
Ptogaam PI oducI

SC28-1134-0
File No. S370.39

MVS/Extended Architecture
TSO Extensions
TSO Command Language
Reference

Program Number 5665-285

--..-. ------ -- -- - ~--- -.. ---- - - _ .. -----------, -

TNL SN28-1029 (December 14, 19H4) to SC2H-1134-0

First Edition (January, 1983)

See the Summary of Amendments following the Contents for a summary of the changes
made to this manual. Technical changes or additions to the text and illustrations are
indicated by a vertical line to the left of the change.

This edition with Technical Newsletter SN28-1 029 and SN28-0816 applies to TSO
Extensions (TSO/E) Program Number 5665-285 until otherwise indicated in new editions
or Technical Newsletters. Changes are periodically made to the information herein.
Before using this publication in connection with the operation of IBM systems, consult the
latest IBM System Bibliography, GC20-000I, for the editions that are applicable and
current.

References in this publication to IBM products, programs, or services do not imply that
IBM intends to make these available in all countries in which IBM operates. Any
reference to an IBM program product in this publication is not intended to state or imply
that only IBM's program product may be used. Any functionally equivalent program may
be used instead.

Publications are not stocked at the address given below. Requests for IBM publications
should be made to your IBM representative or to the IBM branch office serving your
locality.

A form for readers' comments is provided at the back of this publication. If the form has
been removed, comments may be addressed to IBM Corporation. Information
Development, Department D58, Building 921-2, PO Box 390, Poughkeepsie, N.Y. 12602.
IBM may use or distribute any of the information you supply in any way it believes
appropriate without incurring any obligation to you.

© Copyright International Business Machines Corporation 1982

Preface

This publication describes the syntax and function of the commands and
subcommands of the TSO command language. It is intended for" use at a
terminal. The level of knowledge required for this publication depends
upon the command being used. Most commands require little knowledge of
TSO and of the operating system; however, some commands require a
greater knowledge of the system. As a general rule, the description of ~ach
command requires an understanding of those elements being manipulated
by the command.

The prerequisite publication, TSO Terminal User's Guide, describes the
commands used to perform the following functions:

• Start and end a terminal session.
• Enter and manipulate data.
• Program at the terminal.
• Test a program.
• Write and use command procedures.

Once a user is familiar with the TSO Terminal User's Guide, he can use this
publication to code the TSO commands.

The appendixes in the TSO Terminal User's Guide describe how to use the
terminals supported by TSO.

The major divisions in this book are:

• Introduction
• Basic Information for Using TSO
• The Commands
• Command Procedures

Index

The Introduction describes the TSO command language. The section
entitled "Basic Information for Using TSO" contains general information
necessary to use TSO commands.

The section entitled "The Commands" describes the syntax and function of
each command, its operands and its subcommands. Examples are included.

The commands are presented in alphabetical order, except that the
foreground-initiated background (FIB) commands are in Appendix A, the
program product commands are in Appendix B, and the Access Method
Services commands are in Appendix C. Subcommands are presented in
alphabetical order following the command to which they apply. The END
and WHEN commands, which are used with command procedures, are
included in sequence instead of appearing in the Command Procedures
section. Statements, variables, functions, and operators are in the Command
Procedures section.

"Command Procedures" describes the control statements used in command
procedures.

Preface ill

Related PubUcations

11' 1'80 COIIIIIIIIDd l.aDguase Reference

The publications referred to in this book are:

MVS/Extended Architecture Access Method Services, GC26-4091

MVS/Extended Architecture Message Library: System Messages, GC28-1l56

MVS/Extended Architecture JCL, GC28-1l48

MVS/Extended Architecture System Programming Library: System
Generation Reference, GC26-4009

MVS/Extended Architecture System Programming Library: TSO,
GC28-1173

IBM System/370 Reference Summary, GX20-1850

Assembler H Version 2 Application Programming: Language Reference,
GC26-4037

MVS/Extended Architecture Terminal Monitor Program and Service Routines
Logic

(OS/VS Terminal Monitor Program and Service Routines Logic,
SY28-0650-3, as amended by Supplement LD23-0262)

MVS/Extended Architecture Data Management Services Guide, GC26-4010

MVS/Extended Architecture System Programming Library: System Macros
and Facilities, GC28-IIS0

MVS/Extended Architecture Linkage Editor and Loader, GC26-4011

MVS/Extended Architecture System Programming Library: System
ModificatiOns, GC28-1l52

TNL SN28-o816 (May 13, 1983)to SC28·1134-o

Contents
Summary of Amendmenls . • • xv

IDttoduetion •••

Basic: lDfonaadon for UsinI TSO •••••••••••••..•••••••••••••••••••••••••• 3
Using a Terminal•............ 3

Entering Information at the Terminal•..........•....• 3
Correcting Typing Errors ..• 3

Using TSO Commands ... 3
Positional Operands ...•... 3
Keyword Operands .. 4
Abbreviating Keyword Operands•...... 4
Comments " " 5
Delimiters .. 5
Line Continuation ..•... 5
Subc:ommands ... 5
Syntax Notation Conventions ... 6

Using System-Provided Aids 7
The Attention Interruption .. 7
Messages ...•............. 8

Mode Messages ...•...... 8
Prompting Messages ... 9
Informational Messages ... 9
Broadcast Messages .. 10

Using the HELP Command ... 10
Explanations of Commands•........... 10
Syntax Interpretation of HELP Information 10
Explanations of Subcommands•............... 10

Using Data Set Naming Conventions II
Data Set Names in General•.......... 11
TSO Data Set Names ' .. 11
How to Enter Data Set Names 13
Specifying Data Set Passwords 14

Using Commands for VSAM and Non-VSAM Data Sets IS

11ae COIIUDIIIICIs •• 17

ALLOCATE COIIIIII8IId •• 19

A1TRIB COIIIIDIIIId ••• 41

CALL COIIIIDIIIId ••• 49

DELETE ColDIDIIIId ••• 51

EOrr Commaad ... 55
Modes of Operation .. 62

lnputMode , , , 62
Edit Mode ,.. 64
Changing from One Mode to Another•............ " 6S
Data Set Disposition,................................. 66

Tabulation Characters ..•..............................•..........•.. 66
Executing User-Written Programs , 67
Terminating the EDIT Command•.............. 67
Recovering Data after a Terminal Une Has Been Disconnected•......•...•.. 67

SabcommancIs for EDrr •• 69

ALLOCATE SufM:ommand of EDrr •••••••••.•••••••••••••••••••••••••••• 71

A1TRIB Subcommand of EDrr ••• 73

BOlTOM Subcommand of EDIT ••••••••••••••••••••••••••••••••••••••• 75

May 13, 1983

CHANGE Subcommand of EDIT •••••..••••••••••.••••..•••..•••••••.••• 77
Quoted-String Notation .. 78
Combinations of Operands ... 79

Examples Using Quoted Strings ..•..................................... 81

CKPOINT Subcommand or EDIT ••..••..••.•••.•••••....•.•••.••.•..... 83

COPY Subcommand of EDIT ••••••••.•••••••••••••••••..•••••.•••.•.•• 85
Messages .. 87

DELETE Subcommand of EDIT ••••••.••••••••••••••••••.•••••••••••..• 93

DOWN Subcommand 01 EDIT ••••••••.••••••.••.••••••••••....•••••••• 95

END Subcommand of EDIT ••••••••••••..••••••••...•••...•••••..•...• 97

EXEC Subcommand of EDIT ••.•••.••••...•••...•..•...•••.•.••••..••. 99

FIND Subcommand of EDIT. • • . • • . . • . • . • • • • • . • • . • • • • • • • • • • • • • . • • • . • •• 101

FREE Subcommand of EDIT 103

HELP Subcommand of EDIT 105

INPUT Subc:ommaDd 01 EDIT •••• .• 107

INSERT Subcommand of EDIT ..••••.•••••••••••••••••••••••....••••.• 109

IDsert/Replac:e/Delete Func:doo 01 EDIT ••••••.•••••.••••••..•••••. •••.• 111
How the System Interprets the Operands: 111

LIST Subcommand 01 EDIT •••••••••••.••••••••••••.••••••••••••••••• 113

MOVE Subcommand 01 EDIT •••••.••••••••••••••••••••••••••••••••.•• 115
Messages•.•.................................... 117

PROFILE SubcommaDd of EDIT ••••• • • • • • • • • • • • . • • • • • • • • • • • • . • • • • • • . •• 1%3

RENUM Subc:ommand 01 EDIT ••••••••••••••• ,....................... 1%5

RUN SubcommaDd 01 EDIT ••••••••••••••••••••••••••••••••••.•.•.••• 117

SAVE Subcommand of EDIT 131

SCAN Subeommand 01 EDIT ~ Il3

SEND SubeommaDd 01 EDIT 135

SUBMIT Subcommand 01 EDIT 137

TABSET Subromnwnd 01 EDIT 139

TOP SubcommaDd of EDrr •• 141

UNNUM SubcommaDd 01 EDrr •••••••••••••••••••.••••••.•••••••••••• 143

UP Subcommand of EDIT •••••••••••••••••••••••••.•.••••.••••••.••• 145

VERIFY SubeOlDlllllDd 01 EDrr •••••••••••••••••••••••••••.•••••••••••• 147

END Command ••• 149

EXEC Command lSI

FREE Command IS7

HELP Command 161

LINK Command 165

LISTALC Command ••• 173

LISTBC Command •• 177

LISTCAT Command ••• 179

LlSJDS Command •• 183

LOADGO Command 187

LOGOFF Command 193

LOGON Command •• 195

PROFILE Command ••• 199

PROTECT Command •• 105
Passwords .. 205
Types of Access .. 205
Password Data Set•...............•.................... 207

RENAME Command ••• 109

RUN Command •• 111

SEND Command •• lIS

lERMINAL Command ••• 119

TEST Command •• 123
When to Use TEST ...•... 223
Addressing Conventions Associated with TEST 224
Restrictions on Use of Symbols 228

External Symbols ... 228
Internal Symbols•...........................•......... 229
Addressing Considerations ... 229
Examples of Valid Addresses in TEST Subcommands•..•••• 229

31-Bit Addressing Considerations Associated with TEST 230
Programming Considerations Associated with TEST When Using the Virtual Fetch

Services 230
Programming Considerations Associated with TEST for Use in a Cross-Memory

Environment ... 231

TEST Subcommamls ••• 133

ALLOCATE Subcommand of TEST ••••••••••••••••••••••••••••••••••••• 137

AND Subcommand of TEST •• 239

Assignment of Values FUnction of TEST •••••••••••••••••••••••••••••••••• 243

AT Subcommand of TEST ••• 147

ATTRIB subcommand 01 TEST •• 151

Contents vii

viii TSO Command Language Reference

CALL Subcommand of TEST ••••••••••••••••••••..••••••••.••..•••••• 253

CANCEL Subcommand of TEST ••••••••••••••••••••••••••••.•••••••••• 255

COPY Subcommand of TEST •••..•••••••••••••••••••••••••••••••••••• 257

DELETE Subcommand of TEST •••••••••••••••••••••.••.•••••••••••••• 261

DROP Subcommand of TEST ••• 263

END Subcommand of TEST •• 265

EQUATE Subcommand of TEST ••••••••••••••••••••••••••••••••••••••• 267

EXEC Subcommand of TEST ••• 271

FREEMAIN Subcommand of TEST ••••••••••••••••••••••••••••••••••••• 273

GETMAIN Subcommand of TEST •••••••••••••••••••••••••••••••••••••• 275

GO Subcommand of TEST ..••• 277

HELP Subcommand of TEST 279

LINK Subcommand of TEST 281

LIST Subcommand of TEST .••••••••••••••••••••...•••••••....••••••• 283

LIST ALC Subcommand of TEST ••••••••••••••••••••••••••••••••••••••• 289

LISTBC Subcommand of TEST •••••••••••••••••••• • • • • • • • • • • • • • • • • • • •• 291

LlSTCAT Subcommand of TEST •..••.•.•....•• . • • • • . • • • . . . • . • • • • . . • • .• 293

LlSTDCB Subcommand of TEST

LlSTDEB Subcommand of TEST

295

297

LISTDS Subcommand of TEST •••••.•••••.••••••.•...•...••..••..••••. 299

LlSTMAP Subcommand of TEST 301

LlSTPSW Subcommand of TEST 303

LISTTCB Subcommand of TEST ••••••••. • . • • • • • • • . . • . . • • • • • • • . • • . . . • •. 30S

LOAD Subcommand of TEST ••. 309

OFF Subcommand of TEST •...•..•••.•••.......••••••••••••••••••••• 311

OR Subcommand of TEST ••.•••••.••.••••..•.•.••••••.•••••••••••••• 313

PROFILE Subcommand of TEST 317

PROTECT Subcommand of TEST 319

QUALIFY Subcommand of TEST 321

RENAME Subcommand of TEST 325

RUN Subcommand of TEST •• 327

SEND Subcommand of TEST ••• 329

STATUS Subcommand of TEST 331

SUBMIT Subcommand of TEST 333

TERMINAL Subcommand of TEST 335

UNALLOC Subcommand of TEST 337

WHERE Subcommand of TEST ••••••••••••••••••••••••••••••••••••••• 339

TIME Command •• 343

TSO/E Interacdve Data Transmission Facllity •••••••••••••••••••••••••••••• 345

TRANSMIT Command •••••••••••••••• •• 347

RECEIVE Command ••• 351
NAMES DATA SET FUNCTION••.•.••••..••••................ 354

Control Section Tags•••..............••.••....•••• 355
TAG DEFINITIONS .. 355

Nicknames Section Tags•............................... 356
TAG DEFINITIONS .•••...................•.................. 357

DATA ENCRYPTION Function of TRANSMIT and RECEIVE 358
LOGGING Function of TRANSMIT and RECEIVE•.. 358

WHEN Command ••• 363

Command Proc:edures ••• 365
Functions Available for Command Proc:edures •...•...•....•••••........... 365

Expressions and Operators•..•.. .. 368
Symbolic Variables ..•.••••...................................... 368

Symbolic Substitution•••..• 369
Concatenation of Symbolic Variables•••..........••.......... 369
Character Set Supported in Command Proc:edure Variables .•••••••••.•.... 370

Control Variables ... 370
Built-In Functions•...... 372

Command Proc:edure Statements•........................ 373

ATTN Statement ••• 377

CLOSFILE Statement 379

CONTROL Statement 381

DATA-ENDDATA Sequence 383

DO-WHILE-END Sequence 385

ERROR Statement •• 387

EXIT Statement •• 389

GETFILE Statement 391

GLOBAL Statement 393

GOTO Statement ••• 395

Contents ix

IF-THEN-ELSE Statement .••• i ••••••••••••••••••••••••••••••••••••• 397

OPENFILE Statement •• 399

PROC Statement ••• 401

PUTFILE Statement ••• 403

READ Statement ••• 405

READDV AL Statement ••• 407

RETURN Statement ••• 409

SET Statement •••••••••••••.••••••••••••••••••••••••••••••••••••• 411

TERMIN Statement ••• 413

WRITE and WRlTENR Statements ••••••••••••••••••••••••••••••••••••• 415

Appendix A: Foreground-lnidated Background Commands •••••••••••••••••••••• 417

Using Foreground-lnidated Background (FIB) Commands ••••••••••••••••••••••• 419
Processing Batch Jobs .. 419
Submitting Batch Jobs .. 419
Displaying the Status of Jobs ... 421
Cancelling Batch Jobs .. 421
Controlling the Output of Batch or Foreground Jobs 422

CANCEL Command 427

OUTPUT Command 429

CONTINUE Subcommand of OUTPUT •••••••••••••••••••••••••••••••••• 435

END Subcommand of OUTPUT ••••••••••••••••••••••••••••••••••••••. 437

HELP Subcommand of OUTPUT 439

SAVE Subcommand of OUTPUT 441

STATUS Command 443

SUBMIT Command 445

Appendix B: Program Product Commands ••••••••••••••••••••••••••••••••• 449
ASM Command .. 449
COBOL Command .. 449
COpy Command ... 449
FORMAT Subcommand of EDIT 450
MERGE Subcommand of EDIT 450
FORMAT Command .. 450
FORT Command•.......... 451
LIST Command .. 451
MERGE Command ... 451
PLI Command ... 452
TESTCOB Command .. 452
TESTFORT Command :........................ 452

Appendix C: Access Method Ser¥ices Commands •••••••••••••••••••••••••••• 453

Appendix D: Support for Processing Batch Jobs ••••••••••••••••••••••••••••• 455

x TSO Command Language Reference

Executing TSO Commands in the Background 4SS
Background Prompting ... 4SS
Concurrent Execution .. 4S6
Output Handling ... 4S6
Submitting Commands Using the SUBMIT Command 4S7
Submitting Commands Using a Card Deck 460
Writing JCL for Command Execution •................................ 461

JOB Statement .. 461
EXEC Statement ... 461
SYSTSPRT DD Statement 462
SYSTSIN DD Statement .. 462

Command Behavior ... 463
CALL Command ... 463
EDIT Command ... 464
LOGON/LOGOFF Commands 46S
PROFILE Command .. 46S
SUBMIT Command and Subcommand of EDIT 466

Error Condition Handling ... 472
Recovering an EDIT Workfile .. 473

Checkpointing a Data Set ... 473
Recovery After a System Failure 474
Recovery After an Abend ... 47S
Recovery After a Terminal Line Disconnect 476
Command Syntax and Operand Description•.. 476

EDIT Command ...•... 476
PROFILE Command .. 477

Command Procedure Modifications 477
Numeric Value Ranges ... 477
Built-In Function (&NRSTR) 478
Control Variable (&SYSENV) ••.................................. 479
DATA PROMPT - ENDDATA Sequence 479

Index ••• 481

Contents xl

Figures

l. Descriptive Qualifiers .. 12
2. Default Names Supplied by the System 14
3. Descriptive Qualifiers Supplied by Default 14
4. Commands Preferred for VSAM/Non-VSAM Data Sets 15
5. Default Values for LINE or LRECL and BLOCK or BLKSIZE Operands 61
6. How EDIT Subcommands Affect the Line Pointer Value 6S
7. Subcommands of the EDIT Command 70
8. Source Statement/Program Product Relationship 127
9. Default Tab Settings .. 139
10. Information Available Through the HELP Command 164
11. System Defaults for Control Characters 199
12. Source Statement/Program Product Relationship 211
13. Command Procedure Coding Reference 366
14. Arithmetic, Comparative, and Logical Operators 368
15. Control Variables .. 371
16. Built-In Functions .. 372
17. Command Procedure Statement Categories 373
18. Command Procedure Statement Error Codes (Decimal) 374
19. Submitting a Program as a Batch Job 420
20. Handling Necessary Replies in the Background 456
21. Creating and Submitting Data Sets Containing Commands 457
22. The SUBMIT • Function ... 458
23. The SUBMIT Process Using System-Generated JCL 459
24. The SUBMIT Process With User-Created JCL Statements 460
25. Card Deck Setup for Processing Commands in the Background 461
26. Allocating and Creating Input Data Sets 463
27. Entering Blank Lines Into Your Data Set 464
28. UPT /PSCB Initialization Table in the Background 466
29. Operand Description for SUBMIT 468
30. USER/NOUSER, PASSWORD/NOPASSWORD, and NOTIFY /NONOTIFY

Processing .. 471
31. Processing Considerations (RACF and Non-RACF Systems) 472
32. Sample Edit Session Using the CKPOINT Subcommand and the RECOVER Operand

of EDIT .. 475

Figures xiii

Summary of Amendments

Summary of Amendments
for SC28-1134-0
as Updated December 14, 1984
by TNL SN28-1029

TNL SN2R-1029 (December 14. 19R4) to SC2R-1134-0

This technical newsletter contains service updates to the CANCEL, STATUS. and
SUBMIT commands.

Summary of Amendments
for SC28-1134-0
as Updated May 13, 1983
by TNL SN28-0816

This technical newsletter reflects the changes for packaging TSO/E as a licensed
program (Program Number 5665-285) that applies to both MVS/System Product
Version 1 and MVS/System Product Version 2.

Summary of Amendments XV

May 13, 1983

SN28-0815-0

xvi TSO Command Language Reference

Introduction

TSO allows you and a number of other users to use the facilities of the
system concurrently and in a conversational manner. You can communicate
with the system by typing requests for work (commands) on a terminal,
which may be located far away from the system installation. The system
responds to your requests by performing the work and sending messages
back to your terminal. The messages tell you such things as what the status
of the system is with regard to your work and what input is needed to
allow the work to be done.

By using different commands, you can have different kinds of work
performed. You can store data in the system, change the data, and retrieve
it at your convenience. You can create programs, test them, have them
executed, and obtain the results at your terminal.

When you use a command to request work, the command establishes the
scope of the work to the system. To provide flexibility and greater ease of
use, the scope of some commands' work encompasses several operations
that are identified separately. After entering the command, you may specify
one of the separately identified operations by typing a subcommand. A
subcommand, like a command, is a request for work; however, the work
requested by a subcommand is a particular operation within the scope
established by a command.

This reference manual describes what each command can do and how to
enter a command at your terminal.

Additional commands and subcommands are available for a license fee as
optional program products. Appendix B lists the program product
commands and subcommands.

Appendix C lists the Access Method Services commands that are available.

Introduction 1

Using a Terminal

Basic Information for Using TSO

Before using TSO you should know how to use:

• Terminals
• TSO commands
• System-provided aids
• Data set naming conventions

A terminal session is designed to be an uncomplicated process for a
terminal user: he identifies himself to the system and then issues commands
to request work from the system. As the session progresses, the user has a
variety of aids available at the terminal which he can use if he encounters
any difficulties.

Entering Information at tM Termi",,1

Correcting Typing EI'1'01S

Using TSO Commands

POIitio",,1 Opet'tlnds

All TSO terminals have a typewriter-like keyboard through which you enter
information into the system. The features of each keyboard vary from
terminal to terminal; for example, one terminal may not have a backspace
key, while another may not allow for lowercase letters. The features of
each terminal as they apply to TSO are described in TSO Terminal User's
Guide. The examples in this book are addressed to a user of an IBM 3270
Display Station.

If you wish to correct typing errors, you must correct them before you
press the ENTER key. Move the cursor under the error and type the
correct character. To replace a character with a space, move the cursor
under the character and press the space bar.

A command consists of a command name followed, usually, by one or more
operands. Operands provide the specific information required for the
command to perform the requested operation. For instance, operands for
the RENAME command identify the data set to be renamed and specify
the new name:

RENAME OLDNAME NEWNAME

command name operand-l operand-2
(old data-set-name) (new data-set-name)

Two types of operands are used with the commands: positional and
keyword.

Positional operands follow the command name in a prescribed sequence. In
the command descriptions within this manual, the positional operands are
shown in lowercase characters. A typical positional operand is:

data-set-name

You must replace "data-set-name" with an actual name when you enter the
command.

BasIc Information for Using TSO 3

Keyword Ope1'(llU/J

When you want to enter a positional operand that is a list of several names
or values, the list must be enclosed within parentheses. The names or
values must not include unmatched right parentheses.

Keywords are specific names or symbols that have a particular meaning to
the system. You can include keywords in any order following the positional
operands. In the command descriptions within this book, keywords are
shown in uppercase characters. A typical keyword is:

TEXT

You can specify values with some keywords. The value is entered within
parentheses following the keyword. The way a typical keyword with a value
appears in this book is:

LINESIZE(integer)

Continuing this example, you would select the number of characters that
you want to appear in a line and substitute that number for "integer" when
you enter the operand:

LINESIZE(80)

Note: H conflicting keywords are entered, the last keyword entered
overrides the previous ones.

Abbnwia/ing Keyword Ope1'Qlllb

4 TSO Command Language Reference

You can enter keywords spelled exactly as they are shown or you may use
an acceptable abbreviation. You may abbreviate any keyword by entering
only the significant characters; that is, you must type as much of the
keyword as is necessary to distinguish it from the other keywords of the
command or subcommand. For instance, the LISTBC command has four
keywords:

MAIL NOTICES

NOMAIL NONOTICES

The abbreviations are:

M for MAIL (also MA and MAl)

NOM for NOMAIL (also NOMA and NOMAI)

NOT for NOTICES (also NOTI, NOTIC, and NOTICE)

NON for NONOTICES (also NONO, NONOT, NONOTI, NONOTIC,
and NONOTICE)

In addition, the DELETE and LISTCAT commands allow unique
abbreviations for some of their keywords. They are shown with the syntax
and operand descriptions of DELETE and LISTCAT.

Comments

Delimiters

Line Continuation

Subcommands

Comments may be added to a command anywhere a blank might appear.
Simply enter them within the comments delimiters /* and */. A comment
may be continued to the next line by using a line continuation character (+
or -) at the end of the line.

or

listd (data-set-list) /* my data sets */

listd (data-set-list) /* this is a list of my -
active data sets */

When you type a command, you must separate the command name from
the first operand by one or more blanks. You must separate operands by
one or more blanks or a comma. Do not use a semicolon as a delimiter
because the characters entered after a semicolon are ignored. Using a
blank or a comma as a delimiter, you can type the LISTBC command like
this:

LISTBC NOMAIL NONOTICES

or like this:

LISTBC NOMAIL,NONOTICES

or like this:

LISTBC NOMAIL NOTICES

Enter a blank by pressing the space bar at the bottom of your terminal
keyboard.

When it is necessary to continue to the next line, use a plus or minus sign
as the last character of the line being worked on. Caution: a plus sign will
cause leading delimiters to be removed from the continuation line.

or

list (data-set-list) /* this is a list of my -
active data sets */

alloc dataset(out.data) file (output) new +
space(10,2) tracks release

The work done by some of the commands is divided into individual
operations. Each operation is defined and requested by a subcommand. To
request one of the individual operations, you must first enter the command.
You can then enter a subcommand to specify the particular operation that
you want performed. You can continue entering subcommands until you
enter the END subcommand.

The commands that have subcommands are EDIT, OUTPUT, and TEST.
When you enter the EDIT command, you can then enter the subcommands
for EDIT. Likewise, when you enter the OUTPUT or TEST commands,
you can enter the appropriate subcommands.

Basic information for Using TSO 5

Syntax Notation Conventions

6 TSO Command Language Reference

The notation used to define the command syntax and format in this
publication is described in the following paragraphs.

1. The set of symbols listed below is used to define the format, but you
should never type them in the actual statement.
hyphen

underscore

braces {}

brackets [)

ellipsis

The special uses of these symbols are explained in the following
paragraphs.

2. You should type uppercase letters, numbers, and the set of symbols
listed below in an actual command exactly as shown in the statement
definition.
apostrophe

asterisk •
comma

equal sign '"
parentheses 0
period

3. Lowercase letters, and symbols appearing in a command definition
represent variables for which you should substitute specific information
in the actual command.

Example: If name appears in a command definition, you should
substitute a specific value (for example, ALPHA) for the variable
when you enter the command.

4. Hyphens join lower-case words and symbols to form a single variable.

Example: If member-name appears in the command syntax, you should
substitute a specific value (for example, BETA) for the variable in the
actual command.

5. An underscore indicates a default option. If you select an underscored
alternative, you need not specify it when you enter the command.

Example: The representation

A
B
C

indicates that you are to select A or B or C; however, if you select
B, you need not specify it because it is the default option.

6. Braces group related items, such as alternatives ..

Examples: The representation

ALPHA:=: (~ i ~ , D)

indicates that you must choose one of the items enclosed within the
braces. If you select A, the result is ALPHA=(A,D).

7. Brackets also group related items; however, everything within the
brackets is optional and may be omitted.

Example: The representation

ALPHA=([~] ,D)

indicates that you may choose one of the items enclosed within the
brackets or that you may omit all of the items within the bracketS. If
you select only D, you may specify ALPHA==(,D).

8. An ellipsis indicates that the preceding item or group of items can be
repeated more than once in succession.

Example:

ALPHA [, BETA ••• 1

indicates that ALPHA can appear alone or can be followed by
,BETA any number of times in succession.

Using System-Provided Aids

The Attention Interruption

Several aids are available for your use at the terminal:

• The attention interruption allows you to interrupt processing so that
you can enter a command.

• The conversational messages guide you in your work at the terminal.

• The HELP command provides you with information about the
commands.

The attention interruption allows you to interrupt processing at any time so
that you can enter a command or subcommand. For instance, if you are
executing a program and the program gets in a loop, you can use the
attention interruption to halt execution. As another example, when you are
having the data listed at your terminal and the data that you need has been
listed, you may use the attention interruption to stop the listing operation
instead of waiting until the entire data set has been listed.

If, after causing an attention interruption, you want to continue with the
operation that you interrupted, you can do so by pressing the ENTER key
before typing anything else; however, input data that was being typed or
output data that was being displayed at the time of the attention
interruption may be lost. You can also request an attention interruption
while at the command level, enter the TIME command, and then resume
with the interrupted operation by pressing the ENTER key.

Note: One output record from the interrupted program may be displayed at
the terminal after you enter your next command. This is normal for some
programs.

If your terminal has an interruption facility, you can request an attention
interruption by pressing the appropriate key. You can use the TERMINAL
command to specify particular operating conditions that the system is to
interpret as a request for an attention interruption. More specifically, you
can specify a sequence of characters that the system is to interpret as a
request for an attention interruption. In addition, you can request the

Basic Information for Using TSO 7

Messages

Mode Messages

8 TSO Command Language Reference

system to pause after a certain number of seconds of processing time has
elapsed or after a certain number of lines of output has been displayed at
your terminal. When the system pauses, you can enter the sequence of
characters that you define as a request for an attention interruption.

There are four types of messages:

• Mode messages
• Prompting messages

Informational messages
Broadcast messages

A mode message tells you when the system is ready to accept a new
command or subcommand. When the system is ready to accept a new
command it displays:

READY

When you enter a command that has subcommands and the system is ready
to accept that command's subcommands, it displays the name of the
command, which can be one of the following:

EDIT
OUTPUT
TEST

You can then enter the subcommands you want to use. The TEST message
also appears after each TEST subcommand has been processed. If the
system has to display any output or other messages, as a result of the
previous command or TEST subcommand, it does so before displaying the
mode message.

Sometimes you can save a little time by entering two or more commands in
succession without waiting for the intervening READY message. The
system then prints the READY messages in succession after the commands.
If you enter the following commands without waiting for the intervening
mode messages, your display will be:

READY
delete ••.
free .. .
rename .. .
READY
READY
READY

There is a drawback to entering commands without waiting for the
intervening mode messages. If you make a mistake in one of the
commands, the system sends you messages telling you of your mistake, and
then it cancels the remaining commands you have entered. After you
correct the error, you have to reenter the other commands.

Unless you are sure that there are no mistakes in your input, you should
wait for a READY message before entering a new command.

Note: Some terminals "lock" the keyboard after you enter a command, and
therefore you cannot enter commands without waiting for the intervening
READY message. Terminals which do not lock the keyboard may

Prompting Messages

Infonmadonal Messages

occasionally do so, for example when all buffers allocated to the terminal
are used. See TSO Terminal User's Guide for information on your terminal.

A prompting message tells you that required information is missing or that
information you supplied was incorrectly specified. A prompting message
asks you to supply or correct that information. For example,
partitioned-data-set-name is a required operand of the CALL command; if
you enter the CALL command without that operand the system will
prompt you for the data-set-name and your display will look as follows:

READY
call
ENTER DATA SET NAME -

You should respond by entering the requested operand, in this case the
data set name, and by pressing the ENTER key to enter it. For example, if
the data set name is ALPHA.DAT A, you would complete the prompting
message as follows:

ENTER DATA SET NAME­
alpha. data

If you wish, you will receive prompting messages when appropriate.
However, the PROFILE command can be used to suppress prompting.

Sometimes you can request another message that explains the initial
message more fully. If the second message is not enough, you can request a
further message to give you more detailed information. An indication that
a second or additional message level is available is a plus sign (+) at the
end of the message.

To request an additional level of message:

1; Type a question mark(1) in the first position of the line.
2. Press the ENTER key.

If you enter a question mark, and there are no messages to provide further
detail, you receive the following message:

NO INFORMATION AVAILABLE

You can stop a prompting sequence by entering the requested information
or by requesting an attention interruption to cancel the command. When
unsure of how to respond to a message, you should continue requesting
additional messages regardless of whether or not the previous message
ended with a plus sign (+).

An informational message tells you about the status of the system and your
terminal session. For example, an informational message can tell you how
much time you have used. Informational messages do not require a
response.

If an informational message ends with a plus sign (+), you can request an
additional message by entering a question mark (1) after READY, as
described in "Prompting Messages." Informational messages have only one
second level message, while prompting messages may have more than one.

Basic: informaCion for Using TSO ,

Broadcast~e~es

Broadcast messages are messages of general interest to users of the system.
Both the system operator and any user of the system can send broadcast
messages. The system operator can send messages to all users of the system
or to individual users. For example, he may send the following message to
all users:

DO NOT USE TERMINALS #4, 5 AND 6 ON 6/30. THEY ARE
RESERVED FOR DEPARTMENT 791.

You, or any other user, can send messages to other users or to the system
operator. For example, you may send, or receive, the following message:

DEPARTMENT NO. 4672 WILL BE CHANGED TO 4675 on 8/15

A message sent by another user will show his user identification so you will
know who sent you the message.

Using the HELP Command

Expllllliltionr of ColIIIIIIIIIds

The HELP command can be used by a terminal user to receive all the
information necessary to use any TSO command. The information
requested will be displayed at the user's terminal.

To receive a list of all the TSO commands in the SYS1.HELP data set
along with a description of each, enter the HELP command as follows:

help

Information about installation-written commands may be placed in the
SYS I.HELP data set. You can also get all the information available on a
specific command in SYSI.HELP by entering the specific command name
as an operand on the HELP command, as follows:

help command-name

Syntax Interpretation of HELP Information

The syntax notation used to present HELP inf,ormation is different from
the syntax notation used in this publication because it is restricted to
characters that can be printed by your terminal. You can get the syntax
interpretation by entering the HELP command as follows:

READY
help help

ExpIllIIIltionr of Subcommtmds

10 TSO Command Laaguage Reference

When HELP exists as a subcommand, you may use it to obtain a list of
subcommands or additional information about a particular subcommand.
The syntax of HELP as a subcommand is the same as the HELP command

Using Data Set Naming Conventions

Data Set NIlIIIBS in Gentnl

TSO Dllta Set NIlIIIBS

A data set is a collection of related data. Each data set stored in the
system is identified by a unique data set name. The data set name allows
the data to be retrieved and helps protect the data from unauthorized use.

The data set naming conventions for 1'80 simplify the use of data set
names. When a data set name conforms to the conventions, you can refer
to the data set by its fully qualified name or by an abbreviated version of
the name. The following topics:

1. Describe data set names in general.

2. Define the names that conform to the naming conventions for TSO.

3. Tell how to enter a complete data set name, and how to enter the
abbreviated version of a name that conforms to the TSO data set
naming conventions.

A data set name consists of one or more fields. Each field consists of one
through eight alphameric characters and must begin with an alphabetic (or
national) character.

Caution: The national characters $, @. and # are accepted as the first
character in a data set name. The characters hyphen (-) and
ampersand-zero (12-0 punch) are not accepted in a data set name.

A simple data set name with only one field may be:

PARTS

A data set name that consists of more than one field is a "qualified" data
set name. The fields in a qualified data set name are separated by periods.
A qualified data set name may be:

PARTS.OBJ
or

PARTS. DATA

Partitioned Data Sets: A partitioned data set is simply a data set with the
data divided into one or more independent groups called members. Each
member is identified by a member name and can be referred to separately.
The member name is enclosed within parentheses and appended to the end
of the data set name:

PARTS.DA~(PARTI4)

-=tileiiibe; ~ame

A data set name must be qualified in order to conform to the TSO data set
naming conventions. The qualified name must consist of at least the two
required fields of the following three:

1. Your user-prefix (required; defaults to userid; may be redefined using
PROFILE command).

2. A user-supplied name (optional for a partitioned data set).

3. A descriptive qualifier (required).

BasIc information Cor Using TSO 11

12 TSO Command Language Reference

Normally all three names are used:

USER-PREFIX. USER-SUPPLIED-NAME. DESCRIPTIVE
QUALIFIER

The total length of the data set name must not exceed 44 characters,
including periods. A typical TSO data set name is:

WRRID.PARTS.DATA

user-prefix - WRRID

user-supplied name - PARTS

descriptive qualifier - DATA

The TSO data set naming conventions also apply to partitioned data sets.
A typical TSO name for a member of a partitioned data set is:

WRRID.PARTS.DATA(PART14)

User-Prefix: The user-prefix is always the leftmost qualifier of the full
data set name. For TSO, this qualifier is the prefix selected in the
PROFILE command. If no prefix has been selected, the userid assigned to
you by your installation will be used.

User-Supplied Name: You choose a name for the data sets that you want
to identify. It can be a simple name or several simple names separated by
periods.

Descriptive QuaIifier: The descriptive qualifier is always the rightmost
qualifier of the full data set name. To conform to the data set naming
conventions. this qualifier must be one of the qualifiers listed in Figure 1.

Descriptive Qualifier

ASM
CLiST
CNTL
COBOL
DATA
FORT

LlNKLIST
LIST
LOAD
LOADLIST
OBJ
OUTLIST
PLI

TESTLIST
TEXT
VSBASIC

Figure 1. Descriptive QuaUfiers

Data Set Contents

Assembler (F) input
TSO commands
JCL and SYSIN for SUBMIT command
American National Standard COBOL statements
Uppercase text
FORTRAN (Gl, H)
statements
Output listing from linkage editor
Listings
Load module
Output listing from loader
Object module
Output listing from OUTPUT command
PL/I(F), PL/I Checkout, or PL/I Optimizing
compiler statements
Output listing from TEST command
Uppercase and lowercase text
VSBASIC statements

How to Enter Data Set NtlIIU!S
The data set naming conventions simplify the use of data set names. If the
data set name conforms to the 'conventions, you need specify only the
user-supplied name field (in most cases) when you refer to the data set.
The system will add the necessary qualifiers to the beginning and to the
end of the name that you specify. In some cases, however, the system will
prompt you for a descriptive qualifier. Until you learn to anticipate these
exceptions to the naming conventions, you may wish to specify both the
user-supplied name and the descriptive qualifier when referring to a data
set. When you are using the LINK command, for example, the system will
add both the user identification and the descriptive qualifier, allowing you
to specify only the user-supplied name. For instance, you may refer to the
data set named USERID.PARTS.OBJ by specifying only PARTS (when
you are using LINK) or by specifying PARTS.OBJ (when you are using
other commands). You may refer to a member of a partitioned data set
USERID.PARTS.OBJ(PART14) by specifying PARTS(PART14) when you
are using LINK or by specifying PARTS.OBJ(PART14) when you are
using other commands.

When you specify an entire fully qualified data set name, as you must do if
the name does not conform to the TSO data set naming conventions, you
must enclose the entire name within apostrophes, as follows:

'WRRID.PROG.LlST' where WRRID is not your user identification
or

'WRRID.PROG.FIRST' where FIRST is not a valid descriptive qualifier.

The system will not append qualifiers to any name enclosed in apostrophes.

Defaults for Data Set Names: When you specify only the user-supplied
name, the system adds your user identification and, whenever possible, a
descriptive qualifier. The system attempts to derive the descriptive qualifier
from available information. For instance, if you speCified ASM as an
operand for the EDIT command, the system will assign ASM as the
descriptive qualifier. If the information is insufficient, the system will issue
a message at your terminal requesting the required information. If you
specify the name of a partitioned data set and do not include a required
member name, the system will use TEMPNAME as the default member
name. (If you are creating a new member, the member name will become
TEMPNAME. If you are modifying an existing partitioned data set, the
system will search for a member named TEMPNAME.) Figure 2 illustrates
the default names supplied by the system.

Bask: Information for Using TSO 13

If you specify: The Input data The output data set
set name Is: name will be:

EDIT PARTS ASM UID.PARTS.ASM UID.PARTS.ASM
LINK PARTS or
LINK (PARTS) U1D.PARTS.OBJ UID.PARTS.LOAD

(TEMPNAME)
CALL PARTS UID.PARTS.LOAD

(TEMPNAME)
EDIT PARTS(JAN) ASM UID.PARTS.ASM(JAN) UID.PARTS.ASM(JAN)
LINK PARTS(JAN) or
LINK (PARTS(JAN» UID.PARTS.OBJ(JAN) UID.PARTS.LOAD(JAN)
CALL PARTS(JAN) UID.PARTS.LOAD(JAN)
EDIT (PARTS) ASM UID.ASM(PARTS) UID.ASM(PARTS)
LINK «PARTS» UID.OBJ(PARTS) UID.LOAD(PARTS)
CALL (PARTS) UID.LOAD(PARTS)

Note: Member names must be enclosed in parentheses to distinguish
them from data set names.

FIgure 2. Default Names Suppled by the System

DescrIptive Qua1Iflers
Command Input Output ListIng

ASM ASM OBJ LIST
CALL LOAD
COBOL COBOL OBJ LIST
CONVERT FORT FORT
EXEC CLIST
FORMAT TEXT LIST
FORT FORT OBJ LIST
LINK OBJ LOAD LINKLIST

LOAD
LOADGO OBJ LOADLIST

LOAD
OUTPUT OUTLIST
RUN ASM

FORT
COBOL

SUBMIT CNTL
TEST OBJ TESTLIST

LOAD

FIgure 3. DescrIptive Qualifiers Supplied by Default

Specifying Data Set PIllStt1Ol'ds

14 TSO Command Laquage Reference

When referencing password protected data sets, you must specify the
password as part of the data set name or you will be prompted for it. The
password is separated from the data set name by a slash (/) and optionally,
by one or more standard delimiters (tab, blank, or comma). See the
discussion on "Password Data Set" that appears under the PROTECT
command for non-VSAM data sets. For VSAM data sets, see DEFINE and
ALTER in .Access Method Services.

Using Commands for VSAM and Non-VSAM Data Sets
Figure 4 gives recommended commands, by function, for VSAM and
non-VSAM data sets. Numbers in parentheses after the commands indicate
order of preference. Program product commands are identified with an
asterisk (*). Refer to Access Method Services for commands not covered in
this document.

Function Non-VSAM VSAM

Build lists of attributes AlTRIB (None)
Allocate new DASD space ALLOCATE DEFINE
Connect data set to terminal ALLOCATE ALLOCATE
Ust names of allocated LlSTALC LlSTALC
(connected) data sets
Modify passwords PROTECT DEFINE,ALTER
List attributes of one or Llsms (1) LlSTCAT (1)
more objects LlSTCAT (2) LlSTDS (2)
Ust names of cataloged data sets

Limit by type LlSTCAT LISTCAT
Limit by naming convention LlSIDS LlSTDS

Catalog data sets DEFINE (1) DEFINE
ALLOCATE (2)

List contents EDIT,LlST- PRINT
Rename RENAME ALTER
Delete DELETE DELETE
Copy data set COpy- REPRO

F"JgUre 4. Commands Preferred for VSAM!Non-VSAM Data Sets

Bulc lDformadon for UIifDI TSO 15

The Commands

This section contains descriptions of the TSO commands. The commands
are presented in alphabetical order. Subcommands are presented in
alphabetical order following the command to which they apply.

The Commands 17

ALLOCATE Command

Use the ALLOCATE command or the ALLOCATE subcommand of EDIT
(the subcommand's function and syntax are identical to the ALLOCATE
command) to dynamically allocate the data sets required by a program that
you intend to execute. There are several ways that you can specify data set
attributes for non-VSAM data sets that you intend to allocate dynamically.

• You may use the LIKE keyword to obtain the attributes from an'
existing model data set (a data set that must be cataloged) whose data
set attributes you wish to use. You may override model data set
attributes by specifying them explicitly on the ALLOCATE command.

• You can identify a data set and describe its attributes explicitly on the
ALLOCATE command.

• You may use the A TTRIB command to build a list of attributes.
During the remainder of your terminal session, you can have the
system refer to this list for data set attributes by specifying the
USING keyword when you enter the ALLOCATE command. The
ALLOCATE command will convert the attributes into the DCB
parameters for data sets being allocated. When you specify the
USING keyword, you cannot override attributes obtained via the
attribute list. Any DCB attributes (those found on ATTRIB) will be
ignored on ALLOCATE and an appropriate message will be issued.

ALLOCATE Command 19

20 TSO Command Language Rererence

{ALLOCATE}
ALLOC {~~ATASET} { (*) }}

D~~~E (dsname-list)

JFILE (name) }
lDDNAME (name)

[~~~] MOD
NEW
SYSOUT [(class)]

[{DATASET}
DSNAME

DUMMY

rVOLUME (serial-listTI
lMSVGP (identifier) J

[SPACE (quantity [, incrementll

[BLKSIZE (blocksize)]
[DIR (integer)]
[ALTFILE (name)]
[DEST (stationid)]
[REUSE]

[~g~gLD]
[UNIT (type)]
rUNCOUNT (count ~
LPARALLEL J
[LABEL (type)]
[POSITION (sequence-no.»)
[MAXVOL (count)
[PRIVATE]
[VSEQ (vol-seq-no»)
rLIKE (model-dsname) 1
L~SING (attr-list-nameU
[RELEASE]
[ROUND]

[g~~i~~G]
UNCATALOG

[BUFL (buffer-length)]

[FILE (name)]
DDNAME (name)

{
BLOCK (value) }]
AVBLOCK (value)
TRACKS
CYLINDERS

[BUFNO (nUmber-~f-bufferS)]

[LRECL (~iOgiCal-re~Ord-length})]
[NCP (no.-of-channel-programs)]
fINPUT]
LOUTPUT

[EXPDT (year-day) J
RETPD (no.-of-days)

[BFALN _ i~}]
[OPTCD (A,B,C,~,F,H,Q,R,T,w,and/or Z)]

[EROPT ({ i~~ })]
["FTEK (~})]
[RECFM (A,B,D,F,M,S,T,U,and/or V)]
[DIAGNS (TRACE)]
[LIMCT (search-number)]
BUFOFF ({block-pr~fiX-length})]

DSORG ~'~:I~
[EN ({WJ

[~~EN (keY~!H!J
[PROTECT]
[COPIES (number)]
[FCB (irnage- id f, ALIGN J)]

rVERIFY

DATASET(dsname-list or *) or DSNAME(dsname-list or *)
specifies the name of the data set that is to be allocated. If a list of
data set names is entered, ALLOCATE will allocate and concatenate
non-VSAM data sets. The data set name must include the
descriptive (rightmost) qualifier and may contain a member name in
parentheses.

If you specify a password, you will not be prompted for it when you
open a non-VSAM data set. For additional information on VSAM
data sets see, Access Method Services, under the section "Data
Security and Integrity."

ALLOCATE Command 21

12 TSO Command Language Reference

Notes:

You may substitute an asterisk (*) for the data set name to indicate
that you want to have your terminal allocated for input and output.
If you use an asterisk (*), only the FILE or DDNAME, BLOCK or
BLKSIZE, and USING operands should be entered. All other
operands are ignored. No message is issued to notify the user.

1. If you allocate more than one data set to your terminal, the blocksize
and other data set characteristics which default on the first usage will
also be used for all other data sets. This happens for input or output.
The ATTRIB command and the USING keyword of ALLOCATE can
be used to control the data set characteristics being used.

2. The system generates names for SYSOUT data sets; therefore, you
should not specify a data set name when you allocate a SYSOUT data
set. If you do, the system ignores it.

3. Data sets residing on the same physical tape volume cannot be
allocated concurrently.

4. The following items should be noted when using the concatenate
function:

• The data sets specified in the list must be cataloged. You may
use the CATALOG operand of either ALLOCATE or FREE to
catalog a data set.

• The maximum number of data sets that can be concatenated is
255 for both sequential and partitioned data sets. The data sets
to be concatenated must be either all sequential or all partitioned.

• The data set group will be permanently concatenated. The group
must be freed in order to be deconcatenated. The filename
specified for the FILE or DDNAME operand on ALLOCATE
must be specified for the FILE or DDNAME operand on FREE.

• All operands are ignored except for the following:
DATASET/DSNAME, FILE/DDNAME, and status operands.

5. To allocate a member of a generation data group, specify the fully
qualified data set name, including the generation number.

DUMMY
specifies that no devices or external storage space is to be allocated
to the data set, and no disposition processing is to be performed on
the data set. Entering the DUMMY keyword will have the same
effect as specifying NULLFILE as the data set name on the
DATASET or DSNAME operand. If DUMMY is specified, only the
FILE or DDNAME, BLOCK or BLKSIZE, and USING operands
should be entered. All other operands are ignored.

FILE(name) or DDNAME(name)
specifies the name to be associated with the data set. It may contain
no more than eight characters. (This name corresponds to the name
on the data definition (DD) statement in job control language and
must match the ddname in the data control block (DCB) that is
associated with the data set.) For PL/I, this name is the file name in
a DECLARE statement and has the form "DCL file name FILE";
for instance, DCL MASTER FILE. For COBOL, this name is the
external-name used in the ASSIGN TO clause. For FORTRAN, this

OLD

SUR

MOD

NEW

name is the data set reference number that identifies a data set and
has the form "FTxxFyyy;" for instance FT06F002.

If you omit this operand, the system assigns an available file name
(ddname) from a data definition statement in the procedure that is
invoked when you enter the LOGON command.

indicates that the data set currently exists and that you require
exclusive use of the data set. The data set should be cataloged. If it
is not, you must specify the VOLUME operand. OLD data sets are
retained by the system when you free them from allocation. The
DATASET or DSNAME parameter is required.

indicates that the data set currently exists but that you do not require
exclusive use of the data set. Other tasks may use it concurrently.
ALLOCATE assumes the data set is cataloged if the VOLUME
operand is not entered. SHR data sets are retained by the system
when you free them. The DATASET or DSNAME parameter is
required.

indicates that you want to append data to the end of the data set. If
the data set does not exist, a new data set is created. MOD data sets
will be retained by the system when you free them. The DATASET
or DSNAME parameter is required.

(non-VSAM only) indicates that the data set does not exist and that
it is to be created. For new partitioned data sets you must specify
the DIR operand. A NEW data set will be kept and cataloged if you
specify a data set name. If you do not specify a data set name, it
will be deleted when you free it or log off.

SYSOUT(class»)
indicates that the data set is to be a system output data set. An
optional subfield may be defined giving the output class of the data
set. Output data will be initiaUy directed to the job entry subsystem
and may later be transcribed to a final output device. The final
output device is associated with output class by the instaUation.
After transcription by the job entry subsystem, SYSOUT data sets
are deleted.

Note: If you do not specify OLD, SHR, MOD, NEW or SYSOUT, a
default value is assigned, or a value is prompted for, depending on the
other operands specified:

• If the LIKE keyword or any space parameters (SPACE, DIR,
BLOCK, BLKSIZE, A VBLOCK, TRACKS or CYLINDERS) are
specified, then the status defaults to NEW.

• If the COPIES keyword is specified, then the status defaults to
SYSOUT.

• If the DATASET /DSNAME parameter is entered without the LIKE
parameter or any space parameters, then the status defaults to OLD.

• If the LIKE parameter, the DATASET/DSNAME parameter, and the
space parameters are all omitted, you are prompted to enter a status
value.

ALLOCATE Command 23

14 TSO Command Language Reference

VOLUME(serial-Ust)
specifies the serial number(s) of an eligible direct access volume(s)
on which a new data set is to reside or on which an old data set is
located. If VOLUME is specified for an old data set, the data set
must be on the specified volume(s) for allocation to take place. If
you do not specify VOLUME, new data sets are allocated to any
eligible direct access volume. Eligibility is determined by the UNIT
information in your procedure entry in the user attribute data set
(UADS).

MSVGP(identifier)
specifies an installation-defined group of MSS volumes to be used for
system selection of a volume or volumes to be mounted. This
keyword is used for new data set allocation on MSS (3330V) devices
only. It is ignored for old data sets, DUMMY, SYSOUT and
terminal data sets. The user's UADS data set must contain the
MOUNT attribute. Use of this keyword implies PRIVATE.

SPACE(quantity, increment)
specifies the amount of space to be allocated for a new data set. If
this parameter or the primary space quantity is omitted, the default
space is (10,50) A VBLOCK (1000). To indicate the unit of space
for allocation, you must specify one of the following: BLOCK(value)
or BLKSIZE(value), A VBLOCK(value), TRACKS, or CYLINDERS.
The amount of space requested is determined as follows:

BLOCK(value) or BLKSIZE(value)
Multiply the value of the BLOCK/BLKSIZE operand by the
"quantity" value of the SPACE operand.

A VBLOCK(value)
Multiply the value of the A VBLOCK operand by the
"quantity" value of the SPACE operand.

TRACKS
The "quantity" value of the SPACE operand is the number of
tracks you are requesting.

CYLINDERS

quantity

The "quantity" value of the SPACE operand is the number of
cylinders you are requesting.

SPACE may be specified for SYSOUT, NEW, and MOD data
sets. You must specify a unit of space when you use the
SPACE operand.

specifies the number of units of space to be allocated initially for a
data set.

increment
specifies the number of units of space to be adde.d to the data set
each time the previously allocated space has been filled.

BLOCK(value)
specifies the average length (in bytes) of the records that will be
written to the data set. The maximum block value used to determine
space to be allocated is 65,535. The block value will be the unit of
space used by the SPACE operand. The unit of space value is
determined in one of the following ways:

• From the default value of (10,50) A VBLOCK(1000) if no
space operands (that is, SPACE, BLOCK, TRACKS,
A VBLOCK, or CYLINDERS) are specified.

• From the BLOCK operand if specified.

• From the model data set if the LIKE operand is specified and
BLOCK, TRACKS, A VBLOCK, or CYLINDERS are not
specified on ALLOCATE

• From the BLKSIZE operand if BLOCK is not specified

A VBLOCK(value)
specifies only the average length (in bytes) of the records that will be
written to the data set.

TRACKS
specifies that the unit of space is to be a track.

CYLINDERS
specifies that the unit of space is to be a cylinder.

BLKSIZE(blocksize)
specifies the data control block (DCB) block size for the data set.
The maximum allowable decimal value for block size recorded in the
DCB is 32,760. The DCB block size is determined in one of the
following ways:

From the attribute list if USING is specified. The BLKSIZE
keyword on ALLOCATE will not be used for DCB blocksize

• From the BLKSIZE operand specified on the ALLOCATE
command.

From the model data set if LIKE is specified and BLKSIZE is
not specified on ALLOCATE

• From the BLOCK operand if neither USING, BLKSIZE, nor
LIKE is specified

The block size that you specify to be recorded in the data control
block (DCB) must be consistent with the requirements of the
RECFM operand. If you specify:

•

•

•

RECFM(F), then the block size must be equal to or greater
fhan the logical record length.

/RECFM(F,B), then the block size must be an integral multiple
of the logical record length.

RECFM(V), then the block size must be equal to or greater
than the largest block in the data set. (Note: For unblocked
variable-length records, the size of the largest block must allow
space for the four byte block descriptor word in addition to the
largest logical record length. The logical record length must
allow space for a four-byte record descriptor word.)

ALLOCATE Command 25

26 1'80 CCIIIIID8IId LaDauaae Referenee

• RECFM(V,B), then the block size must be equal to or greater
than the largest block in the data set. (Note: For block variable
length records, the size of the largest block must allow space for
the four byte block descriptor word in addition to the sum of
the logical record lengths that will go into the block. Each
logical record length must allow space for a four-byte record
descriptor word.) Since the number of logical records can vary,
you must estimate the optimum block size (and the average
number of records for each block) based on your knowledge of
the application that requires the I/O.

• RECFM(U) and BLKSIZE(80), then one character will be
truncated from the line, that character (the last byte) is reserved
for an attribute character.

Note: The keywords BLOCK, BLKSIZE, A VBLQCK, TRACKS and
CYLINDERS may be specified for SYSOUT, NEW or MOD data sets.
The keywords BLOCK or BLKSIZE can also be specified for dummy or
terminal data sets.

DIR{integer)
specifies the number of 256 byte records that are to be allocated for
the directory of a new partitioned data set. This operand must be
specified if you are allocating a new partitioned data set.

ALTFILE(name)
specifies the name associated with the SYSIN subsystem data set that
is to be allocated. It can contain a maximum of eight characters.
This parameter is used primarily in the background.

DESI'(stationid)
specifies a remote work station to which SYSOUT data sets will be
directed upon unalIocation. The stationid is the one to eight
character name of the remote work station receiving the SYSOUT
data set.

REUSE
specifies that the filename being allocated is to be freed and
reallocated if it is currently in use.

HOLD
specifies that the data set is to be placed on a HOLD queue upon
unallocation.

NOHOLD
specifies that processing of the output should be determined via the
HOLD/NOHOLD specification associated with the particular
SYSOUT class specified. However, the specification associated with
the SYSOUT class may be overridden by using the NOHOLD
keyword on the FREE command.

UNIT(type)
specifies the unit type to which a file or data set is to be allocated.
You may specify an installation-defined group name, a generic device
type, or a specific device address. If volume information is not
supplied, (volume and unit information is retrieved from a catalog)
the unit type that is coded will override the unit type from the
catalog. This condition exists only if the coded type and class are the
same as the cataloged type and class.

UCOUNT(count)
specifies the maximum number of devices to be allocated, where
count is a value from 1-59.

PARALLEL
specifies that one device is to be mounted for each volume specified
on the VOLUME operand or in the catalog.

LABEL(type)
specifies the kind of label processing to be done. Type may be one
of the following:

SL, SUL, AL, AUL, NSL, NL, LTM, or BLP. These types
correspond to the present JCL label-type values.

POSmON(sequence-no.)
specifies the relative position (1-9999) of the data set on a multiple
data set tape. The sequence number corresponds to the data set
sequence number field of the label parameter in JCL.

MAXVOL(count)
specifies the maximum number (1-255) of volumes a data set can
use. This number corresponds to the count field on the VOLUME
parameter in JCL.

PRIVATE
specifies that the private volume use attribute be assigned to a
volume that is not reserved or permanently resident. This operand
corresponds to the PRIVATE keyword of the VOLUME parameter
in JCL.

Note: If VOLUME and PRIVATE operands are not specified and the value
specified for MAXVOL exceeds the value specified for UCOUNT, the
system will not demount any volumes when all of the mounted volumes
have. been used, causing abnormal termination of your job. If PRIVATE is
specified, the system will demount one of the volumes and mount another
volume in its place so that processing can continue.

VSEQ(vol-seq-no.)
specifies at which volume (1-255) of a multi-volume data set
processing is to begin. This operand corresponds to the volume
sequence number on the VOLUME parameter in JCL. VSEQ should
only be specified when the data set is cataloged.

LIKE(model-dsname)
specifies the name of an existing model data set whose attributes are
to be used as the attributes of the new data set being allocated. This
data set must be cataloged and must reside on a direct access device.
The volume must be mounted when you issue the ALLOCATE
command.

ALLOCATE Command 27

28 TSO Command LaDgaqe Reference

When ALLOCATE command processing assigns attributes to a new
data set, it copies all of the following attributes from the model data
set:

Primary space quantity (SPACE)
Secondary space quantity (SPACE)
Space unit (BLOCK, A VBLOCK, TRACKS, CYLINDERS)
Directory space quantity (DIR)
Data set organization (DSORG)
Record format (RECFM)
Optional services code (OPTCD) - for ISAM data sets only
Logical record length (LRECL)
Key length (KEYLEN)
Block size (BLKSIZE)
Volume sequence number (VSEQ)
Data set expiration date (EXPDT)

You may use the LIKE operand even if none of your existing data
sets have the exact attribute values you want to use for a new data
set. You may override attributes copied from a model data set by
specifying the LIKE operand as well as the operands corresponding
to the attributes you want to override on the ALLOCATE command.

Note: The following items should be considered when using the LIKE
keyword:

• The LIKE and USING keywords are mutually exclusive.

• NEW is the only valid data set status that can be specified with the
LIKE keyword.

• The LIKE keyword must be specified with the DATASET keyword.

• Only one data set name can be specified on the
DATASET/DSNAME parameter.

• H the new data set to be allocated is specified with a member name,
indicating a partitioned data set (PDS), then you will be prompted for
directory blocks unless that quantity is explicitly specified on the
ALLOCATE command. H the new data set name is specified with a
member name, but the model data set is sequential and you have not
explicitly specified the quantity for directory blocks, then you will be
prompted for directory blocks.

USING(attr-Hst-name)
specifies the name of a list of attributes that you want to have
assigned to the data set that you are allocating. The attributes in the
list correspond to, and will be used for, data control block (DCB)
parameters. (Note to users familiar with conventional batch
processing: these DCB parameters are the same as those normally
specified by JCL and data management macro instructions.)

An attribute list must be stored in the system before you use this
operand. '¥ ou can build and name an attribute list by using the
ATTRIB command. The ATTRIB command allocates a file with the
name being the (attr-list-name) specified in the ATTRIB command.
The name that you specify for the list when you use the ATTRIB
command is the name that you must specify for this
USING(attr-list-name) operand.

Note: The DCB operands (operands that are also on the ATIRIB
command) cannot be specified with the USING keyword.

RELEASE
specifies that unused space is to be deleted when the data set is
freed.

Note: If RELEASE is used with a new data set with the BLOCK or
BLKSIZE parameter, then the. SPACE parameter must be used.

ROUND
specifies that the allocated space be equal to one or more cylinders.
This operand should be specified only when space is requested in
units of blocks. This operand corresponds to the ROUND keyword
on the SPACE parameter in JCL.

Note: The final disposition of the following operands can be modified by a
command processor.

KEEP
specifies that the data set is to be retained by the system after it is
freed.

DELETE
specifies that the data set is to be deleted after it is freed.

CATALOG
specifies that the data set is to be retained by the system in a catalog
after it is freed.

UNCATALOG
specifies that the data set is to be removed from the catalog after it
is freed. The data set is still retained by the system.

BUFL(buffer-leugtb)
specifies the length, in bytes, of each buffer in the buffer pool.
Substitute a decimal number for buffer-length. The number must not
exceed 32,760.

If you omit this operand and the system acquires buffers
automatically, the BLKSIZE and KEYLEN operands will be used to
supply the information needed to establish buffer length.

BUFNO(number-of-buffen)
specifies the number of buffers to be assigned for data control
blocks. Substitute a decimal number for number-of-buffers. The
number must never exceed 255, and you may be limited to a smaller
number of buffers depending on the limit established when the
operating system was generated. The following table shows the
condition that requires you to include this operand.
When you use one of the following methods of obtaining the buffer pool... then:

(1) BUILD macro instruction
(2) GETPOOL macro instruction

(3) Automatically with BPAM or BSAM
(4) Automatically with QSAM

(1) You must specify BUFNO.
(2) The system uses the number

that you specify for
GETPOOL.

(3) You must specify BUFNO.
(4) You may omit BUFNO and

accept two buffers.

ALLOCATE Command 29

30 TSO Command Language Reference

LRECL(logical-record-length)
specifies the length, in bytes, of the largest logical record in the data
set. You must specify this operand for data sets that consist of either
fixed-length or variable-length records.

Omit this operand if the data set contains undefined-length records.

The logical record length must be consistent with the requirements of
the RECFM operand and must not exceed the block size (BLKSIZE
operand) except for variable-length-spanned records. If you specify:

• RECFM(V) or RECFM(V B), then the logical record length is
the sum of the length of the actual data fields plus four bytes
for a record descriptor word.

• RECFM(F) or RECFM(F B), then the logical record length is
the length of the actual data fields.

• RECFM(U), then you should omit the LRECL operand.

Note: For variable-length spanned records (VS or VBS) processed by
QSAM (locate mode) or BSAM, specify LRECL (X) when the logical
record exceeds 32,756 bytes.

NCP(number-of-cbannel-programs)
specifies the maximum number of READ or WRITE macro
instructions allowed before a CHECK macro instruction is issued.
The maximum number must not exceed 99 and must be less than 99
if a lower limit was established when the operating system was
generated. If you are using chained scheduling, you must specify an
NCP value greater than 1. If you omit the NCP operand, the default
value is 1.

INPUT
specifies that a BSAM data set opened for INOUT or a BDAM data
set opened for UPDAT is to be processed for input only. This
parameter overrides the INOUT (BSAM) option or UPDAT
(BDAM) option in the OPEN macro instruction to INPUT.

OUTPUT
specifies that a BSAM data set opened for OUTIN or OUTINX is to
be processed for output only. This parameter overrides the OUTIN
option in the OPEN macro instruction to OUTPUT or the OUTINX
option in the OPEN macro instruction to EXTEND.

EXPDT(year-day)
specifies the data set expiration date. You must specify the year and
day in the form 'yyddd:', where 'yy' is a two digit decimal number
for the year and 'ddd' is a three digit decimal number for the day of
the year. For example, January I, 1974 is 74001 and December 31,
1975 is 75365.

RETPD(number-of-days)
specifies the data set retention period in days. The value may be a
one to four digit decimal number.

BFALN({~})

specifies the boundary alignment of each buffer as follows:

F each buffer starts on a fullword boundary that is not a
doubleword boundary.

D each buffer starts on a doubleword boundary.

If you do not specify this operand and it is not available from any
other source, data management routines assign a doubleword
boundary.

OPTCD(A,B,C,E,F,H,Q,R,T,W and/or Z)
specifies the following optional services that you want the system to
perform. (See also the OPTCD subparameter of the DCB parameter
in JCL for a detailed discussion of these services.)

A specifies that actual device addresses be presented in READ and
WRITE macro instructions.

B specifies that end-of-file (EOF) recognition be disregarded for
tapes.

C specifies the use of chained scheduling.

E requests an extended search for block or available space.

F specifies that feedback from a READ or WRITE macro
instruction should return the device address in the form it is
presented to the control program.

H requests the system to check for and bypass.

Q requests the system to translate a magnetic tape from ASCII to
EBCDIC or from EBCDIC to ASCII.

R requests the use of relative block addressing.

T requests the use of the user totaling facility.

W requests the system to perform a validity check when data is
written on a direct access device.

Z requests the control program to shorten its normal error
recovery procedure for input on magnetic tape.

(You can request any or all of the services by combining the values
for this operand. You may combine the characters in any sequence,
being sure to separate them with blanks or commas.)

EROPf({Er
specifies the option that you want executed if an error occurs when a
record is read or written. The options are:

ACC to accept the block of records in which the error was found.

SKP· to skip the block of records in which the error was found.

ABE to end the task abnormally.

ALLOCATE Command 31

32 TSO Command Language Reference

BnEK(U})
specifies the type of buffering that you want the system to use. The
types that you can specify are:

S simple buffering

E exchange buffering

A automatic record area buffering

R record buffering

RECFM(A,B,D,F,M,S,T,U, and/or V)
specifies the format and characteristics of the records in the data set.
The format and characteristics must be completely described by one
source only. If they are not available from any source, the default
will be an undefined-length record. (See also the RECFM
subparameter of the DCB parameter in JCL for a detailed discussion
of the formats and characteristics.)

Use the following values with the RECFM operand.

A indicates that the record contains ASCII printer control
characters.

B indicates that the records are blocked.

D indicates variable-length ASCII records.

F indicates that the records are of fixed-length.

M indicates that the records contain machine code control
characters.

S indicates that, for fixed-length records, the re·';ords are written
as standard blocks (there must be no truncated blocks or
unfilled tracks except for the last block or track). For
variable-length records, a record may span more than one block.
Exchange buffering, BFI'EK(E), must not be used.

T indicates that the records may be written onto overflow tracks if
required. Exchange buffering, BFTEK(E), or chained
scheduling, OPTCD(C), cannot be used.

U indicates that the records are of undefined length.

V indicates that the records are of variable length.

You may specify one or more values for this operand (at least one is
required).

DIAGNS(TRACE)
specifies the Open/Close/EOV trace option that gives a
module-by-module trace of the Open/Close/EOV work area and the
user's DCB.

LIMCT(search-number)
specifies the number of blocks or tracks to be searched for a block
or available space. The number must not exceed 32,760.

BUFOFF({ ~OCk-prefix-length})

specifies the buffer offset. The block prefix length must not exceed
99. "L" is specified if the block prefix field is four bytes long and
contains the block length.

DSORG(DA)
DAU
PO
POU
PS
PSU

specifies the data set organization as follows:

DA - direct access

DAU - direct access unmovable

PO - partitioned organization

POU - partitioned organization unmovable

PS - physical sequential

PSU - physical sequential unmovable

specifies the magnetic tape density as follows:

o - 200 bpi/7 track

1 - 556 bpi/7 track

2 - 800 bpi/7 and 9 track

3 - 1600 bpi/9 track

4 - 6250 bpi/9 track (mM 3420 Models 4, 6, and 8, or
equivalent)

TRTCH1tLf
specifies the recording technique for 7-track tape as follows:

C data conversion with odd parity and no translation

E even parity with no translation and no conversion

T odd parity and no conversion; BCD to EBCDIC translation
when reading and EBCDIC to BCD translation when writing

ET even parity and no conversion; BCD to EBCDIC translation
when reading and EBCDIC to BCD translation when writing

ALLOCATE Command 33

34 TSO Command Language Rererence

KEYLEN(key-length)
specifies the length in bytes of each of the keys used to locate blocks
of records in the data set when the data set resides on a direct access
device. The key length must not exceed 255 bytes. If an existing
data set has standard labels, you can omit this operand and let the
system ·retrieve the key length from the standard label. If a key
length is not supplied by any source before you issue an OPEN
macro instruction, a length of zero (no keys) is assumed. This
keyword is mutually exclusive with TRTCH.

PROTECT
specifies that the DASD data set or the first data set on a tape
volume is to be RACF protected.

• For a new permanent DASD data set, the specified status must
be NEW or MOD treated as NEW; the disposition must be
either KEEP, CATALOG, or UNCATALOG.

• For a tape volume, the tape must have an SL, SUL, AL, AUL,
or NSL label. The file sequence number and volume sequence
number must be one (except for NSL), and PRIVATE must be
assigned as the tape volume use attribute.

Note: The PROTECT keyword is invalid if a data set name is not specified
or if the FCB parameter or status other than NEW or MOD is specified.

COPIES(number)
specifies the total number of copies of the data set to be printed,
subject to an installation limit. (Refer to the JCL manual for more
information.)

• The COPIES keyword cannot be specified with the DATASET
keyword.

• SYSOUT is the only valid data set status that can be specified
with the COPIES keyword.

FCB(image-id [::])

specifies a forms control bdffer (FCB) that is used to store vertical
formatting information for printing, each position corresponding to a
line on the form. The buffer determines the operations of the
printer. It specifies the forms control image to be used to print an
output data set on a 3800 printer or a 3211 printer. The FCB also
specifies the data protection image to be used for the 3525 card
punch. The FCB parameter is ignored for sysout data sets on the
3525 card punch.

For further information on the forms control buffer, see System
Programming Library: Data Management, Programming Support for
the IBM 3505 Card Reader and IBM 3525 Card Punch, or IBM
3800 Printing Subsystem Programmer's Guide,.

image-id
specifies 1-4 alphameric or national characters that identify the image
to be loaded into the forms control buffer (FCB).

• For a 3211 printer, IBM provides two standard FCB images,
STDI and STD2. STDI specifies that 6 lines per inch are to be
printed on an 8.5 inch form. STD2 specifies that 6 lines per
inch are to be printed on a 11 inch form.

For a 3800 Printing Subsystem, IBM provides another standard
FCB image, STD3, which specifies output of 80 lines per page
at 8 lines per inch on 11 inch long paper.

Default: If the image-id information is incorrectly coded, the default for
the 3211 printer is the image currently in the buffer. If there is no image
in the buffer, the operator is requested to specify an image. For the 3800
printer, the machine default is 6 lines per inch for any size form that is on
the printer.

Note: STDI and STD2 (standard FCB images) should not be used as
image-ids for sysout unless established by your installation at system
generation time.

ALIGN
specifies that the operator should check the alignment of the printer
forms before the data set is printed. The ALIGN subparameter is
ignored for sysout data sets and is not used by the 3800 printer.

VERIFY
specifies that the operator should verify that the image displayed on
the printer is the desired one. The VERIFY subparameter is ignored
for sysout data sets.

Example I

Operation: Allocate your terminal as a temporary input data set.

allocate da(*) file(ftOlf001)

Example 2

Operation: Allocate an existing cataloged data set.

Known:

The name of the data set: MOSER7.INPUT.DATA

allocate da(input.data) old

Example 3

Operation: Allocate an existing data set that is not cataloged.

Known:

The data set name: SYS1.PTIMAC.AM
The volume serial number: B99RS2
The DD name: SYSLIB

alloc dataset('sys1.ptimac.am') file(syslib) +
volume (b99rs2) shr

ALLOCATE Command 3S

36 TSO Command Language Reference

Example 4

Operation: Allocate a new data set with the attributes of an existing model
data set.

Known:

The name that you want to give the new data set:
MOSER7.NEW.DATA

The name of the model data set: MOSER7.MODEL.DATA

alloc da(new.data) like (model.data)

Example 5

Operation: Allocate a new data set that differs from an existing model
data set only in its space allocation.

Known:

The name that you want to give the new data set:
MOSER7.NEW2.DATA

The name of the model data set: MOSER7.MODEL.DATA

The desired space attributes for the new data set: Primary 10 TRKS
Secondary 5 TRKS

alloc da(new2.data) space(10,S)TRKS like (model.data)

Example 6

Operation: Allocate a new sequential data set with space allocated in
tracks.

Known:

The new data set name: MOSER7.EXl.DATA
The number of tracks: 2
The logical record length: 80
The DeB block size: 8000
The record format: Fixed Block

alloc da(exl.data) dsorg(ps) space(2,O) trks lrecl(80) +
blksize(8000) recfm(f,b) new

Example 7

Operation: Allocate a new partitioned data set with space allocated in
blocks.

Known:

The new data set name: MOSER7.EX2.DATA
The block length: 1000 bytes
The DeB block size: 200
The number of directory blocks: 2
The record format: Fixed Block

alloc da(ex2.data) dsorg(po) block(1000) space(10,10) +
lrecl(100) blksize(200) dir(2) recfm(f,b) new

Example 8

Operation: Allocate a new seqtrential data set with default space quantities.

Known:

The new data set name: MOSER7.EX3.DATA
The block length: 800 bytes
The logical record length: 80
The record format: Fixed Block

alloe da(ex3.data) bloek(800) lreel(80) dsorg(ps) +
reefm(f,b) new

Example 9

Operation: Allocate a new sequential data set using an attribute list.

Known:

The name that you want to give the new data set:
MOSER7.EX4.DATA
The number of tracks expected to be used: 10
DCB parameters are in an attribute list named: ATRLSTI

attrib atrlst1 dsorg(ps) Ireel(80) blksize(3200)
alloe da(ex4.data) new spaee(10,2) trks using(atrlst1)

Example 10

Operation: Allocate a new sequential data set with space allocated in
blocks and using an attribute list.

Known:

The new data set name: MOSER7.EXS.DATA
The block length: 1000 bytes
The DCB attributes taken from attribute list: A TRLST3

attrib atrlst3 dsorg(ps) lreel(80) blksize(3200)
alloe da(ex5.data) using (atrlst3) bloek(1000) +
spaee(20,10) new

Example 11

Operation: Allocate a new sequential data set with default space quantities
and using an attribute list.

Known:

The new data set name: MOSER7.EX6.DATA
The DCB attributes taken from attribute list: A TRLSTS

attrib atrlst5 dsorg(ps) lreel(80) blksize(3200)
alloe da(ex6.data) using (atrlst5) new

ALLOCATE CODIIIIIIIId 37

38 TSO Command Language Reference

Example 12

Operation: Allocate a new data set to contain the output from a program.

Known:

The data set name: MOSER7.0UT.DATA
The file name: OUTPUT
You do not want to hold unused space.

alloe dataset(out.data) file (output) new spaee(10,2) +
tracks release

Example 13

Operation: Allocate an existing multi-volume data set to SYSDA, with one
device mounted for each volume.

Known:

Data set name -

volumes -

filename -

MOSER7.MVLTIVOL.DATA

D9SVLl

D9SVL2

D9SVL3

SYSLm

alloe dataset('moser7.multivol.data') old parallel +
file(syslib) volume(d95vI1,d95vI2,d95vI3) +
unit (sysda)

Example 14

Operation: Allocate an existing data set as the second file of a
standard-label tape.

Known:

Data set name -

volume -

unit -

MOSER7.TAPE1.DATA

TAPEVL

2400

alloe dataset('moser7.tape1.data') label(sl) +
unit(2400) volume (tapevl) position(2)

Example 15

Operation: Allocate an output data set using the FCB and COPIES
operands to request formatted Copies of an output data set.

Known:

The data set name: OUTPUT
The FCB image desired: SIDl
The number of copies: 10

alloe file(output) sysout feb(std1) eopies(10)

Example 16

Operation: Allocate a new tape data set using the PROTECT operand to
request RACF protection.

Known:

The data set name: MOSER7.TAPE2.DATA
The volume: T APEV2
The unit: 2400

alloe da(tape2.data) unit(2400) label (sl) position(1) +
volume (tapev2) protect new

Example 17

Operation: Allocate a new DASD data set using the PROTECT operand
to request RACF protection:

Known:

The data set name: MOSER7.DISK.DATA
The logical record length: 80
The DCB block size: 8000
The record format: Fixed Block
The number of tracks: 2

alloe da(disk.data) dsorg(ps) spaee(2,O) trks lreel(80) +
blksize(8000) reefm(f,b) protect new

ALLOCATE Command 39

A'ITRIB Command

Use the A TTRIB command to build a list of attributes for non-VSAM data
sets that you intend to allocate dynamically. During the remainder of your
terminal session you can have the system refer to this list for data set
attributes when you enter the ALLOCATE command. The ALLOCATE
command will convert the attributes into DCB parameters and LABEL
parameters for data sets being allocated. See also the subparameters of the
DCB parameter in JCL.

The A TIRIB command allocates a file with the same name as your
attribute-list-name. You can use the LISTALC command with the
STATUS keyword to list your active attribute lists. The data set name is
NULLFILE which is also the data set name for files allocated with the
DUMMY keyword of the ALLOCATE command. Note that, since this is a
NULLFILE allocation, it is subject to use and modification by other
commands. Therefore, it is advisable to allocate those data sets for which
the attribute list was built before you issue any commands that may cause
NULLFILE allocation, such as LINK or RUN.

With the LIKE keyword and the DeB operands on the ALLOCATE
command, you do not have to use the A TIRIB command.

ATTRIB Command 41

41 TSO Command Laquage Reference

{ ATTRIB}
ATTR

attr-Ust-name

attr-list-name

[BLKSIZE{blocksize)]
[BUFL{buffer-length)]
[BUFNO(number-of-buffers)]

[LRECL ({lOgiCal-re~ord-length})J

[NCP{no.-of-channel-programs)]

rINPUT 1
LOUTPUTJ

rEXPDT{year-day) 1
LRETPD(no.-of-daysU

[OPTCD(A,B,C,E,F,H,Q,R,T,W,and/or Z)]

[EROPT ({ t~})]

[BFTBK (W)]
[RECFM(A,B,D,F,M,S,T,U,and/or V)]
[DIAGNS (TRACE)]
[LIMCT(search-number)]

BUFOFF block-prefix-length
L

[DSORG ~1~:1~1
[DEN ({W]
[TRTCH ({~})]

KEYLEN(key-length)

specifies the name for the attribute list. This name can be specified
later as a parameter of the ALLOCATE command. The name must
consist of one through eight alphameric and/or national characters,
must begin with an alphabetic or national character. and must be
different from all other attr-list-names and ddnames that are in
existence for your terminal session.

BLKSIZE(blocksize)
specifies the block size for the data sets. The block size must be a
decimal number and must 110t exceed 32,760 bytes.

The block size that you specify must be consistent with the
requirements of the RECFM operand. H you specify:

• RECFM(F), then the block size must be equal to or greater
than the logical record length.

• RECFM(F B), then the block size must be an integral multiple
of the logical record length.

• RECFM(V), then the block size must be equal to or greater
than the largest block in the data set. (Note: For unblocked
variable-length records, the size of the largest block must allow
space for the four byte block descriptor word in addition to the
largest logical record length. The logical record length must
allow space for a four-byte record descriptor word.)

• RECFM(V B), then the block size must be equal to or greater
than the largest block in the data set. (Note: For block
variable length records, the size of the largest block must allow
space for the four byte block descriptor word in addition to the
sum of the logical record lengths that will go into the block.
Each logical record length must allow space for a four-byte
record descriptor word.) Since the number of logical records
can vary, you must estimate the optimum block size (and the
average number of records for each block) based on your
knowledge of the application that requires the I/O.

• RECFM(U) and BLKSIZE(80), then one character will be
truncated from the line, that character (the last byte) is reserved
for an attribute character.

BUFL(buffer-length)
specifies the length, in bytes, of each buffer in the buffer pool.
Substitute a decimal number for buffer-length. The number must not
exceed 32,760.

H you omit this operand and the system acquires buffers
aut~matically, the BLKSIZE and KEYLEN operands will be used to
supply the information needed to establish buffer length.

BUFNO(number-of-buffers)
specifies the number of buffers to be assigned for data control
blocks. Substitute a decimal number for number-of-buffers. The
number must never exceed 255, and you may be limited to a smaller
number of buffers depending on the limit established when the
operating system was generated. The following table shows the
condition that requires you to include this operand.
When you use one of the following methods of obtaining the buffer pool... then:

(1) BUILD macro instruction (I) You must specify BUFNO.
(2) GETPOOL macro instruction (2) The system uses the number

that you specify for
GETPOOL.

(3) Automatically with BPAM or BSAM (3) You must specify BUFNO.
(4) Automatically with QSAM (4) You may omit BUFNO and

accept two buffers.

A1TRIB Command 43

44 TSO Command Language Reference

LRECL(logical-record-length)
specifies the length, in bytes, of the largest logical record in the data
set. You must specify this operand for data sets that consist of either
fixed-length or variable-length records.

Omit this operand if the data set contains undefined-length records.

The logical record length must be consistent with the requirements of
the RECFM operand and must not exceed the block size (BLKSIZE
operand) except for variable-length-spanned records. If you specify:

• RECFM(V) or RECFM(V B), then the logical record length is
the sum of the length of the actual data fields plus four bytes
for a record descriptor word.

• RECFM(F) or RECFM(F B), then the logical record length is
the length of the actual data fields.

• RECFM(U), then you should omit the LRECL operand.

Note: For variable-length spanned records (VS or VBS) processed by
QSAM (locate mode) or BSAM, specify LRECL (X) when the logical
record exceeds 32,756 bytes.

NCP(number-of-cbannel-programs)
specifies the maximum number of READ or WRITE macro
instructions allowed before a CHECK macro instruction is issued.
The maximum number must not exceed 99 and must be less than 99
if a lower limit was established when the operating system was
generated. If you are using chained scheduling, you must specify an
NCP value greater than 1. If you omit the NCP operand, the default
value is 1.

INPUT
specifies that a BSAM data set opened for INOUT or a BDAM data
set opened for UPDAT is to be processed for input only. This
parameter overrides the INOUT (BSAM) option or UPDAT
(BDAM) option in the OPEN macro instruction to INPUT.

OUTPUT
specifies that a BSAM data set opened for OUTIN Or OUTINX is to
be processed for output only. This parameter overrides the OUTIN
option in the OPEN macro instruction to OUTPUT or the OUTINX
option in the OPEN macro instruction to EXTEND.

EXPDT(year-day)
specifies the data set expiration date. You must specify the year and
day in the form 'yyddd', where 'yy' is a two digit decimal number for
the year and 'ddd' is a three digit decimal number for the day of the
year. For example, January 1, 1974 is 74001 and December 31,
1975 is 75365.

RETPD(number-of-days)
specifies the data set retention period in days. The value may be a
one to four digit decimal number.

BFALN({~})

specifies the boundary alignment of each buffer as follows:

F each buffer starts on a fullword boundary that is not a
doubleword boundary.

D each buffer starts on a doubleword boundary.

If you do not specify this operand and it is not available from any
other source, data management routines assign a doubleword
boundary.

OPTCD(A,B,C,E,F,H,Q,R,T,W and/or Z)
specifies the following optional services that you want the system to
perform. (See also the OPTCD subparameter of the DCB parameter
in JCL for a detailed discussion of these services.)

A specifies that actual device addresses be presented in READ and
WRITE macro instructions.

B specifies that end-of-file (EOF) recognition be disregarded for
tapes.

C specifies the use of chained scheduling.

E requests an extended search for block or available space.

F specifies that feedback from a READ or WRITE macro
instruction should return the device address in the form it is
presented to the control program.

H requests the system to check for and bypass.

Q requests the system to translate a magnetic tape from ASCn to
EBCDIC or from EBCDIC to ASCn.

R requests the use of relative block addressing.

T requests the use of the user totaling facility.

W requests the system to perform a validity check when data is
written on a direct access device.

Z requests the control program to shorten its normal error
recovery procedure for input on magnetic tape.

(You can request any or all of the services by combining the values
for this operand. You may combine the characters in any sequence,
being sure to separate them with blanks or commas.)

EROPIX{E})
specifies the option that you want executed if an error occurs when a
record is read or written. The options are:

ACC to accept the block of records in which the error was found.

SKP to skip the block of records in which the error was found.

ABE to end the task abnormally.

A1TRIB COIIIIII8Dd 45

46 TSO Command Language Reference

BFTEK<g})

specifies the type of buffering that you want the system to use. The
types that you can specify are:

S simple buffering

E exchange buffering

A automatic record area buffering

R record buffering

RECFM(A,B,D,F,M,S,T,U, and/or V)
specifies the format and characteristics of the records in the data set.
The format and characteristics must be completely described by one
source only. If they are not available from any source, the default
will be an undefined-length record. (See also the RECFM
subparameter of the DCB parameter in JCL for a detailed discussion
of the formats and citar~cteristics.)

Use the following values with the RECFM operand.

A indicates that the record contains ASCII printer control
characters.

B indicates that the records are blocked.

D indicates variable-length ASCII records.

F indicates that the records are of fixed-length.

M indicates that the records contain machine code control
characters.

S indicates that, for fixed-length records, the records are written
as standard blocks (there must be no truncated blocks or
unfilled tracks except for the last block or track). For
variable-length records, a record may span more than one block.
Exchange buffering, BFTEK(E), must not be used.

T indicates that the records may be written onto overflow tracks if
required. Exchange buffering, BFTEK(E), or chained
scheduling, OPTCD(C), cannot be used.

U indicates that the records are of undefined length.

V indicates that the records are of variable length.

You may specify one or more values for this operand (at least one is
required).

DIAGNS(TRACE)
specifies the Open/Close/EOV trace option that gives a
module-by-module trace of the Open/Close/EOV work area and the
user's DCB.

LlMCT(search-number)
specifies the number of blocks or tracks to be searched for a block
or available space. The number must not exceed 32,760.

BUFOFF({ ~OCk-prerlX-lengthy

specifies the buffer offset. The block prefix length must not exceed
99. "L" is specified if the block prefix field is four bytes long and
contains the block length.

DSORG(DA)
DAU
PO
POU
PS
PSU

specifies the data set organization as follows:

DA - direct access

DAU­

PO -

POU -

PS -

PSU -

DEN(0)
1
2
3
4

direct access unmovable

partitioned organization

partitioned organization unmovable

physical sequential

physical sequential unmovable

specifies the magnetic tape density as follows:

o - 200 bpi/7 track

1 - 556 bpi/7 track

2 - 800 bpi/7 and 9 track

3 - 1600 bpi/9 track

4 - . 6250 bpi/9 track (mM 3420 Models 4, 6, and 8, or
equivalent)

mTCH(ftf
specifies the recording technique for 7 -track tape as follows:

C data conversion with odd parity and no translation

E even parity with no translation and no conversion

T odd parity and no conversion; BCD to EBCDIC translation
when reading and EBCDIC to BCD translation when writing

ET even parity and no conversion; BCD to EBCDIC translation
when reading and EBCDIC to BCD translation when writing

ATIRIB Command 47

48 1'80 Command Language Reference

,

KEYLEN(key-length)
specifies the length in bytes of each of the keys used to locate blocks
of records in the data set when the data set resides on a direct access
device. The key length must not exceed 255 bytes. If an existing
data set has standard labels, you can omit this operand and let the
system retrieve the key length from the standard label. If a key
length is not supplied by any source before you issue an OPEN
macro instruction, a length of zero (no keys) is assumed. This
keyword is mutually exclusive with TRTCH.

Example 1

Operation: Create a list of attributes to be assigned to a data set when the
data set is allocated.

Known:

The following attributes correspond to the DCB parameters that you want
assigned to a data set.

Optional services: chained-scheduling, user totaling.

Expiration date: Dec. 31, 1977.

Record format: variable-length spanned records.

Error option: abend when READ or WRITE error occurs.

Buffering: simple buffering.

Boundary alignment: doubleword boundary.

Logical record length: records may be larger than 32,756 bytes. The
name for this attribute list is DCBP ARMS.

attr dcbparms optcd(c t} expdt(77365) recfm(v s) -
eropt(abe} bftek(s} bfaln(d} lrecl(x)

Example 1

Operation: This example shows how to create an attribute list, how to use
the list when allocating two data sets, and how to delete the list so that it
cannot be used again.

Known:

The name for the attribute list: DSA TIRS
The attributes: EXPDT(99365) BLKSIZE(24000) BFI'EK(A)
The name for the first data set: FORMAT.INPUT
The name of the second data set: TRAJECT.INPUT

attrib dsattrs expdt(99365) blksize(24000) -
bftek(a)

allocate dataset(format.input) new block(BD) -
space(1,1} volume(111111) using (dsattrs)

alloc da(traject.input) old bl(BD) volume(111111) -
using (dsattrs)

free attrIist(dsattrs)

CALL Command

Use the CALL command to load and execute a program that exists in
executable (load module) form. The program may be user-written, 'or it
may be a system module such as a compiler, sort, or utility program.

You must specify the name of the program (load module) to be processed.
It must be a member of a partitioned data set.

You may specify a list of parameters to be passed to the specified program.
The system formats this data so that when the program receives control,
register one contains the address of a fullword. The three low order bytes
of this fullword contain the address of a halfword field. This halfword field
is the count of the number of bytes of information contained in the
parameter list. The parameters immediately follow the halfword field.

If the program terminates abnormally, you are notified of the condition and
may enter a TEST command to examine the failing program.

CALL { dsname }
dsname(membername)

['parameter-string']

dsname(membername)
specifies the name of a partitioned data set and the membername
(program name) to be executed. The membername must be enclosed
in parentheses.

Note: A temporary tasklib is established when programs are invoked
via the CALL command. The tasklib is effective for the execution of
the CALL command and the tasklib data set is the same as the
dsname specified on the invocation of the CALL command.

If the name of the partitioned data set does not conform to the data
set naming conventions, it must include the member name in the
following manner:

dsname(membername)

If you specify a fully qualified name, enclose it in apostrophes
(single quotes) in the following manner:

'wrrid.myprogs.loadmod(a) ,
'sys1.1inklib(ieuasm) ,

parameter string
specifies up to 100 characters of information that you want to pass
to the program as a parameter list. When passing parameters to a
program, you should use the standard linkage conventions.

CALL Command 49

50 TSO Command Language Reference

Example I'

Operation: Execute a load module.

Known:

The name of the load module: JUDAL.PEARL.LOAD(TEMPNAME)
Parameters: 10,18,23

call pearl '10,18,23'

Example 1

Operation: Execute a load module.

Known:

The name of the load module: JUDAL.MYLIB.LOAD(COSl)

call mylib(cos1)

Example 3

Operation: Execute a load module.

Known:

The name of the load module: JUDAL.LOAD(SINl)

call (sin1)

DELETE Command

Use the DELETE command to delete one or more data set entries or one
or more members of a partitioned data set.

The catalog entry for a partitioned data set is removed only when the
entire partitioned data set is deleted. The system deletes a member of a
partitioned data set by removing the member name from the directory of
the partitioned data set.

Members of a partitioned data set and aliases for any members must each
be deleted explicitly. That is, when you delete a member, the system does
not remove any alias names of the member; likewise, when you delete an
alias name, the member itself is not deleted.

If a generation-data-group entry is to be deleted, any generation data sets
that belong to it must have been deleted.

For MVS, the original TSO DELETE command has been replaced by the
Access Method Services command with the same name. The explanations
given below provide the information required to use these services for
normal TSO operations. The TSO user who wants to manipulate VSAM
objects or who wants to use the other Access Method Services from his
terminal should refer to Access Method Services. For error message
information, refer to Message Library: System Messages.

The DELETE command supports unique operand abbreviations in addition
to the usual abbreviations produced by truncation. The syntax and operand
explanations show these unique cases.

Before you delete a protected non-VSAM data set, you should use the
PROTECT command to delete the password "from the password data set.
This will prevent your having insufficient space for future entries.

DELETE Command 51

52 TSO Command Language Reference

{ DELETE}
DEL

(entryname [jpassword] [...])

[CATALOG(catname[/password])]
[FILE (ddname)]

l~~~i~!~ALOG} UCAT
SPACE}
SPC
NONVSAM}
NVSAM
ALIAS .
GENERATIONOATAGROUP}
GOG
PAGESPACE}
PGSPC

entryname(/password][••. J
is a required parameter that names the entries to be deleted. When
more than one entry is to be deleted, the list of entry names must be
enclosed in parentheses. This parameter must be the first parameter
following DELETE.

If you want to delete several data set entries having similar names,
you may insert an asterisk into the data set name at the point of
dissimilarity. That is, all data set entries whose names match except
at the position where the asterisk is placed will be deleted. However,
you may use only one asterisk per data set name, and you must not
place it in the first position. TSO does not prefix the userid when an
asterisk appears in the first position.

For instance, suppose that you have several data set entries named:

VACOT.SOURCE.PLI
VACOT.SOURCE2.PLI
VACOT.SOURCE2.TEXT
VACOT.SOURCE2.DATA

If you specify:

delete source2.*

the only data set entry remaining will be

VACOT.SOURCE.PLI

password
specifies a password for a password-protected entry.
Passwords may be specified for each entry name or the
catalog's password may be specified through the CATALOG
parameter for the catalog that contains the entries to be
deleted.

CAT ALOG(catname[/password»
specifies the name of the catalog that contains the entries to be
deleted.

catname
identifies the catalog that contains the entry to be deleted.

password
specifies the master password of the catalog that contains the
entries to be deleted.

FILE(ddname)
specifies the name of the DD statement that identifies the volume
that contains the data set to be deleted or identifies the entry to be
deleted.

PURGE or PRG
specifies that the entry is to be deleted even if the retention period,
specified in the TO or FOR parameter, has not expired.

NOPURGEor NPRG
specifies that the entry is not to be deleted if the retention period has
not expired. When NOPURGE is coded and the retention period has
not expired, the entry is not deleted. If neither PURGE nor
NOPURGE is coded, NOPURGE is the default.

ERASE
specifies that the data component of a cluster (VSAM only) is to be
overwritten with binary zeros when the cluster is deleted. If ERASE
is specified, the volume that contains the data component must be
mounted.

NOERASEorNERAS
specifies that the data component of a cluster (VSAM only) is not to
be overwritten with binary zeros when the cluster is deleted.

SCRATCH
specifies that a non-VSAM data set is to be scratched (removed)
from the volume table of contents (VTOC) of the volume on which
it resides. SCRATCH is the default if neither SCRATCH nor
NOSCRA TCH is specified.

NOSCRATCH or NSCR
specifies that a non-VSAM data set is not to be scratched (removed)
from the VTOC of the volume on which it resides.

CLUSTER
specifies that the entry to be deleted is a cluster entry for a VSAM
data set.

USERCATALOG or UCAT
specifies that the entry to be deleted is a user-catalog entry. This
parameter must be specified if a user catalog is to be deleted. A user
catalog can be deleted only if it is empty.

DELETE Command S3

S4 TSO Command Language Reference

SPACE
specifies that the entry to be deleted is a data-space entry. This
parameter is required if a data space is to be deleted. A data space
can be deleted only if it is empty.

NONVSAM or NVSAM
specifies that the entry to be deleted is a non-VSAM data set entry.

ALIAS
specifies that the entry to be deleted is an alias entry.

GENERATIONDATAGROUPwGDG
specifies that the entry to be deleted is a generation-data-group
entry. A generation-data-group base can be deleted only if it is
empty.

PAGESPACEorPGSPC
specifies that a page space is to be deleted. A page space can be
deleted only if it is inactive.

If the FILE parameter is omitted, the entryname is dynamically
allocated in the following cases:

• A non-VSAM entry is to be deleted and scratched.

• An entry is to be deleted and erased.

• An entry that resides in a data space of its own is to be deleted.

Example

Operation: Delete an entry. In this example, a non-VSAM data set is
deleted.

Known:

The prefix in the user's profile is D27UCAT.
Your userid is D27UCAT.

delete example.nonvsam scratch nonvsam

The DELETE command deletes the non-VSAM data set
(D27UCAT.EXAMPLE.NONVSAM). Because the catalog in which
the entry resides is assumed not to be password protected, the
CATALOG parameter is not required to delete the non-VSAM entry.

SCRATCH removes the VTOC entry of the non-VSAM data set.
Because FILE is not coded, the volume that contains
D27UCAT.EXAMPLE.NONVSAM is dynamically allocated.

NONVSAM ensures that the entry being deleted is a non-VSAM data
set. However, DELETE can still find and delete a non-VSAM data
set if NONVSAM is omitted.

EDIT Command

The EDIT command is the primary facility for entering data into the
system. Therefore, almost every application involves some use of EDIT.
With EDIT and its sub commands, you can create, modify, store, submit,
retrieve, and delete data sets with sequential or partitioned data set
organization. The data sets may contain:

• Source programs composed of program language statements (PL/I,
COBOL, FORTRAN, etc.)

• Data used as input to a program

• Text used for information storage and retrieval

• Commands, subcommands, and/or data (command procedure)

• Job control language (JCL) statements for background jobs

The EDIT command will support only data sets that have one of the
following formats:

• Fixed blocked, unblocked, or standard block; with or without ASCII
and machine record formats

• Variable blocked or unblocked; without ASCII or machine control
characters

EDIT support of print control data sets is "read only." Whenever a SA VB
subcommand is entered for an EDIT data set originally containing print
control characters, the ability to print the data set on the printer with
appropriate spaces and ejects is lost. If you enter SA VB without operands
for a data set containing control characters, you will be warned that the
data set will be saved without control characters, and you can elect to
either save into the original data set or enter a new data set name. If the
data set specified on the EDIT command is partitioned and contains print
control characters, a save into it will not be allowed.

EDIT Command 55

56 TSO Command Language Reference

data-set-name

data-set-name[/password]

rEMODEj
LIMODE

rRECOVER J
LNORECOVER

[NEW]
OLD

PLI

PLIF

ASM
COBOL
FORTGI
FORTH
TEXT
DATA
CLIST
CNTL
VSBASIC

[~g~~AN]
[NUM J [(integer1[integer2]})

NONUM

[BLOCK (integer) 1
BLKSIZE(integerU

[LINE (integer) J
LRECL(integer)

[CAPS]
ASIS

[CHAR60])11
CHAR48 ~

[CHAR6°]\1
CHAR48 JJ

specifies the name of the data set that you want to create or edit.

password
specifies the password associated with the data-set-name. If the
password is omitted and the data set is password protected, you will
be prompted for the data set's password. Read protected partitioned
data sets will cause a prompt for the password twice, provided it is
not entered on the EDIT command, or is not the same password as
your LOGON use rid password.

EMODE
specifies that the initial mode of entry is edit mode. This is the
default for OLD data sets.

IMODE
specifies that the initial mode of entry is input mode. This is the
default for NEW or empty data sets.

RECOVER
specifies that the user intends to recover an EDIT workfile containing
the data set named on the EDIT command as the data set to be

edited. The user is placed in edit mode. This operand is valid only
when the user's profile has the RECOVER attribute.

NORECOVER

NEW

OLD

specifies that the user does not want to recover a workfile, even if a
recoverable workfile exists.

specifies that the data set named by the first operand does not exist.
If an existing cataloged data set already has the data set name that
you specified, the system notifies you when you try to save it;
otherwise, the system allocates your data set when you save it. If
you specify NEW without specifying a member name, a sequential
data set is allocated for you when you save it. If you specify NEW
and include a member name the system allocates a partitioned data
set and creates the indicated member when you try to save it.

specifies that the data set named on the EDIT command already
exists. When you specify OLD and the system is unable to locate
the data set, you will be notified and you will have to reenter the
EDIT command. If you specify OLD without specifying a member
name, the system will assume that your data set is sequential; if the
data set is in fact a partitioned data set, the system will assume that
the member name is TEMPNAME. If you specify OLD and include
a member name, the system will notify you if your data set is not
partitioned.

If you do not specify OLD or NEW, the system uses a tentative
default of OLD. If the data set name or member name that you
specified, cannot be located, the system defaults to NEW.

Note: Any user-defined data set type (specified at system generation) is
also a valid data-set-type keyword and may have subfield parameters
defined by the user's installation (see Figure 5, note 4).

PLI

PLIF

specifies that the data identified by the first operand is for PL/I
statements that are to be held as V-format records with a maximum
length of 104 bytes. The statements may be for the PL/I Optimizing
compiler or the PL/I Checkout compiler.

specifies that the data set identified by the first operand is for PL/I
statements that are to be held as fixed format records 80 bytes long.
The statements may be for the PL/I Optimizing compiler or the
PL/I Checkout compiler.

integerl and integer2
specify the column boundaries for your input statements. These
values are applicable only when you request syntax checking of a
data set for which the PLIF operand has been specified. The
position of the first character of a line, as determined by the left
margin adjustment on your terminal, is column 1. The value for
integer 1 specifies the column where each input statement is to begin.
The statement can extend from the column specified by integerl up
to and including the column specified as a value for integer2. If you
omit integer 1 you must omit integer2, and the default values are

EDIT Command 57

58 TSO Command Language Reference

columns 2 and 72; however, you can omit integer2 without omitting
integerl.

CHAR48 or CHAR60

ASM

CHAR48 specifies that the PL/I source statements are written using
the character set that consists of 48 characters. CHAR60 specifies
that the source statements are written using the character set that
consists of 60 characters. If no value is entered, the default value is
CHAR60.

specifies that the data set identified by the first operand is for
assemblerklanguage statements.

COBOL
specifies that the data set identified by the first operand is for
COBOL statements.

CLIST
specifies that the data set identified by the first operand is for a
command procedure and will contain TSO commands and
subcommands as statements or records in the data set. The data set
will be assigned line numbers.

CNTL

TEXT

specifies that the data set identified by the first operand is for job
control language (JCL) statements and SYSIN data to be used with
the SUBMIT command or subcommand.

specifies that the data set identified by the first operand is for text
that may consist of both uppercase and lowercase characters.

DATA
specifies that the data set identified by the first operand is for data
that may be subsequently retrieved or used as input data for
processing by an application program.

FORTGI
specifies that the data set identified by the first operand is for
FORTRAN IV (G 1) statements.

FORm
specifies that the data set identified by the first operand is for
FORTRAN IV (H) EXTCOMP statements.

VSBASIC
specifies that the data set identified by the first operand is for
VSBASIC statements.

Note: The ASM, CLIST, CNTL, COBOL, DATA, PORTGI,
FORTH, PLI, PLIF, TEXT, and VSBASIC operands specify the type
of data set you want to edit or create. You must specify one of
these whenever:

• The data-set-name operand does not follow data set naming
conventions (that is, it is enclosed in quotes).

• The data-set-name operand is a member name only (that is, it is
enclosed in parentheses).

• The data-set-name operand does not include a descriptive
qualifier; or the descriptive qualifier is such that EDIT cannot

determine the data set type. (See Figure 1 for a list of valid
descriptive qualifiers.)

The system prompts the user for data set type whenever the type
cannot be determined from the descriptive qualifier (as in the 3 cases
above), or whenever the user forgets to specify a descriptive qualifier
on the EDIT command.

Note: If PLI is the descriptive qualifier, the data set type default is
PLI. To use data set types FORTGI or FORTH you must enter the
data set type keyword to save it.

SCAN
specifies that each line of data you enter in input mode is to be
checked statement by statement for proper syntax. Syntax checking
is available only for statements written in FORTGI and FORTH.

Note: User-defined data set types can also use this keyword if a
syntax checker name was specified at system generation time.

NOSCAN
specifies that syntax checking is not to be performed. This is the
default value if neither SCAN nor NOSCAN is specified.

NUM(integerl integerl)
specifies that the lines of the data set records are numbered. You
may specify integerl and integer2 for ASM type data sets only.
Integerl specifies, in decimal, the starting column (73-80) of the line
number. Integer2 specifies, in decimal, the length (8 or less) of the
line number. Integerl plus integer2 cannot exceed 81. If integerl
and integer2 are not specified, the line numbers will assume
appropriate default values.

NONUM
specifies that your data set records do not contain line numbers. Do
not specify this keyword for the VSBASIC and CLIST data set
types, si~ce they must always have line numbers. The default is
NUM.

BLOCK(integer) or BLKSIZE(lnteger)
specifies the maximum length, in bytes, for blocks of records of a
new data set. Specify this operand only when creating a new data
set or editing an empty old data set. You cannot change the block
size of an existing data set except if the data set is empty. If you
omit this operand, it will default according to the type of data set
being created. Default block sizes are described in Figure S. If
different defaults are established at system generation (SYSGEN)
time, Figure 5 values may not be applicable. The block size
(BLOCK or BLKSIZE), for data sets that contain fixed-length
records must be a multiple of the record length (LINE or LRECL);
for variable-length records, the block size must be a multiple of the
record length plus 4.

Note: If BLKSIZE (80) is coded with RECFM(U), then the line will be
truncated by 1 character. This byte (the last one) is reserved for an
attribute character ..

EDIT Command 59

60 1'SO Command Language Reference

LINE(integer) or LRECL(integer)

CAPS

ASIS

specifies the length of the records to be created for a new data set.
Specify this operand only when creating a new data set or editing an
empty old data set. The new data set will be composed of
fixed-length records with a logical record length equal to the
specified integer. You cannot change the logical record size of an
existing data set unless the data set is empty. IT you specify this
operand and the data set type is ASM, FORTGI, FORTH, COBOL
or CNTL the integer must be 80. IT this operand is omitted, the line
size defaults according to the type of data set being created. Default
line sizes for each data set type may be found in Figure 5. This
operand is used in conjunction with the BLOCK or BLKSIZE
operand.

specifies that all input data and data on modified lines is to be
converted to uppercase characters. IT you omit both CAPS and
ASIS, CAPS is the default except when the data set type is TEXT.

specifies that input and output data is to retain the same form
(uppercase and lowercase) as entered. ASIS is the default for TEXT
only.

Data LRECL Block Size Line Numbers

Set DSORG LINE(n) BLOCK(n) NUM(n,m) CAPS/ASIS

Type default specir. default

ASM PS/PO 80 =80 3120
CLiST PS/PO 2SS (Note 2) 3120
CNTL PS/PO 80 =80 3120
COBOL PS/PO 80 =80 400
DATA PS/PO 80 S2SS 3120
FORTGI PS/PO 2SS =80 400
FORTH PS/PO 2SS =80 400

(or user supplied data set type - See Note 4)

PLI PS/PO 104 SIOO 400
PLIF PS/PO 80 SIOO 400
TEXT PS/PO 2SS (Note 2) 3120
VSBASIC PS/PO 2SS =80 3120

Notes:
I. The default or maximum allowable block size may be

specified at SYSGEN time.

2. Specifying a LINE value results in fixed length records with
a LRECL equal to the specified value. The specified value
must always be equal to or less than the default. U the
LINE keyword is omitted, variable length records will be
created.

3. The line numbers will be contained in the last eight bytes
of all fixed length records and in the first eight bytes of all
variable length records.

4. A user can have additional data set types recognized by the
EDIT command processor. These user-defined data set
types, along with any of the data set types shown above,
can be defined at system generation time by using the EDIT
macro. The EDIT macro causes a table of constants to be
built which describes the data set attributes. For more
F type: Last 8 characters .

speclf. default(n,m) spec. default CAPS
(Note 1) Required

Sdefault Last 8 73sns80 CAPS Yes
Sdefault (Note 3) CAPS Yes
Sdefault Last 8 CAPS Yes
Sdefault First 6 CAPS Yes
Sdefault Last 8 CAPS No
Sdefault Last 8 CAPS Yes
Sdefault Last 8 CAPS Yes

Sdefault (Note 3) CAPS No
Sdefault Last 8 CAPS Yes
sdefault (Note 3) ASIS No
S=32,760 First S CAPS Yes

information on how to specify the EDIT macro at system
generation time, refer to SPL: System Generation
Reference.
When a user wants to edit a data set type that he has defined
himself, the data set type is used as the descriptor (right­
most) qualifier. The use cannot override any data set types
that have been defined by IBM. The EDIT command
processor will support data sets that have the following
attributes.

Data Set Organization: Must be either sequential or
partitioned

Record formats:
Logical Record Size:
Block Sizes:

Sequence Numbers:

Fixed or Variable
Less than or equal to 2SS characters
User specified--must be less than or
equal to track length
V type: First 8 characters

• figure s. Default Values for LINE or LRECL and BLOCK or BLKSIZE Operands

EDIT Command ,{

Modes of Operation

Input Mode

62 TSO Command Language Reference

The EDIT command has two modes of operation: input mode and edit
mode. You enter data into a data set when you are in input mode. You
enter subcommands and their operands when you are in edit mode.

You must specify a data set name when you enter the EDIT command. If
you specify the NEW keyword, the system places you in the input mode.
If you do not specify the NEW keyword, you are placed in the edit mode if
your specified data set is not empty; if the data set is empty, you will be
placed in input mode.

If you have limited access to your data set, by assigning a password, you
can enter a slash (/) followed by the password of your choice after the
data set name operand of the EDIT command.

In input mode, you type a line of data and then enter it into the data set
by pressing your terminal's carrier return key. You can enter lines of data
as long as you are in input mode. One typed line of input becomes one
record in the data set.

Caution: If you enter a command or subcommand while you are in input
mode, the system will add it to the data set as input data. Enter a null-line
to return to edit mode before entering any subcommands.

Line Numbers: Unless you specify otherwise, the system assigns a line
number to each line as it is entered. The default is an interval of 10. Line
numbers make editing much easier, because you can refer to each line by
its own number.

Each line number consists of not more than eight digits, with the significant
digits justified on the right and preceded by zeros. Line numbers are
placed at the beginning of variable-length records and at the end of
fixed-length records (exception: line numbers for COBOL fixed-length
records are placed in the first six positions at the beginning of the record).
When you are working with a data set that has line numbers, you can have
the new line number listed at the start of each new input line. If you are
creating a data set without line numbers, you can request that a prompting
character be displayed at the terminal before each line is entered.
Otherwise, none will be issued.

All input records will be converted to uppercase characters, except when
you specify the ASIS or TEXT operand. The TEXT operand also specifies
that character-deleting indicators and tabulation characters will be
recognized, but all other characters will be added to the data set
unchanged.

All assembler source data sets must consist of fixed-length records 80
characters in length. These records mayor may not have line numbers. If
the records are line-numbered, the number can be located anywhere within
columns 73 to 80 of the stored record (the printed line number always
appears at the left margin).

You can create a variety of FORTRAN data sets: FORTGI and FORTH.

Syntax Checking: You can have each line of input checked for proper
syntax. The system will check the syntax of statements for data sets having

FORT descriptive qualifiers. Input lines will be collected within the system
until a complete statement is available for checking.

When an error is found during syntax checking, an appropriate error
message is issued and edit mode is entered. You can then take corrective
action, using the subcommands. When you wish to resume input
operations, press your terminal's carrier return key without typing any
input. Input mode is then entered and you can continue where you left off.
Whenever statements are being checked for syntax during input mode, the
system will prompt you for each line to be entered unless you specify the
NOPROMPT operand for the INPUT subcommand.

Continuation of a Line in Input Mode: In input mode there are two
independent situations that require you to indicate the continuation of a
line by ending it with a hyphen or plus sign (that is, a hyphen or plus sign
followed immediately by pressing the ENTER key). The situations are:

• The syntax checking facility is being used.
The data set type is CLIST (variable-length records).

If none of these situations apply, avoid ending a line with a hyphen (minus
sign) since it will be removed by the system before storing the line in your
data set.

You must use the hyphen when the syntax checking facility is active to
indicate that the logical line to be syntax checked consists of multiple input
lines. The editor will then collect these lines (removing the hyphens) and
pass them as one logical line to the syntax scanner. However, each
individual input line (with its hyphen removed) is also stored separately in
your data set.

The hyphen is used to indicate logical line continuation in command
procedures. If the command procedure is in variable-length record format
(the default), the hyphen is not removed by EDIT but becomes part of the
stored line in your data set and will be recognized when executed by the
EXEC command processor. If the command procedure is in fixed-length
record format, a. hyphen, placed eight character positions before the end of
the record and followed by a blank, will be recognized as a continuation
when executed by the EXEC command processor. (This assumes that the
line number field is defined to occupy the last eight positions of the stored
record.) For example, if the parameter LINE(80) was specified on the
EDIT command when defining the command procedure data set, the
hyphen must be placed in data position 72 of the input line followed
immediately by a blank. (Location of a particular input data column is
described under the TABSET subcommand of EDIT.)

Note that these rules apply only when entering data in input mode. When
you use a subcommand (for example, CHANGE or INSERT) to enter data,
a hyphen at the end of the line indicates subcommand continuation; the
system will append the continuation data to the subcommand.

To insert a line of data ending in a hyphen in situations where the system
would remove the hyphen (that is, while in subcommand mode or in input
mode for other than a command procedure data set), enter a hyphen in the
next-to-last column, a blank in the last column, and immediately press the
ENTER key.

EDIT Command 63

Edit Mode

64 TSO Command Language Reference

You can enter subcommands to edit data sets when you are in edit mode.
You can edit data sets that have line numbers by referring to the number
of the line that you want to edit. This is called line-number editing. You
can also edit data by referring to specific items of text within the lines.
This is called context editing. A data set having no line numbers may be
edited only by context. Context editing is performed by using
subcommands that refer to the current line value or a character
combination, such as with the FIND or CHANGE subcommands. There is
a pointer within the system that points to a line within the data set.
Normally, this pointer points to the last line that you referred to. You can
use subcommands to change the pointer so that it points to any line of data
that you choose. You may then refer to the line that it points to by
specifying an asterisk (*) instead of a line number. Figure 6shows where
the pointer points at completion of each subcommand.

Note: A current-line pointer value of zero refers to the position before the
first record, if the data set does not contain a record zero.

When you edit data sets with line numbers, the line number field will not
be involved in any modifications made to the record except during
renumbering. Also, the only editing operations that will be performed
across record boundaries will be the CHANGE and FIND subcommands,
when the TEXT and NONUM operands have been specified for the EDIT
command. In CHANGE and FIND, an editing operation will be performed
across only one record boundary at a time.

mIT Subcommands

ALLOCATE

BOTIOM·

CHANGE

COPY

DELETE

DOWN

END

EXEC

FIND

FORMAT (a program product)

HELP

INPUT

INSERT

INSERT/REPLACE/DELETE

UST

MERGE (a program product)

MOVE

PROFILE

RENUM

RUN
SAVE

SCAN

SEND No change

SUBMIT

TABSET

TOP

UNNUM

UP

VERIFY

Value of the Pointer at Compledon of Subeomntand

No change

Last line (or zero for empty data sets)

Last line changed

Last line copied

Line preceding deleted line (or zero if the first line
of the data set has been deleted)

Line n ·relative lines below the last line referred to,
where n is the value of the 'count' parameter, or
bottom of the data set (or line zero for empty data sets)

No change

No change

Line containing specified string. if any; else, no change

No change

No change

Last line entered

Last line entered

Inserted line or replaced line or line preceding the deleted
line if any (or zero, if no preceding line exists)

Last line listed

Last line

Last line moved

No change

Same relative line

No change

No change or same relative line

Last line scanned, if any

No change

No change

No change

Zero value

Same relative line

Line n relative lines above the last line referred to, where
n is the value of the 'count' parameter, (or line zero for
empty data sets).

No change

Figure 6. How mIT Subeommands Affec:t the Une Pointer Value

Clumging from One Mode to A.nother
ff you specify an existing data set name as an operand for the EDIT
command, you begin processing in·edit mode. ff you specify a new data
set name or an old data set with no records as an operand for the EDIT
command, you will begin processing in input mode.

You will change from edit mode to input mode when:

• You press the ENTER key before typing anything.

EDIT COl1JIIlIIftd 6S

Data Set Disposition

Tabulation Characters

66 TSO Command Language Reference

Note: If this is the fIrst time during your current usage of EDIT that input
mode is entered, input will begin at the line after the last line of the data
set (for data sets which are not empty) or at the first line of the data set
(for empty data sets). If this is not the fIrst time during your current usage
of EDIT that input mode is entered, input will begin at the point following
the data entered when last in input mode.

• You enter the INPUT subcommand.

Note: If you use the INPUT subcommand without the R keyword and the
line is null (that is, it contains no dhta), input begins at the specified line; if
the specified line contains data, input begins at the first increment past that
line. If you use the INPUT subcommand with the R keyword, input begins
at the specified line, replacing existing data, if any.

• You enter the INSERT subcommand with no operands.

You will switch from input mode to edit mode when:

• You press the ENTER key before typing anything.

• You cause an attention interruption.

• There is no more space for records to be inserted into the data set
and resequencing is not allowed.

• An error is discovered by the syntax checker.

The system assumes a disposition of (NEW,CATLG) for new data sets and
(OLD,KEEP) for existing data sets.

When you enter the EDIT command into the system, the system establishes
a list of tab setting values for you, depending on the data set type. (See
TSO Terminal User's Guide to determine if your terminal supports tab
setting.) These are logical tab setting values and mayor may not represent
the actual tab setting on your terminal. You can establish your own tab
settings for input by using the T ABSET subcommand. A list of the default
tab setting values for each data set type is presented in the T ABSET
subcommand description. The system will scan each input line for
tabulation characters (the characters produced by pressing the TAB key on
the terminal). The system will replace each tabulation character by as
many blanks as are necessary to position the next character at the
appropriate logical tab setting.

When tab settings are not in use, each tabulation character encountered in
all input data will be replaced by a single blank. You can also use the
tabulation character to separate subcommands from their operands.

Executing User-Written Programs
You can compile and execute the source statements contained in certain
data set types by using the RUN subcommand. The RUN subcommand
makes use of optional program products; the specific requirements are
discussed in the description of the RUN subcommand.

Terminating the EDIT Command
You can terminate the EDIT operation at any time by switching to edit
mode (if you are not already in edit mode) and entering the END
subcommand. Before terminating the EDIT command, you should be sure
to store all data that you want to save. You can use the SA VE
subcommand or the SAVE operand of the END subcommand for this
purpose.

Recovering Data after a Terminal Line Has Been Disconnected
If a terminal is disconnected during an EDIT session, the system will
attempt to save a copy of the edited data set (with all changes) into
another data set. The data set used for saving is named by applying data
set naming conventions to an intermediate qualifier name of EDITSA VE.
This data set can be edited when you log on again.

Example 1

Operation: Create a data set to contain a COBOL program.

Known:

The user-supplied name for the new data set: PARTS
The fully qualified name will be: WRROS.PARTS.COBOL
Line numbers are to be assigned.

edit parts new cobol

Example 1

Operation: Create a data set to contain a program written in FORTRAN
to be processed by the FORTRAN (01) compiler.

Known:

The user-supplied name for the new data set: HYDRLICS
The fully qualified name will be: WRROS.HYDRLICS.FORT
The input statements are not to be numbered.
Syntax checking is desired.
Block size: 400
Line length must be: 80
The data is to be changed to all upper case.

edit hydrlics new fortgi nonum scan

EDIT Command 67

68 TSO CODIIDIIIId l.ngDIIIe Reference

Example 3

Operation: Add data to an existing data set containing input data for a
program.

Known:

The name of the data set: WRROS.MANHRS.DATA
Block size: 3120
Line length: 80
Line numbers are desired.
The data is to be upper case.
Syntax checking is not applicable.

e manhrs.data

Example 4

Operation: Create a data set for a command procedure.

Known:

The user supplied name for the data set: CMDPROC

e cmdproc new clist

Subcommands for EDIT

Use the subcommands while in edit mode to edit and manipulate data and
to communicate with the system operator and with other terminal users.
The format of each subcommand is similar to the format of aU the
commands. Each subcommand, therefore, is presented and explained in a
manner similar to that for a command. Figure 7 contains a summary of
each subcommand's function.

Note: For a complete description of the syntax and function of the
ALLOCATE, EXEC, HELP, PROFILE, SEND, and SUBMIT
subcommands, refer to the description of the TSO command with the same
name.

SubeoIllllllUldS for EDIT 69

70 TSO Command Language Reference

ALLOCATE

BOTTOM

CHANGE

COpy

DELETE

DOWN

END

EXEC

FIND

FORMAT (available as an
optional
program product)

HELP

INPUT

INSERT

INSERT/REPLACE/DELETE

LIST

MERGE (available as an
optional

MOVE

PROFILE

RENUM

RUN

SAVE

SCAN

SEND

SUBMIT

TABSET

TOP

UNNUM

UP

VERIFY

program product)

Allocates data sets and filenames.

Moves the pointer to the last record in
the data set.

Alters the contents of a data set.

Copies records within the data set.

Removes records.

Moves the pointer toward the end of
the data.

Terminates the EDIT command.

Executes a command procedure.

Locates a character string.

Formats and lists data.

Explains available subcommands.

Prepares the system for data input.

Inserts records.

Inserts, replaces, or deletes a line.

Prints out specific lines of data.

Combines all or parts of data sets.

Moves records within a data set.

Specifies characteristics of your
user profile.

Numbers or renumbers lines of data.

Causes compilation and execution of
data set.

Retains the data set.

Controls syntax checking.

Allows you to communicate with the
system operator and with other
terminal users.

Submits a job for execution in the
background.

Sets the tabs.

Sets the pointer to zero value.

Removes line numbers from records.

Moves the pointer toward the start
of data set.

Causes current line to be listed
whenever the current line pointer
changes or the text of the current
line is modified.

Figure 7. Subcommands of the EDIT Command

ALLOCATE Subcommand of EDIT

Use the ALLOCATE subcommand to dynamically allocate the data sets
required by a program that you intend to execute. Refer to the
ALLOCATE command for the description of the syntax and function of
the ALLOCATE subcommand.

ALLOCATE Subcommand of EDIT 71

A'ITRIB Subcommand of EDIT

The ATTRIB subcommand of EDIT performs the same function as the
A TTRIB command without leaving edit mode. Refer to the A TTRIB
command for a description of the syntax and function of the ATTRIB
subcommand.

A lTRlB Subcommand of EDIT 73

BOTIOM Subcommand of EDIT

Use the BOTTOM subcommand to change the current line pointer so that
it points to the last line of the data set being edited or so that it contains a
zero value, if the data set is empty. This subcommand may be useful when
subsequent subcommands such as INPUT or MERGE must begin at the
end of the data set.

BOTTOM
B

BOTrOM Subcommand of EDIT 75

CHANGE Subcommand of EDIT

Use the CHANGE subcommand to modify a sequence of characters in a
line or in a range of lines. Either the first occurrence or all occurrences of
the sequence can be modified.

{gHANGE}
[iine-nUmber-1 [line-nUmber-2U
* [count 1J

{string 1 [string2 [ALLJ J}
count2

line-number-l
specifies the number of a line you want to change. When used with
line-number-2. it specifies the first line of a range of lines.

line-number-l

*

specifies the last line of a range of lines that you want to change.
The specified lines are scanned for first occurrence of the sequence
of characters specified for string!.

specifies that the line pointed to by the line pointer in the system is
to be used. If you do not specify a line number or an asterisk, the
current line will be the default value.

COWItl

stringl

specifies the number of lines that you want to change, starting at the
position indicated by the asterisk (*).

specifies a sequence of characters that you want to change. The
sequence must be (1) enclosed within single quotes, or (2) preceded
by an extra character which serves as a special delimiter. The extra
character may be any printable character other than a single quote
(apostropl;le), number, blank. tab, comma, semicolon, parenthesis, or
asterisk. The hyphen (-) and plus (+) signs can be used but should
be avoided due to possible confusion with their use in continuation.
If the first character in the character string is an asterisk (*), do not
use a slash (/) as the extra character. (TSO interprets the /* as the
beginning of a comment.) The extra character must not appear in
the character string. Do not put a standard delimiter between the
extra character and the string of characters unJess you intend the
delimiter to be treated as a character in the character string.

If string! is specified and string2 is not, the specified characters are
displayed at your terminal up to (but not including) the sequence of
characters that you specified for string!. You can then complete the
line as you please.

string2
specifies a sequence of characters that you want to use as a
replacement for string!. Like string!, string2 must be (1) enclosed
within single quotes, or (2) preceded by a special delimiter. This
delimiter must be the same as the extra character used for string!.
(Optionally, this delimiter can also immediately follow string2.)

CHANGE Subcommand of EDIT 77

Quoted-String Notation

78 TSO Command Language Reference

ALL
specifies that every occurrence of stringl within the specified line or
range of lines will be replaced by string2. If this operand is omitted,
only the first occurrence of stringl will be replaced with string 2.

If you cause an attention interruption during the CHANGE
subcommand when using the ALL keyword, your data set may only
be partially changed. It is good practice to list the affected area of
your data set before continuing.

If the special delimiter form is used, string2 must be terminated by
the delimiter before typing the ALL operand.

countl
specifies a number of characters to be displayed at your terminal,
starting at the beginning of each specified line.

As indicated above, instead of using special delimiters to indicate a
character string, you can use paired single quotes (apostrophes) to
accomplish the same function with the CHANGE subcommand. The use of
single quotes as delimiters for a character string is called quoted-string
notation. Following are the rules for quoted-string notation for the stringl
and string2 operands:

• You cannot use both special-delimiter and quoted-string notation in
the same subcommand.

• Each string must be enclosed with single quotes, for example, 'This is
stringl' 'This is string2.' Quoted strings must be separated with a
blank.

• A single quote within a character string is represented by two single
quotes, for example, 'pilgrim"s progress'.

• A null string is represented by two single quotes, for example, ".

You can specify quoted-string notation in place of special-delimiter notation
to accomplish any of the functions of the CHANGE subcommand as
follows:

·Special-Delimiter Quoted-String
Function Notation Notation
Replace lab!cde! 'ab"cde'
Delete !ab!!or!ab! 'ab'tI
Print up to lab 'ab'
Place in
front of I!cdel II 'ede'
• - using the exclamation point (I) as the delimiter.

Note: Choose the form that best suits you (either special-delimiter or
quoted-string) and use it consistently. It will help you use the
subcommand.

Note: If you cause an attention interruption during the CHANGE
subcommand your data set might not be completely changed. You should
list the affected part of your data set before entering other subcommands.

Combi1l/lfions of Ope1'llnds

You can enter several different combinations of these operands. The
system interprets the operands that you enter according to the following
rules:

• When you enter a single number and no other operands, the system
assumes that you are accepting the default value of the asterisk (*)
and that the number is a value for the count2 operand.

When you enter two numbers and no other operands, the system
assumes that they are line-number-l and count2 respectively.

• When you enter two operands and the first is a number and the
second begins with a character that is not a number, the system
assumes that they are line-number-l and stringl.

• When you enter three operands and they are all numbers, the system
assumes that they are line-number-l, line-number-2 and count2.

• When you enter three operands and the first two are numbers but the
last begins with a character that is not a number, the system assumes
that they are line-number-l, line-number-2 and stringl.

Example 1

Operation: Change a sequence of characters in a particular line of a
line-numbered data set.

Known:

The line number: 57
The old sequence of characters: parameter
The new sequence of characters: operand

change 57 XparameterXoperand

Example 2

Operation: Change a sequence of characters wherever it appears in several
lines of a line-numbered data set.

change 24 82 !i.e. !e.g. ! all

The blanks following the string 1 and string2 examples (i.e. and e.g.) are
treated as characters.

Example 3

Operation: Change part of a line in a line-numbered data set.

Known:

The line number: 143

The number of characters in the line preceding the characters to be
changed: 18

change 143 18

This form of the subcommand causes the first 18 characters of line number
143 to be displayed at your terminal. You complete the line by typing the
new information and enter the line by pressing the ENTER key. All of
your changes will be incorporated into the data set.

CHANGE Subcommand of EDIT 79

80 TSO Command Language Reference

Example 4

Operation: Change part of a particular line of a line-numbered data set.

Known:

The line number: 103
A string of characters to be changed: 315 h.p. at 2400

change 103 m315 h.p. at 2400

This form of the subcommand causes line number 103 to be searched until
the characters "315 h.p. at 2400" are found. The line is displayed at your
terminal up to the string of characters. You can then complete the line and
enter the new version into the data set.

Example 5

Operation: Change the values in a table.

Known:

The line number of the first line in the table: 387
The line number of the last line in the table: 406
The number of the column containing the values: 53

change 387 406 52

Each line in the table is displayed at your terminal up to the column
containing the value. As each line is displayed, you can type in the new
value. The next line will not be displayed until you complete the current
line and enter it into the data set.

Example 6

Operation: Add a sequence of characters to the front of the line that is
currently referred to by the pointer within the system.

Known:

The sequence of charecters: in the beginning

change * //in the beginning

Example 7

Operation: Delete a sequence of characters from a line-numbered data set.

Known:

The line number containing the string of characters: 15
The sequence of characters to be deleted: weekly

change 15 /weekly//

Example 8

or change 15 /weekly/

Operation: Delete a sequence of characters wherever it appears in a
line-numbered data set containing line numbers 10 to 150.

Known:
The sequence of characters to be deleted: weekly

change 10 999/ weekly// all

Examples Using Quoted Strings
Example lA

Operation: Change a sequence of characters in a particular line of a
line-numbered data set.

Known:

The line number: 57
The old sequence of characters: parameter
The new sequence of characters: operand

change 57 'parameter' 'operand'

Example 6A

Operation: Add a sequence of characters to the front of the line that is
currently referred to by the pointer within the system.

Known:

The sequence of characters: in the beginning

change * " 'in the beginning'

Example 7A

Operation: Delete a sequence of characters from a line-numbered data set.

Known:

The line number containing the string of characters: 15
The sequence of characters to be deleted: weekly

change 15 'weekly' "

CHANGE Subcommand Gf EDIT 81

CKPOINT Subcommand of EDIT

The CKPOINT subcommand provides the EDIT user with checkpoint
capabilities which will protect input or modifications to a data set during an
EDIT session. All changes will be placed in a workfile (utility data set)
created by EDIT and will be accessible to the user if an abnormal
termination occurs. The purpose of this subcommand is to eliminate the
need for specifying the SA VB subcommand of EDIT to preserve changes.

CKPOINT
CKP

[value]

value
specifies the intervals (number of line modifications or input lines) at
which a checkpoint will be taken. The user can use the value
operand in one of three ways. They are:

• by specifying a decimal value from 1 to 9999 to be used as the
checkpoint intervals.

• by specifying a decimaJ value of zero to terminate interval
checkpointing.

• by not specifying a value, causing a checkpoint to be taken.
This can be done even though the user has already requested
intervaJ checkpointing. Checkpointing will not cease in this
case, but will continue after reaching the previously set interval
vaJue.

Note: A line is considered modified if it is inserted, deleted or changed.
Issuing the CHANGE subcommand repeatedly, specifying the same line, is
equivaJent to modifying the line once per CHANGE subcommand
execution.

CKPOINT Subcommand of EDIT 83

COPY Subcommand of EDIT

Use the COpy subcommand of EDIT to copy one or more records that
exist in the data set being edited. The copy operation moves data from a
source location to a target location within the same data set and leaves the
source data intact. Existing lines in the target area are shifted toward the
end of the data set as required to make room for the incoming data. No
lines are lost.

The target line cannot be within the source area, with the exception that
the target line (the first line of the target area) can overlap the last line of
the source area.

Upon completion of the copy operation, the current line pointer points to
the last copied-to line, not to the last line shifted to make room in the
target area.

Note: If you cause an attention interruption during the copy operation, the
data set may be only partially changed. As a check, list the affected part
of the data set before continuing.

COpy} co
line1 [line2]

[li;e3]

[li;e4]

[INCR (lines)]

[INCR (lines)]

Note: If COpy is entered without operands, the line pointed to by the
current line pointer is copied into the current-line EDIT -default-increment
location.

Unel

Onel

specifies the first line or the lower limit of the range to be copied. If
the specified line number does not exist in this data set, the range
begins with the next higher line number.

specifies the last line or the upper limit of the range to be copied. If
the specified line number does not exist in this data set, the range
ends with the highest line number that is less than line2. If line2 is
not entered, the value defaults to the value of line I; that is, the
source becomes one line. Do not enter an asterisk for line2.

Note: If COPY is followed by two line-number operands, the system
assumes them to represent linel and line3, and defaults line2 to the value
of linet.

Une3
specifies the target line number: that is, the line at which the
copied-to data area will start. If the line3 value corresponds to an
existing line, the target line is changed to line3 + INCR(lines) and
either becomes a new line or displaces an existing line at that
location. Once the copy operation begins, existing lines encountered
in the target area are renumbered to make room for the incoming
data. The increment for renumbered lines is one (1). Specifying zero
(0) for line3 puts the copied data at the top of the data set only if
line 0 is empty: if line 0 has data, enter TOP followed by COPY
with line3 set to •. Note that line3 defaults to •.

COPY Suboommand of mIT 85

86 TSO Command J..auauage Referenee

Note: The value of line3 should not fail in the range from line1 to line2:
that is, the target line must not be in the range being copied. Exception:
line3 can be equal to line2.

*
represents the value of the current line pointer.

INCR(lines)
specifies the line number increment to be used for this copy
operation. The default is the value in effect for this data before the
copy operation. When the copy operation is complete, the increment
reverts to the value in effect before COpy was issued. Range: 1-8
decimal digits but not zero.

Note: The increment for any renumbered lines is one (1).

'striDg'

count

line4

specifies a sequence of alphameric characters with a maximum length
equal to or less than the logical record length of the data set being
edited. When a character string is specified, a search starting at the
current line is done for the line containing the string. When found,
that line is the start of the range to be copied for either numbered or
unnumbered data sets.

specifies the total number of lines (the range) to be copied. The
default for count is one (1). Enter 1-8 decimal digits but not zero
(0) or asterisk (*).

applies to both numbered and unnumbered data sets. For
unnumbered data sets, line4 specifies the target line (the line at
which the copied-to data area will start) as a relative line number
(the nth line in the data set). For numbered data sets, line4 is
specified the same as line3. Specifying zero (0) for line4 puts the
copied data at the top of the data set only if line (0) is empty; if line
(0) has data, enter TOP followed by COpy with line4 set to *.
Note that line4 defaults to *.

Messages
The COPY subcommand of EDIT causes error messages to be displayed at
the terminal under specific conditions. To show these- conditions, the
following data set is assumed:

0010 A
0020 BB
0030 CCC
0040 DODD
0050 EEEEE
0060 FFFFFF
0070 GGCGGGG
0080 HHHHHHHH
0090 111111111
0100 JJJJJJJJJJ
0110 KKKKKKKKKKK
0120 LLLLLLLLLLLL

1. Entering

copy • • •

causes:

INVALID OPERANDS • INVALID FOR COUNT OR END OF RANGE
SPECIFICATION

2. Entering

copy 10000 •

causes:

INVALID OPERANDS FIRST LINE TO BE MOVE/COPIED DOES
NOT EXIST

3.. Entering

copy 'xyz' *

causes:

INVALID OPERANDS QUOTED STRING NOT FOUND

4. Entering

copy 20 10 •

causes:

INVALID OPERANDS END OF RANGE MUST BE GREATER THAN
OR EQUAL TO THE BEGINNING OF THE RANGE

5. Entering

copy 20 '.' 100

causes:

INVALID OPERANDS STRING INVALID FOR END OF RANGE
SPECIFICATION

COPY SuIJcommadd or EDIT 87

88 TSO Command Language Reference

6. Entering

copy * 0 100

causes:

INVAL~D OPERANDS 0 INVALID FOR COUNT

7. Entering

copy 10 40 20

causes:

INVALID OPERANDS TRYING TO MOVE/COPY INTO LINE RANGE

In the following examples, CLP refers to the current line pointer.

Example 1

Operation: Copy the current line right after itself in a line-numbered data
set.

Known: Data set contains lines 10 through 120; current line pointer is at
50; EDIT provides an increment of 10.

Before: Enter: After:

0010 A copy 50 50 50 0010 A
0020 BB 0020 BB
0030 CCC or 0030 CCC
0040 DODD 0040 DODD
0050 EEEEE copy 50 50 0050 EEEEE
0060 FFFFFF eLP 0060 EEEEE
0070 GGGGGGG or 0061 FFFFFF
0080 HHHHHHHH 0070 GGGGGGG
0090 II II I II II copy 50 0080 HHHHHHHH
0100 JJJJJJJJJJ 0090 IIIIIIIII
0110 KKKKKKKKKKK or 0100 JJJJJJJJJJ
0120 LLLLLLLLLLLL 0110 KKKKKKKKKKK

copy 0120 LLLLLLLLLLLL

or

copy lee'

Example 2

Operation: Copy the current line right after itself in an unnumbered data
set.

Known: Data set contains 12 lines of sequential alphabetic characters.
Current line pointer is at the seventh line.

Before: Enter: After:

A copy • • A
BB BB
CCC or CCC
DODD DODD
EEEEE copy • EEEEE
FFFFFF FFFFFF
GGGGGGG or GGGGGGG
HHHHHHHH CLP GGGGGGG
IIIIIIIII copy • HHHHHHHH
JJJJJJJJJJ IIIIIIIII
KKI<KKKKKKKK or JJJJJJJJJJ
LLLLLLLLLLLL KKKKKKKKKKK

copy LLLLLLLLLLLL

or

copy 'qq'

Example 3

Operation: illustrate an attempt to copy a line to a line before it.

Known: Data set contains lines 10 through 120; source line is 60; target
line is SO; EDIT supplies increment of 10.

Before: Enter: After:

0010 A copy 60 50 0010 A
0020 BB 0020 BS
0030 CCC 0030 CCC
0040 DODD 0040 DODD
0050 EEEEE. 0050 EEEEE
0060 FFFFFF CLP 0060 FFFFFF
0070 GGGGGGG 0061 FFFFFF
0080 HHHHHHHH 0070 GGGGGGG
0090 IIIIIIIII 0080 HHHHHHHH
0100 JJJJJJJJJJ 0090 II II II III
0110 KKI<KKKKKKKK 0100 JJJJJJJJJJ
0120 LLLLLLLLLLLL 0110 KKKKKKKKKKK

0120 LLLLLLLLLLLL

COPY Subcommand or EDIT 89

Before:

0010
0020
0030
0040
0050
0060
0070
0080
0090
0100
0110
0120

90 TSO CODIIIIIUld Lauguage Reference

Example 4

Operation: Find the line containing a specific word and copy it to the
bottom of the data set.

Known: Data set contains nine lines of text; word to be found is "men";
data set is unnumbered.

Before:

NOW IS
THE TIME
FOR ALL
GOOD MEN
TO COME
TO THE
AID OF
THEIR
COUNTRY

Example 5

Enter:

top
copy

After:

NOW IS
'men' 99999999 THE TIME

FOR ALL
GOOD MEN
TO COME
TO THE
AID OF
THEIR
COUNTRY

CLP GOOD MEN

Operation: Copy lines 10.20. and 30 into a target area starting at line
100. using an increment of S.

Known: Data set contains lines 10 through 120; EDIT provides increment
of 10.

Enter: After:

A copy 10 30 100 incr(5) 0010 A
BB 0020 BB
CCC or 0030 CCC
DODD 0040 DODD
EEEEE copy 9 31 100 incr(5) 0050 EEEEE
FFFFFF 0060 FFFFFF
GGGGGGG or 0070 GGGGGGG
HHHHHHHH 0080 HHHHHHHH
III II II II copy 39 100 incr(S) 0090 IIIIIIIII
JJJJJJJJJJ 0100 JJJJJJJJJJ
KKKKKKKKKKK 0105 A
LLLLLLLLLLLL 0110 BB

CLP 0115 CCC
0116 KKKKKKKKKKK
0120 LLLLLLLLLLLL

Before:

0010
0020
0030
0040
0050
0060
0070
0080
0090
0100
0110
0120

Example 6

Operation: Copy four lines from a source area to a target area that
overlaps the last line of the source, using the default increment.

Known: Data set contains lines 10 through 120; source lines are 20
through 50; target area starts at line 50; EDIT provides increment of 10.

Before: Enter: After:

0010
0020
0030
0040
0050
0060
0070
0080
0090
0100
0100
0120

A copy 20 50 50 0010 A
BB
eee
DODD
EEEEE
FFFFFF
GGGGGGG
HHHHHHHH
III II II II
JJJJJJJJJJ
KKKKKKKKKKK
LLLLLLLLLLLL

Example 7

0020
0030
0040
0050
0060
0070
0080

eLP 0090
0091
0092
0093
0094
0100
0110
0120

BB
eee
DODD
EEEEE
BB
eee
DODD
EEEEE
FFFFFF
GGGGGGG
HHHHHHHH
IIIIIIIII
JJJJJJJJJJ
KKKKKKKKKKK
LLLLLLLLLLLL

Operation: Copy five lines into a target area that starts before but overlaps
into the source area.

Known: Data set contains lines 10 through 120; source range is line 70
through line 110; target location is line 50; increment to be 10.

Enter:

A copy
BB
eee
DODD
EEEEE
FFFFFF
GGGGGGG
HHHHHHHH
IIIII II II
JJJJJJJJJJ
KKKKKKKKKKK
LLLLLLLLLLLL

After:

70 110 50 incr(10) 0010
0020
0030
0040
0050
0060
0070
0080
0090

eLP 0100
0101
0102
0103
0104
0105
0110
0120

A
BB
eee
DODD
EEEEE
GGGGGG
HHHHHHH
IIIIIIII
JJJJJJJJJ
KKKKKKKKKK
FFFFFF
GGGGGGG
HHHHHHHH
IIIIIIIII
JJJJJJJJJJ
KKKKKKKKKKK
LLLLLLLLLLLL

COpy Subcommand of EDIT 91

Before:

0010
0020
0030
0040
0050
0060
0070
0080
0090
0100
0110
0120

Before:

0000
0010
0020
0030
0040
0050
0060
0070
0080
0090
0100
0110
0120

92 TSO Command Lauguage Reference

Example 8

Operation: Copy three lines to the top of the data set at line O.

Known: Data set contains lines 10 through 120; line 0 does not exist;
source lines are 80, 90, and 100; target area starts at line O.

Enter: After:

A top 0000 HHHHHHHH
BB copy 80 100 • incr(50) 0050 IIIIIIIII
CCC CLP 0100 JJJJJJJJJJ
DDDO or 0101 A
EEEEE 0102 BB
FFFFFF copy 80 100 0 incr(50) 0103 CCC
GGGGGGG 0104 DDDD
HHHHHHHH 0105 EEEEE
IIIIIIIII 0106 FFFFFF
JJJJJJJJJJ 0107 GGGGGGG
KKKKKKKKKKK 0108 HHHHHHHH
LLLLLLLLLLLL 0109 IIIIIIIII

0110 JJJJJJJJJJ
0111 KKKKKKKKKKK
0120 LLLLLLLLLLLL

Example 9

Operation: Copy three lines to the top of the data set at line 0, using an
increment of 50.

Known: Data set contains lines 0 through 120; line 0 contains data; source
lines are 80, 90, and 100; target area starts at line O.

ZIP
A
BB
CCC
DODD
EEEEE
FFFFFF
GGGGGGG
HHHHHHHH
IIIIIIIII
JJJJJJJJJJ
KKKKKKKKKKK
LLLLLLLLLLLL

Enter:

top
copy 80 100 • incr(50)

CLP
The attempt to copy into
line 0 gets the target data
to the top of the data set
but shifts the target into
by the increment value

Note: An entry of
copy 80 100 0 incr(50)

produces the results
shown at right. The target
data is inserted between
line 0 and the remainder
of the data set. CLP

After:

0050
0100
0150
0151
0152
0153
0154
0155
0156
0157
0158
0159
0160
0161
0162
0163

0000
0050
0100
0150
0151
0152
0153
0154
0155
0156
0157
0158
0159
0160
0161
0162

HHHHHHHH
IIIIIIIII
JJJJJJJJJJ
ZIP
A
BB
CCC
DODD
EEEEE
FFFFFF
GGGGGGG
HHHHHHHH
IIIIIIIII
JJJJJJJJJJ
KKKKKKKKKKK
LLLLLLLLLLLL

ZIP
HHHHHHHH
II II III II
JJJJJJJJJJ
A
BB
CCC
DDDD
EEEEE
FFFFFF
GGGGGGG
HHHHHHHH
IIIIIIIII
JJJJJJJJJJ
KKKKKKKKKKK
LLLLLLLLLLLL

DELETE Subcommand of EDIT

Use the DELETE subcommand to remove one or more records from the
data set being edited.

Upon completion of the delete operation, the current line pointer will point
to the line that preceded the deleted line. H the first line of the data has
been deleted, the current line pointer will be set to zero.

{ DELETE}
DEL [iine-number-1 [line-number-2]l

* [count] ~

Une-number-l
specifies the line to be deleted; or the first line of a range of lines to
be deleted.

Une-number-2

*
specifies the last line of a range of lines to be deleted.

specifies that the first line to be deleted is the line indicated by the
current line pointer in the system. This is the default if no line is
specified.

coot
specifies the number of lines to be deleted, starting at the location
indicated by the preceding operand.

Example 1

Operation: Delete the line being referred to by the current line pointer.

delete *
or

delete
or

del *
or

del
or

*
Any of the preceding command combinations or abbreviations will cause
the deletion of the line referred to currently. The last instance is actually a
use of the insert/replace/delete function, not the DELETE subcommand.

Example 2

Operation: Delete a particular line from the data set.

Known:

The line number: 00004

delete 4

Leading zeroes are not required.

DELETE Subc:ollUD1lDd 01 EDIT 93

94 TSO Command Language Reference

Example 3

Operation: Delete several consecutive lines from the data set.

Known:

The number of the first line: 18
The number of the last line: 36

delete 18 36

Example 4

Operation: Delete several lines from a data set with no line numbers. The
current line pointer in the system points to the first line to be deleted.

Known:

The number of lines to be deleted: 18

delete * 18

Example 5

Operation: Delete all the lines in a data set.

Known:

The data set contains less than 100 lines and is not line-numbered.

top
delete * 100

DOWN Subcommand of EDIT

Use the DOWN subcommand to change the current line pointer so that it
points to a line that is closer to the end of the data set.

[count]

count
specifies the number of lines toward the end of the data set that you
want to move the current line pointer. If you omit this operand, the
default is one.

Example 1

Operation: Change the pointer so that it points to the next line.

down or d

Example 2

Operation: Change the pointer so that you can refer to a line that is
located closer to the end of the data set than the line currently pointed to.

Known:

The number of lines from the present position to the new position: 18

down 18 or d 18

DOWN Subcommand of EDIT 95

END Subcommand of EDIT

Use the END subcommand to terminate the EDIT command. This
subcommand may be used with or without the optional keywords SA VE or
NOSA VE. In either case, the EDIT command terminates processing. If
you have modified your data set and have not entered the SA VE
subcommand or the SA VE/NOSA VE operand on END, the system will ask
you if you want to save the data set. At this point, you may reply SAVE' if
you wish to save the data set. If you do not wish to save the data set,
reply END.

END [SAVE]
NOSAVE

Note: There are no defaults. If a keyword is not specified, and SAVE was
not entered after the last modification, the user will be prompted by the
system.

Regardless of the user's PROMPT/NOPROMPT option, when END (with
no operands) is found in a CLIST, edit-mode is terminated. (There is no
SAVE processing done for this portion of the session.) If END (with no
operands) is found outside a CLIST, the user is prompted to enter END or
SAVE regardless of the PROMPT /NOPROMPT option.

SAVE
specifies that the modified data set is to be saved.

NOSAVE
specifies that the modified data set is not to be saved.

END Subcommand of EDIT 97

EXEC Subcommand of EDIT

Use the EXEC subcommand to execute a command procedure. Refer to
the EXEC command for the description of the syntax and function of the
EXEC subcommand.

EXEC Subcommand of EDIT 99

FIND Subcommand of EDIT

Use the FIND subcommand to locate a specified sequence of characters.
The system begins the search at the line referred to by the current line
pointer in the system, and continues until the character string is found or
the end of the data set is reached.

[string [position]]

Note: H you do not specify any operands, the operands you specified the
last time you used FIND during this current usage of EDIT are used. The
search for the specified string will begin at the line following the current
line. H you issue the TOP subcommand, the search for the specified string
begins with the second line of the data set. Successive use of the FIND
subcommand without operands allows you to search a data set, line by line.

string
specifies the sequence of characters (the character string) that you
want to locate. This sequence of characters must be preceded by an
extra character that serves as a special delimiter. The extra character
may be any printable character other than a number, apostrophe,
semicolon, blank, tab, comma, parenthesis, or asterisk. You must not
use the extra character in the character string. Do not put a delimiter
between the extra character and the string of characters.

Instead of using special delimiters to indicate a character string, you
can use paired single quotes (apostrophes) to accomplish the same
function with the FIND subcommand. The use of single quotes as
delimiters for a character string is called quoted-string notation.
Following are the rules for quoted-string notation for the string
operand:

1. A: string must be enclosed within single quotes, for example,
'string character'.

2. A single quote within a character string is represented by two
single quotes, for example, 'pilgrims"s progress'.

3. A null string is represented by two single quotes, for example, ".

position
specifies the column within each line at which you want the
comparison for the string to be made. This operand specifies the
starting column of the field to which the string is compared in each
line. H you want to consider a string starting in column 6, you must
specify the digit 6 for the positional operand. For COBOL data sets,
the starting column is calculated from the end of the six-digit line
number. (If you want to consider a string starting in column 8, you
must specify the digit 2 for this operand.) When you use this
operand with the special-delimiter form of notation for "string," you
must separate it from the string operand with the same special
delimiter as the one preceding the string operand.

FIND Subc:ommand of EDIT 101

102 TSO Command Language Reference

Example I

Operation: Locate a sequence of characters in a data set.

Known:

The sequence of characters: ELSE GO TO COUNTER

find xelse go to counter

Example 2

Operation: Locate a particular instruction in a data set containing an
assembler language program.

Known:

The sequence of characters: LA 3,BREAK.
The instruction begins in column 10.

find 'la 3,break ' 10

FREE Subcommand of EDIT

Use the FREE subcommand of EDIT to release (unallocate) previously
allocated data sets that you no longer need. Refer to the FREE command
for a description of the syntax and function of the FREE subcommand.

FREE Subcommand of EDIT 103

HELP Subcommand of EDIT

Use the HELP subcommand to obtain the syntax and function of EDIT
subcommands.

Refer to the HELP command for a description of the syntax and function
of the HELP subcommand.

HELP Subcommand of EDIT 165

INPUT Subcommand of EDIT

Use the INPUT subcommand to put the system in input mode so that you
can add or replace data in the data set being edited.

[;ine-nUmber [inCrement~

[PROMPT]
NOPROMPT

line-number
specifies the line number and location for the first new line of input.
If no operands are specified, input data will be added to the end of
the data set.

increment

•

R

I

specifies the amount that you want each succeeding line number to
be increased. If you omit this operand, the default is the last
increment specified with the INPUT or RENUM subcommand. If
neither of these subcommands has been specified with an increment
operand, an increment of 10 will be used .

specifies that the next new line of input will either replace or follow
the line pointed to by the current line pointer, depending on whether
you specify the R or I operand. If an increment is specified with this
operand, it is ignored.

specifies that you want to replace existing lines of data and insert
new lines into the data set. This operand is ignored if you fail to
specify either a line number or an asterisk. If the specified line
already exists, the old line will be replaced by the new line. If the
specified line is vacant, the new line will be inserted at that location.
If the increment is greater than 1, all lines between the replacement
lines will be deleted.

specifies that you want to insert new lines into the data set without
altering existing lines of data. This operand is ignored if you fail to
specify either a line number or an asterisk.

PROMPT
specifies that you want the system to display either a line number or,
if the data set is not line numbered, a prompting character before
each new input line. If you omit this operand, the default is:

• The value (either PROMPT or NOPROMPT) that was
established the last time you used input mode

• PROMPT, if this is the first use of input mode and the data set
has line numbers

INPUT Subc:ommaud of EDIT 107

lOS TSO Cmrunaml Language Reference

• NOPROMPT, if this is the first use of input mode and the data
set does not have line numbers

NOPROMPf
specifies that you do not want to be prompted.

Example 1

Operation: Add and replace data in an old data set.

Known:

The data set is to contain line numbers.
Prompting is desired.
The ability to replace lines is desired.
The first line number: 2
The increment value for line numbers: 2

input 2 2 r prompt

The display at your terminal will resemble the following with your input in
lowercase and the system's response in uppercase.

edit quer cobol old
EDIT
input 2 2 r prompt
INPUT
00002 identification division
00004 program-id.query
00006

Example 2

Operation: Insert data in an existing data set.

Known:

The data set contains text for a report.

The data set does not have line numbers.

The ability to replace lines is not necessary.

The first input data is "New research and development activities will"
which is to be placed at the end of the data set.

The display at your terminal will resemble the following:

edit forecast. text old nonum asis
EDIT
input
INPUT
New research and development activities will

INSERT Subcommand of EDIT

Use the INSERT subcommand to insert one or more new lines of data into
the data set. Input data is inserted following the location pointed to by the
line pointer in the system. (If no operands are specified, input data will be
placed in the data set line following the current line.) You may change the
position pointed to by the line pointer by using the BOTTOM, DOWN,
TOP, UP, and FIND subcommands.

[insert-data]

insert-data
specifies the complete sequence of characters that you wish to insert
into the data set at the location indicated by the line pointer. When
the first character of the inserted data is a tab, no delimiter is
required between the command and the data. Only a single delimiter
is recognized by the system. If you enter more than one delimiter,
aU except the first are considered to be input data.

Example 1

Operation: Insert a single line into a data set.

Known:

The line to be inserted is:

"UCBLFG OS AL1 CONTROL FLAGS"

The data set is not line-numbered.
The location for the insertion follows the 71 st line in the data set.
The current line pointer points to the 74th line in the data set.
The user is operating in edit mode.

Before entering the INSERT subcommand, the current line pointer must be
moved up 3 lines to the location where the new data will be inserted.

up 3

The INSERT subcommand is now entered.

INSERT UCBFLG OS AL1 CONTROL FLAGS

The display at your terminal will be similar to the following:

up 3
insert ucbflg ds a11 control flags

INSERT Subcommand or EDIT 109

110 TSO COIIIIIIIIIld Laasaaae Refereaee

Example 1

Operation: Insert several lines into a data set.

Known:
The data set contains line numbers.
The inserted lines are to follow line number 00280.
The current line pointer points to line number 00040.
The user is operating in EDIT mode.
The lines to be inserted are:

"J.W. HOUSE 13-244831 24.73"

"T.N. HOWARD 24-7820953.05"

"B.H. IRELAND 40-007830104.56"

Before entering the INSERT subcommand the current line pointer must be
moved down 24 lines to the location where the new data will be inserted.

down 24

The INSERT subcommand is now entered:

insert

The system will respond with:

INPUT

The lines to be inserted are now entered.

The display at your terminal will be similar to the following:

down 24
insert
INPUT
00281 j.w.house 13-244831 24.73
00282 t.n.howard 24-782095 3.05
00283 b.h.ireland 40-007830 104.56

New line numbers are generated in sequence beginning with the number
one greater than the one pointed to by the current line pointer. When no
line can be inserted, you will be notified. No resequencing will be done.

Insert/Replace/Delete Function of EDIT

The Insert/Replace/Delete function lets you insert, replace, or delete a line
of data without specifying a subcommand name. To insert or replace a
line, all you need to do is indicate the location and the new data. To
delete a line, all you need to do is indicate the location. You can indicate
the location by specifying a line number or an asterisk. The asterisk means
that the location to be used is pointed to by the line pointer within the
system. You can change the line pointer by using the UP, DOWN, TOP,
BOTTOM, and FIND subcommands so that the proper line is referred to.

[string]

One number

*
specifies the number of the line you want to insert, replace, or delete.

specifies that you want to replace or delete the line at the location
pointed to by the line pointer in the system. You can use the TOP,
BOTTOM, UP, DOWN, and FIND subcommands to change the line
pointer without modifying the data set you are editing.

string
specifies the sequence of characters that you want to either insert
into the data set or to replace an existing line. If this operand is
omitted and a line exists at the specified location, the existing line is
deleted. When the first character of "stoog" is a tab, no delimiter is
required between this operand and the preceding operand. Only a
single delimiter is recognized by the system. If you enter more than
one delimiter, all except the first are considered to be input data.

How the System Interprets the Operands:

When you specify only a line number or an asterisk, the system deletes a
line of data. When you specify a line number or asterisk followed by a
sequence of characters, the system will replace the existing line with the
specified sequence of characters or, if there is no existing data at the
location, the system will insert the sequence of characters into the data set
at the specified location.

Example 1

Operation: Insert a line into a data set.

Known:

The number to be assigned to the new line: 62
The data: ("OPEN INPUT PARTS-FILE")

62 open input parts-file

Insert/Replace/Delete FuncdoD of EDIT 111

112 TSO Command LaDguage Reference

Example 1

Operation: Replace an existing line in a data set.

Known:

The number of the line that is to be replaced: 287
The replacement data: "GO TO HOURCOUNT;"

287 go to hourcount,

Example 3

Operation: Replace an existing line in a data set that does not have line
numbers.

Known:

The line pointer in the system points to the line that is to be replaced.

The replacement data is: "58 PRINT USING 120,5"

* 58 print using 120,s

Example 4

Operation: Delete an entire line.

Known:

The number of the line: 98
The current line pointer in the system points to line 98.

98
or
*

LIST Subcommand of EDIT

Use the LIST subcommand to display one or more lines of your data set at
your terminal.

[line-nUmber-l [line-nUmber-2]]
... [count]

[~~~M]

6ne-number-l
specifies the number of the line that you want to be displayed at
your terminal.

line-number-l

...

specifies the number of the last line that you want displayed. When
you specify this operand, aU the lines from line-number-l through
line-number-2 are displayed .

specifies that the line referred to by the current line pointer is to be
displayed at your terminal. You can change the line pointer by using
the UP, DOWN, TOP, BOTTOM, and FIND subcommands without
modifying the data set you are editing.

Note: If the current line painter is at zero (for example, as a result of a
TOP command), and line zero is not already in the data set, the current
line pointer moves to the first existing line.

count
specifies the number of lines that you want to have displayed,
starting at the location referred to by the line pointer.

Note: If you do not specify any operand with LIST, the entire data set will
be displayed:

NUM
specifies that line numbers are to be displayed with the text. This is
the default value if both NUM and SNUM are omitted. If your data
set does not have line numbers, this operand will be ignored by the
system.

SNUM
specifies that line numbers are to be suppressed, that is, not
displayed at the terminal.

Example 1

Operation: List an entire data set.

list

LIST Subcommllnd of EDIT 113

114 TSO Command Language Reference

Example 2

Operation: List part of a data set that has line numbers.

Known:

The line number of the first line to be displayed: 27
The line number of the last line to be displayed: 44
Line numbers are to be included in the list.

list 27 44

Example 3

Operation: List part of a data set that does not have line numbers.

Known:

The line pointer in the system points to the first line to be listed.

The section to be listed consists of 17 lines.

list * 17

MOVE Subcommand of EDIT

Use the MOVE subcommand of EDIT to move one or more records that
exist in the data set being edited. The move operation moves data from a
source location to a target location within the same data set and deletes the
source data. Existing lines in the target area are shifted toward the end of
the data set as required to make room for the incoming data. No lines are
lost in the shift.

The target line cannot be within the source area, with the exception that
the target line (the first line of the target area) can overlap the last line of
the source area.

Upon completion of the move operation, the current line pointer points to
the last moved-to line, not to the last line shifted to make room in the
target area.

Note: If you cause an attention interruption during the move operation, the
data set may be only partially changed. As a check, list the affected part
of the data set before continuing.

line' [line2] [li!e3] [INCR (lines)]

[co1nt] [li!e4]
[INCR (lines) 1

Note: MOVE without operands is ignored.

Iinel

Iinel

specifies the first line or the lower limit of the range to be moved. If
the specified line number does not exist in this data set, the range
begins the next higher line number.

specifies the last line or the upper limit of the range to be moved. If
the specified line number does not exist in this data set, the range
ends with the highest line number that is less than line2. If line2 is
not entered, the value defaults to the value of linel; that is, the
source becomes one line. Do not enter asterisk for line2.

Note: If MOVE is followed by two line-number operands, the system
assumes them to represent linel and line3, and defaults line2 to the value
of linel.

line3
specifies the target line number; that is, the line at which the
moved-to data area will start. If the line3 value corresponds to an
existing line, the target line is changed to line3 + INCR(lines) and
either becomes a new line or displaces an existing line at that
location. Once the move operation begins, existing lines encountered
in the target area are renumbered to make room for the incoming
data. The increment for renumbered lines is one (1.). Specifying
zero (0) for line3 puts the moved data at the top of the data set only
if line 0 is empty; if line 0 has data, enter TOP followed by MOVE
with line3 set to *. Note that line3 defaults to *.

MOVE Subcommand or EDIT 115

lUi TSO Conummd '4nguage Reference

Note: The value of line3 should not fall in the range from line1 to line2;
that is, the target line must not be in the range being moved. Exception:
line3 can be equal to line2.

*
represents the value of the current line pointer.

INCR(Unes)
specifies the line number increment to be used for this move
operation. The default is the value in effect for this data before the
move operation. When the move operation is complete, the
increment reverts to the value in effect before MOVE was issued.
Range: 1-8 decimal digits but not zero.

Note: The increment for any renumbered line is one (1).

'string'

count

lfne4

specifies a string of alphameric characters with a maximum length
equal to or less than the logical record length of the data set being
edited. When a character string is specified, a search starting at the
current line is done for the line containing the string. When found,
that line is the start of the range to be moved for either numbered or
unnumbered data sets.

specifies the total number of lines (the range) to be moved. The
default for count is one (1). Enter 1-8 decimal digits but not zero
(0) or asterisk (*).

applies to both numbered and unnUmbered data sets. For
unnumbered data sets, line4 specifies the target line (the line at
which the moved-to data area will start) as a relative line number
(the nth line in the data set). For numbered data sets, line4 is
specified the same as line3. Specifying zero (0) for line4 puts the
moved data at the top of the data set only if line 0 is empty; if line 0
has data, enter TOP followed by MOVE with line4 set to *. Note
that line4 defaults to •.

Messages
The MOVE subcommand of EDIT causes error messages to be displayed at
the terminal under specific conditions. To show these conditions, the
following data set is assumed:

1.

0010 A
0020 BB
0030 CCC
0040 DODD
0050 EEEEE
0060 FFFFFF
0070 GGGGGGG
0080 HHHHHHHH
0090 IIIIIIIII
0100 JJJJJJJJJJ
0110 KKKKKKKKKKK
0120 LLLLLLLLLLLL

Entering

move * * *
causes:

IKJ52579I INVALID OPERANDS * INVALID FOR COUNT OR
END OF RANGE SPECIFICATION

2. Entering

move 100000 *
causes:

IKJ52579I INVALID OPERANDS FIRST LINE TO BE
MOVE/COPIED DOES NOT EXIST

3. Entering

move 'xyz' *
causes: .

IKJ52579I INVALID OPERANDS QUOTED STRING NOT FOUND

4. Entering

move 20 to 10 *
causes:

IKJ52579I INVALID OPERANDS END OF RANGE MUST BE
GREATER THAN OR EQUAL TO THE BEGINNING OF THE
RANGE

5. Entering

move 20 '*' 100

causes:

IKJ52579I INVALID OPERANDS STRING INVALID FOR END OF
RANGE SPECIFICATION

MOVE Subcommand of EDIT t 17

118 TSO Command LarJguqe Reference

6. Entering

move * 0 100

causes:

IKJ52579I INVALID OPERANDS 0 INVALID FOR COUNT

7. Entering

move 10 40 20

causes:

IKJ52579I INVALID OPERANDS TRYING TO MOVE/COPY
INTO LINE RANGE

In the following examples, CLP refers to the current line pointer.

Example 1

Operation: Move the current line right after itself in a line-numbered data
set.

Known: Data set contains lines 10 through 120; current line pointer is at
SO; EDIT provides an increment of 10.

Before: Enter: After:

0010 A move SO SO SO 0010 A
0020 BB 0020 BB
0030 eee or 0030 cee
0040 DODD 0040 DODD
0050 EEEEE move SO SO eLP 0060 EEEEE
0060 FFFFFF 0061 FFFFFF
0070 GGGGGGG or 0070 GGGGGGG
0080 HHHHHHHH 0080 HHHHHHHH
0090 III II II II move SO 0090 IIIIIIIII
0100 JJJJJJJJJJ 0100 JJJJJJJJJJ
0110 KKKKKKKKKKK or 0110 KKKKKKKKKKK
0120 LLLLLLLLLLLL 0120 LLLLLLLLLLLL

move 'ee'

Note: MOVE is ignored without operands.

Example 1

Operation: Move the current line right after itself in an unnumbered data
set.

Known: Data set contains 12 lines of sequential alphabetic characters.
Current line pointer is at the seventh line.

Before: Enter: After:

A move • • A
BB BB
eee or eee
DODD DODD
EEEEE move • EEEEE
FFFFFF FFFFFF
GGGGGGG or CLP GGGGGGG
HHHHHHHH HHHHHHHH
IIIIIIIII move • IIIIIIIII
JJJJJJJJJJ JJJJJJJJJJ
KKKKICKl<KKKK or KKKKKKKKKKK
LLLLLLLLLLLL LLLLLLLLLLLL

move 'qq'

Before:

0010
0020
0030
0040
0050
0060
0070
0080
0090
0100
0110
0120

Note: The effect of the operation is an unchanged data set.

Example 3

Operation: mustrate an attempt to move a line to a line before it.

Known: Data set contains lines 10 through 120; source line is 60; target
line is 50; EDIT supplies increment of 10.

Before: Enter: After:

0010 A move 60 50 0010 A
0020 BB 0020 BB
0030 CCC 0030 CCC
0040 DDDD 0040 DDDD
0050 EEEEE 0050 EEEEE
0060 FFFFFF CLP 0060 FFFFFF
0070 GGGGGGG 0070 GGGGGGG
0080 HHHHHHHH 0080 HHHHHHHH
0090 IIIIIIIII 0090 IIIIIIIII
0100 JJJJJJJJJJ 0100 JJJJJJJJJJ
0110 KKKKKKKKKKK 0110 KKKKKKKKKKK
0120 LLLLLLLLLLLL 0120 LLLLLLLLLLLL

Example 4

Operation: Find the line containing a specific word and move it to the
bottom of the data set.

Known: Data set contains nine lines of text; word to be found is "men";
data set is unnumbered.

Before:

NOW IS
THE TIME
FOR ALL
GOOD MEN
TO COME
TO THE
AID OF
THEIR
COUNTRY

Example 5

Enter: After:

top NOW IS
move 'men' 99999999 THE TIME

FOR ALL
TO COME
TO THE
AID OF
THEIR
COUNTRY

CLP GOOD MEN

Operation: Move lines 10, 20, and 30 into a target area starting at line
100, using an increment of 5.

Known: Data set contains line 10 through 120; EDIT provides increment
of 10.

Enter: After:

A move 10 30 100 incr(5) 0040 DDDD
BB 0050 EEEEE
CCC or 0060 FFFFFF
DDDD 0070 GGGGGGG
EEEEE move 9 31 100 incr(5) 0080 HHHHHHHH
FFFFFF 0090 IIIIIIIII
GGGGGGG or 0100 JJJJJJJJJJ
HHHHHHHH 0105 A
II III II II move 39 100 incr(5) 0110 BB
JJJJJJJJJJ CLP 0115 CCC
KKKKKKKKKKK 0116 KKKKKKKKKKK
LLLLLLLLLLLL 0120 LLLLLLLLLLLL

MOVE Subcommand of EDIT 119

Before:

0010
0020
0030
0040
0050
0060
0070
0080
0090
0100
0110
0120

120 TSO Command Language Reference

Example 6

Operation: Move four lines from a source area to a target area that
overlaps the last line of the source, using the default increment.

Known: Data set contains lines 10 through 120; source lines are 20
through 50; target area starts at line 50; EDIT provides increment of 10.

Before: Enter: After:

0010
0020
0030
0040
"DO 50
0060
0070
0080
0090
0100
0110
0120

A move
BB
CCC
DODD
EEEEE
FFFFFF
GGGGGGG
HHHHHHHH
IIIIIIIII
JJJJJJJJJJ
KKKKKKKKKKK
LLLLLLLLLLLL.

Example 7

20 50 50 0010
0060
0070
0080

CLP 0090
0091
0092
0093
0094
0100
0110
0120

A
BB
eee
DODD
EEEEE
FFFFFF
GGGGGGG
HHHHHHHH
IIIIIIIII
JJJJJJJJJJ
KKKKKKKKKKK
LLLLLLLLLLLL

Operation: Move five lines into a target area that starts before but
overlaps into the source area.

Known: Data set contains lines 10 through 120; source range is line 70
through line 110; target location is line 50; increment to be 10.

Enter:

A move 70
BB
cce
DODD
EEEEE
FFFFFF
GGGGGGG
HHHHHHHH
IIIIIIIII
JJJJJJJJJJ
KKKKKKKKKKK
LLLLLLLLLLLL

After:

110 50 incr(10) 0010
0020
0030
0040
0050
0060
0070
0080
0090

CLP 0100
0101
0120

A
BB
cce
DODD
EEEEE
GGGGGG
HHHHHHH
IIIIIIII
JJJJJJJJJ
KKKKKKKKKK
FFFFFF
LLLLLLLLLLL

Example 8

Operation: Move three lines to the-top of the data set at line O.

Known: Data set contains lines 10 through 120; line 0 doesn't exist; source
lines are 80, 90. and 100; target area starts at line O.

Before: Enter: After:

0010 A top 0000 HHHHHHHH
0020 BS move 80 100 • incr(50) 0050 III II II II
0030 CCC CLP 0100 JJJJJJJJJJ
0040 DODD or 0101 A
0050 EEEEE 0102 BB
0060 FFFFFF move 80 100 0 incr(50) 0103 CCC
0070 GGGGGGG 0104 DODD
0080 HHHHHHHH 0105 EEEEE
0090 IIIIIIIII 0106 FFFFFF
0100 JJJJJJJJJJ 0107 GGGGGGG
0110 KKKKKKKKKKK 0110 KKKKKKKKKKK
0120 LLLLLLLLLLLL 0120 LLLLLLLLLLLL

Example 9

Operation: Move three lines to the top of the data set at line 0, using an
increment of 50.

Known: Data set contains lines 0 through 120; line 0 contains data; source
lines are 80, 90. and 100; target area starts at line O.

Before: Enter: After:

0000 ZIP top 0050 HHHHHHHH
0010 A move 80 100 • incr(50) 0100 IIIIIIIII
0020 BB CLP 0150 JJJJJJJJJJ
0030 CCC The attempt to move into 0151 ZIP
0040 DODD line 0 gets the target data 0152 A
0050 EEEEE to the top of the data set 0153 BB
0060 FFFFFF but shifts the target line 0154 CCC
0070 GGGGGGG by the increment value. 0155 DODD
0080 HHHHHHHH 0156 EEEEE
0090 IIIIIIIII 0157 FFFFFF
0100 JJJJJJJJJJ 0158 GGGGGGG
0110 KKKKKKKKKKK 0159 KKKKKKKKKKK
0120 LLLLLLLLLLLL 0160 LLLLLLLLLLLL

Note: An entry of
move 80 100 0 incr(50)
produces the results
shown at right. The 0000 ZIP
target data is inserted 0050 HHHHHHHH
between line 0 and the 0100 IIIIIIIII
remainder of the data CLP 0150 JJJJJJJJJJ
set. 0151 A

0152 BB
0153 CCC
0154 DODD
0155 EEEEE
0156 FFFFFF
0157 GGGGGGG
0158 KKKKKKKKKKK
0159 LLLLLLLLLLLL

MOVE Subcommand of EDIT 121

PROFILE Subcommand of EDIT

Use the PROFILE subcommand to change the characteristics of your user
profile. Refer to PROFILE command for a discussion of the syntax and
function of PROFILE subcommand.

PROFILE Subcommand of· EDIT 113

{ RENUM}
REN

RENUM Subcommand of EDIT

Use the RENUM subcommand to:

• Assign a line number to each record of a data set that does not have a
line number.

• Renumber each record in a data set that has line numbers.

New line numbers are placed in the last eight character positions if the data
set being edited contains fixed-length records. There are three exceptions
to this general rule:

• Data set type COBOL - first six positions

• Data set type VSBASIC - first five positions

• Data set type ASM and NUM keyword specified on EDIT command -
positions indicated in NUM keyword subfield.

If fixed-length record data sets are being numbered for the first time, any
data in the positions indicated above is overlaid.

If variable-length records without sequence numbers are being edited, the
records will be lengthened so that an eight-digit sequence field (five-digits
if VSBASIC) is prefIXed to each record. You are notified if any records
have been truncated in the process. (Records are truncated when the data
length plus the sequence length exceeds the maximum record length of the
data set being edited.)

In all cases the specified (or default) increment value becomes the line
increment for the data set.

[new-line-number [increment [old-line-number [end-line-numb erllll

new-line-number
specifies the new line number to be assigned to the first line
renumbered. If this operand is omitted, the first line number will be
to.

increment
specifies the amount by which each succeeding line number is to be
incremented. (The default value is 10.) You cannot use this operand
unless you specify a new line number.

old-line-number
specifies the location within the data set where renumbering will
begin. If this operand is omitted, renumbering will start at the
beginning of the data set. You cannot use this operand unless you
specify a va;lue for the increment operand or when you are initially
numbering a NONUM data set.

end-line-number
specifies the line number ai which renumbering is to end. If this
operand is omitted, renumbering continues to the end of the data set.
You cannot use this operand without specifying all the other
operands.

RENUM Subcommand of EDIT 115

126 TSO Command Language Reference

Example 1

Operation: Renumber an entire data set using the default values for each
operand.

renurn

Example 2

Known:
The old line number: 17
The new line number: 21
The increment: 1

ren 21 1 17

Example 3

Operation: Renumber part of a data set from which lines have been
deleted.

Known:
Before deletion of the lines, the data set contained lines, 10. 20, 30,
40, and 50.

Lines 20 and 30 were deleted.

Lines 40 and 50 are to be renumbered with an increment of 10.

ren 20 10 40

Note: The lowest acceptable value for a new line number in this example is
11.

Example 4

Operation: Renumber a range of lines so that new lines may be inserted.

Known:
Before renumbering, the data set lines are numbered
10,20,23,26,29,30,40, and 50.

Two lines are to be inserted after line 29.

Lines 23-29 are to be renumbered with an increment of 2.

The first new number to be assigned is 22.

ren 22 2 23 29

RUN Subcommand of EDIT

Use the RUN subcommand to compile, load, and execute the source
statements in the data set that you are editing. The RUN subcommand is
designed specifically for use with certain program products; it selectS and
invokes the particular program product needed to process your source
statements. Figure 8 shows which program product is selected to process
each type of source statement.

Notes:

1. Any data sets required by your problem program may be allocated
before you enter EDIT mode or may be allocated using the
ALLOCATE subcommand.

2. If you wish to enter a value for 'parameters,' you should enter this
prior to any of the other keyword operands.

If your program or data set contains Then the following Program Product
statements of this type (see EDIT): (or equivalent) can be used:

ASM TSO ASM Prompter

COBOL TSO COBOL Prompter and OS Full American
National Standard COBOL Version 3 or
Version 4

FORTGI TSO FORTRAN Prompter and FORTRAN IV
(01)

PLI PL/I Checkout Compiler or PL/I
Optimizing Compiler

VSBASIC VSBASIC

Note: User-defined data set types can be executed under the RUN subcommand of EDIT if
a prompter name was specified at system generation time. The RUN command will not
recognize these same data set types.

FIgure 8. Source Statement/Program Product Relationship

[I parameters I]

[TEST]
NOTEST

[SMSG]

[CHECK]
OPT

[LIB(data-set-list)]

[STORE 1
NOS TOREJ

[~gGoJ
[SIZE{value)]

[PAUSE]
NOPAUSE

RUN Subcommand of EDIT 127

U8 1'80 Command Laoguage Reference

'parameters'
specifies a string of up to 100 characters that is passed to the
program that is to be executed. You may specify this operand only
for programs which can accept parameters.

TEST
specifies that testing will be performed during execution. This
operand is valid for the VSBASIC program product only.

NOTEST
specifies that no testing will be done. If you omit both TEST and
NOTEST, the default value is NOTEST.

SMSG
specifies that you want to receive the short, concise diagnostic
messages.

CHECK

OPT

specifies the PL/I Checkout compiler. This operand is valid for the
PL/I program product only. If you omit this operand, the OPT
operand is the default value for data sets having the PLI descriptive
qualifier.

specifies the PL/I Optimizing compiler. This operand is valid for the
PL/I program product only. This is the default value for data sets
having the PLI descriptive qualifier if both CHECK and OPT are
omitted.

Lm(data-set-list)
specifies the library or libraries that contain subroutines needed by
the program you are running. These libraries are concatenated to the
default system libraries and passed to the loader for resolution of
external references. This operand is valid only for the foUowing data
set types: ASM, COBOL, FORTGI, and PLI(Optimizer).

STORE
specifies that a permanent OBJ data set is to be created. The
dsname of the OBJ data set is based on the data set name entered
on the EDIT command. This operand is valid only for VSBASIC
statements.

NOSTORE

GO

specifies ~hat a permanent OBJ data set is not to be created. This
operand is valid only for VSBASIC statements.

. specifies that the compiled program is to be executed. This operand
is valid only for VSBASIC statements.

NO GO
specifies that the compiled program is not to be executed. This
operand is valid only for VSBASIC statements.

SIZE(vaiue)
specifies the size (1-999) of the user area for VSBASIC.

PAUSE
specifies that the user is to be given the chance to add or change
certain compiler options before proceeding to the next chain
program. This operand is valid only for VSBASIC statements.

NOPAUSE
specifies that the user is not to be given the chance to add or change
certain compiler options before proceeding to the next chain
program. This operand is valid only for VSBASIC statements.

Example 1

Operation: Execute an assembler language program contained in the data
set referred to by the EDIT command.

Known:

The parameters to be passed to the program are: '1024,PA YROLL'

run '1024,payroll'

Example 1

Operation: Run a FORTRAN IV (GI) program that calls an assembler
language output program to manipulate bit patterns.

Known:

The assembler language subroutine in load module form resides in a
library called USERID.MYLIB.LOAD.

run lib(mylib.load)

RUN SubeOll1lll8lld of EDIT 129

SAVE Subcommand of EDIT

Use the SA VB subcommand to have your data set retained as a permanent
data set. If you use SA VB without an operand, the updated version of
your data set replaces the original version. When you specify a new data
set name as an operand, both the original version and the updated version
of the data set are available for further use.

•

[

REUSE]
RENUM

UNNUM

[(new-line-number) ~
[incr[old-line-number
[end-line-number]]])]

specifies that the edited version of your data set is to replace the
original version. This is the default, if there are no operands entered
on the subcommand.

dsname
specifies a data set name that will be assigned to your edited data
set. The new name may be different from the current name (see the
data set naming conventions). If this operand or an asterisk is
omitted, the name entered with the EDIT command will be used.

If you specify the name of an existing data set or a member of a
partitioned data set, that data set or member is replaced by the
edited data set. (Before replacement occurs, you will be given the
option of specifying a new data set name or member name.)

If you do not specify the name of an existing data set or partitioned
data set member, a new data set (the edited data set) will be created
with the name you specified. If you specified a member name for a
sequentially organized data set, no replacement of the data set will
take place. If you do not specify a member name for an existing
partitioned data set, the edited data set is assigned a member name
of TEMPNAME.

REUSE
specifies that the data set specified in the dsname operand is to be
reused if it already exists. The user will not be prompted.

Note: The following operands cannot be included unless data set
name or an • is specified.

RENUM
specifies that' the data set will be renumbered before it is saved.

new-One-number

iner

specifies the first line number to be assigned to the data set. If this
operand is omitted, the first line number will be 10.

specifies the amount by which each succeeding line number is to be
incremented. The default is 10. This operand cannot be included
unless the new-line-number is specified.

SAVE Subcommand of EDIT 131

132 TSO Command Language Reference

old-line-number
specifies the line location within the data set where the renumber
process will begin. If this operand is omitted, renumbering will start
at the beginning of the data set. The old-line-number must be equal
to or less than the new-line-number. This operand cannot be
included unless "incr" is specified.

end-line-number
specifies the line location within the data set where renumbering is to
end. If this operand is omitted, renumbering stops at the end of the
data set. The end-line-number must be greater than the
old-line-number. This operand cannot be included unless the
old-line-number is specified.

UNNUM
specifies that the data set will be unnumbered before it is saved.

Note: If the data set being edited originally contained control characters
(ASCII or machine), and you enter SA VB without operands, the following
actions apply.

Sequential Data Set

• You will be warned that the data set will be saved without
control characters, that is, the record format will be changed.

• You will be prompted to enter another data set name for SA VB
or a null line to reuse the EDIT data set.

Partitioned Data Set
Saving into the EDIT data set is not allowed when it is partitioned
with a control character attribute. You must save into another data
set by specifying a data-set-name on a subsequent SA VB
subcommand entry.

Example 1

Operation: Save the data set that has just been edited by the EDIT
command.

Known:

The system is in edit mode. The user-supplied name that you want to
give the data set is INDEX.

save index

Example 2

Operation: Save the data set that has just been edited, renumbering it first.

Known:

new-line-number 100
increment(INCR) 50

save * renum(100 50)

SCAN Subcommand of EDIT

Use the SCAN subcommand to request syntax checking services for
statements that will be processed by the FORTRAN(H) compiler. You can
have each statement checked as you enter it in input mode, or any or all
existing statements checked. You must explicitly request a check of the
syntax of statements you are adding, replacing, or modifying, via the
CHANGE subcommand, the INSERT subcommand with the insert-data
operand, or the insert/replace/delete function.

{SCAN} SC . [line-nUmber-1 [line-number-2l]
* [countl

[g~FJ

line-number-l
specifies the number of a line to be checked for proper syntax.

line-number-2

*

count

ON

OFF

specifies that all lines between line number 1 and line number 2 are
to be checked for proper syntax.

specifies that the line at the location indicated by the line pointer in
the system is to be checked for proper syntax. The line pointer can
be changed by the TOP, BOTTOM, UP, DOWN, and FIND
subcommands.

specifies the number of lines, beginning with the current line, that
you want checked for proper syntax.

specifies that each line is to be checked for proper syntax as it is
entered in input mode.

specifies that each line is not to be checked as it is entered in input
mode.

Note: If no operands are specified, all existing statements will be checked
for proper syntax.

Example 1

Operation: Have each line of a FORTRAN program checked for proper
syntax as it is entered.

scan on

Example 2

Operation: Have all the statements in a data set checked for proper
syntax.

scan

SCAN SulK:ommand of EDIT 133

134 TSO Command Language RefereDce

Example 3

Operation: Have several statements checked for proper syntax.

Known:

The number of the first line to be checked: 62
The number of the last line to be checked: 69

scan 62 69

Example 4

Operation: Check several statements for proper syntax.

Known:

The line pointer points to the first line to be checked.
The number of lines to be checked: 7

scan * 7

SEND Subcommand of EDIT

Use the SEND subcommand to send a message to another terminal user or
to the system operator. Refer to the SEND command for a description of
the syntax and function of the SEND subcommand.

SEND Subcommand of EDIT 135

SUBMIT Subcommand of EDIT

Use the SUBMIT subcommand of EDIT to submit one or more batch jobs
for conventional processing. Each job submitted must reside in either a
sequential data set, a direct-access data set or in a member of a partitioned
data set. Submitted data sets must be fixed blocked, 80 byte records.
Using the EDIT command to create a CNTL data set will provide the
correct format.

Any of these data sets can contain part of a job, one job, or more than
one job that can be executed via a single entry of SUBMIT. Each job
must comprise an input job stream (JCL plus data). Do not submit data
sets with descriptive qualifiers TEXT or PLI if the characters in these data
sets are lower case.

Job cards are optional. The generated jobname will be your userid plus an
identifying character. SUBMIT will prompt you for the character and insert
the job accounting information from the user's LOGON command on any
generated job card. The system or installation default MSGCLASS and
CLASS are used for submitted jobs unless MSGCLASS and CLASS are
specified on the job card(s) being submitted. See the first section in
Appendix A for an example of a generated JOB card.

*

{ SUBMIT}
SUB [NOTIFY]

NONOTIFY

specifies that the data set being edited defines the input stream to be
submitted. This is the default if no operands are entered on the
subcommand.

data-set-list
specifies one or more data set names or names of members of
partitioned data sets that define an input stream (JCL plus data). If
you specify more than one data set name, enclose them in
parentheses.

Note: Either an asterisk or the data-set-list must be specified if any
keywords are used.

NOTIFY
specifies that you are to be notified when your job terminates in the
background if a JOB statement has not been provided. If you have
elected not to receive messages, the message will be placed in the
broadcast data set. You must then enter LISTBC to receive the
message. No~ify is the default value if a JOB statement is generated.

If you supply your own JOB statement, use the NOTIFY =userid
keyword on the JOB statement if you wish to be notified when the
job terminates. SUBMIT igtiores the NOTIFY keyword unless it is
generating a JOB statement.

SUBMIT Subcommand or EDIT 137

138 TSO Command Language Reference

NONOTIFY

Notes:

specifies that a termination message will not be issued or placed in
the broadcast data set. The NONOTIFY keyword is only recognized
when a JOB statement has not been provided with the job that you
are processing. If you supply your own JOB statement, you must use
the NOTIFY = userid keyword on the JOB statement to receive
notification.

1. If any of the above types of data sets containing two or more jobs is
submitted for processing, certain conditions apply.

The SUBMIT processor will build a job card for the first job in the
first data set, if none was supplied, but will not build job cards for any
other jobs in the data set(s).

If the SUBMIT processor determines that the first job contains an
er.ror, none of the jobs are submitted.

Once the SUBMIT processor submits a job for processing, errors
occurring in the execution of that job have no effect on the
submission of any remaining job(s) in that data set.

2. Any job card you supply should have a job name consisting of your
userid and a single identifying character. If the jobname is not in this
format, you will not be able to refer to it with the CANCEL
command. You will be required to specify the jobname in the
STATUS command if the ffiM-supplied exit has not been replaced by
your installation and your job name is not your userid plus a single
identifying character.

3. If you wish to provide a job card but you also want to be prompted
for a unique jobname character, put your userid in the jobname field
and follow it with blanks so that there is room for SUBMIT to insert
the prompted-for character. This allows you to change jobnames
without re-editing the JCL data set.

4. Once SUBMIT has successfully submitted a job for conventional batch
processing, it will issue a 'jobname(jobid) submitted' message. The
jobid is a unique job identifier assigned by the job entry subsystem.

S. This subcommand may be used only by personnel who have been
given the authority to do so by the installation management.

Example

Operation: Submit the data set being edited for batch processing.

Known:

The data set has no job card and you do not want to be notified when
the job is completed.

submit * nonotify

TABSET Subcommand of EDIT

Use the TABSET subcommand to:

• Establish or change the logical tabulation settings.

• Cancel any existing tabulation settings.

The basic form of the subcommand causes each strike of the tab key to be
translated into blanks corresponding to the column requirements for the
data set type. For instance, if the name of the data set being edited has
FORT as a descriptive qualifier, the fust tabulation setting will be in
column 7. The values in Figure 9 will be in effect when you fust enter the
EDIT command. (See TSO Terminal User's Guide to determine if your
terminal supports tab setting.)

Data Set Name Deserlptlve QualIfier
ASM
CLIST
CNTL
COBOL
DATA
FORT FORTRAN(H) compHers, FORTRAN IV (GI)

product data set types.
PLI PL/I Checkout and

Optimizing compHer data set types.
TEXT
VSBASIC
User-defmed

FIgure 9. Default Tab Settings

Default Tab SettlDp Colamas
10,16,31,72
10,20,30,40,50,60
10,20,30,40,50,60
8,12,72
10,20,30,40,50,60
7,72

5,10,15,20,25,30,35,40,45,50

5,10,15,20,30,40
10,15,20,25,30,35,40,45,50,55
10,20,30,40,50,60

You may find it convenient to have the mechanical tab settings coincide
with the logical tab settings. Note that, except for line-numbered COBOL
or VSBASIC data sets, the logical tab columns apply only to the data that
you actually enter. Since a printed line number prompt is not logically part
of the data you are entering, the logical tab positions are calculated
beginning at the next position after the prompt. Thus, if you are receiving
five-digit line number prompts and have set a logical tab in column 10, the
mechanical tab should be set 15 columns to the right of the margin. If you
are not receiving line number prompts, the mechanical tab should be set 10
columns to the right of the margin.

In COBOL and VSBASIC data sets the sequence number (line number) is
considered to be a logical (as well as physical) part of each record that you
enter. For instance, if you specify the NONUM operand on the EDIT
command, while editing a COBOL or VSBASIC data set, the system
assumes that column 1 is at the left margin and that you are entering the
required sequence numbers in the fust six columns; (for COBOL) or the
first five columns (for VSBASIC); thus, logical tabs are calculated from the
left margin (column 1). In line-numbered COBOL data sets (the NONUM
operand was not specified), the column following a line number prompt is
considered to be column 7 of your data, the first six columns being
occupied by the system-supplied sequence number (line number). In
line-numbered VSBASIC data sets, the column following a line number
prompt is considered ~o be column 6 of your data, the first five columns
being occupied by the system-supplied sequence number.

TABSET Subeommaad of EDrr 139

140 1'80 Command Language Reference

[
ON [(integer-list)]]
OFF
IMAGE

ON(integer-Ust)

OFF

specifies that tab settings are to be translated into blanks by the
system. If you specify ON without an integer list, the existing or
default tab settings are used. You can establish new values for tab
settings by specifying the numbers of the tab columns as values for
the integer list. A maximum of ten values is allowed. If you omit
both ON and OFF the default value is ON.

specifies that there is to be no translation of tabulation characters.
Each strike of the tab key will produce' a single blank in the data.

IMAGE
specifies that the next input line will define new tabulation settings.
The next line that you type should consist of "t"s, indicating the
column positions of the tab settings, and blanks or any other
characters except "t." Ten settings is the maximum number of tabs
allowable. Do not use the tab key to produce the new image line. A
good practice is to use a sequence of digits between the "t"s so you
can easily determine which columns the tabs are set to (see Example
3).

Example 1

Operation: Re-establish standard tab settings for your data set.

Known:

Tab settings are not in effect.

tab

Example 2

Operation: Establish tabs for columns 2, 18, and 72.

tab on(2 18 72)

Example 3

Operation: Establish tabs at every 10th column.

tab image
123456789t123456789t123 ...

TOP Subcommand of EDIT

Use the TOP subcommand to change the line pointer in the system to zero,
that is, the pointer will point to the position preceding the first line of an
unnumbered data set or of a numbered data set which does not have a line
number of zero. The pointer will point to line number zero of a data set
that has one.

This subcommand is useful in setting the line pointer to the proper position
for subsequent subcommands that need to start their operations at the
beginning of the data set.

In the event that the data set is empty you will be notified, but the current
line pointer still takes on a zero value.

TOP

Example t

Operation: Move the line pointer to the beginning of your data set.

Known:

The data set is not line-numbered.

top

TOP Subcommand of EDIT 141

UNNUM Subcommand of EDIT

Use the UNNUM subcommand to remove existing line numbers from the
records in the data set.

{ UNNUM}
UNN

Example 1

Operation: Remove the line numbers from an ASM-type data set.

Known:

The data set has line numbers.

unnum

UNNUM Subcommand of EDIT 143

UP Subcommand of EDIT

Use the UP subcommand to change the line pointer in the system so that it
points to a record nearer the beginning of your data set. If the use of this
subcommand causes the line pointer to point to the first record of your
data set, you will be notified.

UP

count

[count]

specifies the number of lines toward the beginning of the data set
that you want to move the current line pointer. If count is omitted,
the pointer will be moved only one line.

Example 1

Operation: Change the pointer so that it refers to the preceding line.

up

Example 1

Operation: Change the pointer so that it refers to a line located 17 lines
before the location currently referred to.

up 17

UP Subcommand of EDIT 145

VERIFY Subcommand of EDIT

Use the VERIFY subcommand to display the line that is currently pointed
to by the line pointer in the system whenever the current line pointer has
been moved. or whenever a line has been modified by use of the
CHANGE subcommand. Until you enter VERIFY. you will have no
verification of changes in the pOsition of the current line pointer.

{~ERIFY}

ON

OFF

specifies that you want to have the line that is referred to by the line
pointer displayed at your terminal each time the line pointer changes
or each time the line is changed by the CHANGE subcommand.
This is the default if you omit both ON and OFF.

specifies that you want to discontinue this service.

Note: Subcommands that change the current line pOinter and cause it to be
displayed if the VERIFY subcommand is activated are BOTfOM.
CHANGE. COpy. DELETE. DOWN. FIND. MOVE. RENUM. UNNUM
and UP.

Example 1

Operation: Have the line that is referred to by the line pointer displayed at
your terminal each time the line pointer changes.

verify
or

verify on

Example 1

Operation: Terminate the operations of the VERIFY subcommand.

verify off

VERIFY Subc:ommaDd or EDIT 147

END Command

You may use the END command to end a command procedure. When the
system encounters an END command in a command procedure, execution
of the command procedure is halted. This function is better performed by
the EXIT statement.

END

END Command 149

EXEC Command

Use the EXEC command to execute a command procedure.

You can specify the EXEC command or the EXEC subcommand of EDIT
in three ways:

• The expHcit form: Enter EXEC or EX followed by the name of the
data set that contains the command procedure.

• The implicit form: Do not enter EXEC or EX; only enter the
procedure-name (a member of a command procedure library). A
command procedure library is a partitioned data set that must be
allocated to the SYSPROC file name either dynamically by the
ALLOCATE command or as part of the LOGON procedure. TSO
will determine if the name is a system command before searching
SYSPROC for the procedure.

• The extended impHcit form: Enter a percent sign followed by the
procedure-name. TSO will only search the SYSPROC file for the
specified name. For procedures that reside in SYSPROC, this form is
the faster of the implicit forms.

Some of the commands in a command procedure may have symbolic
variables for operands. When you specify the EXEC command, you may
supply actual values for the system to use in place of the symbolic
variables.

Note: For more information concerning symbolic variables and command
procedures, refer to the section "Command Procedures" in this book.
Command procedures are explained in greater detail in TSO Terminal
User's Guide.

The EXEC subcommand of EDIT and the EXEC subcommand of TEST
perform the same basic functions as the EXEC command. However, a
command procedure which is executed with the EXEC subcommand of
EDIT can only execute command procedure statements and EDIT
subcommands.

I{EXEC} I data-set-name

~:)prOCedure-name
data-set-name

['value-list') [NOLISil/PROMPT 1
LIST JLNOPROMPTJ

specifies the name of the data set containing the command procedure
to be executed. H the descriptive qualifier for the data set is not
CLIST, you must enclose the fully-qualified name within apostrophes
and the data set must contain line numbers according to the
following format:

Variable blocked - First eight characters in each record
Fixed blocked - Last eight characters in each record

EXEC Command 151

151 1'80 Command Language Reference

Since any data contained in these columns is lost, you should not
enter data in these columns.

(~lprocedure-naJne
specifies a member of a command procedure library. If the percent
sign (%) is entered, TSO will search only the SYSPROC file for the
specified name.

value-list
specifies the actual values that are to be substituted for the symbolic
values in the command procedure. The symbolic values are defined
by the operands of the PROC statement in the command procedure.
The actual values to replace the positional operands in the PROC
statement must be in the same sequence as the positional operands.
The actual values to replace the keywords in the PROC statement
must follow the positional values, but may be in any sequence. A
keyword defined on the PROC statement may have a value
consisting of a character string with delimiters, provided that the
character string is enclosed in quotes. When you use the explicit
form of the command, the value list must be enclosed in apostrophes.
If apostrophes appear within the list, then you must provide two
apostrophes in order to print one. If a quoted string appears as the
value of a keyword within the value list, the number of quotes must
be doubled again (see example 3).

NOLIST

LIST

specifies that the commands and subcommands will not be listed at
the terminal. The system assumes NOLIST for implicit and explicit
EXEC commands.

specifies that commands and subcommands will be listed at the
terminal as they are executed. This operand is valid only for the
explicit form of EXEC.

PROMPT
specifies that prompting to the terminal will be allowed during the
execution of a command procedure. The PROMPT keyword implies
LIST, unless NOLIST has been explicitly specified. Therefore, all
commands and subcommands will be listed at the terminal as they
are executed. This operand is valid only for the explicit form of
EXEC.

NOPROMPT
specifies no prompting during the execution of a command procedure.
This is the default if neither PROMPT nor NOPROMPT is specified.

Notes:

1. The PROMPT keyword is not propagated to nested EXEC commands.
PROMPT must be specified on a nested EXEC command if you wish
to be prompted during execution of the command procedure it
invokes.

2. No prompting will be allowed during the execution of a command
procedure if the NOPROMPT keyword operand of PROFILE has
been specified, even if the PROMPT option of EXEC has been
specified.

3. The following is a list of options resulting from specific keyword
entries:

Keyword specified

PROMPT
NOPROMPT
LIST
NOLIST
PROMPT
PROMPT
NOPROMPT
NOPROMPT
No keywords

LIST
NOLIST
LIST
NOLIST

Resulting options

PROMPT LIST
NOPROMPT NOLIST
LIST NOPROMPT
NOLIST NOPROMPT
PROMPT LIST
PROMPT NOLIST
NOPROMPT LIST
NOPROMPT NOLIST
NOPROMPT NOLIST

Suppose the following command procedure exists as a data set named
ANZAL:

proc 3 input output list lines()
allocate dataset(&input) file (indata) old
allocate dataset{&output) block(100) space(300,100)
allocate dataset(&list) file(print)
call proc2 '&lines'
end

Note: If the symbolic value must be immediately followed by a period, the
symbolic value must end with a period. (A single period following a
symbolic value is ignored.)

The PROC statement indicates that the three symbolic values, &INPUT,
&OUTPUT and &LIST, are positional (required) and that the symbolic
value &LINES is a keyword (optional).

To replace ALPHA for INPUT, BETA for OUTPUT, COMMENT for
LIST and 20 for LINES, you would enter: (implicit form)

anzal alpha beta comment lines(20)

Example 1

Operation: Execute a command procedure to invoke the assembler.

Known:
The name of the data set that contains the command procedure is
RBJ21.F ASM.CLIST.

The command procedure consists of:

proc 1 name
free file(sysin,sysprint)
delete (&name .. list,&name •. obj)
allocate dataset(&name .. asm) file(sysin) old keep
allocate dataset(&name .. list) file (sysprint) -
block(132) space(300,100)

allocate dataset(&name .. obj) file (syspunch) block(80) -
space(100,SO)

allocate file(sysut1)
allocate file(sysut2)
allocate file (sysut3)
allocate file(syslib)

'sys1.maclib') shr

space(3,1) cylinders new
space(3,1) cylinders new
space(3,1) cylinders new
da('d82Ijp1.tso.macro',

call 'sys1.linklib{ifoxOO)' 'deck,noobj,rent'

delete
delete
delete

free file(sysut1,sysut2,sysut3,sysin,sysprint, -
syspunch,syslib)

allocate file(sysin) da(*)
allocate file(sysprint) da(*)

EXEC Command 153

154 TSO Command Language Reference

Note: If the symbolic value must be immediately followed by a period, the
symbolic value must end with a period.

The module to be assembled is "TGET ASIS."

You want to have the names of the commands in the command
procedure displayed at your terminal as they are executed.

exec fasm 'tgetasis' list

The di~play at your terminal will be similar to:

EX FASM 'TGETASIS' LIST
FREE FILE(SYSIN,SYSPRINT)
DELETE (TGETASIS.LIST,TGETASIS.OBJ)
IDCOSSOI ENTRY (A) D82LJP1.TGETASIS.LIST DELETED
IDCOSSOI ENTRY (A) D82LJP1.TGETASIS.OBJ DELETED
ALLOCATE DATASET(TGETASIS.ASM) FILE (SYSIN) OLD KEEP
ALLOCATE DATASET(TGETASIS.LIST) FILE (SYSPRINT)

BLOCK(132) SPACE (300, 100)
ALLOCATE DATASET(TGETASIS.OBJ) FILE (SYSPUNCH)

BLOCK (80) SPACE(100,SO)
ALLOCATE FILE(SYSUT1) SPACE(3,1) CYLINDERS NEW DELETE
ALLOCATE FILE(SYSUT2) SPACE(3,1) CYLINDERS NEW DELETE
ALLOCATE FILE(SYSUT3) SPACE(3,1) CYLINDERS NEW DELETE
ALLOCATE FILE(SYSLIB) DA('D82LJP1.TSO.MACRO',

'SYS1.MACLIB') SHR
CALL 'SYS1.LINKLIB(IFOXOO)' 'DECK,NOOBJ,RENT'
FREE FILE(SYSUT1,SYSUT2,SYSUT3,SYSIN,SYSPRINT,

SYSPUNCH,SYSLIB)
ALLOCATE FILE(SYSIN) DA(*)
ALLOCATE FILE(SYSPRINT) DA(*)
READY

Example 2

Operation: Suppose that the command procedure in Example 1 was stored
in a command procedure library. Execute the command procedure using
the implicit form of EXEC.

Known:

The name of the member of the partitioned data set
that contains the command procedure is FASM2.

fasm2 tgetasis

Example 3

Operation: Enter a fully qualified data set name as a keyword value in an
EXEC command value list.

Known:

The procedure named SWITCH is contained in a command procedure
library named "MASTER.CLIST" which is allocated as SYSPROC.

The command procedure consists of:

PROC 0 DSN1() DSN2()
RENAME &DSN1 TEMPSAVE
RENAME &DSN2 &DSN1
RENAME TEMPSAVE &DSN2

If a user whose userid is "USER33" wishes to switch the names of
two datasets "MASTER.BACKUP" and "USER33.GOODCOPY," he
could invoke the procedure as follows:

ExpHcit form:

exec 'master. clist (switch).' +
'dsn1("""master.backup""") +
dsn2 (qoodcopy) ,

Extended impHclt form:

'switch dsn1 ("'master.backup' ") dsn2(qoodcopy)

Note that when the implicit forms are used the specification of quoted
strings in the value list is made simpler since the value list itself is not a
quoted string.

EXEC Command 155

FREE Command

Use the FREE command to release (deallocate) previously allocated data
sets that you no longer need. You can also use this command to change
the output class of SYSOUT data sets. to delete attribute lists. and to
change the data set disposition specified with the ALLOCATE command.

There is a maximum number of data sets that may be allocated to you at
anyone time. The aUowable number must be large enough to
accommodate:

• Data sets aUocated via the LOGON and ALLOCATE commands

• Data sets allocated dynamically by the system's command processors

The data sets aUocated by the LOGON and ALLOCATE commands are
not freed automaticaUy. To avoid the possibility of reaching your limit and
being denied necessary resources. you should use the FREE command to
release these data s~ts when they are no longer needed.

When a SYSOUT data set is freed. it is immediately available for output
processing. either by the job entry subsystem (not-held data sets) or by the
OUTPUT command (held data sets).

When you free SYSOUT data sets. you may change their output class to
make them available for processing by an output writer. or route them to
another user.

When you enter the LOGOFF command. all data sets aUocated to you and
attribute lists created during the terminal session are freed by the system.

UNALLOC is the alias of FREE and is intended for use under TEST since
FREE is an alias for the FREEMAIN subcommand.

Note: Data sets that are dynamicaUy allocated by a command processor are
not automaticaUy freed when the command processor terminates. You must
explicitly free dynamicaUy allocated data sets.

{FREE }
UNALLOC

ALL

{
DSNAME(dataset-name-list) Jl
DATASET (dataset-name-list)
DDNAME(file-name-list)
FILE (file-name-list)
ATTRLIST(attr-list-names)

rHOLD J
LNOHOLD U

KEEP
]

DELETE 2

CATALOG
UNCATALOG

Choose one or more of these parameters within braces.

[DEST(station-id)]

[SYSOUT(class)]

DELETE is the only disposition that is valid for SYSOUT data sets.

FREE Command 151

158 TSO COIDIIIaDd laDguage Referenee

ALL
requests unallocation of all dynamically allocated data sets, files and
attribute lists that are not marked in-use.

DATASET or DSNAME(data-set-name-Ust)
specifies one or more data set names that identify the data sets that
you want to free. The data set name must include the descriptive
(rightmost) qualifier and may contain a member name in parentheses.
If you omit this operand, you must specify either FILE or DSNAME
or the ATIRLIST operand.

FILE or DDNAME(flle-name-list)
specifies one or more file names that identify the data sets to be
freed. If you omit this operand, you must specify either the
DATASET or DSNAME or the ATIRLIST operand.

A TTRLIST(attr-list-names)
specifies the names of one or more attribute lists that you want to
delete. If you omit this operand, you must specify either the
DATASET or DSNAME or the FU..E or DDNAME operand.

DES'f(stationid)
specifies a one-ta-eight character name of a remote work station to
which the SYSOUT data sets are directed when ready for
unallocation. If this keyword is omitted on the FREE command for
SYSOUT data sets, the data sets will be directed to the work station
specified at the time of allocation.

HOLD
specifies that the data set is to be placed on the HOLD queue.
HOLD overrides any HOLD/NOHOLD specification made when the
data set was originally allocated and it also overrides the default
HOLD/NOHOLD specification associated with the particular
SYSOUT class specified.

NOHOLD

KEEP

specifies that the data set is not to be placed on the HOLD queue.
NOHOLD overrides any HOLD/NOHOLD specification made when
the data set was originally allocated and it also overrides the default
HOLD/NOHOLD specification associated with the particular
SYSOUT class specified.

specifies that the data set is to be retained by the system after it is
freed.

DELETE
specifies that the data set is to be deleted by the system after it is
freed. DELETE is not valid for data sets allocated SHR. or for
members of a PDS. Only DELETE is valid for SYSOUT data sets.

CATALOG
specifies that the data set is to be retained by the system in a catalog
after it is freed.

UNCATALOG
specifies that the data set is to 1?e removed from the catalog after it
is freed. The data set is still retained by the system.

Note: If HOLD, NOHOLD, KEEP, DELETE, CATALOG, and
UNCATALOG are not specified, the specification indicated at the time of
allocation remains in effect.

SYSOUT(class)
specifies an output class which is represented by a single character.
All of the system output (SYSOUT) data sets specified in the
DATASET or DSNAME and FILE or DDNAME operands will be
assigned to this class and placed in the output queue for processing
by an output writer. In order to free a file to SYSOUT. the file must
have previously been allocated to SYSOUT.

Note: A concatenated data set that was allocated in a LOGON procedure
or by the ALLOCATE command can be freed only by entering the'
ddname on the FILE or DDNAME operand.

Example 1

Operation: Free a data set by specifying its data set name.

Known:

The data set name: TOC903.PROGA.LOAD

free dataset(proga.load)

Example :1

Operation: Free three data sets by specifying their data set names.

Known:

The data set names: APRIL.PB99CY.ASM,
APRIL.FIRSTQTR.DATA. MAY.DESK.MSG

free dataset(pb99cy.asm,firstqtr.data,'may.desk
.msg')

Example 3

Operation: Free five data sets by specifying data set names or data
definition names: Change the output class for any SYSOUT data sets
being freed.

Known:

The name of a data set: WIND.MARCH.FORT

The filenames (data definition names) of 4 data sets: SYSUTI
SYSUT3 SYSIN SYSPRINT

The new output class: B

free dataset(march.fort) file(sysut1,sysut3,sysin,
sysprint) sysout(b)

FREE Command 15'

160 TSO Command Language Reference

Example 4

Operation: Delete two attribute lists.

Known:

The names of the lists: DCBPARMS ATIRIBUT

free attrlist(dsbparms attribut)

Example 5

Operation: Free all dynamically allocated data sets, files, and attribute lists.

free all

HELP Command

Use the HELP command or subcommand to obtain information about the
function, syntax, and operands of commands and subcommands and
information about certain messages. This reference information is
contained within the system and is displayed at your terminal in response to
your request for help. By entering the· HELP command or subcommand
with no operands you can obtain a list of all the TSO commands grouped
by function or subcommands of the command you are using.

The HELP command may not be used to get additional information about
command procedure statements.

(sub) command-name [I [[FUNCTION) [SYNTAX]]I~ [OPERANDS [(list»)]
[POSITIONAL (nn»)

[ALL]
[MSGID (list»)

command-aame or subcommand-aame
specifies the name of the command or subcommand that you want to
know more about.

FUNCTION
specifies that you want to know more about the purpose and
operation of the command or subcommand.

SYNTAX
specifies that you want to know more about the syntax required to
use the command or subcommand properly.

OPERANDS(Ust-of-operands)
specifies that you want to see explanations of the operands for the
command or subcommand. When you specify the keyword
OPERANDS and omit any values, all operands will be described.
You can specify particular keyword operands that you want to have
described by including them as values within parentheses fonowing
the keyword. If you specify a list of more than one operand, the
operands in the list must be separated by commas or blanks.

POSmONAL(nn)
specifies that you wish to obtain information on a particular
positional operand of the command or subcommand. You can
specify the positional operand that you want described by the
number (no) of the operand in the sequence of positional operands.
The first positional operand would be identified as '1', the second as
'2', and so on. You may obtain information on the positional
operands of the fonowing commands and any of their subcommands:

• ACCOUNT
• AITRIB
• CALL
• CANCEL
• EDIT
• EXEC
• HELP

HELP Command 161

162 TSO Command Language Reference

ALL

• LOGON
• OUTPUT
• RUN
• SEND
• TEST
• TRANSMIT

specifies that you want to see all information available concerning the
command or subcommand. This is the default value if no other
keyword operand is specified.

MSGID(list)
specifies that you wish to get additional information about VSBASIC
messages whose message identifiers are given in the list. Information
includes what caused the error and how to prevent a recurrence. The
FUNCTION, SYNTAX, OPERANDS or ALL keywords cannot be
specified with MSGID.

Help Information:: The scope of available information ranges from general
to specific. The HELP command or subcommand with no operands
produces a list of valid commands or subcommand and their basic
functions. From the list you can select the command or subcommand most
applicable to your needs. If you need more information about the selected
command or subcommand, you may use HELP again, specifying the
selected (sub)command name as an operand. You will then receive:

• A brief description of the function of the (sub)command
• The format and syntax for the (sub)command
• A description of each operand

You can obtain information about a command or subcommand only when
the system is ready to accept a command or subcommand.

If you do not want to have all of the detailed information, you may request
only the portion that you need.

The information about the commands is contained in a cataloged
partitioned data set named SYS1.HELP. Information for each command or
subcommand is kept in a member of the partitioned data set. The HELP
command or subcommand causes the system to select the appropriate
member and display its contents at your terminal.

Figure 10 shows the hierarchy of the sets of information available with the
HELP command or subcommand. Figure lOalso shows the form of the
command or subcommand necessary to produce any particular set.

Example 1

Operation: Obtain a list of all available commands.

help

Example 1

Operation: Obtain all the information available for the ALLOCATE
command.

help allocate

Example 3

Operation: Have a description of the XREF, MAP, COBLm, and OVL Y
operands for the LINK command displayed at your terminal.

h link operands(xref,map,coblib,ovly)

Example 4

Operation: Have a description of the function and syntax of the LISTBC
command displayed at your terminal.

h listbc function syntax

Example 5

Operation: Obtain information on the ATTRIB command positional
operand.

help attrib positional(1)

Example 6

Operation: Obtain information on the third positional operand of the
RENUM subcommand of EDIT.

help renum positional(3)

HELP Command 163

When the system is ready
to accept a command, you
may request:

When the system is ready to accept
a subcommand, you may request:

1 List of commands

Command function
2 List of subcommand.

Command syntax Subcommand function

List of operands
Subcommand syntax

6 Each operand
List of operends

Positional operand
11 Each operand

or:
13 VSBASIC message data

Positional operand

14 MSGIDUIsd

This form of the command ...•....••.•....•...•....•...•••..•...•.•.••...•..••••••••..••. produces:

1
> <
Q
oil(
w
IX:

I
In
w
~
'a
C
CD ~
.,:
::J

~
0

t:
Q
w

, HELP

HELP commandname

HELP commandname ALL

HELP commandname FUNCTION

HELP commandname SYNTAX

HELP commandname OPERANDS

HELP commandneme OPERANDS lIist of keyword operand.)

HELP commandname POSITIONAL (positional operand number)

" HELP commandname MSGID llist of VSBASIC message Ids)

, HELP

HELP 8ubcomrnandname

HELP .ubcommandneme ALL

HELP subcommandname FUNCTION

HELP lubcommandname SYNTAX

HELP lubcommcndname OPERANDS

HELPaubcommandname OPERANDS (list of keyword operands)

HELP 8ubcommandname POSITIONAL (positional operand number)

HELP lubcomrnandname MSGID (lilt of message Ids)

PIpre 10. lafotmadoa A9IfJatIIe 'I1Iroagb die HELP Commaad

NfIIC The HELP HELP command is valid only in ready mode.

164 TSO COIIJID8IId Language Reference

1
345
345

3
4
5
6
7

13

2
8 9 10
8910

8
9

10
11
12

14

LINK Command

Use the LINK command to invoke the linkage editor service program.
Basically, the linkage editor converts one or more object modules (the
output modules from compilers) into a load module that is suitable for
execution. In doing this, the linkage editor changes all symbolic addresses
in the object modules into relative addresses.

The linkage editor provides a great deal of information to help you test and
debug a program. This information includes a cross-reference table and a
map of the module that identifies the location of control sections, entry
points, and addresses. You can have this information listed at your
terminal or saved in a data set on some device.

You can specify all the linkage editor options explicitly or you can accept
the default values. The default values are satisfactory for most uses. By
accepting the default values, you simplify the use of the LINK command.

If the module that you want to process has a simple structure (that is, it is
self contained and does not pass control to other modules) and you do not
require the extensive listings produced by the linkage editor and you do not
want a load module, you may want to use the LOADGO command as an
alternative to the LINK command.

Note: You should not link an object module with the TEST option and then
attempt to execute the resulting load module in the background because an
abnormal termination may result.

LINK Command 165

166 1'80 Command Lauguage Reference

LINK (data-set-list)

[LOAD [(data-set-name)]]

[
PRINT

NOPRINT
({data:set-name})]

[AMODE [g~ ~ J]
(ANY)

[RMODE D~~)]]
[LIB(data-set-list)]

[PLILIB] fREFER
[PLICMIX] NOREFER

[PLIBASE] SCTR
[FORTLIB] NOSCTR

[COBLIB] [OVLY
NOOVLY

f
MAP [RENT
NOMAP " NORENT
NCAL [SIZE (integer1
NONCAL

LIST
NOLIST
'LET
NOLET . :;

XCAL J
NOXCAL

[~~~~EF]
rREUS 1
LNOREUSJ

NE
NONE
OL
NOOL
DC
NODC

TEST J
NOTEST

fTERM]
LNOTERM

[DCBS(blocksize)]

[AC(authorization­
code)

integer2)]

(data-set-Ust)
specifies the names of one or more data sets containing your object
modules and/or linkage editor control statements. (See the data set
naming conventions). The specified data sets will be concatenated
within the output load module in the sequence that they are included
in this operand. If there is only a single name in the data-set-list,
parentheses are not required unless the singlt: name is a member
name of a partitioned data set; then, two pairs of parentheses are
required, as in:

link ((parts))

You may substitute an asterisk (*) for a data set name to indicate
that you will enter control statements from your terminal. The
system will prompt you to enter the control statements. A null line
indicates the end of your control statements.

LOAD(data-set-name)
specifies the name of the partitioned data set that will contain the
load module after processing by the linkage editor (see the data set
naming conventions). If you omit this operand, the system will
generate a name according to the. data set naming conventions.

PRINT(data-set-name or *)
specifies that linkage editor listings are to be produced and placed in
the specified data set. When you omit the data set name, the data
set that is generated is named according to the data set naming
conventions. This is the default value if you specify the UST, MAP,
or XREF operand. You may substitute an asterisk (*) for the data
set name if you want to have the listings displayed at your terminal.

NOPRINT
specifies that no linkage editor listings are to be produced. This
operand causes the MAP, XREF, and UST options to become
invalid. This is the default value if both PRINT and NOPRINT are
omitted, and you do not use the UST, MAP, or XREF operand.

AMODE
specifies the addressing mode for the module to be link edited. If the
AMODE keyword is not specified, the AMODE defaults to the
AMODE of the entry point.

Valid AMODE values are:

24 to indicate that the module is to be invoked in 24-bit
addressing mode

31 to indicate that the module is to be invoked in 31-bit
addressing mode

ANY to indicate that the module is to be invoked in the addressing
mode of the caller

RMODE
specifies the residence mode for the module to be link edited.
RMODE defaults to 24 if all control sections are not specified as
RMODE (ANY). RMODE defaults to RMODE (24) if any section
of the load module has an RMODE of 24. If the RMODE keyword
is given without an operand, the user is prompted for it.

Valid RMODE values are:

24· indicates the module must reside below the 16 megabyte line

~ indicates the module may reside anywhere in virtual storage

Lm (data-set-Hst)
specifies one or more names of library data sets to be searched by
the linkage editor to locate object modules referred to by the module
being processed; that is, to resolve external references. When you
specify more than one name, the names must be separated by a valid
delimiter. If you specify more than one name, the data sets are
concatenated to the file name of the first data set in the list. For
control statements, the first data set in the list must be preallocated
with the ddname or file name SYSLIB prior to the LINK. command.
If you specify more than one name, the data sets are concatenated to
the file name of the first data set and lose their individual identity.
See System Programming Library: System Macros and Facilities for
details on dynamic concatenation.

PLILm
specifies that the partitioned data set named SYS l.PLILIB is to be
searched by the linkage editor to locate load modules that are
referred to by the module being processed.

LINK COIDIIIIIIId 167

168 TSO Command Language Reference

PLmASE
specifies that the partitioned data set named SYS1.PLmASE is to be
searched to locate load modules referred to by the module being
processed.

PLICMIX
specifies that the partitioned data set named SYS1.PLICMIX is to be
searched to locate load modules referred to by the module being
processed.

FORTLm
specifies that the partitioned data set named SYS1.FORTLIB is to be
searched by the linkage editor to locate load modules referred to by
the module being processed.

COBLm

MAP

specifies that the partitioned data set named SYS1.COBLm is to be
searched by the linkage editor to locate load modules referred to by
the module being processed.

specifies that the PRINT data set is to contain a map of the output
module consisting of the control sections, the entry names, and (for
overlay structures) the segment number.

NOMAP
specifies that a map of the output module is not to be listed. This is
the default value if both MAP and NOMAP are omitted.

NCAL
specifies that the automatic library call mechanism is not to be
invoked to locate the modules that are referred to by the module
being processed when the object module refers to other load
modules.

NONCAL

LIST

specifies that the modules referred to by the module being processed
are to be located by the automatic library call mechanism when the
object module refers to other load modules.

specifies that a list of all linkage editor control statements is to be
placed in the PRINT data set.

NOLIST

LET

specifies that a listing of linkage editor control statements is not to
be produced. This is the default value if both LIST and NOLIST are
omitted.

specifies that the output module is permitted to be marked as
executable even though a severity 2 error is found (a severity 2 error
indicates that execution of the output module may be impossible).

NOLET
specifies that the output module be mark~d non-executable when a
severity 2 error is found.

XCAL
specifies that the output module is permitted to be marked as
executable even though an exclusive call has been made between
segments of an overlay structure. Because the segment issuing an
exclusive call is overlaid, a return from the requested segment can be
made only by another exclusive call or a branch.

NOXCAL
specifies that both valid and invalid exclusive calls will be marked as
errors.

XREF
specifies that a cross-reference table is to be placed on the PRINT'
data set. The table includes the module map and a list of all address
constants referring to other control sections. Since the XREF
operand includes a module map, both XREF and MAP cannot be
specified for a particular LINK command.

NOXREF
specifies that a cross-reference listing is not to be produced.

REUS
specifies that the load module is to be marked serially reusable if the
input load module was reenterable or serially reusable. The RENT
and REUS operand are mutually exclusive. The REUS operand must
not be specified if the OVL Y or TEST operands are specified.

NOREUS

REFR

specifies that the load module is not be be marked reusable.

specifieskthat the load module is to be marked refreshable if the input
load module was refreshable and the OVL Y operand was not
specified.

NOREFR

SCTR

specifies that the load module is not to be marked refreshable.

specifies that the load module created by the linkage editor can be
either scatter loaded or block loaded. If you specify SCTR, do not
specify OVLY.

NOSCTR
specifies that scatter loading is not permitted.

OVLY
specifies that the load module is an overlay structure and is therefore
suitable for block loading only. If you specify OVL Y, do not specify
SCTR.

NOOVLY
specifies that the load module is not an overlay structure.

RENT
specifies that the load module is marked reenterable provided the
input load module was reenterable and that the OVL Y operand was
not specified.

NORENT
specifies that the load module is not marked reenterable.

LINK Command 169

170 TSO Command LaDauage Referenee

SIZE(integerl,integerl)

NE

specifies the amount of real storage to be used by the linkage editor.
The first integer (integerl) indicates the maximum allowable number
of bytes. Integer2 indicates the number of bytes to be used as the
load module buffer, which is the real storage area used to contain
input and output data. If this operand is omitted, SIZE defaults to
the size specified at system generation (SYSGEN).

specifies that the output load module cannot be processed again by
the linkage editor or loader. The linkage editor will not create an
external symbol dictionary. If you specify either MAP or XREF, this
operand is invalid.

NONE

OL

specifies that the output load module can. be processed again by the
linkage editor and loader and that an external symbol dictionary is
present.

specifies that the output load module can be brought into real storage
only by the LOAD macro instruction.

NOOL

DC

specifies that the load module is not restricted to the use of the
LOAD macro instruction for loading into real storage.

specifies that the output module can be reprocessed by the linkage
editor (level E).

NODC

TEST

specifies that the load module cannot be reprocessed by the linkage
editor (level E). This is the default if both DC and NODC are
omitted.

specifies that the symbol tables created by the assembler and
contained in the input modules are to be placed into the output
module.

NOTEST
specifies that no symbol table is to be retained in the output load
module. This is the default value if both TEST and NOTEST are
omitted.

TERM
specifies that you want error messages directed to your terminal as
well as to the PRINT data set This is the default value if both
TERM and NOTERM are omitted.

NOTERM
specifies that you want error messages directed only to the PRINT
data set and not to your terminal.

DCBS(blockslze)
specifies the blocksize of the records contained in the output load
module. The "blocksize" must be" an integer.

AC(authorization-code)
specifies an authorization code (0-255) used to maintain data
security.

Example I

Operation: Combine three object modules into a single load module.

Known:

The names of the object modules in the sequence that the modules
must be in: TPB05.GSALESA.OBJ TPB05.GSALESB.OBJ
TPB05.NSALES.OBJ

You want all of the linkage editor listings to be produced and directed
to your terminal.

The name for the output load module:
TPB05.SALESRPT.LOAD(TEMPNAME)

link (gsalesa,gsalesb,nsales) load (salesrpt) print(*) -
xref list

Example 1

Operation: Create a load module from an object module, an existing load
module, and a standard processor library.

Known:

The name of the object module: V ACID.M33THRUS.OBJ

The name of the existing load module:
VACID.M33PA YLD.LOAD(MODl)

The name of the standard processor library used for resolving external
references in the object module: SYS1.PLILIB

The entry name of the load module is MOD2.

The alias name of the load module is MOD3.

The name of the output load module:
VACID.M33PERFO.LOAD(MOD2)

link(m33thrus,*) load(m33perfo(mod2» print(*) -
plilib map list

Choosing 1d2 as a filename to be associated with the existing load
module, the display at your terminal will be:

allocate dataset(m33payld.load) file(ld2)
link (m33thrus,*) load(m33perfo(mod2» print(*) -
plilib map list

IKJ76080A ENTER CONTROL STATEMENTS
include ld2(modl)
entry mod2
alias mod3
(null line)

IKJ761111 END OF CONTROL STATEMENTS

LINK COIBDIIUId 171

171 1'80 Command Laoguage Relereuce

Example 3

Operation: Respecify the mode of an object module from 24-bit addressing
and residence mode to 31-bit addressing and residence mode ANY.

Known:

The name of the object module: ACCOUNT.MON.OBJ which has an
addressing mode of 24-bit

The name of the output load module:
ACCOUNT.MINE.LOAD(NEWMOD)

link mon load(mine(newmod»amode(31} rmode(any)

LISTALC Command

Use the LIST ALC command to obtain a list of the data sets allocated
during the current TSO session. Included in the total number of data sets
that the system will allow a user to allocate dynamically, are data sets that
had been previously allocated for temporary use by a command processor.

{ LISTALC}
LISTA

[STATUS]

[HISTORY]

[MEMBERS]

[SYSNAMES]

Notes:

1. The LIST ALC command without operands will produce a list of all
data set names (including those that are not partitioned) which have
either been allocated by you or temporarily allocated by previous TSO
command processors. This list includes terminal data sets, indicated by
the word "TERMINAL" and also attr-list-names created by the
ATTRIB command, indicated by the word "NULLFILE."

2. LIST ALC displays a list of data set names allocated by the terminal
user. H an asterisk precedes a data set name it indicates that the data
set is allocated but marked not-in-use.

STATUS
specifies that you want information about the status of each data set.
This operand provides you with:

• The data definition name (DDNAME) for the data set allocated
and the attr-list-names created by the A TTRIB command.

• The scheduled and conditional dispositions of the data set. The
keywords denoting the dispositions are CATLG, DELETE,
KEEP and UNCATLG. The scheduled disposition is the normal
disposition and precedes the conditional disposition when listed.
The conditional disposition takes effect if an abnormal
termination occurs. CA TLG means that the data set is retained
and its name is in the system catalog. DELETE means that
references to the data set are to be removed from the system
and the space occupied by the data set is to be released. KEEP
means that the data set is to be retained. UNCA TLG means
that the data set name is removed from the catalog but the data
set is retained.

LISTALC Command 173

t 74 TSC? Command Language Reference

HISTORY
specifies that you want to obtain information about the history of
each data set. This operand provides you with:

• The creation date

• The expiration date

• An indication as to whether or not the data set has password
protection (non-VSAM only)

• The data set organization (DSORG). The listing will contain:

PS for sequential
PO for partitioned
IS for indexed sequential
DA for direct access
VSAM for VSAM data entries
.. for unspecified
11 for any other specification

Note: Use the LISTCAT command for further information pertaining
to VSAM data entries.

MEMBERS
specifies that you want to obtain the library member names of each
partitioned data set having your user's identification as the leftmost
qualifier of the data set name. Aliases will be included.

SYSNAMES
specifies that you want to obtain the fully qualified names of data
sets having system-generated names.

Example 1

Operation: Obtain a Ust of the names of all the data sets allocated to you.

listalc

Example 2

Operation: Obtain a Ust of the names of all the data sets aUocated to you.
At the same time obtain the creation date, the expiration date, password
protection, and the data set organization for each data set aUocated to you.

lista history

Example 3

Operation: Obtain all available information about the data sets allocated to
you.

lista members history status sysnames

The output at your terminal will be similar to the following listing:

listalc mem status sysnames history
--DSORG--CREATED--EXPIRES---SECURITY---DDNAME---DISP
RRED9S.ASM

PS 00/00/00 00/00/00 WRITE EDTDUMY1 KEEP
"RRED9S.EXAMPLE

PO 00/00/00 00/00/00 PROTECTED EDTDUMY2 KEEP,KEEP
--MEMBERS--

MEMBER1
MEMBER2

SYS70140.T174803.RVOOO.TSOSPEDT.R0000001
•• 00/00/00 00/00/00 NONE SYSUT1 DELETE

ALLOCATION MUST BE FREED BEFORE RESOURCES CAN BE
RE-USED

EDTDUMY3
SYSIN
SYSPRINT

READY

Example 4

Operation: List the names of all your active attribute lists (allocated with
ATIRIB command).

lista status

The output at your terminal will be similar to the following listing:

lista status
--DDNAME---DISP-­
SYS1.LPALIB2

STEPLIB KEEP
SYS1.UADS

SYSUADS KEEP
SYS1.BRODCAST

SYSLBC KEEP
TERMFILE SYSIN
TERMFILE SYSPRINT
·SYS1.HELP

SYSOOOOS KEEP,KEEP
D9SBAB1.SEPT30.ASM

SYS00006 KEEP,KEEP
NULLFILE A
NULLFILE B
READY

LISTALC Command 175

USTBC Command

Use the LISTBC command to obtain a listing of the contents of the
SYS1.BRODCAST data set. The SYS1.BRODCAST data set contains
messages of general interest (NOTICES) that are sent from the system to
all terminals and messages directed to a particular user (MAIL). The
system deletes MAIL messages from the data set after they have been sent.
NOTICES must be deleted explicitly by the operator.

{LISTBC}
LISTB [MAIL]

NOMAIL

MAIL

[NOTICES J
NONOTICES

specifies that you want to receive the messages from the broadcast
data set that are intended specifically for you. This is the default
value if both MAIL and NOMAIL are omitted.

NOMAIL
specifies that you do not want to receive messages intended
specifically for you.

NOTICES
specifies that you want to receive the messages from the broadcast
data set that are intended for all users. This is the default value if
both NOTICES and NONOTICES are omitted.

NONOTICES
specifies that you do not want to receive the messages that are
intended for all users.

Example 1

Operation: Specify that you want to receive all messages.

listbc

Example 2

Operation: Specify that you want to receive only the messages intended for
all terminal users.

listbc nomail

USTBC Command 177

USTCAT Command

The LISTCAT command is used to list entries from a catalog. The entries
listed can be selected by name or entry type, and the fields to be listed for
each entry can additionally be selected.

For MVS, the original TSO LISTCAT command has been replaced by an
Access Method Services command of the same name. The explanations
below provide the information required to use these services for normal
TSO operations. The TSO user who wants to manipulate VSAM objects or
to use the other Access Method Services from the terminal should refer to
Access Method Services. For error message information, see Message
Library: System Messages.

The LISTCAT command supports unique operand abbreviations in addition
to the usual abbreviations produced by truncation. The syntax and operand
explanations show these unique cases.

Note: When LISTCAT is invoked and no operands are specified, the userid
or the prefix specified by the PROFll..E command becomes the highest
level of entryname qualification. Only those entries associated with the
userid are listed.

{LISTCAT}
LISTC

[CATALOG(catname[/password])]

[OUTFILE(ddname)]
OFILE(ddname)

[
ENTRIES (entrlname[/passWOrd]

{ LEVEL (leve 1)
.LVL(level)

[CLUSTER]

[~:j
SPC]

NONVSAM]
NVSAM

USERCATALOGJ
UCAT
GENERATIONDATAGROUP]
GDG

PAGES PACE]
PGSPC

[ALIAS]
[CREATION (days)]
[EXPIRATION (days)

[
ALL J NAME
VOLUME
AL~CATION
HISTORY

CAT ALOG(42tnamel/password»
specifies the name of the catalog that contains the entries that are to
be listed. When CATALOG is coded, only entries from that catalog
are listed.

USTCAT Command 179

180 TSO Command Language Reference

catname
is the name of the catalog.

password
specifies the read level or higher level password of the catalog that
contains entries to be listed. When the entries to be listed contain
information about password-protected data sets, a password must be
supplied either through this parameter or through the ENTRIES
parameter. If passwords are to be listed, you must specify the master
password.

OUTFILE(ddname) or OFILE(ddname)
specifies a data set other than the terminal to be used as an output
data set. The ddname may correspond to the name specified for the
FILE operand of the ALLOCATE command. The data can be listed
when the file is freed. The ddname identifies a DD statement that in
tum identifies the alternate output data set. If OUTFILE is not
specified, the entries are displayed at the terminal.

The normal output data set for listing is SYSPRINT. The default
parameters of this data set are:

• Record format: VBA

• Logical record length: 125, that is, 121+4

• Block size: 629, that is, 5 x (121+4)+4

Print lines are 121 bytes in length. The first byte is the ANSI
control character. The minimum specifiable LRECL is 121
(U-format records only). If a smaller size is specified, it is
overridden to 121.

It is possible to alter the above defaults through specification of the
desired values in the DCB parameter of the SYSPRINT statement.
The record format, however, cannot be specified as F or FB. If you
do specify either one, it is changed to VBA.

In several commands you have the option of specifying an alternate
output data set for listing. If you do specify an alternate, you must
specify DCB parameters in the referenced DD statement. When
specifying an alternate output data set, you should not specify F or
FB record formats.

ENTRIES(entryname[/password»
specifies the names of the entries to be listed. If neither ENTRIES
nor LEVEL is coded, only the entries associated with the user's
userid are listed. See Access Method Services.

entry name
specifies the names or generic names of entries to be listed. Entries
that contain information about catalogs can be listed only by
specifying the name of the master or user catalog as the entry name.
The name of a data space can be specified only when SPACE is the
only type specified. If a volume serial number is specified, SPACE
must be specified.

Note: A qualified name may be made into a generic name by substituting
an asterisk (*) for one qualifier. For example, A. * specifies aU
two-qualifier names that have A as first qualifier; A. *.C specifies aU
three-qualifier names that have A for first qualifier and C for third
qualifier.

password
specifies a password when the entry to be listed is password
protected and a password was not specified through the CATALOG
parameter. The password must be the read or higher level password.
If protection attributes are to be listed, you must supply th~ master
password; if no password is supplied, the operator is prompted for
each entry's password. Passwords cannot be specified for
non-VSAM data sets, aliases, generation data groups, or data spaces.

LEVEL(level) or L VL(level)
specifies the level of entry names to be listed. If neither LEVEL nor
ENTRIES is coded, only the entries associated with the user's userid
are listed.

CLUSTER
specifies that cluster entries are to be listed. When the only entry
type specified is CLUSTER, entries for data and index components
associated with the clusters are not listed.

DATA
specifies that entries for data components, excluding the data
component of the catalog, are to be listed. If a cluster's name is
specified on the ENTRIES parameter and DATA is coded, only the
data-component entry is listed.

INDEX or IX
specifies that entries for index components, excluding the index
component of the catalog, are to be listed. When a cluster's name is
specified on the ENTRIES parameter and INDEX is coded, only the
index-component entry is listed.

SPACE or SPC
specifies that entries for volumes containing data spaces defined in
this catalog are to be listed. Candidate volumes are included. If
entries are identified by entryname or level, SPACE can be coded
only when no other entry-type restriction is coded. .

NONVSAM or NVSAM
specifies that entries for non-VSAM data sets are to be listed. When
a generation data group's name and NONVSAM are specified, the
generation data sets associated with the generation data group are
listed.

USERCATALOG or UCAT
specifies that entries for user catalogs are to be listed.
USER CAT ALOG is applicable only when the catalog that contains
the entries to be listed is the master catalog.

GENERATIONDATAGROUPMGDG
specifies that entries for generation data groups are to be listed.

PAGESPACE or PGSPC
specifies that entries for page spaces are to be listed.

ALIAS
specifies that entries for alias entries are to be listed.

CREATION(days)
specifies that entries are to be listed only if they were created no
later than that number of days ago.

LISTCAT Command 181

• IZ TSO CODUI'IIIld J.auaaage Referem:e

EXPIRATlON(days)
specifies that entries are to be listed only if they will expire no later
than the number of days from now.

ALL!NAME/VOLUME/ ALLOCATION/IDSTORY

ALL

specifies the fields to be included for each entry listed. If no value is
coded, NAME is the default.

specifies that all fields are to be listed.

NAME
specifies that the names of the entries are to be listed. The default
will be NAME.

VOLUME
specifies that the name, owner identification, creation date, expiration
date, entry type, volume serial numbers and device types allocated to
the entries are to be listed. Volume information is not listed for
cluster entries (although it is for the cluster's data and index entries),
aliases, or generation data groups.

ALLOCATION
specifies that the information provided by specifying VOLUME and
detailed information about the allocation are to be listed. The
information about allocation is listed only for data and index
component entries.

IDSTORY
specifies that the name, owner identification, creation date, and
expiration date of the entries are to be listed .

LISTDS Command

Use the LISTDS command to have the attributes of specific data sets
displayed at your terminal. You can obtain:

• The volume identification (VOLID) of the volume on which the data
set resides. A volume may be a disk pack or a drum.

• The logical record length (LRECL), the blocksize (BLKSIZE) and for
non-VSAM data sets, the record format (RECFM) of the data set.

• The data set organization (DSORG); VSAM for VSAM data entries.

The data set organization is indicated as follows:

PS for sequential
PO for partitioned
IS for indexed sequential
DA for direct access
VSAM for VSAM data entries
•• for unspecified
11 for any other specification

Note: Use the LISTCAT command for further information on a
VSAM data entry.

• Directory information for members of partitioned data sets if you
specify the data set name in the form datasetname(membername}.

• Creation date, expiration date, and, for non-VSAM only, security
attributes.

• File name and disposition.

• ~on-VSAM data set control blocks (DSCB).

Note: Data sets that are dynamically allocated by the LISTDS command
processor are not automatically freed when the command processor
terminates. You must explicitly free dynamically allocated data sets.

{ LISTDS}
LISTD

(data-set-list)

(data-set-list)

[STATUS]
[HISTORY]
[MEMBERS]
[LABEL]
[CATALOG(cat.-name)]
[LEVEL]

specifies one or more data set names. This operand identifies the
data sets that you want to know more about. Each data set specified
must be currently allocated or available from the catalog,. and must
reside on a currently active volume. The names in the data set list
may contain a single asterisk in place of any level except the first.
When this is done, all cataloged data sets whose names begin with
the specified qualifiers are listed. For example, A.*.C specifies all
three-qualifier names that have A for first qualifier and C for third
qualifier.

LISTDS Command 183

184 TSO Command Lauguage Rererence

Note: Alias data set names are not to be used with this command.

STATUS
specifies that you want the following additional information:

• The DDNAME currently associated with the data set.

• The currently scheduled data set disposition and the conditional
disposition. The keywords denoting the dispositions are
CATLG. DELETE. KEEP, and UNCATLG. The scheduled
disposition is the normal disposition and precedes the
conditional disposition when listed. The conditional disposition
takes effect if an abnormal termination occurs. CA TLG means
that the data set is cataloged. DELETE means that the data set
is to be removed. KEEP means that the data set is to be
retained. UNCATLG means that the name is removed from the
catalog but the data set is retained.

lDSTORY
specifies that you want to obtain the creation and expiration dates
for the specified data sets and to find out whether or not the
non-VSAM data sets are password-protected.

MEMBERS
specifies that you want a list of all the members of a partitioned data
set including any aliases.

LABEL
specifies that you want to have the entire data set control block
(DSCB) listed at your terminal. This operand is applicable only to
non-VSAM data sets on direct access devices. The list will be in
hexadecimal notation.

CATALOG
specifies the user catalog that contains the names in the data set list.
CATALOG is required only if the names are in a catalog other than
STEP~AT or the catalog implied by the fIrSt-level qualifier of the
name.

LEVEL
specifies that the names in the data set list are to be high-level
qualifiers. All cataloged data sets whose names begin with the
specified qualifiers are listed. If LEVEL is specified, the names
cannot contain asterisks.

Note: Only one data set list may be specified with the LEVEL option.

Example

Operation: Ust the basic attributes of a particular data set.

Known:
The data set name: ZALDSS.CIR.OBJ

listds cir

The display at your terminal will be similar to the following:

listds cir
ZALD58.CIR.OBJ
--RECFM-LRECL-BLKSIZE-DSORG

FB 80 80 PS
--VOLUMES-­

D95LIB
READY

LISTDS Command 185

LOAD GO Command

Use the LOADGO command to load a compiled or assembled program into
real storage and begin execution.

The LOADGO command wiD load object modules produced by a compiler
or assembler. and load modules produced by the linkage editor. (If you
want to load and execute a single load module, the CALL command is
more efficient.) The LOADGO command wiD also search a call library
(SYSLIB) or a resident link pack area. or both, to resolve external
references.

The LOADGO command invokes the system loader to accomplish this
function. The loader combines basic editing and loading services of the
linkage editor and program fetch in one job step. Therefore. the load
function is equivalent to the link edit and go function.

The LOADGO command does not produce load modules for program
libraries, and it does not process linkage editor control statements such as
INCLUDE, NAME, OVERLAY, etc.

(data-set-list)

[I parameters I]

PRINT *
data-set-name

NOPRINT

(31)
(ANY)

[AMODE [(24) J
[RMODE r<24) 1

L(ANYU
[LIB (data-set-list)
[PLILIB]
[PLIBASE]
(PLICMIX]
(FORTLIB]
[COBLIB]

[TERM 1
NOTE~

[~~sJ
[~~p]
[~~J
[LET]

NOLET
[SIZE (integer)]
[EP(eritry-name)]
[NAME(program-name)]

LOADGO Command 187

188 1'80 Command Language Reference

(data-set-Iist)
specifies the names of one or more object modules and/or load
modules to be loaded and executed. The names may be data set
names, names of members of partitioned data sets, or both (see the
data set naming conventions). When you specify more than one
name, the names must be enclosed within parentheses and separated
from each other by a standard delimiter (blank or comma).

'parameters'
specifies any parameters that you want to pass to the program to be
executed.

PRINT(data-set-name or *)
specifies the name of the data set that is to contain the listings
produced by the LOADGO command. If you omit the data set
name, the generated data set will be named according to the data set
naming conventions. You may substitute an asterisk (*) for the data
set name if you want to have the listings displayed at your terminal.
This is the default if you specify the MAP operand.

NOPRINT
specifies that no listings are to be produced. This operand negates
the MAP operand. This is tJte default value if both PRINT and
NOPRINT are omitted, and you do not use the MAP operand.

AMODE
specifies the addressing mode for the module to be loaded. If the
AMODE keyword is not specified, the AMODE defaults to the
AMODE of the entry point.

Valid AMODE values are:

24 to indicate that the module is invoked in 24-bit addressing
mode

31 to indicate that the module is invoked in 31-bit addressing
mode

ANY to indicate that the module is invoked in the addressing mode
of the caller

RMODE
specifies the residence mode for the module to be loaded. RMODE
defaults to 24 if all control sections are not specified as
RMODE(ANY). RMODE defaults to 24 if any' section of the load
module has an RMODE(24).

Valid RMODE values are:

24 to indicate the module must reside below the 16 megabyte
line

ANY to indicate the module may reside anywhere in virtual storage

Lm(data set Ust)
specifies the names of one or more library data sets that are to be
searched to find modules referred to by the module being processed
(that is, to resolve external references).

PLILm
specifies that the partitioned data set named SYSl.PLILm is to be
searched to locate load modules referred to by the module being
processed.

PLmASE
specifies that the partitioned data set named SYS 1.PLmASE is to be
searched to locate load modules referred to by the module being
processed.

PLICMIX
specifies that the partitioned data set named SYS1.PLICMIX is to be
searched to locate load modules referred to by the module being
processed.

FORTLm
specifies that the partitioned data set named SYS1.FORTLm is to be
searched to locate load modules referred to by the module being
processed.

COBLm
specifies that the partitioned data set named SYS1.COBLm is to be
searched to locate load modules referred to by the module being
processed.

TERM
specifies that you want any error messages directed to your terminal
as well as the PRINT data set. This is the default value if both
TERM and NOTERM are omitted.

NOTERM

RES

specifies that you want any error messages directed only to the
PRINT data set.

specifies that the link pack area is to be searched for load modules
(referred to by the module being processed) before the specified
libraries are searched. This is the default value if both RES and
NORES are omitted. H you specify the NOCALL operand the RES
operand is invalid.

NORES

MAP

specifies that the link pack area is not to be searched to locate
modules referred to by the module being processed.

specifies that a list of external names and their real storage addresses
are to be placed on the PRINT data set. This operand is ignored
when NOPRINT is specified.

NOMAP

CALL

specifies that external names and addresses are not to be contained
in the PRINT data set. This is the default value if both MAP and
NOMAP are omitted.

specifies that the data set specified in the Lm operand is to be
searched to locate load modules referred to by the module being
processed. This is the default value if both CALL and NOCALL are
omitted.

NOCALL
specifies that the data set specified by the LID operand will not be
searched to locate modules that are referred to by the module being
processed. The RES operand is invalid when you specify this
operand.

LOADGO Command 189

190 TSO Command Language Reference

LET
specifies that execution is to be attempted even if a severity 2 error
should occur. (A severity 2 error indicates that execution may be
impossible.)

NOLET
specifies that execution is not to be attempted if a severity 2 error
should occur. This is the default value if both LET and NOLET are
omitted.

SIZE(integer)
specifies the size, in bytes, of dynamic real storage that can be used
by the loader. If this operand is not specified, then the size defaults
to the size specified at system generation (SYSGEN).

EP(enlry-name)
specifies the external name for the entry point to the loaded program.
You must specify this operand if the entry point of the loaded
program is in a load module.

NAME(program-name)
specifies the name that you want assigned to the loaded program.

Example 1

Operation: Load and execute an object module.

Known:

The name of the data set: SHEPD58.CSINE.OBJ

load csine print(*)

Example 1

Operation: Combine an object module and a load module, and then load
and execute them.

Known:

The name of the data set containing the object
module: LARK.HINDSITE.OBJ

The name of the data set containing the load
module: LARK.THERMOS.LOAD(COLD)

load (hindsite thermos(cold» print{*) +
lib('sys1.sortlib') +
nores map size (44k) ep (start23) name (thermsit)

Example 3

Operation: Combine and execute several object and load modules with
differing AMODE and RMODE attributes. The new load module should
execute in 31-bit addressing mode and be loaded anywhere in storage.

Known:

The name of the main routine, a load module in 24-bit addressing
mode: my.prog.load(main)

The names of two subroutines which are updated with changes before
loading. Both are AMODE(31) and RMODE(ANY): my.subl.obj,
my.sub2.obj

load (sub1 sub2 'rny.prog.load(rnain)'} print (*) arnode(31}
rrnode(any)

LOADGO Command 191

LOGOFF Command

Use the LOGOFF command to terminate your terminal session. When you
enter the LOGOFF command, the system frees all the data sets allocated
to you; data remaining in storage will be lost.

If you intend to enter the LOGON command immediately to begin a new
session using different attributes, you are not required to LOGOFF.
Instead, you can just enter the LOGON command as you would enter any
other command.

Note: If your terminal is a systems network architecture (SNA) terminal
that uses VT AM, you may be required to use a format different from the
one described here. Your system programmer should provide you with this
information.

LOGOFF

DISCONNECT

[DISCONNECT]
HOLD 1

specifies that the line is to be disconnected following logoff. This is
the default if no operand is specified.

HOLD 1

specifies that the line is not to be disconnected following logoff.

Example 1

Operation: Terminate your terminal session.

logoff

Not supported with terminals that use VT AM.

LOGOFF Command 193

LOGON Command

Use the LOGON command to initiate a terminal session. There are two
types of LOGON command processing: full screen LOGON command
processing and line mode LOGON command processing. If you are a 3270
terminal user, using a display format of 24 X 80 (24 lines of data by 80
characters on a line) or larger, you must use full screen logon. Full screen
logon users need only enter 'logon userid'. TSO displays a full screen logon
menu with appropriate entry fields for both RACF and non-RACF defined
users. If you enter more parameters than userid on the LOGON command,
TSO accepts and processes them with the exception of the current an<;l new
password fields for a RACF defined user and the current password field for
a non-RACF defined user. TSO requires the password entries to be
entered on the logon menu for full screen logon processing. If your
terminal is such that full screen LOGON command processing cannot be
used, then all of the logon information must be specified in line mode and
you may be prompted by the system to enter values for certain operands
that are required by your installation.

Before you can use the LOGON command, your installation must provide
you with certain basic information.

• Your user identification (1-7 characters) and, if required by your
installation, a password (1-8 alphameric characters)

• An account number (may be optional at your installation)

• A procedure name (may be optional at your installation)

Note: If you are a RACF-defined user, your installation will assign you a
RACF password and a GROUP name (optional).

You must supply logon information to the system by using the LOGON
command and operands. The information that you enter is used by the
system to start and control your time sharing terminal session. You can
also use the operands to specify whether or not you want to receive
messages from the system or other users.

Full screen logon will:

• Display a menu with the previous session's logon parameter values.
Logon command parameters entered on the LOGON command will
override any default values from the previous session.

• Request that you enter a password.

• Allow for modification and entry of logon parameter values. If logon
command parameters were not entered on the LOGON command, you
may type over existing values on the menu displayed.

• Display RACF entry fields if RACF is installed and active and the
userid is RACF defined.

• Allow you to enter a single TSO command of up to 80 characters in
length on the LOGON menu. This command will be executed after
any command entered in the P ARM field on the EXEC card of the
LOGON procedure. This command will also be remembered from
session to session.

LOGON ColllJl!lll1d 195

196 TSO Command Language Reference

• Display Help information for all logon parameters whenever you can
enter USERID, PASSWORD, or RACF password. Help information
will be displayed for the entry being prompted for and in all cases,
except for the PASSWORD entry fields, display the user entered data
as well.

(For a detailed description of the full screen LOGON menu, see TSO
Terminal User's Guide.)

Note: If your terminal uses TSO/VTAM, you may be required to use a
format different from the one described here. Your system programmer
should provide you with this information.

LOGON user-identity[!password[!newpassword]]
[ACCT (account)]
[PROC(procedure)]

[fs~~:~~;:egJer)]
NONOTICES

MAIL J
NOMAIL

[PERFORM (value))
[RECONNECT]
[GROUP (name)]
(OIDCARD)

user-identity /password/newpassword
specifies your user identification and, if required, a valid password or
new password. Your user identification must be separated from the
password by a slash (/) and, optionally, one or more standard
delimiters (tab, blank, or comma). Your identification and password
must match the identification contained in the system's user attribute
data set (UADS) if you are not RACF defined. If you are RACF
defined, you must enter the password defined in the RACF data set
as the value for password. Newpassword specifies the password that
is to replace the current password. Newpassword must be separated
from the password by a slash(/) and, optionally, one or more
standard delimiters (tab, blank, or comma) .. The newpassword
operand is one to eight alphameric characters in length. This
operand is ignored for non-RACF-defined users. (Printing is
suppressed for some types of terminals when you respond to a
prompt for a password.)

ACCT(account)
specifies the account number required by your installation. If the
UADS contains only one account number for the password that you
specify, this operand is not required. If the account number is
required and you omit it, the system will prompt you for it.

For TSO, an account number must not exceed 40 characters, and
must not contain a blank, tab, quotation mark, apostrophe,
semicolon, comma, or line control character. Right parentheses are
permissible only when left parentheses balance them somewhere in
the account number.

PROC(proeedure-name)
specifies the name of a cataloged procedure containing the job
control language (JCL) needed to initiate your session.

SIZE(fnteger)
specifies the maximum region size allowed for a conditional
GETMAIN during the terminal session. The UADS contains a
default value for your region size if you omit this operand. The
UADS also contains a value for the maximum region size that you
will be allowed. This operand will be rejected if you specify a region
size exceeding the maximum region size allowed by the UADS (in
this case, the UADS value MAXSIZE will be used).

NOTICES
specifies that messages intended for all terminal users are to be listed
at your terminal during LOGON processing. This is the default value
if both NOTICES and NONOTICES are omitted.

NONOTICES
specifies that you do not want to receive the messages intended for
all users during LOGON processing.

MAIL
specifies that you want messages intended specifically for you to be
displayed at your terminal during LOGON processing. This is the
default value if both MAIL and NOMAIL are omitted.

NOMAIL
specifies that you do not want to receive messages intended
specifically for you during LOGON processing.

PERFORM (value)
specifies the performance group to be used for the terminal session.
The value must be an integer from 1-999. The default value is
determined by -the individual installation.

RECONNECT
spec~ies that you want to re-LOGON after your line has been
disconnected. If a password was specified in the disconnected
session, the same password must be specified with the
RECONNECT option. Any operands other than userid and
password will be ignored if RECONNECT is specified.

GROUP(name)
specifies a one-to-eight character ID composed of alphameric and/or
national characters, the first of which must be alphabetic or national.
This operand is valid only for RACF users. It will be ignored for
users not defined to RACF.

OmCARD
specifies that the operator identification card is to be prompted for
after the- LOGON command has been entered. This operand is valid
only for RACF defined users.

If you are not defined to RACF and enter this keyword, you will be
prompted for an operator identification card. However, any data you
enter will be ignored. You may also enter a null line in response to
the prompt.

LOGON COIIIIII8IId 197

198 ,TSO Command Language Reference

Example 1

Operation: Initiate a terminal session.

Known:
Your user identification and password: WRRID/23XA$MBT

Your installation does not require an account number or procedure
name for LOGON.

logon wrrid/23xa$mbt

Example 1

Operation: Initiate a terminal session.

Known:
Your user identification and password: WRRID/MO@
Your account number: 288104
The name of a cataloged procedure: TS9S 1
You do not want to receive any broadcast messages.
Your real storage space requirement: 90K bytes

logon wrrid/mo~ acct(2BB104) proc(ts951)­
size(90) nonotices nomail

PROFILE Command

Use the PROFILE command or subcommand of EDIT to establish, change,
or list your user profile; that is, to tell the system how you want to use
your terminal. You can:

• Define a character-deletion or line-deletion control character (on some
terminals).

• Specify whether or not prompting is to occur.

• Specify the frequency of prompting under the EDIT command.

• Specify whether or not you will accept messages from other terminals.

• Specify whether or not you want the opportunity to obtain additional
information about messages from a command procedure.

• Specify whether or not you want message numbers for diagnostic
messages that may be displayed at your terminal.

Note: The syntax and function of the PROFILE subcommand of EDIT is
the same as that of PROFILE.

Initially, a user profile is prepared for you when arrangements are made for
you to use the system. The authorized system programmer creates your
userid and your user profile. The system programmer is restricted to
defining the same user profile for every userid that he creates. This
"typical" user profile is defined when a user profile table (UPT) is
initialized to hexadecimal zeroes for any new userid. Thus, your initial user
profile is made up of the default values of the operands discussed under
this command. The system defaults shown in Figure 11 provide for the
character-delete and the line-delete control characters depending upon what
type of terminal is involved:

TSO Terminal Character-Delete line-Delete
Control Character Control Character

IBM2741 Communication Terminal BS(backspace) ATrN(attention)
IBM 3270 Information DiSplay System None None
IBM 3767 Communication Terminal None None
mM 3770 Data Communication System None None
Teletype· Model 33 •• ••
Teletype· Model 35 •• ••

• Trademark of Teletype Corporation .
•• Refer to TSO Terminal User's Guide.

Figure II. System Defaults for Control Characters

Note: If deletion characters, prompting, and message activity are not what
you expect, check your profile by displaying it with LIST operand.

Change your profile by using the PROFILE command with the appropriate
operands. Only the characteristics that you specify explicitly by operands
will changtl, other characteristics remain unchanged. The new
characteristics will remain valid from session to session. If PROFILE
changes do not remain from session to session, your installation may have a
LOGON pre-prompt exit that is preventing the saving of any changes in
the UPT. Verify this with your system programmer.

PROFILE Command 199

100 TSO COIlUIUIIId Language Reference

If no operands are entered on the PROFILE command, the current user
profile will be displayed.

{ PROFILE}
PROF

RECOVER

[RECOVER 1
NORECOVERJ

[
CHAR ({cha~~cter}) V
NOCHAR ~

[
LINE ({ATTN J)~ 1 character

CTLX
NOLINE

[PROMPT J
NOPROMPT

[INTERCOM]
NO INTERCOM

[PAUSE]
NOPAUSE

[MSGID]
NOMSGID

[MODE]
NOMODE

[LIST]

[PREFIX Cdsname-prefiX)]
NOPREFIX

[WTPMSG]
NOWTPMSG

specifies that you can use the recover option of the EDIT command.

NORECOVER
specifies that you cannot use the recover option of the EDIT
command. This is the default value for your profile, when the profile
is created.

CHAR(character)4
specifies the EBCDIC character that you want to use to teU the
system to delete the previous character entered. You should not
specify a blank, tab, comma, asterisk, or parentheses because these
characters are used to enter commands. You should not specify
terminal-dependent characters which do not translate to a valid
EBCDIC character.

Note: Do not use an alphabetic character as either a character-delete or a
line-delete character. If you do, you run the risk of not being able to enter
certain commands without accidentally deleting characters or lines of data.
For instance, if you specify R as a character-delete character, each time
you tried to enter a PROFILE command the R in PROFILE would delete
the P that precedes it. Thus it would be impossible to enter the PROFILE
command as long as R was the character-delete control character.

Not supported with tenninals that use VTAM.

CHAR(BS)l
specifies that a backspace signals that the previous character entered
should be deleted. This is the default value set when your user
profile was created.

NOCHAR!
specifies that no control character is to be used for character
deletion.

LINE(character)
specifies a control character that you want to use to tell the system
to delete the current line.

LINE(ATIN)
specifies that an attention interruption is to be interpreted as a
line-deletion control character. This is the default value set when
your user profile was created.

Note: If an invalid character and/or line delete control character is entered
on the PROFILE command, an error message will inform the user which
specific control character is invalid; the character or line delete field in the
user profile table will not be changed. You may continue to use the old
character or line delete control characters.

LINE(CfLX)1

specifies that the X and CCTRL keys (depressed together) on a
Teletype 2 terminal are to be interpreted as a line-deletion control
character. This is the default value set when your user profile was
created, if you are operating a Teletype terminal.

NOLINE1

specifies that no line-deletion control character (including A TIN) is
recognized.

PROMPT
specifies that you want the system to prompt you for missing
information. This is the default value set when your user profile was
created.

NOPROMPT
specifies that no prompting is to occur.

INTERCOM
specifies that you are willing to receive messages from other terminal
users. This is the default value set when your user profile was
created.

NOINTERCOM
specifies that you do not want to receive messages from other
terminals.

PAUSE
specifies that you want the opportunity to obtain additional
information when a message is issued at your terminal while a
command procedure (see the EXEC command) or an in-storage
command list (created via the STACK macro) is executing. After a
message that has additional levels of information is issued, the system

Not supported with terminals that use VTAM.
2 Trademark of the Teletype Corporation.

PROFILE Command 101

202 TSO Command I...auguage Rererence

will display the word PAUSE and wait for you to enter a question
mark (1) or press the ENTER key.

NOPAUSE
specifies that you do not want to be prompted for a question mark or
ENTER. This is the default value when your user profile was
created.

MSGID
specifies that diagnostic messages are to include message identifiers.

NOMSGID

LIST

specifies that diagnostic messages are not to include message
identifiers. This is the default value set when your user profile was
created.

specifies that the characteristics of the terminal user's profile be listed
at the terminal. H other operands are entered with LIST, the
characteristics of the user's profile will be changed first, and then the
new profile will be listed.

Notes:

1. After a new userid is created and before the character-delete and/or
line-delete control character is changed, entering PROFH..E LIST will
result in CHAR(O) and LINE(O) being listed. This indicates that the
terminal defaults for character-delete and line-delete control characters
will be used.

2. Although you receive RECOVER/NORECOVER as an option for
this operand, you must be authorized to use the RECOVER options.

MODE
specifies that a mode message is requested at the completion of each
subcommand of EDIT.

NOMODE
specifies that, when this mode is in effect, the mode message (E or
EDIT) will be issued after a SAVE, RENUM or RUN subcommand
is issued and also when changing from input to edit mode.

PREFIX(dsname-prefix)
specifies a prefix which will be appended to all non-fully qualified
dsnames. The prefix is composed of one-to-seven alphameric
characters that begin with an alphabetic or national character.

NOPREFIX
specifies no prefixing of dsnames by any qualifier will be performed.

Note: The default prefix in the foreground is the userid. No prefixing
of data set names is the default in the background.

WTPMSG
specifies that the user wishes to receive all write-to-programmer
messages at his terminal.

NOWTPMSG
specifies that the user does not want to receive write-to,-programmer
messages. This is the default value set when your user profile was
created.

Example 1

Operation: Establish a complete user profde

Known:

The character that you want to use to tell the system to delete the
previous character: #

The indicator that you want to use to tell the system to delete the
current line: ATIN.

You want to be prompted.

You do not want to receive messages from other terminals.

You want to be able to get second level messages while a command
procedure is executing.

You do not want diagnostic message identifiers.

profile char(#) line (attn) prompt nointercom pause
nomsqid

Example 1

Operation: Suppose that you have established the user profile in Example
1. The terminal that you are using now does not have a key to cause an
attention interrupt. You want to change the line delete control character
from A TIN to @ without changing any other characteristics.

PROF LINE(ji)

Example 3

Operation: Establish and use a line-deletion character and a
character-deletion character.

Known:

The line-deletion character: &
The character-deletion character:

profile line(S) char(!}

Now. if you type:

now is the tiSaclbcq!.

and press the ENTER key. you will actually enter:

abc.

PROFILE Command 103

Ptmwords

Types 0/ Accm

PROTECT Command

Use the PROTECT command to prevent unauthorized access to your
non-VSAM data set. (Use the Access Method Services ALTER and
DEFINE commands to protect your VSAM data set. These ~mmands are
described in Access Method Services.) This command establishes or
changes:

• The passwords that must be specified to gain access to your data

• The type of access allowed

Data sets that have been allocated (either during a LOGON procedure or
via the ALLOCATE command) cannot be protected by specifying the
PROTECT command. To password-protect an allocated data set, you
would have to de-allocate it via the FREE command before you could
protect it via the PROTECT command.

You may assign one or more passwords to a data set. Once assigned, the
password for a data set must be specified in order to access the data set.
A password consists of one through eight alphameric characters. You are
allowed two attempts to supply a correct password.

Four operands determine the type of access allowed for your data set.
They are PWREAD, PWWRITE, NOPWREAD, NOWRITE.

Each operand, when used alone, defaults to one of the preceding types of
access. The default values for each operand used alone are:

OPERAND DEFAULT VALUE
PWREAD PWREAD
NOPWREAD NOPWREAD
PWWRITE NOPWREAD
NOWRITE PWREAD

PWWRITE
PWWRITE
PWWRITE
NOWRITE

A combination of NOPWREAD and NOWRITE is not supported and will
default to NOPWREAD and PWWRITE.

If you specify a password but do not specify a type of access, the default
is:

• NOPWREAD PWWRITE if the data set does not have any existing
access restrictions

• The existing type of access if a type of access has already been
established

When you specify the REPLACE function of the PROTECT command the
default type of access is that of the entry being replaced.

PROTECT Command lOS

206 TSO Command Lauguage Referenc:e

{ PROTECT}
PROT

data-set-name

data-set-narne

[

ADD (password 2)
REPLACE (password 1
DELETE (password 1)
LIST (password 1)

[PWREAD 1
NOPWREADJ

rpWWRITE]
LNOWRITE

[DATA ('string') 1

password 2J

specifies the name of the data set that will be subject to the
functions of this command.

Note: If the data set is not cataloged, the user must specify the fully
qualified name. For example:

protect 'userid.dsn.qual' list (password)

ADD(passwordl)
specifies that a new password is to be required for access to the
named data set. This is the default value if ADD, REPLACE,
DELETE, and LIST are omitted.

If the data set exists and is not already protected by a password, its
security counter will be set and the password being assigned will be
flagged as the control password for the data set. The security
counter is not affected when additional passwords are entered.

REPLACE(passwordl, passwordl)
specifies that you want to replace an existing password, access type,
or optional security information. The first value (passwordl) is the
existing password; the second value (password2) is the new
password.

DELETE(passwordl)
specifies that you want to delete an existing password, access type, or
optional security information.

If the entry being removed is the control entry (see the discussion
following these operand descriptions), all other entries for the data
set will also be removed.

LlST(passwordl)
specifies that you want the security counter, the access type, and any
optional security information in the password data set entry to be
displayed at your terminal.

passwordl
specifies the existing password that you want to replace, delete, or
have its security information listed.

passwordl
specifies the new password that you want to add or to replace an
existing password.

Password Data Set

PWREAD
specifies that the password must be given before the data set can be
read.

NOPWREAD
specifies that the data set can be read without using a password.

PWWRITE
specifies that the password must be given before the data set can be
written upon.

NOWRITE
specifies that the data set cannot be written upon.

DAT A('string')
specifies optional security information to be retained in the, system.
The value that you supply for 'string' specifies the optional security
information that is to be included in the Password Data Set entry (up
to 77 bytes).

Before you can use the PROTECT command, a password data set must
reside on the system residence volume. The password data set contains
passwords and security information for protected data sets. You can use
the PROTECT command to display this information about your data sets at
your terminal.

The password data set contains a security counter for each protected data
set. This counter keeps a record of the number of times an entry has been
referred to. The counter is set to 'zero' at the time an entry is placed into
the data set, and is increased each time the entry is accessed.

Each password is stored as part of an entry in the password data set. The
first entry in the password data set for each protected data set is called the
control entry. The password from the control entry must be specified for
each access of the data set via the PROTECT command, with one
exception: the LIST operand of the PROTECT command does not require
the password from the control entry.

If you omit a required password when using the PROTECT command, the
system will prompt you for it; if your terminal is equipped with the
'print-inhibit' feature, the system will disengage the printing mechanism at
your terminal while you enter the password in response. However, the
'print-inhibit' feature is not used if the prompting is for a new password.

Example 1

Operation: Establish a password for a new data set.

Known:

The name of the data set: ROBID.SALES.DATA
The password: L82GRIFN
The type of access allowed: PWREAD PWWRITE
The logon id was: ROBID

protect sales.data pwread add (182grifn)

PROTECT Command 107

108 TSO Command Language Reference

Example 1

Operation: Replace an existing password without changing the existing
access type.

Known:

The name of the data set: ROBID.NETSALES.DATA
The existing password: MTG@AOP
The new password: PAO$TMG
The control password: ELHA VJ
The logon id was: ROBID

prot netsales.data/elhavj replace(mtg@aop,pao$tmg)

Example 3

Operation: Delete one of several passwords.

Known:

The name of the data set: ROBID.NETGROSS.ASM
The password: LETGO
The control password: APPLE
The logon id was: ROBID

prot netgross.asm/apple delete(letgo)

Example 4

Operation: Obtain a listing of the security information for a protected data
set.

Known:

The name of the data set: ROBID.BD..LS.CNTRLA
The password required: D#JPJAM

protect 'rohid.hills.cntrla' list (d#jpjam)

Example 5

Operation: Change the type of access allowed for a data set.

Known:

The name of the data set: ROBID.PROJCTN.LOAD
The new type of access: NOPWREAD PWWRITE
The existing password: DDAY6/6
The control password: EEYORE
The logon id was: ROBID

protect projctn.load/eeyore replace(dday6/6)­
nopwread pwwrite

RENAME Command

Use the RENAME command to:

• Change the name of a non-VSAM cataloged data set.
• Change the name of a member of a partitioned data set.
• Create an alias for a member of a partitioned data set.

Notes:

1. The Access 'Method Services ALTER command changes the name of
VSAM data sets and is described in Access Method Services.

2. When a password protected data set is renamed, the data set does not
retain the password. You must use the PROTECT command to assign
a password to the data set before you can access it.

old-name

old-name
[ALIAS]

new-name

specifies the name that you want to change. The name that you
specify may be the name of an existing data set or the name of an
existing member of a partitioned data set.

new-name
specifies the new name to be assigned to the existing data set or
member. H you are renaming or assigning an alias to a member, you
may supply only the member name and omit all other levels of
qualification.

ALIAS
specifies that the member name supplied for new name operand is to
become an alias for the member identified by the old name operand.

The RENAME command should not be used to create an alias for a
linkage-editor created load module.

You can rename several data sets by substituting an asterisk for a
qualifier in the old name and new name operands. The system will
change all data set names that match the old name except for the
qualifier corresponding to the asterisk's position.

RENAME Command 109

110 TSO Command Language Reference

Example 1

Operation: You have several non-VSAM data sets named:

userid.mydata.data
userid.yourdata.data
userid.workdata.data

that you want to rename:

userid.mydata.text
userid.yourdata.text
userid.workdata.text

you must specify either:

rename 'userid.*.data','userid.*.text'

or

rename *.data,*.text

Example 2

Operation: Assign an alias "SUZIE" to the partitioned data set member
named "ELIZBETH(LIZ)."

REN 'ELIZBETH(LIZ) , (SUZIE) ALIAS

RUN Command

Use the RUN command to compile, load, and execute the source
statements in a data set. The RuN command is designed specifically for
use with certain program products; it selects and invokes the particular
program product needed to process the source statements in the data set
that you specify. Figure 12 shows which program product is selected to
process each type of source statement.

If your program or data set contains Then the following program product
statements of this type (see EDIT): (or equivalent) can be used:

ASM TSO ASM Prompter

COBOL TSO COBOL Prompter and OS Full American
National Standard COBOL Version 3 or Version 4
Compiler

FORTGI 1'50 FORTRAN Pro~pter and FORTRAN IV
(01) Compiler

PLI PL/I Checkout Compiler or
PL/I Optimizing Compiler

VSBASIC TSO VSBASIC Prompter

FIgure 11. Source Statement/Program Product Relationship

The RUN command and the RUN subcommand of EDIT perform the same
basic function.

data-set-name

[, parameters']

ASM[LIB(data-set-list)]
COBOL[LIB(data-set-list)]
FORT[LIB(data-set-list)]
PLI [CHECK] [LIB(data-set-list)]

OPT

Note:
Choose
only
one if
any.

VSBASIC
[LPREC] [TEST J r GO 1

SPREC NOTEST LNOGOJ [STORE]
NOS TORE

rPAUSE] rSOURCE]
LNOPAUSE LOBJECT

[SIZE(value)]

data-set-name 'parameters'

ASM

specifies the name of the data set containing the source program (see
the data set naming conventions). A string of up to 100 characters
can be passed to the program via the "parameters" operand (valid
only for data sets which accept parameters).

specifies that the TSO Assembler Prompter program product and the
Assembler (F) compiler are to be invoked to process the source
program. If the rightmost qualifier of the data set name is ASM, this
operand is not required.

RUN Command lit

212 TSO Conmvmd Language Reference

Lm(data-set-Iist)
specifies the library or libraries that contain subroutines needed by
the program you are running. These libraries are concatenated to the
default system libraries and passed to the loader for resolution of
external references. This operand is valid only for the fonowing data
set types: ASM, COBOL, FORT, and PLI (Optimizer).

COBOL
specifies that the 1'80 COBOL Prompter and the OS Full American
National Standard COBOL (Version 3 or Version 4) program
products are to be invoked to process the source program. If the
rightmost qualifier of the data set name is COBOL, this operand is
not required.

FORT

PLI

specifies that the TSO FORTRAN Prompter and the FORTRAN IV
(G 1) program products are to be invoked to process the source
program.

specifies that the PL/I Prompter and either the PL/I Optimizer
compiler or the PL/I Checkout compiler are to be invoked to process
the source program. If the rightmost qualifier of the data set name is
PLI, this operand is not required.

CHECK

OPr

specifies the PL/I Checkout compiler. If you omit this operand, the
OPT operand is the default value.

specifies the PL/I Optimizing compiler. This is the default value if
both CHECK and OPT are omitted.

VSBASIC
specifies that the VSBASIC program product is to be invoked to
process the source program.

LPREC
specifies that long precision arithmetic calculations are required by
the program. This operand is valid only for the VSBASIC program
product.

SPREC

TEST

specifies that short precision arithmetic calculations are adequate for
the program. This operand is valid only for the VSBASIC program
product and is the default value.

specifies that testing of the program is to be pedormed. This
operand is valid only for the VSBASIC program product.

NOTEST

GO

specifies that the TEST function is not desired. This is the default
value, and is valid only for the VSBASIC program. product.

specifies that the program is to receive control after compilation.
This is the default if neither GO nor NOGO are specified. This
operand is valid only for VSbASIC.

NOGO
specifies that the program will not receive control after compilation.
This operand is valid only for VSBASIC.

STORE
specifies that the compiler is to store an object program. This
operand is valid only for VSBASIC.

NOSTORE
specifies that the compiler is not to store an object program. This is
the default if neither STORE nor NOSTORE are specified. This
operand is valid only for VSBASIC.

PAUSE
specifies that the compiler is to prompt to the terminal between
program chains. This operand is valid only for VSBASIC.

NOPAUSE
specifies no prompting between program chains. This is the default if
neither PAUSE nor NOPAUSE is specified. This operand is valid
only for VSBASIC.

SOURCE
specifies that new source code is to be compiled. This is the default
if neither SOURCE nor OBJECT is specified. This operand is valid
only for VSBASIC.

OBJECT
specifies that the data set name entered is a fuUy-qualified name of
an object data set to be executed by the VSBASIC compiler.

SIZE(value)
specifies the number of thousand-byte blocks of user area where
value is an integer of one-to-three digits. This operand is valid only
for VSBASIC.

Determining Compiler Type: The system uses two sources of information
to determine which compiler will be used. The first source of information
is the optional operand (ASM, COBOL, FORT, PU, or VSBASIC) that
you may specify fo~ the RUN command. If you omit this operand, the
system checks the descriptive qualifier of the data set name that is to be
executed (see the data set naming conventions for a list of descriptive
qualifiers). If the system cannot determine the compiler type from the
descriptive qualifier, you will be prompted.

The RUN command uses standard library names, such as SYS1.FORTLm
and SYS1.COBLm, as the automatic call library. This is the library
searched by the linkage editor to locate load modules referred to by the
module being processed for resolution of external references.

Note: RUN causes other commands to be executed from an in-storage list.
If an error occurs, one of these commands may issue a message that has
additional levels of information. This additional information will not be
available to the user unless the PAUSE option is indicated in the user's
profile. The PAUSE option is described in the section titled, "PROFILE
command."

RUN Command 213

,',

:&14 TSO CommaDd LIIIIguage Referenc:e

Example 1

Operation: Compile, load, and execute a source program composed of
VSBASIC statements.

Known:

The name of the data set containing the source program is
DDG39T.MNHRS.VSBASIC.

run mnhrs.vsbasic

SEND Command

Use the SEND command or SEND subcommand of EDIT to send a
message to another terminal user or to the system operator. A message
may be sent to more than one terminal user. H the intended recipient of a
message is not logged on, the message can be retained within the system
and presented automatically when he logs on. You will be notified when
the recipient is not logged on and the message is deferred.

Note: The syntax and function of the SEND subcommand of EDIT is the
same as that of SEND command.

'text'

'text'

[USER ({uSeri~-list})

[
OPERATOR (2)]
OPERATOR (route-codej

[eN (console-id) 1

[
NOW] LOGON
SAVE

rNOWAIT]] l WAIT

specifies the message to be sent. You must enclose the text of the
message within apostrophes (single quotes). The message must not
exceed 115 characters including blanks. H no other operands are
used, the message goes to the console operator. H you want
apostrophes to be printed you must enter two in order to get one.

USER(userid-list)
specifies the user identification of one or more terminal users who
are to receive the message. A maximum of 20 identifications can be
used.

USER(*)

NOW

specifies' that the message will be sent to the userid associated with
the issuer of the SEND command. Han '.' is used with a SEND
command in a command procedure, the message will be sent to the
user executing the command procedure. H used with the SEND
command at a terminal, an '.' will cause the message to be sent to
the same terminal.

specifies that you want the message to be sent immediately. If the
recipient is not logged on, you will be notified and the message will
be deleted. This is the default value if NOW, LOGON, and SA VB
are omitted.

LOGON
specifies that you want the message retained in the
SYS1.BRODCAST data set if the recipient is not logged on or is not
receiving messages. When tlie recipient logs on, the message will be
removed from the data set and directed to his terminal. If the
recipient is currently using the system and receiving messages, the
message wili be sent immediately.

SEND Command 21S

216 TSO Command Language Reference

SAVE

WAIT

specifies that the message text is to be entered in the mail section of
SYS1.BRODCAST without being sent to any user. Messages stored
in the broadcast data set can be retrieved by using either LISTBC or
LOGON commands.

specifies that you will wait until system output buffers are available
for all specified logged-on terminals. This ensures that the message
will be received by all specified logged-on users, but it also means
that you may be locked out until all such users have received the
message.

NOWAIT
specifies that you do not want to wait if system output buffers are
not immediately available for all specified logged-on terminals. You
will be notified of all specified users who did not receive the
message. If you specified LOGON, mail will be created in the
SYS1.BRODCAST data set for the specified users whose terminals
are busy or who have not logged-on. NOW AIT is the default value
if neither WAIT nor NOWAIT is specified.

OPERATOR(route-code)
specifies that you want the message sent to the operator indicated by
the route-code. If you omit the route-code, the default is two (2);
that is, the message goes to the master console operator. This is the
default value if both USER (identifications) and OPERATOR are
omitted. The integer corresponds to routing codes for the WTO
macro.

CN(console-id)
specifies that the message is to be queued to the indicated operator
console. The value for "console-id" must be an integer between
0-64.

Example 1

Operation: Send a message to the master console operator.

Known:

The message: What is the weekend schedule?

send 'what is the weekend schedule?'

Example 2

Operation: Send a message to two other terminal users.

Known:

The message: If you have data set 'mylib.load' allocated, please free
it. I need it to run my program.

The user identification for the terminal users: JANET5 L YNN6

The message is important and you want to make sure the specified
user gets it now.

send 'if you have data set "mylib.load" allocated, -
please free it. i need it to run my program.' -
user(janetS,lynn6) wait

Example 3

Operation: Send a message that is to be delivered to 'BETTY7' when she
begins her terminal session or now if she is currently logged on.

Known:

The recipients's user identification: BETTY7

The message: Is your version of the simulator ready?

If her terminal is busy, you want to put the message into the
SYSl.BRODCAST data set. There is no rush for her to get it and
respond. •

send 'is your version of the simulator ready?' -
user (betty7) logon nowait

SEND Command 217

{ TERMINAL}
TERM

TERMINAL Command

Use the TERMINAL command to define the operating characteristics that
depend primarily upon the type of terminal that you are using. You can
specify the ways that you want to request an attention interruption and you
can identify hardware features and capabilities. The TERMINAL command
allows you to request an attention interruption whether or not your
terminal has a key for the purpose. The TERMINAL command is not
allowed as a TSO command in the background.

The terminal characteristics that you have defined will remain in effect until
you enter the LOGOFF command. If you terminate a session and begin a
new one by entering a LOGON command (instead of a LOGOFF
command fonowed by a LOGON command), the terminal characteristics
defined in the earlier session will be in effect during the subsequent session.

If your session is interrupted by a line disconnection and you relogon via
the LOGON RECONNECT, you must redefine an previously defined
terminal characteristics. The reason for the redefinition is that all records
for defmed data are lost as a result of the line disconnection.

[LI.NEs(integer)] 1
NOLINES

[SECONDS (integer)ll
NO SECONDS J

[INPUT (string)] 1
NOINPUT

[:~::AKJ
[TIMEOUT J

NOTIMEOUT

1

[LINESIZE(integer)]

rCLEAR(string)ll
LNOCLEAR J
[SCRSIZE(rows,length)]

rTRAN (name)12
LNOTRAN J
rCHAR «J {x' hexchar '} I {X' hexchar '}) I ({ } I { }) ••• J)] 2
LNOCHAR C'char' C'char'

LINES(integer) 1

specifies an integer from 1 to 255 that indicates you want the
opportunity to request an attention interruption after that number of
lines of continuous output has been directed to your terminal.

NOLlNES 1

specifies that output line count is not to be used for controlling an
attention interruption. This is the default condition.

1 Not supported with terminals that use VT AM.

2 Not supported with terminals that use TCAM.

TERMINAL Commaml 119

210 TSO Command Language Reference

SECONDS(integer)
1

specifies an integer from 10 to 2550 (in multiples of 10) to indicate
that you want the opportunity to request an attention interruption
after that number of seconds has elapsed during which the terminal
has been locked and inactive. H you specify an integer that is not a
multiple of 10, it will be changed to the next largest multiple of 10.

NOSECONDS l

specifies that elapsed time is not to be used for controlling an
attention interruption. This is the default condition.

INPUT(string) 1

specifies the character string that, if entered as input, will cause an
attention interruption. The string must be the only input entered and
cannot exceed four characters in length.

NOINPUT 1

specifies that no character string will cause an attention interruption.
This is the default condition.

BREAK
specifies, for mM 3767 andmM 3770 terminals, that the system can
interrupt your input. For other terminals, it specifies that your
terminal keyboard will be unlocked to allow you to enter input
whenever you are not receiving output from the system; the system
can interrupt your input with high-priority messages. Since use of
BREAK with a terminal type which cannot support it can result in
loss of output or error, check with your installation system manager
before specifying this operand.

Note: H a command processor for a display device is operating in
full-screen mode, VT AM treats the device as if it were operating in
NOBREAK mode. For a more detailed description see, TSO Guide to
Writing a Terminal Monitor Program or a Command Processor.

NOBREAK
specifies, for mM 3767 and mM 3770 terminals, that the system is
not allowed to interrupt you (break in) with a message when you are
entering data. For other terminals, it specifies that your. terminal
keyboard will be unlocked only when your program or a command
you have used requests input.

Note: The default for the BREAK/NOBREAK operand is determined
when your installation defines the terminal features.

TIMEOUT l

specifies that your terminal's keyboard will lock up automatically
after approximately nine to 18 seconds of no input.

NOTIMEOUT 1

specifies that your terminal's keyboard will not lockup automatically
after approximately nine to 18 seconds of no input.

Note: The default for the TIMEOUT /NOTIMEOUT operand is determined
when your installation defines the terminal features.

Not supported with terminals that use VTAM.

LlNESIZE(lnteger)
specifies the length of the line (the number of characters) that can be
printed at your terminal. (This is not applicable to the mM 3270
Display Stations.) Default values are as follows:
Teletype 33/35

mM 2741 Communication Terminal

mM 3767 Communication Terminal

mM 3770 Communication System

The integer must not e~eed 255.

- 72 characters

- 120 characters

- 132 characters

- 132 characters

Note: If LINESIZE (80) is coded with a RECFM equal to U, then
the line will be truncated. The byte truncated (the last byte) is
reserved for an attribute character.

CLEAR(strlng) 1

specifies a character string that, if entered as input, will cause the
screen of an mM 3270 Display Station to be erased. The 'string'
must be the only input entered and cannot exceed four characters in
length.

NOCLEAR 1

specifies that you do not want to use a sequence of characters to
erase the screen of an mM 3270 Display Station. This is the default
condition.

SCRSIZE(rows,length)

'rows'

specifies the screen dimensions of an mM 3270 Display Station.

specifies the maximum number of lines of data that can appear on
the screen.

'length'
specifies the maximum numbe.- of characters in a line of data
displayed on the screen. Standard screen sizes are:

rows,length

6,40
12,40
12,80
15,64
24,80
27,132
32,80
43,80

Note: The default values for the screen sizes are determined when
your installation defines the terminal features.

Not supported with terminals that use VT AM.

TERMINAL Command 211

122 TSO Command Language Reference

TRAN(name) 2

specifies a load module that contains tables used to translate specific
characters you type at the terminal into different characters when
they are seen by TSO. Conversely, when these characters are sent
by TSO to the terminal, they are retranslated. (Translation of
numbers and uppercase letters is not allowed.)10

Character translation is especially useful when you are using a
correspondence keyboard and would like to type the characters "<,"
" ," and "--," which are not available on a correspondence
keyboard. Translation tables make it possible for you to specify that
when you type the characters "[," "J," and "I," TSO interprets them
as "<," ">," and "I."

NOTRAN 2

specifies that no character translation is to take place.

CHAR 2

specifies one or more pairs of characters, in either hexadecimal or
character notation, that replace characters in the translation tables
specified by TRAN(name) or in the default translation tables. When
the default translate is used, all unprintable characters are set to
blanks. The first character of the pair is the character typed, printed,
or displayed at the terminal. The second character is the character
seen by TSO. (Translation of numbers and uppercase letters is not
allowed.) Do not select characters that may be device control
characters.

NOCHAR2
specifies that all character translations previously specified by CHAR
are no longer in effect.

Example 1

Operation: Modify the characteristics of an WM 2741 Communication
Terminal to allow operation in unlocked-keyboard mode.

Known:
Your terminal supports the break facility. The installation has defined
a default of NOBREAK ior your terminal.

terminal break

Example 1

Operation: Specify character translation for certain characters not available
on an WM 3767 Communication Terminal with an EBCDIC keyboard.

Known:
Your terminal supports the character translation facility, and you are
using the default translation table or a previously specified translation
table (that you specified with the TRAN operand). You now want
"[" to stand for "<," "J" to stand for ">," and'''''' to stand for "+."

terminal char ((C' [' , X t 4C t) , (C t] t , X ' 6E') , (C' ! ' , X ' FA'))

2 Not supported with terminals that use TCAM.

When to Use TEST

TEST Command

Use the TEST command to test a program or a command processor for
proper execution and to locate programming errors. To use the TEST
command and subcommands, you should be familiar with the .assembler
language and addressing conventions. For best results, the program to be
tested should be written in basic assembler language. To use the symbolic
names feature of TEST, your program should have been assembled and
link-edited with the TEST operands.

Note: If the tested program attempts to LOAD, LINK, XCTL, or
ATTACH another module, the module is found according to the following
search order sequence:

1. TASKLIB
2.STEPLIB
3.JOBLIB
4.LPA
5.LNKLST

If the module is not in any of these areas, it will not be found. To avoid
this situation, bring the module into virtual storage via the LOAD
subcommand of TEST.

There are two basic situations in which you might use the TEST command:

• To test a currently executing program
• To test a program not currently being executed

You might want to test an executing program because it either: terminated
abnormally or because you want to check the current environment to see
that the program is executing properly.

Note: TEST will be rejected if the terminating or interrupted program is
either APF authorized, executing in supervisor state or in a PSW protection
key less than 8.

If a program terminates abnormally when not under TEST, you receive a
diagnostic message from the terminal monitor program (TMP) followed by
a READY message. If you respond to the diagnostic message with
anything other than TEST, a question mark (1), or TIME, the TMP
terminates your program. However, if you issue the TEST command (and
supply no program name), the currently active program remains in storage
when the TEST command processor gets control and you can use the
TEST subcommands to debug the defective program.

Note: Both the 1 and the TIME command can be entered before you issue
the TEST command to debug an abnormally terminating program. ..
However, if you want a dump, instead of issuing the TEST command, enter
a null line. If either a SYSABEND, SYSMDUMP, or SYSUDUMP file has
already been allocated, the null line will result in a dump being printed.

If you want to examine the current environment of an executing program
that is not terminating abnormally, enter a single attention interruption.
The currently active program remains attached and the TMP responds to
.your interruption by issuing a READY message. When you issue the TEST
command (without a program name) the currently active program remains

TEST Command 213

in storage under the control of the TEST command processor. You can
then use the TEST subcommands to examine the current environment.

Note: In the case of either the ABEND or the attention interruption, you
should not enter a program name following the TEST command. If you do,
you will lose the current in-storage copy of the program, as TEST loads a
copy of the specified program.

To test a program not currently executing, enter the TEST command
supplying the data set name containing the program to be executed and any
other applicable operands. When you use the TEST command to load and
execute a program, that program must be an object module or a load
module suitable for execution.

Prior to and during execution, such as when execution is interrupted at a
breakpoint, you can:

• Supply initial values (test data) that you want to pass to the program ,
• Establish breakpoints at instructions where execution is to be

interrupted so that you can examine interim results (Breakpoints
should not be inserted into TSO service routines or into any of the
TEST load modules.)

• Display the contents of registers and virtual storage

• Modify the contents of registers and virtual storage

• Display the program status word (PSW)

• Ust the contents of control blocks

• Step through sections of the program, checking each instruction for
proper execution

Note: When running in supervisor state or in a PSW protection key less
than 8, breakpoints will not be honored in any section of your program.

Addressing Conventions Associated with TEST

114 1'80 Command Language Rererence

An address used as an operand for a subcommand of TEST must be one of
the following types:

• Absolute address - a virtual storage address. An absolute address is 1
to 8 hexadecimal digits followed by a period and not exceeding
X'7f<FFFFFF'.

• Relative address - a 1 to 8 hexadecimal digit number preceded by a
plus sign (+). A relative address specifies an offset from the currently
qualified virtual storage address (see "Qualified addresses").

• Symbo6c address - 1 to 8 alphameric characters, the first of which is
an alphabetic character. A symbolic address corresponds to a symbol
in a program or a symbol defined via the EQUATE subcommand. See
the section titled "Qualified Addresses" for a detailed description of
qualified symbolic addressing. See the section titled, "Restrictions on
the Use of Symbols" for a detailed description on the use of symbols.

• lmodule-namel.entry-name - a name within a module capable of being
externally referenced, preceded by a period (.) and optionally preceded
by a name by which the module is known. An entry name is the
symbolic address of an entry point into the module, for example, a
CSECT name. A module name may be the name or alias of a load
module or the name of an object module. Module or entry names

may be any combination of up to eight alphameric characters, the first
of which is alphabetic or national.

• Qualified addresses - You may qualify symbolic or relative addresses to
indicate they apply to a particular module and CSECT. To do this
you must precede the address by the name of the load or object
module and the name of the CSECT. The qualified address must be
in the form:

modulename.csect.address

If the address is to apply to the current module, you need only
specify the CSECT name in the following form:

csect.address

If the address is to apply to the current CSECT within the current
module, only the address is necessary; you do not need to qualify the
address. The current module and CSECT is initially set to the
program being tested. This setting is automatically changed each time
a module under a different request block is invoked. This is referred
to as automatic qualification. (This happens when a module is invoked
via ATTACH, XCTL, SYNCH, or LINK. It does not happen when a
module is loaded,called, or branched to.) The module and/or CSECT
used in determining a base location for resolving symbolic and relative
addresses may also be changed by using the QUALIFY subcommand.

For example, if the name of the module is OUTPUT, the CSECT is
TAXES, and the symbolic address is YEAR77, you would specify
either:

output.taxes.year77

or

.taxes.year77

if the current module is OUTPUT. You would specify:

year77

if the current module is OUTPUT and the current CSECT is
TAXES. If the module name and CSECT name are the same as
above and the address to be qualified is the relative address +4A, you
would specify:

output.taxes.+4A

• General registers - You can refer to a general register using the AND,
OR, assignment-of-value, COpy or LIST subcommands by specifying
a decimal integer followed by an R. The decimal integer indicates the
number of the register and must be in the range 0 through 15. Other
references to the general registers imply indirect addressing.

Note: If your program issues the STIMER macro or involves asynchronous
interruptions, the contents of your registers may be changed by
interruptions even though you are in TEST subcommand mode and your
program does not get control.

• Floating-point registers - You can refer to a floating-point register
using the LIST or assignment-of -value subcommand by specifying a
decimal integer followed by an E or D. The decimal integer indicates

TEST Command 225

226 TSO Command Language Reference

the number of the register and must be a zero, two, four, or six. An E
indicates a floating-point register with single precision. A D indicates
a floating-point register with double precision. The contents of the
floating-point register must be assigned using the notation described in
section titled "Assignment of Values Function of TEST." You must
not use floating-point registers for indirect addressing or in
expressions.

Indirect address - An address expression, a general register, or the
address of a location that contains another address. An indirect
address must be followed by one or more indirection symbols to
indicate a corresponding number of levels of indirect addressing. The
indirection symbols are the percent sign (%), indicating that the
low-order three bytes of the address are used, and the question mark
(?), indicating that all 31 bits are used for the address. To use a
general register as an indirect address, specify a decimal integer (0
through 15) followed by an R and a percent sign or a question mark.
For instance, if you want to refer to data below the 16 Mb line whose
address is located in register 7, you would specify:

7r%

Examples: Use of a relative address to form an indirect address.

Address: + A % (One level of indirect addressing)
Relative Location +A

Location BC4

BBBBBBBB

Address: +A?
Relative Location +A

Location 1 COOOBC4

AAAAAAAA

Example: Comparison of use of % and?
Address

X
OOOOA080
OlOOA080

TEST SubcoDUDand

LIST X
LIST X%
LIST X?

Data

OlOOA080
AAAAAAAA
BBBBBBBB

Data Displayed

OlOOA080
AAAAAAAA
BBBBBBBB

Example: Indirect addressing using a combination of indirection symbols

Address expression: +A%??% (Four levels of indirect addressing)
Location +A

Address expression - an address followed by any number of expression
values. Address can be:

An absolute address
A relative address (unqualified, partially or fully qualified)
A symbolic address (unqualified, partially or fully qualified)
An indirect address

An expression value consists of a plus or minus displacement value
expressed as either 1 to 8 hexadecimal digits or I to 10 decimal digits
from an address in virtual storage. Following are two examples of
address expressions:

Decimal Example:

address+ 14n specifies the location that is 14 bytes past that
designated by

, , address' ,

Hexadecimal Example:

address+ 14 specifies the location that is 20 decimal bytes past that

designated by "address"

Note: Decimal displacement (either plus or minus) is indicated by the
n following the numeric offset. You can indicate up to 256 levels of
indirect addressing by following the initial indirect address with a
corresponding number indirection symbols (% or ?). An address
expression is specified like this:

address {~} value [~ .. J [{~} value [~ 0 oJ]' 0 0

Note: Any combination of percent signs and question marks can be used
after the value.

TEST Command 227

Example: Address expression with hexadecimal displacement using a
combination of indirection symbols.

Address expression: 7R?%+C%?%

Note: When processing an address expression, TEST checks the high-order
bit of the result of each addition or subtraction. If the bit is on, indicating
a negative value or overflow condition, TEST rejects the address.

Restrictions on Use of Symbols

External Symbols

228 TSO Command Language Reference

The TEST command processor can resolve external and internal symbolic
addresses only if these addresses are available to it. Within certain
limitations, symbolic addresses are available for both object modules
(processed by the Loader) and load modules (fetched by contents
supervision).

The TSO TEST user can access external symbols, such as CSECT names,
for a program modules if the program was brought into main storage by the
TEST command or one of its subtasks. This is the case for the program
being tested, any program brought into storage through the tested program,
and any program loaded via the LOAD subcommand.

External symbols for CSECT names that are in object modules are
available only if the Loader had enough main storage to build composite
external symbol table dictionary (CESD) entries.

Intet7U11 Symbols

Addressing Considerations

Internal symbols for load modules can be resolved if the CSECT containing
the symbol was assembled with the TEST parameter, the module was link
edited with the TEST parameter, and the program was brought into storage
by the TEST cOmmand or one of its subtasks as previously explained.
Names on EQU, ORG, LTORG, CNOP, and DSECT statements cannot be
resolved.

The TSO TEST user can not access internal symbols for object modules.

If the necessary conditions for symbol processing are not met, you can use
absolute, relative, or indirect addressing or you can defme symbols with the
EQUATE subcommand of TEST.

Symbols within DSECTs are available only if the DSECT name has been
defined with the EQUATE subcommand.

For example, if NAME is a symbol in a DSECT named DATATBL, then
to access the data associated with N~, the user would have to first
determine the address to be used as a base address for the DSECT. (This
is the address in the register on the assembler USING instruction.) If the
address is in register "7 the user may enter:

equate datatbl 7r%

This will establish addressability to the DSECT, allowing the symbol
NAME and all other symbols in the DSECT to be accessed using the
symbol.

Note: TEST can access symbols and process CSECT names (to qualify
addresses and satisfy deferred breakpoints) for module loaded from a data
set in LNKLIST concatenation, provided that the module was both
assembled and link edited with the TEST option. and the data set involved
is not READ-protected from the TSO user. Symbols and CSECT names
cannot be processed for a module accessed from LPA.

Examples of Valid Addresses in TEST SubcollUllllllds
Below is a list of valid addresses which can be used with subcommands:
Address: Type of Address:

A23C40. Absolute
+ E4 Relative
5R % 24-bit Indirect
5R? 31-bit Indirect
NAMES Symbol within program
.SALES. + 26 Partially-qualified relative
14R%+28 Expression
PROFIT. SALES Module and entry name
+ 16+ IOn Expression
.SALES.NAMES Partially-qualified symbol
PROFIT.SALES.NAMES+8n Expression
DATA + 10 Expression
.sALES Entry name
PROFIT. SALES. NAMES Fully-qualified symbol
6R%+4%+12n%% Expression
PROFIT.SALES.+CO Fully qualified relative

Note: In the above addresses PROFIT is the module name, SALES is the
CSECT name and NAMES is the symbol.

TEST COlDlDllDd 119

31-Bit Addressing Considerations Associated with TEST
• All subcommands that accept addresses can process addresses above

16 Mh regardless of the current addressing mode of the program.

• You may use the 31-bit indirection symbol (1) on any subcommands
to reference data pointed to by 31-bit addresses.

• When TEST loads and executes a program, it uses the AMODE and
RMODE characteristics to determine the addressing mode at entry as
well as whether the tested program will be loaded above or below 16
Mh.

• The AMODE operand on the CALL, GO, and RUN subcommands
can change the addressing mode of the program being tested.

• The Loader, invoked by TEST when testing an object module, loads
the module above or below 16 Mh based on the RMODE
characteristics of the module's CSECTs. If the first CSECT is
RMODE (ANY) and any other CSECTs are RMODE (24), the
Loader loads the module below the 16M line and issues a warning
message.

• Input passed to the program being tested via register 1 (either the
CPPL or input parameter list) will be below 16 Mh.

• The CALL subcommand of TEST places the return address of the
tested program in register 14. The high order bit of register 14 is set
to reflect the addressing mode of the tested program.

• Specify AMODE on the CALL subcommand if the called program
should not be invoked in the current addressing mode. When control
is returned, verify that the addressing mode is appropriate before
continuing execution.

Programming Considerations Associated. with TEST When Using the Virtual
Fetch Services

130 .TSO Command Language Reference

External Symbols are not available for a program fetch. For information on
addressing considerations see "Restrictions on Use of Symbols" above.

Do not establish deferred breakpoints for a program managed by virtual
fetch because they are ignored.

If you are testing program A, which invokes program B using the virtual
fetch services, you cannot use TEST subcommands to stop execution of
program B to debug program B.

If, while testing program A, you wish to debug program B, you may do so
by using the following method.

Instead of allowing a virtual fetch GET request to pass control to program
B, load and call program B using TEST subcommands.

• Use the AT subcommand of TEST to establish a breakpoint
immediately before the virtual fetch GET request in program A.

• When you reach the breakpoint, use the LOAD subcommand of TEST
to load a different copy of program B.

• You may then establish breakpoints using the AT subcommand at any
points in this copy of program B.

• Use the CALL subcommand of TEST to execute program B. Specify
an address on the RETURN parameter to bypass the virtual fetch
GET request in program A.

Note: You cannot use TEST facilities to debug a program's interface with
virtual fetch.

Refer to SPL: System Modifications for a description of the virtual fetch
services.

Programming Considerations Associated with TEST for Use in a Cross-Memory
Environment

Attention Interruptions in Cross-Memory Mode - If an attention interrupt
occurs while the program being tested is executing in cross-memory mode
and you enter anything other than a null line, the cross-memory
environment is terminated and a message is displayed.

Access to Storage by TEST - If TEST is used with cross-memory
applications, access to storage by TEST subcommands is restricted to the
home address space.

Abend In Cross-Memory Mode - If an abend occurs while a cross-memory
application is executing outside the home address space, TSO TEST will
not preserve the cross-memory environment. The registers and PSW at the
time of abend and the abend code from the error message are the only
debugging information available for a cross-memory abend.

Restrictions on Breakpoints - Breakpoints cannot be s~t for the following
cross-memory instructions:

TEST

PC - Program Can
PT - Program Transfer
SAC - Set Address Space Control
SSAR - Set Secondary ASID

['data-set-name']
[, parameters']

[t~~CTJ
[~~cp]

'data-set-name'
specifies the name of the data set containing the program to be
tested. The program must be a load module that is a member of a
partitioned data set or it must be an object module. A data set name
must be specified to test a program that is not currently active. (A
currently active program is one that has abnormally terminated or has
been terminated by an attention interruption.)

If TEST is specified with a data set name, registers 2 through 12 are
initialized to X'FFFFFFFF', allowing the user to determine which registers
have been changed by the tested program.

When TEST is specified for a load module in a partitioned data set, the
program being tested can invoke other user load modules if they are

n;sr Command 131

131 TSO Command Language Reference

members of the same PDS. The services by which one member can invoke
another in the same PDS include LINK, LOAD, XCTL and A IT ACH.

Note: When specifying the data-set-name for TEST, the name should be
enclosed by single quotes or the LOAD or OBJECT qualifier will be added
to the name specified. If no name is specified, TEMPNAME is the
member searched for via the TEST request.

'parameters'
specifies a list of parameters to be passed to the named program.
The list must not exceed 100 characters including delimiters.

LOAD
specifies that the named program is a load module that has been
processed by the linkage editor and is a member of a partitioned data
set. This is the default value if both LOAD and OBJECT are
omitted.

OBJECT

CP

specifies that the named program is an object module that has not
been processed by the linkage editor. The program can be contained
in a sequential data set or a member of a partitioned data set.

Note: If OBJ is specified on the TEST command, the tested program
will be named TEMPNAME.

specifies that the named program is a command processor.

NOCP
specifies that the named program is not a command processor. This
is the default value if both CP and NOCP are omitted.

TEST Subcommands

The subcommands of the TEST command are:

ALLOCATE

AND

dynamically allocates the data sets required by a program intended
for execution.

performs a logical AND operation on data in two locations, placing
the results in the' second location specified.

ASSIGNMENT OF VALUES(=)
modifies values in virtual storage and in registers

AT
establishes breakpoints at specified locations.

ATTRIB
builds a list of attributes for non-VSAM data sets which are to be
dynamically allocated.

CALL
initializes registers and initiates processing of the program at a
specified address, using the standard subroutine linkage.

CANCEL
halts processing of batch jobs submitted fro the terminal.

COPY
moves data.

DELETE
deletes a load module from virtual storage.

DROP

END

removes symbols established by the EQUATE command from the
symbol table of the module being tested.

terminates all operations of the TEST command and the program
being tested.

EQUATE
adds a symbol to the symbol table and assigns attributes and a
location to that symbol.

EXEC
executes a command procedure.

FREEMAIN
frees a specified number of bytes of virtual storage.

GETMAIN

GO

HELP

acquire,s'a specified number of bytes of virtual storage for use by the
program being processed.

restarts the program at the point of interruption or at a specified
address.

lists the subcommands of TEST and explains their function, syntax,
and operands.

TESf Subcommands 233

234 TSO Command Language Reference

LINK
invokes the linkage editor service program.

LIST
displays the contents of a virtual storage area or registers.

LISTALC
displays a list of the names of data setS allocated during the current
TSO session.

LISTBC
displays a listing of the contents of the SYS1.BRODCAST data set,
which contains messages of general interest (NOTICES) and
messages directed to a particular user (MAll.).

LISTCAT
lists catalog entries by name or entry type; lists selected fields for
each entry.

LISTDCB
lists the contents of a data control block (DCB) (you must specify
the address of the DCB).

LISTDEB
lists the contents of a data extent block (DEB) (you must specify the
address of the DEB).

LISTDS
displays attributes of specific data sets at the terminal.

LISTMAP
displays a map of the user's virtual storage.

LISTPSW
displays a program status word (PSW).

LISTICB
lists the contents of the current control block (TCB) (you may
specify the address of another TCB).

LOAD

OFF

OR

loads a program into virtual storage.

removes breakpoints.

performs a logical OR operation on data in two locations, placing the
results in the second location specified.

PROFILE
establishes, changes, or lists the user profile.

PROTECT
prevents unauthorized access to a non-VSAM data set.

QUALIFY
establishes the starting or base location for resolving symbolic or
relative addresses; resolves identical external symbols within a load
module.

RENAME
changes the name of a non-VSAM catalogued data set or a member
of a PDS or creates an alias for a member of a PDS.

RUN
terminates TEST and completes execution of the program.

SEND
sends a message to another terminal user or to the system operator.

STATUS
displays status of conventional batch jobs at terminal.

SUBMIT
submits one or more batch jobs for conventional processing.

TERMINAL
defines the operating characteristics for the terminal being used.

UNALLOC
Frees data sets under TSO TEST. Since FREE is an alias for the
FREEMAIN subcommand, UNALLOC must be used to free files
under TEST.

WHERE
displays the virtual address of a symbol or entry point, or the address
of the next executable instruction. WHERE may also be used to
display the module and CSECT name and the displacement into the
CSECT corresponding to an address.

Note: For a complete description of the syntax and function of the
following TEST subcommands, refer to the corresponding TSO command.

ALLOCATE PROFaE
ATIRIB PROTECf
CANCEL RENAME
EXEC SEND
UN!{ STATUS
LISTALC SUBMIT
LISTBC TERMINAL
LISTCAT UNALLOC(FREE)
LISTDS

Example 1

Operation: Enter TEST mode after experiencing either an abnormal
termination of your program or an interruption.

Known:

Either you have received a message saying that your foreground
program has terminated abnormally, or you have struck the attention
key while your program was executing. In either case, you would like
to begin "debugging" your program.

test

TFSI' Subeommands :235

236 TSO Command LImguage Refenmce

Example 1

Operation: Invoke a program for testing.

Known:

or

The name of the data set that contains the program:
TLC55.PA YER.LOAD(THRUST)

The program is a load module and is not a command processor.

The prefix in the user's profile is TLC55.

The parameters to be passed: 2048, 80

test payer(thrust) '2048,80'

test payer.load(thrust)

Example 3

Operation: Invoke a program for testing.

Known:

The name of the data set that contains the program:
TLC5S.PA YLOAD.OBJ

The prefix in the user's profile is TLCSS.

The program is an object module and is not a command processor.

test payload object

Example 4

Operation: Test a command processor.

Known:

The name of the data set containing the command processor:
TLCSS.CMDS.LOAD(OUTPUT)

test cmds(output) cp

or

test cmds.load(output) cp

Note: You will be prompted to enter a command for the command
processor. (TSO prompts you for the commands you wish to test.)

Example 5

Operation: Invoke a command processor for testing.

Known:

The name of the data set containing the command processor is
TLC5S.LOAD(OUTPUT).

The prefix in the user's profile is TLCSS.

test (output) cp

ALLOCATE Subcommand of TEST

Use the ALLOCATE subcommand to dynamically allocate the data sets
required by a program intended for execution. Refer to the ALLOCAm
command for a description of the syntax and function of the ALLOCATE
subcommand.

ALLOCATE &.hoomme 01 TEST 237

AND Subcommand of TEST

Use the AND subcommand to perform a logical AND operation on data or
addresses from one virtual storage address to another, from one general
register to another, from a register to virtual storage, or from virtual
storage to a register.

The AND subcommand can be used to:

• Alter the contents of the general registers.
• AND an entire data field with another.

AND

addressl

address address 2

[LENGTH (int~ger)]

rpOINTER]
LNOPOINTER

specifies the location of data that will be ANDed with data pointed
to by address2

Note: If you do not specify POINTER and there is a breakpoint in
the data pointed to by address I, the TSO TEST processor
terminates the AND operation.

addressl
specifies the location of the data that will be ANDED with data
pointed to by addressl. When the AND operation is complete, the
result is stored at this location. Addressl and address2 can be:

• An absolute address
• A symbolic address
• A relative address

An indirect address
• An address expression
• A module-name and entry-name (separated by a period)
• A general register
• An entry-name (preceded by a period)

LENGTH(integer)
specifies the length, in decimal, of the field to be copied. If an
integer is not specified, LENGTH will default to 4 bytes. The
maximum length is 256 bytes.

POINTER
specifies that address 1 will be validity checked to see that it does not
exceed maximum virtual storage size and will then be treated as an
immediate operand (hexadecimal literal) with a maximum length of 4
bytes (that is, an address will be converted to its hexadecimal
equivalent). When using the. POINTER keyword, do not specify a
general register as addressl.

NOPOINTER
specifies that address 1 will be treated as an address. If neither
POINTER nor NOPOINTER is specified, NOPOINTER is the
default.

AND Subcommand of TEST 239

240 TSO Cammmd '''''''' Reference

Note: The AND subcommand treats the 16 general registers as contiguous
fields. The user can AND 10 bytes from general register 0 to another
location as follows:

and OR 80060. 1ength(10)

The AND subcommand will AND the 4 bytes of register 0, the 4 bytes of
register 1 and the high order 2 bytes of register 2 to virtual storage
beginning at location 80060. When a register is specified as addressl, the
maximum length of data that wU1 be ANDed is the total length of the
general registers, or 64 bytes.

Example 1

O)ieratioa: AND two full words of data each in a virtual storage location
placing the result in the second location.

Known:

The starting address of the data to be used as the fust operand:
80680
The starting address of the data to be used as the second operand and
the location of the result: 80690

and 80680. 80690. 1ength(8}

Example 1

Operation: AND the contents of two registers, placing the result in the
second register specified.

Known:

The register which contains the data specified as the fllSt operand: 10
The register which wU1 contain data specified as the second operand
and the result: S

and lOr Sr

Example 3

Operation: Turn off the high-order bit of a register.

Known:

The AND value: X'7P'
The register: 1

and 7F. lr 1(1} pointer

Note: Specifying the pointer operand causes 7F to be treated as an
immediate operand and not as an address.

Example 4

Operation: AND the contents of an area pointed to by a register into
another area.

Known:

The register which points to the area that contains the data to be
ANDED: 14

The virtual storage location which is to contain the second operand
and result: 80680

The length of the data to be ANDed: 8 bytes

and 14r% 80680. 1(8) nopoint

AND Subcommand of TEST ·241

Assignment of Values Function of TEST

When processing is halted at a breakpoint or before execution is initiated,
you can modify values in virtual storage and in registers. This function is
implicit; that is, you do not enter a subcommand name. The system
performs the function in response to operands that you enter.

address=data-type 'value'

address
specifies the location that you want to contain a new value. Address
can be:

• An absolute address
• A symbolic address
• A relative address
• An indirect address
• An address expression
• A module-name and entry-name (separated by a period)
• An entry-name (preceded by a period)
• A general register
• A floating point register

data-type 'value'[,data-type 'value') •••

Code

C

X
B
H
F
E
D
P
Z
A
S
Y

specifies the type of data and the value that you want to place in the
specified location. You indicate the type of data by one of the
following codes:
Type of Data Maximum Length ~Bytes)1I
Storage Boundary

Data types must
begin on specified
boundary for
a virtual
storage address

Character One line of input, C-byte
continued lines
permitted

Hexadecimal 64 X-byte
Binary 64 B-byte
Fixed point binary (halfword) 6 H-balfword
Fixed point binary (fullword) 11 F-fullword
Floating point (single precision) 13 E-fullword
Floating point (double precision) 22 D-doubleword
Packed decimal 32 P-byte
Zoned decimal 17 Z-byte
Address constant 11 A-fullword
Address (base + displacement) 8 S-balfword
Address constant (halfword) 6 Y-halfword

II All characters within tbe quotes are included in the length.

Assignment of Values Function of TEST 143

144 TSO Command Lauguage Reference

Following is a list of valid entries and syntax for data type:
C 'character value'

X 'hexadecimal value'

D 'binary value'

H '[+] decimal value'

The minimum value for H-type is -32768 and the maximum value is 32767.

F '[+] decimal value'

The minimum value for F-type is -2147483648 and the maximum is 2147483647.

E '[+] decimal value [E[+) decimal exponent]'

A maximum of 8 digits are allowed for the decimal value and a maximum of 2 digits
are allowed for the decimal exponent.

D '[+] decimal value [E[+] decimal exponent)'

A maximum of 17 digits are allowed for the decimal value and a maximum of 2
digits are aUowed for the decimal exponent.

P '[+] decimal value'

A maximum of 31 digits are allowed.

Z '[+] decimal value'

A maximum of 16 digits are allowed.

A '[+] decimal value'

The minimum decimal value is -2147483648 and the maximum value is 2147483647.

S 'decimal value(register number)'

The decimal value can be from 0 to 4095 and the register number must be from 0
to 15 (decimal form).

Y '[+] decimal value'

The decimal value may be from 0 to 32767.

You include your data following the code. Your data must be enclosed
within apostrophes. Any single apostrophes within your data must be
coded as two single apostrophes. Character data will be entered, all other
data types will be translated into uppercase (if necessary).

A list of data may be specified by enclosing the list in parentheses. The
data in the list will be stored beginning at the location specified by the
address operand.

Values assigned to general registers are placed in registers right-justified
and padded with binary zeroes.

Notes:

1. When a virtual storage address is assigned a list of data-type values
the address must reside on the appropriate boundary for the specified
data-type of the first value. Storage bytes for subsequent data-type
values will be skipped to align data on the appropriate boundary for
the data type requested.

2. The following restrictions apply to general and floating-point registers:

3. Only one data-type should be specified for floating-point registers.
(Additional values are ignored.)

• Assign only X or E data types to single precision floating-point
registers.

• Assign only X or D data types to double precision floating-point
registers.

• With the exception of the D-type of data, general registers can be
assigned any data type.

4. When a general register is assigned a list of data-type 'values', the first
value is assigned to the specified register; subsequent data-type values
are assigned to contiguous higher-numbered registers. If register 15 is
reached and data-type values remain, the values are wrapped around
to register 0 and subsequent registers if needed.

5. If data is assigned to a storage area that contains a breakpoint, the
breakpoint is removed and a warning message is displayed at the
terminal.

Example I

Operation: Insert a character string at a particular location in virtual
storage.

Known:

The address is a symbol: INPOINT
The data: January I, 1970

inpoint=c'january 1, 1970'

Example 2

Operation: Insert a binary number into a register.

Known:

The number of the register: Register 6
The data: 0000 0001 0110 0011

6r=b'0000000101100011,

Example 3

Operation: Initialize registers 0 through 3 to zeroes and register 15 to 4.

15R=(x'4',x'O',x'O',x'O'x'O')

Note: The sixteen (16) general registers are treated as contiguous fields
with register 0 immediately following register 15.

Example 4

Operation: Assign a new base and displacement for an instruction that was
found to be in error.

Known:

LA instruction at +30 is X'41309020'. In this instruction the current
base register is 9 and the displacement is a decimal value of 32
(hexadecimal value of 20). The base register should be 10 and the
decimal displacement should be 98 (hexadecimal value of 62).

+32=5'98(10) ,

After this assignment the instruction at +30 will be:

X'4130A062'

AssIgnment of Values Function of TEST 245

246 TSO Command Language Reference

Example 5

Operation: Insert a number in packed format at a particular address in
virtual storage.

Known:

Absolute address: C3D41, decimal value to be packed is -1038.

c3d41.=p'-1038'

AT Subcommand of TEST

Use the AT subcommand to establish breakpoints where processing is to be
temporarily halted so that you can examine the results of execution up to
the point of interruption. Processing is baited before the instruction at the
breakpoint is executed.

The AT subcommand sets breakpoints for aU MVS/XA instructions except
for the cross-memory instructions PC, PT, SAC, and SSAR.

Note: A breakpoint should not be established at:

• The target of an execute instruction or the execute instruction itself

• An instruction that will be modified by the execution of other in-line
code prior to the execution of the breakpoint

• A user written SVC exit

AT {address [:addressl}
(address-list)

[(subcommands-list)]
[COUNT(integer»)

[NODEFER]
DEFER

[NOTIFY]
NONOTIFY

[TITLE (, text')]

address
specifies a location that is to contain a breakpoint. The address must
be on a halfword boundary and contain a valid op code. See Note
below.

address:address
specifies a range, of addresses that are to contain breakpoints. Each
address must be on a halfword boundary. A breakpoint will be
established at each instruction between the two addresses. When a
range of addresses is specified, assignment of breakpoints halts when
an invalid instruction is encountered. See Note below.

address-list
specifies several addresses that are to contain breakpoints. Each
address must be on a halfword boundary. The list must be enclosed
within parentheses, and the addresses in the list must be separated by
standard delimiters (one or more blanks or a comma). A breakpoint
will be established at each address. See Note below.

Note: Address can be:

• An absolute address
• A symbolic address
• A relative address
• An indirect address
• An address expression
• A module-name and entry name (separated by a period)

AT Suknmmand of TFSI' 247

• An entry-name (preceded by a period)

subeommands-Ust
specifies one or more subcommands to be executed when the
program is interrupted at the indicated location. If you specify more
than one subcommand, the subcommands must be separated by
semicolons. The list cannot be longer than 255 characters.

Note: If an OFF subcommand in the list removes the breakpoint for which
a list is specified all remaining subcommands in that list are ignored.

COUNT(lnteger)
specifies that processing will not be halted at the breakpoint until it
has been encountered the specified number of times. This operand is
directly applicable to program loop situations, where an instruction is
executed several times. Processing will be halted each time the
breakpoint has been encountered for the number of times specified
for the 'integer' operand. The integer specified cannot exceed
65,535.

DEFER
specifies that the breakpoint is to be established in a program that is
not yet in virtual storage. The program to contain the breakpoint will
be brought in as a result of a LINK, LOAD, ATTACH, or XCTL
macro instruction by the program being tested. You must qualify the
address of the breakpoint either:

MODULENAME.ENTRYNAME.RELATIVE

or

MODULENAME.ENTRYNAME.SYMBOL

when you specify this operand. All breakpoint addresses listed in
an AT subcommand with the DEFER operand must refer to the
same load module.

NODEFER
specifies that the breakpoint is to be inserted into the program now
in virtual storage. This is the default value if both DEFER and
NODEFER are omitted.

NOTIFY
specifies that when it is encountered the breakpoint will be identified
at the terminal. This is the default value if both NOTIFY and
NONOTIFY are omitted.

NONOTIFY
specifies that when it is encountered the breakpoint will not be
identified at the terminal.

11TLE('text')
specifies from I to 50 characters of text displayed following the word
AT whenever the tested program stops at the breakpoint associated
with that text. The text is intended to serve as a meaningful
identification of the instruction address at which the program stops; it
is in lieu of an address. If NONOTIFY is specified, nothing is
displayed.

A list of addresses can be associated with the same text and the text
is displayed whenever the associated breakpoint is reached. If a range
is specified and TITLE ('text') is listed as an operand, the text is
displayed in the form: 'text-string' + displacement. Displacement is
the hexadecimal offset at the breakpoint encountered from the
beginning of the range.

Note: If your program is running in supervisor state or in a PSW protection
key less than 8, breakpoints are ignored.

Example 1

Operation: Establish breakpoints at each instruction in a section of the
program that is being tested.

Known:

The addresses of the first and last instructions of that section that is
to be tested: LOOPA EXITA

The subcommands to be executed are: USTPSW, GO

at loopa:exita (listpsw;go)

Example 1

Operation: Establish breakpoints at several locations in a program.

Known:

The addresses for the breakpoints: +8A LOOPB EXITB

at (+8A loopb exitb)

Example 3

Operation: Establish a breakpoint at a location in a loop. The address of
the location is contained in register 15. You only want to have an
interruption every tenth cycle through the loop. When that interruption
occurs, you want a meaningful identification at the breakpoint.

Known:

The address for- the breakpoint: 15R%

at 15r% count(10) title('entry after 10 loops')

Example 4

Operation: Establish a breakpoint for a program that is not presently in
virtual storage.

Known:

The name of the load module: CALCULAT
The CSECT name: INTEREST
The symbolic address for the breakpoint: TOTAL

at calculat.interest.total defer

AT Subcommand or TEST 249

250 TSO Command Limgaage Reference

Example 5

Operation: Have the following subcommands executed when the
breakpoint at TAC is reached: LISTTCB PRINT(TCBS), LISTPSW. and
GO CALCULAT

at tac (listtcb print(tcbs) listpsw~go calculat)

Example 6

Operation: Request that the following subcommands be executed when the
breakpoint at symbol NOW is reached: LISTMAP. LISTTCB, OFF NOW,
AT +32. and GO.

at now (listmap~listtcb~off now~at +32~go)

Note: The last two (2) subcommands will not be executed because the
breakpoint (NOW) and its subcommand list will have been removed.

A'ITRIB subcommand of TEST

Use the ATTRIB subcommand to build a list of attributes for non-VSAM
data sets that are to be dynamically allocated. Refer to the A TTRIB
command for a description of the syntax and function of the A1TRIB
subcommand.

A TI'RIB subcommand of TEST 251

CALL Subcommand of TEST

Use the CALL subcommand to initiate processing at a specified address
and to initialize registers I, 14, and 15. You can pass parameters to the
program that is to be tested.

CAUTION: The contents of registers 1, 14, and 15 are altered by the use
of the CALL subcommand. To save the contents of these registers, use the
COPY subcommand of TEST (see Examples 2 and 3 under the COpy
subcommand).

The CALL subcommand of TEST places the return address of the tested
program in register 14. The bigh order bit of register 14 is set to reflect the
addressing mode of the tested program.

CALL address
[PARM(address-list)]
[VL]
[RETURN (address)]
[RESUME]

rE [(24)]]
~~~iTCH) 

address 
specifies the address where processing is to begin. Register 15 
contains this address when the program under test begins execution. 

Address can be: 

• An absolute address 
• A symbolic address 
• A relative address 
• An indirect address 
• An address expression 
• A module-name and entry-name (separated by a period) 
• An -entry-name (preceded by a period) 

P ARM(address-Ust) 

VL 

specifies one or more addresses that point to data to be used by the 
program being tested. The list of addresses will be expanded to 
fullwords and placed into contiguous storage. Register 1 will contain 
the address of the start of the list. If P ARM is omitted, register 1 
will point to a fullword that contains the address of a halfword of 
zeroes. 

specifies that the bigh order bit of the last fullword of the list of 
addresses pointed to by general register one is to be set to one. 

RETURN(address) 
specifies that on completion of execution, the called program returns 
control to the address in register 14. The high order bit of register 14 
reflects the addressing mode of the tested program prior to the 
issuance of the CALL subcommand. If RETURN is omitted, register 
14 will contain the address of a breakpoint instruction. 

CALL Subeommand 01 TEST 153 



254 TSO Command ' ..... Refereaee 

RESUME 
specifies that upon completion of execution the called program 
returns. control to the address of the last breakpoint prior to the 
CALL. 

AMODE (14) 
(31) 
(SWITCH) 

specifies the addressing mode in which the called program begins 
execution. If AMODE (SWITCH) is specified, the called program 
continues execution in the addressing mode that is noncurrent when 
CALL is issued. (You can determine the current addressing mode by 
issuing the USTPSW command.) If AMODE is not specified, there 
is no change in addressing mode. 

Example 1 

OperatioD: Initiate execution of the program 'being tested at a particular 
location. 

Known: 
The starting address: +OA 
The addresses of data to be passed: CTCOUNTR LOOPCNT TAX 

call +Oa parm(ctcountr loopcnt tax) 

Note: The foDowing message is issued after completion of the called 
routine: 

'IKJ57023I PROGRAM UNDER TEST HAS TERMINATED NORMALLY+' 

This message is issued because no return address was specified. If GO is 
now specified without an address, the TEST session wiD be terminated. 

Example 1 

Operation: Initiate exe~tion at a particular location. 

Known: 

ThefiL~ngaddress: STARTBD 

The addresses of data to be passed: BDFLAGS PRFITBL 
COSTTBL ERREXIT 

Set the high order bit of the last address parameter to one so that the 
program can teD the end of the list. After execution, control is to be 
returned to: +24A 

call startbd parm(bdflags prfttbl costtbl errexit)­
vl return(+24a) 

Example 3 

OperatiOD: Initiate execution at label COMPUTE and have execution begin 
at label NEXT when control is returned via register 14. 

call compute return(next) 



CANCEL Subcommand of TEST 

Use the CANCEL subcommand to halt processing of batch jobs submitted 
from the terminal. Refer to the CANCEL command for a description of 
the syntax and function of the CANCEL subcommand. 

CANCEL Subc:ommand of TEST :Z55 



COpy Subcommand of TEST 

Use the COPY subcommand to transfer data or addresses from one virtual 
storage address to another, from one general register to another, from a 
register to virtual storage, or from virtual storage to a register. 

The COPY subcommand can be used to: 

• 
• 
• 

Save or restore the contents of the general registers. 
Propagate the value of a byte throughout a field. 
Move an entire data field from one location to another. 

address address 2 

[LENGTH (int~ger)] 

rpOINTER ] 
LNOPOINTER 

addressl 
specifies a location that contains data to be copied. 

addressl 
specifies a location that will receive the data after it is copied. 

Address 1 and address 2 can be: 

• An absolute address 
• A symbolic address 
• A relative address 
• An indirect address 
• An address expression 
• A module-name and entry-name (separated by a period) 
• A general register 

LENGTH(lnteger) 
specifies the length, in decimal, of the field to be copied. If an 
integer is not specified, LENGTH will default to 4 bytes. The 
maximum length is 65,535 bytes in a storage-to-storage copy 
operation and 64 bytes when a register is specified. 

POINTER 
specifies that address 1 will be validity checked to see that it does not 
exceed maximum virtual storage size and will then be treated as an 
immediate operand (hexadecimal literal) with a maximum length of 4 
bytes (that is, an address will be converted to its hexadecimal 
equivalent) and will be transferred into the location specified by 
address2. When using the POINTER keyword, do not specify a 
general register as address!. 

NOPOINTER 
specifies that address 1 will be treated as an address, not as an 
immediate operand. NOPOINTER is the default. 

COPY Subcommand or TEST 257 



158 TSO Command Language Reference 

Notes: 

1. The COpy subcommand treats the 16 general registers as contiguous 
fields. The user can specify 10 bytes be moved from general register 
o to another location. 

copy or 80060. length(10) 

The COPY subcommand will move the 4 bytes of register 0, the 4 
bytes of register 1 and the high order 2 bytes of register 2 to virtual 
storage beginning at location 80060. When a register is specified as 
addressl, the maximum length of data that will be transferred is the 
total length of the general registers, or 64 bytes. 

2. When the value of address2 is one greater than addressl, propagation 
of the data in address 1 will occur. When the value of address2 is 
more than one greater than the value of addressl, no propagation will 
occur. 

Example 1 

Operation: Transfer two fuD words of data from one virtual storage 
location to another. 

Known: 
The starting address of the data: 80680 
The starting address of where the data is to be: 80685 

copy 80680. 80685. length (8) 

Example 2 

Operation: Copy the contents of one register into another register. 

Known: 
The register which contains the data to be copied: 10 
The register which will contain the data: 5 

copy 10r 5r 

Example 3 

Operation: Save the contents of the general registers. 

Known: 
The first register to be saved: 0 
The starting address of the save area: A0200 

c Or a0200. 1(64) 

Example 4 

Operation: Propagate the value in the first byte ()f a buffer throughout the 
buffer. 

Known: 
The starting address of the buffer: 80680 
The length of the buffer: 80 bytes 

c 80680. 80681. 1(79) 



Example 5 

Operation: Insert a hexadecimal value into the high-order byte of a 
register. 

Known: 

The desired value: X'SO' 
The register: 1 

copy 80. 1r 1(1) pointer 

Note: Specifying the pointer operand causes SO to be treated as an 
immediate operand and not as an address. 

Example 6 

Operation: Insert the entry point of a routine into a virtual storage 
location. 

Known: 

The module name and the entry point name: IEFBRI4.IEFBRI4 
The desired virtual storage location: ST ARTPTR 

c iefbr14.iefbr14 startptr p 

Example 7 

Operation: Copy the contents of an area pointed to by a register into 
another area. 

Known: 

The register which points to the area that contains the data 
to be move~ 14 

The real storage location which is to contain the data: S06S0 

The length of the data to be moved: S bytes 

c 14r% 80680. 1(8) nopoint 

COPY Subcommand of TEST 259 



DELETE Subcommand of TEST 

Use the DELETE subcommand to delete. from virtual storage. a load 
module that was loaded above or below 16 Mb by the tested program. one 
of its subtasks or the LOAD subcommand of TEST. 

{DELETE} 
DEL 

load-module-name 

load-module-name 
specifies the name of the load module to be deleted. The load name 
is the name (which might be an alias) by which the program is 
known to the system when it is in virtual storage. The name must 
not exceed eight characters. 

Example 1 

Operation: Delete a load module from virtual storage. 

Known: 

The name of the load module: TOTAL 

delete total 

or 

del total 

DELETE Sabeommand of TEST 161 



DROP Subcommand of TEST 

Use the DROP subcommand to remove symbols from the symbol table of 
the module being tested. You can only remove symbols that you 
established with the EQUATE subcommand or EQUATE operand of the 
GETMAIN subcommand. You cannot remove symbols that were 
established by the linkage editor. If the program being tested was 
assembled with the TEST option and the EQUATE subcommand was used 
to override the location and type of the symbol within the program, then 
when the DROP subcommand is used to delete that symbol from the 
symbol table, the symbol will reflect the original location and type within 
the program. 

DROP (symbol-list) 

(symbol-list) 
specifies one or more symbols that you want to remove from the 
symbol table created by the EQUATE subcommand. ~en you 
specify only one symbol, you do not have to enclose that symbol 
within parentheses; however, two or more symbols must be enclosed 
by parenthesis. If you do not specify any symbols, the entire tabl~ of 
symbols will be removed. 

Example 1 

Operation: Remove all symbols that you have established with the 
EQUATE subcommand. 

drop 

Example 1 

Operation: Remove a symbol from the symbol table. 

Known: 

The name of the symbol is DATE. 

drop date 

Example 3 

Operation: Remove several symbols from the symbol table. 

Known: 

The·names of the symbols: STARTADD TOTAL WRITESUM 

drop (startadd total writesum) 

DROP Subcommand 01 TEST 263 



END Subcommand of TEST 

Use the END subcommand to terminate all functions of the TEST 
command and the program being tested. 

END 

Note: The END subcommand will not close an opened data set; use the 
GO subcommand for this process. Normal exit cleanup procedures should 
also be used. 

END Subcommand of TEST ·Z65 



EQUATE Subcommand of TEST 

Use the EQUATE subcommand to add a symbol to the symbol table of the 
module being tested. This subcommand allows you to establish a new 
symbol that you can use to refer to an address or to override an existing 
symbol to reflect a new address or new attributes. H no symbol table 
exists, one is created and the specified name is added to it. Symbol within 
DSECT may be accessed if the DSECT name is defined using the 
EQUATE subcommand. For restrictions on symbols see the section titled, 
"Internal Symbols." You can also modify the data attributes (type, length, 
and multiplicity); use the EQUATE subcommand to modify attributes of 
existing equated symbols. The DROP subcommand removes symbols added 
by the EQUATE subcommand. Symbols established via the EQUATE 
subcommand are defined for the duration of the TEST session only. 

symbol 

symbol address 

[LENGTH(inteqer)] 
[MULTIPLE(inteqer)] 

[data-type] 

specifies the symbol (name) that you want to have added to the 
symbol table so that you can refer to an address symbolically. The 
symbol must consist of one through eight alphameric characters, the 
first of which is an alphabetic character. 

address 
the address that you specify will be equated to the symbol that you 
specify. 

Address can be: 

• An absolute address 
• A symbolic address 
• A relative address 
• An indirect. address 
• An address expression 
• A module-name and entry-name (separated by a period) 
• An entry name (preceded by a period) 

EQUATE Subcommand of TEST 267 



168 TSO ColDlllllild Language Rererence 

data-type 
specifies the characteristics you wish to attribute to the data at the 
location given by "address." These mayor may not be the same as 
the original characteristics. You indicate the type of data by one of 
the following codes: 

Code Type or Data Maxfmum Length (Bytes) 

C 
X 
B 
I 
H 
F 
E 
o 
P 
Z 
A 
S 
Y 

LENGTH(integer) 

Character 
Hexadecimal 
Binary 
Assembler instruction 
Fixed point binary (halfword) 
Fixed point binary (fullword) 
Floating point (single precision) 
Floating point (double precision) 
Packed decimal 
Zoned decimal 
Address constant 
Address (base + displacement) 
Address constant (halfword) 

256 
256 
256 
256 
8 
8 
8 
8 
16 
16 
4 
2 
2 

specifies the length of the data. The maximum value of the integer is 
256. If you do not specify the length, the following default values 
will apply: 
Type of Data 

C,B,P,Z 

H,S,Y 

F,E,A.X 

o 

MUL TIPLE(integer) 

Default Length (Bytes) 

2 

4 

8 

variable 

specifies a multiplicity factor. The multiplicity factor means that one 
element of the data appears several times in succession; the number 
of repetitions is indicated by the number specified for "integer." The 
maximum value of the integer is 256. 

Notes: 

1. If you do not specify any keywords, the defaults are: 

type - X 
multiplicity - 1 
length - 4 

2. If both multiplicity and length are specified for data-type I, the 
multiplicity is ignored. 

Example 1 

Operation: Add a symbolic address to the symbol table of the module that 
you are testing. 

Known: 

The symbol: EXITRTN 
The address: TOTAL+4 

equate exitrtn total+4 



Example 1 

Operation: Change the address and attributes for an existing symbol. 

Known: 

The symbol: CONSTANT 
The new address: IFAAO. 
The new attributes: type: C 

length: L(8) 
multiplicity: M(2) 

eq constant 1faaO. c m(2) 1(8) 

Example 3 

Operation: Add the symbol NAMES to the symbol table to access a list of 
6 names. Each name is 8 characters long. 

Known: 

The names are stored one after the other at relative address + 12C. 

equate names +12c 1(8) meG} c 

EQUATE Subcommand of TEST 16' 



EXEC Subcommand of TEST 

Use the EXEC subcommand to execute a command procedure. Refer to 
the EXEC command for a description of the syntax and function of the 
EXEC subcommand. 

Only TEST subcommands and command procedure statements should be 
specified in the command procedure. (You can enter any TSO command in 
the CLIST after entering END or RUN to terminate TEST.) 

EXEC Subcommand of TEST 171 



.FREEMAIN Subcommand of TEST 

Use the FRBEMAIN subcommand to free a specified number of bytes of 
virtual storage above or below 16Mb. 

{ FREEMAIN} 
FREE 

integer address 

[sp (intQger)] 

integer 
specifies the number of decimal bytes of virtual storage to be 
released. 

address 
this address is the location of the space to be freed and must be a 
multiple of 8 bytes. 

The LlSTMAP subcommand may be used to help locate previously 
acquired virtual storage. 

Address can be: 

• An absolute address 
• A symbolic address 
• A relative address 
• An indirect address 
• An ,address expression 
• A module-name and entry-name (separated by a period) 
• An entry name (preceded by a period) 

SP(integer) 
specifies the number of the subpool that contains the space to be 
freed. If you omit this operand, the default value is subpool zero. 
The integer must be in the range zero through 127. 

Example 1 

Operation: Free space in virtual storage that was acquired previously by a 
GETMAIN macro instruction in the module being tested. 

Known: 

The size of the space, in bytes: SOO 
The absolute address of the space: OS4A20 
The number of the subpool that the space was acquired from: 3 

free 500 054a20. sp(3) 

FREEMAIN Subeommand of TEST 273 



274 TSO Command Language Reference 

Example 2 

Operation: Free space in virtual storage that was obtained previously by a 
GETMAIN subcommand. 

Known: 

The size of the space is 100 decimal bytes. 

The address of the space to be freed is A4 (hexadecimal fom) past 
the address in register 3. 

The space to be freed is in subpool O. 

freemain 100 3r%+A4 

Example 3 

Operation: Free subpool 127. 

freemain 0 0 sp(127) 

Warning: Do not attempt to free all of subpool 78. If you desire to free a 
portion of subpool 78, be careful not to free the storage obtained by the 
TMP. (This would result in your freeing the TMP's data areas because 
subpool 78 is shared.) The deletion of the TMP portion of subpool 78 will 
cause your session to terminate. 

Note: You may release an entire subpool by specifying a length of 0, an 
absolute address of 0, and a subpool in the range of 1 through 127. 

If you specify a non-zero address the length must also be non-zero. 



GETMAIN Subcommand of TEST 

Use the GETMAIN subcommand to obtain a specified number of bytes of 
virtual storage. The GETMAIN subcommand displays the starting address 
of the virtual storage obtained. 

GETMAIN 
GET 

integer 

integer 

[ SP (intQger)] 

[EQUATE (name) 1 ] 

[LOC [~~~~~W)] 
(RES) 

specifies the number of bytes, in decimal form, of virtual storage to 
be obtained. 

SP(integer) 
specifies the number of a subpool from which the virtual storage is to 
be obtained. If you omit this operand, the default value is· subpool 
zero. The integer must be in the range zero through 127. 

EQUATE(name) 
specifies that the address of acquired virtual storage is to be equated 
to the symbol specified by "name" and placed in the TEST internal 
symbol table. 

LOC (BELOW) 
specifies that the virtual and real storage area must be below 16 Mb. 

LOC (ANY) 
specifies that the virtual storage area can be anywhere in the virtual 
storage addressing range. The actual location (above or below 16 
Mb) of·the virtual storage area will depend on the subpool specified. 
If the requested subpool is supported above 16 Mb, GETMAIN will 
allocate virtual storage above 16 Mb if possible. 

LOC (RES) 
specifies that the address of the virtual storage area depends upon 
the residence of the next instruction to be executed. If the 
instruction address in the PSW for the tested program is below 16 
Mh, the request is processed as LOC (BELOW); if the instruction 
address is above 16Mb, the request is processor as LOC (ANY). 

Example I 

Operation: Obtai~ 240 decimal bytes of virtual storage from subpool O. 

getmain 240 

Example 2 

Operation: Obtain 500 bytes of virtual storage from subpool 3 and equate 
starting address to symbolic name AREA. 

get 500 sp(3) equate (area) 

GETMAIN Subcommand or TEST 175 



GO Subcommand of TEST 

Use the GO subcommand to start or restart program execution from a 
particular address. If the program was interrupted for a breakpoint and you 
want to continue from the breakpoint, there i$ no need to specify the 
address. However, you may start execution at any point by specifying the 
address. 

GO [address] 

[ AMODE ~ 24) ]] (31) 
(SWITCH) 

address 
specifies a symbolic address, a relative address, an absolute address, 
or a general register containing an address. Execution will begin at 
the address that you specify. 

When the problem program completes processing, the following 
message is displayed at the terminal: 

'IKJ57023I PROGRAM UNDER TEST HAS TERMINATED NORMALLY+' 

If the GO subcommand is then issued with no address specified, the 
TEST session will be terminated. 

(31) 
(SWITCH) 

AMODE [(24) J 
specifies the addiessing mode in which program execution resumes 
after the GO subcommand has been issued. You can specify 
AMODE without specifying an address. However, if the word amode 
or any abbreviation of the word amode is defined as a symbolic 
address, GO amode executes as follows: program execution starts at 
the last breakpoint and the SWITCH default is taken. 

Note: If you do not specify AMODE, there is no change in addressing 
mode. 

Example 1 

Operation: Begin execution of a program at the point where the last 
interruption occurred or initiate execution of a program. 

go 

Example 2 

Operation: Begin execution at a particular address. 

go calculat 

GO Subcommand of TEST 1.77 



HELP Subcommand of TEST 

Use the ~LP subcommand to obtain the syntax and function of the TEST 
subcommands. Refer to the HELP command for a description of the 
syntax and function of the HELP subcommand. 

HELP Subcommand of TEST 179 



LINK Subcommand of TEST 

Use the LINK subcommand to invoke the linkage editor service program. 
Refer to the LINK command for a description of the syntax and function 
of the LINK subcommand. 

LINK Subcommand of TEST 281 



LIST Subcommand of TEST 

Use the LIST subcommand to have the contents of a specified area of 
virtual storage, or the contents of registers, displayed at your terminal or 
placed into a data set. 

{
address [:addreSSJ} 

data-type 
(address-list) 

address 

[LENGTH(integer») 
[MULTIPLE (integer)-) 
[PRINT(data-set-name») 

specifies the location of data that you want displayed at your 
terminal or placed into a data set. See the following note. 

address:address 
specifies that you want the data located between the specified 
addresses displayed at your terminai or placed into a data set. See 
the following note. 

(address-list) 
specifies several addresses of data that you want displayed at your 
terminal or placed into a data set. The data at each location will be 
retrieved. If the first address of a range is a register, the second 
address must also be the same type of register (floating point or 
general). The- list of addresses must be enclosed within parentheses, 
and the addresses must be separated by standard delimiters (one or 
more blanks or a comma). See the following note. 

Note: Address can be: 

• An absolute address 
• A symbolic address 
• A relative address 
• An indirect address 
• An address expression 
• A module-name and entry-name (separated by a period) 
• An entry name (preceded by a period) 
• A general register 
• A floating point register 

LIST Subcommand of TEST 283 



284 TSO Command Language Reference 

data-type 
specifies the type of data that is in the specified location. You 
indicate the type of data by one of the fonowing codes: 

Code Type of Data Maximum Length (Bytes) 

C Character 256 
X Hexadecimal 256 
B Binary 256 
I Assembler instruction 256 
H Fixed point binary (haHword) 8 
F Fixed point binary (fullword) 8 
E Floating point (single precision) 8 
D Floating point (double precision) 8 
P Packed decimal 16 
Z Zoned decimal 16 
A Address constant 4 
S Address (base + displacement) 2 
Y Address constant (halfword) 2 

AU accepted data types will allow the specified address to be aligned 
on a byte boundary even though certain data types cannot be 
aSsigned to a byte boundary. The defaul~ for data-type is 
hexadecimal. 

Notes: 

1. A general register will be displayed in decimal format if the F data 
type is used. Otherwise, regardless of the type specified, a general 
register will be displayed in hexadecimal. Floating-point registers will 
be listed in floating-point format if data-type is not specified. 
However, floating-point registers can be listed in hexadecimal format 
by using the X data type. If any data type other than D, E, or X is 
specified for floating-point registers, data-type is ignored and the 
register is listed in floating-point format. 

2. If an area is to be displayed using the I data type and that area 
contains an invalid op code, only the area up to that invalid op code 
will be displayed. 

3. If a range of addresses is specified on LIST and the ending address is 
in fetch protected ~torage, the user will be prompted (if in PROMPT 
mode) to reenter the address. If a range of addresses is still desired, 
the user must reenter the range, not just the ending address. 

LENGm(integer) 
indicates the length, in bytes of the data that is to be listed. If you 
use a symbolic address and do not specify LENGTH, the value for 
the LENGTH parameter will be retrieved from the internal TEST 
symbol table or from the length associated with a symbol in a 
program. Otherwise, the. fonowing default values will apply: 

Type of data Default Length (Bytes) 
C.B,P,Z 1 
H,S,Y 2 
F,E,A,x 4 
D 8 
I variable 

When the data type is I, either LENGTH or MULTIPLE may be 
specified, but not both. If both are specified, the MULTIPLE 
parameter is ignored but no error message is printed. 



MULTIPLE(fnteger) 
Used with the LENGTH operand. Gives the user the following 
options:· 

• The ability to format the data to be listed (see Example 7). 

• A way of printing more than 256 bytes at a time. (The value 
suppHed for "integer" determines how many "lengths·· or 
multiples of data-type the user wants Hsted.) The value suppHed 
for integer cannot exceed 256. 

For I type data. the value suppHed for MULTIPLE dermes the 
number of instructions to be displayed. If you use a symboHc 
address and do not specify either LENGTH or MULTIPLE. the 
length retrieved from the internal TEST symbol table or from the 
program will be used and multipHcity will be ignored. 

PRINT(data-set-oame) 
specifies the name of a sequential data set to which the data is 
directed (see data set naming conventions). If you omit this operand. 
the data will go to your terminal. 

The data format is blocked variable-length records. Old data sets 
with the standard format and block size are treated as NEW if being 
opened for the rust time. otherwise. they are treated as MOD data 
sets. 

If PRINT(data-set-name) is specified. use the following table to 
determine the format of the output. 

If the data-set-name is not specified within quotes. the descriptive 
qualifier. "mSTLIST" is added. 

H your record type was: FIxed. FIxed Blocked. Variable or 
or UIldefIDed VIIIfable Blacked 

Then it is cbangecI to Recordsize Blocksize Recordsize Blocksize 
variable blocked with 
the following attributes: 125 1629 125 129 

Note: Record and block sizes greater than those specified in the precedins 
table are unchanged. 

The specified data set is kept open until: 

• The msT session is ended by a RUN or END subcommand. or 

• A UST subcommand is entered specifying a different PRINT data set. 
In this case. the previous data set is closed and the current one 
opened. 

Example 1 

Operation: List the contents of floating-point register 2 in single precision. 

list 2e 

Example 1 

Operation: List all of the general registers. 

list Or: 15r 

LIST SvhMrnmaM of TEST 285 



286 TSO Command Language Reference 

Example 3 

Operation: List all of the floating point registers in double precision. 

list Od:6d 

Example 4 

Operation: List 20 instructions starting with address +3A 

list +3a i m(20) 

Example 5 

Operation: List the contents of an area of virtual storage. 

Known: 

The area to be displayed is between labels COUNTERA and 
DTABLE. 

The data is to be listed in character format for a length of 130 bytes. 

The name of the data set which the data is to be put is: 
MYDATA.DCDUMP. 

list countera:dtable 
c 1(130) m(1) print ('mydata.dcdump') 

Example 6 

Operation: List the contents of virtual storage at several addresses. 

Known: 

The addresses: TOTALI, TOTAL2, TOTAL3. and ALLTOTAL 

Each address is to be displayed in fixed-point binary format in 3 lines 
of 3 bytes each. 

list (total1 tota12 tota13 alltotal) f 1(3) m(3) 

Example 7 

Operation: List the first six fullwords in the communications vector table 
(CVT). 

Known: 

The absolute address of the CVT: 10. 

The user is operating in TEST mode. 

The data is to be listed in hexadecimal form in six lines of 4 bytes 
each. 

Note: First use the QUALIFY subcommand of TEST to establish the 
beginning of the CVT as a base location for displacement values. 

qualify 10." 

TEST: The system response 

list +0 1(4) m(6) 



The display at your terminal will resemble the following: 

+0 00000000 
+4 00012A34 
+B 00000B2C 
+C 00000000 
+10 001A040B 
+14 00004430 

Note: In the preceding example the hexadecimal data-type was not 
specified, it was the default. 

LIST Subcommand of TEST 187 



USTALC Subcommand of TEST 

Use the LISTALC subcommand to obtain a list of names of the data sets 
allocated during the current user session. Refer to the LIST ALC command 
for a description of the syntax and function of the LIST ALC subcommand. 

LlSTALC Subcommand of TEST 189 



USTBC Subcommand of TEST 

Use the usmc subcommand to obtain a listing of the contents of the 
SYSl.BRODCAST data set, which contains messages of general interest 
(NOTICES) and messages directed to particular users (MAn...). Refer to 
the LISTBC command for a description of the syntax and function of the 
LISTBC subcommand. 

LISTBC Subcommand of TEST 291 



USTCAT Subcommand of TEST 

Use the L1STCAT subcommand to list catalog entries by name of entry 
type and to list selected fields for each entry. Refer to the LISTCAT 
command for a description of the syntax and function of the LISTCAT 
subcommand. 

usrCAT SuJJcommand or TEST 293 



USTDCB Subcommand of TEST 

Use the LISTDCB subcommand to list the contents of a data control block 
(DCB). You must provide the address of the beginning of the DCB. 

If you wish, you can have only selected fields displayed. The field 
identification is based on the sequential access method DCB for direct 
access. Fifty-two bytes of data are displayed if the data set is closed; 
forty-nine bytes of data are displayed if the data set is opened. 

LISTDCB 

address 

address 
[FIELD (names) ] 
[PRINT(data-set-name)] 

specifies the address of the DCB that you want displayed. The 
address must be on a fullword boundary. 

Address can be: 

• An absolute address 
• A symbolic address 
• A relative address 
• An indirect address 
• An address expression 
• A module-name and entry-name (separated by a period) 
• An entry-name (preceded by a period) 

FIELD (names) 
specifies one or more names of the particular fields in the DCB that 
you want to have displayed at your terminal. The segment name will 
not be ·printed when you use this operand. If you omit this operand, 
the entire DCB will be displayed. 

Following is a list of the valid field names for the DCB: 
DCBBFALN 
DCBBFrEK 
DCBBUFCB 
DCBBUFL 
DCBBiJFNO 
DCBDDNAM 
DCBDEBAD 
DCBDEVT 
DCBDVTBL 
DCBEODAD 
DCBEXLST 
DCBFDAD 
DCBHIARC 

PRINT(data-set-name) 

DCBIFLGS 
DCBIOBAD 
DCBKEYCN 
DCBKEYLE 
DCBMACRF 
DCBOFLGS 
DCBRECFM 
DCBRELAD 
DCBTIOT 
DCBTRBAL 
DCBMACR 
DCBIFLG 
DCBDSORG 

specifies the name of the sequential data set to which data is to be 
directed (see data set naming conventions). If you omit this operand, 
the data will be displayed at your terminal. 

The data format is blocked variable-length records. Old data sets 
with the standard record format and blocksize are treated as NEW if 
they are being opened for the first time; otherwise, they are treated 
as MOD data sets. 

If the data-set-name is not specified within quotes, the descriptive 
qualifier TESTLIST is added. 



196 TSO Command Lauguage Reference 

If PRINT(data-set-name) is specified, use the following table to 
determine the fonnat of the outp~t. 

If your record type was: Fixed, Fixed Blocked, Variable or 
or Undefined Variable Blocked 

Then it is changed to Recordsize Blocksize Recordsize Blocksize 
variable blocked with 
the foHowing attributes: 125 1629 125 129 

Note: Record and block sizes greater than those specified in the preceding 
table are unchanged. 

The specified data set is kept open until: 

• The LIST session is ended by a RUN or END subcommand, or 

• A LIST subcommand is entered that specifies a different PRINT data 
set. In this case, the fonner data set is closed and the current one 
opened. 

Example 1 

Operation: List the RECFM field of a DCB for the program that is being 
tested. 

Known: 

The DCB begins at location: DCBIN 

listdcb dcbin field (dcbrecfm) 

Example 2 

Operation: List an entire DCB. 

Known: 

The absolute address of the DCB: A33B4 

listdcp a33b4. 



LlSTDEB Subcommand of TEST 

Use the LISTDEB subcommand to list the contents of a data extent block 
(DEB). You must provide the address of the DEB. 

H a copy of the control block is in extended virtual storage, the LISTDEB 
subcommand accepts addresses greater than 16 Mh, even though the block 
itself will always be in virtual storage below 16 Mh. Even if an absolute 
address has been specified, LISTDEB displays the virtual address before 
formatting the control block. 

In addition to the 32 byte basic section of the DEB, you may receive up to 
16 direct access device dependent sections of 16 bytes each until the full 
length has been displayed. H you wish, you can have only selected fiel~ 
displayed. 

LISTDEB address 
[FIELD(names)] 
[PRINT(data-set-name)] 

address 
specifies the address is the beginning of the DEB, and must be on a 
fullword boundary. 

Address can be: 

• An absolute address 
• A symbolic address 
• A relative address 
• An indirect address 
• An address expression 
• A module-name and entry-name (separated by a period) 
• An entry-name (preceded by a period) 

FlELD(Q8II1es) 
specifies one or more names of the particular fields in the DEB that 
you want to have displayed at your terminal. H you omit this 
operand, the entire DEB will be listed. 

Following is a list of DEB names that are valid for the LISTDEB 
subcommand: 

DEBAMLNG DEBNMEXT DEBUSRPG 
DEBAPPAD DEBNMSUB 
DEBDCBAD DEBOFLGS 
DEBDEBAD DEBOPATB 
DEBDEBID DEBPRIOR 
DEBECBAD DEBPROTG 
DEBEXSCL DEBQSCNT 
DEBFLGSI DEBTCBAD 
DEBlRBAD DEBUSPRG 

Following is a list of the valid DEB names in the direct access 
section: 

DEBBINUM 
DEBDVMOD 
DEBENDCC 
DEBENDHH 

DEBNMTRK 
DEBSTRCC 
DEBSTRHH 
DEBUCBAD 

Note: These fields cannot be accessed unless there is a direct access section 
in the DEB. 

LlSTDEB Subcommand of TEST 297 



298 TSO Command LiuJg!Iage Reference 

P~(data-set-nBIne} 
specifies the name of the sequential data set to which data is to be 
directed (see data set naming conventions). If you omit this operand, 
the data will be displayed at your terminal. 

The data format is blocked variable length records. Old data sets 
with the standard record format and blocksize are treated as NEW if 
they are being opened for the first time; otherwise, they are treated 
as MOD data sets. 

If the data-set-name is not specified within quotes, the descriptive 
qualifier TESTLIST is added. 

If PRINT(data-set-name) is specified, use the following table to 
determine the format of the output. 

If your record type was: Flxed, Flxed Blocked, Variable or 
or Undefined Variable Blocked 

Then it is changed to Recordsize Blocksize Recordsize Blocksize 
variable blocked with 
the following attributes: 125 1629 125 129 

Note: Record and block sizes greater than those specified in the preceding 
table are unchanged. 

The sp~cified data set is kept open until: 

1. The TEST session is ended by a RUN or END subcommand, or 

2. A LIST subcommand is entered that specifies a different PRINT data 
set. In this case, the former data set is closed and the current one 
opened. 

Example 1 

Operation: List the entire DEB for the DCB that is named DCBIN. 

Known: 
The address of the DEB is 44 decimal (2C hexadecimal) bytes past 
the beginning of the DCB. 

The address of the DEB: DCBIN+2C% 

listdeb dcbin+2c% 

Example 2 

Operation: List the following fields in the DEB: DEBDCBAD and 
DEBOFLGS 

Known: 
The address of the DEB is 44 decimal (2C hexadecimal) bytes past 
the beginning of the DCB. The address of the DCB is in register 8. 

listdeb Sr%+2c% field (debdcbad,deboflgs) 



USTDS Subcommand of TEST 

Use the LISTDS subcommand to display attributes of specific data sets at 
the terminal. Refer to the LISTDS command for a description of the 
syntax and function of the LISTDS subcommand. 

LlSTDS Sabeommand of TEST 299 



USTMAP Subcommand of TEST 

Use the LISTMAP subcommand to display a virtual storage map at the 
terminal. The map identifies the location and assignment of any storage 
assigned to the program. 

All storage assigned to the problem program and its subtasks as a result of 
GETMAIN requests is located and identified by subpool (0-127). All 
programs assigned to the problem program and its subtasks are identified 
by name, size, location, and attribute. Storage assignment and program 
assignment are displayed by task. 

LISTMAP [PRINT(data-set-name)] 

PRINT(data-set-name) 
specifies the name of the sequential data set to which data is to be 
directed (see data set naming conventions). If you omit this operand, 
the data will be displayed at the terminal. 

The data format is blocked variable length records. Old data sets 
with the standard record format and blocksize are treated as NEW if 
they are being opened for the first time; otherwise, they are treated 
as MOD data sets. 

If the data-set-name is not specified within quotes, the descriptive 
qualifier, TESTLIST, is added. 

If PRINT(data-set-name) is specified, use the following table to 
determine the format of the output. 

If your record type was: FIxed, FIxed Blocked, Variable or 
or Undefined Variable Bloeked 

Then it is changed to Recordsize Blocksize Recordsize Blocksize 
variable blocked with 
the following attributes: 125 1629 125 129 

Note: Record and block sizes greater than those specified in the preceding 
table are unchanged. 

The specified data set is kept open until: 

• The TEST session is ended by a RUN or END subcommand, or 

• A LIST subcommand is entered that specifies a different PRINT data 
set. In this case, the former data set is closed and the current one 
opened. 

Example 1 

Operation: Display a map of virtual storage at your terminal. 

listmap 

LlSTMAP Subcommand of TEST 301 



301 TSO Command Lauguage Reference 

Example 2 

Operation: Direct a map of virtual storag~ to a data set. 

Known: 

The name for the data set: ACDQP.MAP.TESTLIST 
The prefix in the user's profile is ACDQD. 

listmap print(map) 



LISTPSW Subcommand of TEST 

Use the USTPSW subcommand to display a program status word (PSW) at 
your terminal. 

LISTPSW 

ADDR(address) 

[ADDR(address) ] 
[PRINT(data-set-name)] 

specifies the address which identifies a particular PSW. If you do not 
specify an address, you will receive the current PSW for the program 
that is executing. 

Address can be: 

• An absolute address 
• A symbolic address 
• A relative address 
• An indirect address 
• An address expression 
• A module-name and entry-name (separated by a period) 
• An entry-name (preceded by a period) 

PRINT(data-set-oame) 
specifies the name of the sequential data set to which data is to be 
directed (see data set naming conventions). If you omit this operand, 
the data will be displayed at your terminal. 

The data format is blocked variable length records. Old data sets 
with the standard record format and blocksize are treated as NEW if 
they are being opened for the first time; otherwise, they are treated 
as MOD data sets. 

If the data-set-name is not specified within quotes, the descriptive 
qualifier, TESTLIST, is added. 

If PRINT(data-set-name) is specified, use the following table to 
determine the format of the output. 

If your record type was: Fixed, Fixed Blocked, Variable or 
or Undefined Variable Blocked 

Then it is changed to Recordsize Blocksize Recordsize Blocksize 
variable blocked with 
the following attributes: 125 1629 125 129 

Note: Record and block sizes greater than those specified in the preceding 
table are unchanged. 

The specified data set is kept open until: 

• The TEST session is ended by a RUN or END subcommand, or 

• A LIST subcommand is entered that specifies a different PRINT data 
set. In this case, the former data set is closed and the current one 
opened. 

LISTPSW Subcommand of TEST 303 



304 1'80 Command Lauguage Reference 

Example 1 

Operation: Display the current PSW at your terminal. 

] istpsw 

Example 1 

Operation: Direct the input/output old PSW into a data set. 

Known: 

The prefix in the user's prome is ANZAL2. 
The address of the PSW (in hexadecimal): 38. 
The name for the data set: ANZAL2.PSWS.TESTLIST 

listpsw addr(38.) print (psws) 



USTICB Subcommand of TEST 

Use the LISITCB subcommand to display the contents of a task control 
block (TCB). You may provide the address of the beginning of the TCB. 

H a copy of the control block is in extended virtual storage, the LISITCB 
subcommand accepts addresses greater than 16 Mb, even though the block 
itself will always be in virtual storage below 16 Mb. Even if an absolute 
address is specified, LISITCB displays the virtual address of the requested 
TCB before formatting die control block. 

H you wish, you can have only selected fields displayed. 

LISTTCB [ADDR(address)] 
[FIELD(names)] 
[PRINT(data-set-name)] 

ADDR(address) 
specifies the address must be on a fullword boundary. The address 
identifies the particular TCB that you want to display. H you omit 
an address, the TCB for the current task is displayed. 

Address can be: 

• An absolute address 
• A symbolic address 
• A relative address 
• An indirect address 
• An address expression 
• A module-name and entry-name (separated by a period) 
• An entry-name (preceded by a period) 

FIELD (names) 
specifies one or more names of the particular fields in the TCB that 
you want to have displayed. If you omit this operand, the entire 
TCB will be displayed. 

LIS1TCB Subcommand of TEST 305 



306 TSO CODIIIIIUIII Laagaage Reference 

Following is a list of the valid LIS'ITCB field names: 
TCBABCUR 
TCBAE 
TCBAECB 
TCBAFFN 
TCBAQE 
TCBBACK 
TCBCANF 
TCBCCPVI 
TCBCMP 
TCBDAR 
TCBDEB 
TCBDSP 
TCBEAE 
TCBECB 
TCBERD 
TCBESTAE 
TCBEVENT 
TCBEXTI 
TCBEXT2 
TCBFBYTI 
TCBFLGS 
TCBFLGS6 
TCBFLGS7 
TCBFOE 
TCBFSAB 
TCBGRS 
TCBGTFA 

PRINT(data-set-name) 

TCBIOBRC 
TCBIQE 
TCBJLB 
TCBJPQ 
TCBJSCB 
TCBJSTCB 
TCBLLS 
TCBLMP 
TCBLTC 
TCBMSS 
TCBNDSPO 
TCBNDSPI 
TCBNDSP3 
TCBNDSP4 
TCBNDSP5 
TCBNEEP 
TCBNSTAE 
TCBNTC 
TCBOTC 
TCBPERCP 
TCBPERCT 
TCBPm 
TCBPKE 
TCBPQE 
TCBRSP 
TCBRCMP 
TCBRD 

TCBRTM12 
TCBRTWA 
TCBSEQNO 
TCBSSAT 
TCBSTABB 
TCBSTAWA 
TCBSTMCT 
TCBSTPCT 
TCBSWA 
TCBSYSCT 
TCBTCB 
TCBTCBID 
TCBTCT 
TCBTFLG 
TCBTID 
TCBTIO 
TCBTME 
TCBTQE 
TCBTRN 
TCBTSDP 
TCBTSFLG 
TCBTSLP 
TCBUSER 
TCBXLAS 
TCBXSB 
TCBXSCTI 

specifies the name of the sequential data set to which data is to be 
directed (see data set naming conventions). H you omit this operand, 
the data will be displayed at your terminal. 

The data format is blocked variable length records. Old data sets 
with the standard record format and blocksize are treated as NEW if 
they are being opened for the first time; otherwise, they are treated 
as MOD data sets. 

H data-set-name is not specified within quotes, the descriptive 
qualifier, TESTLIST, is added. 

H PRINT (data-set-name) is specified, use the fonowing table to 
determine the format of the output. 

If your record type was: FIxed, FIxed Blocked, Variable or 
or Undefined Variable Bloeked 

Then it is changed to Recordsize Blocksize Recordsize Blocksize 
variable blocked with 
the foUowlng attributes: 125 1629 125 129 

Note: Record and block sizes greater than those specified in the preceding 
table are unchanged. 

The specified data set is kept open until: 

1. The TEST session is ended by a RUN or a END subcommand, or 

2. A UST subcommand is entered that specifies a different PRINT data 
set. In this case, the former data set is closed and the current one 
opened. 



Example 1 

Operation: Direct a copy of the TCB for the current task into a data set. 

Known: 

The prefix in the user's profile is NAN75. 
The name of the data set: NAN75.TCBS.TESTLIST 

listtcb print(tcbs) 

Example 2 

Operation: Save a copy of some fields of a task's control block that is not 
active in a data set for future information. 

Known: 

The symbolic address of the TCB: MYTCB2 
The fields that are being requested: TCBTIO TCBCMP TCBGRS 
The name of the data set: SCOTI.TCBDATA 

listtcb addr(mytcb2) field(tcbtio,tcbcmp,tcbgrs)­
print('scott.tcbdata') 

Example 3 

Operation: List the entire TCB for the current task. 

listtcb 

LlSITCB Subc:ommand of TEST 307 



LOAD Subcommand of TEST 

Use the LOAD subcommand to load a program above or below 16 Mb 
virtual storage based on its RMODE characteristics. H the displayed entry 
address is greater than X'7FFFFFFF', the addressing mode is 31-bit. In 
this case X'80000000' must be subtracted from the displayed number to 
obtain the actual address. 

LOAD data-set-name 

data-set-name 
specifies the name of the partitioned data set containing the module 
to be loaded. Note that if the member name is not specifi~, 
TEMPNAME will be used. H the data-set-name is not specified 
within quotes the "LOAD" qualifier will be added. 

Example 1 

Operation: Load a program named GSCORES from the data set 
ATX03.LOAD. 

Known: 

or 

The prefIX in the user's profile is ATX03. 

load 'atx03.load (gscores)' 

load (gscores) 

Example 2 

Operation: Load a module named AITEMPT'from data set 
ATX03.TEST.LOAD. 

Kbown: 

or 

The prefIX in the user's profile is ATX03. 

load 'atx03.test.load(attempt) , 

load test(attempt) 

However do not specify: 

test. load (attempt) 

as this results in a search for ATX03.TEST.load.load 

Example 3 

Operation: Load a module named PERFORM from data set ATX03.TRY. 

load 'atx03.try(perforrn)' 

LOAD Subcommand of TEST 309 



OFF Subcommand of TEST 

Use the OFF subcommand to remove breakpoints from a program. 

OFF 

address 

address [:address] 
(address-list) 

specifies the location of a breakpoint that you want to remove. The 
address must be on a halfword boundary. 

If no address is specified, all breakpoints are removed. Address can 
be: 

• An absolute address 
• A symbolic address 
• A relative address 
• An indirect address 
• An address expression 
• A module-name and entry-name (separated by a period) 
• An entry-name (preceded by a period) 

address 

specifies a range of addresses. All breakpoints in the range of 
addresses will be removed. See the description of address for a 
list of valid address types. 

(address-Ust) 
specifies the location of several breakpoints that you want to 
remove. See the description of address for a list of valid address 
types. 

Note: The list must be in parentheses with address separated by one or 
more blanks or a conima. 

Example 1 

Operation: Remove all breakpoints in a section of the program. 

Known: 

The beginning and ending addresses of the section: LOOPC EXITC 

off loopc:exitc 

Example 2 

Operation: Remove several breakpoints located at different positions. 

Known: 

The addresses of the breakpoints: COUNTRA +2c 3r% 

off (countra +2c 3r%) 

Example 3 

Operation: Remove all breakpoints in a program. 

off 

OFF Subcommand of TEST 311 



312 TSO Command Language ~eference 

Example 4 

Operation: Remove one (1) breakpoint. 

Known: 

The address of the breakpoint is in ~gister 6. 

off 6d 



OR Subcommand of TEST 

Use the OR subcommand to logical OR data or addresses from one virtual 
storage address to another, from one general register to another, from a 
register to virtual storage, or from virtual storage to a register. 

The OR subcommand can be used to: 

• Alter the contents of the general registers. 
• OR an entire data field with another. 

OR address address 2 

[LENGTH (intxger)] 

[ POINTER J 
NOPOINTER 

addressl 
specifies the location of data that will be ORed with data pointed to 
byaddress2 

Note: If you do not specify POINTER and there is a breakpoint in 
the data pointed to by address I, the TSO TEST processor 
terminates the OR operation .. 

address2 
specifies the location of the data that will be ORed with data pointed 
to by addressl. When the OR operation is complete, the result is 
stored at this location. 

Address 1 and address 2 can be: 

• An absolute address 
• A symbolic address 
• A relative address 
• An indirect address 
• An address expression 
• A module-name and entry-name (separated by a period) 
• A general register 
• An entry name (preceded by a period) 

LENGTH(integer) 
specifies the length, in decimal, of the field to be copied. If an 
integer is not specified, LENGTH will default to 4 bytes. The 
maximum length is 256 bytes. 

POINTER 
specifies that address 1 will be validity checked to see that it does not 
exceed maximum virtual storage size and will then be treated as an 
immediate operand (hexadecimal literal) with a maximum length of 4 
bytes (that is, an address will be converted to its hexadecimal 
equivalent). When using the POINTER keyword, do pot specify a 
general register as addressl. 

OR Sabcommand of TEST 313 



314 TSO Command Language Rererence 

NOPOINTER 
specifies that address 1 will be treated as an address. If neither 
POINTER nor NOPOINTER is specified, NOPOINTER is the 
default. 

Note: The OR subcommand treats the 16 general registers as contiguous 
fields. The user can OR 10 bytes from general register 0 to another 
location as follows: 

or Or 80060. 1ength(10) 

The OR subcommand will OR the 4 bytes of register 0, the 4 bytes of 
register 1 and the high order 2 bytes of register 2 to virtual storage 
beginning at location 80060. When a register is specified as addressl, the 
maximum length of data that will be ORed is the total length of the general 
registers, or 64 bytes. 

Example 1 

Operation: OR two fullwords of data, each in a virtual storage location, 
placing the result in the second location. 

Known: 

The starting address of the data: 80680 
The starting address of where the data is to be: 80690 

or 80680. 80690. 1ength(8) 

Example 1 

Operation: OR the contents of the two registers, placing the result in the 
second register specified. 

Known: 

The register which contains data specified as the first operand: 10 
The register which contains data specified as the second operand and 
the result: 5 

or 10r Sr 

Example 3 

Operation: Tum on the high-order bit of a register. 

Known: 

The OR value: X'80' 
The register: 1 

OR 80. 1r 1(1) pointer 

Note: Specifying the pointer operand causes 80 to be treated as an 
immediate operand· and not as an address. 



Example 4 

Operation: OR the contents of an area pointed to by a register into 
another area. 

Known: 

The register which points to the area that contains the data to be 
ORed: 14 

The virtual storage location which contains the second operand and 
result: 80680 

The length of the data to be ORed: 8 bytes 

or 14r~ 80680. 1(8) 

OR Subcommand of TEST 315 



PROFILE Subcommand of TEST 

Use the PROFILE subcommand to establish, change, or list the user 
profile. Refer to the PROFILE command for a description of the syntax 
and function of the PROFILE subcommand. 

PROFILE Subcommand of TEST 317 



PROTECT Subcommand of TEST 

Use the PROTECT subcommand to prevent unauthorized access to a 
non-VSAM data set. Refer to the PROTECT command for a description 
of the syntax and function of the PROTECT subcommand. 

PROTECI'SvhoommqndorTEST 319 



QUALIFY Subcommand of TEST 

Use the QUALIFY subcommand to qualify symbolic and relative addresses; 
that is, to establish the starting or base location to which displacements are 
added so that an absolute address is obtained. The QUALIFY 
subcommand allows you to specify uniquely which program and which csect 
within that program you intend to test using symbolic and relative 
addresses. 

Alternately, you can specify an address to be used as the base location only 
for subsequent relative addresses. Each time you use the QUALIFY 
subcommand, previous qualifications are voided. Automatic qualification 
overrides previous qualifications via the QUALIFY subcommand. See·the 
subsection titled "Qualified Addresses" at the beginning of this section for 
a more detailed description of qualified addresses. 

Symbols that were established by the EQUATE subcommand before you 
enter QUALIFY are not affected by the QUALIFY subcommand. 

{ gUALIFY} { address } 
module-name[.entryname] [TCB(address)] 

address 
specifies the base location to be used in determining the absolute 
address for relative addresses only. It does not affect symbolic 
addressing. Address can be: 

• An absolute address 

• A symbolic address 

• A relative address 

• An indirect address 

• An address expression 

• A module-name and entry-name (separated by a period) 

• An en~-name (preceded by a period) 

module-name .entryDame)[TCB (address) 
specifies the name by which a load module is known, and optionally 
an externally referable name within a module. If only a module is 
specified, the first entry point in the module will be supplied. 

TCB(address) 
specifies the address of a task control block (TCB). This operand is 
necessary when programs of the same name are assigned to two or 
more subtasks and you must establish uniquely which one is to be 
qualified. 

Note: When using the QUALIFY and WHERE (with relative addressing) 
command combination for routines such as user exit routines and validity 
check routines, the load module or CSECT indicated may differ from the 
one that was qualified. This is due to system control processing of 
automatic qualification. 

QUALIFY Subcommand of TEST 3:zJ 



311 TSO Command Lauguage Reference 

Example 1 

Operation: Establish the absolute address 5F820 as a base location for 
relative addressing. 

qualify 5f820. 

Note: This is useful in referring to relative addresses (offsets) within a 
control block or data area. 

Example 1 

Operation: Establish a base location for resolving relative addresses. 

Known: 

The module name is BILLS. 

qualify bills 

Example 3 

Operation: Establish an address as a base location for resolving relative 
addresses. 

Known: 

The address is 8 bytes past the address in register 7. 

q 7r%+8 

Example 4 

Operation: Establish a base location for relative addresses to a symbol 
within the currently qualified program. 

Known: 

The base address: QSTART 

qualify qstart 

Example 5 

Operation: Establish a symbol as a base location for resolving relative 
addresses. 

Known: 

The module name is MEMBERS 
The CSECT name is BILLS. 
The symbol is NAMES. 

qualify members.bills.names 

Example 6 

Operation: Defme the base location for relative and symbolic addressing. 

Known: 

The base location is the address of a program named OUTPUT. 

q output 



Example 7 

Operation: Change the currently qualified module and CSECT. This 
means defining the base location for relative and symbolic addresses to a 
new program. The module can be a unique name under any task, or a 
module under the current task (where there is another one by the same 
name under a different task, the module under the current task would be 
used). 

Known: 

The module name is PROFITS. 
The CSECT name is SALES. 

qualify profits.sales 

Example 8 

Operation: Change the base location for symbolic and relative addresses to 
a module that has an identical name as another module under a different 
task. 

Known: 

The module name is SALESRPT. 

The desired module is the one under the task represented by the TCB 
whose address is in general register S. 

q salesrpt tcb(5r%) 

QUALIFY Subcommand or TEST 313 



RENAME Subcommand of TEST 

Use the RENAME subcommand to'change the name of a non-VSAM 
cataloged data set or a member of a PDS, or to create an alias for a 
member of a partitioned data set. Refer to the RENAME command for 
the description of the syntax and function of the RENAME subcommand. 

RENAME Subcommand of TEST 315 



RUN Subcommand of TEST 

Use the RUN subcommand to cause the program that is being tested to 
execute to termination without recognizing any breakpoints. When you 
specify this subcommand, TEST is terminated. When the program 
completes, you can enter another command. Overlay programs are not 
supported by the RUN subcommand. Use the GO subcommand to execute 
overlay programs. 

[address] 

[
(24) ] 
(31) 
(SWITCH) 

address 
execution begins at the specified address. If you do not specify an 
address, execution begins at the last point of interruption or at the 
entry point if the GO or CALL subcommand was not previously 
specified. 

Address can be: 

• An absolute address 

• A symbolic address 

• A relative address 

• An indirect address 

• An address expression 

• A module-name and entry-name (separated by a period) 

AM9~E [rL:T ~ by • ~riod) 

Notes: 

specifies the addressing mode in which program execution resumes 
after the RUN subcommand has been issued. You may specify 
AMODE with RUN even if the address is not given. However,if 
amode or any abbreviation of amode is defined as a symbolic 
address, it should not be specified with RUN if your intention is to 
start execution at the address pointed to by amode. If RUN amode 
is specified, program execution starts at the last breakpoint and the 
SWITCH default is taken. If AMODE (SWITCH) is specified, 
program execution resumes in the addressing mode which was 
noncurrent when RUN was issued. (The current addressing mode can 
be determined by issuing the LISTPSW command.) 

1. If you do not specify AMODE, there is no change in addressing mode. 

2. If you specify RUN with no operands, the program being test~ is 
restarted at the next executable instruction. However, if the tested 
program abends in an address space other than home, the home and 
primary ASIDs are different, and the instruction address in the PSW 

RUN Subcommand or TEST 327 



318 TSO Command Lauguage Reference 

refers to an address space which TEST cannot access. Therefore, do 
not specify RUN without operands after such an abend. 

Example 1 

Operation: Execute the program to termination from the last point of 
interruption. 

run 

Example 2 

Operation: Execute a program to termination from a specific address. 

KnoWn: 

The address: + A8 

run +a8 



SEND Subcommand of TEST 

Use the SEND subcommand to send a message to another terminal user or 
to the system operator. Refer to the. SEND command for a description of 
the syntax and function of the SEND subcommand. 

SEND Subcommand of TEST 329 



STATUS Subcommand of TEST 

Use the STATUS subcommand to display the status of conventional batch 
jobs at the terminal. Refer to the STATUS command for a description of 
the syntax and function of the STATUS subcommand. 

STA1USSubcommandofTFSl' 331 



SUBMIT Subcommand of TEST 

Use the SUBMIT subcommand to submit one or more batch jobs for 
processing under TEST. Refer to the SUBMIT command for a description 
of the syntax and function of the SUBMIT subcommand. 

SUBMIT Subcommand of TEST 333 



TERMINAL Subcommand of TEST 

Use the TERMINAL subcommand to define the operating characteristics 
for the type of terminal being used. Refer to the TERMINAL command 
for a description of the syntax and function of the TERMINAL 
subcommand. 

TERMINAL Subcommand of TEST 335 



UNALLOC Subcommand of TEST 

Use the UNALLOC subcommand to release (deallocate) previously 
allocated data sets which are not longer needed. UNALLOC is issued 
instead of FREE under TEST; the syntax and operands are identical. 

uNALLOC Subcommand of TEST 337 



WHERE Subcommand of TEST 

Use the WHERE subcommand to obtain an absolute address, the name of 
a module and CSECT, a relative offset within the CSECT, and the address 
of the TCB for the specified address. You may also use the WHERE 
subcommand to obtain the absolute address serving as the starting or base 
location for the symbolic and relative addresses in the program. 
Alternately, you can obtain the absolute address of an entry point in a 
particular module or control section (CSECT). If you do not specify any 
operands for the WHERE subcommand, you will receive the address of the 
next executable instruction, the related load module and CSECT names, 
and the hexadecimal offset. 

Note: After an abend outside the home address space, do not specify 
WHERE without operands. The home and primary ASIDs are different 
after an abend, resulting in an instruction address which TEST cannot 
access. 

{ address } 
module-name 

address 
Address can be: 

• An absolute address 
• A symbolic address 
• A relative address 
• An indirect address 
• An address expression 
• A module-name and entry-name (separated by a period) 
• An entry-name (preceded by a period) 

If you specify WHERE without an address, the address of the next 
executable instruction, the related load module and CSECT names, 
and the hexadecimal offset are displayed. 

module-name 
specifies the name by which a load module is known or the name of 
an object module. The output of the WHERE subcommand is the 
module name, the CSECT name, the offset within the CSECT, the 
absolute address, and the address of the TCB. If only the module 
name was specified, the only output will be the absolute address of 
the module and the address of the TCB for the task under which the 
module was found. 

If the specified address is not within the extent of any user program, 
only the absolute address is returned. (Along with the absolute 
address a message will be returned stating that the specified address 
is not within the program extent.) If no operands are specified, the 
absolute address returned is the address of the next executable 
instruction. 

WHERE Subeommand of TEST 339 



340 TSO Command LaDgaage Ref_ 

Example 1 

Operation: Determine the absolute address of the next executable 
instruction. 

where 

Example Z 

Operation: Determine in which module an absolute address is located. 

Known: 

The absolute address: 3E2D8 

where 3e2b8. 

Example 3 

Operation: Obtain absolute address of +2c4. 
w +2c4 

Note: An unqualified relative address is calculated from the currently 
qualified address (as specified via the QUALIFY command or the current 
module and CSECT, if no other qualification exists). The module name, 
CSECT name and TCB address are also obtained along with the absolute 
address. 

Example 4 

Operation: Obtain offset of the symbol SALES in the current program. 

where sales 

Note: The module name, CSECT name, absolute address, and the TCD 
address are returned along with the offset of SALES. 

Example 5 

Operation: Determine in which module the address in register 7 is located. 

w7d 

Note: The offset, absolute address, and the TCD address are also returned 
with the module name. 

Example' 

Operation: Obtain the virtual address of the module named CSTART. 

where cstart 

Eumple 7 

Operation Obtain the virtual address of the CSECT named JULY in the 
module named NETSALES. 

where netsales.july 



ExampleS 

Operation: Determine the relative address of symbol COMPARE in the 
module named CALCULAT and CSECT named AVERAGE. 

w calculat.average.compare 

Note: The absolute address and TCD address are also returned with the 
relative address. 

Example 9 

Operation: Determine the virtual address of + 1 CA. 

Known: 

The CSECT is MARCH. 
The module is GETDATA. 

where getdata.march.+1ca 

Note: You will also get the TCD address with the virtual address .. 

Example 10 

Operation: Obtain the absolute address for relative address +2C in 
CSECT named PRINTIT within the currently qualified module. 

where .printit.+2C 

WHERE Subcommand of TEST 341 



TIME Command 

Use the TIME command to obtain the fonowing informatiQn: 

• Cumulative CPU time (from LOGON) 

• Cumulative session time (from LOGON) 

• Service units used 

where service units can be: 

CPU Serrice Units - The task execution time, divided by an SRM 
constant, that is CPU model-dependent. 

I/O Serrice Uolts - The sum of individual SMF data set activity 
EXCP counts for all data sets associated with the address space. 

Storage Senlce Units - The number of real page frames multiplied by 
CPU service units, multiplied by .02. The ~ .02 is a scaling 
factor designed to bring the storage service component in line with the 
CPU component. 

• Local time of day 

where "local time of day" refers to the time of execution for this 
command. It is displayed in the fonowing manner: 

local time of day in hours (HH), 
minutes(MM), and seconds (SS), 
(am or pm is also displayed) 

• Today's date 

To enter the command while a program is executing, you must first cause 
an attention interruption. The TIME command has no effect upon the 
executing. program. 

TIME 

11ME Command 343 



TSO IE Interactive Data Transmission Facility 

This section describes the functions and syntax of the TSO Interactive Data 
Transmission facility commands. The interactive data transmission facility 
includes a TRANSMIT command and a RECEIVE command that ease the 
transmission of data among nodes in an MVS network. The data that you 
TRANSMIT or RECEIVE can be either a message that you enter at the 
terminal, an existing data set, or both. 

The interactive data transmission facility lets you use nicknames and 
distribution list names in place of specific node and userid specifications 
with the TRANSMIT and RECEIVE commands. The interactive data 
transmission facility lets you control the mode of command operation with 
a data set called the NAMES data set. The NAMES data set has a 
CONTROL section and a NICKNAMES section. The CONTROL section 
contains information used to control the overall operation of the 
TRANSMIT and RECEIVE commands. The NICKNAMES section lets 
you define nicknames for specific node and userids, logging defaults for 
individual addressees, and distribution lists. 

If your transmitted messages have a standard opening or closing the 
interactive data transmission facility lets you define a prolog and epilog in 
the NAMES data set, which will automatically be added to your transmitted 
messages. 

If your transmitted messages are sent to several people, you can have a list 
of all the userids and their nodeids appended to the top of your message 
prior to the text of the message. This list is called a copylist and people 
who RECEIVE your message can use the list as a reference. 

The TRANSMIT and RECEIVE commands support encryption using the 
MVS Programmed Cryptographic Unit Support Program (Program 
5740-AM8). If you have this option installed and encryption is allowed by 
your installation, TRANSMIT will, as required, invoke the Access Method 
Services. REPRO command to encrypt data sets before they are transmitted. 
If this is done, messages and control information are sent without 
encryption, but the data is encrypted. 

Not only will this facility enable you to TRANSMIT and RECEIVE data 
sets and messages, but it will also record your transmission and reception 
activities in a LOG data set. This LOG data set then gives you a record of 
what you sent to whom, where, when, and whether or not they received it 
successfully. 

Once information is transmitted to someone, that person must issue a 
RECEIVE to get the information. RECEIVE allows you to receive 
anything that TRANSMIT can transmit. The data that you RECEIVE may 
be simple messages, new data sets, or replacements for old data sets. 

If either TRANSMIT or RECEIVE fail to accomplish the task that you 
assign it, the interactive data transmission facility lets you use the HELP 
command to help you correct your problem. 

TSO/E Interacdve Data Transmission Facility 345 



TRANSMIT Command 

The TRANSMIT command allows you to send information (a message), or 
a copy of information (a data set), or both, from one user to another. The 
TRANSMIT command converts this data into a special format so that it 
can be transmitted to other users in the network. The RECEIVE command 
is used to retrieve the data and restore it to its original format. You can 
use the TRANSMIT command to transmit sequential or partitioned data 
sets with record formats of F, FS, PB, PBS, V, VB, VBS, and U. Data 
sets with machine and ASA print-control characters are also supported. 
The facility does not support data sets with keys, ISAM data sets, and 
VSAM data sets, or user labels. 

H a PDS is transmitted, it is unloaded with IEBCOPY and then the 
unloaded version is transmitted. H a single member of a PDS is 
transmitted, it is generally unloaded before transmission. You can force 
transmission of a PDS as a sequential data set by using the SEQUENTIAL 
operand. Forced transmission of a PDS as a sequential data set does not 
preserve the directory information. The IEBCOPY unload preserves 
directory information, but means that the receiver must reload it into a 
PDS. 

H you specify MESSAGE when you transmit data, the TRANSMIT 
command will prompt you for messages that will accompany the data. 
These messages will be shown to the receiving user when the RECEIVE 
command is issued. The messages will be shown to the user before he is 
prompted to indicate what to do with the data. The messages may be 
entered in either full screen mode or single line mode. For full screen 
mode, scrolling is controlled by PF keys 7 or 19, and 8 or 20, and 
termination by PF key 3 or 15. For single line mode, messages are 
terminated by either a null line or the string value specified in LINE(nn). 
Note: Full screen mode is the default for 3270 terminals capable of 
supporting a minimum screen size of 24 rows by 80 columns. 

Transmitting ~ message that you enter from the terminal is the simplest 
form of the TRANSMIT command. You specify "TRANSMIT 
addressee-list" and TRANSMIT defaults to terminal input. Messages sent 
in this manner cannot be saved in a data set, but will always be saved in 
the LOG data set. 

The transmitted data may be enciphered by specifying the ENCIPHER 
keyword. The TRANSMIT command will prompt for encipher options, 
which will be passed to the Access Method Services REPRO command. 

TRANSMIT Command 347 



348 TSO Command Language Reference 

The format of the TSO TRANSMIT command is: 

TRANSMIT 

(addresseeUst) 

[{ {Di;~~~;(~:~~iS}t) DDNAME (ddname) 
TERMINAL 

[ MESSAGE 
MSG 

[ COPYLIST ] 
NOCOPYLIST 
[ENCIPHER] 

[ EPILOG ] 
NOEPILOG 

[
FULLSCREEN] 
LINE 
LINE (nn) 

[ ~~OG ] 
LOG (ALL) 
[LOGNAME (name) ] 
[MEMBERS(memberlist)] 

[:gii~~ (ALL)] 
NONOTIFY 
[PARM(parameters)] 

[~~~UENTIAL ] 
rPROLOG J 
LNOPROLOG 

rDSNAME(dsn) ]l] 
LFILE(ddname) f 

[SYSOUT(sysoutclass or *») 

specifies the information identifying the target user(s). It may be one 
of or a combination of the following: a node and userid specified as 
"node.userid" or "node/userid," a nickname, or a distribution list 
name. See 'NAME DATA SET Function' for more information on 
nicknames and distribution lists. 

DATASET/DSNAME 
specifies the name of the data set to be transmitted. 

DDNAME/FILE 
specifies the 1 to 8 character ddname of a preallocated file to be 
transmitted. 

TERMINAL 
specifies that data input is to be taken from the terminal. You will 
be prompted to enter data to be transmitted either in line mode or in 
full screen mode as specified by the LINE or FULLSCREEN 
keyword. 

MESSAGE 
specifies that you are to be prompted for messages that will 
accompany a transmitted data set. The prompt will be either in full 
screen mode or in line mode, depending on the terminal type and the 
specification of FULLSCREEN or LINE. 

Note: H both TERMINAL and MESSAGE are specified, you will be 
prompted twice for the data. 



COPYLIST 
specifies that TRANSMIT should build a list of the specified 
addressees and append it as a prolog to the message. If a data set is 
being transmitted, the copylist will be added as an accompanying 
message. IT a message is being transmitted, the copylist will prefix 
the message text. 

NOCOPYLIST 
specifies that no copylist will be generated or appended. This 
parameter is the default. 

ENCIPHER 
specifies that TRANSMIT should encipher the data by invoking the 
Access Method Services REPRO command. The TRANSMIT 
command will prompt further for ENCIPHER options to be passed 
with the REPRO command. 

EPILOG 
specifies that TRANSMIT should include epilog lines from the 
NAMES data set if a terminal message is transmitted. An EPILOG 
will always be added unless you either 'type in NOEPILOG or have 
no EPILOG in your NAMES data set. This parameter is the default. 

NOEPILOG 
specifies that no EPILOG lines should be included. 

FULLSCREEN 
requests that all terminal input for messages or data be read in full 
screen mode. This is the default for 3270 terminals capable of 
supporting a minimum screen size of 24 rows by 80 columns. 

LINE/LINE(nn) 

LOG 

requests that terminal input for messages and data be read in single 
line mode. This is the default for non-3270 terminals. It may also 
be used to allow a CLIST to provide messages or data. To terminate 
message input, enter a null line or the one or two character string 
value LINE(nn). Entering the LINE(nn) option will allow you to 
insert blank lines into the text. 

specifies that the transmission be recorded in the LOG data set. 
LOG does not necessarily indicate that the log entry will contain a 
line for every addressee except for "node.userid" addressees. The 
LOG/NOLOG/LOGLST tags in the nicknames section of the 
NAMES data set or the LOG/NOLOG tags in the control section of 
the NAMES data set will determine whether the log entry will 
contain addressee entries for a nickname or distribution list. Only 
one log entry will be built in the default log file per transaction. 
LOG is the default parameter unless NOLOG is specified. See 
'LOGGING Function of TRANSMIT and RECEIVE'. 

NOLOG 
specifies that the transmission not be recorded in the LOG data set. 
NOLOG overrides all LOG/LOGLST tags in the NAMES data set. 

LOG(ALL) 
specifies that the log entry contain a line for each addressee, 
including these derived from any distribution lists on the NAMES 
data set. This specification overrides the NOLOG/NOLOGLST tags 
in the NAMES data set. 

TRANSMIT Command 349 



350 1'80 Command Language Reference 

LOGNAME(name) 
specifies that for this execution of the TRANSMIT command the 
"name"· specified will be used as the LOGNAME qualifier on the log 
data set name. See 'LOGGING Function of TRANSMIT and 
RECEIVE'. 

MEMBERS(memberlist) 
a list of members to be transmitted from the specified partitioned 
data set. 

NOTIFY 
specifies that the sender be notified when the data is received. 
NOTIFY does not necessarily guarantee that notification will be 
requested except for "node.userid" addressees. For nicknames and 
distribution lists, control of notification is determined by the 
:NOTIFY or :NONOTIFY tag in the nickname section of the 
NAMES data set. 

NOTIFY(ALL) 
Requests that the sender be notified when the data is RECEIVED by 
all addressees. This specification overrides the :NOTIFY or 
:NONOTIFY tags in nicknames entries of the NAMES data set or 
distribution lists. 

NONOTIFY 
Suppresses the notify function. This stops the notify function 
completely, overriding any specification in the NAMES data set or in 
the distribution lists. 

PARM(parameter string) 

PDS 

You may be instructed by your installation to use this operand to 
specify installation dependent data. 

specifies that a member or members of a partitioned data set (PDS) 
be unloaded" before transmission. This preserves the directory 
information but forces the receiving user to restore the member(s) 
into a PDS. PDS is assumed unless SEQUENTIAL is specified. 

SEQUENTIAL 
specifies that a member of a PDS, or a sequential data set be sent as 
a sequential data set. This does not preserve directory information, 
but allows the receiving user to restore it either as a sequential data 
set or a member of a PDS. 

PROLOG 
specifies that TRANSMIT should include prolog lines from the 
control section of the NAMES data set if a terminal message is 
transmitted. PROLOG is the default and is assumed unless 
NOPROLOG is specified. 

NOPROLOG 
specifies that no prolog lines should be included. 

SYSOUT(outputelass) 
specifies the SYSOUT class to be used for messages from utility 
programs used by TRANSMIT (for example mBCOPY). If '.' is 
specified, utility program messa,ges are directed to the terminal. The 
default for this parameter is usually'·', but the installation may 
modify it. 



RECEIVE Command 

Use the RECEIVE command to retrieve transmitted files and to restore 
them to their original format. 

The RECEIVE command picks the first file that has been transmitted to 
you, displays descriptive information about the file, and then the RECEIVE 
command prompts you for information to control the restore operation. 
You may choose to accept the default data set name (the original data set 
name with the high level qualifier changed to the receiving userid) and 
space information or you may override any of these defaults. The 
RECEIVE command will create the data set if it does not exist. You may 
specify a disposition (OLD, SHR, MOD, or NEW) to force a particular 
mode of operation. If the data set is successfully restored, the RECEIVE 
command continues with the next file. If requested by the sender, the 
RECEIVE command generates a notification of receipt and transmits it 
back to the sender. This return message contains routing and origin 
information, the name of the data set transmitted, the original transmission 
sequence number, and an indicator of whether the receive was successful. 
If an error occurred, the message number of the error is included. 

Note: Receipt notification is the default for any addressee entered 
individually on the TRANSMIT command, but not for addressees derived 
from distribution lists. If you wish to be notified for addressees on 
distribution lists, you must have specified :NOTIFY on the distribution list 
in the control data set or specify NOTIFY(ALL) on the TRANSMIT 
command. 

RECEIVE cannot generally reformat data sets. The data set into which 
received data is to be written must have the same record format as the 
original data set. The record length must be compatible (equal for fixed 
length records and equal or longer for variable length records). The block 
size of the received data set may be any value that is compatible with the 
record length and record format. If a mismatch is found in record length, 
block size, or record format, the RECEIVE command terminates with 
appropriate error messages and return codes. 

The RECEIVE command warns you if you are receiving a data set that 
was RACF or PASSWORD protected. It takes no further action to protect 
newly restored data. If you are using the automatic data set protection 
feature of RACF, then the data set is protected. Otherwise, you should use 
the PROTECT command or the ADDSD RACF command to protect the 
data. 

If the RECEIVE command detects that TRANSMIT enciphered the 
incoming file, it automatically attempts to decipher the data. To do this, it 
will prompt you for decipher options and then build these into an Access 
Method Services REPRO command. 

The RECEIVE command will log all transmissions. (See 'LOGGING 
Function of TRANSMIT and RECEIVE'.) 

The format of the RECEIVE command is: 

RECEIVE [PARM(parameter string)] 

RECEIVE Command 351 



352 TSO Command Lllnguage Reference 

P ARM(parameter string) 
You may be instructed by your installation to use this operand to 
specify installation dependent data. 

After describing each file, the RECEIVE command prompts for 
overriding parameters. These parameters are all optional and control 
the restoring of the data set. Parameters not specified are allowed to 
default or are taken from information transmitted with the data. 
Parameters that may be specified are: 

[~DATASET (dSn)}~ 
[ DSNAME(dsn) 

UNIT(unitname ] 
(VOLUME (volser)] 
[SPACE(primary secondary)] 

r{ ~~i~~ERS }] 
L' BLOCKS (size) 

[RELEASE] 
[DIRECTORY(blocks)] 

[[~~~]SIZE (size) 1 

MOD 
SHR" 

(SYSOUT(sysoutclass or *)1 

[ PREVIEW ] 
NOPREVIEW 

[{~~~g~ (LOG )}] 
DELETE 
END 

Default values for other keywords are specified with the keyword 
below. 

DATASET/DSNAME 

UNIT 

specifies the name of the data set to be used to contain the received 
data set. It will be created if it does not already exist. 

If DATASET and DSNAME are omitted, then RECEIVE will use 
the name of the transmitted data set, with the high level qualifier 
changed to the userid of the receiving user. If this data set already 
exists, is a sequential data set, and disposition 
(SHR/MOD/OLD/NEW) was not specified, RECEIVE will prompt 
you for permission to overwrite the data set. If the data set is 
partitioned, you will be prompted to replace like name members. 

specifies a unit name for a new output data set. The default value for 
UNIT is your normal TSO unitname. 

VOLUME 
specifies a specific volume serial number for a new output data set. 
The default value for VOLUME is no value, allowing the system to 
select a volume from those defined by your unitname specified on 
the UNIT keyword. 



SPACE 
specifies primary and secondary space for the received data set. The 
default value for SPACE is a primary size equal to the size of the 
incoming data and a secondary size of approximately 2 1/2 percent 
of the primary. 

TRACKS 
specifies space to be allocated in tracks. 

CYLINDERS 
specifies space to be allocated in cylinders. 

BLOCKS 
specifies space to be allocated in blocks of the specified size. 

RELEASE 
specifies unused space to be released when the receive operation is 
complete. 

DlREcrORY 
specifies an override for the number of directory blocks in a 
partitioned data set. The default value for DIRECfORY is the 
number of directory blocks required for the received members. 
NOTE: If a sequential data set is being received into a new PDS by 
specifying DA(X(MEM» and DIRECTORY is not specified, the 
default value for directory blocks is 27. 

BLKSIZE 
specifies a value for the block size of the output data set. This value 
will be used if it does not conflict with the received data set 
parameters or device characteristics. 

NEW /OLD/MOD/SHR 
specifies the data set disposition. If you do not specify one of the 
disposition keywords and the SPACE value is not present, RECEIVE 
will first try disposition OLD and attempt to allocate an existing data 
set. If this fails, disposition NEW is used, space values are added, 
and another attempt is made at allocation. 

SYSOUT(sysoutciass or *) 
specifies a SYSOUT class to be used for messages from utility 
programs the RECEIVE command invokes (such as mBCOPY). If 
'.' is specified, these messages are directed to the terminal. The 
default for SYSOUT is normally'·', but this may be changed by the 
installation. 

PREVIEW 
specifies that the received data should be displayed at the terminal as 
it is stored. This is generally appropriate only for sequential data sets 
because what is displayed is the result of the rU'St pass at restoring 
the data. For partitioned data sets, the mBCOPY unloaded format is 
displayed. 

NOPREVIEW 
specifies that no previewing is to be done. 

RESTORE 
specifies that the transmitted data should be restored to its original 
format. 

RECEIVE COIIIIIIIIIId 353 



RESTORE(LOG) 
specifies that the transmitted data should be restored to its original 
format and written to the appropriate log. It will also be 
"previewed" to the terminal, but it will not be written to another 
data set. The OAT ASET or OSNAME parameter may not be 
specified with RESTORE(LOG). This operand would be used 
primarily to RECEIVE a message and log the message text in the log 
entry. 

DELETE 

END 

specifies that the file be deleted without restoring it. 

specifies that the RECEIVE command terminate immediately, leaving 
the current data set on the spool to be reprocessed at a later time. 

NAMES DATA SET FUNCTION 

354 TSO ColllJlllUid Language Reference 

The TRANSMIT command allows several different specifications of a list 
of addressees. The simplest is a single addressee whose node name and 
userid are specified explicitly. The next level is the nickname specification. 
The nickname is a 1 to 8 character name that is a synonym for the node 
and userid. The TRANSMIT and RECEIVE commands find the actual 
node and userid by looking up the nickname in tables provided in the 
NAMES data set. The final level of addressing is a distribution list. A 
definition in the NAMES data set identifies a distribution list name. The 
named list may reference any number of node.userid's, nicknames, or other 
distribution lists. 

Each user of the TRANSMIT and RECEIVE commands may have one or 
more NAMES data sets that he uses to resolve nicknames and establish the 
default mode of operation. In the absence of any explicit installation 
specification, the name of the first of these data sets is 
'userid.NAMES.TEXT'. The first data set contains the names of any other 
NAMES data sets. The data set may be either fixed or varying length 
records, although using varying length records will save disk space. The 
records may be numbered according to standard TSO conventions, or they 
may be unnumbered. The data set may be blocked or unblocked with any 
record length less than or equal to 255. 

The data set is composed of two sections, called the control section and the 
nicknames section. The control section must precede the nicknames 
section; and the control section ends at the first :nick tag. The control 
section is used to set defaults for LOG/NOLOG and NOTIFY / 
NONOTIFY, set prolog or epilog lines, set the default log data set name, 
and identify other names data sets that are used. 

The nicknames section contains one entry for each nickname and 
distribution list name that you wish to define. 



Control &ctIon Tap 

TAG DEFINITIONS 

The beginning of the NAMES data set is used to control certain operations 
of the TRANSMIT and RECEIVE commands. Any or all of the following 
tags may be present. 

:ALTCIL. names-flle-dataset-name 

:EPn.oG. epilog line 

:PROLOG. prolog line 

:LOGNAME. log-dataset-last-qualifier 

:LOGSBL. log-dataset-middle-qualifrer 

:LOG or :NOLOG 

:NOTIFY or :NONOTIFY 

REQUIR.ED - None 

DEFAULT - :Iog. :notify. 

:ALTCl'Ldsname 
The :ACTCIL tag specifres the fully qualified flle name of another 
flle to be used in the nickname lookup process. If TRANSMIT finds 
more than one :ALTCIL tag, TRANSMIT uses the order of the 
:ALTCIL tags to scan the flies. A maximum of ten :ALTCTL tags 
can be specified. All control section tags, the :LOG and :NOLOG 
tags, the :LOGNAME tag, and the :NOTIFY and :NONOTIFY tags 
are always ignored when read from the alternate NAMES data set. 

:EPILOG.text 
The :BPILOG tag is used in the control section to specify a text line 
to be appended at the end of any transmitted message. The 
maximum length of an epilog line is 72 characters. Up to ten 
:EPn.oG lines may be specified. If more than one :EPn.oG record 
is found, records will appear in the message in the same order as 
they are in the file. Text data for the :EPn.oG tag should be in the 
same line as the :EPn.oG tag. 

:PROLOG.text 
The :PROLOG tag is used in the control section to specify a text 
line to be inserted at the beginning of any transmitted message. The 
maximum length of an prolog line is 72 characters. Up to ten 
:PROLOG lines may be specified. If more than one :PROLOG 
record is found, records will appear in the message in the same order 
as they are in the file. Text data for the :PROLOG tag should be in 
the same line as the :PROLOO tag. 

:LOGNAME.name 
The :LOGNAMB tag may be used either in the control section or in 
a Qickname entry. The value specified in the control section serves 
as a default qualifier for the log data set name. If :LOGNAME is 
specified in a nickname entry, the value provided overrides the 
default set in the control section. (See 'LOGGING Function of 
.TRANSMIT and RECEIVE') 

RECEIVE Command 355 



356 TSO Commaad LaDpage Reference 

:LOGSEL.name 
The :LOGSEL tag is used in the control section to specify the 
second (middle) qualifier(s) of all log data sets. (See 'LOGGING 
Function of TRANSMIT and RECEIVE') 

:LOG/:NOLOG 
The :LOG and :NOLOG tags may be used in the control section or 
in a nickname entry. When used in the control section, the :LOG or 
:NOLOG tag controls logging for any addressee specified by node 
and userid, and also controls logging for any nickname that does not 
also specify :LOG or :NOLOG. If the nickname entry contains the 
:LOG or :NOLOG tag, this value overrides any value in the control 
section, but in turn may have been overridden by a specification on 
the TRANSMIT command. 

:NOTIFY /:NONOTIFY 
The :NOTIFY and :NONOTIFY tags may be used in the control 
section or in a nickname entry. When used in the control section, 
the :NOTIFY or :NONOTIFY tag controls notification for any 
addressee specified by node and userid, and for any nickname where 
the nickname entry does not contain :NOTIFY or :NONOTIFY. The 
value of :NOTIFY or :NONOTIFY in the NAMES data set may be 
overridden by a similar specification on the TRANSMIT command. 

The nicknames section is composed of tags and their values in the same 
manner as the controls section. The nicknames section is different from the 
controls section in that it is divided by the occUrrence of each :NICK tag 
and continues until the next :NICK tag (which starts the next definition.) 
Each nickname may be used as either a nickname of a single user or the 
name of a distributiC?n list. The :NODE and :USERID tags are present 
when nickname is used for a user definition; the :UST and/or :CC tags 
are present when nickname is used for distribution list definition. 

Note: Log and notify tags, except for :LOGLST and :NOLOGLST, may be 
used with either a userid definition or a distribution list definition. 

:NOTIFY :NONOTIFY 

:NICK. nickname 

, :NODE. nodename 

:USERID. userid 

:LOG :NOLOG 

:LOGLST /:NOLOGLST 

:NAME. usemame 

:ADDR.address 

:UST.name name-list 

:CC.name name-list 

REQUIRED - :nick, :userid 

DEFAULT - :node. youmode· 



TAG DEFINITIONS 

Notes: 

1. Each nickname entry must begin with the :NICK tag and the :NICK 
must be the first nonblank characters on the line. 

2. All tags can be all uppercase or all lowercase. 

:NOTIFY / :NONOTIFY 
The :NOTIFY and :NONOTIFY tags may be used in the control 
section or in a nickname entry. When used in the control section, 
the NOTIFY or NONOTIFY tag controls notification for any 
addressee specified by node and userid, and for any nickname where 
the nickname entry does not contain :NOTIFY or :NONOTIFY. The 
value of :NOTIFY or :NONOTIFY in the NAMES data set may be 
overridden by a similar specification on the TRANSMIT command. 

:NICK.name 
The :NICK tag is used to begin each nickname entry in the NAMES 
data set. It must be the first nonblank (except for line numbers) 
character of the record. The nickname is any string of nonblank 
alphanumeric characters 1- to 8-characters in length. 

:NODE.nodeid 
The :NODE tag is used within a nickname entry to specify a network 
node name for the nickname entry. If the :NODE tag is not present 
in a nickname entry, the local user's node name is assumed. 

:USERID.userid 
The : USERID tag specifies the userid of the user to be identified by 
the nickname. The: USERID tag may not be used with :LIST or 
:CC tags in the same nickname entry. 

:LOG/:NOLOG 
The :LOG and :NOLOG tags may be used in the control section or 
in a nickname entry. When used in the control section, the LOG or 
NOLOG tag controls logging for any addressee specified by node 
and userid and also controls logging for any nickname that does not 
also specify :LOG or :NOLOG. If the nickname entry contains the 
:LOG or :NOLOG tag, this value overrides any value in the control 
section, but in turn may have been overridden by a specification on 
the TRANSMIT command. 

:LOGLST /:NOLOGLST 
The :LOGLST or :NOLOGLST tag is used in a nickname entry that 
defines a distribution list. The tags indicate whether a log entry 
should be made for each addressee in the list (:LOGLST) or not 
(:NOLOGLST). 

:NAME.usemame 
The :NAME tag specifies the plain text name of the user being 
defined. This name will appear in the copylist and in any log entries 
for this nickname. The specified name value may be up to 30 
characters long. 

:ADDR.address 
The :ADDR tag is used in a nickname entry to specify the address of 
the specified user. Separate individual lines of the address by a 
semicolons. 

RECEIVE·Command 357 



:LIST.name name-Ust 
The :LIST tag is used in a nickname entry to specify a list of 
addressees that make up the distribution list. Each addressee 
specified may be either a nickname of the name or another 
distribution list. 

:CC.name name-Ust 
The :CG tag specifies further nicknames of addressees for a 
distribution list. It is treated as a synonym of the :L.ST tag. 

DATA ENCRYPTION Function of TRANSMIT and RECEIVE 
The TRANSMIT and RECEIVE commands support encryption using the 
Access Method Services Cryptographic Option (program S740-AM8). If 
you have this installed and your installation allows encryption, TRANSMIT 
will, as required, invoke Access Method Services REPRO command to 
encrypt data sets before they are transmitted. The TRANSMIT and 
RECEIVE commands prompt for encipher/decipher options and append 
whatever is entered as REPRO command suboperands of the ENCIPHER 
or DECIPHER keyword. 

LOGGING Function of TRANSMIT and RECEIVE 

358 TSO Command Language Referenee 

The TRANSMIT and RECEIVE functions will normally log each file 
transmitted and received. The TRANSMIT and RECEIVE commands 
create appropriate log data sets if they do not already exist. 

The name of the log data set is determined as follows: 

1. In the absence of any user or installation specification, the default log 
data set name is 'userid.LOG.MISC'. 

2. The qualifier "LOG" is called the log selector and may be changed by 
the :LOGSEL tag in the control section of the NAMES data set. This 
qualifier will be common for all log data sets belonging to any given 
user. 

3. The qualifier "MISC" is called the log name and may be overridden 
by the user specified LOGNAME operand on the TRANSMIT 
command, the :LOGNAME tag in the control section of the NAMES 
data set, or by the :LOGNAME tag in a nickname definition. 

Note: The log selector is used to define all of your log data sets under one 
name. The log name is used to identify each individual data set in the log 
data set. For example, you can list all of your log data sets by 
'userid.LOG'. This would give you a list of all of your log data sets with 
the individual log names. 

The log data sets will all have the DCB attributes LRECL=2SS, 
BLKSIZE=3120, and RECFM=VB. 

Note: With any given invocation of the TRANSMIT or RECEIVE 
command, logging can occur to more than one log data set depending upon 
the presence of the :LOGNAME tag on the nickname or distribution list 
entry in the NAMES data set. However, with any given invocation of the 
TRANSMIT or RECEIVE command, only one log entry will be written to 
anyone log data set. This log entry will then contain an addressee entry 
for each addressee being logged to that log data set. 



The first lines in each log entry will always be a line of hyphens and a 
descriptor line. The format of the descriptor line is: 

Column Usage 

1 - 8 
17 - 60 

63 -79 

Name of the command using the entry. 
Name of the data set transmitted or 
received. 
Time stamp from the command execution. 

For the TRANSMIT command log entries, subsequent lines will indicate 
the addressees to which the transmission was sent, the names of any 
members of a partitioned data set selected for transmission, and any 
messages entered with the TRANSMIT command. 

For the RECEIVE command log entries, the second log line always 
identifies the originator of the transmission. The originator of the 
transmission may be the issuer of the TRANSMIT command (in the case of 
a file or message receipt) or the issuer of the RECEIVE command (if the 
log entry is for notification). If the entry in the log is a file or a message 
receipt, the time stamp recorded is from the TRANSMIT command. If 
entry in the log was a notification, the time stamp is from the RECEIVE 
command. The format is: 

Column 

9 - 15 

17 - 24 
26 - 33 
35 - 61 
63 -79 

Usage 

Nickname of the originating user or 
blanks. 
Node name of the originating user. 
Userid of the originating user. 
Name of the originating user, or blank. 
Time stamp from the originating 
command. 

For RECEIVE command notification entries, the third log line identifies 
the original transmission. The data set name and time stamp on this line 
are those from the original transmission. The format of this line is: 

Column 

4 - 15 

17 - 60 

63 -79 

Usage 

Error code from RECEIVE. "STORED" 
indicates that the RECEIVED operation 
was successful. 
Data set name from the TRANSMIT 
command. 
l1D1e stamp from the TRANSMIT command. 

RECEIVE Command 359 



3C50 TSO Command Language Reference 

EXAMPLES 

In the following examples, the transmitting user is assumed to have userid 
USERl on node NODEA and the receiving user is assumed to have userid 
USER2 on node NODEB. The sending user has a NAMES data set as 
follows: 

* Control section 
:altctl.DEPT.TRANSMIT.CNTL 
:prolog.Greetings from John Doe. 
:prolog. 
: epilog. 
:epilog.Yours,:epilog.John Doe :epilog.NODEA.USER1 
* * Nicknames section. 
* :nick.alamo :list.Jim Davy :logname.alamo :notify. 
:nick.addrchg :list.joe davy jim :nolog :nonotify 
:nick.Joe :node.nodeb :userid.user2 :name.Joe Doe 
:nick.Me :node.nodea :userid.user1 :name.me 
:nick.Davy :node.alamo :userid.CROCKETT :name.Davy Crockett 
:nick.Jim :node.ALAMO :userid.Bowie :name.Jim Bowie 

In the examples involving the RECEIVE command, data entered by the 
user appears in lower case and data presented by the system is in upper 
case. 

Example 1: Transmit a copy of the 'SYS1.PARMLm' data set to Joe, 
identifying Joe by his node and userid. 

TRANSMIT NODEB.USER2 DA('SYS1.PARMLIB') 

Example 2: Joe receives the copy of 'SYS1.PARMLm' transmitted above. 

receive 
DATASET 'SYS1.PARMLIB' FROM USER1 ON NODEA 
ENTER ALLOCATION PARAMETERS, 'DELETE', OR 'END' 
<null line> 
RESTORE SUCCESSFUL TO DATASET 'USER2.PARMLIB' 

No more Interactive Data Transmission Facility files 
are available for the RECEIVE command to process. 

In the above example, Joe has issued the RECEIVE command, seen the 
identification of what arrived, and chosen to accept the default data set 
name for the arriving file. The default name is the original data set name 
with the high level qualifier replaced by his userid. 

Example 3: Transmit two members of 'SYS1.PARMLm' to Joe, and add a 
message identifying what was sent. Joe will be identified by his 
NICKNAME, leaving it to TRANSMIT to convert it into node and userid 
via the nicknames section of the NAMES data set. 

transmit joe da('sys1.parmlib') mem (ieasysOO, ieaipsOO) msg line 
ENTER MESSAGE FOR NODEB.USER2 
Joe, 

These are the parmlib members you asked me to send you. 
They are in fact the ones we are running today. 
<null line> 

The message text in this example was entered in line mode which would be 
unusual for a user on a 3270 terminal, but which is easier to show in an 
example. 



Example 4: Joe begins the receive process for the members transmitted in 
example 3 and aborts the receive without actually restoring the data onto 
the receiving system, because Joe dOes not know where he wants to store 
the data. 

receive 
DATASET 'SYS1.PARMLIB' FROM USER1 ON NODEA 
MEMBERS: IEASYSOO, IEAIPSOO 
GREETINGS FROM JOHN DOE. 
JOE, 

THESE ARE THE PARMLIB MEMBERS YOU ASKED ME TO SEND YOU. 
THEY ARE IN FACT THE ONES WE ARE RUNNING TODAY. 
YOURS, 
JOHN DOE 
NODEA.USER1 
ENTER ALLOCATION PARAMETERS, 'DELETE', OR 'END' 
end 

In the above example, notice that the PROLOG and EPILOG lines have 
been appended to the message entered by the sender. In an actual 
RECEIVE operation, the original message text would appear in both upper 
and lower case just as the sender had entered it (assuming the receiver's 
terminal supports lower case.) 

Example 5: Joe receives the 'SYSl.PARMLm' members transmitted in 
example 3. Specify space parameters for the data set that will be built by 
RECEIVE in order to leave space for later additions. 

receive 
DATASET 'SYS1.PARMLIB' FROM USER1 ON NODEA 
MEMBERS: IEASYSOO, IEAIPSOO 
GREETINGS FROM JOHN DOE. 
JOE, 

THESE ARE THE PARMLIB MEMBERS YOU ASKED ME TO SEND YOU. 
THEY ARE IN FACT THE ONES WE ARE RUNNING TODAY. 
YOURS, 
JOHN DOE 
NODEA.USER1 
ENTER ALLOCATION PARAMETERS, 'DELETE', OR 'END' 
da('nodea.parmlib') space(1) cyl dir(10) 
RESTORE SUCCESSFUL TO DATASET 'NODEA.PARMLIB' 

No more Interactive Data Transmission Facility files 
are available for the RECEIVE command to process. 

The received members IEASYSOO and IEAIPSOO will be saved in the 
output data set with their member names unchanged. 

Example 6: Send a message to a user on another system. 

TRANSMIT DAVY 
<The following text is entered on successive lines> 
<of a full-screen data area. > 
Davy, 

I sure would like to have a coonskin cap like 
yours. 
<Use PF3 to cause message to be sent> 

In this example, the target user is identified by his nickname and no data 
set is specified, causing the terminal to be used as an input source. A 
full-screen input area is displayed to the user; in this area he can type his 
data, scroll via program function keys 7(19) and 8(20), and exit via 
function key 3(15). 

RECEIVE Command 361 



WHEN Command 

Use the WHEN command to test return codes from programs invoked via 
an immediately preceding CALL or LOADGO command, and to take a 
prescribed action if the return code meets a certain specified condition. 

WHEN SYSRC(operator integer) 

[~~~and-nameJ 
SYSRC 

specifies that the return code from the previous function (the 
previous command in the command procedure) is to be tested 
according to the values specified for operator and integer. 

operator 
specifies one of the following operators: 

EQ or = means equal to 
NE or ~= means not equal to 
GT or > means greater than 
LT or < means less than 
GE or >= means greater than or equal to 
NG or ~> means not greater than 
LE or <= means less than or equal to 
NL or ~< means not less than 

integer 

END 

specifies the numeric constant that the return code is to be compared 
to. 

specifies that processing is to be terminated if the comparison is true. 
This is the default if you do not specify a command. 

command-name 

Notes: 

specifies any valid TSO command name and appropriate operands. 
The command will be processed if the comparison is true. 

1. WHEN will terminate CLIST processing and then execute the TSO 
command-name specified. 

2. Successive WHEN commands may be used to determine an exact 
return code and then perform some action based on that return code. 

Example 1 

Using successive WHEN commands to determine an exact return code. 

CALL compiler 
WHEN SYSRC(= 0) EXEC LNKED 
WHEN SYSRC(= 4) EXEC LNKED 
WHEN SYSRC(= 8) EXEC ERROR 

WHEN COIIIIDaIlII 363 



Command Procedures 

A command procedure is a prearranged executable sequence of TSO 
commands, subcommands, and command procedure statements that can be 
invoked by issuing the EXEC command or the EXEC subcommand of 
EDIT. It is often referred to as a CLIST (Command list). The TSO 
commands and subcommands have been described in previous sections of 
this book. This section describes command procedure statements and 
functions that can be used with them. 

You should be familiar with the more detailed descriptions of command 
procedures found in TSO Terminal User's Guide. This section is intended 
to be reference material and does not deal with all aspects of the use of 
command procedures. 

See the description of the EXEC command in this book for information on 
invoking command procedures. 

Functions Available for Command Procedures 
The facilities that can be used with command procedure statements are: 

• Symbolic variables, which can be specified on TSO commands, 
subcommands, and command procedure statements 

• Control variables, a type of symbolic variable, which can only be 
specified on command procedure statements 

• Built-in functions, a type of symbolic variable, which can only be 
specified on command procedure statements 

An expression consists of these variables, whole numbers, and character 
strings combined with operators. Expressions are used on some of the 
command procedure statements. 

The following topics describe the use of expressions and operators, 
symbolic variables, control variables, and built-in functions. 

Figure 13 is a coding reference for command procedures. It lists, in 
alphabetic order, command procedure statements and facilities that can be 
coded on command procedure statements, a brief deScription of each, and 
the topic under which each is discussed. 

Command Procedures 365 



Name Meaning See 

< (or LT) Less than Expressions and Operators 
<= (or LE) Less than or equal Expressions and Operators 
+ Addition Expressions and Operators 

I (or OR) Or Expressions and Operators 
&& (or AND) And Expressions and Operators 
&DATATYPE Determine expression type Built-In Functions 

&EVAL Evaluate arithmetic expression Built-In Functions 
&LASTCC Get last return code Control Variables 
&LENGTH Determine expression length Built-In Functions 

&MAXCC Get highest return code Control Variables 
&NRSTR Define a non-rescannable Built-In Functions 

character string 
&STR Define character string Built-In Functions 
&SUBSTR Define substring Built-In Functions 

&SYSDATE Current date Control Variables 
&SYSDLM Terminal delimiter Control Variables 
&SYSDVAL Terminal delimiter parameters Control Variables 
&SYSENV System environment Control Variables 

&SYSICMD Implicit execution member name Control Variables 
&SYSNEST Nested procedure indicator Control Variables 
&SYSPCMD Current primary command name Control Variables 

&SYSPREF Data set name prefix Control Variables 
&SYSPROC Logon procedure name Control Variables 
&SYSSCAN Symbolic substitution scan limit Control Variables 

&SYSSCMD Current subcommand name Control Variables 
&SYSTIME Current time Control Variables 
&SYSUID Current userid Control Variables 

• Multiplication Expressions and Operators .. Exponentiation Expressions and Operators 
> (or NG) Not greater than Expressions and Operators 

< (or NL) Not less than Expressions and Operators 
= (or NE) Not equal Expressions and Operators 

Subtraction Expressions and Operators 

/ Division Expressions and Operators 
II Remainder Expressions and Operators 
> (or GT) Greater than Expressions and Operators 

>= (or GE) Greater than or equal Expressions and Operators 
= (or EQ) Equal Expressions and Operators 
AND And Expressions and Operators 

ATTN Attention exit Command Procedure 
Statements 

CLOSFILE Close open file Command Procedure 
Statements 

CONTROL Control options Command Procedure 
Statements 

DATA(-ENDDATA) Starts DATA group Command Procedure 
Statements 

DO(-WHILE-END) Start DO group Command Procedure 
Statements 

(IF-THEN-)ELSE Start IF-not action CO!Dmand Procedure 
Statements 

(DO-WHILE-)END End DO group Command Procedure 
Statements 

Figure 13 (Part 1 of 2). Command Procedure Coding Reference 

366 TSO Command Language Reference 



Name Meaning See 

END End the command procedure END Command 
(DATA-)ENDDATA Ends DATA group Command Procedure 

Statements 
EQ Equal Expressions and Operators 
ERROR Error exit Command Procedure 

Statements 
EXEC Invoke a command procedure EXEC Command 
EXIT Exit from nested procedure Command Procedure 

Statements 
GE Greater than or equal Expressions and Operators 
GETFILE Get record from open file Command Procedure 

Statements 
GLOBAL Define global symbolic variables Command Procedure 

Statements 
GOTO Unconditional branch Command Procedure 

Statements 

GT Greater than Expressions and Operators 
IF( -THEN-ELSE) Tests IF condition Command Procedure 

Statements 
LE Less than or equal Expressions and Operators 

LT Less than Expressions and Operators 
NE Not equal Expressions and Operators 
NG Not greater than Expressions and Operators 

NL Not less than Expressions and Operators 
OPENFILE Open a file Command Procedure 

Statements 
OR Or Expressions and Operators 

PROC Set and use symbolic parameters Command Procedure 
Statements 

PUTFILE Put record into open file Command Procedure 
Statements 

READ Get input from terminal Command Procedure 
Statements 

READDVAL Get input from &SYSDVAL Command Procedure 
Statements 

RETURN Return control from attn/err exit Command Procedure 
Statements 

SET Assign values to variables Command Procedure 
Statements 

TERMIN Request terminal input Command Procedure 
Statements 

(IF-)THEN(-ELSE) Start IF action Command Procedure 
Statements 

WHEN Inspect program return code WHEN Command 
(DO-)WHILE(-END) DO loop control Command Procedure 

Statements 
WRITE Send output to terminal Command Procedure 

Statements 
WRITENR Send output to terminal with Command Procedure 

Statements 
no return at end 

FIgUre 13 (Part 2 of 2). Command Procedure Coding Reference 

Command Procedures 367 



Expressions and Operators 

Symbolic Variables 

368 TSO Command Language Reference 

Operators are used in command procedures to specify operations to be 
performed on terms in an expression. Operators are in three categories: 

Arithmetic operators, which specify fixed-point arithmetic operations 
to be performed on numeric operands. These operators connect whole 
numbers, character strings, symbolic variables, control variables, and 
built-in functions to form simple expressions. 

Comparative operators, which specify comparison functions to be 
performed between two simple expressions, and thereby form 
comparative expressions. 

• Logical operators, which specify a logical connection between two 
comparative expressions, and thereby form logical expressions. 

Figure 14 lists the operators in the three categories and shows how to enter 
them. 

For the function: Enter: 

Arithmetic Addition + 
Subtraction -
Multiplication • 
Division I 
Exponentiation .. (see Note 1) 
Remainder II 

Comparative Equal = or EQ 
Not equal ... = or NE 
Less than < or LT 
Greater than > or GT 
Less than or equal <= or LE 
Greater than or equal >= or GE 
Not greater than ... or NG 
Not less than ... or NL 

Logical And && or AND 
Or lor OR 

Note 1: Negative Exponents are handled as exponents of zero. 

F"JgU1'e 14. Arithmetic, Comparative, and Logical Operators 

The term "symbolic variable" refers to any character string in a command 
procedure for which different values may be substituted at different times. 
Symbolic variables add flexibility to command procedures by symbolizing 
real values that can change dynamically during execution of a command 
procedure and that can be different for each invocation of a command 
procedure. 

A symbolic variable consists of an ampersand (&) followed by a maximum 
of 31 alphameric characters, the first of which is alphabetic. Types of 
symbolic variables are: 

Parameters on PROC, READ, or READDV AL statements 

• Control variables 

• Built-in functions 



Symbolic Substitution 

• Global variables on GLOBAL statements 

• File names on OPENFILE, CLOSFILE, GETFILE, and PUTFILE 
statements 

You define a symbolic variable by including it on a SET, GLOBAL, 
READ, READDV AL, PROC, or OPENFILE statement. Symbolic variables 
are replaced by real values during a process called symbolic substitution. 
Concatenation can be used to create new variables on SET and 
OPENFILE statements. The following topics describe symbolic substitution 
and concatenation. 

You may use abbreviations of the symbolic variables as long as the 
abbreviation is not a duplication of any existing operand. 

Symbolic substitution is the process of replacing symbolic variables with 
real values. Each line is scanned from left to right, and the symbolic 
variables are replaced with their real values. The real value substituted for 
a symbolic variable may actually be another symbolic variable (nested 
symbolic variables). If there are nested symbolic variables, the line is 
scanned more than once to resolve aU symbolic variables. (You can limit 
the number of times a line can be rescanned by setting a control variable.) 

The use of double ampersands requires special processing by the symbolic 
substitution routine. Each pair of ampersands is replaced by a single 
ampersand. This substitution takes place only after all other symbolic 
substitution in a line is complete. Consider the following: 

set &a = &str(&&x) 

After symbolic substitution, the value of &a is the string &x, which is 
another symbolic variable. An exception to this rule for substitution of 
double ampersands is the file name on a file I/O statement, in which case 
double ampersands are not replaced. 

Concatenation of Symbolic Variables 

Concatenation can be used to establish variables on SET and OPENFILE 
statements. Concatenation of symbolic variables consists of writing the 
symbolic variable names next to each other with no delimiters. For 
example: 

&a&b&c 

Concatenating symbolic variables and character strings requires use of a 
period as a delimiter when the symbolic variable precedes the character 
string. For example: 

&varname.alpha 

No delimiter is required when the character string precedes the symbolic 
variable. For example: 

alpha&type 

Command Pr~ures 369 



Character Set Supported in Command Procedure Variables 

Control Varillbies 

370 TSO Command Language Reference 

Using command procedure me I/O statements can cause characters other 
than those you can enter at a terminal to become part of the value of a 
symbolic variable. Certain hexadecimal codes are used by the system in 
command procedure internal processing and should not appear in data 
processed by command procedure me I/O statements. Command 
procedures support all codes from x'40' through x'FF', with the 
understanding that lowercase characters are translated to uppercase and 
lowercase numbers (x'BO'-x'B9') are translated to standard numbers 
(x'FO'-x'F9'). Additionally, the following control characters are supported: 

• x'OS' HT (Horizontal tab) 
• x' 14' RES (Restore) 
• x'16' BS (Backspace) 
• x'17' IL (Idle) 
• x'24' BYP (Bypass) 
• x'2S' LF (line feed) 

All other codes between x'OO' and x'3F' are reserved for command 
procedure internal processing; the use of me I/O statements to process 
data sets containing these codes is not supported. For example, me I/O 
~tatements cannot be used to process OBJ or LOAD type data sets. 

Refer to IBM System/370 Reference Summary for the characters associated 
with the internal hexadecimal codes. 

Control variables can be used in command procedures to obtain 
information about the current command procedure environment and the 
user who invoked the command procedure. To obtain and use this 
information, specify the appropriate symbolic variable in a command 
procedure statement. TSO replaces the symbolic variable with the current 
information. 

Four of these control variables can be set or changed by the writer of the 
command procedure. These are &LASTCC, &MAXCC, &SYSDV AL, and 
&SYSSCAN. If the writer tries to change any of the other control 
variables, an error message is issued. 

The control variables and their uses are described in Figure 15. 



Symbolic 
Variable 

&LASTCC 

&MAXCC 

&SYSDATE 

&SYSDLM 

&SYSDVAL 

&SYSENV 

&SYSICMD 

&SYSNEST 

&SYSPCMD 

&SYSPREF 

&SYSPROC 

&SYSSCAN 

&SYSSCMD 

&SYSTIME 

&SYSUID 

Can be Changed 
Use by tbe Writer 

To obtain the return code from the last operation. whether Yes 
TSO command. subcommand. or command procedure 
statement. (See Note 1) 

To obtain the highest return code issued up to this point Yes 
in the command procedure or passed back from a nested 
command procedure. The return code is in decimal 
format. (See Note 1.) 

To obtain the present date in the format mm/dd/yy. No 
where mm is month, dd is day, and yy is year. 

To identify which character string, of those specified on No 
the TERMIN statement, the terminal user entered to return 
control to the command procedure. 

(1) To obtain any parameters the terminal user entered, Yes 
besides the delimiter. when he returned control to the 
command procedure after a TERMIN statement. (2) To 
obtain the terminal user's response line when a READ 
statement requests terminal input. 

To indicate whether the command procedure is executing No 
in the foreground or background environment respectively. 
(This variable cannot be modified by a command 
procedure. ) 

To obtain the name by which the user implicitly invoked No 
this command procedure. This value is null if the 
command procedure was invoked explicitly. 

To determine if the currently executing command No 
procedure was invoked from another procedure. 
&SYSNEST is replaced with "YES" If this is a nested 
procedure and "NO" if it is not. 

To obtain the name (or abbreviation) of the most recently No 
executed TSO command (with the exception of the TIME 
command) in this procedure. The initial value is 
"EXEC" (or "EX") in the command environment 
and "EDIT" (or "E") in the subcommand 
environment. 

To obtain the data-set-name prefix from the user profile No 
table (UPT) for the command procedure user. 

To obtain the procedure name speciried when the No 
command procedure user logged on. 

To obtain the maximum number of times that symbolic Yes 
substitution is allowed to rescan a line to evaluate 
symbolic variables. The default is 16 times. The maximum 
value is two to the 31st power minus one (+2. 147, 483. 
647); the minimum is O. 

To obtain the name (or abbreviation) of the subcommand No 
currently executin8. The initial value is null if EXEC was 
issued In the command environment and 'EXEC' (or 'EX') 
if EXEC was issued as a subcommand of EDIT. The value 
is null whenever the procedure is in the command 
environment. 

To obtain the present time in the format hh:mm:ss, where 
hh is hours, mm is minutes, and ss is seconds. 

To obtain the userid of the user currently executing the 
command procedure. 

No 

No 

Note I: The command procedure statement return codes 
are in Figwe 18. The TSO 
command and subcommand return codes are: 
o Normal completion. 
12 A terminating error occurred during execution; 

however. the command processor might have been able to prompt 
for information necessary to recover from the error. 

FIgure 15. Control Variables 

Commaud Proc:edures 371 



Built-In FlIIICtiOllJ 

372 TSO Command Language Reference 

Built-in functions can be used in command procedures to perfonn certain 
evaluations of expressions and character strings. To request a built-in 
function, specify the appropriate symbolic variable with an expression or 
character· string on a command procedure statement. TSO evaluates the 
expression first, if necessary, and then perfonns the requested function. 
The s~boUc variable is replaced by the result of performing the built-in 
function. 

The built-in functions are &DATATYPE, &LENGTH, &EVAL, &STR, and 
&SUBSTR. Their uses are described in Figure 16. 

Symbolic variable 

&DATA TYPE(expression) 

&BV AL(expression) 

&LENGTH(expression) 

&NRSTR 

&STR(string) 

&SUBSTR(expression[:expression), 
string) 

Figure 16. BuUt-1n Functions 

Use 

To find out whether an evaluated expression is 
entirely numeric. &DATA TYPE is replaced by 
'NUM' if the expression is all numeric or by 
'CHAR' if there is at least one non-numeric 
character. 
To find the result of an arithmetic expression. 
&BV AL is replaced by the result of evaluating 
the expression. 
To find the number of characters in the result of 
an evaluated expression. &LENGTH is replaced 
by the number of characters in the result. 
(Leading zeroes are ignored.) 
To define a Non-Rescannable character string 
for symbolic substitution. The primary use of 
&NRSTR is to handle variables, whose contents 
have been set from an external file. This 
function is useful if you are reading a file that 
has records containing ampersands, such as Job 
Control Language (JCL) records. 
If the &NRSTR built-in is used when setting 
symbolic variables, only one level of symbolic 
substitution will take place within the 
parenthetical expression. 
Within the parentheses, substitution will occur 
only on the first scan of the statement. No 
attempt will be made to evaluate the expression 
after the single symbolic substitution scan. 
To use the indicated string as a real value. 
Nested built-in functions and symbolic 
substitution are performed but no other 
evaluation is done. &STR is replaced by the 
string. 
To use the indicated portion of a string as a 
real value. Nested built-in functions and 
symbolic substitution are performed but no other 
evaluation is done. &SUBSTR is replaced by the 
specified portion of the string (substring). 
The start and end of the substring are indicated 
by the two expressions. To select a 
one-character substring, you need to enter only 
the first expression. 



Command Procedure Statements 
Command procedure statements assign values. set controls. select options. 
and control the conditions under which command procedures execute. 
Statements operate in both the command and subcommand environment. 
which means that statements will work in command procedures invoked 
either by the EXEC command or by the EXEC subcommand of EDIT. In 
general. statements fall into control. assignment. conditional. and file access 
categories. See Figure 17. 

Control 

AlTN 
CONTROL 
DATA-ENDDATA 
ERROR 
EXIT 
GLOBAL 
GOTO 
PROC 
RETURN 
TERMIN 
WRITE 
WRITENR 

AssIgnment 

READ 
READDVAL 
SET 

Conditional Fde Access 

DO-WHILE-END CLOSFILE 
IF-THEN-ELSE GETFILE 
(WHEN Command) OPENFILE 

PUTFILE 

figure 17. Command Procedure Statement Categories 

Figure 18 lists the error codes set by the command procedure statements. 

Command Procedures 373 



374· TSO Command Lauguage Reference 

16 

300 

304 

308 

312 

316 

324 

328 

332 

336 

340 

344 

~48 

352 

356 

360 

364 

368 

372 

400 

8xx 

800 

804 

808 

812 

816 

820 

824 

828 

832 

Not enough virtual storage 

User tried to update an unauthorized variable 

Invalid keyword on EXIT statement 

Code specified, bllt no code given on EXIT statement 

Internal. GLOBAL processing error 

TERMIN delimiter greater than 256 .characters 

GETUNE error 

More than 64 delimiters on TERMIN 

Invalid file name syntax 

File already open 

Invalid OPEN type syntax 

Undefined OPEN type 

File specified did not open (for example, the filename was 
not allocated) 

GETFILE - filename not currently open 

GETFILE - .the file has been closed by the system (for 
example, file opened under EDIT and EDIT has ended) 

PUTFILE - file name not currently oP,en 

PUTFILE - file closed by system (see ,code 356) 

PUTFILE -. CLOSFILE - file not opened by OPENFILE 

PUTFILE - issued before GETFILE:on a file opened for update 

GETFILE end of file (treated as an error, which can be handled 
by ERROR action) 

Evaluation routine error codes 

Data found where operator was expected 

Operator found where data was expected 

A comparison operator was used in a·SET statement 

(R,eserved) 

Operator found at the end of a statement 

Operators out of order 

More than one exclusive operator found 

More than one exclusive compariso~ ~perator 

The result of an arithmetical calculation is outside the 
range extending from -2,147,483,684 to +2,147,483,647. 

FIgure 18 (Part 1 of 2), Command Procedure Statement Error Codes (DeclmaI) 



836 

840 

844 

848 

852 

856 

860 

864 

868 

872 

900 

904 

908 

912 

916 

920 
924 

932 

936 

940 

944 

948 

952 

956 

960 

964 

968 

972 

999 

• Sxxx 
·Uxxx 

(Reserved) 

Not enough operands 

No valid operators 

Attempt to load character from numeric value 

Addition error - character data 

Subtraction error - character data 

Multiplication error - character data 

Divide error - character data or division by 0 

Prefix found on character data 

Numeric value too large 

Single ampersand found 

Symbolic variable not found 

Error occurred in an error action range that received 
control because of another error 

Substring range invalid 

Non-numeric value in substring range 

Substring range value too small (zero or negative) 

Invalid substring syntax 

Substring outside of the range of the string, for 
example, 1 :3,AB; (AB is only two characters) 

A built-in function that requires a value was entered 
without a value 

Invalid symbolic variable 

A label was used as a symbolic variable 

Invalid label syntax on a GOTO statement 

GOTO label was not defined 

GOTO statement has no label 

&SYSSCAN was set to an invalid value 

&LASTCe was set to an invalid value and EXIT tried to use it 
as a default value 

DATA PROMPT-ENDDATA statements supplied, but no prompt 
occurred. 

TERMIN command cannot be used in background jobs. 

Internal command procedure error 

A system ABEND code 

A user ABEND code 

• Printed In hexadecimal 

FIgure 18 (Part 1 of 1). Command Procedure Statement Error Codes (DedmaI) 

COIIIIII8Ild Procedures 315 



ATTN Statement 

The A TIN statement sets up an environment that detects attention 
interruptions processed by the terminal monitor program (TMP). The 
detection of an attention interruption invokes a specified action which is 
considered to be an attention exit. 

[label: J ATTN 
[ OFF ] 

label: 

OFF 

action 

action 

specifies a name to which the command procedure can branch. Enter 
one-to-eight characters, the first alphabetic and the rest alphameric, 
followed by a colon and at least one blank. 

specifies that any previous attention action is nullified. When no 
action is specified on the A TIN statement, OFF is the default. 

specifies any executable statement, commonly a DO-group 
constituting a routine. This routine must specify either a command or 
a null before the RETURN statement. Results: 

Null: Ignore the attention. 

Not-null (a command was specified): Give control to the command 
that was specified. 

Example 

Operation: Pass control to a command on an attention exit. 

ATTN DO 

END 

SET SCMD= /* Default to null */ 
WRITE ATTENTION IN CONTROL 
IF SOKTOTERMINATE=YES THEN + 

DO 
WRITE DO YOU WANT TO TERMINATE (Y OR N) 
READ SANS 

END 
ELSE + 

IF SANS=Y THEN + 
SET SCMD=END 

WRITE IGNORING YOUR ATTENTION 
SCMD /* The TSO command */ 
RETURN 

ATIN Statement 377 



CLOSFILE Statement 

The CLOSFILE statement is used to close a file that was previously 
opened by an OPENFILE statement. It is not necessary to specify file 
type. Only one file can be closed with one statement. 

File variables are only scanned once (no rescans) and only on OPENFILE. 

[label: ] CLOSFILE filename 

label: 
specifies a name to which the command procedure can branch. Enter 
one-to-eight characters, the first alphabetic and the rest alphameric, 
followed by a colon and at least one blank. 

rdename 
specifies the ddname by which the file was allocated and opened (via 
OPENFILE). 

CLOSFILE Statement 379 



CONTROL Statement 

The CONTROL statement defines certain processing options to be in effect 
for the command procedure. The options are in effect from the time 
CONTROL executes until either the procedure terminates or another 
CONTROL is issued. 

Command procedures without CONTROL statements execute with options 
MSG, NOLIST, NOPROMPT, NOCONLIST, NOSYMLIST, and FLUSH. 
The user can set PROMPT and LIST by entering them as keywords on the 
EXEC command or subcommand that invokes the command procedure. 

CONTROL has no default operands. If you enter CONTROL with no 
operands, the system uses options already in effect because of system 
predefinition, presetting via EXEC, or setting by a previous CONTROL 
statement. In addition, when there are no operands specified, the system 
will display those options which are currently in effect. 

Note: CONTROL operands cannot be entered as symbolic variables. 

[label:] CONTROL [ FLUSH ] 
NOFLUSH 

label: 

[ PROMPT ] 
NOPROMPT 

[ LIST ] 
NOLIST 

[ CONLIST ] 
NOCONLIST 

[ SYMLIST J 
NOSYMLIST 

[ MSG J 
NOMSG 

[MAIN] 
.rEND (string) ] 

specifies a name to which the command procedure can branch. Enter 
one-to-eight characters, the first alphabetic and the rest alphameric, 
followed by a colon and at least one blank. 

FLUSH 
specifies that the system can purge (flush) the queue called the input 
stack. The system normally flushes the stack on an execution error. 

NOFLUSH 
specifies that the system cannot flush the stack. 

PROMPT 
specifies that the command procedure can prompt the terminal for 
input. 

NOPROMPT 
specifies that the command procedure cannot prompt the terminal for 
input, even if the procedure has prompting capabilities. 

CONTROL Statement 381 



381 TSO Command Language Reference 

LIST 
specifies that commands and subcommands are displayed at the 
terminal after symbolic substitution but before execution. 

NOLIST 
specifies that commands and subcommands are not displayed at the 
terminal after symbolic substitution but before execution. 

CONLIST 
specifies that command procedure statements are displayed at the 
terminal after symbolic substitution but before execution. 

NOCONLIST 
specifies that command procedure statements are not displayed at the 
terminal after symbolic substitution but before execution. 

SYMLIST 
specifies that executable statements are displayed at the terminal 
once before the scan for symbolic substitution. Executable 
statements include commands, subcommands, and command 
procedure statements. 

NOSYMLIST 

MSG 

specifies that executable statements are not displayed at the terminal 
before symbolic substitution. 

specifies that PUTLINE informational messages from commands and 
statements in the procedure are displayed at the terminal. 

NOMSG 
specifies that PUTLINE informational messages NOMSG from 
commands and statements in the command procedure are not 
displayed at the terminal. 

MAIN 
specifies that this is the main command procedure in your TSO 
environment and cannot be deleted by a stack flush request from the 
system. When MAIN is specified, FLUSH and NOFLUSH are 
ignored. The attention exit in the TMP cannot delete the command 
procedure and any error exit used by this command procedure is 
protected. 

END (string) 
specifies that a character string will be recognized by the system as 
an END statement that concludes a DO-group. Enter the string as 
1-4 characters, the first alphabetic and the rest alphameric. Since 
END no longer signifies the end of a DO-group, the writer of the 
command procedure can include END commands and subcommands 
without prematurely ending the DO-group. 



DATA-ENDDATA Sequence 

The DATA and ENDDAT A statements are used to designate a group of 
commands and subcommands that are looked at as data by the command 
procedure but as commands and subcommands by the system. Symbolic 
substitution is performed before execution of the group. Command 
procedure statements included in the DATA-ENDDATA group cause 
failures because TSO attempts to execute them as commands or 
subcommands. A DO-group ignores an END in an included 
DATA-ENDDATA group, instead of terminating the DO-group. 

[label:) DATA 

ENDDATA 

label: 
specifies a name to which the command procedure can branch. Enter 
one-to-eight characters, the first alphabetic and the rest alphameric, 
followed by a colon and at least one blank. You cannot specify a 
label for ENDDA T A. 

Example 

Operation: Perform an EDIT operation without ending a DO-group. 

IF &ADDIT=YES THEN -
DO 

END 

ELSE 

DATA 
EDIT OLD.DATA 
BOTTOM 
INSERT * &NEW ENTRY 
END SAVE 

ENDDATA. 

DATA-ENDDATA Sequence 383 



DO-WlHLE-END Sequence 

The DO, WHILE and END statements are used to form commands, 
subcommands, and statements into DO-groups of related instructions. DO 
and END denote the start and end, respectively, of the DO-group. WHILE 
specifies a condition and causes the DO-group to re-execute as long as the 
condition is true. 

The string specified on the END operand of the CONTROL statement can 
be used instead of the END statement. 

[label:] DO [WHILE logical-expression] 

[label:] END 

label: 
specifies a name to which the command procedure can branch. Enter 
one-to-eight characters, the first alphabetic and the rest alphameric, 
followed by a colon and at least one blank. 

logical-expression 
is a group of comparative expressions grouped by logical operators 
(see "Definitions of Command Procedure Terminology"). The 
minimal entry for logical-expression is a comparative expression. 

DO-WHILE-END Sequence 385 



ERROR Statement 

The ERROR statement sets up an environment that checks for nonzero 
(error-condition) return codes from commands, subcommands, and 
command procedure statements in the currently executing command 
procedure. When an error code is detected, an action can be invoked. This 
action is effectively an error exit. 

The error exit must be protected from being flushed from the input Stack 
by the system. Stack flushing makes the error return codes unavailable. 
Use the MAIN or NOFLUSH operands of the CONTROL statement to 
prevent stack flushing. 

When ERROR is entered with no operands, the system displays any 
command, subcommand, or statement in the command procedure that ends 
in error. The system then attempts to continue with the next sequential 
statement, if possible. 

Note: If the LIST option was requested for the command procedure being 
executed the NULL error statement will be ignored. 

The ERROR statement must precede any statements that might cause a 
branch to it. 

[label: ) ERROR rOFF J 
Laction 

label: 

OFF 

action 

specifies a name to which the command procedure can branch. Enter 
one-to-eight characters, the first alphabetic and the rest alphameric, 
followed by a colon and at least one blank. 

specifi~s that any action previously set up by an ERROR statement is 
nullified. Note that OFF is not a default. 

specifies any executable statement, commonly a DO-group 
constituting a routine. 

Note: If only the TIME command or the NULL error statement executes in 
a DO-group, a recursive CLIST error occurs and an error message is 
issued. The error occurs because neither the TIME command nor the 
NULL error statement resets LASTCC. 

Example 

Operation: Perform an error analysis routine whenever an error occurs in 
the command procedure. 

ERROR DO . 
. 1* Error analysis routine *1 

END 

ERROR Statement 387 



EXIT Statement 

The EXIT statement causes control to be returned to the routine that called 
the currently executing command procedure. The return code associated 
with this exit can be specified by the user or allowed to default to the value 
in control variable &LASTCC. 

A procedure that is called by another procedure is said to be nested. A 
called procedure can also call a procedure. which would be considered to 
be nested two levels. Levels of nesting are limited only by the extent of 
storage and the skill of the programmer. The structure of the nesting is 
called the hierarchy. You go "up" in the hierarchy when control passes 
from the called to the calling procedure; TSO itseH is at the top. 

Entering EXIT causes control to go up one level. When EXIT is entered 
with the QUIT operand. the system attempts to pass control upward to the 
first procedure encountered that has MAIN or NOFLUSH in effect (see 
CONTROL Statement). If no such procedure is found. control passes up 
to TSO. the input stack is flushed of all command procedures, and control 
passes to the terminal. 

[label: ] EXIT [CODE(expression)] 
[QUIT] 

label: 
specifies a name to which the command procedure can branch. Enter 
one-to-eight characters, the flI'St alphabetic and the rest alphameriC, 
followed by a colon and at least one blank. 

CODE(exprealon) 

QUIT 

specifies a user-defmed return code for this exit, with the code 
specifiable in most simple form as a number or in most complex form 
as a simple expression (see "Definitions of Command Procedure 
Terminology"). When CODE is not specified, the system uses the 
contents of &LASTCC. 

specifies that control is passed up the nested hierarchy until a 
procedure is found with the MAIN or NOFLUSH option active or 
until TSO receives control. 

EXIT Statement 389 



GETFILE Statement 

The GETFILE statement allows the user to get a record from an open 
QSAM file. One record is obtained for one execution of GETFILE. You 
must know the filename(ddname) by which you allocated and opened .(via 
OPENFILE) the file for this terminal session. 

After GETFILE executes, the file variable &filename contains the record 
obtained. 

File variables are scanned only once (no rescans) and only on OPENFILE. 

[label: ] GETFILE &filename 

label: 
specifies a name to which the command procedure can branch. Enter 
one-to-eight characters, the first alphabetic and the rest alphameric, 
followed by a colon and at least one blank. 

&fdename 
specifies the ddname by which the file was allocated and opened (via 
OPENFILE). 

GETFILE Statement 391 



GLOBAL Statement 

The GLOBAL statement must precede any statement that uses its 
variables. The GLOBAL statement defines unique symbolic variables that 
will be used globally, which in the application means in all lower nested 
levels of the hierarchy. The first-level command procedure defines global 
variables; lower-level procedures must include a GLOBAL statement if they 
intend to refer to the global variables specified in the first level. The 
number of global variables defined in the first-level procedure is the 
maximum number that can be referenced by any lower-level procedure. 

The global variables are positional, both in the first-level procedure and in 
all lower-level procedures that reference this same set of variables. This 
means that the Nth name on any level GLOBAL statement refers to the 
same variable, even though the symbolic name at each level may be 
different. Note, however, that the names must still be unique among those 
at that level. 

Since the global variables are symbolic variables, they must have an & 
prefix except in READ and READDV AL statements, where the & is 
optional. 

[label: I GLOBAL name1 [name2 .... nameN) 

label: 
specifies a name to which the command procedure can branch. Enter 
one-to-eight characters, the first alphabetic and the rest alphameric, 
followed by a colon and at least one blank. 

namel-nameN 
specify valid symbolic variable names for this procedure. 

Example 

Operation: Specify a set of global variables for three levels of procedures, 
where some names are unique to their level. 
First-level procedure: GLOBAL NAME I NAME2 NAME3 NAME4 
Second-level procedure: GLOBAL FIRST SECOND THIRD 
Third-level procedure: GLOBAL PARMI PARM2 PARM3 PARM4 

Note that &NAME3, &THIRD, and &PARM3 would access the same 
variable. 

GLOBAL Statement 393 



GOTO Statement 

The GOTO statement causes an unconditional branch within a command 
procedure. Branching to another command procedure is not supported. 
When GOTO is specified, control passes to the statement or command that 
has the label called out as the target. 

[label: ] GOTO target 

label: 
specifies a name to which the command procedure can branch. Enter 
one-to-eight characters, the first alphabetic and the rest alphameric, 
followed by a colon and at least one blank. 

target 
specifies either a label or an expression that reduces to a valid label 
value after symbolic substitution. 

Example 

Operation: Dlustrate branching within a command procedure. 

BEGIN: SET &RET=NEXT 
GOTO LAB1 

NEXT: WRITENR TWO, 
SET &N=2 
GOTO LAB&N 

LAB1: WRITENR ONE, 
GOTO &RET 

LAB2 : WRITE THREE 
EXIT /* ONE,TWO,THREE HAS BEEN WRITTEN 

TO THE TERMINAL*/ 

GOTO Statement 395 



IF-THEN-ELSE Statement 

The IF-THEN-ELSE sequence defines a condition, tests the truth of that 
condition, and initiates an action based on the test results. 

Caution: that a continuation character is required if the THEN or ELSE 
statement extends to the next line. If no continuation character is present 
and no other text is on the same line, the THEN and ELSE will be treated 
like null statements. 

(label: 1 IF logical-expression THEN [action] 
[ELSE [actionl] 

label: 
specifies a name to which the command procedure can branch. Enter 
one-to-eight characters, the first alphabetic and the rest alphameric, 
followed by a colon and at least one blank. 

logical-expression 

action 

is a group of comparative expressions grouped by logical operators 
(see "Definitions of Command Procedure Terminology"). The 
minimal entry for logical-expression is a comparative expression. 

specifies an executable statement, which includes commands, 
subcommands, and command procedure statements. The THEN 
action is invoked if the IF condition is satisfied. The ELSE action is 
invoked if the IF condition is not satisfied and ELSE is specified. If 
the IF condition is not satisfied and ELSE is not specified, control 
passes to the next sequential statement. 

IF-THEN-ELSE Statement 397 



OPENFILE Statement 

The OPENFILE statement opens a specific file for QSAM I/O. One 
execution of OPENFILE opens one file. File variables are scanned only 
once (no rescans) and only on OPENFILE. 

Complete your file I/O on a specific file before you change modes from 
command to subcommand or vice versa. Crossmode file I/O is not 
supported and will cause miscellaneous abnormal terminations. 

Specify NOFLUSH (see the CONTROL statement) for a command 
procedure that uses file I/O. 

If a system action causes you to be flushed because you did not specify 
NOFLUSH, you will have to log off the system to recover. You will 
recognize the condition by getting a message similar to "FILE NOT 
FREED, DATA SET IS OPEN." 

For reference information on QSAM I/O, see Data Management Services 
Guide. 

[label:) OPENFILE filename 
[

INPUT ] 

label: 

OUTPUT 
UPDATE 

specifies a name to which the command procedure can branch. Enter 
one-to-eight characters, the first alphabetic and the rest alphameric, 
followed by a colon and at least one blank. 

mename 
specifies the ddname of a file that has been previously allocated by 
the TSO ALLOCATE command or by step allocation. The filename 
be<:omes a symbolic variable that will contain either: 

• The results of a GETFILE, or 
• A record that was set by the user for a PUTFILE. 

The filename Rame does not have to be previously defined. 

INPUT 
specifies that the filename will open for input. The default is INPUT 
when neither INPUT, OUTPUT, nor UPDATE is entered. 

OUTPUT 
specifies that the filename will open for output. 

UPDATE 
specifies that the filename will open for updating in place; that is, 
you can replace a previously read record by issuing a PUTFILE 
statement. 

OPENFILE Statement 399 



PROC Statement 

The PROC statement defines the parameters that can be passed to the 
command procedure via the value-list parameter of the EXEC command. 
PROC is optional for a command procedure. but if it is used. it must be 
the first statement in the command procedure. 

Note that a label cannot be entered for a PROC statement. 

PRoe positional-specification 
[positional-parameters] 
[keyword-parameters[(values)]) 

positional-specification 
specifies the number of required positional parameters to be passed. 
Enter 1-5 decimal digits. Enter 0 if none. 

positional-parameters 
specifies the positional parameters. in sequence. that require initial 
values in the value list before the command procedure is invoked. 
Parse will prompt for an initial value if one is not there. except when 
positional-specification=O and no prompting is needed because there 
are no positional parameters. 

Positional parameter names are 1-252 characters. the first alphabetic 
and the rest alphameric. The values must be character strings without 
delimiters. 

keyword-parameters(values) 
specify the keyword parameters. either with or without values. that 
do not require initial values in the value list before the command 
procedure is invoked. 

Keyword parameter names are 1-31 characters. the first alphabetic 
and the rest alphameric. Keywords without values have nothing 
appended. Keywords with values have the values enclosed in 
parentheses and appended to their names. A value can be a null 
entry (keep parentheses). a quoted character string. or an unquoted 
character string. A quoted character string can include delimiters. 
These values are defaults and are used when a keyword name is not 
valid and a value is required. 

Note: All symbolic parameters have an initial value at the time the 
command procedure begins execution. The symbolic parameter value can 
be changed dynamically by specifying the symbolic parameter name on the 
READ. SET or READDV AL statements. 

PROC Statement 401 



PUTFILE Statement 

The PUTFILE statement puts a record into an already open QSAM file. 
One execution of PUTLINE transfer one record. This record must be 
initialized each time by an assignment statement such as SET unless you 
want the same record sent more than once. You must know the 
filename(ddname) by which you allocated and opened (via OPENFILE) the 
file for this terminal session. 

File variables are scanned only once (no rescans) and only on OPENFILE. 

[label: ] PUTFILE filename 

label: 
specifies a name to which the command procedure can branch. Enter 
one-to-eight characters, the first alphabetic and the rest alphameric, 
followed by a colon and at least one blank. 

fDename 
specifies the ddname by which the file was allocated and opened (via 
OPENFILE). The record that is put in is the value of the file 
variable &FD...ENAME. 

Example 

Operation: Illustrate typical file I/O . 

. 
OPENFILE MYOUTPUT OUTPUT 

. 
SET &MYOUTPUT = TEXT STRING 
PUTFILE MYOUTPUT /* TEXT STRING is put to the file */ 

PUI'FILE Statement 403 



READ Statement 

The READ statement makes terminal user input available to the command 
procedure as values in symbolic variables. These variables may be named 
in the READ statement or already named elsewhere in the command 
procedure. The READ statement is usually preceded by a WRITE to the 
terminal to identify the expected input. 

[label:) READ [name1 [name2 ... nameN)) 

label: 
specifies a name to which the command procedure can branch. Enter 
one-to-eight characters, the first alphabetic and the rest alphameric 
followed by a colon and at least one blank. 

Note: If READ is entered without parameter names, the value of the 
terminal input line is read into &SYSDV AL. 

namel-oameN 
specify any syntactically valid parameter names; the & prefix is 
optional. These symbolic parameters need not be previously defined. 
The parameters are positional in the sense that recognizable values 
entered by the command procedure user are set sequentially into the 
names specified here. Recognizable values are: 

• A character string 

• A quoted string 

• A parenthesized string 

• A null value, specified by entering two adjacent commas ( .. ) or 
two adjacent quotes (' '). Double quotes (") will oot work. 

Any or all of the types specified may be entered on one READ 
statement. 

READ Statement 405 



READDV AL Statement 

The READDV AL statement causes the current value of &SYSDV AL to be 
parsed into syntactical words and assigns these words to the symbolic 
parameters specified on the READDV AL .statement. 

Syntactical words are defined as character strings, quoted strings, 
parenthesized strings, or null values indicated by two adjacent commas (,,) 
or quotes (' '). 

The assignment is done sequentially on the parameters in the order they are 
specified; parameters not assigned a value will default to null values. If 
there are more words than parameters, the leftover words are not assigned. 

[label:] READDVAL [name' [name2 .... nameN]] 

label: 
specifies a name to which the command procedure can branch. Enter 
one-to-eight characters, the first alphabetic and the rest alphameric, 
followed by a colon and at least one blank. 

namel-nameN 
specify any syntactically valid parameter names; the & is optional. 
These symbolic parameters need not have been previously defined. 
The parameters are positional in the sense that syntactical words 
from &SYSDV AL are set sequentially into the names specified here. 

Note: If READDV AL is entered without symbolic parameters, the 
statement is ignored. 

READDVAL Statement 407 



RETURN Statement 

The RETURN statement specifically returns control from an error range or 
attention range to the statement following the one that ended in error or 
the one that was interrupted by an attention. 

RETURN is valid only when issued from an activated error action range or 
an activated attention action range from this command procedure. If 
neither of these conditions exists, the RETURN is treated as a 
no-operation. 

[label:] RETURN 

label: 
specifies a name to which the command procedure can branch. Enter 
one-to-eight characters, the first alphabetic and the rest alphameric, 
followed by a colon and one or more blanks. 

RETURN Statement 409 



SET Statement 

The SET statement assigns a specified value to a specified symbolic 
variable name. One value is assigned to one variable for one execution of 
SET. The variable need not have been predefined elsewhere. 

The variable to be set cannot be a built-in function. 

[label:] SET symbolic-variable-name expression 

label: 
specifies a name to which the command procedure can branch. Enter 
one-to-eight characters, the first alphabetic and the rest alphameric, 
followed by a colon and at least one blank. 

symboHc-variable-name 
specifies the syntactically valid symbolic variable or allowable control 
variable that is to be set. 

EQ or = 
specifies the comparison operator EQUAL. 

expression 
specifies a simple expression as defined in "Definitions of Command 
Procedure Terminology." 

SET Statement. 411 



TERMIN Statement 

The TERMIN statement passes control from the command procedure 
currently executing to the terminal user. TERMIN also defines the 
character strings that a user can enter to return control to the command 
procedure. A null value can be specified as ~ character string that the user 
can enter. TERMIN is usually preceded by a WRITE statement that 
identifies the expected response to the terminal user. 

Control returns to the command procedure at the statement after TERMIN. 
When control returns, &SYSDLM and &SYSDV AL have been set. 

[label: ] TERMIN [string2 .... stringN] 

label: 
specifies a name to which the command procedure can branch. Enter 
one-to-eight characters, the first alphabetic and the rest alphameric, 
followed by a colon and at least one blank. 

stringl-stringN 
specify character strings that the terminal user can enter to return 
control to the command processor. The &SYSDLM control variable 
contains the number of the string which was entered (1 for stringl, 2 
for string2, etc.) and &SYSDV AL contains the balance of the entered 
line. 

,(comma) 
can be used only in the first string position and specifies that the 
terminal user can enter a null line to return control to the command 
procedure. 

TERMIN Statement 413 



WRITE and WRITENR Statements 

The WRITE and WRITENR statements send text to the terminal user from 
the command procedure. Thus text can be used for messages, information, 
prompting, or whatever the writer of the command procedure wishe~. 

[label: ) WRITE [NR) text 

label: 
specifies a name to which the command procedure can branch. Enter 
one-to-eight characters, the first alphabetic and the rest alphameric, 
followed by a colon and at least one blank. 

WRITE 
statement specifies that the cursor moves to a new line after the text 
is displayed. 

WRITENR 
statement specifies that the cursor does not move to a new line after 
the text is displayed. 

text 
specifies what is to be sent to the terminal. You can enter any 
character string, including symbolic variables. Data enclosed within 
/* and * / delimiters is also sent to the terminal even though it may 
appear as a comment. 

Example 

Operation: lliustrates WRITE and WRITENR usage. 

WRITENR ONE 
WRITENR TWO/ 
WRITENR THREE 
WRITE FOUR 
WRITE FIVE 

The display at the terminal will be: 

ONETWO/THREEFOUR 
FIVE 

WRITE and WRITENR Statements 415 



Appendix A: Foreground-Initiated Background Commands 

You may use the foreground-initiated background (FIB) commands to 
submit or control jobs for execution in a batch environment. 

Appendix A: Foreground-Initiated Background Commands 417 



Processing Batch Jobs 

Submitting Batch Jobs 

Using Foreground-Initiated Background (FIB) Commands 

Use CANCEL, OUTPUT, STATUS and SUBMIT commands primarily to 
control the submission and processing of jobs in a batch environment. 
Also, the OUTPUT command may be used to control foreground-created 
output. 

You can submit batch jobs for processing if your installation authorizes you 
to do so. This authorization is recorded in the system with your user 
attributes. If you have this authorization, the system lets you use the four 
commands (SUBMIT, STATUS, CANCEL and OUTPUT) that control the 
processing of batch jobs. You can use those commands to submit a batch 
job, to display the status of a batch job, to cancel a batch job, and to 
control the output of a batch job. 

Before you submit a batch job with the SUBMIT command you can use 
the EDIT command to create a data set (or a member of a partitioned data 
set) that contains the job or jobs you want to submit. Each job consists of 
job control language (JCL) statements and of program instructions and 
data. 

The first JCL statement in the data set is usually a JOB statement. The 
jobname in the JOB statement can be up to eight characters in length and 
should consist of your user identification followed by one or more letters or 
numbers, for example, SMITH23 or JONESXYZ. 

If the jobname does not begin with your user identification, you can submit 
it with the SUBMIT command and request its status with the STATUS 
command, but you cannot refer to it with the CANCEL or OUTPUT 
command unless the mM-supplied installation exit is replaced. 

If the jobname cpnsists of only your user identification, the system will 
'prompt you for one or more characters to complete the jobname. This 
allows you to change jobnames without re-editing the data. For example, 
you may submit the same job several times, and supply a different 
character for the job name each time you are prompted. 

If the first non-job entry subsystem statement of your data set is not a JOB 
statement, the system generates the following JOB statement when you 
submit it with the SUBMIT command. 

Iluserid JOB accounting info, 
II userid, ** JOB STATEMENT GENERATED BY SUBMIT ** 
II NOTIFY=userid, 
II MSGLEVEL=(1,1) 

You will be prompted for a character to complete the jobname. The job 
accounting information is the information specified by the user at LOGON. 

When you enter the SUBMIT comm:and, you must give the name of a data 
set (or data sets) containing the batch job (or jobs). You can also specify 
the NONOTIFY operand to specify that you do not want to be notified 
when a batch job with a generated JOB statement terminates. Figure 19 
shows how to create and submit a batch job. The data set type on the 
EDIT command should be CNTL for better system performance. The 

Using Foreground-Initiated Background (FIB) Cummands 419 



SUBMIT command will perform best if the fully-qualified data set name is 
entered in quotes. Submitted data sets must have a logical record length of 
80 bytes, a record format of fixed-blocked (FB), and must not contain 
lowercase characters. 

You may include more than one job in one data set. You can omit the JOB 
statement for the first job, but aU jobs after the first must have their own 
JOB statement. Although you submit aU jobs in the data set with one 
SUBMIT command, you can subsequently refer to each job with separate 
STATUS, CANCEL, and OUTPUT commands. 

When you submit more than one job with a single command, and TSO 
finds an error while processing the first job, the second job is not 
processed. An error that occurs in the second job does not affect the first. 
Any' jobs processed prior to the error are submitted for execution; jobs that 
were not processed because of the error should be resubmitted after the 

. error is corrected. 

420 TSO Commapd Language Reference 

READY 
Edit backpgm new cntl 
INPUT 

0010//smith3 job 7924,smith,msglevel=(1,1), 
0020// notify=smith3 
0030//step1 exec p111fc,parm.p111='nodeck,list' 
0040//p111.sysin dd * 
0050 source statement 
0060 
0070 
0080/* 
0090//step2 exec p111fclg 
0100//p111.sysin dd * 
0110 source statements 
0120 
0130 
0140/* 
0150//go.sysin dd * 
0160 
0170 
0180 
0190 input data 
0200 
0210 
0220/* 

(null line) 
EDIT 
end save 
READY 
submit backpgm 
ENTER JOBNAME CHARACTERS+ -
a 
JOB SMITH3A(JOB00071) SUBMITTED 
READY 

Figure 19. Submitting a Program as a Batch Job 

The user would get a job-ended message with a time stamp at the terminal 
because the NOTIFY keyword is specified on the JOB card. 



A submitted data set need not contain an entire job. A JCL data set and a 
source data set could be used if both were the proper type of data set, as 
follows: 

submit (jclds1 sourceds jclds2 sourceds) 

If each ICL data set contained a job card, then two jobs would be 
submitted above. JCLDSI could contain the JCL needed to print the 
source data set following in the input stream and ICLDS2 could contain 
the JCL needed to assemble the same data set. 

Displaying the Status of Jobs 

Cancelling Batch Jobs 

Any time after you submit a background job you can use the STATUS 
command to have its status displayed. The display will tell you whether the 
job is awaiting execution, is currendy executing, or has executed but is still 
on the output queue. The display will also indicate whether a job is in hold 
status. For example, if you want to display the status of SMITH3A, enter: 

READY 
status smith3a 

If you have submitted two jobs with jobname SMI1H3A, but just want the 
status of the job submitted in Figure 1genter the jobid with the jobname, 
as follows: 

READY 
status smith3a(job71) 

If you want to know the status of all the jobs with jobnames consisting of 
your user identification plus one character, enter the STATUS command 
without operands: 

READY 
status 

You may also check the status of data sets held from previous foreground 
sessions by using the STATUS command. 

The CANCEL command cancels execution of a batch job. For example, if 
you want to cancel job JONESAB, and cancel its output if it has already 
executed, enter: 

READY 
cancel jonesab,p 

After you enter the CANCEL command, the system will send you a 
READY message and will notify the operator that the job has been 
cancelled. 

Uslug Foreground-initiated BaekgrowuI (FIB) Commands 411 



Controlling the Output of Batch or Foreground Jobs 

422 TSO Command Language Reference 

The OUTPUT command may be used to manipulate all held output, 
regardless of whether the output is produced during the current LOGON 
session, a previous LOGON session, or by a batch job submitted from any 
source. This output must be held for terminal access in one of two ways: 

Explicitly via HOLD= YES on a DD statement or via the ALLOCATE 
or FREE command, for example: 

or 

IISMITH6 JOB 
II EXEC 
IISYSPRINT DD 
II 

MSGLEVEL=1,MSGCLASS=C,NOTIFY=SMITH 
PGM=IEBDG 

SYSOUT=M,HOLD=YES 

II remainder of JCL statements 
II 

• Implicitly by specifying an installation-defined reserved class for 
SYSOUT and MSGCLASS. It is not necessary to have them reserved 
in the same class. For example: 

IISMITH6 
II 
IISYSPRINT 
II 

JOB MSGLEVEL=1,MSGCLASS=R,NOTIFY=SMITH 
EXEC PGM=IEBDG 
DD SYSOUT=S 

II remainder of JCL statements 
II 

The OUTPUT command can: 

• Direct the JCL statements, system messages (MSGCLASS), and 
system output data sets (SYSOUT) produced by a job to your 
terminal. 

• Direct the MSGCLASS and SYSOUT output from a job to a specific 
data set. 

• Change an output class used in a job. 

• Route the MSGCLASS and SYSOUT output from a job to a remote 
station. 

• Release the output of a job for printing. 

• Delete the output data sets (SYSOUT) or the system messages 
(MSGCLASS) for jobs. 

If you have NOTIFY =userid on the job cards that were submitted, a 
message is written to your terminal or placed in the broadcast data set 
when the background job terminates. Provided you have held the output, 
you can then use the OUTPUT command to control the held output 
produced by the job. 

For example, assume that job GREEN67 produces held output in classes 
A, B, D, M, G, and 6. If you want the output in classes G and M displayed 
at the terminal, enter: 

READY 
output green67 class(g m) print(*) 



If you want the output of class B to be listed in the 
GREEN.KEEP.OUTLIST data set. enter: 

READY 
output green67 class(b) print (keep) 

If you want to change the output in class A to class C. enter: 

READY 
output green67 class(a) newclass(c) 

If you want to delete the output from class D. enter: 

READY 
output green67 class(d) delete 

If you want to release the output of class 6. and have it printed in the 
background by output services. enter: 

READY 
output green67 class(6) nohold 

You can enter the PAUSE operand in the OUTPUT command to make the 
system stop after each data set is displayed on your terminal or on the data 
set you indicate with the PRINT operand. When the system pauses it sends 
you the message OUTPUT. You then have the option of pressing the 
ENTER key to continue processing or entering the CONTINUE. SAVE. 
END or HELP subcommand. 

The CONTINUE subcommand allows you to continue processing your 
output after an interruption occurs. An interruption occurs when: 

• The printing of a data set is completed and you used the PAUSE 
operand in the OUTPUT command. 

• You press the attention interruption key. 

Note: An attention interruption can cause unpredictable results in the print 
processing. When the attention interruption key is hit. the data set may be 
checkpointed 10 to 20 records back. 

To retrieve data cr~ated during previous LOGON sessions. issue STATUS 
userid. STATUS will return a jobid and status for each LOGON session as 
a job on the output queue. It will also return jobid and status for the 
current LOGON session as a job in execution. 

When you enter the CONTINUE subcommand. the system will resume the 
display with the next data set to be processed. In the following example 
you request that the held data sets in output classes Band C be displayed 
at your terminal. The system pauses after displaying the data set in B. You 
enter the CONTINUE subcommand to resume processing with data set in 
C. 

Using Foreground-initiated Background (FIB) Commands 413 



414 TSO Command Language Reference 

READY 
output jones2 class(b c) print(*) pause 

output class B 

OUTPUT 
continue 

output class C 

If the interruption was not caused by a pause, you may prefer to resume 
displaying at the beginning of the data set being processed. To resume 
displaying at the beginning, enter: 

OUTPUT 
continue begin 

If you prefer to resume displaying approximately 10 lines before the 
interruption occurred, enter: 

OUTPUT 
continue here 

The CONTINUE subcommand also lets you respecify the PAUSE operand 
of the OUTPUT command. If you entered PAUSE in the OUTPUT 
command, you can enter NOPAUSE in the CONTINUE subcommand, for 
example: 

READY 
output smithc class(d) print (data) pause 

OUTPUT 
continue begin nopause 

If you did not specify PAUSE in the OUTPUT command, you can do so in 
the CONTINUE subcommand. This causes the system to pause at the end 
of each data set processed subsequently. 

The SA VB subcommand allows you to place the data set listed before the 
pause into another data set. This allows you to retrieve the data set later. 
In the following example, if your LOGON identifier is Brown, you request 
that held data sets in output classes E and F be listed at your terminal. 
After listing the data set in E you request that it be saved in the 
BROWN.OUTDATA.OUTLIST data set. You continue processing the next 
data set after saving the data set in class E. 



Note: If you want to display output at a terminal when submitting one or 
more jobs, the name you specify must begin with your userid and 
optionally end with one or more alphameric characters (if the mM-supplied 
installation exit is used). 

READY 
output brownb class(e f) print(.) pause 

OUTPUT 
save outdata 
OUTPUT 
continue 

The END subcommand is used to terminate the OUTPUT command. For 
example: 

READY 
output dept30a class(a) print(.) pause 

OUTPUT 
end 
READY 

Using Foreground-initiated Background (FIB) Commands 425 



CANCEL Command 

TNL SN28-1029 (December 14, 19114) to SC211-1134-0 

Use the CANCEL command to halt processing of batch jobs that you have 
submitted from your terminal. A READY message will be displayed at your 
terminal if the job has been canceled successfully. A message will also displayed at 
the system operator's console when a job is canceled. 

Installation management must authorize the use of CANCEL. This command is 
generally used in conjunction with the SUBMIT, STATUS, and OUTPUT 
commands. 

CANCEL (jobname[(jobid)]-list) 

NOPURGE 
PURGE 

Oobname( Oobid)I-Iist) 

Notes: 

specifies the names of the jobs that you want to cancel. The jobnames must 
consist of your user identification plus one or more alphameric characters up 
to a maximum of eight characters unless the IBM-supplied exit has been 
replaced by your installation. 

Also, you cannot cancel a TSO user or a started task that is not on an output 
queue. The optional jobid subfield may consist of one to eight alphameric 
characters (the first character must be alphabetic or national). The jobid is a 
unique job identifier assigned by the job entry subsystem at the time the job 
was submitted to the batch system. The jobid is needed if you have 
submitted two jobs with the same name. 

1. When you specify a list of several job names, you must separate the jobnames 
with standard delimiters and you must enclose the entire list within 
parentheses. 

2. Jobs controlled by the subsystems are considered started tasks and cannot be 
cancened via the CANCEL command. 

PURGE 
specifies the job and its output (on the output queue) are to be purged from 
the system. 

NOPURGE 
specifies jobs are to be canceled if they are in execution, output generated by 
the jobs remains available. If the jobs have executed, the output still remains 
available. 

Note: Requesting an attention interrupt after issuing a CANCEL command might 
terminate that command's processing. In this case, you cannot resume CANCEL 
processing by pressing the ENTER key as you can after most attention interrupts. 

CANCEL Command 427 



December 14, 1984 

Example 1 

Operation: Cancel a batch job. 

Known: 

The name of the job: JE024A 1 

cancel je024a1 

Example 2 

Operation: Cancel several batch jobs. 

Known: 

The names of the jobs: D58BOBTA D58BOBTB(J51) D58BOBTC 

cancel (d58bobta d58bobtc(j51) d58bobtc) 

428 TSO Command Language Reference 



{OUTPUT} 
OUT 

OUTPUT Command 

Use the OUTPUT command to: 

• Direct the output from a job to your terminal. The output includes the 
job's job control language statements (JCL), system messages 
(MSGCLASS), and system output (SYSOUT) data sets. 

• Direct the output from a job to a specific data set. 

Delete the output for jobs. 

• Change the output class(es) for a job. 

• Route the output for a job to a remote work station. 

• Release the output for a job for printing by the subsystem. 

(jobname[(jobid)]-list) 

[CLASS(classname-list)] 

[PRINT 
[

BEGIN] 
HERE 
NEXT 

[ PAUSE J 
NOPAUSE [

KEEP [HOLD]] NOHOLD 
NOKEEP 

[DELETE] 
[ HOLD J 

[NEWCLASS(classname)] [DEST(station-id)] NOH OLD 

(jobnamel (jobid) J-Iist) 
specifies one or more names of batch or foreground jobs. The 
jobname for foreground session is userid. Each jobname must begin 
with your user identification and, optionally, can include one or more 
additional characters unless the mM-supplied installation exit that 
scans and checks the jobname and user identification is replaced by a 
user-written routine. The system will process the held output from 
the jobs identified by the job-name-list. You should include the 
optional jobid for uniqueness to avoid duplicate jobnames. 

CLASS(classname-list) 
specifies the names of the output classes to be searched for output 
from the jobs identified in the jobname list. If you do not specify the 
name of a class, all held output for the jobs will be available. A class 
name is a single character or digit (A-Z or 0-9). 

PRINT(dsname or *) 
specifies the name of the data set to which the output is to be 
directed. If unqualified, the data-set-name will have the user prefix 
added and the qualifier OUTLIST appended to it. You may substitute 
an asterisk for the data set name to indicate that the output is to be 
directed to your terminal. If you omit both the data set name and the 
asterisk, the default value is the asterisk. PRINT is the default value 
if you omit PRINT, DELETE, NEWCLASS, DEST, and 
HOLD/NOHOLD. 

If the PRINT data set is not pre-allocated, RECFM defaults to FBS, 
LRECL defaults to 132, and the BLKSIZE defaults to 3036. 

BEGIN 
indicates that output operations for a data set are to start from the 
beginning of the data set whether it has been checkpointed or not. 

OUTPUT Command· 429 



430 TSO Command Language Reference 

HERE 
indicates that output operations for a data set that has been 
checkpointed are to be resumed at the approximate point of 
interruption. If the data set is not checkpointed, it will be processed 
from the beginning. HERE is the default value if you omit HERE, 
BEGIN, and NEXT. 

NEXT 
indicates that output operations for a data set that has been 
previously checkpointed are to be skipped. Processing resumes at the 
beginning of the uncheckpointed data sets. Caution: The 
checkpointed data sets that are skipped will be deleted unless the 
KEEP operand is specified. 

PAUSE 
indicates that output operations are to pause after each SYSOUT 
data set is listed to allow you to enter a SA VE or CONTINUE 
subcommand. (Pressing the ENTER key after the pause will cause 
normal processing to continue.) This operand can be overridden by 
the NOPAUSE operand of the CONTINUE subcommand. 

NOPAUSE 

KEEP 

indicates that output operations are not to be interrupted. This 
operand can be overridden by the PAUSE operand of the 
CONTINUE subcommand. This is the default if neither PAUSE nor 
NOPAUSE is specified. 

specifies that the SYSOUT data set will remain enqueued after 
printing (see also HOLD and NOHOLD). 

NOKEEP 
specifies that the SYSOUT data set be deleted after it is printed. 
NOKEEP is the default if neither KEEP nor NOKEEP is specified. 

HOLD 
specifies that the kept SYSOUT data set be held for later access 
from the terminal. 

NOHOLD 
specifies that the kept SYSOUT data set be released for printing by 
the subsystem. This is the default for KEEP if neither HOLD nor 
NOHOLD is specified. 

DELETE 
specifies that the classes of output specified with the CLASS operand 
are to be deleted. 

NEWCLASS(classname) 
is used to change one or more SYSOUT classes to the class specified 
by the "classname" subfield. 



DEST(stadon id) 
routes SYSOUT classes to a remote work station specified by the 
"station id" subfield. 

Note: The DEST operand is 8 characters. 

Considerations: The OUTPUT command applies to all jobs whose job 
names begin with your user identification. AcCess to jobs whose job names 
do not begin with a valid user identification must be provided by an 
installation-written exit routine. The SUBMIT, STATUS, and CANCEL 
commands apply to conventional batch jobs. You must have special 
permission to use these commands. 

Note: You can simplify the use of the OUTPUT command by including the 
NOTIFY keyword either on the JOB card or on the SUBMIT command 
when you submit a job for batch processing. The system will notify you 
when the job terminates, giving you an opportunity to use the OUTPUT 
command. MSGCLASS and SYSOUT data sets should be assigned to 
reserved classes or explicitly held in order to be available at the terminal. 

Output Sequence: Output will be produced according to the sequence of 
the jobs that are specified, then by the sequence of classes that are 
specified for the CLASS operand. For example, assume that you want to 
retrieve the output of the following jobs: 

IIJWSD5B1 
II 
IISYSPRINT 
IISYSUTl 
II 

JOB 91435,MSGCLASS=X 
EXEC PGM=IEBPTPCH 
DD SYSOUT=Y 
DD DSNAME=PDS,UNIT=3330, 

II 
II 
IISYSUT2 
IISYSIN 

VOL=SER=11112,LABEL=(,SUL), 
DIPS=(OLO,KEEP), 
DCB=(RECFM=U,BLKSIZE=3036) 
DD SYSOUT=Z 
DD * 

PRINT TYPORG=PS,TOTCONV=XE 
LABELS DATA=NO 

1* 
IIJWSD5B2· 
II 
IISYSPRINT 
IID02 

JOB 
EXEC 

91435,MSGCLASS=X 
PGM=IEHPROGM 

DD 
DD 
DISP=OLD 

SYSOUT=Y 
UNIT=3330,VOL=SER=333000, 

II 
IISYSIN DD * 

SCRATCH VTOC,VOL=3330=333000 
1* 

To retrieve the output, you enter: 

output (jwsd5Bl jwsd5B2) class (x y z) 

Your output will be displayed in the following order: 

1. Output of job JWSDS81 

a. class X (JCL and messages) 
b. class Y (SYSPRINT data) 
c. class Z (SYSUT2 data) 

2. Output of job JWSDS82 

a. class X· (JCL and messages) 
b. class Y (SYSPRINT data) 
c. message (No CLASS Z OUTPUT FOR JOB JWSDS82) 

OUlPUT Command 431 



432 TSO ~ommand Language Reference 

If no classes are specified, the jobs will be processed as entered. Class 
sequence is not predictable. 

Subcommands: Subcommands for the OUTPUT command are: 
CONTINUE, END, HELP, and SAVE. When output has been interrupted, 
you can use the CONTINUE subcommand to resume output operations. 

Interruptions causing subcommand mode occur when: 

• Processing of a sysout data set completes and the PAUSE operand 
was specified with the OUTPUT command. 

• You press the attention key. 

Note: Pressing the attention key purges the input/output buffers for the 
terminal. Data and system messages in the buffers at this time may be lost. 

Although the OUTPUT command attempts to back up 10 records to 
recover the lost information, results are unpredictable due to record length 
and buffer size. The user may see records repeated or he may notice 
records missing if he attempts to resume processing of a data set at the 
point of interruption (using the HERE operand of CONTINUE, or in the 
next session using HERE on the command). 

You can use the SAVE subcommand to copy a SYSOUT data set to 
another data set for retrieval by a different method. Use the END 
subcommand to terminate OUTPUT. The remaining portion of a job that 
has been interrupted will be kept for later retrieval at the terminal. 

Checkpointed Data Set: A data set is checkpointed if it is interrupted 
during printing and never processed to end of data during a terminal 
session. 

Interruptions which cause a data set to be checkpointed occur when: 

• Processing terminates in the middle of printing a data set because of 
an error or ABEND condition. 

• The attention key is pressed during the printing of a data set and the 
CONTINUE NEXT subcommand is entered. The KEEP operand must 
be present or the data set will be deleted. 

• The attention key is pressed during the printing of a data set and the 
END subcommand is entered. 

Example 1 

Operation: Direct the held output from a job to your terminal. Skip any 
checkpointed data sets. 

Known: 

The name of the job: SMITH2 

The job is in the system output class: SYSOUT=X 

Output operations are to be resumed with the next SYSOUT data set 
or group of system messages that have never been interrupted. You 
want the system to pause after processing each output data set. 

output smith2 class(x) print(*) next pause 



Example 2 

Operation: Direct the held outp,ut from two jobs to a data set so that it 
can be saved and processed at a later date. 

Known: 

The name of the jobs: JANA JANB 
The name for the output data set: JAN.AUGPP.OUTLIST 

output (jana,janb) class(r,s,t) print (augpp) 

Example 3 

Operation: Change an output class. 

Known: 

The name of the job: KEANI 
The existing output class: SYSOUT=S 
The new output class: T 

output kean1 class(s) newclass(t) 

Example 4 

Operation: Delete the held output instead of changing the class (see 
Example 3). 

out kean1 class(s) delete 

Example 5 

Operation: Retrieve SYSOUT data from your session at your terminal. 

Known: 

The TSO userid: SMITH 
A JES held SYSOUT class: X 
The filename of the SYSOUT data set: SYSUT2 

free file(sysut2) sysout(x) 
status smith 
SMITH(TSU0001) EXECUTING 
output smith(tsu0001) 

OUTPUT Command 433 



CONTINUE Subcommand of OUTPUT 

Use the CONTINUE subcommand to resume output operations that have 
been interrupted. 

Interruptions occur when: 

• An output operation completes and the PAUSE operand was specified 
with the OUTPUT command. 

• You press the attention key. 

{gONTINUE} 

BEGIN 

[~~~~N] 
~ 

[ PAUSE ] 
NOPAUSE 

indicates that output operations are to be resumed from the 
beginning of the data set being processed at the time of interruption. 

NEXT 
halts all processing of the current data set and specifies that output 
operations are to be resumed with the next data set. 

The next data set is determined by the BEGIN, HERE, or NEXT 
operand on the OUTPUT command. If BEGIN was specified on the 
command, processing will start at the beginning of the next data set. 
If HERE was specified, processing will start at the checkpoint of the 
next data set, or at its beginning if no checkpoint exists. If NEXT 
was specified, processing will start at the beginning of the next 
uncheckpointed data set. NEXT is the default value if BEGIN, 
HERE, and NEXT are omitted. 

Note: The data set that was interrupted and any that are skipped will be 
deleted unless KEEP was specified on the command. 

HERE 
indicates that output operations are to be resumed at a point of 
interruption. If the attention key was pressed, processing resumes at 
the approximate point of interruption in the current data set. If end 
of data was reached and PAUSE was specified, processing resumes at 
the beginning of the next data set (even if it was checkpointed and 
HERE was specified on the command). 

PAUSE 
indicates that output operations are to pause after each data set is 
processed to allow you to enter a SA VB subcommand. (Pressing the 
ENTER key after the pause will cause normal processing to 
continue.) You can use this operand to override a previous 
NOPAUSE condition for output. 

NOPAUSE 
indicates that output operations are not to be interrupted. You can 
use this operand to override a previous condition for output. 

CONTINUE Subcommand of OUTPUT 435 



436 TSO Command Language Reference 

Example 1 

Operation: Continue output operation with the next SYSOUT data set. 

continue 

Example 2 

Operation: Start output operations over again with the current data set 
being processed. 

continue begin 



END Subcommand of OUTPUT 

Use the END subcommand to terminate the operation of the OUTPUT 
command 

END 

END Subcommand of OUTPUT 437 



HELP Subcommand of OUTPUT 

Use the HELP subcommand to obtain the syntax and function of the 
OUTPUT subcommands. Refer to the HELP command for a description of 
the syntax and function of the HELP subcommand . 

.HELP Subcommand of OUTPUT, 4;39 



SAVE Subcommand of OUTPUT 

Use the SA VE subcommand to copy the SYSOUT data set from the spool 
data set to the named data set. This data set can be any data set that 
would be valid if used with the PRINT operand. There is no restriction 
against saving JCL. To use SAVE, you should have specified the PAUSE 
keyword on the OUTPUT command. SAVE will not save the entire 
SYSOUT output of the job, only the data set currently being processed. 

data-set-name 

data-set-name 
specifies the new data set name to which the SYSOUT data set is to 
be copied. 

Example 1 

Operation: Save an output data set. 

Known: 

The name of the data set: ADT023.NEWOUT.OUTLIST 

save newout 

Example 2 

Operation: Save an output data set. 

Known: 

The name of the data set: BXZ037A.OLDPART.OUTLIST 
The data set member name: MEM5 
The data set password: ZIP 

save oldpart(mem5)/zip 

SAVE SubcommllDd of OUTPUT 441 



STATUS Command 

TNL SN28-I029 (December 14. 1984) 10 SC21!-1I34-0 

Use the STATUS command to have the status of conventional batch jobs displayed 
at your terminal. You can obtain the status of all batch jobs, of several specific 
batch jobs, or of a single batch job. The information that you receive for each job 
will tell you whether it is awaiting execution, is currently executing, or has 
completed execution but is still on an output queue. It also indicates whether the 
job is in hold status. 

This command may be used only by personnel who have been given the authority 
to do so by the installation management. 

STATUS 
ST 

ijobnamel ijobid»)-list) 

[(jobname[(jobid»)-list») 

specifies the names of the conventional batch jobs for which you want to 
know the status. If two or more jobs have the same jobname, the system will 
display the status of all the jobs encountered and supply job ids for 
identification. When more than one job name is included in the list, the list 
must be enclosed within parentheses. If you do not specify any jobnamt~s, 
you receive the status of all batch jobs in the system whose jobnames consist 
of your userid and one identifying character (alphameric or national). 

The optional jobid subfield may consist of one to eight alphameric characters 
(the first character must be alphabetic or national). The jobid is a unique 
job identifier assigned by the job entry subsystem at the time the job was 
submitted to the batch system. 

Notes: 

1. When you specify a list of job names, you must separate the job names with 
standard delimiters. 

2. Requesting an attention interrupt after issuing a STATUS command might 
terminate that command's processing. In this case, you cannot resume 
STATUS processing by pressing the ENTER key as you can after most 
attention interrupts. 

STATUS Command 443 



SUBMIT Command 

December 14, 1984 

Use the SUBMIT command to submit one or more batch jobs for conventional 
processing. Each job submitted must reside in either a sequential data set, a 
direct-access data set, or in a member of a partitioned data set. Submitted data sets 
must be fixed blocked, 80 byte records. Using the EDIT command to create a 
CNTL data set will provide the correct format. 

Any of these data sets can contain part of a job, one job, or more than one job that 
can be executed via a single entry of SUBMIT. Each job must comprise an input 
job stream (JCL plus data). Do not submit data sets with descriptive qualifiers 
TEXT or PLI if the characters in these data sets are lower case. 

Job cards are optional. The generated job name will be your userid plus an 
identifyiflg character. SUBMIT will prompt you for the character and will insert 
the job accounting information from the user's LOGON command on any 
generated job card. The system or installation default MSGCLASS and CLASS 
are used for submitted jobs unless MSGCLASS and CLASS are specified on the 
job card(s) being submitted. See the first section in Appendix A for an example of 
a generated JOB card. 

SUBMIT 
SUB 

(data-set-list) NOTIFY 
NONOTIFY 

(data-set-Iist) 
specifies one or more data set names or names of members of partitioned 
data sets that define an input stream (JCL plus data). If you specify more 
than one data set name, enclose them in parentheses. 

NOTIFY 
specifies that you are to be notified when your job terminates in the 
background if a JOB statement has not been provided. If you have elected 
not to receive messages, the message will be placed in the broadcast data set. 
You must then enter LISTBC to receive the message. NOTIFY is the 
default value if a JOB statement is generated. 

When you supply your own JOB statement, use the NOTIFY =userid 
keyword on the JOB statement if you wish to be notified when the job 
terminates. SUBMIT ignores the NOTIFY keyword unless it is generating a 
JOB statement. 

NONOTIFY 

Notes: 

specifies that a termination message will not be issued or placed in the 
broadcast data set. The NONOTIFY keyword is only recognized when a 
JOB statement has not been provided with the job that you are processing. 

1. If any of the above types of data sets containing two or more jobs is submitted 
for processing. certain conditions apply. 

The SUBMIT processor will build a job card for the first job in the first data 
set, if none was supplied, but will not build job cards for any other jobs in the 
data set(s). 

SUBMIT Command 445 



TNL SN28-1029 (December 14. 1984) to SC28-1134-0 

If the SUBMIT processor determines that the first job contains an error. none 
of the jobs is submitted. Once the SUBMIT processor submits a job for 
processing. errors occurring in the execution of that job have no effect on the 
submission of any remaining job(s) in that data set. 

2. Any job card you supply should have a job name consisting of you userid and a 
single identifying character. If the jobname is not in this format, you will not 
be able to refer to it with the CANCEL command. You will be required to 
specify the jobname in the STATUS command if the IBM-supplied exit has not 
been replaced by your installation and your job name is not your userid plus a 
single identifying character. . 

3. If you wish to provide a job card but you also want to be prompted for a unique 
jobname character, put your userid in the jobname field and follow it with 
blanks so that there is room for SUBMIT to insert the prompted-for character. 
This allows you to change jobnames without re-editing the JCL data set. 

4. Once SUBMIT has successfully submitted a job for conventional batch 
processing, it will issue a 'jobname(jobid) submitted' message. The jobid is a 
unique job identifier assigned by the job entry subsystem. 

5. This command may be used only by personnel who have been given the 
authority to do so by the installation management. 

6. If SUBMIT is to generate a JOB statement preceding one or more job entry 
subsystem control cards, make the first card of your data set a comment card. 
If this is not done, SUBMIT will generate the JOB statement following any job 
entry subsystem control cards. 

7. Data sets that are dynamically allocated by the SUBMIT command processor 
are not automatically freed when the command processor terminates. You 
must explicitly free dynamically allocated data sets. 

8. Requesting an attention interrupt after issuing a SUBMIT command might 
terminate that command's processing. In this case. you cannot resume 
SUBMIT processing by pressing the ENTER key as you can after most 
attention interrupts. 

Example I 

Operation: Submit two jobs for conventional batch processing. 

Known: 

The names of the data sets that contain the jobs: 

446 TSO Command Language Reference 

ABTJQ. STRESS. CNTL 
ABTJQ.STRAIN.CNTL 



December 14. 1984 

Example 2 

Operation: Data sets may be concatenated and submitted as a single job. 

Known: 

JCL.CNTL(ASMFCLG}: contains JCL for the job. 
MYDATA.DATA: contains the input data. 

submit (jcl(asmfclg) mydata) 

This will cause a single background job to be submitted and will simultaneously 
concatenate a generated job card (if required), job control 

SUBMIT Command 446.1 



language, and the data. Each data set will not be submitted as a separate 
job. 

SUBMIT c;ommamt.'447 



ASM Command 

COBOL Command 

COPY Command 

Appendix B: Program Product Commands 

The ASM command is provided as part of the optional TSO ASM 
Prompter program product, which is available for a license fee. See 
OS/TSO Assembler Prompter User's Guide, SC26-3740, for detailed 
information on this command. 

Use the ASM command to process assembler language data sets and 
produce object modules. The prompter requests required information and 
enables you to correct your errors at the terminal. 

The COBOL command is provided as part of the optional COBOL 
Prompter program product, which is available for a license fee. See IBM 
OS (TSO) COBOL Prompter Terminal User's Guide and Reference, 
SC28-6433, for detailed information on this command. 

Use the COBOL command to compile American National Standard (ANS) 
COBOL programs. This command reads and interprets parameters for the 
OS Full American National Standard COBOL Version 3 or Version 4 
compiler and prompts you for any information that you have omitted or 
entered incorrectly. It also aUocates required data sets and passes 
parameters to the compiler. 

COBOL also allows specification of the TEST operand to compile 
programs suitable for testing with the COBOL Interactive Debug program 
product (see TESTCOB command). 

The COpy command is provided as part of the optional TSO Data 
Utilities: COPY, FORMAT, LIST, MERGE program product, which is 
available for a license fee. See OS/MVT and OS/VS2 TSO Data Utilities: 
COPY, FORMAT, LIST, MERGE User's Guide and Reference, 
GC28-6765, for detailed information on this command. 

Use the COpy command to copy sequential or partitioned data sets. You 
can also use this command to: 

• Add members to or merge partitioned data sets. 

Resequence line numbers of copied records. 

• Change the record length, the block size, and the record format when 
copying into a sequential data set. 

Appendix B: Program Product Commands 449 



FORMAT Subcommand of EDIT 
The FORMAT subcommand is provided as part of the optional TSO Data 
Utilities: COPY, FORMAT, LIST, MERGE program product, which is 
available for a license fee. See OS/MVT and OS/VS2 TSO Data Utilities: 
COPY, FORMAT, LIST, MERGE User's Guide and Reference, SC28-6765, 
for detailed information on this subcommand. 

Use the FORMAT subcommand to format textual output. This 
subcommand provides the facilities to: 

• Print a heading on each page. 
Center lines of text between margins. 
Control the amount of space for all four margins. 

• Justify left and right margins of text. 
• Number pages of output consecutively. 
• Halt printing when desired. 
• Print multiple copies of selected pages. 
• Control line and page length. 
• Control paragraph indentation. 

MERGE Subcommand of EDIT 

FORMAT Command 

450 TSO Command Language Reference 

The MERGE subcommand is provided as part of the optional TSO Data 
Utilities: COPY, FORMAT, LIST, MERGE program product, which is 
available for a license fee. See OS/MVT and OS/VS2 TSO Data Utilities: 
COPY, FORMAT, LIST, MERGE User's Guide and Reference, SC28-6765, 
for detailed information on this subcommand. 

Use the MERGE subcommand to: 

• Merge, into the data set being edited, all or part of itself. 

• Merge, into the data set being edited, all or part of another data set. 

The FORMAT command is provided as part of the optional TSO Data 
Utilities: COPY, FORMAT, LIST, MERGE program product, which is 
available for a license fee. See OS/MVT and OS/VS2 TSO Data Utilities: 
COPY, FORMAT, LIST, MERGE User's Guide and Reference, SC28-6765, 
for detailed information on this command. 

Use the FORMAT command to format textual output. This command 
provides the facilities to: 

• Print a heading on each page. 
• Center lines of text between margins. 
• Control the amount of space for all four margins. 

Justify left and right margins of text. 
• Number pages of output consecutively. 
• Halt printing when desired. 
• Print multiple copies of selected pages. 
• Control line and page length. 
• Control paragraph indentation. 
• Store a data set that has already been formatted. 
• Print all or part of a sequential or partitioned data set. 



FORT Command 

LIST Command 

MERGE Command 

The FORT command is provided as part of the optional TSO FORTRAN 
Prompter program product, which is available for a license fee. See IBM 
System/360 OS (TSO) Terminal User's Supplement for FORTRAN IV (GJ) 
Processor and TSO FORTRAN Prompter, SC28-6855, for detailed 
information on this command. 

Use the FORT command to compile a FORTRAN IV (Gl) program. You 
will be prompted for any information that you have omitted or entered 
incorrectly. It also allocates required data sets and passes parameters to the 
FORTRAN IV (Gl) compiler. 

FORT also allows specification of the TEST operand to compile programs 
suitable for testing with the FORTRAN Interactive Debug program product 
(see the TESTFORT command). 

The LIST command is provided as part of the optional TSO Data Utilities: 
COPY, FORMAT, LIST, MERGE program product, which is available for 
a license fee. See OS/MVT and OS/VS2 TSO Data Utilities: COPY, 
FORMAT, LIST, MERGE User's Guide and Reference. SC28-6765, for 
detailed information on this command. 

Use the LIST command to display a sequential data set or a member of a 
partitioned data set. You can arrange fields within records for output; you 
can include or suppress record numbers; you can list all or part of a 
particular line of data; and you can list a single line of data, a group of 
lines, or a whole data set. 

The MERGE command is provided as part of the optional TSO Data 
Utilities: COPY, FORMAT, LIST, MERGE program product, which is 
available for a license fee. See OS/MVT and OS/VS2 TSO Data Utilities: 
COPY, FORMAT, LIST, MERGE User's Guide and Reference, SC28-6765, 
for detailed information on this command. 

Use the MERGE command to: 

• MERGE a complete or part of a sequential or member of a 
partitioned data set into a sequential or member of a partitioned data 
set. 

• Copy a complete or part of a sequential or member of a partitioned 
data set into a new or (pre-allocated) empty sequential data set. 

• Copy a complete or part of a sequential or member of a partitioned 
data set into a new member of an existing partitioned data set. 

• Copy a complete or part of a sequential or member of a partitioned 
data set into a new or (pre-allocated) empty partitioned data set. 

Appendix B: Program Product Commands 4$1 



PLI Command 

TESTCOB Command 

TESTFORT Command 

451 TSO Command Language Reference 

The PLI command is provided as part of the optional PL/I Optimizing 
compiler program product, which is available for a license fee. See OS 
PL/ I Optimizing Compiler: TSO User's Guide, SC33-0029, for detailed 
information on this command. The program product includes the PL/I 
Prompter. 

Use the PLI command to invoke the PL/I Optimizing compiler. The 
prompter will allocate required data sets and prompt you for any 
information that you have omitted or entered incorrectly, then it will pass 
control to the compiler. 

The TESTCOB command is provided as part of the optional COBOL 
Interactive Debug program product, which is available for a license fee. 
See IBM OS COBOL Interactive Debug Terminal User's Guide and 
Reference, SC28-6465, for detailed information on this cOl".Unand. Used 
with Full American National Standard COBOL Version 4, Compiler or the 
OS/VS COBOL Compiler, COBOL Interactive Debug enables the COBOL 
programmer to monitor and control the execution of his COBOL program 
from a terminal. It greatly simplifies the debugging of COBOL object 
programs by providing facilities that make errors readily apparent and easily 
correctable. 

The TESTFORT command is provided as part of the optional FORTRAN 
Interactive Debug program product, which is available for a license fee. 
See IBM FORTRAN Interactive Debug for os (TSO) and VM/370 (CMS) 
Terminal User's Guide, SC28-6885, for detailed information on this 
command. Used in conjunction with Code and Go FORTRAN or 
FORTRAN IV(Gl), FORTRAN Interactive Debug provides comprehensive 
capabilities for program monitoring and checkout. 



Appendix C: Access Method Services Commands 

Access Method Services is a multifunction service program that primarily 
establishes and maintains Virtual Storage Access Method (VSAM) data 
sets. The following Access Method Services commands provide the service 
functions applicable to VSAM data sets and are used in the same way as 
TSO commands at the terminal: 
ALTER 

BLDINDEX (BIX) 

CHKLlST (CKLST) 

CNVTCAT 

DEFINE (DEF) 

DELETE (DEL) 

DIAGNOSE (DlAG) 

EXPORT (EXP) 

IMPORT (IMP) 

LlSTCAT (LISTC) 

PRINT 

REPRO 

VERIFY (VFY) 

changes attributes in catalog entries. 

builds alternate indexes for existing data sets. 

identifies tape volumes mounted when a checkpoint was taken. 

converts the contents of an OS CVOL or VSAM catalog into 
entries in an Integrated Catalog Facility (ICF) catalog. 

creates catalog entries for data sets and catalogs. Subcommands 
are: 

ALIAS 
ALTERNATE INDEX (AIX) 
CLUSTER (CL) 
GENERATIONDATAGROUP(GDG) 
NONVSAM(NVSAM) 
PAGESPACE(PGSPC) 
PATH 
SPACE (SPC) 
USERCATALOG(UCAT)!MASTER CATALOG(MCAT) 

deletes catalog ~ntries. 

scans a BCS or a VVDS to validate the data structures to detect 
structure errors 

copies a data set or catalog for backup or to make a data set 
portable so it may be used. 

reads a backup copy of a data set or makes an exported data 
set available to a system, or restores an Integrated Catalog 
Facility (lCF) catalog. 

lists catalog entries. 

prints VSAM data sets. 

copies data sets 
copies catalogs 
splits catalog entries between two catalogs 
merges catalog entries into another user or master catalog 

causes a catalog to correctly record the end of a data set after a 
data set closing error may have caused the end to be recorded 
incorrectly. 

The following commands apply only to the VSAM catalog: 
EXPORTRA (XPRA) 

IMPORTRA (MPRA) 

LlSTCRA (LISTR) 

RESETCAT (RCA T) 

makes entries and data from a VSAM recoverable catalog 
portable. 

reestablishes entries and data made portable by EXPORTRA. 

lists catalog entries in the catalog recovery area (CRA). 

synchonizes a damaged catalog with specified catalog recovery 
areas. 

For additional information about the syntax and function of these 
commands, refer to Access Method Services. 

Appendix C: Access Method Services Commands 453 



Appendix D: Support for Processing Batch Jobs 

Executing TSO Commands in the Background 

Background Prompting 

There are times when it is not practical to execute a series of commands or 
a command procedure from your terminal. If a' job is going to take an 
extended period of time to execute or if a large amount of output is to be 
printed, it is more convenient to execute in the background, that is, 
independent of the terminal. 

This program product allows the user to execute a command procedure or a 
series of commands in the background. To use this function, you must be 
authorized by your installation to use the SUBMIT command or to process 
card decks (batch jobs) through the computer center. 

Note: There are a number of restrictions that apply to using commands in 
the background. See Figure 31, "Processing Considerations (RACF and 
non-RACF Systems)" for a complete list of the restrictions. 

Prompting in the background, as in the foreground, should be anticipated. 
However, all information required for these prompts must be supplied 
before processing a job. The commands are executed as if PROFILE 
NOPROMPT was entered. When PROFILE PROMPT is entered, it is 
ignored unless a command procedure is executed. 

Place necessary replies within a DATA PROMPT -- ENDDATA sequence 
within a command procedure. More information can be found on this 
sequence later in this book under "Command Procedure Modifications." 

Figure 20 illustrates the creation of a job containing a command procedure 
to be executed in the background. The DATA PROMPT -- ENDDATA 
sequence is used as a method of prompting. 

Appendix D: Support for Processing Batch Jobs 455 



ConCU/'l'ent Execution 

Output Handling 

456 TSO Command Language Reference 

edit testcase cntl new 
INPUT 
00010 logon userid 
00020 edit example.clist emode 
00030 10 set &null= R 
00040 20 attr atl blksize(7294) recfm(u) 
00050 30 alloc da (bkgd.load) new sp(10,5) tracks dir(1) 

using (atl) 
00060 40 alloc f(ddn1) da ('sys1.linklib') shr 
00070 50 link * load (bkgd) pr(*) list 
00080 60 data prompt 
00090 70 include ddn1 (iefbr14) 
00100 80 name myload(r) 
00110 90 &null 
00120 100 enddata 
00130 110 free all 
00140 end save 
00150 profile prompt list 
00160 exec example prompt 

00170 R 
EDIT 
submit * jobch(x) 
EDIT 
end save 

Figure 20. Handling Necessary Replies In the Background 

When executing commands in the background and foreground concurrently, 
you should be aware that allocation of a data set both in the foreground 
and the background may not be successful. If a data set has been allocated 
(foreground or background mode) with a disposition of OLD, MOD, or 
NEW, it cannot be allocated in the opposite mode by the ALLOCATE 
command or any other command processor. For example, the ALLOCATE 
command issued in the background for a data set in use in the foreground, 
will issue an error message that the data set is already in use. Any 
command remaining in the job stream will be processed. 

If a user's LOGON procedure allocates a data set with a disposition of 
NEW, MOD, or OLD, a background job specifying the same LOGON 
procedure will not execute until the user logs off or frees the data set in 
the foreground. Similarly, if a background job is executing and the user 
attempts to log on a terminal with the same LOGON procedure, the logon 
attempt will fail. 

Output produced by a background job differs from output in the 
foreground in the following ways: 

• Messages producing multiple levels will be prirtted in their entirety. (It 
is the same as entering a (1) and recovering all levels.) 

• The allocation of an output data set to the terminal causes that output 
to be printed after all other output. 

If it is necessary to see the output at your terminal rather than waiting to 
have it printed on the system printer, one of two things can be done; place 



the output in a data set or have the output held and use the OUTPUT 
command to look at it. 

For the appropriate JCL, see "Writing JCL for Command Execution" in 
this book. 

Submitting Commands Using the SUBMIT Command 

The SUBMIT command can be used to submit batch jobs in the 
background. Refer to the section "Command Syntax" for more information 
about the SUBMIT command. There are two techniques for submitting 
batch jobs in the background using the SUBMIT command. ' 

1. Use the SUBMIT command or subcommand of EDIT to submit one or 
more batch jobs for background processing. When submitting a data 
set, the data set must be in the same format as a CNTL-type data set. 
Using the EDIT command to create this data set will assure you of the 
correct data set format. Figure 21 illustrates how the EDIT command 
can be used to create a data set containing commands and how the 
SUBMIT command is used to submit this same data set as a 
background TSO session. 

2. The SUBMIT command supports an asterisk (*) for the positional 
parameter value and two new keyword operands, END and PAUSE. 
The new keyword operands, END and PAUSE, are valid only when 
,*, is specified and when the issuer is not in EDIT mode (see note 
below). SUBMIT * will allow the job stream source to reside in other 
than a permanent data set, such as: terminal, in storage lists, data sets, 
and the CLIST -type in storage lists. The job stream may be entered 
directly without creating and EDITing a data set. Figure 22 illustrates 
how the SUBMIT * function is used to submit background jobs. 

Note: The existing SUBMIT * function of EDIT will continue to select the 
current data set as the input job stream. Therefore, this SUBMIT * 
function is not available in EDIT mode. 

edit examp2.cntl new 
INPUT 
00010 logon 
00020 profile prefix(user2) 
00030 edit a.data new emode 
00040 5 this is first line 
00050 10 this is second line 
00060 save b.data reuse 
00070 end save 
00080 R 
EDIT 
submit * jobc(a) 
JOB USER2A(JOB000347) SUBMITTED 
EDIT 
end save 
READY 

Figure 21. Creating and Submitting Data Sets Containing Commands 

AppendiX D: Support for Processing Batch Jobs 457 



458 TSO Command Language Reference 

/*Example 1: Submitting a job with input from a terminal*/ 
READY 
submit * 
ENTER INPUT JOB STREAM: 

dDstep exec pgm=somepgm 

ENTER JOBNAME CHARACTER(s) 
a 
JOB USERIDA (JOB00007) SUBMITTED 
READY 
/*Example 2: Submitting jobs with input from a CLIST*/ 
/* The following is a listing of the CLIST about to be 

submitted*/ 

PROC 0 STEP(2) 
CONTROL PROMPT 
SUBMIT * PAUSE END (GO) 
//USERIDA JOB MSGLEVEL=1 
//STEPA1 EXEC PGM=YOURPGM 
//SYSPRINT DD SYSOUT=A 
IF &STEP=2 THEN DO 
//STEPA2 EXEC PGM=PROGRAM2 
//SYSPRINT DD SYSOUT=A 
END 
ELSE DO 
//STEPA3 EXEC PGM=PROGRAM3 
//SYSPRINT DD SYSOUT=A 
END 
//USERIDB 
//STEPB 
//SYSPRINT 
GO 

JOB 
EXEC 
DD 

MSGLEVEL=1 
PGM=SOMEPGM 
SYSOUT=A 

/* The following shows the CLIST being executed. 

exec myclist list 
ENTER INPUT JOB STREAM: 
SUBMIT *PAUSE'END(GO) 
//USERIDA JOB MSGLEVEL=1 
//STEPA1 EXEC PGM=YOURPGM 
//SYSPRINT DD SYSOUT=A 
//STEPA2 EXEC PGM=PROGRAM2 
//SYSPRINT DD SYSOUT=A 
//USERIDB JOB MSGLEVEL=1 
//STEPB EXEC PGM=SOMEPGM 
//SYSPRINT DD SYSOUT=A 
go 
SHOULD INPUT JOB STREAM BE SUBMITTED? ENTER YES OR NO: + 
yes 
JOB USERIDA(JOB00008) SUBMITTED 
JOB USERIDB(JOB00009) SUBMITTED 
READY 

rlglll'e 22. The SUBMIT • Function 

LOGON must be the first command in the data set if you want the 
SUBMIT command to generate the JCL statements to execute commands 
in the background. No parameters are required on the LOGON command 
in the submitted data set. Your userid must be specified if any other 
keywords are specified on this command. If you want to charge the job to 
an account number other than the one you are currently logged on with, 
you must specify the ACCT keyword. MAIL, NOMAIL, NONOTICE and 



RECONNECT keywords are ignored. Figure 23 illustrates how the system 
integrates your data with the JCL generated by the system. 

SUBMIT dsname 

pl'liCllCled by a 
LOGON 
command 

SUBMIT 
Process 

Figure 23. The SUBMIT Process Using System-Generated JCL 

Batch 
Process 

System generated 
JCLand data 
from dsname 

Some other conditions that apply when submitting jobs in the background 
are: 

• The LOGON command can be preceded by JES2 or JES3 JCL 
statements. If this is done, no other JCL statements will be processed. 
If a JCL statement follows the LOGON command, it will be executed 
in the background as an input line. SUBMIT will not generate the 
required JCL for execution if there are any non-JES JCL statements 
preceding th~ LOGON command. 

• The LOGON command must be written on one line, columns 1 thru 
72 only. 

• You can have more than one LOGON command within a single data 
set. SUBMIT will create the JCL statements for each of them and 
allow execution in the background. 

• The characters * / cannot be used in columns one and two in a data 
set where SUBMIT -generated JCL is to be used because SUBMIT 
designates these characters as a delimiter. It will be necessary to 
provide your own JCL if the use of these characters is mandatory in 
columns one and two. 

• Only use the PROC keyword on a submitted LOGON command if the 
procedure is available in the SYS 1.PROCLIB. 

• The PROC specified on a submitted LOGON command must not 
contain the ddnames SYSTSIN or SYSTSPRT. SUBMIT will always 
generate these ddnames. 

Appendix D: Support for Processing Batch Jobs 459 



For example, if you were to submit a data set containing the commands 
LOGON and LISTCAT, SUBMIT would enter the following background 
job: 

IIYOURID JOB ACCT.INFO., 
II YOURID 
II NOTIFY=YOURID 
II MSGLEVEL=(l,l) 
11******************************************************** 
11* THE FOLLOWING LOGON COMMAND WAS FOUND IN SUBMIT'S * 
11* INPUT DATA SET(S) AND WAS USED TO GENERATE THE JCL * 
11* TO EXECUTE TSO COMMANDS IN THE BACKGROUND: * 
11* * 
11* LOGON * 
11* * 
11******************************************************** 
IICBSTEP EXEC PGM=IKJEFT01,DYNAMNBR=30 
IISYSTSPRT DD SYSOUT=A **OUTPUT FROM COMMANDS IN 

IISYSTSIN 
LISTCAT 

*1 

DD 
BACKGROUND * * 

DATA, DLM= , *1 , **INPUT COMMANDS** 

If the above SUBMIT-generated JCL statements are not sufficient for your 
needs, you can insert your own JCL. Do not include a LOGON command 
if this is done. Figure 24 illustrates the SUBMIT process if you create your 
own JCL. 

SUBMIT dsname 

SUBMIT 
Process 

Figure 24. The SUBMIT Process With User-Created JCL Statements 

Batch 
Process 

JCL "and data 
from dsname 

Submitting Commands Using Q Ctud Deck 

460 TSO Command Language Reference 

When submitting your job in the form of a card deck, each command or 
subcommand must begin on a separate card. If the information cannot be 
contained on one card, you can continue the data to the next card by using 
a plus or minus sign as the last character of the line to be continued. Refer 
to the section on "Line Continuation" in TSO Terminal User's' Guide for 
more information on the use of line continuation characters. 

Figure 25 illustrates a sample card deck showing the JCL statements 
required for card input and the appropriate placement of the data cards. 



See "Writing JCL for Command Execution" in this book, for the format 
for each of these statements. 

/I JOB 

FIgure 25. Card Deek Setup for Processfng Commands In the Bac:Iqp'ound 

Writing JCL for COIIUIIIlIId Exl!t:ution 

JOB Statement 

EXEC Statement 

The following JCL statements are required for executing commands in the 
background. Other statements can be used, but are not required for 
execution. (See JCL for a complete deScription of JCL statements.) 

The JOB statement is the first JCL statement in a batch job. It marks the 
beginning of a job and when jobs are stacked in the input stream, marks 
the end of the control statements for the preceding job. This statement 
consists of four fields. The format is: 

r / /jobname JOB operands comments 

The EXEC (execute) statement is used to execute program IKJEFTOI 
(TSO Terminal Monitor Program (TMP». The format is: 

//stepname EXEC PGM=IKJEFT01,DYNAMNBR=nn,PARM='command' 

stepname 
is optional to the user and can be used as a step identifier if the 
program consists of more than one step. 

PGM= 
specifies the module being executed. 

Appelldix D: support for Proc:essIng Batch Jobs 461 



SYSTSPRT DD Statement 

SYSTSIN DD Statement 

462 TSO Command Language Reference 

DYNAMNBR= 
specifies a value from 1 to 1635, limiting the number of allocations 
of data sets, ddnames, or attribute lists that can be used at one time 
per job step. 

PARM= 
is optional and can be used to supply the ·first (or only) command to 
be executed. 

The SYSTSPRT DD statement is used to control the output you wish to 
receive from your background job. By specifying different keywords on 
this statement, you can have the output listed on a system printer, held in a 
work data set to enable you to look at it using the OUTPUT command, or 
placed in a specified data set for later use. 

In order to see output as soon as the job has been executed, specify the 
NOTIFY =userid keyword on the JOB statement. This will cause a 
message to be printed at your terminal as the job completes. When using 
this method, you should hold the output from being printed. Depending on 
the output you require, the following DD statement formats should be used: 

r //SYSTSPRT DD SYSOUT=c 

(where c is the installation-defined class for output not held) 

r //SYSTSPRT DD SYSOUT=c 

(where c is a held class and MSGCLASS=c is specified, the OUTPUT 
command can be used to look at the output) 

( //SYSTSPRT DD SYSOUT=c,HOLD=YES 

(where c is not a held class. The OUTPUT command can be used to look 
at this output also) 

//SYSTSPRT DD DSN=userid.anyname,DISP=NEW,SPACE=(TRK, 

(where it is desirable to allocate a new data set) 

//SYSTSPRT DD DSN=userid.anyname,DISP=OLD 

(where a data set was preallocated in the foreground for output) 

The SYSTSIN DD statement is used to specify that data to follow, consists 
of executable commands and/or subcommands. Depending on the format 
of the input, one of the following DD statements shoUld be used: 

( //SYSTSIN DD * 



Comltlllnd Behavior 

CALL Command 

(where all input following this statement is accepted as data until an input 
delimiter is found) 

r //SYSTSIN DD DATA 

(where aU input following this card is accepted as data (including those 
statements beginning with a / /) until an input delimiter is found) 

r //SYSTSIN DO OSNAME= 

(where input is being brought in from a data set) 

Note: The SYSTSIN and SYSTSPRT DD statements can refer to a 
sequential data set or a member of a partitioned data set. 

The behavior of certain TSO commands when used for background 
processing is different from foreground processing. The commands listed 
here, show only those changes supporting the execution of commands to be 
processed in the background with this program product. The command 
syntax is shown only where new keywords/operands have been added. For 
a complete description of each of these commands, the user must use this 
section in conjunction with the command descriptions. 

Service aids, utilities, and other programs obtaining their input from an 
allocated file such as SYSIN, must have the input in a created data set or a 
job stream data set which is created with a DD· or a DD DATA 
statement. Once the data set has been created, the CALL command can 
be used to execute the program which will access the SYSIN data. 
Figure 26 illustrates the allocation and creation of input data sets: 

//exampl exec pgm=ikjeftOl,dynamnbr=20 
//systsprt dd sysout=a 
//systsin dd • 

profile prefix(userl) 
allocate file (sysprint) dataset(*) 
allocate file(sysin) altfile(inputdd) 
call progl 
allocate file(sysin) altfile(inputdd2) reuse 
call prog2 
free all 

//inputdd dd * 
*.input to progl** 

//inputdd2 dd * 
**input to prog2** 

/* 

FIgUre 26. Allocating and Creating Input Data Sets 

Note: Allocating the input file to a terminal will result in an I/O error 
message. Termination will occur when the program tries to get input from 
the terminal. 

AppendiX 0: Support for Processing Batch Jobs '463 



EDIT Command 

464 TSO Command Language Reference 

When the EDIT command is executed in the background and input mode is 
requested, blank lines should not be entered into the data set. EDIT will 
interpret a blank line as a null line causing a switch from input mode to 
edit mode. When it is necessary to incorporate blank lines into your data 
set, certain methods can be followed. One method is to insert an unused 
character string wherever a blank line is required. Before ending the edit 
session, insert a CHANGE subcommand changing this character string to 
blanks. Figure 27 illustrates how this is done: 

edit examp4.cntl new 
INPUT 
00010 logon user4 proc(proca) 
00020 profile prefix(userid) 
00030 edit p data new 
00040 line one 
00050 @@@@@ 
00060 line two 
00070 @@@@@ 
00080 line three 
00090 @@@@@ 
00100 line four 
00110 
00120 c 10 999 /@@@@@// all 
00130 list 
00140 end save 
00150 R 
end save 
READY 
submit examp4.cntl notify jobchar(a) 
JOB USER4A(JOB00001) SUBMITTED 
READY 

Figure 27. Entering Blank LInes Into Your Data Set 

An alternate method is to specify the keyword EMODE on the EDIT 
command that is to be executed in the background. With this method, each 
new line of data should be preceded by a line number wherever line 
number editing is allowed. 

Modes of Operation: The EDIT command has two modes of operation; 
input Inode and edit mode. You enter data into a data set when you are in 
input mode. You enter subcommands and their operands when you are in 
edit mode. 

You must specify a data set name when you enter the EDIT command. If 
you specify the NEW operand, the system places you in input mode. If 
you do not specify the NEW keyword, you are placed in edit mode if your 
specified data set is not empty; if the data set is empty, you will be placed 
in input mode. 

Entering either EMODE or IMODE operands on the EDIT command will 
override the normal mode setting described above. The specification of the 
RECOVER keyword on the EDIT command places you in edit mode upon 
recovery. (Refer to "Recovering a Workfilen for more information about 
the RECOVER keyword.) 



The command syntax and keyword description for the EMODE and 
IMODE keywords are: 

EMODE 

data-set-name /password 

rEMODEl 
lIMODEJ 

specifies that the initial mode of entry is edit mode. This is the 
default for OLD data sets. 

IMODE 
specifies that the initial mode of entry is input mode. This is the 
default for NEW or empty data sets. 

Note: The IMODE and EMODE keywords are not restricted to background 
use. These keywords can be used for mode settings in foreground also. 

Creating a nata Set: When creating a data set, you must first request 
input mode. You can do this by entering one of the following: 

• The NEW operand on the EDIT command. 
• The IMODE keyword on the EDIT command. 
• The INPUT subcommand while in edit mode. 
• The INSERT subcommand with no operands, while in edit mode. 
• A null line, if the system is in edit mode. 

After you enter the EDIT command with either the NEW or IMODE 
keywords, the system sends you the following message: 

INPUT 

For example: 

Operation: Add data to an existing data set using the IMODE keyword. 

Known: 

To add data, you want to go into input mode immediately. 

Enter: 

edit cmdproc clist imode 

LOGON/WGOFF Commands 

PROFILE Command 

When LOGON or LOGOFF commands are executed in the background, 
your TSO session will be terminated normally. Any remaining commands 
in the input stream will be ignored. 

Specifying PROFILE NOMODE will eliminate some of the edit mode 
messages. NOMODE bas the same effect in the background as it does in 
the foreground. Your profde can be changed by using the PROFILE 
command with the appropriate operands. Only those characteristics 
specifically denoted by the operands specified, will change. AU other 
characteristics will remain unchanged. The following differences should be 
noted for foreground/background processing: 

• Changes made while processing in the foreground will be saved from 
session to session. 

Appendix D: Support ror Processing Batch Jobs 465 



• Changes made while processing in the background will not be saved 
and your foreground profile will be affected by background processing. 

TMP Initialization In the Background 

User Profile Table (UPT) Protected Step Control Block (PSCB) 

RACF Job RACF /Non-RACF Job RACFJob RACF /Non-RACF Job 
With USERID Without USERID With USERID Without USERID 

USERFLD * ZERO PSCBUSER job userid NULL (blanks) 

EDIT RECOV *$ NO RECOVER PSCBGPNM NULL NULL (blanks) 

PROMPT *$ NO PROMPT OPERATOR * NOOPER 

MSGID * MSGID ACCOUNT • ACCOUNT 

INTERCOMM * NO INTERCOMM JCL * JCL 

PAUSE * NO PAUSE MOUNT * NO MOUNT 

ATTN/LD * NOT ATTN ATTN/LD * NOT ATTN 

MODEMSG * NO MODEMSG EDIT RECOV * NO RECOVER 

WTPMSG * NOWTPMSG HOLDCLASS * NULL (zero) 

CHAR DEL *$ ZERO SUBMIT CLASS • NULL (zero) 

LINE DEL *$ ZERO SUBMIT MSGCLAS' * NULL (zero) 

PREFIX 1 * NULL (blanks) SYSOUT CLASS * NULL (zero) 
2 job userid 

SYSOUTDEST * NULL (blanks) 

CHAR DEL * NULL (zero) 

LINE DEL * NULL (zero) 

REGION SIZE */2 NULL (zero) 

* The value is taken from UADS entry profile. If the * The value taken from the UADS entry profile. 
UADS prefix is empty, the job userid is used. 

*$Most of the above defaults are modifiable in the 
background by issuing the PROFILE command with the 
appropriate operand/keyword. These attributes cannot 
be modified by the PROFILE command in the background. 

Figure 28. UPT /PSCB Initialization Table in the Background 

SUBMIT Command and Subcommand of EDIT 

466 TSO Command Language Reference 

Use the SUBMIT command or subcommand of EDIT to submit one or 
more batch jobs for background processing. Each job submitted must 
reside in either a sequential data set, a direct-access data set, or in a 
member of a partitioned data set. Submitted data sets must be fixed 80 
byte records. Using the EDIT command to create a CNTL data set will 
provide the correct format. 

Any of these data sets can contain part of a job, one job, or more than 
one job that can be executed via a single entry of SUBMIT. Do not submit 
data sets that contain JCL if the characters in these data sets are lower 
case or if their record format is not as described above. 

Each job consists of Job Control Language (JCL) statements, program 
instructions and data. The first JCL statement in the data set is usually a 
JOB statement. The jobname in the JOB statement can be up to eight 
characters in length and should consist of your user identification (userid) 
followed by one or more letters or numbers. For example; SMITH23 or 
JONESXYZ. 



Operaud 

USER(userid)/NOUSER 

PASSWORD/NOPASSWORD 

PAUSE 

DescriptioD 

Specifies that a USER operand is to be inserted on the generated JOB statement, if the RACF 
program product is installed in your system. The userid specified is also used as the jobname for the 
generated JOB statement (see Note: On 10bname Generation) and for jobname or userid comparison 
for NOJBOCHAR processing, (see NOI0BCHAR operand description). 

USER is the default if neither USER or NOUSER is entered and if the RACF program product is 
installed in your system. The default userid value that will be used is determined by the following 
rules. The rules are ordered; the first rule met, will be the userid used. 

I. The userid specified on a LOGON command in the data set being submitted. 

2. The userid specified on the LOGON command (if executing in the foreground) initiating 
the foreground session; the userid specified on the USER operand (if executing in tllll 
background - RACF defined users only) on the lOB statement initiating the background 
session. 

3. The default userid SUBMITIB is used. 

NOUSER specifies that generated JOB statements will not include USER and PASSWORD operands. 
NOUSER is the default is USER is not specified and the RACF program product is not installed on 
your system. 

Nole: Refer to Figure 30 for a summarization of the operand variations contained in this figure. 

PASSWORD indicates that a PASSWORD operand is to be inserted on the generated JOB statement 
by SUBMIT if the RACF program product is installed in your system. SUBMIT will prompt the user 
to enter the password value (in print inhibit mode, if the terminal supports the feature). This operand 
is not required if a generated JOB statement or the RACF program product is not installed in your 
installation. PASSWORD is the default if the RACF program product is installed in your system. The 
password used is: 

• The password (if executing in the foreground) entered on the LOGON command initiating the 
foreground session. The current password is used for RACF-defined users. If you have 
updated your password via the LOGON command, you must enter the PASSWORD keyword 
with the new password on the SUBMIT command. 

• The password on the LOGON command (if executing in the background) is the data set being 
submitted is used. If a LOGON command is not in the data set, the USER and PASSWORD 
keywords are not to be included on the generated JOB statement. 

NOPASSWORD specifies that the PASSWORD and USER keywords are not included on the 
generated lOB statement. NOPASSWORD is the default if the RACF program product is not installed 
in your system. 

Nole: Refer to Figure 30 for a summary of the operand variations contained in this figure. 

Specifying this optional keyword allows you to make a decision after the job stream has been read in. 
This decision is to either continue the SUBMIT· process or terminate. If this keyword is omitted, the 
job stream is processed when the end of the job stream is detected. The default is not to pause when 
the end of the job stream is reached. If you have not specified PAUSE and you subsequently make an 
error, the only way the submission can be aborted is with an attention Interrupt. 

Pause is valid only when '.' (asterisk) is specified for the positional parameter and you are not in 
EDIT mode. 

FIgure 29 (Part 2 of 3). Operand Description Cor SUBMIT 

Appendix D: Support for ProcessIng Batch Jobs 469 



Operaad 

NOTIFY /NONOTIFY 

Notes: 

DescripdoD 

NOTIFY indicates that a NOTIFY operand Is to be insened on a generated JOB statement. The 
userid used Is: 

• The userid entered on the LOGON command (if executing in the foreground) initiating the 
foreground session. 

• The userid specified on the USER operand (if executing in the background and you are a 
RACF-defined user) on the JOB statement initiating the background session. Otherwise the 
NOTIFY operand is not insened on the JOB statement. . 

If NOTIFY or NONOTIFY is not specified, the default Is: 

• The NOTIFY operand (if executing in the foreground) is inserted on the generated JOB 
statement. 

• The NOTIFY operand (if executing in the background) is only inserted on the generated JOB 
statement for RACF-defined usen who have specified the USER operand on the JOB statement 
initiating the background session. 

Note: Refer to Figure 30 for a summary of the operand variations contained in this figure. 

On Jobname Generation - with this program product. the jobname used for generated JOB statements is determined by the following rules. The rules are 
ordered; the fin! rule met will be the jobname used: 

I. The value speeif"1ed by the USER operand on the SUBMIT command. 

2. The userid specified on a LOGON command on the data set being submitted. 

3. The userid (when executing in the foreground) specified on the LOGON command initiating the foreground session. The userid (when 
executing in the background) specified on the USER operand on the JOB statement initiating the background session if you are a 
RACF-clefined user. 

4. The default userid SUBMTJB is used. 

FIgure 19 (Part 3 of 3). Openmd Desetipdon for SUBMIT 

470 TSO Command Laaguage Relerem:e 

General Notes: When any of the previously mentioned data set types 
containing two or more jobs are submitted for processing. certain 
conditions apply: 

• The SUBMIT processor will build a job statement for the first data 
set, if none was supplied, but will not build job statement(s) for any 
other jobs in the data set(s). 

• If SUBMIT is to generate a JOB statement preceding one or more job 
entry subsystem control statement(s), make the first statement in your 
data set a comment statement. If this is not done, SUBMIT will 
generate the JOB statement following any job entry subsystem control 
statement(s). 

The above conditions do not apply when SUBMIT generates the JCL to 
execute TSO commands in the background. For details, see the section 
entitled. "TSO Commands in the Background." 



The following table summarizes the \lariations with the USER/NO USER processing: 

RACF in tbe syStem RACF Not in tbe SyStem 

User-created JOB User-created JOB 
Kw.yord Statement Generated JOB Statement Statemeut Geaerated JOB Statement 

USER* No insert. USER - userid inserted on JOB stalemenL No insert. USER and PASSWORD operands not 
inserted on JOB statemenL 

NOUSER No insert. USER and PASSWORD operands not No insert. USER and PASSWORD operands not 
inserted on JOB statement. inserted on JOB ItatemenL 

defaUlt No insert. USER-userid** inserted on JOB No insert. USER and PASSWORD operands not 
statement. inserted on JOB statement. 

* For secondary functions of the USER keyword (in relation to jobname aeneration and NOJOBCHAR processias). see NOJOBHCAR operand 
description and the nOIe on jobname seneration. 

** See the USER o~rand description for the rules on determining userid to be used. 

The followlnl, table summarizes the \lariat ions with the PA.SSWORD/NOPA.SSWORD processlnll: 

RACF in the mtem RACF Not in the Smem 

Geuerated JOB Statement 

User-created JOB User-crealedJOB 
Keyword Statement Forearound Baelr.llround Statement Generided JOB Statement 

PASSWORD Keyword illlored. Prompt for password value and insert Keyword ignored. Keyword ignored. 
PASSWORD operand on JOB statemenL 

NOPASS- Keyword ignored. PASSWORD and USER operands not Keyword ignored. Keyword ianored. 
WORD inserted on JOB statemenL 

default N/A The password specified ona LOGON N/A PASSWORD and USER operands not 
c:ommand in the data set beina submitted is inserted on JOB atatemenL 
used for PASSWORD-value inserted on 
JOB statemenL 

Else, password Else. PASSWORD and 
specified on USER operands not 
LOGON inserted on JOB 
command (of statemenL 
current session) 
used (or 
PASSWORD -
value inserted on 
JOB statement. 

The followlnl. table summarizes the chanlles to the NOTIFY/NONOTIFY JY'QCesslng with this progrtlm product: 

Generated JOB Statemeut 

User-created JOB 
I Keyword Statemeat 'orearoUDd Background 

NOTIFY Keyword NOTIFY - No NOTIFY keyword 
userid inserted on inserted unless 
JOB statemenL c:ommand issuer is 

RACF· defined (and 
specified USER operand 
on JOB statement). 

NONOTIFY Keyword iRnored. No insen. No insert. 

default N/A NOTIFY - No NOTIFY keyword 
userid insened on inserted unless 
JOB statemenL command issuer is 

RACF· defined (and 
specified USER operand 
on JOB statement). 

FIgure 30. USER/NOUSER, PASSWORD/NOPASSWORD, and N011FY/NON011FY ProeesWg 

Appendix D: Support for ProcessIpg Batch Jobs 471 



E17'OI' Condition Handling 

472 TSO Command Language Reference 

These restrictions always apply to the execution of commands processed in the background: 

• The OPERATOR and TERMINAL commands are not supported. 

• An • subfield for the USER parameter on the SEND command is not allowed in the 
background. A userid must be specified for the USER parameter in the background. 
USER(*) will cause an error message to be issued. 

• Changes made with the PROFILE command processor are never saved in the user's 
profile in the UADS data set. 

• The EDIT command processor workfile recovery function is not supported. 

• The command procedure statements READ and TERMIN are not supported. 

• When executing a command procedure in the background, the symbolic variable 
&SYSPROC will have a null value. 

The following restrictions apply only to the execution of commands processed in the 
background when the RACF program product is not in the system. 

• The CANCEL and OUTPUT commands will be rejected by the IBM-supplied 
installation exit becailse no userid is available in the background. 

• Operands on the STATUS command must be specified when processing in the 
background. An error message will be issued if none are supplied. 

• A PROFILE command with a PREFIX (userid) keyword is required if you want a 
userid to be prefIXed to all data-set-names, or if something other than a null value is 
required for the command procedure symbolic variable, &SYSPREF, when running in 
the background. 

• The command procedure symbolic variable &SYSUID will have a null value. 

• When a data set containing a job to be submitted in the background does not contain 
a JOB statement, SUBMIT will generate one. In order to do this, the USER keyword 
should be specified on the SUBMIT command; if it is not, a warning message will be 
issued and a default jobname of SUBMIT JB will be used. 

• When SUBMIT is executed in the background, it does not insert a NOTIFY=userid 
keyword on a generated JOB statement. 

Note: In a system with RACF installed, there are less restrictions for users that are both 
RACF and TSO defined. This is because an userid can be made available for that job by 
specifying the USER keyword on the JOB statement and the actual profile attributes are 
established for that background job session by accessing the UADS entry for that user. 

Figure 31. Processing Conslderadons (RACF and Non-RACF Systems) 

The return code from the job step to execute commands in the background 
is that of the last command executed. 

Specific ABEND codes are documented in Message Library: System Codes 
ABEND's occurring in the background will be handled in the following 
manner: 

xxx 
ABEND code xxx will occur if a command or the TMP has abended. 
A dump will be taken if a SYSUDUMP or SYSABEND has been 
allocated, either in the JCL or with the ALLOCATE command, and 
the remainder of the commands in SYSTSIN will be 'ignored. 



Recovering an EDIT Workfile 

Cheekpointing a Data Set 

In the event of an abnormal termination, the recovery facility of EDIT 
enables a user of this program product to recover changes/modifications 
made during an edit session (applicable in foreground only). This facility is 
optional to both the installation and/or the TSO user. 

Certain specifications must be met before a workfile becomes recoverable. 
They are: 

• The installation must not have specified the NORECOVER attribute 
to your userid. If the NORECOVER attribute was assigned, the data 
set will not be recoverable. 

• To be recoverable, the user must enter the PROFILE command 
containing the RECOVER operand prior to the edit session. 

If the options above are met, EDIT will create a workfile and update it 
while your edit session progresses. If the edit session terminates normally, 
the workfile will be deleted immediately upon termination. If the edit 
session is terminated abnormally, the workfile will be kept and made 
available at the beginning of your next edit session. 

The CKPOINT subcommand of EDIT provides the user with the ability to 
automatically checkpoint a data set during the input or modification phase 
of the edit session. The invocation of checkpointing is controlled by the 
user through the use of the CKPOINT subcommand. 

Any line in your data set that is inserted, deleted, or changed, is considered 
modified. For example, if the CHANGE subcommand is repeatedly issued 
to the same line, the line is considered modified each time the subcommand 
is executed. The syntax and parameter description of the CKPOINT 
subcommand is: 

value 

[value] 

specifies the intervals (number of line modifications or input lines) at 
which a checkpoint will be taken. The user can utilize the value 
operand in one of three ways: 

• By specifying a decimal value from 1 to 9999 to be used as the 
checkpoint interval. 

• By specifying a decimal value of zero to terminate interval 
checkpointing. 

• By not specifying a value, causing a checkpoint to be taken. 
This can be done even though the user has already requested 
interval checkpointing. Checkpointing will not cease in this 
case, but will continue after reaching the previously set interval 
value. 

Appendix D: Support for Processing Baleh Jobs 473 



The following examples demonstrate how the CKPOINT subcommand of 
EDIT can be used to automatically checkpoint a data set: 

Example 1 

When the CKPOINT subcommand is issued without operands, EDIT 
ensures that aU changes or modifications made up to this point are reflected 
in the workfile. To do this, enter: 

CKPOINT 
or 

CKP 

Example 1 

When the CKPOINT subcommand is issued with an operand value of 1 to 
9999, a checkpoint will be taken immediately and at requested intervals 
specified by the operand value until termination. To do this, enter: 

CKPOINT value 
or 

CKP value 

Example 3 

When interval checkpointing is in effect and you wish to alter the active 
value, reissue the CKPOINT subcommand inserting the new value like this: 

CKPOINT newvalue 
or 

CKP newvalue 

Example 4 

To terminate interval checkpoint, issue the CKPOINT subcommand with a 
zero value. The entry is: 

CKPOINT a 
or 

CKP a 

Reeovery AI- a System Failure 

474 TSO Command Language Reference 

To recover data from your last edit session, issue the EDIT command 
entering the same data set name that you were working on at the time of 
the failure and include the RECOVER operand. You will be placed in edit 
mode and the workfile data set will be used as input for the current edit 
session. The current line pointer will be positioned at the top of the data 
set. 

Notes: 

1. If you specify !MODE upon re-entering your edit session, or if you 
give a data set disposition of NEW, the recovery feature will always 
put your session in edit mode. 

2. If the RECOVER operand is not specified, you will be prompted and 
given a choice of RECOVER or NORECOVER. 

3. If the RECOVER operand is specified and the workfile data set name 
does not match the edited data set name, an error message will be 
issued. You will be prompted and given a choice of recovering or not 
recovering the data set. 

4. If the RECOVER operand is specified and the workfile data set does 
not exist, an error message will be issued. 



Reeovery Alter an Abend 

The example shown in Figure 32, illustrates the different stages of an edit 
session and the actions necessary to recover it. 

READY 
profile recover 
READY 
edit lions old data 
EDIT 
ckpoint 5 
list 
00010 THE 
00020 EDIT 
00030 LOST, 
00040 REENTER 
00050 COMMAND 
00060 AND 
00070 SAVE 
00080 ENTRY 
c 30 /lost,/recovery/ 
c 40 /reenter/feature/ 
c 50 /command/saves/ 
c 60 /and/you/ 
c 70 /save/time and/ 

(System automatically takes a checkpoint after 
fifth line of modifications.) 

c 80 /entry/repetition/ 
(Assuming system failure has occurred here, your edit 
session will terminate abnormally. When the system 
is restored, issue the LOGON command and reenter the 
EDIT command including the RECOVER operand.) 

edit lions old data recover 
EDIT 
list 
00010 THE 
00020 EDIT 
00030 RECOVERY 
00040 FEATURE 
00050 SAVES 
00060 YOU 
00070 TIME AND 
00080 ENTRY 
c 80 /entry/repetition/ 

Note: The last line was not kept. All other changes 
were kept in the EDIT workfile (utility data set) 
making it necessary to reenter only one line. 

FIgure 32. Sample EdIt SessIon Using the CKPOINT Subcommand and the RECOVER Operand 
or EDIT 

When an abend occurs after issuing the SA VB subcommand of EDIT 
because there is not enough space (B37, D37, E37) in your data set or on 
the volume in which your data set resides, message IKI52432A will be 
issued. Termination will not occur, even if all attempts to save the data set 
are unsuccessful. You can respond to the system prompt with one of the 
following options: 

• Enter the SA VB subcommand specifying different data set name. 

Appendix D: Support for Proc:essIng Batcb Jobs 475 



• Enter RETAIN to terminate your edit session. The EDIT workfile 
(utility data set) will be checkpointed and retained. Recovery will be 
possible at the beginning of your next edit session. 

• Enter END to terminate your edit session. With this option, the EDIT 
workfile will not be available for recovery at your next edit session. 

• Entering any other valid subcommand of EDIT at this time will cause 
the abend to be disregarded and your edit session will continue. 

Using the RETAIN option allows you to end your edit session and then 
perform any space recovery measures necessary to obtain additional space. 
The RECOVER operand on the EDIT command can be used to recover 
your data set during your next edit session. Refer to "Recovery After 
System Failure" for the correct procedure. 

When your edit session is terminated by a system, operator, or time 
allocation (abend code X22), the EDIT workfile will be checkpointed and 
retained if any modifications were made. This allows you to invoke EDIT's 
recovery feature after your next logon is issued. For any other abends, you 
will be prompted for END or SAVE through message IKJ52563A. If you 
do not enter SAVE or END, you will be terminated immediately. The 
EDIT workfile will be retained if modifications have been made. If SAVE 
is issued and the attempt is unsuccessful, the edit session will be 
terminated. However, the workfile data set will be retained if modifications 
were made, and message IKJ52428I will be issued. 

See "TSO Terminal Messages" for more information pertaining to the 
messages in this section. 

Recovery After a TermilUll Line Disconnect 
If your user-profile contains the RECOVER attribute and you are using 
permanent EDIT workfiles, EDIT creates a workfile during your edit 
session which cah be used as input to recover any modification made to 
your data set in the event of a line disconnect or system failure. 

Through the use of the CKPOINT subcommand of EDIT and the 
RECOVER operand of the EDIT command, you will be given the 
opportunity to recover the modifications made to your data set prior to the 
disconnect. 

If your user-profile contains the NORECOVER attribute and you are using 
temporary EDIT workfiles, the system will attempt to copy your edited data 
set (with all changes) into a data set with an intermediate qualifier name of 
EDITSA VE. This data set can be edited the next time you log on. 

Comnumd SyntllX and Operand Description 

EDIT Command 

476 TSO Command Language Reference 

The following commands show only the syntax and operands supporting the 
recovery function. For a complete description of each command, use the 
appropriate command description in this book. 

To recover the workfile after an abnormal termination has occurred during 
an edit session, the EDIT command should be reissued specifying the 
RECOVER operand, along with any other operands specified initially. The 
syntax is: 



PROFILE Command 

{ EEDIT} data-set-narne[/password) 
rRECOVER ] 
LNORECOVER 

RECOVER 
specifies that the user intends to recover an EDIT workfile containing 
the data set named on the EDIT command as the data set to be 
edited. The user is placed in edit mode. This operand is valid only 
when the user's profile has the RECOVER attribute. 

NORECOVER 
specifies that the user does not want to recover a workfile, even if a 
recoverable workfile exists. 

This command is used to change your profile when the profile attributes 
are not adequate. Only those attributes denoted by operands will be 
changed. All other attributes will remain unchanged. 

If a recoverable workfile is to be created by EDIT, you must specify the 
RECOVER operand on the PROFILE command prior to the first 
recoverable edit session. The syntax for doing this is: 

RECOVER 

[ RECOVER 1 
NORECOVERJ 

specifies that you can use the recover option of the EDIT command. 

Note: The recovered data set will be prefixed with the userid, which may 
not be the same as the profile prefix. 

NORECOVER 
specifies that you cannot use the recover option of the EDIT 
command. This is the default value for your user profile, when the 
profile is created. 

Command Procedure Modifications 

Numeric Value Ranges 

The following information pertains to modifications and added function 
available with command procedure processing. Refer to TSO Terminal 
User's Guide for additional information on how to use these procedures 
with TSO and this program product. 

The range of numeric values which a command procedure variable can 
have, extends from -2,147,483,648 (the maximum negative number) to 
+2,147,483,647 (the maximum positive number). This range covers any 
numeric value from a minus two to the 31st power through a plus two to 
the 31 st power minus one. 

If a number outside the valid range is entered directly in a command 
procedure statement, error code 872 will be issued and the evaluation of 
the statement will terminate. 

If the result of any arithmetic calculation (even an intermediate result) is 
outside the valid range, an error code 832 will be issued. On any statement 
other than a SET statement, evaluation will terminate. On a SET 
statement, where NOFLUSH has been specified, the error code can be 

Appendix D: Support for Processing Batch Jobs 477 



Built-In Function (&NRSTR) 

478 TSO Command Language Reference 

ignored and the entire statement will be evaluated. The arithmetic result 
will be the same as the value obtained by using add, subtract and multiply 
fixed-point arithmetic as described in Principles of Operation. 

&NRSTR defines a non-rescannable character string for symbolic 
substitution. The primary use of &NRSTR is to handle variables whose 
contents have been set from an external file. Thjs function is useful if you 
are reading a file that has records containing ampersands, such as job 
control language (JCL) records. 

If the &NRSTR built-in function is used when setting symbolic variables, 
only one level of symbolic substitution will take place within the 
parenthetical expression. To use the &NRSTR built-in function, enter: 

&NRSTR (expression) 

Within the parenthe~es, substitution will occur only on the first scan of the 
statement. No attempt will be made to evaluate the expression after the 
single symbolic substitution scan. 

The following example illustrates one way to use the &NRSTR built-in 
function: 

Example 

Operation: Use the &NRSTR function to retain the record as it was read 
from' the file, and enable the procedure to test the data in the record 
providing: 

• An action if the test for conditions is true 
• An other action if the test for conditions is false 

Known: 

DATAl.CNTL is an existing file. 

The file contains records such as: 

//DD2 DSN=&library,DISP=(OLD,KEEP), 
UNIT=2400,VOL=SER=MYOWN1 

//DD3 DD DSN=&&A(ADD),UNIT=2314,DISP=(OLD,KEEP), 
VOL=SER=MYOWN1)%f 



Control Variable (&:SYSENV) 

Procedure: 

ALLOCATE F(FROM) DA(DATA1.CNTL) SHR 

OPENFILE FROM 

AGAIN: GETFILE FROM 
SET &X = &NRSTR (&FROM) 
SET &G = SSUBSTR (3:4,&NRSTR(SX» 
IF SSTR(SG) = SSTR(DD) THEN 

DO 

. 
END 

ELSE 

DO 

END 

/*FOLLOW TRUE PATH*/ 

/*FOLLOW THE FALSE PATH*/ 

GOTO AGAIN 

The &SYSENV (System Environment) control variable contains the 
characters FORE or BACK to indicate whether the command procedure is 
executing in the foreground or background environment respectively. This 
variable cannot be modified by a command procedure. To use this function 
enter: 

&SYSENV 

DATA PROMPT -- ENDDATA Sequence 

The DATA PROMPT -- ENDDATA sequence is used to designate a group 
of lines within a command procedure as replies to be sent to the system 
when it prompts for data. An error condition (error code 968) will occur 
unless this sequence is immediately preceded by a command or 
subcommand issuing a prompt. The error condition can be ignored if it is 
not certain that a prompt will be received. This allows the issuance of a 
reply if a prompt should occur. 

Each DATA PROMPT statement must be immediately preceded by a 
command or subcommand that issues a prompt. By doing this, a reply will 
be issued if a prompt should ocCur. The syntax for this sequence is: 

label: DATA PROMPT 

END DATA 

Appendix D: Support for ProeessIDg Batdl Jobs 47' 



480 TSO C~ Language Reference 

label: 
specifies the name which the command procedure can branch to. A 
branch to a DATA PROMPT statement will cause an error condition. 

Note: There are certain rules to remember when using the DATA 
PROMPT -- ENDDATA sequence. They are: 

• The command procedure must allow prompting with the CONTROL 
PROMPT OR PROMPT keyword on the EXEC command. 

• Symbolic substitution is performed before a reply is sent. 

• The PRMPT operand cannot be entered as a symbolic variable. 

• The DATA PRMPT sequence is sensitive to the following types of 
prompts: 

PUTGETPROMPT 
PTBYPASS 
TERM 
ATTN 
GETLINE TERM 

It should be noted, that not all situations perceived by the user as 
prompt, will fall into one of these categories. 

Example 

Operation: Use the DATA PROMPT feature to supply EDIT with input in 
either foreground or background. 

Procedure: 

DEFINES A NULL VARIABLE 
SE'l' & NULL = R 
EDIT EXAMPLE. DATA NEW 
DATA PROMPT /*SUPPLY REPLIES TO INPUT PROMPT*/ 
THIS WILL BE LINE 1 
THIS WILL BE LINE 2 
&NULL 
ENDDATA 
END SAVE 

Result: 

The contents of the created data set will be: 

00010 THIS WILL BE LINE 1 
00020 THIS WILL BE LINE '2 



Special Characters 

.. operand 
CHANGE subcommand (EDIT) 77 
COPY subcommand (EDIT) 85 
DELETE subcommand (EDIT) 93 

% operand (EXEC) 152 

A 

abbreviating keyword operands 4 
Abend occurrences outside home address space 231 
AC operand (LINK) 170 
access method services commands 453 
address operand 

AT subcommand (TEST) 247 
CALL subcommand (TEST) 253 

address I operand 
AND subcommand (TEST) 239 

address2 operand 
AND subcommand (TEST) 239 

ALIAS operand 
DELETE 54 
LISTCAT 181 
RENAME 209 

ALIGN 
ALLOCATE 35 

ALL operand 
CHANGE subcommand (EDIT) 78 
HELP 161 
LISTCAT 182 

ALLOCATE 
operands 

A VBLOCK 24. 25 
BLOCK 24.25 
CYLINDERS 24 
DATASET or DSNAME 21 
DUMMY 22 
increment 24 
MOD 23 
MSVGP 24 
NEW 23 
OLD 23 
quantity 24 
SHR 23 
SPACE 24 
SYSOUT 23 
TRACKS 24. 25 
VOLUME 24 

subcommand (EDIT) 71 
subcommands 

ALLOCATE command 19 
ALLOCATION operand (LISTCAT) 182 
ALTER command (VSAM) 453 
ALTFILE 

ALLOCATE 26 
AMODE operand 

CALL subcommand (TEST) 254 
GO subcommand (TEST) 277 
LINK command 167 
LOADGO 188 
RUN 327 

AND subcommand (TEST) 

ASIS . 
EDIT command 60 

ASM command 
command 449 
EDIT command 58 

assignment of values function of TEST 243 
assignment statements (command procedures) 
AT operand (TEST) 

address 247 
address-list 247 
COUNT 248 
DEFER 248 
NOTIFY 248 
subcommands-list 248 
TITLE 248 

AT subcommand (TEST) 247 
AT subcommand (TEST) restrictions 230 
attention interruption 7 
attention interruptions in cross-memory mode 231 
ATTN statement (command procedures) 377 
A TTRIB command 41 
A TTRIB subcommand 

TEST 251 
ATTRIB subcommand (EDIT) 73 
A TTRILIST operand (FREE) 158 

B 

background behavior of command 
CALL 463 
EDIT 464 
LOGON/LOGOFF 465 
PROFILE 465 
SUBMIT 466 

background processing 
checkpointing a data set 473 
error condition handling 472 
recovering an EDIT workfile 473 
recovery after a system failure 474 
recovery after a terminal line disconnect 476 
recovery after an abend 475 

background processing of TSO commands 455 
background prompting 455 
background restrictions 472 
basic TSO information 3 
batch job processing 455 
BEGIN 

CONTINUE subcommand (OUTPUT) 435 
OUTPUT 429 

BF ALN operand 
ALLOCATE 31 
ATTRIB 45 

BFTEK operand 
ALLOCATE 32 
ATTRIB 46 

BLDINDEX command (VSAM) 453 
BLKSIZE operand 

ALLOCATE 25 
ATTRIB 43 
RECEIVE 353 

BLOCK operand 
ALLOCATE 24. 25 

Index 

Index 481 



EDIT command 59 
RECEIVE 353 

BOTTOM subcommand (EDIT) 75 
BREAK operand (TERMINAL) 220 
broadcast messages 10 
BUFL (buffer-length) operand 

ALLOCATE 29 
ATTRIB 43 

BUFNO (number-of-buffers) operand 
ALLOCATE 29 
ATTRIB 43 

BUFOFF (block-prefix-Iength) operand 
ALLOCATE 33 
ATTRIB 47 

built-in functions (command procedures) 
&DATATYPE 372 
&EVAL 372 
&LENGTH 372 
&NRSTR 372 
&STR 372 
&SUBSTR 372 

c 
CALL command 49 
CALL operand 

operand (LOADGO) 189 
subcommand (TEST) 253 

CANCEL command 427 
cancelling batch jobs 421 
CAPS 

EDIT command 60 
CATALOG operand 

ALLOCATE 29 
DELETE 53 
LlSTCAT 179 
LlSTDS 184 

CHANGE subcommand (EDIT) 77 
changing from one mode to another 65 
CHAR operand 

PROFILE 200 
TERMINAL 222 

CHECK 
RUN 212 
RUN subcommand (EDIT) 127 

CHKLlST command (VSAM) 453 
CLASS operand (OUTPUT) 429 
CLEAR operand (TERMINAL) 221 
CLiST 

EDIT command 58 
CLOSFILE statement 379 
CLUSTER operand 

DELETE 53 
LlSTCAT 181 

CN operand (SEND) 216 
CNTL 

EDIT command 58 
CNVTCAT command (VSAM) 453 
COBLIB operand 

LINK 168 
LOADGO 189 

COBOL 
command 449 
EDIT command 58 
operand 

RUN 212 

482 TSO Command Language Reference 

command procedure 
assignment 

GLOBAL 393 
READDV AL statement 407 
SET statement 411 

conditional 
DO-WHILE-END Sequence 385 
IF-THEN-ELSE statement 397 

control 
A TTN statement 377 
CONTROL statement 381 
DATA-ENDDATA 383 
ERROR statement 387 
EXIT statement 389 
GOTO statement 395 
PROC statement 401 
READ statement 405 
RETURN statement 409 
TERMIN statement 413 
WRITE and WRITENR statements 4 I 5 

file-access 
CLOSFILE 379 
GETFILE statement 391 
OPEN FILE statement 399 
PUTFILE statement 403 

command procedure modifications 477 
Command procedures error codes 373 
comments 5 
conditional statements (command procedures) 
CONTINUE subcommand (OUTPUT) 423, 424 
CONTINUE subcommand of OUTPUT 435 
control statements (command procedures) 
control variables (command procedures) 

&LASTCC 371 
&MAXCC 371 
&SYSDATE 371 
&SYSDLM 371 
&SYSDVAL 371 
&SYSENV 371 
&SYSICMD 371 
&SYSNEST 371 
&SYSPCMD 371 
&SYSPREF 371 
&SYSPROC 371 
&SYSSCAN 371 
&SYSSCMD 371 
&SYSTIME 371 
&SYSUID 371 

controlling output of jobs 422 
COPIES 

ALLOCATE 34 
COPY 

address I 257 
address2 257 
command 449 
LENGTH 257 
POINTER 257 

COPYLIST operand (TRANSMIT) 349 
count operand 

CHANGE subcommand (EDIT) 77 
COPY subcommand (EDIT) 85 
DELETE subcommand (EDIT) 93 
DOWN subcommand (EDIT) 95 
LIST subcommand (EDIT) 113 
MOVE subcommand (EDIT) 115 
SCAN subcommand (EDIT) 133 
Up subcommand (EDIT) 145 



CP operand (TEST) 232 
CREATION operand (LISTCAT) 181 
cross-memory considerations when using TEST 231 
CYLINDER operand 

D 

ALLOCATE 24 
RECEIVE 353 

data encryption (TRANSMIT and RECEIVE) 358 
DATA operand 

LlSTCAT 181 
PROTECT 207 

data set naming conventions 
defaults 13 
descriptive qualifier defaults 14 
general information II 
how to enter 13 
TSO data set names II 
using II 

DATA-ENDDATA statement 383 
data-set-name operand 

EDIT command 56 
EXEC 151 
LINK 166 
LlSTDS 183 
LOADGO 188 
PROTECT 206 
SAVE subcommand (EDIT) 131 
TEST 231 

DATASET operand 
DC operand (LINK) 170 
DCBS operand (LINK) 170 
DDNAME operand 

ALLOCATE 22 
FREE 158 
TRANSMIT 348 

DEFINE command (VSAM) 453 
definitions of command procedure terminology 
DELETE 

operand 
ALLOCATE 29 
FREE 158 
OUTPUT 430 
PROTECT 206 
RECEIVE 354 

subcommand 
TEST 261 

DELETE command 5 I 
DELETE command (VSAM) 453 
DELETE subcommand of TEST 261 
delimiters 5 
DEN operand 

ALLOCATE 33 
ATTRIB 47 

DEST operand 
ALLOCATE 26 
FREE 158 
OUTPUT 431 

DIAGNOSE command (VSAM) 453 
D1AGNS (TRACE) operand 

ALLOCATE 32 
ATTRIB 46 

DIR 
ALLOCATE 26 

DIRECTORY operand (RECEIVE) 353 

DISCONNECT operand (LOGOFF) 193 
DO-WHILE-END sequence 385 
DOWN subcommand (EDIT) 95 
DSNAME operand 

ALLOCATE 21 
CALL 49 
FREE 158 
RECEIVE 352 
TRANSMIT 348 

DSORG 
ALLOCATE 33 
ATTRIB 47 

DUMMY 
ALLOCATE 22 

E 

EDIT 
subcommand 

ALLOCATE 71 
ATTRIB 73 
BOTTOM 75 
CHANGE 77 
CKPOINT 83 
COPY 85 
DELETE 93 
DOWN 95 
EDIT 105 
END 97 
EXEC 99 
FIND 101 
FREE 103 
INPUT 107 
INSERT 109 
insert/replace/delete 111 
LIST 113 
MOVE 115 
PROFILE 123 
RENUM 125 
RUN 127 
SAVE 131 
SCAN 133 
SEND 135 
SUBMIT 137 
TABSET,139 
TOP 141 
UNNUM 143 
UP 145 
VERIFY 147 

EDIT command 55 
modes of operation 

EMODE 
EDIT command 56 

ENCIPHER operand (TRANSMIT) 349 
END 

operand 
RECEIVE 354 
WHEN command 363 

END command 149 
END subcommand of OUTPUT 437 
end-line-number operand 

SAVE subcommand (EDIT) 131 
ENTRIES operand (L1STCA T) 180 
EP operand (LOADGO) 190 
EPILOG operand (TRANSMIT) 349 
EQUATE operand 

Index 483 



address 267 
data-type 268 
LENGTH 268 
MULTIPLE 268 
symbol 267 

ERASE operand 
DELETE 53 

EROPT 
ALLOCATE 31 
ATTRIB 45 

ERROR statement 387 
EXEC 

command 151 
subcommand (TEST) 271 

EXEC command 151 
EXEC subcommand of EDIT 99 
EXIT statement 389 
EXPDT (year-day) operand 

ALLOCATE 30 
ATTRIB 44 

EXPIRATION operand (LiSTCAT) 182 
explicit form of EXEC 151 
EXPORT command (VSAM) 453 
EXPORTRA command (VSAM) 453 
expressions in command procedures 

F 

FCB 
ALLOCATE 34 

file access statements 
FILE operand 

FREE 158 
filename operand 

CLOSFILE 379 
FIND subcommand (EDIT) 101 
foreground-initiated background commands 419 
FORMAT 

command 450 
subcommand of EDIT 450 

FORT 
command 451 
operand 
operand(RUN) 212 

FORTGI 
EDIT command 58 

FORTH 
EDIT command 58 

FORTLIB operand 
LINK 168 
LOADGO 189 

FREE 
command 157 
subcommand (EDIT) 103 

FULLSCREEN 
logon 195 
operand (TRANSMIT) 349 

FUNCTION operand (HELP) 161 

484 TSO Command Language Reference 

G 

GENERATIONDATAGROUP operand (DELETE) 54 
GENERATIONDATAGROUP(GDG) subcommand 

LlSTCAT 181 
GETFILE statement 391 
GETMAIN 

operands(TEST) 
EQUATE 275 
integer 275 
LOC (ANY) 275 
LOC (BELOW) 275 
LOC (RES) 275 
SP 275 

GLOBAL statement 393 
GO operand 

RUN 212 
GO subcommand of TEST 277 
GROUP operand (LOGON) 197 

H 

HELP 
command 161 
subcommand 

HELP subcommand (TEST) 279 
HELP subcommand of OUTPUT 439 
HERE operand 

CONTINUE subcommand (OUTPUT) 435 
OUTPUT 430 

HISTORY operand 
LlSTALC 174 
LlSTCAT 182 
LlSTDS 184 

HOLD operand 
ALLOCATE 26 
FREE 158 
LOGOFF 193 
OUTPUT 430 

I 

I operand (INPUT subcommand of EDIT) 107 
IF-THEN-ELSE statements 397 
image-id 

ALLOCATE 35 
IMODE 

EDIT command 56 
IMPORT command (VSAM) 453 
IMPORTRA command (VSAM) 453 
INCR operand 

COPY subcommand (EDIT) 85 
MOVE subcommand (EDIT) 115 

increment operand 
INPUT subcommand (EDIT) 107 
RENUM subcommand (EDIT) 125 

INDEX operand (LiSTCA T) 181 
indirection symbols (% and 1) 

definition and use 226 
examples of indirect addressing 226-

informational messages 9 
INPUT 

ALLOCATE 30 
ATTRIB 44 
operand 



subcommand (EDIT) 107 
IN~ERT subcommand (EDIT) 109 
INSERT/REPLACE/DELETE function (EDIT) 111 
Interactive Data Transmission Facility 345 
INTERCOM operand (PROFILE) 201 

J 

JCL 
statements 

EXEC 461 
JOB 461 
SYSTSIN DD 462 
SYSTSPRT DO 462 

JCL--writing for command execution 461 
jobname operand 

K 

KEEP operand 
ALLOCATE 29 
FREE 158 
OUTPUT 430 

KEYLEN 
ALLOCATE 34 
ATTRIB 48 

keyword operands 4 

L 

LABEL operand 
ALLOCATE 27 
L1STDS 184 

length operand 
AND subcommand (TEST) 239 

LET operand 
LINK 168 

LEVEL operand 
L1STCAT 181 
L1STDS 184 

LIB operand 
LINK 167 
LOADGO 188 
RUN 212 
RUN subcommand (EDIT) 127 

LIKE 
ALLOCATE 27 

L1MCT (search-number) operand 
ALLOCATE 32 
ATTRIB 46 

line continuation 5 
LINE operand 

TRANSMIT 349 
line-number operand 

INPUT subcommand (EDIT) 107 
line-number-l operand 

CHANGE subcommand (EDIT) 77 
DELETE subcommand (EDIT) 93 
LIST subcommand (EDIT) 113 
SCAN subcommand (EDIT) 133 

line-number-2 operand 
CHANGE subcommand (EDIT) 77 
DELETE subcommand (EDIT) 93 
LIST subcommand (EDIT) 113 

SCAN subcommand (EDIT) 133 
line 1 operand 

COPY subcommand (EDIT) 85 
MOVE subcommand (EDIT) 115 

Iine2 operand 
COPY subcommand (EDIT) 85 
MOVE subcommand (EDIT) 115 

line3 operand 
COPY (EDIT) 85 
MOVE subcommand (EDIT) 115 

line4 operand 
COPY subcommand (EDIT) 86 
MOVE subcommand (EDIT) 115 

LINK command 165 
LIST 

address 283 
address list 283 
command 451 
data-type 284 
LENGTH 284 
MULTIPLE 285 
operand 
PRINT 285 
subcommand 

LIST operands (TEST) 283 
LIST subcommand (EDIT) 113 
L1STALC Command 173 
L1STALC subcommand of TEST 289 
L1STBC Command 177 
L1STBC subcommand of TEST 291 
L1STCAT 

operand 
L1STCAT command 179 
L1STCA T command (VSAM) 453 
L1STCA T subcommand of TEST 293 
L1STCRA command (VSAM) 453 
L1STDCB subcommand (TEST) 295 

operands 
L1STDEB subcommand (TEST) 297 

operands 
L1STDS Command 183 
L1STPSW operands (TEST) 

ADDR 303 
PRINT 303 

L1STTCB subcommand (TEST) 305 
operands 

LMSG 
RUN subcommand (EDIT) 127 

LOADGO command 
description 187 
operands 

AMODE 188 
CALL 189 
COBLIB 189 
data-set-list 188 
FORTLIB 189 
LIB 188 
MAP 189 
NAME 190 
NOCALL 189 
NOMAP 189 
NOPR1NT 188 
NORES 189 
NOTERM 189 
PLiBASE 189 
PLlCMIX 189 
PLiLIB 188 

Index 485 



PRINT 188 
RES 189 
RMODE 188 
TERM 189 

LOG (ALL) operand (TRANSMIT) 349 
LOG operand (TRANSMIT) 349 
logging function of TRANSMIT and RECEIVE 358 
LOG NAME operand (TRANSMIT) 350 
LOGOFF Command 193 
LOGON 

command 195 
fullscreen 195 

LPREC operand (RUN) 212 
LRECL (Iogical-record-Iength) operand 

ALLOCATE 30 
ATTRIB 44 
EDIT command 60 

M 

MAIL operand 
LISTBC 177 
LOGON 197 

MAP operand 
LINK 168 

MAX VOL 
ALLOCATE 27 

MEMBERS operand 
LISTALC 174 
LISTDS 184 
TRANSMIT 350 

MERGE command 451 
MERGE subcommand of EDIT 450 
MESSAGE operand (TRANSMIT) 348 
MOD operand 

ALLOCATE 23 
mode messages 8 
MODE operand (PROFILE) 202 
MOVE subcommand (EDIT) 115 
MSG operand 
MSGlD (list) operand 
. HELP 162 

PROFILE 202 

N 

name operand 
LlSTCAT 182 

NAMES data set 
control section tags 355 
nicknames section tags 356 

NCAL operand (LINK) 168 
NCP 

ALLOCATE 30 
ATTRIB 44 

NE operand (LINK) 170 
NEW operand 

ALLOCATE 23 
EDIT command 57 

new-line-number operand 
RENUM subcommand (EDIT) 125 
SAVE subcommand (EDIT) 131 

new-name operand (RENAME) 209 
NEW /OLD/MOD/SHR operand (RECEIVE) 3S3 
NEWCLASS operand (OUTPUT) 430 

486 TSO Command Language Reference 

NEXT operand 
CONTINUE subcommand (OUTPUT) 435 

NOCHAR operand 
NODC operand (LINK) 170 
NOEPILOG operand (TRANSMIT) 349 
NOERASE 

DELETE 53 
NOGO operand 

RUN 213 
RUN subcommand (EDIT) 127 

NOH OLD operand 
ALLOCATE 26 
FREE 158 
OUTPUT 430 

NOINTERCOM operand (PROFILE) 201 
NOKEEP operand (OUTPUT) 430 
NOLET operand 

LINK 168 
LOADGO 190 

NOLINE operand (PROFILE) 201 
NOLINES operand (TERMINAL) 219 
NOLIST operand 

EXEC 152 
LINK 168 

NOLOG operand (TRANSMIT) 349 
NOMAIL operand 

LISTBC 177 
NOMAP operand 

LINK 168 
LOADGO 189 

NOM ODE operand (PROFILE) 202 
NOMSGID operand (PROFILE) 202 
NON CAL operand (LINK) 168 
NONE operand (LINK) 170 
NONOTICES operand 

LISTBC 177 
LOGON 197 
TRANSMIT 350 

NONOTIFY 
SUBMIT 445 

NONUM 
EDIT command S9 

NONVSAM operand 
LISTCAT 181 

NONVSAM operand (DELETE) 54 
NOOL operand (LINK) 170 
NOOVL Y operand (LINK) 169 
NOPAUSE operand 

CONTINUE subcommand (OUTPUT) 435 
OUTPUT 430 
PROFILE 202 
RUN 213 
RUN subcommand (EDIT) 127 

nopointer operand 
AND subcommand (TEST) 2:39 

NOPREFIX operand (PROFILE) 202 
NOPREVIEW operand (RECEIVE) 353 
NOPRINT 

LOADGO 188 
NOPROLOG operand (TRANSMIT) 350 
NOPROMPT operand 

EXEC 152 
INPUT subcommand (EDIT) 107 
PROFILE 201 

NOPURGE operand 
CANCEL 427 
DELETE 53 



NOPWREAD operand (PROTECT) 207 
NORECOVER 

EDIT command 57 
NOREFR operand (LINK) 169 
NORENT operand (LINK) 169 
NORES operand (LOADGO) 189 
NOREUS operand (LINK) 169 
NOSAVE operand (END subcommand or EDIT) 97 
NOSCAN 

EDIT command 59 
NOSCRATCH operand (DELETE) 53 
NOSCTR operand (LINK) 169 
NOSECONDS operand (TERMINAL) 220 
NOSTORE operand 

RUN 213 
NOTERM operand 

LINK 170 
LOADGO 189 

NOTEST operand 
LINK 170 
RUN 212 

NOTICES operand 
LlSTBC 177 
LOGON 197 

NOTIFY operand 
SUBMIT 445 
TRANSMIT 350 

NOTIMEOUT operand (TERMINAL) 220 
NOTRAN operand (TERMINAL) 222 
NOVSAM operand 
NOWAIT operand (SEND) 216 
NOWRITE operand (PROTECT) 207 
NOWTPMSG operand (PROFILE) 202 
NOXCAL operand (LINK) 169 
NOXREF operand (LINK) 169 
NUM 

EDIT command 59 

o 
OBJECT operand 

operand 
RUN 213 
TEST 232 

OFF 
address 311 
address-list 311 
operand 

ATTN 377 
VERIFY subcommand (EDIT) 147 

SCAN subcommand(EDIT) 133 
TABSET subcommand (EDIT) 139 

OIDCARD operand (LOGON) 197 
OL operand (LINK) 170 
OLD operand 

ALLOCATE 23 
EDIT command 57 

old-line-number operand 
SAVE subcommand (EDIT) 131 

old-name operand (RENAME) 209 
ON operand 

SCAN subcommand (EDIT) 133 
T ABSET subcommand (EDIT) 1.39 
VERIFY subcommand (EDIT) 147 

OPEN FILE statement 399 
OPERANDS operand (HELP) 161 

operator operand (WHEN) 363 
operators in command procedures 
OPT operand 

RUN 212 
OPTCD operand 

ALLOCATE 31 
ATTRlB 45 

OR 
address 1 313 
address2 313 
LENGTH 313 
POINTER 313 

OUTPUT 
ALLOCATE 30 
ATTRIB 44 

OUTPUT command 422. 429 
OVL Y operand (LINK) 169 

p 

PAGESPACE 
DELETE 54 
modes or operation 

edit mode 64 
input mode 62 

operand 
PAGESPACE operand (L1STCAT) 181 
PARALLEL 

ALLOCATE 27 
parameters operand 

TEST 232 
PARM operand 

RECEIVE 352 
TRANSMIT 350 

password 
EDIT command 56 

password data set 207 
password operand (PROTECT) 206 
PAUSE operand 

CONTINUE subcommand (OUTPUT) 435 
OUTPUT 430 
PROFILE 199. 201 
RUN 213 
RUN subcommand (EDIT) 127 

PDS operand (TRANSMIT) 350 
PLI 

command 452 
EDIT 57 
operand 

RUN 212 
PLiBASE operand 

LINK 168 
LOADGO 189 

PLlCMlX operand 
LINK 168 

PLiF 
EDIT command 57 

PLiLIB operand 
LOADGO 188 

pointer operand 
AND subcommand (TEST) 239 

POSmON 
ALLOCATE 27 

position operand (FIND subcommand or EDIT) 101 
positional operand 3 
POSmONAL operand (HELP) 161 

Index 487 



PREFIX operand (PROFILE) 202 
PREVIEW operand (RECEIVE) 353 
PRINT 

operand 
LINK 167 
OUTPUT 429 

PRINT command (VSAM) 453 
PRIVATE 

ALLOCATE 27 
procedure name operand (EXEC) 152 
processing batch jobs 419 
PROFILE 

command 199 
subcommand (EDIT) 123 

PROLOG operand (TRANSMIT) 350 
PROMPT operand 

EXEC 152 
INPUT subcommand (EDIT) 107 
PROFILE 201 

prompting messages 9 
PROTECT Command 205 
PROTECT operand 

ALLOCATE 34 
PURGE 

CANCEL 427 
DELETE 53 

PWREAD operand (PROTECT) 207 
PWWRITE operand (PROTECT) 207 

Q 

QUALIFY subcommand (TEST) 321 
operands 

quoted strong notation 78 

R 

R operand (INPUT subcommand of EDIT) 107 
RECFM operand 

ALLOCATE 32 
ATTRIB 46 

RECONNECT operand (LOGON) 197 
RECOVER 

EDIT command 56 
RECOVER facility operand (PROFILE) 200 
REFR operand (LINK) 169 
RELEASE operand 

ALLOCATE 29 
operand 
RECEIVE 353 

RENAME Command 209 
RENT operand (LINK) 169 
RENUM 

operand (SAVE subcommand of EDIT) 131 
subcommand (EDIT) 125 

REPLACE operand (PROTECT) 206 
REPRO command (VSAM) 453 
RES operand (LOADGO) 189 
RESETCAT command (VSAM) 453 
RESTORE (LOG) operand (RECEIVE) 354 
RESTORE operand (RECEIVE) 353 
RETPD (number-of-days) operand 

ALLOCATE 30 
ATTRIB 44 

REUS operand (LINK) 169 

488 TSO Command Language Reference 

REUSE operand 
ALLOCATE 26 

RMODE operand 
LINK command 167 
LOADGO 188 

ROUND 
ALLOCATE 29 

RUN 
address 327 
AMODE 327 
subcommand (EDIT) 127 

RUN Command 211 

s 
SAVE 

subcommand (EDIT) 131 
SAVE subcommand (EDIT) .131 
SAVE subcommand of OUTPUT 441 
SCAN 

EDIT command 59 
subcommand (EDIT) 133 

SCAN subcommand (EDIT) 133 
SCATCH operand (DELETE) 53 
SCRSIZE operand (TERMINAL) 221 
SCTR operand (LINK) 169 
SECONDS operand (TERMINAL) 220 
SEND Command 215 
SEQUENTIAL operand (TRANSMIT) 350 
SHR operand 

ALLOCATE 23 
SIZE operand 

LINK 170 
RUN 213 
RUN subcommand (EDIT) 127 

SMSG operand 
RUN subcommand (EDIT) 127 

SNUM operand (LIST subcommand of EDIT) 113 
SOURCE operand (RUN) 213 
SPACE operand 

ALLOCATE 24 
DELETE 54 
L1STCAT 181 
operand 

RECEIVE 353 
SPREC operand (RUN) 212 
STATUS 

command 443 
L1STALC 173 
L1STDS 184 

STORE operand 
RUN 213 
RUN subcommand (EDIT) 127 

string operand 
CHANGE subcommand (EDIT) 77 
COPY (EDIT) 86 
FIND subcommand (EDIT) 101 
insert/replace/delete function (EDIT) III 
MOVE subcommand (EDIT) 115 

SUBMIT 
command 445. 457 
operand descriptions 467 
support in batch 466 
using a card deck 460 
variations with USER/NOUSER processing 470 

SUBMIT subcommand (EDIT) 137 



submitting batch jobs 419 
substitution of 
syntax notation conventions 6 
SYNTAX operand (HELP) 161 
SYSNAMES operand (LISTALC) 174 
SYSOUT operand 

ALLOCATE 23 
RECEIVE 353 
TRANSMIT 350 

SYSRC operand (WHEN) 363 

T 

T ABSET subcommand (EDIT) 139 
tabulation characters 66 
TAGS 
TERM operand 

LINK 170 
LOADGO 189 

TERMINAL Command 219 
TERMINAL operand (TRANSMIT) 348 
TEST 

addressing considerations 229 
addressing conventions associated with TEST 224 
command 223 
definition of address expression 227 
examples of using TEST 235 
operands 

ADDR 305 
address 295, 297, 321 
FIELD 295.297.305 
module-name.entryname 321 
PRINT 295, 298, 306 
TCB 321 

restrictions on internal and external symbols 228 
setting breakpoints for cross-memory applications 231 
subcommands 

ALLOCATE 237 
AND 239 
AT 247 
ATTRIB 251 
CALL 253 
CANCEL 255 
COPY 257 
DELETE 261 
DROP 263 
END 265 
EQUATE 267 
EXEC 271 
FREEMAIN 273 
GETMAIN 275 
GO 277, 339 
HELP 279 
LINK 281 
LIST 283 
L1STALC 289 
LISTBC 291 
LISTCAT 293 
LISTDCB 295 
LISTDEB 297 
LISTDS 299 
LISTMAP 301 

LlSTPSW 303 
LlSTTCB 305 
LOAD 309 
OFF 311 
OR 313 
PROFILE 317 
PROTECT 319 
QUALIFY 321 
RENAME 325 
RUN 327 
SEND 329 
STATUS 331 
SUBMIT 333 
TERMINAL 335 
UNALLOC 337 

types of addresses 224 
valid address examples 229 
when to use 223 

RUN subcommand (EDIT) 128 
TESTCOB command 452 
TESTFORT command 452 
TEXT 

EDIT command 58 
text operand 

SEND 215 
TIME command 343 
TIMEOUT operand (TERMINAL) 220 
TOP subcommand (EDIT) 141 
TRACKS 

ALLOCATE 24, 25 
RECEIVE 353 

TRAN operand (TERMINAL) 222 
TRTCH 

ALLOCATE 33 
ATTRIB 47 

TSO/E Interactive Data Transmission 
RECEIVE command 35 I 
TRANSMIT command 347 

u 
UCOUNT operand 

ALLOCATE 27 
UNALLOC (alias of FREE) 157 
UNCATALOG operand 

ALLOCATE 29 
FREE 158 

UNIT operand 
ALLOCATE 26 
RECEIVE 352 

UNNUM 
operand (SAVE subcommand of EDIT) 131 
subcommand (EDIT) 143 

UP subcommand (EDIT) 145 
USER operand 

SEND 215 
USERCATALOG (DELETE) 53 
USER CATALOG operand (LISTCAT) 181 
USING 

ALLOCATE 28 

Index 489 



v 
VERIFY 

ALLOCATE 3S 
subcommand (EDIT) ·147 

VERIFY command (VSAM) 4S3 
VOLUME operand 

ALLOCATE 24 
LISTCAT 182 
RECEIVE 3S2 

VSBASIC 
EDIT command S8 

VSEQ 
ALLOCATE 27 

490 TSO Command Language Reference 

w 
WAIT operand (SEND) 216 
WHEN command 363 

x 
XCAL operand (LINK) 169 
XREF operand (LINK) 169 

3 

31-bit addressing considerations for TEST 230 



i!i o 
Z 

MVS/Extended Architecture 
TSO Extensions TSO Command 
Language Reference 
SC28-1134-0 

READER'S 
COMMENT 
FORM 

This manual is part of a library that serves as a reference source for system analysts, programmers, and 
operators of IBM systems. You may us~ this form to communicate your comments about this publication, 
its organization, or subject matter, with the understanding that IBM may use or distribute whatever 
information you supply in any way it believes appropriate without incurring any obligation to you. 
Your comments will be sent to the author's department for whatever review and action, if any, are deemed 
appropriate. 

Note: Copies of IBM publications are not stocked at the location to which this form is addressed. 
Please direct any requests for copies of publications, or for assistance in using your IBM system, to 
your IBM representative or to the IBM branch office serving your locality. 

Possible topics for comment are: 

Clarity Accuracy Completeness Organization Coding Retrieval Legibility 

If you wish a reply, give your name, company, mailing address, and date: 

What is your occupation? __________________________ _ 

How do you use this publication? _______________________ _ 

Number oflatest Newsletter associated with this publication: _____________ _ 

Thank you for your cooperation. No postage stamp necessary if mailed in the U.S.A. (Elsewhere, an IBM 
office or representative will be happy to forward your comments or you may mail directly to the address in 
the Edition Notice on the back of the title page.) 



SC28-1134-0 

Reader's Comment Form 

Fold and tape 

Fold and tapa 

--...-------- -- -..-- -'--- -. ---- -- -------------,-(I) 

Pluasa Do Not Staple 

II11I1 

BUSINESS REPLY MAIL 

FIRST CLASS PERMIT 40 ARMONK, NEW YORK 

POSTAGE WI LL BE PAID BY ADDRESSEE: 

International Business Machines Corporation 
Department 058, Building 920-2 
PO Box 390 
Poughkeepsie, New York 12602 

Please Do Not Staple 

Fold and tape 

NO POSTAGE 
NECESSARY 
IF MAILED 

IN THE 
UNITED STATES 

Fold and tape 

0 
!:. 
!l ... 
0 
ii 
» 
is' 
:I .. 
r-
:;" 
~ 

~ 
< 
f!! m 
X 
lit 
:J 
0-
CD 
0-

» n 
:r 
::+' 
CD 
0 ... c 
iil 
-I 
(J) 
0 
m 
X 
lit 
:J 

'" 0' 
:J 

'" 
cit 
0 
n 
0 
3 
3 
1>1 
::I 
0-
r-
1>1 
::I 

CCI 
C 
QI 

CCI 
CD 

:0 
CD 

it 
iil 
:J 
Q -" iii 
Z 
~ 
(J) 
w 
...s 
0 
W 
$! 

"'tI .... 
5' 
lit 
0-

S' 
c 
en 
~ 
(J) 
n 
I\J cp ..... ..... 
w 
f" 
0 



----
~E~ /Technical Newsletter 

This Newsletter No. SN28-0816 

Date May 13. 1983 

~ 

Base Publication No. SC28-1134-0 

File No. S370-39 

MVS/Extended Architecture 
TSO Extensions 
TSO Command Language Reference 

© Copyright IBM Corp. 1982 

TSO Extensions (TSO/E) 
Program Number 5665-285 

Prerequisite Newsletters/ None 
Supplements 

This newsletter contains replacement pages for TSO Command Language Reference. in support of 
TSO/E. 

Before inserting any of the attached pages into TSO Command Language Reference. read carefully the 
instructions on this cover. They indicate when and how you should insert pages. 

Pages to 
be Removed 

Cover - Edition Notice 
iii - vi 
None 

Attached Pages 
to be Inserted· 

Cover - Edition Notice 
iii - vi 
xv - xvi 

·If you are inserting pages from different Newsletters/Supplements and identiCtlI page numbers are 
involved. always use the page with the latest date (shown in the slug at the top of the page). The page with 
the latest date contains the most complete information. 

A change to the text or to an illustration is indicated by a vertical line to the left of the change. 

Summary of Amendments 

This technical newsletter documents changes made to the packaging of TSO/E. 

Note: Please file this cover letter at the back of the publication to provide a record of changes. 

IBM Corporation, Information Development, Dept. 058, Building 920-2, P.O. Box 390, 
Poughkeepsie, New York 12602 

©CopyrighllBM Corp. 19K3 Prinled in U.S.A. 



--------
~~m /Technical Newsletter 

CJ) This Newsletter No. SN28-1029 

Date December 14, 1984 

MVS/Extended Architecture 

Supplement No. 
Base Publication No. 

File No. 

Prerequisite Newslettersl 
Supplements 

TSO Extensions Command Language Reference 

~Copyright IBM Corp. 1983 

TSO Extensions, Program Number 5665-285 

SC28-J 134-0 

S370-39 

SN28-0816 

This newsletter contains replacement pages for MVS/XA TSO/E Command Language Reference. 

Before inserting any of the attached pages into MVS/XA TSO/E Command Langua~e Reference, read 
carefully the instructions on this cover. They indicate when and how you should insert pages. 

Pages to Attached Pages 
be Removed to be Inserted* 

Cover - Edition Notice 
xv - xvi 
427 - 428 
443 - 446 

Cover - Edition Notice 
xv - xvi 
427 - 428 
443 - 446.2 

*If you are inserting pages from different Newsletters/Supplements and identical page numbers are 
involved, always use the page with the latest date (shown in the slug at the top of the page). The page 
with the latest date contains the most complete information. 

A change to the text or to an illustration is indicated by a vertical line to the left of the change. 

Summary of Amendments 

This newsletter contains service updates to the CANCEL, STATUS, and SUBMIT commands. 

Note: Please file this cover letter at the back of the publication to provide a record of changes. 

IBM Corporation. Information Development. Dept. 058. Building 921-2. 
P.O. Box 390. Poughkeepsie. New York 12602 

Printed in U.S.A. 



SC28-1134-0 

--..-------- ----= = ~=-~-~"!-!!'! - -- -~------_~_'t'_ 

~ 

;! 
o 
(") 
o 

-3 
3 
II) 
::l 
Q. 

!; 
::l 
(Q 
c: 
II) 

u:2 
CD-

:::c 
CD 

Cit' 
OJ 
::l 
Q 


	00001
	00002
	00003
	00004
	00005
	00006
	00007
	00008
	00009
	00010
	00011
	00013
	00015
	00016
	001
	003
	004
	005
	006
	007
	008
	009
	010
	011
	012
	013
	014
	015
	017
	019
	020
	021
	022
	023
	024
	025
	026
	027
	028
	029
	030
	031
	032
	033
	034
	035
	036
	037
	038
	039
	041
	042
	043
	044
	045
	046
	047
	048
	049
	050
	051
	052
	053
	054
	055
	056
	057
	058
	059
	060
	061
	062
	063
	064
	065
	066
	067
	068
	069
	070
	071
	072
	075
	077
	078
	079
	080
	081
	083
	085
	086
	087
	088
	089
	090
	091
	092
	093
	094
	095
	097
	099
	101
	102
	103
	105
	107
	108
	109
	110
	111
	112
	113
	114
	115
	116
	117
	118
	119
	120
	121
	123
	125
	126
	127
	128
	129
	131
	132
	133
	134
	135
	137
	138
	139
	140
	141
	143
	145
	147
	149
	151
	152
	153
	154
	155
	157
	158
	159
	160
	161
	162
	163
	164
	165
	166
	167
	168
	169
	170
	171
	172
	173
	174
	175
	177
	179
	180
	181
	182
	183
	184
	185
	187
	188
	189
	190
	191
	193
	195
	196
	197
	198
	199
	200
	201
	202
	203
	205
	206
	207
	208
	209
	210
	211
	212
	213
	214
	215
	216
	217
	219
	220
	221
	222
	223
	224
	225
	226
	227
	228
	229
	230
	231
	232
	233
	234
	235
	236
	237
	239
	240
	241
	243
	244
	245
	246
	247
	248
	249
	250
	251
	253
	254
	255
	257
	258
	259
	261
	263
	265
	267
	268
	269
	271
	273
	274
	275
	277
	279
	281
	283
	284
	285
	286
	287
	289
	291
	293
	295
	296
	297
	298
	299
	301
	302
	303
	304
	305
	306
	307
	309
	311
	312
	313
	314
	315
	317
	319
	321
	322
	323
	325
	327
	328
	329
	331
	333
	335
	337
	339
	340
	341
	343
	345
	347
	348
	349
	350
	351
	352
	353
	354
	355
	356
	357
	358
	359
	360
	361
	363
	365
	366
	367
	368
	369
	370
	371
	372
	373
	374
	375
	377
	379
	381
	382
	383
	385
	387
	389
	391
	393
	395
	397
	399
	401
	403
	405
	407
	409
	411
	413
	415
	417
	419
	420
	421
	422
	423
	424
	425
	427
	428
	429
	430
	431
	432
	433
	435
	436
	437
	439
	441
	443
	445
	446.0
	446.1
	447
	449
	450
	451
	452
	453
	455
	456
	457
	458
	459
	460
	461
	462
	463
	464
	465
	466
	469
	470
	471
	472
	473
	474
	475
	476
	477
	478
	479
	480
	481
	482
	483
	484
	485
	486
	487
	488
	489
	490
	replyA
	replyB
	upd
	upd1
	xBack

