
--..------- -------- ----- -- --------
-~-.-

TSO Extensions System Diagnosis:
Command Processors, E-S

"Restricted Materials of IBM"
Licensed Materials - Property of IBM
LY28-1415-0 C Copyright IBM Corp. 1987

LY28-1415-0

--------- -------- - ------ -----------,- TSO Extensions System Diagnosis:
Command Processors, E-S

"Restricted Materials of IBM"
Licensed Materials - Property of IBM
LY28-1415-0 Q Copyright IBM Corp. 1987

l Y28-1415-O

First Edition (September, 1987)

"Restricted Materials of IBM"
Licensed Materials - Property of IBM

This edition applies to TSO Extensions Release 4, Program Number 5665·285 and to all subsequent releases
until otherwise indicated in new editions or Technical Newsletters. Changes are made periodically to the
information herein; before using this publication in connection with the operation of IBM systems, consult
the latest IBM System/370 Bibliography, GC20·0001, for the editions that are applicable and current.

References in this publication to IBM products or services do not imply that IBM intends to make these
available in all countries in which IBM operates. Any reference to an IBM product in this publication is not
intended to state or imply that only IBM's product may be used. Any functionally equivalent product may
be used instead.

Publications are not stocked at the address given below. Requests for IBM publications should be made to
your IBM representative or to the IBM branch office serving your locality.

A form for readers' comments is provided at the back of this publication. If the form has been removed,
comments may be addressed to IBM Corporation, Information Development, Department 058, Building
921-2, PO Box 390, Poughkeepsie, N.Y. 12602. IBM may use or distribute whatever information you supply
in any way it believes appropriate without incurring any obligation to you.

© Copyright International Business Machines Corporation 1987

"Restricted Materials of IBM"
Licensed Materials - Property of IBM

Preface

This publication describes the programs that handle the following TSO commands:

EDIT
FREE
HELP
LINK/LOADGO
LISTALC
LISTBC
LISTDS
LOGON
MVSSERV
OPERATOR
OUTPUT
PRINTDS
PROFILE
PROTECT
RACONVRT
RENAME
RUN
SEND
SUBMIT
SYNC

LISTCAT information is in Access Method Services Logic.

EXEC command information is documented in the "CLIST Processing and Diag­
nosis" chapter in TSO Extensions System Diagnosis: Terminal Monitor Program and
Service Routines.

RECEIVE command information is documented in the "TRANSMIT Command
Processing" chapter in TSO Extensions System Diagnosis: Command Processors, T-Z.

Who Should Read This Book?
The publication is for people who diagnose TSO/E problems or maintain TSO/E.
Usually, this is a system programmer.

The level of detail at which this book is written assumes that the reader:

Can use TSO/E and code Job Control Language (JCL) statements to execute
TSO/E programs or cataloged procedures.

Can code in assembler language and can read assembler output.

Can use system messages, system dumps, and IBM publications, such as
Diagnostic Techniques, to locate errors in problem programs.

LY28-141S-0 © Copyright IBM Corp. 1987 Preface iii

How is This Book Organized?

"Restricted Materials of IBM"
Licensed Materials - Property of IBM

This publication contains information that pertains to TSO/E command processors.
their subcommands and subroutines. The commands are presented in alphabetical
order. starting with EDIT and ending with SYNC. Data areas and a module direc­
tory are included in a a separate chapter at the end of the book.

How Do You Use This Book?
This book is the second of three volumes that describe the TSO/E command
processors in alphabetical order. It contains method of operation diagrams and
written descriptions designed to help you follow the internal operation of a program
and determine the location of a program malfunction. The book provides pointers
for specific functions; you can use these pointers to access program listing informa­
tion without having to scan the listings for the data needed.

Method of operation diagrams are not included for the following commands:

• LISTBC
• MVSSERV
• PRINTDS
• RACONVRT
• SEND
• SYNC

Extended diagnostic information is instead provided to help you isolate and fix a
problem with these commands.

If you have never used this book. look over the Table of Contents and each chapter
to become familiar with the book's content and method of presentation.

To diagnose a problem that occurs when you use TSO/E. start with TSO Extensions
System Diagnosis: Guide and Index. Use this. and the other command processor
books. to further diagnose a suspected problem in an IBM-supplied command
processor. Should you trace a problem to the terminal monitor program or an
IBM-supplied service routine, refer to TSO Extensio1)s System Diagnosis; Terminal
Monitor Program and Service Routines.

If you are unable to solve the problem. see TSO Extensions System Diagnosis: Guide
and Index for information on how to report a problem" to IBM.

Where Can You Find Additional Information?
Additional information is available in the following publications:

TSO Extensions User's Guide. SC28-1333.

TSO Extensions Command Reference. SC28-1307.

TSO Extensions Customization. SC28-1136.

TSO Extensions Programming Guide. SC28-1363.

TSO Extensions Programming Services. SC28-1364.

TSO Extensions System Diagnosis: Command Processors, A-D. SC28-1414.

iv TSO/E System Diagnosis: Command Processors, E-S LY28-1415-0 e Copyright IBM Corp. 1987

"Restricted Materials of IBM"
Licensed Materials - Property of IBM

TSO Extensions System Diagnosis: Command Processors, E-S, SC28-141S.

TSO Extensions System Diagnosis: Command Processors, T-Z, SC28-1416.

TSO Extensions System Diagnosis: Terminal Monitor Program and Service Rou­
tines, SC2S-1308.

TSO Messages, SC28-130S.

MVS/Extended Architecture Catalog Diagnostic Guide, SY26-3S99.

MVS/Extended Architecture Message Library: System Codes, Ge2S-IIS7.

MVS/Extended Architecture Message Library: System Messages Volume 1 and
Volume 2, GC28-1376 and GC28-1377.

MVS/Extended Architecture System Programming Library: 31-Bit Addressing,
Ge2S-11SS

MVS/Extended Architecture Data Areas (microfiche), LYBS-l000.

Do You Have Problems, Comments, or Suggestions?
Your suggestions and ideas can contribute to the quality and the usability of this
book. If you have problems using this book, or if you have suggestions for
improving it, complete and mail the Reader's Comment Form at the back of the
book.

L Y28-141S-O e Copyright IBM Corp. 1987 Preface V

The TSO Extensions Library

General

Evaluation
and Planning

Installation
and Migration

Customization

Administration

Programming

TOO Extensions
Library Guide

GC28-1291

Introducing
TOO
Extensions
Release 4

GC28-1293

TSO Extensions
Program
Directory

LC28-1284

TSO Extensions
Customization

SC28-1380

TSO Extensions
Administration

SC28-J356

TSO Extensions
Programming
Guide

SC28-1363

TSO Extensions
Master Index

GC28-1290

TSO Extensions
General
Information

GC28-I061

TSO Extensions
Information
Center Facility
Administration
Summary

TSO Extensions
Programming
Services

SC28-1364

vi TSO/E System Diagnosis: Command Processors, E-S

TSO Extensions
CLlSTs

SC28-1304

"Restricted Materials of IBM"
Licensed Materials - Property of IBM

TSO Extensions TSO Extensions
Programmer's System
Guide 10 the Programming
Server-Requester Command
Programming Reference
Interface for
MVS/XA
SC28-1309 SC28-138J

LY28-1415-0 © Copyright IBM Corp. 1987

"Restricted Materials of IBM"
Licensed Materials - Property of IBM

End Use

Information
Center Facility

Line Mode
TSOiE

Session
Manager

VMjPC

System
Diagnosis

TSO Extensions
Primer

GC28-1292

TSO Extensions
Primer

GC2H-1292

TSO Extensions
User's Guide

SC2R-1333

VM/PC
User's Guide
for \,1 VS/X/\
Host
Services

SC2H-1410

TSO M essage~

GC28-1310

TSO Extensions
Svstcm
Diagnosis:
Command
Processors.
T-Z

LY28-1416

TSO Extensions
Information
Center Facility
User's Summary

GX23-0016

TSO Extensions
User's Guide

SC2R-1333

TSO Ex tensions
Command
Reference

SC28-1307

VM/I'C Commands
for Host Services
(diskette)

SV23-0001

Iny

TSO Extensions
System
Diagnosis:
Guide and Index

LC28-1311

TSO EXlensions
System
Iiiagnosis:
Termina1
Monitor
Program and
Service Routines
L Y28-1)08

LY28-1415-0 © Copyright IBM Corp. 1987

TSO Extensions
Command TSO
Reference Extensions

Command
Reference
Summary

SC28-1307 GX23-0015

TSO Extensions TSO E~tensions
SYstem System
Diagnosis: Diagnosis:
Command Command
Processors. Processors.
/\-D E-S

LY28-1414

~-
I TSO Extensions

TSO Extensions
Data /\reas

Session Manager L YBS-l000
Logic Manual

(microfiche)

LY28-1502

Preface vii

"Restricted Materials of IBM"
Licensed Materials - Property of IBM

Contents

Chapter 1. EDIT Command Processing 1-1
Overview 1-2
Method of Operation Diagrams 1-4

Diagram 1.1. Initialization and Control 1-6
Diagram 1.2. Abnormal End (ESTAE Routine) Processing 1-8
Diagram 1.3. Attention Exit Processing 1-10
Diagram 1.3.1. Automatic Recovery Routine Processing 1-12
Diagram 1.3.2 Recovery/Cleanup Routine Processing 1-14
Diagram 1.4. Access Method Overview 1-16
Diagram 1.5. Access Method - Write a Record 1-18
Diagram 1.6. Access Method - Write a Record (Write Sequential Operation into a

New Utility Data Set) 1-22
Diagram 1.6.1. Access Method - Checkpoint a W orkfile 1-24
Diagram 1.7. Access Method - Delete a Record 1-26
Diagram 1.8. Access Method - Read a Record 1-28
Diagram 1.9. BOTTOM Subcommand Processing 1-31
Diagram 1.10. CHANGE Subcommand Processing 1-32
Diagram 1.1 0.1 CKPOINT Subcommand Processing 1-34
Diagram 1.11. MOVE/COPY Subcommand Processing 1-36
Diagram 1.12. DELETE Subcommand Processing 1-38
Diagram 1.13. DOWN Subcommand Processing 1-40
Diagram 1.14. END Subcommand Processing 1-41
Diagram 1.15. FIND Subcommand Processing 1-42
Diagram 1.16. FORMAT Subcommand Processing 1-44
Diagram 1.17. FREE ALL Subcommand Processing 1-46
Diagram 1.18. INPUT Subcommand Processing 1-48
Diagram 1.19. INSERT Subcommand Processing 1-50
Diagram 1.20. LINE INSERT/REPLACE/DELETE Processing 1-52
Diagram 1.21. LIST Subcommand Processing 1-54
Diagram 1.22. MERGE Subcommand Processing 1-56
Diagram 1.23. PROFILE/SEND/HELP/ALLOCATE Subcommand

Processing 1-58
Diagram 1.24. EXEC Subcommand Processing 1-59
Diagram 1.25. RENUM Subcommand Processing 1-60
Diagram 1.26. RUN Subcommand Processing 1-62
Diagram 1.27. SAVE Subcommand Processing 1-64
Diagram 1.28. SCAN Subcommand Processing 1-66
Diagram 1.29. SUBMIT Subcommand Processing 1-68
Diagram 1.30. TABSET Subcommand Processing 1-69
Diagram 1.31. TOP Subcommand Processing 1-70
Diagram 1.32. UNNUM Subcommand Processing 1-72
Diagram 1.33. UP Subcommand Processing 1-74
Diagram 1.34. VERIFY Subcommand Processing 1-75

Program Organization 1-76
Modules and Their Functions 1-76
Module Control Flow 1-78
Diagnosing an EDIT Problem 1-82

Chapter 2. EXEC Command Processing 2-1

Chapter 3. FREE Command Processing 3-1

L Y28-141S-0 C Copyright IBM Corp. 1987 Contents ix

"Restricted Materials of IBM"
Licensed Materials - Property of IBM

Diagram 3.1. FREE Command Processing 3-2
Diagram 3.1.1. FREE ALL Processing 3-4

Chapter 4. HELP Command Processing 4-1
Diagram 4.1. HELP Processing 4-2
Diagram 4.2. Processing HELP Data Set Member 4-4
Diagram 4.3. Reading HELP Data Set 4-6
Diagram 4.4. Processing an INCLUDE Character 4-8

Chapter 5. LINK/LOADGO Command Processing 5-1
Diagram 5.1. LINK and LOAD GO Processing 5-2

Chapter 6. LIST ALC Command Processing 6-1
Diagram 6.1. LIST ALC Processing Overview 6-2
Diagram 6.2. LIST ALC DSAB Processing 6-4
Diagram 6.3. LISTALC HISTORY Processing (VSAM) 6-6
Diagram 6.4. LISTALC HISTORY Processing (Non-VSAM) 6-8
Diagram 6.5. LISTALC STATUS Processing 6-10
Diagram 6.6. LISTALC MEMBERS Processing 6-12

Chapter 7. LISTBC Command Processing 7-1
Overview 7-1

Log Storage Implications 7-1
Diagnosing a LISTBC Problem 7-1

LISTBC Abend Codes 7-2
LISTBC Return Codes 7-2
Services Used by LISTBC 7-2
LISTBC Dump Information 7-2
Exit Considerations 7-3

Chapter 8. LISTDS Command Processing 8-1
Diagram 8.1. LISTDS Processing Overview 8-2
Diagram 8.2. LISTDS HISTORY Processing (VSAM) 8-4
Diagram 8.3. LISTDS HISTORY Processing (Non-VSAM) 8-6
Diagram 8.4. LISTDS STATUS Processing 8-8
Diagram 8.5. LISTDS MEMBERS Processing 8-10
Diagram 8.6. LISTDS LABEL Processing 8-12

Chapter 9. LOGON Command Processing 9-1
LOGON Scheduling 9-2
LOGON Module Addressing and Residency Changes 9-4
Diagram 9.1. LOGON Initialization (1KJEFLAI) 9-10
Diagram 9.2. LOGON Scheduling (IKJEFLB) 9-12
Diagram 9.3. LOGON Initialization and Scheduling Recovery Routine

(IKJEFLS) 9-14
Diagram 9.4. LOGON Monitor (IKJEFLC) 9-16
Diagram 9.5. LOGOFF Processing (1KJEFLL) 9-20
Diagram 9.6. LOGON/LOGOFF Verification (IKJEFLE and IKJEFLES) 9-26
Diagram 9.7. LOGON Pre-prompt Exit Interface (IKJEFLI) 9-34
Diagram 9.8. LOGON Monitor Recovery (IKJEFLGB) 9-36
Diagram 9.9. Pre-TMP Exit (IKJEFU) 9-38
Diagram 9.10. Post-TMP Exit (IKJEFLK) 9-40

Chapter 10. MVSSERV Command Processing 10-1
Diagnosing an MVSSERV Error 10-1

X TSO/E System Diagnosis: Command Processors, E-S LY28-1415-0 C Copyright IBM Corp. 1987

"Restricted Materials of IBM"
Licensed Materials - Property of IBM

Messages 10-1
External Trace Data Set 10-1
Services used by MVSSERV 10-6
Dumps 10-6

Chapter 11. OPERATOR Command Processing 11-1
Diagram 11.1. OPERATOR Command Processing 11-2

Chapter 12. OUTPUT Command Processing 12-1
Diagram 12.1. OUTPUT Processing 12-2

Chapter 13. PRINTDS Command Processing 13-1
Overview 13-1
Diagnosing a PRINTDS Problem 13-1

PRINTDS Messages 13-1
PRINTDS Return Codes 13-2
PRINTDS Abend Processing 13-2
Services Used by PRINTDS 13-2
PRINTDS Dump Information· 13-2
Exit Considerations 13-3

Chapter 14. PROFILE Command Processing 14-1
Diagram 14.1. PROFILE Processing 14-2

Chapter 15. PROTECT Command Processing 15-1
Diagram 15.1. PROTECT Command Processing 15-2

Chapter 16. RACONVRT Command Processing 16-1
Overview 16-1
Diagnosing a RACONVRT Problem 16-2

RACONVRT ABEND Codes 16-2
RACONVRT Return Codes 16-3
Services Used by RACONVRT 16-4
RACONVRT Dump Information 16-5

Chapter 17. RECEIVE Command Processing 17-1

Chapter 18. RENAME Command Processing 18-1
Diagram 18.1. RENAME Command Processing 18-2

Chapter 19. RUN Command Processing 19-1
Diagram 19.1. RUN Command Processing Overview 19-2
Diagram 19.2. Building a RUN Command List 19-4

Chapter 20. SEND Command Processing 20-1
Overview 20-1

Log Storage Implications 20-1
Diagnosing a SEND Problem 20-2

SEND Return Codes 20-2
SEND Abend Codes 20-2
Services Used by SEND 20-2
SEND Dump Information 20-3
Exit Considerations 20-4

Chapter 21. SUBMIT Command Processing 21-1

LY28-141S-0 4:) Copyright IBM Corp. 1987 Contents xi

Diagram 21.1. SUBMIT Processing 21-2

"Restricted Materials of IBM"
Licensed Materials - Property of IBM

Diagram 21.2. SUBMIT JCL Processing 21-6

Chapter 22. SYNC Command Processing 22-1
Overview 22-1
SYNC Processing Summary 22-2
Diagnosing a SYNC Problem 22-2

SYNC Return Codes 22-2
SYNC Abend Codes 22-2
Services used by SYNC 22-3
SYNC Dump Information 22-3

Chapter 23. Directory 23-1
Directory for the EDIT Command 23-1

Chapter 24. Data Area Usage 24-1
EDIT Command 24-1

Syntax Checker Control Blocks 24-3
Commands E - S 24-6

Index X-I

xii TSO/E System Diagnosis: Command Processors, E-S LY28-1415-0 Q Copyright IBM Corp. 1987

··Restricted Materials of IBM"
Licensed Materials - Property of IBM

Figures

1-1. Mainline Module Control Flow 1-78
1-2. EST AE Exit Module Control Flow 1-79
1-3. EDIT Subcommands Control Flow 1-80
3-1. FREE Command Processing Visual Table of Contents 3-1
4-1. HELP Command Processing Visual Table of Contents 4-1
6-1. LISTALC Command Processing Visual Table of Contents 6-1
8-1. LISTDS Command Processing Visual Table of Contents 8-1
9-1. LOGON Command Processing Visual Table of Contents 9-1
9-2. LOGON Schedule Module Flow 9-5
9-3. LOGON Scheduling Control Block Overview 9-8
9-4. Data Areas Containing LOGON User Information 9-33

10-1. Sample Trace Data Set Obtained Using MVSSERV TRACE
Option 10-3

10-2. Sample Trace Data Set Obtained Using MVSSERV IOTRACE
Option 10-5

10-3. Diagnostic Messages in a Trace Data Set 10-9
10-4. Diagnostic Information in a Dump 10-9
19-1. RUN Command Processing Visual Table of Contents 19-1
21-1. SUBMIT Command Processing Visual Table of Contents 21-1

LY28-141S-0 @ Copyright IBM Corp. 1987 Figures xiii

"Restricted Materials of IBM"
Licensed Materials - Property of IBM

EDIT Command

The following is a list of the EDIT subcommands and their functions:

ALLOCATE
ATTRIB
BOTTOM
CHANGE
CKPOINT
COPY
DELETE
DOWN
END
EXEC
FIND
FORMAT

allocates data sets and filenames.
builds a list of attributes for a non-VSAM data set.
moves the line pointer to the last line of the data set.
modifies record text.
protects input and changes to data set while in EDIT.
copies lines within a data set.
removes records from the data set.
moves the line pointer toward the end of the data set.
terminates the EDIT command.
executes a command procedure.
locates a character string.
prints out a data set or a portion of a data set in a particular format. Requires IBM
COPY, FORMAT, LIST, MERGE program product, or equivalent.

FREE ALL releases unneeded data sets.
HELP explains use of EDIT subcommands.
INPUT accepts new lines of data from the terminal.
INSERT inserts records into the data set.
Line lnsert/Replace/Delete Function

LIST
MERGE

MOVE
PROFILE

RENUM
RUN
SAVE
SCAN
SEND
SUBMIT
TABSET
TOP

UNNUM
UP
VERIFY

inserts, replaces, or deletes a line of data.
prints out specific lines of data or the entire data set.
merges data sets or parts of data sets into the EDIT utility data set. Requires IBM
COPY, FORMAT, LIST, MERGE program product, or equivalent.
moves lines within a data set.
redefines the set of options which specify control characters, prompting options, and
message options.
numbers or renumbers lines of data.
compiles, loads, and executes the data set.
stores data sets on a direct access device.
controls syntax checking.
sends messages to other terminal users and to the system operator.
causes jobs to be scheduled for batch processing.
sets the tab positions for editing.
moves the line pointer to line zero, if line zero exists; otherwise, moves the pointer in
front of the first line of the data set.
removes line numbers from a line-numbered data set.
moves the line pointer toward the beginning of the data set.
causes a display of the line the current line pointer indicates after modification by a sub­
command or movement of the current line pointer.

LY28-1415-O © Copyright IBM Corp. 1987 Chapter 1. EDIT Command Processing 1-3

EDIT Command

Method of Operation Diagrams

Abnormal
End

1.2

Access Method -
Write a Record

1.5

Subcommands

1.9 BOITOM
1.10 CHANGE
1.10.1 CKPOINT
1.11 MOVE/COPY
1.12 DELETE
1.13 DOWN
1.14 END
1.15 FIND
1.16 FORMAT

Attention
Exit

1.3

Access Method -
Write a Record

(Write
Sequential...)
Checkpoint a
Workfile

1.6

1.17. FREE ALL
1.18 INPUT
1.19 INSERT
1.20 LINE I/R/D
1.21 LIST
1.22 MERGE

Initialization
and Control

1.1

1.23 PROFILE/SEND/HELP/ALLOCATE
1.24 EXEC
1.25 RENUM

1-4 TSO/E System Diagnosis: Command Processors, E-S

"Restricted Materials of IBM"
Licensed Materials - Property of IBM

Access Method
Overview

1.4

Access Method -
Delete a Record

1.7

1.26 RUN
1.27 SAVE
1.28 SCAN
1.29 SUBMIT
1.30 TABSET
1.31 TOP
1.32 UNNUM
1.33 UP
1.34 VERIFY

Subcommands
1.9

Access Method -
Read a Record

1.8

LY28-1415-0 Q Copyright IBM Corp. 1987

(')

I
i
'" o
jil

Diagram 1.1. Initialization and Control (Part 1 of 2)

Input

Reg 1

C~L
Q.-,"" Buff"

Terminal

I Subcommand

I

I

I

I

From
TMP .. Process

1 Set up communications area.

2 Set up message processing.

..
3 Syntax check command.

-y

4 Process data set type information.

5 Set up utility data let and aecall
method In.terlace.

6 Set up ABEND and anentlon exit •.

7 Initialize required syntax checker.

..
') 8 Get lubcommand; check syntax
" and name.

9 Perform function requested by
subcommand.

10 Perform termination processing.

Output

.. EDIT
) Communications
" Area

II. ~

Pll~e

-- .. --

", -r.....
.... EDIT
}

Utility
DAIR "

...... Data Set ",

- -

Command
~can

--- --
Result of

v Subcommand

Return to TMP --..

!<
N
00
I -~ -v.
o

(")
CI"
I»

'1;1 ...
(1) ..,
:-
tTl
tl -t-j
(")
0
8
8
I»
::I
Q.

"tI a
0
(1)
<II
!!l.
::I

(Jq

~ .

.!.J

Diagram 1.1. Initialization and Control (part 2 of 2)

Extended Description

Set up EDIT communications area (IKJEBECA) to be used as a work area for all EDIT
modules. Information about the data set being edited will be saved in this area.

Object Module: IKJEBEIN

2 Set up message processing routine (IKJEBEMS) to be used by all EDIT routines to build and
issue messages.

Object Module: IKJEBEIN

3 Use Parse to check the syntax of the EDIT command. If Parse fails, return control to the TMP.

Object Module: IKJEBEIN

4 Process "data set type" information. If there is missing information, use Parse to prompt the
user for it.

Initiali7.e the EDIT communication area with information dependent on the data set type.

Object Module: IKJEBEPS

If the user entered the NEW parameter, continue processing. If the user enters the OLD param­
eter, use DAIR to allocate the data set. Also check the data set attributes to see if they are valid
for the data set type and command operands.

Object Module: IKJEBEIN

S Use IKJEBEUI to set up the utility data set if the data set is new, old and empty, or a new
member of a PDS. If the data set is old and not empty, use IKJEBECO to copy the data set
into the utility data set. If there is an error in processing, return control to the TMP.

6

7

8

9

10

Object Module: IKJEBEIN

Set up asynchronous exits for ESTAE (IKJEBEAE) and attention processing (IKJEBEAT).

Object Module: IKJEBEMA

Initialize a preprocessor or syntax checker, if required for the data set type being processed. The
SCAN subcommand (IKJEBESC) sets up the interface.

Object Module: IKJEBEMA

Get a subcommand from the terminal and use the command scan routine to check the command
syntax. Also check the subcommand name against a list of valid subcommand names (in
CSECTs IKJEBMA8 and IKJEBMA9).

Perform the function requested by the subcommand being processed.

Perform END subcommand processing (IKJEBEEN) if the user enters the END subcommand at
a terminal, or if there is an error termination in a component. Delete the input stack and clear
all terminal input queues. Return control to the TMP.

Object Modules: IKJEBEAE.IKJEBEAT.IKJEBEEN.IKJEBEMA.IKJEBEMS. IKJEBEIN.
IKJEBESC. IKJEBEUI. IKJEBEPS

Module Label

~
N
00 . -
""" -VI

b

Diagram 1.2. Abnormal End (ESTAE Routine) Processing (part 1 of 2)

Reg 0

I Not 12

IKJEBECA

I
OR

Rag 0

I 12

Reg 1

I ABEND coda

Rag 2

I IKJEBE~

From
RTM

1

2

3

4

6

6

Check for a recunlve &bend.

Determine If e retry II poulble:

• If 'YES', continue proceulng.

• If 'NO', proceed to step number 4.

Detormlne If the edited data lat was
modified:

• If 'YES', prompt tho ular and
return to RTM speclfving a
baaad on tho user'l replv.

• If 'NO', procead to step number 4,

Perform cleanup.

IIlua error massage.

Return to RTM.

Output

PUTGET

f ;-
PO

:-
ttl
t=',
i a
I»

8-
'1:1

§ ...
21.
i
...
~

Diagram·t.2. Abnormal End (EST AE Routine) Processing (part 2 of 2)

Extended DescrIption

1 Check for the recursive abend indicator in the EDIT communications area
(IKJEBECA). If 'NO', return control to RTM, letting the ABEND continue. If
'OFF, continue processing.

1 Determine if a retry is possible. If 'YES', continue processing. If 'NO', perform
cleanup (Step number 4).

3 Determine if the EDIT data set was modified. If 'YES', prompt the user and return to
RTM, specifying a retry based on the user's reply. If 'NO', perform cleanup (Step
number 4).

4 Perform cleanup (IKJEBEMA, entry point IKJEBMA2) by stopping automatic line
prompting and deleting the input stack.

S Issue an error message indicating the type of abend.

6 Return to RTM, indicating a retry if it is possible, or else letting the ABEND continue.

Object Modules: IKJEBEAE. IKJEBEEN. IKJEBEMA

Module Label

t.!!J
0
~
&'l
I
I.'

.....
I
=

~
I--l
00
I -.,. -VI
I

0

0
n
0
'0
'<
::I.
~ -= a::
n
0
.p -'" 00
-..J

Diagram 1.3. Attention Exit Processing (Part 1 of 1\

Input

Reg 1

I
ATTN Exit

~ Parameter List

t TAlE

t Input Buffer

t IKJEBECA

From
Caller

1 Stop active lubtalkl.

2 TOit for null line.
Vel - rOitart automatic IIna

prompting.
No - POit attention EeB.

3 Reltart ItOpped lubtukl.

t': g
= ~
Q.

e:: :
I»~
~
:1. :1. an mS:
Ie::
::Pa o CD
'0 ::I.

CD a
~."
og, ...,--= = a:: a:: =

Diagram 1.3. Attention Exit Processing (part 2 of 2)

Extended DescripdoD MooDIe Label

1 Stop aU active subtasks.

1 Check the terminal attention interrupt exit (TAlE) to see if the user entered a nuJ1line.

Yes - restart the automatic Jine prompting.

No - retrieve (pUTGET) the input line. Post the attention ECD.

3 Restart all subtasks that were stopped. Return control to the caller.

Object Modules: IKJEBEAT.IKJEBEMA

(')
::r
II>
~
S"
"" :-
trI
0 -...:J
~
~ ::s
Q.

"'U ~ § ~
~.

i ::s
(JQ

~
I = ~ = ~ c:a.

B
00
I -~ -OJ>
I

0

@
(j
0

~
::I.
~ ... -1:1:1
~
g
-? -\0
00
-..l

Diagram 1.3.1. Automatic Recovery Routine Processing (Part 1 of 2)

f IKJEBECA

1 Utility data sat
header rec.

code 0

From
I " .. ''''D '",n ..

1 Issue messaga and prompt usar
for action: Recover or not
recover data sat found.

2 ProceSl user response.

3 Set return coda to Indicate
action taken.

4 Return.

t"" o·
B
=' .."
B
c:lo

~~
'" B ;-~
::I. ::I.
'" 0 ~~

Po

I~
::p~
o B

'g a·
~!;;"

0 o -. ...,
.... 1:1:1
=~
a:: =

B
00 • -..... -VI
6

-\0
00
-.J

Q
II'
'0
S'
"1

:-

"' ~
..;

~
a
[

~
fI>
!!l. ::s

OQ

... • ...
(M

Diagram 1.3.1. Automatic Recovery Routine Processing (part 1 of 1)

Extended Desc:riptiOD

1 Issue message to tell the user there is a recoverable EDIT workfile.

Prompt the user for a decision about recovering the data set found.

Z Process the user's response~ If the user replies 'YES':

(a) Build a buffer to reflect information in the workflle header.

(b) Issue a message to the user, indicating the options in effect for this edit session.

If the user replies 'NO', no function is performed.

3 If the user replies 'YES'. set return code to 4.

If the user replies 'NO'. set return code to O.

4 Return to caller.

Object Module: IKJEBEAR

Module Label

~
~
n c

I
I»
CiS
Q.

Diagram 1.3.2 Recovery/Cleanup Routine Processing (part 1 of 2)

Input

Reg 1

('KJEBECA

t Utility

(

work area

IKJEBEUW

Header

Information

_--. ____ -.--./) 1 Determine existence of utility
... data setl.

2 Determine existence of EDIT
or USER alloceted utility data set.

3 Determine if recovery is
required:

• Yes - invoke IKJEBEAR
to inform user.

• No - continuo process.

4 Recoverv. using utility data set
as input and/or delete any
utility work files not recovered.

5 Return.

Output

..
DAIR

IKJEBECA

r
I bits set

..
IKJEBEAR ..

IKJEBEUW

r

.~
t-.l
00 , -~ -V>
6

-\0
00

(')
1:1"
Il:I
'0 ;-.,
:-
tr1
0 -,..;j
(')

~
l
a n
CD

'" \"!l.
~

....
I
YII

Diagram 1.3.2 Recovery/Cleanup Routine Processing (Part 2 of 2)

Extended Description

1 Determine if either userid.EDITUTLI or userid.EDITUTL2 exists by trying to allocate
them as ·OLD'.

2 Determine if EDIT or the user allocated the utility data set(s) which exists. Set indi­
cator in IKJEBECA.

3 If a recoverable utility data set exists, and if the RECOVER operand was not specified
or the data set name and options do not match, invoke IKJEBEAR.

4 Recover the utility data set. Update the utility data set control blocks in the utility
work area (IKJEBEUW). and/or delete any EDIT utility data sets not being recovered.

S Return to caller.

Object Module: IKJEBERC

Module Label

~
t::I
~
n
0 a a
l

B
00
I -~ -VI
b

-\0
00

Diagram 1.4. Access Method Overview (part 1 of 2)

Reg 0

~

Optional
Parameten

Reg 0

Reg 1

~ 1-3 Word param~ter LIst

t
~ I
t

Option I t Utility Dataset DCB
Code

To the key of the record at
which the option requested
is to start

-or-
To the record to be placed
in the utility dataset

To the address where the
requested record is to be
returned

Not used
-ar-

,,- -,... -"

Utility
Data Set

......

~ UTI LWORK

Reg 1

~\---I-K-JE-B-E-C-A-""'"
I..... ::

Utility
Data Set

From
IKJEBEIN or
IKJEBECO Process

~~~------------------~ 
1 Determine if using temporary 

or permanent work files; 

2 Set up work areas and buffers. =:::!=~===~~:,I) r-------. 

From 
IKJEBERE 

From 
Subcommand 

IKJEBEEN 

3 Allocate Utility data set. 

4 Load Access Method Routine. 

5 Perform requested functions. 

• Reed 
• Write 
• Delete 
• Checkpoint 

6 Clole utility date set_ 

7 Free work area and buffers 

Updated 
Utility 

..... Data Set 



~ Diagram 1.4. Access Method Overview (part 2 of 2) 52 t"'" = .... :;:c 
l-.l = 8 ~ 
00 Extended Description 

CJQ ::s ~ • Module Label ; ~ ::l • -.;.. I Determine if the utility data sets are to be permanent or temporary. If permanent. link 
Q.a - ~a. v. 1000 

6 to IKJEBERC. ~ a a:: 
@ 2 Set up (IKJEBEUI) the access method work area. UTILWORK (lKJEBEUW). which > ~ III ::l .... 
(') is used by all of the access method routines. Also set up three buffers which are used n III ~ 

n ;;' ::l. 

° when accessing the utility data set. m !!. 
~ I "" ::1. 3 Using DAIR, allocate (IKJEBEUI) a new utility data set. The data set is either a ~ "'CI 0 
0<1 ........ 
::r system-generated temporary data set (&EDIT or &EDIT2) or a permanent data set o -... er '0= ..... (userid.EDITUTLI or userid.EDITUTL2) The size of the data set is determined by ~ a:: 1:1:1 = a:: whether the data set being edited is new or old. If the user LOGON procedure prede- Q. ~= 

("') fined an EDIT utility data set. that data set will be used. 0 0 

~ 
.... 

0 ...... 
fJ 4 Load (IKJEBEUI) the access method routines (lKJEBEAA). The access method rou- 3. 1:1:1 

tines will remain for the duration of the terminal session. n a:: - :Ii \0 
00 5 Perform the requested function (read. write. or delete) (IKJEBEAA). The function is --..l ." 

requested through the access method interface (IKJEBEUT) by each subcommand = 
requiring an update of or information about the EDIT utility data set. ~ 

~ 

6 Close the EDIT utility data set and. if END processing is not in progress. free the data = .... 
set (IKJEBEEX). ~ -7 Delete the access method (lKJEBEAA). and free the work area (UTILWORK) and 
buffers (IKJEBEEX). 

Object Modules: IKJEBEUl. IKJEBEAA. IKJEBERC. IKJEBEUT, IKJEBEEX 

("') 
::r 
~ 
S-.... 
:-
tr1 
0 .... 
,..;j 

("') 

~ a 
III ::s 
Q. 

"'CI I:.!! .... t: g ... 
~ ... 
'" '" s' r 

0<1 Col 
51 .... 51 

I 

i .... 
....:a 



t"" 
><: 
N 
00 
I .-
~ -VI 
I 

0 

(1) 

n 
0 

~ 
::I. 
~ -.... = a:: 
n 
0 

-? -10 
00 
-...J 

Diagram 1.5. Access Method - Write a Record (part 1 of 4) 

UTI LWORK 

UTI LWORK 

DBUFBLCK 

Data Set Directory Block 

Record Kevs 

TTR'sof DBs 

(Sse Diag. 6 (Part 3 of 31 

T 

1 Check for record with 
same key. 

• No - continue processing 
• Ves - Use same .Iot If 

poalble. 

2 Creete new data block, ---''-'---II'\. 
if necessary, and update 
iha directory block. 

3 Write a record Into the _--.L...&--'" 

data block. 

Data Set Directorv Block 

Keys and TTRs 

(See Diag 6. (Pari 3 of 3) for a 
description of the block 
splitting tachnique) 



Diagram 1.5. Access Method - Write a Record (part 1 of 4) 

Extended Description 

Check to see if there is a record with the same key value (IKJEBELO). 

No - continue processing. 

Yes - If the length of the old record is greater than or equal to the length of the new 
• record, write the new record in place of the old one. Return control to IKJEBEUT. 

If the length of the old record is smaller than the length of the new record, delete 
(IKJEBEDL) the old record. Update the data block fields to indicate a record was 
deleted by removing the record locator, and updating the number of records and the 
recoverable space in the data block. Continue processing with Step 2. 

1 Check the data block to see if there is space for the new record. If the record logically 
belongs there, but there is not enough space, split the data block into two data blocks. 
Each data block contains half the records in the old block. Update (IKJEBEDU) the 
directory block pointing to the data blocks. For additional information see Diagram 
1.5 (part 3 of 4). 

3 Write a record into the data block and update the following data block field 
descriptions: 

• the number of records in the data block 
• the locator is set to point at the new record. 
• the amount of recoverable space in the data block. 

Return control to IKJEBEUT with a return code .in register IS. 

Object Module: lKJEBEAA 

CSECTS: lKJEBEDL, lKJEBEDU, lKJEBELO 

MCMlule Label 



Diagram 1.5. Access Method - Write a Record (part 3 of 4) 

OSOB 
o 
I 

@ 

12 

Key 

Buffer Control 

ForWard t 
Buffer Chain 

t to 
Data Block 
...... .. 

... --- ... 

Backward t TTRof I t to OSOB 
Buffer Chain Data Block Entry 

Reserved 
...... 

,;-... ... 

...... -

Note: Entry = Key + TTR C7 bytes) and keys are 
kept sequential within the OSOB. 12\, New Data Block 

~r----l 

eJ:::=-=-= 

1 If a new record is to be written and the appropriate data block is full: 

a. Space is obtained for a new data block. 

b. Half of the records from the original block are written into the new block. 

c. The moved records ere deleted from the original block. 

To utility data set 

2 If a new record is to be added and a new data block must be added but the data 
set directory block COSOB) is full: 

a. Space equal to the current siza of the OSOB plus the original size of the 
OSOB is obtained. 

b. The contents of the current DSOB are copied to the new OSOB. 

I 

d. The data set directory block COSOB) pointing to the data blocks is updated. 

e. The new record is written into the new data block. 
c. The space occupied by the current DSOB is freed; the new OSOB is now used. 

f. The original block is written out to tha utility data set. 
d. Normal processing continues. 

g. The space of the original data block is deleted. 



B 
00 
I 

""" -V. 
I o 

(') 
:r 
III 
'tl ... 
n ., 
:-

@ -., 
(') 
0 a a 
III 

8-
'1:1 ., 
g 
CD 

'" '" S· 
QQ 

1-1 • W 
1-1 

Diagram 1.5. Access Method - Write a Record (Part 4 of 4) 

Extended Description 

If a new record is to be written and the appropriate data block is full: 

a. Obtain space for a new data block. 

b. Write half of the records from the original block into the new block. 

c. Delete the moved records from the original block. 

d. Update the data set directory block (DSDB) pointing to the data blocks. 

e. Write the new record into the new data block. 

f. Write out the original block to the utility data set. 

g. Delete the space of the original data block. 

2 If a new data block must be added for a new record, but the data set directory block 
(DSDB) is full: 

a. Obtain space equal to the current size of the DSDB plus the original size of the 
DSDB. 

b. Copy the contents of the current DSDB to the new DSDB. 

c. Free the space occupied by the current DSDB; use the new DSDB. 

d. Continue normal processing. 

Module Label 

~ 
t:I 
=3 
n 
Q 

51 
51 
I» = Q, 



Diagram 1.6. Access Method - Write a Record (Write Sequential Operation into a New UtiUty Data Set) (part 
1 of 2) 

Input 

Reg 1 

~ .. ,_ .. ,u .. 1 
X'21' I tUTILWORK 

t New Record 

UTI LWORK 

OBUFBLCK I 
Data Set Directory Block 

Record Keys 

TTR'sof DBs 

(See Diag. 5, Part 3 of 3) 

LOCATOR 

LOCATOR 

From 
IKJEBEUT 

Process 

1 Check for first entry 
in this DSN. 

• No - continue 
processing. 

• Yes - write first 
record. 

2 Create new data 
block, if necessary, 
and update the 
directory block. 

3 Write a record into 
the data block. 

Data Set Directory Block 

I Keys and TTRs 



~ 
IV 
00 
I -oj:>. -VI 

6 

() 
::r 
I\) 
'0 -n ., 
:-
m 
I:' ...... 
~ 
() 
0 
EI 
EI 
[ 
'tI a 
0 
n 
'" 2J. 
~ 

I-' • 
~ 

Diagram 1.6. Access Method - Write a Record (Write Sequential Operation into a New Utility Data Set) (Part 
20(2) 

Extended Description 

Check to see if this is the first record to be written into this dataset. 

NO - Process using current block. 

YES - Indicate this DSN has been used. Write first record (IKJEBEMV). 

1 Check block to see if there is sufficient space for the current record. 

3 

NO - Check for outstanding write operation. 

YES -Issue WAIT (IKJEBEWA). 

NO - Issue Write on filled block. 

YES - Insert record. 

Update control blocks. 

• Number of records in block. 
• Update the directory (IKJEBEDU). 

Object Module: IKJEBEAA 

CSECTS: IKJEBEDU.IKJEBEMV.IKJEBEWA 

Module Label 

~ 
0 
~ 
n e a a = l 



t"' 
-< 
~ 
co . -.j:I. -VI 
0 
C 
n 
0 
'0 
'< 
::l. 

QQ 
cr ... -I» 
i: 
n 
0 

~ -\0 co 
""" 

. Diagram 1.6.1. Access Method· Checkpoint a Workfile (part 1 of 2) 

Reg 1 

~ 
Option t UTILWORK code 

UTI LWORK 

A DBUFBLCK 

lDSDB 

From 
1 ..... n:DIC:u 

1 Determine If DSDB hel been 
modified. 

2 Write modified DSCB', 10 the 
utllltv deta IBt 

Output 

t"' p;. 
n c:s ... 
0 
Q. 

i:~ 
I!) n ... '" n ... 
::l. ::l. 

~~ 
Q. 

Ii: 
"'1:111> as-'gg 
::1", 
'<0 
0 .... .... --I» 
=i: 
i: = 



Diagram 1.6.1. Access Method - Checkpoint a Workfile (part 2 of 2) 

Extended Description Module Label 

1 Determine which data blocks have been modified. 

2 Write modified data blocks to the direct access device containing the utility data set. 

Object Module: lKJEBEAA 

CSECT: lKJEBEWB.IKJEBEWM 

(") 

~ 
'0 
S" ... 
:-
rr:I 
tl ---i 
~ 
~ = Po 
'"tI t':l ., 

Q ~ 
CD ::3 CIl 
CIl 

S· n 
OQ ; 
I-l a • » 
~ i 



B 
00 , -~ -Uo 

6 

Diagram 1.7. Access Method - Delete a Record (part 1 of 2) 

From 
IKJEBEUT 

Input l"Procass 
Reg 0 Reg 1 

i I 

tTIL~KI ~ ~ ... 
1 

New Key r 

loptionall 

NUMREC 
DATASTRl RECVSPI Lfcator 1 ... 

2 131 101 I Key 1) 
) .. 

Locator 2 LfC8tor 3 
1+ Key 21 I Key 31 

Key 3 
.. I. 

.. 
R_ 1 

I 1 ___ Key~ ___ 

I Key 1 I 1 
L Record ,. 

UTI LWORK 

i DBUFBlCK I :> v 3 

Dala Set Directory Block 

Record Kay, 

TTRs 

I 
.... Data Block 
--I Record I 

Output 

Determine if the current 
record or another record Is 
to be delted. 

Delete a record and NUMREC DATASTR~ I local or 1 
121 RECVSP I t Key 11 

update the description " ) Locator 2 fields. v 

I + Key 3) 

Key 3 

1 , Record 

I 1 

I I Key 1 I 
T Record r 

UTI LWORK 

Remove empty blocks DBUFBlCK 
from the data block If DCBEBaX 
chain. Update the 

(Empty Dat8 Blocks 
DSCB. 

I 
Dala Set Directory Block J-

I Record Keys 

I TTRs 



(") 
::r 
~ -CD ... 
:-
trl 
0 -,...;j 
g 
§ 
II' = Q. 

"tI ... 
~ 
~. = OQ 

I-l 

~ 

Diagram 1.7. Access Method - Delete a Record (part 2 of 2) 

Extended Description 

Determine if it is the current record or another record that is to be deleted 
(IKJEBEDR) by checking to see if a key was provided. If no key was provided, the 
current record is to be deleted. If a key was provided, save the current record key and 
locate the new record key (IKJEBELO). If the new key cannot be located·, return 
control to IKJEBEUT with a return code of 4. 

2 Delete (IKJEBEDL) a record by updating the data block description fields as follows: 

• Reduce the record count in the data block. 
• Add the empty space to the recoverable space in the data block. 
• Remove record locater for the deleted record and adjust the locaters to fill any 

empty positions. 

3 Remove any empty data blocks from the chain and place them on the empty queue. 
These are held in reserve for future data block splits. Return control to IKJEBEUT 
with a return code in register 15. 

Object Module: lKJEBEAA 

CSECTS: lKJEBEDL, lKJEBEDR. lKJEBELO 

Module Label 

I.'lI!J 
C 
~ 
n ; 
a 
lI' 

i 



Diagram 1.8. Access Method - Read a Record (part 1 of 2) 

Reg 1 

f 1 

Option It 
Code 

UTILWORK 

tNew Key 
(optional) 

tRecord Location 
(optional) 

DBUFBLCK 

Record Keys 

TTRs 

DB 

From 
I KJEBEUT Process 

r-~~------------------------------------------------~ 

1 Determine which read function is 
to be performed. 

2 Locate the record to be read. 

3 Move record, if required, or return 
a pointer to the record. 



n 
1:1" 

~ 
S' ... 
:-

~ ..... 
~ 

g 
§ 
I .., 
§ ... 
f!. 
i 
joool 

~ 
10 

Diagram 1.8. Access Method - Read a Record (part 2 of 2) 

Extellded Description 

1 Check the parameter list for the requested function (lKJEBERR): read first. read last, 
read next. read previous, or read the record specified by the key passed in the param­
eter list. 

:z Locate (lKJEBELO) the requested record by searching the directory blocks 
(lKJEBEDS) and moving the data block containing the record into storage. 

3 Check the parameter list for a pointer to a subcommand buffer area. If there is a 
pointer, move (IKJEBEMV) the record to the buffer. Otherwise, return a pointer to 
the record in register I. If an error occurred, register IS will contain a 4 (record not 
found) or a 12 (1/0 error). Return control to IKJEBEUT. 

Object Module: lKJEBEAA 

CSECTS: lKJEBEDS. lKJEBEW.lKJEBEMV 

Module Label f C~ g (II 

is 
a.$l 

.... 3:8. 
1» ~a:: 

i ~~ 
1'1> :I, 
I;' 

I 
..,0 ... ..., 
o ... 
"Rile 
a~ 

f 
0 .... ..... 

I- ta:I 

• 3: 

I: 
~ 
:l 
w 
e. 
~ 

~ 
t: .. 
""! 

i 
I 



~ 
00 , -~ -VI , 
o 

n ::r 
~ ... 
n ... 
:-

gJ .... 
~ 

g 
; 
II' 
::I 
C. 
"1:1 

§ 
UI 

Er 
OQ 

'"'" ~ 
'"'" 

Diagram 1.9. BOTTOM Subcommand Processing (part 1 of 1) 

(No drawing with text.) 

ExteDded Description 

1 Pass control to the BOTTOM subcommand processor (JKJEBEBO) from the con­
troller routine (JKJEBEMA). 

1 Request the EDIT access method interface routine (IKJEBEUT) to locate and read the 
last record. Set the current line pointer to the key of the final record and turn on the 
"line to be verified" switch. 

If the data set is empty (return code 4), send message IKJS2S011 to the user. Set the 
current line pointer to zero. 

3 Return control to JKJEBEMA. 

Object Modules: IKJEBEBO.IKJEBEUT 

Module Label 

~ 

'=' 
~ 
n 

I 
= Q, 



-I W 
N 

r 
-< 
tv 

'I'" 
.j:. 

OJ> 

6 
~} 

(") 
0 
"0 
'-<: ., 
60' 
;:r 
t:C 
s:: 
(") 
c ., 
'? 

\C 
DC 
-...J 

Diagram 1.10. CHANGE Subcommand Processing (Part 1 of 2) 

Input 

Re~ 1 

I 
IKJEBECA 

Subcommand Buffe, 
• Wo,k A,ea 

F, om 
IKJEBEMA 

1 Syntax check operands, 

2 Determ,ne function to be 
performed, 
• replace string, 
• print up to and replace s\, Iny 
• print up to position and, eplace 

string, 

3 Update utIlity data set. 

Parse 

Syntax 
Checker for 
IPLI or BASIC 

Output 

Utility 
Data Set 

r 
(S' 
(l) 

i:l 
V> 
(l) 

0. 

~ 
~ 
(l) ., 
i'i' 
[j;' 

"1:l ., 
0 

"0 
(l) ., 
~ 
0 ..., 
t:l:l 
~ 

~ 
t: ... ... 
("' 
o 
!3 
!3 
~ 

= Q. 

;:t 
(l) 

~ .., 
~ 
(l) 

0. 

3:: 
'" .-+ 
(l) ., 
i'i 
r;; 

~ 

0:: 
~ 



-\Q 
00 
-..l 

(') 
::r 
I» 
"0 ... 
(8 ., 
:-
m 
0 -~ 
(') 
0 
!3 
!3 
I» 
=:I 
Q. 

." a 
n 
(8 

'" '" s· 
OQ 

Io-l 

~ 
CM 

Diagram 1.10. CHANGE Subcommand Processing (part 2 of 2) 

Extended Description 

1 Use Parse to check the syntax of the operands. Check the fllSt two operands for an •• , 
or a line number refereoce. If a line number reference is specified, check the validity of 
the operands. Read in the first record to be processed; terminate and return control to 
IKJEBEMA if there are no lines in the range (IKJEBECH). 

2 Determine what function has been requested (lKJEBECH). 

• Replace string - format the character string (IKJEBELE), and scan the record for 
a character string match (lKJEBESE). If a match is not found, issue an error 
message. Replace the old string with the new string. If a line overflow occurs, 
issue an error message. If the overflow occurred for a text data set without line 
numbers (NONUM/TEXT), create a new line to handle the overflow. If verify is 
in effect, print the changed line at the terminal. 

• Print up to and replace string - print the line at the terminal up to the point where 
the character string replacement will begin. Enter the new data, overlaying the old 
text in the record. Format the changes (lKJEBELE). 

3 Write the changed record into the utility data set. If the data set type is IPLI or 
BASIC, update the reverse polish data set. Repeat steps 2 and 3 until the line range is 
exhausted. Return control to IKJEBEMA. 

Object Modules: lKJEBECH, IKJEBELE, lKJEBESE 

Module Label 

~ 
t: ... ... 
(". 
e a a 
II' = = 



~ 
~ 
00 , -.p.. -VI , 
0 

0 
n 
~ 
:I. 

OQ 
1:1" ... -= a:: 
n 
0 

~ -\0 
00 
....:I 

Diagram 1.10.1 CKPOINT Subcommand Processing (part 1 of 2) 

From 
Input IKJEBEMA Process 
~~-------------------, r----------------------------~ 

IKJEBECA 

1 Parse the lubcommand. 

2 Determine the option. specified 
on the IIUbcommand •• 

3 Invoke IKJEBEUtto 
accomplish the checkpoint. 

4 Update the actual count. 

6 Return. 

Output 

IKJEBECA 

i 
~ 
Q. 

~ 
t .. .. 
( 

i 

3:: 
I»C 
S"~ 
::I. : 
I»C 
Fitj 
I . 

"!:Ii al 
'Hi .... .... c 
'<I 
0 , .... , 
-I 
ttl! 
3:' 



(') 
0-
I\> 
"0 ... 
~ ., 
:-
trJ 
0 -o-j 

(') 
0 
8 
8 
I\> ::s 
Q. 

." 
Cl 
0 
~ 
<II 
!!!. 
::s 

(Jq 

.... • CM 
(11 

Diagram 1.10.1 CKPOINT Subcommand Processing (Part 2 of 2) 

Extended Description 

1 Parse the command. Determine validity of values entered on the command. 

2 Determine options specified on the subcommand. 

• Stop automatic check pointing if the CKPOINT value is zero (0). 
• Take a checkpoint if CKPOINT has no value. 

3 Invoke IKJEBEUT to take a checkpoint, and set the interval checkpoint count if the 
CKPOINT value is greater than zero. 

4 Update the actual modifications counter to reflect the above situation. 

S Return to caller. 

Object Module: IKJEllECK 

Module Label 

t,!I 

S ... 
C-

~ » 
:I 
Q 



tT1 
I 
til 

~ 
(") 
o 
'0 
'< 
:I. 
I§. ... 

-'CI 
00 
....:a 

Diagram 1.11. MOVE/COPY Subcommand Processing (Part 1 of 2) 

Input 

Reg 1 

~IKJEBECA I 
• CAPTCDCB 

• Subcommand 
Buffer 

• Control 
Information 

• Work Area 

From 
IKJEBEMA Process r----------------------------

1A COpy entry point. 
Set COpy switch. 

1 B MOVE entrv point. 

2 Parse operends. 

3 Validltv check the operands. 

4 Move/copv records. 

5 Invoke IPLI svntex checker, 
If required. 

6 Return. 

Output 

Moved or copied records 
with current line pointer 
updated. 

5 ... 



() 
C" 
I\) 

'1:S -(I) .., 
:-
trl 
tl ...... 
~ 
() 
0 
::I 
::I 
I\) 

=' Q. 

"tI .., 
g 
n 
<Il 
<Il 

~. 

~ 
I 

~ 

Diagram 1.11. MOVE/COPY Subcommand Processing (part 2 of 2) 

Extended Description 

IA Set switches for later delete processing for MOVE and later allocation decision for 
& COPY. 
18 

2 Use parse (IKJPARS) to obtain acceptable operands for processing. 

3 Check validity of operands to ensure that no MOVE/COPY is done within itself, and 
that there are, in fact, records in the line range specified. 

4 Check the data set type: 

• VSBASIC - if a data exit routine is present, copy (lKJEBEDC) the utility data set 
to an in-core data set, and invoke (IKJEBEDX) the data exit routine to perform 
the MOVE/COPY. 

• Other - use MOVE to delete (IKJEBEUT) the records from where they were and 
use COpy to write (IKJEBEUT) them to the location specified by the operands. 
If the moved or copied records cause renumbering in the data set, allocate a sec­
ondary utility data set (lKJEBEUI) to ensure that no data will be lost. 

5 If the data set type is IPLI, update the reverse polish data set (lKJEBEMR). 

6 Return control to IKJEBEMA. 

Object Modules: lKJEBEDC. lKJEBEDX, lKJEBEMC. lKJEBEMR. lKJEBEUl. lKJEBEUT 

Module Label 

~ 
t:: 
~ 
~ 

~ 
Q a a 
! 



~ 
to.) 
00 , -~ -v. , 
0 

O 
(") 
0 

~ 
::I. 

OQ 
I:S' ... -= s:: 
(") 
0 

fJ -\0 
00 
....:I 

Diagram 1.12. DELETE Subcommand Processing (part 1 of 2) 

Input 

Reg 1 

j I 
, IKJEBECA 

Subcommand 
Buffer 
.CAPTCDCB 
• Control 

Information 
• Work Areas 

From 
I 

1 Syntax check operands. 

2 Read and delete a record. 

3 Read next record . 

4 Check range counter. 

• Counter exhausted. read 
previous record. 

• Counter not exhausted, 
repeat step 2. 

5 Update the reverse polish data set 
if the data set type is IPLI or BASIC. Syntax Checker 

for IPLI or BASIC 

Output 

,. ....... 
~ ..." 

Updated 
Utility 
Data Set 

...... .... 

r 

I 

t: 
0 
~ 
I:S 

'" ~ P-

s::~ 
I» ( 
;-~ 
::2. : 
I» ( 

riJi 
I . 

'"t:j' ... ! 
o~ '0: 
~I .... ... , 
'<I 
0 . ..., . 
-I 
ttl: 
S::' 



~ • -.,.. -b 

n =-
~ 
~ ... 
:-

gj 
~ 

i g 
::s 
Q. 

"1:1 a 
n 
n 
!i. 
::s 

OQ 

.... 
~ 
\C 

Diagram 1.12. DELETE Subcommand Processing (Part 2 of 2) 

Extended Description 

Use Parse to check the syntax of the DELETE subcommand (IKJEBEDE) operands. 
If no operands were specified, set the line count to I. 

1 Read and delete (IKJEBEUT) a record. 

3 Read (IKJEBEUT) the next record. 

4 Check the range counter to see if the required number of records bas been deleted 
(IKJEBEDE). 

• Counter exhausted; read the previous record, and set the current line value to the 
corresponding record key. Ifno previous record exists, set the counter to O. 

• Counter not exhausted; repeat step 2. 

5 If the data set type is BASIC or IPLI, use the language processor to remove lines from 
the reverse polish data set. Request the language processor via the standard syntax 
checker interface. Return control to IKJEBEMA. 

Object Modules: IKJEBEDE.IKJEBEUT 

Module Label 

~ 
t: 
~ 
""! 

~ = a a 
lID 

! 



~ 
N 
00 
I -"" -VI 
I o 

-'0 
00 ..... 

Diagram 1.13. DOWN Subcommand Processing (part 1 of 1) 

(No drawing with text.) 

Extended Desc:ription 

1 Pass control to the DOWN subcommand processor (IKJEBEDO) from the controller 
routine (IKJEBEMA). Check the operand switch (CAOPERAND) to see if the user 
specified an operand on the subcommand. If the user specified an operand, use Parse 
to check the syntax of the subcommand. 

2 Depending on what the user specified, either: 

• Read records toward the end of the utility data set until the number of records 
specified by the count operand has been read. Request the EDIT access method 
interface routine to locate and read the record. 

If the data set is empty (return code 4), send message IKJS2S01I to the user. Set 
the current line pointer to zero and return control to IKJEBEMA. 

If the data set is not empty, request IKJEBEUT to locate and read the record fol­
lowing the current one. Continue the process until the current line pointer has 
been moved down the requested (count operand) number of lines . 

• Read the record following the one pointed to by the current line pointer, if no 
operands were specified. The process is the same as above, except the record 
count is I. 

3 Set the current line pointer to the value of the last record read and turn on the "line to 
be verified" switch. If the last record read is the last record in the data set. send 
message IKJS2S00I to the user. 

4 Return control to IKJEBEMA. 

Object Modules: lKJEBEDO.IKJEBEUT 

Module Label 



t"" 
;S 
00 
I -~ -VI 

b 

Diagram 1.14. END Subcommand Processing (part 1 of 1) 

(No drawing with text.) 

Extended Description 

Pass control to the END subcommand processor (IKJEBEEN) from the controller 
routine (IKJEBEMA). If the utility data set has been changed since the last SAVE, 
issue message IKJS2SSS1 to prompt the user to enter END or SAVE. If the user 
enters anything other than SAVE or END, return control to IKJEBEMA. If the user 
enters SAVE, perform the SAVE (lKJEBESA) operation. If the user enters END, 
continue. 

If the user entered END with the SAVE keyword, perform the SAVE operation 
(lKJEBESA). 

If the user entered END with the NOSAVE keyword, continue. 

1 Delete the EDIT Access Method (lKJEBEEX). 

3 If the data set type is BASIC or IPLI, or if the scan switch is on, use the SCAN sub-
command processor (lKJEBESC) for final entry to the syntax checker. 

4 Cancel the abnormal end and attention exits. 

S Use DAIR to free the EDIT data set. 

6 Delete the permanent resident service routines (lKJEBEMS and IKJEBELE). 

7 Return control to IKJEBEMA. 

Object Modules: lKJEBEEN.IKJEBESA.IKJEBESC.IKJEBEEX 

Module Label 



Diagram 1.15. FIND Subcommand Processing (part 1 of %) 

from 

Input IKJEBEMA Process Output 

Parse 

1 Check subcommand synlax. 

2 Read lim record 10 be searched. 

Subcommand 
Buffer 3 Check 10 see if Ii character Siring 

was specified. 

4 Locale characler siring. 

6 Move record 10 verify buffer. Verily 
Buffer 

f"" 
-< 
~ 
00 , C -"" n - 0 
VI CI , ... 
0 8-
() rs::': n l1li 0 

~ S-=-

~l ::I. 

!-- I a:: 
t:&:I l~ a:: i g. 
Q a~ 
-? o a, - ..., .... 
\0 -til 
00 !~ -.J 



~ 
N 
00 
I .... 
".. -VI 
b 

Diagram 1.15. FIND Subcommand Processing (part 2 of 2) 

Extended Description 

1 Use Parse to check the syntax of the operands on the FIND subcommand 
(lKJEBEFI), if there are any. If the user did not specify any operands, and has not 
entered the FIND subcommand previously, prompt the user for a character string. 

2 Read the flrst record to be searched, using IKJEBEUT. That record is: 

• the next record if the user did not enter any operands and was not prompted for 
any. 

• the current record if the user entered operands. 
• the flrsl record if the current line number (CACURNUM) is zero. 

J Check to see if the user specifled a character string. If the user did, convert the string 
to uppercase, if required, and place the str~ng in the FIND buffer (CAFIBFR). If the 
user did not specify a string, use the contents of the FIND buffer as the string. 

4 Locate the requested character string. 

• No offset specified - character string search (IKJEBESE) searches for the requested 
character string at every offset in the entire range. The search is made across line 
boundaries for text type data sets. 

• Offset specifled - IKJEBEFI reads records and checks for the character string at 
the specified offset for each record in the range. 

If the character string is not located, issue an error message. 

S Move the record containing the requested character string into the verify buffer in 
CATEMPBF. Tum on the "line to be verified" switch, CALNTOVF. Store the line 
number in CACURNUM, the current line number. Return control to IKJEBEMA. 

f Ob#<t ModMk" flUEBEFf, flUEBEUT, flUEBELE, flUEBESE 

Module Label 



I 
i 
rn 
rn o 
jil 

~ 

~ 
t..J 
00 
I -.j:I. -VI 
0 
0 
n 
0 

~ 
::I. 

O'CI cr 
~ 

..... = 3: 
n 
0 

f.I -IQ 
00 
'-l 

Diagram 1.16. FORMAT Subcommand Processing (part 1 of 2) 

Reg 1 

I I 

IKJEBECA 

Subcommand 
Buffer 
• CAPTCDCB 
• Control 

Information 
• Work Area 

From 
I 

1 Syntax check operands.· 

2 Read first record of utility 
data set • 

3 Allocate sequential data set . 

4 Copy utility data set onto a 
sequential data set. 

5 Perform the required for­
matting operation using 
the FORMAT command. 

6 Unallocate sequential data 
set. 

Output 

r-' 
rf 
1:1 
'" n 
Q. 

~~ 
~f: 
:di. 
I» n 
-S" "'Q. 

Ie:: 
"1:11» as" i ::I • 
... !!. ... '" '< 0 
0 .... .... .... -= =e:: e:: ~ 



~ 
N 
00 
I -.". -u. 
6 

&l 
~ 
fO .. 
:-

g} 
::j 

~ 
i 
1:1 
c:l-
"1:1 

H 
'" '" i' 
.... 
~ 

Diagram 1.16. FORMAT Subcommand Processing (part 2 of 2) 

Extended Description 

1 Use Parse to check the syntax of the operands on the FORMAT subcommand 
(lKJEBEFO). if there are any. 

2 Read (lKJEBEUT) the flfst record of the EDIT utility data set. 

3 Test to see if the range begins at the current line pointer. a specified line. or the begin­
ning of the data set. Allocate (IKJEBEDA) a sequential data set according to the 
amount of space required. 

4 Copy (lKJEBEFC) the EDIT utility data set onto the sequential data set. 

S Perform the required formatting operations using the FORMAT command processor. 
Attach the system FORMAT command (a Program Product) by the FORMAT sub­
command processor (lKJEBEFO) via IKJEBECI. 

6 Free (lKJEBEDA) the sequential data set. Return control to IKJEBEMA from the 
FORMAT subcommand processor. 

Object Modules: lKJEBEFO. lKJEBEUT, lKJEBEFC. IKJEBECl, IKJEBEDA 

Module Label 

~ 

~ 
n 
0 

I 
I 



EDIT Command 

; .. 
I 
'II ... .. 
Q. 

... a z:. 
0 .. 
.2 - ~ 

N u .... a z:. Q U ... 
1: CIt po 

l1li 

~ 
CD = oil 
Q,J 
u 

£ 
'1:1 = l1li 
E 
E 
Q 
U 

,Q 

~ 
...::I 

~ 
riIiI 
riIiI 
== ~ 
r-: ... 
~ 

e 
~ 
l1li 

is 

c 
.2.2 
E :; 
111 u 
c: 0 
>= 0< 

Ii 
E 
CD 
c: 

S 
c: a; 
.li 
0 

('II 

c 
u 0 e; 
i~ 
0< 

~ 

i 
'E 
'II 
c: 
> 
" = CD ... ' 
111" g! 
=8 2-:nii 
CW) 

1-46 TSO/E System Diagnosis: Command Processors, E-S 

.. Restricted Materials of IBM" 
Licensed Materials - Property of IBM 

LY28-141S-0 C Copyright IBM Corp, 1987 



~ 
00 . 

@ 
(') 
o 
~ 
cfJ· 
::r 
r+ .... 
ttt 
~ 
(') 
o 
-? 

Diagram 1.17. FREE ALL Subcommand Processing (Part 2 of 2) 

2 

J 

Exteuclecl Description 

Check to see if the user specified any other parameters on the command. If so, issue 
an error message and terminate the command. 

Invoke the RETRIEVE function of Dynamic Allocation, specifying the relative request 
number to get the associated file name. If the return code from dynamic allocation is 
not zero, use the DAIR failure message routine (IKJEFF18) to analyze the return code 
and send the appropriate error message to the user. 

If the file was dynamically allocated, use the UNALLOCATE function to un allocate 
the file. If the return code from dynamic allocation is not zero, use the DAIR failure 
message routine (IKJEFFI8) to analyze the return code and send the appropriate error 
message to the user. Repeat step 2, specifying the next relative request number. 

:0 Objecl Module: IKJEFD38 
00 
.....:I 

Q 
~ -(II ... 
:-

~ 
=i 
Q 
!3 
~ 
:::I 
Q. 

'" ... 
~ 
~. 
:::I 

QQ 

.... 

.L.. 
-....I 

Module Label 

t:I t"'" = ... o· ~ » 
(IQ g r4 ... » ~ ::1. e Q.~ 

~ 3::2. .... ~~ :-oJ ~ '" 
to:!:! 

_. r+ 

'" (II 

" r;; ::1. 
t'I:I I Eo 
t'I:I II> 

",0 

~ 
........ 
o .... 
"Ottt 
(II ~ 

00 ~ : = CI'" 0 
n ...., 
= .... 
~ = 

~ 

= =-
"tI 

I. 
CS 

(IQ 

-;a 
» 
~ 
N 

= .... 
N -

~ 
~ 
CI a a 
i 



() 
o 
§ 
[ 
." a o 
n 
'" ~ 
;1 
m . 
til 

Diagram 1.18. INPUT Subcommand Processing (Part 1 of 2) 

From 
IKJEBEMA 

nput .. P e roc 55 

Rey 1 

J ~ 1 Determine the realOn INPUT was 
" entered. 

~IKJEBECA 
Subcommand 

2 Syntax check operands. If INPUT 
subcommand was entered. 

Buffer 

• CAPTIBFR 

I I Terminal ...1\ 
3 Obtain lines of Input. > Input .. 

IKJEBECA 4 Update the utility data set. 

CASYNLST 

CASYNBFR 

CASYNPWA JI. 6 Syntex check Input. if required. 
" CASYNPTO 

Output 

Parse 

~ 

I"'- ----" Utilitv 
r Data Set 

Lenguage 
Processor 

-



~ 
N 
00 
I -oj>. -V-
I 
o 

-\0 
00 
-...I 

Diagram 1.18. INPUT Subcommand Processing (part 2 of 2) 

Extended Description 

Determine the reason INPUT (IKJEBEIP) was entered. Entry was from one of the 
following: 

• EDIT command for a new or an old empty data set - Initialization (IKJEBEIN) 
passes a request to the mainline (IKJEBEMA) that the INPUT subcommand 
processor receive control. Input begins at line 10 and line numbers are increased 
by 10. 

• INSERT subcommand with no operands - The INSERT subcommand 
(IKJEBEIS) returns control to the mainline (IKJEBEMA). indicating input mode 
has been entered. INPUT begins at the current line number + I and line numbers 
are increased by I. 

• INPUT subcommand without operands - INPUT begins inserting data at the 
bottom of the data set. 

• INPUT subcommand with operands - INPUT begins after a specified line if the I 
form is used or at the specified line if the R form is used. 

• Null line entered while in EDIT mode - If input mode was previously specified. 
INPUT will begin after the last line entered in input mode. Or, if this is the first 
entry into input mode for this EDIT session, INPUT will begin at the bottom of 
the data set. 

2 If the user entered the INPUT subcommand, use Parse to check the syntax of the 
operands. If the operands specify that a line is to be deleted or that a line needs to be 
located, use the EDIT access method (IKJEBEUT). 

3 Get a line of input from the terminal. If syntax checking is in effect, or character 
prompting is requested, use a character string for line prompting to request a line. If 
the automatic line prompting facility (STAUTOLN) is used, get a line from the ter­
minal. Format the line to be moved to the utility data set (IKJEBELE). If the user 
enters a null line, return control to the mainline (IKJEBEMA). 

4 Use the EDIT access method (IKJEBEUT) to write a line of data to the utility data 
set. If the data set is numbered and there is no room to insert the line. terminate input 
mode and issue an error message. If the data set is NONUM, renumber it by reading 
in (IKJEBEUT) each of the lines, increasing the line number by one, and writing it 
back into the data set. 

S Use the appropriate language processor to check the syntax of the line of data. The 
line of data is passed to the language processor in the syntax checker parameter list 
(CASYNLST) set up by SCAN. If there is a syntax error, issue the message returned 
by the language processor, and terminate input mode. 

If the data set type is IPLI or BASIC, and syntax checking is not in effect, use the 
language processor to update the reverse polish data set. 

Continue processing with step 3. 

Object Modules: IKJEBE1P, lKJEBEIS, lKJEBELE, IKJEBEMA, IKJEBEUT 

Module Label 



t"' 
to( 
t..J 
00 
I -~ -I.A 
I 

0 

0 
(') 
0 

~ 
:I. 

OQ 
CI" ... -= 
~ 

Q 
-? -\C 
00 
-..I 

Diagram 1.19. INSERT Subcommand Processing (part 1 of 2) 

Subcommand 
Buffer 
.CAPTCDCB 
• Control 

Information 
• Work Area 

From 
IKJEBMA 

1 Syntax check operands. 

2 Read current record from utility 
data set. 

3 Format input record • 

4 Write new record on datil set. 

5 Request the processor for BASIC 
or IPLI Type data sets, if required. 

Parse 

Output 

Data Set 

New 
Record 

t"' i'r 
111 ::s 
'" 8-
~~ 
I» (II .... '" 111 .... 
:I. :I. 

~[ 
Irs:: 
~~ 
'g ~. 
~I;i 
08.. 

'""--= =rs:: 
~ ~ 



~ 
N 
00 , -~ -I.A 

b 

(") 

=-
~ -n> ... 
:-
tIl 
0 ...... 
.....j 

g 
El 
El 
roo 
::s 
Po 
." ... 
g 
n> 

'" '" S· 
OQ 

"""" &. 
"""" 

Diagram 1.19. INSERT Subcommand Processing (Part 2 of 2) 

Extended Description 

1 Use Parse to check the syntax of the INSERT subcommand operands. If the user did 
not specify any operands, return control to IKJEBEMA and enter input mode. 
(IKJEBEMA requests INPUT subcommand processing on receiving a return code of 
4.) If the input string is greater than 255 characters, reset it to the maximum value of 
255. 

2 Read the current record from the utility data set. If the data set is using the NUM 
option, and the record to be inserted already exists, terminate the insertion and return 
control to IKJEBEMA. Otherwise, provide space within the data set for the record 
being inserted. 

3 

4 

S 

Format the record to be inserted. 

Write (IKJEBEUT) the new record into the data set. Update the current line pointer. 

If the data set type is BASIC or IPLI, request the language processor to update the 
reverse polish data set. Return control to IKJEBEMA from the INSERT subcom­
mand processor. 

Object Modules: IKIEBEIS. IKIEBEUT 

Module Label 

t!I!j 
0 
~ 

-3 
("} 
0 
51 
51 = is. 



r 
~ 
00 
I .-
~ 

u. 
6 

Diagram 1.20. LINE INSERT/REPLACE/DELETE Processing (part 1 of 2) 

Input 

Reg 1 

I 
IKJEBECA 

Subcommand 
Buffer 
.CAPTCDCB 
• Control 

Information 
• Work Area 

From 
IKJEBEMA 

1 Syntax check operands. 

2 Perform the delete or write function 
as indicated. 

3 Set current line value. 

4 Process IPLI or BASIC data 
set. 

Output 

EDIT 
Data Set 

NEW RECORD 



B 
00 . ..... 
"'" ..... 
VI 

.:. 

() 
:r 
III 

"c:l 
It .., 
:-
trl 
0 -o-j 

() 
0 
8 
8 
III 
::I 
Co 

"tI a 
n 
(1) 

'" f!l. 
::I 

OQ 

I-l 
I 

f.II 
~ 

Diagram 1.20. Line Insert/Replace/Delete Processing (Part 2 of 2) 

Extended Description 

Use Parse to check the syntax of the insert/replace/delete (IKJEBELI) operands, if nec­
essary. If a string length was specified, and it exceeds 2SS characters, reset the length 
to 2SS and indicate a line overflow. For the insert/replace functions, the input line 
may be edited (IKJEBELE) for tabs and uppercase. 

2 Perform the "delete a line" or "write a line" function as indicated. If text was not 
entered and the user requested a delete, delete the specified record (IKJEBEUl). If 
the user requested insert or replace, write a record to the EDIT data set (IKJEBEUl). 

3 Set the current line value to the value of the last line operation. 

4 If the data set type is BASIC or IPLI, update the reverse polish data set. Return 
control to IKJEBEMA. 

Object Modules: IKJEBELE. IKJEBELI. IKJEBEUT 

Module Label 

l!!j 
c -1003 
n 
Q 
a a = 50 



Diagram 1.21. LIST Subcommand Processing (part 1 of 2) 

Input 

Subcommand 
Buffer 
.CAPTCDCB 
• Control 

Information 
• Work Areas 

From 
IKJEBEMA Ou 

Parse 

1 Syntax Check operands. 

2 Read first record. 

3 List a line 

4 Update line reference pointer. 

6 Check for end of list request. 



(") 
:r 
I» 

'1:1 ;-.., 
:-
trl 
t:j 
::j 

Q 
51 
51 
~ 
Q. 

." a 
n 
n 
<II 
<II er 

QQ 

~ • CIt 
CIt 

Diagram 1.21. LIST Subcommand Processing (Part 2 of 2) 

Extended Destription 

Use Parse to check the syntax of the operands on the LIST subcommand 
(IKJEBELT), if necessary. If the user did not specify any operands, set the counter to 
99999999 so that the entire data set will be printed. 

2 Read (IKJEBEUT) the fIrSt record as specified by the operands (current record, first 
record in data set, or specified record). 

3 Use PUTLINE to list a line at the terminal. 

4 Update the current line reference pointer (CACURNUM). 

5 Test for end-of-list request. 

• For a listing by line number, read (IKJEBEUT) the next record in the range to be 
listed (Step 2). If the range has been exhausted, return control to IKJEBEMA. 

• For a listing by counter, read (IKJEBEUT) the next record and decrease the 
counter by I. If the counter is 0, relurn control to IKJEBEMA. 

Object Modules: lKJEBELT. lKJEBEUT 

Module Label 

t!!!l 
0 
::3 
t'"l 
0 a a ., 
:I 
Do 



t"" 
-< 
N 
00 , -",. -VI , 
«:> 

Diagram 1.22. MERGE Subcommaod Processing (part 1 of 2) 

From 

Input ,.'-. ~~ 
Reg 1 

t.KJEBECA 
I ... 

> 1 rr 

Subcommand 
Buffer 
.CAPTCDCB 

. C ...... 

Old " 
Utility ) 2 

v 
Data Set .... -

3 

Co -
Merged ... 
Sequential ,,> 4 
DataSet 

.... 
5 

6 

Output 

Parse 

Check syntax of operands. I 

" :::. .... Allocate a sequential data set and 
copy the EDIT utility data set on to 

rr 
Sequential 

the sequential data set. Data Set .... 
Request MERGE command and 
merge data sets. 

,...... .... 
New 

II Utility 
Copy merged sequential data set > Data Set 
to new utility data set. ..... 

Check for IPLI or BASIC data set 
type. 

Delete the old utility data set and 
unallocate the sequential data set. 



~ 
N 
00 
I -~ -VI 
I 

<:> 

-\0 
00 
-...I 

() 

r 
'0 ;-... 
:-
tr:I 
0 .... 
o-j 

(") 
0 
B 
B 
I" 
::I 
c:l. 
'tt a 
0 

~ 
!!l. 
::I 

OQ 

~ 

y. 
~ 

Diagram 1.22. MERGE Subcommand Processing (Part 2 of 2) 

Extended Description 

Use Parse to check the syntax of the operands on the MERGE subcommand 
(lKJEBEME). If operands are missing, prompt the user to enter them. 

2 Allocate (lKJEBEDA) a sequential data set with a disposition of NEW, CATLG, 
DELETE. Copy (lKJEBEFC) the EDIT utility data set to the allocated sequential 
data set. Free (lKJEBEDA) the sequerttial data set with a disposition of OLD, KEEP. 

3 Build a model of the program product MERGE command based on the name of the 
sequential data set containing a copy of the EDIT utility data set, the subcommand 
operands, and the EDIT data set attributes. IKJEBECI requests the program product 
MERGE command (lKJEBMIN) to merge the data sets. 

4 Reallocate (lKJEBEDA) the output sequential data set. Copy (IKJEBECO) the 
merged sequential data set to a new utility data set. 

5 Check the data set type to see if it is IPLI or BASIC. If it is, delete (lKJEBEMR) the 
old reverse polish data set and build a new one. 

6 Delete (IKJEBEEX) the old utility data set and free (lKJEBEDA) the sequential data 
set. Turn on the "line to be verified" switch. Return control to IKJEBEMA. 

Module 

Object Modules: IKJEBECI.IKJEBECO. IKJEBEDA. IKJEBEEX. IKJEBEFC. IKJEBMIN. IKJEBEME. IKJEBEMR 

Label 

t!!!l 
t:1 
~ 
n e ; 
I» = ~ 



r 
~ 
00 
I -"'" -1.11 

6 
6 
e') 
0 
'tI 
'< 
::I. 

OQ 
:r ... -= ~ 
e') 
0 

-? -\0 
00 
-..J 

Diagram 1.13. PROFILE/SEND/HELP/ALLOCATE SuiK:ommand Processing (part 1 or 1) 

(No drawing with text.) 

Extended Description 

Pass control to IKJEBEHE from IKJEBEMA. 

:1 Request IKJEBECI to attach the requested system command. Pass to IKJEBECI the 
parameter list containing a pointer to the EDIT communications area and the butTer 
containing the subcommand entered from the terminal. 

3 When the system command processor finishes, return control to IKJEBEMA from 
IKJEBECI. 

Object Modules: IKJEBECI,IKJEBEHE 

Module Label 

r ('). 
(II 
t:I 
U> 
(II 
~ fw 
S-=-
::1·6· 
e!.;-
U>~ 

'3: 
~I» a s-
'g ::I. 

~~ 
os. 
"")--= =~ ~ :: 



B 
00 . .-
~ .-
VI 
b 

n 
cr 
~ 
S-
o, 

:-

~ 
~ 
n 
0 

§ 
III 

6. 
"U 

~ 
!. 
cf: 
.... 
&. 
\C 

Diagram 1.24. EXEC Subcommand Processing (part 1 of 1) 

(No drawing with text.) 

Extemled Description 

I Pass control to IKJEBECI (via LINK) from IKJEBEMA. 

2 Pass to IKJEBECI the parameter list containing a pointer to the EDIT communi­
cations area and the buffer containing the subcommand entered from the terminal. 
IKJBBECI attaches the EXEC command processor. 

3 When the system command processor nnishes, return control to IKJBBEMA from 
IKJBBECI. 

Object Module: IKJEBECI 

Module Label 

~ 
[ 



Diagram 1.25. RENUM Subcommand Processing (part 1 of 2) 

From 
IKJEBEMA 

Reg 1 

~L...--.-----,I 
~ IKJEBECA 

Subcommand Buffer 

• CAPTCDCB 
• CANONUM 
• CACURNUM 
• CXDATEXT 

1 Check for empty old utility 
data let. 

2 Check subcommand syntax. 

3 Create a new utility data &et. 

4 Renumber the date set 

• IPLI 

• BASIC 

• Data exit routine 

• Other 

5 Delete old utility data set. 

Output 

New 
Utility 
Data Set 

New 
Utilitv 
Data Set 



B 
00 . -"'" -v. 
b 

() 
:r 
"" 't:I ... 
n ... 
:-
t11 
tf .... 
~ 
() 
0 
9 
9 
§ 
Q. 

'tI ... 
0 
Sil 
'" 21. = OQ 

..... 
~ ..... 

Diagram 1.25. RENUM Subcommand Processing (part 2 of 2) 

Extended Description 

If the old utility data set is empty. return to the caller. 

1 Use Parse to check the syntax of the operands on the RENUM subcommand 
(IKJEBERE). 

3 Create (IKJEBEUI) a new utility data set. 

4 Renumber the data set. The following are renumbering processes for data set types: 

5 

IPLI- renumber and update (IKJEBEMR) the reverse polish data set. 

BASIC - renumber (IKJEBERN) and update (IKJEBEMR) the reverse polish data set. 

Data exit routine specified - copy (IKJEBEDC) the old utility data set to an in-core 
data set and renumber (IKJEBEDX) the data set. Renumber the data set (data exit 
routine) and copy the renumbered in-core data set to the new utility data set 
(IKJEBEUT). 

Other - read one record at a time (IKJEBEUT). renumber it (IKJEBERE). and write 
(IKJEBEUT) it on the new utility data set. 

Delete (IKJEBEEX) the old utility data sel. 

Module 

Object Modules: IKJEBEDC. IKJEBEDX. IKJEBEEX. IKJEBEMR. IKJEBERE. IKJEBERN. IKJEBEUI. IKJEBEUT 

Label 

l!I!J 
Q 
=:i 
~ 

~ 
~ 
Q, 



Diagram 1.26. RUN Subcommand Processing (part 1 of 2) 

From 

Input IKJEBEMA Process Output 

Rey 1 .. 
~'KJE.ECA J .. 

1 Check for executable datil let 
v type. 

Subcommand 
Buffer 2 Check for BASIC or IPLI Typa 

• CARUN data set. 

• CAINLIST Parle 

• CARUNDS 
3 I I • CAPRNAME Check subcommand syntex. - --I 

r ........... 
r-- ./ .. 

Utility ) 4 Inltiellze data sat to be run. 
Dilta 

y 

Set t. I I '- • I n-core data let ) Input Stack 
" 

• I n-1i5t data set ') In-Core 
y Data Set 

,..- -..., 
'- .-' 

• Other ') Run 
Data Set 

5 Compile and execute program. .-' 

6 Free resources and unallocate 
object data set. 



r 
-< 
N 
00 , -~ 
VI 

b 

Diagram 1.26. RUN Subcommand Processing (Part 2 of 2) 

Extended Description 

Check to see if the data set is executable (CARUN is on). If it is not, issue an error 
message and return control to IKJEBEMA. 

2 Check data set type to see if it is BASIC or IPLI. If it is, request the appropriate 
language processor to compile and execute the data set, and return control to 
IKJEBEMA. 

3 Use Parse to scan and check the syntax of any operands on the subcommand. Build a 
command buffer containing the specified operands. 

4 Check the data set type and process the data set accordingly. 

In-Core Data Set Type - Read (IKJEBEUT) and move (IKJEBERU) the utility data 
set to a 4K dynamic area. Use the STACK service routine to place a copy of the data 
set on the input stack. Move a data set name of· into the command buffer. 

In-List Data Set Type - Copy (IKJEBEDC) the utility data set to an in-core data set. 
Move a data set name of· and the INLIST keyword and its associated sub field into 
the command buffer. 

Other Data Set Types - Allocate (lKJEBEDA) a run data set, and copy (IKJEBEFC) 
the utility data set to the RUN data set. Move the data set name into the command 
buffer. 

S Request (lKJEBECI) the appropriate prompter and compile and execute the program. 

6 Free resources used for the source data set: 

In-core - Delete the data set on the input stack. 

In-list - Free storage occupied by the in-core data set. 

Other - Free the source and object data sets. The RUN subcommand processor 
(IKJEBERU) returns control to IKJEBEMA. 

Object Modules: IKJEBECI. IKJEBEDA. IKJEBEDC. IKJEBEFC. IKJEBERU. IKJEBEUT 

Module Label 



-I 
~ 

n o 
3 
3 
p: 
::l 
Q.. 

'"tl ., 
o 
(') 
<> 
V­
cr. e ., 
;r. 

n 
o 
"0 
'<: ., 
riO· 
;r 

n 
o ., 

':=I 

Diagram 1.27 . SAVE Subcommand Processing (Part 1 of 2) 

Input 

Subcommand 
Buffer 
• EDIT Data 

Set name 
• Data Set 

Attributes 

EDIT 
Utility 
Data 
Set 

From 
IKJEBEMA 
or IKJEBEEN 

Process 

1 Check for operands. 

2 Allocate SAVE data sel. 

3 Validate data set attributes. 

4 Check for RENUM/UNNUM 

5 Copy utilily data set into SAVE 
data set. 

6 Unallocate SAVE data set. 

Parse 

DAIR 

DAIR 

Output 

SAVE 
Data 
Set 



B 
00 . -.,.. -VI 
b 

-\C) 
00 
....:I 

Diagram 1.27. SAVE Subcommand Processing (part 2 of 2) 

Extended Description 

1 Check for operands on the subcommand. If the user specified an operand, use Parse 
to check it. If the user did not specify any operands, or if data set name was '.', use 
the EDIT data set name. Use the Default service routine to fully qualify an unquali. 
fied name, and to determine if the data set is in the catalog. If NEW was used on the 
EDIT command, and the data set is in the catalog (already exists), prompt the user for 
action. If REUSE was specified on the EDIT command, do not prompt the user, and 
reuse the existing data set. 

:z Determine if the SAVE data set is sequential or partitioned, and use DAIR to allocate 
the data set accordingly. 

3 Validate data set attribute for those supported with the data set type. 

• LRECL, BLKSIZE, and RECFM must be valid for the data set type. 

• Block size must be less than or equal to the track length. 

• Check the DSCB for unsupported SAVE formats: undefined, variable spanned, 
track overflow, and machine or ANSI control characters. 

4 If the user specified either RENUM (lKJEBERE) or UNNUM (IKJEBEUN), call that 
function. 

S Copy (lKJEBEFC) the EDIT utility data set to the SAVE data set. 

6 Use DAIR to unallocate the SAVE data set. Return control to the caller. 

Object Modules: IKJEBEFC. IKJEBESA. IKJEBERE. IKJEBEUN 

Module Label 



Diagram 1.28. SCAN Subcommand Processing (part 1 of 2) 

Input 

CPPL 

tCommand Buffer 

CASYNAME 

CASCANSW 

CAPTIBFR 

Terminal 
Input 

or Utilitv 
Data Slit 

From the 
TMP Process 

r-----------------------------~ 

1 Determine if a language processor 
is available. 

2 Load and initialize the language 
processor. 

3 Syntax check a line of data. 

4 Delete the language processor. 

Language 
Processor 

Output 

Return to 
IKJEBEMA or 
IKJEBEEN 

IKJEBECA I CASFNWA I 



t'" 
ooe: 
N 
00 
I -"" -VI 
I o 

-\0 
00 
-...J 

Diagram 1.28. SCAN Subcommand Processing (part 2 of 2) 

Extended Description 

1 Determine if a language processor (syntax checker) is available by checking 
CASYNAME in the EDIT Communications Area for a language processor name. The 
language processor is specified during the EDIT program initialization (IKJEBEIN). 

2 Load and initialize the language processor when syntax checking is requested. If the 
user entered the EDIT command keyword SCAN. or if the data set type is IPLI or 
BASIC, the language processor is loaded (lKJEBEMA) and initialized (lKJEBESC) 
during the EDIT command processor initialization. Set CASCANSW to indicate that 
syntax checking is in effect. 

If the user entered the SCAN subcommand (IKJEBESC) and syntax checking is not in 
effect. load and initialize the language processor. 

Information is passed to the language processor in the Syntax Check Communications 
Area (CASYNWA in the EDIT Communications Area). 

3 Check the syntax of a line of data (CASCANSW is on) received in input mode by 
passing it to the appropriate language processor. Pass data for IPLI and BASIC data 
set types to the language processor to update the reverse polish data set, whether 
SCAN is on or not. 

4 

If the user entered the SCAN subcommand, request (IKJEBESC) the EDIT Access 
Method (IKJEBEUT) to read each record in the range into storage and pass the data 
to the language processor. 

When the user enters SCAN OFF, delete (lKJEBESC) the language processor and 
tum off CASCANSW to indicate that syntax checking is no longer in effect. For IPLI 
and BASIC type data sets, retain the language processor to maintain the reverse polish 
data set. 

If the END subcommand processor is entered (lKJEBEEN) to terminate the EDIT 
program, and the language processor has not yet been deleted, request the SCAN sub­
command processor (IKJEBESC) to delete the language processor. 

Object Modules: IKJEBEEN. IKJEBEMA. IKJEBESC 

Module Label 



~ 
N 
00 
I -.... -lJI 
I 

o 

-\0 
00 
-.I 

Diagram 1.29. SUBMIT Subcommand Processing (part 1 of 1) 

(No drawing with text.) 

Extended Description 

Pass control to IKJEBESU from IKJEBEMA. Check to see if the subcommand has 
any operands. 

YES - Link to Parse for syntax checking. 

NO - Assume "SUBMIP" was entered. 

2 Begin to set up the command buffer by moving the subcommand name in for the 
command name. 

3 Check for an ..... in the dslist. 

YES - Allocate (IKJEBEDA) a new system data set (DISP=(NEW,DELETE». Copy 
(IKJEBEFC) the utility data set into the system data set. Mark (IKJEBEDA) the data 
set "not in use." Copy the data set names from the PDL into the command buffer, 
replacing any"·" with the name of the system data set just created. 

NO - Copy data set names from the PDL into the command buffer. 

4 Attach (IKJEBECI) the SUBMIT command. Delete (IKJEBEDA) the system data set. 
Release any storage gotten by Parse (lKJRLSA). Return to IKJEBEMA. 

Object Modules: IKJEBECI.IKJEBEDA,IKJEBEFC.IKJEBESU 

Module Label 

~ 
n 
:I 

[ 
a:;~ 
10) n ... '" n ... 
:I. :I. 
10) \') _ ... 
fI) 2-
I a:; 

"'10) .., -o n 
'0 :I. 
n 10) .., -... '" '< 0 o ..., ...,­
-tiel 
tiel a:; a:; ~ 



~ 
N 
00 , ..... 
~ ...... 
1.11 , 
o 

g 
~ -n .. 
;-

ttl 
0 -~ 
n 
0 

~ 
8-
~ 
n 
<II 
<II 

9' 
QQ 

"""'" • C\ 
\C 

Diagram 1.30. TABSET Subcommand Processing (part 1 of 1) 

(No drawing with text.) 

Extended Description 

Pass control to the TABSET subcommand processor (IKJEBETA) from the controller 
routine (IKJEBEMA). If the user specified any operands, use Parse to check the 
syntax of the operands. 

1 Depending on what the user specified. either: 

• Indicate that translation of tabulation is not to be performed, if the OFF keyword 
was specified. 

• Set new values for tabulation characters. If the ON keyword was specified, tum 
on the tabulation switch. If an integer list was specified, store the values in the 
tabulation table (CATABS) in ascending order. If the user specified the IMAGE 
keyword with tab set characters, use GETLINE to obtain the tab set characters 
and store in the tabulation table. 

3 Return control to IKJEBEMA. 

Object Module: IKJEBET A 

Module Label 

$ 
"'" (" 

~ = 1:1 = 



( 
f 
tp 
en 

8 
00 
I -~ -VI 
6 
@ 

n 
0 

:s! 
::I. 

OQ 
::s-.. .... 
~ 
n 
0 

-? -\0 
00 
-...J 

Diagram 1.31. TOP Subcommand Processing (part 1 of 1) 

(No drawing with text.) 

Extended Description 

1 Pass control to the TOP subcommand processor (lKJEBETO) from the controller 
routine (lKJEBEMA). 

2 Request the EDIT Access Method interface (lKJEBEUT) to find and read the first 
record. Set the current Jine pointer to zero. If a record exists for line zero, turn on the 
"line to be verified" switch (CALNOTOVF). 

If the data set is empty (return code 4), send message IKJS2SOll to the user. Set the 
current line pointer to zero. 

3 Return control to IKJEBEMA. 

Object Modules: IKJEBETO,IKJEBEUT 

MocluJe Label 

~ 
Q 
::s 
i 
3:"; ga 
::I.a. 

~i 
13: 

0,:, lID a S' 
'g ::I. a;' 

0 o .... ........ .... = = a::: a::: = 



t"" 
-< to.) 
00 
I -~ -u. 
I 

0 

10 
(') 
0 

~ 
iJ· 
::r-
r+ .... 
a:I a:: 
(') 
0 
.p -\,() 
00 
-.l 

Diagram 1.32. UNNUM Subcommand Processing (part 1 of 2) 

Input 

Reg 1 

~KJE.ECA 

From 
IKJEBEMA 

1 Check if UNNUM is valid request. 

2 Create a new utility data set. 

3 Remove line numbers. 

4 Delete old utility data set. 

~ no ::s ..... no 
Q. 

a::~ 
II> til 

S=-
::t.::t 

~K 
Ia::: 

'till> a s-
'tS ::t 
no I\> 
::l-'< ..... 

0 o ... ....... 
.... t:/: a:ls;: 
rs::: 



~ 
~ , -• -VI o 
o 

~ 
::1. 
~ ... .... 
1:1' 
~ 
g 
.p 

Diagram 1.32. UNNUM Subcommand Processing (part 2 of 2) 

Exteoded DesaiptiOD 

1 If the data set is not numbered, return to caller. 
If the data set type must have line numben, issue error message and return to caller. 
If the data set type requires a data exit routine for renumbering, issue error message 
and return to caller. 

2 Create (IKJEBEUI) a new utility data set. 

3 Remove line numben by reading one record at a time (lKJEBEUl), setting the line 
number field to blanks if the record format is fIXed or shifting data to overlay the line 
number field if the record format is variable, and writing (lKJEBEUT) the line on the 
new utility data set. 

4 Delete (lKJEBEEX) the old utility data set . 

~ Object Modules: IKJEBEEX. IKJEBEUI. lKJEBEUN. IKJEBEUT 
....,J 

~ 
'tI ... n ... 
:-
tr:I 
0 
~ 

i 
8-
"'1:1 
8 n n 
fI> 
fI> 

9' 
IJq 

t-L 

~ 

Module Label 

~ 
i 
I 



~ 
tv 
00 , 
~ -VI 

b 

Diagram 1.33. UP Subcommand Processing (part 1 of 1) 

(No drawing with text.) 

Extended Description 

1 Pass control to the UP subcommand processor (lKJEBEUP) from the controller 
routine (lKJEBEMA). Check the operand switch (CAOPERAND) to see if the user 
specified an operand on the subcommand. If the user specified an operand, use parse 
to check the syntax of the subcommand. 

Z Depending upon what the user has specified, either: 

3 

• Read records toward the beginning of the utility data set until the number of 
records specified by the count operand has been read. Request the EDIT Access 
Method interface routine (lKJEBEUT) to locate and read the frrst record. 

If the data set is empty (return code 4), send message IKJS2S021 to the user. Set 
the current line pointer to zero. 

If the data set is not empty, request IKJEBEUT to locate and read the record pre­
vious to the current one. Continue the process until the current line pointer has 
been moved up the requested (count operand) number of lines. 

• If the user did not specify any operands. read the record before the one currently 
being pointed to. Processing is the same as above, except the record count is I. 

Set the current line pointer to the value of the last record read. and turn on the "line 
to be verified" switch. 

4 Return control to IKJEBEMA. 

Object Modules: IKJEBEUP. IKJEBEUT 

Module Label 



n 
c:r' 

~ 
~ 
(II .. 
:-
tr.I 
0 -~ 
g 
~ 
~ 
Q. 

"'0 

~ en en 
~. 

..... 

.!.. 
til 

Diagram 1.34. VERIFY Subcommand Processing (part 1 of 1) 

(No drawing with text.) 

Extended Description 

Pass control to the VERIFY subcommand processor (lKJEBEVE) from the controller 
routine (IKJEBEMA). Check the operand switch (CAOPERAND) to see if the user 
specified an operand on the subcommand. If the user specified an operand, use parse 
to check the syntax of the subcommand. 

:1 Depending on what the user specified, either: 

• Indicate that a record will be displayed when the text of the current line or the 
value of the current line pointer is changed. if no operands or the ON keyword 
was specified. Set the VERIFY switch (CA VRFYSW) to 1. 

• Indicate that a record will not be displayed, if the OFF keyword was specified. Set 
the VERIFY switch (CAVRFYSW) to O. 

3 Return control to IKJEBEMA. 

Object Module: IKJEBEVE 

Module Label 

I.!I!!j 
C 
~ 
n 
0 
EI 
EI 

l 



Program Organization 

"Restricted Materials of IBM" 
Licensed Materials - Property of IBM 

This section contains a list of the EDIT modules and their functions, and charts showing the flow of control 
from one module to another. 

Modules and Their Functions 
IKJEBEAA 

IKJEBEAE 

IKJEBEAT 

IKJEBEBO 

IKJEBECH 

IKJEBECK 

IKJEBECI 

IKJEBECO 

IKJEBEDA 

IKJEBEDC 

IKJEBEDE 

IKJEBEDO 

IKJEBEDX 

IKJEBEEN 

IKJEBEEX 

IKJEBEFC 

IKJEBEFI 

IKJEBEFO 

IKJEBEHE 

IKJEBEIA 

IKJEBEIN 

IKJEBEIP 

IKJEBEIS 

IKJEBELE 

IKJEBELI 

IKJEBELT 

IKJEBEMA 

IKJEBEMC 

IKJEBEME 

IKJEBEMR 

IKJEBEMS 

IKJEBEMI 

IKJEBEM2 

IKJEBEM3 

IKJEBEM4 

IKJEBEMS 

IKJEBEM6 

IKJEBEM7 

EDIT Utility Access Method 

EDIT EST AE routine 

EDIT Attention handling routine 

BOTTOM subcommand processor 

CHANGE subcommand processor 

CKPOINT subcommand processor 

Command invoker 

Initial copy routine 

Data set allocation/Cree routine 

In-core copy routine for VS BASIC 

DELETE subcommand processor 

DOWN subcommand processor 

Data set interCace routine for VS BASIC 

END subcommand processor 

EDIT Access Method final processing routine 

Final copy routine 

FIND subcommand processor 

FORMAT subcommand processor 

PROFILE/SEND/HELP/ALLOCATE subcommand processor 

Initialization message processing routine 

Initialization routine 

INPUT subcommand processor 

INSERT subcommand processor 

Line editing routine 

Line insert/replace/delete subcommand processor 

LIST subcommand processor 

EDIT main line control routine 

MOVE/COPY subcommand processor 

MERGE subcommand processor 

Merge data set translation routine 

Message selection routine 

Contains text for EDIT messages 

Contains teltt for EDIT messages 

Contains teltt for EDIT messages 

Contains teltt for EDIT messages 

Contains text for EDIT messages 

Contains text for EDIT messages 

Contains text for EDIT messages 

1-76 TSO/E System Diagnosis: Command Processors, E-S LY28-1415-0 © Copyright IBM Corp. 1987 



"Restricted Materials of IBM" 
Licensed Materials - Property of IBM 

IKJEBEPD 

IKJEBEPS 

IKJEBERE 

IKJEBERN 

IKJEBERU 

IKJEBESA 

IKJEBESC 

IKJEBESE 

IKJEBESU 

IKJEBETA 

IKJEBETO 

IKJEBEUI 

IKJEBEUN 

IKJEBEUP 

IKJEBEUT 

IKJEBEVE 

Processor data table 

Processor data table search routine 

RENUM subcommand processor 

BASIC renumber routine 

RUN subcommand pro'cessor 

SAVE subcommand processor 

SCAN subcommand processor 

String search routine 

SUBMIT subcommand processor 

T ABSET subcommand processor 

TOP subcommand processor 

EDIT Access Method initialization routine 

UNNUM subcommand processor 

UP subcommand processor 

EDIT Access Method interrace routine 

VERIFY subcommand processor 

LY28-141S-0 4':) Copyright IBM Corp. 1987 Chapter 1. EDIT Command Processing 1-77 



Module Control Flow 

Note: The first six characters in an EDIT module 
nome are IKJEBE. The remaining two characters 
are used in Figures 1. 2. and 3. 

Figure I-I. Mainline Module Control Flow 

1-78 TSO/E System Diagnosis: Command Processors, E-S 

"Restricted Materials of IBM" 
Licensed Materials - Property of IBM 

LY28-14IS-0 © Copyright IBM Corp. 1987 



"Restricted Materials of IBM" 
Licensed Materials - Property of IBM 

Figure 1-2. EST AE Exit Module Control Flow 

LY28-1415-O e Copyright IBM Corp. 1987 Chapter I. EDIT Command Processing 1-79 



I 
(I] 

::::IE 

~ I 

(I] 

::::IE 

(I] 
::::IE 

/o'V' 

Figure 1-3 (Part 1 of 2). EDIT Subcommands Control Flow 

1-80 TSOjE System Diagnosis: Command Processors, E-S 

"Restricted Materials of IBM" 
Licensed Materials - Property of IBM 

n 
I I I -- I 

(I] 

::::IE 

-~ 

~ l"l '\' .... ) 

D -0 

~ 

LJIf ~I 

(I] 

:::iE 

I------~.G 
~ 

w 
(I] 

CD) ~ 

~ 

W 
J: 

C§ 

u 

~ 

u 

(I] 
::2: 

(I] 
::2: 

LY28-1415-0 @ Copyright IBM Corp. 1987 



t"" 
-< N 
00 , 
.j>. -VI 

6 
6 
(') 
0 

"C:I 
'< 
::I. 

OQ 
:r' ... -0:1 
~ 
(') 
0 

-? -\0 
00 
-..I 

(') 
:r' 

~ ... 
~ ., 
:-
tr1 
0 -~ 
(') 
0 
9 
9 
~ 
::s 
Q. 

'tI a 
0 
~ 

'" !!l. 
::s 

OQ 

Ioool 

de 
Ioool 

:!l 
OQ 
C 
ri 

-, w 

---'tI 
~ ., ... 
N 

0 ..., 
~ 
tr1 
0 -~ 
til c g 
0 
9 
9 
~ 

6-
'" (') 
0 
::s ... e. 
::!l 
0 
;t! 

Note: The first six characters in an EDIT 
module name are IKJEBE. The remaining 
two characters ore used in Figures 1-3. 



Diagnosing an EDIT Problem 

"Restricted Materials of IBM" 
Licensed Materials - Property of IBM 

As with other TSO command processors, you may diagnose a problem with the EDIT command by issuing 
the TEST command. For an example of how to use the TEST command to debug an EDIT problem, refer 
to TSO Extensions System Diagnosis: Guide and Index. 

TSO Extensions System Diagnosis: Guide and Index also provides information about reading messages and 
dumps, issuing traces and traps, and calling IBM to report a problem you are unable to fIx. 

1-82 TSO/E System Diagnosis: Command Processors, E-S LY28-1415-0 <0 Copyright IBM Corp. 1987 



"Restricted Materials of IBM" 
Licensed Materials - Property of IBM 

EXEl.: l.:OInmana 

Chapter 2. EXEC Command Processing 

The EXEC command executes TSO/E commands and CLISTs. For a complete 
description of EXEC command processing and diagnosis, see the "CLIST Processing 
and Diagnosis" chapter in TSO Extensions System Diagnosis: Terminal Monitor 
Program and Service Routines. 

LY28-141S-0 IC Copyright IBM Corp. 1987 Chapter 2. EXEC Command Processing 2-1 



"Restricted Materials of IBM" 
Licensed Materials - Property of IBM 

Chapter 3. FREE Command Processing 

FREE Command 

This section describes the logic of the FREE command. It emphasizes the flow of 
data and control information through buffers and tables, and contains detailed func­
tional descriptions through the use of method of operations diagrams. Figure 3-1 is 
the visual table of contents for the FREE command. 

3.1 

FREE 
Command 
Processor 

3.1.1 

FREE ALL 
Processing 

Figure 3-1. FREE Command Processing Visual Table of Contents 

LY28-1415-0 C Copyright IBM Corp. 1987 Chapter 3. FREE Command Processing 3-1 



Diagram 3.1. FREE Command Processing (part 1 of 2) 

From 
TMP 

1 Check command syntax. 

2 Check for ALL parameter. 

3 Check for Invalid disposition. 

4 Prompt for data sat name. 

5 Translete parameters to text 
format. 

6 Procel' ddnames, data let 
names, or attribute names. 

7 Check dynamic allocation 
return codes. 

Output 

Parse 

Parse 

GENTRANS 

Dynamic Allocation 



~ 
N 
00 
I 

o 
(') 
o 
~ 
:J. 

IJQ 
:::r ... -= 
~ 

Q 
-? 

Diagram 3.1. FREE Command Processing (part 2 of 2) 

Extended Description 

Use parse to syntax check the command. Check the parse return code; if it is non-zero 
return to the TMP. 

2 Check to see if the ALL parameter was specified. If so, unallocate all dynamically 
allocated file names. 

3 Check to see if DEST, HOLD, or NOHOLO was specified with a data set disposition 
of KEEP, DELETE, CATALOG, or UNCATALOG. If yes, issue an error message 
and return to the TMP . 

4 Check to see if a data set name, file name, or attribute list name was entered. If no, 
pass control to parse and prompt the user for a data set name. When prompting is 
complete, overlay the original PDE with the new POE from prompt. 

S Use GENTRANS to translate the parameters to text format. The pointer to the text 
unit is returned from GENTRANS in the IKJZB831 parameter list. If the return code 
is non-zero, return control to the TMP. 

6 Use the un allocate function of dynamic allocation to un allocate files, data sets, or 
attribute lists. 

7 Check the dynamic allocation error code and information reason code. 

• If both codes are zero, a file, data set, or attribute list was unallocated. 

• If either code was non-zero, unable to unallocate. Use the OAIR failure message 
routine IKJEFFI8 to analyze the error code and send the appropriate error 
message to the user. 

FREE command processing terminates. 

Control is returned to the TMP. 

Object Module: lKJEFD20 

Module Label 



FREE Command 

~ .... -0 ~ 
.-I E 
1:: I! 

~ 
0> 
.!! 
0 

! 
E 
0 .. u.. 

~. 

E . 
~ ... 
~ 
e 
~ 
is 

c o 

l 
;f 

i 
! 
~'-~ 

I 
! 
Ii i 
-; ! 
.. III 
o = ... .... 
~ .5 
III ! 
6 8 
~N 

j 
j or----. 

< 
.2 

~ 
~IooO ~--' 

~ 

1 
1 
~ 
:: 
! . 
Bl 
i1 
:)Cii 

CW) 

3-4 TSO/E System Diagnosis: Command Processors, E·S 

"Restricted Materials of IBM" 
Licensed Materials - Property of IBM 

LY28·141S·0 C Copyright IBM Corp. 1987 



~ 
'tI ... no .... 
!-'" 
'T1 
~ 
trl 
trl 
(j 
0 
8 
8 
I\) 
::s 
Q. 

." .... 
~ 
'" '" 5' 

OQ 

c".) 
I 

U. 

Diagram 3.1.1. FREE ALL Processing (Part 2 of 2) 

Exteoded Description 

Check to see if any other parameters were specified on the command. If so, issue an 
error message and terminate the command. 

1 Invoke the RETRIEVE function of dynamic allocation specifying the relative request 
number to obtain the associated file name. If the error code from dynamic allocation 
is non-zero, use the DAIR failure message routine IKJEFFI8 to analyze the error code 
and send the appropriate error message to the user. 

3 Determine if the file was dynamically allocated using information returned by dynamic 
allocation. If so, use the UNALLOCATE function of dynamic allocation to unallo­
cate the file. If the return code from dynamic allocation is non-zero, use the DAIR 
failure message routine IKJEFFI8 to analyze the return code and send the appropriate 
error message to the user. Repeat step 2, specifying the next relative request number. 

Object Module: IKJEFD38 

Module Label 

~ 
~ 
t'I:I 
t'I:I 
n e 

I = = c:a. 



"Restricted Materials of IBM" 
Licensed Materials - Property of IBM 

Chapter 4. HELP Command Processing 

HELP Command 

This section describes the logic of the HELP command. It emphasizes the flow of 
data and control infonnation through buffers and tables, and contains detailed func­
tional descriptions through the use of method of operations diagrams. Figure 4-1 is 
the visual table of contents for the HELP command. 

4.1 

HELP 
Processing 

4.2 I 4.3 4.4 I 
Processing Reading Processing an 
HELP Data HELP INCLUDE 
Set Member Data Set Character 

Figure 4-1. HELP Command Processing Visual Table of Contents 

LY28-1415-0 © Copyright IBM Corp. 1987 Chapter 4. HELP Command Processing 4-1 



Diagram 4.1. HELP Processing (part 1 of 2) 

FromTMP 

Input "~Pro .... 
DAIR 

Output 

.. 
1 Alloeate HELP data set. 

~ r 

RBS 1 2 Diagnose Return Coda. 
Iisua message If error. 

Parse 
CPPL CBUF 3 Open HELP data set. 

J '" .L --. 
} 4 Syntax check operands. 

r ~ r 

HELP date Bet 5 Diagnose Return Codes. 
Issue message If error. 

>6 Find member of HELP dataset for 
r operands In command. 

7 If processing subcommand ~ 
Information, read racords 4.3 . 
of members until section 

is located. If an include Diag. 
for requested subcommand ~ 

control character is found, 4.4 
process it. 
Issue message if error. -{i? 4.2 

">8 Proeass member • .. 
9 Close HELP data set. 

Return to caller. 



Diagram 4.1. HELP Processing (part 2 of 2) 

Extended Description 

Using DAIR (the dynamic allocation interface routine), allocate the HELP data set. 

1 Check return code: 

a. If non-zero, use IKJEFFI8 (DAIRFAIL) to diagnose error and send message 
to user, return caller. 

b. If zero and DSORG is not PO (partitioned). issue message to user, return to 
caller. 

3 Open HELP data set. If open fails, issue message and return to caller. 

4 Use parse to check syntax of command. 

S If parse was unsuccessful, issue messages and return to caller. 

6 FIND member of HELP data set. 

7 

a. If not in subcommand mode (command attached by the TMP is HELP or H), 
and HELP entered with no operands, find member 'COMMANDS'. 

b. If not in subcommand mode and HELP entered with operands, use first 
operand as member name. 

c. If in subcommand mode and HELP is first operand, find member 'HELP'. 
d. If in subcommand mode and HELP is not first operand, use the name of the 

command attached by TMP (from ECT) as the member name. 

If case d) of step 6, read record from member of HELP data set. See Diagram 4.3. 
Search each record for subcommand name indicator' =' and then for subcommand 
name requested on command. Keep reading records until end-of-file (error) or sub­
command name found. If an include control character is found, process it. See 
Diagram 4.4. 

8 Process the HELP data set member. See Diagram 4.2. 

9 Close and free the HELP data set. Return to caller. 

Object Module: IKJEFHOJ 

Module Label 



t Diagram 4.2. Processing HELP Data Set Member (part 1 of 2) 

Input Process 

Reg 1 

Ii 1 Read a card Image from ~ '~ 
HELP member. :4.3 

~ Common 

t Card Image ~ 
I Card Image ') 2 To determine action, scan 

card image for matching ... 

\ PARSE TAB 

control character and key-
word if control character 

PUTLINE is U. 

3 Display card image to user. ... 
tTl 
I 
til 

LOOP to Step 1 till all ... .. 
images displayed. 

4 Return to caller. 

~ 
N 
00 C I .- 0 
~ (I> .- 1:1 
OJ> flO 

6 (I> 

Po 
@ ~~ 
n '" (I> .... CIl 
0 (I> .... 

't:I ::I. ::I. 
'< e:,0 
::I. flO 8: OQ 
c:r I~ .... .... '1;1", 
tl:I a ~ 
~ 't:I ::I. 
n ~~ 
0 '< 0 .p 0 '"" '""-.- -= \0 tl:I~ 00 
-..I ~ ~ 



-\0 
00 
-...l 

Diagram 4.2. Processing HELP Data Set Member (part 2 of 2) 

Extended Description 

1 Obtain a card image from the HELP data set member. See Diagram 4.3. 

2 Scan card image for a matching control character. (If the matching control character 
is », also scan for a matching keyword.) If the matching control character is )1, then 
process the include request. (See Diagram 4.4.) 

The control characters are: 

)S - list of commands or subcommands 
)F - functional information about command or subcommand 
)X - syntactical information about command or subcommand 
)M - message ID information 
)0 - command operand information 
)P - positional parameter information 
»'keyword' - information about 'keyword' 
)1 - include a member 

Compare the control information on the card image with the control character infor­
mation maintained by the HELP command processor that indicates the information 
requested by the user. If a match is found. proceed to step 3 below. Ifno match is 
found, repeat step 1. 

3 If scan finds match, use PUTLINE via IKJEFF02 to display card image to user. 

4 If all information has been displayed, return to caller; else process step I again. 

Object Module: IKJEFH02 

Module Label 



r 
-< 
N 
00 , 

v, 
b 

1:0 
~ 
n 
o .... 
"0 

Diagram 4.3. Reading HELP Data Set (Part 1 of 2) 

Input 

Reg 1 

HELP DATA SET 

From HELP 
or process 
member 

1 Read block or deblock 
record. 

2 Return to caller. 

Output 

COMMON 



-ID 
00 
-...I 

(') 
CI' 

i ., 
~ 

::c 
tr1 
r'" 
." 
(') 

~ 
8 
I'> cs 
Co 
." 

~ 
n 
'" f!!. 
~ 

t 

Diagram 4.3. Reading HELP Data Set (part 2 of 2) 

ExteDdecl Description 

I The HELP data is blocked. Read a block and deblock a record or deblock a card 
image record. In case of I/O error or end of data, set switches. 

1 Return to caller. 

Object Module: IKJEFH03 

Module Label 

;a 
t"4 
""d 

i 
l 



(') 
o 
§ 
8-
"tI 
o 
n 
B 
rn 
rn o ;: 
tr1 , 
en 

~ 
l'-l 
00 , -~ -<.II .:. 

-\0 
00 
-..j 

Diagram 4.4. Processing an INCLUDE Character (Part 1 of 2) 

Input Process Output 

.. 1 COMMON Check for member in stack. r 

r-- 2 '""" If found in stack, return to caller. 

;----'\ 3 Open HELP data set. 
~SE~AB 

~ 4 Find member of HELP data set. 

.. 
5 sew ... If processing subcommand information, read 

F records of members until section for requested 
subcommand is located. 

MEMBER·NAME 
"M 'NCLUDE ,h_,,;, ._""",,,,-W 
call INCLUDE character processing 4.4 

1= module. 

6 Process member. ~ DDNAME 4.2, 

~ 7 Return to invoker. 

SUBCOMMAND 

J=-

-.... A.rum, .. ""'" 



B 
00 
I -.,.. -v. 
o 

~ 
.§ ... 
n ... 
~ 

::z: 
tTl 
£; 
n 
0 
51 
8 
I» 

8-
." ... 
g 
~. 
::I 

OQ 

t 

Diagram 4.4. Processing an INCLUDE Character (part 2 of 2) 

1 

3 

4 

s 

6 

ExteDcled Description 

Check list (stack) of member names for the member being included. This prevents 
recursive includes. 

Finjling a member name in the stack indicates a recursive include. If it is a recursive 
i~ude, return to the invoker. If it is not a recursive include, continue processing. 

Open the HELP data set. 

Issue a FIND for the member. If found, place the member in the stack and continue. 
If not found, close the data set and return to the invoker. 

If in subcommand mode, scan the member searching for the subcommand indicator 
( =). If a subcommand indicator is found, check if it is the subcommand requested. If 
it is the requested subcommand, then process. If not, continue search. If an include 
character is found while searching for a subcommand, set up all parameters and 
process the include character (Diagram 4.4). Otherwise, process. 

If process is indicated, then process the member (Diagram 4.2). 

7 If the data set was opened, close it. If the member was placed in stack, remove it. 
Return to the invoker. 

Object Module: lKJEFH04 

Module Label 

~ 
Jod 
('l 

~ a 
!. 



.. Restricted Materials of IBM" 
Licensed Materials - Property of IBM 

LlNK/LUADGU Command 

Chapter S. LINK/LOADGO Command Processing 

This section describes the logic of the LINKfLOADGO commands. It emphasizes 
the flow of data and control information through buffers and tables, and contains 
detailed functional descriptions through the use of method of operations diagrams. 

LY28-1415-0 0 Copyright IBM Corp. 1987 Chapter 5. LINK/LOADGO Command Processing 5-1 



Diagram 5.1. LINK and LOADGO Processing (part 1 of 2) 

Input Process 

Reg 1 

)CPPL -. TMP Parse 

CBUF 1 "" Analyze command and check data 

I I -- set name validity. "' 

DAIR 

2 Allocate data sets. 
~ 

"' 
Place data set names in DDNAME list. DDNAME 

... 

3 Concatenate names in DDNAME list. ,--

OPTION LIST 

... 4 Process command options • 

5 
J 

Linkage exit or load depending on 
command. 

6 Separate concatenated data sets. 



(') 
cr 
~ -(II ., 
~ 

t"' -Z 
~ 
t"' 

~ 
8 
n 
0 
51 
51 g; 
Co 

l 
!: 
II> 

5r 
QQ 

til 
~ 

Diagram 5.1. LINK and LOADGO Processing (part Z of Z) 

Extended Description 

1 Use parse to analyze syntax of commands. Check data set names for valid qualifiers. 
Set LKLD to indicate whether command is LINK or LOADGO. 

2 Use DAIR to allocate data sets. Place each data set name in DDNAME list. 

J Use DAIR to concatenate ddnames in ddname list. (DDNMS) 

4 Using parse output, process command options. Prompt for missing operands, set 
defaults. Place results in option list. (OPLEN) 

5 Link to either the linkage editor or the loader depending on LKLD switch passing the 
option list and ddname list through OUTPARM. 

6 On return, separate concatenated data sets and return to the TMP. 

Module Label 

~ -t:"4 
0 
> 
I:' 
c:":l 
0 
n = EI 
EI 
lID = c:::a. 



"Restricted Materials of IBM" 
Licensed Materials - Property of IBM 

Chapter 6. LIST ALC Command Processing 

LISTALC Command 

This section describes the logic of the LIST ALe command. It emphasizes the flow 
of data and control information through buffers and tables, and contains detailed 
functional descriptions through the use of method of operations diagrams. 
Figure 6-1 is the visual table of contents for the LISTALC command. 

6.1 

LISTALC 
Processing 
Overview 

6.2 I 6.3 I 6.4 6.5 I 6.6 I 
LISTALC LISTALC LISTALC LISTALC LISTALC 
DSAB HISTORY HISTORY STATUS MEMBERS 
Processing Processing Processing Processing Processing 

(VSAM) (Non-VSAM) 

Figure 6-1. LISTALC Command Processing Visual Table of Contents 

LY28-141S-0 C Copyright IBM Corp. 1987 Chapter 6. LIST ALC Command Processing 6-1 



~ 
N 
00 
I -.j>o. -VI 

b 

.-
\0 
00 
-.J 

Diagram 6.1. LlSTALC Processing Overview (part 1 of 2) 

From 

Input 

Register 1 

~-
=::!====::::=:)":) 1 Syntax check. v 

I 
~ CPPL 

I 

I 
4. Command Buffer 

LlSTALC 

JFCB &..., __ .... 1 

DSCB L-I _----II ~~==::::::=:> .. 
) 

CVT L-I _----II 

2 Initialize. 

3 Find and Process 
DSAB. 

~ 
~ 

4 Was HISTORY VSAM§ specified? 6.3 

§ non-VSAM 6,4 

5 Was STATUS -§ specified'? 6.5 

6 Was MEMBERS -§ specified? 6.6 

7 Select next DSAB. 
Repeat from step 3 until all 
have been processed. 

8 Wrap uP. Return to TMP • 

Parse 

.. 

DSAB Blocks ... 
I , 
1 

• 
• • • 

PUTLINE 

"-

Used for 
1/0 

Output 

• Informative message. 

Gives a count of all 
blocks evailable for 
dynamic data set 
allocation. 
Data set names are 
included. 

• Additional Information. 

HISTORY, STATUS • 
and MEMBERS keywords 
cause additional 
information to be given 
for those data sets 

I===~" whose names are listed. 



Diagram 6.1. LISTALC Processing Overview (Part 2 of 2) 

ExteDdecl Description 

1 The parse routine syntax checks the command. Upon return, the parse return code is 
checked. 

Possible messages: IKJ583041. IKJ583051 

1 Set option byte to reflect options selected by user. If HISTORY, MEMBERS, or 
SYSNAMES were specified, get work area and place address in OBTW A. Store JFCB 
work area address. Store DCB address. 

Possible message: IKJ583031 

3 Obtain a pointer to the data set attribute block (DSAB) chain through SVC99. After 
the DSAB is located, check for HISTORY and STATUS and print applicable 
headings. Then check the DSAB to see if it is available for allocation. The DSAB is 
considered available if the data set is not in use and not permanently allocated. This 
condition is indicated on the output line by an asterisk (*) preceding the data set name. 

4 After basic processing of a DSAB, check to see if HISTORY was requested. If yes, 
process HISTORY information. See Diagram 6.3 (VSAM) or 11.4 (Non-VSAM). 

5 If STATUS was specified, process STATUS information, see Diagram 6.S. 

6 Write HISTORY and/or STATUS information, if applicable. 

Possible messages: IKJ58301l. IKJ583001 

7 After all processing of the DSAB is complete, process the next DSAB. If no DSABs 
remain to be processed, return control to the TMP. 

Object Module: IKJEHALl 

Module Label 



B 
00 
I ..... 
"'" ..... 
1.11 
6 

Diagram 6.2. LIST ALe DSAB Processing (part 1 of 2) 

Input Process 

Dynamic Allocation 
From Retrieval Text Units 

I I 
Diag. 
6.1 

DSAB 

I I 
1 

2 

3 

Output 

Check parometer list. Dynamic Allocatio n 

---. 
Get requested information from 
the DSAB. " .. 

MDve data set name to output 

~ Output I buffer. Buffer 

Retumto ~ 
6.1 



(") 
c:r" 

~ n-
"" !". 

t"'" .... 
til 

~ 
h 

r 
Q. 

~ 

~ 
fa. 
CI 

OQ 

i' 
(II 

Diagram 6.2. LIST ALe DSAB Processing (part 2 of 2) 

Extended Description 

1 Check the dynamic allocation parameter list (IEFZB4DO) to see if it has been initial­
ized for use by dynamic allocation. If it is initialized continue processing. If not, build 
dynamic allocation text units describing the data to be returned about each allocated 
data set. 

2 Use dynamic allocation to get information requested by the text units from the DSAB. 

3 Get data set name from the DSAB and move it to the output buffer. If a data set 
Dame is not available, put the appropriate message in the output buffer. 

Object Module: IKJEHALl 

Module Label 

t"'4 
ti1 .., 
F: 
~ 
~ 
C a 
e ,., 
:. 



Diagram 6.3. LIST ALe HISTORY Processing (VSAM) (part 1 of 2) 

Input Process Output 

Format 1 DSCB 

From 
Creation date Dieg. 

6.1 1 Build a catalog parameter list. 

Expiration date 
2 Locate required fields. 

Entry type 3 Turn on "Write" switch. 

4 Process creation and expiration YY/MM/DD Output 
dates and entry type. 

Entry type Buffer 

R~umro~ 6.1 

tTl 
I 
til 

t""' 
-< 
N 
~ !r -.... n - :I 
v. '" I 8-0 

I1'lI ~~ 
Q 

III n - '" n -:sJ ::I. ~. 
e?.S 

~. '" Q. 

=- I a:: -- ~~ te 
:s:: 

o n 
't:I ::I. n III 

(') ~;; 
0 

-? 
0 o ..... ..... .... - .... = \0 tea:: 

00 
-..l 3: : 



~ 
N 
00 , -.po. -VI , 
o 

-\0 
00 
....:a 

{ 
... 
?' 

t: 
~ 
h 
n 

~ 
~ 
Q. 

." 

H 
E. 
i 

~ 

Diagram 6.3. LIST ALe HISTORY Processing (VSAM) (part 2 of 2) 

Extended Description 

Build a catalog parameter list using information and the data set name obtained from 
the DSAB by SVC99. The parameter list specifies the named data set to be retrieved 
from the VSAM catalog, the entry type (indicates VSAM or non-VSAM data set) and 
the expiration and creation dates for the data set are to be returned in the work area. 

1 Locate the required fields in the crOPL and the crOFL to return expiration date, 
creation date, and entry type. 

3 Pass control to IKJEHVHS, the VSAM HISTORY processing routine, which turns on 
the "Write" switch to indicate that the buffer should be written when all options have 
been processed. 

4 Convert creation and expiration dates into MM/DDfYY format and move them and 
the entry type to the output buffer. 

Object Module: IKJEHALI 
CSECT: IKJEHHST 

Module Label 

~ 
t"I 
("l 

i 
lID 

it 



0\ , 
00 

() 
o a a 
~ 
::s 
0-

"0 .... o 
!"l 
rD 
on 
on 
o .... 
on 

r 
-< 
1-.> 
00 , 

n 
o .... 
"? 

Diagram 6.4. LIST ALe HISTORY Processing (Non-VSAM) (Part 1 of 2) 

From 

Process 

----.---------------~~ 

1 OBTAIN DSCB.' 

/ 
/ 

2 Turn on "Write" switch. 
Process DSORG. 

3 Process creatian and 
expirotion dates. 

4 Indicate protection, if 
appl icable. 
Then return. 

I 

I 

JFCB 

/lL..-_VO_LlD_+--J+ __ 
OBlWORKA 

A 

PO, PS, IS, etc. Also, U if applicable. 

I MM/DD/YV 

I 'PROTECTED' , 'WRITE' , or 'NONE' 

Output 

DSICREDT 

DS1EXPDT 

DSIDSORG 

DSlDSIND 

Output Bu Her 

Format 1 DSC B 
(DSECT IECSDSLl) 

A 



Diagram 6.4. LIST ALe HISTORY Processing (Non-VSAM) (part 2 of 2) 

Extended Description 

Check the DSADDNAM field in the DSAB for blanks. If the field contains blanks, it 
it part of a concatenation. Issue LOCATE to find the volume serial for the OBTAIN; 
otherwise, issue a RDJFCB to find the volume serial of the volume containing the 
DSCB. 

Issue an OBTAIN macro instruction. 

2 Then pass control to IKJEHHST, the HISTORY processing routine, which turns on 
the "Write" switch and checks for data set organization. 

The organization indicator (PO, PS, etc.) is then placed in the butTer, along with the 
unmovable (U), if applicable. 

3 Creation and expiration date are converted into MMfDDfYY format and placed in the 
butTer. 

4 A check is made for password protection. If none, a check is made for write pro­
tection. The applicable indication is placed in the butTer. 

Control is then returned to IKJEHALI, where a check is made for STATUS proc­
essing. (If none, the write switch is checked and found "on," then the butTer is written 
via PUTLINE; if STATUS processing is applicable, the STATUS information is 
placed in the butTer prior to checking the write switch.) 

Object Module: IKJEHALl 
CSECT: IKJEHHST 

Module Label 



~ 
IV 
00 , -""' -u. 
b 

Diagram 6.S. LIST ALe STATUS Processing (part 1 of 2) 

Input Process 

From 
DSAB ~ 

DSADDNAM ~ 1 
I 
! ... 

"-.. 
DSANDISP" DSAADISp· 2 
I 
1 1--1 

3 

Output 

Output is 
subsequently 
written to 

Output Buffer terminal. 

Move ddname to buffer. .>I "> 

Indicate 

- Normal disposition 

I I ) 
- Abnormal disposition 

Set "Write II switch on and return. 

To 

6.1. ~ 



B 
00 , .... 
"'" .... 
VI .:, 

.... 
\0 
00 
-...J 

9 
II) 
'tI -(11 ... 
?' 
t""' .... 
rIl 
'"""i 
> 
t""' 
(") 
(") 
0 
8 
8 
II) 
::I 
Q. 

"tl 
8 
0 
(11 

'" '" s· 
(JQ 

C'\ 
I ..... ..... 

Diagram 6.5. LISTALC STATUS Processing (Part 2 of 2) 

Extended Description 

A check is made to see if HISTORY information is contained in the output buffer 
area. If so, this will affect the pointer to the proper location in the buffer. 

The ddname in field DSADDNAM is moved to the output buffer area. The ddname 
can be blanks if the data set was concatenated. 

2 Then a test is made for normal disposition. The appropriate indication is placed in the 
output buffer. The output buffer pointer is then updated to point to the next location. 

A test is now made for disposition in the event of an abnormal termination. 

The appropriate disposition is moved to the buffer. 

3 The 'Write' switch is turned on and control is returned to IKJEHALI. 

Modole Label 

t'" r;. ... 
> t'" 
~ 
~ e a a = = =-



I 
f 
tp 
en 

B 
00 , 
~ -VI 
b 

-= ~ 
g 
'9 .. 

Diagram 6.6. LISTALC mMBERS Processing (Part 1 of 2) 

Input Process 
From 

~ 
~ 1 Processing applicable ? 

DSCB 

I I 2 Build CALLIST parometer list. 

DSAB 

I I ~ 
..11 

-y 

JFCB 

I I 
CaIlIKJEHMEM. '" 

3 Read PDS directary. 

Build TNe and 
Alias Name tables. 

4 Compare TTRs for match. 
Write output. 

6.1 ~ 

Output 

Register 1 

J Output Buffer 

I 1 
CALLIST 

~ t OBlWAD 

t Output buffer 

t Write routine 

o BlWAD ,... 
""'" "'- ~ 

VV,DS ta be 

tPDS ...... 
read 

...... ~ 

1 



Diagram 6.6. LISTALC MEMBERS Processing (part 2 of 2) 

Extended Description 

IKJEHMMR makes a number of checks, prior to passing control to IKJEHMEM, to 
ensure that processing is applicable. 

• DSORG in the DSCB is checked to ensure that it is PO. 

• This user's user ID must be the first qualifier in the data set name. 

• The ddname cannot be blank (which would indicate concatenation). 

• The dynamic concatenation bit in the DSAB is checked. If on, DSADDNAM is 
compared to DCBDDNAM. If unequal, MEMBERS processing can continue. (If 
equal, this is at least the second data set of a concatenation cluster.) 

:z A ROJFCB is issued (unless HISTORY was also specified, in which case it is not 
required), the CALLIST parameter list for IKJEHMEM is constructed, and control is 
passed to IKJEHMEM. 

3 IKJEHMEM initializes the true and alias name tables, then reads the PDS directory 
into them. Name blocks are obtained and chained dynamically, as required. 

4 A true name is moved to the output buffer. The true name TTR is compared with all 
of the alias name TTRs. Applicable aliases are moved to the buffer. (The calling rou­
tine's write routine is used to write the buffer.) This action is repeated until all true 
names have been processed. Alias names that do not match any true name are then 
grouped by TTR and written. A message is provided to indicate that no true name 
exists for them. 

Control then returns to IKJEHMMR, where the return code is checked and control is 
passed to IKJEHALI. 

Possible message: lKJ58JOl/ 

Object Module: lKJEHMEM 
CSECT: lKJEHMMR 

Module Label 



,n.'W~1.11\,;i"'WU lYJ.a. .. ltil1a.J~ UI J.UJV. 

Licensed Materials - Property of IBM 

Chapter 7. LISTBC Command Processing 

Overview 

This section describes the LISTBC command and provides diagnostic aids for iso­
lating and fixing a problem in the LISTBC command processor. 

SEND provides the facility to send short messages from a TSO user, background 
job, or operator to a TSO user. The message is displayed on the terminal if that 
user is logged on. The sender may request that a message sent to a user who is not 
logged on be stored for the receiver. Such messages can be retrieved using the 
LISTBC command. The sender may request that a message be stored even if the 
receiver is logged on. 

The LISTBC (and SEND) function allows messages to be stored in a separate log 
for each user. PARMLIB settings allow the installation to supply a data set name 
for this log. Exits are provided to allow the installation to modify the data set name 
based on the parameters passed to the SEND command. This data set name may 
refer to member of an existing PDS of each TSO user. If the data set name, as 
defined in the PARMLIB and modified by the pre-save exit, is not found in the 
catalog, then it will be created for the user during LISTBC processing. 

Instead of individual logs, the installation may choose to continue the use of 
SYSl.BRODCAST as a message repository. This may be done by setting the 
LOGNAME field in PARMLIB to 'SYSl.BRODCAST'. 

LISTBC displays the notices found in SYS1.BRODCAST. LISTBC displays mes­
sages that have been stored for the user in the user's private log, if one has been 
defined. At the option of the installation, it will also list any messages for the user 
found in SYSl.BRODCAST. For LISTBC, as for SEND, the PARMLIB and exits 
are used to determine the data set name of the user's private log. An exit allows the 
installation to process the message text before display. After reading and processing 
the messages, LISTBC will remove the messages from the user's log and/or 
SYSI.BRODCAST. 

Log Storage Implications 
User logs impact direct storage access device utilization. If each user has a new file 
dedicated to the SEND log, a minimum of one track will be used for each user. The 
installation may choose to set LOGNAME to a member of a file most users already 
have or exits can be used to implement other access methods that require less than 
one track per user. 

Diagnosing a LISTBC Problem 
This section describes diagnostic information provided to solve a problem with the 
LISTBC command processor. Before going further you may wish to create a search 
argument and use it to search a problem data base to see if there is already a fix for 
the problem. For information about searching a problem data base, see "Creating a 
Search Argument" in TSO Extensions System Diagnosis: Guide and Index. 

LY28-141S-0 © Copyright IBM Corp. 1987 Chapter 7. LlSTBC Command Processing 7-1 



.lJAO J. U,", '"'U ...... DIlU -Kestnctea Matenals ot IBM" 
Licensed Materials - Property of IBM 

LlSTBC Abend Codes 
LISTBC does not issue any abend codes. The LISTBC command issues an SVC 
dump when it detects an error. It does not request a dump for the following system 
abend codes: 

• '913' 
• '13E' 
• 'x22' 
• 'x37'. 

LlSTBC Return Codes 
LISTBC provides the following decimal return codes if user logs are being used: 

• 0 -- Messages and notices displayed. 
• 4 -- Messages only displayed. 
• 8 -- Notices only displayed. 
• 12 -- No notices or messages to display. 
• 16 -- Messages and notices not displayed. Installation exit denied access. 
• 20 -- Messages and notices not displayed. Command not invoked authorized. 
• 92 -- Messages and notices not displayed. System error. 

LISTBC provides the following decimal return codes if user logs are not being used: 

• 0 -- LISTBC processing was successful. 
• 12 -- LISTBC processing was not successful. 

Note: Because LISTBC propagates reason codes issued during processing of 
standard format exits, you may receive return codes other than those listed. For a 
description of standard format exit reason and return codes, see TSO Extensions 
Customization. 

Services Used by LlSTBC 
The LISTBC command uses the following services during processing: 

• Parse, DAIR, ESTAE, MODESET, DYNALLOC (SVC 99) 
• PUTLINE,LINK,TESTAUTH,STACK,TCLEARQ,OPEN 
• READ, WRITE, CLOSE, BLDL, SETRP, VRADATA 
• ENQ, DEQ, SDUMP, TSO Service Facility. 

LlSTBC Dump Information 
When an abend occurs, LISTBC places the following information in the system diag­
nostic work area (SDW A): 

• Load module name (LISTBC) 
• Active module name 
• Level of the active module 
• Recovery module name (IKJEES71) 
• Recovery label name (IK.JEES71) 
• Component ID (28502) 
• Component ID base (5665) 
• A functional description of the LISTBC command. 

7-2 TSO/E System Diagnosis: Command Processors, E-S LY28-1415-0 10 Copyright IBM Corp. 1987 



"Restricted Materials of IBM" 
Licensed Materials - Property of IBM 

L~ ID\.., \..,ommaOQ 

LISTBCplaces the following information in the SOW A variable recording area 
(SOWAVRA): 

• Name of the abending module 
• Name of the recovery work area, IKJEESLR, and its address. 

For information about finding the SOW A and SOW A VRA in a dump, see TSO 
Extensions System Diagnosis: Guide and Index. 

TSO Extensions System Diagnosis: Guide and Index also provides information about 
reading messages, issuing traces and traps and calling IBM to report a problem you 
are unable to fix. 

Exit Considerations 
LISTBC invokes standard format exits that can change processing of the command. 
For a description of these exits, see TSO Extensions Customization. 

TSO provides a common recovery routine for the standard format exits. When an 
abend occurs while attempting to invoke an exit, or during exit processing, the 
recovery routine furnishes the following information in the SOW A: 

• Load module name (IKJRTROl) 
• Active module name (IKJRTROI or the active exit name) 
• Level of the active module 
• Recovery module name (RTREST AE) 
• Recovery label name (RTRESTAE) 
• Component 10 (28502) 
• Component 10 base (5665) 

The common recovery routine furnishes the following information in the 
SOW A VRA when issuing a dump: 

• Name of the exit handler parmlist, followed by its address. 
• Name of the abending exit. 

For unauthorized exits, a SNAP dump is issued; an SVC dump is issued for author­
ized exits. 

LY28-1415-O e Copyright IBM Corp. 1987 Chapter 7. LISTBC Command Processing 7-3 



"Restricted Materials of IBM" 
Licensed Materials - Property of IBM 

LISTDS Command 

Chapter 8. LISTDS Command Processing 

8.2 I 
LISTDS 
HISTORY 
Processing 
(VSAM) 

This section describes the logic of the LISTDS command. It emphasizes the flow of 
data and control information through buffers and tables, and contains detailed func­
tional descriptions through the use of method of operations diagrams. Figure 8-1 is 
the visual table of contents for the LISTDS command. 

8.1 

LISTDS 
Processing 
Overview 

8.3 I 8.4 8.5 I 8.6 I 
LISTDS LISTDS LISTDS LISTDS 
HISTORY STATUS MEMBERS LABEL 
Processing Processing Processing Processing 
(Non-VSAM) 

Figure 8-1. LISTDS Command Processing Visual Table of Contents 

LY28-1415-O 0 Copyright IBM Corp. 1987 Chapter 8. LISTDS Command Processing 8-1 



00 
I 

N 

r 
-< 
tv 
00 . 
v. 
b 

0::; 

$: 
n 
o .., 
"0 

Diagram 8.1. LISTDS Processing Overview (Part 1 of 2) 

Input 
From TMP 

Register 1 

PARSE 

1 Syntax check. Then initialize .•• _tj 

I~--------------~ 
( 

LlSTDS command 

Step 5 
2 Process dsname. 

HISTORY7~ 
VSAM ~ 

CVT DSAB Chain HISTORY? ~ o ~ non-VSAM . ~ 
U U· .. =:===~=====') 

STATUS? 

3 Write buffer. 

~ 
~ 

4 Process volume serial(s), 
MEMBERS, and LABEL, if 
applicable. 

Move serial(s) and write. 

MEMBERS7~ 
-~ 

LABEL? ~ 
5 Process next dsname 

(step 21. 
When all are processed, 
return. 

] 
] 
Jlr 

]J= 
]} 

Move to buller and write: 

Basic heading; HISTORY and 
STATUS headings, if applicable; 
RECFM, LRECL, BLKSIZE, 
DSORG, U - if applicable. 

Move to buffer: 

Creation date; expiration date; 
entry type. 

Move to buffer: 

Creation date; expiration date; 
applicable protection­
PROTECTED, WRITE or NONE 

Move to buffer: 

DDNAME and DISP 
PUTLINE 

Move and write: 

VOLUME heading ilnd serial (s) 

Move and write: 

MEMBERS hedding; member and 
alias names 

MOVII and write: 

LABELS heading and DSCB 
information 

---,.-____ ~~~. Step 2 

Retur':! 
to TMP 

Output 

r-. 
~---... 

r-. 

Output 
r-. buffer 
v 

~.........J'-

v 

i~ 

11 1 
J 

I I l 



-\0 
00 
....:a 

Diagram 8.1. LISTDS Processing Overview (part 2 of 2) 

Extended Description 

The parse routine receives control to check the command buffer for incorrect or unspecified 
parameters. Upon return from parse, the return code is checked. and then appropriate option 
bits are set to reflect the specified options. If MEMBERS is requested. load module 
IJUEHMEM is loaded into storage. If STATUS is specified, the DSAB is located. The LEVEL 
keyword or an '.' indicates that the data set name is generic. 

Possible messages: IKJ585JJI.IKJ585121 

:1 The first entry in the dsname list is pointed to. The NXDSNAME subroutine examines the 
dsname and fully qualifies it, if necessary. 

Possible messages: IKJ585031. IKJ585091. /KJ585021. IKJ5S5}3/ 

Then the fully-qualified name is moved to the output bulTer and written. 

Non-VSAM Data Sets: The LOCATE macro is used in an attempt to locate the dsname through 
the catalog. If LOCATE passes back a non-zero return code, DAIR is used (with an X'OS' oper­
ation code) in an attempt to see if the data set is otherwise accessible. If the data set cannot be 
located, the user is informed and processing continues with the next dsname. 

Possible messages: IKJ58503/. IKJ585061. IKJ585071. IKJ585081. IKJ,85/01. IKJ,8,/21 

Depending on which way the data set was found (using LOCATE or OAIR), set up is performed 
prior to issuing an OBTAIN. If LOCATE found the data set, the LOCATE switch is set. If 
DAIR found the data set, the DDNAME is moved to a DCB and the ROJFCB macro is issued 
to get the JFCB. 

Then the OBTAIN macro is issued to bring the OSCB into storage. If the return code is not 
equal zero, processing continues with the next dsname in the list. Otherwise, heading informa­
tion is moved to the buffer and written. 

VSAM Data Sets: The catalog information routine is used to supply a list of names. VSAM 
LOCATE is used to indicate whether the data set is VSAM or not. LOCATE also supplies the 
required attributes if the data set is VSAM. 

Possible message: IKJ58504 

HISTORY is processed, if applicable. See Diagram 8.2 (VSAM) or 8.3 (non-VSAM) 
STATUS is processed, if applicable. See Diagram 8.4. 

3-4 First the bulTer i. written, then volume serials are placed, one by one, in the buffer and printed. 

Possible message: IKJ58504 

Then a check is made for MEMBERS and LABEL processing. 
See Diagrams g.s and 8.6 respectively. 

5 After MEMBERS and/or LABEL have been processed. additional dsnames, if any, are proc­
essed. When all have been processed, control returns to the TMP. 

Object Module: IKJEHDSJ 
CSECT: IKJEHBSC 

Module Label 



t"'" 
-< tv 
00 
I -oj:>. -Vo 

b 

Diagram 8.2. LISTDS mSTORY Processing (VSAM) (part 1 of 2) 

Input 
From 

Process 

Format 1 DSCB 

~ (located in OBlWORKA) 8.1 

- --.... --.. 

.... 1 

DS1CREDT Creation date 

DS1EXPDT Expi ration date 

2 

DS1DSIND Entry type 

V-

Output 

Output Buffer 

I I 
Build catalog parameter list. 

MM/DD/YV, Entry type 
Process creation and expiro-
tion dates and entry type. 

Return 

8.1 ~ 



(") 
::r 
~ -til ... 
?O 
t'" -(I) 
~ 
0 
(I) 

(") 
0 
S 
8 
I» ::s 
Po 
'tI ... 
0 
n 
til 

'" ~. 
1:1 

IIQ 

QO 

&. 

Diagram 8.2. LISTDS HISTORY Processing (VSAM) (part 2 of 2) 

Extended De5(:riptiOD 

Build a catalog parameter list using information and the data set name obtained from 
the DSAB by SVC99. The parameter list specifies the data set name to be. retrieved 
from the VSAM catalog, the entry type, creation and expiration dates, logical record 
length, volume serials, and physical blocksize for the data set. 

2 Upon entry from the IKJEHDSI routine, IKJEHHIS gets a save area, then sets up to 
convert the creation date from YMMDD format to MM/DD/YY. 

The creation date is converted and placed in the buffer. If no date was found, a 
default of 00/00/00 is placed in the buffer. This process is repeated for the expiration 
date. The entry type code is also moved into the output buffer. 

Object Module: IKJEHDSJ 
CSECT: IKJEHHIS 

Module Label 

t'"' 
Fi.1 
1-3 

~ 
~ 
0 

~ ,., 
8. 



00 
I 

C\ 

r 
-< 
N 

ro 
+> 
Vl 

b 
c~ 

n 
C 

"0 
'< ..., 

~ ... 
to 
:::: 
n 
0 ..., 
~ 

>oD 
00 
--l 

Diagram 8.3. L1STDS HISTORY Processing (Non-VSAM) (Part 1 of 2) 

Input 

Formot 1 DSCB 
(located in OBTWORKA) 

DS1CREDT 

DS1EXPDT 

DS1DSIND 

Process 

From 

Diag) .••• ~ 
8.1 

1 Process creation and expirotion 
dates. 

2 Check for protection. 

Return 

Output 

Output Buffer 

MIv\/DD/YY 

'PROTECTED', 'WRITE', or 
'NONE' 

r 
ri' 
ct 
::: 
Vl 
C1l 
0-

:::: 
~ 
(1) ..., 
S;. 
tr. 
I 

'"0 ..., 
0 

"0 
C1l ..., 
~ 
0 -, 
.-
to 
:::: 

;;0 
C1l 

~ ..., 
~. 
(1) 

0-

:::: 
"" .-+ 
(1) ..., 
j;;' 
tr. 
0 -, .... 
to 
:::: 



~ 
N 
00 , -.". -VI 

6 

n ::r-
ID 

"CI 
S .. 
?O 

!: 
~ 
\j 
til 

i 
1 
"tj 

R 
n 
fII 
!!!. 
&: 
00 
~ 

Diagram 8.3. LlSTDS HISTORY Processing (Non-VSAM) (part 2 of 2) 

Extended DescrIption 

1 Upon entry from the IKJEHDSI routine, IKJEHHIS gets a save area, then sets up to 
convert the creation date from YMMDD format MM/DDfYY. 

The creation date is converted and placed in the buffer. )fno date was found, a 
default of 00/00/00 is placed in the buffer. This process is repeated for the expiration 
date. 

2 Then a check is made for password protection. If password protection applies, 
'PROTECTED' is placed in the buffer. Otherwise, a check is made for WRITE pro­
tection. If WRITE protection applies, 'WRlTE' is placed in the buffer. Otherwise 
'NONE' is placed in the buffer. 

Then the space obtained for the save area is freed and control returns to the 
IKJEHDSI routine. See Diagram 8.1. 

Object Module: lKJEHDSI 
CSECT: lKJEHHlS 

Modale 

~ 

~ 
t:I 
fIl 
n 
Q a 
EI 
lID 

8. 



(') 

l 
~ a 
li 
'" '" o 
;t 
trl , 
1:1) 

B 
00 , ..... 
oj:>. ..... 
VI 

6 

Diagram 8.4. LISTDS STATUS Processing (part 1 of 2) 

Input Process 

Applicable DSAB 
From 

DDNAME Diag. 
8.1 

Narmal 
Disposition 

Abnormal 
Disposition 

Output 

.Output buffer 

1 Search DSAB chain for I I 
applicable DSAB. 

DDNAME 

2 Move DDNAME and DISP 
to buffer. I I Normal DISP ) 1 

I I Abnormal DISP) I 
Return 

Output buffer is subsequently 
written to terminal by IKJEHDS 1 

Diag. 
8.1 



~ 
N 
00 
I ..... 
"" ..... 
OJ> 

b 

n 
::r 
~ 
() ... 
?O 

r -~ 
t:J 
CIJ 

n 
0 

§ 
III 

8-
"tI 
0 
0 
n 
'" !!l. 
:s 

(JQ 

QO 
I 
\C 

Diagram 8.4. LISTDS STATUS Processing (part 2 of 2) 

Extended Description 

SVC99 searches the DSAB chain for a data set name that matches the name in the 
data set list. The search is done to obtain allocation information about the data set 
name. If no match is found, control is returned to IKJEHDS 1. 

2 When a dsname match is found. a check is made to see if HISTORY is also specified 
(in which case, the buffer is filled partially with HISTORY information that has not 
yet been written). If yes, the offset to the output buffer area is adjusted accordingly. 

Then the DDNAME is moved to the output buffer. 

The status bits are then tested for normal disposition, and the appropriate word 
(KEEP, DELETE, CATLG. or UNCATLG) is placed in the buffer. 

After the output buffer offset is adjusted. the status bits are tested for disposition in 
the event of an abnormal termination. The appropriate disposition is placed in the 
buffer. 

Control returns to the IKJEHDSI routine. See Diagram 8.1. 

Object Module: IKJEHDSJ 
CSECT: lKJEHSTA 

Module Label 

~ 
~ 
Jooo3 
~ 
CI.l 
(") 
0 
51 
51 • 5. 



B 
00 , -~ -va 
6 

Diagram 8.5. LISTDS MEMBERS Processing (part 1 of 2) 

Input Process 
From 

DSCB ~ I I ty" 
JFCB 

I I 1 Wos dsnome 0 member nome ? 

~ ..... If yes, list 

..... .... 
PDS to be 2 MEMBERS spcc:ified ? 
listed 

If no, go to 

..... .... 
3 DSORG =PO. 

If no, 90 to 

If yes, print heoding ond set 
up to reod PDS directory 

4 Reod PDS directory. 

Build True ond Alios nome 
tobles. 

5 Compore TTRs -

Write output ---_.-
Return 

8.1 ~ 

Output 

[ 
~ .} Write member nome; 

Convert 000 _ite nR, Output Buffer 
TTRN, user dolo • 

i...-

S~5~ 18g. 
8.1 . 

'--MEMBERS-' 

True ond Alios Nome Tobles 

---- I I =-.. 



~ 
N 
00 
I -~ -VI 

b 

QC 
I --

Diagram 8.5. LISTDS MEMBERS Processing (part 2 of 2) 

Extended Description 

After volume information has been printed, a check is made to see whether the current 
dsname is a member name. If not a member name, a check for label processing is first 
made, then a check is made to see if the MEMBERS keyword is specified (step 2). 

If the dsname was a member name, routine MNAMROUT is given control to print 
specific information for the member. If necessary, MNAMROUT issues a RDJFCB 
and passes control to DAIR to allocate the data set. 

2 Then LABEL processing takes place, if applicable (see Diagram 8.6). After this, a 
check is made to see if MEMBERS was specified. If no, processing continues from 
step 5 of Diagram 8.1. Otherwise control is passed to the MEMBERS interface 
routine, MEMROUT. 

3 A check is made to ensure that the organization is partitioned. If not, control is 
returned to step 5 of Diagram 8.1. Otherwise the MEMBERS heading is written. 
Then a check is made to see if the JFCB has already been read. If yes, processing 
continues from step 4, below. Otherwise, DAIR is used to allocate the data set. Then 
the DDNAME is placed in DCBDDNAM of OBTDCB and an RDJFCB is issued 
prior to reading the PDS directory. Then control passes to IKJEHMEM. 

Possible messages: IKJ585021. IKJ585141 

4 IKJEHMEM initializes tables to contain the true and alias names, then reads the PDS 
directory into the tables. Name blocks are obtained and chained dynamically, as 
required. 

s Then a true name is moved to the output butTer. The true name TTR is compared to 
all of the alias name TTRs. Applicable aliases are moved to the buffer (MEMROUT's 
write routine, which uses PUTLINE. is used to write the buffer.) This action is 
repeated until all true names have been processed. Alias names not matching any true 
name are then grouped by TTR and written. A message is provided to indicate that 
no true name exists for them. Conleol returns to MEMROUT. 

Possible message: IKJ5850J[ 

MEMROUT checks the return code, then returns control to step 5 of Diagram 8.1 to 
process the next name in the list. 

Object Modules: IKJEHDSI.IKJEHMEM 

Module Label 



Diagram 8.6. LISTDS LABEL Processing (part 1 of 2) 

Input Process 
From 

OSCB ~ 8.1 
DS1FMTlO ~ 
OSlPTROS I 1 Write heading. 

2 Format and write the DSCB. 

3 Another DSCB in chain ? 

If no, return to~ MAINLINE Diag. 
8.1 

If yes, OBTAIN It. 

4 Format 3 DSCB ? 

Far Format 3, convert 
and write 

Thm-. ~ 
For other than 
Formot 3, write 

Then repeat from step 3. 
If no more DSCBs, return 

l !:,~g. J 
~ 

Putline is used 
to write the 
buffer. 

A 
I \ 

Output 

Output Buffer 

Hea;ng; ~onverted and formotted (each :l-. ... I-......... I-'~SCB fl ... , .... -~, ~."mlt.d J a blank) hexadecimol label information. 
\ 
\ 
\ 

Heading, including 10; 
..--...-. hexadecimallabel-unformotted • .....-----.J 



~ 
N 
00 
I -~ -v. 
b 

t""' -til 
...j 
o 
til 

i 
~ 
Q. 

~ 
(II 

'" '" Ei" 
(JQ 

Diagram 8.6. LISTDS LABEL Processing (Part 2 of 2) 

Extended Description 

Arter getting a save area. IKJEHLBL uses PUTLINE to write the heading for the 
DSCB. 

2 IKJEHLBL refers to DSI FMTID for the address of the DSCB information to be con­
verted. The DSCB information is then converted from binary to hexadecimal and 
written one line at a time. Formatting consists of separating each field by a blank. 

3 DSI PTRDS is then checked to determine if any DSCBs are chained to the format I 
DSCB just processed. If none, control returns to MEMBCHK in the IKJEHDSI 
routine. 

If another DSCB is found. an OBTAIN is issued for it. 

Possible message: lKJ585051 

4 A check for a Format 3 DSCB is made. (A Format 3 DSCB is formatted as in step 2 
and 3 above.) If a Format 3 DSCB is found. control returns to the IKJEHDS I routine 
after the DSCB is processed. 

If the DSCB is other than a Format 3 DSCB. no formatting takes place. That is, the 
information is converted to hexadecimal and dumped 36 bytes at a time. Then a check 
is made for another DSCB. If none, storage is freed and control returns to 
MEMBCHK in the IKJEHDSI rouline. 

Object Module: IKJEHDSI 
CSECT: IKJEHLBL 

Module Label 



"Restricted Materials of IBM" 
Licensed Materials - Property of IBM 

LOGON Command 

Chapter 9. LOGON Command Processing 

9.1 I 9.3 

This section describes the logic of the LOGON command. It emphasizes the flow of 
data and control information through buffers and tables, and contains detailed func­
tional descriptions through the use of method of operations diagrams. Figure 9-1 is 
the visual table of contents for the LOGON command. 

I 

LOGON 
Processing 

9.S 9.7 I 9.9 I 
LOGON LOGON LOGOFF LOGONI Pre-TMP 
Initialization Initialization 

and Scheduling 
Recovery 
Routine 

Processing Pre-prompt Exit 
Exit 
Interface 

9.2 9.4 9.6 9.8 9.10 
,...-_ ........ _--, r----'----, 

LOGON LOGON LOGONI LOGON Post-TMP 
Scheduling Monitor LOGOFF Monitor Exit 

Verification Recovery 

Figure 9-1. LOGON Command Processing Visual Table of Contents 

LY28-14IS-0 ~ Copyright IBM Corp. 1987 Chapter 9. LOGON Command Processing 9-1 



LOGON Command "Restricted Materials of IBM" 
Licensed Materials - Property of IBM 

LOGON Scheduling 
Started task control (STC) transfers control to the LOGON pre-initialization 
routine. IKJEFLA. which resides below 16 megabyes in virtual storage. 

IKJEFLA places the address of the logon address table. IKJEFTBL, into the TSO 
vector table and passes control to LOGON initialization. IKJEFLA1, which resides 
above 16 megabytes in virtual storage. 

IKJEFLAI does the following: 

• Initializes the various control blocks required for LOGON and the terminal 
session. 

• Establishes the EST AE recovery routine, IKJEFLS. 

• Searches the master scheduler JCL, MSTRJCL, for the system broadcast data 
set, SYSLBC and the system user attribute data set, SYSUADS. (If the level of 
RACF is 1.8 or higher and all user information has been converted to the 
RACF data base, SYSUADS need not be present on the system.) 

• Calls the LOGON scheduler, IKJEFLB. 

• For an initial LOGON, IKJEFLB receives control from IKJEFLAI. For a 
re-LOGON or LOGOFF, IKJEFLB receives control from the job scheduling 
subroutine, JSS. 

IKJEFLB attaches the LOGON prompting monitor, IKJEFLC, and then waits for 
notification of the appropriate processing depending on whether the request is a 
LOGON or LOGOFF. 

For a LOGON request: 

• IKJEFLC calls LOGON verification, IKJEFLE. which parses the command to 
obtain the LOGON data and verify this data against either the user attribute 
data set or the RACF data base, depending on how the user was defined to the 
system. 

• IKJEFLC notifies IKJEFLB that it should pass control to JSS to schedule the 
terminal session. 

• IKJEFLC calls IKJEFLH to wait for JSS to finish. 

• JSS passes control to the pre-TMP exit. IKJEFLJ. 

• IKJEFLJ notifies IKJEFLH that IKJEFLH and then IKJEFLC should termi­
nate. 

• After IKJEFLJ terminates, the TMP is invoked for the user's terminal session. 

For a re-LOGON or LOGOFF: 

• The TMP terminates. 

• JSS passes control to the post-TMP exit, IKJEFLK. 

• After JSS completes. it transfers control to IKJEFLB, which attaches IKJEFLC. 

• IKJEFLC calls the LOGOFF processor, IKJEFLL. IKJEFLC then calls 
IKJEFLE, which parses the command. 

9-2 TSO/E System Diagnosis: Command Processors, E-S LY28-1415-0 © Copyright IBM Corp. 1987 



"Restricted Materials of IBM" 
Licensed Materials - Property of IBM 

• If the command is are-LOGON: 

LOGON Command 

IKJEFLE obtains the LOGON data and verifies this data against either the 
user attribute dataset or calls IKJEFLE2 to verify the data against the 
RACF data base. 

IKJEFLC notifies IKJEFLB that it should transfer control to JSS to 
schedule the terminal session. JSS passes control to the pre-TMP exit, 
IKJEFLJ. . 

IKJEFLC passes control to IKJEFLH to wait for JSS to complete. 

IKJEFLJ notifies IKJEFLH that IKJEFLH and then IKJEFLC should ter­
minate. 

- After IKJEFLJ terminates, the TMP is invoked for the user terminal 
session. 

• If the command is a LOGOFF: 

IKJEFLE notifies IKJEFLC that the current terminal session should termi­
nate. 

IKJEFLC notifies IKJEFLB to terminate and transfer control to started 
task control, STC. 

See Figure 9-2 for a diagram of LOGON scheduling flow and Figure 9-3 for an 
overview of LOGON scheduling control blocks. 

LY28-141S-O C Copyright IBM Corp. 1987 Chapter 9. LOGON Command Processing 9-3 



LUGUN Command "Restricted Materials of IBM" 
Licensed Materials - Property of IBM 

LOGON Module Addressing and Residency Changes 
The following is a breakdown of the LOGON control modules into two categories: 

1. The modules that reside in 24-bit addressable storage. 
2. The modules that reside in 31-bit addressable storage. 

AMODE(24) RMODE(24) 
These modules reside in 24-bit addressable storage and can only access 24-bit 
addresses. 
Module 

IKTXINIT 
IKTLOGR 
IKTIIOM 
IKTLOGFF 
IKTRPLXT 
IKTXLOG 
IKJEFLA 
IKJEFLIO 
IKJEFTBL 

AMODE(31) RMODE(ANY) 

Description 

VTIOC Initialization Routine 
LOGON Reconnect Routine 
I/O Manager Initialization Routine 
Extended Logoff Routine 
OPNDST RPL Asynchronous Exit Routine 
Extended LOGON Routine 
LOGON Pre-Initialization Routine 
LOGON UADS I/O Routine 
LOGON Address Table 

Each of these modules has a 31-bit addressing mode and can reside anywhere in 
virtual storage. However, the dynamic area for each of these modules resides below 
16 megabytes in virtual storage. 
Module 

IKJEFLAI 
IKJEFLB 
IKJEFLC 
IKJEFLCM 
IKJEFLE 
IKJEFLE2 
IKJEFLE3 
IKJEFLG 
IKJEFLGB 
IKJEFLGH 
IKJEFLGN 
IKJEFLH 
IKJEFLI 
IKJEFLJ 
IKJEFLK 
IKJEFLL 
IKJEFLLM 
IKJEFLPA 
IKJEFLS 
IKJEFLGM 
IKJEFLEA 
IKJEFLJA 
IKJEFLJH 
IKJEFLJU 
IKJEFRAF 
IKJEFRRF 

Description 

LOGON Initialization 
LOGON Scheduler 
LOGON Monitor 
LOGON Message CSECT for IKJEFLC 
LOGON/LOGOFF Verification 
LOGON/LOGOFF Verification 
LOGON/LOGOFF Verification 
Attention Processor 
EST AI Recovery and Retry 
Message Text for IKJEFLG 
LOGON Message CSECT for IKJEFLGM 
LOGON Information Routine 
Installation Exit Interface 
Pre-TMP Exit 
Post-TMP Exit 
LOGOFF Processing 
LOGOFF Message for IKJEFLL 
Time and Date Processor 
ESTAE Recovery and Retry 
Message Issuer Routine 
Parse/Scan Interface 
LOGON Full Screen Processor 
LOGON Full Screen HELP 
LOGON Defaults Processor 
TSO RACF Routine 
TSO RACF Routine Recovery 

9-4 TSO/E System Diagnosis: Command Processors, E-S LY28-141S-0 ~ Copyright IBM Corp. 1987 



-- KeStnCteo Matemus OI IDNI 

Licensed Materials - Property of IBM 

XCTL 

IKJEFLA 

LOGON 
31-bit 
Initialization 

r- --, 

-
8SM 

..... VUV1" ,",UWWiIllU 

I STC I IKJEFLA1 
~ - - - -I XCTL ...... -----tA8END 

r---' 
IKJEFLS XCTL I STC I 

~------~ I 
I---"~ ESTAE I I EEPRWI2 r LOGON 

l'E~N j'OTO') '"Id.n,.., .. ABEND Recovery I IEEPRTN I 
and Retry L __ -1 

CALL 

B ~ IKT~~T ~ 

IFrom Part 2) 

8 

" 

XCTL 

VTIOC I 
I Initialization L ___ J 

t CALL 

IKJEFLB 
LOGON 
Scheduler 

• Attach LOGON 
Monitor and 
issue WAIT. 

ATTACH 
_ .. 

POST 

IKJEFLC 
LOGON 
Monitor 

• For LOGOFF 
orrs-LOGON 
only. 

• For LOGON, 
re-LOGON, or 
LOGOFF. 

.For LOGOFF • Terminate and 
return to STC 

100_ .... ---1 only-issue 

• Schedule terminal 
session. 

__ POST 

r--~-;-0TO '",,2I 

POST to 
terminate 
scheduler. 

• For LOGON or 
re-LOGON only­
issue POST to 
schedule 
terminal session 
and call 
IKJEFLH 

Figure 9-2 (Part I of 3). LOGON Schedule Module Flow 

LY28-141S-0 (;) Copyright IBM Corp. 1987 

ABEND 

r+ 

I--

IKJEFLGB 

ESTAI 
Recovery 
and Retry 

CALL 

-

IKJEFLIO 

LOGON 
I/O 
Module 

IKJEFLG 

Attention Interrupt 

CALL 

TTo part 3) 

EALL .. 

fto Part 3) 

CALL - ~ 

E 

F 

Legend: 

Attention I---
Processor 

'---r----rl--

IKJEFLGH 
Message-Text 

r ------, 
I Dashed-line boxes surround I 
I routines that are not I 
I documented with the 
I LOGON modules. I 
L _____ J 

IKJEFLH 

LOGON 
I nformati on 
Routine 

~OST/WAIT 
~lTopart2) 

Chapter 9. LOGON Command Processing 9-5 



(From Part 1) 

• Schedule terminal XCTL 
session. 

,---I 
I I 

IEESB605 

I I 
Job I 
Scheduling 
Subroutine 

.IEFSD263 

(See "Job 
Scheduling") 

I 

I 
I 

LINK 

Licensed Materials - Property of IBM 

(From Part 11 

• Issue POST to terminate 
LOGON information routine. 

• Issue WAIT for termination. 

IKJEFLJ 

Pre-TMP 
Exit 

I ATTACH r-
T"mIMIL_1 TeAM~ 
MOnitor I' 

(To Part 1) 

• Reattach 
IKJEFLC to 
process 
re-LOGON or 
LOGOFF 
command from 
terminal. 

• For TSO/VT AM 
logoff 

I ~I 

I I 
I I 14 POST I 

XCTL~---------l 

CALL 

_-.J 

r IKTL-;GI~;-' 
1-----1 

Extended I 
Logoff 

L ___ -1 

Figure 9-2 (Part 2 of 3). LOGON Schedule Module Flow 

9-6 TSO{E System Diagnosis: Command Processors, E-S 

Program 

• Terminate 
following 
LOGON or 
LOGOFF 

IKJEFLK 

Post-TMP 
Exit 

LY28-14IS-0 © Copyright IBM Corp. 1987 



"Kestnctea Matenals or lUM·· 
Licensed Materials - Property of IBM 

IKJEFLL 
CALL 

LOGOFF E 

I Processor 

(From Part 1) 

CALL 

IKJEFLE J 
CALL 

F LOGON/ 
LOGOFF 

(From Part 11 Verification 
and UADS 
Processing 

IKJEFLIO 

LOGON 
I/O Module 

IKJEFLPA 

Time and Date 
Processor 

rl;;:X~G"'" 
~---1 

~I Extended I I LOGON 
L __ ..J 

CALL 

.... v~J. .... ~UIUU"UIU 

IKJEFLE3 

IKJEFLE 

- and 
IKJEFLE2 
Subroutines 

CALL 

.CALL 

IKJEFLE2 IKJEFRAF 
CALL 

r- RACF RACF 
Processing ~ Interface 

IKJEFLJU [CALL IKJEFLIO 

LOGON CAl-L LOGON .... 
~ Defaults I/O Module 

Processor 

, 
CALL 

1 

IKJEFLEA f.-- IKJEFLJA 

CALL Parse/Scan CALL LOGON Full ... 
Interface - Screen 

Processor 

CALL 

I!<JEFLI 
IKJEFLJH 

CALL Installation - ,. 
Exit Interface LOGON Full 

Screen Help 

IKJEFLIO 

CALL LOGON - 1/0 Module 

IKJEFLPA 

CALL Time and Date. 
,. Processor 

rlmo~-' 

CALL 
1-----; 

.1 LOGON I ,. 
Reconnect L __ ..J 

Figure 9-2 (Part 3 of 3), LOGON Schedule Module Flow 

LY28-141S-0 © Copyright IBM Corp. 1m Chapter 9, LOGON Command Processing 9-7 



.l..JVUV1~ ,-ummuuo 

LWA ASCB 

Communications 
..", 

Info about 

area passed to address space 

LOGON modules +38 t CSCB 

+3C + TSB 

+10 
+ ASXB t ASCB 

+6C 

+BO + userid 

~PSCB 

+18 t PSCB - Info from UADS 

+30 + RLGB 

+ UPT t JSEL 
+34 

+1C 

JSEL 

ECT Info for Job 

t ECT H Info for user's I Scheduling 
session Subroutine 

+20 

DCB 
+4 + JSOL 

t CSCB t DCB for H liS SVS1.UADS +C t JCLS 
+34 

+10 t JSXL 

+ ASCe t TCe for +14 

IKJEFLC ~ 

I~TC' 
t I/O Buffer for H I Info for IKJEFLJO 

LOGON 

+3C 

+60 

Monitor Task 

1 
Block number 
contained In +B4 + JSCB I/O buffer 

+64 

..... TCB 

---------TCe for 
Info for 

t LOGON 
IKJEFLA Scheduler Task 

+80 

ESTAI Work Area 
+B4 + JSCB 

t Work area for H I LOGON ESTAI 
+8C 

ESTAE Work Area 

+90 t Work area for 
LOGON ESTAE H I 

Figure 9-3. LOGON Scheduling Control Block Overview 

9-8 TSO/E System Diagnosis: Command Processors, E-S 

"Restricted Materials of IBM" 
Licensed Materials - Property of IBM 

TSB 

v: Info about 
terminal status 

Password 

ASXB 

Additional info-
address space 

+14 + LWA 

..... RLGB 

V Relogon Buffer 

UPT 

User Profile 

JSOL 
,.-

Options for 

~ 
Scheduling job 

CSCB 

Command 
Scheduling 
Control e lock 

JCLS (n) 

.... JCLS (1) I 
I 

JCL cards to 
schedule lob 

+ JCLS (2) +0 .. 
\EJ ) 

JSXL 

Info for Job 
Scheduling 
Subroutine Exits 

+4 t LWA 

JSCB 

+100 t CSCB I 
JSCB 

+108 + PSCB 

L Y28-141S-0 Q Copyright IBM Corp. 1987 



B 
00 , .... 
"'" .... 
Ul 

6 

Diagram 9.1. LOGON Initialization (IKJEFLAl) (part 1 of 2) 

Input From IKJEFLA 

CVT TSB LOGON Initialization 

TSBVTAM 1 Perform VTIOC initialization 
if the LOGON request was 
made to TSONTAM. 

2 Check to see if the required: 
data sets are defined: 

• SYS1.UAOS 

• SYS1.BAOOCAST 

3 Set up the ESTAE. 
EST A E error messages: TIOT 

• IKJ564521 for terminal. 
• IKJSOBI for operator. 

DO name 4 Obtain and initializB the 
control blocks for LOGON. 

Missing 

To LOGON 
scheduling 
(lKJEFLB) 

Output 

LOGON -terminated messages 

IKJ564521 

IKJ6091 

IKJ6041 

~ ASCB 

I. ASXB 1 
ASXB 

PSCB UPT 

user profile p + re-LOGON III information J buffer 

LWA • UPT . 

• LWA UPT length 

c'LWA' 

4 ASCB ~ JSXL 

4 PSCB JSEL 

V 
JSXL length 

4 -f-+ .ASCB 
return code=O 

JSEL 
rcext. = 0 

.. ECT ~CSCB 
• LWA 

LWAILGN=1 JSXL 
CLS'IKJLJ1' 

BLOL list ~m .. ~ { CLS'IKJLK1' 

t TCB for 
initi~tor exit CLS'IKJLB1' routmes 

IKJEFLA CLS'IKJLM1' 

ENQ/OEQ ALGB (re-LOGON buffer) 
parameter lists I length 10 I 252 bytes I 



!< 
N 
00 
I 

"'" -VI 

b 

(') 
::r 
III 
'tI -CD .., 
~ 

t"" 
0 
0 
0 
Z 
(') 
0 
3 
3 
III :s 
Q. 

." a 
t"l 
CD 

'" '" 5' 
(JQ 

\C 
I 

"""" """" 

Diagram 9.1. LOGON Initialization (JKJEFLAl) (Part 2 of 2) 

Extended Description 

LOGON initialization receives control from the LOGON pre-initialization routine, IKJEFLA, 
which received control from started task control (STC), to process an initial LOGON. 
LOGOFF or re-LOGON bypasses the initialization function. 

IKTXINIT initializes VTAM control blocks and the TVWA, and transfers control 
(OPNDST PASS) of the terminal user's address space. An OPNDST RPL exit is then 
dispatched by VT AM to verify that the OPNDST was successful. 

2 The broadcast data set, SYSl.BRODCAST, must have been defined by master sched­
uler's JCL (MSTRJCL member ofSYSl.LINKLIB). The SYSl.UADS must have 
been defined by master scheduler's JCL only if aU the user IDs have not been con­
verted to the RACF data base. LOGON initialization checks for these data sets by 
searching the master scheduler's TIOT for the DD names SYSUADS and SYSLBC. 
An error message is issued if SYSLBC is missing or if SYSUADS is missing and 
RACF version 1.8 or higher is not installed on the system. 

3 IKJEFLS is used as the ESTAE routine to protect IKJEFLAI and IKJEFLB. 

4 LOGON initialization creates the control blocks that contain LOGON information 
needed by the various LOGON routines. LOGON initialization turns on the 
initial-LOGON bit (LWAILGN) to indicate that this is the first LOGON command to 
be processed for the current address space. 

Module 

IKJEFLAI 

IKTXINIT 

IKJEFLAI 

IKJEFLAI 

Label 

t"'I 
0 
~ 
0 
Z 
n 
Q 
51 
51 = 15. 



rn 
I 

r.n 

t""" 

~ 
00 
I -".. -v. 
.:. 
@ 

f 
::!. 

OQ 
:r -

Diagram 9.2. LOGON Scbeduling o;KJEFLB) (part 1 of 2) 

Input 

JSEL JSXL 

~ ~-LJ 
LWA 

~I ATTACH ECB 

LWA 

~ 

LWA 

IKJEFLGB 

ESTAI 
exit 

LOGON monitor ECB 
(LWAPECB) 

TSB 

From LOGON initialization (JKJEFLA1) for initial LOGON 
or from initiator for LOGOFF or re·LOGON (JEF9D161). 

ATTACH 
parameter 
list 

LOGON Scheduling 

1 If not the initial LOGON, then 
detach IKJEFLC if it is still 
executing. 

2 Issue an ATTACH for the 
LOGON monitor. See Diagram 
LOGON Monitor. 

3 Issue a WAIT for 
notification to perform 
one of two functions: 

• Schedule a terminal 
session. 

• Terminate for a LOGOFF. 

TSBVTAM 4 Perform VTIOC logoff processing To 
if the logoff request was made IEESB605 
from a TSO/VT AM terminal. 

Return to 
STC 
IIEEPRTN) 

Output 

scheduling option flags 

t:::===j input to I EESB605 

t"" 
C c:; 
C 
2 

i 
&. 



r Diagram 9.2. LOGON Scheduling (lKJEFLB) (Part 2 of 2) r :: 
-< n·~ N g ~ 00 

Extended Description Module Label I r.l ::I. -~ LOGON sc:heduling receives control from LOGON initialization or from the initiator at the end of the el.~ - E:8.. v. terminal session (for LOGOFF or rc-LOGON). The new terminal session that is sc:heduled following a I 
0 re-LOGON operates in the same address space as the initial terminal session. a~ 
10 LOGON sc:heduling invokes the job sc:heduling subroutine. This subroutine interprets the JCL card ~.~ 
(") ~ (II 

0 images that define the terminal session and attaches the terminal monitor program (TMP), which proe- m ::1-

~ esses commands from the terminal. The TMP remains active until it intercepts a LOGOFF or a ~ 
I m 

::I. re-LOGON command from the terminal. At that time, the TMP terminates and the initiator passes .,,0 OQ control back to LOGON scheduling to process the command. ....... :r o -- 'i= -= ~~ ~ Upon receiving control from STC for a LOGOFF or re-LOGON, LOGON sc:heduling ensures IKJEFLB 0 (") that the LOGON monitor has already terminated. If the monitor is yet active, LOGON sc:hed-
IKJEFLB WAITUST 

..... 
0 --? uling notifies the monitor (IL W ASECB-post code 20) to terminate. Once the monitor has termi- = nated (L W APECB-post code 24), LOGON sc:heduling detaches it and sets the attach ECB BEXIT ~ 
\() (L W AAECB) to zero. LOGON sc:heduling then performs the attach of the LOGON monitor 

LCRESTRT 00 (Step 2) as usual. 
-.l 

If the LOGON monitor posts LWAPECB with an invalid post code (other than 16 and 24), 
LOGON sc:heduling terminates as follows: 

• Detaches the LOGON monitor. 
• Cancels the EST AE environment. 

· Places the address of the ASCB in register I. 
• Returns to STC (lEEPRTN) for CSCB clean-up. 

But, if the LOGON monitor has caused an ABEND and recovery is to be attempted 
(LW ABEND = I), LOGON sc:heduling does not terminate; it reissues the ATTACH of the 
LOGON monitor (returns to Step 2). 

(") :z LOGON sc:heduling ha!ldlcs the initial LOGON, a LOGOFF, or a re-LOGON. First. it issues IKJEFLB 
:r an ATTACH macro instruction to invoke the LOGON monitor (see Diagram MLOGON ~ 
'0 Monitor"). The monitor routine executes until it requires a function that LOGON sc:heduling -n performs. At that time, the monitor notifies LOGON sc:heduling via the LOGON monitor ECB .. 
~ (LWAPECB). 

r 3 When notified by the LOGON monitor, LOGON sc:heduling performs one of two functions; the IKJEFLB WAITLIST 
0 function performed is determined by the post code located in the monitor's ECB (LWAPECB): 

IKJEFLB ENDJOB 0 
0 post function perfnrmed by IKJEFLB 
Z code LOGON scheduling 

n 16 Schedules a terminal session as follows: 0 
8 · Notifies the LOGON monitor (LWASECB-post code 16) to invoke the LOGON 

~ information routine IKJEFLH. 

· Creates the job sc:heduling option list (JSOL) and chains it to the JSEL. The JSOL t-
el. contains option nags that affect the sc:heduling of this terminal session. e 
." · Moves the JCL card image chain (created by either the LOGON monitor or the pre- ~ a e n prompt exit) from subpool I to subpool 253. n 2 '" · Invokes the initiator routine IEESB60S to sc:hedule the terminal session. 
'" cr 24 Terminates LOGON sc:heduling as follows (performed following a LOGOFF command): 

(": 
OQ Q 

• Notifies the LOGON monitor to terminate (LWASECB-post code 24). S 
\C • Issues a DETACH macro instruction for the LOGON monitor. S 
I 

• Cancels the ESTAE environment protecting LOGON sc:heduling. = - i (M 
• Transfers control to STC routine IEEPRTN for CSCB clean-up. 

4 VTIOC LOGOFF processing is performed by IKTLOGFF. IKTLOGFF 



trl 
I 

til 

B 
00 
I -.j>. -VI 

6 

-\0 
00 
-...J 

Diagram 9.3. LOGON Initialization and Scbeduling Recovery Routine (IKJEFLS) (part 1 of 2) 

Input 

user-id 
CHKEY 

procname 
CHCLS 

user-id 
LWARNM 

LWAPTID 

F.rom ABEND processin!! for either 
~OGON initialization (JKJEFLAlI or 
L()GON scheduling (JKJEFLB) 

From ABEND 
processing for 
RETRY 
(lKJEFLS1) 

Process 

LOGON Initialization and Scheduling 
Routine 

1 Issue the appropriate 
messages. 

2 Dequeue from the user 10 and 
detach the LOG·ON MONITOR. 

3 Issue the RACINIT macro to delete 
the security control blocks. 

4 Schedule a dump, if necessary. 

5 If step not entered before, 
request a retry. 

6 Return to ABEND processing 
without retrv. 

7 Cancel the ESTAE routine, 
IKJEFLS. 

8 Transfer control to started task 
control. 

Return to 
ABEND 
processing 

Started task control 
(lEEPRTN) 

Output 

SDWA 

SDWARCDE=4 

SDWARTYAg 
Address of IKJEFLS1 

r 
C 

~ .. 
..oj 

( 

I 



~ 
N 
00 
I -~ -V-
I o 

(j 
::r 
I» 
'0 .. 
til ., 
~ 

t'" 
0 
0 
0 
Z 
(j 
0 
:3 
:3 
I» ::s 
~ 

"tJ a 
0 
til 
II> 
21. 
::s 

QQ 

\C 
I .... 
u. 

Diagram 9.3. LOGON Initialization and Scheduling Recovery Routine (IKJEFLS) (Part 2 of 2) 

Extended Description 

LOGON Initialization creates an ESTAE environment that handles abends that can occur 
during initialization and scheduling. 

Message IKJ6011 is sent to the operator and message IKJS64S2I is sent to the ter­
minal. 

2 Dequeue from the user ID and detach the LOGON MONITOR. (The LWAPTID is 
the LOGON monitor TCB pointer.) 

3 If the user was in the RACF environment, IKJEFLS issues the RACINIT macro to 
delete the security related control blocks. 

4 Obtain a dump for a program check or PSW restart. 

s If not a recursive abend, then indicate "RETRY" in the SDWA with the retry routine, 
IKJEFLS. 

6 Return to ABEND processing (IKJEFLSI) to possibly schedule a retry (see step 4). 

7 Cancel the EST AE environment. 

8 Transfer control to started task control, IEEPRTN, by using XCTL. 

Modnle 

IKJEFLAI 

IKJEFLS 

IKJEFLSI 

Label 

t"" 
C 
~ c 
2 
r' 

~ 
§ 
= 



r 
;:S 
00 , -
""" -u. 
6 

Diagram 9.4. LOGON Monitor (lKJEFLC) (Part 1 of 4) 

From LOGON 

Input scheduling (lKJEFLB) Process 

CVT -- LOGON Monitor 
I CVTTCBQ ~ 

t current ... 
TCe -" 1 Determine the LOGON 

monitor's environment. 

LWA 

LWAILGN=O ~--- 1--, 
and I 

LWABEND=O OC----
_L __ 

·2 For LOGOFF or re·LOGON, 
perform LOGOFF processing. 
See LOGOFF Processing 
(lKJEFLLI. 

3 If device has 24 x 80 
capability, set 
LWAFSLGN bit to one; 
otherwise, set it to zero. 

4 Establish the attention 
interrupt exit. 

6 

Output 

Rl 
TCB for 
monitor 

~LWA 

~T storage 
protect key 
=8(TCepXFI .. 

-,I environment 
CQntrol 
table 

~ defined as. 
terminal input source 

".- ......, 
"- ~ 

..... ~ 

updated SYS1.UADS 
I'..user entry ..... 

...... ~ 

r 
.... IKJEFLG 
po 

attention 
exit 



~ 
N 
00 
I -.". -VI 

b 

Q 
I>l 
'0 ... 
n ., 
~ 

r 
0 
C') 
0 
Z 
(') 
0 

§ 
8-
." ., 
0 
n 
n 
'" 5· 

OC! 

\C 
I 
~ 
....a 

Diagram 9.4. LOGON Monitor (IKJEFLC) (part 2 of 4) 

Extended Description 

The LOGON monitor controls the processing that verifies the LOGON or LOGOFF 
command, and the processing that issues informational and prompting messages to the ter­
minal. It notifies LOGON scheduling to schedule a terminal session or, in the case of a 
LOGOFF, to terminate the LOGON scheduling task. Some of the informational messages 
(that is, mail, notices, and LOGON-proceeding messages) are issued in parallel with the 
scheduling of the terminal session. All LOGON monitor messages are issued by the message 
handler IKJEFLGM. 

2 

3 

4 

The LOGON monitor creates the environment control table (ECT), which contains 
information about 1/0 service routines the monitor will use. Also, the monitor sets its 
own storage protection key to 8. This allows the storage obtained by the monitor to 
be referenced by programs not executing in privileged state (for example, LISTBC and 
the pre-prompt exit). Finally, the monitor issues a STACK macro instruction to define 
the terminal as the first source of input for time-sharing commands. 

LOGOFF processing calls IKJEFLL to update either the user's entry in SYSI.UADS 
or the user's entry in the RACF data base. LOGOFF processing will analyze the 
return codes from the job scheduling subroutine and from the terminal session. 
LOGOFF processing is not performed for an initial LOGON (LWAILGN= I) or for 
recovery processing (LWABEND= 1). For more detail, refer to the Diagram 
"LOGOFF Processing." 

If the device has 24 x 80 capability, it can support full screen LOGON menus; set the 
LWAFSLGN bit to one. If the device does not have 24 x 80 capability, it cannot 
support full screen LOGON menus; set the LWAFSLGN bit to zero. 

The LOGON monitor issues a ST AX macro instruction to establish a full screen or a 
line mode attention exit (IKJEFLG) that receives control when the terminal user 
causes an attention interruption by pressing the terminal's attention key. After causing 
the interruption, the terminal user may enter a question mark ('I) to request second­
level messages or may enter a new LOGON command to replace the one currently 
being processed. 

Module 

IKJEFLC 

IKJEFLC 

IKJEFLL 

IKJEFLC 

Label 

INITWKAR 

STACK 

TERMINAL 



n 
o a 
~ 
::l 
0-

'"0 
'"1 o 
n 

" en 
V> 
o 
'"1 

'" t;1 
CIl 

r 
-< 
Iv 
00 , 

v, 
b 

n 
o 

" '< 
'"1 

riQ' 
::r 

Diagram 9.4. LOGON Monitor (rKJEFLC) (Part 3 of 4) 

~pU! Process 

LWA 

0 Step 7 
, PSCB 

:J ~ ~6 
command 

~ 

OR 

re-LOGON buffer containing I 
LOGOFF or LOGON command I 

"~ 
LWA 

attention r+- ---- -+-7 interrupt flag 

JSEL 
LWATNBT = 1 

:J termination 
flag f4- --r-- ~8 
LWADISC = 1 I "-

I ) 
CSCB OR 

I 
= 1 _-1 

cancel flag ~--------
ICHDISC) =0 

~-------- --, 
LWA I 

I 
LWATNBT 0 ~ 1-,- - --. 9 

0 ~ r-.J 

LOGON monitor ... 
> ECB (LWAPECB) 

LOGON scheduling posted 
ECB ILWASECB) ~ 1-- -- I-~ 

;;:: E F LPO-----

PPOQ > 

LOGON-proceeding message 
interval I LPOMWAT) 

7 Output 

Verify the command. 
See Diagram 
LOGON/LOGOFF 
Verification. 

LWA 

reset attention· 
Return to step 6 to process occurred flag 
the newly-entered command --. .. (LWATNBT=Q) 

if atlention interrupt occurred. Step 6 
r 

termination flag 
"-Cancel the terminal session. if (LWADISC= 1) 

requested. Notify LOGON 
---,/ 

(JCLS chain scheduling. 
JSEL deleted) 

"- + J 
I 

Schedule the terminal session, if 
requested. 

• Notify LOGON scheduling. 
• LOGON-

"-
proceeding 

~ • Issue the LOGON information. messages. 
y 

To system (the task """-terminates and the mother 
task (lKJEFLB) schedules 
the foreground job) 



t""' o o 
~ 
Q 
8 
8 
I» ::s 
Q. 

~ 
n 
n 
'" '" S· 

QQ 

Diagram 9.4. LOGON Monitor (IKJEFLC) (Part 4 of 4) 

Extended Description 

6 The LOGON monitor invokes LOGON/LOGOFF verification (IKJEFLE) to scan and parse the 
LOGON or LOGOFF command. For a LOGOFF or a re-LOGON, the command text is found 
in the re-LOGON buffer; otherwise, the command is obtained from the terminal. LOGON ver­
ification checks the user's authorization and LOGON parameters against either the information 
in SYSI.UADS (user attribute data set) or in the RACF data base and prompts the user to 
replace invalid or missing information. See Diagram "LOGON/LOGOFF Verification." 

7 If the user presses the terminal's attention key during LOGON processing, he may re-enler the 
LOGON command. In this case, the LOGON monitor re-invokes LOGON verification to 
analyze the newly-entered command. The attention interrupt flag is reset to zero to indicate that 
the interrupt has been completely processed. 

8 If the system operator cancels the'terminal user, if the user has entered a LOGOFF command, or 
if the user has failed to enter a valid LOGON command, the LOGON monitor ends the terminal 
session as follows: 

9 

• Issues an error message (IKJ56453I) to the terminal for an operator cancel. 
• Issues a null STAX macro instruction to cancel the LOGON attention exit. 
• Frees the environment control table (ECT). 
• Notifies LOGON scheduling to terminate (L WAPECB - post code 24). 
• Waits for notincation from LOGON scheduling to terminate (LWASECB - post code 24). 
• Returns to the operating system via SVC 3. 

After LOGON verification has processed a valid LOGON command, the LOGON monitor noti­
fies LOGON scheduling to schedule the terminal session (LWAPECB - post code 16). LOGON 
scheduling invokes the job scheduling subroutine of the initiator, which aUaches the terminal 
monitor program (TMP). 

When LOGON scheduling is ready to invoke the job scheduling subroutine, it notifies the 
LOGON monitor to continue its operation. (LWASECB - post code 16). At that time, the 
LOGON monitor calls the LOGON information routine, allowing it to execute in parallel with 
the scheduling of the terminal session. Then the routine sets the timer to expire at the interval 
specified in the module IKJEFLPO. The LOGON-proceeding message is issued repeatedly to the 
terminal at this timed interval until the initiator is ready to attach the TMP. At that time, the 
pre-TMP exit (IKJEFU) nOlifies the information routine (LWASECB - post code 20) that the 
LOGON scheduling process is complete. The routine then cancels the timer. 

Finally, the LOGON monitor terminates as follows: 

• Issues a null STAX macro instruction to cancel the LOGON attention exit. (Pressing the 
terminal attention key no longer has any effect on LOGON processing.) 

• Deletes the environment control table (ECT). 
• Returns to the operating system via SVC 3. 

Error Processing 

LOGON scheduling establishes the LOGON monitor's ESTAI environment via B parameter on the 
ATTACH macro instruction. If the LOGON monitor task terminates abnormally, the ESTAI routine 
IKJEFLGB receives control. See Diagram "LOGON Monitor Recovery." 

The LOGON monitor issues the STACK macro instruction to initialize the terminal as the source of 
input for commands. If this process encounters any errors, the LOGON monitor invokes the message 
handler to issue appropriate error messages to the terminal (IKJS64S41) or to the operator (IKJ60RI). 
Also, the monitor turns on the LOGON-termination bit (LWADlSC). 

Module 

IKJEFLE 
IKJEFLEA 

IKJEFLC 

IKJEFLC 

IKJEFLGM 
IKJEFLC 

IKJEFLC 

IKJEFLH 

IKJEFLC 

IKJEFLB 

IKJEFLGB 
IKJEFLC 

IKJEFLGM 

IKJEFLC 
IKJEFLGM 

Label 

GOTOLE 

GOTOLE 

CLEANUP 

t"4 
0 
~ 
0 
Z 
n e 
51 
51 = 5. 



tTl • III 

Diagram 9.5. LOGOFF Processing (lKJEFLL) (Part 1 of 6) 

From LOGON 
monitor (lKJEFLC) 

I nput Step 2 Process 
~--------------------------- r------------------------~ 

LWANOPR=1 

LWANUAD=1 

LWANUADE=O 

---1--------
_and-j 

_and~ 

-,------
--i 

1C--==-1 

LOGOFF Processing 
1 Hake updates using information 

obtained from the RACF data base 

.. lA Update user attribute data set 
as follows: 

(a) If no fields can be updated, 
skip to step 2. 

(b) If only the pointer to 
the user's MAl L record 
can be updated, update 
this field only and skip 
to step 2. 

Step 2 

Step 2 



~ 
N 
OC 
I 

~ -VI 
I o 

-\0 
OC 
-...) 

Diagram 9.5. LOGOFF Processing (lKJEFLL) (Part 2 of 6) 

Extended Description 

LOGOFF processing updates the terminal user's entry in either SYSI.UADS or the RACF 
data base and analyzes the return codes from the job scheduling subroutine (initiator) and 
from the last step of the terminal session. LOGOFF processing is performed for a LOGOFF 
command and for a re-LOGON. It is not performed for an initial LOGON (LWAILGN= I) 
or for recovery processing (LWABEND= I). 

lA 

If the user information was obtained from the RACF data base, do the following: 

a. If no fields can be updated, skip to step 2. 
b. If only the user's mail pointer is to be updated, update this field and skip to 

step 2. 
c. If the UPT still exists, store the UPT and user data. 
d. If full screen LOGON was used, store the performance group, TSq command, 

and TSO authority options. 
e. Call IKJEFRAF to update the information in the RACF data base. 
f. Skip to step 2. 

If the user information was obtained from the user attribute data set, do the following: 

a. If all of the following conditions are true, do not update any fields in the 
UADS: 

• The installation has supplied all of the LOGON information normally sup­
plied by SYSI.UADS (LWANOPR= I and LWANUAD= I). 

• LOGOFF processing should not update the pointer in the UADS to the 
user's MAIL directory record (LWANUADE = 0). 

b. If all of the following conditions are true, update only UADSDRBA by setting 
it to the value of PSCBDRBA: 

• The installation has supplied all of the LOGON information normally sup­
plied by SYS1.UADS (LWANOPR= I and LWANUAD= 1). 

• LOGOFF processing should update the pointer in the UADS to the user's 
MAIL directory record (LWANUADE= I). 

Module 

IKJEFLL 

IKJEFLL 

Label 

UPDTUADS 



~ 
N 
00 
I -"'" -VI 
I o 

--0 
00 
-...J 

Diagram 9.5. LOGOFF Processing (IKJEFLL) (part 3 of 6) 

Input Process 9 
Reg 1_ 1 Icontinu!'ldl 

~ LWA 

LWANOPR=O :c--T --------- r. lei If all fields can be updated, 

~_~-.J update: 
LWANUADgO 

LWAPSCB r--:.,PSCB 

PSCBDRBA ) • Pointer to user's MAIL 
accouting r- I' 

record. 
information 

PSCBATR1 
I( • System attributes 

PSCBATR2 
I 

.) • User attributes ... 
PSCBUPT ... 

~ ) • UPT image 

: 
) • Accounting information .. 

Reg 1 

LWA 

LWAFSLGN=1 ~---- ---- .. (If full screan logon is 
in effect, al50 update: I 

LOGON ... 
) • Offset to offset of default .. ACCOUNT OFFSET values 

BLOCK 

• Offset to offset of 
PROCEDURE OFFSET 
BLOCK 

• Region size value 

• Performance group value 

• COMMAND value 

• MAIL value 

• NOTICES value 

• OIDCARD value 

c) 

Output 

A I'--SYS1.UADS~ 

.. ~ user membe~ 

... ~DSDRBA .-"" 

... 
~ --I I ::: ~ADSIBMT -" 

~ UADSINST 
l--" ---~ _ UPT image .-"" 

I' account number 
data block 

-...., r---- SYS1.UADS.-"" 

I' 
~ user member ../ 
~ ~ 

~ ~DSLACT .-"" 
~DSLPRC ~ 
~DSLRGN -" 
~DSLPGN .../ 
~ADSCMD / 
~DSMAIL ./ 
~ADSNOTC / 

" 
UADSOID 



~ 
N 
00 , -~ 
IJI , 
o 

Diagram 9.5. LOGOFF Processing (lKJEFLL) (Part 4 of 6) 

Extended Description 

(continued) 

c. Updates to the pointer to the user's MAlL directory record are maintained in 
PSCBDRBA. Therefore, update UADSDRBA by setting it to the value of 
PSCBDRBA. 

lfany of the three bits LWAATRl, LWAATR2, and LWABUPT are off, 
the corresponding information (system attributes, user attributes, and the 
user profile, respectively) was not supplied by the installation. The informa­
tion not supplied by the installation (and, therefore, subject to changes made 
via the PROFILE command) is updated by LOGOFF processing. 

If LWAACcr'i'O, the user's accounting information in SYSl.UADS is also 
updated. Accounting information consists of the following items: the 
length of the terminal session, the amount of processor time used, and the 
number of service units used. 

Assuming the UADS can be read (LWANUAD=O or LWANOPR=O), if 
full screen logon is in effect (LWAFSLGN = I), transfer the appropriate field 
values in the LWA to the corresponding fields in the UADS. Values trans­
ferred are: 

• Offset to the offset of the ACCOUNT OFFSET BLOCK 
• Offset to the offset of the PROCEDURE OFFSET BLOCK 
• Region size 
• Performance group value 
• Command 
• Whether the user elects to: 

- receive mail 
- receive notices 
- enter date via the operator identification card. 

Module Label 



n o 
3 
3 
~ 

5-
." o o 
('D 

'" '" o .... 
Y' 

r 
-< 
N 
00 , -"'" -u. 
b 

Diagram 9.5. LOGOFF Processing (IKJEFLL) (part 5 of 6) 

LWA 

---,-------
and I 
-I 

....!nd .-J 

job scheduling subroutine 
(initiator) return code 
(JSXLRCOol 

part of initiator 
encountering error 
(JSXLRCXTI 

Process 

- - - .. 2 Issue the oEQ from the user 
identification, if necessary. 

3 Issue the RACINIT to delete 
the security control blocks. 

4 For an Initiator error, issue the 
error messages. 

5 Analyze the completion code from 
the last step of the terminal session. 

Output 

LOGON-failed 
=::::!===~~ message 

Invelidate the LOGOFF/re-LOGON -==1====j~E~~~~~:.I 
command if there was a system error-:-

6 Issue the LOGOFF terminal meiSSlllge::::~===::::=~ 

Return to LOGON monitor 
IIKJEFLCI. Step 2 

'-------

second-level 
messages 
describing 
error 

2nd level message 

"LOGON 
information 

. not available" 



t"'" 
-< t-.) 
00 
I -.".. -VI 
b 
0 
(") 

° '0 
'< 
:::l. 

QQ 
c:r ... -= a:: 
(") 
0 

-? -\0 
00 
-..J 

Diagram 9.5. LOGOFF Processing (lKJEFLL) (part 6 of 6) 

Extended Description 

2 LOGOFF processing must release the user identification resource that was obtained 
during LOGON verification. IKJEFLL calls IKJEFLIO to issue the DEQ macro 
instruction. If the three bits LWANOPR. LWANUAD. and LWANONQ are turned 
off, an ENQ was never issued on the user identification. In this case, a DEQ is not 
necessary. 

3 If the user was in the RACF environment. IKJEFLL issues the RACINIT macro to 
delete the security related control blocks. 

4 If the job scheduling subroutine encountered an error (LWARTCDIO), LOGOFF 
processing examines the field JSXLRCXT to determine what part of job scheduling 
failed. Next, it examines the fields JSXLRCOD and LWARCDE to determine the 
nature of the error. Finally, LOGOFF informs the message handler (IKJEFLGM) to 
build the appropriate second-level message (110564571 to terminal). 

5 LOGOFF analyzes the return code from the last step of the terminal session 
(LWARTCD) and builds an appropriate second-level message (IKJ564701 to terminal) 
via the message handler. If the code is a system return code, the re-LOGON buffer is 
considered to be unusable and is filled with blanks. In this case, LOGON/LOGOFF 
verification must prompt the user for a LOGON or LOGOFF command. (See 
Diagram LOGON/LOGOFF Verification.) 

6 LOGOFF calls the LOGON time and date processor (lKJEFLPA) to set up the date 
and time-of-day buffers for the logged-off message. Then LOGOFF invokes the 
message handler to issue the logged-offmessage to the terminal (IKJ564701). 

Error Processing 

If, at any time, LOGOFF processing receives a return code from IKJEFLIO indicating an I/O 
error, an open error, or a service routine error, it issues an error message (IKJ564S4I) to the 
terminal via the message handler and turns on the LOGON termination bit. 

t""" = 
5·~ 

Module Label g ~ 
~ :::l. 
Q.o 

IKJEFLL DEQUSER a:: [ 
~a:: 
~ IX> _. r+ 

IX> (11 

r;;' :::l. 

I e:.. 
'" 

"CI 0 ... ...., 
o -'0= 

IKJEFLL ~ a:: 
~ 3 

° ...., -t:I:I a:: 
IKJEFLL 

IKJEFLL LGMSETUP 

IKJEFLL 



Diagram 9.6. LOGON/LOGOFF Verification (lKJEFLE and IKJEFLES) (part 1 of 6) 

Input 

TSB 

TSBVTAM 

pre-prompt 
exit fla9 
(LWABLR) 

LWANUAO"1 

r 
I 
I 

# 0 I __ oJ 

1 Perform VTIOC LOGON 
processing if the LOGON re­
quest was an Initial LOGON 
request to T~O/VTAM. 

2 Indicate whether In LOGON 
mode or SUBMIT mode . 
• Invoke the pre-prompt exit 

if In LOGON mode. See LOGON 
pre-prompt exit interface 
ClKJEFLU. 

• Otherwise, continue. 

3 Prepare for re-LOGON. 

-. 4 LOGON verification not 
necessary: skip to step 9. 

+- 5 LOGON verification not 
necessary; skip to step 8. 

for LOGON 

for LOGOFF 

o 

parameters 

LWA 

exid 

+ LOGON perm. buffers 

command input buffer 



() 
c:r 
II' 
'tJ 
S' ... 
~ 

5 
0 
0 
Z 
() 
0 
!3 
~ 
I:S p.. 

"'C ... 
g 
n 
'" .. 
5' 

OQ 

\C 
W ...... 

Diagram 9.6. LOGON/LOGOFF Verification (lKJEFLE and IKJEFLES) (part 2 of 6) 

Extended Description 

LOGON/LOGOFF verification scans the LOGON or LOGOFF command and checks the LOGON 
parameters against the information in the user's member of the SYSI.UADS data set or the RACF data 
base. As the verification process is checking LOGON parameters, it records valid LOGON information 
in various control blocks. An optional installation exit (pre-prompt exit IKJEFLD) can replace any part 
or all of the verification processing. If the LOGON is valid, JCL card images (JOB and EXEC) that 
define the terminal session are built. 

When SUBMIT enters LOGON verification, the LOGON command is parsed and the results are 
returned to SUBMIT (IKJEFF08). SUBMIT then builds JCL statements to execute commands in the 
background. The pre-prompt exit interface will not be invoked. 

3 

4 

5 

VTIOC LOGON processing is done only for an initial LOGON to TSO/VTAM, not for a 
re-LOGON or a LOGOFF. 

If the VCON for the installation exit (IKJEFLD) is non-zcro (indicating an installation exit is 
present and link-edited into the LOGON load module), the interface routine IKJEFLI is invoked 
to initialize a parameter list for the exit. (See Diagram LOGON Pre-Prompt Exit Interface.) 
The interface does not pass control to pre-prompt exit (IKJEFLD) if the command is a 
LOGOFF or if LOGON is invoked from SUBMIT. 

The initial-LOGON nag is turned ofT following the first GETLlNE macro instruction issued by 
LOGON/LOGOFF verification. Any subsequent LOGON command entered by the terminal 
user for the current address space is considered to be are-LOGON. 

LOGON/LOGOFF verification returns to the LOGON monitor if the termination nag is on 
(L WADISC). If all of the following conditions are true, then the normal LOGON verification is 
bypassed; skip to step 9: 

• The pre-prompt exit has supplied all of the LOGON information (LWANOPR = I). 

• The pre-prompt exit indicates that no verification is necessary (LWANUAD = I). 

• One of the following has occurred: 

- SYSI.UADS or the RACF data base cannot be read to access the user's mail directory 
(RBA) (LWANUADE-O). 

- SYSI.UADS or the RACF data base cannot be enqueued on (LWANONQ = I). 

If all of the following conditions are true, then the normal LOGON verification is bypassed; skip 
to step 8 to read SYSI.UADS or the RACF data base for the user's mail directory (RBA): 

• The pre-prompt exit has supplied all of the LOGON information (LWANOPR = I). 

• The pre-prompt exit indicates that no verification is necessary (LWANUAD= I). 

• SYSI.UADS or the RACF data base can and should be read for RBA, the pointer to the 
user's mail directory block (LWANUADE= I). 

• SYSI.UADS or the RACF data base can be enqueued on (LWANONQ = 0). 

Module 

IKJEFLE 

IKTXLOG 

IKJEFLE 

IKJEFLE 

IKJEFLE 

IKJEFLE 

Label 

t:1 t"" ; .... n'~ J; g .. .. ~ 5' . ID e p..Sl, 

~ 
~8.. 
~;s:: 

~ 
tD II) ::J._ 

0 II' n - ... 
~ 

fI.J £;. 

0 I!;;' 

Z "'CO 

~ 
.., ..... 
o .... 
'gttl 0 ... is:: 

~ Q" ~ 
0 0 

~ ..... .... 
< ttl 
fD s:: GOTOIER 
:I. = " ID 
et-
C) 

= 

I 
I 
~ 

~ 
~ -
~ 
::l 
N 
C) .... 
~ 

~ 
0 
~ 
0 
Z 
n e a a 
I» = =-



B 
00 , 
E 
Va 

6 

Diagram 9.6. LOGON/LOGOFF Verification (lKJEFLE and IKJEFLES) (part 3 of 6) 

Input Process 7 
re-entered 
commend 

LWA - ~ 
nnltlel LOGON 

.. 

l -- ) 6 Obtein the commend: 
command ... 

PSCB 

• If neither LOGON nor 
OR LOGOFF - prompt 

t termlnel user to re-enter 
commend. 

re-LOGON buffer 
containing LOGOFF or • LOGOFF - indicate 
re-LOGON command termination; bypass 

verification. 
return to 

• . LOGON - continue LOGON 
verification. monitor 

IIKJEFLCI. 

6 
step 5 

Output 

term~~ ... 
)I 

LWA 

"- termination flag 

" ILWADISC .. 11 



(') 
cr 
~ ... 
0 ., 
~ 

r 
0 
0 
0 z 
Q 
3 
8 
I\> = 0-
'tI ., 
~ 
'" !a. 
Jcl 

\C 
N 
\C 

Diagram 9.6. LOGON/LOGOFF Verification (IKJEFLE and IKJEFLES) (part 4 of 6) 

6 

Extended Description 

After the command scan service routine (IKJSCAN) scans the command for LOGON 
or LOGOFF, the verification process continues as follows: 

• Ir neither command was found, the terminal user is prompted to enter LOGON or 
LOGOFF and the scan is repeated. 

• If the command was a LOGOFF, the verification process returns control to the 
caller, the LOGON monitor. For a LOGOFF HOLD (TSBHLDL= I), terminal 
input/output control (TIOC) for TSOfTCAM or terminal control address space 
(TCAS) for TSO/VT AM keeps a line open to the terminal. 

If at any time a terminal line is accidentally disconnected, TIOC or VTIOC retains, 
for a time specified in IKJPRMOO of SYSI.PARMLIB, the control blocks and the 
address space used for the current terminal session. Ir the terminal user then 
enters a LOGON RECONNECT command with the same user identification as 
the retained address space, TIOC or VTIOC reinstates the user in that address 
space. 

• Ir the command was a LOGON, the verification process continues (Sf'" ~ 

Module 

IKJEFLEA 

Label 

LOGONOFF 

t"'I 
0 
~ 
0 
Z 
n 
Q 
51 
51 = i 



i 
8 
gj 
Q. 

l 
'" '" o 
.iii 
tr1 , 
tI.I 

B c;o -
""" -Vo , 
o 

Diagram 9.6. LOGON/LOGOFF Verification (lKJEFLE and IKJEFLES) (part S of 6) 

Input Process 7 
",- .......... C.SYS1 

~ 7 Parse the LOGON command 
~ ~ '/ for parameters. 

~~IT '- ,../ 

} elf SUBMIT has invoked 

......... logo~ ... LOGON, return to SUBMIT. 
e Otherwise, copy LOGON 

'- ~ default parameter velues 
RACF or into LWA. - (lKJEFF081 

'- velu~ 

descriptive deta 
r--..... 

IIA ............ '" --r--...: .-~ 

'- ~ "-
8 Check user euthorization; 

issue ENQon user 
identification. 

CVT 
'-- 9 Copy pointer to user's MAIL 

record into PSCB. It old It new TCB TCB 10 Interface with RACF to create 

JS~ 
the security related control blocks. 

LWA TCB ::'> 11 Validate the LOGON information 
,/7 ~ ~ supplied by the user and record it + PSCB ... + CSC8 1 + JSCB ~ in the system control blocks, 

II 
LWA r- r-~ 12 Build the JCLS chain to define the 

I r- n

-

term inal session. 
LWAJJCL = 0 -.J 

Return to LOGON 
monitor (lKJEFLCI, 
step 6 

Output 

LOGON buffers 
... 

parameter values I )I .. 
Reg 1 _.,LWA 

I LWALACT 

LWALPRC 

LWALRGN 

... LWALPGN ... .. LWALGCMD 

LWAMAIL 

LWANOTC 

LWAOID ... 
PSCB 

... 
)I 

. ____ IBA I .. 
LWA ASCB TSB CSCB 

·Jt8~ECT~U" IN~ 
JSEL LWA 

I EXEC l- r· -
.1 

JOB 1I 

~ .... 1 LOGON pro- I 
)I d' 1 cae 109 message 1 .. 



r Diagram 9.6. LOGON/LOGOFF Verification (lKJEFLE and IKJEFLES) (part 6 of 6) r :: 
0< (i' ~ 
1'0.) g ~ 00 Extended Description Module Label I en ... :;;: n -. 

7 The verification process invokes IKJPARSE to check the syntax of the LOGON command. If IKJEFLE TSBSRCH Q.~ - ~8. v. the command contains the RECONNECT parameter, LOGON determines whether the user 
I 

0 identification is already assigned to an address space (one that TlOC or VTIOC retained fol- ~~ 
© lowing a disconnected line). If the user identification has an address space assigned to it, RACF n II> 

::I .... 
(") is called to verify user and terminal access security and TIOC or VTIOC reinstates the user in II> n 

Iii' ::I. 0 the retained address space. If the user identification has no address space assigned to it, the ~ ~ LOGON RECONNECT is rejected. en 
::I. Then, if SUBMIT invoked LOGON, return to SUBMIT. If SUBMIT did not invoke LOGON, "tI 0 

(Jq ... ..., 
a- copy the LOGON parameter values obtained from either SYSI.UADS or the RACF data base 0 -into the corresponding fields in the LWA. '0 txI - n 

~ txI ... 
~ 8 LOGON calls IKJEFLIO to issue an ENQ on the user identification resource. If the return code IKJEFLE2 or -< 
(") 

from IKJEFLIO indicates that the resource has already been obtained, LOGON verification IKJEFLE 0 
reinvokes the pre-prompt exit if it exists. The installation can choose to authorize the user or 

..., 
0 --? cancel the LOGON process. txI 

If the user information is stored in the user attribute data set, LOGON verification calls ~ 
\0 IKJEFLIO to open SYSI.UADS and copy the member associated with the user identification on 
00 the LOGON command into real storage. LOGON verification then ensures that the user identifi--.l 

cation is authorized. The user identification and its length are stored in the PSCB (protected 
step control block). 

9 Set PSCBDRBA to the value of the user's mail directory (RBA). LISTBC uses PSCBDRBA to 
search for the users mail directory record. 

to The RACINIT macro is issued by IKJEFLE or IKJEFRAF, causing RACF to create security 
related control blocks associated with the user identification and password. 

II LOGON verification compares the LOGON parameter values with the user information con- IKJEFLE or IKJEFL2 
tained in SYSI.UADS or the RACF data base to check the validity of the LOGON parameters. IKJEFLE2 
If parameters are invalid or missing, LOGON verification prompts the user for correct parame-

(") ters. The user's reply is re-parsed and verified. Verification checks the user's password, account 
::r number, procedure name, region size, and performance group. The system resources manager 
{j checks that the performance group is defined to the system and that the group can be used at ... 

this time. The job entry subsystem verifies that the destination choice (DEST parameter) defines 0 ... 
a valid device for SYSOUT data sel. 

~ If the user is RACF defined, then password verilication with the UADS is bypassed. Both the IKJEFL3 
r password and group identification are verified by RACF. IKJEFRAF 
0 If the UPT is not defined in the TSO segment of the RACF database, an attempt will be made IKJEFLE2 
Cl to obtain the UPT from the UADS and store it in the RACF database. If the UPT cannot be 
0 obtained, a default UPT is built. Z 
(") 12 If LWAJJCL= I, the pre-prompt exit has supplied the JCL card images that define the terminal IKJEFLEA BUlLDJCL 
0 session. Otherwise, LOGON processing constructs the JCL card images as follows: 
3 
3 /luserid JOB 'account #',REGION = region size 
II> /lprocname EXEC procname,PERFORM = performance group t"'4 ::s 0 Q. where the user ID (user identification, account #, region size, and performance group are 
"tI obtained from the LOGON parameters, from the user's member of SYSI.UADS, the RACF ~ ... 

0 0 data base, or from the pre-prompt exit. 
0 Z n en en n 5' 

(Jq Error Processing e a 
'P If the LOGON is an initial LOGON (LWAILGN= I), and the address of the terminal input line is zero, IKJEFLE a 

LOGON verification obtains a line from the terminal (issues a GETLINE for the terminal). LOGON 
IKJEFLGB = ~ verification is part of the LOGON monitor task and, therefore, is protected by the monitor's ESTAI = )0001. =-environment in case of an ABEND. 



"Restricted Materials of IBM" 
Licensed Materials - Property of IBM 

LOGON Command 

Data Area Name 

ASCB 

CSCB 

ECT 

EXEC card image 

Job card image 

JSEL 

JSOL 

LWA 

PSCB 

UPT 

The following data areas contain TSO user information supplied by the SYSl.UADS 
data, the RACF data base, the installation, or by the LOGON parameters: 

Field Name Contents 

ASCBJBNS Address of user identification. 

CHCLS Procedure name for this LOGON. 
CHKEY User identification. 

ECT Flags that control LISTBC processing. 

Procedure name for this LOGON. 
Performance group number. 

Account number. 
Region size. 

JSEL Address of JCL card images. 

JSOLDEST Default destination for SYSOUT data sets. 

LWACTLS Control switches set by the installation exit. 
LWADEST2 Default destination for SYSOUT data sets. 
LWAACCT Offset of accounting information in SYS I. U ADS. 
LWATCPU Total CPU time used. 
LWATSRU Total service units used. 
LWATCON Total time connected to the system. 
LWARTCD Completion code for the last step of the terminal session. 
LWALACT Offset to offset of ACCOUNT OFFSET BLOCK in SYSI.UADS. 
LWALPRC Offset to offset of PROCEDURE OFFSET BLOCK in SYSI.UADS. 
LWALRGN Region size. 
LWALPGN Performance group identification. 
LWALGCMD Full screen LOGON menu command. 
LWAMAIL MAIL/NOMAIL indicator. 
LWANOTC NOTICE/NONOTICE indicator. 
LWAOID Operator Identification Card prompt indicator. 

PSCBUSER User identification. 
PSCBUSRL Length of user identification. 
PSCBATRI System attributes: switches that control use of OPERATOR, ACCOUNT, 

and SUBMIT commands, that indicate volume and mount authorization, 
and that define the attention key as the line·delete key. 

PSCBATR2 User attributes· reserved for installation use. 
PSCBGPNM Generic unit name. 
PSCBRSZ Region size. 
RBA Address of user's mail directory block. 
UPTSWS Environmental switches. 
UPTNPRM No·prompting switch. 
UPTMID Switch that controls printing of message identifiers. 
UPTNCOM Switch that controls SEND command authorization. 
UPTPAUS Switch that indicates whether to pause for a "1." 
UPTALD Switch that defines the attention key as the line·delete key. 
UPTMODE Switch that controls printing of mode messages. 
UPTWTP Switch that allows the user to receive WTP messages. 
UPTCDEL Character-delete character. 
UPTLDEL Line·delete character. 
UPTPREFX Data set name prefix. 
UPTPREFL Length of data set name prefIX. 

Figure 9-4. Data Areas Containing LOGON User Information 

LY28-1415-0 C> Copyright IBM Corp. 1987 Chapter 9. LOGON Command Processing 9-33 



~ , -~ -V> 

6 

Diagram 9.7. LOGON Pre-prompt Exit Interface (lKJEFLI) (part 1 of 2) 

From LOGON/LOGOFF 
verification IIKJEFLEI. 
step 1 Processing Input 

~ parameter list --R1 4 LWA 

"'> 1 For LOGOFF. bypass the parameters 
r pre-prompt exit. 

+.parameters for 
IKJEFLGM 

parameter list parameters 

EY ~ descriptors 'Step 4 .. 
... 

\2 ........ Invoke the pra-prompt 

: ..... exit. 
~ ..... 

• • ... ~lf' 

• 
CVT 

11f oki T~I' new TCB J 
3 Check the information provided by 

\.. TCa the pre-prompt exit. 

+ JSCa 
... 

Copy the Information into the 

l 
> 

LWA JSEL 
r LOGON control blocks. 

" + CSCB 
I 

4 Issue an ENQ on the user identification 
resource. If necessery. 

Relnvoke the pra-prompt exit if the 
user identification is in use. 

Return 

IKJEFLD 

insta llatlon-
written LOGON 
processing 

Input 
step 3 

.. 
r 

Step 2 

Return to LOGON/LOGOFF 
verification IIKJEFLEI. 
step 1 

Output 

parameter 
descriptors 

• • • 

)I 
r LOGON user 

A information 
... 

LWA ASCB TSB CSCB 

);1 D ... 
+PSCB r 

- "--'--

JSCB ECT UPT PSCB 

D -
[JD 

See Figure 2-8 • 



'-0 
00 
....:a 

t'"' o 
C') 
o z 
Q 
§ 
~ 

8-

~ 
n 
UI 
UI 

~. 

Diagram 9.7. LOGON Pre-prompt Exit Interface (lKJEFLI) (part 2 of 2) 

Extended Description 

The LOGON pre-prompt exit interface invokes the LOGON pre-prompt exit which is a routine written 
by the installation. The pre-prompt exit can provide LOGON information on behalf of the terminal 
user, verify the user's LOGON command, and collect accounting information. Any user information 
provided by the pre-prompt exit overrides tbe information stored in the user's member of the 
SYSI.UADS data set or tbe RACf data base. An installation can, ifit wishes, replace all of the normal 
LOGON verification processing. For directions on writing tbe exit routine, refer to TSO Extensions 
Customization. 

Tbe pre-prompt exit interface uses tbe command scan service routine (IKJSCAN) to determine if 
tbe command is a LOGON or LOGOFf. If it is a LOGOFF, the interface does not invoke the 
pre-prompt exit. Instead, it returns to its caller. 

2 The interface builds and passes to the pre-prompt exit a parameter list that defines those parame­
ters the pre-prompt exit needs to verify the LOGON command and to provide LOGON informa­
tion. Most of the addresses in the parameter list point to two-word descriptors. The first word 
of the descriptor contains the address of the actual parameter. The second word contains both 
the maximum length for the parameter and the actual length. 

3 After invoicing the pre-prompt exit, the interface routine checks the parameter list for validity: 

• Ensures the parameter list is unchanged. 

• Ensures the parameter descriptors are unchanged, except for the field containing the actual 
length of the parameter. 

• Checks that the actual length of each parameter does not exceed the maximum length for the 
parameter. 

If errors arc discovered, the interface invokes the message handler (IKJEFLGM) to issue error 
messages and terminates the terminal session (LW ADISC = I). If no errors are found, the inter­
face copies into the appropriate control blocks all user information provided by the pre-prompt 
exit. A control field in the LOGON work area (LWACTLS) contains bits that indicate what 
information the installation has provided. 

4 If the pre-prompt exit has specified in the LOGON work area that the terminal user is not to be 
prompted (LWANOPR= I), that all LOGON information has been verified (LWANUAD= I), 
and that an ENQ is to be issued (LWANONQ = 0), then the interface issues an ENQ on the user 
identification resource. If the resource is already in use, the pre-prompt exit is re-invoked to 
determine a course of action. The installation may choose to allow more than one user with the 
same user identification to be logged-on simultaneously (LWANONQ= I). In this case, the 
interface does not issue an ENQ on the user identification resource. Or, the installation may. 
instead. choose to terminate the session (LWADISC= I). 

Error Processing 

If either the LOGON pre-prompt exit interface (IKJEFLI) Or the pre-prompt exit (IKJEfLD) cause an 
ABEND, the LOGON monitor's ESTAI routine IKJEFLGB is invoked by ABEND processing. In 
certain cases, the EST AI routine schedules a re-attach of the LOGON monitor task. See Diagram 
"LOGON Monitor Recovery". 

Module 

IKJEFLI 

IKJEFLI 

IKJEFLI 

IKJEfLi 

IKJEFLGB 

Label 

LlOlOO 

Ll800 



Diagram 9.S. LOGON Monitor Recovery (IKJEFLGB) (part 1 of 2) 

Input 

~ 
SDWA 

R1 flags indicating 
type of 
program check 

ABEND 

+ parameter list 

"parameter list 

-r- LWA 

JSEL7 

flag indicating that 
LOGON verification 
caused ABEND 

t9 (LWAPHASE=OI 

LOGON termination 
flag (LWADISCI 

cancel flag recovery counter 

(CHDISCI (LWALPCNTI 

tvpe-<>f-ABEND flags 
(LWAPSW, LWAPCK, 
LWAMCKI 

LWA 

flag indicating that 
LOGON information 
routine caused AB END 
(LWAPHASE = 11 

LlSTBC flag 
(LWALTCBI 

address of UADS DCB 
(LWAPDCBI 

I7ubpools 0:-
l2., and,2.8 _....J 

From ABEND 
processi ng for the 
LOGON monitor Processing -- ") 1 Schedul e a dump. if necessery. 

">2 For a user ABEND. bypass 
recovery. 

14 -"" 3 For e LOGON/LOG OF F ---
~ 

verificetion error, determine if 
) recovery is possible; issue the 

appropriate messagas. 

r--- .... 4 For an error during LOGON 
information routine, issue the 

I ) appropriate messages. " I 
~ _.J 

5 Prepare for a return to ABEND 
processing: 

') 
• Close the SYS1.UADS data set. 
• Cancel the attention exit. 
• Delete the unneeded storage areas. 

"> • Issue the RACINIT to delete the 
security related control blocks. 

Output 

SDWA 

.... 1 d .. )I ump IOdl~tor 
" 

+ 
continue 
ABEND 
processing 

LWA internal work area 

ABEND recovery 
indicator indicator 
(LWABENDI 

.~ .... y~. 

lcounter 1 
I(LWALPGNT ,1 

"I?l terminal 

~ terminal 

Return to 
ABEND processing 

~ o 
~ o 
2 
("') 
e 

I 



~ Diagram 9.8. LOGON Monitor Recovery (lKJEFLGB) (part 2 of 2) t"" = 
-.~ 

t-.) I ~. 00 Extended Description Module Label I -.j:o. The LOGON monitor recovery routine receives control from ABEND processing following the abnormal IKJEFLGB c:a.Sl. -VI termination of the LOGON monitor task. LOGON monitor recovery is an EST AI routine that was a::B. I = speciflCd on the ATTACH macro instruction when the LOGON monitor was attached by the LOGON i== 0 scheduling task. Ir possible, a retry of the LOGON monitor is attempted by informing the LOGON 
Ei 

~ 
scheduling task to re-attach the LOGON monitor (LWABEND~·I'B). 

'" ::I. 
I ;. 

::I. "I:Ig, (JQ 1 A dump is scheduled ir the abnormal termination was the result of a program check or a PSW IKJEFLGB 
a' restart (an external interrupt from the operator). Cl-.... '0= = 1 If the ABEND code represents a user completion code, then recovery of the LOGON monitor IKJEFLGB na:: 
a:: task is not attempted. LOGON monitor recovery issues no error messages and passes control a = 
n back to ABEND processing to continue the abnormal termination. 0 .... 
0 .... 
~ 3 If the LOGON monitor abnormally terminated during LOGON/LOGOFF verification, recovery IKJBFLGB PHASE 1 = - of the LOGON monitor task is scheduled (L W ABEND -I). 

MSGINIT == \0 
Recovery is not attempted in the following cases: 00 

-..I 

• The system or the operator has canceled the terminal session (CHDISC-l). 

• The terminal session is scheduled for termination (LWADISC-I). 

· Four recoveries have already been attempted (LWALPCNT-4). 

• The current ABEND is the same type as the previous one (determined by checking bit set-
tings in the LOGON work area: fields LWAPSW, LWAPCK, and LWAMCHK). 

LOGON monitor recovery builds and issues appropriate messages to the terminal and to the 
system operator. One set (IKJS64SI1 for the terminal and IKJ6031 for the operator) is issued if 
the LOGON pre-prompt exit terminated abnormally (LWAINXI = I). Another set (IKJS64S21 

n for the terminal and IKJ601I for the operator) is issued if LOGON/LOGOFF verification itself 

::r terminated abnormally (LW AINXI = 0). 

~ 4 If the ABEND occurred aller the user's LOGON information has been processed and the ter- IKJEFLGB 
~ minal session bas been scheduled (that is, LWAPHASE-I), recovery may not be necessary. If .. PHASE2 
~ LWAPHASE = I. the ABEND occurred either during USTBC command processing or during 

the issuing of the LOGON-proceeding messages (ISSued by LOGON module IKJEFLH). If 
t"" LlSTBC caused the ABEND (LWALTCB= I). LOGON monitor recovery issues an error 
0 message to the terminal (lKJS6406I) and the LISTBC task terminates. In this case, the sched-

8 uling of the terminal session proceeds normally. If the LOGON module IKJEFLH caused the 

Z ABEND, LOGON monitor recovery does not schedule a re-attacb of the monitor 

n (LWABEND-O) but does issue error messages to the terminal (IKJS64S2) and to the operator 

~ 
(lKJ60I). 

5 LOGON monitor recovery performs exit processing as follows: IKJBFLGB 

~ • Calls IKJEFUO to close the SYSI.UADS dataset, using the DCB address in the LOGON CLOSUADS S c:a. 
work area, and to issue a DEQ on the SYSI.UADS directory resource. If the DCB address 

l 
FREECORE 

~ is aro, IKJEFLIO does not issue the CLOSE macro instruction. 

n • Issues a null ST AX macro instruction to cancel the attention exit. Pressing the terminal ~ 21. attention key nO longer has any errect on LOGON processing. 

i ~ • Frees the storage allocated to subpools 0, I, and 78. 

IC • If the user was running in the RACF environment, the RACINIT macro is issued to delete 

~ security related control blocks. • 
~ II 



-'IQ 
00 
-..J 

Diagram 9.9. Pre-TMP Exit (lKJEFLJ) (part 1 of 2) 

From the initiator (JEFSD263) 
before it attaches the terminal 

program (TMP) 

1 Pre-FA EEPART processing: 
• If the LOGON monitor is 

active, notify it to terminate_ 

• Detach the LOGON monitor 
(lKJEFLC). 

JSCB 

PSCB 

user's region 
size 2 Post-FREEPART processing: (PSCBRSZI 

• Initialize and chain the PSCB. ==r=====T=1~~~~~=~ 
current time 

• Move the UPT and the re-LOGDN 
buffer to allow access by 
command processors. 
Move the PSCB. 

Return to 
initiator 
(lEFSD263) 

(PSCBLTIMI 

o -------, 
,-------, I 

luPT I : 
L--__ --' I 

'--------_ .... 

SP252 
r- --, 

: I 
I '-1 -ps-c-B-'I : 
I I L ___ ...J 



~ 
N 
00 
I ..-

"'" ..-
Vl 

6 

(') 
:r-
I» 

"0 ... n ... 
~ 

r 
0 
0 
0 
Z 
(') 
0 
S 
S 
I» 

8-
"I;j 

a 
n n 
{Il 

'" 5' 
OQ 

'P 
~ 
IoC 

Diagram 9.9. Pre-TMP Exit (IKJEFLJ) (Part 2 of 2) 

Extended Description 

The initiator (lEFSD263) invokes the pre-TMP exit before attaching the terminal monitor 
program (TMP); it invokes the post-TMP exit after the TMP terminates. The pre-TMP exit 
prepares for the terminal session to begin by notifying the LOGON monitor task to terminate. 
The pre-TMP exit has two parts; an entry point name is assigned to each part. The first part 
is invoked before the initiator issues the FREEPART macro instruction (pre-FREEPART 
processing). The second part is invoked following the FREEPART (post-FREEPART proc­
essing). 

2 

This step represents pre-FREEPART processing. It is performed before initiator issues 
the FREEPART macro instruction. Since the LOGON monitor task may still be 
active, the data areas it uses must not be deleted (by FREEPART) until the task is 
notified to terminate. 

• Pre-FREEPART processing notifies the LOGON monitor task to terminate 
(LWASECB - post code 20). When the monitor task terminates, it notifies 
pre-FREEPART processing to continue (LWAPECB - post code 20). See 
LOGON Monitor (IKJEFLC). 

• The system initiated cancel (SIC) is notified that the TMP was executing when the 
line dropped or the user canceled. SIC will then notify the post-TMP exit to free 
other users who are waiting on this memory. For example, SEND W/WAIT 
option sent to a canceled memory can cause the sender to wait forever unless the 
post-TMP exit frees the sender. 

This step represents post-FREEPART processing. It is performed after the initiator 
issues the FREEPART macro instruction. Post-FREEPART processing now can 
move the UPT and the re-LOGON butTer to subpool 0 (which is deleted by the 
FREEPART). 

• Post-FREEPART processing invokes the SWA manager to obtain the user's region 
size from the step control block (SCB). The region size is stored in the protected 
step control block (PSCB). If the SCT indicates that the terminal session is a job 
with more than one step, post-FREEPART processing passes a non-zero return 
code back to the initiator, which then terminates the job. The current time of day 
is also stored in the PSCB for later use in computing the length of the terminal 
session. 

• The UPT and the re-LOGON butTer are moved to subpool 0 (a non-protected 
subpool) so that the command processors may alter them during the terminal 
session. The PSCB is moved to subpool 252; the command processors cannot alter 
data areas in subpool 252. 

Module 

IKJEFU 

IKJEFU 

IKJEFU 

Label 

IKJLMI 

IKJUI 

(' 

I 



:l)iagram 9.10. Post-TMP Exit (lKJEFLK) (part 1 of 2) 

From the initiator IIEFSD2631 
Input after TMP terminates Process Output -.. SP230 r---------- --- ...... 

I , 
.. ' I re-LOGON I I I: 1 Move the UPT and the re-LOGON )I I UPT I PSCB 

buffer to protect them from being ", buffer 
LCT 

deleted. Move the PSCB. , , 
~- ---

_____ ---l 

last-step 
completion ) 2 Save the completion code from the ~WA code y 

last step of the terminal session. I LCTPARM41 '" LWARCDE 
LWA y 

r..... ASCB 

~ \ 
total processor time 

CPU time used for 3 Update the terminal user's 
ILWATCPUI 

this session .. 
""",.tI.g \ 

) accounting information. 
v <, total service units 

information service units used y 

(LWATSRUI 
for this session 

,PSCB I total user connect time 
(LWATCONI 

LOGON time of day 
Return to (PSCBLTIMI 
the initiator 
[lEFSD2631 



B 
00 • -"" v. 
b 

r o 
§ 
z 

( 
:? 
g 
1l 
<II 

~. 

Diagram 9.10. Post-TMP Exit (IKJEFLK) (Part 2 of 2) 

Extended Description 

The initiator (IEFSD263) invokes the post-TMP exit after the TMP terminates. The 
post-TMP exit saves the completion code from the last step of the terminal scssion and 
updates the user's accounting information in the LOGON work area. Then, the initiator per­
forms termination processing and passes control back to the LOGON scheduling task. 

The post-TMP exit moves the UPT and the re-LOGON buffer from subpool 0 to 
subpool 230 to prevent job scheduling from deleting them during job termination. The 
PSCB is also moved to subpool 230. 

2 The post-TMP exit saves the completion code from the last step of the terminal 
session, obtaining it from the linkage control table (LCT). The completion code is 
later analyzed by LOGOFF processing to determine if the terminal session terminated 
abnormally. See Diagram "LOGOFF Processing.~ 

3 The post-TMP exit updates the accounting information in the LOGON work area to 
account for the system resources used during the terminal session that is now termi­
nating. 

Error Processing 

If either the pre-TMP exit or the posl-TMP exit causes an ABEND, LOGON scheduling's 
ESTAE routine IKJEFLS is invoked by ABEND processing. The function of this EST AE 
routine is described under error processing in the diagram "LOGON Initialization and 
Scheduling". 

Module Label 

IKJEFLK IKJLKI 

IKJEFLK IKJLKI 

IKJEFLK 

IKJEFU,K 



"Restricted Materials of IBM" 
Licensed Materials - Property of IBM 

Chapter 1. EDIT Command Processing 

EDIT Command 

This chapter describes the internal logic and organization of the EDIT program. It 
helps the programmer follow the internal operation of a program and locate a mal­
function. This chapter gives references to specific functions the programmer can use 
to find information in program listings without having to scan them for the data he 
wants. 

The EDIT command is described using method of operation diagrams, a program 
organization chart, a directory, a data area usage chart, and a diagnostic aids 
section. 

The Program Organization section contains a list of the EDIT modules and their 
functions, and charts showing the flow of control from one module to another. 

The Directory contains a module cross reference for the EDIT command and its 
subcommands. It cross references load module, object module, entry point, and alias 
name. 

Chapter 24, "Data Area Usage," contains a list of data areas used by the EDIT 
command processor, and a description of the syntax checker control blocks, commu­
nications area, and option word. The data area descriptions can be found in 
MVS/Extended Architecture Data Areas. 

For a description of how to use the TEST command to diagnose errors in the EDIT 
program, seeTSO Extensions System Diagnosis: Guide and Index. There is a diag­
nostic aid description of the TSO terminal messages in TSO Messages. 

LY28-141S-0 10 Copyright IBM Corp. 1987 Chapter 1. EDIT Command Processing 1-1 



E1JIT \,;ommana 

Overview 

1\.CaLl-1\.ilNU, lYJ.a.L~lIA.li) VI .I.U'~.1. 

Licensed Materials - Property of IBM 

The EDIT command processor is a part of TSO/E, the time sharing subsystem of 
MVS. The EDIT command processor performs the functions of the EDIT 
command and subcommands. 

EDIT resides on SYS1.CMDLIB. When the user enters the EDIT command and 
operands, a copy of the EDIT program is loaded into the user's address space. The 
EDIT data set may be new or an existing data set; in either case, the name of the 
data set is that specified in the EDIT command. 

The EDIT command enables the user to create data sets and to modify them by 
adding, replacing, and deleting records in the data sets. A data set can consist of 
text or programming language source statements. The user can work on a data set 
in either input mode or edit mode. 

In input mode, the user enters successive lines of data. One line of input becomes 
one record in the data set. Services for translating tabulation characters to blanks, 
interpreting character and line delete characters, and translating lowercase characters 
to uppercase are available in the input mode. Users can request programming lan­
guage syntax checkers to process source statements as they enter them. 

In edit mode, the user enters subcommands to point to particular records, to modify 
or renumber records, to add or delete records, to control editing of input, or to 
compile and execute a program. While in the edit mode, EDIT keeps track of the 
user's position in the data set by means of the current line pointer. EDIT provides 
subcommands permitting the user to move the current line pointer within the data 
set. Once the current line pointer is positioned at a particular record, the user can 
issue the subcommand appropriate for the function needed. 

1-2 TSO/E System Diagnosis: Command Processors, E-S LY28-141S-0 C Copyright IBM Corp. 1987 



"Restricted Materials of IBM" 
Licensed Materials - Property of IBM 

MVSSERV Command 

Chapter 10. MVSSERV Command Processing 

This chapter describes how to analyze messages, an external trace data set, and 
dumps to diagnose a possible MVSSERV error. For an overview of the function of 
the MVSSERV command in IBM System/370 to IBM Personal Computer Enhanced 
Connectivity Facilities, see TSO Extensions Command Reference. 

For a complete description of MVSSERV macros, control blocks, and return codes, 
see TSO Extensions Programmer's Guide to the Server-Requester Programming Inter­
facefor MVS/XA. 

Diagnosing an MVSSERV Error 

Messages 

You can use the following information to diagnose an MVSSERV error: 

• Messages 
• External trace data set 
• Dumps. 

This section explains how to use this information to identify a failing component. If 
you encounter a problem that you cannot fix, refer to TSO Extensions System Diag­
nosis: Guide and Index for a description of how to report the problem to IBM. 

During MVSSERV processing, messages can be sent to the terminal or to a trace 
data set, or both. You must allocate a trace data set (ddname = CHSTRACE) to 
receive messages during your MVSSERV session, for example: 

ALLOCATE F(CHSTRACE) da('myID.dsname') LRECL(Sa) RECFM(FB) 

You can determine if a message is from MVSSERV by checking the message ID. 
MVSSERV message IDs begin with the letters "CHS." An MVSSERV message may 
be informational (last character of the message ID is "I") or it may be an error 
message (last character is "E"). For example, "CHSTCA20E" is an MVSSERV 
error message. 

Error messages require user action because they cause MVSSERV to end abnor­
mally. Refer to TSO Messages for information about the action to take for each 
error message. 

You can obtain online help for MVSSERV terminal messages by using the message 
ID with the HELP command after MVSSERV has ended: 

HELP MVSSERV MSG(message 10) 

External Trace Data Set 
The external trace data set is a preallocated TSO data set that is used to record 
informational and error messages issued during an MVSSERV session. The mes­
sages, which are produced by various MVSSERV modules, can be used to determine 
what sequence of events may have led to a failure. 

Before using the MVSSERV command, you must allocate the external trace data set 
to the ddname CHSTRACE with parameters specifying a record length of 80 bytes 

LY28-141S-0 © Copyright IBM Corp. 1987 Chapter 10. MVSSERV Command Processing 10-1 



MV:S:SEKV (,;ommand "Restricted Materials of IBM" 
Licensed Materials - Property of IBM 

and a record format that is either fIxed or fIxed blocked. When you enter the 
MVSSERV command, you can specify a trace option .on the command line with the 
value NOTRACE (default), TRACE, or IOTRACE. If you specify NOTRACE, 
MVSSERV does not open the data set and no MVSSERV module attempts to issue 
any messages to this data set. 

If you specify TRACE or IOTRACE, MVSSERV attempts to open the data set allo­
cated to CHSTRACE. If the open fails, internal flags are set to specify NOTRACE 
and processing continues. If the open is successful, recording to this data set is 
active for the duration of the MVSSERV session. 

NOTE: For any failure, MVSSERV issues diagnostic messages to the external trace 
data set only if the TRACE or IOTRACE command option is in effect. 

The external trace data set contains sequential messages issued during the 
MVSSERV session. These messages are followed by the internal execution path 
trace table. 

Internal Execution Path Trace Table 

TRACE Option 

An entry is made in the internal execution path trace table whenever one MVSSERV 
module calls another. Thus, the internal execution path trace table provides a 
history of module calls. Internal execution path trace table entries are of the form 
"Txxx" or "Txxxx," such as "TIOR" or "TRUTR." 

A total of 256 entries is provided in the internal execution path trace table. Though 
they are sequential, the entries do not necessarily begin at zero and end at 255 
because this is a wrap-around data set. That is, after the 256th entry is made, the 
data set begins overwriting itself starting from zero again. 

Message CHSTTPOlI always precedes the internal execution path trace table. This 
message states that the internal trace table follows and provides the number of the 
last entry in the table. 

To read the history of module calls correctly, you begin with the last entry (for 
example, number 18 in the trace data set illustration in Figure 10-1) and proceed in 
descending order. When you reach entry 000, you go to entry 255 and continue in 
descending order until you reach the identified last entry again. 

You use the TRACE option of the MVSSERV command to record the following 
information in the external trace data set: 

• Connectivity Programming Request Block (CPRB) requests and replies. 

• VMjPC allocate messages. 

• Internal execution path trace table. 

• Informational and error messages. These messages provide data about the 
MVSSERV environment that was created, and a history of service requests for 
the current session. 

Entries are made in the external trace data set for other MVSSERV processing, such 
as pressing the PF3 key to end an MVSSERV session. A sample trace data set 
obtained using the MVSSERV TRACE option is shown in Figure 10-1. 

10-2 TSO/E System Diagnosis: Command Processors, E-S LY28-141S-0 Q Copyright IBM Corp. 1987 



"Restricted Materials of IBM" 
Licensed Materials - Property of IBM 

MVSSERV Command 

Note that message CHSTRROlI (see arrow) does not display the contents of the 
CPRB because the TRACE option does not record control block data or the actual 
communication transmission data that is sent and received. 

CHSCMI82I The control unit supports Read Partitioned Queries. 
CHSTCA13I OFT access method driver is active. 

----> CHSTRR8lI CPRB request at 12:37:87 server=SERVER2 function=8eel: 
CHSRUTR86I Server request failed; SERVER2 is in an inactive task. 
CHSOCOMe9I User pressed the PF3 key, requesting termination. 
CHSCPS8SI MVSSERV is ending. 
CHSTTP8lI Internal trace table follows. Last entry is 8lS: 
CHSTTP82I 888 TIOR e8l TIOR 882 TIOR 883 TIOR 
CHSTTP82I 884 TIOR 885 TIOR 886 TIOR 887 TIOR 
CHSTTP82I 8eS TIOR 889 TIOR 818 TIOR 811 TIOR 
CHSTTP82I 812 TIOR 813 TIOR 814 TIOR 815 TIPM 
CHSTTP82I 816 TIOR 817 TIOR 8lS TTTP 819 TIOR 
CHSTTP82I 828 TSRV 821 TRUTR 822 TRUTR 823 TRUTR 
CHSTTP82I 824 TRUTR 825 TCMI 826 TUMP 827 TIOR 
CHSTTP82I 82S TOCA 829 HRES 838 TO COM 831 TCH7 
CHSTTP82I 832 TC7H 833 PACK 834 TINF 835 TTRL 
CHSTTP82I 836 TLMP 837 TIOR 838 HQNL 839 TOCOM 
CHSTTP82I 848 TCH7 841 TC7H 842 PRNL 843 TINF 
CHSTTP82I 844 TTRL 845 TUMP 846 TIOR 847 HQNL 
CHSTTP82I 848 TOCOM 849 TCH7 858 TC7H 851 PRNL 
CHSTTP82I 852 TINF 853 TTRL 854 TLMP 855 TIOR 

CHSTTP82I 252 HQNL 253 TOCOM 254 TCH7 255 TC7H 

Figure 10-1. Sample Trace Data Set Obtained Using MVSSERV TRACE Option 

LY28-1415-0 © Copyright IBM Corp. 1987 Chapter 10. MVSSERV Command Processing 10-3 



MVSSERV Command "Restricted Materials of IBM" 
Licensed Materials - Property of IBM 

IOTRACE Option 
You use the IOTRACE option of the MVSSERV command to record more compre­
hensive data to the external trace data set: 

• All data provided by the TRACE option. 

• The control block associated with each service request (request CPRB). 

• The actual data that is transmitted and received in communication trans­
missions. 

• VM/pC communication header data. 

• Structured fields associated with DFT communication protocol. 

A sample trace data set obtained using the MVSSERV IOTRACE option is shown 
in Figure 10-2. 

Note that message CHSTRROlI (see arrow) is followed by the contents of the CPRB 
when you use the IOTRACE option. The address under the message ID is the 
address in a dump where you can locate the same CPRB information. In 
Figure 10-2, the address of the CPRB is 02825E20. 

10-4 TSO/E System Diagnosis: Command Processors, E-S LY28-1415-0 @ Copyright IBM Corp. 1987 



"Restricted Materials of IBM" 
Licensed Materials - Property of IBM 

CHSCMI92I The control unit does not support Read Partitioned Queries. 
CHSTRH9lI Sent HRES at 12:38:96 sequence=OOElOO session=ooe length=00919: 
82825E94 99geeeeE eeooooee 2029... • .•.•• •• .••••••• •••••••• •••••••• • .•••••• 

CHSOCOM9lI The following data is about to be sent to VM/PC: 
GGG40969 F5C61149 40106010 7CI07CI0 704e4949 40C36e4e 494e4e49 69C84G49 4910F1 •• 

CHSOCOM12I Data received at 12:38:97. length=eege9924 RC=99900e18: 
9994D839 70494911 49C11149 C21149C3 11411C449 49494949 E4494949 494960C8 49114003 
aOa4D8S0 49114005 •••••••• •••••••• •.•.•••• •••••••• •••••••• •••••••• • ••••••• 

CHSTRH021 Received PACK at 12:38:07 sequencea 9gege session=OOEl length=ge919: 
8282642E 9geeeee2 49gee999 2929.... ........ ........ ........ ........ .. ...... 

CHSTRLelI VM/PC allocate request for CHSMVS • server lO=ooe4. 
CHSTRH91I Sent HQNL at 12:38:97 sequence=99991 sessiona 0ee lengtha 0ee49: 
82825E94 9OO100eS geeee91E 991F92FF e4CFDe82 822eC3C8 E204E5E2 4940E3a9 919CF0F0 
82825EB4 F9FlF9C3 C8eee4ED .............................................. .. 

--->CHSTRR91I CPRB request at 12:38:18 server=CHSDISK functiona 9991: 
92825E29 9199ge91 C3D7D9C2 99999900 ooeegeoo C3C8E2C4 C9E20249 ee eeeeel eeeeee99 
e2825E4e 009999ge eeeooooe eeee0050 02826CS8 ooooe0S0 02826CS8 e0 0aa018 02826C4e 
92825E69 9ge99918 02826C4e eege0000 e990ee99 eeeeeee9 eeeaeeoo 00 Geeeoo ooeeeaa0 
92825E8e egeeeee0 00eeeeee eee00000 eee00000 •••••••••••••••••••••••••••••••• 

CHSTRS9lI CPRS reply at 12:38: 18 RCc e9909999 CHSDISK RC=ooeeooee. 
CHSTRH9lI Sent HRIIL at 12:38:18 sequence=OOe96 session=ge2 length =ee998: 
82825E94 eeG69209 Geeoo9sa 200e7Gee eae9G0G9 9aeeeee9 eaeeege9 90958058 D9880A97 
82825E84 FC000200 01G099oo 00009299 91919009 geeeeeee ge0eeeee ee9aaeee aeee9900 
8282SED4 e0090000 189aeeee ee04CI09 E9C9064e 4eD9E64El 4940494e 40flF9Fl F2F9F949 
8282SEF4 4885 .......................................................... .. 

CHSOCOMa9I User pressed the PF3 k.ey. requesting tennination. 
CHSCPS98I MVSSERV is ending. 
CHSTTP911 Internal trace table follows. Last entry is 127: 
CHSTTPe2I 099 TTRT eel TUMP ee2 TIOR ee3 TUMP 
CHSTTP02I ee4 TIOR 005 PRNL 006 TIIiF ge7 TLG2 
CHSTTP021 ge8 TUMP G99 TIOR 919 HRFW 911 TDCOM 
CHSTTP02I 912 TTRH 913 TUMP 914 TIOR 915 TTRT 
CHSTTP02I 016 TUMP 917 TIOR 918 TUMP 019 TIOR 
CHSTTP02I 929 TCH7 921 TUMP 922 TIOR 923 TTRT 
CHSTTP02I 024 TUMP 925 TIOR 926 TLMP 027 TIOR 
CHSTTP92I 028 TLMP 029 TIOR 939 TTRT 031 TUMP 
CHSTTP021 932 TIOR 933 TUMP 934 TIOR 035 TLMP 
CHSTTP92I 936 TIOR 037 TUMP 938 TIOR 039 TLMP 
CHSTTP921 949 TIOR 041 TC7H 942 TTRH 043 TLMP 
CHSTTP92I 044 TIOR 045 TTRT 946 TUMP 947 TIOR 

CHSTTP921 252 PQNL 253 TOCPS 254 TRUT 255 TRUTR 

Figure 10-2. Sample Trace Data Set Obtained Using MVSSERV IOTRACE Option 

MVSSERV Command 

LY28-1415-0 C Copyright IBM Corp. 1987 Chapter 10. MVSSERV Command Processing 10-5 



MVSSERV Command "Restricted Materials of IBM" 
Licensed Materials - Property of IBM 

Services used by MVSSERV 

Dumps 

The MVSSERV command processor uses the following MVS services: 

• Parse 
• Cell pool services 
• Supervisor services: 

TPUT,TPG,TGET,ENQ,DEQ,ESTAE,ABEND, 
- ATTACH, DETACH, POST, WAIT, 
- GETMAIN, AND FREEMAIN. 

• Data management services: 
• CATALOG, RENAME, SCRATCH, LOCATE, OBTAIN, BLDL, 
• STOW, PUTX, OPEN, CLOSE, GET, PUT, READ, WRITE. 

Dumps provide useful information for analyzing an MVSSERV error. You may 
find it useful to have a dump data set and dump suppression data set allocated for 
your MVSSERV session. If so, allocate them with a record length of 80 and a fixed 
or fixed blocked format, and the following ddnames: 

• Dump data set (ddname = SYSUDUMP, SYSMDUMP, or SYSABEND) 
• Dump suppression data set (ddname = CHSABEND). 

For example, you can allocate a dump data set and dump suppression data set by 
entering: 

ALLOCATE F(sysudump) da('myID.sysudump') LRECL(80) RECFM(F) 
ALLOCATE F(chsabend) da('myID.chsabend') LRECL(80) RECFM(F) 

Note: The LRECL for a sysudump is not always 80. Refer to MVS/Extended 
Architecture Diagnostic Techniques for information about which type of dump to use 
and options you may specify. 

MVSSERV may provide a SNAP dump, depending on the scope of the problem. If 
the dump for a particular ABEND has not been suppressed in the CHSABEND 
data set, a dump will be provided when a server or MVSSERV module fails. 
MVSSERV uses the dump suppression data set to determine what diagnostic action 
is necessary. 

MVSSERV provides a dump when: 

• An error occurs in MVSSERV and the dump for that ABEND was not sup­
pressed. 

• An error occurs in either a server or the initialization/termination program and 

- A dump is not provided in the servers recovery routine. 
- The server has no recovery routine. 

The terminal monitor program provides a dump when: 

• After issuing the MVSSERV command, you see the following messages and 
press the ENTER key: 

IKJ566411 MVSSERV ended due to an error. 
IKJ566401 abend code reason code __ _ 

10-6 TSO/E System Diagnosis: Command Processors, E-S LY28·1415·0 © Copyright IBM Corp. 1987 



"Restricted Materials of IBM" 
Licensed Materials - Property of IBM 

Using the Dump Suppression Data Set 

MVSSERV Command 

You use the dump suppression data set to specify which failures may be exempt 
from additional diagnostics. Each record in the data set contains an ABEND code, 
Reason code, and a field specifying the action to be taken if the failure matches 
these codes. 

The data set you allocate to CHSABEND must be comprised of SO-byte records in 
fixed or fixed blocked format as follows: 

OFFSET BYTES DESCRIPTION 
-----------

+6 3 EBCDIC ABEND code (hex) 
(user code is in decimal) 

+3 1 Reserved 
+4 4 EBCDIC Reason code (hex) 
+8 1 Reserved 
+9 1 EBCDIC dump action field: 

6 ::: Do not dump 
1 ::: SNAP dump 

+le 7fJ Reserved 

For more information about initializing the dump suppression data set, see TSO 
Extensions Programmer's Guide to the Server-Requester Programming Interface for 
MVS/ Extended Architecture. 

MVSSERV recovery searches the dump suppression data set to see if there is an 
entry corresponding to the ABEND and Reason codes for the failure. If there is a 
match, the recovery manager uses the dump action field to determine what action to 
take. If there is no match, the recovery manager defaults to providing a SNAP 
dump. Note that a SNAP dump cannot be issued unless you have pre-defined a 
SYSUDUMP, SYSMDUMP, or SYSABEND file name. 

If the recovery manager receives control with no SDW A available, processing ends 
and a dump is not issued. 

LY28-141S-0 C Copyright IBM Corp. 1987 Chapter 10. MVSSERV Command Processing 10-7 



MVSSERV Command 

MVSSERV Dump Information 

"Restricted Materials of IBM" 
Licensed Materials - Property of IBM 

The following is a list of diagnostic information found in a dump, along with the 
location of each item. Items that are the same for all dumps have the actual dump 
information next to them instead of a location: 

Completion code (ABEND code) •••••••••••••• RTM2WA Summary 
Abending program name ••••••••••••••••••••• RTM2WA Summary 
Abending program address •••••••••••••••••• RTM2WA Summary 
Registers at time of error •••••••••••••••• RTM2WA Summary 
PSW at time of error •••••••••••••••••••••• RTM2WA Summary 
SDWA address •••••••••••••••••••••••••••••• RTM2WA Summary 
SDWAVRA address ••••••••••••••••••.•••••••• SDWA address + x'194' 

The SDW A contains the following: 

Name of active load module •••••••••••••••• MVSSERV 
Level of active assembly module (RMIO) •••• JBB2369 
Recovery routine assembly module •••••••••• CHSTREC 
Recovery routine label •••••••••••••••••••• CHSTREC 
Component ID •••••••••••••••••••••.•.•••••• 28507 
Component 10 base ••••••••••••••••••.•••••• 5665 
Name of active assembly module •••••••••••• SDWA address + x'12C' 

The SDW A VRA contains the following: 

Address of CHSDCOM .••••••••••••••••••••••• SDWAVRA address + x'E' 
Address of CHSDCITT of failing task ••••••• SOWAVRA address + x'lE' 
Address of Execution Path Trace Table ••••• SDWAVRA address + x'36' 
Offset into Execution Path Trace Table •••• SDWAVRA address + x'50' 
State of failing task at ABENO •••••••••.•• SDWAVRA address + x'56' 
Registers at the time of failure ••••••.••• end of State of failing 

task field + x'02' 
Address of failing module's 

footprint area, if available •••••••••••• variable 

MAIN TASK FAILURE 
(if failure occurs in main task) .••••••••• variable 

or 
Name of initialization/termination 

program for failing task 
(if failure occurs in server task) •••••••• variable 

For information about finding and interpreting SOW A and SDW AVRA data in a 
dump, see TSO Extensions System Diagnosis: Guide and Index. 

TSO Extensions System Diagnosis: Guide and Index also provides information about 
reading messages, issuing traces and traps and calling IBM to report a problem you 
are unable to fix. 

10-8 TSOjE System Diagnosis: Command Processors, E-S LY28-1415-0 © Copyright IBM Corp. 1987 



"Restricted Materials of IBM" 
Licensed Materials - Property of IBM 

Trace Data Set Contents 

MVSSERV Command 

MVSSERV writes messages containing RTM2W A Summary information to the 
external trace data set during processing. Additionally, the external trace data set 
displays the contents of the Request CPRB in message CHSTRROlI when you use 
the IOTRACE option of the MVSSERV command. The address under the message 
ID is the address in a dump where you can locate the same CPRB information. This 
information is primarily useful for debugging a server error. (The CPRB is not ini­
tialized if a server is not invoked.) 

Following are examples of corresponding diagnostic information found in the mes­
sages section of a trace data set and the RTM2W A Summary in a dump. 

CHSCMI82I The control unit does not support Read Partitioned Queries. 
CHSREC81I Recovery manager CHSTREC received control. 
CHSREC82I ABEND code was S8C1. Reason code was 8881. 
CHSREC83I PSW at the time of error was 87801008 828245BA. 
CHSREC84I Registers 0 to 7 were: 
82825008 Oee292E4 82825008 82825E94 00829368 e280AF64 e082E860 ee8088e8 
CHSREC84I Registers 8 to 15 were: 
82889358 82825C68 08029190 02889930 02822058 808291C4 82822EDC 028245B8 
CHSREC06I Module=CHSTTRH • caller=CHSTDCOM. entry point=828245B8. 
CHSREC07I Displacement into failing module was 88088082. 
CHSOCA03E VM/PC access method driver failed before VM/PC session began. 
CHSCPS09E MVSSERV is ending; service error. Contact support personnel. 

Figure 10-3. Diagnostic Messages in a Trace Data Set 

LY28-1415-0 Q Copyright IBM Corp. 1987 Chapter 10. MVSSERV Command Processing 10-9 



MVSSERV Command 

COMPLETION CODE 
ABENOING PROGRAM NAME 
ABENOING PROGRAM AOOR 

REGS AT TIME OF ERROR 

RTM2WA SUMMARY 

840C1000 
MVSSERV 
a2801EFO 

"Restricted Materials of IBM" 
Licensed Materials - Property of IBM 

82825008 00e292E4 02825008 92825E94 00029368 0289AF64 0002E060 oooeooeo 
02899359 02825C60 99929190 92809939 92822059 000291C4 82822EOC 928245B8 

EC PSW AT TIME OF ERROR 07801000 828245BA 00020001 006FA127 
SOWACOMP eooaoooo 

RETURN CODE FROM RECOVERY ROUTINE-04,RETRY 
RETRY AOOR RETURNED FROM RECOVERY EXIT 8282284E 
RB AOOR FOR RETRY 906B0378 

CVT AOOR 
RTCT AOOR 
SCB AOOR 
SOWA AOOR 
SVRB AOOR 
PREV RTM2WA FOR THE TASK 
PREY RTM2WA FOR RECURSION 

OOF74890 
OOF34408 
006BB180 
Oe02FB40 
ee6F0459 
eeeOe009 
ooeoeooo 

ASIO OF ERROR IF CROSS MEMORY ABTERM 0099 
ERROR ASIO OOFE 

Figure 10-4. Diagnostic Information in a Dump 

10-10 TSO/E System Diagnosis: Command Processors, E-S LY28-141S-0 C Copyright IBM Corp. 1987 



"Restricted Materials of IBM" 
Licensed Materials - Property of IBM 

OPERATOR Command 

Chapter 11. OPERATOR Command Processing 

This section describes the logic of the OPERA TOR command. It emphasizes the 
flow of data and control information through buffers and tables, and contains 
detailed functional descriptions through the use of method of operations diagrams. 

LY28-1415-O C Copyright IBM Corp. 1987 Chapter 11. OPERATOR Command Processing 11-1 



~ 
N 
00 . 

Diagram 11.1. OPERATOR Command Processing (part 1 of 2) 

Input 

1 Check user authorization. 

CPPL 

2 Get line of input. 

Command Buffer 

3 Scan the input line for valid 
syntax. 

Input Line 

Terminal 4 Process subcommand. 

END 

• Terminate processing. 

HELP 

• Issue HELP information. 

• Mark HELP data set 
allocatable. 

Othar 

• Check for valid subcommand 
names and translate operands. 

• Execute OPERATOR command. 

• Validity check and execute 
subcommand. 

IKJSCAN 

SVC100 SVC34 



s; 
IV 
00 
I -.j>. -VI 
I o 

--

Diagram 11.1. OPERATOR Command Processing (part 2 of 2) 

Extended Description 

After the ESTAE and ATTEN exits are set up, SVClOO checks the user's authority to 
enter the OPERATOR command. Information is passed to SVClOO in the 
FIBPARMS parameter list. If the user is not authorized, OPERATOR will issue an 
error message and return control to the TMP. 

2 Use PUTGET to get a line of input from the terminal and to issue the command mode 
message if required. 

3 Scan the input line with IKJSCAN for valid syntax. If the subcommand syntax was 
invalid an error message is issued and PUTGET gets another line of input. 

4 Process OPERATOR subcommands. 

END 

• This routine is used to terminate processing due to an error or when an END sub­
command is issued by the terminal user to terminate OPERATOR command proc­
essing. SVClOO is used to stop active monitors and to issue SVC34 to schedule 
executions of the subcommand. All butTers are freed and service routines are 
deleted. Control is returned to the TMP. 

HELP 

• ATTACH the HELP command processor to send the terminal user the HELP 
information. If the ATTACH failed control passes to step 4-END. 

• When HELP is finished, use DAIR to mark data sets used by HELP as available 
for allocation. If DAIR fails, control passes to step 4-END. 

• Processing continues with step 2. 

Other 

• Check the subcommand name against a list of allowable names (DISPLAY, 
MONITOR, SEND. CANCEL. STOPMN and SLIP). If parameters were speci­
fied on the DISPLAY, MONITOR. CANCEL, STOPMN or SLIP subcommands, 
translate the operands to upper case for use by SVClOO. 

• Initialize the FIBPARMS parameter list and use SVClOO to validity check the 
storage. If the storage is acceptable, SVClOO invokes SVC34. SVC34 executes the 
OPERATOR command and sends it, along with a timestamp, to hardcopy log. If 
the validity check fails. an error message is issued to the terminal user. Processing 
continues with step 3. If there is an error other than validity, processing continues 
with step 4-END. 

Object Modules: [IUEElGO. [KJEE1AO. and IKJEE150 

Module Label 



-- KeStnCtea Matenals or HIM ,­
Licensed Materials - Property of IBM 

UUTPUT (;ommand 

Chapter 12. OUTPUT Command Processing 

This section describes the logic of the OUTPUT command. It emphasizes the flow 
of data and control information through buffers and tables, and contains detailed 
functional descriptions through the use of method of operations diagrams. 

LY28-1415-0 C Copyright IBM Corp. 1987 Chapter 12. OUTPUT Command Processing 12-1 



i-4 
N 
I 

N 

n 
o 
3 
3 
"" ::l p.. 

""0 ..., 
o 
('") 

" VI 
VI 
o ..., 
l" 

Diagram 12.1. OUTPUT Processing (Part 1 of 2) 

Input 

Reg 1 

CPPL 

Command Buffer 

From 
TMP 

Processing 

1 Check user authority to use the 
OUTPUT command. 

2 Check command syntax. 

3 Check user's authority to use 
the requested function. 

4 Process requested output. 

• Use subsystem to delete and 
change a destination. 

• To print a data set: 

a. Allocate print data set. 

b. Get SYSOUT data set 
name. 

c. Allocate SYSOUT data 
set. 

d. Process output. 

IKJEFF76 

Installation 
Exit 

DAIR 

Dynamic Allocation 

Dynamic 
. Allocation 



t"'" 
><! 
IV 
00 
I -.... -V. 
I 
o 

-\C 
00 
-...J 

Diagram 12.1. OUTPUT Processing (part 2 of 2) 

Extended Description 

Use SVCIOO to post the TMP (IKJEFTSC) requesting IKJEFF76 be attached under a 
parallel task structure. Information is passed to IKJEFF76 in the FIBPARMS param­
eter list. IKJEFF76 checks the user's authorization to enter the OUTPUT command. 
If the user is not authorized to enter foreground initiated background commands, the 
system issues an error message and returns control to the TMP. 

Object Module: IKJCT466 

2 Use parse to check the syntax of the command. 

Object Module: IKJCT469 

3 Use an installation exit to check the user ID for authorization to use the requested 
function on the job specified. If there is no installation exit the IBM supplied exit 
IKJEFF53 is used. 

4 

Object Module: IKJCT469 

Determine the operation to be performed: print, delete, or change the destination 
(station or class) of a data set. 

• To delete or change the destination of a data set, set up an interface to the sub­
system and request the subsystem to perform the requested operation. Return 
control to the TMP. 

Object Modules: IKJCT469.IKJCT462 

• To print a data set: 

a. Use dynamic allocation to allocate a PRINT data set via the DAIR inter­
face. 

Object Modules: IKJCT469. IKJCT473 

b. Use the job entry subsystem to select all system output data sets for a spe­
cific jobname and class. 

Object Module: IKJCT462 

c. Use dynamic allocation to allocate a system output data set by data set 
name. 

Object Module: IKJCT462 

d. Process the system output data set until an end-of-file condition or an 
attention. 

For an end-of-file condition, check for more data sets. If there are not 
more, return control to the TMP. 

For an attention, process the requested subcommand and all remaining 
data sets and return control to the TMP. 

Object Modules: IKJCT462. lKJCT470. lKJCT47J. lKJCT463 

Module Label 



"Restricted Materials of IBM" 
Licensed M:aterials - Property of IBM 

Chapter 13. PRINTDS Command Processing 

PRINTDS Command 

The PRINTDS command is used to print sequential data sets, members of a partitioned data set (PDS), or 
entire PDSs. The output can be directed to a system printer managed by the Job Entry Subsystem (JES), a 
JES remote destination (either a printer or another user ID), or a data set. 

Overview 

The PRINTDS command supports: 

• Sequential data sets, members of a partitioned data set, or entire PDSs. 
• Output descriptors. 
• Formatting of data. 
• Information stored in data set by the document composition facility (DC F). 

OUTPUT statements in a user's LOGON PROC can define various output characteristics and printer 
locations by associating them with a common name. This common name can then be specified on the 
OUTDES operand of the PRINTDS command. Thus, a user does not need to know the actual JES name of 
a printer or all of the operands needed to use it, only the common name (output descriptor) that references 
that printer. 

PRINTDS has three classes of parameters. Some parameters, like PAGELEN and CLASS, have a fixed 
default value. Others, like DCFfNODCF or TRCfNOTRC are set dynamically, based on other operands 
that were specified or based on data set attributes. Still other parameters, such as FLASH or CHARS, have 
no default values. For a description of PRINTDS parameters and defaults, see TSO Extensions 
Customization. 

Diagnosing a PRINTDS Problem 

This section describes diagnostic information provided to solve a problem with the PRINTDS command 
processor. Before going further you may wish to create a search argument and use it to search a problem 
data base to see if there is already a fix for the problem. For information about searching a problem data 
base, see TSO Extensions System Diagnosis: Guide and Index. 

PRINTDS Messages 

You can obtain online help for PRINTDS terminal messages by using the message ID with the HELP 
command after PRINTDS has ended: 

HELP PRINTOS MSG(message 10) 

For an explanation for an individual PRINTDS message, look up the message ID in TSO Messages. 

LY28-141S-0 © Copyright IBM Corp. 1987 Chapter 13. PRINTDS Command Processing 13-1 



PKlNTUIS (';ommand 

PRINTDS Return Codes 

"Restncted Matenals ot lUM" 
Licensed Materials - Property of IBM 

PRINTDS sets one of the following decimal return codes in register 15 during processing: 

• 0 - The data was successfully processed. 
• 4 - Processing completed but a warning message has been issued. 
• S - The input, output, or SYSOUT data set could not be used. 
• 12 - An error occurred during the processing of the PRINTDS command. 
• 16 - The installation exit requested termination of the PRINTDS command. 

PRINTDS Abend Processing 

PRINTDS sets the following CLIST variables to zero, unless an abend occurs during processing: 

• &SYSPABNCD - The abend code. 

• &SYSPABNRC - The abend reason code. 

If the PRINTDS command abnormally terminates, RTM issues a dump and the user receives a message indi­
cating that an error occurred. The PRINTDS command recovery routine frees any input and SYSOUT data 
sets and returns the environment to the state it was in prior to the issuing of the PRINTDS command. 

If an error occurs while writing to a TODATASET, the data that has been written to the data set up to the 
time of the error remains in the data set. This is often useful in determining the cause of the error or the 
exact point of failure. 

Services Used by PRINTDS 

The PRINTDS command processor uses the following services: 

• TSO services: 

DAIRFAIL Analysis (IKJEFFlS) - to analyze a dynamic allocation error. 
IKJPARS - TSO parse service. 
IKJEFF02 - Message issuing service. 
CLIST variable access routine (IKJCT441) - to set CLIST variables. 

• Data management services: 

- FIND, OPEN, CLOSE, PUT, GET, READ, CHECK 
- SYSNWF, SYSNADRLS, LOCATE, OBTAIN. 

/ 

• System"'inacros: 

GETMAIN, FREEMAIN, TIME, LINK 
LOAD,DELETE,ESTAE,SETRP,SNAP 
SVC 99 - dynamic allocation. 

PRINTDS Dump Information 

PRINTDS fills in the following information in the system diagnostic work area (SDW A) when it issues a 
dump: 

• SDW ACSCT -- active CSECT when the error occurred 
• SDW AMLVL -- module level 
• SDW AMODN -- load module name (IKJEFY50 or IKJEFY57) 

13-2 TSO/E System Diagnosis: Command Processors, E-S LY28-1415-0 C Copyright IBM Corp. 1987 



"Restricted Materials of IBM" 
Licensed Materials - Property of IBM 

• SOW AREXN -- recovery routine 
• SDW ARRL -- recovery routine label 
• SOW ACID -- component 10 
• SOWACIOB -- component 10 base 
• SOW ASC -- name of subcomponent (pRINTDS). 

PRINTDS Command 

PRINTOS fills in the following information in the SOW A variable recording area (SOW A VRA): 

• A header indicating that the PRINTOS command processor abended. 

• IKJPRCB control block information. including the control block name, address of the PRCB, PRCB 
version number and length. 

• Key VRAOAE, to prevent duplicate dumps. 

• Command buffer name, address. and length. 

For information about finding the SOW A and SOW A VRA in a dump, see TSO Extensions System Diag­
nosis: Guide and Index. 

TSO Extensions System Diagnosis: Guide and Index also provides information about reading messages, issuing 
traces and traps and calling IBM to report a problem you are unable to fix. 

Exit Considerations 

An optional PRINTDS initialization exit is invoked prior to the PRINTOS command's call to the parse 
routine to allow an installation to change those operands that have fixed default values. The 
TITLEjNOTITLE default value may also be changed, but this default may be ignored if it conflicts with the 
data set attributes. Operands that do not have defaults are ignored by PRINTDS when not specified by the 
user. 

For a description of the PRINTOS default values and the standard format exits provided for the PRINTDS 
command, see TSO Extensions Customization. 

Exit Recovery 

TSO provides a common recovery routine for the standard format exits. When an abend occurs while 
attempting to invoke an exit, or during exit processing, the recovery routine furnishes the following informa­
tion in the SOW A: 

• Load module name (IKJRTROl) 
• Active module name (IKJRTROI or the active exit name) 
• Level of the active module 
• Recovery module name (RTRESTAE) 
• Recovery label name (RTRESTAE) 
• Component 10 (28502) 
• Component 10 base (5665). 

The common recovery routine furnishes the following information in the SOW A VRA when issuing a dump: 

• Name of the exit handler parmlist. followed by its address. 
• Name of the abending exit. 

For unauthorized exits, a SNAP dump is issued; an SVC dump is issued for authorized exits. 

LY28-141S-0 C Copyright IBM Corp. 1987 Chapter 13. Printds Command Processing 13-3 



"Restricted Materials of IBM" 
Licensed Materials - Property of IBM 

PROFILE Command 

Chapter 14. PROFILE Command Processing 

This section describes the logic of the PROFILE command. It emphasizes the flow 
of data and control information through buffers and tables, and contains detailed 
functional descriptions through the use of method of operations diagrams. 

LY28·141S·0 ID Copyright IBM Corp. 1987 Chapter 14. PROFILE Command Processing 14-1 



Diagram 14.1. PROFILE Processing (part 1 of 2) 

Input Process 

F~m-+ TMP 
1 CBUF 

41 '" 1 Check for no operands. If none, Parse 
" r 

return to TMP . .. Chack syntax. 
~ CPPL .. 

2 Check parse output -
if invalid syntax 

ECT return to TMP. 
UPT 

--1 .. D 3 Set UPT to match operands. .. 
4 Check for character or line 

deletion change. 

S If LIST is specified, list users 
profile. 

6 Return to TMP. 



t( 
IV 
00 
I -"'" -VI 
I 

<:> 

-\0 
00 
-...J 

Diagram 14~1. PROFILE Processing (part 2 of 2) 

Extended Description 

Check the ECT for the presence of operands in CBUF (the command buffer). If there 
are none, list the users profile. 

Invoke parse to check the syntax of the operands. 

2 Check the parse return code. 

3 

4 

5 

6 

non-zero - means an operand was not valid and prompting failed. Issue an error 
message unless the return code indicates the user was in noprompt mode. Return to 
the caller in any case. 

zero - means parse was successful. 

Set the UPT (the user profile table) to conform to the user options, checked by parse. 

If a new line or character deletion character was among the operands, issue a STCC 
macro to change the terminal line or character deletion characters. Check the return 
code. 

• non-zero - means reissue a STCC macro with the former line or character delete 
characters, and issue an error message . 

• zero - means issue SVCIOO to update the PSCB with the new line-delete and 
character-delete change requests. 

If the operand LIST has been specified, list the users profile. 
\ 

Free storage, set the return code, and return to the TMP. 

zero - means successful processing. 

non-zero - means unsuccessful processing. 

Object Module: lKJEFT82 

Module Label 



"Restricted Materials of IBM" 
Licensed Materials - Property of IBM 

PROTECT Command 

Chapter 15. PROTECT Command Processing 

This section describes the logic of the PROTECT command. It emphasizes the flow 
of data and control information through buffers and tables, and contains detailed 
functional descriptions through the use' of method of operations diagrams. 

LY28-1415-0 © Copyright IBM Corp. 1987 Chapter 15. PROTECT Command Processing IS-1 



PROTECT Command 

~ ... 
~ 
0 
a: 
8 
'5 .. 
rZ 

I 
c! 

r: 
0 

"fi c: 
ai .; ~ ... 

'U e 1! 
,c 8 ! i s E S .. 

~ CD ... c: ! 'U ! ~ III 
~ ~ ; I u M l! CD u 
~ 6 ~ e 
(J Q. - N C') • -N 

'S ~ 
.-4 

i Q. 

:iE ~ ~ 

=r e e of! 
IL 

CII 
CII e 
~ 
oa = ; 
El 
Q 

~ 

t> 
~ 
~ 

° .-4 

iii 
.-4 

Ii .. 
tIQ 
CIII 

is -- ._--

15-2 TSO/E System Diagnosis: Command Processors, E-S 

"Restricted Materials of IBM" 
Licensed Materials - Property of IBM 

LY28-1415-O 4) Copyright IBM Corp. 1987 



l' 
-< N 
~ -
""" -v. . o 

-~ 

Diagram IS.I. PROTECT Command Processing (Part 2 of 2) 

Extended Description 

Use parse to scan and check the command for proper syntax. 

Possible messages: I KJ58 /021. I KJ581121 

2 After check the parse return code, move the control password, if one was specified, to 
the SVC 98 butTer. 

Possible message: lKJ581081 

3 If the data set name was not fully qualified, it is fully qualified using lKJEHDEF (the 
default service routine). 

Possible messages: lKJ581031. lKJ58111l. IKJ581121 

4 Check the function to be performed, and fill in the parameter list (SVCPARMS) for 
SVC 98 accordingly. The first byte of the parameter list contains a hexadecimal value 
indicating the function, as follows. 

X'OI' ADD an entry to the password data set. 

X'02' REPLACE an entry in the password data set. 

X'03' DELETE an entry from the password set. 

X'04' LIST protection, security counter, and optional data information of a pro­
tected data set. (The last 80 bytes of the password data set entry for this data 
set password is placed in the 80 byte butTer pointed to by the SVC parameter 
list.) 

Issue SVC 98 return control to the TMP issuing error messages, depending on the 
return code provided by SVC 98. 

Possible messages: IKJ58101l. lKJ581041. lKJ581051. IKJ581061. lKJ581071. 
IKJ581/o1.IKJ581121 

Object Module: IKJEHPRO 

Module Label 



"Restricted Materials or IBM" 
Licensed Materials - Property of IBM 

KAl.,;U~ V KT l.,;OmmanO 

Chapter 16. RACONVRT Command Processing 

Overview 

This chapter describes the operation of the RACONVRT command processor and its 
diagnostic aids. 

The RACONVRT command is an aid in converting information from the 
SYSl.UADS data set to the RACF data base. RACONVRT must be invoked 
authorized and you must have "RACF Special" authority to issue the command. 
When RACONVRT is invoked. it creates a CLIST data set containing the necessary 
commands to convert the TSO user information in the SYSl.UADS data set to a 
TSO segment within the RACF data base and to RACF resources. The 
RACONVRT utility: 

• Reads SYSl.UADS information and gathers the data pertinent to each user ID. 
• Creates RACF commands that create or update the RACF user profile to 

contain a TSO segment. 
• Defines resources to RACF and allows the user to access those resources. 

RACONVRT performs the following operations: 

• Obtains the necessary conversion information from SYSl.UADS. 
• Creates the RACF commands that will perform the conversion. 

A CLIST data set. 'user-prefix.IKJ.RACONVRT.CLIST. is created by the 
RACONVRT command. The members of this data set contain the commands 
created during execution of the command. After execution. these members can be 
edited by the installation to customize the conversion. 

The conversion is completed by executing the RUN member of the CLIST data set. 
This member contains commands to execute all of the data set members created by 
the latest RACONVRT command in the proper order to allow a successful conver­
sion. The members that are created are: 

• ADDUSER - contains commands necessary to define a user to RACF and to 
define a TSO segment within the newly-created profile. 

• AL TUSER - contains commands necessary to define the TSO segment within 
existing RACF user profiles. 

• DEFAUTH - contains commands necessary to define each of the TSO authori­
ties (OPERATOR. ACCOUNT. JCL. MOUNT. RECOVER) as RACF 
resources and the commands necessary to permit users to access each of the TSO 
authorities. 

• DEFPROC - contains commands necessary to define the TSO LOGON proce­
dures as RACF resources and the commands necessary to permit users to access 
the procedures. 

LY28-141S-0 0 Copyright IBM Corp. 1987 Chapter 16. RACONVRT Command Processing 16-1 



RACONVRT Command "Restricted Materials of IBM" 
Licensed Materials - Property of IBM 

• DEFACCT - contains commands necessary to define the TSO LOGON account 
numbers as RACF resources and permit users to access the account numbers. 

• DEFPERF - contains commands necessary to define the TSO LOGON perform­
ance groups as RACF resources and the commands necessary to permit users to 
access the performance groups. 

• RUN - contains commands necessary to invoke the other members, created by 
the latest RACONVRT command, in the proper order to complete the conver­
sion to the RACF data base successfully. 

Diagnosing a RACONVRT Problem 
This section describes diagnostic information provided to solve a problem with the 
RACONVRT command processor. Before going further you may wish to create a 
search argument and use it to search a problem data base to see if there is already a 
fix for the problem. For information about searching a problem data base, see 
"Creating a Search Argument" in TSO Extensions System Diagnosis: Guide and 
Index. 

RACONVRT ABEND Codes 
The RACONVRT command issues a system x'OIB' abend code. The following 
reason codes are associated with the abend code: 

• 4 - an unexpected return code was received from the RACROUTE macro. 

• 8 - an invalid data management request was passed to the RACONVRT 1/0 
routine. 

RACONVRT does not request a dump for the following system abend codes: 

• '913' 
• '13E' 
• 'x22' 
• 'x37'. 

16-2 TSO/E System Diagnosis: Command Processors, E-S LY28-1415-O © Copyright IBM Corp. 1987 



"Restricted Materials of IBM" 
Licensed Materials - Property of IBM 

RACONVRT Return Codes 

RACONVRT Command 

Following is a description of the return codes and reason codes that result from 
RACONVRT processing. The reason codes are associated with return code 64. 

EXIT NORMAL: 

Register 15 contains one of the following decimal return codes: 

o - Processing completed successfully. 

4 - Processing completed unsuccessfully, the recovery 
environment could not be established. 

8 - Processing completed unsuccessfully, the command was 
not invoked in an authorized state. 

12 - Processing completed unsuccessfully, the invoker has 
insufficient authority to issue the command. 

16 - Processing completed unsuccessfully, the command 
o~erand could not be parsed. 

20 - Processing completed unsuccessfully, IKJRUR04 and 
IKJEFA51 could not be loaded. 

24 - Processing completed unsuccessfully, storage for the 
necessary tables could not be obtained. 

28 - Processing completed unsuccessfully, the SYSl.UADS 
data set could not be opened. 

32 - Processing completed unsuccessfully, an I/O error 
occurred while reading the SYSl.UADS data set. 

36 - Processing completed unsuccessfully, RACF is not active. 

40 - Processing completed unsuccessfully, an error occurred 
during RACF processing. 

44 - Processing completed unsuccessfully, PUTGET failed when 
prompting the user with message IKJ56781A. 

48 - Processing completed unsuccessfully, the user has 
terminated RACONVRT. 

52 - Processing completed unsuccessfully, the CLIST data set 
is allocated with invalid attributes. 

56 - Processing completed unsuccessfully, the CLIST data set 
could not be allocated. 

60 - Processing completed unsuccessfully, the CLIST data set 
could not be opened. 

64 - Processing completed unsuccessfully, an I/O error occurred 
writing to the CLIST data set. 

L Y28-141S-0 © Copyright IBM Corp. 1987 Chapter 16. RACONVRT Command Processing 16-3 



KA~U~ V KT ~ommano 

RACONVRT Reason Codes 

The following decimal reason codes are associated 
with return code 64: 

4 - WRITE to the ADDUSER member failed. 

8 - STOW to create the ADDUSER member failed 

12 - WRITE to the ALTUSER member failed. 

16 - STOW to create the ALTUSER member failed. 

29 - WRITE to the DEFAUTH member failed. 

24 - STOW to create the DEFAUTH member failed. 

28 - WRITE to the DEFPROC member failed. 

32 - STOW to create the DEFPROC member failed. 

36 - WRITE to the DEFACCT member failed. 

49 - STOW to create the DEFACCT member failed. 

44 - WRITE to the DEFPERF member failed. 

48 - STOW to create the DEFPERF member failed. 

52 - WRITE to the RUN member failed. 

56 - STOW to create the RUN member failed. 

Services Used by RACONVRT 

"Restricted Materials of IBM" 
Licensed Materials - Property of IBM 

The RACONVRT command uses the following services during processing: 

• MVS system services: 

- ESTAE, GETMAIN, FREEMAIN, ABEND 
- TESTAUTH, LOAD, DELETE, ENQ, DEQ 
- SETRP, VRADATA, SDUMP, DYNALLOC (SVC 99). 

• TSOjE services: 

- Parse, PUTLINE, PUTGET. 

• Data management services: 

- OPEN, READ, WRITE, CHECK 
- STOW, CAMLST, CLOSE, LOCATE, OBTAIN. 

• RACF services: 

- RACXTRT. 

16-4 TSO/E System Diagnosis: Command Processors, E-S LY28-141S-0 C Copyright IBM Corp. 1987 



"Restricted Materials of IBM" 
Licensed Materials - Property of IBM 

RACONVRT Dump Information 

RACONVRT Command 

RACONVRT issues an ESTAE macro to invoke a recovery routine. If an abend 
occurs. control passes to the recovery routine. which furnishes the following diag­
nostic information in the system diagnostic work area (SDW A): 

• Load module name (RACONVRT) 
• Active module name 
• Level of the active module 
• Recovery module name (lKJRUR03) 
• Recovery label name (lKJRUR03) 
• Component ID (28502) 
• Component ID base (5665) 
• A functional description of the RACONVRT utility. 

The recovery routine furnishes the following information in the SDW A variable 
recording area (SDW A VRA): 

• Name of the abending module 
• Name and address of the common work area (lKJRUCW A) 
• Name and address of the recovery work area (lKJRURW A) 
• Name and address of the 1/0 work area (lKJRUIO). 

For information about finding the SDW A and SDW AVRA in a dump. see TSO 
Extensions System Diagnosis: Guide and Index. 

TSO Extensions System Diagnosis: Guide and Index also provides information about 
reading messages. issuing traces and traps and calling IBM to report a problem you 
are unable to fix. 

LY28·1415·0 C Copyright IBM Corp. 1987 Chapter 16. RACONVRT Command Processing 16-5 



"Restricted Materials of IBM" 
Licensed Materials - Property of IBM 

RECEIVE Command 

Chapter 17. RECEIVE Command Processing 

For a complete description of diagnosing a problem with the RECEIVE command, 
see the TRANSMIT command processor description in TSO Extensions System 
Diagnosis: Command Processors. T-Z. 

LY28-1415-0 © Copyright IBM Corp. 1987 Chapter 17. RECEIVE Command Processing 17-1 



"Restricted Materials of IBM" 
Licensed Materials - Property of IBM 

RENAME Command 

Chapter 18. RENAME Command Processing 

This section describes the logic of the RENAME command. It emphasizes the flow 
of data and control information through buffers and tables. and contains detailed 
functional descriptions through the use of method of operations diagrams. 

LY28-14IS-0 CI Copyright IBM Corp. 1987 Chapter 18. RENAME Command Processing 18-1 



~ 
f 
c r:' ::s o 
'" !i!. 

B 
00 , -~ -VI 

6 
o 

f 
:I. 

ea-

Diagram IB.l. RENAME Command Processing (part 1 of 2) 

Input Process 

Register 1 

t CPPL ~-t ~ 

TMP 1 Check command syntax. ,. , 
2 Scan for asterisks and validity 

check asterisks. ... 
,. 

~ Command Buffer ... 
3 Build catalog information RENAME 

parameter list. 

4 Build new data set names. 
~ 

,. 

5 A lIocate data set. Is this rename 
... 

member or rename dota set? ,. 

PDS Member DataSet 

6 a Open and verify 6 

7 a Assign alias or replace 7 
member name. Then 
clase and free. S 

S a Process next step (2). 
9 Retum when all 

processed. 

Parse 

r 

Syntax Check 
~ 

P' 

Defoult Routine 

r Fully qualifies data set name J 
Catalog Information Routine 
I .. 

P' Provide data 
set names or 

index .. 

Alloca~-! Routine 
-'" 

b Uncatalog old data set. 

b Rename data set. 

b Catalog new data set. 

b Process next data 
set. Return when all 
processed. 



8 Diagram 18.1. RENAME Command Processing (part 1 of l) t::~ n n 
00 

Exteadecl Description 
g fI.I 

I Module Label is -0l:Io 

a:~ - 1 The parse subroutine syntax checks the command. VI 
Q Possible nuwages: IXJ582021. IXJS82231 ~3: 
«) 

Storage is obtained for work areas. ~.~ 
C"l ;; ::I. 

~ 1 A user ID is prefixed if necessary. The data set name is scanned for asterisks. If none, I~ 
::I. prompting is done for any necessary qualification of data set names by the default ~g, ~ routine. Then operation continues from step 4. If asterisks are found. they are o~ ... 

checked to ensure that they occur in the same relative position within the fully quall- 'g= ~ = fied data set names. ~~ a: 
Q Possible messages: IXJS82061. IKJS82081. IXJS82091. IXJS82181. IXJS822SI. e, 

IXJS82271. ~ 

'9 ~ - 3 If asterisks were found, the catalog information routine is used to look up candidates 
\0 for renaming. 00 
-.J 

Possible messages: IXJ58201l. IKJS82191 

4 The new data set names are built in preparation for the renaming operation. 

Possible nuwages: IXJS820SI. IKJS82081 

5 Allocation is done to make use of the system enqueueing facility which ensures that the 
data set is not renamed while some other user is using it. (Also, this enables the 
OPEN and CLOSE operation for partitioned members.) 

C"l Possible messages: IXJS8201I. IKJS82021.IKJ582111. IXJ582121./KJ58213/. 

i IKJ582141.IJCJ582151.IXJS82271.IKJ5822SI.IKJS82291 

6a OPEN and BLDL are used to open the PDS . ... - Possible messages: IKJS82031. IKJ582041. IKJS82071. IKJ582171 
!XI 

~ 
7a STOW is used to assign the alias or new member name. 

Z Possible messages: IKJ582071. IKJ582171. IKJ58i231. IJCJS82261 

> Be The data set is closed and unallocated. a: 
tt:I Pos.rible nuwages: IKJ58201I. IKJ582071. IKJ582161. IKJS82221. IKJ582241 

i 6b CATALOG is used to uncatalog an old data set. 

Possible messages: IKJ582/01 = l 7b RENAME is used to rename the data set. 

~ l Possible messages: IXJS82071. IKJS82301 
til lib CATALOG is used to catalog a neW/data set. fI.I 
fI.I 

~. Possible nuwages: IXJ582271. IKJS82281. IXJS82301 i """ 
9b Repeat from step 4, if applicable. 

QO i. ~ Object Module: IKJEHREN 



"Restricted Materials of IBM" 
Licensed Materials - Property of IBM 

Chapter 19. RUN Command Processing 

RUN Command 

This section describes the logic of the RUN command. It emphasizes the flow of 
data and control information through buffers and tables, and contains detailed func­
tional descriptions through the use of method of operations diagrams. Figure 19-1 
is the visual table of contents for the RUN command. 

19.1 

RUN 
Command 
Processing 
Overview 

19.2 

Building 
a RUN 
Command 
List 

Figure 19-1. RUN Command Processing Visual Table of Contents 

LY28-1415-0 IC Copyright IBM Corp. 1987 Chapter 19. RUN Command Processing 19-1 



r 
-< 
tv 
oc , 

Diagram 19.1. RUN Command Processing Overview (Part 1 of 2) 

Input 

RUN Command 

Standard TMP - Proce,sor Interface 

From 
TMP 

Process 

1 Scan for command. 
Syntax check. 

2 Determine dsname and verify. 

Determine data sct type. 

Fill in WORKAREA 

3 Build command 

list and list source 
descriptor. 

4 Ploce list on input ,tack. 
Then return to TMP. 

r-
I 

Parse 

Output 

Input Stack ,----., 
I I 

~~L--=~ __ ~ __ ~ I 

D 



-~ 

Diagram 19.1. RUN Command Processing Overview (part 2 of 2) 

Extended Description 

IKJEFROO uses parse to scan and syntax check the RUN command. Prompting 
occurs if required parameters are missing or if syntactically incorrect parameters are 
present. 

2 Upon return from parse, the return code is checked. If an error was encountered, a 
message is issued to the user; otherwise, processing continues. 

3 

Control passes to a routine that examines the specified data set or member name and 
places applicable information into a buffer in WORKAREA. If the data set is fully 
qualified, an indicator is set. If a password is specified, the password and length are 
placed in WORKAREA. 

Then the data set type (ASM, etc) is determined and placed in the data set type buffer 
of WORKAREA. Parse is again used, if necessary, to prompt for the data set type. 

DAIR is then given control to search for a data set having the specified name. First 
the set of currently allocated data sets is searched; then if necessary, the system catalog. 
If the data set is found, processing continues; otherwise, the user is prompted for a 
respecification, and another search is made. 

When a data set is verified as existing, storage is obtained in shared subpool 78 for an 
in-storage command list and a table (the list source descriptor) describing the list. See 
Diagram 19.2 for details of this operation. 

4 After the in-storage command list and list source descriptor are built, the address of 
the list source descriptor is placed in the STACK parameter list and control is passed 
to stack. This routine places the command list on the input stack. 

Then control returns to the TMP. The TMP will select the next command from the 
top of the input stack. 

Object Module: lKJEFROO 

Module Label 



t"" 
to( 
N 

1 00 
I ..... 
~ 

VI 

6 
0 
(") 
0 

"0 
'< 
::3. 

a-.... = ~ 
g 
.p 
..... 
\D 
00 
-.J 

Diagram 19.2. Building a RUN Command List (part 1 of 2) 

Input 

WORKAREA 

See below. 

Process 

Fram 

Dlogl ........ ~ 
19.1..1 1 

2 

MBRBUF 

PASSBUF 

QUALBUF 

Calculate amount of storage 
required. 

Build Cammand list and List 
Source Descriptor. 

I I 

Output 

I 

List Source Descriptor Command List Buffers 

b 

a .... 
Various buffers far 

c cammands, 
d parameters, etc. 

Reserved 
For eXCllllple; 
CMDNAME, DSNPARM, 
etc. 

a -- + command list. 
b -- indicates variable 

recorder. 
c -- command I ist length. 
d -- + next byte. 

WORKAREA 

} --- Parse parameter list information. Diag 
19.1 

Set to value by STACK 
) ---STACK parameter list. 

• List Source Descriptor 

} DAIR parameter list. 

DSNBUF 
DSLENG 

Cammunication ECB 

} Service routine parameter list • 

MBRLENG 
MBRNAME Buffer for member lIOIIIe, if any, and length .. 

PASSLENG Buffer for password, if any, and length. 
PASS NAME 

Buffer for right-hand qualifier 
of data set name. 

~ 
(II 
\:I 

S. 
~~ 
s-f! 
::3. :!. 
II' n ;;'a, 
I~ 

::Pa o (II 
"0 ::3. (lie. 
a'" oe. ......... ....= = a:: a:: = 



B 
00 • -.". -v. 
b 

-\0 
00 
-...l 

Diagram 19.2. Building a RUN Command List (part 2 of 2) 

Extended Description 

1 WORKAREA fields and parse information previously located through the PDL are 
examined to calculate the amount of storage required for the command list. Included 
in the calculation are: 

• The length of the list source descriptor (16 bytes). 

• The size of the compiler command. 

• The length of the data set name. 

• Compiler parameters, if any. 

• LOADGO command size (for ASM, FORT, PLI with OPT operand. or COBOL). 
This size includes control information length; LOADGO length; LOADGO data 
set name length; the length of the WHENfEND command. which is used to 
prevent execution of the program in the event the compiler does not complete suc­
cessfully; parameter information, if any; COBLIB. PLiBASE, and FORTLIB 
length (for COBOL, PLI with OPT operand. and FORT data sets. LIB operand 
length, including the length of the data set list contained within parentheses). 

2 The parameters are checked for validity with compiler types. Issue a message if they 
are invalid. 

The command list and list descriptor are built. The list source descriptor is filled in as 
the command list is CODStructed. 

First, the compiler command (type) is built .. Control information consists of a two­
byte length field followed by two bytes containing O. The compiler command is moved 
to the appropriate butTer (CMDNAME). 

Then the data set name is moved to the command list butTer (DSNPARM). 

If a compiler parameter is specified (for BASIC. IPLI. or GOFORT). it is placed in the 
butTer, along with the parameter length. 

If the compiler is ASM, FORT. PLI with OPT operand. or COBOL, the WHEN 
command is built and placed in the list. Then the LOADGO command is created. 
This consists of placing in the buffer the proper data set name, applicable parameters. 
and for the FORT, PLiBASE, and COBOL data sets. FORTLIB or COBLIB. respec­
tively. The length of the LOADGO command is pllH:ed in the control field. 

After the command list is complete, it is pIlH:ed on the input slack (see step 4 of 
Diagram 19.1). 

Object Module: IKJEFROO 

Module Label 



"Restricted Materials of IBM" 
Licensed Materials - Property of IBM 

SEND Command 

Chapter 20. SEND Command Processing 

Overview 

SEND provides the facility to send short messages from a TSO user, background 
job, or operator to a TSO user. The message is displayed on the terminal if that 
user is logged on. The sender may request that a message sent to a user who is not 
logged on be stored for the receiver. Such messages can be retrieved using the 
LISTBC command. The sender may request that a message be stored even if the 
receiver is logged on. 

The SEND (and LISTBC) function allows messages to be stored in a separate log 
for each user. PARMLIB settings allow the installation to supply a data set name 
for this log. Exits are provided to allow the installation to modify the data set name 
based on the parameters passed to the SEND command. This data set name may 
refer to a member of an existing PDS of each TSO user. If the data set name, as 
defined in PARMLIB and modified by the pre-save, pre-display, or initialization 
exit, is not found in the catalog, it is created for the user during LISTBC processing. 

Instead of individual logs, the installation may choose to continue the use of 
SYS1.BRODCAST as a message repository. This may be done by setting the 
LOGNAME field in PARMLIB to 'SYSl.BRODCAST'. If user logs are not being 
used, only the initialization and termination exits are invoked. 

LISTBC displays the notices found in SYSl.BRODCAST. LISTBC displays mes­
sages that have been stored for the user in the user's private log, if one has been 
defined. At the option of the installation, it also lists any messages for the user 
found in SYSl.BRODCAST. For SEND, as for LISTBC, PARMLIB and exits are 
used to determine the data set name of the user's private log. An exit allows the 
installation to process the message text before display. After reading and processing 
the messages, LISTBC removes the messages from the user's iog and/or 
SYS1.BRODCAST. 

Log Storage Implications 
User logs impact direct storage access device utilization. If each user has a new file 
dedicated to the SEND log, a minimum of one track will be used for each user. The 
installation may choose to set LOGNAME to a member of a file most users already 
have or exits can be used to implement other access methods that require less than 
one track per user. 

LY28-141S-0 C Copyright IBM Corp. 1987 Chapter 20. SEND Command Processing 20-1 



SEND Command "Restricted Materials of IBM" 
Licensed Materials - Property of IBM 

Diagnosing a SEND Problem 
This section describes diagnostic information provided to solve a problem with the 
SEND command processor. Before going further you may wish to create a search 
argument and use it to search a problem data base to see if there is already a fix for 
the problem. For information about searching a problem data base, see "Creating a 
Search Argument" in TSO Extensions System Diagnosis: Guide and Index. 

SEND Return Codes 
SEND provides the following decimal return codes if user logs are being used: 

o -- Message was successfully sent for display; all users received 
4 -- Message successfully stored; user not logged on 
8 -- Message successfully stored; forced save 

12 -- Message was not displayed; user not logged on 
16 -- Message was not displayed; user's terminal is busy 
20 -- Message was not displayed; user not accepting messages 
24 -- Message was not stored; saving is not allowed 
28 -- Message was not stored, user log not available 
32 -- Message was not sent; installation exit denied access 
36 -- Message was not sent; SEND is not active 
40 -- Message was not sent; no such user 
44 -- Message was not sent; command not invoked authorized 
92 -- Message could not be sent; system error. 

If user logs are not being used, SEND issues the following decimal return codes: 

• 0 -- SEND processing was successful. 
• 12 -- SEND processing was not successful. 

Note: Because SEND propagates reason codes issued during processing of standard 
format exits, you may receive return codes other than those listed. For a description 
of standard format exit reason and return codes, see TSO Extensions Customization. 

SEND Abend Codes 
SEND does not issue any abend codes. The SEND command processor issues an 
SVC dump when an error occurs. It does not request a dump for the following 
system abend codes: 

• '913' 
• '13E' 
• 'x22' 
• 'x37'. 

Services Used by SEND 
The SEND command, as issued by a user and an operator, uses the following ser­
vices: 

• Data management services: 

OPEN, READ, WRITE, CHECK 
- CLOSE, BLDL, STOW. 

20-2 TSO/E System Diagnosis: Command Processors, E-S LY28-1415-0 0 Copyright IBM Corp. 1987 



"Restricted Materials of IBM" 
Licensed Materials - Property of IBM 

• MVS system services: 

GETMAIN, FREEMAIN, LOAD, DELETE 
ENQ, DEQ, WTO, TPUT, DYNALLOC (SVC 99) 
MGCR (operator SEND only). 

Only user SEND uses the following services: 

• TSO services: 

- Parse, TSO Service Facility 
- PUTLINE, STACK, TCLEARQ, DAIR. 

• MVS system services: 

MODESET, TESTAUTH, SETRP 
- VRADATA, SDUMP, LINK. 

SEND Dump Information 

SEND Command 

When an abend occurs, SEND furnishes the following information in the system 
diagnostic work area (SDW A): 

• Load module name (SEND) 
• Active module name 
• Level of the active module 
• Recovery module name (IKJEESO I) 
• Recovery label name (IKJEESOI) 
• Component ID (28502) 
• Component ID base (5665) 
• A functional description of the SEND command. 

SEND furnishes the following information in the SDW A variable recording area 
(SDW A VRA) when issuing a dump: 

• Name of the abending module 
• Name of the recovery work area, followed by its address. 

For information about finding the SDWA and SDWAVRA in a dump, see TSO 
Extensions System Diagnosis: Guide and Index. 

TSO Extensions System Diagnosis: Guide and Index also provides information about 
reading messages, issuing traces and traps and calling IBM to report a problem you 
are unable to fix. 

LY28-1415-0 © Copyright IBM Corp. 1987 Chapter 20. SEND Command Processing 20-3 



".I!.!".U \..ommano ··KestncteCl MatenalS ot lUM" 
Licensed Materials - Property of IBM 

Exit Considerations 
The SEND command processor invokes standard format exits that can change the 
processing of the command. For a description these exits, see TSO Extensions 
Customization. 

TSO provides a common recovery routine for the standard format exits. When an 
abend occurs while attempting to invoke an exit. or during exit processing, the 
recovery routine furnishes the following information in the SOW A: 

• Load module name (lKJRTROl) 
• Active module name (IKJRTROI or the active exit name) 
• Level of the active module 
• Recovery module name (RTREST AE) 
• Recovery label name (RTRESTAE) 
• Component 10 (28502) 
• Component ID base (5665) 

The common recovery routine furnishes the following information in the 
SOW AVRA when issuing a dump: 

• Name of the exit handler parmlist, followed by its address. 
• Name of the abending exit. 

For unauthorized exits, a SNAP dump is issued; an SVC dump is issued for author­
ized exits. 

20-4 TSO{E System Diagnosis: Command Processors, E-S LY28-14IS-0 e Copyright IBM Corp. 1987 



"Restricted Materials of IBM" 
Licensed Materials - Property of IBM 

Chapter 21. SUBMIT Command Processing 

SUBMIT Command 

This section describes the logic of the SUBMIT command. It emphasizes the flow of 
data and control information through buffers and tables, and contains detailed func­
tional descriptions through the use of method of operations diagrams. Figure 21-1 
is the visual table of contents for the SUBMIT command. 

21.1 

SUBMIT 
Processing 

21.2 

SUBMIT JCL 
Processing 

Figure 21-1. SUBMIT Command Processing Visual Table of Contents 

LY28-1415-0 @ Copyright IBM Corp. 1987 Chapter 21. SUBMIT Command Processing 21-1 



~ 
N 
00 . -.... -VI 

b 

. Diagram 21.1. SUBMIT Processing (part 1 of 4) 

From 
TMP 

nput· 

"Proceos Reg 1 

~ J ... 

lCPPL 

~ 1 Check user authorization. ... 

A I 2 Initialize history and 

i·Command Buffer 
control tables. 

I I 3 Use pane to check command 
syntax. 

4 Check pane return code. 

If return code il: 

• Zero, SUBMIT commend 
syntax Is valid. 

• 4 or 20, SUBMIT command 
syntax "Invalid. laue 
error message. 

6 Determine source of Input 
JCL and input data. Parse 
validity check exit indicates: 

• A valid data set name. 
Allocate date 1St. 

History Tabla 

HTEND 

HTENDLEN ... 
) • A valid SUBMIT· command . 

HTSUBAST ... Obtain and initialize Intemal 

HTPAUSE· buffer with JCL and data 
obtained from current source 

HTENDFLG of input. 

HTFBUF· 

6 

o Utput 

SVC~100 IKJEFF76 
~ -. i.. 

~ 

Parse' 

.. .. 

.. .. 

DAIR 

... .. 
.. .. 

PUTGET History Tabla 

... .. 

I 
HTFBUF 

~ 

... 
BUFAREA > 

y ~ I 
-.L 

BUFHEAD 

BUFRECS -



~ 
N 
00 
I -"" -VI 

o 

(') 
:r 
I\) 

't:S ... 
n ... 
N -
(I) 

C 
tI:J 
~ -""i 
(') 
0 

~ 
I\) 
=:I p.. 

'tI g 
n 
'" f!l. 
dil 
w 
I-' 

~ 

Diagram 21.1. SUBMIT Processing (part 2 of 4) 

Extended Description 

Use SVCIOO to post the TMP (IKJEFTSC) requesting IKJEFF76 be attached under a parallel 
task structure. Information is passed to IKJEFF76 in the FIBPARMS parameter list. 
IKJEFF76 chec;ks the user's authorization to enter the SUBMIT command. If the user is not 
authorized to enter foreground initiated background commands, the system issues an error 
message and returns control to the TMP. 

Object Module: lKJEFFOl 

Z Initialize history and control tables for SUBMIT processing. 

Object Module: lKJEFF04 

3 Use parse to chec;k the command syntax. Invoke parse validity chec;k exit IKJEFFI6 to get the 
fully qualified data set name from the default service routine and to check for unusual syntax 
errors. If the END keyword was specified, set the END nag on. If the PAUSE keyword was 
specified, set the PAUSE nag on. 

4 

5 

Object Module: lKJEFF04 

Check the parse return code. 

• If the return code is zero, the SUBMIT command syntax is valid. 

• If the return code is 4 or 20, the SUBMIT command syntax is invalid. If parse has not 
already issued an error message, issue an error message and, if necessary, prompt for valid 
data. 

Object Module: lKJEFF04 

If the parse return code is zero, determine the source of input JCL and input data: 

• If the user entered a data set name other than ., check for PAUSE or END. If PAUSE arid 
END are not present, use DAIR to allocate the input data sct(s) containing the JCL and 
data. If either PAUSE or END is present, invoke IKJEFF02 to issue a message informing 
the user that the keyword has been ignored. Then, using DAIR, allocate the input data 
sct(s) . 

• If the data sct name is ., then: 

Record the END characters and also whether PAUSE was specified. 

Obtain an internal butTer via a GETMAIN. If the attempt is unsuccessful, invoke 
message issuer routine IKJEFF02 to issue an error message. 

If the attempt is successful, prompt the user to enter the job stream. Use PUTGET to 
obtain the card images from the current source of input, e.g. terminal, CLiST. 

If a buffer is relurned and the card image information does nol match the END charac­
ters, check the length of the card image. If the length is greater than 80 characters, send 
the user an error message, prompting him to reenter the input data. If the length is valid 
(80 characters or less), save the card image in the internal job stream buffer. Update the 
counter to indicate the number of card images in the job stream. Continue reading card 
images. 

If a buffer is returned and the card image information matches the END characters, do 
not save the card image in the internal buffer. Instead, chec;k if PAUSE was specified. 
If PAUSE was specified, pass control to the user, prompting to indicate whether the job 
stream should be submitted. If user indicates YES, proceed to step 6. If NO, proceed to 
step 9. If PAUSE was not specified, proceed to step 6. 

Object Module: lKJEFF04 

Module Label 



5 
00 
I -.j>. 

v. 
b 

-\0 
00 
-.I 

Diagram 21.1. SUBMIT Processing (Part 3 of 4) 

Input 

History Table 

HTSUBAST 

I HTFBUF 

~ BUFAREA 
_1 

BUFHEAD 

BUFRECS 

History Table 

HTSUBAST 

HTFBUF 

BUFAREA , L 
r 

BUFHEAD 

BUFRECS 

I-

Process 

StepS ••• ~ 

6 Allocate job entry subsystem 
internal reader. 

7 Process JCL. 

~ 
~ 

8 If processing a list of data 
sets, process next data set. 

9 Clean up resources when no 
more jobs to process. 

Return 
toTMP 

nu'no,_;~ Allocation 

••• Step7 



B oa 
I 

~ -yo 
Q 

n 
cr 
~ 
lti ... 
N 
:-
en c: 
ttl 
a::: 
~ 
g 
§ 
I» 

5-

~ 
n 
fA 
fA 

Jr 
W 

""'" I 
U. 

Diagram 21.1. SUBMIT Processing (part 4 of 4) 

Exteocled Descripdon 

6 Use dynamic allocation to allocate a job entry subsystem internal reader and open the 
internal reader. 

Object Module: IKJEFFIS 

For an attention interruption or ABEND. the internal reader will be closed and the 
last job submitted will be nushed. 

Object Modules: IKJEFF20. IKJEFF1S 

7 Read and process JCL statements: 

• If the user entered a data set name other than ., the JCL statements and data are 
located in the input data set. Read and process the input data set. 

• If the data set name is ., the JCL statements and data are represented as card 
images in the internal buffer. Invoke the control routine. IKJEFF06, to process 
each image. 

Object Module: IKJEFFOS (See Diagram 21.2) 

8 If processing a list of data sets, return to step 7 to process the next data set in the list. 
If there are no more data sets to process, proceed to step 9. 

9 Clean up resources when there are no more files to process or when the user does not 
want his job stream submitted. If SUBMIT • was not specified, free the input data 
set(s). If SUBMIT • was specified, free the input buffer(s). In both cases, return 
control to the TMP after the resources have been cleaned up. 

Module Label 

~ 
~ 
~ 
Q 

I 
i 



t"' 
-< t-.) 
00 
I -..,. -VI 
I 

0 

@ 

n 
0 
"0 
'< 
::l. 

QQ 
cr ... 
..... = ~ 
n 
0 

-? -10 
00 
-..l 

Diagram 21.2. SUBMIT JCL Processing (part 1 of 2) 

Input 

Reg 1 

Current Statement" 

From 
Diagram 21.1 

1 Identify statement type. 

a. F;irst record of first data set. 

b. JOB statament. 

c. JCL statement that requires 
user exit. 

2 Write JCL or data statement. 

3 Check for end-of-job. 

Return to . ~ 
~ 

Output 

INTRDR 
Data Set 

§ 

C 
() 
<II 

= en 
<II 
Po 

~~ 
I» <II 
~ '" <II ~ 
::l. ::l. 
I» () 

~[ 
I~ 
~I» 
o ~ 
"0 ::l. 
tD I» 

Q-1iJ" 
0 o .... 

'"'> .... -= = a:;: 3:~ 



Diagram 21.2. SUBMIT JCL Processing (part 2 of 2) 

Exteaded DescriptiOD 

1 Identify the statement as data or type of JCL (scans for JOB, EXEC, DD *, DD 
DATA, IIXMIT, or /*XMIT. 

Object Module: IKJEFF07 

• First record that is Dot a subsystem control card for first data set and Dot a JOB 
statement, create a JOB statement. 

Object Module: IKJEFFOB 

• JOB statement. Verify that the job name is not equal to the user ID. If it is equal, 
the user is prompted for an identifying character. 

Object Module: IKJEFFIJ 

• JCL statement that requires user exit (IKJEFFIO) ror installation required proc­
essing. 

Object Modules: IKJEFF09, IKJEFFlO 

1 Write JCL or data statement to job entry subsystem internal reader data set. 

l Check for end-of-job. If an end-of-job, get a job ID from the job entry subsystem for 
the 'job submitted' message. If Dot end-of-job get the next statement. (See Diagram 
21.1) 

Object Module: IKJEFF05 

Module Label 



"Restricted Materials of IBM" 
Licensed Materials - Property of IBM 

SYNC Command 

Chapter ·22. SYNC Command Processing 

Overview 

The SYNC command processor formats broadcast data set and synchronizes the 
user IDs in that data set with the User Attribute Data Set (UADS) and/or the TSO 
segment of the RACF data base. Its use is necessary when the UADS is created; its 
use thereafter causes all existing mail messages in the broadcast data set to be 
deleted. 

SYNC formats the notices section of the broadcast data set to reserve room for the 
maximum number of broadcast messages. This maximum is set via the IK.JBCAST 
macro. For information about issuing this macro instruction, see the broadcast data 
set specification section in TSO Extensions Customization. 

SYNC formats the mail section of the broadcast data set with entries from the 
UADS and/or user IDs from the TSO segment of the RACF data base. This is done 
by reading directory entries for each user 10 in the UADS, and by extracting user 
IDs from the TSO segment of the RACF data base. 

A user must have TSO ACCOUNT authority in order to issue the'SYNC command. 
If the command is invoked with the BOTH or RACF operands. the command must 
also be invoked authorized. 

The RACF option has a dependency of RACF version 1.8 or higher being installed 
on the system. The BOTH option synchronizes the broadcast data set with the 
UADs data set if RACF version 1.8 or higher is not installed. 

RACF special authority is not needed to issue the SYNC command. The SYNC 
command should be used in off hours due because it needs exclusive access to fre­
quently used data sets. 

LY28-141S-0 tC Copyright IBM Corp. 1987 Chapter 22. SYNC Command Processing 22-1 



SYNC Command "Restricted Materials of IBM" 
Licensed Materials - Property of IBM 

SYNC Processing Summary 
To synchronize the user IDs in the UADS and/or the TSO segment of the RACF 
data base with the broadcast data set, the SYNC command processor formats both 
the notices and the mail sections of the broadcast data set. It reserves enough room 
in the notices section for the maximum number of broadcast messages specified by 
the IKJBCAST macro. In the mail section. SYNC formats one directory entry for 
each user ID it reads from the UADS and/or the TSO segment of the RACF data 
base. For a description of the broadcast data set, see the "Broadcast Data Set Inter­
face" section of the ACCOUNT command processor description in TSO Extensions 
System Diagnosis: Command Processors, A-D. 

Diagnosing a SYNC Problem 
This section describes diagnostic information provided to solve a problem with the 
SYNC command processor. Before going further you may wish to create a search 
argument and use it to search a problem data base to see if a there is already a fix 
for this problem. For information about searching a problem data base, see "Cre­
ating a Search Argument" in TSO Extensions System Diagnosis: Guide and Index. 

SYNC Return Codes 
The SYNC command provides a return code of zero upon successful synchronization 
of the broadcast data set. In all other cases, the SYNC command returns a decimal 
twelve return code. 

SYNC Abend Codes 
The SYNC command issues a system x'OIC' abend code. 

Zero is the only reason code; it denotes that an unexpected return code was received 
from the RACROUTE macro. 

The SYNC command processor does not request a dump for the following system 
abend codes: 

• 'x22' 
• 'x37' 
• '913'. 

SYNC requests an SDUMP for all other abend codes if the command was invoked 
authorized. Otherwise, it requests a SNAP dump. 

22-2 TSO/E System Diagnosis: Command Processors, E-S L Y28-1415-O Q Copyright IBM Corp. 1987 



"Restricted Materials of IBM" 
Licensed Materials - Property of IBM 

Services used by SYNC 

SYNC Command 

The SYNC command uses the following services during processing: 

• RACF services: 

- RACROUT interface to RACXTRT. 

• TSO services: 

Parse 
Message services (IKJEFF02) 
Broadcast data set I/O routine (IEEVSDIO) 
UADS read routine (IKJEFA51). 

• MVS services: 

TESTAUTH, ENQ, DEQ, SDUMP 
- Attention processing services (ST AX) 

Recovery services 
- Data management services. 

SYNC Dump Information 
The SYNC command processor provides the following information in the system 
diagnostic work area (SDW A): 

• Failing load module 
• Failing CSECT 
• Failing module level 
• Recovery CSECT 
• Recovery name 
• Component ID 
• Component ID base 
• Functional description of the command that failed. 

The SYNC command processor provides the following information in the SDW A 
variable recording area (SDW A VRA): 

• Name and address of the recovery work area (IKJRBBW A). 

For information about finding the SDWA and SDWA VRA in a dump, see TSO 
Extensions System Diagnosis: Guide and Index. 

TSO Extensions System Diagnosis: Guide and Index also provides information about 
reading messages, issuing traces and traps and calling IBM to report a problem you 
are unable to fix. 

LY28-141S-0 © Copyright IBM Corp. 1987 Chapter 22. SYNC Command Processing 22-3 



"Restricted Materials of IBM" 
Licensed Materials - Property of IBM 

Chapter 23. Directory 

This section presents a module directory for the EDIT command, followed by a 
directory for the rest of the commands described in this book. For a complete 
listing of all TSO data areas, see MVS/XA Data Areas (micr./iche). 

Directory for the EDIT Command 
Name Type Load Object Entry Alias M.O. Diag. 

E load IKJEBEIN IKJEBEIN IKJEBEIN 1.1 
EDIT Alias IKJEBEIN IKJEBEIN IKJEBEIN 
IKJEBEAA load IKJEBEAA IKJEBEAD 

IKJEBEAS 
IKJEBEDL 
IKJEBEDR 
IKJEBEDS 
IKJEBEDU 
IKJEBELO 
IKJEBEMV 
IKJEBERB 
IKJEBERR 
IKJEBEWA 
IKJEBEWB 
IKJEBEWP 
IKJEBEWR 
IKJEBEWS 
IKJEBESY 

Object IKJEBEAA IKJEBEAD 1.4, 1.5, 
IKJEBEAS 1. 7, 1.8 
IKJEBEDL 
IKJEBEDR 
IKJEBEDS 
IKJEBEDU 
IKJEBElO 
IKJEBEMV 
IKJEBERB 
IKJEBERR 
IKJEBEWA 
IKJEBEWB 
IKJEBEWP 
IKJEBEWR 
IKJEBEWS 
IKJEBESY 

IKJEBEAD Entry IKJEBEAA IKJEBEAA 
IKJEBEAE Object IKJEBEMA IKJEBEAE 1.1,1.2 

Entry IKJEBEMA IKJEBEAE 
IKJEBEAS Entry IKJEBEAA IKJEBEAA 
IKJEBEAT Object IKJEBEMA IKJEBEAT 1.1,1.3 

Entry IKJEBEMA IKJEBEAT 
IKJEBEBO load IKJEBEBO IKJEBEBO 

Object IKJEBEBO IKJEBEBO 1.9 
Entry IKJEBEBO IKJEBEBO 

LY28-141S·0 e Copyright IBM Corp. 1987 Chapter 23. Directory 23-1 



Name Type Load 

IKJEBECH Load 

Object IKJEBECH 
Entry IKJEBECH 

IKJEBECI Load 

Object IKJEBECI 

Entry IKJEBECI 
IKJEBECO Load 

Object IKJEBECO 
Entry IKJEBECO 

IKJEBEDA Load IKJEBEDA 
Object IKJEBEDA 
Entry IKJEBEDA 

IKJEBEDC Alias IKJEBEDR 
IKJEBEDC Object IKJEBERE 

IKJEBERU 
Entry IKJEBERE 
Entry IKJEBERU 

lKJEBEDE Load 
Object IKJEBEDE 
Entry IKJEBEDE 

IKJEBEDL Entry IKJEBEAA 
IKJEBEDO Load 

Object IKJEBEDO 
Entry IKJEBEDO 

IKJEBEDR Entry IKJEBEAA 
IKJEBEDS Entry IKJEBEAA 
IKJEBEDU Entry IKJEBEAA 
IKJEBEDX Alias IKJEBERE 

Object IKJEBERE 
IKJEBEEN Load 

Object IKJEBEEN 

Entry IKJEBEEN 
IKJEBEEX Alias IKJEBEEN 

Object IKJEBEEN 
Entry IKJEBEEN 

IKJEBEFC Load 
Object IKJEBEFC 
Entry IKJEBEFC 

IKJEBEFI Load 

Object IKJEBEFI 
Entry IKJEBEFI 

IKJEBEFO Load 
Object IKJEBEFO 
Entry IKJEBEFO 

23-2 TSO/E System Diagnosis: Command Processors, E-S 

Object 

IKJEBECH 
IKJEBESE 

IKJEBECH 
IKJEBECI 

IKJEBECI 
IKJEBECO 

IKJEBECO 
IKJEBEDA 

IKJEBEDA 
IKJEBEDC 

IKJEBEDC 
IKJEBEDC 
IKJEBEDE 

IKJEBEDE 
IKJEBEAA 
IKJEBEDO 

IKJEBEDO 
IKJEBEAA 
IKJEBEAA 
IKJEBEAA 
IKJEBEDX 

IKJEBEEN 

IKJEBEEN 
IKJEBEEX 

IKJEBEEX 
IKJEBEFC 

IKJEBEFC 
IKJEBEFI 
IKJEBESE 

IKJEBEFI 
IKJEBEFO 

IKJEBEFO 

"Restricted Materials of IBM" 
Licensed Materials - Property of IBM 

Entry AHas M.O. D;ag. 

IKJEBECH 
IKJEBESE 
IKJEBECH 1.10 

STAIEXIT 
STAERTRY 
STAEEXIT 
IKJEBECI 
STAIEXIT 1.16,1.21,1. 22, 
STAERTRY 1.25,1.28 
STAEEXIT 
IKJEBECI 

IKJEBECO 
IKJEBECO 1.21 

IKJEBEDA 
IKJEBEDA 1.16,1.21, 

1.25,1.28 
IKJEBEDC 
IKJEBEDC 1.24,1.25 
IKJEBEDC 

IKJEBEDE 
IKJEBEDE 1.12 

IKJEBEDO 
IKJEBEDO 1.13 

IKJEBEDX 1.24 
IKJEBEXT 
IKJEBEEN 
IKJEBEXT 1.1,1.14,1.28 
IKJEBEEN 

IKJEBEEX 
IKJEBEEX 1.4,1.14,1.22 

IKJEBEFC 
IKJEBEFC 1.16,1. 22,1. 26, 

1.27,1.29 
IKJEBEFI 
IKJEBESE 
IKJEBEFI 1.15 

IKJEBEFO 
IKJEBEFO 1.16 

LY28-1415-0 © Copyright IBM Corp. 1987 



"Restricted Materials of IBM" 
Licensed Materials - Property of IBM 

Name Type 

IKJEBEHE Load 
Object 
Entry 

IKJEBEIA Load 
Object 
Entry 

IKJEBEIN Alias 

Object 

Entry 
IKJEBEIP Load 

Object 
Entry 

IKJEBEIS Load 
Object 
Entry 

IKJEBELE Load 
Object 
Entry 

IKJEBELI Load 
Object 
Entry 

IKJEBELO Entry 
IKJEBELT load 

Object 
Entry 

IKJEBEMA load 

Object 

Entry 
IKJEBEMl load 
IKJEBEME load 

Object 
Entry 

IKJEBEMM Alias 
IKJEBEMR load 

Object 
Entry 

IKJEBEMS load 
Object 
Entry 

IKJEBEMV Entry 
Entry 

IKJEBEM1 load 
Object 
Entry 

L Y28-141S-0 Cl Copyright IBM Corp. 1987 

Load 

IKJEBEHE 
IKJEBEHE 

IKJEBEIA 
IKJEBEIA 
E 

E 

E 

IKJEBEIP 
IKJEBEIP 

IKJEBEIS 
IKJEBEIS 

IKJEBELE 
IKJEBELE 

IKJEBELI 
IKJEBELI 
IKJEBEAA 

IKJEBElT 
IKJEBElT 

IKJEBEMA 

IKJEBEMA 

IKJEBEME 
IKJEBEME 
IKJEBEMC 

IKJEBEMR 
IKJEBEMR 

IKJEBEMS 
IKJEBEMS 
IKJEBEAA 

IKJEBEM1 

Object Entry AHas M.O. Diag. 

IKJEBEHE IKJEBEHE 
IKJEBEHE 1.23 

IKJEBEHE 
IKJEBEIA IKJEBEIA 

IKJEBEIA 
IKJEBEIA 
IKJEBEIN IKJEBEIN 

IKJEBEIN EDIT 
IKJEBEIN E 1.1,1.18,1.22 
IKJEBEIN EDIT 

IKJEBEIN EDIT 
IKJEBEIP IKJEBEIP 

IKJEBEIP 1.18 
IKJEBEIP 
IKJEBEIS IKJEBEIS 

IKJEBEIS 1.18,1.19 
IKJEBEIS 
IKJEBELE IKJEBELE 

IKJEBELE 1.10,1.15, 
IKJEBELE 1.18,1.29 
IKJEBELI IKJEBELI 

IKJEBELI 1.20 
IKJEBELI 
IKJEBEAA 
IKJEBElT IKJEBELT 

IKJEBELT 1.21 
IKJEBElT 
IKJEBEAE IKJEBEAE IKJEBENT 
IKJEBEAT IKJEBEAT 
IKJEBEMA MAAERTRY 

IKJEBMA2 
IKJEBEMA 

IKJEBEUT IKJEBEUT 
MAAERTRY 1.1,1.2, 
IKJEBMA2 1.18,1.28 
IKJEBEMA 

IKJEBEMA 
IKJEBEMC IKJEBEMC IKJEBEMM 
IKJEBEME IKJEBEME 

IKJEBEME 1.22 
IKJEBEME 
IKJEBEMC 
IKJEBEMR IKJEBEMR 

IKJEBEMR 1.22,1.25 
IKJEBEMR 
IKJEBEMS IKJEBEMS 

IKJEBEMS 1.1 
IKJEBEMS 
IKJEBEAA 

IKJEBEMI 

Chapter 23. Directory 23-3 



Name Type Load 

IKJEBEM2 Load 
Object IKJEBEM2 
Entry 

IKJEBEM3 Load 
Object IKJEBEM3 
Entry 

IKJEBEM4 Load 
Object IKJEBEM4 
Entry 

IKJEBEM5 Load 
Object IKJEBEM5 
Entry 

IKJEBEM6 Load 
Object IKJEBEM6 
Entry 

IKJEBEM7 Load 
Object IKJEBEM7 

IKJEBEPD Entry IKJEBEPS 
IKJEBEPS Load 

Object IKJEBEPS 

Entry IKJEBEPS 
IKJEBERB Entry IKJEBEAA 
IKJEBERE Load 

Object IKJEBERE 
Entry IKJEBERE 

IKJEBERN Load 
Object IKJEBERN 
Entry IKJEBERN 

IKJEBERR Entry IKJEBEAA 
IKJEBERU Load 

Object IKJEBERU 
Entry IKJEBERU 

IKJEBESA Load 
Object IKJEBESA 
Entry IKJEBESA 

IKJEBESC Load 
Object IKJEBESC 
Entry IKJEBESC 

IKJEBESE Alias IKJEBECH 
IKJEBESE Object IKJEBECG 

IKJEBEFI 
Entry IKJEBECG 

IKJEBEFI 
IKJEBESU Load 

Object IKJEBESU 
Entry IKJEBESU 

IKJEBETA Load 
Object IKJEBETA 
Entry IKJEBETA 

23-4 TSO/E System Diagnosis: Command Processors. E-S 

Object 

IKJEBEM2 

IKJEBEM3 

IKJEBEM4 

IKJEBEM5 

IKJEBEM6 

IKJEBEM7 

IKJEBEPD 
IKJEBEPS 
IKJEBEPD 

IKJEBEPS 
IKJEBEAA 
IKJEBEDC 

IKJEBEDX 
IKJEBERE 

IKJEBERE 
IKJEBERN 

IKJEBERN 
IKJEBEAA 
IKJEBEDC 
IKJEBERU 

IKJEBERU 
IKJEBESA 

IKJEBESA 
IKJEBESC 

IKJEBESC 
IKJEBESE 

IKJEBESE 
IKJEBESE 
IKJEBESU 

IKJEBESU 
IKJEBETA 

IKJEBETA 

"Restricted Materials of IBM" 
Licensed Materials - Property of IBM 

Entry Alias M.O. Diag. 

IKJEBEPS 
IKJEBEPD 
IKJEBEPS 1.1 
IKJEBEPD 

IKJEBEDC IKJEBEDX 
IKJEBRE5 

IKJEBEDX 
IKJEBERE 
IKJEBERE 1.25 

IKJEBERN 
IKJEBERN 1.25 

IKJEBEDC IKJEBEDC 
IKJEBERU 
IKJEBERU 1.26 

IKJEBESA 
IKJEBESA 1.14,1.27 

IKJEBESC 
IKJEBESC 1.1,1.14,1.28 

IKJEBESE 1.19,1.15 
IKJEBESE 

IKJEBESU 
IKJEBESU 1.29 

IKJEBETA 
IKJEBETA 1.39 

LY28-141S-O C Copyright IBM Corp. 1987 



"Restricted Materials of IBM" 
Licensed Materials - Property of IBM 

Name Type 

IKJEBETO Load 
Object 
Entry 

IKJEBEUI Load 
Object 
Entry 

IKJEBEUN Load 
Object 
Entry 

IKJEBEUP Load 
Object 
Entry 

IKJEBEUT Alias 
Object 

Entry 

IKJEBEVE Load 
Object 
Entry 

IKJEBEWA Entry 
IKJEBEWB Entry 
IKJEBEWP Entry 
IKJEBEWR Entry 
IKJEBEWS Entry 
IKJEBESY Entry 
IKJEBEXT Entry 
IKJEBMA2 Entry 
IKJEBRE5 Alias 
MAAERTRY Entry 
STAEEXIT Entry 
STAERTRY Entry 
STAIEXIT Entry 

LY28-141S-0 @Copyright IBM Corp. 1987 

Load 

IKJEBETO 
IKJEBETO 

IKJEBEUI 
IKJEBEUI 

IKJEBEUN 
IKJEBEUN 

IKJEBEUP 
IKJEBEUP 

IKJEBEMA 
IKJEBEUT 
IKJEBEMA 
IKJEBEUT 

IKJEBEVE 
IKJEBEVE 
IKJEBEAA 
IKJEBEAA 
IKJEBEAA 
IKJEBEAA 
IKJEBEAA 
IKJEBEAA 
IKJEBEEN 
IKJEBEMA 
IKJEBERE 
IKJEBEMA 
IKJEBECI 
IKJEBECI 
IKJEBECI 

Object Entry Alias M.O. Diag. 

IKJEBETO IKJEBETO 
IKJEBETO 1.31 

IKJEBETO 
IKJEBEUI IKJEBEUI 

IKJEBEUI 1.1,1.4 
IKJEBEUI 
IKJEBEUN IKJEBEUN 

IKJEBEUN 
IKJEBEUN 
IKJEBEUP IKJEBEUP 

IKJEBEUP 1.33 
IKJEBEUP 
IKJEBEUT IKJEBEUT 

IKJEBEUT 1.4 
IKJEBEUT 

IKJEBEUT 
IKJEBEUT 
IKJEBEVE IKJEBEVE 

IKJEBEVE 1.34 
IKJEBEVE 
IKJEBEAA 
IKJEBEAA 
IKJEBEAA 
IKJEBEAA 
IKJEBEAA 
IKJEBEAA 
IKJEBEEN 
IKJEBEMA 

IKJEBEMA 
IKJEBECI 
IKJEBECI 
IKJEBECI 

Chapter 23. Directory 23-5 



"Restricted Materials of IBM" 
Licensed Materials - Property of IBM 

The following module information relates to the command processors documented in 
this book (except EDIT). 

Name Type Load Object Entry Alias M.O. Diag. 

AKJLKL91 Object AKJLKL91 AKJLKL91 LINK/LOADGO 
Entry AKJLKL91 AKJLKL91 LINK/LOADGO 

AKJLKL92 Object AKJLKL02 AKJLKL92 LINK/LOADGO 
Entry AKJLKL92 AKJLKL92 LI NK/LOADGO 

AKJLKMSG Object AKJLKL91 LINK/LOADGO 
EX Alias EXEC IKJCT430 IKJCT439 EXEC 
EXEC Load IKJCT439 IKJCT439 EX EXEC 

I KJCT43 1 EXEC 
IKJCT432 EXEC 
IKJCT43A EXEC 

FREE Load IKJEFD29 IKJEFD29 FREE 
H Alias HELP IKHEFH91 IKJEFH01 HELP 
HELP Load IKJEFH00 HELP 

IKJEFH01 IKJEFH01 H HELP 
IKJEFH02 HELP 
IKJEFH03 HELP 

Object IKJEFH94 HELP 
IEEVSDIO Object SEND SEND 
IGC0019{ Load IKJEFF90 IKJEFFe9 See Note 
({=x ' C9 1 ) 

IKJEFF29 See Note 
IKJCT439 Object EXEC IKJCT439 EXEC 

Entry EXEC IKJCT439 EXEC 
I KJCT43 1 Object EXEC EXEC 
IKJCT432 Object EXEC EXEC 
IKJCT43A Object EXEC EXEC 
IKJCT469 Object IKJCT469 OUTPUT 
IKJCT462 Object IKJCT469 OUTPUT 
IKJCT463 Object IKJCT469 OUTPUT 
IKJCT464 Object IKJCT469 OUTPUT 
IKJCT466 Object OUTPUT IKJCT466 OUT OUTPUT 

Entry OUTPUT IKJCT466 OUT OUTPUT 
IKJCT467 Object IKJCT469 IKJCT467 

Alias IKJCT469 IKJCT467 
IKJCT469 Load IKJCT469 OUTPUT 

IKJCT462 OUTPUT 
IKJCT463 OUTPUT 
IKJCT464 OUTPUT 
IKJCT469 IKJCT469 OUTPUT 
IKJCT479 OUTPUT 
IKJCT471 OUTPUT 
IKJCT472 OUTPUT 
IKJCT473 OUTPUT 

Object IKJCT469 IKJCT469 OUTPUT 
Entry IKJCT469 IKJCT469 OUTPUT 

IKJCT479 Object IKJCT469 OUTPUT 
IKJCT471 Object IKJCT469 OUTPUT 

Note: IGC9919{ is invoked during CANCEL.OPERATOR. 
OUTPUT.PROFILE.STATUS. and SUBMIT processing. 

23-6 TSO/E System Diagnosis: Command Processors, E-S L Y28-1415-0 C Copyright IBM Corp. 1987 



.. Restricted Materials of IBM" 
Licensed Materials - Property of IBM 

Name Type 

IKJCT472 Object 
IKJCT473 Object 
IKJEESlfl Object 

Entry 
IKJEESll Object 
IKJEES2fl Object 
IKJEES7fl Object 

Entry 
IKJEES73 Load 

Entry 
IKJEES74 Object 

IKJEES7S Object 

IKJEElAfl Object 
IKJEEHlfl Object 

Entry 
IKJEEl91 Entry 
IKJEElSfl Object 
IKJEFD2fl Object 

Entry 
IKJEFFflfl Object 

Entry 

IKJEFFEll Object 
Entry 

IKJEFFfl2 Alias 
IKJEF92R Load 

Object 
Entry 

IKJEFF93 Object 
Alias 

IKJEFFfl4 Load 

Object 
Entry 

IKJEFFflS Object 
IKJEFFfl7 Object 

Load Object Entry 

IKJCT469 
IKJCT469 
SEND IKJEESHI 
SEND IKJEESHI 
SEND 
SEND 
IKJEES73 IKJEES73 
LISTBC IKJEES7fl 
LISTBC IKJEES7fl 

IKJEES7fl IKJEES73 
IKJEES74 
IKJEES7S 

IKJEES73 IKJEES79 
IKJEES73 
LISTBC 
IKJEES73 
LISTBC 
OPERATOR 
OPERATOR IKJEEHll 

IKJEElflfl 
OPERATOR IKJEEHlfl 
OPERATOR IKJEE19fl 
OPERATOR 
FREE IKJEFD2fl 
FREE IKJEFD2fl 
IGC9fl19{ IKJEFFElfl 
({=X 'Cfl') 
I GCflflIfl{ IKJEFFflfl 
({=X' Cfl') 
SUBMIT IKJEFFaI 
SUBMIT IKJEFFfll 
IKJTSLAR IKJTSLAR IKJEFF92 

IKJEF92R IKJEFfl2R 
IKJEFfl2R IKJEFfl2R 
IKJEFfl2R IKJEFfl2R 
IKJEFFfl4 
IKJEFFfl4 IKJEFFfl3 

IKJEFF92 
IKJEFFfl3 
IKJEFFEl4 IKJEFFEl4 
IKJEFFElS 
IKJEFF97 
IKJEFF9a 
IKJEFF99 
IKJEFFl3 
IKJEFFlS 
IKJEFFl6 

IKJEFFfl4 IKJEFFEl4 
IKJEFFfl4 IKJEFF94 
IKJEFFfl4 
IKJEFFfl4 

Note: IGC9fl19{ is invoked during CANCEL,OPERATOR, 

Alias M.O. D;ag. 

OUTPUT 
OUTPUT 

SE SEND 
SE SEND 

SEND 
SEND 
LISTBC 

LISTB LISTBC 
LISTB LISTBC 

LISTBC 
LISTBC 
LISTBC 
LISTBC 
LISTBC 
LISTBC 
LISTBC 
LISTBC 
OPERATOR 
OPERATOR 

OPER OPERATOR 
OPER OPERATOR 

OPERATOR 
OPERATOR 
FREE 
FREE 
See Note 

See Note 

SUB SUBMIT 
SUB SUBMIT 

SUBMIT 
SUBMIT 
SUBMIT 
SUBMIT 

IKJEFFfl3 SUBMIT 
SUBMIT 
SUBMIT 

IKJEFFfl3 SUBMIT 
SUBMIT 
SUBMIT 
SUBMIT 
SUBMIT 
SUBMIT 
SUBMIT 
SUBMIT 
SUBMIT 
SUBMIT 
SUBMIT 
SUBMIT 
SUBMIT 

OUTPUT,PROFILE,STATUS, and SUBMIT processing. 

LY28-141S-0 © Copyright IBM Corp. 1987 Chapter 23. Directory 23-7 



23-8 

Name Type Load 

IKJEFFe8 Object IKJEFF04 
IKJEFF09 Object IKJEFF04 
IKJEFFl0 Load 

Object IKJEFF10 
Entry IKJEFFl0 

IKJEFF13 Object IKJEFFe4 
IKJEFF15 Object IKJEFF04 
IKJEFFl6 Object IKJEFF04 
IKJEFFl9 Load 

Object IKJEFF19 
Entry IKJEFFl9 

IKJEFF20 Object IKJEFF76 
IKJEFHe0 Object HELP 
IKJEFHGl Object HELP 

Entry HELP 
IKJEFH02 Object HELP 
IKJEFH03 Object HELP 
IKJEFH04 Object HELP 
IKJEFLAI Load 

Object IKJEFLAI 
IKJEFLA Load 

Object IKJEFLA 
IKJEFLB Object IKJEFLAI 
IKJEFLC Object IKJEFLAI 
IKJEFLCM Object IKJEFLAI 
IKJEFLE Object IKJEFLAI 
IKJEFLEA Object IKJEFLAI 
IKJEFLG Object IKJEFLAI 
IKJEFLGB Object IKJEFLAI 

Object 

IKJEFFl0 

IKJEFFl0 

IKJEFF19 

IKJEFF19 

IKJEFH01 

IKJEFLAI 
IKJEFLB 
IKJEFLC 
IKJEFLCM 
IKJEFLE 
IKJEFLEA 
IKJEFLG 
IKJEFLGB 
IKJEFLGH 
IKJEFLGM 
IKJEFLGN 
IKJEFLH 
IKJEFLI 
IKJEFLJ 
IKJEFLJA 
IKJEFLJH 
IKJEFLJU 
IKJEFLK 
IKJEFLL 
IKJEFLM 
IKJEFLPA 
IKJEFLS 

IKJEFLA 
IKJEFLIO 
IKJEFTBL 

"Restricted Materials or IBM" 
Licensed Materials - Property of IBM 

Entry AHas M.O. Oiag. 

SUBMIT 
SUBMIT 

IKJEFFl0 SUBMIT 
IKJEFFl0 SUBMIT 

SUBMIT 
SUBMIT 
SUBMIT 
SUBMIT 

IKJEFF19 SUBMIT 
IKJEFF19 SUBMIT 

SUBMIT 
See Note 
HELP 

IKJEFHGl H HELP 
H HELP 

HELP 
HELP 
HELP 

IKJEFLAI IKJEFLES LOGON 
IKJLBI LOGON 
IKJEFLC LOGON 

LOGON 
LOGON 
LOGON 
LOGON 
LOGON 
LOGON 
LOGON 
LOGON 
LOGON 
LOGON 

IKJLJl LOGON 
LOGON 
LOGON 
LOGON 

IKJLKI LOGON 
LOGON 

IKJLMI LOGON 
LOGON 
LOGON 

IKJEFLA LOGON 
LOGON 
LOGON 
LOGON 
LOGON 
LOGON 
LOGON 
LOGON 
LOGON 
LOGON 
LOGON 

Note: IGC0e10{ is invoked during CANCEL. OPERATOR. 
OUTPUT.PROFILE.STATUS. and SUBMIT processing. 

TSO/E System Diagnosis: Command Processors, E-S LY28-141S-0 ~ Copyright IBM Corp. 1987 



"Restricted Materials of IBM" 
Licensed Materials - Property of IBM 

Name Type 

IKJEFLGH Object 
IKJEFLGM Object 
IKJEFLGN Object 
IKJEFLI Object 
IKJEFLJ Object 
IKJEFLJA Object 
IKJEFLJH Object 
IKJEFLJU Object 
IKJEFLK Object 
IKJEFLL Object 
IKJEFLM Object 
IKJEFLPA Object 
IKJEFLS Object 
IKJEFRee Load 

Object 

Entry 
IKJEFTSe Object 

Entry 
IKJEFTS2 Object 

Entry 
IKJEHALI Load 

Object 
Entry 

IKJEHDSI Load 
Object 
Entry 

IKJEHMEM Load 
Object 
Entry 

IKJEHPRO Load 
Object 
Entry 

IKJEHREN Load 
Object 
Entry 

LINK Load 
Object 
Entry 

LISTA Alias 
LISTB Alias 
LISTBC Load 

LISTDS Alias 
LOAD Alias 
LOADGO Load 

Object 
Entry 

OPER Alias 
OPERATOR Load 

LY28-141S-0 10 Copyright IBM Corp. 1987 

Load 

IKJEFLAI 
IKJEFLAI 
IKJEFLAI 
IKJEFLAI 
IKJEFLAI 
IKJEFLAI 
IKJEFLAI 
IKJEFLAI 
IKJEFLAI 
IKJEFLAI 
IKJEFLAI 
IKJEFLAI 
IKJEFLAI 

IKJEFRee 

IKJEFRee 
TERMINAL 
TERMINAL 
PROFILE 
PROFILE 

IKJEHALl 
IKJEHALI 

IKJEHDSI 
IKJEHDSI 

IKJEHMEM 
IKJEHMEM 

IKJEHPRO 
IKJEHPRO 

IKJEHREN 
IKJEHREN 

LINK 
LINK 
IKJEHALI 
LISTBC 

IKJEHDSI 
LOADGO 

LOADGO 
LOADGO 
OPERATOR 

Object Entry Alias M.O. Diag. 

LOGON 
LOGON 
LOGON 
LOGON 
LOGON 
LOGON 
LOGON 
LOGON 
LOGON 
LOGON 
LOGON 
LOGON 
LOGON 

IKJEFRee IKJEFRee RUN RUN 
R RUN 

IKJEFRee RUN RUN 
R RUN 

IKJEFRee RUN RUN 
IKJEFTSe TERM TERMINAL 

IKJEFTSe TERM TERMINAL 
IKJEFTS2 PROF PROFILE 

IKJEFTS2 PROF PROFILE 
IKJEHALl IKJEHALI LISTA LISTALC 

IKJEHALl LISTA LISTALC 
IKJEHALl LISTA LISTALC 
IKJEHDSI I~JEHDSI LISTDS LISTDS 

IKJEHDSI LISTDS LISTDS 
IKJEHDSI LISTDS LISTDS 
IKJEHMEM IKJEHMEM LISTDS/LISTALC 

IKJEHMEM LISTDS/LISTALC 
IKJEHMEM LISTDS/LISTALC 
IKJEHPRO IKJEHPRO PROTECT PROTECT 

IKJEHPRO PROTECT PROTECT 
IKJEHPRO IKJEHPRO PROTECT PROTECT 
IKJEHREN IKJEHREN RENAME RENAME 

IKJEHREN RENAME RENAME 
IKJEHREN RENAME RENAME 
LINK LINK LINK/LOADGO 

LINK LINK/LOADGO 
LINK LINK/LOADGO 
IKJEHALI IKJEHALI LISTALC 
IKJEES7e IKJEES7e LISTBC 
IKJEES7e IKJEES7e LISTB LISTBC 
IKJEES74 LISTBC 
IKJEES75 LISTBC 
IKJEHDSI IKJEHDSI LISTDS 
LOADGO LOADGO LINK/LOADGO 
LOADGO LOADGO LOAD LINK/LOADGO 

LOADGO LOAD LINK/LOADGO 
LOADGO LOAD LINK/LOADGO 
IKJEElee IKJEElee OPERATOR 
IKJEElAe OPERATOR 
IKJEElee IKJEE101 OPERATOR 

IKJEElee OPER OPERATOR 
IKJEEl50 OPERATOR 

Chapter 23. Directory 23-9 



Name Type Load Object 

OUT Alias OUTPUT IKJCT466 
OUTPUT Load IKJCT466 
PROF Alias PROFILE IKJEFT82 
PROFILE Load IKJEFT82 
PROTECT Alias IKJEHPRO IKJEHPRO 
R Alias IKJEFR88 IKJEFRe8 
RENAME Alias IKJEHREN IKJEHREN 
RUN Alias IKJEFR88 IKJEFRee 
SE Alias SEND IKJEESle 
SEND Load IEEVSDIO 

IKJEESle 
IKJEESll 
IKJEES2e 

SUB Alias SUBMIT IKJEFF91 
SUBMIT Load IKJEFF91 

23-10 TSO/E System Diagnosis: Command Processors, E-S 

"Restricted Materials of IBM" 
Licensed Materials - Property of IBM 

Entry Alias M.O. Diag. 

IKJCT466 OUTPUT 
IKJCT466 OUT OUTPUT 
IKJEFT82 PROFILE 
IKJEFT82 PROF PROFILE 
IKJEHPRO PROTECT 

RUN 
IKJEHREN RENAME 
IKJEFRee RUN 
IKJEESle SEND 

SEND 
IKJEESle SE SEND 

SEND 
SEND 

IKJEFF81 SUBMIT 
IKJEFF81 SUB SUBMIT 

LY28-1415-0 © Copyright IBM Corp. 1987 



"Restricted Materials of IBM" 
Licensed Materials - Property of IBM 

Chapter 24. Data Area Usage 

EDIT Command 

This section presents data area usage for the EDIT command, followed by the rest 
of the commands described in this book. 

This section lists data areas that the EDIT command processor uses, and it describes 
the Syntax Checker control blocks, Communication Area, and Option Word. 

The list of data areas is ordered by acronym and gives the macro name, the common 
name for the data area, and the EDIT modules that create or alter the data area. If 
no modules are indicated, the data area was created by a module other than an 
EDIT module. 

All data areas in the list are documented in the MVS/XA DataAreas. 

Acronym Macro Common Name Modulel Access 

CA IKJEBECA EDIT Communication IKJEBEIN (create). all 
Area other edit modules can 

alter the CA area. 
CPPL IKJCPPL Command Processor IKJEBECI (create) 
CSOA IKJCSOA Command Scan Output IKJEBECI (create) 

Area IKJEBEMA (create) 
CVT CVT Communication Vector 

Table 
DAPB08 IKJDAP08 DAIR Entry Code 08 IKJEBEDA (create) 

IKJEBEIN (create) 
IKJEBESA (create) 

DAPBl8 IKJDAPBI8 DAIR Entry Code 18 IKJEBEDA (create) 
IKJEBEEN (create) 
IKJEBEIN (create) 
IKJEBESA (create) 

DAPB2C IKJDAP2C DAIR Entry Code 2C IKJEBECI (create) 
IKJEBEDA (create) 

DAPL IKJDAPL Dynamic Allocation IKJEBECI (alter) 
Parameter List IKJEBEDA (alter) 

IKJEBEEN (alter) 
IKJEBEIN (create) 
IKJEBESA (alter) 

DCB DCBD Data Control Block IKJEBEAA (alter) 
IKJEBECO (alter) 
IKJEBEFC (alter) 
IKJEBEIN (alter) 
IKJEBESA (alter) 

DFPB IKJDFPB Default Parameter IKJEBEIN (create) 
Block 

DFPL IKJDFPL Default Parameter IKJEBEIN (create) 
List 

LY28-141S-0 © Copyright IBM Corp. 1987 Chapter 24. Data Area Usage 24-1 



Acronym Macro 

DSCB IECSDSLl 

ECT IKJECT 

IOPL IKJIOPL 

PGPB IKJPGPB 

PPL IECDPPL 

PTPB IKJPTPB 

SDWA IHASDWA 

TAlE IKJTAIE 

TCB IKJTCB 
nOT IEFTIOTl 
UCB IEFUCBOB 
UPT IKJUPT 
UTlLWORK IKJEBEUW 

24-2 TSO/E System Diagnosis: Command Processors, E-S 

"Restricted Materials of IBM" 
Licensed Materials - Property of IBM 

Common Name Module/Access 

Data Set Control 
Block 
Environmental IKJEBEA T (alter) 
Control Table IKJEBECI (alter) 

IKJEBEMA (aIter) 
1/0 Service Routine IKJEBECI (alter) 
Parameter List IKJEBEEN (alter) 

IKJEBEIN (create) 
IKJEBEMA (alter) 
IKJEBEMS (alter) 
IKJEBESA (create) 

PUT/GET Parameter IKJEBECI (create) 
Block IKJEBEEN (create) 

IKJEBEIN (create) 
IKJEBEMA (create) 

Purge Parameter List IKJEBEIN (create) 
IKJEBESA (create) 

PUTLINE Parameter IKJEBEMS (create) 
Block IKJEBESA (create) 
System Diagnostic 
Work Area 
Terminal Attention 
Interrupt Element 
Task Control Block 
Task I/O Terminal 
Unit Control Block 
User ProfIle Table 
EDIT Utility lKJEBEAA (alter) 
Work Area IKJEBECO (alter) 

IKJEBEEX (alter) 
IKJEBEMA (alter) 
IKJEBEUI (create) 
IKJEBEUT (alter) 

LY28-141S-0 IC Copyright IBM Corp. 1987 



"Restricted Materials of IBM" 
Licensed Materials - Property of IBM 

Syntax Ch~cker Control Blocks 
The following tables describe the contents of the control blocks (Buffer, Syntax 
Checker Communication Area, and Option Word) the syntax checker parameter list 
points to. If either the DELETE or RUN subcommand calls the IPLI or BASIC 
syntax checker, the first word of the parameter list points to the command interface 
instead of the buffer. 

Buffer 

Disp Disp Field Field 
Dec. Hex. Name Size Contents 

0 0 C Number of records in buffer (maximum is 127); set bit 
zero to I when the syntax checker has scanned all records 
in the buffer. 

Chain 3 Address of next buffer; set to zero if this is last buffer 
in chain. 

4 4 Record Variable Line or lines of source input data to have syntax 
checked; can be fIxed- or variable-length, numbered or 
unnumbered. 

Command Interface (DELETE Subcommand) 

Disp Disp Field Field 
Dec. Hex. Name Size Contents 

0 0 WORDI 4 Reserved. 

4 4 STARTV 4 Binary value of starting line number. 

8 S STOPV 4 Binary value of ending line number. 

Command Interface (RUN Subcommand) 

Disp Disp Field Field 
Dec. Hex. Name Size Contents 

0 0 WORDI 4 Reserved. 

4 4 CMDPTR 4 Pointer to command (if high-order byte is X'SO', 
operands are present). 

S S TMPPRM 4 Pointer to Terminal Monitor Program parameter list. 

LY28-141S-0 C Copyright IBM Corp. 1987 Chapter 24. Data Area Usage 24-3 



"Restricted Materials of IBM" 
Licensed Materials - Property of IBM 

Syntax Checker Communication Area 

Disp Disp Field Field Contents 
Dee. Hex. Name Size Setting Meanlug. (lDstructions to Syntax Cbeeker) 

bits 0-3 (where n=O or 1). 

Onnn First entry - obtain and initialize work area. If a buffer 
chain is supplied, set the relative line number counter 
to zero. 

Inln Last entry - release the work area and return; do not 
check syntax. 

1000 Normal entry - set relative line number counter to zero; 
check syntax. 

0 0 None liOn Entry after return code of 8 (error - buffer cheeking 
incomplete) - continue to check syntax. 

1001 Entry after return code of 12 (complete statements 
have been checked, but last statement in input buffer 
is incomplete) - if there is no more input (chain address 
of last buffer or buffer address is zero), check the 
syntax of the incomplete statement and return; if there 
is a new buffer chain, that is. more input (chain address 
or buffer address is not zero), resume checking syntax. at 
the incomplete statement. 

bits 4-7 Reserved. 

None 4 xxxx Address of work area stored by syntax checker on 
fIrSt entry. 

4 4 None 4 xxxx Initial entry - maximum statement size specified at 
SYSGEN (if 0, checker assumes sufficient storage for 
largest legal statement is available); entry after return 
code of 4 (error detected, syntax checking complete, 
second-level message present), or 8 (error detected, 
syntax checking incomplete) - address of error message 
area. 

8 8 None 4 xxxx Initial entry - Temporary work area; subsequent 
entries - address of second error message, if any. 

12 C None 4 xxxx Temporary storage area used for GETMAIN. 

24-4 TSO/E System Diagnosis: Command Processors, E-S LY28-141S-0 C Copyright IBM Corp. 1987 



"Restricted Materials of IBM" 
Licensed Materials - Property of IBM 

Option Word 

Disp Disp Field 
Dec. Hex. Name 

0 0 None 

None 

2 2 None 

3 3 None 

LY28-141S-0 !Cl Copyright IBM Corp. 1987 

Field 
Size Setting 

X·O!.' 
X'OI' 
X'02' 
X'03' 
X'04' 
X'OO' 
X'OI' 
xxxx 
bits 0-5 

bit 6= 1 

bit 6=0 

bit 7= 1 

bit 7=0 

bit 0= I 

bit 1 = 1 

bit 2= 1 

bit 3= 1 

bit 4= 1 

bit 5= 1 

xxxx 
xxxx 

bit 0=0 

bit 0= I 

bit 1 =0 

bit 1 = 1 

bit 2 

bit3=0 

bit 3 = I 

bit 4=0 

bit 4= I 

bit 5=0 

bit 5= I 
bit 6=0 
bit 6= 1 
bit 7=0 

bit 7= 1 

Contents 
Meaning Syntax Checker 

FORTRAN H level FORTRAN 
FORTRAN E level FORTRAN 
FORTRAN G level FORTRAN 
GOFORT FORTRAN 
FORTRAN G1 FORTRAN 
IPLI level IPLI 
BASIC level BASIC 
Value of left source margin PLlF 

Reserved FORTRAN 

FORTRAN G/Gl/H Code FORTRAN 
and Go definition to be 
loaded on initial entry 

FORTRAN G/GI/H Code FORTRAN 
and Go definition not to be 
loaded on initial entry 

FORTRAN E definition to FORTRAN 
be loaded on initial entry 

FORTRAN E definition not FORTRAN 
to be loaded on initial entry 

Entry from INPUT, Insert, IPLI or BASIC 
Iinenum, ., CHANGE 

Entry from DELETE IPLI or BASIC 

Entry from MERGE or IPLI or BASIC 
RENUM 

Translation already IPLI or BASIC 
complete 

Entry from RUN IPLI or BASIC 

Reserved IPLI or BASIC 

Value of right source margin PLlF 

Record length of fixed-length All 
records; binary zero, if 
variable-length records. 

CHAR 60 PLl or IPLI 

CHAR 48 PLl or IPLI 

Line-numbered data set All 

Data set not line-numbered All 

Reserved All 

Diagnose an incomplete All 
statement 

Delayed scan - return with All 
code of 12 if last statement 
in input buffer is incomplete; 
immediate scan - possible 
incomplete statement in 
buffer. 

Fixed-length records All 

Variable-length records All 

Standard form source input All 

Free form source input All 

SCAN or SCAN ON specified All 

NO SCAN or SCAN OFF All 
specified 

Chapter 24. Data Area Usage 24-5 



Commands E - S 

"Restricted Materials of IBM" 
Licensed Materials - Property of IBM 

This section presents the area usage for the TSO commands E through S docu-
mented in this book, except for the EDIT command. 

Acronym Macro Common Name Command Processor Modulel Access 

ACB IFGACB VSAM Access Method OUTPUT IKJCT462 (create) 
Control BLock SUBMIT IKJEFFIS (create) 

COMPROC IKJEXEC Command Procedure Storage Block EXEC IKJCT440 (create) 
IKJCT430 (alter) 
IKJCT432 (alter) 

CONTAB IKJEFFCT SUBMIT Internal Control Table SUBMIT IKJEFF04 (create) 
IKJEFFIS (alter) 

CPPL IKJCPPL Command Processor Parameter List OUTPUT IKJCT463 (create) 

CPRB MVSSERV Connectivity Programming Request Block MVSSERV 

CTGFL IEZCTCFL VSAM Catalog Control Field List LISTALC IKJEHALI (create) 
LISTDS IKJEHDSI (create) 
RENAME IKJEHCIR (create) 

CTGPL IEZCTGPL VSAM Catalog Parameter List LISTALC IKJEHALI (create) 
LISTDS IKJEHDSI (create) 
RENAME IKJEHCIR (create) 

DAPBOO IKJDAPOO DAIR Parameter Block 00 EXEC IKJCT430 (create) 

DAPBOC IKJDAPOC DAIR Parameter Block OC LINKfLOADGO AKJLKLOI (create) 

DAPBIO IKJDAPIO DAIR Parameter Block 10 LINKfLOADGO AKJLKLOI (create) 
AKJLKL02 (create) 

DAPBl8 IKJDAPl8 DAIR Parameter Block 18 EXEC IKJCT430 (create) 
LINKfLOADGO AKJLKLOI (create) 
OUTPUT IKJCT473 (create) 
PROTECT IKJEHPRO (create) 
RENAME IKJEHREN (create) 

DAPBIC IKJDAPIC DAIR Parameter Block lC LINK/LOADGO AKJLKLOI (create) 
OUTPUT IKJCT473 (create) 

DAPB24 IKJDAP24 DAIR Parameter Block 24 HELP IKJEFHOI 

DAPB28 IKJDAP28 DAIR Parameter Block 28 LINK/LOADGO AKJLKLOI (create) 
SUBMIT IKJEFF04 (create) 

DAPB2C IKJDAP2C DAIR Parameter Block 2C LISTDS IKJEHDSI (create) 
OPERATOR IKJEEIOO (create) 
OUTPUT IKJCT463 (create) 

DAPB34 IKJDAP34 DAIR Parameter Block 34 LINKfLOADGO AKJLKLOI (create) 

DCB DCBD Data Control Block DSECT HELP IKJEFHOI (create) 
LISTBC IKJEES7S (create) 
OUTPUT IKJCT463 (create) 

IKJCT469 (create) 
IKJCT471 (alter) 

SEND IEEVSDIO (create) 
SUBMIT IKJEFFOS (create) 

DFPB IKJDFPB Default Parameter Block LISTDS IKJEHDSI (create) 
PROTECT IKJEHPRO (create) 
RENAME IKJEHREN (create) 

DFPL IKJDFPL Default Parameter List LISTDS IKJEHDSI (create) 
PROTECT IKJEHPRO (create) 
RENAME IKJEHREN (create) 

D08ADDED IKJEFFD8 SUBMIT Extension to DAPB08 SUBMIT IKJEFF04 (alter) 
IKJEFFl6 (create) 

24-6 TSO/E System Diagnosis: Command Processors, E-S LY28-l4l5-O @ Copyright IBM Corp. 1987 



"Restricted Materials of IBM" 
Licensed Materials - Property of IBM 

Acronym Macro Common Name 

ECDA IKJEXEC Phase I Exit Common Data Area 

EXECDATA IKJEXEC EXEC Command Control Data Area 

ESTAEWA ESTAE Exit Work Area 

EXITL IKJEFFIE FIB Installation Exit Parameter List 

FFB2 IKJEFFB2 FIB Module's Parameter list 
from SVC 100 

GFPARMS IKJEFFGF GNRLFAIL and VSAMFAIL 
(IKJEFFI9) Parameter List 

GTPB IKJGTPB GETLINE Parm Block 

HISTORY IKJEFFHT SUBMIT Internal History Table 

IKJWHEN IKJWHEN WHEN Common Data Area 

INITTERM Enhanced Connectivity Facility Area 

LSD IKJLSD List Source Descriptor 

OUTCOMTB IKJOCMTB Output Communications Table 

PGPB IKJPGPB PUTGET Parameter Block 

PTPB IKJPTPB PUTLINE Parameter Block 

L Y28-141S-0 Q Copyright IBM Corp. 1987 

Command Processor Module/Access 

EXEC IKJCT440 (create) 
IKJCT431 (alter) 
IKJCT432 (alter) 

EXEC IKJCT440 (create) 

OUTPUT IKJCT460 (alter) 
IKJCT464 (alter) 
IKJCT469 (create) 

SUBMIT IKJEFF09 (create) 
IKJEFFIO (alter) 

SUBMIT IKJEFF04 (alter) 

EXEC IKJCT440 (create) 
IKJCT431 (create) 
IKJCT432 (create) 

OUTPUT IKJCT467 (create) 
SUBMIT IKJEFFOS (create) 

IKJEFFIS (create) 

EXEC IKJCT440 (create) 
LINK/LOADGO AKJLKMSG (create) 
OPERATOR IKJEEISO (create) 

SUBMIT IKJEFF04 (create) 
IKJEFFOS (alter) 
IKJEFF07 (alter) 
IKJEFF08 (alter) 
IKJEFF09 (alter) 
IKJEFFI3 (alter) 
IKJEFFIS (alter) 
IKJEFF20 (alter) 

WHEN/END IKJEFEII (create) 
IKJEFEIS (alter) 

MVSSERV 

EXEC IKJCT440 (create) 
RUN IKJEFROO (create) 
WHEN/END IKJEFEII (create) 

OUTPUT IKJCT460 (alter) 
IKJCT462 (alter) 
IKJCT463 (alter) 
IKJCT464 (alter) 
IKJCT466 (create) 
IKJCT467 (alter) 
IKJCT469 (create) 
IKJCT470 (alter) 
IKJCT471 (alter) 
IKJCT472 (alter) 
IKJCT473 (alter) 

LINK/LOADGO AKJLKMSG (create) 
OPERATOR IKJEEIOO (create) 
OUTPUT IKJCT467 (create) 
SUBMIT IKJEFF02 (create) 

OPERATOR IKJEEIOO (create) 
IKJEElSO (create) 
IKJEEIAO (create) 

SUBMIT IKJEFF02 (create) 
TERMINAL IKJEFT80 (create) 
WHEN/END IKJEFEIS (create) 

Chapter 24. Data Area Usage 24-7 



AcroDym Macro CODlIDOD Name 

RPL IFGRPL VSAM Request Parameter Ust 

RTCT IHARTCT RecoveryrrenniDatioD CODtrol Table 

SDWA IHASDWA System Diagnostic Work Area 

SNTAB IKJEXEC Symbol Name Table 

STE IHASTE SUP TSO Element 

SVTAB ,IKJEXEC Symbol Value Table 

SWAEPA IEFZBSOS SWA MaDager Parameter List 

TCB lKJTCB Task CODtrol Block 

UPT IKJUPT User Profile Table 

WPL IEZWPL WTOfWTORfMLWTOfWTP 
Parameter List 

24-8 TSO/E System Diagnosis: Command Processors, E-S 

"Restricted Materials of IBM" 
Licensed Materials - Property of IBM 

Command Processor Module/Aeeess 

OUTPUT IKJCT462 (create) 
IKJCT470 (alter) 

SUBMIT IKJEFFOS (alter) 
IKJEFF1S (create) 

OPERATOR IKJEFFOO (alter) 

OUTPUT IKJCT460 (alter) 
SUBMIT IKJEFF02 (alter) 

EXEC IKJCT440 (create) 
IKJCT432 (alter) 

OPERATOR IKJEFFOO (create) 

EXEC IKJCT440 (create) 

SUBMIT IKJEFF04 (create) 

OUTPUT IKJCT463 (alter) 

PROFILE IKJEFT82 (alter) 

SUBMIT IKJEFF02 (create) 

LY28-1415-0 C Copyright IBM Corp. 1987 



"Restricted Materials of IBM" 
Licensed Materials - Property of IBM 

Index 

A 
ABEND 

EDIT command abnormal end 1-8 

C 
control blocks 

D 

syntax checker 
buffer 24-3 
command interface 24-3 
communication area 24-4 

data areas 
E to S 24-6 
EDIT 24-1 

directory of modules 
commands E to S 23-6 
EDIT command 23-1 

E 
EDIT command 

abnormal end (ESTAE routine) processing 1-8 
access method - checkpoint a workfile 1-24 
access method - delete a record 1-26 
access method - read a record 1-28 
access method - write a record 1-18 
access method overview 1-16 
attention exit processing 1-10 
automatic recovery routine processing 1-12 
BOTTOM subcommand processing 1-31 
CHANGE subcommand processing 1-32 
CKPOINT subcommand processing 1-34 
data areas 24-1 
DELETE subcommand processing 1-38 
DOWN subcommand processing 1-40 
edit mode 1-2 
END subcommand processing 1-41 
EXEC subcommand processing 1-59 
FIND subcommand processing 1-42 
FORMAT subcommand processing 1-44 
FREE ALL subcommand processing 1-46 
initialization and control 1-6 
input mode 1-2 
INPUT subcommand processing 1-48 
INSERT subcommand processing 1-50 
line insert/replace/delete processing 1-52 
list of modules 1-76 
LIST subcommand processing 1-54 
MERGE subcommand processing 1·56 

LY28-1415-0 © Copyright IBM Corp. 1987 

EDIT command (continued) 
method of operation diagrams 1-4 
module directory 23-1 
MOVE/COPY subcommand processing 1-36 
overview 1-2 
PROFILE/SEND/HELP/ALLOCATE subcommand 

processing I-58 
recovery/cleanup routine processing 1-14 
RENUM subcommand processing 1·60 
RUN subcommand processing 1-62 
SAVE subcommand processing 1-64 
SCAN subcommand processing 1-66 
subcommands 1-3 
SUBMIT subcommand processing 1-68 
syntax checker control blocks 24-3 
T ABSET subcommand processing 1-69 
TOP subcommand processing 1-70 
UNNUM subcommand processing 1-72 
UP subcommand processing 1-74 
using TEST to diagnose errors 1-82 
VERIFY subcommand processing 1-75 

EDIT modules 
control flow diagrams 1-78 

EXEC command 2·1 

F 
FREE command 

FREE ALL processing 3-4 
method of operations diagrams 3-1 
unallocated files, data sets, or attribute lists 3-2 
visual table of contents 3-1 

H 
HELP command 

L 

function overview 4·2 
method of operations diagrams 4·1 
processing a data set member 4·4 
processing an INCLUDE character 4·8 
reading a data set 4-6 
visual table of contents 4-1 

LINK/LOADGO command 
AM ODE, RMODE options 5-2 
LINK and LOADGO processing 5·2 
method of operations diagrams 5-1 

LISTALC command 
DSAB processing 6-4 
HISTORY processing, non·VSAM 6-8 
HISTORY processing, VSAM 6-6 

Index X-I 



LISTALC command (continued) 
MEMBERS processing 6-12 
method of operations diagrams 6-1 
processing overview 6-2 
STATUS processing 6-10 
visual table of contents 6-1 

LISTBC command 6-13 
association with SEND 7-1 
diagnosis 7-1 
dump information 7-2 
return codes 7-2 
services used by 7-2 

LISTDS command 
HISTORY processing (Non-VSAM) 8-6 
HISTORY processing (VSAM) 8-4 
LABEL processing 8-12 
MEMBERS processing 8-10 
method of operations diagrams 8-1 
processing overview 8-2 
STATUS processing 8-8 
visual table of contents 8-1 

LOGOFF 9-20 
error processing 9-25 

LOGON command 
control block overview 9-8 
data areas 9-33 
initialization 9-10 
initialization and scheduling recovery routine 9-14 
introduction 9-2 
LOGOFF processing 9-20 
method of operations diagrams 9-1 
module addressing and residency modes 9-4 
module flow diagram 9-5 
monitor 9-16 
monitor recovery 9-36 
post-TMP exit 9-40 
pre-prompt exit interface 9-34 
pre-TMP exit 9-38 
scheduling 9-12 
visual table of contents 9-1 

LOGON/LOGOFF 
error processing 9-31 
verification 9-26 

M 
~VSSERV command 

command options 10-1 
CPRB address 10-4 
dump information 10-6, 10-8 
dump suppression data set 10-7 
error diagnosis 10-1 
execution path trace table 10-2 
IOTRACE option 10-4 
messages 10-1 
recovery 10-7 
RTM2WA Summary 10-8 

X-2 TSO/E System Diagnosis: Command Processors, E-S 

"Restricted Materials of IBM" 
Licensed Materials - Property of IBM 

MVSSERV command (continued) 
SDW A in a dump 10-8 
SDW A VRA in a dump 10-8 
services used by 10-6 
trace data set 10-1 
TRACE option 10-2 

MVSSER V Command Processing 
CPRB in a trace data set 10-4 

o 
OPERATOR command 

method of operations diagram 11-2 
OUTPUT command 

method of operations diagram 12-2 

P 
PRINTDS 

return codes 13-2 
PRINTDS command 

abend processing 13-2 
dump information 13-2 
processing 13-1 
services used by 13-2 

PROFILE command 
method of operations diagram 14-2 

PROTECT command 
method of operations diagram 15-2 

R 
RACONVRT command 

abend codes 16-2 
dump information 16-6 
error diagnosis 16-2 
overview 16-1 
reason codes 16-5 
return codes 16-3 
services used by 16-5 

RECEIVE command 17-1 
RENAME command 

method of operations diagram 18-2 
RUN command 

S 

building a RUN command list 19-4 
processing overview diagram 19-2 
visual table of contents 19-1 

SEND command 
dump information 20-3 
error diagnosis 20-2 
processing overview 20-1 
return codes 20-2 
services used by 20-2 

LY28-1415-0 © Copyright IBM Corp. 1987 



"Restricted Materials of IBM" 
Licensed Materials - Property of IBM 

SUBMIT command 
JCL processing 21-6 
overview processing diagram 21-2 
visual table of contents 21-1 

SYNC command 
abend and return codes 22-2 
dependencies 22-1 
diagnosis 22-2 
dump information 22-3 
overview 22-1 

syntax checker control blocks 
buffer 24-3 
command interface 24-3 
communication area 24-4 

LY28-1415-0 II} Copyright IBM Corp. 1987 Index X-3 



TSO Extensions 
System Diagnosis: 
Command Processors, 
E-S 

LY28-1415-0 

READER'S 
COMMENT 
FORM 

This manual is part of a library that serves as a reference source for systems analysts, programmers, 
and operators of IBM systems. You may use this form to communicate your comments about this 
publication, its organization, or subject matter, with the understanding that IBM may use or distribute 
whatever information you supply in any way it believes appropriate without incurring any obligation to 
you. 

Note: Copies of IBM publications are not stocked at the location to which this form is addressed. Please 
direct any requests for copies of publications, or for assistance in using your IBM system, to your IBM 
representative or to the IBM branch office serving your locality. 

Possible topics for comment are: 

Clarity Accuracy Completeness Organization Coding Retrieval Legibility 

If you wish a reply, give your name, company, mailing address, and date: 

What is your occupation? 

How do you use this publication? 

Number of latest Newsletter associated with this publication: 

Thank you for your cooperation. No postage stamp necessary if mailed in the U.S.A. (Elsewhere, an 
IBM office or representative will be happy to forward your comments or you may mail directly to the 
address in the Edition Notice on the back of the title page.) 



TSO Extensions System Diagnosis: Command Processors, E-S 

"Restricted Materials of IBM" 
All Rights Reserved 
Licensed Materials - Property of IBM 
(Except for Customer-Originated Materials) 
oCopyright IBM Corp. 1987 
LY28-1415-0 

Reader's Comment Form 

5370-39 

o ... 

oj 

Fold and tape Please Do Not Staple Fold and tape ! -----------------------------------------------------------------------------------1 

Fold and tape 

--...-. ... ---- .... ---~~ - ~~.-- -.. -~-- -- ---=~=~=® 

BUSINESS REPLY MAIL 
FIRST CLASS PERMIT NO. 40 ARMONK, N.Y. 

POSTAGE WILL BE PAID BY ADDRESSEE 

International Business Machines Corporation 
Department 058, Building 921-2 
PO Box 390 
Poughkeepsie, New York 12602 

1111111111111111111111111111111111111111111111111111 

Please Do Not Staple 

NO POSTAGE 
NECESSARY 
IF MAILED 

INTHE 
UNITED STATES 

Fold and tape 

Printed in U.S.A. 



--------- -------- ------- ----------_.-

Printed in U.S.A. 

Program Number 
5665-285 

"Restricted Materials of IBM" 
Licensed Materials - Property of IBM 
LY28-1415-0 e Copyright IBM Corp. 1987 

L Y28- 1"415-0 

File Number 
5370-39 


	00000
	00001
	00002
	00003
	00004
	00005
	00006
	00007
	00009
	00010
	00011
	00012
	00013
	01-03
	01-04
	01-06
	01-07
	01-08
	01-09
	01-10
	01-11
	01-12
	01-13
	01-14
	01-15
	01-16
	01-17
	01-18
	01-19
	01-20
	01-21
	01-22
	01-23
	01-24
	01-25
	01-26
	01-27
	01-28
	01-29
	01-31
	01-32
	01-33
	01-34
	01-35
	01-36
	01-37
	01-38
	01-39
	01-40
	01-41
	01-42
	01-43
	01-44
	01-45
	01-46
	01-47
	01-48
	01-49
	01-50
	01-51
	01-52
	01-53
	01-54
	01-55
	01-56
	01-57
	01-58
	01-59
	01-60
	01-61
	01-62
	01-63
	01-64
	01-65
	01-66
	01-67
	01-68
	01-69
	01-70
	01-72
	01-73
	01-74
	01-75
	01-76
	01-77
	01-78
	01-79
	01-80
	01-81
	01-82
	02-01
	03-01
	03-02
	03-03
	03-04
	03-05
	04-01
	04-02
	04-03
	04-04
	04-05
	04-06
	04-07
	04-08
	04-09
	05-01
	05-02
	05-03
	06-01
	06-02
	06-03
	06-04
	06-05
	06-06
	06-07
	06-08
	06-09
	06-10
	06-11
	06-12
	06-13
	07-01
	07-02
	07-03
	08-01
	08-02
	08-03
	08-04
	08-05
	08-06
	08-07
	08-08
	08-09
	08-10
	08-11
	08-12
	08-13
	09-01
	09-02
	09-03
	09-04
	09-05
	09-06
	09-07
	09-08
	09-10
	09-11
	09-12
	09-13
	09-14
	09-15
	09-16
	09-17
	09-18
	09-19
	09-20
	09-21
	09-22
	09-23
	09-24
	09-25
	09-26
	09-27
	09-28
	09-29
	09-30
	09-31
	09-33
	09-34
	09-35
	09-36
	09-37
	09-38
	09-39
	09-40
	09-41
	1-01
	1-02
	10-01
	10-02
	10-03
	10-04
	10-05
	10-06
	10-07
	10-08
	10-09
	10-10
	11-01
	11-02
	11-03
	12-01
	12-02
	12-03
	13-01
	13-02
	13-03
	14-01
	14-02
	14-03
	15-01
	15-02
	15-03
	16-01
	16-02
	16-03
	16-04
	16-05
	17-01
	18-01
	18-02
	18-03
	19-01
	19-02
	19-03
	19-04
	19-05
	20-01
	20-02
	20-03
	20-04
	21-01
	21-02
	21-03
	21-04
	21-05
	21-06
	21-07
	22-01
	22-02
	22-03
	23-01
	23-02
	23-03
	23-04
	23-05
	23-06
	23-07
	23-08
	23-09
	23-10
	24-01
	24-02
	24-03
	24-04
	24-05
	24-06
	24-07
	24-08
	X-01
	X-02
	X-03
	replyA
	replyB
	xBack

