
._-----------_ ... __ .. ------_._. __ .. _ ... --_. __ ._-.-_ .. _------_._ ... -.

GC28-0646-1
Fi Ie No. 5370-39

OS/VS2 TSO
Systems Command Language Reference

VS2 Release 2

Second Edition (February, 1974)

This is a major revision of, and obsoletes, GC28-0646-0 and Technical Newsletter
GN28-2537. OS/VS2 TSO Enhancements No.2, GC28-0691-0, is also obsoleted with this
edition. See the Summary of Amendments following the Contents. Changes or additions
to the text and illustrations are indicated by a vertical line to the left of the change.

This edition applies to release 2 of OS/VS2 and to all subsequent releases until
otherwise indicated in new editions or Technical Newsletters. Changes are continually
made to the information herein; before using this publication in connection with the
operation of IBM Systems, consult the latest IBM System/360 and System/370 Bibliography,
GA22-6822, for the editions that are applicable and current.

Requests for copies of IBM publications should be made to your IBM representative or
to the IBM branch office serving your locality.

A form for readers' comments is provided at the back of this publication. If the form
has been removed, comments may be addressed to IBM Corporation, Publications
Development, Department 058, Building 706-2, PO Box 390, Poughkeepsie, N. Y.
12602. Comments become the property of IBM.

© Copyright International Business Machines Corporation 1972,1974

.,

c'

o

Technical Newsletter This Newsletter No. GN28-2572

Date April 29, 1974

Base Publication No. GC28-0646-1

File No. S370-39

Previous Newsletters None

OS/VS2 TSO Command Language Reference

© IBM Corp. 1972,1974

This Technical Newsletter, a part of release 2 of OS/VS2, provides replacement pages
for the subject publication. These replacement pages remain in effect for subsequent
releases unless specifically altered. Pages to be inserted and/or removed are:

3-14
17, 18
27,28
31 - 46
49 - 54
57,58
61,62
99, 100
103, 104

121 - 124
127-136
141,142
145, 146
165, 166
181,182
245 - 258
269 - 272
277 - 284

A change to the text or to an illustration is indicated by a vertical1ine to the
left of the change.

Summary of Amendments

This version adds more information on the Access Method Services commands,
recommended commands for VSAM and non VSAM usage, cautions on tying up
shared DASD in a multiprocessing system, and corrections to technical and
typogra phical errors.

Note: Please file this cover letter at the back of the manual to provide a
record of changes.

IBM Corporation, Publications Development, Department 058, Building 706-2,
PO Box 390, Poughkeepsie, New York 12602

©IBM Corp. 1974 Printed in U.S.A.

(' ,

,

c=:

o

------.----------------------------------

Page of GC28-0646-1
Revised April 29, 1974
by TNL: GN28-2572

Preface

This publication describes the syntax and function of the commands and
subcommands of the TSO command language. It is intended for use at a
terminal. The level of knowledge required for this publication depends upon
the command being used. Most commands require little knowledge of TSO

and of the Operating System; however, some commands required a greater
knowledge of the system. As a general rule, the description of each
command requires an understanding of those elements being manipulated by
the command.

The prerequisite publication, TSO Terminal User's Guide, describes
what commands are used to perform the following functions:

• Start and end a terminal session.
• Enter and manipulate data.
• Program at the terminal.
• Test a program.
• Write and use command procedures.
Once a user is familiar with the Terminal User's Guide, he can use this

publication to code the TSO commands.
The publication, TSO Terminals, describes how to use the terminals

supported by TSO.

The major divisions in this book are:
• Introduction
• Basic Informa~ioq For Using TSO

• The Commands
• Command Procedure Statements
• Index
The Introduction describes the TSO command language. The section

entitled "Basic Information For Using TSO" contains general information
necessary for the use of TSO commands.

The section entitled "The Commands" describes the syntax and function
of each command, its operands and its subcommands. Examples are
included.

The commands are presented in alphabetical order. Subcommands are
presented in alphabetical order following the command to which they apply.

"Command Procedure Statements" describes the control statements us~d
in command procedures.

The prerequisite publication for this publication is OS/VS2 TSO
Terminal User's Guide, GC28-064S.
The publications referred tojn this publication are:
OS/MVT and OS/VS2 TSO Terminals, GC28-6762
OS/VS Access Method Services, GC26-3836
OS/VS Message Library: VS2 System Messages, GC38-1002
OS/VS2 JeL, GC28-0692

Preface 3

c

.'

c
4 OS/VS2 TSO Command Langu~~e Reference (VS2 Release 2)

Page of GC28-0646-1
Revised April 29, 1974
by TNL: GN28-2572

Summary of Amendments

Introduction

Basic Information For Using TSO
Using a Terminal

Entering Information at a Terminal
Standard Terminal Conventions
Character and Line Deletion
Line by Line Data Entry

Using TSO Commands
Positional Operands
Keyword Operands .
Delimiters
Subcommands . . .
Syntax Notation Conventions

Using System-Provided Aids
The Attention Interruption
Messages
Mode Messages

Using the HELP Command
Explanations of Commands
Syntax Interpretation of HELP Information
Explanation of Subcommands . .

Using Dat~ Set Naming Conventions
Data Set Names In General . .
TSO Data Set Names
How to Enter Data Set Names
Defaults for Data Set Names
Specifying Data Set Passwords

Using Commands for VSAM and NonVSAM Data Sets

The Commands

ALLOCATE Command

A TTRIB Command

CALL Command .

DELETE Command

EDIT Command ..
Modes of Operation

Input Mode
Edit Mode
Changing From One Mode to Another
Data Set Disposition . . . :'

Tabulation Characters
Executing User Written Programs
Terminating the EDIT Command
Recovering Data After a Terminal Line Has Been Disconnected
Subcommands for EDIT

ALLOCATE Subcommand of EDIT

BOTTOM Subcommand of EDIT

CHANGE Subcommand of EDIT
Quoted String Notation . .
Combinations of Operands
Examples Using Quoted Strings

Contents

. 9

13

15
15
15
15
15
16
17
17
17
18
18
19
20
20
21
21
23
23
24
2-1.
24
24
25
26
27
28
28

29

31

39

47

49

53
59
59
61
62
63
63
63
63
64
65

67

69

71
72
72
74

Contents 5

DELETE Subcommand of EDIT 77 ("-I
..... ---./'

DOWN Subcommand of EDIT 79

END Subcommand of EDIT 81

FIND Subcommand of EDIT 83

•
HELP Subcommand of EDIT 85

INPUT Subcommand of EDIT 87 ..
INSERT Subcommand of EDIT 89

Insert/Replace/Delete Function of EDIT 91

LIST Subcommand of EDIT . . 93

PROFILE Subcommand of EDIT 95

RENUM Subcommand of EDIT 97

RUN Subcommand of EDIT . 99

SAVE Subcommand of EDIT lO3

SCAN Subcommand of EDIT lOS

SEND Subcommand of EDIT lO7
(~

SUBMIT Subcommand of EDIT lO9 "- ,/

T ABSET Subcommand of EDIT 111

TOP Subcommand of EDIT 113

UP Subcommand of EDIT 115

VERIFY Subcommand of EDIT 117

EXEC Command 119

FREE Command 123

HELP Command 127

LINK Command 131

LIST ALC Command 137

LlSTBC Command . 139

LlSTCA T Command 141

LlSTDS Command . 145

LOADGO Command 147

LOGOFF Command 151
C~'

LOGON· Command 153

6 OS/VS2 TSO Command Language Reference (VS2 Release 2)

------------~ - .. ---.. - ... -----~

C'
PROFILE Command 155

PROTECT Command 159
Passwords ... 159
Types of Access 159
Password Data Set 161

RENAME Command 163

RUN Command 165

SEND Command 169
oJ

TERMINAL Command 173

TEST Command ... 177

Assignment of Values Function of TEST 183

AT Subcommand of TEST 185

CALL Subcommand of TEST 187

COpy Subcommand of TEST 189

DELETE Subcommand of TEST 193

DROP Subcommand of TEST 195

END Subcommand of TEST 197
(~-)

------, EQUATE Subcommand of TEST 199

FREEMAIN Subcommand of TEST 201

GETMAIN Subcommand of TEST 203

GO Subcommand of TEST 205

HELP Subcommand of TEST 207

LIST Subcommand of TEST 209

LlSTDCB Subcommand of TEST 213

LlSTDEB Subcommand of TEST 215

LIST MAP Subcommand of TEST 217

LlSTPSW Subcommand of TEST 219

LlSTTCB Subcommand of TEST 221

LOAD Subcommand of TEST 223

OFF Subcommand of TEST 225

QUALIFY Subcommand of TEST 227

G RUN Subcommand of TEST 229

WHERE Subcommand of TEST 231

Contents 7

Figures

Page of GC28-0646-1
Revised April 29, 1974
by TNL: GN28-2572

TIME Command

Command Procedure Statements

END Statement .

PROC Statement

WHEN Statement

Appendix A: Foreground Initiated Background Commands

CANCEL Command

OUTPUT Command

CONTINUE Subcommand of OUTPUT

END Subcommand of OUTPUT .

HELP Subcommand of OUTPUT

SA VE Subcommand of OUTPUT

ST A TUS Command

SUBMIT Command

Appendix B: Program Product Commands
ASM Command
CALC Command . .
COBOL Command
CONVERT Command
COpy Command . .
FORMAT Subcommand of EDIT
MERGE Subcommand of EDIT
FORMAT Command
FORT Command ..
GOFORT Command
LIST Command
MERGE Command
PLI Command
PLiC Command
TESTCOB Command
TESTFORT Command

Appendix C: Access Method Services Commands

Index

Figure I. Descriptive Qualifiers
Figure 2. Default Names Supplied by the System ..
Figure 3. Descriptive Qualifiers Supplied by Default
Figure 3.1 Commands Preferred for VSAM/NonVSAM Data Sets
Figure 4. Default Values For LINE and BLOCK Operands
Figure 5. How EDIT Subcommands Affect the Line Pointer Value
Figure 6. Subcommands of the EDIT Command
Figure 7. Source Statement/Program Product Relationship
Figure 8. Default Tab Settings
Figure 9. Information Available Through the HELP Command
Figure 10. System Defaults for Control Characters
Figure 11. Source Statement/Program Product Relationship
Figure 12. Submitting a Program As a Batch Job
Figure 13. Language Conversions Using the CONVERT Command

8 OS!VS2 TSO Command Language Reference (VS2 Release 2)

233

235

237

239

243

245

253

255

259

261

263

265

267

269

273
273
273
273
273
274
274
274
275
275
275
275
276
276
276
276
276

277

279

26
27
27
28
58
62
66
99

111
129
155
165
248
274

\"

('\
,• '

J

The following are changes to TSO commands for OS/YS2
Release 2:

ALLOCATE

New operands added:
AYBLOCK(value). - specifies the average length in
bytes of the records that will be written to the data set.
DEST(userid) - specifies a remote work station to
which SYSOUT data sets will be directed upon
unallocation.
HOLD/NOHOLD - specifies whether the data set is to
be placed on a hold queue upon unallocation.
UNIT(type) - specifies the device type to which a file
or data set is to be allocated.
UCOUNT(count) - specifies the maximum number of
devices to be allocated.
PARALLEL - specifies that one device should be used
for each volume required.
LABEUtype) - specifies the kind of label processing to
be done.

• POSITION(sequence-no.) - specifies the relative
position of a data set on a multiple data set tape.

• MAXYOUcount) - specifies the maximum number of
volumes a data set can use.

• PRIY ATE - specifies that the private volume use
attribute be assigned to a volume that is not reserved or
permanently resident.

• YSEQ(vol-seq-no) - specifies at which volume of a
multi-volume data set· processing is to begin.

• ROUND - specifies that the allocated space be equal to
one or more cylinders.

• KEEP - specifies that the data set is to be retained by
the system after it is freed.

• DELETE - specifies that the data set is to be deleted
after it is freed.

• CATALOG - specifies that the data set is to be
retained by the system in a catalog after it is freed.

• UNCAT ALOG - specifies that the data set is to be
removed from the catalog but still retained by the system
after it is freed.

ATTRIB

New operands added:
• DIAGNS(TRACE) - specifies the Open/Close/EOY

trace option.
• L1MCT(search-no.) - specifies the number of blocks or

tracks to be searched for available space.
• BUFOFF - specifies the buffer offset.
• DSORG - specifies the data set organization.
• DEN - specifies the magnetic tape density.
• TRTCH - specifies the recording technique for 7-track

tape.
• KEYLEN(key-length) - specifies the length in bytes of

each of the keys used to locate blocks of records in the

Page of GC28-0646·1
Revised April 29, 1974
by TNL: GN28-2572

Summary of Amendments
FQr GC28-0646-1
OS/VS2 Release 2

data set when the data set resides on a direct access
device.

CANCEL

New operands added:
• PURGE - specifies that the output of a job on the

output queue is to be purged from the system.
• NOPURGE - specifies that jobs are not to be cancelled

if they have executed and are on the output queue.

DELETE

The Access Method Services DELETE command replaces
the TSO DELETE command.

EDIT

New operand added:
• YSBASIC - specifies that the data set is for YSBASIC

statements.

PROFILE Subcommand of EDIT

New operands added:
PREFlX(dsname-prefix) - specifies a prefix that will be
append~d to all non-fully-qualified dsnames.

• NOPREFIX - specifies no prefixing of dsnames by any
qualifier.

• WTPMSG - specifies that all write to programmer
messages be sent to your terminal.

• NOWTPMSG - specifies that you do not want to
receive write to programmer messages.

RUN Subcommand of EDIT

New operands added:
• STORE/NOSTORE - specifies whether a permanent

OBJ data set is to be created. (For YSBASIC only)
• GO/NOGO - specifies whether a compiled program is

to be executed. (For YSBASIC only)
• SIZE(value) - specifies the size of the user area for

YSBASIC.
• PAUSE/NOPAUSE - specifies whether the user is to

be given the option to add or change certain compiler
options before proceeding to the next chain program.
(For YSBASIC only)

SEND Subcommand of EDIT

New operand added:
• CN(console-id) - specifies that the message is to be

queued to the indicated operator console.

Summary of Amendments 9

FREE
New operands added:

DEST(userid) - specifies that the SYSOUT data set is
to be routed to the user with the indicated userid.
HOLD/NOHOLD - specifies whether the data set is to
be placed on the hold queue.
KEEP - specifies that the data set is to be retained by
the system after it is freed.
DELETE - specifies that the data set is to be deleted
by the system after it is freed.
CAT ALOG/UNCA T ALOG - specifies whether a data
set is to be retained by the system in a catalog after it is
freed.

LISTCAT

• The Access Method Services LISTCA T command
replaces the TSO LISTCA T command.

LISTDS

New operands added:
• CAT ALOG(catalog-name) - specifies the user catalog

that contains the names in the data set list.
• LEVEL - specifies that the Hames in the data set list

are to be high-level qualifiers.

LOGON

New operands added:
• PERFORM(value) - specifies the performance group to

be used for the terminal session.
• RECONNECT - specifies that you want to re-logon

after your line has been disconnected.

PROFILE
New operands added:
• PREFIX(dsname-prefix) - specifies a prefix that will be

appended to all non-fully-qualified dsnames.
• NOPREFIX - specifies no prefixing of dsnames by any

qualifier will be performed.
• WTPMSG - specifies that you want to receive all write

to programmer messages at your terminal.
• NOWTPMSG - specifies that you do not want to

receive write to programmer messages.

RUN
New operand added:
• VSBASIC - specifies that the VSBASIC program

product is to be invoked.

10 OS/VS2 TSO Command Language Reference (VS2 Release 2)

Page of GC28-0646-1
Revised April 29, 1974
by TNL: GN28-2572

• STORE/NOSTORE - specifies whether a permanent
OBJ data set is to be created. (For VSBASIC only.)

• GO/NOGO - specifies whether a compiled program is
to be executed. (For VSBASIC only.)

• SIZE(value) - specifies the size of the user area for
VSBASIC.

• PAUSE/NOPAUSE - specifies whether the user is to
be given the option to add or change certain compiler
options before proceeding to the next chain program.
(For VSBASIC only.)

• SOURCE/OBJECT - specifies whether the compiler is
to compile new source code or re-use an old object
program. (For VSBASIC only.)

SEND

New operand added:
• CN(console-id) - specifies that the message is to be

queued to the indicated operator console.

OUTPUT
New operands added:
• KEEP - specifies that the SYSOUT data set will remain

enqueued after printing.
• NOKEEP - specifies that the SYSOUT data set be

deleted after it is printed.
• HOLD - specifies that the SYSOUT data set be held

for later access from the terminal.
• NOH OLD - specifies that the SYSOUT data set be

released for printing.
• DELETE - specifies that the classes of output specified

with the CLASS operand are to be deleted.
• NEWCLASS(c1assname) - changes one or more

SYSOUT classes to the specified class.
• DEST(station-id) - routes SYSOUT classes to a remote

work station specified by the "station-id" subfield.

The following are changes to the TSO Command Language
Reference for OS/VS2 Release 2:

• All TSO commands begin on an odd numbered page.
• All required information for each command is noted in

boldface.
• All operands of TSO commands appear in a top to

bottom format.
• ACCOUNT and OPERATOR commands are

documented in OS/VS2 System Programming Library: Job
Management. Supervisor. and TSO. GC28-0682.

• Commands and subcommands with the same name,
syntax and function are documented only once.
(ALLOCATE, HELP, PROFILE, SEND, and SUBMIT)

o

v

c.·

J

G

The following are changes to TSO Commands for TSO
Enhancements No.2, which was documented in OS/VS2 TSO
Enhancements No.2, GC28-0691-0:

EDIT

New subcommands added:
• ALLOCATE - allows you to allocate data sets and

filenames without ending the EDIT session.
• SUBMIT - allows you to run a job in the background

without having to save the data set or ending the EDIT
session.

New keyword operands added to the PROFILE
subcommand to regulate the frequency of mode messages
under the EDIT command:
• MODE - specifies that a mode message is requested at

the completion of each subcommand.
• NOMODE - specifies no change in the present

frequency for mode messages under the EDIT command.

EXEC

New keyword operands to requlate prompting:
• PROMPT - specifies that you want prompting during

the execution of a command procedure (CLIST data
set).

• NOPROMPT - specifies that you do not want
prompting during the execution of command procedure
(CLIST data set).

PROFILE

New keyword operands to regulate the frequency of mode
messages under the EDIT command:
• MODE - specifies that a mode message is requested at

the completion of each subcommand.
• NOMODE - specifies no change in the present

frequency for mode messages under the EDIT command.

Summary of Amendments 11

Summary of Amendments
For GC28-0646-0
As Updated by GN28-2537
TSO Enhancements No. 1

The following are changes to TSO commands.

ALLOCATE Command

New operands added:
• DUMMY - allocates dummy data sets.
• TRACKS - allocates space by tracks.
• CYLINDERS - allocates space by cylinders.
• RELEASE - deletes unused space when the data set is

closed.
Additional change:
• The user is prompted to either free and reallocate the

file or terminate command when the specified filename
is in use.

EDIT Command

New Subcommand added:
• SEND - allows the terminal user to communicate with

other terminal users or with the system operator while
remaining in EDIT mode.

New operand added to RUN subcommand:
• LIB - allows the user to run programs that require

subroutines from private libraries.

PROFILE Command

New operand added:
• LIST - allows the characteristics of a user's profile to

be listed at the terminal.

RUN Command

New operand added:
• LIB - allows the user to run programs that require

subroutines from private libraries.

12 OS!VS2 TSO Command Language Reference (VS2 Release 2)

Page of GC28-0646- t
Revised April 29, 1974
by TNL: GN28-2572

SEND Command

New operands added:
• WAIT - allows the user to wait for each specified

logged-on user to receive hIs message.
• NOW AIT - message will not be sent to specified

logged-on users whose terminals are busy. The sender
will be notified that the message was not sent or it will
become mail in the SYS1.BRODCAST data set.

• USER(*) - allows a message to be sent to the issuer of
the SEND command.

ACCOUNT Command

New operand added to ADD subcommand:
• USERDAT A(digits) - modifies an installation-defined

data field in the User Attribute Data Set.
New operand added to CHANGE subcommand:
• USERDATA(digits) - modifies an installation-defined

data field in the User Attribute Data Set.

OPERATOR Command

New operand added to SEND subcommand:
• SAVE - saves a message in the SYS 1.BRODCAST data

set.
Additional changes:
• The characters OPER are appended to messages from an

operator console or terminal.
• A notice may be sent from the SYS1.BRODCAST data

set to a terminal user.

~
l "

''-.. . ./

Page of GC28-0646-1
Revised April 29, 1974
by TNL: GN28-2572

Introduction

TSO allows you and a number of other users to use the facilities of the
system concurrently and in a conversational manner. You can communicate
with the system by typing requests for work (commands) on a terminal,
which may be located far away from the system installation. The system
responds to your requests by performing the work and sending messages
back to your terminal. The messages tell you such things as what the status
of the system is with regard to your work and what input is needed to allow
the work to be done.

By using different commands, you can have different kinds of work
performed. You can store data in the system, change the data, and retrieve
it at your convenience. You can create programs, test them, have them
executed, and obtain the results at your terminal.

When you use a command to request work, the command establishes the
scope of the work to the system. To provide flexibility and greater ease of
use, the scope of some commands' work encompasses several operations
that are identified separately. After entering the command, you may specify
one of the separately identified operations by typing a subcommand. A
subcommand, like a command, is a request for work; however, the work
requested by a subcommand is a particular operation within the scope
established by a command.

This reference manual describes what each command can do and how to
enter a command at your terminal.

Additional commands and subcommands are available for a license fee as
optional program products. Appendix B lists the program product
commands and subcommands.

Appendix C lists the Access Method Services Commands that are
available.

In this manual, references are made to IBM program products in various
applications. None of these references are intended to state or imply that
only the IBM program product mentioned may be used in the given
application; any functionally equivalent program may be used instead.

Introduction 13

I

\
'-

('

14 OS/VS2 TSO Command Language Reference (VS2 Release 2)

o

Basic Information For Using TSO

Before using TSO you should know how to use:
• Terminals
• TSO Commands
• System provided aids
• Data set naming conventions

U sing a Terminal
A terminal session is designed to be an uncomplicated process for a
terminal user: he identifies himself to the system and then issues commands
to request work from the system. As the session progresses, the user has a
variety of aids available at the terminal which he can use if he encounters
any difficulties.

Entering Information at the Terminal
All TSO terminals have a typewriter-like keyboard through which you enter
information into the system. The features of each keyboard vary from
terminal to terminal; for example, one terminal may not have a backspace
key, while another may not allow for lowercase letters. The features of each
terminal as they apply to TSO are described in the publication, TSO
Terminals. The examples in this book are addressed to a user of an IBM

2741 Communication Terminal.

Standard Terminal Conventions
Certain conventions apply to all TSO terminals. They are:

• Any lowercase letters you type are interpreted by the system as
uppercase letters. For example, if you type in:

abcDe8-fg

the system interprets it as:

ABCDE8-FG

The only exceptions are certain text-handling applications which allow
you to type in text with both uppercase and lowercase letters.

• All messages or other output sent to you by the system come out in
uppercase letters. The only exception is the output from the special
text-handling applications mentioned previously, which comes out both
in uppercase and lowercase.

Character and Line Deletion
TSO provides a method for you to correct typing mistakes. You can request
that the character you just typed be deleted or that all the preceding
characters in the line be deleted. You can define your own
character-deletion and line-deletion control characters, or you can use the
default characters in the system. For example, if the control characters are
the quotation mark (") for deleting the preceding character, and the percent
sign (0/0) for deleting the current line, and you type the following message:

first ent%Sect"onft'"'d ENR"try

Basic Information For Usiitg TSO 15

it is received by the system as:

SECOND ENTRY

Note that you can use the character-deletion character repetitively (to
delete more than one of the preceding characters in the line).

The blank space produced when you hit the space bar is also considered
to be a character, and you can delete it using the character-deletion or
line-deletion characters. For example, if you type the following line:

a b%cd "E "f

it is received by the system as:

CD EF

Normally, you will use the default characters in the system, (usually the
backspace and the attention key). However, you can use the PROFILE

command to establish your own character-deletion and line-deletion
characters. The PROFILE command is described in the section, "Starting and
Ending a Terminal Session." The ability to change the character-deletion
and line-deletion characters is useful when you use more than one type of
terminal. For example, any time you have to use a terminal that does not
have backspace and attention keys, you can use the PROFILE command to
select two other suitable characters as the character-deletion and
line-deletion characters.

Line by Line Data Entry
After you type a line and make any necessary corrections, you can enter
that line as follows:

• Press the RETURN key on an IBM 2741 Communication Terminal.
• Press the RETURN key on an IBM 1052 Printer-Keyboard. (If the

1052 does not have the automatic EOB feature, hold down the AL TN

coding key and press the EOB(S) key.)1
• Hold the CTRL key and press the XOFF key on a Teletype2 terminal.

Notes:
1. This manual assumes that you are using an IBM 2741 Communication

terminal, and that you must press the RETURN key to enter a line.
2. If you want to enter a null line, that is a line of blanks, press the key

used to enter a line (RETURN key on the 2741) after entering at least
one blank.

You cannot use the character-deletion and line-deletion characters to
make corrections to the line after you enter it. If the line you entered was a
command, you must use the attention interruption (described later in this
section) to cancel the line. If the line you entered was data, you can change
it by using the EDIT command (described in the section, "Entering and
Manipulating Data").

1 For information about the terminal you are using, refer to TSO Terminals.
2 Trademark of the Teletype Corporation.

16 OS/VS2 TSO Command Language Reference (VS2 Release 2)

f'\
'- .. /

c

C
--·,

)
)

--_/

o

._-------- _ .. __ .. _.- _-

Using TSO Commands
A command consists of a command name followed, usually, by one or more
operands. Operands provide the specific information required for the
command to perform the requested operation. For instance, operands for
the RENAME command identify the data set to be renamed and specify the
new name:

RENAME OLD NAME NEWNAME

/ t \
command name operand-l operand-2

(old data-set-name) (new data-set-name)

Two types of operands are used with the commands: positional and
keyword.

Positional Operands
Positional operands follow the command name in a prescribed sequence. In
the command descriptions within this manual, the positional operands are
shown in lower case characters. A typical positional operand is:

data-set-name

You must replace "data-set-name" with an actual data set name when you
enter the command.

When you want to enter a positional operand that is a list of several
names or values, the list must be enclosed within parentheses. The names or
values must not include unmatched right parentheses.

Keyword Operands
Keywords are specific names or symbols that have a particular meaning to
the system. You can include keywords in any order following the positional
operands. In the command descriptions within this book, keywords are
shown in upper case characters. A typical keyword is:

TEXT

You can specify values with some keyword. The value is entered within
parentheses following the keyword. The way a typical keyword with a value
appears in this book is:

LINESIZE(integer)

Continuing this example, you would select the number of characters that
you want to appear in a line and substitute that number for the "integer"
when you enter the operand:

LINESIZE(80)

Note: If conflicting keywords are entered, the last keyword entered
overrides the previous ones.

Abbreviating Keyword Operands

You can enter keywords spelled exactly as they are shown or you may use
an acceptable abbreviation. You may abbreviate any keyword by entering
only the significant characters; that is, you must type as much of the

Basic Infonnation For Using TSO 17

I

Page of GC28-0646-1
Revised April 29, 1974
by TNL: GN28-2572

keyword as is necessary to distinguish it from the other keywords of the
command or subcommand. For instance, the LISTBC command has four
keywords:

MAIL NOTICES

NOM AIL NONOTICES

The abbreviations are:
M for MAIL (also MA and MAl)

NOM for NOMAIL (also NOMA and NOMAD

NOT for NOTICES (also NOn, NOTIC, and NOTICE)

NON for NONOTICES (also NONO, NO NOT, NONOTI. NONOTIC,

and NONOTICE)

Delimiters
When you type a command, you must separate the command name from
the first operand by one or more blanks. You must separate operands by
one or more blanks or a comma. Do not use a semicolon as a delimiter
because the characters entered after a semicolon are igno~ed. Using a blank
or a comma as a deli~iter, you can type the LISTBC command like this:

LISTBC NOMAIL NONOTICES

or like this:

LISTBC NOMAIL, NONOTICES

or like this:

LISTBC NOMAIL NOTICES

Enter a blank by pressing the space bar at the bottom of your terminal
keyboard. You can also use the TAB key to enter one or more blanks.

Subcommands
The work done by some of the commands is divided into individual
operations. Each operation is defined and requested by a subcommand. To
request one of the individual operations, you must first enter the command.
You can then enter a subcommand to specify the particular operation that
you want performed. You can continue entering subcommands until you
enter the END subcommand.

The commands that have subcommands are ACCOUNT, CALC, EDIT,

OPERATOR, OUTPUT, and TEST. When you enter the ACCOUNT command
you can then enter the subcommands for ACCOUNT. Likewise, when you
enter the CALC, EDIT, OPERATOR, OUTPUT, or TEST commands you can
enter appropriate subcommands.

.,8 OS/VS2 TSO Command Language Reference (VS2 Release 2)

c

c

c

... _----_._ _._----_._ __ .. ,---

Syntax Notation Conventions
The notation used to define the command syntax and format in this
publication is described in the following paragraphs.

1. The set of symbols listed below is used to define the format, but you
should never type them in the actual statement.
hyphen

underscore

braces {}

brackets 0
ellipsis

The special uses of these symbols are explained in the paragraphs
below.

2. You should type upper-case letters, numbers, and the set of symbols
listed below in an actual command exactly as shown in the statement
definition.
apostrophe

asterisk *
comma

equal sign

parentheses 0
period

3. Lower-case letters, and symbols appearing in a command definition
represent variables for which you should substitute specific
information in the actual command.
Example: If name appears in a command definition, you should
substitute a specific value (for example, ALPHA) for the variable when
you enter the command.

4. Stacked items represent alternatives. You should select only one item.
Example: The representation

A
B
C

indicates that either A or B or C is to be selected.
5. Hyphens join lower-case words and symbols to form a single variable.

Example: If member-name appears in a command definition, you
should substitute a specific value (for example, BET A) for the variable
in the actual command.

6. An underscore indicates a default option. If you select an underscored
alternative, you need not specify it when you enter the command.
Example: The representation

A
B
C

indicates that you are to select either A or B or C; however, if you
select B, you need not specify it, because it is the default option.

Basic Infonnation For Using TSO 19

7. Braces group related items, such as alternatives.
Examples: The representation

ALPHA=({~}'D)

indicates that you must choose one of the items enclosed with in the
braces. If you select A, the result is ALPHA=(A,D).

8. Brackets also group related items; however, everything within the
brackets is optional and may be omitted.
Example: The representation

ALPHA={~lD)
indicates that you may choose one of the items enclosed within the
brackets or that you may omit all of the items within the brackets. If
you select only D, you may specify ALPHA=(,D).

9. An ellipsis indicates that the preceding item or group of items can be
repeated more than once in succession.
Example:

ALPHA [, BETA •••]

indicates that ALPHA can appear alone or can be followed by ,BET A
any number of times in succession.

Using System-Provided Aids
Several aids are available for your use at the terminal:

• The attention interruption allows you to interrupt processing so that
you can enter a command.

• The HELP command provides you with information about the
commands.

• The conversational messages guide you in your work at the terminal.

The Attention Interruption
The attention interruption allows you to interrupt processing at any time so
that you can enter a command or subcommand. For instance, if you are
executing a program and the program gets in a loop, you can use the
attention interruption to halt execution. As another example, when you are
having the data listed at your terminal and the data that you need has been
listed, you may use the attention interruption to stop the listing operation
instead of waiting until the entire data set has been listed.

If, after causing an attention interruption, you want to continue with the
operation that you interrupted, you can do so by pressing the return key
before typing anything else; however, input data that was being typed or
output data that was being printed at the time of the attention interruption
may be lost. You can also request an attention interruption while at the
command level, enter the TIME command, and then resume with the
interrupted operation by pressing the return key.

Note: One output record from the interrupted program may be printed at
the terminal after you enter your next command. This is normal for some
programs.

20 OS/VS2 TSO Command Language Reference (VS2 Release 2)

c

C
""

\

~)

o

If your terminal has an interruption facility, you can request an attention
il?-terruption by pressing the appropriate key (the ATTN key on IBM 2741
Communication Terminals). Whether or not your terminal has a key for
attention interruptions, you can use the TERMINAL command to specify
particular operating conditions that the system is to interpret as a request
for an attention interruption. More specifically, you can specify a sequence
of characters that the system is to interpret as a request for an attention
interruption. In addition, you can request the system to pause after a certain
number of seconds of processing time has elapsed or after a certain number
of lines of output has been displayed at your terminal. When the system
pauses, you can enter the sequence of characters that you define as a
request for an attention interruption.

Note: If you are using the attention key as a line-delete indicator, pressing
the attention key (after entering characters in a line, and before pressing
the carriage return,) will cause the line you entered to be ignored by the
system. Another depression of the attention key is required to cause an
interruption.

These are three types of responses to an attention interruption entered
by a terminal user:

System Response

I

Explanation

Ignored

D

"attention message"

Input line has been deleted. List of Messages is made available.

One of the message types is made available.

Messages
There are four types of messages:

• Mode messages.
• Prompting messages.
• Informational messages.
• Broadcast messages.

Mode Messages

A mode message tells you when the system is ready to accept a new
command or subcommand. When the system is ready to accept a new
command it prints:

READY

When you enter a command that has sub commands and the system is
ready to accept that command's subcommands, it prints the name of the
command, which can be one of the following:

EDIT
TEST

You can then enter the subcommands you want to use. The TEST

message also appears after each TEST subcommand has been processed. If
the system has to print any output or other messages, as a result of the
previous command or TEST subcommand, it does so before printing the
mode message.

Sometimes you can save a little time by entering two or more commands
in succession without waiting for the intervening READY message. The
system then prints the READY messages in succession after the commands.

Basic Infonnation For Using TSO 21

If you enter the following commands without waiting for the intervening
mode messages, your listing will be:

READY
delete .. .
free .. .
rename .. .
READY
READY
READY

There is a drawback to entering commands without waiting for the
intervening mode messages. If you make a mistake in one of the commands,
the system sends you messages telling you of your mistake, and then it
cancels the remaining commands you have entered. After you correct the
error, you have to reenter the other commands.

Unless you are sure that there are no mistakes in your input, you should
wait for a READY message before entering a new command.

Note: Some terminals "lock" the keyboard after you enter a command,
and therefore you cannot enter commands without waiting for the
intervening READY message. Terminals which do not lock the keyboard
may occasionally do so, for example when all buffers allocated to the
terminal are used. See the publication TSO Terminals for information on
your terminal.

Prompting Messages
A prompting message tells you that required information is missing or that
information you supplied was incorrectly specified. A prompting message
asks you to supply or correct that information. For example,
partitioned-data-set-name is a required operand of the CALL command; if
you enter the CALL command without that operand the system will prompt
you for the data-set-name and your listing will look as follows:

READY
call
ENTER DATA SET NAME -

You should respond by entering the requested operand, in this case the
data set name, and by pressing the RETURN key to enter it. For example if
the data set name is ALPHA.DAT A you would complete the prompting
message as follows:

ENTER DATA SET NAME­
alpha.data

If you wish, you will receive prompting messages when appropriate.
However, the PROFILE command can be used to suppress prompting.

Sometimes you can request another message that explains the initial
message more fully. If the second message is not enough, you can request a
further message to give you more detailed information. An indication that a
second or additional message level is available is a plus sign (+) at the end
of the message.

22 OS/VS2 TSO Command Language Reference (VS2 Release 2)

.-~----~ ---------------_ .. -- --._--------

()

c

-----_ _---------

I'~'" \
(. ,-)

o

--- ---------_ ... _---

To request an additional level of message:
1. Type a question mark(?) in the first position of the line.
2. Press the RETURN key.
If you enter a question mark, and there are no messages to provide

further detail, you receive the following message:

NO INFORMATION AVAILABLE

You can stop a prompting sequence by entering the requested
information or by requesting an attention interruption.

Informational Messages
An informational message tells you about the status of the system and your
terminal session. For example, an informational message can tell you how
much time you have used. Informational messages do not require a
response.

If an informational message ends with a plus sign (+) you can request an
additional message by entering a question mark (?) after READY, as
described in "Prompting Messages." Informational messages have only one
second level message, while prompting messages may have more than one.

Broadcast Messages
Broadcast messages are messages of general interest to users of the system.
Both the system operator and any user of the system can send broadcast
messages. The system operator can send messages to all users of the system
or to individual users. For example, he may send the following message to
all users:

DO NOT USE TERMINALS #4, 5 AND 6 ON 6/30. THEY ARE
RESERVED FOR DEPARTMENT 791.

You, or any other user, can send messages to other users or to the
system operator. For example, you may send, or receive, the following
message:

DEPARTMENT NO. 4672 WILL BE CHANGED TO 4675 STARTING 8

A message sent by another user will show his user identification so you
will know who sent you the message.

Using the HELP Command
The HELP command can be used by a terminal user to receive all the
information necessary to use any TSO command. The information requested
will be printed out at the user's terminal.

Explanations of Commands
To receive a list of all the TSO commands in the SYS l.HELP data set along
with a description of each, enter the HELP command as follows:

help

Information about installation-written commands may be placed in the
SYS1.HELP data set. You can also get all the information available on a

Basic Infonnation For Using TSO 23

specific command in SYS 1.HELP entering the specific command name as an
operand on the HELP command, as follows:

help command-name

Syntax Interpretation of HELP Information
The syntax notation used to present HELP information is different from the
syntax notation used in this publication because it is restricted to characters
that can be printed by your terminal. You can get the syntax interpretation
by entering the HELP command as follows:

READY
help help

Explanations of Subcommands
When HELP exists as a subcommand, you may use it to obtain a list of
subcommands or additional information about a particular subcommand.
The syntax of HELP as a subcommand is the same as the HELP command.

Using Data Set Naming Conventions
A data set is a collection of related data. Each data set stored in the system
is identified by a unique data set name. The data set name allows the data
to be retrieved and helps protect the data from unauthorized use.

The data set naming conventions for TSO simplify the use of data set
names. When a data set name conforms to the conventions, you can refer
to the data set by its fuily qualified name or by an abbreviated version of ~"
the name. The following paragraphs: ~./ "

1. Describe data set names in general.
2. Define the names that conform to the naming conventions for TSO.

3. Tell how to enter a complete data set name, and how to enter the
abbreviated version of a name that conforms to the TSO data set
napting conventions.

Oata Set Names in General
A data set name consists of one or more fields. Each field consists of one
through eight alphameric characters and must begin with an alphabetic (or
national) character.
Caution: The National Characters $, @, and # are accepted as the first
character in a data set name. The characters hyphen (-) and
ampersand-zero (12-0 punch) are not accepted in a data set name.

A simple data set name with only one field may be:
PARTS

A data set name that consists of more than one field is a "qualified" data
set name. The fields in a qualified data set name are separated by periods.
A qualified data set name may be:

PARTS.OBJ

or
PARTS.DATA

24 OS/VS2 TSO Command Language Reference (VS2 Release 2)

o

o

Partitioned Data Sets: A partitioned data set is simply a data set with the
data divided into one or more independent groups called members. Each
member is identified by a member name and can be referred to separately.
The member name is enclosed within parentheses and appended to the end
of the data set name:

PARTS.DATA(PARTI4)

~mbername
TSO Data Set Names
A data set name must be qualified in order to conform to the TSO data set
naming conventions. The qualified name must consist of at least the two
required fields of the following three:

1. Your user prefix (required; defaults to userid; may be redefined using
PROFILE command).

2. A user-supplied name (optional for a partitioned data set).
3. A descriptive qualifier (required).
Normally all three names are used:

USERPREFIX.USER-SUPPLIED-NAME.DESCRIPTIVE QUALIFIER

The total length of the data set name must not exceed 44 characters,
including periods. A typical TSO data set name is:

WRRID.PARTS.DATA

identification qualifier - WRRID

user supplied name - P ARTS
descriptive qualifier - DATA

The TSO data set naming conventions also apply to partitioned data sets. A
typical TSO name for a member of a partitioned data set is:

WRRID.PARTS.DATA(PART14)

Identification Qualifier. The identification qualifier is always the leftmost
qualifier of the full data set name. For TSO, this qualifier is the prefix
selected in the PROFILE command. If no prefix has been selected, the userid
assigned to you by your installation will be used.
User-supplied Name: You choose a name for the data sets that you want to
identify. It can be a simple name or several simple names separated by
periods.
Descriptive Qualifier: The descriptive qualifier is always the rightmost
qualifier of the full data set name. To conform to the data set naming
conventions, this qualifier must be one of the qualifiers listed in Figure 1.

Basic Information For Using TSO 25

Descriptive Qualifier

ASM

BASIC

CLIST

CNTL

COBOL

DATA

FORT

IPLI

LINKLIST

LIST

LOAD

LOADLIST

OBJ

OUTLIST

PLI

STEX

TESTLIST

TEXT

VSBASIC

Figure t. Descriptive Qualifiers

Data Set Contents

Assembler (F) input

ITF:BASIC statements

TSO commands

JCL and SYSIN for SUBMIT command

American National Standard COBOL statements

Uppercase text

FORTRAN (Code and Go, E, G, Gl, H)
statements

ITF:PL/I statements

Output listing from linkage editor

Listings

Load module

Output listing from loader

Object module

Output listing from OUTPUT command

PL/I(F), PL/I Checkout, or PL/I Optimizing
compiler statements.

STATIC external data from ITF:PLI

Output listing from TEST command

Uppercase and lowercase text

VSBASIC statements

How to Enter Data Set Names
The data set naming conventions simplify the use of data set names. If the
data set name conforms to the conventions, you need specify only the
user-supplied name field (in most cases) when you refer to the data set.
The system will add the necessary qualifiers to the beginning and to the end
of the name that you specify. In some cases, however, the system will
prompt you for a descriptive qualifier. Until you learn to anticipate these
exceptions to the naming conventions, you may wish to specify both the
user-supplied name and the descriptive qualifier when referring to a data
set. When you are using the LINK command for example, the system will
add both the user identification and the descriptive qualifier, allowing you
to specify only the user-supplied name. For instance, you may refer to the
data set named USERID.PARTS.OBJ by specifying only PARTS (when you are
using LINK) or by specifying PARTS.OBJ (when you are using other
commands). You may refer to a member of a partitioned data set
USERID.PARTS.OBJ(PART14) by specifying PARTS(PART14) when you are
using LINK or by specifying PARTS.OBJ(PART14) when you are using other
commands.

When you specify an entire fully qualified data set name, as you must do
if the name does not conform to the TSO data set naming conventions, you
must enclose the entire name within apostrophes; as follows:

·WRRID.PROG.LIST' where WRRID is not your user identification
or

·WRRID.PROG.FIRST' where FIRST is not a valid descriptive qualifier.

The system will not append qualifiers to any name enclosed in parentheses. C'

26 OS/VS2 TSO Command Language Reference (VS2 Release 2)

~ --- --.--~-----.-------.---... -----.---~-~- --

(_ ..

Page of GC28-0646-1
Revised April 29, 1974
by TNL: GN28-2572

Defaults for Data Set Names: When you specify only the user-supplied
name, the system adds your user identification and, whenever possible, a
descriptive qualifier. The system attempts to derive the descriptive qualifier
from available information. For instance, if you specified ASM as an
operand for the EDIT command, the system will assign ASM as the
descriptive qualifier. If the information is insufficient, the system will issue a
message at your terminal requesting the required information. If you specify
the name of a partitioned data set and do not include a required member
name, the system will use TEMPNAME as the default member name. (If you
are creating a new member, the member name will become TEMPNAME: if
you are modifying an existing partitioned data set, the system will search
for a member named TEMPNAME.) Figure 2 illustrates the default names
supplied by the system.

If you specify: The input data The output data set
set name is: name will be:

EDIT PARTS ASM UID.PARTS.ASM UID.PARTS.ASM
LINK PARTS or
LINK (PARTS) UID.PARTS.OB] UID.PARTS.LOAD

(TEMPNAME)
CALL PARTS UID.PARTS.LOAD

(TEMPNAME)

EDIT PARTSOAN) ASM UID.PARTS.ASM(JAN) UID.PARTS.ASMOAN)
LINK PARTS(JAN) or
LINK (PARTS(JAN» UID.PARTS.OB]OAN) UID.PARTS.LOAD(JAN)
CALL PARTSOAN) UID.PARTS.LOAD(JAN)

EDIT (PARTS) ASM UID.ASM(PARTS) UID.ASM(PARTS)
LINK (PARTS) UID.OB](PARTS) UID.LOAD(PARTS)
CALL (PARTS) UID.LOAD(PARTS)

Figure 2. Default Names Supplied by the System

Note: Member names must be enclosed in parentheses to distinguish them
from data set names.

Command

ASM
CALC
CALL
COBOL
CONVERT

EXEC
FORMAT
FORT
LINK

LOADGO

OUTPUT
RUN

SUBMIT
TEST

Descriptive Qualifiers
Input Output

ASM OBJ
STEX STEX
LOAD
COBOL
IPLI
FORT
CLIST
TEXT
FORT
OBJ
LOAD
OBJ
LOAD

ASM
FORT
BASIC
COBOL
IPLI
CNTL
OB]
LOAD

OB]
PLI
FORT

OB]
LOAD

Figure 3. Descriptive Qualifiers Supplied by Default

Listing

LIST

LIST

LIST
LIST
LINKLIST

LOADLIST

OUTLIST

TESTLIST

Basic Information For Using TSO 27

------ - . _ ... _--_._----------

Page of GC28-0646-1
Revised April 29, 1974
by TNL: GN28-2572

Specifying Data Set Passwords
When referencing password protected data sets, you may specify the
password as part of the data set name (you will be prompted for it
otherwise). The password is separated from the data set name by a slash
(/) and optionally, by one or more standard delimiters (tab,blank, or
comma). See the discussion on "Password Data Set" that appears under the
PROTECT command for nonVSAM data sets. For VSAM data sets, see
DEFINE and ALTER in OS/VS2 Access Method Services.

Using Commands for VSAM and NonVSAM Data Sets
Figure 3.1 gives recommended commands, by function, for VSAM and
nonVSAM data sets. Numbers in parentheses after the commands indicate
order of preference. Program product commands are identified with an
asterisk (*). Refer to OS/VS Access Method Services for commands not
covered in this document.

Function NonVSAM VSAM

Build lists of attributes ATTRlB (None)
Allocate new DASD space ALLOCATE DEFINE
Connect data set to terminal ALLOCATE ALLOCATE
List names of allocated LlSTALC LlSTALC
(connected) data sets
Modify passwords PROTECT DEFINE,AL TER
List attributes of one or LISTDS (1) LlSTCAT(l)
more objects LlSTCAT (2) LlSTDS (2)
List names of cataloged data sets

Limit by type LlSTCAT LlSTCAT
Limit by naming convention LISTDS LISTDS

Catalog data sets DEFINE (1) DEFINE
ALLOCATE (2)

List contents EDIT,LlST* PRINT
Rename RENAME ALTER
Delete DELETE DELETE

Figure 3.1 Commands Preferred for VSAM/NonVSAM Data sets

28 OS/VS2 TSO Command Language Reference (VS2 Release 2)

c

/~--.~

'- /

o

o

----------------------.-._._----

The Commands

This section contains descriptions of the TSO commands. The commands are
presented in alphabetical order. Subcommands are presented in alphabetical
order following the command to which they apply.

The Commands 29

C-.'\
./

30 OS/VS2 TSO Command Language Reference (VS2 Release 2)

G

.----------------------.-------~-

ALLOCATE Command

Page of GC28-0646-1
Revised April 29, 1974
by TNL: GN28-2572

Use the ALLOCATE command or the ALLOCATE subcommand of EDIT to
dynamically allocate the data sets required by a program that you intend to
execute. You may use the ATTRlB command to build a list of attributes for
nonVSAM data sets that you intend to allocate dynamically. During the
remainder of your terminal session you can have the system refer to this list
for data set attributes when you enter the ALLOCATE command. The
ALLOCATE command will convert the attributes into the DCB parameters
for data sets being allocated. For a successful allocation, at least the
following operands should be entered:

OLD data sets - DATASET
NEW data sets - NEW and FILE

Note: The syntax and function of the ALLOCATE subcommand of EDIT is
the same as that of ALLOCATE command.

ALLOCATE Command 31

Page of GC28-0646-1
Revised April 29, 1974
by TNL: GN28-2572

{ ALLOCATE}
ALLOC

[DATASET ({* })
dsname-list

DUMMY

[lD]
SHR
MOD
NEW
SYSOUT[(class)]

[VOLUME (serial-list)]

[SPACE (quantity [.increment]]

[01 R (integer)]

[DEST(userid)]

[HOLD J
NOHOLD

[UNIT(type))

[UCOUNT(COunt)]
PARALLEL

[LABEL(type))

[POSITION(sequence-no.))

[MAXVOL(count))

[PRIVATE]

[VSEQ(vol-seq-no))

[USING oa~tr-list-nameDJ
filename

[RELEASE)

[ROUND)

[KEEP J DELETE
CATALOG
UNCATALOG

[F I lE (namell]

flOCK(value) lJ AVBLOCK(value)
TRACKS
CYLINDERS

DATASET(dsname-list or *) specifies the name of the data set that is to be
allocated. If a list of data set names is entered, ALLOCATE will allocate
and concatenate nonVSAM data sets. The data set name must include the
descriptive (rightmost) qualifier and may contain a member name in
parentheses.
If you specify a password, you will not be prompted for it when you
open the data set.
You may substitute an asterisk (*) for the data set name to indicate that
you want to have your terminal allocated for input and output. If you
use an asterisk (*), only the FILE, BLOCK, and USING operands should

('-~,

\~-._//

..,

C

be entered. All other operands are ignored. No message is issued to ~

notify the user. L

32 OS/VS2 TSO Command Language Reference (VS2 Release 2)

C)

o

Page of GC28-0646-1
Revised April 29, 1974
by TNL: GN28-2572

The system generates names forSYSOUT qata sets; therefore, you should
not specify a data set name when you allocate a SYSOUT data set. If you
do, the system ignores it.

Note: The following items should be noted when using the concatenate
function:

1. The data sets specified in the list must be cataloged. You may use the
CAT ALOG operand of either ALLOCATE or FREE to catalog a data set.

2. The maximum number of data sets that can be concatenated is 255
sequential or 16 .. partitioned data sets. The data sets to be
concatenated must be either all sequential or all partitioned.

3. The data set group will be permanently concatenated. The group must
be freed in order to be deconcatenated. The filename specified for the
FILE operand on ALLOCATE must be specified for the FILE operand
on FREE.

DUMMY specifies that no devices or external storage space is to be
allocated to the data set, and no disposition processing is to be
performed on the data set. Entering the DUMMY keyword will have the
same effect as specifying NULLFILE as the data set name on the
DATASET operand. If DUMMY is specified, only the FILE, USING, and
BLOCK operands should be entered. All other operands are ignored.

FILE(name) specifies the name to be associated with the data set. It may
contain no ·more than eight characters. (This name corresponds to the
Data Definition (DO) name in Job Control Language and must match
the DO name in the Data Control Block (DCB) that is associated with the
data set.) For PL/I, this name is the file name in a DECLARE statement
and has the form "DCL filename FILE"; for instance, OCL MASTER FILE.
For COBOL, this name is the external-name used in the the ASSIGN TO
clause. For FORTRAN, this name is the data set reference number that
identifies a data set and has the form 'FTxxFyyy;" for instance
FT06F002.

If you o91it this operand, the system assigns an available file name
(ddname) from a data definition statement in the procedure that is
invoked when you enter the LOGON command.

OLD indicates that the data set currently exists and that you require
exclusive use of the data set. The data set should be cataloged. If it is
not, you must specify the VOLUME operand. OLD data sets are retained
by the system when you free them from allocation. The DATASET
parameter is required.

SHR indicates that the data set currently exists but that you do not require
exclusive use of the data set. Other tasks may use it concurrently.
ALLOCATE assumes the data set is cataloged if the VOLUME operand is
not entered. SHR data sets are retained by the system when you free
them. The DATASET parameter is required.

MOD indicates that you want to append data to the end of the data set.
MOD data sets will be retained by the system when you free them. The
OAT ASET parameter is required.

NEW (nonVSAM only) indicates that the data set does not exist and that it is
to be created. For new partitioned data sets yo~ must specify the DIR
operand. A NEW data set will be kept and cataloged if you specify a data
set name. If you do not specify a data set name, it will be deleted when
you free it or logoff.

SysoUT(class)) indicates that the data set is to be a system output data set.

ALLOCATE Command 33

Page of GC28-0646- t
Revised April 29, 1974
by TNL: GN28-2572

An optional subfield may be defined giving the output class of the data
set. Output data will be initially directed to the job entry subsystem and
may later be transcribed to a final output device. The final output device
is associated with output class by the installation. After transcription by
the job entry subsystem, SYSOUT data sets are deleted.

Note: If you do not specify OLD, SHR, MOD, NEW or SYSOUT, a default
value is assigned, or a value is prompted for, depending on the other
operands specified:

1. If any space parameters (SPACE, DIR, BLOCK, AYBLOCK, TRACKS or
CYLINDERS) are specified, then the status defaults to NEW.

2. If none of the space parameters are entered, and the DATASET
parameter is entered, then the status defaults to OLD.

3. If neither the DATASET parameter is specified or any space
parameters, then you are prompted to enter a value for status.

VOLUME(serial) specifies the serial number(s) of an eligible direct access
volume(s) on which a new data set is to reside or on which an old data
set is located. If VOLUME is specified for an old data set, the data set
must be on the specified volume(s) for allocation to take place. If you do
not specify VOLUME, new data sets are allocated to any eligible direct
access volume. Eligibility is determined by the UNIT information in your
procedure entry in the User Attribute Data Set(UADS).

SPACE(quantity, increment) specifies the amount of space to be allocated for
a new data set. If this parameter or the primary space quantity is
omitted, the default space is (10,50) AVBLOCK (1000). To indicate the
unit of space for allocation, you must specify one of the following:
BLocK(value), AVBLOCK(value), TRACKS, CYLINDERS. The amount of
space requested is determined as follows:
BLOCK(value) - Multiply the value of the BLOCK operand by the

"quantity" value of the SPACE operand.
AVBLOCK(value) - Multiply the value of the A VBLOCK operand by the

"quantity" value of the SPACE operand.
TRACKS, - The "quantity" value of the SPACE operand is the number of

tracks you are requesting.
CYLINDERS - The "quantity" value of the SPACE operand is the number

of cylinders you are requesting.
SPACE may be specified for SYSOUT, NEW, and MOD data sets. You

must specify a unit of space when you use the SPACE operand.
quantity specifies the number of units of space to be allocated initially for a

data set.
increment specifies the number of units of space to be added to the data

each time the previously allocated space has been filled.
BLOCK(value) specifies the average length (in bytes) of the records that will

be written to the data set. The block value will be the unit of space used
by the SPACE operand. You may specify BLOCK (value) for SYSOUT,
NEW, MOD, DUMMY, or terminal data sets if the default value is not
acceptable.

Note: The value supplied for BLOCK also becomes the value for BLKSIZE
and is recorded in the DCB for the data set unless you specify the USING
operand. When the USING operand is specified, the BLKSIZE is taken from
the attribute list.

c

AVBLoCK(value) specifies only the average length (in bytes) of the records C

34 OS/VS2 TSO Command Language Reference (VS2 Release 2)

--- ------_ .. _-_ .. _- --_._------------------_.

Page of GC28-0646- t
Revised April 29, 1974
by TNL: GN28-2572

that will be written to the data set.
TRACKS specifies that the unit of space is to be a track.
CYLINDERS specifies that the unit of space is to be a cylinder.

Note: The keywords BLOCK, AVBLOCK, TRACKS and CYLINDERS may be
specified for SYSOUT, NEW or MOD data sets. The keyword BLOCK may
also be specified for dummy or terminal data sets.
DIR(integer) specifies the number of 256 byte records that are to be

allocated for the directory of a new partitioned data set. This operand
must be specified if you are allocating a new partitioned data set.

DEST(userid) specifies a remote work station to which SYSOUT data sets
will be directed upon unallocation. The userid is the name of the remote
work station receiving the SYSOUT data set.

HOLD specifies that the data set is to be placed on a HOLD queue upon
unallocation.

NOHOLD specifies that the data set is not to be placed on a HOLD queue
upon unallocation. NOHOLD is the default if neither HOLD nor NOHOLD

is specified.
UNIT(type) specifies the device type to which a file or data set is to be

allocated. You may specify an installation-defined group name, a generic
device type, or a specific device address.

UCOUNT(count) specifies the maximum number of devices to be allocated,
where count is a value from 1-59.

PARALLEL specifies that one device is to be mounted for each volume
specified on the VOLUME operand or in the catalog.

LABEL(type) specifies the kind of label processing to be done. Type may be
one of the following:
SL, SUL, AL, AUL, NSL, NL, LTM, or BLP. These types correspond to the
present JCL label-type values.

POSlTloN(sequence-no.) specifies the relative position (1-9999) of the data
set on a multiple data set tape. The sequence number corresponds to the
data set sequence number field of the label parameter in JCL.

MAXVOL(count) specifies the maximum number (1-255) of volumes a data
set can use. This number corresponds to the count field on the VOLUME

parameter in JCL.

PRIV ATE specifies that the private volume use attribute be assigned to a
volume that is not reserved or permanently resident. This operand
corresponds to the PRIVATE keyword of the VOLUME parameter in JCL.

Note: If VOLUME and PRIVATE operands are not specified and the value
specified for MAXVOL exceeds the value specified for UCOUNT, the system
will not demount any volumes when all of the mounted volumes have been
used, causing abnormal termination of your job. If PRIV ATE is specified, the
system will demount one of the volumes and mount another volume in its
place so that processing can continue.
vSEQ(vol-seq-no.) specifies at which volume 0-255) of a multi-volume

data set processing is to begin. This operand corresponds to the volume
sequence number on the VOLUME parameter in JCL. VSEQ should only
be specified when the data set is cataloged.

USING(attr-list-name) specifies the name of a list of attributes that you
want to have assigned to the data set that you are allocating. The
attributes in the list correspond to, and will be used for, data control
block (DCB) parameters. (Note to users familiar with conventional batch

ALLOCATE Command 35

Page of GC28-0646-1
Revised April 29, 1974
by TNL: GN28-2572

processing: these DCB parameters are the same as those normally
specified by JCL and data management macro instructions.)
An attribute list must be stored in the system before you use this
operand. You can build and name an attribute list by using the A TTRIB
command. The name that you specify for the list when you use the
ATTRIB command is the name that you must specify for this
USING(attr-list-name) operand.

RELEASE specifies that unused space is to be deleted when the data set is
freed.

ROUND specifies that the allocated space be equal to one or more
cylinders. This operand should be specified only when space is requested
in units of blocks. This operand corresponds to the ROUND keyword on
the SPACE parameter in JCL.

KEEP specifies that the data set is to be retained by the system after it is
freed.

DELETE specifies that the data set is to be deleted after it is freed.
CAT ALOG specifies that the data set is to be retained by the system in a

catalog after it is freed.
UNCAT ALOG specifies that the data set is to be removed from the catalog

after it is freed. The data set is still retained by the system.

Example 1

Operation: Allocate an existing cataloged data set containing input data for
a program. The data set name conforms to the data set naming
conventions, and you need exclusive use of the data.

Known:
The name of the data set: MOSER7.1NPUT.DATA

allocate dataset(input.data) old

Example 2

Operation: Allocate a new data set.

Known:
The name that you want to give the data: MOSER7.0UTPUT.DATA
The number of tracks expected to be used: 10
DCB parameters are in an attribute list named A TTR.

allocate dataset(output.data) new space(10,2) tracks
using(attr)

Example 3

Operation: Allocate your terminal as a temporary input data set.

allocate dataset(*) file(ft01f001)

36 OS/VS2 TSO Command Language Reference (VS2 Release 2)

c=

----_ ... _-----_ .. _._---_ _----

o

Page of GC28-0646-1
Revised April 29, 1974
by TNL: GN28-2572

Example 4

Operation: Allocate an existing data set that is not cataloged and whose
name does not conform to the data set naming conventions.

Known:
The data set name: SYS1.PTIMAC.AM

The volume serial number: B99RS2

The DD name: SYSLIB

alloe dataset('sys1.ptimae.am')file(syslib)
volume(b99rs2)shr

Example 5

Operation: Allocate a new partitioned data set.

Known:
The data set name: MOSER7.0VERHEAD.TEXT

The block length: 256 bytes
The number of blocks: 500
The number of directory records: 50

alloe dataset(overhead.text) new bloek(256) spaee(500)
dir(50)

Example 6

Operation: Allocate a new data set to contain the output from a program.

Known:
The data set name: MOSER7.0UT.DATA

The file name: OUTPUT

You don't want to hold unused space.

alloe dataset(out.data) file(output) new spaee(10,2)
tracks release

Example 7

Operation: Allocate an existing multi-volume data set to SYSDA, with one
device mounted for each volume.

Known:
Data set name - MOSER7.MULTIVOL.DATA

volumes - D9SVOLl

filename -

D95VOL2

D95VOL3

SYSLIB

alloe dataset('moser7.multivol.data') old parallel
file(syslib) volume(d95voI1,d95voI2,d95voI3)
unit(sysda)

ALLOCATE Command 37

Example 8

Operation: Allocate an existing data set on the second file of a
standard-label tape.

I Known:
Data set name - MOSER7.TAPEl.DATA

volume - T APEVOL

unit - 2400

alloc dataset('moser7.tape1.data') label(sl)
unit(2400) volume(tapevol) position(2)

38 OS/VS2 TSO Command Language Reference (VS2 Release 2)

... ;

c

c

o

Page of GC28-0646-1
Revised April 29, 1974
by TNL: GN28-2572

A 1TRIB Command

Use the ATTRIB command to build a list of attributes for nonVSAM data
sets that you intend to allocate dynamically. During the remainder of your
terminal session you can have the system refer to this list for data set
attributes when you enter the ALLOCATE command. The ALLOCATE
command will convert the attributes into DCB parameters and LABEL
parameters for data sets being allocated. See also the subparameters of the
DCB parameter in OS/VS2 JCL.

A TIRIB Command 39

{
ATTRIB}
ATTR

attr-list-name

[BlKSIZE(blocksize)]

[BUF L(butfer-Iength)]

[BUFNO(number-of-buffers)]

[lR ECl (~IOgiCal-rec~rd-length ~)]

[NCP(no.-of-channel-programs)]

[
INPUT]
OUTPUT

[
EXPDT(year-day)]
R ETPD(no.-of-days)

[BFALN ({~})]
[OPTCD(A,B,C,E,F,H,Q,T,W, and/or Z)]

[RECFM(A,B,D,F,M,S,T,U, and/or V)]

[DIAGNS(TRACE)]

[LI MCT (search-number)]

[BUFOFF ({ bIOCk-pr~fiX-length})]

DSORG DA
DAU
PO
POU
PS
PSU

attr-list-name specifies the name for the attribute list. This name can be
specified later as a parameter of the ALLOCATE command. The name
must consist of one through eight alphameric and/or national characters,

40 OS/VS2 TSO Command Language Reference (VS2 Release 2)

.. - .•. --.---.. ----~•. _-_ ... -. __ .- _._-_ _ ... _._--_.- _-----

c

,("'\
''-. ... /

c

Ci

must begin with an alphabetic or national character, and must be
different from all other attr-list-names and ddnames that are in existence
for your terminal session.

BLKSIZE(blocksize) specifies the blocksize for the data sets. The blocksize
must be a decimal number and must not exceed 32,760 bytes.

The block size that you specify must. be consistent with the
requirements of the RECFM operand. If you specify:

RECFM(F), then the block size must be equal to or greater than the
logical record length.

• RECFM(F B), then the block size must be an integral multiple of the
logical record length. .
RECFM(V), then the block size must be equal to or greater than the
largest block in the data set. (Note: For unblocked variable-length
records, the size of the largest block must allow space for the 4-byte
block descriptor word in addition to the largest logical record length.
The logical record length must allow space for a 4-byte record
descriptor word.

• RECFM(V B), then the block sIze must be equal to or greater than the
largest block in the data set. (Note: For block variable length records,
the size of the largest block must allow space for the 4-byte block
descriptor word in addition to the sum of the logical record lengths
that will go into the block. Each logical record length must allow
space for a 4-byte record descriptor word. Since the number of logical
records can vary, you must estimate the optimum block size (and the
average number of records for each block) based on your knowledge
of the application that requires the I/O.

BUFL(buffer-length) specifies the length, in bytes, of each buffer in the
buffer pool. Substitute a decimal number for buffer-length. The number
must not exceed 32,760.
If you omit this operand and the system acquires buffers automatically,
the BLKSIZE and KEY LEN operands will be used to supply the
information needed to establish buffer length.

BUFNO(number-of-buffers) specifies the number of buffers to be assigned
for data control blocks. Substitute a decimal number for
number-of-buffers. The number must never exceed 255, and you may be
limited to a smaller number of buffers depending on the limit established
when the operating system was generated. The following table shows the
condition that requires you to include this operand.

When you use one of the following
methods of obtaining the buffer pool... then:

(1) BUILD macro instruction
(2) GETPOOL macro instruction

(3) Automatically with BPAM or BSAM
(4) Automatically with QSAM

(1) You must specify BUFNO.
(2) the system uses the number·

that you specify for
GETPOOL.

(3) you must specify BUFNO.
(4) you may omit BUFNO and

accept two buffers.

ATfRIB Command 41

Page of GC28-0646-1
Revised April 29, 1974
by TNL: GN28-2572

LRECL(logical-record-length) specifies the length, in bytes, of the largest
logical record in the data set. You must specify this operand for data sets
that consist of either fixed length or variable length records.
Omit this operand if the data set contains undefined-length records.
The logical record length must be consistent with the requirements of the
RECFM operand and must not exceed the block size (BLKSIZE operand)
except for variable length spanned records. If you specify:
• RECFM(Y) or RECFM(Y B), then the logical record length is the sum of

the length of the actual data fields plus 4 bytes for a record descriptor
word.

• RECFM(F) or RECFM(F 8), then the logical record length is the length
of the actual data fields.

• RECFM(U), then you should omit the LRECL operand.

Note: For variable length spanned records (YS or YBS) processed by QSAM

(locate mode) or BSAM, specify LRECL (X) when the logical record exceeds
32,756 bytes.
NCP(number-of-channel-programs) specifies the maximum number of READ

or WRITE macro instructions allowed before a CHECK macro instruction
is issued. The maximum number must not exceed 99 and must be less
than 99 if a lower limit was established when the operating system was
generated. If you are using chained scheduling, you must specify an NCP

value greater than 1. If you omit the NCP operand, the default value is 1.
INPUT specifies that the data set will be used only as input to a processing

program.
OUTPUT specifies that the data set will be used only to contain output from

a processing program.
EXPDT(year-day) specifies' the data set expiration date. You must specify

the year and day in the form 'yyddd', where 'yy' is a two digit decimal
number for the year and "ddd" is a three digit decimal number for the
day of the year. For example, January 1, 1974 is 740001 and December
31, 1975 is 75365.

RETPD(number-of-days) specifies the data set retention period in days. The
value may be a one through four digit decimal number.

BFALN({~~)

specifies the boundary alignment of each buffer as follows:
F each buffer starts on a fullword boundary that is not a doubleword

boundary.
D each buffer starts on a doubleword boundary.
If you do not specify this operand and it is not available from any other
source, data management routines assign a doubleword boundary.

OPTCD(A,B,C,E,F,H,Q,T,W and/or Z) specifies the following optional services
that you want the system to perform. (See also the OPTCD subparameter
of the DCB parameter in OS / VS2 JCL for a detailed discussion of these
services.)
A specifies that actual device addresses be presented in READ and

WRITE macro instructions.
B specifies that end-of-file (EOF) recognjtion be disregarded for tapes.
C specifies the use of chain scheduling.
E requests an extended search for block or available space.
F specifies that feedback from a READ or WRITE macro instruction

should return the device address in the form it is presented to the
control program.

42 OS/VS2 TSO Command Language Reference (VS2 Release 2)

-------_._-----

(~_/

o

... --------------. '" --------------------.. -------

Page of GC28-0646- t
Revised April 29, t974
by TNL: GN28-2572

H requests the system to check for and bypass.
Q requests the system to translate a magnetic tape from ASCII to EBCDIC

or from EBCDIC to ASCII.

T requests the use of the user totaling facility.
w requests the system to perform a validity check when data is written

on a direct access device.
z requests the control program to shorten its normal error recovery

procedure for input on magnetic tape.
(You can request any or all of the services by combining the values for this
operand. You may combine the characters in any sequence, being sure to
separate them with blanks or commas).

EROPT({ACC})
SKP

ABE

specifies the option that you want executed if an error occurs when a
record is read or written. The options are:
ACC- accept the block of records in which the error was found.
SKP- skip the block of records in which the error was found.
ABE- end the task abnormally.

BFTEK(~~ l)
{~}

specifies the type of buffering that you want the system to use. The
types that you can specify are:
S simple buffering.
E exchange buffering.
A automatic record area buffering.
R record buffering.

RECFM(A,B,D,F,M,S,T,U, and/or V) specifies the format and characteristics of
the records in the data set. The format and characteristics must be
completely described by one source only. If they are not available from
any source, the default will be an undefined length record. (See also the
RECFM subparameter of the DCB parameter in OS / VS2 JCL for a
detailed discussion of the formats and characteristics.)
Use the following values with the RECFM operand.
A indicates that the record contains ASCII printer control characters.
B indicates that the records are blocked.
D indicates variable length ASCII records.
F indicates that the records are of fixed length.
M indicates that the records contain machine code control characters.
S indicates that, for fixed-length records, the records are written as

standard blocks (there must be no truncated blocks or unfilled tracks
except for the last block or track). For variable length records, a
record may span more than one block. Exchange buffering -BFTEK(E)­

must not be used.
T indicates that the records may be written onto overflow tracks if

required. Exchange buffering -BFTEK(E)- or chained scheduling
-OPTCD(C)- cannot be used.

U indicates that the records are of undefined length.
V indicates that the records are of variable length.
You may specify one or more values for this operand (at least one is
required).

A TrRIB Command 43

Page of GC28-0646-1
Revised April 29, 1974
by TNL: GN28-2572

DIAGNS(TRACE) specifies the Open/ Close/EOY trace option that gives a
. module by module trace of Open/Close/EOY workarea and the user's

DCB.
LIMcT(search-number) specifies the number of blocks or tracks to be

searched for a block or available space. The number must not exceed
,32,760.

BUFOFF({bIO~-prerlX-length} >

specifies the buffer offset. The block prefix length must not exceed 99.
!lL" is specified if the block prefix field is four bytes long and contains

.(.the block length.
DSORG(DA >

PSU

specifies the data set organization as follows:

DEN(

DA - direct access
DAU - direct access unmovable
PO - partitioned organization
POU - partitioned organization unmovable
PS - physical sequential
PSU - physical sequential unmovable

{~r
specifies the magnetic tape density as follows:

o - 200 bpi/ 7 track
1 - 556 bpi/7 track
2 - 800 bpi/7 and 9 track
3 - 1600 bpi/ 9 track
4 - 6250 bpi/9 track (IBM 3420 Models 4, 6, and 8, or equivalent)

TRTCH(~ ~ }>

t ~T
specifies the recording technique for 7 -track tape as follows:
C data conversion with odd parity and no translation.
E even parity with no translation and no conversion.
T odd parity and no conversion; BCD to EBCDIC translation when

reading and EBCDIC to BCD translation when writing.
ET even parity and no conversion; BCD to EBCDIC translation when

reading and EBCDIC to BCD translation when writing.

KEYLEN(key-length) specifies the length, in bytes, of each of the keys used
to locate blocks of records in the data set when the data set resides on a
direct access device.
The key-length must not exceed 255 bytes. If an existing data set has
standard labels, you can omit this operand and let the system retrieve the
key length from the standard label. If a key length is not supplied by any
source before you issue an OPEN macro instruction, a length of zero (no
keys) is assumed. This keyword is mutually exclusive with TRTCH.

44 OS/VS2 TSO Command Language Reference (VS2 Release 2)

c

/~~

\, '

c

------_ ..•... _--------- _--------

Page of GC28-0646-1
Revised April 29, 1974
by TNL: GN28-2572

Example 1

Operation: Create a list of attributes to be assigned to a data set when the
data set is allocated.

Known:
The following attributes correspond to the DCB parameters that you want

assigned to a data set.
Optional services: chain scheduling, user totaling.
expiration date: Dec. 31, 1977.

~e~ord format: variable length spanned records.
Error option: ABEND when READ or WRITE error occurs.
Buffering: simple buffering.
Boundary alignment: doubleword boundary.
Logical record length: records may be larger than 32,756 bytes. The

name for this attribute list is DCBPARMS.

attr dcbparms optcd(c t) expdt(77365) recfm(v s)-

eropt(abe) bftek(s) bfaln(d) lrecl(x)

Example 2

Operation: This example shows how to create an attribute list, how to use
the list when allocating two data sets, and how to delete the list so that
it cannot be used again.

Known:
The name for the attribute list: DSATTRS
The attributes: EXPDT(99365) BLKSIZE(24000) BFTEK(A)
The name for the first data set: FORMAT.INPUT
The name of the second data set: TRAJECT.lNPUT

attrib dsattrs expdt(99365) blksize(24000)
bftek(a)

allocate dataset(format.input) new block(80)
space(1 , 1) - volume(111111) using(dsattrs)

alloc da(traject.input) old bl(80) volume(111111)
using(dsattrs)

free attrlist(dsattrs)

A TIRIB Command 45

46 OS/VS2 TSO Command Language Reference (VS2 Release 2)

i
\

..... --

()

----_• _--_

CALL Command

Use the CALL command to load and execute a program that exists in
executable (load module) form. The program may be user-written, or it may
be a system module such as a compiler, sort, or utility program.

You must specify the name of the program (load module) to be
processed. It must be a member of a partitioned data set.

You may specify a list of parameters to be passed to the specified
program. The system formats this data so that when the program receives
control, register one contains the address of a fullword. The three low order
bytes of this full word contain the address of a halfword field. This half word
field is the count of the number of bytes of information contained in the
parameter list. The parameters immediately follow the halfword field.

If the program terminates abnormally, you are notified of the condition
and may enter a TEST command to examine the failing program.

CALL part-data-set-name

[(membername)]

['parameter-stri ng']

part-data-set-name specifies the name of the member of a partitioned data
set that contains the program to be executed. You must enclose the
member name within parentheses. When the name of the partitioned data
set conforms to the data set naming conventions, the system will add the
necessary qualifiers to make the name fully qualified. The system will
supply .LOAD as a default for the descriptive qualifier and (TEMPNAME)

as the default for a member name.
If the name of the partitioned data set does not conform to the data set

naming conventions, it must include the member name in the following
manner:

part-data-set-narne(rnernbernarne)

If you specify a fully qualified name, enclose it in apostrophes (single
quotes) in the following manner:

'wrrid.rnyprogs.loadrnod(a),
'sys1.1inklib(ieuasrn)'

parameter string specifies up to 100 characters of information that you
want to pass to the program as a parameter list. When passing
parameters to a program, you should use the standard linkage
conventions.

CALL Command 47

Example 1

Operation: Execute a load module.

Known:
The name of the load module: JUDAL.PEARL.LOAD(TEMPNAME)

Parameters: 10,18,23

call pearl '10,18,23'

Example 2

Operation: Execute a load module.

Known:
The name of the load module: JUDAL.MYLIB.LOAD(COS1)

call mylib(cos1)

Example 3

Operation: Execute a load module.

Known:
The name of the load module: JUDAL.LOAD(SINl)

call (sin1)

48 OS/VS2 TSO Command Language Reference (VS2 Release 2)

c

Page of GC28-0646-1
Revised April 29, 1974
by TNL: GN28-2572

DELETE Command

Use the DELETE command to delete one or more data set entries or one or
more members of a partitioned data set.

The catalog entry for a partitioned data set is removed only when the
entire partitioned data set is deleted. The system deletes a member of a
partitioned data set by removing the member name from the directory of
the partitioned data set.

Members of a partitioned data set and aliases for any members must
each be deleted explicitly. That is, when you delete a member, the system
does not remove any alias names of the member; likewise, when you delete
an alias name, the member itself is not deleted.

If a generation-data-group entry is to be deleted, any generation data
sets that belong to it must have been deleted.

For VS2 Release 2, the original TSO DELETE command has been replaced
by the Access Method Services command with the same name. The
explanations given below provide the information required to use these
services for normal TSO operations. The TSO user who wants to manipulate
VSAM objects or who wants to use the other Access Method Services from
his terminal should refer to OS/VS Access Method Services. For error
message information, refer to OS/VS Message Library: VS2 System
Messages.

After you delete a protected nonVSAM data set, you should use the
PROTECT command to update the password data set to reflect the change.
This will prevent your having insufficient space for future entries.

{
DELETE}
DEL

(entryname [lpassword] [. ..])

[CAT A LOG (catname [lpassword])]

[FILE(ddname)]

[
PURGE]
NOPURGE

[
ERASE J
NOERASE

[
SCRATCH 1
NOSCRATCHJ

CLUSTER
USERCATALOG
SPACE
NONVSAM
ALIAS
GENERATIONDATAGROUP
PAGESPACE

entryname(/passwordJl •.. J is a required parameter that names the entries to
be deleted. When more than one entry is to be deleted, the list of entry
names must be enclosed in parentheses. This parameter must be the first
parameter following DELETE.

DELETE Command 49

Page of GC28-0646-1
Revised April 29, 1974
by TNL: GN28-2572

If you want to delete several data set entries having similar names, you
may insert an asterisk into the data set name at the point of dissimilarity.
That is, all data set entries whose names match except at the position where
the asterisk is placed will be deleted. However, you may use only one
asterisk per data set name, and you must not place it in the first position.
For instance, suppose that you have several data set entries named:

VACOT.SOURCE.PLI

VACOT.SOURCE2.PLI

VACOT.SOURCE2.TEXT

VACOT.SOURCE2.DATA

If you specify:

delete source2.*

the only data set entry remaining will be

VACOT.SOURCE.PLI

password specifies a password for a password-protected entry. Passwords
may be specified for each entry name or the catalog's password may be
specified through the CATALOG parameter for the catalog that contains
the entries to be deleted.

CATALOG(catnamel!password)) specifies the name of the catalog that
contains the entries to be deleted.

catname identifies the catalog that contains the entry to be deleted.
password specifies the master password of the catalog that contains the

entries to· be deleted.
FlLE(ddname) specifies the name of the DO statement that identifies the

volume that contains the data set to be deleted or identifies the entry to
be deleted.

PURGE specifies that the VSAM entry is to be deleted even if the retention
period, specified in the TO or FOR parameter, has not expired.

NOPURGE specifies that the VSAM entry is not be deleted if the retention
period has not expired. When NOPURGE is coded and the retention
period has not expired, the entry is not deleted. If neither PURGE nor
NOPURGE is coded, NOPURGE is the default.

ERASE specifies that the data component of a cluster (VSAM only) is to be
overwritten with binary zeros when the cluster is deleted. If ERASE is
specified, the volume that contains the data component must be
mounted.

NOERASE specifies that the data component of a cluster (VSAM only) is not
to be overwritten with binary zeros when the cluster is deleted.

SCRATCH specifies that a nonVASM data set is to be scratched (removed)
from the Volume Table of Contents (VTOC) of the volume on which it
resides. SCRATCH is the default if ne~ther SCRATCH nor NONSCRATCH is
specified.

NOSCRATCH specifies that a nonVSAM data set is not to be scratched
(removed) from the VTOC of the volume on which it resides.

CLUSTER specifies that the entry to be deleted is a cluster entry (for a

" '" \ . " /

VSAM dataset). C
USERCATAJ.,OG specifies that the entry to be deleted is a user-catalog entry.

./'

50 OS/VSl TSO Command Language Reference (VS2 Release 2)

(----'. \

U

Page of GC28-0646- t
Revised April 29, 1974
by TNL: GN28-2572

This parameter must be specified if a user catalog is to be deleted. A
user catalog can be deleted only if it is empty.

SPACE specifies that the entry to be deleted is a data-space entry. This
parameter is required if a data space is to be deleted. A data space can
be deleted only if it is empty.

NONVSAM specifies that the entry to be deleted is a nonVSAM data set
entry.

ALIAS specifies that the entry to be deleted is an alias entry.
GENERATIONDA T AGROUP specifies that the entry to be deleted is a

generation-data-group entry. A generation data group base can be
deleted only if it is empty.

PAGESPACE specifies that a page space is to be deleted. A page space can
be deleted only if it is inactive.

If the FILE parameter is omitted the entryname is dynamically allocated
in the following cases:

• A nonVSAM entry is to be deleted and scratched.
• An entry is to be deleted and erased.
• An entry that resides in a data space of its own is to be deleted.

Example

Operation: Delete an entry. In this example, a nonVSAM data set is
deleted:

Known:
Your use rid is D27UCA T I

delete example.nonvsam scratch nonvsam

The DELETE command deletes the nonVSAM data set
(D27UCAT.EXAMPLE.NONVSAM). Because the catalog in which the entry
resides. is assumed not to be password protected, the CATALOG parameter
is not required to delete the nonVSAM entry.

SCR'ATCH removes the VTOC entry of the nonVSAM data set. Because
FILE is not coded, the volume that contains D27UCAT1.EXAMPLE.NONVSAM
is dynamically allocated.

NONVSAM ensures that the entry being deleted is a nonVSAM data set.
However, DELETE can still find and delete a nonVSAM data set if
NONVSAM is omitted.

DELETE Command 51

52 OS/VSl TSO Command Language Reference (VS2 Release 2)

Page of GC28-0646- 1
Revised April 29, 1974
by TNL: GN28-2572

EDIT Command

The EDIT command is the primary facility for entering data into the system.
Therefore, almost every application involves some use of EDIT. With EDIT

and its subcommands, you can create, modify, store, submit, retrieve, and
delete data sets with sequential or partitioned data set organization. The
data sets may contain:

• Source programs composed of program language statements (PL/I,
COBOL, FORTRAN, etc.)

• Data used as input to a program.
• Text used for information storage and retrieval.
• Commands, subcommands, and/or data (command procedure).
• Job Control Language (JCL) statements for background jobs.
The EDIT command will support only data sets that have one of the

following formats:
• Fixed blocked, unblocked, or standard block; with or without ASCII

and machine record formats.
• Variable blocked or unblocked; without ASCII or machine control

characters.

User Note: EDIT support of print control data sets is "read only."
Whenever a SAVE subcommand is entered for an EDIT data set orginally
containing print control characters, the ability to print the data set on the
printer with appropriate spaces and ejects is lost. If you enter SAVE without
operands for a data set containing control characters, you will be warned
that the data set will be saved without control characters, and you can elect
to either save into the original data set or enter a new data set name. If the
data set specified on the EDIT command is partitioned and contains print
control characters, a save into it will not be allowed.

EDIT Command 53

{ ~DIT} data-set-name

[
NEW]
OLD

PLI

PLIF [([inter' Cnt~;r2]] [~~~::~])]
ASM

COBOL

GOFORT [(FREE)]
(FIXED)

FORTE

FORTG

FORTGI

FORTH

TEXT

DATA

CLIST

CNTL

BASIC

IPLI [CHAR60]
CHAR48

VSBASIC

[
SCAN]
NOSCAN

[
NUM] [(integer1 [integer2])]
NONUM

[BLOCK(integer)]

[LI N E (integer)]

[
CAPS]
ASIS

data-set-name specifies the name of the data set that you want to create or
edit.

Note: Any user-defined data set type (specified at system generation) is
also valid data set type keyword and may have subfield parameters defined
by the user's installation (see Figure 8, note 4).
PLI specifies that the data identified by the first operand is for PL/I

statements that are to be held as V -format records with a maximum
length of 104 bytes. The statements may be for the PL/I Optimizing
compiler or the PL/I Checkout compiler.

PLIF specifies that the data set identified by the first operand is PL/I
statements that are to be held as fixed format records 80 bytes long. The
statements may be for the PL/I(F) compiler, the PL/l Optimizing
compiler, or the PL/I Checkout compiler.

S4 OS/VS2 TSO Command Language Reference (VS2 Release 2)

-.. --~'-----

o

/~

\,- "/

c

integerl and integer2 the optional values contained within the parentheses
are applicable only when you request syntax checking of a data set for
which the PLIF operand has been specified. The integerl and integer2
values define the column boundaries for your input statements. The
position of the first character of a line, as determined by the left margin
adjustment on your terminal; is column 1. The value for integerl
specifies the column where each input statement is to begin. The
statement can extend from the column specified by integer1 up to and
including the column specified as a value for integer2. If you omit
integer1 you must omit integer2, and the default values are columns 2
and 72; however, you can omit integer2 without omitting integerl.

CHAR48 or CHAR60 CHAR48 specifies that the PL/I source statements are
written using the character set that consists of 48 characters. CHAR60
specifies that the source statements are written using the character set
that consists of 60 characters. If you omit both CHAR48 and the default
value is CHAR60.

IPLI(CHAR48 or CHAR60) specifies that the data set identified by the first
operand is for PL/I statements that may be processed by the ITF:PLI
Program Product. CHAR48 or CHAR60 are used as described in the PLI
operand description.

BASIC specifies that the data set identified by the first operand is for BASIC
statements that may be processed by theITF:BASIC Program Product.

ASM specifies that the data set identified by the first operand is for
assembler language statements.

COBOL specifies that the data set identified by the first operand is for
COBOL statements.

CLIST specifies that the data set identified by the first operand is for a
command procedure and will contain TSO commands and subcommands
as statements or records in the data set. The data set will be assigned
line numbers.

CNTL specifies that the data set identified by the first operand is for Job
Control Language (JCL) statements and SYSIN data to be used with the
SUBMIT command or subcommand.

TEXT specifies that the data set identified by the first operand is for text
that may consist of both uppercase and lowercase characters.

DATA specifies that the data set identified by the first operand is for data
that may be subsequently retrieved or used as input data for processing
by an application program.

FORTE specifies that the data set identified by the first operand is for
FORTRAN (E) statements.

FORTG specifies that the data set identified by the first operand is for
FORTRAN (G) statements.

FQRTG(specifies that the data set identified by the first operand is for
FORTRAN (Gl) statements.

FORTH specifies that the data set identified by the first operand is for
FORTRAN (H) statements.

GOFORT(FREE or FIXED) specifies that the data set identified by the first
operand is for statements that are suitable for processing by the Code
and GO FORTRAN program product. You may use FORT as an
abbreviatiO"n for this operand. This is the default value if no other
FORTRAN language level is specified with the FORT operand.
FREE specifies that the statements are of variable lengths and, do not
conform to set column requirements. This is the default value if neither

EDIT Command SS

FREE nor FIXED is specified. FIXED specifie~ that statements adhere to
standard FORTRAN column requirements and are 80 bytes long.

VSBASIC specifies that the data set identified by the first operand is for
VSBASIC statements.

Note: The ASM, BASIC, CLlST, CNTL, COBOL, DATA, FORTE, FORTG,
FORTGI, FORTH, GOFORT, IPLI, PLI, PLlF, TEXT, and VSBASIC operands
specify the type of data set you want to edit or create. You must specify
one of these whenever:

• The data-set-name operand does not follow data set naming
conventions (i.e., it is enclosed in quotes) .

• The data-set-name operand is a member name only (i.e., it is enclosed
in parentheses).

• The data-set-name operand does not include a descriptive qualifier; or
the descriptive qaalifier is such that EDIT cannot determine the data
set type. (See Figure 3 for a list of valid descriptive qualifiers.)

The system prompts the user for data set type whenever the type cannot
be determined from the descriptive qualifier (as in the 3 cases above), or
whenever the user forgets to specify a descriptive qualifier on the EDIT
command.

Note: When the descriptive qualifier FORT is entered with no data set
type, the data set type default is GOFORT(FREE). If PLI is the descriptive
qualifier, the data set type default is PLI. To use data set types
GOFORT(FIXED), FORTGI, FORTG, FORTE, FORTH or PLIF, you must enter
the data set type keyword.
NEW specifies that the data set named by the first operand does not exist.

If an existing cataloged data set already has the data set name that you
specified, the system notifies you when you try to save it; otherwise, the
system allocates your data set when you save it.
If you specify NEW without specifying a member name, the system
allocated a sequential data set for you when you save it. If you specify
NEW and include a member name the system allocates a partitioned data
set and creates the indicated member when you try to save it.

OLD specifies that the data set named on the EDIT command already exists.
When you specify OLD and the system is unable to locate the data set,
you will be notified and you will have to reenter the EDIT command.
If you specify OLD without specifying a member name, the system will
assume that your data set is sequential: if the data set is in fact a
partitioned data set, the system will assume that the member name is
TEMPNAME. If you specify OLD and include a member name, the system
will notify you if your data set is not partitioned.
If you do not specify OLD or NEW, the system uses a tentative default of
OLD. If the data set name or member name that you specified, cannot be
located, you will be prompted to enter NEW or OLD. If you enter NEW,
EDIT processing will continue. If you enter OLD, the system will notify
you why the data set or member could not be located. You can then
enter EDIT or another command.

SCAN specifies that each line of data you enter in input mode is to be
checked statement by statement for proper syntax. If you specify the
BASIC or IPLI data set type keyword, all modifications made in edit mode
and each line of data entered in input mode will be checked for proper
syntax. Syntax checking is available only for statements written in
GOFORT, FORTE, FORTGI, FORTG, FORTH, BASIC, IPLI, or PLIF. PLIF data

56 OS/VS2 TSO Command Language Reference (VS2 Release 2)

c'

('.
- ~ ... /

" 0·,

sets are checked according to syntax rules governing PL/I implemented
by the PL/I(F) compiler. Language implemented by the PL/I Optimizing
or Checkout compiler, but not by the (F) compiler, will be treated as
invalid.

Note: User-defined data set types can also use this keyword if a syntax
checker name was specified at system generation time.
NOSCAN specifies that syntax checking is not to be performed. This is the

default value if neither SCAN nor NOSCAN is specified.
NUM(integerl integer2) specifies that the lines of the data set records are

numbered. You may specify integerl and integer2 for ASM type data sets
only. Integerl specifies, in decimal, the starting column (73-80) of the
line number. Integer2 specifies, in decimal, the length (8 or less) of the
line number. Integerl plus integer2 cannot exceed 81. If integerl and
integer2 are not specified, the line numbers will assume appropriate
default values.

NONUM specifies that your data set records do not contain line numbers.
Do not specify this keyword for the BASIC, IPLI, GOFORT, and CLIST

data set types, since they must always have line numbers. The default is
NUM.

CAPS specifies that all input data is to be converted to uppercase
characters. If you omit both CAPS and ASIS, CAPS is the default except
when the data set type is TEXT.

ASIS specifies that input is to retain the same form (upper and lower case)
as entered. ASIS is the default for TEXT only.

BLOCK(integer) specifies the maximum length, in bytes, for blocks of
records of a new data set. Specify this operand only when creating a new
data set or editing an empty old data set. You cannot change the block
size of an existing data set except if the data set is empty. If you omit
this operand, it will default· according to the type of data set being
created. Default block sizes are described in Figure 4. If different
defaults are established at system generation (SYSGEN) time, Figure 4
values may not be applicable. The blocksize (BLOCK) for data sets that
contain fixed length records must be a multiple of the record length
(LINE); for variable length records, the blocksize must be a mUltiple of
the record length plus 4.

LINE(integer) specifies the length of the records to b~. created for a new
data set. Specify this operand only when creating a new data set or
editing an empty old data set. The new data set will be composed of
fixed length records with a logical record length equal to the specified
integer. You cannot change the logical record size of an existing data set
except if the data set is empty. If you specify this operand and the data
set type is ASM, FORTE, FORTG, FORTGI, FORTH, GOFORT(FlXED),

COBOL or CNTL the integer must be 80. If this operand is omitted, the
line size defaults according to the type of data set ibeing created. Default
line sizes for each data set type may be found in Figure 4. This operand
is used in conjunction with the BLOCK operand.

You can also use the EDIT command to:
• Compile, load, and execute a source program. I

These operations are defined and controlled by using the EDIT operands
and subcommands.

EDIT Command 57

Page of GC28-0646-1
Revised April 29, 1974
by TNL: GN28-2572

LRECL Block Size Line Numbers
Data
Set DSORG L1NE(n) (Note 1) BLOCK(n) NUM (n, m) CAPS/ASIS

Type
default specif. default

ASM PS/PO 80 =80 1680

BASIC PS/PO 120 (Note 2) 1680

CLiST PS/PO 255 (Note 2) 1680

CNTL PS/PO 80 =80 1680

COBOL PS/PO 80 =80 400

DATA PS/PO 80 S,255 1680

FORTE,

FORTG,

FORTGI,

FORTH,

GOFORT

(FIXED) PS/PO 80 =80 400

GOFORT

(FREE) PS/PO 255 1680

IPLI PS/PO 120 (Note 2) 1680

(or user supplied data set type - See Note 4)

PLI PS/PO 104 ~ 100 500

PLiF PS/PO 80 ,S 100 400

TEXT PS/PO 255 (Note 2) 1680

VSBASIC PS/PO 255 =80 1680

Notes:
1. The default or maximum allowable block size may be

specified at SYSGEN time.

2. Specifying a LINE value results in fixed length records with
a LRECL equal to the specified value. The specified value
must always be equal to or less than the default. If the
LINE keyword is omitted, variable length records will be
created.

3. The line numbers will be contained in the last eight bytes
of all fixed length records and in the first eight bytes of all
variable length records.

4. A user can have additional data set types recognized by the
EDIT command processor. These user-defined data set
types, along with any of the data set types shown above,
can be defined at system generation time by using the EDIT
macro. The EDIT macro causes a table of constants to be

Figure 4. Default Values for LINE and BLOCK Operands

58 OS/VS2 TSO Command Language Reference (VS2 Release 2)

specif. default (n, m) spec. default CAPS
Required

Sdefault Last 8 73~n~80 CAPS Yes

.:S.default (Note 3) CAPS Yes

=::;'default (Note 3) CAPS Yes

=::;'default Last 8 CAPS Yes

Sdefault First 6 CAPS Yes

Sdefault Last 8 CAPS No

.:S..default Last 8 CAPS Yes

.:S,default First 8 CAPS Yes

,Sdefault (Note 3) CAPS Yes

.:S.default (Note 3) CAPS No

,S.default Last 8 CAPS Yes

.:S,default (Note 3) ASIS No

:s.=32,760 First 5 CAPS Yes

built which describes the data set attribl:ltes. For more
information on how to specify the EDIT macro at system
generation time, refer to System Generation Reference.

When a user wants to edit a data set type that he has defined
himself. the data set type is used as the descriptor (right­
most) qualifier. The user cannot override any data set types
that have been defined by IBM. The EDIT command
processor will support data sets that have the following
attributes:

Data Set Organization: Must be either sequential or

Record formats:
Logical Record Size:
Block Sizes:

Sequence Numbers:

partitioned
Fixed or Variable
Less than or equal to 255 characters
User specified - must be less than or
equal to track length
V type: First 8 characters
F type: Last 8 characters

(
'-,

,.--.-..,

c

c

o

o

Modes of Operation
The EDIT command has two modes of operation: input mode and edit
mode. You enter data into a data set when you are in input mode. You
enter subcommands and their operands when you are in edit mode.

You must specify a data set name when you enter the EDIT command. If
you specify the NEW keyword, the system places you in the input mode. If
you do not specify the NEW keyword, you are placed in the edit mode if
your specified data set is not empty; if the data set is empty, you will be
placed in input mode.

You can limit access to your data set by specifying a password when you
use the EDIT command. To specify a password, enter a slash (I) followed
by the password of your choice after the data set name operand of the
EDIT command.

Input Mode
In input mode, you type a line of data and then enter it into the data set by

. pressing your terminal's carrier return key. You can enter lines of data as
long as you are in input mode. One typed line of input becomes one record
in the data set.

Caution: If you enter a command or subcommand while you are in input
mode, the system will add it to the data set as input data. Enter a null-line
to return to edit mode before entering any subcommands.

Line Numbers: Unless you specify otherwise, the system assigns a line
number to each line as it is entered. The default is an interval of 10. Line
numbers make editing much easier, since you can refer to each line by its
own number.

Each line number consists of not more than eight digits, with the
significant digits justified on the right and preceded by zeros. Line numbers
are placed at the beginning of variable length records and at the end of
fixed length records (exception: line numbers for COBOL fixed length
records are placed in the first size positions at the beginning of the record).
When you are working with a data set that has line numbers, you can have
the new line number listed at the start of each new input line. If you are
creating a data set without line numbers, you can request that a prompting
character be displayed at the terminal before each line is entered.
Otherwise, none will be issued.

All input records will be converted to upper case characters, except when
you specify the ASIS or TEXT operand. The TEXT operand also specifies
that character-deleting indicators and tabulation characters will be
recognized, but all other characters will be added to the data set
unchanged. More specific considerations are:

All Assembler source data sets must consist of fixed length records 80
characters in length. These records mayor may not have line numbers. If
the records are line-numbered, the number can be located anywhere within
columns 73 to 80 of the stored record (the printed line number always
appears at the left margin).

IPLI and BASIC data sets may consist of either fixed length or variable
length records. All records must contain line numbers. Fixed length records
may be specified up to 120 characters in length. The default is variable
length records with the line number contained in the first eight characters.

EDIT Command S9

You can create a variety of FORTRAN data sets: FORTE; FORTO;

FORTGI; FORTH; and OOFORT. You can enter OOFORT input statements in
"free form," that is, there are no specific colums into which your
statements must go. Free form FORTRAN statements will be stored in
variable length records.

Syntax Checking: You can have each line of input checked for proper
syntax. The system will check the syntax of statements for data sets having
FORT, IPLI, and BASIC descriptive qualifiers. Input lines will be collected
within the system until a complete statement is available for checking.

When an error is found during syntax checking, an appropriate error
message is issued and edit mode is entered. You can then take corrective
action, using the subcommands, When you wish to resume input operations,
press your terminal's carrier return key without typing any input. Input
mode is then entered and you can continue where you left off. Whenever
statements are being checked for syntax during input mode, the system will
prompt you for each line to be entered unless you specify the NOPROMPT

operand for the INPUT subcommand.

Continuation of a Line in Input Mode: In input mode there are three
independent situations that require you to indicate the continuation of a line
by ending it with a hyphen (Le., a hyphen followed immediately by a
carriage return). The situations are:

• The syntax checking facility is being used .
• The data set type is OOFORT(FREE).

• The data set type is CLIST (variable length records).
If none of these situations apply, avoid ending a line with a hyphen (minus
sign) since it will be removed by the system before storing the line in your
data set.

You must use the hyphen when the syntax checking facility is active to
indicate that the logical line to be syntax checked consists of multiple input
lines. The editor will then collect these lines (removing the hyphens) and
pass them as one logical line to the syntax scanner. However, each
individual input line (with its hyphen removed) is also stored separately in
your data set.

You must use the hyphen or plus sign to indicate logical line continuation
in a OOFORT(FREE) data set, whether or not syntax checking is active.
Since the Code and Go FORTRAN free-form input format requires a hyphen
to indicate continuation to its syntax checker and compiler, the hyphen is
not removed from the input line by EDIT but becomes part of the stored
line in your data set.

The hyphen is also used to indicate logical line continuation in command
procedures (CLIST data sets). If the CLIST is in variable length record
format (the default), the hyphen is not removed by EDIT but becomes part
of the stored line in your data set and will be recognized when executed by
the EXEC command processor. If the CLIST is in fixed length record format,
a hyphen, placed eight character positions before the end of the record and
followed by a blank, will be recognized as a continuation when executed by
the EXEC command processor. (This assumes that the line number field is
defined to occupy the last eight positions of the stored record.) For
example, if the parameter LINE(80) was specified on the EDIT command
when defining the CLIST data set, the hyphen must be placed in data
position 72 of the input line followed immediately by a blank. (Location of

60 OS/VS2 TSO Command Language Reference (VS2 Release 2)

--------------- -----------------------

c\

u

a particular input data column is described under the T ABSET subcommand
of EDIT.)

Note that these rules apply only when entering data in input mode.
When you use a subcommand (e.g., CHANGE, INSERT) to enter a data, a
hyphen at the end of the line indicates subcommand continuation; the
system will append the continuation data to the subcommand.

To insert a line of data ending in a hyphen in situations where the
system would remove the hyphen (i.e., while in subcommand mode or in
input mode for other than a CLIST data set), enter a hyphen in the
next-to-Iast column, a blank in the last column, and an immediate carriage
return.

Edit Mode
You can enter sub commands to edit data sets when you are in edit mode.
You can edit data sets that have line numbers by referring to the number of
the line that you want to edit. This is called line-number editing. You can
also edit data by referring to specific items of text within the lines. This is
called context editing. A data set having no line numbers may be edited
only by context. Context editing is performed by using subcommands that
refer to the current line value or a character combination, such as with the
FIND or CHANGE subcommands. There is a pointer within the system that
points to a line within the data set. Normally, this pointer points to the last
line that you referred to. You can use subcommands to change the pointer
so that it points to any line of data that you choose. You may then refer to
the line that it points to by specifying an asterisk (*) instead of a line
number. Figure 5 shows where the pointer points at completion of each
subcommand.

Note: A current-line pointer value of zero refers to the position before the
first record, if the data set does not contain a record zero.

When you edit data sets with line numbers, the line number field will not
be involved in any modifications made to the record except during
renumbering. Also, the only editing operations that will be performed across
record boundaries will be the CHANGE and FIND subcommands, when the
TEXT and NONUM operands have been specified for the EDIT command. In
CHANGE and FIND an editing operation will be performed across only one
record boundary at a time.

EDIT Command 61

-_ _ _---- .. _._-_ .. _ _--

Page of GC28-0646-1
Revised April 29, 1974
by TNL: GN28-2572

\ ~

11

Edit Subcommands

ALLOCATE

Value of the Pointer at Completion of Subcommand

No change

BOTTOM Last line (or zero for empty data sets)

CHANGE Last line changed

DELETE Line preceding deleted line (or zero if the first line
of the data set has been deleted)

DOWN Line n relative lines below the last line referred to,
where n is the value of the "count" parameter, or
bottom of the data set (or line zero for empty data
sets)

END No change

FIND Line containing specified string, if any; else, no
change

FORMAT(a program product) No change

HELP No change

INPUT Last line entered

INSERT Last line entered

Insert/Replace/Delete Inserted line or replaced line or line preceding the
deleted line if any (or zero, if no preceding line
exists)

LIST Last line listed

MERGE(a program product) Last line

PROFILE

RENUM

RUN

SAVE

SCAN

SEND

SUBMIT

TAB SET

TOP

UP

VERIFY

No change

Same relative line

No change

No change

Last line scanned, if any

No change

No change

No change

Zero value

Line n relative lines above the last line referred to,
where n is the value of the 'count' parameter, (or
line zero for empty data sets),

No change

'Figure 5. How EDIT Subcommands Affect the Line Pointer Value

';l

Changing From One Mode to Another
If you specify an existing data set name as an operand for the EDIT

command, you begin processing in edit mode. If you specify a new data set
name or an old data set with no records, as an operand for the EDIT

command, you will begin processing in input mode. You will change from
edit mode to input mode when:

• You press the carriage return key without typing anything first.

Note: If this is the first time during your current usage of EDIT that input
mode is entered, input will begin at the line after the last line of the data
set (for data sets which are not empty) or at the first line of the data set

62 OS/VS2 TSO Command Language. Reference (VS2 Release 2)

~
\ /

_ .•. _-----_._-_ _._._--

c)

(for empty data sets). If this is not the first time during your current usage
of EDIT that input mode is entered, input will begin at the point following
the data entered when last in input mode.

• You enter the INPUT subcommand.

Note: If you use the INPUT subcommand without the R keyword and the
line is null (that is, it contains no data), it begins at the specified line; if the
specified line contains data, input begins at the first increment past that
line. If you use the INPUT subcommand with the R keyword, input begins at
the specified line, replacing existing data, if any.

• You enter the INSERT subcommand with no operands.
You will switch from input mode to edit mode when:
• You press the carriage return key without typing anything first.
• You cause an attention interruption.
• There is no more space for records to be inserted into the data set

and resequencing is not allowed.
• When an error is discovered by the syntax checker.

Data Set Disposition
The system assumes a disposition of (NEW,CATLG) for new data sets and
(OLD, KEEP) for existing data sets.

Tabulation Characters
When you enter the EDIT command into the system, the system establishes
a list of tab setting values for you, depending on the data set type. These
are logical tab setting values and mayor may not represent the actual tab
setting on your terminal. You can establish your own tab settings for input
by using the T ABSET subcommand. A list of the default tab setting values
for each data set type is presented in the T ABSET subcommand description.
The system will scan each input line for tabulation characters (the
characters produced by pressing the TAB key on the terminal). The system
will replace each tabulation character by as many blanks as are necessary to
position the next character at the appropriate logical tab setting.

When tab settings are not in use, each tabulation character encountered
in all input data will be replaced by a single blank. You can also use the
tabulation character to separate subcommands from their operands.

Executing User Written Programs
You can compile and execute the source statements contained in certain
data set types by using the RUN subcommand. The RUN subcommand
makes use of optional Program Products; the specific requirements are
discussed in the description of the RUN subcommand.

Terminating the EDIT Command
You can terminate the EDIT operation at any time by switching to edit
mode (if you are not already in edit mode) and entering the END

subcommand. Before terminating the EDIT command, you should be sure to
store all data that you want to save. You can use the SAVE subcommand
for this purpose.

EDIT Command 63

Recovering Data Mter a Terminal Line Has Been
Disconnected

If a terminal is disconnected during an EDIT session, the system will attempt
to save a copy of the edited data set (with all changes) into another data
set. The data set used for saving is named by applying data set naming
conventions to an intermediate qualifier name of EDITSA VE. This data set
can be edited when you log on again.

Example 1

Operation: Create a data set to contain a COBOL program.

Known:
The user-supplied name for the new data set: PARTS

The fully qualified name will be: WRROS.PARTS.COBOL

Line numbers are to be assigned.

edit parts new cobol

Example 2

Operation: Create a data set to contain a program written in FORTRAN to
be processed by the FORTRAN (01) compiler.

Known:

or

The user-supplied name for the new data set: HYDRLICS

The fully qualified name will be: WRROS.HYDRLICS.FORT

The input statements are not to be numbered.
Syntax checking is desired.
Block size: 400
Line length must be: 80
The data is to be changed to all upper case.

edit hydrlics new fortgi nonum scan

e hydrlics new fortgi scan nonum

Example 3

Operation: Add data to an existing data set containing input data for a
program.

Known:
The name of the data set: WRROS.MANHRS.DAT A

Block size: 1680
Line length: 80
Line numbers are desired.
The data is to be upper case.
Syntax checking is not applicable.

e manhrs.data

64 OS/VS2 TSO Command Language Reference (VS2 Release 2)

C:

---.. -.----

c

C'l
./

Example 4

Operation: Create a data set for a command procedure.

Known:
The user supplied name for the data set: CMDPROC

e cmdproc new clist

Example 5

Operation: Create a data set to contain a PL/I program.

Known:
The user-supplied name for the data set: WEATHER.
The column requirements for input records.

left margin: Column 1.
right margin: Column 68.

The allowed character set: 48 characters.
Line numbers are desired.
Each statement is to be checked for proper syntax.
The default BLOCK and LINE value are acceptable.

edit weather new pli(1 68 char48)

Example 6

scan

Operation: Recover data from a previous EDIT session interrupted by a
disconnected line.

Known:
The data set being edited was the same data set as in example 5 above.

All operands remain the same.

edit editsave pli(1 68 char48) scan

Subcommands for EDIT
Use the subcommands while in edit mode to edit and manipulate data and
to communicate with the system operator and with other terminal users.
The format of each subcommand is similar to the format of all the
commands. Each subcommand, therefore, is presented and explained in a
manner similar to that for a command. Figure 6 contains a brief summary
of each subcommand's function.

Note: For a complete description of the syntax and function of the
ALLOCATE, HELP, PROFILE, SEND, and SUBMIT subcommands, refer to the
description of the TSO command with the same name.

EDIT Command 6S

ALLOCATE

BOTTOM

CHANGE

DELETE

DOWN

END

FIND

FORMAT (available as an
optional
Program Product)

HELP

INPUT

INSERT

Insert/Replace/Delete

LIST

MERGE (available as an
optional
Program Product)

PROFILE

RENUM

RUN

SAVE

SCAN

SEND

SUBMIT

TABSET

TOP

UP

VERIFY

Allocates data sets and filenames.

Moves the pointer to the last record in
the data set.

Alters the contents of a data set.

Removes records.

Moves the pointer toward the end of
the data.

Terminates the EDIT command.

Locates a character string.

Formats and lists data.

Explains available subcommands.

Prepares the system for data input.

Inserts records.

Inserts,replaces, or deletes a line.

Prints out specific lines of data.

Combines all or parts of data sets.

Specifies characteristics of your
user profile.

Numbers or renumbers lines of data.

Causes compilation and execution of
data set.

Retains the data set.

Controls syntax checking.

Allows you to communicate with the
system operator and with other
terminal users.

Submit a job for execution in the
background.

Sets the tabs.

Sets the pointer to zero value.

Moves the pointer toward the start
of data set.

Causes current line to be listed
whenever the current line pointer
changes or the text of the current
line is modified.

Figure 6. Subcommands of the EDIT Command

66 OS/VS2 TSO Command Language Reference,(VS2 Release 2)

c

c

-_ ... __ _--

ALLOCATE Subcofnmand of EDIT

Use the ALLOCATE subcommand to dynamically allocate the data sets
required by a program that you intend to execute.
Refer to the ALLOCATE command for the description of the syntax and
function of ALLOCATE subcommand.

ALLOCATE Subcommand of EDIT 67

c
68 OS/VS2 TSO Command Language Reference (VS2 Release 2)

(""
)

c)

BOTTOM Subcommand of EDIT

Use the BOTTOM subcommand to change the current line pointer so that it
points to the last line of the data set being edited or so that it contains a
zero value, if the data set is empty. This subcommand may be useful when
subsequent subcommands such as INPUT or MERGE must begin at the end
of the data set.

BOTIOM Subcommand of EDIT 69

c'

70 OS/VS2 TSO Command Language Reference (VS2 Release 2)

---- ----------_._------ ----_.-. __ .- _--

o

CHANGE Subcommand of EDIT

Use the CHANGE subcommand to modify a sequence of characters (a
character string) in a line or in a range of lines. Either the first occurrence
or all occurrences of the sequence can be modified.

{~HANGE} [~ne-number-l [line-number-21]
* [count 11

{
string1 [string2 [special-delimiter [ALL]]J}
count2

line-number-l specifies the number of a line you want to change. When
used with line-number-2, it specifies the first line of a range of lines.

llne-number-2 specifies the last line of a range of lines that you want to
change. The specified lines are scanned for occurrences of the sequences
of characters specified for stringl. If you specify the ALL operand, each
occurrence of stringl in the range of lines is replaced by the sequence of
characters that you specify for string2. If you do not specify the ALL

operand, only the first occurrence of stringl will be replaced by string2.
* specifies that the line pointed to~the line pointer in the system is to be

used. If you do not specify a line number or an asterisk, the current line
will be the default value.

countl specifies the number of lines that you want to change, starting at
the position indicated by the asterisk (*).

stringl specifies a sequence of characters (a character string) that you
want to change. The sequence must be (l) enclosed within single quotes,
or (2) preceded by an extra character which services as a special
delimiter. The extra character may be any printable character other than
a single quote (apostrophe), number, blank, tab, comma, semicolon,
parenthesis, or asterisk. The hyphen (-) can be used but should be
avoided due to possible confusion with its use in continuation. The extra
character must not appear in the character string. Do not put a standard
delimiter between the extra character and the string of characters unless
you intend the delimiter to be treated as a character in the character
string.
If stringl is specified and string2 is not, the specified characters are
displayed at your terminal up to (but not including) the sequence of
characters that you specified for stringl. You can then complete the line
as you please.

string2 specifies a sequence of characters that you want to use as a
replacement for stringl. Like stringl, string2 must be (1) enclosed within
single quotes, or (2) preceded by a special delimiter. This delimiter must
be the same as the extra character used for stringl.

ALL specifies that every occurrence of string! within the specified line or
range of lines will be replaced by string2. If this operand is omitted, only
the first occurrence of string! will be replaced with string 2.

CHANGE Subcommand of EDIT 7 t

Note: If the special delimiter form is used, string2 must be terminated by
the delimiter before typing the ALL operand.
count2 specifies a number of characters to be displayed at your terminal,

starting at the beginning of each specified line.

Quoted String Notation
As indicated above, instead of using special delimiters to indicate a
character string, you can use paired single quotes (apostrophes) to
accomplish the same function with the CHANGE subcommand. The use of
single quotes as delimiters for a character string is called quoted-string
notation. Following are the rules for quoted-string notation for the stringi
and string2 operands:

• You cannot use both special-delimiter and quoted-string notation in
the same subcommand.

• Each string must be enclosed with single quotes, e.g., 'This is stringl'
'This is string2.'

• A single quote within a character string is represented by two single
quotes, e.g., 'pilgrim"s progress'.

• A null string is represented by two single quotes, e.g., ".
You can specify quoted string notation in place of special delimiter-notation
to accomplish any of the functions of the CHANGE subcommand as follows:

Function

Replace
Delete
Print up to
Place in
front of

*Special Delimiter
Notation

+ab+cde+
+ab++
+ab

++cde+

* - using the + sign as the delimiter.

Quoted String
Notation

'ab' 'cde'
'ab' "
'ab'

" 'cde'

Note: You should choose the form that best suits you (either special
delimiter or quoted string) and use it consistently. It will expedite your use
of this subcommand.

Combinations of Operands
You can enter several different combinations of these operands. The system

- interprets the operands that you enter according to the following rules:
• When you enter a single number and no other operands, the system

assumes that you are accepting the default value of the asterisk (*)
and that the number is a value for the count2 operand.

• When you enter two numbers and no other operands, the system
assumes that they are line-number-I and count2 respectively.

• When you enter two operands and the first is a number and the
second begins with a character that is not a number, the system
assumes that they are line-number-I and stringi.

• When you enter three operands and they are all numbers, the system
assumes that they are line-number-I, line-number-2 and count2.

• When you enter three operands and the first two are numbers but the
last begins with a chacter that is not a number, the system assumes
that they are line-number-I, line-number-2 and stringl.

72 OS/VS2 TSO Command Language Reference (VS2 Release 2)

o

c

o

----------_._-----_ ... _--

Example 1

Operation: Change a sequence of characters in a particular line of a
line-numbered data set.

Known:
The line number: 57
The old sequence of characters: parameter
The new sequence of characters: operand

change 57 XpararneterXoperand

Example 2

Operation: Change a sequence of characters wherever it appears in several
lines of a line-numbered data set.

change 24 82 !i.e. !e.g. !all

The blanks following the string 1 and string2 examples (i.e. and e.g.) are
treated as characters.

Example 3

Operation: Change part of a line in a line-numbered data set.

Known:
The line number: 143
The number of characters in the line preceding the characters to be

changed: 18

change 143 18

This form of the subcommand causes the first 18 characters of line number
143 to be listed at your terminal. You complete the line by typing the new
information and enter the line by pressing the RETURN key. All of your
changes will be incorporated into the data set.

Example 4

Operation: Change part of a particular line of a line-numbered data set.

Known:
The line number: 103
A string of characters to be changed: 315 h.p. at 2400

change 103 rn315 h.p. at 2400

This form of the subcommand causes line number 103 to be searched until
tile characters "315 h.p. at 2400" are found. The line is displayed at your
terminal up to the string of characters. You can then complete the line and
enter the new version into the data set.

CHANGE Subcommand of EDIT 73

Example 5

Operation: Change the values in a table.

Known:
The line number of the first line in the table: 387
The line number of the last line in the table: 406
The number of the column containing the values: 53

change 387 406 52

Each line in the table is displayed at your terminal up to the column
containing the value. As each line is displayed, you can type in the new
value. The next line will not be displayed until you complete the current
line and enter it into the data set.

Example 6

Operation: Add a sequence of characters to the front of the line that is
currently referred to by the pointer within the system.

Known:
The sequence of characters: in the beginning

change * //in the beginning

Example 7

Operation: Delete a sequence of characters from a line-numbered data set. I~'

Known: ~,
The line number containing the string of characters: 15
The sequence of characters to be deleted: weekly

change 15 /weekly// or change 15 /weekly/

Examples Using Quoted Strings

Example lA

Operation: Change a sequence of characters in a particular line of a line
numbered data set.

Known:
The line number: 57
The old sequence of characters: parameter
The new sequence of characters: operand

change 57 'parameter' 'operand'

Example 6A

Operation: Add a sequence of characters to the front of the line that is
currently referred to by the pointer within the system.

Known:
The sequence of characters: In the beginning

change * " 'in the beginning'

74 OS/VS2 TSO Command Language Reference (VS2 Release 2)

C:

---- ---- ----------

c-

o

-··------__ •• v_. ____ _~ __

Example 7A

Operation: Delete a sequence of characters from a line-numbered data set.

Known:
The line number containing the string of characters: 15
The sequence of characters to be deleted: weekly

change 15 'weekly' "

CHANGE Subcommand of EDIT 7S

c

76 OS/VS2 TSO Command Language Reference (VS2 Release 2)

(J

--------_ _---_ _--

DELETE Subcommand of EDIT

Use the DELETE subcommand to remove one or more records from the
data set being edited.

Upon completion of the delete operation, the current line pointer will
point to the line that pre~eded the deleted line. If the first line of the data
has been deleted, the current line pointer will be set to zero.

{
DELETE}
DEL [~ne-number-1 [,ine-number.2]1

* [count] IJ

line-number-l specifies the line to be deleted; or the
first line of a range of lines to be deleted.

line-number-2 specifies the last line of a range of lines to be deleted.
* specifies that the first line to be deleted is the line indicated by the

current line pointer in the system. This is the default if no line is
specified.

count specifies the number of lines to be deleted, starting at the location
indicated by the preceding operand.

Example 1

Operation: Delete the line being referred to by the current line pointer.

delete *
or

delete

or

del *
or

del

or

*

Any of the preceeding command combinations or abbreviations will cause
the deletion of the line referred to currently. The last instance is actually a
use of the insert/replace/delete function, not the DELETE subcommand.

DELETE Subcommand of EDIT 77

Example 2

Operation: Delete a particular line from the data set.

Known:
The line number: 00004

delete 4

Leading zeroes are not required.

Example 3

Operation: Delete several consecutive lines from the data set.

Known:
The number of the first line: 18
The number of the last line: 36

delete 18 36

Example 4

Operation: Delete several lines from a data set with no line numbers. The
current line pointer in the system points to the first line to be deleted.

Known:
The number of lines to be deleted: 18

delete * 18

Example 5

Operation: Delete all the lines in a data set.

Known:
The data set contains less than 100 lines and is not line-numbered.

top
delete * 100

78 OS/VS2 TSO Command Language Reference (VS2 Release 2)

- ..• ----------~----.--.------ --~---~--... ---

o

DOWN Subcommand of EDIT

Use the DOWN subcommand to change the current line pointer so that it
points to a line that is closer to the end of the data set.

DOWN [count]

count specifies the number of lines toward the end of the data set that you
want to move the current line pointer. If you omit this operand, the
default is one.

Example 1

Operation: Change the pointer so that it points to the next line.

down

Example 2

Operation: Change the pointer so that you can refer to a line that is
located closer to the end of the data set than the line currently pointed
to.

Known:
The number of lines from the present position to the new position: 18

down 18

DOWN Subcommand of EDIT 79

c
80 OS/VS2 TSO Command Language Reference (VS2 Release 2)

C' "
)

END SUbcommand of EDIT

Use the END subcommand to terminate operation of the EDIT command.
After entering the END subcommand, you may enter new commands. If you
have modified your data set and have not entered the SAVE subcommand,
the system will ask you if you want to save the modified data set. If so, you
can then enter the SAVE subcommand. If you do not want to save the data
set, re-enter the END subcommand.

END

END Subcommand of EDIT 81

82 OS/VS2 TSO Command Language Reference (VS2 Release 2)

... __ ._._-_ _•....• _--

o

FIND Subcommand of EDIT

Use the FIND subcommand to locate a specified sequence of characters.
The system begins the search at the line referred to by the current line
pointer in the system, and continues until the character string is found or
the end of the data set is reached.

string

[position]

Note: If you do not specify any operands, the operands you specified the
last time you used FIND during this current usage of EDIT are used. The
search for the specified string will begin at the line following the current
line. Successive use of the FIND subcommand without operands allows you
to search a data set, line by line.
string specifies the sequence of characters (the character string) that you

want to locate. This sequence of characters must be preceded by an
extra character that serves a special delimiter. The extra character may
be any printable character other than a number, apostrophe, semicolon,
blank, tab, comma, parenthesis, or asterisk. You must not use the extra
character in the character string. Do not put a delimiter between the
extra character and the string of characters.
Instead of using special delimiters to indicate a character string, you can
use paired single quotes (apostrophes) to accomplish the same function
with the FIND subcommand. The use of single quotes as delimiters for a
character string is called quoted-string notation. Following are the rules
for quoted-string notation for the string operand:
1. A string must be enclosed within single quotes, e.g., 'string character'.
2. A single quote within a character string is represented by two single

quotes, e.g., 'pilgrims"s progress'.
3. A null string is represented by two single quotes, e.g., ".

position specifies the column within each line at which you want the
comparison for the string to be made. This operand specifies the starting
column of the field to which the string is compared in each line.
If you want to consider a string starting in column 6, you must specify
the digit 6 for the positional operand. When you use this operand with
the special delimiter form of notation for "string", you must separate it
from the string operand with the same special delimiter as the one
preceeding the string operand.

Example 1

Operation: Locate a sequence of characters in a data set.

Known:
The sequence of characters: ELSE GO TO COUNTER

find xelse go to counter

FIND Subcommand of EDIT 83

Example 2

Operation: Locate a particular instruction in a data set containing an
assembler language program.

Known:
The sequence of characters: LA 3,BREAK

The instruction begins in column 10.

find 'la 3,break ' 1 G

84 OS/VS2 TSO Command Language Reference (VS2 Release 2)

o

C,I

c·······
/

o

o

HELP Subcommand of EDIT

Use the HELP subcommand to obtain the syntax and function of EDIT

subcommands.
Refer to the HELP command for a description of the syntax and function of
the HELP subcommand.

HELP Subcommand of EDIT 85

86 OS/VS2 TSO Command Language Reference (VS2 Release 2)

------ ----------------------- -------------------------- - ---------------- -----

o

-----... -.-.... -.... -~

INPUT Subcommand of EDIT

Use the INPUT subcommand to put the system in input mode so that you
can add or replace data in the data set being edited.

[I~ne.number [inCrement]]

[~J
[

PROMPT]
NOPROMPT

line-number specifies the line number and location for the first new line of
input. If no operands are specified, input data will be added to the end
of the data set.

increment specifies the amount that you want each succeeding line number
to be increased. If you omit this operand, the default is the last
increment specified with the INPUT or RENUM subcommand. If neither of
these sub commands has been specified with an increment operand, an
increment of 10 will be used.

* specifies that the next new line of input will either replace or follow the
line pointed to by the current line pointer, depending on whether you
specify the R or I operand. If an increment is specified with this
operand, it is ignored.

R specifies that you want to replace existing lines of data and insert new
lines into the data set. This operand is ignored if you fail to specify
either a line number or an asterisk. If the specified line already exists,
the old line will be replaced by the new line. If the specified line is
vacant, the new line will be inserted at that location. If the increment is
greater than 1, all lines between the replacement lines will be deleted.
specifies that you want to insert new lines into the data set without
altering existing lines of data. This operand is ignored if you fail to
specify either a line number or an asterisk.

PROMPT specifies that you want the system to display either a line number
or, if the data set is not line numbered, a prompting character before
each new input line. If you omit this operand, the default is:
a. The value (either PROMPT or NOPROMPT) that was established the

last time you used input mode.
b. PROMPT, if this is the first use of input mode and the data set has line

numbers.
c. NOPROMPT, if this is the first use of input mode and the data set does

not have line numbers.
NOPROMPT specifies that you do not want to be prompted.

INPUT Subcommand of EDIT 87

Example 1

Operation: Add and replace data in an old data set.

Known:
The data set is to contain line numbers.
Prompting is desired.
The ability to replace lines is desired.
The first line number: 2
The increment value for line numbers: 2

input 2 2 r prompt

The listing, at your terminal will resemble the following sample listing with
your input in lower case and the computers response in upper case.

edit quer cobol old

EDIT

input 2 2 r prompt

INPUT

00002 identification division
00004 program-id.query
00006

Example 2

Operation: Insert data in an existing data set.

Known:
The data set contains text for a report.
The data set does not have line numbers.
The ability to replace lines is not necessary.
The first input data is "New research and development activities will"

which is to be placed at the end of the data set.
The listing at your terminal will resemble the following sample listing:

edit forecast. text old nonum asis
EDIT
input
INPUT
New research and development activities will

88 OS/VS2 TSO Command Language Reference (VS2 Release 2)

CI

C~'

c

(j

o

-----------_ .. _._--_.

INSERT Subcommand of EDIT

Use the INSERT subcommand to insert one or more new lines of data into
the data set. Input data is inserted following the location pointed to by the
line pointer in the system. (If no operands are specified, input data will be
placed in the data set line following the current line.) You may change the
position pointed to by the line pointer by using the BOTTOM, DOWN, TOP,
UP, FIND and LIST subcommands.

[insert-data]

insert-data specifies the complete sequence of characters that you wish to
insert into the data set at the location indicated by the line pointer.
When the first character of the inserted data is a tab, no delimiter is
required between the command and the data. Only a single delimiter is
recognized by the system. If you enter more than one delimiter, all
except the first are considered to be input data.

Example 1

Operation: Insert a single line into a data set.

Known:
The line to be inserted is:

"UCBLFG DS'AL1 CONTROL FLAGS"

The data set is not line numbered.
The location for the insertion follows the 71st line in the data set.
The current line pointer points to the 74th line in the data set.
The user is operating in edit mode.

Before entering the INSERT subcommand, the current line pointer must be
moved up 3 lines to the location where the new data will be inserted.

up 3

The INSERT subcommand is now entered.

INSERT UCBFLG DS ALl CONTROL FLAGS

The listing at your terminal will be similar to the following sample listing.

up 3
insert ucbflg ds al1 control flags

....... v

INSERT Subcommand of EDIT 89

Example 2

Operation: Insert several lines into a data set.

Known:
The data set contains line numbers.
The inserted lines are to follow line number 00280.
The current line pointer points to line number 00040.
The user is operating in EDIT mode.
The lines to be inserted are:
"J.W. HOUSE 13-244831 24.73"
"T.N. HOWARD 24-782095 3.05"
" B.H. IRELAND 40-007830 104.56"

Before entering the INSERT subcommand the current line pointer must be
moved down 24 lines to the location where the new data will be inserted.

down 24

The INSERT subcommand is now entered:

insert

The system will respond with

INPUT

The lines to be inserted are now entered.
The listing at your terminal will be similar to the following sample listing:

down 24
insert
INPUT
00281 j.w.house 13-244831 24.73
00282 t.n.howard 24-782095 3.05
00283 b.h.ireland 40-007830 104.56

New line numbers are generated in sequence beginning with the number
one greater than the one pointed to by the current line pointer. When no
line can be inserted, you will be notified. No resequencing will be done.

90 OS/VS2 TSO Command Language Reference (VS2 Release 2)

c'

o

Insert/Replace/Delete Function of EDIT

The Insert/Replace/Delete function lets you insert, replace, or delete a line
of data without specifying a subcommand name. To insert or replace a line,
all you need to do is indicate the location and the new data. To delete a
line, all you need to do is indicate the location. You can indicate the
location by specifying a line number or an asterisk. The asterisk means that
the location to be used is pointed to by the line pointer within the system.
You can change the line pointer by using the UP, DOWN, TOP, BOTTOM,

and FIND subcommands so that the proper line is referred to.

[string]

line number specifies the number of the line you want to insert, replace, or
delete.

* specifies that you want to replace or delete the line at the location
pointed to by the line pointer in the system. You can use the TOP,

BOTTOM, UP, DOWN, and FIND subcommands to change the line pointer
without modifying the data set you are editing.

string specifies the sequence of characters that you want to either insert into
the data set or to replace an existing line. If this operand is omitted and
a line exists at the specified location, the existing line is deleted. When
the first character of "string" is a tab, no delimiter is required between
this operand and the preceding operand. Only a single delimiter is
recognized by the system. If you enter more than one delimiter, all
except the first are considered to be input data.

How the System Interprets the Operands:
When you specify only a line number or an asterisk, the system deletes a
line of data. When you specify a line number or asterisk followed by a
sequence of characters, the system will replace the existing line with the
specified sequence of characters or, if there is no existing data at the
location, the system will insert the sequence of characters into the data set
at the specified location.

Example 1

Operation: Insert a line into a data set.

Known:
The number to be assigned to the new line: 62
The data: ("OPEN INPUT PARTS-FILE")

62 open input parts-file

Insert/Replace/Delete Function of EDIT 91

Example 2

Operation: Replace an existing line in a data set.

Known:
The number of the line that is to be replaced: 287
The replacement data: "GO TO HOURCOUNT;"

287 go to hourcount;

Example 3

Operation: Replace an existing line in a data set that does not have line
numbers.

Known:
The line pointer in the system points to the line that is to be replaced.
The replacement data is: "58 PRINT USING 120,S"

* 58 print using 120,5

Example 4

Operation: Delete an entire line.

Known:
The number of the line: 98
The current line pointer in the system points to line 98.

98
or

*

92 OS/VS2 TSO Command Language Reference (VS2 Release 2)

----~.~-- ------"'--

C,
-.-'"

c

c

C)

o

LIST Subcommand of EDIT

Use the LIST subcommand to display one or more lines of your data set at
your terminal.

[
line-number-' [line-nUmber-2]]
* [count] ,

[
NUM]
SNUM

line-number-l specifies the number of the line that you want to be
displayed at your terminal.

line-number-2 specifies the number of the last line that you want displayed.
When you specify this operand, all the lines from line number 1 through
line number 2 are displayed.

* specifies that the line referred to be the line" pointer in the system is to
be displayed at your terminal. You can change the line pointer by using
the UP, DOWN, TOP, BOTTOM, and FIND sub commands without
modifying the data set you are editing.

count specifies the number of lines that you want to have displayed,
starting at the location referred to ~y the line p~i~ter.

Note:
If you do not specify any operand with LIST, the entire data set will be
displayed.
NUM specifies that line numbers are to be displayed with the text. This is

the default value if both NUM and SNUM are omitted. If your data set
does not have line' numbers, this operand will be ignored by the system.

SNUM specifies that line numbers are to be suppressed, i.e., not printed on
the listing. '

Example 1

Operation: List an entire data set.

list

Example 2

Operation: List part of a data set that has line numbers.

Known:
The line number of the first line to be displayed: 27
The line number of the last line to be displayed: 44
Line nunibers are to be included in the list.

list 27 44

LIST Subcommand of EDIT 93

Example 3

Operation: List part of a data set that does not have line numbers.

Known:
The line pointer in the system points to the first line to be listed.
The section to be listed consists of 17 lines.

list * 17

94 OS/VS2 TSO Command Language Reference (VS2 Release 2)

c

o

PROFILE Subcommand of EDIT

Use the PROFILE subcommand to change the characteristics of your user
profile. Refer to PROFILE command for a discussion of the syntax and
function of PROFILE subcommand.

PROFILE Subcommand of EDIT 95

96 OS/VS2 TSO Command Language Reference (VS2 Release 2)

(J

o

RENUM Subcommand of EDIT

Use the RENUM subcommand to:
• Assign a line number to each record of a data set that does not have a

line number.
• Renumber each record in a data set that has line numberS.

New line numbers are placed in the last eight character positions if the data
set being edited contains fixed length records. There are three exceptions to
this general rule:

• Data set type COBOL - first 6 positions
• Data set type VSBASIC - first 5 positions
• Data set type ASM,NUM keyword specified on EDIT command -

positions indicated in NUM keyword subfield.
If fixed-length record data sets are being numbered for the fitst time,

any data in the positions indicated above is overlaid.
If variable length records without sequence numbers are being edited, the

records will be lengthened so that an 8-digit sequence field (S-digits if
VSBASIC) is prefixed to each record. You are notified if any records have
been truncated in the process. (Records are truncated when the data length
plus the sequence length exceeds the maximum record length of the data set
being edited).

In all cases the specified (or default) increment value becomes the line
increment for the data set.

{
RENUM}
REN

[new-line-no. [increment [old-line-no. [end-line-no.]] JJ

new-line-number specifies the first line number to. be assigned to the data
set. If this operand is omitted, the first line number will be 10.

increment specifies the amount by which each succeeding line number is to
be incremented. (The default value is 10.) You cannot use this operand
unless you specify a new line number.

old-line-number specifies the location within the data set where
renumbering will begin. If this operand is omitted, renumbering will start
at the beginning of the data set. You cannot use this operand unless you
specify a value for the increment operand or when you are initially
numbering a NONUM data set.

end-line-number specifies the line number at which renumbering is to end.
If this operand is omitted, renumbering continues to the end of the data
set. You cannot use this operand without specifying all the other
operands.

Example 1

Operation: Renumber an entire data set using the default values for each
operand.

renum

RENUM Subcommand of EDIT 97

Example 2

Known:
The old line number: 17
The new line number: 21
The increment: 1

ren 21 1 17

Example 3

Operation: Renumber part of a data set from which lines have been
deleted.

Known:
Before deletion of the lines, the data set contained lines, 10, 20, 30, 40,

and 50.
Lines 20 and 30 were deleted.
Lines 40 and 50 are to be renumbered with an increment of 10.

ren 20 10 40

Note: The lowest acceptable value for a new line number in this example
is 11.

Example 4

Operation: Renumber a range of lines so that new lines may be inserted.

Known
Before renumbering, the data set lines are numbered

10,20,23,26,29,30,40, and 50.
Two lines are to be inserted after line 29.
Lines 23-29 are to be renumbered with an increment of 2.
The first new number to be assigned is 22.

ren 22 2 23 29

98 OS/VS2 TSO Command Language Reference (VS2 Release 2)

C,' ,I

--

C:I

o

Page of GC2S-0646-1
Revised April 29, 1974
By TNL: GN28-2572

RUN Subcommand of EDIT

Use the RUN subcommand to compile, load, and execute the source
statements in the data set that you are editing. The RUN subcommand is
designed specifically for use with certain program products; it selects and
invokes the particular program product needed to process your source
statements. Figure 7 shows which program product is selected to process
each type of source statement.

Notes:
1. Any data sets required by your problem program may be allocated

before you enter EDIT mode or may be allocated using the ALLOCATE
subcommand.

2. If you wish to enter a value for 'parameters,' you should enter this
prior to any of the other keyword operands.

If your program or data set contains Then the following Program Product
statements of this type (or equivalent) can be use~:
(see EDIT):

ASM TSO ASM Prompter

BASIC ITF: BASIC
(Shared Language Component and
BASIC Processor)

COBOL TSO COBOL Prompter and as Full
American National Standard COBOL Version
3 or Version 4

FORTGI TSOFORTRAN~omp~r~d

FORTRAN IV (G1)

GOFORT Code and Go FORTRAN

IPLI ITF: PL/I
, (Shared Language Component and PL/I

Processor)

PLI PL/I Checkout Compiler or PUI
Optimizing Compiler.

VSBASIC VSBASIC

You can use the CONVERT command to convert ITF: PUI and Code and Go FORTRAN
free-form statements to a form suitable for the PL/I and FORTRAN compilers,
respectively.

When the descriptive qualifier for your data set name is .FORT, the Code and Go
FORTRAN compiler is invoked unless you specify another compiler with the EDIT
command.

Note: User-<lefined data set types can be executed under the RUN subcommand of EDIT
if a prompter name was specified at system generation time. The RUN command will not
recognize these same data set types.

Figure 7. Source Statement/Program Product Relationship

RUN Subcommand of EDIT 99

{:UN} ['parameters ']

[TEST]
NOTEST

[LMSG]
SMSG

[LPREC]
SPREC

[CHECK]
OPT

[LI B (data-set-list)]

,[STORE]
NOSTORE

[~~GO]
[SIZE(value)]

[PAUSE]
NOPAUSE

'parameters' specifies a string of up to 100 characters that is passed to the
program that is to be executed. You may specify this operand only for
programs which can accept parameters.

TEST specifies that testing will be performed during execution. This
operand is valid for ITF:PL/I, ITF:BASIC and VSBASIC program products
only.

NOTEST specifies that no testing will be done. If you omit both TEST and
NOTEST, the default value is NOTEST.

LMSG specifies that you want to receive complete diagnostic messages. This
operand is valid for the optional ITF:PL/I, ITF:BASIC and Code and Go
FORTRAN program products only.

Note: The default value for the LMSG/SMSG operand pair depends on the
program product being used, as follows:-

Program Product

Code and Go
ITF:BASIC
ITF:PL/I

Default Operand

SMSG
LMSG
LMSG

SMSG specifies that you want to receive the short, concise diagnostic
messages.

LPREC specifies that you want long precision arithmetic calculations (valid
only for the ITF:BASIC program product),

SPREC specifies that you want short precision arithmetic calculations (valid
only for the ITF:BASIC program product). If you omit both LPREC and
SPREC, the default value is SPREC.

CHECK specifies the PL/I Checkout compiler. This operand is valid for the
PL/I program product only. If you omit this operand, the OPT operand is
the default value for data sets having the PLI descriptive qualifier.

100 OS/VS2 TSO Command Language Reference (VS2 Release 2)

(-"

\. /

c

C"
)

o

OPT specifies the PLjI Optimizing compiler. This operand is valid for the
PLjI program product only. This is the default value for data sets having
the PLI descriptive qualifier if both CHECK and OPT are omitted.

LIB(data-set-list) specifies the library or libraries that contain subroutines
needed by the program you are running. These libraries are concatenated
to the default system libraries and passed to the loader for resolution of
external references. This operand is valid only for the following data set
types: ASM, COBOL, FORTGI, and PLI(Optimizer).

STORE specifies that a permanent OBJ data set is to be created. The
dsname of the OBJ data set is based on the data set name entered on the
EDIT command. This operand is valid only for VSBASIC statements.

NOSTORE specifies that a permanent OBJ data set is not to be created. This
operand is valid only for VSBASIC statements.

GO specifies that the compiled program is to be executed. This operand is
valid only for VSBASIC statements.

NOGO specifies that the compiled program is not to be executed. This
operand is valid only for VSBASIC statements

slzE(value) specifies the size 0-999) of the user area for VSBASIC.
PAUSE specifies that the user is to be given the chance to add or change

certain compiler options before proceeding to the next chain program.
This operand is valid only for VSBASIC statements.

NOPAUSE specifies that the user is not to be given the chance to add or
change certain compiler options before proceeding to the next chain
program. This operand is valid only for VSBASIC statements.

Example 1

Operation: Compile and execute the data being edited by the EDIT
command.

Known:
The EDIT command is being used currently.
The data set contains statements prepared for the optional ITF:BASIC

program product compiler.
The system contains the optional ITF:BASIC program product.
Default values for the RUN subcommand are suitable.

run

Example 2

Operation: Execute an assembler language program contained in the data
set referred to by the EDIT command.

Known:
The parameters to be passed to the program are: '1024,PAYROLL'

run '1024,payroll'

RUN Subcommand of EDIT 101

Example 3

Operation: Run a FORTRAN IV (GI) program that calls an assembler
language output program to manipulate bit patterns.

Known:
The assembler language subroutine in load module form resides in a

library called USERID.MYLIB.LOAD.

run lib(mylib.load)

102 OS/VS2 TSO Command Language Reference (VS2 Release 2)

c

(~

Page of GC28-0646-1
Revised April 29, 1974
By TNL: GN28-2572

SAVE Subcommand of EDIT

Use the SAVE subcommand to have your data set retained as a permanent
data set. If you use SAVE without an operand, the updated version of your
data set replaces the original version. When you specify a new data set
name as an operand, both the original version and the updated version of
the data set are available for further use.

[data-set-name]

data-set-name specifies a data set name that will be assigned to your edited
data set. The new name may be different from the current name. (See
the data set naming conventions.) If this operand is omitted, the name
entered with the EDIT command will be used.
If you specify the name of an existing data set or a member of a
partitioned data set, that data set or member is replaced by the edited
data set. (Before replacement occurs, you will be given the option of
specifying a new data set name or member name.)
If you do not specify the name of an existing data set or partitioned data
set member, a new data set (the edited data set) will be created with the
name you specified. If you specified a member name for a sequentially
organized data set, no replacement of the data set ~ill take place. If you
do not specify a member name for an existing partitioned data set, the
edited data set is assigned a member name of TEMPNAME.

Note: If the data set being edited originally contained control characters
(ASCII or machine), and you enter SAVE without operallds, the following
actions apply. .'

Sequential data set
• You will be warned that the data set will be save~ without control

characters i.e. the record format will be changed. "1

• You will be prompted to enter another data set n'ame for SA VE or a
carrier return (null line) to reuse the EDIT data set.

Partitioned data set
Saving into the EDIT data set is not allowed when it is partitioned with a
control character attribute. You must save into another' data set by
specifying a data-set-name on a subsequent SAVE subcommand entry .

Example 1
.i

',J
i

Operation: Save the data set that has just been edited by the EDIT

command.

Known:
The system is in edit mode. The user supplied name that you want to

give the data set is INDEX.

save index

SAVE Subcommand of EDIT 103

104 OS/VS2 TSO Command Language Reference (VS2 ReleaSe 2)

(J

SCAN Subcommand of EDIT

Use the SCAN subcommand to request syntax checking services for
statements that will be processed by the PL/I(F), FORTRAN(E),

FORTRAN(G), or FORTRAN(H) compiler or by the Code or Go FORTRAN,

FORTRAN IV (G1), ITF:BASIC or ITF:PL/I program products. You can have
each statement checked as you enter it in input mode, or any or all existing
statements checked. Except for statements entered in ITF:BASIC or ITF:PL/I,

you must explicitly request a check of the syntax of statements you are
adding, replacing, or modifying, via the CHANGE subcommand, the INSERT

subcommand with the insert-data operand, or the insert/replace/delete
function.

{~~AN } [
line-number-1 [tine-number-2]]
* [count]

line-number-l specifies the number of a line to be checked for proper
syntax.

line-number-2 specifies that all lines between line number 1 and line
number 2 are to be checked for proper syntax.

* specifies that the line at the location indicated by the line pointer in the
system is to be checked for proper syntax. The line pointer can be
changed by the TOP, BOTTOM, UP, DOWN, and FIND subcommands.

count specifies the number of lines, beginning with the current line, that
you want checked for proper syntax.

ON specifies that each line is to be checked for proper syntax as it is
entered in input mode.

OFF specifies that each line is not to be checked as it is entered in input
mode.

Note: If no operands are specified, all existing statements will be checked
for proper syntax.

Example 1

Operation: Have each line of a FORTRAN program checked for proper
syntax as it is entered.

scan on

Example 2

Operation: Have all the statements in a data set checked for proper syntax.

scan

SCAN Subcommand of EDIT 105

Example 3

Operation: Have several statements checked for proper syntax.

Known:
The number of the first line to be checked: 62
The number of the last line to be checked: 69

scan 62 69

Example 4

Operation: Check several statements for proper syntax.

Known:
The line pointer points to the first line to be checked.
The number of lines to be checked: 7

scan * 7

106 OS/VS2 TSO Command Language Reference (VS2 Release 2)

... - •.. _ ..•.• -._ .•. _ ----

C)

SEND Subcommand of EDIT

Use the SEND subcommand to send a message to another terminal user or
to the system operator. Refer to the SEND command for a description of
the syntax and function of the SEND subcommand.

SEND Subcommand of EDIT 107

C~:

108 OS/VS2 TSO Command Language Refetence (VS2 Release 2)

-~.-..... -.------------------------

o

SUBMIT Subcommand of EDIT

Use the SUBMIT subcommand to submit the data set currently being edited,
which consists of one or more batch jobs, for conventional processing.
Refer to the SUBMlT command for a description of the syntax and function
of the SUBMIT sub~ommand.

SUBMIT Subcommand of EDIT 109

110 OS/VS2 TSO Command Language Reference (VS2 Release 2)

... _ .. _------_ ... _------------

--.------ .. -- ---- ------

o

TABSET Subcommand of EDIT

Use the TABSET subcommand to
• Establish or change the logical tabulation settings.
• Void any existing tabulation settings.
The basic form of the subcommand causes each strike of the tab key to

be translated into blanks corresponding to the column requirements for the
data set type. For instance, if the name of the data set being edited has
FORT as a descriptive qualifier, the first tabulation setting will be in column
7. The values in Figure 8 will be in effect when you first enter the EDIT

command.

Data Set Name Descriptive Qualifier Default Tab Settings Columns

ASM 10,16,31,72
BASIC(ITF:BASIC Program Product) 10,20,30,40,50,60
CLIST 10,20,30,40,50,60
CNTL 10,20,30,40,50,60
COBOL 8,12,72
DATA 10,20,30,40,50,60
FORT (FORTRAN(E), FORTRAN(O), 7,72

FORTRAN(H) compilers, FORTRAN IV (01)
and Code and 00 FORTRAN program
product data set types.)

IPLI(ITF:PL/I program product)
PLI PL/I(F), and PL/I Checkout and

Optimizing compiler data set types).
TEXT
VSBASIC
User-defined

Figure 8. Default Tab Settings

5,10,15,20,25,30,35,40,45,50
5,10,15,20,25,30,35,40,45,50

5,10,15,20,30,40
10,15,20,25,30,35,40,45,50,55
10,20,30,40,50,60

You may find it convenient to have the mechanical tab settings coincide
with the logical tab settings. This can be accomplished by realizing that,
except for line-numbered COBOL data sets, the logical tab columns apply
only to the data that you actually enter. Since a printed line number prompt
is not logically part of the data you are entering, the logical tab positions
are calculated beginning at the next position after the prompt. Thus, if you
are receiving five-digit line number prompts and have set a logical tab in
column 10, the mechanical tab should be set 15 columns to the right of the
margin. If you are not receiving line number prompts, the mechanical tab
should be set 10 columns to the right of the margin.

In COBOL data sets the sequence number (line number) is considered to
be a logical (as well as physical) part of each record that you enter. For
instance, if you specify the NONUM operand on the EDIT command, while
editing a COBOL data set, the system assumes that column 1 is at the left
margin and that you are entering the required sequence numbers in the first
six columns; thus, logical tabs are calculated from the left margin (column
1). In line-numbered COBOL data sets (the NONUM operand was not
specified), the column following a line number prompt is considered to be
column 7 of your data - the first 6 columns being occupied by the
system-supplied sequence number (line number).

T ABSET Subcommand of EDIT 111

{
TABSET}
TAB

[

ON [(integer-list)]]
OFF
IMAGE

ON (integer-list) specifies that tab settings are to be translated into blanks
by the system. If you specify ON without an integer list, the existing or
default tab settings are used. You can establish new values for tab
settings by specifying the numbers of the tab columns as values for the
integer list. A maximum of ten values is allowed. If you omit both ON

and OFF the default value is ON.

OFF specifies that there is to be no translation of tabulation characters.
Each strike of the tab key will produce a single blank in the data.

IMAGE specifies that the next input line will define new tabulation settings.
The next line that you type should consist of "t"s, indicating the column
positions of the tab settings, and blanks or any other characters except
"t". 10 settings is the maximum number of tabs allowable. Do not use
the tab key to produce the new image line. A good practice is to use a
sequence of digits between the "t"s so you can easily determine which
columns the tabs are set to. (See Example 3.)

Example 1

Operation: Re-establish standard tab settings for your data set.

Known:
Tab settings are not in effect.

tab

Example 2

Operation: Establish tabs for columns 2, 18, and 72.

tab on(2 18 72)

Example 3

Operation: Establish tabs at every 10th column.

tab image
123456789t123456789t123 ...

112 OS/VS2 TSO Command Language Reference (VS2 Release 2)

c'

_. __ _----

c

o

----------.... --.--~-.. --.--

TOP Subcommand of EDIT

Use the TOP subcommand to change the line pointer in the system to zero.
That is, the pointer will point to the position preceding the first line of an
unnumbered data set or of a numbered data set which does not have a line
number of zero. The pointer will point to line number zero of a data set
that has one.

This subcommand is useful in setting the line pointer to the proper
position for subsequent subcommands that need to start their operations at
the beginning of the data set.

In the event that the data set is empty you will be notified but the
current line pointer still takes on a zero value.

TOP

Example 1

Operation: Move the line pointer to the beginning of your data set.

Known:
The data set is not line-numbered.

top

TOP Subcommand of EDIT t 13

c
114 OS/VS2 TSO Command Language Reference (VS2 Release 2)

UP Subcommand of EDIT

Use the UP subcommand to change the line pointer in the system so that it
points to a record nearer the beginning of your data set. If the use of this
subcommand causes the line pointer to point to the first record of your data
set, you will be notified.

UP [count]

count specifies the number of lines toward the beginning of the data set
that you want to move the current line pointer. If count is omitted, the
pointer will be moved only one line.

Example 1

Operation: Change the pointer so that it refers to the preceding line.

up

Example 2

Operation: Change the pointer so that it refers to a line located 17 lines
before the location currently referred to.

up 17

UP Subcommand of EDIT 1 IS

c

116 OS/VS2 TSO Command Language Reference (VS2 Release 2)

(-'"
,,--)

VERIFY Subcommand of EDIT

Use the VERIFY subcommand to display the line that is currently pointed to
by the line pointer in the system; whenever the current line pointer has
been moved, or whenever a line has been modified by use of the CHANGE

subcommand. Until you enter VERIFY you will have no verification of
changes in the position of the current line pointer.

[~~F]

ON specifies that you want to have the line that is referred to by the line
pointer displayed at your terminal each time the line pointer changes or
each time the line is changed by the CHANGE subcommand. This is the
default if you omit both ON and OFF.

OFF specifies that you want to discontinue this service.

Example 1

Operation: Have the line that is referred to by the line pointer displayed at
your terminal each time the line pointer changes.

verify
or

verify on

Example 2

Operation: Terminate the operations of the VERIFY subcommand.

verify off

VERIFY Subcommand of EDIT t t 7

~
_ ,1

C~,

118 OS/VS2 TSO Command Language Reference (VS2 Release 2)

•.. __ .. _------_ _--------_.

EXEC Command

Use the EXEC command to execute a command procedure.
You can specify the EXEC command in two ways:
• The explicit form, where you enter EXEC followed by the name of

the data set that contains the command procedure.
• The implicit form, where you do not enter EXEC but only enter the

name of the member of a command procedure library. A command
procedure library is a partitioned data set that must be allocated to the
SYSPROC file name either dynamically by the ALLOCATE command or
as part of the LOGON procedure.

Some of the commands in a command procedure may have symbolic
values for operands. When you specify the EXEC command, you may supply
actual values for the system to use in place of the symbolic values.

data-set-name

['val ue-I ist']

[
NOLlST]
LIST

[
NOPROMPT]
PROMPT

or

procedure-name [val ue-I ist]

data-set-name specifies the name of the data set containing the command
procedure to be executed. If the descriptive qualifier for the data set is
not CLIST you must enclose the fully qualified name within apostrophes,
and the data set must contain line numbers according to the following
format:

Variable blocked - columns 1-8
Fixed blocked - columns last 8 bytes of each record

Since any data contained in these columns is lost, you should not enter
data in these columns.
procedure-name specifies a member of a command procedure library. The

library must previously have been defined with the SYSPROC DD
statement of the LOGON procedure or with the ALLOCATE command.

value-list specifies the actual values that are to be substituted for the
symbolic values in the command procedure. The symbolic values are
defined by the operands of the PROC statement in the command
procedure. The actual values to replace the positional operands in the
PROC statement must be in the same sequence as the positional
operands. The actual values to replace the keywords in the PROC
statement must follow the positional values, but may be in any sequence.
A keyword defined on the PROC statement may have a value consisting
of a character string with delimiters, provided that the character string is
enclosed in quotes. When you use the explicit form of the command, the
value list must be enclosed in apostrophes. If apostrophes appear within
the list, then you must provide two apostrophes in order to print one.

EXEC Command 119

NOLIST specifies that the commands and subcommands will not be listed at ~
the terminal. The system assumes NOLIST for implicit and explicit EXEC ''-J

commands.
LIST specifies that commands and sub commands will be listed at the

terminal as they are executed. This operand is valid only for the explicit
form of exec.

PROMPT specifies that prompting to the terminal will be allowed during the
execution of a command procedure. The PROMPT keyword implies LIST,
unless NOLIST bas been explicitly specified. Therefore, all commands and
subcolJlmands will be listed at the terminal as they are executed. This
operand is valid only for the explicit form of EXEC.

NOPROMPT specifies no prompting during the execution of a command
proce9ure. This is the default if neither PROMPT nor NOPROMPT is
specified.

Notes:
1. The PROMPT keyword is not propagated to nested EXEC commands.

PROMPT must be specified on a nested EXEC command if you wish to
be prompted during execution of the command procedure it invokes.

2. No prompting will be allowed during the execution of a command
procedure if the NOPROMPT keyword operand of PROFILE has been
specified, even if the PROMPT option of EXEC has been specified.

3. The following is a list of options resulting from specific keyword
entries:

Keyword spe~ified

PROMPT
NOPROMPT
LIST
NOLIST
PROMPT LIST
PROMPT NOLIST
NOPROMPT LIST
NOPROMPT NO LIST
No keywords

Resulting options

PROMPT LIST
NOPROMPT NOLIST
LIST NOPROMPT
NOLIST NOPROMPT
PROMPT LIST
PROMPT NOLIST
NOPROMPT LIST
NO PROMPT NOLIST
NOPROMPT NO LIST

Suppose the following command procedllre exists as a data set named
ANZAL:

proc 3 input output list lines()
allocate dataset(&input.) file(,indata) old
allocate dataset(&output.) block(100) space(300,100)
allocate dataset(&list.} file(print)
call proc2 '&lines.'
end

Note: If the symbolic value must pe immediately followed by a right
parenthesis, apostrophe or a period, the symbolic value must end with a
period.
The PROC statement indicates that the three symbolic values, & INPUT,
&OUTPUT and &LIST, are positional (required) and that the symbolic value
& LINES is a keyword (optional).
To replace ALPHA for INPUT, BETA for OUTPUT, COMMENT for LIST and
20 for LINES, you would enter: (implicit form)

anzal alpha beta comment lines(20)

120 OS/VS2 TSO Command Language Reference (VS2 Release 2)

()

Page of GC28-0646-1
Revised April 29, 1974
By TNL: GN28-2572

Example 1

Operation: Execute a command procedure to invoke the PL/I compiler.

Known: The name of the data set that contains the command procedure is
RBJ21.PLlR.CLlST.

The command procedure consists of:

proc 1 name
allocate dataset (&name .. pli) file(sysin)
allocate dataset(&name .. list) file(sysprint) block(80)
space(300,100)
allocate dataset(&name .. obj) file(syslin) block(80)
space(250,100)
allocate file(sysutl) block(1024) space(60,60)
allocate file(sysut3) block(80) space(250,100)
call 'sys 1 .linklib(iemaa)' 'list, atr, xref , stmt'
free file(sysutl,sysut3,sysin,sysprint)

Note: If the symbolic value must be immediately followed by a right
parenthesis, an apostrophe or a period, the symbolic value must end with a
period.
The name of your program is 'EXP'.

You want to have the names of the commands in the command procedure
displayed at your terminal as they are executed.

exec plir 'exp' list

The listing at your terminal will be similar to:

allocate dataset(exp.pli) file(sysin)
allocate dataset(exp.list) file(sysprint) block(80)

, space(300, 100)
allocate dataset(exp.obj) file(syslin) block(80)
space(250,100)
allocate file(sysut 1) block(1024) space(60,60)
allocate file(sysut3) block(80) space(250,100)
call 'sysl.linklib(iemaa)' 'list,atr,xref,stmt'
free file(sysutl,sysut3,sysin,sysprint)
ready

Example 2

Operation: Suppose that the command procedure in Example 1 was stored
in a command procedure library. Execute the command procedure using
the implicit form of EXEC.

Known: The name of the member of the partitioned data set that contains
the command procedure is PLIA.

plia exp

EXEC Command 121

\
""", -- ./

122 OS/VS2 TSO Command Language Reference (VS2 Release 2)

o

Page of GC28-0646- t
Revised April 29, 1974
By TNL: GN28-2572

FREE Command

Use the FREE command to release ("de-allocate") previously allocated data
sets. that you no longer need. You can also use this command to change the
output class of SYSOUT data sets, to delete attribute lists, and to change the
data set disposition specified with the ALLOCATE command.

There is a maximum number of data sets that may be allocated to you
at any .one time. The allowable number must be large enough to
accomodate:

• Data sets allocated via the LOGON and ALLOCATE commands.
• Data sets allocated dynamically, and later freed automatically, by the

system's command processors.
The data sets allocated by the LOGON and ALLOCATE commands are not
freed automatically. To avoid the possibility of reaching your limit and
being denied necessary resources, you should use the FREE command to
release these data sets when they are no longer needed. Whenever you free
a data set, you should use the LIST ALC command to be sure your data set is
free.

When a SYSOUT dataset is freed, it is immediately available for output
processing, either by the job entry subsystem (not-held datasets) or by the
OUTPUT command (held datasets).

When you free SYSOUT data sets, you may change their output class to
make them available for processing by an output writer or route them to
another user.

When you enter the LOGOFF command, all data sets allocated to you
and attribute lists created during the terminal session are freed by the
system.

Note: Data sets that are dynamically allocated by a command processor
are not automatically freed when the command processor terminates. You
must explicitly free dynamically allocated data sets.

FREE DATASET(data-set-name-list) [F I LE(file-name-list)]
[ATTR LIST (attr·list-names)]

FILE (file-name-list) [DATASET (data·set·name-I ist)]
[ATTR LlST(attr·list·names)]

ATTR LlST(attr-list-list)
[DATASET(data-set·name·list)] [F I LE(file·name-list)]

[DEST(userid)] [SYSOUT(class)]

[
HOLD]
NOHOLD

[SYSOUT(class)]

[

KEEP ~ DELETE [SYSOUt(class)]
CATALOG
UNCATALOG

DATASET(list-of-data-set-names} specifies one or more data set names that
identify the data sets that you want to free. The data set name must
include the descriptive (rightmost) qualifier and may contain a member

FREE Command 123

Page of GC28-0646-1
Revised April 29, 1974
By TNL: GN28-2572

name in parentheses. If you omit this operand, you must specify either
FILE or the A TTRLIST operand.

FILE(list-of-file-names) specifies one or more file names that identify the
data sets to be freed. If you omit this operand, you must specify either
the DATASET or the ATTRLIST operand.

ATTRLlsT{list-of-attr-list-names) specifies the names of one or more
attribute lists that you want to delete. If you omit this operand, you must
specify either the DATASET or the FILE operand.

DEST(userid) specifies that the SYSOUT data set is to be routed to the user
whose user identification corresponds to that given for "userid." If this
keyword is omitted on a FREE command for SYSOUT data sets, the data
sets will remain directed to the user specified at the time of allocation.

HOLD specifies that the data set is to be placed on the HOLD queue.
NOHOLD specifies that the data set is not to be placed on the HOLD queue.
KEEP specifies that the data set is to be retained by the system after it is

freed.
DELETE specifies that the data set is to be deleted by the system after it is

freed. DELETE is not valid for data sets allocated SHR or for members of
a PDS. Only DELETE is valid for SYSOUT data sets.

CATALOG specifies that the data set is to be retained by the system in a
catalog after it is freed.

UNCATALOG specifies that the data set is to be removed from the catalog
after it is freed. The data set is still retained by the system.

Note: If HOLD, NOHOLO, KEEP, DELETE, CATALOG, and UNCATALOG are
not specified, the specification indicated at the time of allocation remains in
effect.
SYSOuT(class) specifies an output class which is represented by a single

character. All of the system output (SYSOUT) data sets specified in the
OAT ASET and FILE operands will be assigned to this class and placed in
the output queue for processing by an output writer. In order to free a
file to SYSOUT, the file must have previously been allocated to SYSOUT.

Note: A concatenated data set that was allocated in a LOGON procedure or
by the ALLOCATE command can be freed only by entering the ddname on
the FILE operand.

Example 1

Operation: Free a data set by specifying its data set name.

Known:
The data set name: TOC903.PROGA.LOAD

free dataset(proga.load)

Example 2

Operation: Free three data sets by specifying their data set names.

Known:

The data set names: APRIL.PB99CY.ASM, APRIL.FIRSTQTR.OATA,

MAY.DESK.MSG

free dataset(pb99cy.asm,firstqtr.data, 'may.desk
.msg')

124 OS/VS2 TSO Command Language Reference (VS2 Release 2)

- --- -------- - ----

C~I

o

Example 3

Operation: Free five data sets by specifying data set names or data
definition names. Change the output class for any SYSOUT data sets
being freed.

Known:
The name of a data set: WIND.MARCH.FORT

The filenames (data definition names) of 4 data sets: SYSUTI SYSUT3

SYSIN SYSPRINT

The new output class: B

free dataset(march.fort) file(sysut1,sysut3,sysin,
sysprint) sysout(b)

Example 4

Operation: Delete two attribute lists.

Known:
The names of the lists: DCBPARMS ATTRIBUT

FREE ATTRLIST(DCBPARMS ATTRIBUT)

FREE Command 125

c~

126 OS/VS2 TSO Command Language Reference (VS2 Release 2)

/

~,

Page of GC28-0646-1
Revised April 29, 1974
By TNL: GN28-2572

HELP Command

Use the HELP command or subcommand to obtain information about the
function, syntax, and operands of commands and subcommands. This
reference information is contained within the system and is displayed at
your terminal in response to your request for help. By entering the HELP

command or subcommand with no operands you can obtain a list of all the
TSO commands grouped by function or subcommands of the command you
are using.

The HELP command may also be used to get additional information
about a VSBASIC message or messages.

[

(SUb)COmmand_name [[[[FUNCTION] [SYNTAX]]]]]
[OPERANDS[(list)]]

[ALL]

[MSGID(\ist)]

command-name or subcommand-name specifies the name of the command
or subcommand that you want to know more about.

FUNCTION specifies that you want to know more about the purpose and
operation of the command or subcommand.

SYNT AX specifies that you want to know more about the syntax required to
use the command or subcommand properly.

OPERANDS(list-of-operands) specifies that you want to see explanations of
the operands for the command or subcommand. When you specify the
keyword OPERANDS and omit any values, all operands will be described.
You can specify particular keyword operands that you want to have
described by including them as values within parentheses following the
keyword. If you specify a list of more than one operand, the operands in
the list must be separated by commas or blanks.

ALL specifies that you want to see all information available concerning the
command or subcommand. This is the default value if no other keyword
operand is specified.

MSGID(list) specifies that you wish to get additional information about
VSBASIC messages whose message identifiers are given in the list.
Information includes what caused the error and how to prevent a
recurrence.

Help Information: The scope of available information ranges from general
to specific. The HELP command or subcommand with no operands produces
a list of valid commands or subcommand and their basic functions. From
the list you can select the command or subcommand most applicable to
your needs. If you need more information about the selected command or
subcommand, you may use HELP again, specifying the selected
(sub)command name as an operand. You will then receive:

• A brief description of the function of the (sub)command.
• The format and syntax for the (sub)command.
• A description of each operand.

You can obtain information about a command or subcommand only when
the system is ready to accept a command or subcommand.

HELP Command 127

If you do not want to have all of the detailed information, you may
request only the portion that you need.

The information about the commands is contained in a cataloged
partitioned data set named SYS1.HELP. Information for each command or
subcommand is kept in a member of the partitioned data set. The HELP

command or subcommand causes the system to select the appropriate
member and display its contents at your terminal.

Figure 9 shows the hierarchy of the sets of information available with
the HELP command or subcommand .. Figure 9 also shows the form of the
command or subcommand necessary to produce any particular set.

Example 1

Operation: Obtain a list of all available commands.

help

Example 2

Operation: Obtain all the information available for the ALLOCATE

command.

help allocate

Example 3

Operation: Have a description of the XREF, MAP, COBLIB, and OVLY

operands for the LINK command displayed at your terminal.

h link operands(xref,map,coblib,ovly)

Example 4

Operation: Have a description of the function and syntax of the LISTBC

command displayed at your terminal.

h listbc function syntax

128 OS/VS2 TSO Command Language Reference (VS2 Release 2)

I .. ,

c

Page of GC28-0646-1
Revised April 29, 1974
By TNL: GN28-2572

When the system is READY
to accept a command, you
may request:

1 List of commands

Command function

Command syntax

List of operands

6 Each operand

I 11 VSBASIC message data

When the system is ready to accept
a subcommand, you may request:

2 List of subcommands

Subcommand function

Subcommand syntax

List of operands

10 Each operand

This form of the command ... produces:

Q)

'tl
o
E
>­o
<t:
UJ
0:

0:'
o
I- VI <t: Q)

o:'tl
UJ 0
0. E
01-,en
I-w
01-
w'tl

, §
I- ,
21-
::J::J
00.
Ul­
U::J
<t:O

HELP

HELP commandname

HELP commandname ALL

HELP commandname FUNCTION

HELP commandname SYNTAX

HELP commandname OPERANDS

HELP commandname OPERANDS (list of keyword operands)

HELP MSGID (list of VSBASIC message ids)

'-

HELP

HELP subcommandname

HELP subcommandname ALL

HELP subcommandname FUNCTION

HELP subcommandname SYNTAX

HELP subcommandname OPERANDS

HELP subcommandname OPERANDS (list of keyword operands)

Figure 9. Information Available Through the HELP Command

1

345

345

3

4

5

6

11

2

789

789

7

8

9

10

HELP Command 129

C,
./

130 OS/VS2 TSO Command Language Reference (VS2 Release 2)

c

-------------------- ----------------

LINK Command

Use the LINK command to invoke the linkage editor service program.
Basically, the linkage editor converts one or more object modules (the
output modules from compilers) into a load module that is suitable for
execution. In doing this, the linkage editor changes all symbolic addresses in
the object modules into relative addresses.

The linkage editor provides a great deal of information to help you test
and debug a program. This information includes a cross-reference table and
a map of the module that identifies the location of control sections, entry
points, and addresses. You can have this information listed at your terminal
or saved in a data set on some device.

You can specify all the linkage editor options explicitly or you can accept
the default values. The default values are satisfactory for most uses. By
accepting the default values, you simplify the use of the LINK command.

If'the module that you want to process has a simple structure (that is, it
is self contained and does not pass control to other modules) and you do
not require the extensive listings produced by the linkage editor and you do
not want a load module, you may want to use the LOADGO command as an
alternative to the LINK command.

Note: You should not link an object module with the TEST option and
then attempt to execute the resulting load module in the background
because an abnormal termination may result.

LINK Command 131

Page of GC28-0646-1
Revised April 29, 1974
By TNL: GN28-2572

LINK (data-set-list)

[lOAD [(data-set-name)]]

[PRINT ({:ata-set-name})]
NOPRINT

[LI B (data-set-list)]

[PLILlB] [REFR]
[PLlCMIX] NOREFR

[PLIBASE] [SCTR]
NOSCTR

[FORTLlB]
[OVlY] [COSLlB] NOOVlY

[MAP]
NOMAP [RENT]

NORENT

[TERM]
NOTERM

[DCSS(blocksize)]

[AC(authorization-
code)]

[NCAl]
NONCAl

[SIZE(integer1 integer2)]

[LIST] [~~NEJ
NOLIST

[lET] [~~OlJ
NOLET

[XCAl] [~gDCJ
NOXCAl

[XREF]
NOXREF

[TEST] [REUS] NOTEST
NOREUS

(data-set-list) specifies the names of one or more data sets containing your
object modules and/or linkage editor control statements. (See the data
set naming conventions). The specified data sets will be concatenated
within the output load module in the sequence that they are included in
this operand. If there is only a single name in the data-set-list,
parentheses are not required unless the single name is a member name of
a partitioned data set; then, two pairs of parentheses are required, as in:

link((parts))

You may substitute an asterisk (*) for a data set name to indicate that
you will enter control statements from your terminal. The system will
prompt you to enter the control statements. A null line indicates the end of
your control statements.

Note: Using the asterisk to enter Linkage Editor control statements may cause
severe system degradation between CPUs of a loosely coupled multiprocessing
system when the data set specified in the LOAD operand resides on a shared
DASD volume.

132 OS/VS2 TSO Command Language Reference (VS2 Release 2)

_ ..• _. __ _---- --.------.-.-.--.. --.~.---. .. , .. --.. _-----_•.. ------------

C,

r"~
\ "-- /

c

C~,

Page of GC28·0646·1
Revised April 29, 1974
By TNL: GN28·2572

LOAD(data-set-name) specifies the name of the partitioned data set that
will contain the load module after processing by the linkage editor (see
the data set naming conventions). If you omit ~his operand, the system
will generate a name according to the data set naming conventions.

PRINT(data-set-name or *) specifies that linkage editor listings are to be
produced and placed in the specified data set. When you omit the data
set name, the data set that is generated is named according to the data
set naming conventions. This is the default value if you specify the LIST,
MAP, or XREF operand. You may substitute an asterisk (*) for the data
set name if you want to have the listings displayed at your terminal.

Note: Try to avoid printing or displaying lengthy Linkage Editor output at
the terminal or any output that is delayed through attention interrupt or
screen full condition when the lOAD dataset (SYSlMOD) is on a shared
DASD volume. The shared volume is RESERVED throughout the Linkage
Editor processing; long or delayed execution increases the possibility of
contention for the volume from other CPUs.
NOPRINT specifies that no linkage editor listings are to be produced. This

operand causes the MAP, XREF, and LIST options to become invalid. This
is the default value if both PRINT and NOPRINT are omitted, and you do
not use the LIST, MAP, or XREF operand.

LlB(data-set-list) specifies one or more names of library data sets to be
searched by the linkage editor to locate load modules referred to by the
module being processed, that is, to resolve external references. When you
specify more than one name, the names must be separated by a valid
delimiter.

PLlLlB specifies that the partitioned data set named SYS I. PL t LIB is to be
searched by the linkage editor to located load modules that are referred
to by the module being processed.

PLIBASE specifies that the partitioned data set named SYSl.PLIBASE is to be
searched to locate load modules referred to by the module being
processed.

PLlCMIX specifies that the partitioned data set named SYSl.PLICMIX is to
be searched to located load modules referred to by the module being
processed.

FORTLIB specifies that the partitioned data set named SYSl.FORTLIB is to
be searched by the linkage editor to located load modules referred to by
the module being processed.

COBLIB specifies that the partitioned data set named SYSl.COBLIB is to be
searched by the linkage editor to locate load modules referred to by the
module being processed.

MAP specifies that the PRINT data set is to contain a map of the output
module consisting of the control sections, the entry names, and (for
overlay structures) the segment number.

NOMAP specifies that a map of the output module is not to be listed. This
is the default value if both MAP and NOMAP are omitted.

NCAL specifies that the automatic library call mechanism is not to be
invoked to locate the modules that are referred to by the module being
processed when the object module refers to other load modules.

NONCAL specifies that the modules referred to by the module being
processed are to be located by the automatic library call mechanism
when the object module refers to other load modules. This is the default
value if both NCAl and NONCAl are omitted.

LINK Command 133

LIST specifies that a list of all Ilnkage editor control statements is to be
phiced in the PRINT data set.

NOLIST specifies that a listing of linkage editor control statements is not to
be produced. This is the default value if both LIST and NOLIST are
omitted.

LET specifies that the output module is permitted to be marked as
executable even though a severity 2 error is found (a severity 2 error
indicates that execution of the output module may be impossible).

NOLET specifies that the output module be marked non-executable when a
severity 2 error is found. This is the default value if both LET and
NOLET are omitted.

XCAL specifies that the output module is permitted to be marked as
executable even though an exclusive call has been made between
segments of an overlay structure. Because the segment issuing an
exclusive call is overlaid, a return from the requested segment can be
made only by another exclusive call or a branch.

NOXCAL specifies that both valid and invalid exclusive calls will be marked
as errors. This is the default value if both XCAL and NOXCAL are
omitted.

XREF specifies that a cross-reference table is to be placed on the PRINT

data set. The table includes the module map and a list of all address
constants referring to other control sections. Since the XREF operand
includes a module map, both XREF and MAP cannot be specified for a
particular LINK command.

NOXREF specifies that a cross-reference listing is not to be produced. This
is the default value if both XREF and NOXREF are omitted.

REUS specifies that the load module is to be marked serially reusable if the
input load module was reenterable or serially reusable. The RENT and
REUS operand are mutually exclusive. The REUS operand must not be
specified if the OVL Y or TEST operands are specified.

NOREUS specifies that the load module is not be be marked reusable. This
the default value if both REUS and NOREUS are omitted.

REFR specifies that the load module is to be marked refreshable if the
input load module was refresh able and the OVL Y operand was not
specified.

NOREFR specifies that the load module is not to be marked refreshable.
This is the default value if both REFR and NOREFR are omitted.

SCTR specifies that the load module created by the linkage editor can be
either scatter loaded or block loaded. If you specify SCTR, do not specify
OVLY.

NOSCTR specifies that scatter loading is not permitted. This is the default
value If both SCTR and NOSCTR are omitted.

OVLY specifies that the load module is an overlay structure and is therefore
suitable for block loading only. If you specify OVL Y, do not specify
SCTR.

NOOVLY specifies that the load module is not an overlay structure. This is
the default value if both OVLY and NOOVLY are omitted.

RENT specifies that the load module is marked reenterable provided the
input load module was reenter able and that the OVL Y operand was not
specified.

NORENT specifies that the load module is not marked reenterable. This is
the default value if both RENT and NORENT are omitted.

134 OS/VS2 TSO Command Language Reference (VS2 Release 2)

c=

c

c

._ _-_._--_ ...•. _--------_. __ ._--- _--

Page of GC28-0646-1
Revised April 29, 1974
By TNL: GN28-2572

SIZE(integerl,integer2) specifies the amount of real storage to be used by
the linkage editor. The first integer (integerl) indicates the maximum
allowable number of bytes. Integer2 indicates the number of bytes to be
used as the load module buffer, which is the real storage area used to
contain input and output data. If this operand is omitted, SIZE defaults to
the size specified at system generation (SYSGEN).

NE specifies that the output load module cannot be processed again by the
linkage editor or loader. The linkage editor will not create an external
symbol dictionary. If you specify either MAP or XREF, this operand is
invalid.

NONE specifies that the output load module can be processed again by the
linkage editor and loader and that an external symbol dictionary is
present. This is the default value if both NE and NONE are omitted.

OL specifies that the output load module can be brought into real storage
only by the LOAD macro instruction.

NOOL specifies that the load module is not restricted to the use of the
LOAD macro instruction for loading into real storage. This is the default
value if both OL and NOOL are omitted.

DC specifies that the output module can be reprocessed by the linkage
editor (E).

NODC specifies that the load module cannot be reprocessed by the linkage
editor (E). This is the default if both DC and NODC are omitted.

TEST specifies that the symbol tables created by the assembler and
contained in the input modules are to be placed into the output module.

NOTEST specifies that no symbol table is to be retained in the output load
module. This is the default value if both TEST and NOTEST are omitted.

TERM specifies that you want error messages directed to your terminal as
well as to the PRINT data set. This is the default value if both TERM and
NOTERM are omitted.

NOTERM specifies that you want error messages directed only to the PRINT

data set and not to your terminal.
DCBS(blocksize) specifies the blocksize of the records contained in the

output load module. The "blocksize" must be an integer.
AC(authorization-code) specifies an authorization code (0-255) used to

maintain data security.

Example 1

Operation: Combine three object modules into a single load module.

Known:
The names of the object modules in the sequence that the modules must

be in: TPB05.GSALESA.OBJ TPB05.GSALESB.OBJ TPB05.NSALES.OBJ

You want all of the linkage editor listings to be produced and directed to
your terminal.

The name for the output load module:
TPB05.SALESRPT.LOAD(TEMPNAME)

link (gsalesa,gsalesb,nsales) load(salesrpt) print(*)
xref list

LINK Command 135

Example 2

Operation: Create a load module from an object module, an existing load
module, and a standard processor library.

Known:
The name of the object module: VACID.M33THRUS.OBJ

The name of the existing load module: VACID.M33PAYLD.LOAD(MODt>

The name of the standard processor library used for resolving external
references in the object module: SYS I.PLILIB

The name of the output load module: VACID.M33PERFO.LOAD(MOD2)

link(m33thrus,*) load(m33perfo(mod2)) print(*)
plilib map list

Choosing Id2 as a filename to be associated with the existing load module,
the listing at your terminal will be:

allocate dataset(m33payld.load) file(ld2)
link (m33thrus,*) load(m33perfo(mod2)) print(*)

plilib map list
IKJ76080A ENTER CONTROL STATEMENTS

include ld2(modl)
(null line)

IKJ76111I END OF CONTROL STATEMENTS

136 OS/VS2 TSO Command Language Reference (VS2 Release 2)

./

LIST ALC Command

Use the LIST ALC command to obtain a list containing both the names of
the data sets allocated by you and the names of the data sets temporarily
allocated by previous TSO command processors. Also, this command
specifies the number of data sets that the system will allow to be allocated
to you dynamically. Included in the number of data sets that the system will
allow a user to allocate dynamically, are data sets that had been previously
allocated for temporary use by a command processor.

{
LiSTALC}

, LlSTA
[STATUS]

[HISTORY]

[MEMBERS]

[SYSNAMES]

Note: The LIST ALC command without operands will produce a list of all
data set names (including those that are not partitioned) which have either
been allocated by you or temporarily allocated by previous TSO command
processors.
STATUS specifies that you want information about the status of each data

set. This operand provides you with:
• The data definition name (DDNAME) for the data set.
• The scheduled and conditional dispositions of the data set. The

keywords denoting the dispositions are CATLO, DELETE, KEEP and
UNCATLG. The scheduled disposition is the normal disposition and
precedes the conditional disposition when listed. The conditional
disposition takes effect if an abnormal termination occurs. CATLO
means that the data set is retained and its name is in the system
catalog. DELETE means that references to the data set are to be
removed from the system and the space occupied by the data set is to
be released. KEEP means that the data set is to be retained. UNCA TLO
means that the data set name is removed from the catalog but the
data set is retained.

HISTORY specifies that you want to obtain information about the history of
each data set. This operand provides you with:
• The creation date.
• The expiration date.
• An indication as to whether or not the data set has password

protection.
• The data set organization (OSORG). The listing will contain:

PS for sequential
PO for paritioned
IS for indexed sequential
D A for direct access
* * for unspecified
?? for any other specification

MEMBERS specifies that you want to obtain the library member names of
each partitioned data set having your user's identification as the leftmost
qualifier of the data set name. Aliases will be included.

LIST ALC Command 137

SYSNAMES specifies that you want to obtain the fully qualified names of
data sets having system-generated names.

Example 1

Operation: Obtain a list of the names of all the data sets allocated to you.

listalc

Example 2

Operation: Obtain a list of the names of all the data sets allocated to you.
At the same time obtain the creation date, the expiration date, password
protection, and the data set organization for each data set allocated to
you.

lista history

Example 3

Operation: Obtain all available information about the data sets allocated to
you.

lista members history status sysnarnes

The output at your terminal will be simular to the following listing:

listalc mem status sysnames history

--DSORG--CREATED--EXPIRES---SECURITY---DDNAME---DISP

RRED95.ASM
PS 00/00/00 00/00/00 WRITE EDTDUMY1 KEEP

RRED95.EXAMPLE
PO 00/00/00 00/00/00 PROTECTED EDTDUMY2 KEEP,KEEP

--MEMBERS--
MEMBER1
MEMBER2

SYS70140.T174803.RVOOO.TSOSPEDT.ROOOOOOl

** 00/00/00 00/00/00 NONE SYSUTl

ALLOCATION MUST BE FREED BEFORE RESOURCES CAN BE
RE-USED

EDTDUMY3
SYSIN
SYSPRINT

READY

138 OS/VS2 TSO Command Language Reference (VS2 Release 2)

DELETE

l~, . .-/

c'

o

--------------.-------~.-.---

LISTBC Command

Use the L1STBC command to obtain a listing of the contents of the
SYSl.BRODCAST data set. The SYSl.BRODCAST data set contains messages
of general interest (NOTICES) that are sent from the system to all terminals
and messages directed to a particular user (MAIL). The system deletes MAIL

messages from the data set after they have been sent. NOTICES must be
deleted explicitly by the operator.

{
LiSTSC}
LISTS [

MAIL]
NOMAIL

[
NOTICES]
NONOTICES

MAIL specifies that you want to receive the messages from the broadcast
data set that are intended specifically for you. This is the default value if
both MAIL and NOMAIL are omitted.

NOMAIL specifies that you do not want to receive messages intended
specifically for you.

NOTICES specifies that you want to receive the messages from the
broadcast data set that are intended for all users. This is the default
value if both NOTICES and NONOTICES are omitted.

NONOTICES specifies that you do not want to receive the messages that are
intended for all users.

Example 1

Operation: Specify that you want to receive all messages.

listbc

Example 2

Operation: Specify that you want to receive only the messages intended for
all terminal users.

listbc nomail

LISTBC Command 139

140 OS/VS2 TSO Command Language Reference (VS2 Release 2)

---- -----------------------------. ----

Page of GC28-0646-1
Revised April 29, 1974
By TNL: GN28-2572

LISTCAT Command

The LlSTCA T command is used to list entries from a catalog. The entries
listed can be selected by name or entry type, and the fields to be listed for
each entry can additionally be selected.

For VS2 Release 2, the original TSO LlSTCAT Command has been
replaced by an Access Method Services Command of the same name. The
explanations below provide the information required to use these services
for normal TSO operations. The TSO user who wants to manipulate VSAM

objects or to use the other Access Method Services from the terminal
should refer to OS/VS Access Method Services. For error message
information, see OS/VS Message Library: VS2 System Messages.

Note: When LlSTCAT is invoked and no operands are specified, the userid
or the prefix specified by the PROFILE command becomes the highest level
of entryname qualification. Only those entries associated with the userid are
listed.

{
LiSTCAT}
LlSTC

[CATALOG{catname[lpassword])]

[OUTFI LE(ddname)]

[
ENTR I ES(entryname [lpassword] [. ..])]
LEVEL(level)

[CLUSTER]

[DATA]

[INDEX]

[SPACE]

[NONVSAM]

[USERCATALOG]

[GENERATIONDATAGROUP]

[PAGESPACE]

[ALIAS]

[

ALL] NAME
VOLUME
ALLOCATION

CATALOG(catname[/password)) specifies the name of the catalog that
contains the entries that are to be listed. When CATALOG is coded, only
entries from that catalog are listed.

catname is the name of the catalog.
password specifies the read level or higher level password of the catalog

that contains entries to be listed. When the entries to be listed contain
information about password-protected data sets, a password must be
supplied either through this parameter or through the ENTRIES

parameter. If passwords are to be listed, you must specify the master
password.

OUTFILE(ddname) specifies a data set other than the terminal to be used as

LlSTCAT Command 141

Page of GC28-0646-1
Revised April 29, 1974
By TNL: GN28-2572

an output data set. The ddname may correspond to the name specified
for the FILE operand of the ALLOCATE command. The data can be listed
when the file is freed. The ddname identifies a DD statement that in turn
identifies the alternate output data set. If OUTFlLE is not specified, the
entries are listed at the terminal.

ENTRIEs(entryname[/password])1 LEVEL (level) specifies the names of the
entries to be listed. If neither ENTRIES nor LEVEL is coded, only the
entries associated with the user's userid are listed. See OS /VS Access
Method Services.

ENTRIES(entry[/passwordJ[... D specifies the names or generic names of
entries to be listed. Entries that contain information about catalogs can
be listed only by specifying the name of the master or user catalog as the
entry name. The name of a data space can be specified only when SPACE
is the only type specified. If a volume serial number is specified, SPACE
must be specified.

Note: A qualified name may be made into a generic name by substituting
an asterisk (*) for one qualifier. For example, A. * specifies all two-qualifier
names that have A as first qualifier; A.*.C specifies all three-qualifier names
that have A for first qualifier and C for third qualifier.
password specifies a password when the entry to be listed is password

protected and a password was not specified through the CATALOG
parameter. The password must be the read or _ higher level password. If
protection attributes are to be listed, you must supply the master
password; if no password is supplied, the operator is prompted for each
entry's password. Passwords cannot be specified for nonVSAM data sets,
aliases, generation data groups, or data spaces.

LEVEL(level) specifies the level of entry names to be listed.
CLUSTER specifies that cluster entries are to be listed. When the only entry

type specified is CLUSTER, entries for data and index components
associated with the clusters are not listed.

DATA specifies that entries for data components, excluding the data
component of the catalog, are to be listed. If a cluster's name is specified
on the ENTRIES parameter and DATA is coded, only the data-component
entry is listed.

INDEX specifies that entries for index components, excluding the index
component of the catalog, are to be listed. When a cluster's name is
specified on the ENTRIES parameter and INDEX is coded, only the
index-component entry is listed.

SPACE specifies that entries for volumes containing data spaces defined in
this catalog are to be listed. Candidate volumes are included. If entries
are identified by entryname or level, SPACE can be coded only when no
other entry-type restriction is coded.

NONVSAM specifies that entries for nonVSAM data sets are to be listed.
When a generation data group's name and NONVSAM are specified, the
generation data sets associated with the generation data group are listed.

USERCATALOG specifies that entries for user catalogs are to be listed.
USERCAT ALOG is applicable only when the catalog that contains the
entries to be listed is the master catalog.

GENERATIONDATAGROUP specifies that entries for generation data groups
are to be listed.

142 OS/VS2 TSO Command Language Reference (VS2 Release 2)

o

PAGESPACE specifies that entries for page spaces are to be listed.
ALIAS specifies that entries for alias entries are to be listed.
ALL/NAME/VOLUME/ALLOCATION specifies the fields to be included for

each entry listed. If no value is coded, NAME is the default.
ALL specifies that all fields are to be listed.
NAME specifies that the name and entry type of the entries are to be listed.
VOLUME specifies that the information provided by specifying NAME and

volume serial numbers and device types allocated to the entries are to be
listed. Volume information is not listed for clusters, aliases, or generation
data groups.

ALLOCATION specifies that the information provided by specifying VOLUME

and detailed information about the allocation are to be listed. The
information about allocation is listed only for data and index component
entries.

LISTCAT Command 143

C)

c

c~

144 OS/VS2 TSO Command Language Reference (VS2 Release 2)

C:

Page of GC28-0646-1
Revised April 29, 1974
By TNL: GN28-2572

LISTDS Command

Use the L1STDS command to have the attributes of specific data sets
displayed at your terminal. You can obtain:

• The volume identification (VOLlD) of the volume on which the data
set resides. A volume may be a disk pack or a drum.
The record format (RECFM), the logical record length (LRECL), and
the blocksize (BLKSIZE) of the data set.

• The data set organization (DSORG).
The data set organization is indicated as follows:
PS for sequential
PO for partitioned
IS for indexed sequential
DA for direct access
** for unspecified
?? for any other specification

• Directory information for members of partitioned data sets if you
specify the data set name in the form data set name(membername}.

• Creation date, expiration date, and, for nonVSAM only, security
attributes.

• File name and disposition.
• Data set control blocks (DSCB).

{
lISTDS}
LISTD

(data-set-I ist)

[STATUS]

[HISTORY]

[MEMBERS]

[LABEL]

[CATALOG(cat.-name)]

[LEVEL]

(data-set-Iist) specifies one or more data set names. This operand identifies
the data sets that you want to know more about. Each data set specified
must be currently allocated or available from the catalog, and must reside
on a currently active volume. The names in the data set list may contain
a single asterisk in place of any level except the first. When this is done,
all cataloged data sets whose names begin with the specified qualifiers
are listed. For example, A.*.C specifies all three-qualifier names that have
A for first qualifier and C for third qualifier.

STATUS specifies that you want the following additional information:
• The data definition (DO) name DDNAME currently associated with the

data set.
• The currently scheduled data set disposition and the conditional

disposition. The keywords denoting the dispositions are CATLG,
DELETE, KEEP, and UNCATLG. The scheduled disposition is the
normal disposition and precedes the conditional disposition when
listed. The conditional disposition takes effect if an abnormal
termination occurs. CA TLG means that the data set is cataloged.
DELETE means that the data set is to be removed. KEEP means that

LISTDS Command 145

Page of GC28-0646-1
Revised April 29, 1974
By TNL: GN28-2572

the data set is to be retained. UNCATLG means that the name is
removed from the catalog but the data set is retained.

HISTORY specifies that you want to obtain the creation and expiration
dates for the specified data sets and to find out whether or not the
nonVSAM data sets are password protected.

MEMBERS specifies that you want a list of all the members of a partitioned
data set including any aliases.

LABEL specifies that you want to have the entire data set control block
(DSCB) listed at your terminal. This operand is applicable only to data
sets on direct access devices. The list will be in hexadecimal notation.

CATALOG specifies the user catalog that contains the names in the data set
list. CATALOG is required only if the names are in a catalog other than
STEPCA T or the catalog implied by the first-level qualifier of the name.

LEVEL specifies that the names in the data set list are to be high-level
qualifiers. All cataloged data sets whose names begin with the specified
qualifiers are listed. If LEVEL is specified, the names cannot contain
asterisks.

Example

Operation: List the basic attributes of a particular data set.

Known:
The data set name: ZALD58.CIR.OBJ

listds cir

(~.

\... ...•.. ./

The listing produced at your terminal will be similar to the listing shown ('
below. ~ /

READY

listds cir

ZALD58.CIR.OBJ
--RECFM-LRECL-BLKSIZE-DSORG

FB 80 80 PS

--VOLUMES--
D95LIB

READY

146 OS/VS2 TSO Command Language Reference (VS2 Release 2)

----_._---_ ... _-----

c./

c-'

-----------.. _-----_ _--

LOADGO Command

Use the LOADGO command to load a compiled or assembled program into
real storage and begin execution.

The LOAD GO command will load object modules produced by a compiler
or assembler, and load modules produced by the linkage editor. (If you
want to load and execute a single load module, the CALL command is more
efficient.) The LOADGO command will also search a call library (SYSLIB) or
a resident link pack area, or both, to resolve external references.

The LOADGO command invokes the system loader to accomplish this
function. The loader combines basic editing and loading services of the
linkage editor and program fetch in one job step. Therefore, the load
function is equivalent to the link edit and go function.

The LOADGO command does not produce load modules for program
libraries, and it does not process linkage editor control statements such as
INCLUDE,NAME,OYERLAY,ett.

{
LOADGO}
LOAD

(data-set-list)

['parameters']

[
PR INT ({ :ata-set-name})]

NOPRINT

[L I B (data-set-I ist)]

(PLI LIB]

[PLIBASE]

[PLlCMIX]

[FORTLlB]

[COBLlB]

[
TERM]
NOTERM

[
RES]
NORES

[
MAP]
NOMAP

[
CALL]
NOCALL

[
LET]
NOLET

[S I ZE (integer)]

[EP (entry-name)]

[NAME(program-name)]

(data-set-list) specifies the names of one or more object modules and/or
load modules to be loaded and executed. The names may be data set
names, names of members of partitioned data sets, or both (see the data

LOADGO Command 147

set naming conventions). When you specify more than one name, the (~\

names must be enclosed within parentheses and separated from each "' ___ ,,-/
other by a standard delimiter (blank or comma).

'parameters' specifies any parameters that you want to pass to the program
to be executed.

PRINT(data-set-name or *) specifies the name of the data set that is to
contain the listings produced by the LOADGO command. If you omit the
data set name, the generated data set will be named according to the
data set naming conventions. You may substitute an asterisk (*) for the
data set name if you want to have the listings displayed at your terminal.
This is the default if you specify the MAP operand.

NOPRINT specifies that no listings are to be produced. This operand
negates the MAP operand. This is the default value if both PRINT and
NOPRINT are omitted, and you do not use the MAP operand.

TERM specifies that you want any error messages directed to your terminal
as well as the PRINT data set. This is the default value if both TERM and
NOTERM are omitted.

NOTERM specifies that you want any error messages directed only to the
PRINT data set.

LIB(data set list) specifies the names of one or more library data sets that
are to be searched to find modules referred to by the module being
processed (that is, to resolve external references),

PLILIB specifies that the partitioned data set named SYSl.PLlLIB is to be
searched to locate load modules referred to by the module being
processed.

PLIBASE specifies that the partitioned data set named SYS1.PLIBASE is to be C
searched to locate load modules referred to by the module being ____ .
processed.

PLICMIX specifies that the partitioned data set named SYS1.PLICMIX is to
be searched to locate load modules referred to be the module being
processed.

COB LIB specifies that the partitioned data set named SYS1.COBLIB is to be
searched to located load modules referred to by the module being
processed.

FORTLIB specifies that the partitioned data set named SYS1.FORTLIB is to
be searched to located load modules referred to by the module being
processed.

RES specifies that the link pack area is to be searched for load modules
(referred to by the module being processed) before the specified libraries
are searched. This is the default value if both RES and NORES are
omitted. If you specify the NO CALL operand the RES operand is invalid.

NORES specifies that the link pack area is not to be searched to locate
modules referred to by the module being processed.

MAP specifies that a list of external names and their real storage addresses
are to be placed on the PRINT data set. This operand is ignored when
NOPRINT is specified.

NOMAP specifies that external names and addresses are not to be contained
in the PRINT data set. This is the default value if both MAP and NOMAP

are omitted.
CALL specifies that the data set specified in the LIB operand is to be

searched to located load modules referred to by the module being
processed. This is the default value if both CALL and NOCALL are
omitted.

NOCALL specifies that the data set specified by the LIB operand will not be

148 OS/VS2 TSO Command Language Reference (VS2 Release 2)

c'

--_ .. _._----_._-----------------

C)

o

searched to locate modules that are referred to by the module being
processed. The RES operand is invalid when you specify this operand.

LET specifies that execution is to be attempted even if a severity 2 error
should occur. (A severity 2 error indicates that execution may be
impossible.)

NOLET specifies that execution is not to be attempted if a severity 2 error
should occur. This is the default value if both LET and NOLET are
omitted.

SIZE(integer) specifies the size, in bytes, of dynamic real storage that can be
used by the loader. If this operand is not specified, then the size defaults
to the size specified at System Generation (SYSGEN).

EP(entry-name) specifies the external name for the entry point to the loaded
program. You must specify this operand if the entry point of the loaded
program is in a load module.

NAME(program-name) specifies the name that you want assigned to the
loaded program.

Example 1

Operation: Load and execute an object module.

Known:
The name of the data set: SHEPD58.CSINE.OBJ

load csine print(*)

Example 2

Operation: Combine an object module and a load module, and then load
and execute them.

Known:
The name of the data set containing the object
module: LARK.HINDSITE.OBJ

The name of the data set containing the load
module: LARK.THERMOS.LOAD(COLD)

load (hindsite thermos(cold)) print(*)
lib('sys 1 . sortlib')
nores map size(44k) ep(start23) name(thermsit)

LOADGO Command 149

c
150 OS/VS2 TSO Command Language Reference (VS2 Release 2)

C)

LOGOFF Command

Use the LOGOFF command to terminate your terminal session. When you
enter the LOGOFF command, the system frees all the data sets allocated to
you; data remaining in main storage will be lost.

Note: If you intend to enter the LOGON command immediately and
continue processing against a different account number you do not enter
LOGOFF. Instead, you can just enter the LOGON command as you would
enter any other command.

LOGOFF
[

DISCONNECT]
HOLD

DISCONNECT specifies that the line is to be disconnected following logoff.
This is the default if no operand is specified.

HOLD specifies that the line is not to be disconnected following logoff.

Example 1

Operation: Terminate your terminal session.

logoff

LOGOFF Command 151

152 OS/VS2 TSO Command Language Reference (VS2 Release 2)

---------------- -------------- --------- -----

LOGON Command

Use the LOGON command to initiate a terminal session. Before you can use
the LOGON command, your installation must provide you with certain basic
information.

• Your user identification (1-7 characters) and, if required by your
installation, a password (1-8 alphameric characters).

• An account number (may be optional at your installation).
• A procedure name (may be optional at your installation).
You must supply this information to the system by using the LOGON

command and operands. The information that you enter is used by the
system to start and control your time sharing terminal session.

You can also use the operands to specify whether or not you want to
receive messages from the system or other users.

LOGON user-identity [Ipassword]

[ACCT (accou nt)]

[PROC(procedure)]

[SI ZE (integer)]

[
NOTICES]
NONOTICES

[
MAIL]
NOMAIL

[PERFORM(value)]

[RECONNECT]

user-identity and password specifies your user identification and, if required,
a valid password. Your user identification must be separated from the
password by a slash (/) and, optionally, one or more standard delimiters
(tab, blank, or comma). Your identification and password must match
the identification contained in the system's User Attribute Data Set
(UADS). If you omit any part of this operand, the system will prompt
you to complete the operand. (Printing is suppressed for some types of
terminals when you respond to a prompt for a password.)

ACCT(account) specifies the account number required by your installation.
If the UADS contains only one account number for the password that
you specify, this operand is not required. If the account number is
required and you omit it, the system will prompt you for it.
For TSO, an account number must not exceed 40 characters, and must
not contain a blank, tab, quotation mark, apostrophe, semicolon, comma,
or line control character. Right parentheses are permissible only when
left parentheses balance them somewhere in the account number.

PROC(procedure-name) specifies the name of a cataloged procedure
containing the Job Control Language (JCL) needed to initiate your
session.

sIzE(integer) specifies the maximum region size allowed for a conditional
GETMAIN during the terminal session. The UADS contains a default value
for your region size if you omit this operand. The UADS also contains a
value for the maximum region size that you will be allowed. This

LOGON Command 153

operand will be rejected if you specify a region size exceeding the C'
maximum region size allowed by the UADS (in this case, the UADS value __ -,/
MAXSIZE will be used).

NOTICES specifies that messages intended for all terminal tmers are to be
listed at your terminal during LOGON processing. This is the default
value if both NOTICES and NONOTICES are omitted.

NONOTICES specifies that you do not want to receive the messages
intended for all users.

MAIL specifies that you want m~ssages intended specifically for you to be
displayed at your terminal. This is the default value if both MAIL and
NOMAIL are omitted.

NOMAIL specifies that you do not want to receive messages intended
specifically for you.

PERFORM(value) specifies the performance group to be used for the
terminal session. The value must be an.integer from 1-255. The
performance group entered must be defined for you in the User Attribute
Data Set (UADS).

RECONNECT specifies that you want to re-Iogon after your line has been
disconnected. If a password was specified in the disconnected session,
the same password must be specified with the RECONNECT option. Any
operands other than userid and password will be ignored if RECONNECT

is specified.

Example 1

Operation: Initiate a terminal session.

Known:
Your user identification and password: WRRID/23XA$MBT

Your installation does not require an account number or procedure name
for LOGON.

logon wrrid/23xa$mbt

Example 2

Operation: Initiate a terminal session.

Known:
Your user identification and password: WRRID/MO@

Your account number: 288104
The name of a cataloged procedure: TS951
You do not want to -receive messages:
Your real storage space requirement: 90K bytes

logon wrrid/mo@ acct(288104) proc(ts951) size
(90)nonotices nomail

154 OS/VS2 TSO Command Language Reference (VS2 Release 2)

C

\r'"
" ~_/

---------------.----.

PROFILE Command

Use the PROFILE command or subcommand of EDIT to establish, change, or
list your user profile; that is, to tell the system how you want to use your
terminal. You can:

• Define a character-deletion or line-deletion control character.
• Specify whether or not prompting is to occur.
• Specify the frequency of prompting under the EDIT command.
• Specify whether or not you will accept messages from other terminals.
• Specify whether or not you want the opportunity to obtain additional

information about messages from a command procedure.
• Specify whether or not you want message numbers for diagnostic

messages that may be displayed at your terminal.

Note: The syntax and function of the PROFILE subcommand of EDIT is the
same as that of PROFILE.

Initially, a user profile is prepared for you when arrangements are made
for you to use the system. The authorized system programmer creates your
userid and your user profile. The system programmer is restricted to
defining the same user profile for every userid that he creates. This
"typical" user profile is defined when a User Profile Table (UPT) is
initialized to hexadecimal zeroes for any new userid. Thus, your initial user
profile is made up of the default values of the operands discussed under this
command. The system defaults shown in Figure 10 provide for the
character-delete and the line-delete control characters depending upon what
type of terminal is involved:

TSO Terminal
Character-Delete Line-Delete

Control Character Control Character

IBM 2741 Communication Terminal BS (backspace) ATTN (attention)

IBM 1052 Printer-Keyboard BS (backspace) **

IBM 2260 Display Station None None

IBM 2265 Display Station None None

Teletype* Model 33 ** **

Teletype* Model 35 ** **

* Trademark of Teletype Corporation.
** Refer to the publication TSO Terminals.

Figure 10. System Defaults for Control Characters

Caution: If deletion characters, prompting, and message activity are not
what you expect, check your profile by displaying it with LIST operand.

Change your profile by using the PROFILE command with the
appropriate operands. Only the characteristics that you specify explicitly by
operands will change; other characteristics remain unchanged. The new
characteristics will remain valid from session to session. You must specify at
least one operand or the system will ignore the command.

PROFILE Command 155

{PROFILE} [CHAR (ta~~ter})] C PROF

NOCHAR

[LINE (rTTN })] ~~~~ter

NOLINE

[PROMPT]
NOPROMPT

[INTERCOM]
NOINTERCOM

[PAUSE]
NOPAUSE

[MSGID]
NOMSGID

[MODE]
NOMODE

[LIST]

[PREFIX(dSname-prefiX)]
NOPREFIX

[WTPMSG]
NOWTPMSG

(~
CHAR(character) specifies the EBCDIC character that you want to use to tell '-_/

the system to delete the previous character entered. You should not
specify a blank, tab, comma, asterisk, or parentheses because these
characters are used to enter commands. You should not specify
terminal-dependent characters which do not translate to a valid EBCDIC

character.

Note: Do not use an alphabetic character as either a character-delete or a
line-delete character. If you do, you run the risk of not being able to enter
certain commands without accidentally deleting characters or lines of data.
For instance: if you specify R as a character-delete character, each time you
tried to enter a PROFILE command the R in PROFILE would delete the P
that precedes it. Thus it would be impossible to enter the PROFILE

command as long as R was the character-delete control character.
CHAR(BS) specifies that a backspace signals that the previous character

entered should be deleted. This is the default value set when your user
profile was created.

NOCHAR specifies that no control character is to be used for character
deletion.

LINE(character) specifies a control character that you want to use to tell the
system to delete the current line.

LINE(A TIN) specifies that an attention interruption is to be interpreted as a
line-deletion control character. This is the default value set when your
user profile was created.

Note: If an invalid character and/or line delete control character is entered

156 OS/VS2 TSO Command Language Reference (VS2 Release 2)

"

o

on the PROFILE command, an error message will inform the user which
specific control character is invalid; the character or line delete field in the
User Profile Table will not be changed. You may continue to use the old
character or line delete control characters.
LINE(CTLX) specifies that the X and CCTRL keys (depressed together) on a

teletype terminal are to be interrupted as a line-deletion control
character. This is the default value set when your user profile was
created, if you are operating a teletype terminal.

NOLINE specifies that no line-deletion control character (including ATTN) is
recognized.

PROMPT specifies that you want the system to prompt you for missing
information. This is the default value set when your user profile was
created.

NOPROMPT specifies that no prompting is to occur.
INTERCOM specifies that you are willing to receive messages from other

terminal users. This is the default value set when your user profile was
created.

NOINTERCOM specifies that you do not want to receive messages from
other terminals.

PAUSE specifies that you want the opportunity to obtain additional
information when a message is issued at your terminal while a command
procedure (see the EXEC command) is executing. After a message that
has additional levels of information is issued, the system will display the
word PAUSE and wait for you to enter a question mark (?) or a carrier
return.

NOPAUSE specifies that you do not want prompting for a question mark or
carrier return. This is the default value when your user profile was
created.

MSGID specifies that diagnostic messages are to include message identifiers.
NOMSGID specifies that diagnostic messages are not to include message

identifiers. This is the default value set when your user profile was
created.

LIST specifies that the characteristics of the terminal user's profile be listed
at the terminal. If other operands are entered with LIST, the
characteristics of the user's profile will be changed first, and then the
new profile will be listed.

Note: After a new userid is created and before the character and/or line
delete control character is changed, entering PROFILE LIST will result in
CHAR(O) and LINE(O) being listed. This indicates that the terminal defaults
for character and line delete control characters will be used.
MODE specifies that a mode message is requested at the completion of each

subcommand of EDIT.
NOMODE specifies no change in the present frequency for mode messages

under the EDIT command.
PREFIX(dsname-prefix) specifies a prefix which will be appended to all

non-fully qualified dsnames. The prefix is composed of 1-7 alphameric
characters that begin with an alphabetic or national character.

NOPREFIX specifies no prefixing of dsnames by any qualifier will be
performed.

Note: The default prefix in the foreground is the userid. No prefixing of
data set names is the default in the background.

PROFILE Command 157

WTPMSG specifies that the user wishes to receive all write to programmer
messages at his terminal.

NOWTPMSG specifies that the user does not want to receive write to
programmer messages. This is the default if neither operand is specified.

Example 1

Operation: Establish a complete user profile

Known:
The character that you want to use to tell the system to delete the

previous character: #
The indicator that you want to use to tell the system to.delete the

current line : ATTN.

You want to be prompted.
You do not want to receive messages from other terminals.
You want to be able to get second level messages while a command

procedure is executing.
You do not want diagnostic message identifiers.

profile char(#) line(attn) prompt no intercom pause
nomsgid

Example 2

Operation: Suppose that you have established the user profile in Example
1. The terminal that you are using now does not have a key to cause an
attention interrupt. You want to change the line delete control character
from ATTN to @ without changing any other characteristics.

PROF LINE(@)

Example 3

Operation: Establish and use a line-deletion character and a
character-deletion character.

Known:
The line-deletion character: &
The character-deletion character: !

profile line(&) char(!)

Now, if you type:

now is the ti&ac!bcg!.

and press the carrier return key, you will actually enter:

abc.

158 OS/VS2 TSO Command Language Reference (VS2 Release 2)

L\
/

-.-/'

c'

... ------~ -.-----

c ...

--- ---_ •. __ .

PROTECT Command

Use the PROTECT command to prevent unauthorized access to your
nonVSAM data set. (Use the Access Method Services ALTER and DEFINE
commands to protect your VSAM data set. These commands are described
in OS/VS Access Method Services.) This command establishes or changes:

• The passwords that must be specified to gain access to your data.
• The type of access allowed.

Data sets that have been allocated (either during a LOGON procedure or via
the ALLOCATE command) cannot be protected by specifying the PROTECT
command. To password-protect an allocated data set, you would have to
de-allocate it via the FREE command before you could protect it via the
PROTECT command.

Passwords
You may assign one or more passwords to a data set. Once assigned, the
password for a data set must be specified in order to access the data set. A
password consists of one through eight alphameric characters. You are
allowed two attempts to supply a correct password.

Types of Access
Four operands determine the type of access allowed for your data set. They
are PWREAD, PWWRITE, NOPWREAD, NOWRITE.

Each operand, when used alone, defaults to one of the preceding types
of access. The default values for each operand used alone are:

OPERAND DEFAULT VALUE

PWREAD
NOPWREAD
PWWRITE
NOWRITE

PWREAD
NOPWREAD

NOPWREAD
PWREAD

PWWRITE
PWWRITE

PWWRITE
NOWRITE

A combination of NOPWREAD and NOWRITE is not supported and will
default to NOPWREAD and PWWRITE.
If you specify a password but do not specify a type of access, the default
is:

• NOPWREAD PWWRITE if the data set does not have any existing
access restrictions.

• The existing type of access if a type of access has already been
established.

When you specify the REPLACE function of the PROTECT command the
default type of access is that of the entry being replaced.

PROTECT Command 159

{
PROTECT}
PROT

data-set-name

[

ADD (password 2) .]
REPLACE (password 1 password 2)
DELETE (password 1)
LIST (password 1)

[
PWREAD]
NOPWREAD

[
PWWRITEJ
NOWRITE

[DATA('string')]

data-sct-name specifies the name of the data set that will be subject to the
functions of this command.

ADD(password2) specifies that a new password is to be required for access
to the named data set. This is the default value if ADD, REPLACE,

DELETE, and LIST are omitted.
If the data set exists and is not already protected by a password, its
security counter will be set and the password being assigned will be
flagged as the control password for the data set. The security counter is
not affected when additional passwords are entered.

REPLACE(paSswordl, password2) specifies that you want to replace an
existing password, access type, or optional security information. The first
value (passwordl) is the existing password; the second value
(password2) is the new password.

DELETE(passwordl) specifies that you want to delete an existing password,
access type, or optional security information.
If the entry being removed is the control entry (see the discussion
following these operand descriptions), all other entries for the data set
will also be removed.

LIST(paSSwordl) specifies that you want the security counter, the access
type, and any optional security information in the Password Data Set
entry to be displayed at your terminal.

passwordl specifies the existing password that you want to replace, delete,
or have its security information listed.

password2 specifies the new password that you want to add or to replace
an existing password.

PWREAD specifies that the password must be given before the data set can
be read.

NOPWREAD specifies that the data set can be read without using a
password.

PWWRITE specifies that the password must be given before the data set can
be written upon.

NOWRITE specifies that the data set cannot be written upon.
DATA('string') specifies optional security information to be retained in the

system. The value that you supply for 'string' specifies the optional
security information that is to be included in the Password Data Set
entry (up to 77 bytes).

160 OS/VS2 TSO Command Language Reference (VS2 Release 2)

c~

c~

------------------------- --------------------------

Password Data Set
Before you can use the PROTECT command, a Password Data Set must
reside on the system residence volume. The Password Data Set contains
passwords and security information for protected data sets. You can use the
PROTECT command to display this information about your data sets at your
terminal.

The Password Data Set contains a security counter for each protected
data set. This counter keeps a record of the number of times an entry has
been referred to. The counter is set to 'zero' at the time an entry is placed
into the data set, and is incremented each time the entry is accessed.

Each password is stored as part of an entry in the Password Data Set.
The first entry in the Password Data Set for each protected data set is
called the control entry. The password from the control entry must be
specified for each access of the data set via the PROTECT command, with
one exception: the LIST operand of the PROTECT command does not
require the password from the control entry.

If you omit a required password when using the PROTECT command, the
system will prompt you for it; and if your terminal is equipped with the
'print-inhibit' feature, the system will disengage the printing mechanism at
your terminal while you enter the password in response. However, the
'print-inhibit' feature is not use if the prompting is for a new password.

Example 1

Operation: Establish a password for a new data set.

Known:
The name of the data set: ROBID.SALES.DA T A
The password: L82GRIFN
The type of access allowed: PWREAD PWWRITE
The logon id was: ROBID

protect sales.data pwread add (182grifn)

Example 2

Operation: Replace an existing password without changing the existing
access type.

Known:
The name of the data set: ROBID.NETSALES.DAT A
The existing password: MTG@AOP

The new password: P AO$TMG
The control password: ELHA VJ
The logon id was: ROBID

prot netsales.data/elhavj replace(mtg@aop,pao$tmg)

PROTECT Command 161

Example 3

Operation: Delete one of several passwords.

Known:
The name of the data set: ROBID.NETGROSS.ASM

The password: LETGO

The control password: APPLE

The logon id was: ROBID

prot netgross.asm/apple delete(letgo)

Example 4

Operation: Obtain a listing of the security information for a protected data
set.

Known:
The name of the data set: ROBID.BILLS.CNTRLA

The password required: D#JPJAM

protect lrobid.bills.cntrla' list(d#jpjarn)

Example 5

Operation: Change the type of access allowed for a data set.

Known:
The name of the data set: ROBID.PROJCTN.LOAD

The new type of access: NOPWREAD PWWRITE

The existing password: DDA Y6/6

The control password: EEYORE

The logon id was: ROBID

protect projctn.load/eeyore replace{dday6/6)­
nopwread pwwrite

162 OS/VS2 TSO Command Language Reference (VS2 Release 2)

(~
"-.. ... /

c'

c

C)

RENAME Command

Use the RENAME command to:
• Change the name of anon VSAM cataloged data set.
• Change the name of a member of a partitioned data set.
• Create an alias for a member of a partitioned data set.

Notes:
1. The Access Method Services ALTER command changes the name of

VSAM data sets and is described in OS/VS Access Method Services.
2. When a password protected data set is renamed, the data set does not

retain the password. You must use the PROTECT command to assign a
password to the data set before you can access it.

{
RENAME}
REN

old-name new-name

[ALIAS]

old-name specifies the name that you want to change. The name that you
specify may be the name of an existing data set or the name of an
existing member of a partitioned data set.

new-name specifies the new name to be assigned to the existing data set or
member. If you are renaming or assigning an alias to a member, you may
supply only the member name and omit all other levels of qualification.

ALIAS specifies that the member name supplied for new name operand is to
become an alias for the member identified by the old name operand.
RENAME command should not be used to create an alias for a linkage
editor created load module.
You can rename several data sets by substituting an asterisk for a

qualifier in the old name and new name operands. The system will change
all data set names that match the old name except for the qualifier
corresponding to the asterisk's position.

Example 1

Operation: You have several non VSAM data sets named:

userid.mydata.data

userid.yourdata.data

userid.workdata.data

that you want to rename:

userid.mydata.text

userid.yourdata.text

userid.workdata.text

you must specify either:

rename 'userid.*.data' ,'userid.*.text'

RENAME Command 163

or

rename *.data,*.text

Example 2

Operation: Assign an alias "SUZIE" to the partitioned data set member
named "ELIZBETH(LIZ)".

REN 'ELIZBETH(LIZ), (SUZIE) ALIAS

164 OS/VS2 TSO Command Language Reference (VS2 Release 2)

c'

Page of GC28-0646-1
Revised April 29, 1974
By TNL: GN28-2572

RUN Command

Use the RUN command to compile, load, and execute the source statements
in a data set. The RUN command is designed specifically for use with
certain program products; it selects and invokes the particular program
product needed to process the source statements in the data set that you
specify. Figure 11 shows which program product is selected to process each
type of source statement.

If your program or data set contains Then the following Program Product
statements of this type (see EDIT): (or equivalent) can be used:

ASM TSO ASM Prompter

BASIC ITF: BASIC
(Shared Language Component and BASIC
Processor)

COBOL TSO COBOL Prompter and as Full American
National Standard COBOL Version 3 or Version
4 Compiler

FORTGI TSO FORTRAN Prompter and FORTRAN IV
(G I) Compiler

GOFORT Code and Go FORTRAN

IPLI ITF: PL/I
(Shared Language Component and PUI
Processor)

PLI PUI Checkout Compiler or
PUI Optimizing Compiler

VSBASIC TSO VSBASIC Prompter

You can use the CONVERT command to convert ITF: PUI and Code and Go FORTRAN
statements to a form suitable for the PUI and FORTRAN compilers, respectively.

Figure 11. Source Statement/Program Product Relationship

The RUN command and the RUN subcommand of EDIT perform the same
basic function.

RUN Command 165

data-set-name

['parameters']

ASM [LIB(data-set-list)]
COBOL [LlB(data-set-list)]
FORT[LI B (data-set-list)]

PLI [CHECK] [LI B(data-set-list)]
OPT

IPLI [TEST] [LMSGJ
NOTEST SMSG

BASIC [TEST J [LMSG] [LPREC]
NOTEST SMSG SPREC

GOFORT [FIXED] [LMSG]
FREE SMSG

VSBASIC [LPREC] [TEST] [GO] [STORE]
SPREC NOTEST NOGO NOSTORE

[
PAUSE] [SOURCE] [SIZE(value)]
NOPAUSE OBJECT

data-set-name 'parameters' specifies the name of the data set containing
the source program. (See the data set naming conventions.) A string of
up to 100 characters can be passed to the program via the \I parameters"
operand (valid only for data sets which accept parameters).

ASM specifies that the TSO Assembler Prompter Program Product and the
Assembler (F) compiler are to be invoked to process the source program.
If the rightmost qualifier of the data set name is ASM, this operand is not
required.

LIB(data-set-list) specifies the library or libraries that contain subroutines
needed by the program you are running. These libraries are concatenated
to the default system libraries and passed to the loader for resolution of
external references. This operand is valid only for the following data set
types: ASM, COBOL, FORT, and PLI (Optimizer).

COBOL specifies that the TSO COBOL Prompter and the OS Full American
National Standard COBOL (Version 3 or Version 4) Program Products
are to be invoked to process the source program. If the rightmost
qualifier of the data set name is COBOL, this operand is not required.

FORT specifies that the TSO FORTRAN Prompter and the FORTRAN IV

(G 1) program products are to be invoked to process the source program.
If the rightmost qualifier of the data set name is FORT, the Code and Go
FORTRAN compiler will be invoked unless you specify this operand.

PLI specifies that the PL/l Prompter and either the PL/I Optimizer compiler
or the PL/I Checkout compiler are to be invoked to process the source
program. If the rightmost qualifier of the data set name is PLI, this
operand is not required.

CHECK specifies the PL/I Checkout compiler. If you omit this operand, the
OPT operand is the default value.

OPT specifies the PL/l Optimizing compiler. This is the default value if
both CHECK and OPT are omitted.

IPLI specifies that the ITF:PL/l program product is to be invoked to process
the source program. If the rightmost qualifier of the data set name is
IPLI, this operand is not required.

166 OS/VS2 TSO Command Language Reference (VS2 Release 2)

c

o

BASIC specifies that the ITF:BASIC program product is to be invoked to
process the source program. If the rightmost qualifier of the data set
name is BASIC, this operand is not required.

GOFORT specifies that the Code and Go FORTRAN program product is to
be invoked for interactive processing of the source program.

TEST specifies that testing of the program is to be performed. This operand
is valid only for the ITF:PL/I, VSBASIC, and BASIC program products.

NOTEST specifies that the TEST function is not desired. This is the default
value if both TEST and NOTEST are omitted. This operand is valid only
for the ITF:PL/I, VSBASIC, and BASIC program products.

LMSG specifies that the long form of the diagnostic messages are to be
provided. This operand is applicable to the ITF:PL/I, ITF:BASIC, and Code
and Go FORTRAN program products only. The default value for the
LMSG/SMSG operand pair depends on the program product being used,
as follows:

Program Product
Code and Go
ITF:BASIC
ITF:PL/I

Default Operand
SMSG
LMSG
LMSG

SMSG specifies that the short form of the diagnostic messages is to be
provided. This operand is applicable to the ITF:PL/I, ITF:BASIC, and Code
and Go FORTRAN program products only.

LPREC specifies that long precision arithmetic calculations are required by
the program. This operand is valid only for the ITF:BASIC and VSBASIC

program products.
SPREC specifies that short precision arithmetic calculations are adequate for

the program. This operand is valid only for the ITF:BASIC and VSBASIC

program products. This is the default value if both LPREC and SPREC are
omitted.

FIXED specifies the format of the source statements to be processed by the
Code and Go FORTRAN program product. The statements must be in
standard format when this operand is specified. If you omit this operand,
the FREE operand is the default value.

FREE specifies that the source program consists of free form statements
applicable only to the Code and Go FORTRAN program product.

VSBASIC specifies that the VSBASIC program product is to be invoked to
process the source program.

GO specifies that the program is to receive control after compilation. This
is the default if neither GO nor NOGO are specified. This operand is valid
only for VSBASIC.

NOGO specifies that the program will not receive control after compilation.
This operand is valid only for VSBASIC.

STORE specifies that the compiler is to store an object program. This
operand is valid only for VSBASIC.

NOSTORE specifies that the compiler is not to store an object program.
This is the default if neither STORE nor NOSTORE are specified. This
operand is valid only for VSBASIC.

PAUSE specifies that the compiler is to prompt to the terminal between
program chains. This operand is valid only for VSBASIC.

NOPAUSE specifies no prompting between program chains. This is the
default if neither PAUSE nor NOPAUSE is specified. This operand is valid
only for VSBASIC.

RUN Command 167

SOURCE specifies that new source code is to be compiled. This is the C
default if neither SOURCE nor OBJECT is specified. This operand is valid ,
only for VSBASIC.

OBJECT specifies that the compiler is to re-use an old object program. This
operand is valid only for VSBASIC.

SIzE(value) specifies the number of thousand-byte blocks of user area
where value is an integer of 1-3 digits. This operand is valid only for
VSBASIC.

Determining Compiler Type: The system uses two sources of information to
determine which compiler will be used. The first source of information is
the optional operand (ASM, COBOL, FORT, IPU, BASIC, PU, or GOFORT)
that you may specify for the RUN command. If you omit this operand, the
system checks the descriptive qualifier of the data set name that is to be
executed (see the data set naming conventions for a list of descriptive
qualifiers). If the system cannot determine the compiler type from the
descriptive qualifier, you will be prompted.

The RUN command uses standard library names, such as SYSl.FORTUB
and SYS1.COBUB, as the automatic call library. This is the library searched
by the linkage editor to locate load modules referred to by the module
being processed for resolution of external references.

Example 1

Operation: Compile, load, and execute a source program composed of
BASIC statements.

Known:
The name of the data set containing the source program DDG39T.
MANHRS.BASIC

run manhrs.basic

Example 2

Operation: Compile, load and execute a Code and Go FORTRAN source
program contained in a data set that does not conform to the data set
naming conventions.

Known:
The data set name TRAJECT.MISSILE FORTRAN statements conform to
the standard format. Complete diagnostic messages are needed.
Parameters to be passed to the program are: 50 144 5000

run 'traject.missile' '50 144 5000' gofort fixed lmsg

168 OS/VS2 TSO Command Language Reference (VS2 Release 2)

--------~-- _.-._----- ._._------ --_. -_ .. _-_ ... _--------_ ... _--.... _-_.- ._------ ---._-_ .. _--.--------_ ..

c

c

o

SEND Command

Use the SEND command or SEND subcommand of EDIT to send a message
to another terminal user or to the system operator. A message may be sent
to more than one terminal user. If the intended recipient of a message is
not logged on, the message can be retained within the system and presented
automatically when he logs on. You will be notified when the recipient is
not logged on and the message is deferred.

This command should be used by terminal users; system operators should
use the SEND subcommand of the OPERATOR command.

Note: The syntax and function of the SEND subcommand of EDIT is the
same as that of SEND command.

'text'

[USER ({USer~d.list}) [~~~~~ [~~~AITJ]

[
OPERATOR(2)]
OPERATOR(route-code)

[CN(console-id)]

'text' specifies the message to be sent. You must enclose the text of the
message within apostrophes (single quotes). The message must not
exceed 115 characters including blanks. If no other operands are used,
the message goes to the console operator. If you want apostrophes to be
printed you must enter two in order to get one.

USER{user-list) specifies the user Identification of one or more terminal
users who are to receive the message. A maximum of 20 identifications
can be used.

USER(*) specifies that the message will be sent to the use rid associated with
the issuer of the SEND command. If an '*' is used with a SEND command
in a command procedure, the message will be sent to the user executing
the command procedure. If used with the SEND command at a terminal,
an '*' will cause the message to be sent to the same terminal.

NOW specifies that you want the message to be sent immediately. If the
recipient is not logged on, you will be notified and the message will be
deleted. This is the default value if NOW, LOGON, and SAVE are omitted.

LOGON specifies that you want the message retained in the
SYS1.BRODCAST data set if the recipient is not logged on or is not
receiving messages. When the recipient logs on, the message will be
removed from the data set and directed to his terminal. If the recipient is
currently using the system and receiving messages, the message will be
sent immediately.

SAVE specifies that the message text is to be entered in the mail section of
SYS1.BRODCAST without being sent to any user. Messages stored in the
broadcast data set can be retrieved by using either LISTBC or LOGON

commands.

I WAIT specifies that you will wait until system output buffers are available
for all specified logged-on terminals. This ensures that the message will

SEND Command 169

be received by all specified logged-on users but it also means that you
may be locked out until all such users have received the message.

NOW AIT specifies that you do not want to wait if system output buffers are
not immediately available for all specified logged-on terminals. You will
be notified of all specified users who did not receive the message. If you
specified LOGON, mail will be created in the SYS1.BRODCAST data set for
the specified users whose terminals are busy or who have not logged-on.
NOW AIT is the default value if neither WAIT nor NOW AIT is specified.

OPERATOR(route-code) specifies that you want the message sent to the
operator indicated by the route-code. If you omit the route-code, the
default is two (2); that is, the message goes to the master console
operator. This is the default value if both USER (identifications) and
OPERATOR are omitted. The integer corresponds to louting codes for the
WTO macro.

CN(console-id) specifies that the message is to be queued to the indicated
operator console. The value for "console-id" must be an integer between
0-64.

Example 1

Operation: Send a message to the master console operator.

Known:
The message: What is the weekend schedule?

send 'what is the weekend schedule?'

Example 2

Operation: Send a message to two other terminal users.

Known:
The message: If you have data set 'Mylib.Load' allocated, please free it.
I need it to run my program.
The user identification for the terminal users: JANET5

LYNN 6
The message is important and you want to make sure the specified user gets
it now.

send 'if you have data set "mylib.load" allocated, -
please free it. i need it to run my program.' -
user(janet5,lynn6) wait

170 OS/VS2 TSO Command Language Reference (VS2 Release 2)

------ ---------_ .. __ ... __ .. _---

c'

o

----------_._-------_ .. ---

Example 3

Operation: Send a message that is to be delivered to 'BETTY7' when she
begins her terminal session or now if she is currently logged on.

Known:
The recipients's user identification: BETTY7

The message: Is your version of the simulator ready?
If her terminal is busy, you want to put the message into the
SYS1.BRODCAST data set. There is no rush for her to get it and respond.

send 'is your version of the simulator ready?'
user(betty7) logon - nowait

SEND Command t 7 t

c
172 OS/VS2 TSO Command Language Reference (VS2 Release 2)

----_.------_. __ •.•. _---- ---------_._--------_._----._._-._--- -----.-

C'."',
/'

--_._---- ._--------

TERMINAL Command

Use the TERMINAL command to define the operating characteristics that
depend primarily upon the type of terminal that you are using. You can
specify the ways that you want to request an attention interruption and you
can identify hardware features and capabilities. The TERMINAL command
alows you to request an attention interruption whether or not your terminal
has a key for the purpose.

The terminal characteristics that you have defined will remain in effect
until you enter the LOGOFF command. If you terminate a session and begin
a new one by entering a LOGON command (instead of a LOGOFF command
followed by a LOGON command), the terminal characteristics defined in the
earlier session will be in effect during the subsequent session.

{
TERMINAL}
TERM [

LIN ES(integer)]
NOLINES

[
SECON OS (integer)]
NOSECONDS

[
I NPUT(string)]
NOINPUT

[
BREAK]
NOBREAK

[
TIMEOUT]
NOTIMEOUT

[LlNESIZE(integer)]

[
CLEAR (stringn
NOCLEAR J

[SCRSIZE(rows, length)]

LINES (integer) specifies an integer from 1 to 255 that indicates you want
the opportunity to request an attention interruption after that number of
lines of continuous output has been directed to your terminal.

NOLINEs(integer) specifies that output line count is not to be used for
controlling an attention interruption. This is the default condition.

SECONDS (integer) specifies an integer from 10 to 2550 (in multiples of 10)
to indicate that you want the opportunity to request an attention
interruption after that number of seconds has elapsed during which the
terminal has been locked and inactive. If you specify an integer that is
not a multiple of 10, it will be changed to the next largest multiple of 10.

NOSECONDS specifies that elapsed time is not to be used for controlling an
attention interruption. This is the default condition.

INPUT(string) specifies the character string that, if entered as input, will
cause an attention interruption. The string must be. the only input
entered and cannot exceed four characters in length.

NOINPUT specifies that no character string will cause an attention
interruption. This is the default condition.

BREAK specifies that your terminal keyboard will be unlocked to allow you
to enter input whenever you are not receiving output from the system;
the system can interrupt your input with high-priority messages. Since

TERMINAL Command 173

use of BREAK with a terminal type which cannot support it can result in
loss of output or error, check with your installation system manager
before specifying this operand.

NOBREAK specifies that your terminal keyboard will be unlocked only when
your program or a command you have used requests input.

Note: The default for the BREAK/NOBREAK operand is determined when
your installation defines the terminal features.
TIMEOUT specifies that your terminal's keyboard will lock up automatically

after approximately nine to 18 seconds of no input. (Applicable only to
the IBM 1052 Printer-Keyboard without the text timeout suppression
feature.)

NOTIMEOUT specifies that your terminal's keyboard will not lockup
automatically after approximately nine to 18 seconds of no input.
(Applicable only to the IBM 1052 Printer-Keyboard with the text timeout
suppression feature.)

Note: The default for the TIMEOUT/NOTIMEOUT operand is determined
when your installation defines the terminal features.
LINESlzE(integer) specifies the length of the line (the number of

characters) that can be printed at your terminal. (Not applicable to the
IBM 2260, 2265, and 3270 Display Stations.) Default values are as
follows:

IBM 2741 Communication Terminal - 120 characters
IBM 1052 Printer-Keyboard - 120 characters
Teletype 33/35 - 72 characters

The integer must not exceed 255. C
CLEAR(string) specifies a character string that, if entered as input, will

cause the screen of an IBM 2260, 2265, or 3270 Display Station to be
erased. The 'string' must be the only input entered and cannot exceed
four characters in length.

NOCLEAR specifies that you do not want to use a sequence of characters to
erase the screen of an IBM 2260, 2265, 3270 Display Station. This is the
default condition.

SCRslzE(rows,length) specifies the screen dimensions of an IBM 2260, 2265,
or 3270 Display Station.

'rows' specifies the maximum number of lines of data that can appear on
the screen.

'length' specifies the maximum number of characters in a line of data
displayed on the screen. Valid screen sizes are:

rows,length
6,40

12,40
12,80
15,64
24,80

Note: The default values for the SCREEN operand are determined when
your installation defines the terminal features.

174 OS/VS2 TSO Command Language Reference (VS2 Release 2)

('.".
)

-"".,

't
) C··'

----------_ .. __ ._ ... _--

Example 1

Operation: Modify the characteristics of an IBM 2741 Communication
Terminal to allow operation in unlocked-keyboard mode.

Known:
Your terminal supports the break facility. The installation has defined a
default of NOBREAK for your terminal.

terminal break

Example 2

Operation: Modify the characteristics of an IBM 1052 Printer-Keyboard
whose attention key cannot be used to interrupt output and whose
output line size is greater than 80 characters.

Known:
You want an opportunity to request an attention interruption after ten
consecutive lines of output. You want to limit the output line length to
80 characters.

terminal lines(10) linesize(80)

Example 3

Operation: Establish the characteristics of an IBM 2260 Display Station to
allow for attention interruption and screen erasure requests.

Known:
You want an opportunity to request an attention interruption if neither
input is requested nor output sent for one minute. You want a $ to stand
for an attention interruption request during a regular input operation.
You want a % to stand for a screen erasure request.

terminal seconds(60) input($) clear(%)

TERMINAL Command 175

176 OS/VS2 TSO Command Language Reference (VS2 Release 2)

.-----..... - ------

o

TEST Command

Use the TEST command to test a program or a command procedure for
proper execution and to locate any programming errors. To use the TEST

command and subcommands, you should be familiar with the basic
assembler language and addressing conventions. For best results, the
program to be tested should be written in basic assembler language. Also, in
order to use the symbolic names feature of TEST the program should have
been assembled and link-edited with the TEST operands.

Uses of the TEST Command: Before execution begins you can:
• Supply initial values (test data) that you want to pass to the program.
• Establish breakpoints (after instructions) where execution will be

interrupted so that you can examine interim results. (Breakpoints
should not be inserted into TSO service routines or into any of the
TEST load modules.)

You can then execute the program. When you use the TEST command to
load and execute a program, the program must be an object module or a
load module suitable for processing. If the program that you want to test is
already executing, you can begin testing by interrupting the program with
an attention interruption followed by the TEST command with no operands.
You can also begin testing after an abnormal ending (ABEND) if the
program is still in virtual storage.

Note: If you enter the TEST command without operands, you can test the
in-storage copy of your program. If you enter the TEST command with
operands, a fresh copy of your program will be brought in for you to test.
Prior to and during execution you can:

• Display the contents of registers and real storage (as when execution
is interrupted at a breakpoint).

• Modify the contents of your registers and real storage.
• Display the Program Status Word (psw).
• List the contents of control blocks.
• "Step through" sections of the program, checking each instruction for

proper execution.

Addressing Conventions Used with TEST: An address used as an operand for
a subcommand of TEST may be a symbolic address, a relative address, an
absolute address, or a register which may contain an address.

A symbolic address consists of one through eight alphameric characters,
the first of which is an alphabetic character. The symbolic address must
correspond to a symbol in the program that is being tested. Symbols cannot
be used if the program being tested is a member of a partitioned data set
that is part of a LINK library list unless the partitioned data set is named
SYS1.LINKLIB or is the first one in the list, or unless the program is brought
into main storage by TEST as an operand of the TEST command or a
subsequent load command. A relative address is a hexadecimal number
preceded by a plus sign (+). An absolute address is a hexadecimal number
followed by a period.

TEST Command 177

Address Modifiers: An expression consisting of one of the above address
types followed by a plus or a minus displacement value is also a valid
address. The plus or minus displacement value can be expressed in either
decimal or p.exadecimal notation, as follows:

address + 14n

address + 14

specifies the location that is 14 bytes past that designated by
"address."
specifies the location that is 20 bytes past that designated by
"address."

Note: Decimal displacement (either plus or minus) is indicated by the n
following the numerical offset.

Qualified Addresses: You can qualify symbolic and relative addresses to
indicate that they apply to a particular control section (CSECT). To do this,
you precede the address by either the name of the load module and the
name of csect or just the name of csect. The qualified address must be in
the form:

. csectnarne. address

or

loadnarne. csectnarne. address

For instance, if the user supplied name of the load module is OUTPUT, the
name of the csect is CTSTART, and the symbolic address is TAXRTN you

c

would specify: (;

.ctstart.taxrtn

or

out.ctstart.taxrtn

If you do not include qualifiers, the system assumes that the address applies
to the current control section.

General Registers: You can refer to a general register using the LIST or
Assignment of Values subcommands by specifying a decimal integer
followed by an R. The decimal integer indicates the number of the registers
and must be in the range zero through 15. The contents of the registers are
hexadecimal characters. Other references to the general registers imply
indirect addressing. The term indirect general register is used to refer to the
general registers when they are used for indirect addressing.

Floating-Point Registers: You can refer to a floating-point register using the
LIST or Assignment of Values subcommand by specifying a decimal integer
followed by an E or a D. An E indicates a floating-point register with a
single precision. A D indicates a floating-point register with double
precision. The decimal integer indicates the number of the register and must
be a zero, two, four, or six. You must not use floating-point registers for
indirect addressing; expressions composed of references to floating-point
registers followed by a plus or minus displacement value or a percent sign
are invalid.

178 OS/VS2 TSO Command Language Reference (VS2 Release 2)

~/

o

Indirect Addresses: An indirect address is an address of a location or
general register that contains another address. An indirect address must be
followed by a percent sign (the percent sign indicates that the address is
indirect). For instance, if you want to refer to some data and the address of
the data is located at address A, you can specify:

A%

Graphically, this ex~ression indicates:

Location A

address 8

You can indicate several levels of indirect addresses (256 levels
are permitted) by following the initial indirect address with a corresponding
number of percent signs. You can also include plus or minus displacement
values. For instance, you may specify:

SR%%+4%

Graphically, this expression indicates:

Register 5

00000A24
Location A24

000001C2
Location 1 C2

00OOOA40

+4 00000922
Location 922

data

Restriction on Symbol Use: You can refer to external symbols in a Load
Module if:

• A composite external symbol dictionary (CESD) record exists.
• The TEST operand of the LINK command was specified.
• The program was brought into real storage by the TEST command or

one of its subtasks.
You can refer to external symbols in an object module if there is room in

real storage for a CESD to be built.
You can refer to most internal symbols if you specify the TEST operand

when you assemble and link edit your program. Exceptions are:
• N ames on equate statements.
• Names on ORG, LTORG, and CNOP statements.
• Symbols more than eight bytes long.

TEST Command 179

TEST [data-set-name]

['parameters']

[
LOAD]
OBJECT

[~~cpJ

data-set-name specifies the name of the data set containing the program to
be tested. The program must be in object module form or load module
form.

Caution: The program to be tested should not have the name TEST, nor
should the first five characters of the name begin with IKJEF or IKJEG.

parameters specifies a list of parameters to be passed to the named
program. The list must not exceed 100 characters including delimiters.

LOAD specifies that the named program is a load module that has been
processed by the linkage editor and is a member of a partitioned data
set. This is the default value if both LOAD and OBJECT are omitted.

OBJECT specifies that the named program is an object module that has not
been processed by the linkage editor. The program can be contained in a
sequential data set or a member of a partitioned data set.

CP specifies that the named program is a command processor.
NOCP specifies that the named program is not a command processor. This

is the default value if both CP and NOCP are omitted.

Subcommantis: The subcommands of the TEST command are:
ASSIGNMENT OF VALUES(=) modifies values in real storage and in registers.
AT establishes breakpoints at specified locations.
CALL initializes registers and initiates processing of the program at a

specified address.
COpy moves data or addresses.
DELETE deletes a load module.

- DROP removes symbols established by the EQUATE command from the
symbol table of the module being tested.

END terminates all operations of the TEST command and the program being
tested.

EQUATE adds a symbol to the symbol table and assigns attributes and a
location to that symbol.

FREEMAIN frees a specified number of bytes of real storage.
GETMAIN acquires a specified number of bytes of real storage for use by

the program being processed.
GO restarts the program at the point of interruption or at a specified

address.
HELP lists the subcommands of TEST and explains their function, syntax,

and operands.
LIST displays the contents of real storage area or registers.
LISTDCB lists the contents of a Data Control Block (DCB) (you must

specify the address of the DCB).

r'\
1'-. /

LISTDEB lists the contents of a Data Extent Block (DEB) (you must specify C\
the address of the DEB). .-/

180 OS/VS2 TSO Command Language Reference (VS2 Release 2)

----"--_ _---_ .. _- _ _._,,---_ .. _-

C
" "
J

G

Page of GC28-0646-1
Revised April 29, 1974
By TNL: GN28-2572

LISTMAP displays a real storage map.
LISTPSW displays the Program Status Word (psw).
LlsrrCB lists the contents of the Task Control Block (TCB) (you may

specify the address of another TCB).
LOAD loads a program into real storage for execution.
OFF removes breakpoints.
QUALIFY establishes the starting or base location for relative addresses;

resolves identical external symbols within a load module.
RUN terminates TEST and completes execution of the program.
WHERE displays the real address of a symbol or entrypoint or the address

of the next executable instruction.

Example 1

Operation: Enter TEST mode after experiencing either an abnormal
termination of your program or an interruption.

Known:
Either you have received a message saying that your foreground program
has terminated abnormally, or, you have struck the attention key while
your program was executing. In either case, you would like to begin
"debugging" your program.

test

Example 2

Operation: Invoke a program for testing.

Known:
The name of the data set that contains the program:
TLC 55.PA YER.LOAD(THRUST)

The program is a load module and is not a command processor.
The parameters to be passed: 2048, 80

test payer(thrust) '2048,80'

Example 3

Operation: Invoke a program for testing.

Known:
The name of the data set that contains the
program: TLC55.PAYLOAD.OBJ

The program is an object module and is not a command processor.

test payload object

Example 4

Operation: Test a command processor.

Known:
The name of the data set containing the command
processor: TLC55.CMDS.LOAD(OUTPUT)

test cmds(output) cp

TEST Command 181

c
182 OS/VS2 TSO Command Language Reference (VS2 Release 2)

---........ _ ... __ .•.•.

c/

o

._----------------_._ ---

Assignment of Values Function of TEST

When processing is halted at a breakpoint or before execution is initiated,
you can modify values in real storage and in registers. This function is
implicit; that is, you do not enter a subcommand name. The system
performs the function in response to operands that you enter.

address = data-type 'value'

address specifies the location that you want to contain a new value. The
address may be a symbolic address, a relative address, an absolute
address, or a register.

data-type 'value' specifies the type of data and the value that you want to
place in the specified location. You indicate the type of data by one of
the following codes:

Code
C
X
B
H
F
E
o
L
P
Z
A
S
Y

Type of Data
Character
Hexadecimal
Binary
Fixed point binary (halfword)
Fixed point binary (fullword)
Floating point (single precision)
Floating point (double precision)
Extended floating point
Packed decimal
Zoned decimal
Address constant
Address (base + displacement)
Address constant (halfword)

Maximum Length (Bytes)
One line of input!

64
64
6

11
9
18
16
32
17
10
8
5

You include your data following the code. Your data must be enclosed
within apostrophes. Any single apostrophes within your data must be coded
as two single apostrophes. Character data will be entered as is; all other
data types will be translated into upper case (if necessary). A list of data
may be specified by enclosing the list in parentheses. The data in the list
will be stored beginning at the location specified by the address operand.

Example 1

Operation: Insert a character string at a particular location in real storage.

Known:
The address is a symbol: INPOINT

The data: JANUARY 1, 1970

inpoint=c'january 1, 1970'

'continued lines are permitted.

Assignment of Values Function of TEST 183

Example 2

Operation: Insert a binary number into a register.

Known:
The number of the register: Register 6
The data: 0000 0001 0110 0011

6r=b'0000000101100011'

184 OS/VS2 TSO Command Language Reference (VS2 Release 2)

c

c'

----------------------- -----------------

C)

AT Subcommand of TEST

Use the AT subcommand to establish breakpoints where processing is to be
temporarily halted so that you can examine the results of execution up to
the point of interruption. Processing is halted before the instruction at the
breakpoint is executed.

AT
{

address [:addressl}
(address-I ist)

[(subcommands-list)]

[COUNT(integerl]

[
NODEFERJ
DEFER

[
NOTIFY J
NONOTIFY

address specifies a location that is to contain a breakpoint. The address
may be a symbolic address, a relative address, or a general register
containing an address. The address must be on a halfword boundary and
contain a valid op code.

address:address specifies a range of addresses that are to contain
breakpoints. Each address may be a symbolic address, a relative address,
an absolute address, or a general register containing an address. Each
address must be on a halfword boundary. A breakpoint will be
established at each instruction between the two addresses. When a range
of addresses is specified, assignment of breakpoints halts when an invalid
instruction is encountered.

address-list specifies several addresses that are to contain breakpoints. Each
address may be a symbolic address, a relative address, an absolute
address, or a general register containing an address. The first address
must be on a halfword boundary. The list must be enclosed within
parentheses, and the addresses in the list must be separated by standard
delimiters (one or more blanks or a comma). A breakpoint will be
established at each address.

sub commands-list specifies one or more sub commands to be executed when
the program is interrupted at the indicated location. If you specify more
than one subcommand, the sub commands must be separated by
semicolons (for instance, LISTTCB PRINT (TCBS);LISTPSW;GO

CALCULAT). The list cannot be longer than 255 characters.
COUNT (integer) specifies that processing will not be halted at the

breakpoint until it has been encountered a number of times. This
operand is directly applicable to program loop situations, where an
instruction is executed several times. The breakpoint will be observed
each time it has been encountered the number of times specified for the
'integer' operand. The integer specified cannot exceed 65,535.

DEFER specifies that the breakpoint is to be established in a program that
is not yet in real storage. The program to contain the breakpoint will be
brought in as a result of a LINK, LOAD, ATTACH, or XCTL macro
instruction by the program being tested. You must qualify the address of
the breakpoint (either LOADNAME.CSECTNAME. RELATIVE or

AT Subcommand of TEST 185

LOADNAME.CSECTNAME.SYMBOL) when you specify this operand. All
breakpoint addresses listed in an A:r subcommand with the DEFER
operand must refer to the same load module.

NODEFER specifies that the breakpoint is to be inserted into the program.
now in real storage. This is the default value if both DEFER and
NODEFER are omitted.

NOTIFY specifies that when it is encountered. the breakpoint will be
identified at the terminal. This is the .default-·value if both NOTiFY and
NONOTIFY are omitted.

NONOTIFY specifies that when it is encountered the breakpoint will not be
identified at the terminal.

Example 1

Operation: Establish breakpoints at each instruction in a
section of the program thM is being tested.

Known:
The addresses of the first and last instructions of that
section that is to be tested: LOOPA EXIT A
The subcommands to be executed are: LISTPSW, GO

at loopa:exita (listpsw,go)

Example 2

Operation: Establish breakpoints at several locations in a program.

Known:
The addresses for the breakpoints: +8A LOOPB EXITB

at (+8A loopb exitb)

Example 3

Operation: Establish a breakpoint at a location in a loop.' The address of
the location is contained in'register 15. You only want to have an
interruption every tenth cycle through the loop.

Known:
The address for the breakpoint: 15R %

at 15r% count(10)

Example 4

Operation: Establish' a breakpoint for a program other than the one
presently in real storage.

Known:
The csect name: WIND
The name of the load module: MARCH
The symbolic address for the breakpoint: PROG

at prog defer

186 OS/VS2 TSO Command Language Reference (VS2 Release 2)

c'

o

CALL Subcommand of TEST

Use the CALL subcommand to initiate processing at a specified address and
to initialize registers 1, 14, and 15. You can pass parameters to the program
that is to be tested.

Caution: The contents of registers 1, 14, and 15 are altered by the use of
the CALL subcommand. To save the contents of these registers, use the
COpy subcommand of TEST (see Examples 2 and 3 under the COpy

subcommand).

CALL address

[PAR M(address-list)]

[VL]

[RETU RN(address)]

address specifies the address where processing is to begin. The address may
be a symbolic address, a relative address, an absolute address, or a
register containing an address. Register 15 contains this address when the
program under test begins execution_

PARM(address-list) specifies one or more addresses that point to data to be
used by the program being tested. The list of addresses will be expanded
to fullwords and placed into contiguous storage. Register 1 will contain
the address of the start of the list. If P ARM is omitted, register 1 will
point to a fullword that contains the address of a halfword of zeroes.

VL specifies that the high order bit of the last fullword of the list of
addresses pointed to by general register one is to be set to one.

RETURN (address) specifies that register 14 is to contain the address that
you supply as the value for this keyword. After the program executes,
the system will return control to the point indicated by register 14. If
RETURN is omitted, register 14 will contain the address of a breakpoint
instruction.

Example 1

Operation: Initiate execution of the program being tested at a particular
location.

Known:
The starting address: +OA
The addresses of data to be passed: CTCOUNTR LOOPCNT TAX

call +Oa parm(ctcouptr loopcnt tax)

CALL Subcommand of TEST 187

._--... -... __ .. _ .. _-_ ----_ ..

Example 2

Operation: Initiate execution at a particular location.

Known:
The starting address: STARTBD

The addresses of data to be passes: BDFLAGS

PRFTTBL COSTTBL ERREXIT

Set the high order bit of the last address parameter to one so that
the program can tell the end of the list. After execution, control
is to be returned to: +24A

call startbd parm(bdflags prfttbl costtbl errexit)­
vl return(+24a)

188 OS/VS2 TSO Command Language Reference (VS2 Release 2)

("""
./

C:,

C)

COpy Subcommand of TEST

Use the COpy subcommand to transfer data or addresses from one real
storage address to another, from one general register to another, from a
register to real storage, or from real storage to a register.
The COpy subcommand can be used to:

• Save or restore the contents of the general registers.
• Propagate the value of a byte throughout a field.
• Move an entire data field from one location to another.

address 1 address 2

[LENGTH (in~ger)]

[
POINTER]
NOPOINTER

addressl specifies a location that contains data to be copied. The address
may be a symbolic address, a relative address, an absolute address, an
indirect address, or a qualified address.

address2 specifies a location that will receive the data after it is copied.
The address may be a symbolic address, a relative address, an absolute
address, an indirect address, or a qualified address.

LENGTH (integer) specifies the length, in decimal, of the field to be copied.
If an integer is not specified, LENGTH will default to 4 bytes. The
LENGTH keyword can also be entered in the shorter form, L(integer).

POINTER specifies that address 1 will be validity checked to see that it does
not exceed maximum real storage size and will then be treated as an
immediate operand (hexadecimal literal) with a maximum length of 4
bytes (that is, an address will be converted to its hexadecimal equivalent)
and will be transferred into the location specified by address2. When
using the POINTER keyword, do not specify a general register as
addressl. The POINTER keyword can also be entered in the shorter form,
P.

NOPOINT specifies that addressl will be treated as an address. NOPOINT is
the default for POINTER.

Notes:
1. The COpy subcommand treats the 16 general registers (RO-R1S) as

contiguous fields, that is, if you have specified that 8 bytes be moved
from RO to another location for example, COpy OR 80060.
LENGTH(8), the COpy subcommand will move the 4 bytes of register
o and the 4 bytes of register 1 to real storage beginning at location
80060. When a register is specified as address1, the maximum length
of data that will be transferred is the total length of the general
registers, or 64 bytes.

2. When the value of address2 is one greater than address 1, propagation
of the data in address 1 will occur; when the value of address2 is more
than one greater than the value of address 1, no propagation will
occur.

COpy Subcommand of TEST 189

-------------,,----_._-,---- -_ .. _--------

Example 1

Operation: Transfer 2 full words of data from one real storage location to
another.

Known:
The starting address of the data: 80680
The starting address of where the data is to be: 80685

copy 80680. 80685. 1ength(8)

Example 2

Operation: Copy the contents of one register into another register.

Known:
The register which contains the data to be copied: 10
The register which will contain the data: 5

copy lOr 5r

Example 3

Operation: Save the contents of the general registers.

Known:
The first register to be saved: 0
The starting address of the save area: A0200

c Or a0200. 1(64)

Example 4

Operation: Propagate the value in the first byte of a buffer throughout the
buffer.

Known:
The starting address of the buffer: 80680
The length of the buffer: 80 bytes

c 80680. 80681. 1(79)

Example 5

Operation: Insert a hexadecimal value into the high-order byte of a register.

Known:
The desired value: X'80'
The register: 1

copy 80. lr l(1) pointer

190 OS/VS2 TSO Command Language Reference (VS2 Release 2)

-.---~""-"",.---"--.------------------------"--

C'
,.

c)

o

Example 6

Operation: Insert the entry point of a routine into a real storage location.

Known:
The module name and the entry point name: IEFBR14.1EFBR14

The desired real storage location: B0200

c iefbr14.iefbr14 b0200 p

Example 7

Operation: Copy the contents of an area pointed to by a register into
another area.

Known:
The register which points to the area that contains the data
to be moved: 14
The real storage location which is to contain the data: 80680
The length of the data to be moved: 8 bytes

c 14r% 80680. 1(8) nopoint

COPY Subcommand of TEST 191

----- ",,,,,, , .. -.' .. _ _ .. .

192 OS/VS2 TSO Command Language Reference (VS2 Release 2)

... ~.----.. ------

o

DELETE Subcommand of TEST

Use the DELETE subcommand to delete a load module awaiting execution.

load-name

load name specifies the name of the load module to be deleted. The load
name is the name by which the program is known to the system when it
is in real storage. The name must not exceed eight characters.

Example 1

Operation: The program being tested has called a subroutine that is in load
module form. Before executing the subroutine, a breakpoint is
encountered. You do not want to execute the subroutine because you
intend to pass test data to the program instead. You now want to delete
the subroutine since it will not be used.

Known:
The name of the subroutine (load module) : TOTAL

delete total
or
d total

DELETE Subcommand of TEST 193

C:

194 OS/VS2 TSO Command Language Reference (VS2 Release 2)

---_._------_._ .. _-_._----------

-------.. ------~.-----------

G

o

DROP Subcommand of TEST

Use the DROP subcommand to remove symbols from the symbol table of
the module being tested. You can only remove symbols that you established
with the EQUATE subcommand; you cannot remove symbols that were
established by the linkage editor. If the program being tested was assembled
with the TEST option and the EQUATE subcommand was used to override
the location and type of the symbol within the program, then when the
DROP subcommand is used to delete that symbol from the symbol table, the
symbol will reflect the original location and type within the program.

DROP (symbol-I ist)

(symbol-list) specifies one or more symbols that you want to remove from
the symbol table created by the EQUATE subcommand. When you
specify only one symbol, you do not have to enclose that symbol within
parentheses; however, if you specify more than one symbol you must
enclose them within parentheses. If you do not specify any symbols, the
entire table of symbols will be removed.

Example 1

Operation: Remove all symbols that you have established with the EQUATE

subcommand.

drop

Example 2

Operation: Remove several symbols from the symbol table.

Known:
The names of the symbols: STARTADD TOTAL WRITESUM

drop (startadd total writesum)

DROP Subcommand of TEST 195

C,
_./

196 OS/VS2 TSO Command Language Reference (VS2 Release 2)

-..... _---_._._--_ _-----

o

o

END Subcommand of TEST

Use the END subcommand to terminate all functions of the TEST command
and the program being tested.

END

END Subcommand of TEST 197

c'

c
198 OS/VS2 TSO Command Language Reference (VS2 Release 2)

o

EQUATE Subcommand of TEST

Use the EQUATE subcommand to add a symbol to the symbol table of the
module being tested. This subcommand allows you to establish a new
symbol that you can use to refer to an address or to override an existing
symbol to reflect a new address or new attributes. If no symbol table exists,
one is created and the specified name is added to it. You can also modify
the data attributes (type, length, and multiplicity). The DROP subcommand
removes symbols added by the EQUATE subcommand. Symbols established
via the EQUATE subcommand are defined for the duration of the TEST

session, only.

symbol address data-type

[L E NGTH (integer)]

[MUL TIPLE(integer)]

symbol specifies the symbol (name) that you want to have added to the
symbol table so that you can refer to an address symbolically. The
symbol must consist of one through eight alphameric characters, the first
of which is an alphabetic character.

address specifies a symbolic address, a relative address, an absolute
address, or a general register containing an address. The address that you
specify will be equated to the symbol that you specify.

data-type specifies either the type of data that you want moved into the
location specified via the "address" operand, or the characteristics you
wish to attribute to the data at the location given by "address." These
mayor may not be the same as the original characteristics. You indicate
the type of data by one of the following codes:

Code
C
X
B
I
H
F
E
D
L
P
Z
A
S
Y

Type of Data
Character
Hexadecimal
Binary
Assembler instruction
Fixed point binary (halfword)
Fixed point binary (fullword)
Floating point (single precision)
Floating point (double precision)
Extended floating point
Packed decimal
Zoned decimal
Address constant
Address (base + displacement)
Address constant (halfword)

Maximum Length (Bytes)
256
256
256
256
8
8
8
8
16
16
16
4
2
2

LENGTH (integer) specifies the length of the data. The maximum value of
the integer is 256. If you do not specify the length, the following default
values will apply:

Type of Data
C,B,P,Z
H,S,Y
F,E,A,X
D
I
L

Default Length (Bytes)
1
2
4
8
variable
16

EQUATE Subcommand of TEST 199

MULTIPLE(integer) specifies a multiplicity factor. The multiplicity factor
means that one element of the data appears several times in succession;
the number of repetitions is indicated by the number specified for
"integer." The maximum value of the integer is 256.

Note: If you do not specify any keywords, the defaults are:

type - X
multiplicity - 1
length - 4

Example 1

Operation: Add a symbolic address to the symbol table of the module that
you are testing.

Known:
The symbol: EXITRTN
The address: TOT AL+4

equate exitrtn total+4

Example 2

Operation: Change the address and attributes for an existing symbol.

Known:
The symbol: CONSTANT
The new address: IFAAO.
The new attributes: type: C

length: L(8)
multiplicity: M(2)

eq constant 1faaO. c m(2) 1(8)

200 OS/VS2 TSO Command Language Reference (VS2 Release 2)

c'

c'

I, 0 "·

-----------_. _._-

FREEMAIN Subcommand of TEST

Use the FREEMAIN subcommand to free a specified number of bytes of real
storage.

{
FREEMAIN}
FREE

integer address

integer specifies the number of bytes of real storage to be released.
address specifies a symbolic address, a relative address, an absolute

address, or a general register containing an address. This address is the
location of the space to be freed and must be a multiple of 8 bytes.
The LISTMAP subcommand may be used to help locate previously
acquired real storage.

sP(integer) specifies the number of the subpool that contains the space to
be freed. If you omit this operand, the default value is subpool zero. The
integer must be in the range zero through 127.

Example 1

Operation: Free space in real storage that was acquired previously by a
GETMAIN subcommand or by a GETMAIN macro instruction in the
module being tested.

Known:
The size of the space, in bytes: 500
The absolute address of the space: 054A20
The number of the subpool that the space was acquired from: 3

free 500 054a20. sp(3)

FREEMAIN Subcommand of TEST 201

202 OS/VS2 TSO Command Language Reference (VS2 Release 2)

c~)

o

---.------~

GETMAIN Subcommand of TEST

Use the GETMAIN subcommand to obtain a specified number of bytes of
real storage.

{
GETMAIN}
GET

integer

[EQUATE(name)]

EQUATE(name) specifies that the address of acquired real storage is to be
equated to the symbol specified by "name."

integer specifies the number of bytes of real storage to be obtained.
SP(integer) specifies the number of a subpool that contains the bytes of

real storage that you want to obtain. If you omit this operand, the
default value is subpool zero. The integer must be in the range zero
through 127.

Example 1

Operation: Get 500 bytes of real storage from subpool 3 and equate
starting address to symbolic name AREA.

get 500 sp(3) equate(area)

GETMAIN Subcommand of TEST 203

c

c
204 OS/VS2 TSO Command Language Reference (VS2 Release 2)

C)

GO Subcommand of TEST

Use the GO subcommand to start or restart program execution from a
particular address. If the program was interrupted for a breakdown and you
want to continue from the breakpoint, there is no need to specify the
address. However, you may start execution at any point by specifying the
address.

GO [address]

address specifies a symbolic address, a relative address, an absolute
address, or a general register containing an address. Execution will begin
at the address that you specify.

Example 1

Operation: Begin execution of a program at the point where the last
interruption occurred or initiate execution of a program.

go

Example 2

Operation: Begin execution at a particular address.

go calculat

GO Subcommand of TEST 20S

C)

c
206 OS/VS2 TSO Command Language Reference (VS2 Release 2)

------- ---------------._------------------------

HELP Subcommand of TEST

Use the HELP subcommand to obtain the syntax and function of the TEST
subcommands. Refer to the HELP command for a description of the syntax
and function of the HELP subcommand.

HELP Subcommand of TEST 207

C,
_.J

C)
_/

c
208 OS/VS2 TSO Command Language Reference (VS2 Release 2)

-------_._-------------

o

LIST Subcommand of TEST

Use the LIST subcommand to have the contents of a specified area of real
storage, or the contents of registers, displayed at your terminal or placed
into a data set.
I

{
address [:address1} data-t pe
(address-list) Y

[LENGTH (integer)]

[MUL TIPLE(jnteger)]

[PR INT(data-set-name)]

address specifies the location of data that you want displayed at your
terminal or placed into a data set. The address may be a symbolic
address, a relative address, an absolute address, or a general or
floating-point register.

address:address specifies that you want the data located between the
specified addresses displayed at your terminal or placed into a data set.
Each address may be a symbolic address, a relative address, an absolute
address, or a general or floating-point register.

(address-list) specifies several addresses of data that you want displayed at
your terminal or placed into a data set. The data at each location will be
retrieved. Each address may be a symbolic address, a relative address, an
absolute address, or a general or floating-point register. The list of
addresses must be enclosed within parentheses, and the addresses must
be separated by standard delimiters (one or more blanks or a comma),

data-type specifies the type of data that is in the specified location. You
indicate the type of data by one of the following codes:

Code
C
X
B
I
H
F
E
D
L
P
Z
A
S
Y

Type of Data
Character
Hexadecimal
Binary
Assembler instruction
Fixed point binary (halfword)
Fixed point binary (full word)
Floating point (single precision)
Floating point (double precision)
Extended floating point
Packed decimal
Zoned decimal
Address constant
Address (base + displacement)
Address constant (halfword)

Maximum Length (Bytes)
256
256
256
256
8
8
8
8
16
16
16
4
2
2

LIST Subcommand of TEST 209

LENGTH(integer) indicates the length, in bytes of the data that is to be ~

listed. The maximum value for the integer is 256. If you use a symbolic \-..-""
address and do not specify length, the value for the length parameter will
be retrieved from the symbol table residing in the user's region.
Otherwise, the following default values will apply:

Type of data
C,B,P,Z
H,S,Y
F,E,A,X
o
I
L

Default Length (Bytes)
1
2
4
8
variable
16

When the data type is I, either length or multiple may be specified, but
not both. If both are specified, the multiple parameter is ignored but no
error message is printed.

MULTIPLE(integer) Used in conjunction with the length operand. Gives the
user the following options:
• The ability to format the data to be listed (see Example 3, below)
• A way of printing more than 256 bytes at a time. (The value supplied

for "integer" determines how may "lengths" or multiples of data-type
the user wants listed.) The value supplied for integer cannot exceed
256.

For I type data, the value supplied for MULTIPLE defines the number of
instructions to be listed. If you use a symbolic address and do not specify
MULTIPLE, the value for the MULTIPLE parameter will be retrieved from
the symbol table residing in the user's region.

PRINT(data-set-name) specifies the name of a sequential data set to which
the data is directed (see data set naming conventions). If you omit this
operand, the data will go to your terminal.
The data format is blocked variable length records. Old data sets with
the standard format and block size are treated as NEW if being opened
for the first time, otherwise, they are treated as 'MOD data sets.
The LIST subcommands of TEST (LIST, LISTDCB, LISTDEB, LISTMPA,

LISTPSW, LISTTCB) perform the following functions on each data set they
process.

If your record type was: Fixed, Fixed Blocked, Variable or
or Undefined Variable Blocked

--
Then it is changed to Recordsize Blocksize Recordsize Blocksize
variable blocked with
the fol/owing attributes: 125 1629 125 129

Note: Record and block sizes greater than above will be unchanged.
The specified data set is kept open until:
• The TEST session is ended by a RUN or END subcommand, or
• A LIST subcommand is entered specifying a different PRINT data set.

In this case, the previous data set is closed and the current one
opened.

210 OS/VS2 TSO Command Language Reference (VS2 Release 2)

c

c·

Example 1

Operation: List the contents of an area of real storage.

Known:
The area to be displayed is between: COUNTERA DT ABLE
The attributes of the data: C L(130) M(1)

The name for a data set to contain the listed data: DCDUMP

list countera:dtable c l(130) m(1) print(dcdump)

Example 2

Operation: List the contents of real storage at several addresses

Known:
The addresses: TOTAL 1 TOT AL2 TOT AL3 ALL TOT AL
The attributes of the data: F L(3) M(3)

1 (tota11 tota12 tota13 alltotal) f 1(3) m(3)

Example 3

Operation: List the first six fullwords in the Communications Vector Table
(CVT).

Known:
The absolute address of the CVT: 10.
The user is operating in TEST mode.
The attributes of the data: X L(4) M(6)

Note: First use the QUALIFY subcommand of TEST to establish the
beginning of the CVT as a base location for displacement values.

qualify 10.

TEST: The system response

list +0 1(4) m(6)

The listing at your terminal will resemble the following sample listing:

+0 00000000
+4 00012A34
+8 00000B2C
+C 00000000
+10 001A0408
+14 00004430

LIST Subcommand of TEST 211

212 OS/VS2 TSO Command Language Reference (VS2 Release 2)

-.-.-------.~----------

LISTDCB Subcommand of TEST

Use the LISTDCB subcommand to list the contents of a data control block
DCB. You must provide the 'address of the beginning of the DCB.

If you wish, you can have only selected fields displayed. The field
identification is based on the sequential access method DCB for direct
access. Fifty-two bytes of data are displayed if the data set is closed;
forty-nine bytes of data are displayed if the data set is opened.

LlSTDCB address

[FIELD(names)]

[PR INT(data-set-name)]

address specifies a symbolic address, a relative address, an absolute
address, or a general register containing an address. The specified address
is the address of the DCB that you want displayed. The address must be
on a fullword boundary.

FIELD(names) specifies one or more names of the particular fields in the
DCB that you want to have displayed at your terminal. The segment
name will not be printed when you use this operand. If you omit this
operand, the entire DCB will be displayed.

PRINT(data-set-name) specifies the name of the sequential data set to
which data is to be directed (see data set naming conventions). If you
omit this operand, the data will be displayed at your terminal.
The data format is blocked variable length records. Old data sets with
the standard record format and blocksize are treated as NEW if they are
being opened for the first time; otherwise they are treated as MOD data
sets.

The specified data set is kept open until:
• The LIST session is ended by a RUN or END subcommand, or
• A LIST subcommand is entered that specifies a different PRINT data

set. In this case, the former data set is closed and the current one
opened.

Example 1

Operation: List the RECFM field of a DCB for the program that is being
tested.

Known:
The DCB begins at location: DCBIN

listdcb dcbin field(dcbrecfm)

Example 2

Operation: List an entire DCB.

Known:
The absolute address of the DCB: 33B4

listdcb 33b4.

LISTDCB Subcommand of TEST 213

214 OS/VS2 TSO Command Language Reference (VS2 Release 2)

C·_··/
~/

o

LISTDEB Subcommand of TEST

Use the LISTDEB subcommand to list the contents of a data extent block
(DEB). You must provide the address of the DEB.

In addition to the 32 byte basic section, you may receive up to 16 direct
access device dependent sections of 16 bytes each until the full length has
been displayed. If you wish, you can have only selected fields displayed.

LlSTDEB address

[FIELD(names)]

[PR INT(data-set-name)]

address specifies a symbolic address, a relative address, an absolute
address, or a general register containing an address. The address is the
beginning of the DEB, and must be on a fullword boundary.

FIELD(names) specifies one or more names of the particular fields in the
DEB that you want to have displayed at your terminal. If you omit this
operand, the entire DEB will be listed.

PRINT(data-set-name) specifies the name of the sequential data set to
which data is to be directed (see data set naming conventions). If you
omit this operand, the data will be displayed at your terminal.
The data format is blocked variable length records. Old data sets with
the standard record format and blocksize are treated as NEW if they are
being opened for the first time; otherwise they are treated as MOD data
sets.
The specified data set is kept open until:
1. The TEST session is ended by a RUN or END subcommand, or
2. A LIST subcommand is entered that specifies a different PRINT data

set. In this case, the former data set is closed and the current one
opened.

Example 1

Operation: List the entire DEB for the DCB that is named DCBIN.

Known:
The address of the DEB: DCBIN+2C%

listdeb dcbin+2c%

LlSTDEB Subcommand of TEST 215

c

c
216 OS/VS2 TSO Command Language Reference (V~2 Release 2)

---- . ~ .. --.~~.-•...... --.--..• ~-

C-"",I

-"./

o

LISTMAP Subcommand of TEST

Use the LlSTMAP subcommand to display a storage map at your terminal.
The map identifies the location and assignment of any storage assigned to
the program.

All storage assigned to the problem program and its sub tasks as a result
of GETMAIN requests is located and identified by subpool (0-127). All
programs assigned to the problem program and its subtasks are identified by
name, size, location, and attribute. Storage assignment and program
assignment are displayed by task. When the assignments for the problem
program and all its subtasks and tasks have been displayed, a map of all
unassigned storage within the region is displayed.

LlSTMAP [PR INT(data-set-name)]

PRINT(data-set-name) specifies the name of the sequential data set to
which data is to be directed (see data set naming conventions). If you
omit this operand, the data will be displayed at your terminalal.
The data format is blocked variable length records. Old data sets with
the standard record format and blocksize are treated as NEW if they are
being opened for the first item; otherwise, they are treated as MOD data
sets.
The specified data set is kept open until:
• The TEST session is ended by a RUN or END subcommand, or
• A LIST subcommand is entered that specifies a different PRINT data

set. In this case, the former data set is closed and the current one
opened.

Example 1

Operation: Display a map of real storage at your terminal.

listmap

Example 2

Operation: Direct a map of real storage to a data set.

Known:
The name for the data set: ACDQP.MAP.TESTLIST

listmap print(map)

LISTMAP Subcommand of TEST 217

c

c'

218 OS/VS2 TSO Command Language Reference (VS2 Release 2)

.---.-.--.... ------

o

LISTPSW Subcommand of TEST

Use the LISTPSW subcommand to display a Program Status Word (psw) at
your terminal.

LlSTPSW [ADDR (address)]

[PR I NT(data-set-name)]

ADDR(address) specifies a symbolic address, a relative address, an absolute
address, or a general register containing an address. The address
identifies a particular PSW. If you do not specify an address, you will
receive the current PSW for the program that is executing. (See Appendix
B for more information about addresses.)

PRINT(data-set-name) specifies the name of the sequential data set to
which data is to be directed (see data set naming conventions). If you
omit this operand, the data will be displayed at your terminal.
The data format is blocked variable length records. Old data sets with
the standard record format and blocksize are treated as NEW if they are
being opened for the first time; otherwise, they are treated as MOD data
sets.
The specified data set is kept open until:
• The TEST session is ended by a RUN or END subcommand, or
• A LIST subcommand is entered that specifies a different PRINT data

set. In this case, the former data set is closed and the current one
opened.

Example 1

Operation: Display the current PSW at your terminal.

listpsw

Example 2

Operation: Copy the Input! Output old PSW onto a data set.

Known:
The address of the psw (in hexadecimal): 38.
The name for the data set: ANZAL2.PSWS.TESTLIS

listpsw addr(38.) print(psws)

LISTPSW Subcommand of TEST 219

220 OS/VS2 TSO Command Language Reference (VS2 Release 2)

-~------ .. --. ---- --.. _----- .. __ _ .. _----_._-----

~,
l I
'-)

-~.--------- ------------

LISTfCB Subcommand of TEST

Use the LISTTCB subcommand to display the contents of a task control
block (TCB). You may provide the address of the beginning of the TCB.

If you wish, you can have only selected fields displayed.

L1STTCB [ADDR(address)]

[FIELD(names)]

[PR INT(data-set-name)]

ADDR(address) specifies a symbolic address, a relative address, an absolute
address, or a general register containing an address. The address must be
on a fullword boundary. The address identifies the particular TCB that
you want to display. If you omit an address, the TCB for the current task
is displayed. (See Appendix B for more information about addresses.)

FIELD(names) specifies one or more names of the particular fields in the
TCB that you want to have displayed. If you omit this operand, the entire
TCB will be displayed.

PRINT(data-set-name) specifies the name of the sequential data set to
which data is to be directed. If you omit this operand, the data will be
displayed at your terminal.
The data format is blocked variable length records. Old data sets with
the standard record format and blocksize are treated as NEW if they are
being opened for the first time; otherwise, they are treated as MOD data
sets.
The specified data set is kept open until:
1. The TEST session is ended by a RUN or a END subcommand, or
2. A LIST subcommand is entered that specifies a different PRINT data

set. In this case, the former data set is closed and the current one
opened.

Example 1

Operation: Save a copy of the TCB for the current task on a data set.

Known:
The name of the data set: NAN75.TCBS.TESTLIST

listtcb print(tcbs)

Example 2

Operation: Save a copy of some fields of a task's control block that is not
active in a data set for future information.

Known:
The symbolic address of the TCB: MYTCB2

The fields that are being requested: TCBTIO TCBCMP TCBGRS

The name of the data set: SCOTT.TESTLIST

listtcb addr(mytcb2) field(tcbtio,tcbcmp,tcbgrs)­
print('scott.testlist')

LISTfCB Subcommand of TEST 221

c

o

c
222 OS/VS2 TSO Command Language Reference (VS2 Release 2)

u

LOAD Subcommand of TEST

Use the LOAD subcommand to load a program into real storage for
execution.

LOAD program-name

program name specifies the name of a member of a partitioned data set
that contains the load module to be tested. (See the data set naming
conventions.)

Example 1

Operation: Load a program named ATX03.LOAD(GSCORES)

load (gscores)

LOAD Subcommand of TEST 223

224 OS/VS2 TSO Command Language Reference (VS2 Release 2)

o

OFF Subcommand of TEST

Use the OFF subcommand to remove breakpoints from a program.

OFF
[

address [:addressl]
(address-I ist)

address specifies the location of a breakpoint that you warit to remove. The
address may be a symbolic address, a relative address, an absolute
address, or a general register containing an address. The address must be
on a halfword boundary.

address:address specifies a range of addresses. Each address may be a
symbolic address, a relative address, an absolute address, or a general
register containing an address. Each address must be on a halfword
boundary. All breakpoints in the range of addresses will be removed.

(address-list) specifies the location of several breakpoints that you want to
remove. Each address may be a symbolic address, a relative address, an
absolute address, or a general register containing an address. Each
address must be on a halfword boundary.

Example 1

Operation: Remove all breakpoints in a section of the program.

Known:
The beginning and ending addresses of the section: LOOPC EXITC

off loopc:exitc

Example 2

Operation: Remove several breakpoints located at different positions.

Known:
The addresses of the breakpoints: COUNTRA COUNTRB EXIT A

off (countra countrb exita)

Example 3

Operation: Remove all breakpoints in a program.

off

OFF Subcommand of TEST 225

c~

226 OS/VS2 TSO Command Language Reference (VS2 Release 2)

0,

QUALIFY Subcommand of TEST

Use the QUALIFY subcommand to qualify symbolic and relative addresses;
that is, to establish the starting or base location to which displacements are
added so that an absolute address is obtained. The QUALIFY subcommand
allows you to specify uniquely which program and which csect within that
program you intend to test using symbolic and relative addresses.

You can specify an address to be used as the base location for
subsequent relative addresses. Each time you use the QUALIFY

subcommand, previous qualifications are voided.
Symbols that were established by the EQUATE subcommand before you

enter QUALIFY are not affected by the QUALIFY subcommand.

{
address }
load-module-name [.entryname] [TCB (address)]

address specifies an absolute, relative or symbolic address.
load-module-name specifies the name by which a load module is known.

The load name may be a member name of a partitioned data set or an
alias.

load.entry specifies the name by which a load module is known, and an
external name within the load module. This operand changes the base for
both symbolic and relative addresses. The two names are separated by a
period. The load module name may be a member name of a partitioned
data set or an alias. The entry name is the name that is duplicated in
another module of the load module .

. entry specifies an external name within a previously specified load module
that you are now testing.

TCB(address) specifies the address of a task control block (TCB). This
operand is necessary when programs of the same name are assigned to
two or more subtasks and you must establish uniquely which one is to be
qualified, or when the load module request block is not in the TCB chain.

Example 1

Operation: Establish a base location for relative addresses to a symbol
within the currently qualified program.

Known:
The base address: QSTART

qualify qstart

QUALIFY Subcommand of TEST 227

Example 2

Operation: Change the base location for symbolic and relative addresses to
a different csect in the program.

Known:
The module name: PROFITS
The entry name (csect): SALES
The TCB address: + 124%

qualify profits.sales tcb(+124%)

Example 3

Operation: Change the base location for relative addresses to an absolute
address.

Known:
The absolute address of the new base: 5F820

qualify 5f820.

228 OS/VS2 TSO Command Language Reference (VS2 Release 2)

----------------------- --.---

c~

l)

o

RUN Subcommand of TEST

Use the RUN subcommand to cause the program that is being tested to
execute to termination without recognizing any breakpoints. When you
specify this subcommand, TEST is terminated. When the program completes,
you can enter another command. Overlay programs are not supported by
the RUN subcommand. Use the GO subcommand to execute overlay
programs.

[address]

address specifies a symbolic address, a relative address, an absolute
address, or a general register containing an address. Execution will begin
at the specified address. If you do not specify an address, execution
begins at the last point of interruption or from the entry point if the RUN
subcommand was not previously specified.

Example 1

Operation: Execute the program to termination from the last point of
interruption.

run

Example 2

Operation: Execute a program to termination from a specific address.

Known:
The address: +A8

run +a8

RUN Subcommand of TEST 229

230 OS/VS2 TSO Command Language Reference (VS2 Release 2)

__ ~_ 0 _0 __ 0 _____ 00 ____ _

r;
\.0--../)

('
~/

Cj

o

----- ------------...... --~

WHERE Subcommand of TEST

Use the WHERE subcommand to obtain the absolute address serving as the
starting or base location for the symbolic and relative addresses in the
program. Alternately, you can obtain the absolute address of an entry point
in a particular module or control section (csect). If you do not specify any
operands for the WHERE subcommand, you will receive the address of the
next executable instruction.

{
address }
load-module-name [.entryname]

address specifies a symbolic address, a relative address, an absolute
address, or a general register containing an address. When you specify an
address as the operand for the WHERE subcommand, you will receive the
name of the load module containing the address.

load-module-name[.entry-name] specifies the name by which a load module
is known, and an externally referable name within the load module. The
two names are separated by a period. The load module name may be the
name or an alias of a member of a partitioned data set. The entry name
is the symbolic address of an entry point into the specified module. The
entry name may be omitted, in which case the first entry point into the
specified module will be supplied. When you specify this operand for
WHERE, you will receive the real storage address of the load module.

Example 1

Operation: Obtain the real address of the module named CST ART.

where cstart

Example 2

Operation: Obtain the real address of the CSECT named JULY in the module
named NETSALES.

where netsales.july

Example 3

Operation: Determine to which program an absolute address is located.

Known:
The absolute address: 3E2B8

where 3e2bB.

Note: You will also get the TCB address and the relative address.

WHERE Subcommand of TEST 231

Example 4

Operation: Determine the absolute address of the next executable
instruction.

where

232 OS/VS2 TSO Command Language Reference (VS2 Release 2)

-- ---- .-~--- ~----

C,
~'

C~:
/

C
---"
-./1

o

TIME Command

Use the TIME command to obtain the following information:
• Cumulative CPU time (from logon)
• Cumulative session time (from logon)
• Service units used
• Local time of day
• Today's date

To enter the command while a program is executing, you must first cause
an attention interruption. The TIME command has no effect upon the
executing program.

TIME

TIME Command 233

c
234 OS/VS2 TSO Command Language Reference (VS2 Release 2)

o

Command Procedure Statements

A command procedure is a prearranged sequence of TSO commands,
subcommands, and data. A command procedure is a convenient method for
executing a repeatedly-used sequence of commands. The procedure is stored
in either a data set that has CLiST as the descriptive qualifier (see the EDIT

command) or in a member of a command procedure library (a pre-defined
partitioned data set).

By using the PROMPT or NOPROMPT options of EXEC and PROFILE

commands you can regulate prompting during the execution of a command
procedure. If NOPROMPT has been specified on the PROFILE command,
then no prompting will be allowed even though the PROMPT option on
EXEC has been specified.

Positional and keyword operands must not be broken, that is, a hyphen
must not appear within the operand.

See the EDIT command for more information on how to use the
continuation character on statements in command procedures.

You may send a message to the user currently executing your command
procedure. Refer to the SEND command description in this publication for
information on how to do this.

The statements contained in this section are designed especially for use
in command procedures. They are:

• The END statement.
• The PROC statement.
• The WHEN statement.

Command Procedure Statements 235

c
236 OS/VS2 TSO Command Language Reference (VS2 Release 2)

c·

._-----------------._. __ _-

END Statement

You may use the END statement to end a command procedure. When the
system encounters an END statement in a command procedure, execution of
the command procedure is halted and the system becomes ready to accept
another command from the terminal.

END

END Statement 237

.---------

C,'
.'

238 OS/VS2 TSO Command Language Reference (VS2 Release 2)

-----_._._-.. _. __ . __ ._--_.

C)

C)

PROC Statement

The PROC statement defines those operands in a command procedure that
are to be considered as symbolic values, that is, symbols that will be
replaced by actual values when the command procedures executes. The user
supplies the actual values as operands on the EXEC command. (See the
discussion on the "EXEC command" for more detail on how to substitute
actual values for symbolic values in a command procedure.)

A PROC statement can be continued as long as normal continuation
procedures are followed:

Variable blocked - hyphen in last data position.
Fixed blocked - hyphen in last non-blank character.

For more information on how to assign symbolic values, refer to the
publication TSO Terminal User's Guide.

PRoe number

[positional-operands]

[keywords]

number specifies the number of positional operands that follow. The
number must be a decimal digit. If none of the operands are positional,
you must specify a zero.

positional-operands specifies one or more positional operands. They may be
from 1 to 252 characters in length. The first character must be
alphabetic and the remaining may be alphameric.

keywords specifies one or more keyword operands. They may be from 1 to
31 characters in length. The first character must be alphabetic and the
remaining characters may be alphameric. Keyword operands may be
defined with or without values. Keywords without values will have the
keyword name substituted when that keyword is found in the value-list
of the EXEC statement. Keywords with values are defined with a default
value immediately following the keyword name enclosed in parentheses.
The default value will be substituted if the keyword is not found in the
value-list of the EXEC statement. If the keyword is found, then the
values specified for the keyword will be substituted in the CLIST data set.
The value may be a character string. If delimiters are part of the
character string, then it must be enclosed in quotes.
If the symbolic value must be immediately followed by a right

parenthesis, an apostrophe or a period, the symbolic value must end with a
period when used in the text of the command procedure. For example, if
you want to substitute the symbolic value DSNAME for the "data set name"
operand in the expression:

dataset (data set name)

you must enter

dataset (&dsname.)

PROC Statement 239

Suppose the following command procedure exists as a data set named
ANZAL:

proc 3 input output list lines(
allocate dataset (&input.) file (indata) old
allocate dataset (&output.) block(100) space(300,100)
allocate dataset (&list.) file (print)
call proc2 '&lines.'
end

The PROC statement indicates that the three symbolic values & INPUT,

& OUTPUT and & LIST are positional (required) and that the symbolic value
& LINES is a keyword (optional).
To replace ALPHA for INPUT, BET A for OUTPUT, COMMENT for LIST and
20 for LINES, you would enter:

exec anzal 'alpha beta comment lines(20)'

Example 1

Operation: Use a PROC statement to define five symbolic operands in a
command procedure.

Known:
Three positional operands to define: & NAME & NUMBER & TIME

Two keyword operands to define: & XREF & MAP

proc 3 name number time xref map

Example 2

Operation: Define a command procedure that contains positional and
keyword symbolic values and whose output can be optionally directed to
the user's terminal.

Known:
You are creating a command procedure that will use two existing
programs named USERJWS.LOAD(SALESRPT) and INVENTRY.A to
produce a sales report and to update the inventory. The name of the
command procedure is REPORTS. You want to use different data sets as
input to the procedure. The output of the first program SALESRPT will be
the input for INVENTRY. You want to be able to have the output
displayed at your terminal or directed to a data set so that it can be
retrieved at some later date. The commands in the procedure are:

allocate data(&lastout.) new block(80) space(500 10)
allocate dataset(&input.) old
allocate dataset(&outin.) &new block(*)) space(SOO 10)
call (salesrpt) '&input &outin.'
when sysrc(gt 4) end
call 'inventry.a' '&outin &lastout.'
end

The PROC statement that will precede the first ALLOCATE command is:

proc 2 input outin lastout(*) new

240 OS/VS2 TSO Command Language Reference (VS2 Release 2)

c

o

o

The EXEC command to execute this procedure and have the output
displayed at your terminal will be:

exec reports 'febsales february new'

when the input data set is named FEB SALES and you want to name the
output from the SALESRPT program FEBRUARY. If you want to direct the
output from the procedure to a data set named FEBRPT instead of to your
terminal, you would enter:

exec reports 'febsales february new lastout(febrpt)'

In this case, the symbolic values in the command procedure will be changed
to:

allocate dataset(febrpt) new block(80) space(500 10)
allocate dataset(febsales) old
allocate dataset(february) new block(80) space(500 10)
call(salesrpt) 'febsales february'
when sysrc(gt 4) end
call 'inventry.a' 'february febrpt'
end

Note: A PROC statement can be continued as long as normal continuation
procedures are followed:

VS - hyphen in last data position.
FB - hyphen or plus sign must be the last non-blank ch

Operands (positional and keyword) must not be broken, that is, a
hyphen must not appear within the operand.

PROC Statement 241

o

c
242 OS/VS2 TSO Command Language Reference (VS2 Release 2)

o

WHEN Statement

Use the WHEN statement to test return codes from programs invoked via an
immediately preceding CALL or LOADGO command, and to take a
prescribed action if the return code meets a certain specified condition.

WHEN [SYSRC(operator integer)]

[
END]
command-name

SYSRC specifies that the return code from the previous function (the
previous command in the command procedure) is to be tested according
to the values specified for operator and integer.

operator specifies one of the following operators:

EQ or means equal to
NE or -,= means not equal to
GT or > means greater than
LT or < means less than
GE or >= means greater than or equal to
NG or -,> means not greater than
LE or <= means less than or equal to
NL or -,< means not less than

integer specifies the constant that the return code is to be compared to.
END specifies that processing is to be terminated if the comparison is true.

This is the default if you do not specify a command.
command-name specifies any valid TSO command name and appropriate

operands. The command will be processed if the comparison is true.

Note: Successive WHEN statements may be used to determine an exact
return code and then perform some action based on that return code.

Example 1: Using successive WHEN statements to determine an exact
return code.

Call

WHEN

WHEN

WHEN

compiler

SYSRC(=O) EXEC LNKED

SYSRC(=4) EXEC LNKED

SYSRC(=8) EXEC ERROR

WHEN Statement 243

c\

244 OS/VS2 TSO Command Language Reference (VS2 Release 2)

Page of GC28-0646-1
Revised April 29, 1974
By TNL: GN28-2572

Appendix A: Foreground Initiated Background Commands

You may use the foreground initiated background (FIB) commands to
submit or control jobs for execution in a batch environment.

Appendix A: Foreground Initiated Background Commands 245

c
246 OS/VS2 TSO Command Language Reference (VS2 Release 2)

·C

Page of GC28-0646-1
Revised April 29, 1974
By TNL: GN28-2572

.. _--- .. _ .•. ,--_._--------- --"'."'---

Using Foreground Initiated Background (FIB) Commands

Use CANCEL. OUTPUT, STATUS and SUBMIT commands primarily to control
the submission and processing of jobs in a batch environment. Also, the
OUTPUT command may be used to control foreground created output.

Processing Batch Jobs
You can submit batch jobs for processing if your installation authorizes you
to do so. This authorization is recorded in the system with your user
attributes. If you have this authorization, the system lets you use the four
commands (SUBMIT, STATUS, CANCEL and OUTPUT) that control the
processing of batch jobs. You can use those commands to submit a batch
job, to display the stat~s of a batch job, to cancel a batch job, and to
control the output of a batch job.

Submitting Batch Jobs
Before you submit a batch job with the SUBMIT command you can use the
EDIT command .to create a data set (or a member of a partitioned data set)
that contains the job or jobs you want to submit. Each job consists of Job
Control Language (JCl) statements and of program instructions and
or/data.

The first JCl statement in the data set is usually a JOB statement. The
jobname in the JOB statement can be up to eight characters in length and
should consist of your user identification followed by one or more letters or
numbers. For example SMITH23 or JONESXYZ.

If the jobname does not begin with your user identification, you can
submit it with the SUBMIT command and request its status with the STATUS
command, but you cannot refer to it with the CANCEL or OUTPUT
commanq, unless the IBM-supplied installation exit is replaced.

If the jobname consists of only your user identification, the system will
prompt you for a single character to complete the jobname. This allows you
to change j~bnames without re-editing the data. For example, you may
submit the same job several times, and supply a different character for the
job nflme each time you are prompted.

If the first statement of your data set is not a JOB statement, the system
gerierates the following JOB statement when you submit it with the SUBMIT
command.

Iluserid JOB
I I .
II
II

accounting info,
userid, GENERATED JOB STATEMENT
NOTIFY=userid,
MSGLEVEL=(1,1)

You will be prompted for a character to complete the jobname. The job
accounting information is the information specified for the user at logon.

When you enter the SUBMIT command, you must give the name of a
data set (or data sets) containing the batch job(s). You can aJso specify the
NONOTIFY operand to specify trat you do not want t~ be notified when a
batch job with a generated JOB statement terminates.

Figure 12 shows how to cre~te and submit a batch job. The data set type
on the EDIT command should be CNTL for better system performance. The
SUBMIT command will perform best if the fully-qualified data set name is
entered in quotes. Submitted data sets must have a logical record length of

Using Foreground Initiated Background (FIB) Commands 247

Page of GC28-0646-1
Revised April 29, 1974
By TNL: GN28-2572

80 bytes, a record format of fixed-blocked (FB), and must not contain
lowercase characters.

You may include more than one job in one data set. You can omit the
JOB statement for the first job, but all jobs after the first must have their
own JOB statement. Altbough you submit all jobs in the data set with one
SUBMIT command, you can subsequently refer to each job with separate
ST ATUS, CANCEL, and OUTPUT commands.

When you submit more than one job with a single command, and TSO

finds an error while processing the first job, the second job is not
processed. An error that occurs in the second job does not affect the first.
Any jobs processed prior to the error are submitted for execution~ jobs that
were not processed because of the error should be resubmitted after the
error is corrected.

READY
edit backpgm new cntl
INPUT
//smith3 job 7924,smith,msglevel=(1,1),
// notify=smith3
//step1 exec pl1lfc,parm.pl1l='nodeck,list'
//pl1l.sysin dd *

source statement

/*
//step2 exec pl~lfclg
//pl1l.sysin dd *

source statements

/*
//go.sysin qd

input data

/*
(null line)
EDIT
save
EDIT
end
READY
submit backpgm

*

ENTER JOBNAME CHARACTER+ -
a
JOB SMITH3A(JOB00071) SUBMITTED
READY

Figure 12. Submitting a Program as a Batch Job

The user would get a job-ended message with a
time stamp at the terminal because the NOTIFY keyword is specified on the
JOB card.

A submitted data set need not contain an entire job. A JCL data set and
a source data set could be used if both were the proper type of data set, as
follows:

submit (jclds1 sourceds jclds2 sourceds)

248 OS/VS2 TSO Command Language Reference (VS2 Release 2)

c'

o

Page of GC28-0646- t
Revised April 29, 1974
By TNL: GN28-2572

If each JCL data set contained a job card, then two jobs would be
submitted above. JCLDS I could contain the JCL needed to print the source
data set following in the input stream and JCLDS2 could contain the JCL

needed to assemble the same data set.

Displaying the Status of Jobs
Any time after you submit a background job you can use the STATUS

command to have its status displayed. The display will tell you whether the
job is awaiting execution, is currently executing, or has executed but is still
on the output queue. The display will also indicate whether a job is in hold
status. For example, if you want to display the status of SMITH3A, enter:

READY
status smith3a

If you have submitted two jobs with jobname SMITH3A, but just want
the status of the job submitted in Figure 12, you should enter the jobid
with the jobname, as follows:

READY
status smith3a(job71)

If you want to know the status of all the jobs with jobnames consisting of
your user identification plus one character, enter the STATUS command
without opera~lds:

READY
status

You may also check the status of data sets held from previous
foreground sessions by using the STATUS command.

Cancelling Batch Jobs
The CANCEL command cancels execution of a batch job. For example, if
you want to cancel job JONESAB, and cancel its output if it has already
executed, enter:

READY
cancel jonesab,p

After you enter the CANCEL command, the system will send you a READY

message and will notify the operator that the job has been cancelled.

Controlling the Output of Batch or Foreground Jobs
The OUTPUT command may be used to manipulate all held output,
regardless of whether the output is produced during the current LOGON

session, a previous LOGON session, or by a batch job submitted from any
source. This output must be held for terminal access either:

• Explicitly via HOLD on a DD statement or via the ALLOCATE or FREE

command, or
• Implicitly by specifying an installation-defined reserved class.

The OUTPUT command can:
• Direct the JCL statements and system messages (MSGCLASS) and

system output data sets (SYSOUT) produced by a job to your terminal.

Using Foreground Initiated Background (FIB) Commands 249

Page of GC28-0646-1
Revised April 29, 1974
By TNL: GN28-2572

• Direct the MSGCLASS and SYSOUT output from a job to a specific
data set.

• Change an output class used in a job.
• Route the MSGCLASS and SYSOUT output from a job to a remote

station.
• Release the output of a job for printing.
• Delete the output data sets (SYSOUT) or the system messages

(MSGCLASS) for jobs.
If you have NOTIFY=userid on the job cards that were submitted, a
message is written to your terminal or placed in the broadcast data set
when the background job terminates. Provided you have held the output,
you can then use the OUTPUT command to control the Iheld output
produced by the job.

For example, assume that job GREEN67 produces held output in classes A, B,
D, M, G, and 6. If you want the output in classes G and M listed at the
terminal, enter:

READY
output green67 class(g m) print(*)

If you want the output of class B to be listed in the GREEN.KEEP.OUTLlST
data set, enter:

READY
output green67 class(b) print(keep)

If you want to change the output in class A to class C, enter:

READY
output green67 class(a) newclass(c)

If you want to delete the output from class D, enter:

READY
output green67 class(d) delete

If you want to release the output of class 6, and have it printed in the
background by output services, enter:

READY
output green67 class(6) nohold

You can enter the PAUSE operand in the OUTPUT command to make the
system stop after each data set is listed on your terminal or on the data set
you indicate with the PRINT operand. When the system pauses it sends you
the message OUTPUT. You then have the option of pressing the RETURN
key to continue processing or entering the CONTINUE, SA YE, END or HELP
subcommand.

The CONTINUE subcommand allows you to continue processing your
output after an interruption occurs. An interruption occurs when:

• The printing of a data set completes and you used the PAUSE operand
in the OUTPUT command.

• You press the attention key.

250 OS/VS2 TSO Command Language Reference (VS2 Release 2)

-------------------- ----
--------- -------- ----

c

Page of GC28-0646-1
Revised April 29, 1974
By TNL: GN28-2572

Note: An attention interruption can cause unpredictable results in the print
processing. When attention is hit, the data set may be checkpointed 10 to
20 records back.

To retrieve data created during previous LOGON sessions, issue STATUS

userid. STATUS will return a jobi.d and status for each LOGON session as a
job on the output queue. It will also return jobid and status for the current
LOGON session as a job in executio~.

When you enter the CONTINUE subcommand. the system will resume
printing with the next data set to be processed. In the I following example
you request that the held data sets in output classes Band C be listed at
your terminal. The system pauses after printing the data set in B. You enter
the CONTINUE subcommand to resume processing with data set in C.

READY
output jones2 class(b c) print~*) pause

output class B

OUTPUT
continue

output class C

If the interruption was not caused by a pause, you may prefer to resume
printing at the beginning of the data set being processed. To resume
printing at the beginning, enter:

OUTPUT
continue begin

If you prefer to resume printing approximately 10 lines before the
interruption occurred, enter:

OUTPUT
continue here

The CONTINUE subcommand also lets you respecify the PAUSE operand
of the OUTPUT command. If you entered PAUSE in the OUTPUT command,
you can enter NOPAUSE in the CONTINUE subcommand, for example,

READY
output smithc class(d) print(data) pause

OUTPUT
continue begin nopause

If you did not specify PAUSE in the OUTPUT command, you can do so in
the CONTINUE subcommand. This causes the system to pause at the end of
each data set processed subsequently.

Using Foreground Initiated Background (FIB) Commands 251

Page of GC28-0646-1
Revised April 29, 1974
By TNL: GN28-2572

The SAVE subcommand allows you to place the data set listed before the
pause into another data set. This allows you to retrieve the data set later. In
the following example, if your logon identifier is Brown, you request that
held data sets in output classes E and F be listed at your terminal. After
listing the data set in E you request that it be saved in the
BROWN.OUTDATA.OUTLIST data set. You continue processing the next data
set after saving the data set in class E.

Note: If you want to list output at a terminal when submitting one or
more jobs, the name you specify must begin with your use rid and optionally
end with one or more alphameric characters (if the IBM-supplied installation
exit is used).

READY
output brownb class(e f) print(*) pause

OUTPUT
save outdata
OUTPUT
continue

The END subcommand is used to terminate the OUTPUT command. For
example,

READY
output dept30a class(a) print(*) pause

OUTPUT
end
READY

252 OS/VS2 TSO Command Language Reference (VS2 Release 2)

......... ,/

(-j

c

Page of GC28-0646-1
Revised April 29, 1974
By TNL: GN28-2572

CANCEL Command

Use the CANCEL command to halt processing of batch jobs that you have
submitted from your terminal. A READY message will be displayed at your
terminal if the job has been cancelled successfully. A message will also be
displayed at the system operator's console when a job is cancelled.

Installation management must authorize the use of CANCEL. This
command is generally used in conjunction with the SUBMIT, STATUS, and
OUTPUT commands.

CANCEL (jobname [(jobid)] ·Iist)

[
NOPURGEJ
PURGE

(jobname[(jobid))-list) specifies the names of the jobs that you want to
cancel. The jobnames must consist of your user identification plus one or
more alphameric characters up to a maximum of eight characters unless
the IBM-supplied exit has been replaced by your installation.
Also, you cannot cancel a TSO user or a started task that is not on an
output queue. The optional jobid sub field may consist of one to eight
alphameric characters (the first character must be alphabetic or national).
The jobid is a unique job identifier assigned by the job entry subsystem
at the time the job was submitted to the batch system. The jobid is
needed if you have submitted two jobs with the same name.

Note: When you specify a list of several job names, you must separate the
jobnames with standard delimiters and you must enclose the entire list
within parentheses.
PURGE specifies that the job and its output (on the output queue) are to be

purged from the system.
NOPURGE specifies that jobs are to be cancelled if they are in execution; output

generated by the jobs will remain available. If the jobs have executed, the output
still remains available.

Example 1

Operation: Cancel a batch job.

Known:
The name of the job: JE024Al

cancel je024a1

Example 2

Operation: Cancel several batch jobs.

Known:
The names of the jobs: D58BOBTA D58BOBTB(J5 t) D58BOBTC

cancel (d58bobta d58bobtb(j51) d58bobtc)

CANCEL Command 253

\ ,
,~., ,/

254 OS/VS2 TSO Command Language Reference (VS2 Release 2)

G

•

o

Page of GC28-0646- I
Revised April 29, 1974
By TNL: GN28-2572

Use the OUTPUT command to:

OUTPUT Command

Direct the output from a job to your terminal. The output includes the
job's Job Control Language statements (JCU, system messages
(MSGCLASS), and system output (SYSOUT) data sets.
Direct the output from a job to a specific data set.
Delete the output for jobs.
Change the output class(es) for a job.
Route the output for a job to a remote work station .
Release the output for a job for printing by the subsystem.

{
OUTPUT}
OUT

(jobname [(jobid)] -list)

[CLASS(classname-list)]

rPRINT Of5:!.. t\lJ~BEGINJ [PAUSE J[KEEP[HOLD 1] L \1dsnameVJ HERE NOPAUSE NOHOLDJ
NEXT NOKEEP

[DELETE]

[NEWCLASS(c1assname)] [DEST(remote-station-id)]

(job-name(jobid)J-list) specifies one or more names of batch or foreground
jobs. The jobname for foreground session is userid. Each jobrtame must
begin with your user identification and, optionally, can include one or
more additional characters unless the IBM-supplied installation exit that
scans and checks the jobname and user identification is replaced by a
user-written routine. The system will process the held output from the
jobs identified by the job-name-list. You should include the optional
jobid for uniqueness to avoid duplicate jobnames.

CLASS(class-name-list) specifies the names of the output classes to be
searched for output from the jobs identified in the jobname list. If you
do not specify the name of a class, all held output for the jobs will be
available. A class name is a single character or digit (A-Z or 0-9).

PRINT(data-set-name or *) specifies the name of the data set to which the
output is to be directed. If unqualified, the data-set-name will have the
user prefix added and the qualifier OUTLIST appended to it. You may
substitute an asterisk for the data set name to indicate that the output is
to be directed to your terminal. If you omit both the data set name and
the asterisk, the default value is the asterisk. PRINT is the default value if
you omit PRINT, DELETE. NEWCLASS, DEST, and HOLD/NOHOLD.

BEGIN indicates that output operations for a data set are to start from the
beginning of the data set whether it has been checkpointed or not.

HERE indicates that output operations for a data set that has been
checkpointed are to be resumed at the approximate point of interruption.
If the data set is not checkpointed, it will be processed from the
beginning. HERE is the default value if you omit HERE. BEGIN. and
NEXT.

NEXT indicates that output operations for a data set that has been
previousl~ checkpointed are to be skipped. Processing resumes at the

OUTPUT Command 255

Page of GC28-0646- t
Revised April 29, 1974
By TNL: GN28-2572

beginning of the uncheckpointed data sets. Caution: The checkpointed
data sets that are skipped will be deleted unless the KEEP operand is
specified.

PAUSE iHdicates that output operations are to pause after each SYSOUT

data set is listed to allow you to enter a SAVE or CONTINUE

subcommand. (A carrier return entered after the pause will cause normal
processing to continue.) This operand can be overridden by the
NOPAUSE operand of the CONTINUE subcommand.

NOPAUSE indicates that output operations are not to be interrupted. This
operand can be overridden by the PAUSE operand of the CONTINUE

subcommand. This is the default if neither PAUSE nor NOPAUSE is
specified.

KEEP specifies that the SYSOUT data set will remain enqueued after
printing (see also HOLD and NOH OLD).

NOKEEP specifies that the SYSOUT data set be deleted after it is printed.
NO KEEP is the default if neither KEEP nor NOKEEP is specified.

HOLD specifies that the kept SYSOUT data set be held for later access from
the terminal.

NOHOLD specifies that the kept SYSOUT data set be released for printing
by the subsystem. This is the default for KEEP if neither HOLD nor
NOH OLD is specified.

DELETE specifies that the classes of output specified with the CLASS

operand are to be deleted.
NEWCLASS(c1assname) is used to change one or more SYSOUT classes to the

class specified by the 11 classname 11 subfield.
DEST(station id) routes SYSOUT classes to a remote work station specified

by the "station id" subfield.

Considerations: The OUTPUT command applies to all jobs whose job names
begin with your user identification. Access to jobs whose job names do not
begin with a valid user identification tpust be provided by an
installation-written exit routine. The SUBMIT, STATUS, and CANCEL

commands apply to conventional batch jobs. You must have special
permission to use these commands.

Note: You can simplify the use of the OUTPUT command by including the
NOTIFY keyword either on the JOB card or on the SUBMIT command when
you submit a job for batch processing. The system will notify you when the
job terminates, giving you an opportunity to use the OUTPUT command.
MSGCLASS and SYSOUT data sets should be assigned to reserved classes or
explicitly held in order to be available at the terminal.

256 OS/VS2 TSO Command Language Reference (VS2 Release 2)

•

(~ --.. .. /

c

----- ------------ --------

Page of GC28-0646-1
Revised April 29, 1974
By TNL: GN28-2572

Output Sequence: Output will be produced according to the sequence of the
jobs that are specified, then by the sequence of classes that are specified for
the CLASS operand. For example, assume that you want to retrieve the
output of the following jobs:

IIJWSD581
II
IISYSPRINT
IISYSUT1
II

JOB 91435,MSGCLASS=X
EXEC PGM=IEBPTPCH
DD SYSOUT=Y
00 OSNAME=PDS,UNIT=3330,

II
II
IISYSUT2
IISYSIN

VOL=SER=11112,LABEL=(,SUL),
DISP=(OLD,KEEP),
DCB=(RECFM=U,BLKSIZE=3036)
DD SYSOUT=Z
DD *

PRINT TYPORG=PS,TOTCONV=XE
LABELS DATA=NO

1*
IIJWSD582 JOB 91435,MSGCLASS=X

EXEC PGM=IEHPROGM
DD SYSOUT=Y

II
IISYSPRINT
IID02 DD UNIT=3330,VOL=SER=333000,
II DISP=OLD
IISYSIN DD *

SCRATCH VTOC,VOL=3330=333000
1*

To retrieve the output, you enter:

output (jwsd581 jwsd582) class (x y z)

Your output will be listed in the following order:
1. Output of job JWSD581

a. class X (JCL and messages)
b. class Y (SYSPRINT data)
c. class Z (SYSUT2 data)

2. Output of job JWSD582
a. class X (JCL and messages)
b. class Y (SYSPRINT data)
c. message (No CLASS Z OUTPUT FOR JOB JWSD582)

If no classes are specified, the jobs will be processed as entered. Class
sequence is not predictable.

Subcommands: Subcommands for the OUTPUT command are: CONTINUE,
END, HELP, and SAVE. When output has been interrupted, you can use the
CONTINUE subcommand to resume output operations.

Interruptions causing subcommand mode occur when:
• Processing of a sysout data set completes and the PAUSE operand was

specified with the OUTPUT command.
• You press the attention key.

Note: Pressing the attention key purges the input/output buffers for the
terminal. Data and system messages in the buffers at this time may be lost.

Although the OUTPUT command attempts to back up 10 records to
recover the lost information, results are unpredictable due to record length
and buffer size. The user may see records repeated or he may notice
records missing if he attempts to resume processing of a data set at the
point of interruption (using the HERE operand of CONTINUE, or in the next
session using HERE on the command).

OUTPUT Command 257

Page of GC28-0646-1
Revised April 29, 1974
By TNL: GN28-2572

You can use the SAVE subcommand to copy a SYSOUT data set to (-
another data set for retrieval by a different method. Use the END ~./

subcommand to terminate OUTPUT. The remaining portion of a job that has
been interrupted will be kept for later retrieval at the terminal.

Checkpointed Data Set: A data set is checkpointed if it is interrupted during
printing and never processed to end of data during a terminal session.
Interruptions which cause a data set to be checkpointed occur when:

• Processing terminates in the middle of printing a data set because of
an error or ABEND condition.

• The attention key is pressed during the printing of a data set and the
CONTINUE NEXT subcommand is entered. The KEEP operand must be
present or the data set will be deleted.

• The attention key is pressed during the printing of a data set and the
END subcommand is entered.

Example 1

Operation: Direct the held output from a job to your terminal. Skip· any
checkpointed data sets.

~nown:

The name of the job: SMITH2

The job is in the system output class: SYSOUT =x

Output operations are to be resumed with the next SYSOUT data set or
group of system messages that have never peen interrupted. You want
the system to pause after processing each output data set.

output smith2 class(x) print(*) next pause

Example 2

Operation: Direct the held output from two jobs to a data set so that it can
be saved and processed at a later date.

Known:
Th~ name of the jobs: JANA JANB

The name for the output data set: JAN.AUGPP.OUTLIST

output (jana,janb) class(r,s,t) print(augpp)

Example 3

Operat;on: Change an output cl~ss.

Known:
The name of the job: KEAN 1

The existing output class: SYSOUT=S

The new output class: T

output keanl class(s) newclass(t)

~xampl~ 4

Operation: Delete the held output instead of changing the class (see
Example 3).

out keanl class(s) delete

258 OS/VS2 TSO Command Language Reference (VS2 Release 2)

c····
.-'

CONTINUE Subcommand of OUTPUT

Use the CONTINUE subcommand to resume output operations that have
been interrupted.
Interruptions occur when:

• An output operation completes and the PAUSE operand was specified
with the OUTPUT command.

• You press the attention key.

[

BEGIN]
HERE
NEXT

[
PAUSE]
NOPAUSE

BEGIN indicates that output operations are to be resumed from the
beginning of the data set being processed at the time of interruption.

NEXT halts all processing of the current data set and specifies that output
operations are to be resumed with the next data set.
The next data set is determined by the BEGIN, HERE, or NEXT operand
on the OUTPUT command. If BEGIN was specified on the command,
processing will start at the beginning of the next data set. If HERE was
specified, processing will start at the checkpoint of the next data set, or
at its beginning if no checkpoint exists. If NEXT was specified, processing
will start at the beginning of the next uncheckpointed data set. NEXT is
the default value if BEGIN ,HERE, and NEXT are omitted.

Caution: The data set that was interrupted and any that are skipped will be
deleted unless KEEP was specified on the command.
HERE indicates that output operations are to be resumed at a point of

interruption. If attention was pressed, processing resumes at the
approximate point of interruption in the current data set. If end of data
was reached and PAUSE was specified, processing resumes at the
beginning of the next data set (even if it was checkpointed and HERE

was specified on the command).
PAUSE indicates that output operations are to pause after each data set is

processed to allow you to enter a SAVE subcommand. (A carrier return
entered after the pause will cause normal processing to continue.) You
can use this operand to override a previous NOP AUSE condition for
output.

NOPAUSE indicates that output operations are not to be interrupted. You
can use this operand to override a previous condition for output.

CONTINUE Subcommand of OUTPUT 259

Example 1

Operation: Continue output operation with the next SYSOUT data set.

continue

Example 2

Operation: Start output operations over again with the current data set
being processed.

continue begin

260 OS/VS2 TSO Command Language Reference (VS2 Release 2)

C:

()

END Subcommand of OUTPUT

Use the END subcommand to terminate the operation of the OUTPUT

command.

END

END Subcommand of OUTPUT 26 t

o

C:

262 OS/VS2 TSO Command Language Reference (VS2 Release 2)

HELP Subcommand of OUTPUT

Use the HELP subcommand to obtain the syntax and function of the
OUTPUT subcommands. Refer to the HELP command for a description of
the syntax and function of the HELP subcommand.

HELP Subcommand of OUTPUT 263

c
264 OS/VS2 TSO Command Language Reference (VS2 Release 2)

c., SAVE Subcommand of OUTPUT

Use the SAVE subcommand to copy the SYSOUT data set from the spool
data set to the named data set. This data set can be any data set that would
be valid if used with the PRINT operand. There is no restriction against
saving JeL. To use SAVE, you should have specified the PAUSE keyword on
the OUTPUT command. SAVE will not save the entire SYSOUT output of the
job, only the data set currently being processed.

data-set-name

data-set-name specifies the new data set name to which the SYSOUT data
set is to be copied.

Example 1

Operation: Save an output data set.

Known:
The name of the data set: ADT023.NEWOUT.OUTLIST

save newout

Example 2

Operation: Save an output data set.

Known:
The name of the data set: BXZ037A.OLDPART . .oUTLIST

The data set member name: MEM5

The data set password: ZIP

save oldpart(mem5)/zip

SAVE Subcommand of OUTPUT 265

CI

266 OS/VS2 TSO Command Language Reference (VS2 Release 2)

-----_ .. _._- .. _-------_. _ .. _--_

C)

STATUS Command

Use the STATUS command to have the status of conventional batch jobs
displayed at your terminal. You can obtain the status of all batch jobs, of
several specific batch jobs, or of a single batch job. The information that
you receive for each job will tell you whether it is awaiting execution, is
currently executing, or has completed execution but is still on an output
queue. It will also indicate whether the job is in hold status.

This command may be used only by personnel who have been given the
authority to do so by the installation management.

[(jobname [(jobid)] -list)]

(jobnamel(jobidH-list) specifies the names of the conventional batch jobs
for which you want to know the status. If two or more jobs have the
same jobname, the system will display the status of all the jobs
encountered and supply jobids for identification. When more than one
jobname is included in the list, the list must be enclosed within
parentheses. If you do not specify any jobnames, you will receive the
status of all batch jobs in the system whose jobnames consist of your
userid and an identifying character (alphameric or national).
The optional jobid subfield may consist of one to eight alphameric
characters (the first character must be alphabetic or national). The jobid
is a unique job identifier assigned by the job entry subsystem at the time
the job was submitted to the batch system.

Note: When you specify a list of job names, you must separate the
jobnames with standard delimiters.

STATUS Command 267

o

C,
./

268 OS/VS2 TSO Command Language Reference (VS2 Release 2)

_.--- -------------,----

C~:

Page of GC28-0646-1
Revised April 29, 1974
By TNL: GN28-2572

----- ---------

SUBMIT Command

Use the SUBMIT command or SUBMIT subcommand of EDIT to submit one
or more batch jobs for conventional processing. Each job(s) submitted must
reside in either a sequential, a direct-access data set or in a member of a
partitioned data set. Submitted data sets must be fixed blocked and have 80
byte records. Using EDIT command to create a CNTL data set will provide
the correct format.

Any of these data sets can contain part of a job, one job, or more than
one job that can be executed via a single entry of SUBMIT. Each job must
comprise an input job stream (JCL plus data). Do not submit data sets with
descriptive qualifiers TEXT or PLI if the characters in these data sets are
lower case.

Job cards are optional. The generated jobname will be your userid plus
an identifying character. SUBMiT will prompt you for this character. SUBMIT
will insert the job accounting information from the user's LOGON command
on any generated job card. The system default MSGCLASS and CLASS are
used for submitted jobs unless MSGCLASS and CLASS are specified on the
job card(s) being submitted. See the first section in Appendix A for an
example of a generated JOB card.

Notes:
• If any of the above types of data sets (sequential, direct access or

member of a partitioned data set) containing two or more jobs is
submitted for processing, certain conditions apply.

The SUBMIT command processor will build a job card for the first job in
the first data set, if none was supplied, but will not build job cards for any
other jobs in the data set(s).

If the SUBMIT processor determines that a job cannot execute properly,
the remaining job(s) following it in the data set will not be executed.

Once the SUBMIT processor submits a job for processing, errors
occurring in the execution of that job have no effect on the submission of
any remaining job(s) in that data set.

• Any job card you supply should have a job name consisting of your
userid and a single identifying character. If the job name is not in this
format, you will not be able to refer to it with the CANCEL command,
and you will be required to specify the jobname in the STATUS
command if the IBM-supplied exit has not been replaced by your
installation.

• If you wish to provide a job card but you also want to be prompted
for a unique jobname character, put your use rid in the- jobname field
and follow it with two blanks so that there is room for SUBMIT to
insert the prompted-for character. This allows you to change job names
without re-editing the JCL data set.

• Once SUBMIT has successfully submitted a job for conventional batch
processing, it will issue a 'jobname(jobid) submitted' message. The
jobid is a unique job identifier assigned by the job entry subsystem.
The syntax and function of the SUBMIT subcommand of EDIT is the

same as SUBMIT command, except that no data set name is required
because the data set being submitted is the same as the data set being
edited.

SUBMIT Command 269

Page of GC28-0646-1
Revised April 29, 1974
By TNL: GN28-2572

• This command or subcommand may be used only by personnel who
have been given the authority to do so by the installation
management.

• SUBMIT does not support job entry subsystem control cards which
precede the JOB card.

{
SUBMIT}
SUB

(data·set-list)

[
NOTIFY]
NONOTIFY

SUBMIT Subcommand of EDIT

{
SUBMIT}
SUB [

NOTIFY]
NONOTIFY

(data-set-Iist) specifies one or more data set names or names of members
of partitioned data sets that define an input stream (JCL plus data). If
you specify more than one data set name, enclose them in parentheses.

NOTIFY specifies that you are to be notified when your job terminates in
the background when no job card has been provided with the job you
are processing. If you have elected not to receive messages, the message
will be placed in the Broadcast data set. You must then enter LlSTBC to
receive the message. You may obtain this message by issuing LlSTBC or
LOGON.

c:

This is the default value if both NOTIFY and NONOTIFY are omitted and r-~,

a jobcard is generated.
If you supply your own job card, use the NOTIFY=userid keyword on the
jobcard if you wish to be notified when the job terminates. SUBMIT
ignores the NOTIFY keyword unless it is generating a jobcard.

NONOTIFY specifies that no termination message will be issued or placed in
the broadcast data set.
The NONOTIFY operand is only recognized when no jobcard has been
provided with the job that you are processing. If you supply your own
jobcard, you must use the NOTIFY=userid operand on the jobcard to
receive notification.

Example 1

Operation: Submit two jobs for conventional batch processing.

Known:
The names of the data sets that contain the jobs:

ABTJQ.STRESS.CNTL
ABTJQ.STRAIN.CNTL

submit (stress, strain)

270 OS/VS2 TSO Command Language Reference (VS2 Release 2)

c'

--------_ _-----

C:

o

Page of GC28-0646-1
Revised April 29, 1974
By TNL: GN28-2572

Example 2

Operation: Data sets may be concatenated and submitted as a single job.

Known:
JCL.CNTL(ASMFCLG): contains JCL for the job.
MYDATA.DATA: contains the input data.

submit (jcl(asmfclg) mydata)

This will cause a single background job to be submitted and will
simultaneously concatenate a generated job card (if required), job control
language, and the data. Each data set will not be submitted as a separate
job.

Note: If the PDS is named 'id.cntl', only the membername needs to be
specified on the command, such as: submit «membername» or submit
«asmfclg) mydata).

Example 3

Operation: Submit the data set being edited for batch processing (use the
SUBMIT subcommand of EDIT).

Known:
The data set has no job card and you do not want to be notified when
the job is completed.

submit nonotify

SUBMIT Command 271

•

c
272 OS/VS2 TSO Command Language Reference (VS2 Release 2)

-------.-.-----------

o

Appendix B: Program Product Commands

ASM Command
The ASM command is provided as part of the optional TSO ASM Prompter
program product which is available for a license fee.

Use the ASM command to process assembler language data sets and
produce object modules. The prompter requests required information and
enables you to correct your errors at the terminal.

CALC Command
The CALC command is provided as part of the optional ITF:PL/I program
product which is available for a license fee.

Use the CALC command to execute ITF:PL/I statements in desk calculator
mode; that is, to have statements interpreted and executed as you enter
them.

COBOL Command
The COBOL command is provided as part of the optional COBOL Prompter
program product which is available for a license fee.

Use the COBOL command to compile American National Standard (ANS)

COBOL programs. This command reads and interprets parameters for the OS

Full American National Standard COBOL Version 3 or Version 4 compiler
and prompts you for any information that you have omitted or entered
incorrectly. It also allocates required data sets and passes parameters to the
compiler.

COBOL also allows specification of the TEST operand to compile
programs suitable for testing with the FORTRAN Interactive Debug program
product (see TESTCOB, below).

CONVERT Command
The CONVERT command is provided as part of the optional ITF:PL/I and
BASIC program product or the Code and Go FORTRAN program product
which is available for a license fee.

The CONVERT command converts language statements contained in data
sets to a form suitable for a compiler other than the one for which they
were originally intended. The conversions that can be accomplished with
this command are shown in Figure 13.

Appendix B: Program Product Commands 273

FROM

Statements suitable for
TSO ITF:PL/I

Free-form statements suitable
f or the Code and Go
FORTRAN compiler

Fixed-form statements
suitable for the FORTRAN
(G 1) compiler or the Code
and Go FORTRAN compiler

Statements in an OS/ITF
(PL/I or BASIC)

TO

Statements suitable for the
PL/I (F) compiler or for the OS PL/I
Checkout and Optimizing compilers.

Fixed-form statements suitable
for the FORTRAN (G 1) compiler, the
Code and Go FORTRAN compiler, and
Type 1 FORTRAN compilers.

Free-form statements suitable
for the Code and Go FORTRAN
compiler

A form acceptable by TSO ITF
(PL/I or BASIC)

Figure 13. Language Conversions Using the CONVERT Command

COPY Command
The COpy command is provided as part of the optional TSO Data Utilities:
COPY, FORMAT, LIST, MERGE program product which is available for a
license fee.

Use the COpy command to copy sequential or partitioned data sets. You
can also use this command to:

• Add members to or merge partitioned data sets.
• Resequence line numbers of copied records.
• Change the record length, the block size, and the record format when

copying into a sequential data set.

FORMAT Subcommand of EDIT
The FORMAT subcommand is provided as part of the optional TSO Data
Utilities: COPY, FORMAT, LIST, MERGE program product which is available
for a license fee.

Use the FORMAT subcommand to format textual output. This
subcommand provides the facilities to:

• Print a heading on each page.
• Center lines of text between margins.
• Control the amount of space for all four margins.
• Justify left and right margins of text.
• Number pages of output consecutively.
• Halt printing when desired.
• Print mUltiple copies of selected pages.
• Control line and page length.
• Control paragraph indentation.

MERGE Subcommand of EDIT
The MERGE subcommand is provided as part of the optional TSO Data
Utilities: COpy, FORMAT, LIST, MERGE program product which is available
for a license fee.

I

Use the MERGE subcommand to:
• Merge, into the data set being edited, all or part of itself.
• Merge, into the data set being edited, all or part of another data set.

274 OS/VS2 TSO Command Language Reference (VS2 Release 2)

c

C---. /
~.

FORMAT Command
The FORMAT command is provided as part of the optional TSO Data
Utilities: COPY, FORMAT, LIST, MERGE program product which is available
for a license fee.

Use the FORMAT command to format textual output. This command
provides the facilities to:

• Print a heading on each page.
• Center lines of text between margins.
• Control the amount of space for all four margins.
• Justify left and right margins of text.
• Number pages of output consecutively.
• Halt printing when desired.
• Print multiple copies of selected pages.
• Control line and page length.
• Control paragraph identation.
• Store a data set that has already been formatted.
• Print all or part of a sequential or partitioned data set.

FORT Command
The FORT command is provided as part of the optional TSO FORTRAN

Prompter program product which is available for a license fee.
Use the FORT command to compile a FORTRAN IV (G1) program. You

will be prompted for any information that you have omitted or entered
incorrectly. It also allocates required data sets and passes parameters to the
FORTRAN IV (G 1) compiler.

FORT also allows specification of the TEST operand to compile programs
suitable for testing with the FORTRAN Interactive Debug program product
(See TESTFORT below).

GOFORT Command
The GOFORT command is provided as part of the optional TSO Code and
Go FORTRAN processor. It may be used to compile, load and execute a
source program that has previously been saved. The GOFORT command
permits the execution of programs initially coded using the BCD character
set; neither the RUN command nor the RUN subcommand of EDIT provides
this 'capability.

GOFORT also allows specification of the TEST operand to compile
programs suitable for testing with the FORTRAN Interactive Debug program
product (See TESTFORT below).

LIST Command
The LIST command is provided as part of the optional TSO Data Utilities:
COPY, FORMAT, LIST, MERGE program product which is available for a
license fee.

Use the LIST command to display a sequential data set or a member of a
partitioned data set. You can arrange fields within records for output; you
can include or suppress record numbers; you can list all or part of a
particular line of data, and you can list a single line of data, a group of
lines, or a whole data set.

Appendix B: Program Product Commands 275

MERGE Command
The MERGE command is provided as part of the optional TSO Data
Utilities: COPY, FORMAT, LIST, MERGE program product which is available
for a license fee.

Use the MERGE command to:
• MERGE a complete or part of a sequential or member of a partitioned

data set into a sequential or member of a partitioned data set.
• Copy a complete or part of a sequential or member of a partitioned

data set into a new or (pre-allocated) empty sequential data set.
• Copy a complete or part of a sequential or member of a partitioned

data set into a new member of an existing partitioned data set.
• Copy a complete or part of a sequential or member of a partitioned

data set into a new or (pre-allocated) empty partitioned data set.

PLI Command
The PLI command is provided as part of the optional PL/I Optimizing
compiler program product, which is available for a license fee. The program
product includes the PL/I Prompter.

Use the PLI command to invoke the PL/I Optimizing compiler. The
prompter will allocate required data sets and prompt you for any
information that you have omitted or entered incorrectly, then it will pass
control to the compiler.

PLIC Command
The PLIC command is provided as part of the optional PL/I Checkout
compiler program product, which is available for a license fee. The program
product includes the PL/I Prompter.

Use the PLIC command to invoke the PL/I Checkout compiler. The
prompter will allocate required data sets and prompt you for any
information that you have omitted or entered incorrectly, then it will pass
control to the compiler.

Subcommands of the PLIC command are provided to aid checking-out of
the PL/I program. These allow the programmer to intervene during
execution of the program and temporarily modify it.

TESTCOB Command
The TESTCOB command is provided as part oethe optional COBOL

Interactive Debug program product that is available for a license fee. Used
in conjunction with Full American National Standard COBOL Version 4,
COBOL Interactive conjunction with Code and Go FORTRAN or FORTRAN

IV (Gt), FORTRAN Interactive Debug provides comprehensive capabilities for
program monitoring and checkout.

TESTFORT Command
The TESTFORT command is provided as part of the optional FORTRAN

Interactive Debug program product that is available for a license fee. Used
in conjunction with Code and Go FORTRAN or FORTRAN IV(Gt), FORTRAN

Interactive Debug provides comprehensive capabilities for program
monitoring and checkout.

276 OS/VS2 TSO Command Language Reference (VS2 Release 2)

----- .-_ ... __ ._--_.-----_._---- ----------_._--------

(--". ,i
,-, . ./'

C,'

c

Page of GC28-0646- t
Revised April 29, 1974
By TNL: GN28-2572

'----_., .. _--_ -

Appendix C: Access Method Services Commands

Access Method Services is a multifunction service program that primarily
establishes and maintains Virtual Storage Access Method (VSAM) data sets.
The following Access Method Services commands provide the utility
functions applicable to VSAM data sets and are used in the same way as
TSO commands at the terminal:

ALTER changes attributes in catalog entries.
DEFINE(DEF) creates catalog entries for data sets. Subcommands are

CLUSTER(CU, MASTERCATALOG(MRCAT.MCAT). NONVSAM(NVSAM),

SPACE(SP), and USERCATALOG(UCAT).

DELETE(DEL) deletes catalog entries.
EXPORT(EXP) copies a data set for backup.
IMPORT(lMP) reads a backup copy of a data set.
LlSTCAT(LlSTC) lists catalog entries.
PRINT prints VSAM data sets.
REPRO copies data sets and converts sequential and indexed-sequential

data sets to VSAM format.
VERIFY(VFY) causes a catalog to correctly record the end of a data set

after a data set closing error may have caused the end to be recorded
incorrectly.

CNVTCAT CQnverts the contents of an as catalog or control volume into
entries in a OS/VS2 Release 2 catalog.

For additional information about the syntax and function of these
commands, ref.er to OS!VS Access Method Services, GC26-3836.

Appendix C: Access Method Services Commands 277

278 OS/VS2 TSO Command Language Reference (VS2 Release 2)

C_--

C:

Where more than one page is given, the major reference is first.
Indexes to OS/VS2 publications are consolidated in the OS/VS2
Master Index, GC28-0693, and the OS/VS2 Master Index of
Logic, GY28-0694. For additional information about any
subject listed below, refer to other publications listed for the
same subject in the Master Index.

AC operand (LINK) 135
access method services commands 277
ACCT operand (LOGON) 153
ADD operand (PROTECT) 160
ADDR operand

LISTPSW subcommand (TEST) 219
LISTTCB subcommand (TEST) 221

aids to terminal users 15
ALIAS operand

DELETE 51
LISTCAT 141
RENAME 163

ALL operand
CHANGE subcommand (EDIT) 71
HELP 127
LISTCAT 141

ALLOCATE
command 31
subcommand (EDIT) 67

allocation of data sets 31
ALLOCA TION operand (LISTCA T)
AL TER command 277
AS IS operand (EDIT) 57
ASM

command 273
operand (EDIT) 55
operand (RUN) 166

141

assignment of values function of TEST 183
AT subcommand (TEST) 185
attention interruption 20
A TTRIB command 39
attributes of data sets 39
ATTRLIST operand (FREE) 124
A VBLOCK operand (ALLOCATE) 34

BASIC operand
EDIT SS
RUN 167

basic TSO information 15
BEGIN operand

CONTINUE subcommand (OUTPUT) 259
OUTPUT 255

BFALN operand (ATTRIB) 42
BFTEK operand (ATTRIB) 43
BLKSIZE operand (ATTRIB) 41
BLOCK operand

ALLOCATE 34
EDIT 57

BOTTOM subcommand (EDIT) 69
broadcast messages 23
BUFL operand (A TTRIB) 41
BUFNO operand (ATTRIB) 41
BUFOFF operand (ATTRIB) 44
BREAK operand (TERMINAL) 173

Page of GC28-0646-1
Revised April 29, 1974
By TNL: GN28-2572

CALC command 273
CALL

command 47
operand (LOADGO) 148
subcommand (TEST) 187

CANCEL command 2S3
CAPS operand (EDIT) 57
CATALOG operand

ALLOCATE 36
DELETE 50
FREE 124
LISTCAT 141
LISTDS 146

CHANGE subcommand (EDIT)' 71
changing modes of operation 62
CHAR operand (PROFILE) 156
CHAR48 operand (EDIT) 55
CHAR60 operand (EDIT) 55
character deletion 15
CHECK operand

RUN 166
RUN subcommand (EDIT) 100

CLASS operand (OUTPUT) 255
CLEAR operand (TERMINAL) 174
CLIST operand (EDIT) 55
CLUSTER

operand
DELETE 50
LISTCAT 142

subcommand (DEFINE) 277
CN operand (SEND) 170
CNTL operand (EDIT) 55
CNVTCA T command 277
COBLIB operand

LINK 133
LOADGO 148

COBOL
command 273
operand (EDIT) 55
operand (RUN) 166

command procedures 235
CONTINUE subcommand (OUTPUT) 259
CONVERT command 273
COUNT operand (AT subcommand of TEST) 185
COPY

command 274
subcommand (TEST) 189

CP operand (TEST) 180
CYLINDERS operand (ALLOCATE) 35

DATA operand
EDIT 55
LlSTALC 142
PROTECT 160

data set naming conventions 24
DATASET operand

ALLOCATE 32
FREE 123

DC operand (LINK) 135
DCBS operand (LINK) 135

Index

Index 279

DEFER operand (AT subcommand of TEST) 185
DEFINE command and sub commands 277
DELETE

command 49,277
operand

ALLOCATE 36
FREE 124
OUTPUT 256
PROTECT 160

subcommand
. EDIT 77

TEST 193
delimiters 18
DEN operand (ATTRIB) 44
DEST operand

ALLOCATE 35
FREE 124
OUTPUT 256

DIAGNS operand (ATTRIB) 44
DIR operand (ALLOCATE) 35
DISCONNECT operand (LOGOFF) 151
DOWN subcommand (EDIT) 79
DROP subcommand (TEST) 195
DSORG operand (A TTRIB) 44
DUMMY operand (ALLOCATE) 33

EDIT command 53
edit mode 61
END

operand (WHEN statement) 243
statement 237
subcommand

EDIT 81
OUTPUT 261
TEST 197

entering information at a terminal 15
ENTRIES operand

LISTALC 137
LISTCAT 142

EP operand (LOADGO) 149
EQUATE

operand (GETMAIN subcommand of TEST) 203
subcommand (TEST) 199

ERASE operand (DELETE) 50
EROPT operand (ATTRIB) 43
EXEC command 119
EXPDT operand (ATTRIB) 42
EXPORT command 277

FIELD operand
LISTDCB subcommand (TEST) 213
LISTDEB subcommand (TEST) 215
LISTTCB subcommand (TEST) 221

FILE operand
ALLOCATE 33
DELETE 50
FREE 124

FIND subcommand (EDIT) 83
FIXED operand

EDIT 56
RUN 167

foreground-initiated background commands 247
FORMAT

command 275
subcommand (EDIT) 274

280 OS/VS2 TSO Command Language Reference (VS2 Release 2)

Page of GC28-0646-1
Revised April 29, 1974
By TNL: GN28-2572

FORT
command 275
operand (RUN) 166

FORTE operand (EDIT) 55
FORTG operand (EDIT) 55
FORTGI operand (EDIT) 55
FORTH operand (EDIT) 55
FORTLIB operand

HELP 127
LINK 133
LOADGO 148

FREE
command 123
operand

EDIT 55
RUN 167

FREEMAIN subcommand (TEST) 201
FUNCTION operand (HELP) 127

GENERATIONDATAGROUP operand
DELETE 51
LISTCAT 142

generic name 142, 145
GETMAIN subcommand (TEST) 203
GO

operand
RUN 167
RUN subcommand (EDIT) 99

subcommand (TEST) 205
GOFORT

command 275
operand

EDIT 55
RUN 167

HELP
command 127
subcommand

EDIT 85
OUTPUT 263, 127
TEST 207, 127

HERE operand
CONTINUE subcommand (OUTPUT) 259
OUTPUT 255

HIAR operand (LINK) 131
HISTORY operand

LISTALC 137
LlSTDS 146

HOLD operand
ALLOCATE 35
FREE 124
LOGOFF 151
OUTPUT 256

IMAGE operand (T ABSET subcommand of EDIT) 112
IMPORT command 277
INDEX operand (LiSTCAT) 142
informational messages 23
INPUT

operand
ATTRIB 42
TERMINAL 173

subcommand (EDIT) 87
input mode 59
INSERT subcommand (EDIT) 89

c

---_._--- ------------_ _--

c

insert/replace/delete function (EDIT) 91
INTERCOM operand (PROFILE) 157
interpretation of HELP information 24
IPLI operand

EDIT 55
RUN 166

KEEP operand
ALLOCATE 36
FREE 124
OUTPUT 256

KEY LEN operand (ATTRIB) 44
keyword operands 17

LABEL operand
ALLOCATE 35
LISTDS 146

LENGTH operand
COPY subcommand (TEST) 189
EQUATE subcommand (TEST) 199
LIST subcommand (TEST) 210

LET operand
LINK 134
LOADGO 149

LEVEL operand
LISTCAT 142
LISTDS 146

LIB operand
LINK 133
LOADGO 148
RUN 166
RUN subcommand (EDIT) 99

LIMCT operand (ATTRIB) 44
line by line data entry 16
LINE operand

EDIT 57
PROFILE 156

LINES operand (TERMINAL) 173
LINESIZE operand (TERMINAL) 174
LINK command 131
LIST

command 275
operand

EXEC 120
LINK 134
PROFILE 157
PROTECT 160

subcommand
EDIT 93
TEST 209

LISTALC command 137
LISTBC command 139
LISTCAT command 141,277
LISTDCB subcommand (TEST) 213
LISTDEB subcommand (TEST) 215
LISTDS command 145
LISTMAP subcommand (TEST) 217
LISTPSW subcommand (TEST) 219
LISTTCB subcommand (TEST) 221
LMSG operand

RUN 167
RUN subcommand (EDIT) 100

Page of GC28-0646-1
Revised April 29, 1974
By TNL: GN28-2572

LOAD
operand

LINK 133
TEST 180

subcommand (TEST) 223
LOADGO command 147
LOGOFF command 151
LOGON

command 153
operand (SEND) 169

LPREC operand
RUN 167
RUN subcommand (EDIT) 100

LRECL operand (ATTRIB) 42

MAIL operand
LISTBC 139
LOGON 153

MAP operand
LINK 133
LOADGO 148

MASTERCATALOG
operand (DELETE) 49
subcommand (DEFINE) 277

MAXVOL operand (ALLOCATE) 35
MEMBERS operand

LlSTALC 137
LISTDS 146

MERGE
command 276
subcommand (EDIT) 274

messages
broadcast 23
information 23
prompting 22

MOD operand (ALLOCATE) 33
MODE operand (PROFILE) 157
MSGID operand

HELP 127
PROFILE 157

MULTIPLE operand
EQUATE subcommand (TEST) 200
LIST subcommand (TEST) 210

NAME operand
LISTCAT 141
LOADGO 149

naming conventions for TSO data sets 24
NCAL operand (LINK) 133
NCP operand (ATTRIB) 42
NE operand (LINK) 135
NEW operand

ALLOCATE 33
EDIT 56

NEWCLASS operand (OUTPUT) 256
NEXT operand

CONTINUE subcommand (OUTPUT) 259
OUTPUT 255

NOBREAK operand (TERMINAL) 174
NOCALL operand

LINK 131
LOADGO 148

Index 281

NOCHAR operand (PROFILE) 156
NOCLEAR operand (TERMINAL) 174
NOCP operand (TEST) 180
NODC operand (LINK) 135
NODEFER operand (AT subcommand of TEST) 186
NOERASE operand (DELETE) 50
NOGO operand

RUN 167
RUN subcommand (EDIT) 99

NOHIAR operand (LINK) 131
NOHOLD operand

ALLOCATE 35
FREE 124
OUTPUT 256

NOINPUT operand (TERMINAL) 173
NOINTERCOM operand (PROFILE) 157
NOKEEP operand (OUTPUT) 256
NOLET operand

LINK 134
LOADGO 149

NOLINE operand (PROFILE) 156
NOLINES operand (TERMINAL) 1'73
NOLIST operand

EXEC 120
LINK 134

NOMAP operand
LINK 133
LOADGO 148

NOMAIL operand
L1STBC 139
LOGON 154

NOM ODE operand (pROFILE) 157
NOMSGID operand (PROFILE) 157
NONCAL operand (LINK) 133
NONE operand (LINK) 135
NONOTICES operand

LISTBC 139
LOGON 154

NONOTIFY operand
AT subcommand (TEST) 186
SUBMIT 270

NONUM operand (EDIT) 57
NONVSAM

operand
DELETE 51
LISTCAT 142

subcommand (DEFINE) 277
NOOL operand (LINK) 135
NOOVL Y operand (LINK) 134
NOPA USE operand

CONTINUE subcommand (OUTPUT) 259
OUTPUT 256
PROFILE 157
RUN 167
RUN subcommand (EDIT) 101

NOPOINTER operand (COpy subcommand of TEST) 189
NOPRINT operand

LINK 133
LOADGO 148

282 OS!VS2 TSO Command Language Reference (VS2 Release 2)

Page of GC28-0646-1
Revised April 29, 1974
By TNL: GN28-2572

NOPREFIX operand (PROFILE) 157
NOPROMPT operand

EXEC 120
INPUT subcommand (EDIT) 87
PROFILE 157

NOPURGE operand
CANCEL 253
DELETE 50

NOPWREAD operand (PROTECT) 160
NOREFR operand (LINK) 134
NORENT operand (LINK) 134
NORES operand (LOADGO) 148
NOREUS operand (LINK) 134
NOSCAN operand (EDIT) 57
NOSCRATCH operand (DELETE) 50
NOSCTR operand (LINK) 134
NOSECONDS operand (TERMINAL) 173
NOSTORE operand

RUN 167
RUN subcommand (EDIT) 101

NOTERM operand
LINK 135
LOAD GO 148

NOTEST operand
LINK 135
RUN 167
RUN subcommand (EDIT) 100

NOTICES operand
LISTBC 139
LOGON 154

NOTIFY operand
AT subcommand (TEST) 186
SUBMIT 270

NOTIMEOUT operand (TERMINAL) 174
NOW operand (SEND) 169
NOWAIT operand (SEND) 170
NOWRITE operand (PROTECT) 160
NOWTPMSG operand (PROFILE) 158
NOXCAL operand (LINK) 134
NOXREF operand (LINK) 134
NUM operand

EDIT 57
LIST subcommand (EDIT) 93

OBJECT operand
RUN 168
TEST 180

OFF
operand

SCAN subcommand (EDIT) 105
TAB SET subcommand (EDIT) 112
VERIFY subcommand (EDIT) 117

subcommand (TEST) 225
OL operand (LINK) 135
OLD operand

ALLOCATE 33
EDIT 56

c

•

C,'

c

ON operand
SCAN subcommand (EDIT) 105
TABSET subcommand (EDIT) 112
VERIFY subcommand (EDIT) 117

operands
keyword 17
positional 17

OPERANDS operand (HELP) 127
OPERATOR operand (SEND) 170
OPT operand

RUN 166
R UN subcommand (EDIT) 99

OPTCD operand (A TTRIB) 42
OUTFILE operand (L1STCAT) 141
OUTPUT

command 255
operand (A TTRIB) 42

OVL Y operand (LINK) 134

PAGESPACE operand
DELETE 51
LISTCAT 141

PARM operand (CALL subcommand of TEST) 187
PARALLEL operand (ALLOCATE) 35
password data set 159
passwords, specifying 28
PAUSE operand

CONTINUE subcommand (OUTPUT) 259
OUTPUT 256
PROFILE 157
RUN 167
RUN subcommand (EDIT) 101

PERFORM operand (LOGON) 154
PLI

command 276
operand

EDIT 54
RUN 166

PLIBASE operand
LINK 133
LOADGO 148

PLIC command 276
PLICMIX operand

LINK 133
LOADGO 148

PLIF operand (EDIT) 54
PLILIB operand

LINK 133
LOADGO 148

POINTER operand (COpy subcommand of TEST) 189
POSITION operand (ALLOCATE) 35
PREFIX operand (PROFILE) 157
PRINT

command 277
operand

LINK 133
LIST subcommand (TEST) 210
LISTDCB subcommand (TEST) 213
LISTDEB subcommand (TEST) 215
LISTMAP subcommand (TEST) 217
LISTPSW subcommand (TEST) 219
LISTTCB subcommand (TEST) 221
LOADGO 148
OUTPUT 255

Page of GC28-0646- t
Revised April 29, 1974
By TNL: GN28-2572

PRN ATE operand (ALLOCATE) 35
PROC operand (LOGON) 153
PROC statement 239
PROFILE

command 155
subcommand (EDIT) 95,155

program product commands 275
PROMPT operand

EXEC 120
INPUT subcommand (EDIT) 87
PROFILE 157

PROTECT command 159
PURGE operand

CANCEL 253
DELETE 50

PWREAD operand (PROTECT) 160
PWWRITE operand (PROTECT) 160

QUALIFY subcommand (TEST) 227
quoted string notation 72

RECFM operand (ATTRIB) 43
RECONNECT operand (LOGON) 154
REFR operand (LINK) 134
RELEASE operand (ALLOCATE) 36
RENAME command 163
RENT operand (LINK) 134
RENUM subcommand (EDIT) 97
REPLACE operand (PROTECT) 160
REPRO command 277
RES operand (LOADGO) 148
RETPD operand (ATTRIB) 42
RETURN operand (CALL subcommand of TEST) 187
REUS operand (LINK) 134
ROUND operand (ALLOCATE) 36
RUN

command 165
subcommand (EDIT) 99
subcommand (TEST) 229

SAVE
operand (SEND) 169
subcommand (EDIT) 103
subcommand (OUTPUT) 265

SCAN
operand (EDIT) 56
subcommand (EDIT) 105

SCRATCH operand (DELETE) SO
SCRSIZE operand (TERMINAL) 174
SCTR operand (LINK) 134
SECONDS operand (TERMINAL) 173
SEND

command 169
subcommand (EDIT) 107,169

SHR operand (ALLOCATE) 33
SIZE operand

LINK 135
LOADGO 149
LOGON 153
RUN 168
RUN subcommand (EDIT) 101

SMSG operand
RUN 167
RUN subcommand (EDIT) 100

Index 283

llJIDlliI
<!l

GC28-0646-1

SNUM operand (LIST subcommand of EDIT) 93
SOURCE operand (RUN) 168
SP operand

FREEMAIN subcommand (TEST) 201
GETMAIN subcommand (TEST) 203

SPACE
operand

ALLOCATE 34
DELETE 51
LlSTCAT 142

subcommand (DEFINE) 277
SPREe operand

RUN 167
RUN subcommand (EDIT) 100

STATUS
command 267
operand

LlSTALC 137
LlSTDS 145

STORE operand
RUN 167
RUN subcommand (EDIT) 101

subcoinmands, explanation of 18
SUBMIT

command 269
subcommand (EDIT) 109,270

SYNTAX operand (HELP) 127
SYSNAMES operand (LIST ALC) 138
SYSout operand

ALLOCATE 33
FREE 124

SYSRC operand (WHEN statement) 243

TABSET subcommand (EDIT) 111
. tabulation characters 63
TERM operand

LINK 135
LOADGO 148

TERMtNAL command 173
terminal conventions 15
terminal, using a 15
TEST

command 177
operand

LINK 135
RUN 167
RUN subcommand (EDIT) 100

International Business Machines Corporation
Data Processing Division
1133 Westchester Avenue, White Plains, New York 10604
(U.S.A. only)

IBM World Trade Corporation
821 United Nations Plaza, New York, New York 10017
(International)

Page of GC28-0646-1
Revised April 29, 1974
By TNL: GN28-2572

TESTCOB 276
TESTFORT 276
TEXT operand (EDIT) 55
TIME command 233
TIMEOUT operand (TERMINAL) 174
TOP subcommand (EDIT) 113
TRACKS operand (ALLOCATE) 35
TRTCH operand (ATTRIB) 44
TSO, basic information 15

UCOUNT operand (ALLOCATE) 35
UNCATALOG operand

ALLOCATE 36
FREE 124

UNIT operand (ALLOCATE) 35
UP subcommand (EDIT) 115
USER operand (SEND) 169
USERCATALOG

operand
DELETE 50
L1STCAT 142

subcommand (DEFINE) 277
USING operand (ALLOCATE) 35
using a terminal 15

VERIFY
command 277
subcommand (EDIT) 117

VL operand (CALL subcommand of TEST)
VOLUME operand

ALLOCATE 34
LlSTCAT 141

VSBASIC operand
EDIT 56
RUN 167

VSEQ operand (ALLOCA TE) 35

WAIT operand (SEND) 169
WHEN statement 243
WHERE subcommand (TEST) 231
WTPMSG operand (PROFILE) 158

XCAL operand (LINK) 134
XREF operand (LINK) 134

0
CfJ

< CfJ
I\J

-I
187 CfJ

0
()
0
3
3

/.,/---.... "'\ Ol
::l a.

b
::l

(Q
C
Ol

(Q
CD

:D
S.
~
CD
::l
n
CD

en w
-...J
0
W
~

:?
5'
fti
a.
5'
c
en
~

G)
()
I\J
00
6
0)
~

~

(~

-------------------- ._._-

OS/VS2 TSO Command Language Reference

GC28-0646-1

Your views about this publication may help improve its usefulness; this form
will be sent to the author's department for appropriate action. Using this
form to request system assistance or additional publications will delay response,
however. For more direct handling of such requests, please contact your
IBM representative or the IBM Branch Office serving your locality.

Possible topics for comment are:

Clarity Accuracy Completeness Organization Index Figures Examples Legibility

What is your occupation? ___ _
Number of latest Technical News1etter (if any) concerning this publication: ____________ _
Please indicate in the space below if you wish a reply.

Thank you for your cooperation. No postage stamp necessary if mailed in the U.S.A. Elsewhere, an
IBM office or representative will be happy to forward your comments.

READER'S
COMMENT
FORM

GC28-0646-1

Your comments, please ...

This manual is part of a library that serves as a reference source for system analysts,
programmers, and operators of IBM systems. Your comments on the other side of this
form will be carefully reviewed by the persons responsible for writing and publishing
this material. All comments and suggestions become the property of IBM.

(")

s.
~
."
o
a:
l>
0'
::l
0tI
r-
5·
CD

I
Fold Fold

- - -- --- - - - ---- - -----~

Business Reply Mail
No postage stamp necessary if mailed in the U.S.A.

Postage will be paid by:

International Business Machines Corporation
Department 058, Building 706-2
PO Box 390
Poughkeepsie, New York 12602

First Class
Permit 81
Poughkeepsie
New York

I
I
I
I

I
I
I
I
I
I
I
I
I

-----------------------~
Fold

J1lID~
<!>

International Business Machines Corporation
Data Processing Division
1133 Westchester Avenue, White Plains, New York 10604
(U.S.A. only)

IBM World Trade Corporation
821 United Nations Plaza, New York, New York 10017
(International)

Fold

0
en -< en

'" ~
en
0
C1
0
3
3
Q)

::J
c..
r
~ Q)

::J (co
c "-.. ,/ Q)

co
CD

:x:J
CD
-to
CD -,
CD
::J
0
CD

en
w
-....J
0
W
~

-c
::!.
::J
,-+
CD
c..
::J

C
en
?>

G)
C1

'" 00
6
~
~

c

