves. 
For more information about the MOB and each field in the MOB, see MVSIESA 
Diagnosis: Data Areas Volume 3. 

Figure 114 (Page 1 of 5). Variables GETMSG Sets For An Entire Message 

Variable Suffix 
Name 

MOBLEN 

MOBTYPE 

MOBMIO 

MOBVER 

MOBGLEN 

© Copyright IBM Corp. 1988. 1991 

Description 

Length of the MOB, in decimal. 

MOB type, in decimal, 

Four character MOB identifier, which is 'MOB '. 

Version of the MOB; four byte hexadecimal value. 

General object length of the MOB, in decimal. 

513 



Additional GETMSG Variables 

Figure 114 (Page 2 of 5). Variables GETMSG Sets For An Entire Message 

Variable Suffix 
Name 

MDBGTYPE 

MDBGMID 

MDBGSYID 

MDBGSEQ 

MDBGTIMH 

MDBGTIMT 

MDBGDSTP 

MDBGDOM 

MDBGALRM 

MDBGHOLD 

MDBGFCON 

MDBGFCOL 

MDBGFHIL 

MDBGFINT 

MDBGBCON 

MDBGBCOL 

MDBGBHIL 

MDBGBINT 

MDBGOSNM 

MDBGJBNM 

MDBCLEN 

MDBCTYPE 

MDBCPROD 

MDBCVER 

MDBCPNAM 

MDBCFMID 

MDBCERC 

MDBCDESC 

514 TSO/E Version 2 MVS/REXX Reference 

Description 

General object type of the MOB, in decimal. 

Four byte message identifier, in hexadecimal. 

One byte system !D, in hexadecimal. The value is the same as the 
first byte of the MDBGMID variable (message identifier). 

Three byte sequence number, in hexadecimal. The value is the same 
as the last three bytes of the MDBGMID variable (message identifier). 

Time stamp in the format: 

hh.mm.ss 

where hh is hours, mm is minutes, and ss is seconds. 

Time stamp in the format: 

.th 

where th is tenths of seconds, .36, for example. 

Date stamp in the format yyyyddd, where yyyy is the year and ddd is 
the number of days, including the current day, so far in the year. 

General DOM indicator. Contains the value YES or NO that indicates 
whether 0t not messages that match the message ID are to be 
deleted.') 

Contains the value YES or NO that indicates whether or not the 
processor alarm is sounded. 

Hold indicator. Contains the value YES or NO that indicates whether 
the message should be held until DOMed or deleted by other external 
means. 

Foreground control presentation attribute, in decimal. 

Foreground color presentation attribute, in decimal. 

Foreground highlighting presentation attribute, in decimal. 

Foreground intensity presentation attribute, in decimal. 

Background control presentation attribute, in decimal. 

Background color presentation attribute, in decimal. 

Background highlighting presentation attribute, in decimal. 

Background intensity presentation attribute, in decimal. 

Eight character originating system name. 

Eight character job name. 

Control object length of the MDB, in decimal. 

Control object type of the MDB, in decimal. 

Sixteen character originating system identifier. 

MVS CP object version level; four byte hexadecimal value. 

Four character control program name. 

Eight character FMID of the originating system. 

Routing codes; sixteen byte hexadecimal value. 

Descriptor codes; two byte hexadecimal value. 

o 



c 

c 

("/ 

Additional GETMSG Variables 

Figure 114 (Page 3 of 5). Variables GETMSG Sets For An Entire Message 

Variable Suffix 
Name 

MDBDESCA 

MDBDESCB 

MDBDESCC 

MDBDESCD 

MDBDESCE 

MDBDESCF 

MDBDESCG 

MDBDESCH 

MDBDESCI 

MDBDESCJ 

MDBDESCK 

MDBDESCL 

MDBCMLVL 

MDBMLR 

MDBMLlA 

MDBMLCE 

MDBMLE 

MDBMLI 

MDBMLBC 

MDBCMCSC 

MDBCAUTH 

MDBCRETN 

MDBCPRTY 

Description 

Contains the value YES or NO that indicates whether or not the 
message pertains to a system failure. 

Contains the value YES or NO that indicates whether or not the 
message requires an immediate action. 

Contains the value YES or NO that indicates whether or not the 
message requires an eventual action. 

Contains the value YES or NO that indicates whether or not the 
message pertains to system status. 

Contains the value YES or NO that indicates whether or not the 
message is an immediate command response. 

Contains the value YES or NO that indicates whether or not the 
message pertains to job status. 

Contains the value YES or Ndthat indicates whether or not the 
message was issued by an application program or application 
processor. 

Contains the value YES or NO that indicates whether or not the 
message is directed to an out-of-line area. 

Contains the value YES or NO that indicates whether or not the 
message pertains to an operator request. 

Contains the value YES or NO that indicates whether or not the 
message is a track command response. 

Contains the value YES or NO that indicates whether or not the 
message requires a critical eventual action. 

Contains the value YES or NO that indicates whether or not the 
message is an important informational message. 

Message level; two byte hexadecimal value. 

Contains the value YES or NO that indicates whether or not the 
message is a WTOR. 

Contains the value YES or NO that indicates whether or not the 
message requires an immediate action. 

Contains the value YES or NO that indicates whether or not the 
message requires a critical eventual action. 

Contains the value YES or NO that indicates whether or not the 
message requires an eventual action. 

Contains the value YES or NO that indicates whether or not the 
message is an informational message. 

Contains the value YES or NO that indicates whether or not the 
message is a broadcast message. 

Contains the value YES or NO that indicates whether or not the 
message is a command response. 

Contains the value YES or NO that indicates whether or not the 
message was issued by an authorized program. 

Contains the value YES or NO that indicates whether or not the 
message is retained by AMRF. 

Message priority, in decimal. 

Appendix E. Additional Variables That GETMSG Sets 515 



Additional GETMSG Variables 

Figure 114 (Page 4 of 5). Variables GETMSG Sets For An Entire Message 

Variable SuHlx 
Name 

MDBCASID 

MDBCTCB 

MDBCTOKN 

MDBCSYID 

MDBDMSGI 

MDBDSYSI 

MDBDASID 

MDBDJTCB 

MDBDTOKN 

MDBCUD 

MDBCFUDO 

MDBCFIDO 

MDBCOJID 

MDBCKEY 

MDBCAUTO 

MDBCCART 

MDBCCNID 

MDBMSGTA 

MDBMSGTB 

MDBMSGTC 

MDBMSGTD 

MDBMSGTF 

MDBCRPYL 

516 TSO/E Version 2 MVS/REXX Reference 

Description 

ASID of the issuer; two byte hexadecimal value. 

TCB of the job step; four byte hexadecimal value. 

Token that the issuer of the message used, in decimal. 

System 10, in decimal. 

Contains the value YES or NO that indicates whether or not operator 
messages with the specific message 10 (as specified by the 
MDBGSYID variable) should be deleted. 

Contains the value YES or NO that indicates whether or not operator 
messages with the specific system 10 (as specified by the MDBGMID 
variable) should be deleted. 

Contains the value YES or NO that indicates whether or not operator 
messages with the specific ASID (as specified by the MDBCASID 
variable) should be deleted. 

Contains the value YES or NO that indicates whether or not operator 
messages with the specific job step TCB (as specified by the 
MDBCTOKN variable) should be deleted. 

Contains the value YES or NO that indicates whether or not operator 
messages with the specific token (as specified by the MDBCTCB 
variable) should be deleted. 

Contains the value YES or NO that indicates whether or not the 
message was received because the message is undeliverable and the 
console is set up to handle undeliverable messages. 

Contains the value YES or NO that indicates whether or not the 
message was queued by UD only. Note that if the value is YES, the 
message may have been previously received. 

Contains the value YES or NO that indicates whether or not the 
message was queued by ID only. Note that if the value is YES, the 
message may have been previously received. 

Eight character originating job 10. 

Eight character retrieval key. 

Eight character automation token. 

Eight character command and response token (CART). 

Console 10; four byte hexadecimal value. 

Contains the value YES or NO that indicates whether or not the 
message was issued because job names were being monitored. 

Contains the value YES or NO that indicates whether or not the 
message was issued because status was being monitored. 

Contains the value YES or NO that indicates whether or not monitor is 
active. 

Contains the value YES or NO that indicates whether or not the 010 
field exists in the WPL (AOS/1). 

Contains the value YES or NO that indicates whether or not the 
message was issued because sessions were being monitored. 

Length of the reply 10, in decimal. The reply 10 is returned in the 
variable MDBCRPYI, which is described below. 

o 

/ 



c 

( 

Additional GETMSG Variables 

Figure 114 (Page 5 of 5). Variables GETMSG Sets For An Entire Message 

Variable Suffix 
Name 

MDBCRPYI 

MDBCTOFF 

MDBCRPYB 

MDBCAREA 

MDBCLCNT 

MDBCOJBN 

Description 

EBCDIC representation of the reply 10. 

The offset in the message text field to the beginning of the message, 
in decimal. 

Reply 10, in decimal. 

One character area 10. 

Number of lines of message text in the message, in decimal. 

Eight character originating job name. 

Variables GETMSG Sets For Each line of Message Text 
GETMSG also sets an array of variables for the message it retrieves. The variables 
are set for each line of message text for the retrieved message. 

The variable names are compound symbols. The stem of each variable name is the 
same for all lines of message text. The value following the period (.) in the variable 
name is the line number of the line of message text. 

The names of the variables correspond to the field names in the message data block 
(MOB) in MVS/ESA System Product Version 4. The variable names consist of the 
msgstem you specified on the call to GETMSG, followed by the name of the field in 
the MOB, followed by a period (.), which is then followed by the line number of the 
message text. For example, one field in the message data block is MOBTTYPE, 
which is the text object type of the MOB. If you specify msgstem as "CMSG." (with a 
period), and GETMSG retrieves a message that has three lines of message text, 
GETMSG sets the following MOBTTYPE variables: 

CMSG.MOBTTYPE.1 (corresponding to the first line of message text) 

CMSG.MOBTTYPE.2 (corresponding to the second line of message text) 

CMSG.MOBTTYPE.3 (corresponding to the third line of message text) 

If you specified the msgstem as "CMSG" (without a period), GETMSG sets the three 
variables as CMSGMOBTTYPE.1, CMSGMOBTTYPE.2, and CMSGMOBTTYPE.3. 

Figure 115 describes the array of variables that GETMSG sets for each line of 
message text. 

Figure 115 (Page 1 of 2). Variables GETMSG Sets For Each Line of Message Text 

Variable Suffix 
Name 

MDBTLEN.n 

MDBTTYPE.n 

MDBTCONT.n 

MDBTLABT.n 

Description 

Text object length of the MOB, in decimal. 

Text object type of the MOB, in decimal. 

Contains the value YES or NO that indicates whether or not the line of 
message text consists of control text. 

Contains the value YES or NO that indicates whether or not the line of 
message text consists of label text. 

Appendix E. Additional Variables That GETMSG Sets 517 



Additional GETMSG Variables 

Figure 115 (Page 2 of 2). Variables GETMSG Sets For Each Line of Message Text 

Variable SuHlx 
Name 

MDBTDATT.n 

MDBTENDT,n 

MDBTPROT.n 

MDBTFPAF.n 

MDBTPCON.n 

MDBTPCOL.n 

MDBTPHIL.n 

MDBTPINT.n 

518 TSO/E Version 2 MVS/REXX Reference 

Description 

Contains the value YES or NO that indicates whether or not the line of 
message text consists of data text. 

Contains the value YES or NO that indicates whether or not the line of 
message text consists of end text. 

Contains the value YES or NO that indicates whether or not the line of 
message text consists of prompt text. 

Contains the value YES or NO that indicates whether or not the text 
object presentation attribute field overrides the general object 
presentation attribute field. 

Presentation control attribute, in decimal. 

Presentation color attribute, in decimal. 

Presentation highlighting attribute, in decimal. 

Presentation intensity attribute, in decimal. 

o 

(\ 
I~ / 

(~) 



Bibliography 

1& .... 

c Bibliography 

Re~ated Publications 
You may also need to refer to the following books for more information. 

TSO/E Publications 
• TSOIE Version 2 Procedures Language MVSIREXX User's Guide, SC28-1882 

• TSOIE Version 2 Customization, SC28-1872 

• TSOIE Version 2 Command Reference, SC28-1881 

• TSOIE Version 2 System Programming Command Reference, SC28-1878 

• TSOIE Version 2 Programming Services, SC28-1875 

• TSOIE Version 2 Programming Guide, SC28-1874 

• TSOIE Version 2 Quick Reference, GX23-0026 

• TSOIE Version 2 CLlSTs, SC28-1876 

• TSOIE Version 2 Messages, GC28-1885 

SAA Publications 
• SAA Common Programming Interface Procedures Language Reference, SC26-4358 

• SAA Common Programming Interface Communications Reference, SC26-4399 

MVS/ESA Publications 
• MVSIESA Application Development: Writing Transaction Programs for APPCIMVS, 

GC28-1121 

• MVSIESA Planning: APPC Management, GC28-1110 

• MVSIESA System Codes, GC28-1815 

• MVSIESA System Messages Volume 1, GC28-1812 

• MVSIESA System Messages Volume 2, GC28-1813 

ISPF Publications 
• ISPF Dialog Management Guide, SC34-4112 

• ISPF Dialog Management Services and Examples, SC34-4113 

(OJ 

© Copyright IBM Corp. 1988, 1991 519 

____ ~ _____ ._O__ __ 



o 

c 
520 TSO/E Version 2 MVS/REXX Reference 



-3 return code 27,454 

,A~ 
ABBREV function 

description 92 
using to select a default 92 

abbreviations 
looking for one in a string 165 
testing with ABBREV function 92 

abnormal change in flow of control 177 
ABS function 92 
absolute value 

finding using ABS function 92 
used with power 171 

abuttal 15 
accessing REXX variables 289 
active loops 60 
addition 

definition 169 
operator 16 

ADDRESS 
function 93 
instruction 44 
settings saved during subroutine cails 50 

address of environment block 
obtaining 412 
passing to REXX routines 253, 339, 378 

address spaces 
name of for language processor environment 350 
running execs in non-TSO/E 188 
running execs in TSO/E 191 
using REXX in different 183 
using REXX in non-TSO/E 187 
using REXX in TSO/E 189 

algebraic precedence 18 
ailocation information 

about a data set 132 
retrieving with USTDSI 132 

alphabetics 
checking with DATATYPE 99 
used as symbols 11 

alphanumeric checking with DATATYPE 99 
altering 

flow within a repetitive DO loop 60 
REXX variables 25 

alternate entry point names 401 
alternate exec libraries 7,393 
alternate messages flag 354 
ALTUB command 7,393 
AL TMSGS flag 354 
AND operator 17 
ANDing character strings together 94 

© Copyright IBM Corp. 1988. 1991 

AND, logical 17 
APPC/MVS 

transaction programs 28 
ARG function 93 
ARG instruction 46 
ARG option of PARSE instruction 66 
argument list for function package 278 
arguments 

checking with ARG function 93 
of functions 46,85 
of subroutines 46, 48 
passing to functions 85 
retrieving with ARG function 93 
retrieving with ARG instruction 46 
retrieving with the PARSE ARG instruction 66 

arithmetic 
combination rules 169 
comparisons 172 
errors 175 
NUMERIC settings 63 
operators 16, 167, 169 
overflow 175 
precision 168 
underflow 1,75 

array 
initialization of 23 
setting up 22 

assigning data to variables 66 
assignment 

description of 21 
of compound variables 22, 23 

assignment indicator ( = ) 21 
associating MVS commands and responses 130,508 
associative storage 22 
ATTACH host'command environment 34 
attaching programs 34 
ATTCHMVS host command environment 34 
ATTCHPGM host command environment 34 
attention handling exit 429, 473 
ATTN ROUT field (module name table) 358 
authorized 

invoking REXX exec as 192,258 
automatic initialization of language processor 

environments 

B 

in non-TSO/E address space 343 
in TSO/E address space 341 

backslash, use of 12, 17 
BASE option of DATE function 100 
BIT AND function 94 
BITOR function 95 

521 



Index 

bits checked using DATATYPE 99 
BITXOR function 95 
blank removal with STRIP function 114 
blanks 

adjacent to special character 9 
as concatenation operator 15 

boolean operations 17 
bottom of program reached during execution 56 
bracketed DBCS strings 

DBBRACKET function 494 
DBUNBRACKET function 498 

built-in function invoking 48 
built-in functions 

ABBREV 92 
ABS 92 
ADDRESS 93 
ARG 93 
BITAND 94 
BITOR 95 
BITXOR 95 
CENTER 96 
CENTRE 96 
COMPARE 96 
CONDITION 96 
COPIES 97 
C2D 98 
C2X 98 
DATATYPE 99 
DATE 100 
DBCS functions 494 
DELSTR 102 
DELWORD 102 
description of 91 
DIGITS 102 
Double-Byte Character Set functions 494 
D2C 103 
D2X 103 
ERRORTEXT 104 
EXTERNALS 104 
FIND 105 
FORM 105 
FORMAT 105 
FUZZ 106 
INDEX 107 
INSERT 107 
JUSTIFY 108 
LASTPOS 108 
LEFT 109 
LENGTH 109 
lINESIZE 109 
MAX 110 
MIN 110 
OVERLAY 111 
POS 111 
QUEUED 111 
RANDOM 112 
REVERSE 113 
RIGHT 113 

522 TSO/E Version 2 MVS/REXX Reference 

built-in functions (continued) 
SIGN 113 
SOURCELINE 114 
SPACE 114 
STRIP 114 
SUBSTR 115 
SUBWORD 115 
SYMBOL 116 
TIME 116 
TRACE 118 
TRANSLATE 118 
TRUNC 119 
USERID 119 
VALUE 120 
VERIFY 120 
WORD 121 
WORDINDEX 121 
WORDLENGTH 122 
WORDPOS 122 
WORDS 122 

. XRANGE 123 
X2C 123 
X2D 124 

BY phrase of DO instruction 51 

C 
CALL instruction 48 
calling REXX routines, general considerations 252 
CART (command and response token) 130,508 
CENTER function 96 
centering a string using CENTER function 96 
centering a string using CENTRE function 96 
CENTRE function 96 
CENTURY option of DATE function 100 
chains of environments 337,375 
change value in specific storage address 149 
changing defaults for initializing language processor 

environments 381 
changing destination of commands 44 
changing maximum number of language processor 

environments 404 
character position of a string 108 
character position using INDEX 107 
character removal with STRIP function 114 
character to decimal conversion 98 
character to hexadecimal conversion 98 
characteristics of language processor 

environment 327, 346 
check existence of a data set 150 
clauses 

as labels 20 
assignment 20, 21 
continuation of 14 
description of 9 
null 19 

close data set flag 353 

o 



CLOSEXFL flag 353 
CMDSOFL flag 351 
collating sequence using XRANGE 123 
colon 

as a special character 13 
in a label 20 

colon as label terminators 20 
combination, arithmetic 169 
comma 

as continuation character 14 
in CALL Instruction 49 
in function calls 85 
separator of arguments 49, 85 
within a parsing template 46, 160, 161, 166 

command and response token (CART) 130,508 
command errors, trapping 177 
command inhibition 

See TRACE instruction 
command processor parameter list 

See CPPL 
command search order flag 351 
commands 

-3 return code 27 
alternative destinations 25 
definition of host 26 
destination of 44 
inhibiting with TRACE instruction 81 
issuing MVS system and subsystem 27, 505 
issuing to host 25 
obtaining name of last command processed 153 
reserved names 197 
responses from MVS 126,507 
return codes from 27 
set prompting onloff 144 
trap lines of output 140 
TSO/E REXX 199 

comments 
description of 10 
REXX exec identifier 9 

COMPARE function 96 
comparisons 

of numbers 16, 172 
of strings 16 

using COMPARE 96 
compiler programming routine 

IRXERS 403 
IRXHST 403 
IRXRTE 403 

compiler programming table 395, 397 
compiler runtime processor 

considerations for exec load routine 434 
interface routines 395, 397 
invoke compiler interface load routine 434 
obtain evaluation block 305, 307 

compound symbols 22 
compound variable 

description of 22 
setting new value 23 

compression of execs in VLF 393 
concatenation of strings 15 
concatenation operator 

abuttal 15 
blank 15 
II 15 

CONDITION function 96 
condition trap information using CONDITION 96 
conditional loops 51 
conditions 

ERROR 177 
FAILURE 177 
HALT 177 
NOVALUE 177 
saved during subroutine calls 50 
SYNTAX 178 

conditions, trapping of 177 
considerations for calling REXX routines 252 
CONSOLE command 27,126,505 
CONSOLE host command environment 27,505 
console profile 126,507 
console session 

activating 505 
associating commands and responses 130,508 
CONSOLE environment 27,505 
deactivating 505 
determining options in effect 156 
issuing MVS system commands 27,505 
processing messages during 507 
retrieving messages 126 

CONSPROF command 126,507 
constant symbols 22 
content addressable storage 22 
continuation 

character 14 
of clauses 14 
of data for display 75 

control 
display of TSO/E messages 139,140 
message display during console session 129, 507 
prompting from interactive commands 144 
search order for REXX execs 355 

control blocks 
environment block (ENVBLOCK) 339, 395 
evaluation (EVALBLOCK) 270,278 
exec block (EXECBLK) 266 
for language processor environment 338, 395 
In-storage (INSTBLK) 268 
parameter block (PARMBLOCK) 346, 397 
request (SHVBLOCK) 293 
return result from exec 270 
shared variable (SHVBLOCK) 293 
SHVBLOCK 293 
vector of external entry points 401 
work block extension 398 

control variable 52 
controlled loops 52 

Index 523 



Index 

conversion 
character to decimal 98 
character to hexadecimal 98 
decimal to character 103 
decimal to hexadecimal 103 
formatting numbers 105 
hexadecimal to character 123 
hexadecimal to decimal 124 

conversion functions 91-124 
COPIES function 97 
copying a string using COPIES 97 
copying information to and from data sets 203 
counting words in a string 122 
CPICOMM host command environment 28 
CPPl 

in work block extension 399 
passing on call to IRXEXEC 265 

creating 
buffer on the data stack 226 
new data stack 228, 409 
non-reentrant environment 412 
reentrant environment 412 

current non-reentrant environment, locating 412 
current terminal line width 109 
customizing services 

description 327 
environment characteristics 327 
exit routines 327 
general considerations for calling routines 252 
language processor environments 335 
replaceable routines 327,332,333 
summary of 186 

customizing TSO/E REXX 
See customizing services 

C2D function 98 
C2X function 98 

o 
Data Facility Hierarchical Storage Manager (DFHSM), 

status of 154 
data length 15 
data set 

check existence of 150 
copying information to and from 203 
obtain allocation, protection, directory 

information 132 
sequence numbers 8, 433 

data stack 
counting lines in 111 
creating 228, 409 
creating a buffer 226 
deleting 200 
DElSTACK command 200 
discarding a buffer 201 
DROPBUF command 201 
dropping a buffer 201 
MAKEBUF command 226 

524 TSO/E Version 2 MVS/REXX Reference 

data stack (continued) 
NEWST ACK command 228, 409 
number of buffers 230 
number of elements on 232 
primary 409 
QBUF command 230 
QElEM command 232 
QSTACK command 234 
querying number of elements on 232 
querying the number of 234 
querying the number of buffers 230 
reading from with PUll 71 
replaceable routine 457 
secondary 409 
sharing between environments 406 
use in different environments 406 
writing to with PUSH 72 
writing to with QUEUE 73 

data stack flag 352 
data terms 14 
DATATYPE function 99 
date and version of the language processor 68 
DATE function 100 
DBADJUST function 494 
DBBRACKET function 494 
DBCENTER function 495 
DBCJUSTIFY function 495 
DBCS functions 

DBADJUST 494 
DBBRACKET 494 
DBCENTER 495 
DBCJUSTIFY 495 
DBLEFT 496 
DBRIGHT 496 
DBRlEFT 497 
DBRRIGHT 497 
DBTODBCS 498 
DBTOSBCS 498 
DBUNBRACKET 498 
DBVALIDATE 499 
DBWIDTH 499 

DBCS handling 485 
DBCS strings 65, 485 
DBCS (Double-Byte Character Set) characters 485 
DBlEFT function 496 
DBRIGHT function 496 
DBRlEFT function 497 
DBRRIGHT function 497 
DBTODBCS function 498 
DBTOSBCS function 498 
DBUNBRACKET function 498 
DBVALIDATE function 499 
DBWIDTH function 499 
DO from which execs are loaded 357 
debugging programs 241 

See a/so interactive debug 
S88 a/so TRACE instruction 
-3 return code 27 

o 

c 



( 

(-

( 

debugging programs (continued) 
EXECUTIL command 215 
immediate commands 225 
return codes from commands 27 

debug, interactive 79,241 
decimal arithmetic 167-175 
decimal to character conversion 103 
decimal to hexadecimal conversion 103 
default environment 25 

See also language processor environment 
defaults for initializing language processor 

environments 369 
defaults provided for parameters modules 369 
deleting a data stack 200 
deleting part of a string 102 
deleting words from a string 102 
delimiters in a clause 

See colon 
See semicolons 

DELSTACK command 200 
DELSTR function 102 
DELWORD function 102 
derived name 22 
derived names of variables 22 
DFHSM, status of 154 
DIGITS function 102 
DIGITS option of NUMERIC instruction 63, 168 
direct interface to variables (IRXEXCOM) 289 
directory names, function packages 

IRXFLOC 281, 283 
IRXFUSER 281, 283 

directory, function package 282 
example of 285 
format 283 
format of entries 284 
specifying in function package table 287 

discarding a buffer on the data stack 201 
displaying data 

See SAY instruction 
displaying message IDs 470 
division 

definition 170 
operator 16 

DO instruction 51-54 
See also loops 

Double-Byte Character Set (DBCS) strings 65, 485 
DROP instruction 55 
DROPBUF command 201 
dropping a buffer on the data stack 201 
dummy instruction 

See NOP instruction 
D2C function 103 
D2X function 103 

E 
EFPL (external function parameter list) 277 

--~-... _--------

elapsed time saved during subroutine calls 50 
elapsed-time clock 50,116 
ELSE keyword 

See IF instruction 
enabled for variable access (IRXEXCOM) 289 
END clause 

See also DO instruction 
See also SELECT instruction 
specifying control variable 52 

engineering notation 174 
entry point names 401 
ENVBLOCK 

See environment block 
environment block 

description 339, 378, 395 
format 395 
obtaining address of 412 

Index 

overview for calling REXX routines 253 
passing on call to REXX routines 253, 339, 378 

environment table for number of language processor 
environments 404 

environments 
See also host command environment 
See also language processor environment 
addressing of 44 
default 44, 67 
determining current using ADDRESS function 93 
host command 25 
language processor 328, 335 
SAA supported 2 
temporary change of 44 

equal operator 17 
equality, testing of 16 
error codes 

syntax errors 475 
ERROR condition of SIGNAL and CALL 

instructions 180 
error messages 

and codes 475 
control display of TSO/E messages 139, 140 
displaying the message 10 470 
replaceable routine for message 10 470 
retrieving with ERRORTEXT 104 
syntax errors 475 

errors 
-3 return code 27 
during execution of functions 90 
from commands 25 
messages 475 
syntax 475 
traceback after 83 

errors, trapping 177 
ERRORTEXT function 104 
EST AE, recovery 354 
ETMODE 65 
EUROPEAN option of DATE function 100 
EVALBLOCK 

See evaluation block 

Index 525 



~------ -~.-------- ------ ---~~-- . 

Index 

evaluation block 
for function packages 277,278 
for IRXEXEC routine 270 
obtaining a larger one 305 

evaluation of expressions 14 
exception conditions saved during subroutine calls 50 
exclusive OR operator 17 
exclusive ORing character strings together 95 
exec block (EXECBLK) 266, 437 
exec identifier 9 
exec information, determining 

availability of ISPF dialog manager services 153 
exec invocation 153 
foreground/background processing 152 
last command processed 153 
last subcommand processed 153 
name used to invoke exec 153-
size of message tables 156-
whether messages are displayed 156 

exec initialization exit 429, 472 
exec libraries 

defining alternate using ALTUB 7,393 
storing REXX execs 7,392 
SYSEXEC 7,392 
SYSPROC 7,392 

exec load replaceable routine 433 
exec processing exit (IRXEXECX) 429,472 
exec processing routines 

IRXEXEC 261 
IRXJCL 258 

exec termination exit 429, 472 
EXECINIT field (module name table) 358 
EXECIO command 203 
execs 

compression of in VLF 393 
description of 1 
for MVS operator activities 505 
loading of 433 
overview of writing 183 
preloading 433 
running in MVS batch 188, 258 
running in non-TSO/E 188,258 
running in TSO/E 191,258 
storing in SYSEXEC or SYSPROC 7, 392 
writing for non-TSO/E 187 
writing for TSO/E 189 

EXECTERM field (module name table) 359 
EXECUTIL command 215 
executing a REXX exec 

from MVS batch 258 
in non-TSO/E 188,258 
in TSO/E 191,258 
restriction 192, 258 
using IRXEXEC routine 261 
using IRXJCL routine 258 

execution by language processor 8 
execution of data 58 

526 TSO/E Version 2 MVS/REXX Reference 

EXIT instruction 56 
exit routines 333, 471 

attention handling 429, 473 
exec initialization 429,472 
exec processing 429, 472 
exec termination 429, 472 
for IRXEXEC 429, 472 
IRXINITX 429, 471 
IRXITMV 429, 471 
IRXITTS 429,471 
IRXTERMX 429, 472 
language processor environment initialization 429, 

471 
language processor environment termination 429, 

471 
EXMODE 65, 486 
exponential notation 

definition 173 
description of 167 
usage 11 

exponentiation 
definition 173 
operator 16 

EXPOSE option of PROCEDURE instruction 69 
expressions 

evaluation 14 
examples 19 
parsing of 68 
results of 14 
tracing results of 80 

EXROUT field (module name table) 358 
extended MCS console session 

See console session 
external data queue 

counting lines in 111 
reading from with PULL 71 
writing to with PUSH 72 
writing to with QUEUE 73 

external entry pOints 
alternate names 401 
IRXEX 261 
IRXEXC 289 
IRXEXCOM 289 
IRXEXEC 261 
IRXHLT 316 
IRXIC 302 
IRXINIT 412 
IRXINOUT 442 
IRXINT 412 
IRXIO 442 
IRXJCL 258 
IRXLD 433 
IRXUN 324 
IRXLOAD 433 
IRXMID 470 
IRXMSGID 470 
IRXRLT 305 
IRXSAY 313 

o 

c 



o 

(/ 

external entry pOints (continued) 
IRXSTK 457 
IRXSUB 297 
IRXSUBCM 297 
IRXTERM 425 
IRXTERMA 501 
IRXTMA 501 
IRXTRM 425 
IRXTXT 319 
IRXUID 466 

external function parameter list (EFPL) 277 
external functions 

description of 86 
GETMSG 126 
LlSTDSI 132 
MSG 139 
OUTTRAP 140 
PROMPT 144 
providing in function packages 276 
search order 87 
SETLANG 147 
STORAGE 149 
SYSDSN 150 
SYSVAR 152 
writing 276 

EXTERNAL option of PARSE instruction 66 
external routine invoking 48 
external subroutines 

description of 86 
providing in function packages 276 
search order 87 
writing 276 

EXTERNALS function 104 
extracting a substring 115 
extracting words from a string 115 

F 
FAILURE condition of SIGNAL and CALL 

instructions 177 
FIFO (first-in/first-out) stacking 73 
FIND function 105 
finding a mismatch using COMPARE 96 
finding a string in another string 107, 111 
finding the length of a string 109 
flags for language processor environment 348, 351 

ALTMSGS 354 
CLOSEXFL 353 
CMDSOFL 351 
defaults provided 369 
FUNCSOFL 351 
LOCPKFL 353 
NEWSCFL 353 
NEWSTKFL 352 
NOESTAE 354 
NOlOADDD 355 
NOMSGIO 355 
NOMSGWTO 355 

---_ .. -,,_.,---

Index 

flags for language processor environment (continued) 
NOPMSGS 354 
NOREADFl 352 
NOSTKFL 352 
NOWRTFl 352 
RENTRANT 354 
restrictions on settings 387,392 
SPSHARE 354 
STORFl 354 
SYSPKFL 353 
TSOFl 344, 351 
USERPKFl 353 

flow control 
abnormal, with CAll 177 
abnormal, with SIGNAL 177 
with CALl/RETURN 48 
with DO construct 51 
with IF construct 57 
with SELECT construct 76 

flow of REXX exec processing 328 
FOR phrase of DO instruction 51 
FOREVER repetitor on DO instruction 51 
FORM function 105 
FORM option of NUMERIC instruction 63,174 
FORMAT function 105 
formatting 

DBCS blank adjustments 494 
DBCS bracket adding 494 
DBCS bracket stripping 498 
OBCS EBCDIC to DBCS 498 
OBCS string width 499 
DBCS strings to SBCS 498 
DBCS text justification 495 
numbers for display 105 
numbers with TRUNC 119 
of output during traCing 82 
text centering 96 
text justification 108 
text left justification 109,496 
text left remainder justification 497 
text right justification 113, 495, 496 
text right remainder justification 497 
text spacing 114 
text validation function 499 

FORTRAN programs, alternate entry points for external 
entry points 401 

FUNCSOFL flag 351 
function package flags 353 
function package table 287, 346, 365 

defaults provided 369 
defining function packages products provide 282 

function packages 
add entries in directory 215, 218 
change entries in directory 215, 218 
description 276 
directory 282 
directory names 281,283 

IRXFLOC 281, 283 
IRXFUSER 281, 283 

Index 527 



----~----~ --

Inde. 

function packages (continued) 
directory names (continued) 

specifying in function package table 287 
system-supplied 281, 283 

example of directory 285 
external function parameter list 277 
format of entries in directory 284 
function package table 287 
getting larger area to store result 305 
getting larger evaluation block 305 
interface for writing code 277 
IRXFLOC 281, 283 
IRXFUSER 281, 283 
link editing the code 283 
overview 249 
parameters code receives 277 
provided by IBM products 282 
rename entries in directory 215, 218 
summary of 185 
system-supplied directory names 281, 283 
types of 

local 280 
system 280 
user 280 

writing 276 
function search order flag 351 
functions 

built-in 91, 92 
description of 85 
external 86 
forcing built-in or external reference 87 
internal 86 
invocation of 85 
numeric arguments of 175 
providing in function packages 276 
return from 74 
search order 87 
TSO/E external 125 
variables in 69 
writing external 276 

function, built-in 
Soe built-in functions 

FUZZ 
controlling numeric comparison 173 
option of NUMERIC instruction 63, 173 

FUZZ function 106 

G 
general considerations for calling REXX routines 252 
get result routine (IRXRL T) 305 
GETFREER field (module name table) 358 
GETMSG function 126 

additional variables set 513 
variables related to MOB 513 

getting a larger evaluation block 305 
GOTO, abnormal 177 

528 TSO/E Version 2 MVS/REXX Reference 

greater than operator 17 
greater than or equal operator 17 
greater than or less than operator (> <) 17 
grouping instructions to execute repetitively 51 
group, DO 52 

H 
HALT condition of SIGNAL and CALL instructions 177 
Halt Execution (HE) immediate command 222 
Halt Interpretation (HI) immediate command 223; 241, 

302 
Halt Typing (HT) immediate command 224, 302 
halting a looping program 244 

from a program 302 
HI immediate command 223 
using the IRXIC routine 302 
with EXECUTIL command 215 

halt, trapping 177 
HE (Halt Execution) immediate command 222, 244 
hexadecimal 

See a/so conversion 
checking with OATATYPE 99 

hexadecimal digits 11 
hexadecimal strings 10 
HI (Halt Interpretation) immediate command 223, 244, 

302 
host command environment 

ATTACH 34 
ATTCHMVS 34 
ATTCHPGM 34 
change entries in SUBCOMTB table 297 
check existence of 237 
CONSOLE 27, 505 
CPICOMM 28 
description 25 
IRXSUBCM routine 297 
ISPEXEC 28, 190 
ISREOIT 28, 190 
LINK 34 
LINKMVS 34 
L1NKPGM 34 
LU62 28 
MVS 33 
replaceable routine 453 
TSO 27 

host command environment table 346, 361 
defaults provided 369 

host commands 25 
-3 return code 27,454 
console session 27, 505 
definition of 26 
interrupting 245 
issuing MVS system and subsystem 27,505 
return codes from 27 
TSO/E REXX 199 
using in non-TSO/E 187 
using in TSO/E 189, 190 

o 

( " I 

\" .J 

(\ 
l 
,,-,~j 

c 



c 

c 

(~/ 

hours calculated from midnight 117 
HT (Halt Typing) immediate command 224, 302 

I 
identifier 

exec 9 
REXX exec 9 

identifying users 119 
IDROUT field (module name table) 359 
IF instruction 57 
IKJCT441 variable access routine 289 
IKJTSOEV service 183, 192 
immediate commands 225 

HE (Halt Execution) 222, 244 
HI (Halt Interpretation) 223, 244, 302 
HT (Halt Typing) 224, 302 
issuing from program 302 
RT (Resume Typing) 236, 302 
TE (Trace End) 239, 244, 302 
TS (Trace Start) 240, 244, 302 

implied semicolons 13 
imprecise numeric comparison 173 
in-storage control block (INSTBLK) 268 
in-storage parameter list 417 
inclusive OR operator 17 
INDO field (module name table) 357 
indefinite loops 52 
indentation during tracing 82 
INDEX function 107 
indirect evaluation of data 58 
inequality, testing of 16 
infinite loops 51 
inhibition of commands with TRACE instruction 81 
initialization 

of arrays 23 
of compound variables 23 
of language processor environments 337,412 

for user-written TMP 342 
in non-TSO/E address space 343 
in TSO/E address space 341 

routine (IRXINIT) 341,412 
initialization routine (IRXINIT) 

description 412 
how environment values are determined 373 
how values are determined 416 
in-storage parameter list 417 
output parameters 420 
overview 341 
parameters module 417 
reason codes 420 
restrictions on values 418 
specifying values 418 
to initialize an environment 412 
to locate an environment 412 
user-written TMP 342 
values used to initialize environment 373 

input/output 
replaceable routine 442 
to and from data sets 203 

INSERT function 107 
inserting a string into another 107 
INSTBLK (in-storage control block) 268 
instructions 

ADDRESS 44 
ARG 46 
CALL 48 
defined 20 
DO 51 
DROP 55 
EXIT 56 
IF 57 
INTERPRET 58 
ITERATE 60 
LEAVE 61 
NOP 62 
NUMERIC 63 
OPTIONS 65 
PARSE 66 
PROCEDURE 69 
PULL 71 
PUSH 72 
QUEUE 73 
RETURN 74 
SAY 75 
SELECT 76 
SIGNAL 77 
TRACE 79 
UPPER 84 

integer arithmetic 167-175 
integer division 

definition 172 
description of 167 
operator 16 

Ind •• 

integrated language processor environments (Into 
TSO/E) 331, 344 

interactive debug 79,241 
See a/so TRACE instruction 

Interactive System Productivity Facility 
SeelSPF 

interface for writing functions and subroutines 277 
interface to variables (IRXEXCOM) 289 
internal functions 

description of 86 
return from 74 
variables in 69 

internal routine invoking 48 
INTERPRET instruction 58 
interpretive execution of data 58 
interrupting exec interpretation 302 
interrupting program execution 218, 223, 244 
invoking 

built-in functions 48 
REXX execs 188,191 
routines 48 

Index 529 



Index 

10ROUT field (module name table) 358 
IRXANCHR load module 404 
IRXARGTB mapping macro 267,278 
IRXDSIB mapping macro 442, 448 
IRXEFMVS 282 
IRXEFPCK 282 
IRXEFPL mapping macro 277 
IRXENVB mapping macro 395 
IRXENVT mapping macro 404 
IRXERS compiler programming routine 403 
IRXEVALB mapping macro 271,278 
IRXEX alternate entry point 261 
IRXEXC alternate entry point 289 
IRXEXCOM variable access routine 289 
IRXEXEC routine 258, 261 

argument list 267 
description 258, 261 
evaluation block 270 
exec block 266 
getting larger area to store result 305 
getting larger evaluation block 305 
in-storage control block 268 
overview 249 
parameters 263 
return codes 273 
returning result from exec 270 

IRXEXECB mapping macro 266, 437 
IRXEXECX exec processing exit 429, 472 
IRXEXECX field (module name table) 359 
IRXEXTE mapping macro 401 
IRXFLOC 281, 283 
IRXFPDIR mapping macro 282 
IRXFUSER 281,283 
IRXHL T routine 316 
IRXHST compiler programming routine 403 
IRXIC routine 302 
IRXINIT initialization routine 341,412 
IRXINITX exit 429, 471 
IRXINOUT I/O routine 442 
IRXINSTB mapping macro 268, 439 
IRXINT alternate entry point 412 
IRX/O alternate entry pOint 442 
IRXISPRM parameters module 346, 369 
IRXITMV exit 429, 471 
IRXITTS exit 429, 471 
IRXJCL routine 258 

description 258 
invoking 259 
overview 249 
parameters 260 
return codes 261 

IRXLD alternate entry point 433 
IRXLlN routine 324 
IRXLOAD exec load routine 433 
IRXMID alternate entry point 470 
IRXMODNT mapping macro 356 
IRXMSGID message 10 routine 470 

530 TSO/E VerSion 2 MVS/REXX Reference 

IRXPACKT mapping macro 365 
IRXPARMB mapping macro 349, 397 
IRXPARMS parameters module 346,369 
IRXRL T get result routine 305 
IRXRTE compiler programming routine 403 
IRXSAY routine 313 
IRXSHVB mapping macro 293 
IRXSTK data stack routine 457 
IRXSUB alternate entry point 297 
IRXSUBCM routine 297 
IRXSUBCT mapping macro 300,361 
IRXTERM termination routine 341,425 
IRXTERMA termination routine 501 
IRXTERMX exit 429, 472 
IRXTMA alternate entry point 501 
IRXTRM alternate entry point 425 
IRXTSPRM parameters module 346, 369 
IRXTXT routine 319 
IRXUID user-ID routine 466 
IRXWORKB mapping macro 399 
ISPEXEC host command environment 28 
ISPF 

determining availability of dialog manager 
services 153 

host command environments 28 
interrupting execs 245 
using ISPF services 28, 190 

ISREDIT host command environment 28 
issuing host commands 25 
ITERATE Instruction 

See also DO instruction 
description 60 
use of variable on 60 

I/O 

J 

replaceable routine 442 
to and from data sets 203 

JULIAN option of DATE function 100 
JUSTIFY function 108 

K 
keyword Instructions 43 

See also instructions 
keywords 

l 

conflict with commands 195 
mixed case 43 
reservation of 195 

label 
as targets of CALL 48 
as targets of SIGNAL 77 
description of 20 
duplicate 78 
in INTERPRET instruction 58 

o 

./. \ 
~) 

(\. 
'\. j 

C, \ . . 



o 

(/ 

label (continued) 
search algorithm 77 

language 
codes for REXX messages 

determining current 147 
in parameter block 347 
in parameters module 347 
SETLANG function 147 
setting 147 

determining 
for REXX messages 147 
primary in UPT 155 
secondary in UPT 155 
whether terminal supports DBCS 155 
whether terminal supports Katakana 155 

language processor date and version 68 
language processor environment 

automatic initialization in non-TSO/E 343 
automatic initialization in TSO/E 341 
chains of 337,375 
changing the defaults for initializing 381 
characteristics 346 
considerations for calling REXX routines 253 
control blocks for 338, 395 
data stack in 406 
description 328, 335 
flags and masks 351 
how environments are located 378 
initializing for user-written TMP 342 
integrated into TSO/E 344 
maximum number of 338, 404 
non-reentrant 412 
not integrated into TSO/E 344 
obtaining address of environment block 412 
overview for calling REXX routines 253 
reentrant 412 
restrictions on values for 386 
sharing data stack 406 
terminating 425, 501 
types of 331,344 
user-written TMP 342 

language structure and syntax 9 
LASTPOS function 108 
leading blank removal with STRIP function 114 
leading zeros 

adding with the RIGHT function 113 
removal with STRIP function 114 

LEAVE instruction 
See a/so DO instruction 
description of 61 
use of variable on 61 

leaving your program 56 
LEFT function 109 
LENGTH function 109 
less than operator 17 
less than or equal operator 17 
less than or greater than operator « » 17 

level of RACF installed 154 
level of TSO/E installed 154 
LIFO (Iast-inlfirst-out) stacking 72 
line length of terminal 109 
line width of terminal 109 

Index 

lines from a program retrieved with SOURCELINE 114 
L1NESIZE function 109 
LINK host command environment 34 
linking to programs 34 
L1NKMVS host command environment 34 
L1NKPGM host command environment 34 
list 22 
L1STDSI function 132 

function codes 132 
reason codes 137 
variables set by 135 

literal patterns, parsing with 163 
literal strings 10 
LOADDD field (module name table) 357 
loading a REXX exec 433 
local function packages 280 
locating a phrase in a string 105 
locating a string in another string 107, 111 
locating current non-reentrant environment 412 
LOCPKFL flag 353 
logical bit operations 

BITAND 94 
BITOR 95 
BITXOR 95 

logical operations 17 
logon procedure 

obtain name of for current session 152 
looping program 

halting 244, 302 
tracing 216,218,244, 302 

loops 
See also DO instruction 
active 60 
execution model 54 
indefinite loops 244 
infinite loops 244 
modification of 60 
repetitive 52 
termination of 61 

lower case symbols 11 
LU62 host command environment 28 

M 
macros 

See mapping macros 
MAKEBUF command 226 
managing storage 463 
mapping macros 

IRXARGTB (argument list for function 
packages) 278 

IRXARGTB (argument list for IRXEXEC) 267 
IRXDSIB (data set information block) 442, 448 

Index 531 



Ind •• 

mapping macros (continued) 
IRXEFPL (external function parameter list) 277 
IRXENVB (environment block) 395 
IRXENVT (environment table) 404 
IRXEVALB (evaluation block) 271,278 
IRXEXECB (exec block) 266, 437 
IRXEXTE (vector of external entry points) 401 
IRXFPDIR (function package directory) 282 
IRXINSTB (In-storage control block) 268, 439 
IRXMODNT (module name table) 356 
IRXPACKT (function package table) 365 
IRXPARMB (parameter block) 349, 397 
IRXSHVB (SHVBLOCK) 293 
IRXSUBCT (host command environment table) 300, 

361 
IRXWORKB (work block extension) 399 

mask settings 350 
masks for language processor environment 350, 351 
MAX function 110 
maximum number of language processor 

environments 338, 404 
MOB (message data block) 513 
message data block (MOB) 513 
message identifier replaceable routine 470 
message IDs, displaying 470 
message table 

change current size 507 
definition 507 
determine current size 156 

messages 
control display of TSO/E messages 139, 140 
language for REXX 147,347 
retrieving during console session 126,507 
solicited 126,507 
syntax errors 475 
unsolicited 126,507 

MIN function 110 
minutes calculated from midnight 117 
mixed DBCS string 99, 486 
module name table 

ATTNROUT field 358 
defaults provided 369 
description 356 
EXECINIT field 358 
EXECTERM field 359 
EXROUT field 358 
format 356 
GETFREER field 358 
IDROUT field 359 
in parameter block 346 
INDO field 357 
IOROUT field 358 
IRXEXECX field 359 
LOADOD field 357 
MSGIDRT field 359 
OUTDO field 357 
part of parameters module 346 
STACKRT field 359 

532 TSO/E Version 2 MVS/REXX Reference 

MONTH option of DATE function 100 
MSG function 139 
MSGIDRT field (module name table) 359 
multiple 

string parsing 166 
multiplication 

definition 170 
operator 16 

MVS batch 
running exec in 258 

MVS host command environment 33 
MVS system and subsystem commands 

issuing from exec 27,505 
processing messages 126,507 
retrieving responses 126,507 

N 
names 

of functions 86 
of programs 67 
of subroutines 48 
of TSO/E REXX external entry points 401 
of variables 11 
reserved command names 197 

negation 
of logical values 17 
of numbers 16 

nesting of control structures 50 
new data stack flag 352 
new data stack, creating 228 
new host command environment flag 353 
NEWSCFL flag 353 
NEWST ACK command 228, 409 
NEWSTKFL flag 352 
NOESTAE flag 354 
NOLOADDD flag 355 
NOMSGIO flag 355 
NOMSGWTO flag 355 
non-reentrant environment 354,412 
non-TSO/E address spaces 

creating TSO/E environment 183, 192 
host command environments 27 
initialization of language processor 

environment 343 
overview of running an exec 188 
writing execs for 187 

NOP instruction 62 
NOPMSGS flag 354 
NOREADFL flag 352 
Normal option of DATE function 101 
NOSTKFL flag 352 
not equal operator 17 
not greater than operator 17 
not less than operator 17 
NOT operator 12,17 
notation 

engineering 174 

( \ ." / 

c 



( 

notation (continued) 
scientific 174 

NOVALUE condition 
on SIGNAL instruction 177 
use of 195 

NOWRTFL flag 352 
null clauses 19 
null instruction 

See NOP Instruction 
null strings 10, 15 
number of language processor environments, changing 

maximum 404 
numbers 

arithmetic on 16, 167, 169 
checking with DATATYPE 99 
comparison of 16,172 
definition 168 
description of 11,167 
formatting for display 105 
in DO instruction 51 
truncating 119 
use in the language 175 

NUMERIC 
DIGITS option 63 
FORM option 63 
FUZZ option 63 
instruction 63 
option of PARSE Instruction 67,174 
settings saved during subroutine calls 50 

numeric patterns, parsing with 160 

o 
obtaining a larger evaluation block 305 
operation tracing results 79 
operator 

arithmetic 16, 167, 169 
as special characters 12 
comparison 16, 172 
concatenation 15 
logical 17 
precedence (priorities) of 18 

OPTIONS instruction 65 
ORDERED option of DATE function 101 
ORing character strings together 95 
OR, logical 

exclusive 17 
inclusive 17 

OTHERWISE clause 
See SELECT Instruction 

OUTDO field (module name table) 357 
output trapping 140 
OUTTRAP function 140 
overflow, arithmetic 175 
OVERLAY function 111 
overlaying a string onto another 111 
overview of REXX processing in different address 

spaces 183 

p 
packages, function 

See function packages 
packing a string with X2C 123 
parameter block 346 

format 346, 397 
relationship to parameters modules 346 

parameters modules 
changing the defaults 381 
default values for 369 
defaults 337,346,369 

IRXISPRM 346, 369 
IRXPARMS 346, 369 
IRXTSPRM 346, 369 

for IRXINIT 417 
format of 346 
providing you own 381 
relationship to parameter block 346 
restrictions on values for 386 

parentheses 
adjacent to blanks 12 
in expressions 18 
in function calls 85 
in parsing templates 163 

PARMBLOCK 
See parameter block 

PARSE instruction 66 
PARSE SOURCE token 348 
parsing 159-166 

definition 161 
general rules 159, 161 
Introduction 159 
literal patterns 162 
multiple strings 166 
patterns 162 
positional patterns 164 
selecting words 162 
variable patterns 163 

parsing templates 
in ARG instruction 46 
in PARSE Instruction 66 
in PULL instruction 71 

paSSing address of environment block to REXX 
routines 253, 378 

patterns in parsing 162 
period 

causing substitution in variable names 22 
in numbers 168 

period as placeholder in parsing 164 
permanent command destination change 44 
POS function 111 
position 

last occurrence of a string 108 
of character using INDEX 107 

positional patterns, parsing with 164 
powers of ten in numbers 11 

Ind •• 

Index 533 



Index 

precedence of operators 18 
precision of arithmetic 168 
prefix 

as used In examples in book 4,125,199 
defined in user profile, obtaining 152 

prefix operators 16, 17 
preloadlng a REXX exec 433 
primary data stack 409 
primary language in UPT 155 
primary messages flag 354 
PROCEDURE instruction 69 
profile 

See also user profile 
transaction program 31 
user 144 

programming restrictions 7 
programming services 

description 249 
function packages 276 
general considerations for calling routines 252 
IKJCT441 (variable access) 289 
IRXEXCOM (variable access) 289 
IRXHLT (Halt condition) 316 
IRXIC (trace and execution control) 302 
IRXLlN (LiNESIZE function) 324 
IRXRL T (get result) 305 
IRXSAY (SAY instruction) 313 
IRXSUBCM (host command environment table) 297 
IRXTXT text retrieval 319 
passing address of environment block to 

routines 253 
summary of 184 
writing external functions and subroutines 276 

programs 
APPC/MVS transaction 28 
attaching 34 
linking to 34 
retrieving lines with SOURCELINE 114 
transaction 28 

PROMPT function 144 
protecting variables 69 
pseudo random number function of RANDOM 112 
pseudonym files 30 
pseudonyms 30 
PULL instruction 71 
PULL option of PARSE instruction 67 
pure DBCS string 99, 486 
PUSH instruction 72 

Q 
QBUF command 230 
QELEM command 232 
QSTACK command 234 
query 

data set information 132 
existence of host command environment 237 
number of buffers on data stack 230 

534 TSO/E Version 2 MVS/REXX Reference 

query (continued) 
number of data stacks 234 
number of elements on data stack 232 

queue 
See also data stack 
counting lines in 111 
reading from with PULL 71 
writing to with PUSH 72 
writing to with QUEUE 73 

QUEUE instruction 73 
QUEUED function 111 

R 
RACF 

level installed 154 
status of 154 

RANDOM function 112 
random number function of RANDOM 112 
RC (return code) 

not set during interactive debug 242 
set by commands 25 
set to 0 if commands inhibited 81 
special variable 181,196 

reading from the data stack 71 
reads from input file 352 
reason codes 

for IRXINIT routine 420 
set by LlSTDSI 137 

recovery ESTAE 354 
reentrant environment 354,412 
remainder 

definition 172 
description of 167 
operator 16 

RENTRANT flag 354 
reordering data with TRANSLATE function 118 
repeating a string with COPIES 97 
repetitive loops 

altering flow 61 
controlled repetitive loops 52 
exiting 61 
simple do group 52 
simple repetitive loops 52 

replaceable routines 327, 332, 427 
data stack 457 
exec load 433 
host command environment 453 
input/output (110) 442 
message identifier 470 
storage management 463 
user 10 466 

request (shared variable) block (SHVBLOCK) 293 
reservation of keywords 195 
reserved command names 197 
restoring variables 55 
restrictions 

embedded blanks in numbers 12 

o 

\ 
) 

( '\ 
\ ) 
'---_/ 

c 



c 

c 

(" 

restrictions (continued) 
first character of variable name 21 
maximum length of results 15 

restrictions in programming 7 
restrictions on values for language processor 

environments 386 
REstructured eXtended eXecutor language (REXX) 

built-in functions 85 
description 1 
keyword instructions 43 

RESULT 
set by RETURN instruction 49.74 
special variable 196 

results 
length of 15 

Resume Typing (RT) immediate command 236. 302 
retrieving argument strings with ARG 46 
return codes 

-3 27.454 
as set by commands 25 
setting on exit 56 

RETURN instruction 74 
return string 

setting on exit 56 
returning control from REXX program 74 
REVERSE function 113 
REXAPPC1 pseudonym file 30 
REXAPPC2 pseudonym file 30 
REXX built-in functions 

See built-in functions 
REXX commands 

See TSO/E REXX commands 
REXX customizing services 

See customizing services 
REXX exec identifier 9 
REXX exit routines 

See exit routines 
REXX external entry paints 401 

alternate names 401 
IRXEX 261 
IRXEXC 289 
IRXEXCOM 289 
JRXEXEC 261 
IRXHLT 316 
IRXIC 302 
JRXINIT 412 
IRXINOUT 442 
IRXINT 412 
IRXIO 442 
IRXJCL 258 
IRXLD 433 
IRXLlN 324 
IRXLOAD 433 
IRXMID 470 
IRXMSGID 470 
IRXRLT 305 
IRXSAY 313 
IRXSTK 457 

---- ---~--~-

REXX external entry points (continued) 
IRXSUB 297 
IRXSUBCM 297 
IRXTERM 425 
IRXTERMA 501 
IRXTMA 501 
IRXTRM 425 
IRXTXT 319 
IRXUID 466 

REXX instructions 
See instructions 

Index 

REXX processing in different address spaces 183 
REXX programming services 

See programming services 
REXX replaceable routines 

See replaceable routines 
REXX vector of external entry pOints 401 
RIGHT function 113 
rounding 

definition 169 
using a character string as a number 11 

routines 
See also functions 
See also subroutines 
exit 429. 471 
for customizing services 327 
for programming services 249 
general considerations for TSO/E REXX 252 
replaceable 427 

RT (Resume Typing) immediate command 236. 302 
running off the end of a program 56 

S 
SAA 6 

CPI Communications calls 28 
SAMPLIB 

~seudonym files for transaction programs 30 
samples for parameters modules 381 

SAY instruction 75 
scientific notation 174 
search order 

controlling for REXX execs 355 
for external functions 87 
for external subroutines 87 
for functions 87 
for subroutines 49 
load libraries 87 

searching a string for a phrase 105 
secondary data stack 409 
secondary language in UPT 155 
seconds calculated from midnight 117 
seconds of CPU time used 153 
SELECT instruction 76 
semicolons 

implied 13 
omission of 43 
within a clause 9 

Index 535 

• \ 



Index 

sequence numbers in data set a, 433 
service units used (system resource manager) 154 
SETLANG function 147 
shared variable (request) block (SHVBLOCK) 293 
sharing data stack between environments 406 
sharing subpools 354 
Shift-in (SI) characters 486, 489 
Shift-out (SO) characters 486, 489 
SHVBLOCK request block 293 
SIGL 

set by CALL instruction 49 
set by SIGNAL Instruction 78 
special variable 181,196 

SIGN function 113 
SIGNAL 

execution of in subroutines 50 
In INTERPRET instruction 58 

SIGNAL instruction 77 
significant digits in arithmetic 168 
simple symbols 22 
single stepping 

See interactive debug 
solicited message table 

change current size 507 
definition 507 
determine current size 156 

solicited messages 
definition 128 
determining whether displayed 156 
processing during console session 507 
retrieving 126 
size of message table 156 
stored in message table 507 

source of the program and retrieval of information 67 
SOURCE option of PARSE instruction 67 
SOURCELINE function 114 
SPACE function 114 
special characters 12 
special variables 

RC 181,196 
RESULT 49,74,196 
SIGL 49, 181, 196 

SPSHARE flag 354 
stack 

See data stack 
ST ACKRT field (module name table) 359 
STANDARD option of DATE function 101 
status of Data Facility Hierarchical Storage Manager 

(DFHSM) 154 
status of RACF 154 
stem of a variable 

assignment to 23 
description of 22 
used in DROP Instruction 55 
used in PROCEDURE instruction 69 

step completion code 259, 261 
stepping through programs 

See interactive debug 

536 TSO/E Version 2 MVS/REXX Reference 

storage 
change value in specific storage address 149 
management replaceable routine 463 
managing 463 
obtain value in specific storage address 149 

STORAGE function 149 
restricting use of 354 

storage management replaceable routine 463 
STORFL flag 354 
storing REXX execs 7,392 
strictly equal operator 16,17 
strictly greater than operator 16, 17 
strictly greater than or equal operator 17 
strictly less than operator 16, 17 
strictly less than or equal operator 17 
strictly not equal operator 16, 17 
strictly not greater than operator 17 
strictly not less than operator 17 
string 

as literal constants 10 
as names of functions 10 
as names of subroutines 48 
comparison of 16 
concatenation of 15 
description of 10 
hexadecimal specification of 10 
interpretation of 58 
length of 15 
null 10, 15 
quotation marks in 10 
verifying contents of 120 

string patterns, parsing with 160 
STRIP function 114 
structure and syntax 9 
SUBCOM command 237 
subkeyword 20 
subpool number 350 
subpools, sharing 354 
subroutines 

calling of 48 
external, search order 87 
forcing built-In or external reference 49 
naming of 48 
passing back values from 74 
providing in function packages 276 
return from 74 
use of labels 48 
variables in 69 
writing external 276 

substitution 
in expressions 14 
In variable names 22 

SUBSTR function 115 
subtraction 

definition 169 
operator 16 

SUBWORD function 115 c 



o 

( 

( 

symbol 
assigning values to 21 
classifying 21 
compound 22 
constant 22 
description of 11 
simple 22 
uppercase translation 11 
use of 21 
valid names 11 

SYMBOL function 116 
syntax checking 

See TRACE Instruction 
SYNTAX condition of SIGNAL Instruction 178 
syntax diagrams 5 
syntax error 

messages 475 
traceback after 83 
trapping with SIGNAL Instruction 177 

syntax. general 9 
SYSDSN function 150 
SYSEXEC file 7.392 

controlling search of 355 
storing REXX execs 7.392 

SYSPKFL flag 353 
SYSPROC file 7. 392 

controlling search of 355 
storing REXX execs 7,392 

system files 
storing REXX execs 7,392 
SYSEXEC 7, 392 
SYSPROC 7, 392 

system function packages 280 
IRXEFMVS 282 
IRXEFPCK 282 
provided by products 282 
TSO/E-supplled 282 

system Information. determining 
CPU time used 153 
RACF level installed 154 
RACF status 154 
SRM service units used 154 
status of DFHSM 154 
TSO/E level Installed 154 

system resource manager (SRM). number of service 
units used 154 

system-supplled routines 
IKJCT441 289 
IRXEXCOM 289 
IRXEXEC 258 
IRXHLT 316 
IRXIC 302 
IRXINIT (Initialization) 412 
IRXINOUT 442 
IRXJCL 258 
IRXLlN 324 
IRXLOAD 433 
IRXMSGID 470 

-----,-------

system-supplied routines (continued) 
IRXRLT 305 
IRXSAY 313 
IRXSTK 457 
IRXSUBCM 297 
IRXTERM 425 
IRXTERMA 501 
IRXTXT 319 
IRXUID 466 

Systems Application Architecture (SAA) 6 
CPI Communications calls 28 

SYSTSIN ddname 357 
SYSTSPRT ddname 357 
SYSVAR function 152 

T 

Index 

TE (Trace End) immediate command 239, 244, 302 
templates, parsing 

general rules 159 
in ARG instruction 46 
in PARSE Instruction 66 
in PULL instruction 71 

temporary command destination change 44 
ten. powers of 174 
terminal information, determining 

DBCS supported 155 
Katakana supported 155 
lines available on terminal screen 152 
width of terminal screen 152 

terminal monitor program 
SeeTMP 

terminals 
finding number of lines with SYSVAR 152 
finding width with L1NESIZE 109 
finding width with SYSVAR 152 
reading from with PULL 71 
writing to with SAY 75 

terminating a language processor environment 425, 
501 

termination routine (lRXTERMA) 501 
termination routine (IRXTERM) 341,425 

user-written TMP 342 
terms and data 14 
text formatting 

See formatting 
See word 

text retrieval routine IRXTXT 319 
THEN 

as free standing clause 43 
following IF clause 57 
following WHEN clause 76 

TIME function 116 
TMP 

language processor environments for 
user-written 342 

user-written 342 

Index 537 



---------

Index 

TO phrase of DO instruction 51 
token for PARSE SOURCE 348 
tokens 10 
trace and execution control (IRXIC routine) 302 
Trace End (TE) immediate command 239,241,_302 
TRACE function 118 
TRACE instruction 79 

See a/so interactive debug 
TRACE setting 

altering with TRACE function 118 
altering with TRACE instruction 79 
querying 118 

Trace Start (TS) Immediate command 240,241,302 
trace tags 82 
traceback, on syntax error 83 
tracing 

action saved during subroutine calls 50 
by interactive debug 241 
data identifiers 82 
execution of programs 79 
external control of 244 
looping programs 244 

tracing flags 
+++ 82 
*-* 82 
>C> 82 
>F> 82 
>L> 82 
>0> 82 
>P> 82 
>V> 83 
>.> 82 
»> 82 

trailing blank removed using STRIP function 114 
trailing zeros 169 
transaction program 

APPC/MVS 28 
including pseudonyms 31 
profiles for 31 
writing 28 

TRANSLATE function 118 
translation 

See a/so uppercase translation 
with TRANSLATE function 118 
with UPPER instruction 84 

trap command output 140 
trap conditions 96 
trapping of conditions 177 
TRUNC function 119 
truncating numbers 119 
TS (Trace Start) Immediate command 240, 244, 302 
TSO host command environment 27 
TSOFl flag 344, 351 
TSOREXX1 (sample for IRXPARMS) 381 
TSOREXX2 (sample for IRXTSPRM) 381 
TSOREXX3 (sample for IRXISPRM) 381 
TSO/E address space 

host command environments 27 

538 TSO/E Version 2 MVS/REXX Reference 

TSO/E address space (continued) 
initialization of language processor 

environment 341 
overview of running an exec 191 
writing execs for 189 

TSO/E environment service 183, 192 
TSO/E external functions 

GETMSG 126 
lISTDSI 132 
MSG 139 
OUTTRAP 140 
PROMPT 144 
SETLANG 147 
STORAGE 149 
SYSDSN 150 
SYSVAR 152 

TSO/E profile 
See user profile 

TSO/E REXX commands 199 
DELSTACK 200 
DROPBUF 201 
EXECIO 203 
EXECUTIL 215 
immediate commands 

HE 222 
HI 223 
HT 224 
RT 236 
TE 239 
TS 240 

MAKEBUF 226 
NEWSTACK 228 
QBUF 230 
QELEM 232 
QSTACK 234 
SUBCOM 237 
valid in non-TSO/E 187 
valid in TSO/E 189 

TSO/E REXX customizing services 
See customizing services 

TSO/E REXX programming services 
See programming services 

TSO/E REXX replaceable routines 
See replaceable routines 

type of data checking with DATATYPE 99 
types of function packages 280 
types of language processor environments 331, 344 
typing data 

See SAY instruction 

U 
unassigning variables 55 
unconditionally leaving your program 56 
underflow, arithmetic 175 
unpacking a string with C2X 98 
unsolicited message table 

change current size 507 

c 

/ -" 
( 
~j 

c 



c 

c 

(-

unsolicited message table (continued) 
definition 507 
determine current size 156 

unsolicited messages 
definition 128 
determining whether displayed 156 
processing during console session 507 
retrieving 126 
size of message table 156 
stored in message table 507 

UNTIL phrase of DO instruction 51 
UPPER instruction 84 
UPPER option of PARSE instruction 66 
uppercase translation 

during ARG instruction 46 
during PULL instruction 71 
of symbols 11 
with PARSE UPPER 66 
with TRANSLATE function 118 
with UPPER instruction 84 

USA option of DATE function 101 
user function packages 280 
user 10 

as used in examples in book 4, 125, 199 
for current session 152 
replaceable routine 466 

user information, determining 
logon procedure for session 152 
prefix defined in user profile 152 
primary language 155 
secondary language 155 
user 10 for session 152 

user profile 
obtain prefix defined in 152 
prompting considerations 144 
prompting from interactive commands 144 

user-written TMP 
language processor environments for 342 
running REXX execs 342 

USERID function 119 
USERPKFL flag 353 

VALUE function 120 
VALUE option of PARSE instruction 68 
values used to initialize language processor 

environment 373 
VAR option of PARSE instruction 68 
variable access (IRXEXCOM) 289 
variable names 11 
variable patterns, parsing with 163 
variables 

compound 22 
controlling loops 52 
description of 21 
direct interface to 289 
dropping of 55 

variabies (continued) 
exposing to caller 69 
getting value with VALUE 120 
in internal functions 69 
in subroutines 69 
new level of 69 
parsing of 68 
resetting of 55 
set by GETMSG 127,513 
set by L1STDSI 135 
setting new value 21 
simple 22 
special 

RC 181,196 
RESULT 49,74,196 
SIGL 49, 181, 196 

testing for initialization 116 
translation to uppercase 84 
valid names 21 
with the L1STDSI function 135 

vector of external entry points 401 
VERIFY function 120 
VERSION option of PARSE instruction 68 
virtuallookaside facility 

See VLF 
VLF 

compression of REXX execs 393 

W 
WEEKDAY option of DATE function 101 
WHEN clause 

See SELECT instruction 
WHILE phrase of DO instruction 51 
whole numbers 

checking with DATATYPE 99 
description of 12 

word 
counting in a string 122 
deleting from a string 102 
extracting from a string 115, 121 
finding in a string 105 
finding length of 122 
in parsing 162 
locating in a string 121 

WORD function 121 
word processing 

See formatting 
See word 

WORDINDEX function 121 
WORDLENGTH function 122 
WORDPOS function 122 
WORDS function 122 
work block extension- 398 
writes to output file 352 
writing external functions and subroutines 276 
writing REXX execs 

for MVS operator activities 505 

Index 

Index 539 



Ind •• 

writing REXX execs (continued) 
for non-TSO/E 187 
for TSO/E 189 

writing to the stack 
with PUSH 72 
with QUEUE 73 

X 
XORlng character strings together 95 
XOR, logical 17 
XRANGE function 123 
X2C function 123 
X2D function 124 

z 
zeros added on the left 113 
zeros removal with STRIP function 114 

S~lal Character. 
. (period) 

as placeholder in parsing 164 
causing substitution in variable names 22 
in numbers 168 

< (less than operator) 17 
< < (strictly less than operator) 16, 17 
< < = (strictly less than or equal operator) 17 
< > (less than or greater than operator) 17 
< = (less than or equal operator) 17 
+ (addition operator) 16,169 
+ + + tracing flag 82 
I (inclusive OR operator) 17 
II (concatenation operator) 15 
&& (exclusive OR operator) 17 
& (AND operator) 17 
I prefix on TRACE option 81 
- (multiplication operator) 16, 169 
--- tracing flag 82 
-- (power operator) 16, 171 
.... (NOT operator) 17 
.... < (not less than operator) 17 
.... < < (strictly not less than operator) 17 
.... > (not greater than operator) 17 
.... > > (strictly not greater than operator) 17 
.... = (not equal operator) 17 
.... = = (strictly not equal operator) 16, 17 
1 (division operator) 16,169 
/I (remainder operator) 16,172 
1 = (not equal operator) 17 
1= = (not strictly equal operator) 16, 17 
, (comma) 

as continuation character 14 
in CALL instruction 49 
in function calls 85 
separator of arguments 49, 85 
within a parsing template 46,160,161,166 

540 TSO/E Version 2 MVS/REXX Reference 

% (Integer division operator) 16,172 
> (greater than operator) 17 
> C> tracing flag 82 
> F > tracing flag 82 
> L> tracing flag 82 
> 0 > tracing flag 82 
> P> tracing flag 82 
> v> tracing flag 83 
> . > tracing flag· 82 
> < (greater than or less than operator) 17 
> > (strictly greater than operator) 16,17 
> > > tracing flag 82 
> > = (strictly greater than or equal operator) 17 
> = (greater than or equal operator) 17 
? prefix on TRACE option 81 
: (colon) 

as a special character 13 
in a label 20 

= (equal sign) 
assignment indicator 21 
equal operator 17 
immediate debug command 241 
in DO instruction 51 

= = (strictly equal operator) 16, 17 
- (subtraction operator) 16, 169 
\ (NOT operator) 17 
\ < (not less than operator) 17 
\ < < (strictly not less than operator) 17 
\ > (not greater than operator) 17 
\> > (strictly not greater than operator) 17 
\= (not equal operator) 17 
\ = = (strictly not equal operator) 16 
\= = (strictly not equal operator) 17 

c 



c 

(\ 

c 

Readers' Comments 

TSO Extensions Version 2 
Procedures Language MVS/REXX Reference 

Publication No. SC28-1883-4 

Use this form to tell us what you think about this manual. If you have found errors in it, or if you want to 
express your opinion about it (such as organization, subject matter, appearance) or make suggestions for 
improvement, this is the form to use. 

To request additional publications, or to ask questions or make comments about the functions of IBM 
products or systems, you should talk to your IBM representative or to your IBM authorized remarketer. 
This form is provided for comments about the information in this manual and the way it is presented. 

When you send comments to IBM, you grant IBM a nonexclusive right to use or distribute your comments in 
any way it believes appropriate without incurring any obligation to you. 

Be sure to print your name and address below if you would like a reply, or provide your FAX telephone 
number if you would prefer a FAX response. 

Name 

Company or Organization 

Phone No. 

(I' FAX (United States & Canada): 914+296-6496 
(I' FAX (Other countries): 001 +914+296-6496 

Address 



Readers' Comments 
SC28-1883-4 

--------- -------- - ------ ----------_.-
® 

· · · · · · · · · · i 

I 
! 

! 
I ! 

i 
Fold and Tape Please do not staple Fold and Tape I 

! ----------------------------------------------------------------------------------------------------------------------------------1------------1-------------------------------------------------------~ 

NO POSTAGE 
\ NECESSARY 
• IF MAILED IN THE 

UNITED STATES 

BUSINESS REPLY MAIL 
FIRST CLASS MAIL PERMIT NO. 40 ARMONK. NEW YORK 

POSTAGE WILL BE PAID BY ADDRESSEE 

International Business Machines Corporation 
Department 058, Building 921-2 
PO BOX 950 
POUGHKEEPSIE NY 12602-9935 

1 ••• 11 •• 1.1.11 •• 11 ••••• 1.11.1 •• 1.1'11111 •• 1.1 ••• 11.1 

· · · · · · · · · · · ! 
i 
i 

I 
i 
! 

............... _ .................... _ .......... --..................... __ ........... _ ....... __ ....... __ .......... ---...... --------.... --.... ----.. --------................. -.. ----............. --............... ------.... --........... -...... ---................. -.. -.... --.. --............................ _---_ ........ _ .............. _------_ .............. 1 
i 
! Fold and Tape Ple.se do not staple Fold and Tape 

• 

SC28-1883-4 

--------~-~. -

Cut or Fold 
Along Line 

c 

C: 
Cut or Fold 
Along Line 



--------- -------- - ---- - - ----------_.-
® 

File Number: 5370/5390-39 

Printed in U.S.A. 


