TSO Extensions Version 2 SC26-1883-4
Procedures Language MVS/REXX Reference

TSO Extensions Version 2
Procedures Language MVS/REXX Reference

SC28-1883-4

Fifth Edition (August 1991)

This is a major revision of SC28-1883-3. See the Summary of Changes for a summary of the changes made
to this manual. Technical changes or additions to the text and illustrations are indicated by a vertical line
to the left of the change.

This edition applies to Version 2 Release 3.1 of the TSO Extensions (TSO/E) Licensed Program, 5685-025,
and to all subsequent releases and modifications until otherwise indicated in new editions or Technical
Newsletters. The previous edition still applies to Version 2 Release 3 of TSO/E, 5685-025, and may be
ordered using the temporary order number ST00-4633. Make sure you are using the correct edition for the
level of the product.

Order publications through your IBM representative or the IBM branch office serving your locality.
Publications are not stocked at the address given below.

A form for readers’ comments is provided at the back of this publication. If the form has been removed,
address your comments to:

IBM Corporation, Department D58
PO Box 950

Poughkeepsie, NY 12602

United States of America

& FAX (United States & Canada): 914+ 296 + 6496
@& FAX (Other Countries): 0014914+ 296 + 6496

When you send information to IBM, you grant IBM a non-exclusive right to use or distribute the information
in any way it believes appropriate without incurring any obligation to you.

© Copyright International Businéss Machines Corporation 1988, 1991. All rights reserved.

Note to U.S. Government Users — Documentation related to restricted rights — Use, duplication or
disclosure is subject to restrictions set forth in GSA ADP Schedule Contract with IBM Corp.

dh

(

Contents

Chapter 1. Infroduction L
Who Should Read ThisBook
What the SAA Solutionls
Supported Environments
Common Programming Interface
How toUse This Book i
How to Read the Syntax Diagrams
For Further REXX Information

Chapier 2. General Concepds . . L.
Brief Description of the REstructured eXtended eXecutor Language
Where to Find More Information
Structure and General Syntax
Characters e
TOKeNS . . e
Implied Semicolons
Continuations e
Expressions and Operators
EXpressions
Operators e
String Concatenation
Arithmetic
Comparison
Logical (Boolean)
Parentheses and Operator Precedence
Examples
Clauses and Instructions S
Null Clauses e
Labels e
Instructions
Assignments
Keyword Instructions
Commands e
Assignments and Symbols
Constant Symbols
Simple Symbols e
Compound Symbols
Stems
Notes e
Commands to External Environments
Environment
Commands e
Host Commands and Host Command Environments
The TSO Host Command Environment
The CONSOLE Host Command Environment
The ISPEXEC and ISREDIT Host Command Environments
The CPICOMM and LU62 Host Command Environments
Pseudonym Files
Transaction Program Profiles
Sample Transaction Programs
The MVS Host Command Environment
Host Command Environments for Linking to and Attaching Programs

© Copyright IBM Corp. 1988, 1991

The LINK and ATTACH Host Command Environments 35

The LINKMVS and ATTCHMVS Host Command Environments 36 TN
The LINKPGM and ATTCHPGM Host Command Environments 39 \
Chapter 3. Keyword Instructions 43
ADDRESS 44
ARG . . 46
CALL e 48
DO . 51
Simple DOGroup e 52
Simple Repetitive Loops 52
Controlied Repetitive Loops 52
Conditional Phrases (WHILE and UNTIL) e 54
DROP e e 55
EXIT 56
IF 57
INTERPRET e 58
ITERATE . . . 60 ;
LEAVE 61 ~ S
NOP . e 62
NUMERIC . . . e 63
OPTIONS . . . 65
PARSE e 66
PROCEDURE e 69
PULL 71
PUSH .. 72
QUEUE . . . e 73 o~
RETURN . e 74 ¢
SAY 75 e
SELECT 76
SIGNAL . .. 77
TRACE . . . e 79
Alphabetic Character (Word) Options 80
PrefixOptions e 80
NumericOptions S 81
Tracing TipsS 81
A Typical Example 82 0
Format of TRACE Output 82 “
UPPER . . . 84
Chapterd4. Functions 85
Syntax . .. 85
Calls to Functions and Subroutines 86
Search Order 87
Errors During Execution 90
Built-in Functions 91
ABBREV (Abbreviation) 92
ABS (Absolute Value) e 92
ADDRESS 93
ARG (Argument) e e e 93
BITAND (Bitby Bit AND) 94
BITOR (Bitby BitOR) B 95 -
BITXOR (Bit by Bit Exclusive OR) 95 (x
CENTER/CENTRE s 96 “o
COMPARE 96
CONDITION . . . 96

iv TSO/E Version 2 MVS/REXX Reference

COPIES e 97

C2D (CharactertoDecimal) 98
C2X (Character to Hexadecimal) 98
DATATYPE e 99
DATE . . 100
DBCS (Double-Byte CharacterSet) 101
DELSTR (Delete String) e 102
DELWORD (Delete Word) 102
DIGITS . . 102
D2C (Decimal to Character), 103
D2X (Decimal to Hexadecimal) 103
ERRORTEXT 104
EXTERNALS 104
FIND . . . 105
FORM . . 105
FORMAT . . 105
FUZZ . 106
GETMSG 107
INDEX . . 107
INSERT 107
JUSTIFY . 108
LASTPOS (Last Position) 108
LEFT . 109
LENGTH . .. 109
LINESIZE 109
LISTDSI . . . e 110
MAX (Maximum) 110
MIN (Minimum) e 110
MSG . . 110
OQUTTRAP . . 110
OVERLAY . . 111
POS (Position) 111
PROMPT . . 111
QUEUED 111
RANDOM e 112
REVERSE 113
RIGHT e 113
SETLANG 113
SIGN . . e 113
SOURCELINE e 114
SPACE 114
STORAGE 114
STRIP . . 114
SUBSTR (Substring) e 115
SUBWORD 115
SYMBOL . . . 116
SYSDSN . e 116
SYSVAR . 116
TIME . . 116
TRACE . . . e 118
TRANSLATE 118
TRUNC (Truncate) P 119
USERID 119
VALUE . . 120
VERIFY . 120
WORD 121

Contents V

WORDINDEX e e
WORDLENGTH e
WORDPOS (Word Position)
WORDS e
XRANGE (Hexadecimal Range)
X2C (Hexadecimal to Character)
X2D (Hexadecimalto Decimal)
TSO/E External Functions
GETMSG
Overview of Using GETMSG During a Console Session
Using the Command and Response Token (CART) and Mask
LISTDSI e
Specifying DataSetNames
Variables That LISTDSISets
Reason Codes
MSG . . .
OUTTRAP .
Additional Variables That OUTTRAP Sets
PROMPT e
Interaction of Three Ways to Affect Prompting
SETLANG . . .
STORAGE e
SYSDSN . . e
SYSVAR .
User Information
Terminal Information
Exec Information
System Information
Language Information
Console Session Information
Relationship of CLIST Control Variables and SYSVAR Function

Chapter 5. Parsing for PARSE, ARG, and PULL
Introduction
ParsingWords
Parsing Using String Patterns
Parsing Using Numeric Patterns
Parsing Arguments
Definition
Parsing StringsintoWords
Parsing with Literal String Patterns
Parsing with Variable String Patterns,
Use of the Period as a Placeholder
Parsing with Positional (Numeric) Patterns
Parsing Multiple Strings

Chapter 6. Numbers and Arithmetic
Introduction e
Definition e
Numbers e
Precision e
Arithmetic Operators
Arithmetic Operation Rules—Basic Operators
Addition and Subtraction e
Multiplication, ... A
Division

TSO/E Version 2 MVS/REXX Reference

AN

AN

Basic Operator Examples 171

Arithmetic Operation Rules—Additional Operators 171
PoWer . e 171
Integer Division 172
Remainder 172
Additional Operator Examples 172

Numeric Comparisons 172

Exponential Notation 173

Numeric Information 175

Whole Numbers 175

Numbers Used Directly by REXX 175

Errors 175

Chapter 7. Conditions and Condition Tvaps 177
Action Taken When a Condition Is Not Trapped 178
Action Taken When a ConditionIs Trapped 178
Condition Information 180

Chapter 8. Using REXY in Different Address Spaces 183

Additional REXX Support 184

TSO/E REXX Programming Services 184

TSO/E REXX Customizing Services 186

Writing Execs That Run in Non-TSO/E Address Spaces 187

Running an Exec in a Non-TSO/E Address Space 188

Writing Execs That Run in the TSO/E Address Space 189

Running an Exec in the TSO/E Address Space 191

Summary of Writing Execs for Different Address Spaces 192

Chapter 8. Reserved Keywords, Speclal Yariables, and Command Mames . . 195

Reserved Keywords e e 195
Special Variables 196
Reserved Command Names 197
Chapler 10, TBOME REXX Comwmands 199
DELSTACK . . e 200
DROPBUF e 201
EXECIO e 203
EXECUTIL e 215
HE . 222
Hl 223
HT e 224
Immediate Commands 225
MAKEBUF . . . 226
NEWSTACK e 228
QBUF . e 230
QELEM e 232
QSTACK . . e 234
RT e 236
SUBCOM e 237
TE 239
TS 240
Chapler 11, Debug Alds 241
Interactive Debugging of Programs 241
Interrupting Execution and Controlling Tracing 244

Interrupting Exec Processing e 244

Contents Vii

Considerations for Interrupting Exec Processing
| Using the HE Immediate Command to HaltanExec
Starting and Stopping Tracing

Chapter 12. TSO/E REXX Programming Services
General Considerations for Calling TSO/E REXX Routines
Parameter Lists for TSO/E REXX Routines
Specifying the Address of the EnvironmentBlock
Using the Environment Block Address Parameter
Using the Environment Block for Reentrant Environments
Return Codes for TSO/E REXX Routines
Exec Processing Routines — IRXJCL and IRXEXEC
| The IRXJCL Routine
| Using IRXJCL to Run a REXX Execin MVSBatch
Invoking IRXJCL From a REXX Exec or a Program
ReturnCodes e
The IRXEXEC Routine
Entry Specifications
Parameters
The Exec Block (EXECBLK)
Format of ArgumentList e
The In-Storage Control Block (INSTBLK)
The Evaluation Block (EVALBLOCK)
How IRXEXEC Returns Information About Syntax Errors
Return Specifications
ReturnCodes
External Functions and Subroutines, and Function Packages
Interface for Writing External Function and Subroutine Code
Entry Specifications
Parameters
Argument List e
Evaluation Block
Return Specifications
Return Codes
Function Packages
Directory for Function Packages
Specifying Directory Names in the Function Package Table
Variable Access Routine — IRXEXCOM
Entry Specifications
Parameters e
The Shared Variable (Request) Block - SHVBLOCK
Function Codes (SHVCODE)
Return Specifications
Return Codes
Maintain Entries in the Host Command Environment Table — IRXSUBCM
Entry Specifications
Parameters e
Functions
Format of a Host Command Environment Table Entry
Return Specifications
Return Codes
Trace and Execution Control Routine — IRXIC
Entry Specifications
Parameters
Return Specifications
Return Codes

Vill TSOJE Version 2 MVS/REXX Reference

245
245
246

-

~

~__

Get Result Routine — IRXRLT 305

Entry Specifications 306
Parameters 306
Functions e 308
Return Specifications 310
Return Codes 310
SAY Instruction Routine — IRXSAY 313
Entry Specifications 313
Parameters e 313
Functions 315
Return Specifications 315
ReturnCodes 315
Halt Condition Routine — IRXHLT 316
Entry Specifications 316
Parameters 316
Functions e 317
Return Specifications 318
Return Codes 318
Text Retrieval Routine — IRXTXT 319
Entry Specifications 319
Parameters 320
Functionsand Text Units 321
Return Specifications 323
Return Codes 323
LINESIZE Function Routine — IRXLIN 324
Entry Specifications 324
Parameters 324
Return Specifications 325
ReturnCodes e 326
Chapter 13, TSO/E REXX Customizing Services 327
Flow of REXX Exec Processing 328
Initialization and Termination of a Language Processor Environment 328
Types Of Language Processor Environments 331
Loading and Freeing @ REXX EXEC oo v oo oo 331
Processing of the REXXExec 331
Overview of Replaceable Routines 332
Exit Routines 333
Chapter 14, Language Processor Environments 335
Overview of Language Processor Environments 336
Using the Environment Block 339
When Environments are Automatically Initialized in TSO/E 341
Initializing Environments for User-Written TMPs 342
When Environments are Automatically Initialized inMVS 343
Types of Environments — Integrated and Not Integrated Into TSO/E 344
Characteristics of a Language Processor Environment 346
Flags and Corresponding Masks 351
Module Name Table 356
Relationship of Fields in Module Name Table to Types of Environments . . . 360
Host Command Environment Table 361
Function Package Table 365
Values Provided in the Three Default Parameters Modules 369
How IRXINIT Determines What Values to Use for the Environment 373
Values IRXINIT Uses to Initialize Environments 373
Chains of Environments and How Environments Are Located 375

Contents iX

Locating a Language Processor Environment
Changing the Default Values for Initializing an Environment
Providing Your Own Parameters Modules
Changing Values for ISPF
Changing Values for TSO/E
Changing Values for TSO/EandISPF
Changing Values for Non-TSO/E,
Considerations for Providing Parameters Modules
Specifying Values for Different Environments
Parameters You CannotChange
Parameters You Can Use in Any Language Processor Environment
Parameters You Can Use for Environments That Are Integrated Into TSO/E
Parameters You Can Use for Environments That Are Not Integrated Into
TSO/E . . e
Flag Settings for Environments Initialized for TSO/E and ISPF
Using SYSPROC and SYSEXEC for REXXExecs
Control Blocks Created for a Language Processor Environment
Format of the Environment Block (ENVBLOCK)
Format of the Parameter Block (PARMBLOCK)
Format of the Work Block Extension
Format of the REXX Vector of External Entry Points
Changing the Maximum Number of Environments in an Address Space
Using the Data Stack in Different Environments

Chapter 15, Initialization and Termination Rovtines
Initialization Routine — IRXINIT
Entry Specifications
Parameters e
Specifying How REXX Obtains Storage in the Environment
How IRXINIT Determines What Values to Use for the Environment
Parameters Module and In-Storage Parameter List
Specifying Values for the New Environment
Return Specifications
Output Parameters
ReturnCodes
Termination Routine — IRXTERM,
Entry Specifications
Parameters
Return Specifications e
ReturnCodes e e e

Chapter 16. Replaceable Routinesand Exits
Replaceable Routines
General Considerations
Using the Environment Block Address
Installing Replaceable Routines
Exec Load Routine e
Entry Specifications
Parameters
Functions You Can Specify for Parametert
Formatofthe ExecBlock
Format of the In-Storage Control Block.
Return Specifications
ReturnCodes
Input/Output Routine
Entry Specifications

X TSO/E Version 2 MVS/REXX Reference

/‘ N\\

S

Parameters e 443

Functions Supported forthe I/ORoutine 444
Buffer and Buffer Length Parameters 447
Line Number Parameter 448
Data Set InformationBlock 448
Return Specifications 451
ReturnCodes e 451
Host Command Environment Routine 453
Entry Specifications 453
Parameters 454
Error Recovery 455
Return Specifications 455
ReturnCodes e 455
Data Stack Routine 457
Entry Specifications 458
Parameters e 458
Functions Supported for the Data Stack Routine 460
Return Specifications 461
ReturnCodes e 462
Storage Management Routine L. 463
Entry Specifications 463
Parameters 464
Return Specifications 465
ReturnCodes e 465
UserID Routine e 466
Entry Specifications 466
Parameters 466
Functions Supported for the User ID Routine 468
Return Specifications e 468
ReturnCodes e 469
Message ldentifier Routine 470
Entry Specifications 470
Parameters 470
Return Specifications 470
ReturnCodes 470
REXX Exit Routines 471
Exits for Language Processor Environment Initialization and Termination .. 471
Exec Initialization and Termination Exits 472
Exec Processing (IRXEXEC) Exit Routine 472
Attention Handling Exit Routine 473
Appendix £, Error Numbers and Messages L . 475
Appendix B. Doubls-Byle Characler Set (DBCS) Support 485
General Description e 485
Enabling DBCS Data Operations 486
Pure DBCS Strings and Mixed SBCS/DBCS Strings 486
Mixed String Validation 486
Instruction Examples 487
PARSE e 487
PUSHand QUEUE 488
SAYand TRACE 488
UPPER . . . 488
DBCS Function Handling 488
Built-in Function Examples 490
ABBREV . . . 490

Contents Xi

Xii

COMPARE 490

COPIES S 490
DATATYPE 490

FIND . 490
INDEX, POS, and LASTPOS i 490
INSERT and OVERLAY i 491
JUSTIFY . . 491
LEFT, RIGHT,and CENTER A 491
LENGTH 491
REVERSE e 491
SPACE . . . 492
STRIP . . e 492
SUBSTRand DELSTR i 492
SUBWORD and DELWORD 492
TRANSLATE e 492
VERIFY . e 492
WORD, WORDINDEX, and WORDLENGTH 493
WORDS e 493
WORDPOS e 493
DBCS Processing Functions e 494
Counting Option 494
Function Descriptions L 494
DBADJUST e 494
DBBRACKET 494
DBCENTER 495
DBCJUSTIFY . . e 495
DBLEFT . . . e e 496
DBRIGHT 496
DBRLEFT 497
DBRRIGHT e 497
DBTODBCS e 498
DBTOSBCS e 498
DBUNBRACKET e 498
DBVALIDATE e e 499
DBWIDTH . .. e 499
Appendix C. IRXTERMA Routine 501
Entry Specifications L 501
Parameters e 502
Return Specifications 503
ReturnCodes e 503
Appendix D. Writing REXX Execs to Perform MVS Operator Activities 505
Activating a Console Session and Issuing MVS Commands 505
Using the CONSOLE Host Command Environment 505
Processing Messages Duringa ConsoleSession 507
Using the CART to Associate Commands and Their Responses 508
Considerations for Multiple Applications 509
Example of Determining Results From Commands in OneExec 510
Appendix E. Additional Variables That GETMSG Sets 513
Variables GETMSG Sets For the Entire Message 513
Variables GETMSG Sets For Each Line of Message Text 517
Bibliography 519
Related Publications e 519

TSO/E Version 2 MVS/REXX Reference

)

N

|

TSO/E Pubilications
SAA Publications 519

MVS/ESA Publications 519
ISPF Publications 519
.. 521

Contents Xiii

Xiv TSO/E Version 2 MVS/REXX Reference

R RN R T

Notices

References in this publication to IBM products, programs or services do not imply
that IBM intends to make these available in all countries in which IBM operates.

Any reference to an IBM licensed program or other IBM product in this publication
is not intended to state or imply that only IBM’s program or other product may be
used. Any functionally equivalent program which does not infringe any of IBM’s
intellectual property rights may be used instead of the IBM product. Evaluation and
verification of operation in conjunction with other products, except those expressly
designated by IBM, is the user’s responsibility.

IBM may have patents or pending patent applications covering subject matter in this
document. The furnishing of this document does not give you any license to these
patents. You can send license inquiries, in writing, to the IBM Director of
Commercial Relations, IBM Corporation, Purchase, NY 10577.

2 oy g
kil la%»‘“

ot

imenaoes

This book is intended to help customers to write programs in the REXX
programming language and to use the programming and customizing services
TSO/E provides for REXX processing. This book documents general-use
programming interfaces and associated guidance information provided by TSO
Extensions Version 2.

General-use programming interfaces allow the customer to write programs that
obtain the services of TSO Extensions Version 2.

The programming interfaces include data areas and parameter lists. Unless
otherwise stated, all fields in data areas/parameter lists are part of the
programming interface. However, all “Reserved ...” fields are not part of the
programming interface.

TR,
=g
&
5
;;‘i
4
s
E

i

The following terms, DENOTED BY AN ASTERISK (*), used in this publication, are
trademarks of the IBM Corporation in the United States and/or other countries:

BookMaster

IBM

MVS/ESA

Operating System/2

0sr2

Operating System/400

08/400

Systems Application Architecture
SAA

® © o o o ¢ o o o

© Copyright IBM Corp. 1988, 1991 XV

xvi

TSO/E Version 2 MVS/REXX Reference

4

EN

S

o
gm

asone iy oirs 1 gy A A By g
Summary of Chang

Summary of Changes
for SC28-1883-4
TSO Extensions Version 2 Release 3.1

This major revision consists of changes to support TSO Extensions Version 2
Release 3.1 (TSO/E 2.3.1). The previous edition still applies to TSO/E Version 2
Release 3 and may be ordered using the temporary order number ST00-4633.

New Information

* Information has been added about four new host command environments;
LINKMVS, ATTCHMVS, LINKPGM, and ATTCHPGM. The environments let you
link to and attach unauthorized programs and pass multiple parameters.

* Four TSO/E REXX programming routines have been added:

— [RXSAY lets you write a character string to the same output stream as the
SAY instruction

— IRXHLT lets you query or reset the halt condition

— IRXTXT lets you retrieve the same text the TSO/E REXX interpreter uses for
the ERRORTEXT built-in function and for certain options of the DATE built-in
function

— IRXLIN lets you retrieve the same value the LINESIZE built-in function
returns.

* An optional environment block address parameter has been added to many of
the TSO/E REXX routines. The parameter lets high-level languages more easily
specify the environment in which they want a routine to run.

* An optional return code parameter has been added to many of the TSO/E REXX
routines. The parameter lets high-level languages more easily obtain the return
code from a routine.

¢ Information about variable length parameter lists and specifying the address of
the environment block has been added to Chapter 12, “TSO/E REXX
Programming Services.”

* A new return code 32 has been added to many of the TSO/E REXX routines. The
return code indicates that the parameter list passed to the routine is invalid.

¢ [nformation about using the address of the environment block when you call
replaceable routines has been added to Chapter 16, “Replaceable Routines and
Exits.”

* A new return code 24 has been added to the I/O replaceable routiné.

* The get result routine, IRXRLT, has been updated to include two new functions
for parameter 1; GETRLTE and GETEVAL. The GETRLTE function is the same
as the GETRLT function, except GETRLTE provides support when REXX execs
are nested. The GETEVAL function lets a compiler runtime processor obtain an
evaluation block to handle the result from a compiled REXX exec.

* A new function, PULLEXTR, has been added for parameter 1 of the data stack
replaceable routine. PULLEXTR lets you bypass the data stack and read from
the input stream.

© Copyright IBM Corp. 1988, 1991 Xvii

Information about sample transaction programs TSO/E provides in
SYS1.SAMPLIB has been added to the description of the CPICOMM and LU62 AN

host command environments. “

A new function, TSOID, has been added for parameter 1 of the user ID
replaceable routine. TSOID returns the same value as the USERID built-in
function in an environment that is integrated into TSO/E.

A new return code 4 has been added to the EXECIO command.

A new immediate command, HE (Halt Execution), has been added to
Chapter 10, “TSO/E REXX Commands.” Chapter 11, “Debug Aids” also
contains information about how to use HE to halt the execution of execs.

Information has been added to the descriptions of the host command
environments about the minimum and maximum values that can be set in the
REXX special variable RC. '

Changed Information

The environment block (ENVBLOCK) has been updated to include the address of
a compiler programming table and the address of an attention routine control
block.

The work block extension has been updated to include three new fields:

— A fullword that lets a compiler runtime processor have an anchor for each
compiled exec in an environment

— The address of the PARSE SOURCE string
— The length of the PARSE SOURCE string. TN

The REXX vector of external entry points has been updated to include the new
TSO/E REXX programming services; IRXSAY, IRXHLT, IRXTXT, and IRXLIN.

The EXECIO command has been enhanced to allow you to open a data set
without reading or writing any records.

The host command environment table in the three default parameters modules
that TSO/E provides has been updated for the LINKMVS, ATTCHMVS, LINKPGM,
and ATTCHPGM environments.

Information has been added about a new SAMPLIB member, TSOANCH, that
you can use to change the maximum number of environments that can be
initialized in an address space.

Technical and editorial changes have been made throughout the book.

XViii TSO/E version 2 MVS/REXX Reference

Summary of Changes
for SC28-1883-3
TSO Extensions Version 2 Release 3

This major revision consists of changes to support TSO Extensions Version 2
Release 3 (TSO/E 2.3). The previous edition still applies to TSO/E Version 2
Release 2 and may be ordered using the temporary order number ST00-4464.

New Information

¢ Information has been added about two new host command environments,
CPICOMM and LU62. The new environments let you write APPC/MVS
transaction programs in REXX. The CPICOMM environment supports the SAA
CPI Communications calls and the LU62 environment supports the APPC/MVS
calls that are based on the SNA LU 6.2 architecture.

¢ Information about the compression of REXX execs has been added to “Using
SYSPROC and SYSEXEC for REXX Execs” on page 392. Execs in the SYSPROC
system level or application level file that are stored in VLF are compressed.

¢ |nformation has been added to Chapter 11, “Debug Aids” about different
considerations for interrupting exec processing in TSO/E.
Changed Information

¢ In the default parameters module that TSO/E provides for TSO/E (IRXTSPRM),
the NOLOADDD flag setting has been changed from 1 (on) to 0 (off). With this
setting, the system now searches SYSEXEC followed by SYSPROC. Information
about the new search order has been changed throughout the book.

¢ The host command environment tables in the three parameters modules that
TSO/E provides have been updated for the CPICOMM and LU62 environments.

Technical and editorial changes have been made throughout the book.

Summary of Changes
for SC28-1883-2
TSO Extensions Version 2 Release 2

This major revision consists of changes to support TSO Extensions Version 2
Release 2 (TSO/E 2.2). The previous edition still applies to TSO/E Version 2
Release 1.0 and Release 1.1 and may be ordered using the temporary order number
ST00-3808.

New Information

* The CONSOLE host command environment has been added. The environment
lets you issue MVS system and subsystem commands.

¢ Two TSO/E external functions have been added:

— GETMSG lets you retrieve messages that have been issued during a
console session

— SETLANG lets you query and change the language in which the system
displays REXX messages.

Summary of Changes XIX

Appendix E, “Additional Variables That GETMSG Sets” has also been added to
describes additional variables that the new GETMSG external function sets.

* New arguments have been added to the TSO/E external function SYSVAR. The
arguments return language and console session information. The arguments
are SYSPLANG, SYSSLANG, SYSDTERM, SYSKTERM, SOLDISP, UNSDISP,
SOLNUM, UNSNUM, MFTIME, MFOSNM, MFJOB, and MFSNMJBX.

e Appendix D, “Writing REXX Execs to Perform MVS Operator Activities” has
been added to provide information about the commands and REXX services
TSO/E provides for running an extended MCS console session.

* A new bit (bit 3) has been added to parameter 3 in the parameter list for the
IRXEXEC routine. New return codes (20001 — 20099) have also been added for
IRXEXEC. The new bit and return codes allow you to determine whether the
language processor detected a syntax error in the exec.

¢ New reason codes (25, 26, and 27) have been added to the initialization routine,
IRXINIT.

e Parameter 8 has been added to the initialization routine, IRXINIT, to let you
specify how REXX obtains storage in the language processor environment.

¢ A new function, TSOLOAD, has been added for parameter 1 of the exec load
replaceable routine.
Changed Information

® The title of the book has been changed to TSO Extensions Version 2 Procedures
Language MVS/REXX Reference.

e The language field in the parameters module has been changed from 2 bytes to
3 bytes and the language codes are now three character codes instead of two
characters.

e The value in the version field of the parameters modules has been changed
from 0100 to 0200.

* The values in the host command environment table in the default parameters
modules that TSO/E provides have been changed for the new CONSOLE
environment.

Editorial and technical changes have been made throughout the book.

Summary of Changes
for SC28-1883-1
TSO Extensions Version 2

This major revision consists of changes to support TSO/E Version 2.

New Information

* A new language code (CN) for REXX messages has been added to support
simplified Chinese.

¢ A new section has been added to Chapter 8, “Using REXX in Different Address
Spaces” that summarizes the instructions, functions, commands, and services
you can use in a REXX exec.

XX TSO/E Version 2 MVS/REXX Reference

P

*}T,,,//

A

* |nformation describing the differences between replaceable routines and exits
and their use in TSO/E and non-TSO/E address spaces has been added.

* |nformation has been added about how to define function packages that other
IBM products provide for TSO/E REXX.

Editorial and technical changes have been made throughout the book.

Summary of Changes

for SC28-1883-0

as Updated February 10, 1989

by Technical Newsletter SN28-1293

This Technical Newsletter, which supports TSO Extensions (TSO/E) Version 2,
contains the following changes for TSO/E support of the REXX programming
language. The newsletter also contains minor technical changes.

¢ New information about how to initialize a language processor environment if
you use a user-written terminal monitor program (TMP)

* New values returned by the PARSE VERSION instruction for the language level
description (3.46) and the language processor release date (30 Jun 1988). The
new values support APAR OY17590 and are returned if you install the PTF that
supports the APAR. If the PTF is not installed, the values returned are “3.45”
and “20 Oct 1987.”

Summary of Changes
for SC28-1883-0
TSO Extensions Version 2

This book is a new book in the TSO/E Version 2 library. It contains reference
information about TSO/E REXX.

APAR Information

The following APARs provide TSO/E REXX instructions, functions, and services that
are described in this book. The instructions, functions, and services listed below
can be used only if your installation installs the PTF that supports the particular
APAR.

* APAR OY17498 provides the TSO/E function MSG, which is described on page
139.

e APAR OY17590 provides the:

— Ability to enable and disable condition traps using the CALL instruction
(CALL ON and CALL OFF). The CALL instruction is described on page 48.
Chapter 7, “Conditions and Condition Traps” describes how to enable and
disable condition traps.

— Ability to specify NAME trapname using the SIGNAL ON instruction. The
SIGNAL instruction is described on page 77. Chapter 7, “Conditions and

Condition Traps” describes how to enable and disable condition traps.
/

!

Summary of Changes XXi

xxii

— CONDITION built-in function, which is described on page 96.

— Ability to specify up to 20 expressions on the CALL instruction and on
function calls, such as MAX and MIN. If the PTF for the APAR is not
installed, the maximum number of expressions you can specify is 10.

— Exit routines for exec initialization and exec termination. The exits are
described in “REXX Exit Routines” on page 471.

¢ APAR 0Y17558 provides the SYS1.SAMPLIB members for coding the
parameters modules IRXPARMS, IRXTSPRM, and IRXISPRM. The SAMPLIB
members are:

— TSOREXX1 (for IRXPARMS)
— TSOREXX2 (for IRXTSPRM)
— TSOREXX3 (for IRXISPRM)

e APAR OY17979 provides alternate entry point names for the TSO/E REXX
external entry points. The alternate entry point names are less than six
characters and allow FORTRAN programs to call the TSO/E REXX external entry
points.

TSO/E Version 2 MVS/REXX Reference

N

introduction

Chapter 1. Introduction

This introductory section:

¢ |dentifies the book’s purpose and audience
* Gives a brief overview of the Systems Application Architecture* (SAA*) solution
* Explains how to use the book.

SAA Solution Is

ould Read This Book

This book describes the TSO/E Procedures Language MVS/REXX interpreter
(referred to as the interpreter or language processor) and the REstructured
eXtended eXecutor (REXX) language. Together, the language processor and the
REXX language are known as TSO/E REXX. This book is intended for experienced
programmers, particularly those who have used a block-structured, high-level
language (for example, PL/I, Algol, or Pascal).

This book is a reference rather than a tutorial. It assumes you are already familiar
with REXX programming concepts.

TSO/E REXX is the implementation of the SAA Procedures Language on the MVS
system. Although TSO/E Version 2 provides support for REXX, you can run REXX
programs (called REXX execs) in any MVS address space. That is, you can run a
REXX exec in TSO/E and non-TSO/E address spaces.

Descriptions include the use and syntax of the language and explain how the
language processor “interprets” the language as a program is running. The book
also describes TSO/E external functions and REXX commands you can use in a
REXX exec, programming services that let you interface with REXX and the
language processor, and customizing services that let you customize REXX
processing and how the language processor accesses and uses system services,
such as storage and I/0 requests.

The SAA solution is based on a set of software interfaces, conventions, and
protocols that provide a framework for designing and developing applications.

The SAA Procedures Language has been defined as a subset of the REXX language.
Its purpose is to define a common subset of the language that can be used on
several environments. TSO/E REXX is the implementation of the SAA Procedures
Language on the MVS system. If you plan on running your REXX programs on other
environments, however, some restrictions may apply and you should review the
publication SAA Common Programming Interface Procedures Language Reference.

* Systems Application Architecture is a trademark of the IBM Corporation.

* SAA is a trademark of the IBM Corporation.

© Copyright IBM Corp. 1988, 1991 1

introduction

The SAA solution:

* Defines a common programming interface that you can use to develop
applications that can be integrated with each other, and transported to run in
multiple SAA environments

¢ Defines common communications support that you can use to connect
applications, systems, networks, and devices

¢ Defines a common user access that you can use to achieve consistency in panel
layout and user interaction techniques

¢ Offers some applications and application development tools written by IBM.

Supported Environments
' Several combinations of IBM hardware and software have been selected as SAA
environments. These are environments in which IBM will manage the availability of
support for applicable SAA elements, and the conformance of those elements to
SAA specifications. The SAA environments are the following:

* MVS

— TSO/E
— CIcs
- IMS

¢ VM/CMS
¢ Operating System/400* (OS/400%)
* Operating System/2* (0S/2*).

Common Programming Interface
As its name implies, the common programming interface (CPI) provides languages,
commands, and calls that programmers can use to develop applications that take
advantage of SAA consistency. These applications can be easily integrated and
transported across the supported environments.

The components of the interface currently fall into two general categories:
¢ | anguages

Application Generator
c

COBOL

FORTRAN

PL/I

Procedures Language
RPG.

* Services

Communications Interface
Database Interface

* Operating System/400 is a trademark of the IBM Corporation.
08S/400 is a trademark of the IBM Corporation.

* Operating System/2 is a trademark of the IBM Corporation.

* 08S/2is a trademark of the IBM Corporation.

2 TSO/E Version 2 MVS/REXX Reference

How 1o Use This Book

introduciion

Dialog Interface
Presentation Interface
Query Interface
Repository Interface.

The CPl is not in itself a product or a piece of code. But—as a definition—it does
establish and control how IBM products are being implemented, and it establishes a
common base across the applicable SAA environments.

Thus, when you want to create an application that can be used in more than one
environment, you can stay within the boundaries of the CPI and obtain easier
portability. (Naturally, the design of such applications should be done with
portability in mind as well.)

The material in this book is arranged in chapters:

Introduction

General Concepts

Keyword Instructions (in alphabetic order)

Functions (in alphabetic order)

Parsing (a method of dividing character strings, such as commands)
Numbers and Arithmetic

Conditions and Condition Traps

Using REXX in Different Address Spaces

Reserved Keywords, Special Variables, and Command Names
10. TSO/E REXX Commands

11. Debug Aids

12. TSO/E REXX Programming Services

13. TSO/E REXX Customizing Services

14. Language Processor Environments

15. Initialization and Termination Routines

16. Replaceable Routines and Exits

©CONOO DA

There are several appendixes covering:

Error Numbers and Messages

Double-Byte Character Set (DBCS) Support

IRXTERMA Routine

Writing REXX Execs to Perform MVS Operator Activities
Additional Variables That GETMSG Sets

This introduction and Chapter 2, “General Concepts” provide general information
about the REXX programming language. The two chapters provide an introduction
to TSO/E REXX and describe the structure and syntax of the REXX language, the
different types of clauses and instructions, the use of expressions, operators,
assignments, and symbols, and issuing commands from a REXX exec.

Other chapters in the book provide reference information about the syntax of the
keyword instructions and built-in functions in the REXX language, and the external
functions TSO/E provides for REXX programming. The keyword instructions, built-in
functions, and TSO/E external functions are described in Chapter 3, “Keyword
Instructions” and Chapter 4, “Functions.”

Chapter 1. Introduction 3

Introduction

Other chapters provide information that will hel p you use the different features of
REXX and debug any problems you have in your REXX execs. These chapters
include:

Chapter 5, “Parsing for PARSE, ARG, and PULL”

Chapter 6, “Numbers and Arithmetic”

Chapter 7, “Conditions and Condition Traps”

Chapter 9, “Reserved Keywords, Special Variables, and Command Names”
Chapter 11, “Debug Aids.” '

TSO/E provides several REXX commands you can use for REXX processing. The
syntax of these commands is described in Chapter 10, “TSO/E REXX Commands.”

Although TSO/E provides support for the REXX language, you can run REXX execs
in any MVS address space (TSO/E and non-TSO/E). Chapter 8, “Using REXX in
Different Address Spaces” describes various aspects of using REXX in TSO/E and
non-TSO/E address spaces and any restrictions.

In addition to REXX language support, TSO/E provides programming services you
can use to interface with REXX and the language processor, and customizing
services that let you customize REXX processing and how the language processor
accesses and uses system services, such as I/0 and storage. The programming
services are described in Chapter 12, “TSO/E REXX Programming Services.” The
customizing services are introduced in Chapter 13, “TSO/E REXX Customizing
Services” and are described in more detail in the following chapters:

¢ Chapter 14, “Language Processor Environments”
e Chapter 15, “Initialization and Termination Routines”
e Chapter 16, “Replaceable Routines and Exits.”

Throughout the book, examples are provided that include data set names. When an

example includes a data set name that is enclosed in single quotes, the prefix is
added to the data set name. In the examples, the user ID is the prefix.

4 TSO/E Version 2 MVS/REXX Reference

Nl

AN

)

introduction

How to Read the Syntax Diagrams
Throughout this book, syntax is described using the structure defined below.

Read the syntax diagrams from left to right, from top to bottom, following the
path of the line.
The »—— symbol indicates the beginning of a statement.

The —> symbol indicates that the statement syntax is continued
on the next line.

The »—— symbol indicates that a statement is continued from
the previous line.

The —< symbol indicates the end of a statement.

Diagrams of syntactical units other than complete statements start
with the »—— symbol and end with the — symbol.

Required items appear on the horizontal line (the main path).
»»>——STATEMENT:

required—item >«

Optional items appear below the main path.

»>——STATEMENT
I—opti onal-i tem—I

If you can choose from two or more items, they appear vertically, in a stack.

Iif you must choose one of the items, one item of the stack appears on the main
path.

»-——STATEMENT-———I-:requi red—choicel >
required—choi ceZJ

If choosing one of the items is optional, the entire stack appears below the main
path.

—optional—choicel

»>——STATEMENT j ><
—optional—choice2

An arrow returning to the left above the main line indicates an item that can be
repeated.

\i
A

»>——STATEMENT: repeatable—item

A repeat arrow above a stack indicates that you can repeat the items in the
stack.

Keywords appear in uppercase (for example, PARM1). They must be spelled
exactly as shown. Variables appear in all lowercase letters (for example,
parmx). They represent user-supplied names or values.

If punctuation marks, parentheses, arithmetic operators, or such symbols are
shown, you must enter them as part of the syntax.

Chapter 1. Introduction 5§

introduction

The following example shows how the syntax is described:

»»——PROCEDURE: L >
EXPOSE——name

For Further REXX Information

The following lists, in alphabetical order, publications that are useful for
programming in REXX:

¢ The SAA Common Programming Interface Procedures Language Reference,
SC26-4358, may be useful to more experienced REXX users who may wish to
code portable programs. This book defines the SAA Procedures Language.
Descriptions include the use and syntax of the language as well as explanations
on how the language processor interprets the language as a program is
executing.

* The TSO/E Version 2 Procedures Language MVS/REXX User’s Guide,
SC28-1882, introduces the instructions and functions the REXX language
provides and explains how to write a REXX exec. It describes how to run a
REXX exec in TSO/E foreground and background, in MVS batch using JCL, or in
any address space. This book also highlights the major differences between the
TSO/E CLIST language and the REXX language.

e The TSO/E Version 2 Quick Reference, GX23-0026, is a reference summary that
includes the syntax of the REXX keyword instructions, built-in functions, TSO/E
external functions, and TSO/E REXX commands in a summary form.

6 TSO/E Version 2 MVS/REXX Reference

«

General Concepts

Chapter 2. General Concepts

Erief Description of the REstructured eXtended eXecutor Language

The REstructured eXtended eXecutor (REXX) language is a language particularly
suitable for:

Command procedures

Application front ends

User-defined macros (such as editor subcommands)
Prototyping

Personal computing.

Individual users can write programs for their own needs.

It is a general purpose programming language like PL/l. REXX has the usual
“structured programming” instructions—IF, SELECT, DO WHILE, LEAVE, and so
on—and a number of useful built-in functions.

No restrictions are imposed by the language on program format. There can be
more than one clause on a line, or a single clause can occupy more than one line.
Indentation is allowed. Programs can, therefore, be coded in a format that
emphasizes their structure, making them easier to read.

There is no limit to the length of the values of variables, so long as all variables fit
into the storage available.

Symbols (variable names) are limited to a length of 250 characters.
Compound symbols, such as
NAME.X.Y

(where X and Y can be the names of variables or can be constant symbols), may be
used for constructing arrays and for other purposes.

Issuing host commands from within a REXX program is an integral part of the REXX
language. For example, in the TSO/E address space, you can use TSO/E commands
in a REXX exec. The exec can also use ISPF commands and services if the exec
runs in ISPF. In execs that run in both TSO/E and non-TSO/E address spaces, you
can use the TSO/E REXX commands, such as MAKEBUF, DROPBUF, and
NEWSTACK. You can also link to or attach programs. “Host Commands and Host
Command Environments” on page 26 describes the different environments for using
host services.

TSO/E REXX execs can reside in a sequential data set or in a member of a
partitioned data set (PDS). Partitioned data sets containing REXX execs can be
allocated to either the system file SYSPROC (TSO/E address space only) or
SYSEXEC. In the TSO/E address space, you can also use the TSO/E ALTLIB
command to define alternate exec libraries for storing REXX execs. For more
information about allocating exec data sets, see TSO/E Version 2 Procedures
Language MVS/REXX User’s Guide.

© Copyright IBM Corp. 1988, 1991 7

General Concepts

In TSO/E, you can invoke an exec explicitly using the EXEC command followed by
the data set name and the “exec” keyword operand of the EXEC command. The
“exec” keyword operand distinguishes the REXX exec from a TSO/E CLIST, which
you also invoke using the EXEC command.

You can invoke an exec implicitly by entering the member name of the exec. You
can invoke an exec implicitly only if the PDS in which the exec is stored has been
allocated to a system file (SYSPROC or SYSEXEC). SYSEXEC is a system file whose
data sets can contain REXX execs only. SYSPROC is a system file whose data sets
can contain either CLISTs or REXX execs. If an exec is in a data set that is allocated
to SYSPROC, the exec must start with a comment containing the characters “REXX”
within the first line (line 1). This enables the TSO/E EXEC command to distinguish a
REXX exec from a CLIST. For more information, see “Structure and General
Syntax” on page 9.

SYSEXEC is the default load ddname from which REXX execs are loaded. If your
installation plans to use REXX, it is recommended that you store your REXX execs in
data sets that are allocated to SYSEXEC. This makes them easier to maintain. For
more information about the load ddname and searching SYSPROC or SYSEXEC, see
“Using SYSPROC and SYSEXEC for REXX Execs” on page 392.

REXX programs are executed by a language processor (interpreter). That is, the
program is executed line-by-line and word-by-word, without first being translated to
another form (compiled). The advantage of this to the user is that if the program
fails with a syntax error of some kind, the point of failure is clearly indicated;
usually, it will not take long to understand the difficulty and make a correction.

When an exec is loaded into storage, the load routine checks for sequence numbers
in the data set. The routine removes the sequence numbers during the loading
process. For information about how the load routine checks for sequence numbers,
see “Exec Load Routine” on page 433.

Where to Find More Information

This is the reference manual. Reference information is also available in a
convenient summary form in the TSO/E Version 2 Quick Reference.

You can find useful information in the TSO/E Version 2 Procedures Language
MVS/REXX User’s Guide. For any program written in the REstructured eXtended
eXecutor (REXX) language, you can get information on how the language processor
interprets the program or a particular instruction by using the REXX TRACE
instruction.

8 TSO/E Version 2 MVS/REXX Reference

« //

EN
)

Ll

«

General Concepts

Structure and General Syniax

If you store a REXX exec in a data set that is allocated to SYSPROC, the exec must
start with a comment and the comment must contain the characters “REXX” within
the first line (line 1) of the exec. This is known as the REXX exec identifier and is
required in order for the TSO/E EXEC command to distinguish REXX execs from
TSO/E CLISTs, which are also stored in SYSPROC.

The characters “REXX” must be in the first line (line 1) even if the comment spans
multiple lines. In Figure 1, example A on the left is correct. The program starts
with a comment and the characters “REXX” are in the first line (line 1). Example B
on the right is incorrect. The program starts with a comment. However, although
the comment contains the characters “REXX,” they are not in the first line (line 1).

Example A (Correct) Example B (Incorrect)
/* REXX program to check ... /* This program checks ...
The program then ... */ ... in REXX and ... */
ADDRESS CPICOMM ADDRESS CPICOMM
EXIT EXIT

Figure 1. Example of Using the REXX Exec Identifier

If the exec is in a data set that is allocated to a file containing REXX execs only, not
CLISTs (for example, SYSEXEC), the comment including the characters “REXX” is
not required. However, it is recommended that you start all REXX execs with a
comment in the first column of the first line and include the characters “REXX” in
the comment. In particular, this is recommended if you are writing REXX execs for
use in other SAA environments. Including “REXX” in the first comment also helps
users identify that the program is a REXX program and distinguishes a REXX exec
from a TSO/E CLIST. For more information about how the EXEC command
processor distinguishes REXX execs and CLISTs, see TSO/E Version 2 Command
Reference.

A REXX program is built from a series of clauses that are composed of:

Zero or more blanks (which are ignored)

A sequence of tokens (see “Tokens” on page 10)

Zero or more blanks (again ignored)

A semicolon (;) delimiter that may be implied by line-end, certain keywords, or
the colon (:) if it follows a single symbol.

Conceptually, each clause is scanned from left to right before processing, and the
tokens composing it are identified. Instruction keywords are recognized at this
stage, comments are removed, and multiple blanks (except within literal strings) are
converted to single blanks. Blanks adjacent to special characters (inciuding
operators, see page 13) are also removed.

Chapter 2. General Concepts 9

General Concepts

Characters

A character, the letter “A”, for example, differs from its coded representation or
encoding. Various coded character sets (such as ASCIl and EBCDIC) use different
encodings for the letter A (decimal values 65 and 193, respectively). This book uses
characters to convey meanings and not to imply a specific character code, except
where otherwise stated. The exceptions are certain built-in functions that convert
between characters and their representations. The functions C2D, C2X, D2C, X2C,
and XRANGE have a dependence on the character set in use.

For information about Double-Byte Character Set characters, see Appendix B,
“Double-Byte Character Set (DBCS) Support” on page 485

Tokens

Programs written in REXX are composed of tokens (of any length, up to an
implementation-restricted maximum) that are separated by blanks or by the nature
of the tokens themselves. The classes of tokens are:

Comments:
A sequence of characters (on one or more lines) delimited by /* and */.
Comments can contain other comments, as long as each begins and
ends with the necessary delimiters. You can write comments anywhere
in a program. The language processor ignores them (and, hence, they
can be of any length), but they do act as separators.

/* This is an example of a valid comment */

Literal Strings:
A sequence including any characters and delimited by the single
quotation mark (') or the double quotation mark ("). Use two consecutive
double quotation marks ("") to represent a " character within a string
delimited by double quotation marks. Similarly, use two consecutive
single quotation marks (' ') to represent a ' character within a string
delimited by single quotation marks. A literal string is a constant and its
contents are never modified when it is processed.

A literal string with no characters (that is, a string of length 0) is called a
null string.

These are valid strings:

"Fred'

"Don't Panic!"

'You shouldn''t' /* Same as "You shouldn't" */
' /* The null string */

Implementation maximum: A literal string can contain up to 250
characters. (But note that the length of computed results is limited only
by the amount of storage available.)

Note that a string followed immediately by a (is considered to be the
name of a function. If followed immediately by the symbol X or x, itis
considered to be a hexadecimal string.

10 TSOJ/E Version 2 MVS/REXX Reference

General Concepts

Hexadecimal Strings:

Symbols:

Any sequence of zero or more hexadecimal digits (0-9, a-f, A-F),
optionally separated by blanks, delimited by single or double quotation
marks, and immediately followed by the symbol x or X (neither can be
part of a longer symbol). A single leading 0 is added, if necessary, at the
front of the string to make an even number of hexadecimal digits, which
represent a character string constant formed by packing the
hexadecimal codes given. The blanks, which may be present only at
byte boundaries (and not at the beginning or end of the string), are to aid
readability. The language processor ignores them.

These are valid hexadecimal strings:

'ABCD ' x
"1d ec f8"X
"1 d8"x

Implementation maximum: The packed length of a hexadecimal string
cannot exceed 250 bytes.

Symbols are groups of characters, selected from the:

¢ English alphabetic characters (A-Z and a-z)
* Numeric characters (0-9)
e Characters @ # $ ¢ . ! ? and underscore.

Any lowercase alphabetic character in a symbol is translated to
uppercase (that is, lowercase a-z to uppercase A-Z).

These are valid symbols:

Fred
Albert.Hall
WHERE?

A symbol can be a label (see page 20) or a REXX keyword (see page
195). If a symbol does not begin with a digit or a period, you can use it
as a variable and can assign it a value. If you have not assigned it a
value, its value is the characters of the symbol itself, translated to
uppercase (that is, lowercase a-z to uppercase A-Z). Symbols that begin
with a number or a period are constant symbols and cannot be assigned
a value. A symbol may include other characters in one situation only. If
the first part of a symbol starts with a digit (0-9) or a period, it may end
with the sequence "E" or "e", followed immediately by an optional sign
("-" or "+"), followed immediately by one or more digits (which cannot
be followed by any other symbol characters). The symbol thus defined
may be a number in exponential notation. The sign in this context is part
of the symbol and is not an operator.

These are valid numbers in exponential notation:

17.3E-12
.03e+9

Implementation maximum: A symbol can consist of up to 250 characters.
(But note that its value, if it is a variable, is limited only by the amount of
storage available.)

Chapter 2. General Concepts 11

General Concepts

Numbers:
These are character strings consisting of one or more decimal digits,
optionally prefixed by a plus or minus sign, and optionally including a
single period (.) that represents a decimal point. A number can also
have a power of ten suffixed in conventional exponential notation: an E
(uppercase or lowercase), followed optionally by a plus or minus sign,
then followed by one or more decimal digits defining the power of ten.
Whenever a character string is used as a number, rounding may occur to
a precision specified by the NUMERIC DIGITS instruction (default nine
digits). See pages 167-175 for a full definition of numbers.

Numbers can have leading blanks (before and after the sign, if any) and
can have trailing blanks. Embedded blanks are not permitted. Note that
a symbol (see preceding) or a literal string may be a number. A number
cannot be the name of a variable.

These are valid numbers:

12

'-17.9'
127.0650
73e+128
"'+ 7.9E5 '

A whole number is a number that has a zero (or no) decimal part and
that the language processor would not normally express in exponential
notation. That is, it has no more digits before the decimal point than the
current setting of NUMERIC DIGITS (the default is 9).

Implementation maximum: The exponent of a number expressed in
exponential notation can have up to nine digits.

Operators:
The special characters: + - \ / % * | & = = > < andthe
sequences >= <= \> \< \= >< < == \== [/ & || ** o>
M< M= mE= 3> << 3= \<< < \>> ->> <<= /= [==are
operator tokens (see page 15), with or without embedded blanks or
comments. A few of these are also used in parsing templates, and the
equal sign is also used to indicate assignment. Blanks (and comments)
adjacent to operator characters have no effect on the operator; thus,
operators constructed from more than one character can have
embedded blanks and comments. One or more blank(s), where they
occur in expressions but are not adjacent to another operator, also act
as an operator. Blanks adjacent to operator characters are removed.
Therefore, the following are identical in meaning.

345>=123
345 >=123
345 >= 123
345 > = 123

Some of these characters may not be available in all character sets, and,
if this is the case, appropriate translations may be used. In particular,
the vertical bar or character is often shown as a split vertical bar.

Note that throughout the language, the not character, “=", is
synonymous with the backslash (“\”). You can use the two characters
interchangeably according to availability and personal preference.

12 TSO/E Version 2 MVS/REXX Reference

AN

w

el

General Concepts

Special Characters:
The characters , ; :) (together with the individual characters from
the operators have special significance when found outside of strings.
All these characters constitute the set of “special” characters. They all
act as token delimiters, and blanks adjacent to any of these are
removed, with the exception that a blank adjacent to the outside of a
parenthesis is deleted only if it is also adjacent to another special
character (unless this is a parenthesis and the blank is outside it, t0o).
For example, the clause:

'REPEAT' B + 3;

is composed of six tokens—a literal string (‘'REPEAT'), a blank operator, a
symbol (B, which may have a value), an operator (+), a second symbol
(3, which is a number and a symbol), and the clause delimiter (;). The
blanks between the B and the + and between the + and the 3 are
removed. However, one of the blanks between the 'REPEAT' and the B
remains as an operator. Thus, this clause is treated as though written:

'REPEAT' B+3;

Implementation maximum: During parsing of a clause, the internal form
of a clause (which is approximately the same length as the visible form,
except that extra blanks and comments are removed) cannot exceed 500
characters. Note that this does not limit in any way the length of data
that can be manipulated, which is dependent upon the amount of storage
(memory) available.

Implied Semicolons

The last element in a clause is the semicolon delimiter. The language processor
implies the semicolon in three cases: by a line-end, after certain keywords, and
after a colon if it follows a single symbol. This means that you need to include
semicolons only when there is more than one clause on a line or to terminate an
instruction that ends with a comma.

A line-end usually marks the end of a clause and, thus, a semicolon is implied at
most end of lines. However, there are exceptions:

¢ The line ends in the middle of a string

* The line ends in the middie of a comment

* The last noncomment token was the continuation character (denoted by a
comma).

In these situations, it is not considered the end of a clause and a semicolon is not
implied.

Semicolons are also implied automatically after certain keywords when they are
used in the correct context. The keywords that have this effect are: ELSE,
OTHERWISE, and THEN. These special cases reduce typographical errors
significantly.

Note: The two characters forming the comment delimiters, /* and */, must not be
split by a line-end (that is, / and * should not appear on different lines) since they
could not then be recognized correctly: an implied semicolon would be added. The
two characters forming a double quotation mark within a string are also subject to
this line-end ruling.

Chapter 2. General Concepts 13

General Concepts

Continuations

One way to continue a clause onto the next line is to use the comma, which is
referred to as the continuation character. The comma is functionally replaced by a
blank, and, thus, no semicolon is implied. The continuation character cannot be
used in the middle of a string or it will be processed as part of the string itself. The
same situation holds true for comments. Note that the comma remains in execution
traces.

The following example shows how to use the continuation character to continue a
clause.

say 'You can use a comma',
'to continue this clause.'

This displays:

(You can use a comma to continue this clause. bR ,)

Expressions and Operators

Expressions

Clauses can include expressions consisting of terms (strings, symbols, and function
calls) interspersed with operators and parentheses.

Terms include:
¢ Literal Strings (delimited by quotation marks), which are constants

* Symbols (no quotation marks), which are translated to uppercase. A symbol
that does not begin with a digit or a period may be the name of a variable; in
this case the value of that variable replaces the symbol as soon as it is needed
during evaluation. Otherwise a symbol is treated as a constant string. A
symbol can also be compound.

* Function invocations—see page 85—which are of the form:

»—Esymbol ()
stri ng(—l

——expression

Evaluation of an expression is left to right, modified by parentheses and by operator
precedence in the usual algebraic manner (see “Parentheses and Operator
Precedence” on page 18). Expressions are always wholly evaluated, unless an
error occurs during evaluation.

14 TSO/E Version 2 MVS/REXX Reference

f‘.‘
{

s

Operators

General Concepls

All data is in the form of “typeless” character strings (typeless because it is not—as
in some other languages—of a particular declared type, such as Binary,
Hexadecimal, Array, and so forth). Consequently, the result of evaluating any
expression is itself a character string. All terms and results (except arithmetic and
logical expressions) may be the null string (a string of length 0). Note that REXX
imposes no restriction on the maximum length of results, but there is usually some
practical limitation dependent upon the amount of storage available to the tanguage
processor.

The following pages describe how each operator (except for the prefix operators)
acts on two terms, which may be symbols, strings, function calls, intermediate
results, or sub-expressions in parentheses. Each prefix operator acts on the term or
sub-expression that follows it. There are four types of operators:

String Concatenation

The concatenation operators combine two strings to form one string. The
combination may occur with or without an intervening blank:

(blank) Concatenate terms with one blank in between

i Concatenate without an intervening blank

(abuttal) Concatenate without an intervening blank

You can force concatenation without a blank by using the || operator.

The abuttal operator is assumed between terms that are not separated by another
operator. This can occur when two terms are syntactically distinct, such as a literal
string and a symbol, or when they are separated only by a comment. An example of

syntactically distinct terms is: if Fred has the value ‘37.4°, then Fred'%' evaluates to
'37.4%'. Any comments between the terms are irrelevant.

Examples:
If the variable PETER has the value 1, then (Fred) (Peter) evaluates to 37.41.
In EBCDIC, the two adjoining strings, one hexadecimal and one literal,
'cl c2'x'CDE'
evaluate to 'ABCDE'.
In the case of:
Fred/* The NOT operator precedes Peter. */—Peter
there is no abuttal operator implied, and it is an invalid expression. However,

(Fred)/* The NOT operator precedes Peter. */(—Peter)

results in an abuttal, and evaluates to 37.40

Chapter 2. General Concepts 15

General Concepts

Arithmetic

Comparison

You can combine character strings that are valid numbers (see page 11) using the
arithmetic operators:

+ Add

- Subtract

* Multiply

/ Divide

% Divide and return the integer part of the result

n Divide and return the remainder (not modulo, since the resuilt
may be negative)

** Power (raise a number to a whole-number power)

Prefix - Negate the following term. Same as the subtraction '0-term"'.

Prefix +4 Take the following term as if it was the addition '0+term'.

See Chapter 6, “Numbers and Arithmetic” on page 167 for details of accuracy, the
format of valid numbers, and the combination rules for arithmetic. Note that if an
arithmetic result is shown in exponential notation, it is likely that rounding has
occurred.

The comparison operators return the value 1 if the result of the comparison is true,
or 0 otherwise.

The strict comparison operators all have one of the characters defining the operator
doubled. The “==", “\==", “4=="/and “/= =" operators test for strict
equality or inequality between two strings. Two strings must be identical to be
considered strictly equal. Similarly, the strict comparison operators such as “> >"
or “< <” carry out a simple character-by-character comparison, with no padding of
either of the strings being compared. The comparison of the two strings is from left
to right. If one string is shorter than and is a leading substring of another, then it is
smaller (less than) the other. The strict comparison operators also do not attempt to
perform a numeric comparison on the two operands.

For all the other comparison operators, if both terms involved are numeric, a
numeric comparison (in which leading zeros are ignored, and so forth) is effected.
Otherwise, both terms are treated as character strings (leading and trailing blanks
are ignored, and then the shorter string is padded with blanks on the right).

Character comparison and strict comparison operations are both case-sensitive,
and for both the exact collating order may depend on the character set used for the
implementation. For example, in an EBCDIC environment, lowercase alphabetics
precede uppercase, and the digits 0-9 are higher than all alphabetics. In an ASCII
environment, the digits are lower than the alphabetics, and lowercase alphabetics
are higher than uppercase alphabetics.

16 TSO/E Version 2 MVS/REXX Reference

AN

i

)

Logical (Boolean)

Gaeneral Concenis

True if terms are strictly equal (identical)

True if the terms are equal {numerically or when padded,

and so forth)
\==,q==,/== True if the terms are NOT strictly equal (inverse of = =
\=, =, /= Not equal (inverse of =)
> Greater than
< Less than
> > Strictly greater than
<< Strictly less than
>< Greater than or less than (same as not equal)
<> Greater than or less than (same as not equal)
> = Greater than or equal to
\<, =< Not less than
>>= Strictly greater than or equal to

\< <, <<
< =

\>, =>
<<=

\>>, =>>

Note: Throughout the language, the not character, “—

Strictly NOT less than

Less than or equal to

Not greater than

Strictly less than or equal to
Strictly NOT greater than

9

", is synonymous with the

backslash (“\”). You can use the two characters interchangeably according to
availability and personal preference. The backslash can appear in the following
operators: \(prefix not), \=, \==, \<, \>, \<<, and \>>.

A character string is taken to have the value “false” if itis 0, and “true” ifitis a 1.
The logical operators take one or two such values (values other than 0 or 1 are not
allowed) and return 0 or 1 as appropriate:

&

&&

Prefix \,—

AND
Returns 1 if both terms are true.

Inclusive OR
Returns 1 if either term is true.

Exclusive OR
Returns 1 if either (but not both) is true.

Logical NOT
Negates; 1 becomes 0 and vice-versa.

Chapter 2. General Concepts 17

General Concepis

Parentheses and Operator Precedence

Expression evaluation is from left to right; parentheses and operator precedence
modify this:

¢ When parentheses are encountered (other than those that identify function
calls), the entire sub-expression between the parentheses is evaluated
immediately when the term is required.

* When the sequence:
terml operatorl term2 operator2 term3 ...

is encountered, and operator2 has a higher precedence than operatorl, the

expression (term2 operator2 term3 ...) is evaluated first, applying the same rule

repeatedly as necessary.

Note, however, that individual terms are evaluated from left to right in the
expression (that is, as soon as they are encountered). Only the order of
operations is affected by the precedence rules.

For example, * (multiply) has a higher priority than + (add), so 342*5 evaluates to

13 (rather than the 25 that would result if strict left to right evaluation occurred).
Likewise, the expression -3**2 evaluates to 9 (instead of -9) because the prefix
minus operator has a higher priority than the power operator.

The order of precedence of the operators is (highest at the top):

\ = - + (prefix operators)

** (power)

N

NS

*I % 1l
+ -
" " 1} (abuttal)

18 TSO/E Version 2 MVS/REXX Reference

(multiply and divide)
(add and subtract)
(concatenation with/without blank)

(comparison operators)

(and)

(or, exclusive or)

i
-

Examples

Null Clauses

General Concepls

Suppose that the following symbols represent variables; with values as shown:

A has the value '3’ and DAY has the galue 'Monday'
Then:

A+5 -> '8!

A-4*2 -> '-5!

Af2 -> ‘1.5'

0.5**2 -> '0.25'

(A+1)>7 -> 0! /* that is, False */
v -> 1 /* that is, True */
vot==t -> ‘0 /* that is, False */
Pttt -> 1 /* that is, True */
(A+1)*3=12 -> ' /* that is, True */
Today is Day -> ‘TODAY IS Monday'

'If it is' day -> 'If it is Monday'

Substr(Day,2,3) -> ‘ond’ /* Substr is a function */
ixxx ! => PIXXX!!

'abc' << 'abd' -> 1 /* that is, True */
977" >> '11° > e /* that is, False */
‘abc' >> 'ab' -> "1 /* that is, True */
'ab ' << 'abd' -> ‘1 /* that is, True */
'000000' >> 'OE00OO' -> 1 /* that is, True */

Note: The last example would give a different answer if the “> " operator had been
used rather than “> >". Since '0E0000' is a valid number in exponential notation,
a numeric comparison is done; thus '0E0000' and '000000' evaluate as equal.

Note: The REXX order of precedence usually causes no difficulty because it is the
same as in conventional algebra and other computer languages. There are two
differences from common notations:

* The prefix minus operator always has a higher priority than the power operator.
¢ Power operators (like other operators) are evaluated left-to-right.

For example:

-3%%*2 == 09 /* not -9 */
-(2+1)**2 == 9 /* pot -9 */
2%%2%*3 == 64 /* not 256 */

 Instructions

Clauses can be subdivided into the following types:

A clause consisting only of blanks or comments or both is a null clause and is
completely ignored (except that if it includes a comment it is traced, if available).

Note: A null clause is not an instruction; for example, putting an extra semicolon
after the THEN or ELSE in an IF instruction is not equivalent to using a dummy
instruction (as it would be in PL/lI). The NOP instruction is provided for this purpose.

Chapter 2. General Concepts 19

General Concepts

Labels

A clause that consists of a single symbol followed by a colon is a label. The colon
acts as an implicit clause terminator, so no semicolon is required. Labels are used
to identify;@he targets of CALL instructions, SIGNAL instructions, and internal
function calls. They can be traced selectively to aid debugging.

Any number of successive clauses may be labels, thus permitting multiple labels
before another type of clause. Duplicate labels are permitted, but since the search
effectively starts at the top of the program, the control, following a CALL or SIGNAL
instruction, is always passed to the first occurrence of the label. The duplicate
labels occurring later can be traced but cannot be used as a target of a CALL,
SIGNAL, or function invocation.

Instructions

An instruction consists of one or more clauses describing some course of action for
the language processor to take. Instructions can be: assignments, keyword
instructions, or commands.

Assignments

Single clauses of the form symbol = expression are instructions known as
assignments. An assignment gives a variable a (new) value. See “Assignments
and Symbols” on page 21.

Keyword Instructions

A keyword instruction is one or more clauses, the first of which starts with a
keyword that identifies the instruction. These control the external interfaces, the
flow of control, and so forth. Some instructions can include other (nested)
instructions. In this example, the DO construct (DO, the group of instructions that
follow it, and its associated END keyword) is considered a single keyword
instruction.

DO
instruction
instruction
instruction
END

A subkeyword is a keyword that is reserved within the context of some particular
instruction—for example, the symbols TO and WHILE in the DO instruction.

Commands

Single clauses consisting of just an expression are instructions known as
commands. The expression is evaluated and passed as a command string to the
currently active environment.

20 TSO/E Version 2 MVS/REXX Reference

Generai Concepis

Assignments and Symbols

A variable is an object whose value can change during the running of a REXX
program. The process of changing the value of a variable is called assigning a new
value to it. The value of a variable is a single character string, of any length, that
may contain any characters.

You can assign a new value to variables with the ARG, PARSE, or PULL
instructions, but the most common way of changing the value of a variable is the
assignment instruction itself. Any clause of the form:

symbol=expression;

is taken to be an assignment. The result of expression becomes the new value of
the variable named by the symbol to the left of the equal sign. On TSO/E, if you omit
expression, the variable is set to the null string. However, it is recommended that
you explicitly set a variable to the null string: symbol="".

Example:

/* Next line gives "FRED" the value "Frederic" */
Fred='Frederic'

The symbol naming the variable cannot begin with a digit (0-9) or a period. (Without
this restriction on the first character of a variable name, you could redefine a
number; for example 3=4; would give a variable called 3 the value 4.)

You can use a symbol in an expression even if you have not assigned it a value,
because a symbol has a defined value at all times. A variable you have not
assigned a value is uninitialized, and its value is the character(s) of the symbol
itself, translated to uppercase (that is, lowercase a-z to uppercase A-Z). However, if
it is a compound symbol, described under “Compound Symbols” on page 22, its
value is the derived name of the symbol.

Example:

/* If "Freda" has not yet been assigned a value, */
/* then next line gives "FRED" the value "FREDA" */
Fred=Freda

Symbols can be subdivided into four classes: constant symbols, simple symbols,
compound symbols, and stems. Simple symbols can be used for variables where
the name corresponds to a single value. Compound symbols and stems are used
for more complex collections of variables, such as arrays and lists.

Chapter 2. General Concepts 21

General Concepts

Constant Symbols
A constant symbol starts with a digit (0-9) or a period. ‘

\\\”_//
You cannot change the value of a constant symbol. It is simply the string consisting

of the characters of the symbol (that is, with any lowercase alphabetic characters

translated to uppercase).

These are constant symbols:

77

827.53

.12345

12e5 /* Same as 12E5 */
3D

Simple Symbols

A simple symbol does not contain any periods and does not start with a digit (0-9). /N

By default, its value is the characters of the symbol (that is, translated to
uppercase). If the symbol has been assigned a value, it names a variable and its
value is the value of that variable.

These are simple symbols:

FRED
Whatagoodidea? /* Same as WHATAGOODIDEA? */
712

Compound Symbols

A compound symbol contains at least one period and at least two other characters.
It cannot start with a digit or a period, and, if there is only one period, the period
cannot be the last character.

The name begins with a stem (that part of the symbol up to and including the first
period), which is followed by parts of the name (delimited by periods) that are

constant symbols, simple symbols, or null. You cannot use constant symbols with PN
embedded signs (for example, 12.3E + 5) after a stem; this would make the whole \

compound symbol invalid.

These are compound symbols:

FRED.3

Array.l.J

AMESSY. .0ne.2.

Before the symbol is used (that is, at the time of reference), the values of any simple

symbols (I, J, and One in the example) are substituted into the symbol, thus

generating a new, derived name. This derived name is then used just like a simple

symbol. That is, its value is by default the derived name, or (if it has been used as

the target of an assignment) its value is the value of the variable named by the

derived name.

The substitution into the symbol that takes place permits arbitrary indexing ¢
(subscripting) of collections of variables that have a common stem. Note that the (\ .

values substituted can contain any characters (including periods). Substitution is
done only once.

22 TSOI/E Version 2 MVS/REXX Reference

Stems

General Concepts

To summarize: the derived name of a compound variable that is referred to by the
symbol

s0.sl.s2. --- .sn
is given by
do.vl.v2. --- .vn

where d0 is the uppercase form of the symbol s, and v1 to vn are the values of the
constant or simple symbols sl through sn. Any of the symbols sl-sn can be null.
The values v1-vn can also be null and can contain any characters (in particular,
lowercase characters are not translated to uppercase, blanks are not removed, and
periods have no special significance).

You can use compound symbols to set up arrays and lists of variables, in which the
subscript is not necessarily numeric, thus offering great scope for the creative
programmer. A useful application is to set up an array in which the subscripts are
taken from the value of one or more variables, so effecting a form of associative
memory (“content addressable”).

Some examples follow in the form of a small extract from a REXX program:

a=3 /* assigns '3' to the variable 'A* */

b=4 /*oa to 'B' */
c="'Fred' /* 'Fred' to 'C' */
a.b="'Fred' /* ‘'Fred' to 'A.4' */
a.fred=5 /x5 to 'A.FRED' */
a.c='Bill! /* 'Bill' to 'A.Fred' */
c.c=a.fred /¥ '5! to 'C.Fred' */
x.a.b="Annie' /* 'Annie' to 'X.3.4' */
say a b ¢ a.a a.b a.c c.a a.fred x.a.4
/* displays the string: */

/* '3 4 Fred A.3 Fred Bill C.3 5 Annie' */

Implementation maximum: The length of a variable name, before and after
substitution, cannot exceed 250 characters.

A stem is a symbol that contains just one period, which is the last character. It
cannot start with a digit or a period.

These are stems:

FRED.
A.

By default, the value of a stem is the characters of its syrhbol (that is, translated to
uppercase). If the symbol has been assigned a value, it names a variable and its
value is the value of that variable.

Further, when a stem is used as the target of an assignment, all possible compound
variables whose names begin with that stem receive the new value, whether they
previously had a value or not. Following the assignment, a reference to any
compound symbol with that stem returns the new value until another value is
assigned to the stem or to the individual variable.

Chapter 2. General Concepts 23

General Concepts

For example:
hole. = "empty"
hole.9 = "full"

say hole.l hole.mouse hole.9

/* says "empty empty full" */
Thus, you can give a whole collection of variables the same value. For example,

total. = 0

do forever
say "Enter an amount and a name:"
pull amount name
if datatype(amount)='CHAR' then leave
total.name = total.name + amount
end

Note: You can always obtain the value that has been assigned to the whole
collection of variables by using the stem. However, this is not the same as using a
compound variable whose derived name is the same as the stem. For example,

total. = 0

null = "*

total.null = total.null + 5

say total. total.null /* says "0 5" */

You can manipulate collections of variables, referred to by their stem, with the
DROP and PROCEDURE instructions. DROP FRED. drops all variables with that stem
(see page 55), and PROCEDURE EXPOSE FRED. exposes all possible variables with that
stem (see page 69).

Notes
1. When the ARG, PARSE, or PULL instruction changes a variable, the effect is
identical to an assignment. Anywhere a value can be assigned, using a stem
sets an entire collection of variables.

2. Since an expression may include the operator =, and an instruction may
consist purely of an expression (see next section), a possible ambiguity is
resolved by the following rule: any clause that starts with a symbol and whose
second token is (or starts with) an “=" is an assignment, rather than an
expression (or an instruction). This is not a restriction, since you can ensure the
clause is processed as a command in several ways, such as by putting a null
string before the first name, or by enclosing the first part of the expression in
parentheses.

Similarly, if you unintentionally use a REXX keyword as the variable name in an
assignment, this should not cause confusion. For example, the clause:

Address='10 Downing Street';

is an assignment, not an ADDRESS instruction.

24 TSO/E Version 2 MVS/REXX Reference

f/ ‘n\\
‘\;\ i

AN

S

Generai Concepts

(- Commands to External Environments

Environment

Commands

The system under which REXX programs run is assumed to include at least one
active host command environment for processing commands. One of these is
selected by default on entry to a REXX program. In TSO/E REXX, the environment
for processing host commands is known as the host command environment. TSO/E
provides different environments for TSO/E and non-TSO/E address spaces. You can
change the environment by using the ADDRESS instruction. You can find out the
name of the active environment by using the ADDRESS built-in function. The
underlying operating system defines environments external to the REXX program.

The host command environment selected depends on the caller. For example, if
you invoke a REXX program from a TSO/E address space, the default host command
environment that TSO/E provides for processing host commands is TSO. If you
invoke an exec from a non-TSO/E address space, the default host command
environment that TSO/E provides is MVS.

TSO/E provides several host command environments for a TSO/E address space
(TSO/E and ISPF) and for non-TSO/E address spaces. “Host Commands and Host
Command Environments” on page 26 explains the different types of host commands
you can use in a REXX exec and the different host command environments TSO/E
provides for the processing of host commands.

The environments are provided in the host command environment table, which
specifies the host command environment name and the routine that is invoked to
handle the command processing for that host command environment. You can
provide your own host command environment and corresponding routine and define
them to the host command environment table. “Host Command Environment Table”
on page 361 describes the table in more detail. “Changing the Default Values for
Initializing an Environment” on page 381 describes how to change the defaults
TSO/E provides in order to define your own host command environments. You can
also use the IRXSUBCM routine to maintain entries in the host command
environment table (see page 297).

To issue a command to the active host command environment, use a clause of the
form:

expression;

The expression is evaluated, resulting in a character string (which may be the null
string), which is then prepared as appropriate and submitted to the host command
environment. (Enclose in quotation marks any part of the expression not to be
evaluated.)

The environment then processes the command (which may have side-effects). It
eventually returns control to the language processor, after setting a return code.
The language processor places this return code in the REXX special variable RC.
For example, if the host command environment were TSO, the sequence:

mydata = "PROGA.LOAD"
"FREE DATASET("mydata")"

Chapter 2. General Concepts 25

General Concepts

would result in the string FREE DATASET (PROGA.LOAD) being submitted to TSO/E. Of
course, the simpler expression:

“FREE DATASET(PROGA.LOAD)"
would have the same effect in this case.

Note: Whenever you issue a host command from a REXX program, it is
recommended that you enclose the entire command in double quotation marks. See
TSO/E Version 2 Procedures Language MVS/REXX User’s Guide for a description of
using single and double quotation marks in commands.

On return, the return code from the FREE command is placed in the REXX special
variable RC. The return code in RC is ‘0’ if the FREE command processor
successfully freed the data set or ‘12’ if it did not. Whenever a host command is
processed, the return code from the command is placed in the REXX special
variable RC.

Because of the return codes, errors and failures in commands can affect REXX
processing if a condition trap for ERROR or FAILURE is ON (see Chapter 7,
“Conditions and Condition Traps” on page 177). They may also cause the
command to be traced if TRACE E or TRACE F is set. TRACE Normal is the same as
TRACE F, and is the default—see page 79.

Note: Remember that the expression is evaluated before it is passed to the
environment. Enclose in quotation marks any part of the expression that is not to be
evaluated.

Host Commands and Host Command Environments

You can issue host commands from a REXX program. When the language processor
processes a clause that it does not recognize as a REXX instruction or an
assignment instruction, the language processor considers the clause to be a host
command and routes the command to the current host command environment. The
host command environment processes the command and then returns control to the
language processor.

For example, in REXX processing, a host command can be:
¢ A TSO/E command processor, such as ALLOCATE, FREE, or EXEC
¢ A TSO/E REXX command, such as NEWSTACK or QBUF
* A program that you link to or attach

* ‘An MVS system or subsystem command that you invoke during an extended
MCS console session

* An ISPF command or service

¢ An SAA CPI Communications call or APPC/MVS call

If a REXX exec contains
FRED varl var2

the language processor considers the clause to be a command and passes the
clause to the current host command environment for processing. The host
command environment processes the command, sets a return code in the REXX
special variable RC, and returns control to the language processor. The return code
set in RC is the return code from the host command you specified. For example, the

26 TSO/E Version 2 MVS/REXX Reference

General Concepts

value in RC may be the return code from a TSO/E command processor, an ISPF
command or service, or a program you attached. The return code may also be a -3,
which indicates that the host command environment could not locate the specified
host command (TSO/E command, CLIST, exec, attached or linked routine, ISPF
command or service, and so on). Note that a return code of -3 is always returned if
you issue a host command in an exec and the host command environment cannot
locate the command.

If a system abend occurs during a host command, the REXX special variable RC is
set to the negative of the decimal value of the abend code. If a user abend occurs
during a host command, the REXX special variable RC is set to the decimal value of
the abend code. If no abend occurs during a host command, the REXX special
variable RC is set to the decimal value of the return code from the command.

Certain conditions may be raised depending on the value of the special variable RC:

¢ |f the RC value is negative, the FAILURE condition is raised.
¢ If the RC value is positive, the ERROR condition is raised.
¢ If the RC value is zero, neither the ERROR nor FAILURE conditions are raised.

See Chapter 7, “Conditions and Condition Traps” for more information.

If you issue a host command in a REXX exec, it is recommended that you enclose
the entire command in double quotation marks, for example:

“routine-name varl var2"

TSO/E provides several host command environments that process different types of
host commands. The following topics describe the different host command
environments TSO/E provides for non-TSO/E address spaces and for the TSO/E
address space (TSO/E and ISPF).

The TSO Host Command Environment

The TSO host command environment is available only to REXX execs that run in the
TSO/E address space. Use the TSO host command environment to invoke TSO/E
commands and services. You can also invoke all of the TSO/E REXX commands,
such as MAKEBUF and NEWSTACK, and invoke other REXX execs and CLISTs.
When you invoke a REXX exec in the TSO/E address space, the default initial host
command environment is TSO.

Note that the value that can be set in the REXX special variable RC for the TSO
environment is a signed 24 bit number in the range -8,388,608 to + 8,388,607.

The CONSOLE Host Command Environment

The CONSOLE host command environment is available only to REXX execs that run
in the TSO/E address space. Use the CONSOLE environment to invoke MVS system
and subsystem commands during an extended MCS console session. To use the
CONSOLE environment, you must have CONSOLE command authority.

Before you can use the CONSOLE environment, you must first activate an extended
MCS console session using the TSO/E CONSOLE command. After the console
session is active, use ADDRESS CONSOLE to issue MVS system and subsystem
commands. The CONSOLE environment lets you issue MVS commands from a
REXX exec without having to repeatedly issue the CONSOLE command with the
SYSCMD keyword. For more information about the CONSOLE environment and

Chapter 2. General Concepts 27

General Concepts

related TSO/E services, see Appendix D, “Writing REXX Execs to Perform MVS
Operator Activities” on page 505.

If you use ADDRESS CONSOLE and issue an MVS system or subsystem command
before activating a console session, the CONSOLE environment will not be able to
locate the command you issued. In this case, the REXX special variable RC is set to
-3 and the FAILURE condition is raised. The -3 return code indicates that the host
command environment could not locate the command you issued. In this case, the
command could not be found because a console session is not active.

Note that the value that can be set in the REXX special variable RC for the
CONSOLE environment is a signed 31 bit number in the range -2,147,483,648 to
+2,147,483,647.

The ISPEXEC and ISREDIT Host Command Environments

The ISPEXEC and ISREDIT host command environments are available only to REXX
execs that run in ISPF. Use the environments to invoke ISPF commands and
services, and ISPF edit macros.

When you invoke a REXX exec from ISPF, the default initial host command
environment is TSO. You can use the ADDRESS instruction to use an ISPF service.
For example, to use the ISPF SELECT service, use the following instruction:

ADDRESS ISPEXEC 'SELECT service'

The ISREDIT environment lets you issue ISPF edit macros. In order to use ISREDIT,
you must be in an edit session.

Note that the value that can be set in the REXX special variable RC for the ISPEXEC
and ISREDIT environments is a signed 24 bit number in the range -8,388,608 to
+8,388,607.

The CPICOMM and LU62 Host Command Environments

The CPICOMM and LU62 host command environments are available to REXX execs
that run in any MVS address space. The CPICOMM environment lets you use the
SAA common programming interface (CPl) Communications calls. The LU62
environment lets you use the APPC/MVS calls that are based on the SNA LU 6.2
architecture. Using the two environments, you can write APPC/MVS transaction
programs (TPs) in the REXX programming language. Using CPICOMM, you can
write transaction programs in REXX that can be used in different SAA environments.

The CPICOMM environment supports the starter set and advanced function set of
the following SAA CPl Communications calls. For more information about each call
and its parameters, see SAA Common Programming Interface Communications
Reference.

CMACCP (Accept_Conversation)
CMALLC (Allocate)

CMCFM (Confirm)

CMCFMD (Confirmed)

CMDEAL (Deallocate)

CMECT (Extract_Conversation_Type)
CMEMN (Extract_Mode_Name)
CMEPLN (Extract_Partner_LU_Name)
CMESL (Extract_Sync_Level)

® © © © © 6 ¢ o o

28 TSO/E Version 2 MVS/REXX Reference

General Concepts

CMFLUS (Flush)

CMINIT (Initialize_Conversation)
CMPTR (Prepare_To_Receive)
CMRCYV (Receive)

CMRTS (Request_To_Send)
CMSCT (Set_Conversation_Type)
CMSDT (Set_Deallocate_Type)
CMSED (Set_Error_Direction)
CMSEND (Send_Data)

CMSERR (Send_Error)

CMSF (Set_Fill)

CMSLD (Set_Log_Data)

CMSMN (Set_Mode_Name)
CMSPLN (Set_Partner_LU_Name)
CMSPTR (Set_Prepare_To_Receive_Type)
CMSRC (Set_Return_Control)
CMSRT (Set_Receive_Type)
CMSSL (Set_Sync_Level)

CMSST (Set_Send_Type)
CMSTPN (Set_TP_Name)
CMTRTS (Test_Request_To_Send_Received)

® © o o e o & o © & © o o © ¢ O o ©° o o o

The LU62 environment supports the following APPC/MVS calls. These calls are
based on the SNA LU 6.2 architecture and are referred to as APPC/MVS calls in this
book. For more information about the calls and their parameters, see MVS/ESA
Application Development: Writing Transaction Programs for APPC/MVS.

ATBALLC (Allocate)

ATBCFM (Confirm)

ATBCFMD (Confirmed)
ATBDEAL (Deallocate)
ATBFLUS (Flush)

ATBGETA (Get_Attributes)
ATBGETC (G<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>