Program Product

SC28-1136-4
File No. S370-39

TSO Extensions Guide
to W_riting a Terminal
Monitor Program or a
Command Processor

Program Number 5665-285

<'||

Fifth Edition (September, 1986)

This is a major revision of SC28-1136-3. See the Summary of Amendments following the
Contents for a summary of the changes made to this manual. Technical changes or
additions to the text and illustrations are indicated by a vertical line to the left of the
change.

This edition applies to TSO Extensions Release 3, Program Number 5665-285, and to all
subsequent releases until otherwise indicated in new editions or Technical Newsletters.
The previous edition still applies to TSO Extensions Release 2.1 and may be ordered
using the temporary order number ST00-1867. Changes are made periodically to the
information herein; before using this publication in connection with the operation of IBM
systems, consult the latest IBM System/370 Bibliography, GC20-0001, for the editions
that are applicable and current.

References in this publication to IBM products, programs, or services do not imply that
IBM intends to make these available in all countries in which IBM operates. Any
reference to an IBM program product in this publication is not intended to imply that
only IBM'’s program product may be used. Any functionally equivalent program may be
used instead.

Publications are not stocked at the address given below. Requests for IBM publications
should be made to your IBM representative or to the IBM branch office serving your
locality.

A form for readers’ comments is provided at the back of this publication. If the form has
been removed, comments may be addressed to IBM Corporation, Information
Development, Department D58, Building 921-2, P.O. Box 390, Poughkeepsie, N.Y.

12602. IBM may use or distribute whatever information you supply in any way it
believes appropriate without incurring any obligation to you.

© Copyright International Business Machines Corporation 1982, 1986

Preface

TSO Extensions Guide to Writing a Terminal Monitor Program or a Command
Processor describes features of TSO/E that each installation can replace, modify,
or add to adapt the command system to the installation’s particular needs. This
book is intended for programmers who are responsible for modifying portions of
TSO/E. It documents TSO Extensions for both MVS/Extended Architecture
(MVS/XA) and MVS/370. The major differences between TSO/E running under
MVS/XA and MVS/370 are explained in “MVS/Extended Architecture
Considerations.”

The book discusses the terminal monitor program and the command processors
from the viewpoint of the TSO/E system programmer’s ability to replace or
modify them. It describes the programming features provided within TSO/E for
user-written terminal monitor programs, command processors, and application
programs. These features include:

e Service routines
e Macro instructions
e SVCs

This book contains the information programmers require about the following
topics:

® Writing a TSO terminal monitor program

o Writing a TSO command processor

® Writing a program that uses TSO to:
— Invoke another program, TSO command, or CLIST
— Use CLIST variables

It also discusses:

o The functions that a terminal monitor program or a command processor
should provide for the TSO/E user.

e The macro instructions that provide these functions.
o The service routines that can be used to provide these functions.
The book contains the following chapters:

1. Introduction
2. Terminal Monitor Program

3. Command Processors

Preface ili

4. MVS/Extended Architecture Considerations
TSO Service Routine (IKJEFTSR)
Program Access To CLIST Variables--IKJCT441

N w

Processing Terminal Requests -- The TSO Service Routines
8. Message Handling
9. Attention Interruption Handling -- The STAX Service Routine

10. Dynamic Allocation of Data Sets -- The Dynamic Allocation Interface
Routine (DAIR)

11. Using BSAM or QSAM for Terminal I/O

12. Using the TSO I/O Service Routines for Terminal I/O

13. Using the TGET/TPUT/TPG SVC for Terminal I/O

14. Using Terminal Control Macro Instructions

15. Command Scan and Parse -- Determining the Validity of Commands
16. Catalog Information Routine (IKJEHCIR)

17. Default Service Routine IKJEHDEF)

18. Testing a Newly-Written TMP or CP -- The TEST Command

The first three chapters describe the functions performed by terminal monitor
programs and command processors. The fourth chapter describes programming
considerations for MVS/XA systems. The fifth chapter describes a TSO/E
interface that allows an unauthorized program or command processor to invoke a
TSO/E command, program, or CLIST, regardless of whether or not the invoked
function is authorized. The sixth chapter describes a TSO/E interface that allows
TSO to access CLIST variables from application programs. The seventh chapter
describes how to interface with the TSO service routines to process terminal
requests. The eighth chapter describes TSO messages.

The remaining chapters describe the macro instructions, service routines, and
facilities a programmer can use to provide the required functions. These macro
instructions, service routines, and facilities can be used to:

® JIssue messages

o Schedule and process attention interruptions

e Allocate, free, concatenate, and deconcatenate data sets during program
execution

e Provide I/O between a program and a terminal
e Control terminal functions and attributes

e Determine the validity of commands, subcommands, and operands entering
the system

iv TSO/E Guide to Writing a TMP or a CP

e Retrieve information from the system catalog
e Construct a fully-qualified data set name.

The last chapter describes the TEST command and how you can use TEST to test
a newly written terminal monitor program (TMP) or command processor (CP).

If you need to know which release of TSO/Extensions is installed in order to use
the functions associated with a particular release, see the TSO/E User’s Guide.

The TSO/E User’s Guide explains how to determine the release of TSO/E that is
installed.

Prerequisite and Reference Publications

This book assumes you are familiar with the structure of TSO. You need the
following publications for reference:

For MVS/Extended Architecture
MVS/Extended Architecture Data Management Macro Instructions, GC26-4014
MVS/Extended Architecture Data Management Services, GC26-4013
MVS|Extended Architecture VSAM Programmer’s Guide, GC26-4015

MVS|Extended Architecture System Programming Library: Data Management,
GC26-4010

System Programming Library: TSO Extensions Planning and Installation Volume
1, SC28-1379

System Programming Library: TSO Extensions User Exits and Modifications
Volume 2, SC28-1380

System Programming Library: TSO Extensions Command and Macro Reference
Volume 3, SC28-1381

Data Areas

(for MVS/System Product Version 2 JES2) LYB8-1191
(for MVS/System Product Version 2 JES3) LYB8-1195

Macro Usage Table

(for MVS/System Product Version 2 JES2) LYB8-1193
(for MVS/System Product Version 2 JES3) LYBS8-1197

Preface V

For MVS 370

Symbol Usage Table

(for MVS/System Product Version 2 JES2) LYB8-1192
(for MVS/System Product Version 2 JES3) LYB8-1196

TSO Extensions Command Language Reference, SC28-1307

TSO Extensions Command Processor Logic, Volume I: ACCOUNT, 1LY28-1503
TSO Extensions Command Processor Logic, Volume II: EDIT, 1.Y28-1504
TSO Extensions Command Processor Logic, Volume III: TEST, LY28-1137
TSO Extensions Command Processor Logic, Volume IV, LY28-1506

TSO Extensions Terminal Monitor Program and Service Routines Logic,
LY?28-1308

TSO Extensions User's Guide, SC28-1333
TSO Extensions Terminal Messages, GC28-1310

MVS|Extended Architecture System Programming Library: 31-Bit Addressing,
GC28-1158

System[370 Extended Architecture Principles of Operation, SA22-7085
Refer to MVS/System Product Version 2 General Information Manual, GC28-1118
for the order numbers of the following MVS/XA books on the level that you are

using:

MVS|Extended Architecture System Programming Library: Initialization and
Tuning

MVS|Extended Architecture JCL

MVS|Extended Architecture System Programming Library: System Macros
and Facilities

OS/VS2 MVS Data Management Macro Instructions, GC26-3793

OS/VS2 MVS Data Management Services Guide, GC26-3783

OS/VS Virtual Storage Access Method (VSAM) Programmer’'s Guide, GC26-3838
OS/VS2 System Programming Library: Data Management, GC26-3830

System Programming Library: TSO Extensions Planning and Installation Volume
1, SC28-1379

System Programming Library: TSO Extensions User Exits and Modifications
Volume 2, SC28-1380

Vi TSO/E Guide to Writing a TMP or a CP

J

System Programming Library: TSO Extensions Command and Macro Reference
Volume 3, SC28-1381

TSO Extensions User's Guide, SC28-1333
Data Areas, LYB8-1119
Macro Usage Table, LYB8-1120
Symbol Usage Table, LYB8-1121
TSO Extensions Command Language Reference, SC28-1307
OS/VS2 TSO Command Processor Logic, Volume I: ACCOUNT, SY28-0651
OS/VS2 TSO Command Processor Logic, Volume II: EDIT, SY33-8548
OS/VS2 TSO Command Processor Logic, Volume III: TEST, SY35-0004
O0S/VS2 TSO Command Processor Logic, Volume IV, SY28-0652
OS/VS2 TSO Terminal Monitor Program and Service Routines Logic, GC28-0645
TSO Extensions Terminal Messages, GC28-1310
System 370/ Principles of Operation, GA22-7000
Refer to MVS/System Product Version 1 General Information Manual, GC28-1025
for the order numbers of the following MVS/370 books on the level that you are
using:
OS/VS2 System Programming Library: Initialization and Tuning Guide
OS|VS2 JCL
OS|VS2 System Programming Library: Supervisor

For MVS/Extended Architecture and MVS/370

System Programming Library: TSO Extensions Planning and Installation Volume
1, SC28-1379

System Programming Library: TSO Extensions User Exits and Modifications
Volume 2, SC28-1380

System Programming Library: TSO Extensions Command and Macro Reference
Volume 3, SC28-1381

TSO Extensions User's Guide, SC28-1333
TSO Extensions Command Language Reference, SC28-1307
TSO Extensions Terminal Messages, GC28-1310

Preface Vii

Referenced Products

1. MVS/Extended Architecture (MVS/XA) refers to Data Facility Product J
(5665-284) and MVS/System Product Version 2 - JES2 (5740-XC6) or
MVS/System Product Version 2 - JES3 (5665-291).

2. VTAM, TSO/VTAM, and ACF/VTAM refers to the program product
ACF/VTAM Version 2 (5665-280).

3. TCAM and TSO/TCAM refers to the program product ACF/TCAM Version
2 Release 4 (5735-RC3).

4. TSOJE refers to the program product TSO Extensions (5665-285).

Vili TSO/E Guide to Writing a TMP or a CP

Contents

Chapter 1. Introduction 1-1
The Terminal Monitor Program (TMP) and Command Processors 1-1
Basic Functions of Terminal Monitor Programs and Command Processors 1-2
Communicating with the User 1-3
Passing Control to Command and Subcommand Processors 1-3
Responding to Abnormal Terminations 1-4
Responding to Attention Interruptions 1-4
Other Functions Provided with TSO/E 1-4

Dynamic Allocation of Data Sets 1-5

Testing a TMPora CP 1-5

TSO Service Routine 1-6

Program Interface to TSO/E Command Processors or Other Programs 1-6

Chapter 2. The Terminal Monitor Program 2-1
Terminal Monitor Program Initialization 2-2
Requesting a Command 2-3
Intercepting an ABEND 2-5
Intercepting a Subtask ABEND 2-6
Intercepting a TMP Task ABEND 2-7
Processing an Attention Interruption 2-8
Parameters Received by Attention Handling Routines 2-9
The Attention Exit Parameter List 2-11
The Terminal Attention Interrupt Element (TAIE) 2-11
Processing a STOP Command 2-12

Chapter 3. Command Processors 3-1
Adding Commands to TSO 3-2
Command Processor Coding Conventions 3-2
Command Processor Use of the TSO Service Routines 3-2
STACK Service Routine 3-3
Catalog Information Routine 3-3
Default Service Routine 3-4
GETLINE Service Routine 3-4
PUTLINE Service Routine 3-4
PUTGET Service Routine 3-4
IKJEFFO02 Message Issuer Service Routine 3-5
DAIR Service Routine 3-5
Command Scan Service Routine 3-6
Parse Service Routine 3-6
Prompt Mode HELP Function 3-6
ESTAE/ESTAI Exit Routine -- Intercepting an ABEND 3-7
Linkage Considerations 3-7
Command Processor Functions that Rely on Exit Routine Support 3-8
Guidelines for ESTAE and ESTAI Exit Routines 3-8

Contents 1X

Attention Exit Routines 3-9
The HELP Data Set 3-10
Attributes of SYS1.HELP 3-10
Format of HELP Members 3-10
Private HELP Data Sets 3-11
Updating SYSI.HELP 3-11
Writing HELP Members 3-11
Updating Existing HELP Members 3-15

Chapter 4. MVS/Extended Architecture Considerations 4-1
31-Bit Addressing - General Interface Considerations 4-1
AMODE=24, RMODE=24 4-2
AMODE=ANY, RMODE=24 4-2
AMODE=31 4-3
Specific Interfaces and Functions 4-3
Control Program Interfaces 4-3
Service Routine Interfaces 4-4
Macro Interfaces 4-5
31-Bit Indirection Symbol 4-8

Chapter 5. Invoking Other Programs, Commands, or CLISTs with the TSO
Service Routine 5-1

TSO Service Routine 5-2

Program Interface to TSO Commands, Programs, and CLISTs 5-3

Invoking the TSO Service Routine 5-3

TSO Service Routine Parameters 5-5

Chapter 6. Program Access to CLIST Variables 6-1
Update or Create a CLIST Variable Value 6-3
Update a CLIST Variable Value Only 6-5
Return the Value of a CLIST Variable 6-8
Return all Active CLIST Variables and their Values 6-11

Chapter 7. Processing Terminal Requests - The TSO Service Routines 7-1
Interfacing with the TSO Service Routines 7-2
The Command Processor Parameter List 7-2
Passing Control to the TSO Service Routines 7-3
The CALLTSSR Macro Instruction 7-4
Example 7-5

Chapter 8. Handling Messages 8-1

Message Levels 8-1

Effects of the Input Source on Message Processing 8-2

TSO Message Issuer Routine (IKJEFF02) 8-3
Standard Format of Input Parameter List 8-4
Extended Format of Input Parameter List 8-5
IKJTSMSG -- Describes Text and Insert Locations 8-7

Chapter 9. Handling Attention Interruptions -- The STAX Service Routine 9-1
Specifying a Terminal Attention Exit -- the STAX Macro Instruction 9-4
The STAX Parameter List 9-7

Coding Example of the STAX Macro Instruction 9-8

Return Codes from the STAX Service Routine 9-10

X TSOJ/E Guide to Writing a TMP or a CP

Chapter 10. Dynamic Allocation of Data Sets - The Dynamic Allocation Interface
Routine (DAIR) 10-1
Considerations 10-1
Using DAIR 10-2
The DAIR Parameter List (DAPL) 10-4
The DAIR Parameter Block (DAPB) 10-5
Code X‘00’ - Determine if DDNAME or DSNAME Allocated 10-6
Code X‘04’ - Determine if DSNAME Allocated or in System
Catalog 10-7
Code X‘08’ - Allocate a Data Set by DSNAME 10-8
Code X‘0C’ - Concatenate the Specified DDNAMES 10-11
Code X*10’ - Deconcatenate the Indicated DDNAME 10-11
Code X*14’ - Return Qualifiers for the Specified DSNAME 10-12
Code X‘18’ - Free the Specified Data Set 10-12
Code X‘1C’ - Allocate the Specified DDNAME to the Terminal 10-14
Code X*24’ - Allocate a Data Set by DDNAME 10-14
Code X28’ - Perform a List of DAIR Operations 10-17
Code X°2C’ - Mark Data Sets as Not in Use 10-18
Code X*30’ - Allocate a SYSOUT Data Set to the Message Class 10-18
Code X‘34’ - Associate DCB Parameters with a Specified Name 10-20
DAIRACB - DAIR Attribute Control Block 10-21
Return Codes from DAIR 10-23
Return Codes from Dynamic Allocation 10-24
DAIRFAIL Routine (IKJEFF18) 10-24
GNRLFAIL/VSAMFAIL Routine (IKJEFF19) 10-26

Chapter 11. Using BSAM or QSAM for Terminal I/O 11-1
BSAM/QSAM Macro Instructions 11-1
SAM Terminal Routines 11-2

GET 11-3

PUT and PUTX 11-3

READ 11-3

WRITE 114

CHECK 114
Record Formats, Buffering Techniques, and Processing Modes 11-4
Specifying Terminal Line Size 11-4
End-of-File (EOF) for Input Processing 11-5
Modifying DD Statements for Batch or TSO Processing 11-5

Chapter 12. Using the TSO I/O Service Routines for Terminal I/O 12-1
The Input/Qutput Parameter List 12-2
Passing Control to the I/O Service Routines 12-3
The I/O Service Routine Macro Instructions 12-4
STACK - Changing the Source of Input 12-5
The STACK Macro Instruction - List Form 12-5
The STACK Macro Instruction - Execute Form 12-8
Sources of Input 12-12
Building the STACK Parameter Block 12-13
Building the List Source Descriptor (LSD) 12-16
Return Codes from STACK 12-21
GETLINE - Getting a Line of Input 12-22
The GETLINE Macro Instruction - List Form 12-22
The GETLINE Macro Instruction - Execute Form 12-24

Contents

Xi

X1l

Sources of Input 12-28
End of Data Processing 12-29
Building the GETLINE Parameter Block 12-29
Input Line Format - The Input Buffer 12-30
Examples of GETLINE 12-32
Return Codes from GETLINE 12-34

PUTLINE - Putting a Line Out to the Terminal 12-35
The PUTLINE Macro Instruction - List Form 12-36
The PUTLINE Macro Instruction - Execute Form 12-39
Building the PUTLINE Parameter Block 12-44
Types and Formats of Output Lines 12-46

Passing the Message Lines to PUTLINE 12-51
PUTLINE Message Line Processing 12-53
Return Codes from PUTLINE 12-60

PUTGET - Putting a Message Out to the Terminal and Obtaining a Line of

Input in Response 12-60

The PUTGET Macro Instruction - List Form 12-61
The PUTGET Macro Instruction - Execute Form 12-65
Buiiding the PUTGET Parameter Block (PGPB) 12-72
Types and Formats of the Qutput Line 12-74
Passing the Message Lines to PUTGET 12-75
PUTGET Processing 12-77
Input Line Format - The Input Buffer 12-79
An Example of PUTGET 12-80
Return Codes from PUTGET 12-84

Chapter 13. Using the TGET/TPUT/TPG SVC for Terminal I/O 13-1

The TPUT Macro Instruction -- Writing a Line to the Terminal 13-1
Return Codes from TPUT 13-7

The TPG Macro Instruction - Writing a Line Causing Immediate

Response 13-7

Return Codes from TPG 13-9

The TGET Macro Instruction -- Getting a Line from the Terminal 13-10
Return Codes from TGET 13-12

TGET/TPUT/TPG Parameter Formats 13-13

Coding Examples of TGET and TPUT Macro Instructions 13-17
Examples of TPUT and TGET Using the Default Values 13-17
Example of TPUT Macro Instruction -- Buffer Address and Buffer Length in

Registers 13-19

Example of the TGET Macro Instruction -- Register Format 13-20

Chapter 14. Using Terminal Control Macro Instructions 14-1

GTDEVSIZ -- Get Device Size 14-2

GTSIZE -- Get Terminal Line Size 14-2

GTTERM -- Get Terminal Attributes 14-3

RTAUTOPT -- Restart Automatic Line Numbering or Character
Prompting 14-4

SPAUTOPT -- Stop Automatic Line Numbering or Character
Prompting 14-5

STATTN -- Set Attention Simulation 14-6

STAUTOCP -- Start Automatic Character Prompting 14-8

STAUTOLN -- Start Automatic Line Numbering 14-9

STBREAK -- Set Break 14-10

STCC -- Specify Terminal Controi Characters 14-12

TSO/E Guide to Writing a TMP or a CP

STCLEAR -- Set Display Clear Character String 14-14
STCOM -- Set Inter-Terminal Communication 14-14
STFSMODE -- Set Full-Screen Mode 14-15

STLINENO -- Set Line Number 14-17

STSIZE -- Set Terminal Line Size 14-18

STTIMEOU -- Set Time Out Feature 14-20

STTMPMD -- Set Terminal Display Manager Options 14-21
STTRAN -- Set Character Translation 14-22

TCLEARQ -- Clear Buffers 14-24

Chapter 15. Command Scan and Parse -- Determining the Validity of
Commands 15-1
Sequence of Operations 15-1
Acceptance of Double-Byte Character Set Data (MVS/XA Only) 15-2
Using the Command Scan Service Routine (IKJSCAN) 15-3
Command Name Syntax 15-4
The Parameter List Structure Required by Command Scan 15-5
The Command Scan Parameter List 15-5
Flags Passed to Command Scan 15-6
The Command Scan Output Area 15-6
The Operation of the Command Scan Service Routine 15-7
Results of the Command Scan 15-8
Return Codes from Command Scan 15-9
Using the Parse Service Routine (IKJPARS) 15-9
Command Parameter Syntax 15-12
Positional Parameters 15-12
Keyword Parameters 15-29
Using the Parse Macro Instructions to Define Command Syntax 15-30
IKJPARM - Beginning the PCL and the PDL 15-31
IKJPOSIT - Describing a Delimiter-Dependent Positional
Parameter 15-32
IKJTERM - Describing a Delimiter-Dependent Positional
Parameter 15-36
IKJOPER - Describing a Delimiter-Dependent Positional
Parameter 15-40
IKJRSVWD - Describing a Delimiter-Dependent Positional
Parameter 15-44
IKJIDENT - Describing a Non-Delimiter-Dependent Positional
Parameter 15-46
IKJKEYWD - Describing a Keyword Parameter 15-52
IKJNAME - Listing the Keyword or Reserved Word Parameter
Names 15-54
IKJSUBF - Describing a Keyword Subfield 15-56
IKJENDP - Ending the Parameter Control List 15-57
IKJRLSA - Releasing Virtual Storage Allocated by Parse 15-58
Passing Control to the Parse Service Routine 15-58
The Parse Parameter List 15-59
Formats of the PDEs Returned by the Parse Service Routine 15-60
The PDL Header 15-60
PDEs Created for Positional Parameters 15-61
Effect of List and Range Cptions on PDE Formats 15-76
The PDE Created for a Keyword Parameter 15-83
Additional Facilities Provided by Parse = 15-83
Translation to Uppercase 15-83

Contents

Xiii

Insertion of Default Values 15-83
Passing Control to a Validity Checking Routine 15-84
Insertion of Keywords 15-85
Issuing Second Level Messages 15-85
Prompting 15-86
Examples of Using the Parse Service Routine 15-88
Example 1 15-88
Example 2 15-92
Example 3 15-94
Example 4 15-98
Return Codes from the Parse Service Routine 15-101

Chapter 16. Catalog Information Routine (IKJEHCIR) 16-1
Return Codes from IKJEHCIR 16-3
Return Codes from LOCATE 16-3

Chapter 17. Default Service Routine IKJEHDEF) 17-1

Chapter 18. Testing a Newly-Written TMP or CP -- The TEST Command 18-1

When You Would Use TEST 18-3

Testing a Currently Executing Program 18-3

Testing a Program Not Currently Executing 18-4
Addressing Restrictions 18-4
Executing a Program under the Control of TEST 18-5
Establishing and Removing Breakpoints within a Program 18-7
Displaying Selected Areas of Storage 18-7
Changing Instructions, Data Areas, or Register Contents 18-9
Forcing Execution of Program Subroutines 18-10
Using TEST after a Program ABEND 18-10
Determining Data Set Information 18-11

Appendix A. Notation for Defining Macro Instructions A-1

Appendix B. Using VTAM Full-Screen Mode B-1
Writing a Full-Screen Command Processor B-1
(1) Set Full-Screen Mode On B-2
(2) Give Control to the Command Processor B-3
(3) Write to and Get Information from the Terminal B-3
(4) Exiting and Reentering Full-Screen Mode B-4
(5) Full-Screen Command Processor Termination B-5
Full-Screen Protection Responsibilities of Attention Exit Routines B-5
Examples of Full-Screen Command Processor Operation B-6
Function of RESHOW in Full-Screen Message Processing B-7
Function of INITIAL = YES when the First Message is Full Screen B-8
Function of INITIAL=YES when the First Message is Non-Full Screen B-9
Function of INITTAL=NO B-10

Index X-1

Xiv TSO/E Guide to Writing a TMP or a CP

Figures

2-1.
2-2.
2-3.
2-4.
2-5.
2-6.

3-1.
3-2.
3-3.
3-4.

4-1.
5-1.
5-2.
5-3.
5-4.
6-1.
6-2.

6-4.
6-5.
7-1.
7-2.
7-3.
8-1.
8-2.
9-1.
9-2.

9-4.
9-5.
10-1.
10-2.
10-3.
10-4.
10-5.
10-6.
10-7.
10-8.
10-9.
10-10.
10-11.
10-12.

A LOGON Procedure 2-2

Requesting a Command 2-4

The TSEVENT Macro Instruction Specifying PPMODE 2-5
ABEND, ESTAI, ESTAE Relationship 2-6

Parameters Passed to the Attention Exit Routine 2-10

The Attention Exit Parameter List 2-11

The Terminal Attention Interrupt Element 2-11

Format of a HELP Data Set 3-12

An Example of a User's SAMPLE Command Format 3-13

An Example of a User's EXAMPLE Subcommand Format 3-13

Coding Example - Including the SAMPLE Command and EXAMPLE

Subcommand in the HELP Data Set 3-14

MYVS/XA Interface Rules for Macro Instructions 4-5
TSO Service Routine 5-2

Invoking an Authorized Command Using IKJEFTSR 5-4
IKJEFTSR Return Codes 5-7

IKJEFTSR Reason Codes 5-8

Program Access to CLIST Variables 6-2

Update or Create a CLIST Variable Value 6-4

Update a CLIST Variable Value Only 6-6

Return a CLIST Variable Value 6-9

Return all Active CLIST Variables and their Values 6-12
Control Block Interface between the TMP and CP 7-2
The Command Processor Parameter List (CPPL) 7-3
The CALLTSSR Macro Instruction 7-4

The IKJTSMSG Macro Instruction 8-7

An Example of an IKJTSMSG Macro Instruction 8-8
The STAX Macro Instruction -- List and Execute Forms 9-4
Using Registers in the STAX Macro Instruction 9-6
The STAX Parameter List 9-7

The STAX Parameter List Extension for MVS/XA 9-7
Coding Example - STAX Macro Instruction 9-9
Control Blocks Passed to DAIR 10-3

Format of the DAIR Parameter List (DAPL) 10-4
DAIR Entry Codes and Their Functions 10-5

DAIR Parameter Block -- Entry Code X‘00° 10-6
DAIR Parameter Block -- Entry Code X‘04° 10-7
DAIR Parameter Block -- Entry Code X‘08” 10-8
DAIR Parameter Block -- Entry Code X‘0C’ 10-11
DAIR Parameter Block -- Entry Code X‘10° 10-11
DAIR Parameter Block -- Entry Code X‘14’ 10-12
DAIR Parameter Block -- Entry Code X‘18” 10-13
DAIR Parameter Block -- Entry Code X‘1C* 10-14
DAIR Parameter Block -- Entry Code X‘24 10-15

Figures

Xv

10-13.
10-14.
10-15.
10-16.
10-17.
11-1.
12-1.
12-2.

12-3.
12-4.
12-5.
12-6.
12-7.

12-8.
12-9.
12-10.

12-11.
12-12.
12-13.
12-14.
12-15.
12-16.
12-17.
12-18.
12-19.
12-20.
12-21.
12-22.
12-23.
12-24.
12-25.
12-26.
12-27.
12-28.

12-29.
12-30.
12-31.
12-32.
12-33.
12-34.
12-35.
12-36.

13-1.

13-2.
13-3.

13-4
13-5.

DAIR Parameter Block -- Entry Code X‘28° 10-17

DAIR Parameter Block -- Entry Code X2C* 10-18

DAIR Parameter Block -- Entry Code X30° 10-19

DAIR Parameter Block -- Entry Code X34 10-21

DAIR Attribute Control Block (DAIRACB) 10-22
BSAM/QSAM Macro Functions Under TSO 11-2

The Input/Output Parameter List 12-2

Control Block Interface Between the TMP and I/O Service
Routine 12-3

The List Form of the STACK Macro Instruction 12-6

The Execute Form of the STACK Macro Instruction 12-9

The STACK Parameter Block 12-14

STACK Control Blocks: No In-Storage List 12-15

Coding Example - STACK Specifying the Terminal as the Input
Source 12-16

The List Source Descriptor 12-17

STACK Control Blocks: In-Storage List Specified 12-18
Coding Example - STACK Specifying an In-Storage List as the Input
Source 12-19

The List Form of the GETLINE Macro Instruction 12-22

The Execute Form of the GETLINE Macro Instruction 12-25
The GETLINE Parameter Block 12-30

Format of the GETLINE Input Buffer 12-31

GETLINE Control Blocks - Input Line Returned 12-32
Coding Example - Two Executions of GETLINE 12-33

The List Form of the PUTLINE Macro Instruction 12-36

The Execute Form of the PUTLINE Macro Instruction 12-40
The PUTLINE Parameter Block 12-45

PUTLINE Single Line Data Format 12-46

Coding Example - PUTLINE Single Line Data 12-47
PUTLINE Multiline Data Format 12-48

Coding Example - PUTLINE Multiline Data 12-49

The Output Line Descriptor (OLD) 12-51

Control Block Structures for PUTLINE Messages 12-52
PUTLINE Functions and Message Types 12-53

Coding Example - PUTLINE Text Insertion 12-55

Coding Example - PUTLINE Second Level Informational
Chaining 12-58

The List Form of the PUTGET Macro Instruction 12-61

The Execute Form of the PUTGET Macro Instruction 12-66
The PUTGET Parameter Block 12-73

The Output Line Descriptor (OLD) 12-75

Control Block Structures for PUTGET Output Messages 12-76
Format of the PUTGET Input Buffer 12-79

PUTGET Control Block Structure - Input Line Returned 12-80
Coding Example - PUTGET Multilevel PROMPT Message 12-81
The TPUT Macro Instruction -- Standard, Register, List, and Execute
Forms 13-2

The TPG Macro Instruction -- Standard, List, and Execute
Forms 13-8

The TGET Macro Instruction -- Standard, Register, List, and Execute
Forms 13-10

TPUT Parameter Registers 13-13

TGET Parameter Registers 13-14

Xvi TSO/E Guide to Writing a TMP or a CP

13-6.
13-7.
13-8.
13-9.
13-10.

13-il.

13-12.

13-13.
14-1.
14-2.
14-3.
14-4.
14-5.
14-6.
14-7.
14-8.
14-9.

14-10.

14-11.

14-12.

14-13.

14-14.

14-15.

14-16.

14-17.

14-18.

14-19.

14-20.
15-1.
15-2.
15-3.
15-4.
15-5.

15-6.

15-7.

15-8.

1599.
15-10.
15-11.
15-12.
15-13.
15-14.
15-15.
15-16.
15-17.
15-18.
15-19.
15-20.
15-21.
15-22.
15-23.

Parameter List Expansion for the Execute Form of TPUT 13-15
Parameter List Expansion for the List Form of TPUT 13-15
Parameter List Expansion for the Execute Form of TPG 13-16

Parameter List Expansion for the List Form of TPG

13-16

Parameter List Expansion for the Standard, List, and Execute Forms of

TGET 13-17

Coding Example: TPUT and TGET Macro Instructions Using the

Default Values 13-18

Coding Example: TPUT Macro Instruction Buffer Address and Buffer

Length in Registers 13-19

Coding Example: TGET Macro Instruction Register Format

The GTDEVSIZ Macro Instruction

14-2

The GTSIZE Macro Instruction 14-3

The GTTERM Macro Instruction

14-3

Parameter List Expansion for the List Form of GTTERM 14-4
The RTAUTOPT Macro Instruction 14-5

The SPAUTOPT Macro Instruction
The STATTN Macro Instruction
The STAUTOCP Macro Instruction

14-5
14-6
14-8

The STAUTOLN Macro Instruction 14-9

The STBREAK Macro Instruction
The STCC Macro Instruction 14-
The STCLEAR Macro Instruction
The STCOM Macro Instruction 1

14-11
12

14-14
4-15

The STFSMODE Macro Instruction 14-16

The STLINENO Macro Instruction

14-18

The STSIZE Macro Instruction 14-19

The STTIMEOU Macro Instruction
The STTMPMD Macro Instruction
The STTRAN Macro Instruction
The TCLEARQ Macro Instruction

14-21
14-21
14-23
14-24

The Parameter List Structure Passed to Command Scan 15-5

The Command Scan Parameter List
The Command Scan Qutput Area

15-6
15-6

Character Types Recognized by Command Scan and Parse 15-8
Return from Command Scan - CSOA and Command Buffer

Settings 15-9

A Command Processor Using the Parse Service Routine 15-10

Delimiter-Dependent Parameters

15-13

Example of 24-Bit Indirect Addressing 15-16
Example of 31-Bit Indirect Addressing 15-16
An Indirect Address with Mixed Indirection Symbols 15-17
An Address Expression with 24-Bit Indirect Addressing 15-18
An Address Expression with Mixed Indirection Symbols 15-20

The IKJPARM Macro Instruction

The Parameter Control Entry Built by IKIPARM

The IKJPOSIT Macro Instruction

The Parameter Control Entry Built by IKJPOSIT

The IKJTERM Macro Instruction

The Parameter Control Entry Built by IKITERM

The IKJOPER Macro Instruction

The Parameter Control Entry Built by IKJOPER

The IKJRSVWD Macro Instruction

The Parameter Control Entry Built by IKJIRSVWD

The IKJIDENT Macro Instruction

15-31

15-32

15-36

15-41

15-44

15-47

15-31
15-35
15-39
15-43

15-46

Figures

13-20

Xvil

Xviii

15-24.
15-25.
15-26.
15-27.

15-28.

15-29.
15-30.
15-31.
15-32.
15-33.
15-34.
15-35.

15-36.
15-37.

15-38.
15-39.
15-40.
15-41.

15-42.
15-43.
15-44.
15-45.
15-46.
15-47.

15-48.
15-49.
15-50.

15-51.
15-52.
15-53.

15-54.
15-55.
15-56.

15-57.
15-58.
16-1.
16-2.
16-3.
16-4.
18-1.
18-2.
B-1.
B-2.
B-3.

The Parameter Control Entry Built by IKJIDENT 15-51

The IKJKEYWD Macro Instruction 15-53

The Parameter Control Entry Built by IKJKEYWD 15-53

The IKINAME Macro Instruction (when used with the IKJKEYWD
Macro Instruction) 15-54

The IKINAME Macro Instruction (when used with the IKJRSVWD
Macro Instruction) 15-55

The Parameter Control Entry Built by IKINAME 15-56

The IKJSUBF Macro Instruction 15-57

The Parameter Control Entry Built by IKJSUBF 15-57

The IKJENDP Macro Instruction 15-57

The Parameter Control Entry Built by IKJENDP 15-57

The IKJRLSA Macro Instruction 15-58

Control Flow between Command Processor and the Parse Service
Routine 15-59

The Parse Parameter List 15-60

Series of PDEs Created for Mixed Sequence of Indirection

Symbols 15-68

A PDL Showing PDEs Describing a List 15-77

A PDL Showing PDEs Describing a Range 15-78

A PDL Showing PDEs Describing LIST and RANGE Options 15-79
PDL - LIST and RANGE Acceptable, Single Parameter

Entered 15-80

PDL - LIST and RANGE Acceptable, Single Range Entered 15-80
PDL - LIST and RANGE Acceptable, LIST Entered 15-81

PDL - LIST and RANGE Acceptable, List of Ranges Entered 15-82
Format of the Validity Check Parameter List 15-85

Return Codes from a Validity Checking Routine =~ 15-85

Coding Example 1 - Using Parse Macros to Describe Command
Parameter Syntax 15-89

An IKJPARMD DSECT (Example 1) 15-90

The IKJPARMD DSECT and the PDL (Example 1) 15-91
Coding Example 2 - Using Parse Macros to Describe Parameter
Syntax 15-92

An IKJPARMD DSECT (Example 2) 15-93

The IKJPARMD DSECT and the PDL (Example 2) 15-94
Coding Example 3 - Using Parse Macros to Describe Parameter
Syntax 15-95

An IKJPARMD DSECT (Example 3) 15-95

The IKJPARMD DSECT and the PDL (Example 3) 15-97
Coding Example 4 - Using Parse Macros to Describe Parameter
Syntax 15-98

An IKJPARMD DSECT (Example 4) 15-99

The IKJPARMD DSECT and PDL (Example 4) 15-100

Catalog Information Routine Parameter List (CIRPARM) 16-1
Data Returned from Valid CIROPT Values 16-2

User Work Area for CIRPARM 16-2

Volume Information Format 16-3

The TEST Subcommands 18-2

Issuing the TEST Command 18-6

Macros Used to Write a Full-Screen Command Processor B-2
Function of RESHOW in Full-Screen Message Processing B-7
Function of INITIAL =YES when First Message is Full-Screen B-8

TSO/E Guide to Writing a TMP or a CP

9

B-4. Function of INITIAL=YES when First Message is
Non-Full-Screen B-9
B-5. Function of INITIAL=NO B-10

Figures XIX

XX TSO/E Guide to Writing a TMP or a CP

Summary of Amendments

Summary of Amendments
for SC28-1136-4
for TSO Extensions Release 3

This revision applies to TSO Extensions Release 3 in an MVS/XA environment.
It documents enhancements to the TSO service facility that enable it to invoke a
CLIST.

This revision also incorporates minor technical corrections and editorial changes
throughout the book.

Summary of Amendments
for SC28-1136-3
for TSO Extensions Release 2.1

This revision describes the changes in TSO Extensions Release 2.1 to allow
command scan and parse to accept double-byte character set data. These changes
apply only to an MVS/XA environment when the PTF for APAR OZ91711 is
installed on your system.

There are minor technical corrections and editorial changes throughout the book.
Chapter 6, “Program Access to CLIST Variables,” and Appendix B, “Using
VTAM Full-Screen Mode,” have been rewritten.

Summary of Amendments

for SC28-1136-2

as Updated December 7, 1984
For TSO Extensions Release 2.1

This edition supports TSO Extensions Release 2.1. The changes apply to the
MVS/Extended Architecture environment only. TSO/E Release 2.1 supports the
following:

e Increased virtual storage, which has most I/O service routines and

miscellaneous service routines executing in 31-bit addressing mode and
accepting input above or below the 16-megabyte line.

Summary of Amendments XXI

e The include control character in the HELP data set, which allows the
insertion of additional help information into existing help members. ;i

Minor technical corrections and editorial changes are made throughout the book.

XXii TSO/E Guide to Writing a TMP or a CP

Chapter 1. Introduction

TSO/E consists of many relatively small, functionally distinct modules of code.
One major benefit of this modular construction is that the installation can add to
or modify TSO/E to better suit the needs of its users. You can add to or replace
IBM-supplied code with your own, and delete those functions of TSO/E which
you do not require.

TSOJE is composed of modules that communicate with the user and perform the
work requested by him. Modifications to the control program should be made
only by system programmers responsible for the proper functioning of TSO within
MYVS. Each installation can replace or modify the terminal monitor program
(TMP), or any of the command processors.

If you choose to write your own terminal monitor program or a command
processor, you can use the service routines, command processors, and macro
instructions supplied with TSO/E or modified to support TSO/E to provide many
of the functions required by a TMP or a command processor.

TSOJE also provides the user with the TSO service routine IKJEFTSR). An
unauthorized program or command processor can invoke a command, program,
or CLIST via IKJEFTSR, regardless of whether or not the invoked function is
authorized.

The Terminal Monitor Program (TMP) and Command Processors

The terminal monitor program is a problem program that accepts and interprets
commands. The TMP also causes the appropriate command processor to be
scheduled and executed.

A terminal monitor program must be able to communicate with the user at the
terminal, load and pass control to command processors, respond to abnormal
terminations at its own task level or at lower levels, and respond to and process
attention interruptions.

When a user logs on to TSO/E, the user must either specify the name of a
LOGON procedure by the LOGON command or accept that user’s default
procedure name from the user attribute data set (UADS). In either case, the
program named in the EXEC statement of the LOGON procedure is attached
during the logon as the terminal monitor program. The program named in the
EXEC statement can be either the TMP supplied with TSO/E, one provided by
the installation, or one you have written yourself.

Chapter 1. Introduction 1-1

Once the logon has completed, the terminal monitor program requests the user at
the terminal to enter a command name. The IBM-supplied TMP writes a
READY message to the terminal to indicate that a command should be entered.
The TMP determines if the response entered is a command. If the response is a
command, the TMP attaches the requested command processor (CP), and the
command processor performs the computing functions requested by the user at
the terminal.

When writing your own command processors, keep in mind that you can add
them to the IBM-supplied command library, concatenate your own command
library to the one supplied by IBM, or replace the entire TSO/E command library
with your own.

Command processors (CPs) must be able to communicate with the user at the
terminal, respond to abnormal terminations, and process attention interruptions.
If required, command processors must be able to load and pass control to
subcommand processors, as well as process abnormal terminations of
subcommand processors.

Basic Functions of Terminal Monitor Programs and Command
Processors

You can see from the preceding discussion that any terminal monitor program
and any command processor must provide four basic functions:

1. Both the TMP and command processors must be able to communicate with
the user at the terminal.

2. The TMP must be able to load and pass control to a command processor. If
a command processor has subcommand processors, it must be able to load
and pass control to them.

3. Both the TMP and command processors must be able to intercept and
investigate abnormal terminations.

4. Both the TMP and command processors must be able to respond to and
process attention interruptions entered from the terminal.

You can provide each of these functions for a terminal monitor program or a

command processor by using a service routine or a macro instruction provided
with or modified to support TSO/E.

1-2 TSO/E Guide to Writing a TMP or a CP

Communicating with the User

C

There are three ways a program running under TSO/E can communicate with a
user:

1. The BSAM or QSAM access methods.

2. The STACK, GETLINE, PUTLINE, and PUTGET I/O service routines.
These routines are invoked by the STACK, GETLINE, PUTLINE, and
PUTGET macro instructions respectively. They provide the following
functions:

STACK - The STACK service routine establishes and changes the source of
input by adding elements to, or deleting elements from, an internally
maintained input stack. The top element on the input stack determines the
current source of input.

GETLINE - The GETLINE service routine obtains and returns all input lines
other than commands, subcommands, and responses to prompting messages.
(A prompting message asks the user at the terminal to supply required
information.) The GETLINE service routine returns these lines of input from
the input source designated by the top element of the input stack.

PUTLINE - The PUTLINE service routine formats output lines, writes them
to the terminal, and chains second level messages to be written in response to
a question mark from the terminal.

\' PUTGET - The PUTGET service routine writes a message to the terminal
and obtains a response from the terminal. A message written to the terminal
that requires a response is called a conversational message.

3. The TGET, TPUT, and TPG supervisor call. A supervisor call routine, SVC
93, is invoked by the TGET, TPUT, and TPG macro instructions. TGET,
TPUT, and TPG provide a route for I/O to a terminal.

Each of these methods performs different functions and is thus suited for
particular I/O situations. The programmer designing his own TMP or command
processor must understand which of the I/O methods best provides the I/O
support required in different programming situations.

Passing Control to Command and Subcommand Processors

A terminal monitor program must be able to recognize a command name entered
into the system, load the requested command processor, and pass control to it. A
command processor must be able to perform similar functions when a
subcommand name is entered.

Your TMP or command processor can use the command scan service routine to
search the input line for a syntactically valid command name or subcommand

Q name. The ATTACH macro instruction can then be issued to pass control to the
requested routines and to establish ESTAI exits. (See “Responding to Abnormal
Terminations.”)

Chapter 1. Introduction 1-3

When you write a command processor or subcommand processor, you can use the

parse macro instructions to describe to the parse service routine the operands that

may be entered with the command name. You can then use the parse service J
routine to determine which operands are present in the input buffer. The parse

service routine compares the information you supplied in the parse macro

instructions with the contents of the input buffer. This syntactical comparison

indicates which operands are present in the input line. The parse service routine

returns a list to the calling routine, indicating which operands were found in the

buffer. These operands indicate to the processing routine the functions the user is
requesting.

Responding to Abnormal Terminations

A programmer coding a routine to run under TSO/E should do all that is possible
to keep that routine from causing an abnormal termination of a TSO/E user. If
you write your own terminal monitor program or command processors, you
should use the ESTAE or FESTAE macro instruction and the ESTAI operand on
the ATTACH macro instruction to provide error handling exits.

Use the ESTAE or FESTAE macro instruction to provide the address of an error
handling routine to be given control if any routine at the same task level as the
error handling routine begins to terminate abnormally.

Use the ESTAI operand on the ATTACH macro instruction to provide the
address of an error handling routine to be given control if a routine at a lower
task level begins to terminate abnormally. l’

Responding to Attention Interruptions

A terminal monitor program and any command processor that accepts
subcommands must be able to respond to an attention interruption entered from
the terminal. TSO/E interprets an attention interruption as a signal that the user
wants to halt current program execution, possibly to request a new command or
subcommand. You must provide attention exits that can obtain a line of input
from the terminal and respond to that input.

To build the control blocks and queues necessary for the system to recognize and

schedule your attention handling routines, use the STAX (specify terminal
attention exit) service routine, which is invoked by the STAX macro instruction.

Other Functions Provided with TSO/E

Aside from the four basic functions provided by a terminal monitor program or a
command processor, other useful time sharing functions can be obtained using
routines provided by IBM.

1-4 TSO/E Guide to Writing a TMP or a CP

Three of these functions are:
1. The dynamic allocation of data sets

2. The immediate, on-line testing of a newly-written terminal monitor program
or command processor

3. Invoking programs or command processors without having to first determine
if the command processor or program runs authorized.

These three functions are provided through the dynamic allocation interface
routine (DAIR), the TEST command processor, and the TSO Service Routine
(IKJEFTSR) respectively.

Dynamic Allocation of Data Sets

You can invoke dynamic allocation using the dynamic allocation interface routine
(DAIR) to:

Obtain the current status of a data set

Allocate a data set

Free a data set

Concatenate data sets

Remove data sets from a concatenation

Build a list of attributes (DCB parameters) to be assigned to data sets
Delete a list of attributes

It is recommended, however, that you invoke dynamic allocation directly
whenever possible (especially when writing new command processors) to take
advantage of the additional functions available and to decrease system overhead.
For a detailed description of these functions and how to invoke dynamic
allocation directly, refer to System Programming Library: System Macros and
Facilities.

The DAIR interface, designed to invoke dynamic allocation for you, is
maintained so that existing command processors do not have to be modified to
invoke dynamic allocation directly. DAIR acts as a translator; it converts the
DAIR parameter list it receives as input to a dynamic allocation parameter list,
which it then passes to dynamic allocation.

Testing a TMP or a CP

After you have coded a new TMP or CP, you will want to test it. Before you
enter the program into TSO/E, you can use the TEST command to simulate the
different execution paths you expect the program to follow successfully once you
have entered it into TSO/E.

The TEST command permits a terminal user to test an assembly language
program. You test a program by issuing the TEST command and the various
TEST subcommands that perform the following basic functions:

e Execute the program being tested from its starting address or from any
address within the program

Chapter 1. Introduction 1-5

o Display selected areas of the program as it appears in virtual storage, or
display the contents of any of the registers]'

e Interrupt the program being tested at a specified location or locations

o Change the contents of specified program locations in virtual storage or the
contents of specific registers

In addition to these basic debugging functions, you can use the TEST command
to display various control blocks, program status words, or a virtual storage map
of the program being tested.

TSO Service Routine

Program Interface to TSO/E Command Processors or Other Programs

This interface enables unauthorized command processors and programs running
under TSO/E to execute any command, program, or CLIST, regardless of whether
or not the command, program, or CLIST runs authorized.

For example, an applications program written in PLI, COBOL, assembler, or any
of the other IBM supported programming languages can use the interface,
IKJEFTSR (alias name, TSOLNK), to invoke the ALLOCATE command
processor to accomplish dynamic allocation of data sets.

The TSO service routine can be invoked in both foreground and background l’

TSOJE sessions. For additional information concerning this service see the TSO
Service Routine chapter. ’

1-6 TSO/E Guide to Writing a TMP or a CP

Chapter 2. The Terminal Monitor Program

Note: Any TSO command that issues SVC 100 (SUBMIT, STATUS, CANCEL,
OUTPUT, OPERATOR, and the ALTFILE option of ALLOCATE) does not
function on a user-written TMP.

The terminal monitor program (TMP) is a program that provides an interface
between the terminal user, command processors, and the TSO control program.
TSO LOGON causes the system initiator to attach the program named on the
EXEC statement of the user's LOGON cataloged procedure. This may be the
IBM-supplied TMP or any user-supplied alternate.

The user’s LOGON procedure, which is specified on the LOGON command,
defines the maximum number of concurrently allocated data sets allowed in a
given TSO session. The LOGON procedure can contain:

e DD statements that define data sets to be used during the TSO session

e DD statements with the DYNAM parameter that increase by one the control
limit for dynamically allocated resources held for reuse. The DYNAM
parameter is supported to provide compatibility with older systems. Use of
the DYNAMNBR keyword is recommended instead.

e DYNAMNBR keyword on the EXEC statement.

These statements set the control limit for the number of data sets that can be
allocated to the user at any one time during the session. The formula for
determining the control limit is:

Control limit = # DD statements (with and without DYNAM) + the number supplied on the
DYNAMNBR parameter of the EXEC statement.

If a new dynamic allocation request exceeds the control limit, the allocation
routines automatically attempt to deallocate enough data sets, marked
“not-in-use”, to meet the control limit. They deallocate the data sets that have
been marked “not-in-use” for the longest time. If the request still exceeds the
control limit, allocation fails and the user must explicitly deallocate an existing
data set.

Figure 2-1 shows an example of the EXEC statement in a user LOGON
procedure. This procedure is equivalent to a LOGON procedure containing 10
DD DYNAM statements and no DYNAMNBR operand. For a complete
discussion of a LOGON procedure, see SPL: TSO/E User Exits and
Modifications Volume 2.

Chapter 2. The Terminal Monitor Program 2-1

Figure 2-1. A LOGON Procedure

The terminal monitor program you use can be the TMP supplied with TSO, one
provided by the installation, or one you have supplied yourself. If you choose to
write your own terminal monitor program, use the TSO service routines and
macro instructions described in this book to help you code the TMP and fit it
into TSO.

The TMP must be able to respond to the following four conditions:

1. Normal completion of a command processor or user program, and the
requesting of another command

2. An error causing termination of the TMP, a command processor, or a user
program

3. An attention interruption from the terminal, halting execution of the current
program.

4. A STOP operator command, forcing a LOGOFF for the user
This section explains how to respond to these conditions. It describes in general
terms how the IBM-supplied TMP functions, and how it fits together with the rest

of TSO. For a more specific description of the IBM-supplied TMP, see Terminal
Monitor Program and Service Routines Logic.

Terminal Monitor Program Initialization

In a LOGON procedure, the terminal monitor program (TMP) name must appear
as the first operand of the PGM = keyword operand on the EXEC statement.

When the TMP is attached:

e Register 1 contains the address of the field containing the length and data of
the EXEC parameter. The IBM-supplied TMP uses this PARM value as the
first command requested. The first two bytes of the PARM value are on a
halfword boundary and contain the length of the PARM value. (The length
value does not include the two length bytes.)

e Register 13 contains the address of the register save area.

® Register 14 contains the return address of the LOGON/LOGOFF scheduler.

e Register 15 contains the entry point address of the TMP.

2-2 TSO/E Guide to Writing a TMP or a CP

The TMP sets up the tables and control blocks it requires, loads the TIME
command processor, sets up the ESTAE and ESTAI exits to respond to abnormal

L terminations, sets up the attention exits, builds the command buffer, and
initializes the input stack to point to the terminal. The TMP then uses the
EXTRACT macro instruction to obtain thie addresses of the STOP/MODIFY
ECB and the protected step control block (PSCB) built by the LOGON/LOGOFF
scheduler.

The TMP determines whether it is running in a TSO or a batch environment by
testing the time-sharing bit in the TCB. If the TMP is running in a batch
environment, it will use the DATASET keyword while invoking the STACK
service routine to cause GETLINE and PUTLINE to be directed to data sets.
The TMP must also build the same control blocks that LOGON would have
built.

The IBM-supplied terminal monitor program attaches the command processor
named in the EXEC statement PARM field. If no command was named as a
PARM operand, the TMP issues a PUTGET macro instruction to obtain the first
command. The TMP shares subpool 78 with the attached command processor
but does not share subpool 0. The command processor, in turn, must share
subpool 78 with any lower level tasks.

The TMP should not pass in-line parameter lists to commands or TSO service
routines. Subpool 251 should not be used for parameter lists. The command
processor parameter list (CPPL), described later in this book, should be in
subpool 1. You may use the IKITMPWA macro to map the TMP work area.

b Requesting a Command

Figure 2-2 summarizes the steps taken by a terminal monitor program to obtain a
command, to pass control to the command processor, and to detach the command
processor when it has finished.

Chapter 2. The Terminal Monitor Program 2-3

Terminal Monitor
Program

IKJPTGT

N A e
B el o e —
O e —

IKJSCAN

P T o, U N N —
[V WOV P GNP
WV e A ™l .
N A m—— AN
[V) SNSRI N .
[V, W U W W W

ATTACH

IKJDAIR
ey S A A—
A N Mmae
e s AN A

— gets next command from

~ checks for valid command EDIT vriinininnnnnnnns

) Command Processor,
Co nd
Progégsor

data sets allocated by the
- Command Processor available

PUTGET service routine

terminal or stack,

Command Buffer

SCAN Service Routine

name syntax,

Command Library

Stack

Command
Processor

Virtual Storage

ATTACH attaches the
Command Processor.

TSO User's
Private Address
Space

DETACH detaches the

Dynamic allocation marks

to be freed,

Figure

2-2. Requesting a Command

Use the PUTGET service routine to request a command from the terminal. The
PUTGET service routine first writes a line to the terminal to inform the user that
another command is expected, then returns a line entered in response to the
request, and places that line into a command buffer.

Use the command scan service routine to determine whether the line of input is a
syntactically valid command name.

2-4 TSO/E Guide to Writing a TMP or a CP

Use the ATTACH macro instruction (specifying an ESTAI exit routine) to pass
control to the requested command processor.

Your TMP must create any parameter lists expected by the command processor
and pass them to the newly attached command processor. The IBM-supplied
TMP passes the address of a command processor parameter list in register one.
See the sections entitled “MVS/Extended Architecture Considerations” and
“Processing Terminal Requests -- The TSO Service Routines” for more
information about the interface between the TMP and command processors.

When the command processor completes, the TMP releases it via a DETACH
macro instruction, uses dynamic allocation to indicate that dynamically allocated
data sets may be freed, and uses the PUTGET service routine to obtain another
command.

The TSEVENT macro facilitates the use of the generalized trace facility (GTF) to
trace the attaching of a command processor by an installation-supplied terminal

monitor program. The TSEVENT macro results in control being passed to a
GTF hook located in the system resources manager (SRM) interface program.

User written TMPs should issue the TSEVENT macro before attaching each
command processor.

Issue the TSEVENT macro instruction as follows:

1. Load register 1 with the first four characters of the command name being,
attached or released.

2. Load register 15 with the last four characters of the command name.

3. Code the TSEVENT macro instruction as shown in Figure 2-3.

[label] | TSEVENT PPMODE

Figure 2-3. The TSEVENT Macro Instruction Specifying PPMODE

Intercepting an ABEND

The terminal monitor program must be able to recognize and respond to two
basic types of ABEND situations:

1. An attached subtask (for example, a command processor) is terminating
abnormally. -

2. The TMP itself or a program linked to by the TMP (for example, command
scan) is terminating abnormally.

Chapter 2. The Terminal Monitor Program 2-5

Intercepting a Subtask ABEND

When a subtask of the terminal monitor program begins to terminate abnormally, J
the TMP ESTALI exit, specified by the TMP when it attached the subtask, receives

control. The TMP ESTAI exit receives control under the TCB of the abending

subtask. The subtask will already have performed its own ESTAE processing, if

any was specified. Figure 2-4 shows the relationship between the ABEND, the

ESTAE, and the ESTAI. For additional information about expanded recovery

facilities available through ESTAI, refer to Supervisor Services and Macro

Instructions.

Terminal Monitor Program

ESTAE Exit - For ABEND at
TMP TCB Level.

ESTAI Exit - For ABEND at
daughter TCB level,

ATTACH i”
(with ESTAI operand)
Command

Processor ABEND

SvC 13

_ﬂ

ESTAE Exit -~ For ABEND at)
this TCB level

Figure 2-4. ABEND, ESTAI, ESTAE Relationship

2-6 TSO/E Guide to Writing a TMP or a CP

The TMP must inform the user at the terminal of the ABEND situation, and
allow the user to enter another command. Use the PUTGET service routine,
specifying the TERM operand, to inform the user of the ABEND and to return a
line of input from the terminal.

The terminal user has four options:

1. Allow the ABEND to continue by entering a null line (pressing the ENTER
key).

2. Terminate processing of the ABEND by entering a command name other
than TEST or TIME.

3. Request any second-level messages concerning the terminating program by
entering a question mark.

4. Place the terminating program under the control of the TEST command
processor by entering the command name TEST. (See “Testing a
Newly-Written TMP or CP -- The TEST Command” later in this book.)

Use the command scan service routine to determine what the user has entered at
the terminal.

If the user enters a null line, the TMP returns control to the ABEND routine, and
the task is allowed to terminate abnormally. If the user enters a command name,
other than TEST or TIME, the TMP processes the new command name after
detaching the subtask.

If the user enters a question mark, the PUTGET service routine causes the
second-level informational message chain (if one exists) to be written to the
terminal, again puts out the mode message, and returns the response from the
terminal.

When the TIME command is entered, the TMP links to the TIME command
processor to obtain the time information. Upon completion of the TIME
command, the user still has the above four options.

If the user enters the TEST command, the TMP passes control to the TEST
command processor via a SYNCH macro instruction. If any operands were
entered on the TEST command, the TMP detaches all subtasks before invoking to
the TEST command processor. If no operands were entered, the TMP does not
detach any currently active subtasks. In this latter case, the user is requesting that
the abnormally terminating task be run under the control of TEST.

Intercepting a TMP Task ABEND

When the TMP (or any program linked to by the TMP) causes an ABEND, the
TMP ESTAE exit gains control. The TMP specifies its own ESTAE exit routine
by issuing the ESTAE macro instruction. (See SPL: System Macros and
Facilities for a discussion of the ESTAE macro instruction.) For a discussion of
interface considerations for establishing ESTAE and ESTALI exit routines, refer to
“ESTAE/ESTAI Exit Routines -- Intercepting an ABEND” in the section on
command processors in this manual.

Chapter 2. The Terminal Monitor Program 2-7

Your TMP ESTAE exit routine can use the contents of the system diagnostic
work area created by the ESTAE macro instruction to determine:

The type of error

The cause of the error

The PSW at the time of the ABEND

The last PSW before the program ABEND
The contents of the program registers

If your TMP ESTAE exit routine cannot correct the problem, it should use the
PUTLINE macro instruction to inform the user at the terminal that a task
running under the TMP’s TCB is terminating abnormally. Then the TMP
ESTAE routine should do the following:

e Ifa SYSABEND, SYSUDUMP, or SYSMDUMP data set was allocated
during the user’s session, take a dump of the user’s region.

® (Clear the user’s region.
® Load a fresh copy of the TMP.

e Begin processing as if the TMP had been invoked by the LOGON/LOGOFF
scheduler.

To obtain additional diagnostic information, your TMP ESTAE exit routine can
issue the SDUMP macro to obtain an SVC dump. See SPL: Supervisor or SPL:
System Macros and Facilities for information about how to use that macro.

If the error persists and the TMP fails again, the ESTAE routine should pass
control to the PUTLINE service routine to notify the user. A logoff should be
forced by returning to the LOGON/LOGOFF scheduler.

For additional information about expanded recovery facilities available through
ESTAE and ESTAI, refer to Supervisor Services and Macro Instructions.

Processing an Attention Interruption

After having been attached, the TMP must set up its attention handling facilities.
For this initialization process, you can use the STAX macro instruction to pass
the address of your attention handling routine to the system.

For a discussion of interface considerations for attention exit routines, refer to
“Specifying a Terminal Attention Exit -- The STAX Macro Instruction” later in
this book.

Several attention handling routines may be enqueued at any one time; that is,
both the TMP and the currently active command processor may have issued
STAX macro instructions. For a description of how the user can request different
levels of attention exits, see “Attention Interruption Handling -- The STAX
Service Routine” later in this book.

2-8 TSO/E Guide to Writing a TMP or a CP

The attention handling routine you specify for the terminal monitor program is
given control under any of the following conditions:

1. An attention interruption is entered from the terminal while the terminal
monitor program is in control.

2. An attention interruption is received from the terminal while a program
(other than the terminal monitor program), that has not provided an
attention handling routine, is in control.

3. A program other than the terminal monitor program is in control. The
program has provided an attention exit, but the user at the terminal has
issued sufficient attention interruptions to reach the terminal monitor
program’s attention handling routine. As an example, if a command
processor that has provided an attention handling routine is in control, and a
user enters two successive attention interruptions from the terminal, the
terminal monitor program’s attention exit receives control.

You can defer attention interruption processing with the DEFER operand of the
STAX macro instruction. If you do use the DEFER option, attention
interruptions are queued as they are received, and are not processed until you
request that the DEFER option be removed.

Parameters Received by Attention Handling Routines

When your attention exit routine is entered, the registers contain the following
information:

Register Contents
0,2-12 Irrelevant

1 The address of the attention exit parameter list.

13 Save area address.

14 Return address.

15 Entry point address of the attention handling routine.

The attention exit parameter list pointed to by register one, contains the address
of a terminal attention interruption element (TAIE).

The parameter structure received by your attention exit routine is shown in
Figure 2-5.

Chapter 2. The Terminal Monitor Program 2-9

Entry from the STAX service routine

Register 1

Attention Exit
Parometer List

Attention Exit Routine

Terminal Attention
Interrupt Element

Figure 2-5. Parameters Passed to the Attention Exit Routine

2-10 TSO/E Guide to Writing a TMP or a CP

The Attention Exit Parameter List

Figure 2-6 shows the format of the attention exit parameter list pointed to by
register one when an attention exit routine receives control.

Number
of Bytes

Field

Contents or Meaning

4
4

The address of the terminal attention interrupt element (TAIE).

The address of the input buffer you specified as the IBUF operand of
the STAX macro instruction. Zero if you did not include the IBUF
operand in the STAX macro instruction.

The address of the user parameter information you specified as the
USADDR operand of the STAX macro instruction. Zero if you did not
include the USADDR operand in the STAX macro instruction.

Figure

2-6. The Attention Exit Parameter List

The Terminal Attention Interrupt Element (TAIE)

The first word of the attention exit parameter list contains the address of an
eighteen-word terminal attention interrupt element (TAIE). Figure 2-7 shows the
format of the TAIE, which is mapped by the IKJITAIE macro.

Number
of Bytes Field Contents or Meaning

2 TAIEMSGL | The length in bytes of the message placed into the input buffer you
specified as the IBUF operand on the STAX macro instruction. Zero if
you did not code the IBUF operand in the STAX macro instruction.

1 TAIETGET | The return code from the TGET macro instruction issued to get the
input line from the terminal.

4 TAIEIAD The interruption address. The right half of the interrupted PSW. The
address at which the program (or a previous attention exit) was
interrupted.

64 TAIERSAV The contents of general registers, in the order 0 - 15, of the interrupted
program.

Figure 2-7. The Terminal Attention Interrupt Element

If you did not include the IBUF and the OBUF operands in the STAX macro
instruction that set up the attention handling exit, use the PUTGET macro
instruction, specifying the TERM operand, to send a mode message to the
terminal identifying the program that was interrupted, and to obtain a line of

input from the terminal.

If you specify the OBUF operand on the STAX macro instruction without an
IBUF operand, or with an IBUF length of 0, you can then use the PUTGET
macro instruction, specifying the ATTN operand. This causes the PUTGET
service routine to inhibit the writing of the mode message, since a message was
already written to the terminal from the output buffer specified in the STAX
macro instruction. The PUTGET service routine merely returns a logical line of

input from the terminal.

In either of the above cases, if the user enters a question mark, the PUTGET
service routine automatically causes the second-level informational message chain
(if one exists) to be written to the terminal, puts out the mode message again, and
returns a line from the terminal.

Chapter 2. The Terminal Monitor Program 2-11

If you used the IBUF operand on the STAX macro instruction, note that no

logical line processing or question mark processing is performed. If the user J
returns a question mark, you will have to use the PUTLINE macro instruction to

write the second-level informational message chain to the terminal. Then issue a

PUTGET macro instruction, specifying the TERM operand, to write a mode

message to the terminal and to return a line of input from the terminal.

Use the command scan service routine to determine that the line of input is
syntactically correct in the input buffer returned by the PUTGET service routine,
or in the attention input buffer (pointed to by the second word of the attention
exit parameter list).

Special functions such as the TIME function should be performed immediately by
the attention handling routine, and a new READY message should then be put
out to the terminal, so that the terminal user may enter another command. Any
other command should be passed to the TMP mainline routine for processing as if
it were a newly entered command.

Note that, with the exception of the TPUT ASID buffers for TCAM, the TGET,
TPUT, and TPG buffers are flushed when an attention interruption is entered. If
the user enters an attention interruption from the terminal and then enters a null
line to continue processing, the contents, if any, of the TGET, TPUT, and TPG
buffers are lost.

Processing a STOP Command i
A STOP/MODIFY ECB is created by the time sharing system and can be

obtained by your TMP by use of the EXTRACT macro instruction. During

TMP processing, if a STOP command is indicated by a post to the STOP ECB,

return to the LOGON/LOGOFF scheduler so that the user may be logged off the

system.

2-12 TSO/E Guide to Writing a TMP or a CP

Chapter 3. Command Processors

A command processor is a program invoked by the TMP when a user at a
terminal enters a command name. It may be link-edited into any library in the
system link library list (LNKLSTxx) or SYSI.LPALIB. The command processor
may be placed in a data set that is specified on the STEPLIB DD statement in a
LOGON procedure. Execution should normally not be handled from a STEPLIB
because of a decrease in performance during a system and TSO session. Refer to
“Adding Commands to TSO” for a description of when a STEPLIB should be
used.

The internal logic of the IBM-supplied command processors is described in
Command Processor Logic, Volumes I-IV. The command language used to
request each of these command processors is described in the TSO/E Command
Language Reference.

If you choose to write your own command processors, you should be familiar
with the service routines described in this book.

This section discusses the relationships between the command processors and the
rest of TSO, and provides guidelines for coding your own command processors.

This section is divided into the following topics:

o Adding Commands to TSO - Describes how to add a new command
processor to TSO

e Command Processor Coding Conventions - Describes normal interface
conventions

e Command Processor Use of the TSO Service Routines - Briefly discusses each
of the TSO service routines and the situations in which they should be used

e The ESTAE and ESTAI Exit Routines - Discusses the functions your error
routines should provide

e Attention Exit Routines - Discusses the need for attention handling exits and
the functions those exits should perform

e The HELP Data Set - Discusses the HELP data set, and the means of
entering information into a HELP data set

Chapter 3. Command Processors 3-1

Adding Commands to TSO

k|
There are three methods you can use to add a new command processor to TSO. J

1. You can enter your command processor as a member of the partitioned data
set SYS1.CMDLIB, via the linkage editor.

2. You can create your own command library and concatenate it to the
SYS1.CMDLIB data set. In this case, create new statements in the link list
(LNKLSTO00 or LNKLSTxx) in SYSI.PARMLIB.

3. Generally, unauthorized users can request that a LOGON procedure be
created that specifies, on the STEPLIB DD statement, the name of the
partitioned data set containing the command.

Command Processor Coding Conventions

The TMP uses standard linkage conventions in passing control to a command
processor. The command processor parameter list (CPPL) is the input parameter
list to all command processors. For more information on the CPPL, see the
section called “Interfacing with the TSO Service Routines” later in this book.

Command processors should contain logic that issues error messages. These

messages should handle all error codes, expected or unexpected, from any routine

or SVC they invoke. Whenever possible, generalized routines such as DAIRFAIL b
should be used. Use of these routines allows the issuance of meaningful error J
messages for return codes.

When returning control to the TMP, the command processor should use standard
linkage and set a return code in general register 15. Command procedures
(CLISTs) may then check this code for the following conventions:

0- normal execution

12 - termination error during execution (no error exists if a command processor is able to obtain
required information by prompting)

Command Processor Use of the TSO Service Routines

Use the IBM-provided service routines described in this manual when coding your
own command processors. Read the sections on the various service routines,
macro instructions, and “Interfacing with the TSO Service Routines” for an
understanding of the services they perform and how to use them. The following
topics provide information on when to use each of the service routines.

Note: “MVS/Extended Architecture Considerations” lists the linkage attributes

for the TSO service routines. Additional descriptions of considerations caused by
31-bit addressing are provided in the sections describing the routines and macros.

9

3-2 TSO/E Guide to Writing a TMP or a CP

C

STACK Service Routine

Use the STACK service routine to change the source of input by adding an
element to the input stack or to reset the input stack to the terminal element
originally specified by the terminal monitor program.

A command processor should issue the STACK macro instruction in the
following circumstances:

1. Your command processor has created a series of commands to be executed
after the command processor terminates. The command processor should
build an in-storage list containing the commands to be executed and issue the
STACK macro instruction to place a pointer to the list on the input stack.

2. You may want to pass data from one of your command processors to another
command processor. This data may be passed in storage via the input stack.
Issue the STACK macro instruction to place a pointer to the in-storage data
on the input stack.

3. Your command processor performs functions similar to those performed by
the IBM-supplied EXEC command (that is, it executes a command
procedure). Your command processor should issue the STACK macro
instruction to place a pointer on the input stack to the command procedure to
be executed.

4. Whenever one of your command processors terminates with an error
condition, its error handling routine should issue the STACK macro ,
instruction to clear the input stack, before returning control to the TMP. The
input stack must be cleared or command procedure (CLIST) processing will
not be handled correctly. Commands such as DELETE and FREE do not
flush the stack if the module requested was not found.

Catalog Information Routine

The catalog information routine (IKJEHCIR) retrieves information from the
system catalog. This information may include a data set name, index name,
control volume address, or volume ID. The information may be requested from a
specific user catalog. If you do not specify a specific catalog, IKJEHCIR searches
the system default catalog. An entry code indicates what kind of information is
being requested.

Use the CALL, CALLTSSR, or LINK macro instruction to invoke the catalog
information routine.

Note: For additional information concerning the catalog information routine, see
“Catalog Information Routine (IKJEHCIR)” later in this book.

Chapter 3. Command Processors 3-3

Default Service Routine

The default service routine (IKJEHDEF) constructs a fully-qualified data set J
name when the calling routine provides a partially-qualified data set name. A

fully-qualified data set name has three fields: a user ID, a data set name, and a

descriptive qualifier.

Use the CALL, CALLTSSR or LINK macro instruction to invoke the default
service routine. At entry, general register 1 must point to the default parameter
list (DFPL). IKJEHDEF then invokes the catalog information routine
(IKJEHCIR) to search the system catalog for the required qualifiers. When the
search argument is satisfied, the default service routine returns to the calling
control program. All of the general registers are restored except for rcgistér 15
which contains the return code.

Note: For additional information concerning the default service routine, see
Terminal Monitor Program and Service Routines Logic.

GETLINE Service Routine

Your command processors should use the GETLINE service routine to obtain
data. The buffer returned by GETLINE is in subpool 1, and is owned by your
command processor. For efficient execution, issue FREEMAIN macro
instructions within each command processor, or within each subtask created by
the command processor, to free the GETLINE buffers it obtains.

3
PUTLINE Service Routine J

Your command processors should use the PUTLINE service routine to write
informational messages or data to the terminal and to chain second level
informational messages. PUTLINE writes the output lines to the terminal
regardless of the source of input. TPUT should not be used under these
circumstances. The GNRLFAIL service routine should be used to issue
meaningful error messages for return codes from PUTLINE.

PUTGET Service Routine

Your command processors should use the PUTGET service routine for prompting
and for subcommand requests. Use the operands on the PUTGET macro
instruction to specify logical line processing with editing and the WAIT option.

If the user enters a question mark in response to a message issued with a
PUTGET macro instruction, the PUTGET service routine displays the second
level messages chained by previous PUTLINE macro instructions. If the user
responds with a subcommand name, the second level messages are deleted and the
storage they occupied is freed. See “PUTGET Processing” for exceptions to this
usual method of processing.

As with the GETLINE service routine, the buffers returned by the PUTGET
service routine belong to, and should be freed by, the command processor. J

3-4 TSO/E Guide to Writing a TMP or a CP

IKJEFF02 Message Issuer Service Routine

DAIR Service Routine

If you make numerous insertions into messages, you should use this service
routine instead of PUTLINE and PUTGET. Also, when you use IKJEFF02, all
of your messages can be placed in a single CSECT or a single module.

You may use the DAIR service routine to obtain information about a data set
and, if necessary, to invoke dynamic allocation routines to perform the requested
function. However, additional functions are available if you invoke dynamic
allocation directly. Another drawback to using DAIR is that it increases system
overhead. For a discussion of how to invoke dynamic allocation directly, refer to
SPL: System Macros and Facilities.

If you are going to use DAIR, you should read the section called “Dynamic
Allocation of Data Sets - The Dynamic Allocation Interface Routine (DAIR)”
later in this book and adhere to the following guidelines:

e Command processors should allocate data sets by DSNAME and use the
DDNAMES returned by DAIR to open the data sets. If necessary, command
processors should pass the DD names on to any subcommands or problem
programs running under them.

e Command processors should allow DAIR, the default service routine, or the
parse service routine to prefix an identifier on the data set name so the
PROFILE command’s PREFIX and NOPREFIX options are automatically
supported. You can use the default service routine to add any data set suffix
that exists for the data set. (The default service routine is documented in
Terminal Monitor Program and Service Routines Logic.)

o Whenever the user specifies a password for a data set, the command processor
should send the password to DAIR when allocation is requested.

e Command processors should normally invoke DAIR to free all data sets at
termination so other TSO users or submitted jobs can have full use of the
data sets.

e Before detaching terminated subcommands, command processors that accept
subcommands should use DAIR to free any data sets allocated by the

subcommands.

e Command processors should use the DAIRFAIL service routine to issue
meaningful error messages for non-zero return codes from DAIR.

Chapter 3. Command Processors 3-5

Command Scan Service Routine

Parse Service Routine

Your command processors should use the command scan service routine to scan
for valid subcommand names. The option of checking the remainder of the input
line for non-separator characters should be requested. If no additional significant
characters are found in the line, the command processor subroutine need not
invoke the parse service routine to scan the command operands because none are
present.

Your command processors and subcommand processors should use the parse
service routine to scan the operands entered with the command or subcommand
name. The parse service routine returns a parameter descriptor list to the calling
routine. The parameter descriptor list describes the operands found in the
command buffer.

In the parse macro instructions that define command syntax, command processors
and subcommand processors can indicate to the parse service routine that validity
checking exits be taken on certain types of operands. Because the parse service
routine checks the operands only for syntax errors, you should indicate in the
parse macros that validity checking routines be entered whenever a logical, rather
than a syntactical, error might occur.

The GNRLFALIL service routine should be used to issue meaningful error
messages for non-zero return codes from the parse service routine.

When the parse service routine prompts the user to enter a required operand, or
to reenter a syntactically incorrect operand, the user may type in question marks
to receive the second level messages associated with the operand.

Prompt Mode HELP Function

Once the second level messages are exhausted during a prompting sequence, if the
user enters another question mark, parse processing determines whether it can
generate a valid HELP command to provide the user with additional information.

If the ECTNOQPR bit in the environment control table (ECT) is zero, then the
prompt mode HELP function is active and parse processing generates a HELP
command on the user’s behalf. Parse processing ensures that only one HELP
command is issued during a prompting sequence for a given operand. If the user
enters another question mark after viewing the online usage information, the NO
INFORMATION AVAILABLE message is issued.

The TMP sets the ECTNOQPR bit to zero before attaching a primary command,
except the TEST and LOGON commands for which the function is not available.
Parse sets ECTNOQPR to one before it returns control to the command
processor. Consequently, the prompt mode HELP function is not active during
subsequent invocations of parse within the domain of the command, nor for any
subcommands attached by the command processor. If your command processor
does not want the prompt mode HELP function to be active for the entire
domain of the command, it should set the ECTNOQPR bit to one prior to
invoking parse for the first time.

3-6 TSO/E Guide to Writing a TMP or a CP

9

3

If your command processor accepts subcommands and wants the prompt mode
HELP function to be available for a subcommand, it should set ECTNOQPR to
one before attaching the subcommand. In this case, the command processor
should ensure that the ECTPCMD and ECTSCMD fields in the ECT contain the
primary command name and the secondary command name respectively.

The prompt mode HELP function is active for all keyword operands of all
commands (except the TEST and LOGON commands), including user-written
commands. It is also active for the positional parameters of the following
commands: ATTRIB, CALL, CANCEL, EDIT, EXEC, HELP, OUTPUT,
RUN, and SEND. If you want to make this function available for the positional
operands of other commands, as well as for the positional operands of
user-written subcommands for which the prompt mode HELP function is enabled,
you or your system programmer must update their corresponding HELP members
as described in “Writing HELP Members” and “Updating Existing HELP
Members” later in this section.

Note: The prompt mode HELP function is not supported during LOGON
processing. LOGON pre-prompt exit routines should not make the function
active.

ESTAE/ESTAI Exit Routine -- Intercepting an ABEND

Linkage Considerations

Use the ESTAE and ESTALI exits in your command processors, if they are needed,
to keep the system operable if abnormal termination occurs. ESTAE/ESTALI exits
should be used in such a way that the command processor gets control if a
subcommand abnormally terminates. If you issue an ESTAE, issue it as early as
possible in your command processor. Any ESTAE should be issued before any
STAX. ESTAE provides the command processor with the ability to intercept an
ABEND so that cleanup, bypass, and if possible, execution retry can be
accomplished. (See SPL: System Macros and Facilities for a discussion of the
ESTAE macro instruction. See Supervisor Services and Macro Instructions for a
discussion of the ESTAI operand of the ATTACH macro instruction and for
information about ESTAE and ESTAI exit routines.)

Programs may issue the ESTAE and FESTAE macros, as well as the ATTACH
macro with the ESTAI operand, in either 24- or 31-bit addressing mode. The
ESTAE, FESTAE, and ESTAI exit and recovery routines receive control in the
same addressing mode in which the ESTAE, FESTAE, and ATTACH macros are
issued. When the macros are issued in 31-bit addressing mode, ESTAE,
FESTAE, and ESTAI routines may reside above 16 Mb in virtual storage.

The ESTAE, FESTAE, and ATTACH macros are downward incompatible. The
MYVS/Extended Architecture versions of these macros do not execute properly in
MYVS/370. For an explanation of how to select the desired macro level, see SPL:
System Macros and Facilities.

While not recommended, the STAE macro and the STAI operand of ATTACH

may be used to provide error handling exits. However, programs executing in
31-bit addressing should not establish STAE or STAI recovery exits.

Chapter 3. Command Processors 3-7

Command Processor Functions that Rely on Exit Routine Support

The following types of command processors should use ESTAE exit routines:
e All command processors that process subcommands

o All command processors that request system resources that are not freed by
ABEND or DETACH

e Command processors that process lists, to allow processing of other elements

in the list if a failure occurs while processing one element in the list

Command processors that attach subcommands should also provide an ESTAI
exit to intercept abnormally terminating subcommand processors.

Simple command or subcommand processors should not issue an ESTAE or an
ESTALI if the terminal monitor program or calling command processor ESTAI

exits provide adequate processing.

Guidelines for ESTAE and ESTAI Exit Routines

ESTAE and ESTALI exit routines should observe the following guidelines:

1.

The error handling exit routine should issue a diagnostic error message of the
form:

Ist level command-name ENDED DUE TO ERROR +
subcommand-name

2nd level COMPLETION CODE IS xxxx

The name supplied in the first level message is obtained from the environment
control table, and the code supplied in the second level message is the
completion code passed to the ESTAE or ESTAI exit from ABEND. The
GNRLFAIL service routine may be used to issue the diagnostic error
message, although it requires additional storage space (see guideline number
4).

The routine should issue these messages so that the original cause of
abnormal termination is recorded should the error handling exit routine itself
terminate abnormally before diagnosing the error.

When an ABEND is intercepted, the command processor ESTAE exit routine
should determine whether retry is to be attempted. If so, the exit routine
should issue the diagnostic message and return, indicating via a return code
that an ESTAE retry routine is available. If a retry is not to be attempted,
the exit routine should return, indicating via a return code that no retry is to
be attempted. The TMP ESTALI exit routine will issue the diagnostic
message. (For a description of the return codes and their meanings, see
Supervisor Services and Macro Instructions.)

3-8 TSO/E Guide to Writing a TMP or a CP

9

J

2. The ESTAE or ESTAI routine that receives control from ABEND should
perform all necessary steps to provide system cleanup. This cleanup should
be performed in the ESTAE exit routine rather than in the ESTAE retry
routine because DETACH with the ESTAE = YES operand does not allow
the subtask to retry from an ESTAE/ESTAI exit. (The TMP issues
DETACH with ESTAE=YES when a command processor has been
interrupted with an attention.)

3. The error handling exit routine should attempt to retry program execution
when possible. If the command processor can circumvent or correct the
condition that caused the error, the error handling routine should attempt to
do so. In other cases, however, RETRY has no function and the command
processor ESTAE exit should not specify the RETRY option.

4. Storage might not be available when the ESTAE or ESTAI routine receives
control. Any storage the routine requires should be acquired before it
receives control, and be passed to it.

Attention Exit Routines

An attention exit routine should be provided by any command processor that
accepts subcommands. Use the STAX macro instruction to specify the address of
your attention handling routine. See “Attention Interruption Handling - The
STAX Service Routine” for a complete discussion of the STAX macro instruction.
Simple command processors should not issue a STAX if the TMP or the calling
command processor STAX exits provide adequate processing.

If you did not include the IBUF and the OBUF operands in the STAX macro
instruction that set up the attention handling exit, use the PUTGET macro
instruction, specifying the TERM operand, to send a mode message to the
terminal identifying the program that was interrupted, and to obtain a line of
input from the terminal.

If you specify the OBUF operand on the STAX macro instruction without an
IBUF operand, or with an IBUF length of 0, you can then use the PUTGET
macro instruction, specifying the ATTN operand. This causes the PUTGET
service routine to inhibit the writing of the mode messages, since a message was
already written to the terminal from the output buffer specified in the STAX
macro instruction. The PUTGET service routine merely returns a logical line of
input from the terminal.

In either of the above cases, if the user enters a question mark, the PUTGET
service routine automatically causes the second level informational message chain
(if one exists) to be written to the terminal, puts out the mode message again, and
returns a line from the terminal.

If you used the IBUF operand on the STAX macro instruction note that no
logical line processing or question mark processing is performed. If the user
returns a question mark, you will have to use the PUTLINE macro instruction to
write the second level informational message chain to the terminal. Then issue a
PUTGET macro instruction, specifying the TERM operand, to write a mode
message to the terminal and to return a line of input from the terminal.

Chapter 3. Command Processors 3-9

Whether you use the IBUF operand on the STAX macro instruction or the
PUTGET macro instruction to return a line from the terminal, you can use the "
command scan service routine to determine what the user has entered. J

If the user enters a null line, the attention handling routine should return to the
point of interruption. Note that, with the exception of the TPUT ASID buffers
for TCAM, the TGET, TPG, and TPUT buffers are flushed during attention
interruption processing. If any data was present in these buffers, it is lost.

If a new command or subcommand is entered, the attention handling routine
should:

e Post the command processor’s event control block to cause active service
routines to return to the command processor.

e Exit.

e Reset the input stack in the command processor mainline. (A stack flush in
an attention routine may cause severe errors.)

The HELP Data Set

A terminal user can enter the HELP command to retrieve information about

commands or subcommands. This information is stored in a data set labeled

SYSI1.HELP (the HELP data set). If you add command processors to TSO, you

should either add HELP information to the SYSI.HELP data set, or to a private J
HELP data set.

Attributes of SYSI.HELP

SYSI1.HELP is a cataloged, partitioned data set consisting of one member named
COMMANDS and individual members for each command in the system. The
COMMANDS member contains a list of the commands available to the user, and
a brief description of each. The individual members for each command are
named with the command name, and contain more specific information about the
command and its subcommands. The HELP information contained within any
member of the HELP data set consists of punch-card images. The logical record
length is therefore 80 characters.

Format of HELP Members

Each of the HELP members, other than the COMMANDS member, is divided
into the following subgroups, each of which can be displayed at the terminal:

e A subcommand list - This appears only if the command has subcommands.

o Functional description - This provides a brief description of the function of
the command or subcommand.

e Syntax - This describes the syntax of the command or subcommand.]'

3-10 TSO/E Guide to Writing a TMP or a CP

e Message identifier description - This provides information pertaining to
messages issued by the command or its subcommand.

e Operand description - This provides information on the command operands.
It includes individual sections containing brief descriptions of each positional
operand, and of each keyword and its parameters.

Private HELP Data Sets

Updating SYS1.HELP

Writing HELP Members

You may concatenate your data set to the SYSI.HELP data set (or vice versa).
Concatenated data sets need not have the same attributes as the SYS1.HELP data
set, but the first concatenated data set must have the largest block size of the
concatenated data sets, and it must not specify a fixed block size.

Concatenated data sets are searched in the order of concatenation. If
SYS1.HELP and a private HELP data set have been concatenated, the first
COMMANDS member encountered by the HELP processor is used as the list of
available commands. Thus, if you concatenate your own HELP data set to
SYS1.HELP, you should make additions to the COMMANDS member of
SYS1.HELP.

Private HELP data sets must be allocated with file name SYSHELP, either in the
LOGON procedure or on an ALLOCATE command. When data sets are
concatenated, the file name SYSHELP is required. If only SYSI.HELP is
required, the file name SYSHELP would not have to be allocated. (See the
DAIR entry code X‘24’ later in this book.)

Use the IEBUPDTE utility program or the EDIT command to update
SYS1.HELP. SYS1.HELP is a system data set, so it will generally require
operator intervention when it is updated.

To add a new member to a data set named PRIVATE.HELP using the EDIT
command, enter:

edit 'private.help(mbrname)' data new

Chapter 3. Command Processors 3-11

Use the information described in Figure 3-1 when you add to SYS1.HELP or set
up your own HELP data set. The control characters, beginning in card column 1,
divide the data set into the subgroups previously described, and thereby permit
the HELP command processor to select message text according to the operands
supplied on the HELP command. (See TSO/E Command Language Reference for
a discussion of the HELP command.)

Control Character

Purpose of Data Card

)S
)F

X

M

)I membername

))messageid

)O

)P

)keyword

=subcommandname

This card indicates that a list of commands or subcommands follows.

This card indicates that the functional discussion of the command or
subcommand follows.

This card indicates that the syntax description of the command or
subcommand follows.

This card indicates that message ID information follows. The information is
only printed by the HELP command when the MSGID keyword is specified.

In MVS/XA, this card includes additional help information in the specified
member. The include control character,)I, can appear anywhere within a
data set member. If the help information you plan to add is not available
yet, you can specify the control character and later add the information. No
error messages are issued.

The member name can be up to eight characters in length. There must be at
least one blank before and after the member name.

This card indicates that information follows describing the named messageid.
One of these control cards should be present for each message issued by the
command. Each card contains the identifier of the message it describes.
Message IDs can be any length and the first character must be alphabetic.

This card indicates that the command operands and their descriptions
follow. Positional operands must follow immediately after the)O control
card and before the))keyword control cards.

This card indicates that a positional operand description follows. One of
these control cards is required for each positional operand within the
command. Each card contains the name of the positional operand it
describes.

This card indicates that information follows describing the named keyword.
One of these control cards must be present for each keyword operand within
the command. Each card contains the name of the keyword it describes.

This card indicates that information follows concerning the subcommand
named after the equal sign. One of these cards is required for each
subcommand accepted by the command being described. Note that this card
merely names the subcommand,; it does not describe it. Describe the
subcommand in the same manner you would describe a command.

If the subcommand has an alias name, you may include the alias name on
the control card, i.e. =subcommandname =subcommandalias. Note that
no blanks may appear between the subcommand and the alias.

Figure 3-1. Format of a HELP Data Set

3-12 TSOJ/E Guide to Writing a TMP or a CP

All data cards, except the =subcommandname card, can contain additional
information. If you include additional information on the cards, the control
characters)S,)F,)X,)I,)O, and)P must be followed by at least one blank, and
the control character))keyword by at least one blank or a left parenthesis. Any
information after the membername field on the include,)I, data card is treated as
a comment. Use the left parenthesis when the keyword you are describing is
followed by operands enclosed in parentheses.

The only restrictions on data cards are that columns 72-80 are reserved for
sequence numbers, and column one must contain a right parenthesis, an equal
sign, or a blank. The sequence numbers are not printed when the HELP
command is executed.

For example, information concerning a user’s SAMPLE command, shown in
Figure 3-2, could be formatted for entry into the HELP data set (or your own
private help data set).

SAMPLE | positl [,(posit2)][KEYWD1l[(posit3,posit4)

Figure 3-2. An Example of a User's SAMPLE Command Format

The SAMPLE command has one subcommand, the EXAMPLE subcommand (see
Figure 3-3). Both the command and the subcommand can issue messages
IKJXX110I and IKJXXI111I.

KEYWD10
KEYWD11
KEYWD12

EXAMPLE | positl0,positll [KEYWD13 (positl2)]

Figure 3-3. An Example of a User's EXAMPLE Subcommand Format
Figure 3-3 shows data cards that would present and format information about the

SAMPLE command and EXAMPLE subcommand for inclusion in the HELP
data set.

Chapter 3. Command Processors 3-13

)ls rwiel Ishielle Ichhiamo s el Fpet 6 Isvisicionmianio
EnTnar
£ a7/ IomMall] bieiskciel lel77bW 1ae 7iMd [shimdALlE Ic AMO:
e Islamelc €] [cionsia /ls! W K rklr/iA/bbis
wma co P SOl Eix/isis| W/ iry| (7S] Mamel.| | |
7] su =l iClow /18| WsED| meReLlY 7ol piEsklel s
TWE Fuviveiri ovs! o] rwlel Wiekld bhiril [sielir icbMrieol | clalebls|.
) el ISUMPLE lcobmmvDl Wals| Iri oL lom/ el IsiMTialx:
sicRYBiE THE srMTHIX P r;l SAMPLE €p W
£,
Il W8 eleiublel |AolpidTiriolM] TiAK| |ZWFlo 7i7loM FloA 170
§ _|Comaiavpl |AAo yr A7 E LA £
) TH A C /[SISWES] [TIHIET IFlolLlLlojw(7 N SISAIGIESS|:
YNNKTXIX| 11011 SICRY/ BE £ 9 Agﬁ /K|TXXx\1 (7107 RE!,
JDIIKIXIX 7111/ |DEISICIRY BE] THE MEISIS|A [KIXIX] WERE.
Jlo 7WE SUMALIE ¢ vl Whals| 17 FoL L iow/ Pbisl 7 bival
PlEelaMDls):
)P POIS|/ |77 ESCR BE 7] MERE,
)P Pas|/rie e/ / e
) vindlr | bleisiciel/ wIE| ¥ ZR Y7l HeeEl;| [/Wickl o
' LEsiclel \Prizion o
asi/|\7n3| A
os|/
= L EXAMP . |
1 WMCITI/ IOMA L DESICRY PirZioM 10F [THE ey \SUBICOMMAVD!:
e lerdmPLE] IsBiclobisaWid |/is| Tl 1A/lci7 1A/ lods]
v BICIO D,
)| EXBmAL £ si/is WDl Wuis| rwE lFoklkionw/Wa Isirivird x
clel’ BE £ Syrm o WiE| ExAamPyL el IsviBc D|
nE .
0 7HE L\E| SuyB Clopmmanie WAS| riiE| Fok & loml bisl/ir/oMal.
, vPiEleumoss|:
NP Plols, 717 41 PEISCRl/ BE /17 WERIE,
)P Plois|/ 71z pleskclel/ Bl /- ekl
) | Jcymp 7|8 PiEsicer B vie Wepwioen,| wermd s Welels.
D sivimd 77| oiEls el TWiE KiErwiolew), | Weiriwid /7| Wieres.
JJIKEYWDZI12] DESCIRBE 7vEl ke woRDl, | e 12l weERE.
J)KEYwWP3l(\Aos|/ 72D
ESCR BE TWE KE)VWORD, K B wio |7
ols|s|717lonAlL Wbaamol, | lebisiy ir7ize],

Figure 3-4. Coding Example - Including the SAMPLE Command and EXAMPLE Subcommand in the HELP Data
Set

If you are writing a HELP member for a user-written command, and the
command processor wants the prompt mode HELP function to be available for
its positional parameters and/or for those of one or more of its subcommands, do
the following. Enter the positional parameter control character,)P, on the first
line of each positional parameter description for the command and/or
subcommand(s). (See “Prompt Mode HELP Function™ earlier in this section.) If
no description exists for a positional parameter, you should also supply the name
of the positional parameter along with the information you would like displayed
when the user requests information about the parameter. If a description exists,
you may wish to modify it so that is does not repeat information provided by the

3-14 TSO/E Guide to Writing a TMP or a CP

messages. This suggestion also applies to the other descriptions in the HELP
members. Keep in mind, though, that the user can request help when not
responding to prompt mode messages. (See “Updating Existing HELP Members”
below for an example of how to update a HELP member for a command’s
positional parameters.)

Note: If you insert a)P for only some of the positional parameters for a given
command or for a given subcommand, unpredictable results may occur when
parse processing issues a HELP command for one of its positional parameters.

Updating Existing HELP Members
For various reasons, you may wish to update existing HELP members.

To make the prompt mode HELP function available for a command’s positional
parameters, assuming it has positional parameters, update the HELP member for
the command in the following manner. (See “Prompt Mode HELP Function”
earlier in this section for a description of this function and a list of the commands
for which the function is automatically provided.) Starting in column one of the
first line of each positional parameter description for the command, enter the
positional parameter control character,)P. The prompt mode HELP function
may also be active for one or more of a command’s subcommands. For a
subcommand for which this function is active, you should also insert a)P for each
of its positional parameter descriptions in the HELP member. (See Figure 3-4.)

If no description exists for a positional parameter, you should also supply the
name of the positional parameter along with the information you would like
displayed when the user requests information about the parameter. If a
description exists, you may wish to modify it so that it does not repeat
information provided by the messages. This suggestion also applies to the other
descriptions in the HELP members. Keep in mind, though, that the user can
request help when not responding to prompt mode messages.

Note: If you insert a)P for only some of the positional parameters for a given
command or for a given subcommand, unpredictable results may occur when
parse processing issues a HELP command for one of its positional parameters.

For example, if you want to enable parse processing to generate a HELP
command for the entryname positional parameter of the DELETE command,
update the text of the DELETE HELP member as follows:

)O OPERANDS
)P 'ENTRYNAME'

(description of entryname)

By updating the DELETE member accordingly, you also enable the user to
request information about the entryname positional parameter when the user is
not being prompted for it. (See T7SO/E Command Language Reference for the
syntax of the HELP command.)

Chapter 3. Command Processors 3-15

3-16 TSO/E Guide to Writing a TMP or a CP

C

Chapter 4. MVS/Extended Architecture Considerations

This section discusses considerations for MVS/Extended Architecture, with TSO
Extensions (TSO/E 5665-285) installed, in terms of its impact on the tasks
documented in this manual. You should be familiar with the publications that
describe comprehensive programming considerations for MVS/Extended
Architecture, as well as with those that describe the routines and macros discussed
in this manual. Henceforth, MVS/Extended Architecture is referred to as
MVS/XA.

Note: Interfaces for service routines and macro instructions mentioned in this
section are covered in more detail in the sections of this manual describing the
individual service routines and macro instructions.

31-Bit Addressing - General Interface Considerations

The interfaces described in this section reflect what is possible on an MVS/XA
system. When determining the attributes and linkage conventions for a program,
you should analyze the program'’s individual interfaces and its overall interactions
with other programs. This section provides general guidelines for making these
determinations.

MYVS/XA requires that addressing modes and program residency be considered
when determining linkage conventions. See “Specific Interfaces and Functions”
later in this section for brief descriptions of those considerations for the service
routines and macro instructions described in this manual.

Assuming you are running programs on an MVS/XA system, you might want to
take advantage of the added virtual storage provided by extended addressing, or
you might want to prepare for doing so in the future. Before describing linkage
considerations, it is important to note that if a program is to be run on MVS/370
systems or on both MVS/370 and MVS/XA systems, it cannot perform any
functions unique to MVS/XA.

Some MVS/XA macro instructions are downward incompatible; their MVS/XA
expansions do not function correctly in MVS/370. Of the macros discussed in this
manual, ATTACH, ESTAE, FESTAE, and STAX are downward incompatible.
For a description of how to generate the desired level of a macro instruction, refer
to SPL: System Macros and Facilities.

Chapter 4. MVS/Extended Architecture Considerations 4-1

When making linkage decisions, you should analyze:

e Who passes control to whom)
e Whether return is desired
e AMODE and RMODE attributes

The first two items are discussed in SPL: 31-Bit Addressing.

The following discussion provides a general description of AMODE and RMODE
attributes; it does not attempt to cover AMODE and RMODE considerations in
depth. For a detailed discussion of 31-bit addressing, refer to SPL: 3I-Bit
Addressing.

The following paragraphs pertain to programs running exclusively in 370-XA
mode.

AMODE =24, RMODE =24

Programs with these attributes expect to (or are designed to) receive control in
24-bit addressing mode, and are loaded below 16 Mb in virtual storage.

If you do not assign AMODE and RMODE attributes to a program, the

attributes default to AMODE =24 and RMODE =24. Most IBM-supplied

command processors have these attributes and are loaded below 16 Mb in virtual

storage. The EXEC and ALLOCATE command processors have AMODE =31

and RMODE =ANY attributes; these two command processors, and the

IBM-supplied terminal monitor program, are loaded above 16 Mb. The TEST J
command processor has AMODE =31 and RMODE =24 attributes, and is loaded

below 16 Mb.

AMODE=ANY, RMODE =24

AMODE = ANY indicates that a program expects to (or is designed to) receive
control in the addressing mode of the program that invoked it. Note that a
program with the AMODE = ANY attribute may have to switch addressing
modes for certain processing. However, such a program must switch back to the
addressing mode in which it received control before returning to the caller.

AMODE =ANY programs must be given the RMODE =24 attribute.

AMODE =ANY does not indicate whether the program should be passed input
that resides below 16 Mb in virtual storage; the particular interfaces should be
analyzed to determine where input may reside. However, a program should meet
certain criteria in order to be assigned the AMODE = ANY attribute. Refer to
SPL: 31-Bit Addressing for a description of the criteria.

4-2 TSO/E Guide to Writing a TMP or a CP

C

|

AMODE=31

AMODE =31 indicates that a program expects to (or is designed to) receive
control in 31-bit addressing mode. Such a program may have the RMODE =24
or RMODE =ANY attribute, depending on its residency requirements.
Regardless of the program’s RMODE attribute, the residency of its input depends
on the program’s requirements. The program may require that some of its input
resides below 16 Mb in virtual storage, while other input may reside anywhere.

A program that runs exclusively in 31-bit addressing mode (AMODE =31) may
do so provided it complies with the restrictions of invoking, and being invoked
by, programs that run in 24-bit addressing mode (AMODE =24 or
AMODE=ANY).

Refer to SPL: 31-Bit Addressing for more information on the AMODE =31
attribute.

Specific Interfaces and Functions

The interfaces described in this section reflect what is possible on an MVS/XA
system. When determining the attributes and linkage conventions for a program,
you should analyze both the program’s individual interfaces and its overall
interactions with other programs. This section provides specific guidelines for
making these determinations.

Control Program Interfaces

Most of the IBM-supplied command processors are loaded below 16 Mb and
receive control in 24-bit addressing mode. The EXEC and ALLOCATE
command processors are loaded above 16 Mb and receive control in 31-bit
addressing mode. The TEST command processor is loaded below 16 Mb and
receives control in 31-bit addressing mode. Refer to “Testing a Newly-Written
TMP or CP -- The TEST Command” for additional information on the TEST
command and its services.

The command processor parameter list (CPPL) passed by IBM-supplied control
programs resides below 16-Mb in virtual storage.

User-written TMPs and CPs may execute in either 24- or 31-bit addressing mode
provided they follow the restrictions involved in invoking programs that have
24-bit dependencies. When assigned the AMODE =31 attribute, they may be
loaded above 16 Mb in virtual storage (RMODE = ANY), and passed input that
resides above 16 Mb. The IBM-supplied TMP is loaded above 16 Mb.

Chapter 4. MVS/Extended Architecture Considerations 4-3

Service Routine Interfaces

The data type processor (IKJEBEPS) and the STA interface routine (IKJEHSIR)
must be invoked in 24-bit addressing mode. All input passed to these two
routines must reside below 16 Mb in virtual storage.

If a program running in 31-bit addressing mode invokes one of these two routines,
the LINK macro should be used to invoke it because LINK does not require the
invoking program to switch to 24-bit addressing mode. In this case, LINK
switches to 24-bit mode on behalf of the invoking program. If a program is
loaded above 16 Mb in virtual storage, it must use LINK to invoke IKJEBEPS or
IKJEHSIR.

The following service routines can be invoked in either 24- or 31-bit addressing
mode, but all input passed to these routines must reside below 16 Mb in virtual
storage. These routines execute in 24-bit addressing mode and return control in
the same addressing mode in which they are invoked:

IKJEHCIR Catalog information routine
IKJEHDEF Default service routine

The following service routines can be invoked in either 24- or 31-bit addressing
mode. When invoked in 31-bit addressing mode, these routines may be passed
input that resides above 16 Mb in virtual storage. These routines execute and
return control in the same addressing mode in which they are invoked:

IKJDAIR Dynamic allocation interface routine
IKJEFF18 DAIRFAIL

IKJEFF19 GNRLFAIL/VSAMFAIL
IKJEFTSR TSO service routine

The following service routines can be invoked in either 24-bit or 31-bit addressing
mode. They execute in 31-bit addressing mode and can accept input above or
below 16 MbD in virtual storage. These routines will return control in the same
addressing mode in which they are invoked:

IKJEFF02 TSO message issuer routine
IKJGETL GETLINE service routine
IKJPARS Parse service routine
IKJPTGT PUTGET service routine
IKJPUTL PUTLINE service routine
IKJSCAN Command scan service routine
IKJSTCK STACK service routine
IKJCT441 CLIST variable access routine

Note that the list source descriptor (LSD) must reside below 16 Mb in virtual
storage. The output line descriptor (OLD) can reside above 16 Mb.

STAX (specify terminal attention exit routine) may be invoked in either 24- or
31-bit addressing mode. Refer to “Attention Interruption Handling -- The STAX
Service Routine” for more information.

Refer to “Passing Control to the TSO Service Routines” later in this book for
more detailed descriptions of interfacing with the routines listed in this section.

4-4 TSO/E Guide to Writing a TMP or a CP

9

Macro Interfaces

Figure 4-1 shows the MVS/Extended Architecture rules for the macros discussed

in this manual.

Note: In Figure 4-1, a dash (-) indicates that the category does not apply to the

macro because the macro does not generate executable code. The addressing

mode of the program that accesses the data generated by the macro must agree
with the residence of the data.

(P) May Be Issued by Program
(X) May Be Issued In (I) Input May Be

Macro 24-Bit Mode 31-Bit Mode Below 16Mb Above 16Mb
ATTACH X X LP ILP
CALL X X LP LP
CALLTSSR X X P P
ESTAE X X LP LP
FESTAE X X LP LP
GETLINE X X LP LP
GTSIZE X X P P
GTTERM X P
IKJENDP - - P P
IKJIDENT - - P P
IKJKEYWD - - P P
IKJNAME - - P P
IKJOPER - - P P
IKJPARM - - P P
IKJPOSIT - - P P
IKJRLSA X X P P
IKJRSVWD - - P P
IKJSUBF - - P P
IKJTERM - - P P
IKJTSMSG - - P P
LINK X X LP LP
LOAD X X LP LP
PUTGET X X LP LP
PUTLINE X X LP LP
RTAUTOPT X X P P
SAM Macros X LP
SPAUTOPT X X P P
STACK X X LP LP
STAE X LP
STATTN X LP
STAUTOCP X X P P
STAUTOLN X LP
STAX X X ILP See section on

STAX.
STBREAK X LP
STCC X LP
STCLEAR X LP

Figure 4-1 (Part 1 of 2).

Chapter 4. MVS/Extended Architecture Considerations

MYVS/XA Interface Rules for Macro Instructions

4-5

(P) May Be Issued by Program
(X) May Be Issued In (I) Input May Be
Macro 24-Bit Mode 31-Bit Mode Below 16Mb Above 16Mb
STCOM X P
STFSMODE X LP
STLINENO X P
STSIZE X LP
STTIMEOU X LP
STTMPMD X LP
STTRAN X LP
TCLEARQ X LP
TGET X X LP
TPG X X LP
TPUT X X ILP
XCTL X X ILP 1P

Figure 4-1 (Part 2 of 2).

Notes on Figure 4-1

MVS/XA Interface Rules for Macro Instructions

ATTACH, LINK, LOAD, XCTL

A program may issue the ATTACH, LINK, LOAD, and XCTL macro
instructions while executing in either 24- or 31-bit addressing mode. These
system services determine where to load the requested program in storage
and in which addressing mode to invoke it based on the program’s AMODE
and RMODE attributes. Note that LOAD only loads a program, it does
not invoke it. LOAD returns the address of the loaded program. The
high-order bit of this address reflects the AMODE attribute of the loaded
program.

If a program is invoked via a LINK, ATTACH, or XCTL macro, it receives
control in the addressing mode specified or allowed by its AMODE
attribute. On the other hand, if a program branches to another program
without changing addressing modes via the BASSM or BSM branch
instructions, the requested program receives control in whatever addressing
mode is active at the time of the branch -- that is, in the addressing mode of
the caller.

For more information on these macros, refer to System Macros and
Facilities.

CALL

You may use the CALL macro to invoke a program if that program may be
invoked in the current addressing mode.

CALLTSSR

The CALLTSSR macro instruction may be issued in either 24- or 31-bit
addressing mode. See “Passing Control to the TSO Service Routines” later
in this book for more information on issuing the CALLTSSR macro.

4-6 TSO/E Guide to Writing a TMP or a CP

J

»

ESTAE, FESTAE, STAE, ESTAI
The ESTAE and FESTAE macros may be issued in either 24- or 31-bit
addressing mode. Refer to “ESTAE/ESTAI Exit Routines -- Intercepting
an ABEND” for more information. Use of the STAE macro and the
ESTAI operand on the ATTACH macro to establish recovery exits and
routines is not recommended. If they are used, the recovery exits and
routines must receive control in 24-bit addressing mode -- that is, the STAE
and ATTACH macros must be issued in 24-bit addressing mode.

ESTAI
See ESTAE.

FESTAE
See ESTAE.

GETLINE, PUTGET, PUTLINE, STACK
The GETLINE, PUTGET, PUTLINE, and STACK macros can be issued
in either 24-bit or 31-bit addressing mode. These routines execute in 31-bit
addressing mode and return control in the same addressing mode in which
they are invoked. Input passed to these routines can reside above or below
16 Mb in virtual storage. However, if you use the STACK macro, the list
source descriptor (LSD) must reside below 16 Mb.

IKJTSMSG
The IKJTSMSG macro may be issued by a program loaded below or above
16 Mb in virtual storage. Refer to “Message Handling” for a description of

the standard and extended formats of the input parameter list for
IKJEFFO02.

LINK
See ATTACH.

LOAD
See ATTACH.

Parse Macros
If the parse service routine is invoked in 31-bit addressing mode, the parse
parameter list, mapped by IKJPPL, can reside above 16 Mb in virtual
storage and the parse macro instructions may be issued by a program
loaded above 16 Mb. See Figure 4-1 for a list of the parse macros and their
linkage requirements. The IKJRLSA parse macro may be issued in either
24- or 31-bit addressing mode.

PUTGET
See GETLINE.

PUTLINE
See GETLINE.

SAM Macros

The sequential access method (SAM) terminal macro instructions must be
issued in 24-bit addressing mode.

Chapter 4. MVS/Extended Architecture Considerations 4-7

STACK
See GETLINE.

STAE
See ESTAE.

STAX
A program may issue the STAX macro in either 24- or 31-bit addressing
mode. Refer to “Specifying a Terminal Attention Exit -- The STAX Macro
Instruction” for specific restrictions.

SVC 93 (TGET, TPUT, TPG)
SVC93 (TGET, TPUT, and TPG macros) executes in 24-bit addressing
mode. All input passed to SVC93 must reside below 16 Mb in virtual
storage. Programs can invoke TGET, TPUT, and TPG in 24-bit or 31-bit
addressing mode.

SVC 94 (Terminal Control Macros)
SVC 94 (terminal control macros) executes in 24-bit addressing mode. With
a few exceptions, terminal control macros must be issued in 24-bit
addressing mode. The exceptions are the GTSIZE, RTAUTOPT,
SPAUTOPT, and STAUTOCP terminal control macros, which may be
issued in 31-bit addressing mode. See Figure 4-1 for a list of the terminal
control macros and their linkage requirements.

TGET, TPUT, TPG
See SVC 93.

Terminal Control Macros
See SVC 9%4.

XCTL
See ATTACH.

31-Bit Indirection Symbol

When the EXTENDED keyword is specified on the IKJPOSIT parse macro
instruction, parse accepts addresses above 16 Mb in virtual storage and allows the
use of the 31-bit indirection symbol, ?, in indirect addresses and in address
expressions. Refer to “Using the Parse Service Routine (IKJPARS)” for more
information.

4-8 TSO/E Guide to Writing a TMP or a CP

| Chapter S. Invoking Other Programs, Commands, or CLISTs with
| the TSO Service Routine

| The TSO service routine allows a TSO user to invoke a command, program, or

| CLIST from an unauthorized environment. The invoked program, command, or

| CLIST can then be processed as if it was invoked from an authorized
environment. Any unauthorized program or command processor that uses the
TSO service routine can ignore the consideration of authorized or unauthorized
environments and programs. However, an authorized program or command
processor can use the TSO service routine to invoke only authorized programs,

| command processors, or CLISTs consisting of only authorized command

| processors and programs. A command processor or program can invoke the TSO
service facility in both foreground and background TSO sessions.

Chapter 5. Invoking Other Programs, Commands, or CLISTs with the TSO Service Routine 5-1

TSO Service Routine

Application
Program

TSO
Service
Routine

6 or 7 parameters

Program or
Command

~ 1
> 4 parameters

Storage pointed to by parameters passed to the TSO
service routine from the application program.

Flags

Function buffer

Length of the
function buffer

Function return code

TSO service routine
reason code or function
abend reason code

Abend code

Function parameter list

~—

Figure 5-1.

5-2 TSO/E Guide to Writing a TMP or a CP

TSO Service Routine

Note: The seven parameters in this figure do not have to be contiguous to each
other in storage.

)

(' | Program Interface to TSO Commands, Programs, and CLISTs

The program interface to TSO commands, programs, or CLISTs allows an
unauthorized TSO program or command processor to invoke any TSO command,
program, or CLIST, regardless of whether or not the invoked function is
authorized. As a result, you can invoke the full range of TSO services from your
programs without compromising MVS system integrity. For example, an
applications program written in PLI, COBOL, assembler, or any of the other
IBM supported programming languages can use the interface, IKJEFTSR (alias
name, TSOLNK), to invoke the ALLOCATE command (or a CLIST containing
multiple ALLOCATE commands) to dynamically allocate data sets.

Note: See Chapter 6, “Program Access to CLIST Variables” for information
about saving command output lines in a non-CLIST program.

Invoking the TSO Service Routine

IKJEFTSR is invoked according to the rules of the applications programming
language in use. The following example (Figure 5-2) shows an assembler
applications program invoking a TSO command. If a program is invoked instead
of a command, a seventh parameter may be used to pass parameters to the
invoked program. For more examples, see the TSO Extensions User’'s Guide.

Chapter 5. Invoking Other Programs, Commands, or CLISTs with the TSO Service Routine 5-3

TSF CSECT
STM R14,R12,12(R13)
BALR R12,0
USING *,R12

ERRORRTN DS OH
*

*

* ANALYZE TSO SERVICE ROUTINE ERROR
. .
*
B ENDUP
ERRORCMD DS OH
*
* ANALYZE COMMAND PROCESSOR ERROR
. .
ENDUP DS OH
L R13,4(,R13)

LM R14,R12,12(R13)
SLR R15,R15
BR R14

ST R13,SAVEAREA+4
LA R11,SAVEAREA
ST R11,8(,R13)
LA R13,SAVEAREA
*
*
MAIN DS OH
L R15,CVTPTR ESTABLISH
L R15,CVTTVT(,R15) ADDRESSABILITY TO THE
L R15,TSVTASF-TSVT(,R15) TSO SERVICE ROUTINE
*
* INVOKE THE TSO SERVICE ROUTINE -- EXECUTE LISTBC COMMAND
*
CALL (15), (FLAGS,CMDBUF,BUFLEN, RETCODE ,RSNCODE , ABNDCODE) ,VL
LTR R15,R15 CHECK TSR RETURN CODE
BNZ ERRORRTN BAD RETURN CODE FROM TSR
CLC RETCODE,ZERO CHECK COMMAND PROCESSOR ERROR
BH ERRORCMD BAD RETURN CODE FORM COMMAND
B ENDUP NO ERROR --- EXIT

Figure 5-2 (Part 1 of 2). Invoking an Authorized Command Using IKJEFTSR

5-4 TSO/E Guide to Writing a TMP or a CP

*
*

DATA AREAS

ZERO DC
FLAGS DS
RESFLAGS DC
ABFLAGS DC
FNCFLAGS DC
*

CMDBUF DC
*

F'O'
OF
H'O'
X'ol'
X'ol’

ZERO
MAPS
FLAG
DUMP
TELL

C'LISTBC' NAME

CONSTANT

FIRST PARM TO IKJEFTSR
WORD

IF ABEND OCCURS

TSR TO EXECUTE THE COMMAND

OF COMMAND TO BE EXECUTED

BUFLEN DC F'e' LENGTH OF COMMAND BUFFER
RETCODE DS F RETURN CODE FROM COMMAND
RSNCODE DS F REASON CODE
ABNDCODE DS F ABEND CODE
SAVEAREA DS 18F SAVE AREA
CVTPTR EQU 16
CVTTVT EQU X'9C'
R15 EQU 15
R14 EQU 14
R13 EQU 13
R12 EQU 12
R11 EQU 11
R9 EQU 9
R8 EQU 8
IKJTSVT
END
Figure 5-2 (Part 2 of 2). Invoking an Authorized Command Using IKJEFTSR

Notes:

The syntax of the seven parameters must follow the conventions of the

applications language being used.

The seventh parameter is optional and can only be used when invoking a

program.

TSO Service Routine Parameters

Chapter 5. Invoking Other Programs, Commands, or CLISTs with the TSO Service Routine

The seven parameters serve the following function:

1.

This parameter identifies a full word of flags.

a. Bytes one and two are zeros.

b. Byte three is the error processing flag byte. It contains one of the

following:

e X‘00’ to show that no dump should be taken in case of an ABEND.
e X‘01’ to show that a dump should be taken in case of an ABEND.

5-5

c. Byte four is the function flag byte. It contains one of the following:

e X‘01’ to show that a TSO command is being invoked. J
X‘02’ to show that a program is being invoked.
o X‘05 to show that the function being requested is to be invoked first

as a command and then, if the command cannot be found, as a
CLIST.

2. The second parameter identifies the function buffer, which contains the name
of the command, program, or CLIST being invoked.

Note: CLISTs can be invoked explicitly and implicitly. For more details,
refer to CLISTs: Implementation and Reference.

3. The third parameter contains the length of the function buffer (parameter 2).

4. The fourth parameter identifies the function return code. The function
return code is the return code found in register 15 when the requested
program or command completes.

Note: See Figure 5-3 for an explanation of the IKJEFTSR return codes.

5. The fifth parameter identifies the function abend reason code or the TSO
Service Routine reason code. If the TSO Service Routine has a return code of
12 in register 15, this field contains a reason code that is associated with the
abend code pointed to by parameter 6. If the TSO Service Routine return
code is 20, this field indicates an error in the IKJEFTSR parameter list. J

Note: See Figure 5-4 for an explanation of the IKJEFTSR reason codes.

6. The sixth parameter identifies a field to contain the ABEND code, if the
requested program or command ends unsuccessfully.

7. The seventh parameter identifies the function parameter list. This parameter
is optional, and can only be coded when a program (not a TSO command) is
being invoked. This parameter list is a variable length list and the high order
bit of the last address must be on to indicate the end of the list.

The function parameter list:

a. Must have 1 to 4 parameters
b. The high order bit of the last parameter must be on
c. Parameters 1-3

1) A half word contains the parameter length in binary bytes,
immediately followed by

2) A variable length data string

5-6 TSO/E Guide to Writing a TMP or a CP

d. The last parameter

1) A full word containing 2 bytes of binary zeros, immediately followed

by

2) Two bytes containing the binary number of full words of data,
immediately followed by

3) - A variable length data string

The exact format of this parameter list will vary depending on the program
being invoked.

Return Codes

Meaning

0

IKJEFTSR and the requested program, command, or CLIST completed
successfully

4

The invoked function (program, command, or CLIST) had a non-zero return
code in register 15. When the invoked function completes processing, the
function return code field pointed to by the 4th parameter contains the contents
of register 15.

The invoked function (program, command, or CLIST) was terminated because
of an attention. If the invoked function was a CLIST, the CLIST did not
contain a CLIST attention routine. If the applications programmer wishes to
notify the end user his application program should issue a message.

12

The invoked function (program, command, or CLIST) abended. The abend code
field pointed to by the 6th parameter contains the abend code. The reason code
field pointed to by the 5th parameter contains the reason code associated with
the abend.

16

One of the first 6 parameters in the parameter list contains addresses of data in
protected storage.

20

The IKJEFTSR parameter list contains an error. The reason code field pointed
to by the 5th parameter contains the reason code associated with the error.

The TSO routines associated with IKJEFTSR encountered an unexpected failure.

28

The invoker of IKJEFTSR has AMODE 24, and the parameter list contains
31-bit addresses. (MVS/XA only)

Figure 5-3. IKJEFTSR Return Codes

Chapter 5. Invoking Other Programs, Commands, or CLISTs with the TSO Service Routine 5-7

Reason Codes

Meaning

4

The length of the parameter list was invalid.
One of the following is true:

® The high order bit of the last parameter must be on to indicate
the end of the list.

® The high order bit is on in any of the first five parameters.

® More than seven parameters are coded.

The reserved flags (bytes 1 and 2) of the function (program, command, or
CLIST) flag field pointed to by the first parameter are non-zero.

12

The function (program, command, or CLIST) flag byte (byte 4) of the flag field
pointed to by the first parameter was invalid. It should contain a decimal one
for a command, a decimal two for a program, or a decimal five for a CLIST.

16

The function (program, command, or CLIST) flag byte (byte 4) of the flag field
pointed to by the first parameter specified a command (contained a decimal one).
However, a seventh parameter (program parameter list) was also coded. The
seventh parameter can only be coded for the program function.

20

The abend processing flag byte is invalid. This byte (byte 3) of the flag field
pointed to by the first parameter should contain either a decimal zero to request
a dump, or a decimal one to indicate no dump is to be taken.

24

IKJEFTSR was invoked from a non-TSO environment. This service can only be
used in a TSO (foreground or background) environment.

28

The function buffer length is invalid. The function buffer pointed to by the 2nd
parameter must be greater than zero and less than 32K-5.

32

The program parameter list(pointed to by the seventh parameter of the TSO
service routine parameter list) either resides in protected storage or contained
addresses of data in protected storage.

36

The program parameter list pointed to by the 7th parameter is invalid. The
function parameter list:

a. Must have 1 to 4 parameters
b. The high order bit of the last parameter must be on
c. Parameters 1-3

(1) A half word contains the parameter length in binary bytes,
immediately followed by

2) A variable length data string
d. The last parameter

(1) A full word containing 2 bytes of binary zeros, immediately
followed by

(2) 2 bytes containing the binary number of full words of data,
immediately followed by

(3) A variable length data string

40

The requested function (program, command or CLIST) was not found.

IKJSCAN detected a syntax error in the function (program or command) name.

48

A command began with ‘%’, but CLIST processing through the TSO service
facility was not requested through the first parameter.

52

Unsupported background function (program, command, or CLIST).

56

The function (program, command, or CLIST) is authorized, but a copy of the
function could not be found in an authorized library.

60

The function (program or command) is authorized, but the requested function
was unauthorized.

Figure 5-4. IKJEFTSR Reason Codes

For further information about the TSO service routine see Terminal Monitor
Program and Service Routines Logic.

5-8 TSO/E Guide to Writing a TMP or a CP

Chapter 6. Program Access to CLIST Variables

This service allows any application program to examine and manipulate CLIST
variables. Programs can access CLIST variables by calling or linking to the
CLIST variable access module (IKJCT441).

IKJCT441 provides the following functions:

e Update or create a CLIST variable value. If the variable does not exist,
IKJCT441 creates it.

e Update a CLIST variable. If the variable does not exist, IKJCT441 does not
create it.

e Return a CLIST variable value. If a caller requests to return the value for a
variable that does not exist, IKJCT441 creates it.

o Return all active CLIST variables and their values.

Some CLIST variables are called control variables. Control variables are
variables that have a special meaning in a CLIST. Generally, they provide
information about the environment during CLIST execution. You can change or
assign values to only some of these control variables. See TSO Extensions
CLISTs: Implementation and Reference for a list of the control variables that you
can modify and a list of the control variables that you cannot modify.

Note: To save command output lines in a non-CLIST program, use IKJCT441
to reset &SYSOUTLINE to zero for each TSO command. &SYSOUTLINE is a
control variable that saves TSO command output and allows a CLIST or
application to display the output. See T'SO Extensions CLISTs: Implementation
and Reference for more information about &SYSOUTLINE.

Figure 6-1 shows how to obtain the address of IKJCT441 from the TSO vector
table (TSVT). The figure also shows the caller’s parameter list.

Chapter 6. Program Access to CLIST Variables 6-1

B

CVT
CVTTVT
TSVT
TSVTVACC
Register 1

Y

IKJCT441

Caller’s parameter list

Pointer to entry code

Pointer to address
of the variable name

Pointer to the length
of the variable name

Pointer to the address
of the variable value

Pointer to the length of
the variable value

Pointer to TOKEN

Figure 6-1. Program Access to CLIST Variables

The parameter list allows callers to send input to and receive output from
IKJCT441. The symbolic names and descriptions of the caller’s parameters

follow:

Parameter Function

ECODE Entry code. The entry code is a number that indicates to IKJCT441 the function that is

being requested. It is a constant located in the TSVT.

NAMEPTR Address of the variable name.

NAMELEN Length of the variable name.

VALUEPTR Address of the variable value.

VALUELEN Length of the variable value.

TOKEN Used only when finding all active CLIST variables. It contains zero or the address of an
internal CLIST control variable that points to the last variable the caller received. The
caller must turn on the high-order bit of this parameter to indicate that it is the last

parameter in the list.

In MVS/XA, callers executing in 31-bit addressing mode can pass data residing

above 16 Mb in virtual storage as input to IKJCT441.

6-2 TSO/E Guide to Writing a TMP or a CP

9

9

Update or Create a CLIST Variable Value
L Before invoking IKJCT441 to update or create a variable, the caller:
e Must specify each of the parameters in the parameter list.
e Set the value of TOKEN to zero.

e Turn on the high-order bit of the sixth word of the parameter list.

Figure 6-2 shows an example of how to invoke IKJCT441 to update a variable
value or create that variable if it does not exist.

Chapter 6. Program Access to CLIST Variables 6-3

SETS CSECT
CVTPTR EQU 16
CVTTVT EQU X'9C'
R15 EQU 15
R14 EQU 14
R13 EQU 13
R12 EQU 12
R11 EQU 11
ROO EQU O
IKJTSVT
SETS CSECT
STM R14,R12,12(R13) SAVE CALLER'S REGISTERS
BALR R12,0 ESTABLISH ADDRESSABILITY
USING *,R12 BASE REGISTER OF EXECUTING PROGRAM
ST R13,SAVEAREA+4 CALLER'S SAVEAREA ADDRESS
LA R15,SAVEAREA EXECUTING PROGRAM'S SAVEAREA ADDRESS
ST R15,8(,R13) EXECUTING PROGRAM'S SAVEAREA ADDRESS
LA R13,SAVEAREA EXECUTING PROGRAM'S SAVEAREA ADDRESS
*
*
L R15,CVTPTR ACCESS THE CVT
L R15,CVTTVT(,R15) ACCESS THE TSVT
L R15,TSVTVACC-TSVT(,R15) ACCESS THE VARIABLE ACCESS RTN
*
* INVOKE THE VARIABLE ACCESS SERVICE
*
LTR R15,R15 VERIFY TSVT ADDRESS PRESENT
BNZ CALL441 IF PRESENT, CALL IKJCT441
LINK441 LINK EP=IKJCT441,
PARAM=(ECODE, ENTRY CODE
NAMEPTR, POINTER TO VARIABLE NAME
NAMELEN, LENGTH OF VARIABLE NAME
VALUEPTR, POINTER TO VARIABLE VALUE
VALUELEN, LENGTH OF VARIABLE VALUE
TOKEN) , TOKEN TO VARIABLE ACCESS SERVICE
VL=1 CAUSES HI BIT ON IN THE PARM LIST
B RET441
CALL441 CALL (15),
(ECODE, ENTRY CODE
NAMEPTR, POINTER TO VARIABLE NAME
NAMELEN, LENGTH OF VARIABLE NAME
VALUEPTR, POINTER TO VARIABLE VALUE
VALUELEN, LENGTH OF VARIABLE VALUE
TOKEN) , TOKEN TO VARIABLE ACCESS SERVICE
VL CAUSES HI BIT ON IN THE PARM LIST
*
RET441 LTR R15,R15 CHECK RETURN CODE
BNZ ERRORRTN
*
*

* % % % ¥ ¥ ¥

* ¥ ¥ * ¥ ¥ *

Figure 6-2 (Part 1 of 2). Update or Create a CLIST Variable Value

6-4 TSO/E Guide to Writing a TMP or a CP

ERRORRTN DS
L
L
LM

BR
*

*
*

NAME DC
NAMELEN DC
VALUE DC
VALUELEN DC
NAMEPTR DC
VALUEPTR DC
TOKEN DC
ECODE DC
SAVEAREA DS
END

OH

R13,4(,R13)
R14,12(,R13) RESTORE REGISTER 14
ROO,R12,20(R13) RESTORE REMAINING REGISTERS

R14

CL12'VARIABLENAME' NAME OF THE VARIABLE

F'i2! LENGTH OF THE VARIABLE NAME
CL3'YES' VARIABLE VALUE

F'3" LENGTH OF THE VARIABLE VALUE
A (NAME) POINTER TO THE VARIABLE NAME
A(VALUE) POINTER TO THE VARIABLE VALUE
F'O' TOKEN (UNUSED HERE)

A (TSVEUPDT) ENTRY CODE FOR SETTING VALUES
18F

CALLER'S SAVEAREA

RETURN TO CALLER, REGISTER 15 CONTAINS
THE RETURN CODE FROM IKJCT441

Figure 6-2 (Part 2 of 2).

Update or Create a CLIST Variable Value

IKJCT441 places one of the following return codes in register 15, but does not
change any of the parameters in the caller’s parameter list.

Content

0

12

16

32

Meaning
IKJCT441 updated or created the variable.
The variable is a label, and IKJCT441 did not update it.

The variable is a CLIST built in function or a control variable that the user cannot
modify, such as &SYSDATE, and IKJCT441 did not update it.

A storage management (GETMAIN/FREEMALIN) failure occurred.

The length of the variable name is less than 1 or greater than 252, or the length of the
value of a symbolic variable is less than 1 or greater than 32,678.

The caller’s parameter list contains an error, or the caller is not in a CLIST environment.

The entry code is not valid.

Update a CLIST Variable Value Only

Before invoking IKJCT441 to update a variable, the caller:

Must specify each of the parameters in the parameter list.
Set the value of TOKEN to zero.
Turn on the high-order bit of the sixth word of the parameter list.

Figure 6-3 shows an example of how to invoke IKJCT441 to update a variable
value. If the variable does not exist, IKJCT441 does not create it, but returns to
the caller with a return code of X‘52°.

Chapter 6. Program Access to CLIST Variables 6-5

NOIMPM
CVTPTR
CVTTVT
ROO
RO8
R11
R12
R13
R14
R15

NOIMP

*

LINK441

CALL441

RET441

*
*

ERRORRTN

* % % *

CSECT
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
IKJTS
CSECT
STM
BALR
USING
ST

LA

ST

LA

L
L
L

VT

R14,R12,12(R13)
R12,0

*,R12
R13,SAVEAREA+4
R15,SAVEAREA
R15,8(,R13)
R13,SAVEAREA

R15,CVTPTR

R15,CVTTVT(,R15)

SAVE CALLER'S REGISTERS

ESTABLISH ADDRESSABILITY

BASE REGISTER OF EXECUTING PROGRAM
CALLER'S SAVEAREA ADDRESS

EXECUTING PROGRAM'S SAVEAREA ADDRESS
EXECUTING PROGRAM'S SAVEAREA ADDRESS
EXECUTING PROGRAM'S SAVEAREA ADDRESS

ACCESS THE CVT
ACCESS THE TSVT

R15,TSVTVACC-TSVT(,R15) ACCESS THE VARIABLE ACCESS RTN

INVOKE THE VARIABLE ACCESS SERVICE

LTR
BNZ
LINK

CALL

LTR
BNZ

DS
LA
CLR
BNZ

R15,R15
CALL441
EP=IKJCT441,
PARAM=(ECODE,
NAMEPTR,
NAMELEN,
VALUEPTR,
VALUELEN,
TOKEN) ,

VL=1

RET441

(15),
(ECODE,
NAMEPTR,
NAMELEN,
VALUEPTR,
VALUELEN,
TOKEN) ,

VL

R15,R15
ERRORRTN

OH

RO8, TSVRUNDF
R15,R08
EXITCODE

VERIFY TSVT ADDRESS PRESENT
IF PRESENT, CALL IKJCT441

ENTRY CODE

POINTER TO VARIABLE NAME

LENGTH OF VARIABLE NAME

POINTER TO VARIABLE VALUE

LENGTH OF VARIABLE VALUE

TOKEN TO VARIABLE ACCESS SERVICE
CAUSES HI BIT ON IN THE PARM LIST

ENTRY CODE

POINTER TO VARIABLE NAME

LENGTH OF VARIABLE NAME

POINTER TO VARIABLE VALUE

LENGTH OF VARIABLE VALUE

TOKEN TO VARIABLE ACCESS SERVICE
CAUSES HI BIT ON IN THE PARM LIST

CHECK RETURN CODE

OBTAIN NO IMPLICIT RETURN CODE
DETERMINE IF UNDEFINED VARIABLE
IF NOT, THEN EXIT

ISSUE ERROR MESSAGES OR TAKE ANY APPROPRIATE ACTION

* ¥ O % * * *

* ¥ % ¥ o ¥ *

Figure 6-3 (Part 1 of 2).

6-6 TSO/E Guide to Writing a TMP or a CP

Update a CLIST Variable Value Only

EXITCODE L R13,4(,R13) CALLER'S SAVEAREA

L R14,12(,R13) RESTORE REGISTER 14

LM ROO,R12,20(R13) RESTORE REMAINING REGISTERS

BR R14 RETURN TO CALLER, REGISTER 15 CONTAINS
* THE RETURN CODE FROM IKJCT441
*
*
NAME DC CL12'VARIABLENAME' NAME OF THE VARIABLE
NAMELEN DC F'12° LENGTH OF THE VARIABLE NAME
VALUE DC CL3'YES' VARIABLE VALUE
VALUELEN DC F'3' LENGTH OF THE VARIABLE VALUE
NAMEPTR DC A(NAME) POINTER TO THE VARIABLE NAME
VALUEPTR DC A(VALUE) POINTER TO THE VARIABLE VALUE
TOKEN DC F'O' TOKEN (UNUSED HERE)
ECODE DC A(TSVNOIMP) ENTRY CODE FOR NO IMPLICIT SETTING
* OF VALUES. IF THE SYMBOLIC VARIABLE
* NAME HAD NOT BEEN PREVIOUSLY DEFINED
* IKJCT441 WILL ISSUE THE RETURN CODE
* of 52 (TSVRUNDF).
SAVEAREA DS 18F

END

Figure 6-3 (Part 2 of 2). Update a CLIST Variable Value Only

IKJCT441 places one of the following return codes in register 15, but does not
change any of the parameters in the caller’s parameter list.

Content Meaning

0 IKJCT441 updated the variable.
12 The variable is a label, and IKJCT441 did not update it.
16 The variable is a CLIST built-in function or a control variable that the user cannot

modify, such as &SYSDATE, and IKJCT441 did not update it.

32 A storage management (GETMAIN/FREEMAIN) failure occurred.

36 The length of the variable name is less than 1 or greater than 252, or the length of the
value of a symbolic variable is less than 1 or greater than 32,678.

40 The caller’s parameter list contains an error, or the caller is not in a CLIST environment.

44 The entry code is not valid.

52 The variable does not exist, and IKJCT441 did not create it.

Chapter 6. Program Access to CLIST Variables 6-7

Return the Value of a CLIST Variable
Before invoking IKJCT441 to return the value of a CLIST variable, the caller: J
e Must specify:
— Entry code (ECODE)
— Address of the variable name (NAMEPTR)
— Length of the variable name (NAMELEN).
e Set the value of TOKEN to zero.

e Turn on the high-order bit of the sixth word of the parameter list.

Figure 6-4 shows an example of how to invoke IKJCT441 to return the value of a
CLIST variable.

6-8 TSO/E Guide to Writing a TMP or a CP

Q LOOK
CVTPTR

CVTTVT

R15

R14

R13

R12

R11

RO

R8

R7

RO

LOOK

*

LINK441
-

CALL441

RET441

CSECT
EQU 16
EQU X'9C!
EQU 15
EQU 14
EQU 13
EQU 12
EQU 11
EQU 9
EQU 8
EQU 7
EQU O
IKJTSVT
CSECT

STM R14,R12,12(R13)
BALR R12,0

USING *,R12

ST R13,SAVEAREA+4
LA R15,SAVEAREA
ST R15,8(,R13)

LA R13,SAVEAREA

R15,CVTPTR

L
L R15,CVTTVT(,R15)
L

SAVE CALLER'S REGISTERS

ESTABLISH ADDRESSABILITY

BASE REGISTER OF EXECUTING PROGRAM
CALLER'S SAVEAREA ADDRESS

EXECUTING PROGRAM'S SAVEAREA ADDRESS
EXECUTING PROGRAM'S SAVEAREA ADDRESS
EXECUTING PROGRAM'S SAVEAREA ADDRESS

ESTABLISH
ADDRESSABILITY TO THE

R15,TSVTVACC-TSVT(,R15) VARIABLE ACCESS ROUTINE

INVOKE THE VARIABLE ACCESS SERVICE

LTR R15,R15

BNZ CALL441

LINK EP=IKJCT441,
PARAM= (ECODE,
NAMEPTR,
NAMELEN,
VALUEPTR,
VALUELEN,
TOKEN) ,
VL=1

B RET441

CALL (15),
(ECODE,
NAMEPTR,
NAMELEN,
VALUEPTR,
VALUELEN,
TOKEN) ,
VL

LTR R15,R15
BNZ ERRORRTN

L R7,VALUELEN
L R8,VALUEPTR
LA R9,L'VALUE
CR R7,R9

BNE BAD

VERIFY TSVT ADDRESS PRESENT
IF PRESENT, CALL IKJCT441

ENTRY CODE

POINTER TO VARIABLE NAME

LENGTH OF VARIABLE NAME

POINTER TO VARIABLE VALUE

LENGTH OF VARIABLE VALUE

TOKEN TO VARIABLE ACCESS SERVICE
CAUSES HI BIT ON IN THE PARM LIST

ENTRY CODE

POINTER TO VARIABLE NAME

LENGTH OF VARIABLE NAME

POINTER TO VARIABLE VALUE

LENGTH OF VARIABLE VALUE

TOKEN TO VARIABLE ACCESS SERVICE
CAUSES HI BIT ON IN THE PARM LIST

CLC O(L'VALUE,RS8) ,VALUE

BNE BAD

* % ¥ * * * ¥

* % % % * ¥ *

L Figure 6-4 (Part 1 of 2).

Return a CLIST Variable Value

Chapter 6. Program Access to CLIST Variables

6-9

BAD DS
ERRORRTN DS

LM

BR
*

*
*

NAME DC
NAMELEN DC
VALUELEN DS
NAMEPTR DC
VALUEPTR DS

VALUE DC
TOKEN DC
ECODE DC
SAVEAREA DS
END

OH

OH

R13,4(,R13)

R14,12(,R13) RESTORE REGISTER 14

RO,R12,20(R13) RESTORE REMAINING REGISTERS

R14 RETURN TO CALLER, REGISTER 15 CONTAINS

THE RETURN CODE FROM IKJCT441

CL12'VARIABLENAME' NAME OF THE VARIABLE

F'12' LENGTH OF THE VARIABLE NAME

F LENGTH OF VARIABLE VALUE
A(NAME) POINTER TO THE VARIABLE NAME
A POINTER TO THE VARIABLE VALUE
CL3'YES' VARIABLE VALUE

F'0’ TOKEN (UNUSED HERE)
A(TSVERETR) ENTRY CODE FOR RETRIEVE

18F

Figure 6-4 (Part 2 of 2). Return a CLIST Variable Value

IKJCT441 returns values for the following parameters unless specified otherwise
by the return code:

e VALUEPTR contains the address of the value of the variable.
e VALUELEN contains the length of the variable value.

IKJCT441 places one of the following return codes in register 15:

Content

0

4

12

Meaning
IKJCT441 successfully returned the variable.

The caller should not rescan the variable. It is an I/O variable containing an & and is not
a variable name.

The variable is a CLIST built-in function, such as &STR, that requires evaluation.

The variable is a label. IKJCT441 updated VALUEPTR and VALUELEN, but the value
of the variable is meaningless.

The length of the variable is less than 1 or greater than 252.

The caller’s parameter list contains an error, or the caller is not in a CLIST environment.
IKJCT441 did not update VALUEPTR and VALUELEN.

The entry code is not valid. IKJCT441 did not update VALUEPTR and VALUELEN.

6-10 TSO/E Guide to Writing a TMP or a CP

C

Return all Active CLIST Variables and their Values

To list all the CLIST variables and their values, the caller invokes IKJCT441 once
for each existing CLIST variable. The caller sets TOKEN to zero before invoking
IKJCT441 for the first time. When the value in TOKEN is zero, IKJCT441
assumes this is the beginning of a list. Before returning to the caller, IKJICT441
places the address of an internal CLIST control variable in TOKEN and uses this
value on subsequent invocations to find the next variable. The caller must not
change the value that IKJCT441 places in TOKEN. When there are no more
variables, IKJCT441 places a zero in TOKEN and sets the appropriate return
code.

Before invoking IKJCT441 to find all the CLIST variables, the caller must:
e Specify the entry code.

e Set TOKEN to zero on the first entry.

e Turn on the high-order bit of the sixth word of the parameter list.

Figure 6-5 on page 6-12 shows an example of how to invoke IKJCT441 to find
all CLIST variables and their values.

Chapter 6. Program Access to CLIST Variables 6-11

LOCATE
CVTPTR
CVTTVT
R15
R14
R13
R12
R11

R9

R8

RO

LOCATE

LOOP

*

LINK441

CALL441

*
RET441

*
MAINLINE

CSECT
EQU 16

EQU X'9C'

EQU 15

EQU 14

EQU 13

EQU 12

EQU 11

EQU 9

EQU 8

EQU O

IKJTSVT

CSECT

STM R14,R12,12(R13) SAVE CALLER'S REGISTERS

BALR R12,0 ESTABLISH ADDRESSABILITY

USING *,R12 BASE REGISTER OF EXECUTING PROGRAM
ST R13,SAVEAREA+4 CALLER'S SAVEAREA ADDRESS

LA R15,SAVEAREA EXECUTING PROGRAM'S SAVEAREA ADDRESS
ST R15,8(,R13) EXECUTING PROGRAM'S SAVEAREA ADDRESS
LA R13,SAVEAREA EXECUTING PROGRAM'S SAVEAREA ADDRESS
DS OH

L R15,CVTPTR ESTABLISH

L R15,CVTTVT(,R15) ADDRESSABILITY TO THE

L R15,TSVTVACC-TSVT(,R15) VARIABLE ACCESS SERVICE

INVOKE THE VARIABLE ACCESS SERVICE

LTR
BNZ
LINK

CALL

BE
LTR
BNZ

DS
L
L

R15,R15 VERIFY TSVT ADDRESS PRESENT
CALL441 IF PRESENT, CALL IKJCT441
EP=IKJCT441,

PARAM=(ECODE, ENTRY CODE

NAMEPTR, POINTER TO VARIABLE NAME
NAMELEN, LENGTH OF VARIABLE NAME
VALUEPTR, POINTER TO VARIABLE VALUE
VALUELEN, LENGTH OF VARIABLE VALUE

TOKEN) , TOKEN TO VARIABLE ACCESS SERVICE
VL=1 CAUSES HI BIT ON IN THE PARM LIST
RET441

(15),

(ECODE, ENTRY CODE

NAMEPTR, POINTER TO VARIABLE NAME
NAMELEN, LENGTH OF VARIABLE NAME
VALUEPTR, POINTER TO VARIABLE VALUE
VALUELEN, LENGTH OF VARIABLE VALUE

TOKEN) , TOKEN TO VARIABLE ACCESS SERVICE
VL CAUSES HI BIT ON IN THE PARM LIST
R15,NOMORE

ENDUP

R15,R15

ERRORRTN

OH

R8 ,NAMEPTR

R9,VALUEPTR

* O ¥ * ¥ F *

* Ok * OF F F

Figure 6-5 (Part 1 of 2). Return all Active CLIST Variables and their Values

6-12 TSO/E Guide to Writing a TMP or a CP

* % % ¥ ¥ ¥

*
*
*

NAMELEN DS
VALUELEN DS
NAMEPTR DS
VALUEPTR DS
TOKEN DC
*

ECODE DC

NOMORE DC

SAVEAREA DS
END

ISSUE

'PUTLINE' TO WRITE VARIABLE NAME AND VALUE

SAVE THE NAME AND VALUE IN A TABLE

B LOOP
*
*
*
*
ERRORRTN DS OH
*
* ANALYZE RETURN CODE
*
B MAINLINE
*
ENDUP DS OH
L R13,4(,R13)
L R14,12(,R13) RESTORE REGISTER 14
LM RO,R12,20(R13) RESTORE REMAINING REGISTERS
BR R14 RETURN TO CALLER, REGISTER 15 CONTAINS

F
F
A
A
F

A(TSVELOC) ENTRY CODE FOR THE 'LOCATE' SERVICE
A(TSVRNOM) RETURN CODE FOR NO MORE NAMES

18F

lol

- OR -

THE RETURN CODE FROM IKJCT441

LENGTH OF NAME WILL BE RETURNED HERE

LENGTH OF VALUE WILL BE RETURNED HERE

ADDRESS OF NAME WILL BE RETURNED HERE

ADDRESS OF VALUE WILL BE RETURNED HERE

TOKEN MUST BE ZERO ON THE FIRST CALL
AND NEVER CHANGED BY THE CALLER

Figure 6-5 (Part 2 of 2). Return all Active CLIST Variables and their Values

IKJCT441 returns values for the following parameters unless specified otherwise
by the return code:

NAMEPTR contains the address of the variable name.
NAMELEN contains the variable name length.

VALUEPTR contains the address of the value of the variable.
VALUELEN contains the variable value length.

TOKEN contains zero or the address of an internal CLIST control variable
that identifies the next variable.

Chapter 6. Program Access to CLIST Variables 6-13

IKJCT441 places one of the following return codes in register 15:
Content Meaning
0 IKJCT441 successfully updated the parameters for this variable.

4 The caller should not rescan the variable. It is an I/O variable containing an & and is not
a variable name.

8 The variable requires evaluation. IKJCT441 did not update VALUEPTR and
VALUELEN. The value of the variable is not relevant.

12 The variable is a label. The value of the variable is meaningless.

20 There are no more variables.

40 The caller’s parameter list contains an error, or the caller is not in a CLIST environment.

IKJCT441 did not return values for any of the parameters.

44 The entry code is not valid. IKJCT441 did not return values for any of the parameters.

6-14 TSO/E Guide to Writing a TMP or a CP

9

Chapter 7. Processing Terminal Requests - The TSO Service

Routines

The TSO service routines process terminal requests initiated by the terminal
monitor program (TMP), command processors (CPs), and other service routines.
If you write your own command processors, or replace the IBM-supplied terminal
monitor program with one of your own design, you should use the service
routines to process terminal requests.

The TSO service routines build, modify, or make use of various control blocks.
The following control block DSECTS are provided in SYSI.MACLIB for your
use, and are listed in Data Areas.

IKJCPPL
IKJCSOA
IKJCSPL
IKJDAPL
IKJDAPOC
IKJDAP00
IKJDAP04
IKJDAPO08
IKJDAPIC
IKJDAP10
IKJDAP14
IKJDAP18
IKJDAP2C
IKIDAP24
IKJDAP28
IKJDAP30
IKIJDAP34
IKIDFPB
IKJDFPL
IKJECT
IKJEFFDF
IKJEFFGF
IKJEFFMT
IKIJGTPB
IKJIOPL
IKJLSD
IKJPGPB
IKJPPL
IKJPSCB
IKJPTPB
IKJSTPB
IKJSTPL
IKJTAIE
IKJTAXE
IKITMPWA
IKJTPL
IKJUPT

The command processor parameter list

The command scan output area

The command scan parameter list

The dynamic allocation parameter list
DAIR entry code parameter block

DAIR entry code parameter block

DAIR entry code parameter block

DAIR entry code parameter block

DAIR entry code parameter block

DAIR entry code parameter block

DAIR entry code parameter block

DAIR entry code parameter block

DAIR entry code parameter block

DAIR entry code parameter block

DAIR entry code parameter block

DAIR entry code parameter block

DAIR entry code parameter block

The default parameter block

The default parameter list

The environment control table for GETLINE/PUTLINE/PUTGET/STACK
PARMLIST to IKJEFF18 (DAIRFAIL)
PARMLIST to IKJEFF19 (GNRLFAIL)
PARMLIST to IKJEFF02

The GETLINE parameter block

The input output parameter list for GETLINE/PUTLINE/PUTGET/STACK
The list source descriptor for STACK

The PUTGET parameter block

Defines the parse parameter list

The protected step control block

The PUTLINE parameter block

The STACK parameter block

The STACK parameter list

Terminal attention interrupt element from STAX
Terminal attention exit element from STAX
The terminal monitor program work area
TEST parameter list

User profile table

Chapter 7. Processing Terminal Requests - The TSO Service Routines 7-1

Interfacing with the TSO Service Routines

When the terminal monitor program attaches a command processor, register 1 J
contains a pointer to a command processor parameter list (CPPL) containing

addresses required by the command processor. The CPPL is located in subpool 1.

The control block interface between the TMP and an attached CP is shown in

Figure 7-1.
Terminal Command
Monitor Processor
Program
ATTACH

—

Register 1

CPPL

Figure 7-1. Control Block Interface between the TMP and CP

The Command Processor Parameter List

You must pass certain addresses contained in the CPPL to the TSO service
routines. Your user-written command processors can access the CPPL via the
symbolic field names contained in the IKJCPPL DSECT by using the address
received in register 1 as a starting address for the DSECT. The use of the
DSECT is recommended since it protects the command processor from any
changes to the CPPL.

The command processor parameter list, as defined by the IKJCPPL DSECT, is a
four-word parameter list. Figure 7-2 describes the contents of the CPPL. J

7-2 TSO/E Guide to Writing a TMP or a CP

When the TMP invokes a problem program, whether a command processor or
not, register 1 contains the address of the CPPL. The CPPL is required by any
program that is going to use TSO service routines. If any problem program or
user-written command processor is going to invoke an IBM-supplied command
processor, the CPPL address must be supplied in register 1.

With the exception of the TEST command processor, which is invoked in 31-bit
addressing mode and can be passed input above 16 Mb in virtual storage, the
IBM-supplied command processors and TMP require that their input reside below
16 Mb.

User-written TMPs and CPs may pass input below or above 16 Mb in virtual
storage, provided they adhere to the guidelines set forth in “31-Bit Addressing --
General Interface Considerations” earlier in this book.

Number
of Bytes Field Contents or Meaning
4 CPPLCBUF | The address of the command buffer for the currently attached command
Processor.
4 CPPLUPT The address of the user profile table (UPT). The UPT is built by the

LOGON/LOGOFF scheduler from information stored in the user
attribute data set (UADS) and from information contained in the

LOGON command. The address of the UPT is obtained from the
PSCBUPT field of the protected step control block (PSCB).

4 CPPLPSCB The address of the protected step control block (PSCB). The PSCB is
built by the LOGON/LOGOFF scheduler from information stored in
the UADS. The TMP can obtain the address of the PSCB using the
EXTRACT macro instruction.

4 CPPLECT The address of the environment control table (ECT). The ECT must be
built by the TMP during its initialization process; it is used by the TSO
service routines and by some TSO commands and subcommands.

Figure 7-2. The Command Processor Parameter List (CPPL)

Passing Control to the TSO Service Routines

For a description of linkage and program residency considerations, refer to
“Service Routine Interfaces” in the previous section.

There are four ways you can.pass control to the TSO service routines.

1. You can issue an I/O macro instruction without the ENTRY parameter for
the I/O service routines.

2. You can issue a LINK macro instruction to a service routine, but this
requires more system overhead than other methods.

The LINK macro instruction loads the routine in storage based on its
RMODE attribute, and passes control to the routine in the addressing mode
specified or allowed by its AMODE attribute.

3. You can issue a LOAD macro instruction for a service routine and then do

branches to the loaded routine, but this also requires more system overhead
than other methods.

Chapter 7. Processing Terminal Requests - The TSO Service Routines 7-3

The LOAD macro loads the routine in storage based on its RMODE
attribute. LOAD returns the address of the loaded program. The high-order
bit of this address reflects the AMODE attribute of the loaded program. If
the loaded program should not be invoked in the current addressing mode,
the BASSM or BSM instruction may be used to set the appropriate
addressing mode. If you use BASSM or BSM, you should ensure that the
invoked program can return successfully.

4. You can issue a CALLTSSR macro to generate a branch to a TSO service
routine residing in the link pack area; if the routine does not reside in the link
pack area, CALLTSSR generates a LINK macro instruction.

The CALLTSSR macro applies to only the following routines:

IKJDAIR Dynamic allocation interface routine
IKJEFF02 TSO message issuer routine
IKJEHCIR Catalog information routine
IKJEHDEF Default routine

IKJPARS Parse routine

IKJSCAN Command scan

A caller can invoke IKJEHCIR and IKJEHDEEF in either 24- or 31-bit addressing
mode. However, both routines execute in 24-bit addressing mode and return
control in the caller’s addressing mode.

IKJDAIR can be invoked, and can execute, in 24- or 31-bit addressing mode.
When invoked in 31-bit addressing mode, IKJDAIR may be passed input that
resides above 16 Mb in virtual storage.

IKJEFF02, IKJPARS, and IKJSCAN can be invoked in either 24-bit or 31-bit
addressing mode. These routines execute in 31-bit addressing mode and can
accept input above or below 16 Mb in virtual storage.

Refer to the appropriate sections in this book for more information about these
routines.

The CALLTSSR Macro Instruction

Figure 7-3 shows the execute form of the CALLTSSR macro instruction. There
is no list form. Each of the operands is explained in the following figure.
Appendix A describes the notation used to define macro instructions.

)]

[symbol] CALLTSSR EP=entry point name
[MF= (E,

Figure 7-3. The CALLTSSR Macro Instruction

list address
(register)

Note: Any module that uses the CALLTSSR macro must include the CVT
mapping macro (CVT) found in SYSI.AMODGEN. In addition, any module
that uses IKJCAF must include the TSVT mapping macro (TSVT), also found in
SYS1.AMODGEN.

7-4 TSO/E Guide to Writing a TMP or a CP

EP =entry point name

Specifies one of the following names: IKJDAIR, IKJEFF02, IKJEHCIR,
IKJEHDEF, IKJPARS, IKJCAF, IKJSCAN.

MF=E
Indicates that this is the execute form of the macro instruction.
list address or (register)

Specifies the address, or register that contains the address, of a parameter
list to be passed to the service routine.
Example

This example shows how the CALLTSSR macro instruction could be used to pass
control to the parse service routine.

CALLTSSR EP=IKJPARS,MF=(E,PPL)

Chapter 7. Processing Terminal Requests - The TSO Service Routines 7-5

7-6 TSO/E Guide to Writing a TMP or a CP

| Chapter 8. Handling Messages

Message Levels

TSO messages are divided into three classes:

e Prompting messages
e Mode messages
e Informational messages

Prompting messages begin with ENTER or REENTER, and require a response
from the user. Prompting messages should be initiated by the parse service
routine, rather than by parse validity check exits, using the text supplied by the
command processor as the PROMPT operand of the IKJPOSIT, IKITERM,
IKJOPER, IKJRSVWD or IKJIDENT parse macro instructions. See “Using the
Parse Service Routine (IKJPARS)” for a discussion of the PROMPT operand on
these macro instructions.

Mode messages are the READY messages sent by the terminal monitor program,
and any other similar messages sent by command processors, such as the EDIT
mode message sent by the EDIT command processor. They inform the user
which command is in control and let him know that the system is waiting for him
to enter a new command or subcommand.

Informational messages do not require an immediate response from the user.

Prompting and mode messages should be displayed using the PUTGET service
routine. Informational messages should be displayed using the PUTLINE service
routine. The TPUT routine does not support multi-level messages, message id
stripping, and text insertion, and does not function in background mode (it acts as
a NOP).

Messages usually should have associated with them other messages that more fully
explain the initial message. These messages, called second level messages, are
displayed only if the user specifically requests them by entering a question mark

.

Note that if the user uses PUTGET with TERMGET = ASIS, the user’s terminal
will not recognize the question mark.

Prompting messages may have any number of second level messages. Second
level messages, if any, are displayed when the user enters a question mark in
response to the initial message. If the user enters a question mark after all second
level messages have been displayed, with a few exceptions (see “Prompt Mode

Chapter 8. Handling Messages 8-1

HELP Function”), parse processing generates a HELP command to give the user .
specific information about the operand for which he is being prompted. If the J
user enters a question mark after viewing the online usage information, the NO
INFORMATION AVAILABLE message is issued.

An informational message can have only one second level message associated with
it. Since many informational messages might be displayed at the terminal before
a question mark is returned from the terminal, PUTLINE moves all second level
informational messages to subpool 78 and chains them off the environment
control table. This chain exists from one PUTGET for a mode message to the
next. In other words, whenever the user can enter a new command or
subcommand, the user can enter a question mark instead, requesting all the
second level messages for informational messages issued during execution of the
previous command or subcommand. If the user does not enter a question mark,
PUTGET deletes the second level messages and frees the storage they occupy.

Mode messages cannot have second level messages, since a question mark entered
in response to a mode message is defined as a request for the second levels of
previous informational messages. Your program should request all commands or
subcommands by issuing a mode message with the PUTGET service routine so
that second level informational messages may be properly handled.

Effects of the Input Source on Message Processing

input stack is an in-storage list rather than a terminal. See the explanation of the
STACK macro instruction for a discussion of in-storage lists. In-storage lists may
be either procedures or source lists.

Message handling is considerably affected if the input source designated by the)

If a procedure without the prompt option is being executed, the PUTGET service
routine does not display prompting messages, but returns an error code (12) in
register 15. If the parse service routine issued the PUTGET macro instruction,
the parse service routine issues an informational message to the terminal, and
returns an error code 4 to its caller. The command processor should reset the
input stack and terminate. If a command processor issued the PUTGET macro
instruction, the command processor should use the PUTLINE service routine to
write an appropriate informational message to the terminal prior to terminating.

If a source in-storage list is being processed, prompt messages are displayed to,
and responses read from, the terminal by the PUTGET service routine.

If the user at the terminal has specified the “PAUSE” operand on the PROFILE
command, PUTGET issues a special message, “PAUSE,” if all of these three
conditions exist:

1. A mode message is to be written out.

2. Second level messages exist.
3. An in-storage list is being processed.

The user may enter either a question mark or a null line. If he enters a question 3
mark, the chain of second level messages is written to the terminal. If he enters a J

8-2 TSO/E Guide to Writing a TMP or a CP

null line, control returns to the executing command processor. In either case, the
next line from the in-storage list is returned to the command processor.

A special situation arises if an in-storage list is being processed, second level
messages are chained, and the user has specified NOPAUSE as an operand of the
PROFILE command. Normally, if a subcommand encounters an error situation,
it issues an informational message and returns. The command processor then uses
the PUTGET service routine to issue a mode message on the assumption that the
user can take corrective action with other subcommands. When processing from
an in-storage list, this is not true. If NOPAUSE was specified, PUTGET returns
an error code (12) to the calling routine. In most cases, the command processor
should reset the input stack and terminate. If the message producing the second
level message was purely informational and does not require corrective action, the
command processor may set the ECTMSGF flag in the environment control table
to delete the second level message, and reissue the PUTGET macro instruction to
continue.

TSO Message Issuer Routine (IKJEFF02)

The TSO message issuer routine issues a message as a PUTLINE, PUTGET,
write-to-operator (WTO), or write-to-programmer (WTP). You may invoke
IKJEFFO2 just to issue the message to the terminal, both to issue the message and
return the requested message to the caller in the caller’s buffers, or just to return
the message to the caller. This process of returning the message is referred to as
extracting the message. This routine simplifies the issuing of messages with inserts
because hexadecimal inserts can be converted to printable characters and the same
parameter list used to issue any message. It also makes it more convenient to
place all messages for a command in a single CSECT or assembly module, which
is important when message texts must be modified. Adding or updating a
message is simpler when IKJEFFO02 is used, rather than PUTLINE or PUTGET.

Refer to “Interfacing with the TSO Service Routines” earlier in this book for a
description of the ways in which IKJEFF02 may be invoked. Regardless of the
linkage method used, IKJEFF02 may be invoked in either 24- or 31-bit addressing
mode. IKJEFF02 executes in 31-bit addressing mode and can accept input above
or below 16 Mb in virtual storage.

Generally, you will invoke the TSO message issuer routine via the CALLTSSR or
LINK macro, passing the address of the input parameter list in register 1.

The IKJEFFMT macro, which maps the input parameter list for IKJEFF02,
allows the user to request the standard format (the default) or the extended
format of the parameter list. The extended format must be used if the message
inserts and/or the extract buffers being passed to IKJEFF02 reside above 16 Mb
in virtual storage. If they reside below 16 Mb, you do not need to use the
extended format. However, all 31-bit addresses must be valid (zero high order
bit). Note that the MTFMT bit must reflect the format of the parameter list you
are using.

Chapter 8. Handling Messages 8-3

Standard Format of Input Parameter List

Offset J

Dec Hex Field Name Contents

0 0 MTPLPTR Address of message description section of this parameter list. (The
message description section begins with the MTCSECTP entry.)

4 4 MTCPPLP Address of TMP’s CPPL control block (required for PUTLINE or

PUTGET).
8 8 MTECBP Address of optional communications ECB for PUTLINE or PUTGET.
12 C MTRESV1 Reserved.
12 C MTHIGH High-order bit of reserved field turned on for standard linkage.

16 10 MTCSECTP Address of an assembly module or a CSECT containing IKJITSMSG
macros that build message identifications and associated texts.

20 14 MTSW1 One byte field of switches.
MTNOIDSW 1. ... Message is printed; no messageid is needed.
MTPUTLSW .1.. ... Message issued as PUTLINE. (Message inserts for a second

level message must be listed before inserts for a first level
message.) If this bit is zero, message issued as a PUTGET,
with second level message required and inserts for second
level messages necessarily following inserts for first level
messages.

MTWTOSW ..1. ... Message issued as a WTO. Default is PUTGET.

MTHEXSW ...l ... Number translations to printable hexadecimal rather than
default of printable decimal.

MTKEYISW ... 1.. Modeset from key 1 to key 0 before issuing a PUTLINE or
PUTGET message. Default is no modeset.

MTJOBISWl.. Blanks are compressed from inserts in the format of
JOBNAME (JOBID). The blanks between (1) the 7
JOBNAME and opening parenthesis and (2) the JOBID and ’
closing parenthesis are removed. The maximum value for
the message and insert lengths is 252 characters. Inserts and
messages greater than 252 characters are truncated.

MTWTPSWl. Message issued as WTO with write-to-programmer routing
code. Inserts are handled the same as for PUTLINE.
Default is PUTGET.

MTNHEXSW1 Number translations to printable decimal, even if larger than
X‘FFFF’. Default is printable hex above X‘FFFF’.

21 15 MTREPLYP Address of reply from PUTGET. The reply text is preceded by a
two-byte field containing length of text plus header field.

24 18 MTSW2 One byte field of switches.

MT20LDSW 1... ... Field MTOLDPTR points to second level message already in
PUTLINE/PUTGET (Output Line Descriptor) format.
Default is IKJTSMSG format.

MTDOMSW .1.. ... Delete WTP or WTO messages from the display console,
using the delete operator message macro.

MTNOXQSW ..1. ... Override default of X" around inserts converted to printable
hex.

MTNPLMSW ..1 ... Override default of error message if PUTLINE fails.

MTPGMSW ... l... Request an error message if PUTGET fails.

MTEXTRCNl.. Request an extract and a message.

MTFMT0. Request standard (24-bit) format of this parameter list.

25 19 MTRESV2 Reserved.

28 1C MTOLDPTR Pointer to OLD for second level message, required if MT20LDSW bit
is on.

3
32 20 MTEXTRLN Length of extract buffer. J
33 21 MTEXTRBF Pointer to extract buffer supplied by caller.

8-4 TSO/E Guide to Writing a TMP or a CP

Offset

Dec Hex Field Name
36 24 MTEXTRL2
37 25 MTEXTRB2
40 28 MTMSGID
4 2C MTINSRTS
44 2C MTLEN

44 2C MTHIGHL
44 2C MTINSRT
45 2D MTADDR

Extended Format of Input Parameter List

Offset

Dec Hex Field Name

0 0 MTPLPTR

4 4 MTCPPLP

8 8 MTECBP

12 C MTRESV1

12 C MTHIGH

16 10 MTCSECTP

20 14 MTSW1
MTNOIDSW
MTPUTLSW
MTWTOSW
MTHEXSW
MTKEYISW |
MTJOBISW
MTWTPSW
MTNHEXSW

21 15 MTEXTRLN

22 16 MTEXTRL2

23 17 MTRESV3

Contents
Length of extract buffer for second level message.
Pointer to extract buffer supplied by caller for second level message.

Message’s identifier in message CSECT, padded with blanks on the
right.

Insert information for message. The following two fields are supplied
for each insert.

Length of an insert for the message.

High-order bit is on if necessary to translate the first 1-4 bytes of the
insert from hexadecimal to character (printable hexadecimal or decimal
depending on whether MTHEXSW is set to ON or OFF).

Refers to an insert entry.

Address of an insert for the message.

Contents

Address of message description section of this parameter list. (The
message description section begins with the MTCSECTP entry.)

Address of TMP’s CPPL control block (required for PUTLINE or
PUTGET).

Address of optional communications ECB for PUTLINE or PUTGET.
Reserved.
High-order bit of reserved field turned on for standard linkage.

Address of an assembly module or a CSECT containing IKJTSMSG
macros that build message identifications and associated texts.

One byte field of switches.
l... ... Message is printed; no messageid is needed.

1. ... Message issued as PUTLINE. (Message inserts for a second
level message must be listed before inserts for a first level
message.) If this bit is zero, message issued as a PUTGET,
with second level message required and inserts for second
level messages necessarily following inserts for first level
messages.

1. ... Message issued as a WTO. Default is PUTGET.

...l ... Number translations to printable hexadecimal rather than
default of printable decimal.

1... Modeset from key 1 to key 0 before issuing a PUTLINE or
PUTGET message. Default is no modeset.

.1.. Blanks are compressed from xx(yy) format inserts. Default
is no compression.

..1. Message issued as WTO with write-to-programmer routing
code. Inserts are handled the same as for PUTLINE.
Default is PUTGET.

...1 Number translations to printable decimal, even if larger than
X‘FFFF’. Default is printable hex above X‘FFFF’.

Length of extract buffer.
Length of second extract buffer.

Reserved.

Chapter 8. Handling Messages 8-5

Offset

Dec Hex
24 18
25 19
28 1C
32 20
36 24
40 28
44 2C
48 30
48 30
48 30
48 30
52 34

The return code from the TSO message issuer routine is contained in register 15

as follows:
0 - Message issued successfully.
76 - Error in parameter list. A diagnostic message is also issued.

Other - PUTLINE or PUTGET return code.

The IKJEFFMT macro maps the input parameter list. Specify the

MTDSECT =YES option to obtain DSECT MTDSECTD instead of storage.
Specify MTFORMAT =NEW on the IKJEFFMT macro to request the extended
format. Specify MTFORMAT =OLD to request the standard format.

Field Name
MTSW2
MT20LDSW

MTDOMSW

MTNOXQSW

MTNPLMSW
MTPGMSW
MTEXTRCN
MTFMT
MTRESV2
MTOLDPTR

MTEXTRBF
MTEXTRB2
MTMSGID

MTREPLYP
MTINSRTS

MTLEN

MTHIGHL

MTINSRT
MTADDR

8-6 TSO/E Guide to Writing a TMP or a CP

Contents

One byte field of switches.

1... ... Field MTOLDPTR points to second level message already in
PUTLINE/PUTGET (Output Line Descriptor) format.
Default is IKJTSMSG format.

.1.. ... Delete WTP or WTO messages from the display console,
using the delete operator message macro.

..1. ... Override default of X" around inserts converted to printable

hex.

..l ... Override default of error message if PUTLINE fails.
1... Request an error message if PUTGET fails.
.1.. Request an extract and a message.

..1. Request extended (31-bit) format of this parameter list.

Reserved.

Pointer to OLD for second level message, required if MT20LDSW bit

is on.

Pointer to extract buffer supplied by caller.
Pointer to extract buffer supplied by caller for second level message.
Message’s identifier in message CSECT, padded with blanks on the

right.

Address of reply from PUTGET.

Insert information for message The following two fields are supplied

for each insert.

Length of an insert for the message.

High-order bit is on if necessary to translate the first 1-4 bytes of the
insert from hexadecimal to character (printable hexadecimal or decimal
depending on whether MTHEXSW is set to ON or OFF).

Refers to an insert entry.

Address of an insert for the message.

9

J

IKJTSMSG -- Describes Text and Insert Locations

The IKJTSMSG macro is used to generate assembler language DC instructions
describing the text and locations of inserts for a message which may be issued by
the TSO message issuer routine (IKJEFF02). All of the messages which a
command issues should be grouped into an assembly module consisting entirely of
IKJTSMSG macros preceded by a CSECT card and followed by an END card.
The last IKJTSMSG macro in the CSECT must be a dummy entry with no
operands.

The IKJTSMSG macro may be issued by a program loaded below or above 16
Mb in virtual storage.

Figure 8-1 shows the syntax of the IKJTSMSG macro instruction; each of the
operands is explained following the figure. Appendix A describes the notation
used to define macro instructions.

[symbol] IKJTSMSG ('msgid msgtext'),idl[,id2]

Figure 8-1. The IKJTSMSG Macro Instruction

msgid
The identifier which will be displayed when the message is issued.

msgtext
The text of the message. If an insert is necessary within the text of a
message or at the end of a message, use the following rules:

® The location of an insert in the middle of a message should be indicated
bya*‘,’.

e If the insert is to be located at the end of a message, indicate it by a ’,
following the message text.

id1
The internal identifier of the message. It may be from one to four
characters and should not contain a blank, comma, parentheses, or an
apostrophe. This id is passed to IKJEFF02 in the MTMSGID field of the
parameter list.

id2

The internal identifier of a message to be chained to this message. For a
PUTGET message, the first level message would have an id2 field
identifying the second level, and the second level message could have an id2
field to identify another second level, etc. For a PUTLINE, WTO, or
write-to-programmer message, the second level message would have an id2
field identifying the first level.

Chapter 8. Handling Messages 8-7

For an example of the coding involved for a CSECT containing the IKJITSMSG

macro, see Figure 8-2. The example shows how a message module can be created I’
for a SUBMIT command, using the IKJTSMSG macro.

e Message IKJS562501 is a single level PUTLINE message with one insert.

o Message IKJS562511 is a PUTLINE message with two levels.

o Message IKJ56252A is a PUTGET message with two levels.

e Message IKJ562531 is a PUTLINE message with an insert at the end of the
text.

e The IKJTSMSG macro with no operands is required to indicate the end of
the message CSECT.

¥ []]

x| [clolulLlo] |alVIE] [clolmmEN|T|S |PRIElCED]rIlE] To[R] |FlolL]Liolw/ INte] [riHE] MlalciRiols] [rio] Ic]/]s|T]

x| MololulLlels| 1/]s|s|ulrine] [H|e|l MiEls|slalGlEls| lanD] l6|/IVlE] |THIE| MEls|slalele] Ibles|clrlr AT/ lomis

X[¥[%

11K|TEIFIFl@|3] |c|s|Elc|T]
1K7(TIsIMsG] [(|"|1IKlT1516]25]8]/] Lrog] |'].].|’] Is|vielm|/|rlelD]’])], |00

M
KlJlrisimisle] (|’ [/]klu|51el25]7]7] 1" 1,11 | [ClomiMalnlo] Ino[T] |AlulTIH[OIR [ZIEIDI#] D], Rl
1loirisimsld ||’ |/ |klT(5l6l25]7!1| [rlolur] |/ n|s|TAlL|L]Alr]/loin] [MulsiT] alulTlHIORY [ZIE] [UiSlE] |olF [Ti+

K115 Iclommialnio] 1, |ol7], Rl@|7

% ¥ [s|E[clonNDl [LE[VIEIL [Plolr n[T]S] [To] |Fl/IRIS|T] IIEIVIEIL] TFlolR] TPlulTc]/INE] ¥

X ’4>
(kliTisIMisiel [(|'|/1kJi516|2152|A] [EINTIEIR] |Jj0/BWIAME] [clHARKICITIERH [-]'))], 02, Islg|2
1KlriTismlsiel [¢|[1]klrI5|6]252A] [TioBNAaME] [/]S| [cIRIElAlTEID] [FIRIOM| [UISIER/ D] [AILIUS|'], +

T 1oINE] TalL[AHIANUMEEIR]/|c] [Ol-] WIA[T|/ [owlalL| [cIHIAIRIAICITIEIR “T)],|Sldl2

X x| |F]/|Rs[T] [LIEIVIEL] TPlol/In(TIS| |T|o| |S|EICloINiD| [LIEIVIEIL] [AOIR |PIUTIGIEIT] bel*

X
I\KTTsIMlslcl [(| |/IKia15]6|2513]/] [1IMvialL]/]D] (c]aRIAICITIER] |- |1, D], 18|13

¥ x| [T|HIE| [cloMMA |AIFITIEIR |TIHIE| |AlPlo|siTIROPIHIE| |/In[Dlr|CIAITIES| |A] (TIRIAl LI/ NG| |1 [MSIEIRIT]

%
1|KlT|T|sMs|G
END /|KJTE|FIFI0|3

Figure 8-2. An Example of an IKJTSMSG Macro Instruction

8-8 TSO/E Guide to Writing a TMP or a CP

| Chapter 9. Handling Attention Interruptions -- The STAX Service
| Routine

The STAX service routine creates the control blocks and queues necessary for the
system to recognize and schedule user exits due to attention interruptions. Your
terminal monitor program, your command processors, or the problem program
provide the address of an attention exit to the STAX service routine by issuing the
STAX macro instruction. You should provide attention exit routines within the
terminal monitor program and any command processors that accept
subcommands. Simple command or subcommand procedures should not issue a
STAX macro instruction unless the STAX routine specified by the TMP or the
calling command processor cannot process an attention interruption adequately.

The STAX service routine may be invoked in either 24- or 31-bit addressing
mode. The attention exit routine receives control in the same addressing mode in
which the respective STAX macro is issued.

With the exception of the TPUT ASID buffers for TCAM, when the user enters
an attention interruption from the terminal, the TGET, TPUT, and TPG buffers
are flushed. Any data contained in these buffers is lost. If the user then attempts
to continue processing from the point of interruption, he may have lost an input
or an output record, or an output message from the system.

Attention processing gives the user the ability to specify exit routines that receive
control asynchronously when the attention key is struck or when an interruption
occurs as a result of the simulated attention facility (STATTN macro). The
mechanism used to request attention exits is the STAX macro. When the STAX
macro is issued, a TAXE (terminal attention exit element) is created and placed
on a queue. The TAXE queue is ordered according to the attention level, and the
attention level determines the order in which the attention exits are given control.
If the ATTENTION key is struck once, the first level attention exit is given
control. If the key is struck twice, the second level attention exit is given control.
When placing a TAXE on the TAXE queue, two rules apply:

1. An attention exit routine for a task will always occupy a higher attention level
than the attention exit of any of its subtasks.

2. The attention exit routine is placed at the lowest possible attention level,
without violating the first rule.

In other words, the placement of an attention level is determined by the position
of the task in the subtask queue relative to the position of the other tasks creating
attention exits. The lower the subtask the lower the attention level assigned. The
subtask queue is considered to be the mother-daughter queue only. If for any
reason a complex task structure is created that would have a mother task with

Chapter 9. Handling Attention Interruptions -- The STAX Service Routine 9-1

multiple daughter tasks, then the order in which the daughters issue STAX
macros must be synchronized in order to ensure predictability from day to day.
Note that the order in which the daughters issue STAX macros, not the order in
which the daughters are attached, determines the order in which the associated
TAXEs are placed on the TAXE queue.

If a task has issued multiple STAX macros, the order in which the associated
TAXE is placed on the TAXE queue is determined by the second rule.

Attention levels can change during execution of the session for three reasons:

1. A task has issued STAX and its daughter then issues STAX. In this case the
attention exit for the first task would have an attention level of one until its
subtask had issued STAX. The daughter task would then have an attention
level of one and the original task would have a level of two.

2. A task that has established an attention exit environment abnormally
terminates or exits. When this occurs the TAXEs for that task are freed. The
remaining TAXEs then assume the new attention level relative to its position
on the TAXE queue.

3. The STAX macro is used to cancel the last attention exit established by a
task.

When generating an attention interruption by striking the ATTENTION key, the
ATTENTION level is recorded by counting the number of times the
ATTENTION key has been struck. If the number of times the key is struck
exceeds the number of available attention levels, an “!I” message is sent to the
terminal. If the attention has been accepted, an “!” message is sent to the
terminal to indicate that the attention exit is being scheduled. If an attention
interruption is received while a previously requested (lower attention level)
attention exit is in the process of being scheduled, the first attention exit is
canceled and the new attention exit is scheduled. This will be true until control
has been passed to the user’s attention exit.

Prior to passing control to the attention exit, the task under which the attention
exit is running will have all its subtasks stopped. Note, however, that if a system
routine (SVRB on RB chain) is executing for one of the TCBs and has not
specified STAX DEFER =NO (see below for expanded explanation), then the
scheduling of the attention exit will be deferred until the completion of such
system routines. All SVRBs start execution in a STAX DEFER =YES state and
all other RBs start execution in a STAX DEFER =NO state. Consequently, the
presence of an SVRB on a TCB’s RB chain normally means attention exits will be
deferred. When the user’s attention exit completes processing the subtasks are
automatically restarted. If, for any reason, the attention routine requires one of
the subtasks to be restarted, it is the responsibility of the attention exit to restart
the task through the use of the status start facility. If the subtasks should not be
restarted, it is the responsibility of the attention exit to use the status stop facility
to ensure that the subtasks will not become dispatchable when the attention exit
completes processing. See Supervisor Services and Macro Instructions for
additional information.

9-2 TSO/E Guide to Writing a TMP or a CP

The attention level at which the attention exit is running and all of the lower
attention levels are considered unavailable as soon as scheduling of the exit takes
place. Therefore, once the attention scheduling has begun, only higher attention
levels are available for use until the attention exit completes processing.

You can use the STAX macro not only to specify and cancel attention exits, but
also to defer the dispatching of attention exits. The DEFER operand of STAX
can be specified to set an indicator that will postpone the dispatching of attention
exits for a TCB and all of the TCBs above it on the mother-daughter TCB chain.
When STAX with the DEFER = YES option is specified, a bit in the RB that
represents the issuer’s routine is set (or reset). The indicator in the TCB, which
allows or defers the dispatching of attention exits, is set equal to the result of
ORing all of these bits in the RBs on the TCB RB chain. When the TCB defer
indicator is off for a TCB and all of its subtasks, then attention exits will be
dispatched. If the defer indicator is on for a TCB or any of its subtasks, then
attention exits will be deferred until the defer indicator(s) for the TCB and all of
its subtasks are off. When an attention exit can once again be dispatched, the
DEFER =NO operand can be used to enable it to be dispatched.

The deferral bit setting of a routine (RB) can be changed or propagated to other
routines (RBs) which are used by the original RB. There are three cases to be
considered.

1. A new RB is created and placed on the RB queue along with the original RB.
This can occur if the original RB issues a LINK. In this situation, the routine
that has been linked maintains its own deferral bit setting. The deferral bit
setting of the original RB is not passed to the new RB, nor is the defetral bit
setting of the new RB passed back to the original RB.

2. A new RB is created and placed on the RB queue and the original RB is
destroyed. This can occur if the original RB issues an XCTL macro. The
routine receiving control under the new RB receives the deferral bit setting of
the original RB.

3. No new RB is created but control is passed to a routine running under the
original RB. This can occur if the original RB issues a CALL or LOAD
macro. The called or loaded routine runs under the original RB. If the called
or loaded routine issues a STAX macro instruction with the DEFER option,
then the deferral bit setting is changed for the original RB.

Note: Tasks within a tree structure being stopped for the attention exit
scheduling will be stopped in an indeterminate order when any are deferring
attention exits. As a result, care must be taken to control intertask dependencies
and dependencies on scheduling attention exits. Failure to do so may result in an
intertask deadlock that can only be relieved by canceling the TSO user.

Chapter 9. Handling Attention Interruptions -- The STAX Service Routine 9-3

Specifying a Terminal Attention Exit -- the STAX Macro Instruction J

Use the STAX macro instruction to specify the address of an attention exit
routine that is to be given control asynchronously when a user strikes the
attention key or when a simulated attention is specified. (See the STATTN macro
instruction for a description of the simulated attention function.)

The STAX macro instruction can also be used to cancel the last attention exit
routine established by the task. To do this, specify the STAX macro instruction
without any operands.

The STAX macro instruction is used only in a time sharing environment. When a
task other than a TSO user issues the STAX macro, no action is taken. In
addition, attention exits can be established only for time sharing tasks operating
in the foreground.

The system routines that process attention handling require that the STAX
parameter list remain unchanged for the life of the program. Because the
expansion of the STAX parameter list is usually located in an area that is reusable
by the active program, you should either code the necessary protection to prevent
overlays or you should make a copy of the parameter list in an area that is
non-reusable.

Issue the STAX macro instruction to provide the information required by the

STAX service routine. The STAX macro may be issued in 24- or 31-bit

addressing mode. An attention exit routine receives control in the same .
addressing mode in which the STAX macro is issued. J

The STAX macro instruction has a list, an execute, and a standard form.

The list form of the STAX macro instruction (MF =L) generates a STAX
parameter list. The execute form of the STAX macro instruction

(MF =E,address) completes or modifies that list and passes its address to the
STAX service routine. The standard form does not require you to specify MF=L
or MF=E.

Figure 9-1 shows the format of the list and execute forms of the STAX macro
instruction; each of the operands is explained following the figure. Appendix A
describes the notation used to define macro instructions.

[symbol] STAX exit address [,OBUF=(output buffer address,size)]
[,IBUF=(input buffer address,size)]
[,USADDR=user address]

,REPLACE=| YES
NO

{ ,DEFER=|%H

,MF=L
,MF=(E,address)

3
Figure 9-1. The STAX Macro Instruction -- List and Execute Forms J

9-4 TSO/E Guide to Writing a TMP or a CP

Note: When the STAX macro is issued in 31-bit addressing mode, exit addr and
USADDR may reside above 16 Mb in virtual storage. All other input must reside
below 16 Mb.

exit address
Specify the entry point of the routine to be given control when an attention
interruption is received. You must specify the exit address in both the list
and the execute forms of the STAX macro instruction when you are
establishing an attention interruption handling exit.

You need not specify an exit address if you are using the DEFER operand
as long as you code no other operands (except the MF operand). If you
exclude the exit address and code no other operands, the STAX service
routine cancels the previous attention exit established by the task issuing this
STAX macro instruction.

OBUF = (output buffer address,output buffer size)
Output buffer address - Supply the address of a buffer you have obtained
and initiated with the message to be put out to the terminal user who
entered the attention interruption. This message may identify the exit
routine and request information from the terminal user. It is sent to the
terminal before the attention exit routine is given control.

Output buffer size - Indicate the number of characters in the output buffer.
The size may range from 0 to 32,767 (2'*-1) inclusive.

IBUF = (input buffer address,input buffer size)
Input buffer address - Supply the address of a buffer you have obtained to
receive responses from the terminal user. The attention exit routine is not
given control until the STAX service routine has placed the terminal user’s
reply into this buffer.

Input buffer size - Indicate the number of bytes you have provided as an
input buffer. The size may range from 0 to 32,767 (215-1) inclusive.

USADDR = (user address)
The user address is a 24- or 31-bit address that points to any information
you want passed to your attention handling exit routine when it is given
control. When the attention exit gains control, register 1 points to three
words of storage, one of which contains the user address.

REPLACE =YES or NO
YES indicates that the attention exit specified by this STAX macro
instruction replaces any attention exit specified by a STAX macro
instruction previously issued by this task. YES is the default value.
REPLACE implies establishing a new attention exit routine for the task, if
no previous attention exit has been established.

NO indicates that this attention exit be established as a new attention exit

for this task, in addition to any that have been previously established for
this task.

Chapter 9. Handling Attention Interruptions -- The STAX Service Routine 9-3

DEFER =YES or NO
The DEFER operand is optional. If the DEFER operand is coded in the
STAX macro instruction, the option you request (YES or NO) applies to all
tasks within the task chain in which the macro instruction was issued. Any
task may issue the STAX macro instruction to specify DEFER =YES or
NO; the issuing task need not itself have provided an attention exit routine.
If the DEFER operand is not coded in the macro instruction, no action is
taken by the STAX service routine regarding the deferral of attention exits.

YES indicates that any attention interruptions received are to be queued
and are not to be processed until another STAX macro instruction is
executed specifying DEFER =NO, or until the program that issued the
STAX with the DEFER =YES terminates.

NO indicates that the defer option is being canceled. Any attention
interruptions received while the defer option was in effect will be processed.
If the DEFER operand is omitted, the control program leaves the deferral
status unchanged.

Be aware that if a program issues a STAX macro instruction specifying
DEFER =YES, the program can get into a situation where an attention
interruption cannot be received from the terminal. If your program enters a
loop or an unending wait before it has issued a STAX macro instruction
specifying DEFER = NO, you cannot regain control at the terminal by
entering an attention interruption.

You need not specify an exit address in a STAX macro instruction issued
only to change deferral status.

MF=L
This specifies the list form of the STAX macro instruction. It generates a
STAX parameter list.

MF =(E,address)
This specifies the execute form of the STAX macro instruction. It
completes or modifies the STAX parameter list and passes the address of
the parameter list to the STAX service routine. Place the address of the
STAX parameter list (the address of the list form of the STAX macro
instruction) into a register and specify that register number within
parentheses.

You can place each of the required address and size parameters into registers and
specify those registers, within parentheses, in the STAX macro instruction.
Figure 9-2 shows how an execute form of the STAX macro instruction may look
if you load all the required parameters into registers.

STAX

(2) ,IBUF=((3),(4)) ,0BUF=((5),(6)) ,USADDR=(7) ,MF=(E, (1))

Figure 9-2. Using Registers in the STAX Macro Instruction

9-6 TSO/E Guide to Writing a TMP or a CP

J

The STAX Parameter List

(v When the list form of the STAX macro instruction expands, it builds the STAX
parameter list. The list form of the macro instruction initializes this STAX
parameter list according to the operands you have coded. The execute form of
the STAX macro instruction modifies the STAX parameter list and passes its
address to the STAX service routine.

Figure 9-3 describes the contents of the STAX parameter list for MVS/370 and
MVS/XA. Figure 9-4 describes the contents of the STAX parameter list
extension for MVS/XA.

Number
of Bytes Field Contents or Meaning

4 STXEXIT Contains the address of the attention exit routine to receive control in
response to an attention interruption. This is the address you supplied
as the exit address operand on the STAX macro instruction.

2 STXISIZ Contains a binary number representing the size of the input buffer you
provided as the IBUF operand on the STAX macro instruction. The
maximum buffer size is 32,767 bytes.

2 STXOSIZ Contains a binary number representing the size of the output buffer
you provided as the OBUF operand on the STAX macro instruction.
The maximum buffer size is 32,767 bytes.

4 STXOBUF Contains the address of the output buffer you provided as the OBUF
operand on the STAX macro instruction.

4 STXIBUF Contains the address of the input buffer you provided as the IBUF
operand on the STAX macro instruction.

1 STXOPTS STAX option flags.
0. ... REPLACE=YES

‘ 1 REPLACE=NO
W Defer attention interruption processing, that is DEFER = YES.

U0 RO Cancel the deferral of attention interruption processing, that is
DEFER =NO.

1. Indicates that the CLIST attention counter should be increased by 1.
g Indicates that the CLIST attention counter should be decreased by 1.

L In MVS/XA, indicates that STXFNUM contains a format number. In
MVS/370, this bit is zero.

Xeeo X Reserved bits.
3 STXUSER Address of user’s parameter list for MVS/370 format

Figure 9-3. The STAX Parameter List

Number
of Bytes Field Contents or Meaning
1 STXFNUM STAX format flags.
..l Contains a format number indicating that the MVS/XA version of the
STAX parameter list is used. (MVS/XA only)
2 Reserved bytes. (MVS/XA only)

STXNUSER Contains the address of the parameters you want passed to your
attention handling exit routine when it is given control. This is the
address you supplied as the USADDR operand on the STAX macro
instruction. (MVS/XA only)

Figure 9-4. The STAX Parame‘er List Extension for MVS/XA

Chapter 9. Handling Attention Interruptions -- The STAX Service Routine 9-7

Coding Example of the STAX Macro Instruction

The coding example shown in Figure 9-5 uses the list and the execute forms of
the STAX macro instruction to set up an attention handling exit. The OBUF
operand provides a message to be written to the terminal when the attention

interruption is received, and the IBUF operand provides space for an input buffer.

This example does not code the REPLACE operand in the macro instruction;
YES is the default value. The attention handling exit established by this
execution of the STAX macro instruction replaces the previous attention handling
exit established for this task.

9-8 TSO/E Guide to Writing a TMP or a CP

9

¥ 1 [TIH/TS] Klololi WGl TEXTAMPILIET 1/1SISIVIEIS] 1AL [STTIAlxT WAlCRD! [/ INISITRIUICIT! [owW! TTiol |1
¥ | [SIEIT| [UIP| AN A[TITIENTIION] [EXI/IT]- -
D 1%
ROICIEISIS/INIG
x o =L NPT WS T
P 4 ~N")
L 31, [S[TIAIXIL]/ |S|T]
6 | |/ |SISIVIEL |TIHIEl |EIXIEICIUITE] FIORM] 10IF| ITIHIEl |SITIAXI MAICRIOl [/ WISITTRIWICIT IOV '
X X
SITAX | ATITWIEX 71, OBBIUFI=(0WIT BIUF, 1311 |, T BIUFI=I(| IINBIUF s | 11448) |,
Fl= (E] (3)) !
L | | Ly
x| | ICHIEICK] [TWEl RIEITURW] |Cl0DIE] FIRI0M [TIHIE! S|TIAIX S|ER\V|/ CIE| |RIOWIT|! MEI. [
e | 1Al 1ZIERIO] RETTILRM [CloDIE 11 WD/ ICIAITIELS! [SIUICICIEISISIFIUL! ICOMIPILIET|/ IOV . C
¢ X
LTI 1151,]1]5 ’
W|Z RRITWM '
¥ | *
% | IPRIOICIEISIS!/ MG ! :
¥ an ~ T | '
i o o B o o et I e ;
AN |t i : L
b | T x
L : ‘, | K
AT TINEX T | N1 ' i Ej
N e e e o e P
P I N I N B N - B
b | I
% | |SITIOIRIAIGIE| DIEICILIARAITI/IONVS L
L R 1%
SITAXILI/ (S|T] |S|TIA ATITINEIXT], MIF|=|L THIIIS! L/ |SIT] IFIORM |0F [THIE IS:TIAIX
ACRO| || WSITIRU.CIT/|1OV EXIPANDS| AND
RO/ IDES| ISIPIACIE [FIOR [TIHE: |SITIAIX
ARAMETER| |LI/ISIT. I
pt : X
WIUTIBUF DC C'[rHULS| [/1S| Al [SIAMPILIE, AITITIEINT]/[OM _EIXII[T" i
D|S F | b
INBIUF DIC CIL]7 910l IWULT AL ZIE| 114 IBYITIESS| ITIo] ZIERD
AIS| |THIE |/ INPIUT| [BUIFIFIER
i ¥
ENID

Figure 9-5. Coding Example - STAX Macro Instruction

Chapter 9. Handling Attention Interruptions -- The STAX Service Routine 9-9

Return Codes from the STAX Service Routine

Control is returned to the instruction following the STAX macro instruction. J
When control is returned, register 1 will contain the address of the user parameter

list provided for the previous exit for this task or will contain zero. The register

will contain zero if this is the first STAX issued for this task, a STAX with a

cancel option, or a STAX with only the DEFER option. If an error was detected

(return code 8), then the contents of register 1 will be the same as it was at entry.

Register 15 will contain one of the following return codes:

Code Meaning
0 The STAX service routine successfully completed the function you requested.

4 Deferral of attention exits has already been requested and is presently in effect. Any other
operands you specified in the STAX macro instruction have been processed successfully.

8 Invalid user of DEFER option (asynchronous exit routine).

If any combination of parameters or the parameters themselves are invalid, an
ABEND will be issued.

The types of errors that will cause an ABEND are:
e Both DEFER=YES and DEFER =NO are specified.
e Invalid input buffer address (storage not in same key as user’s TCB).

e Invalid buffer size (input or output). ’

9-10 TSO/E Guide to Writing a TMP or a CP

Chapter 10. Dynamic Allocation of Data Sets - The Dynamic
Allocation Interface Routine (DAIR)

Considerations

Dynamic allocation routines allocate, free, concatenate, and deconcatenate data
sets dynamically; that is, during problem program execution. With TSO, dynamic
allocation permits the terminal monitor program, command processors, and other
problem programs executing in the foreground region to allocate data sets after
LOGON and free them before LOGOFF.

For a complete discussion of dynamic allocation, see SPL: System Macros and
Facilities.

The dynamic allocation routines may be accessed by TSO directly or through the
dynamic allocation interface routine (DAIR). Though its use is not recommended
because of reduced functions and additional system overhead, DAIR can be used
to obtain information about a data set and, if necessary, invoke dynamic
allocation routines to perform the requested function.

You can use DAIR to perform the following functions:

Obtain the current status of a data set

Allocate a data set

Free a data set

Concatenate data sets

Deconcatenate data sets

Build a list of attributes (DCB parameters) to be assigned to data sets
Delete a list of attributes

The user must correctly initialize the DAIR parameter block (DAPB) before
calling DAIR. Unused fields should be zeroed or blanked (if character items).

Specifying the data set name and the member name for DAIR entry code X‘08’
causes the data set to be allocated but no check is done to see if the member
exists. To verify that the member really exists:

e Allocate the data set with the member name using DAIR entry code X‘08’.
® Open the data set with DSORG =PO, MACRF=R.

o Issue BLDL for the member. (The BLDL return code will indicate whether
the member is there or not.)

Chapter 10. Dynamic Allocation of Data Sets - The Dynamic Allocation Interface Routine (DAIR) 10-1

Using DAIR

o Close the data set.

e If BLDL indicates that the member does not exist, unallocate the data set
using ddname and DAIR entry code X‘18’.

Invoke the DAIR service routine via a CALLTSSR macro instruction, specifying
the entry point IKJDAIR in load module IKJDAIR.

The DAIR service routine may be invoked in either 24- or 31-bit addressing
mode. When invoked in 31-bit addressing mode, DAIR may be passed input
above 16 Mb in virtual storage.

The control block structure required by the DAIR service routine is shown in
Figure 10-1. Note that the DAIR parameter block (DAPB) is a variable-size
block; the block size depends upon the function requested by the calling routine.
That function is indicated to the DAIR service routine by the code in the first two
bytes of the DAIR parameter block. (See “Processing Terminal Requests -- The
TSO Service Routines” for a description of the CALLTSSR macro and a list of
IBM-supplied mapping macros for parameter lists.)

10-2 TSO/E Guide to Writing a TMP or a CP

9

CALLTSSR

12

16

DAIR

DAPB

Entry Code

Figure 10-1. Control Blocks Passed to DAIR

Chapter 10. Dynamic Allocation of Data Sets - The Dynamic Allocation Interface Routine (DAIR)

10-3

The DAIR Parameter List (DAPL)

At entry to DAIR, register 1 must point to a DAIR parameter list that you have
built. Figure 10-2 shows the format of the DAPL. The addresses of the user
profile table, environment control table, and protected step control block may be
obtained from the command processor parameter list (CPPL) that the TMP
passes to your command processor. Additional information on the address and
creation of the user profile table, environment control table, and protected step
control block is shown in Figure 7-2 (the command processor parameter list).

Number
of Bytes Field Contents or Meaning

4 DAPLUPT The address of the user profile table.

4 DAPLECT The address of the environment contro] table.

4 DAPLECB The address of the calling program’s event control block. The ECB is
one word of real storage declared and initialized to zero by the calling
routine.

4 DAPLPSCB The address of the protected step control block.

4 DAPLDAPB | The address of the DAIR parameter block, created by the calling
routine.

Figure 10-2. Format of the DAIR Parameter List (DAPL)

10-4 TSO/E Guide to Writing a TMP or a CP

The DAIR Parameter Block (DAPB)

The fifth word of the DAIR parameter list must contain a pointer to a DAIR
parameter block built by the calling routine.

It is a variable-size parameter block that contains, in the first two bytes, an entry
code that defines the operation requested by the calling routine. The remaining
bytes contain other information required by DAIR to perform the requested
function. Figure 10-3 is a list of the DAIR entry codes and the functions
requested by those codes.

Entry
Code Function Performed by DAIR

X‘00° Test if a given DSNAME or DDNAME is currently allocated to the caller.

X‘04’ Test if a given DSNAME is currently allocated to the caller, or is in system catalog.
X‘08" Allocate a data set by DSNAME.

X‘0C’ Concatenate data sets by DDNAME.

X‘10° Deconcatenate data sets by DDNAME.

X‘14> Search the system catalog for all qualifiers for a DSNAME. (The DSNAME alone
represents an unqualified index entry.)

X*‘18> Free a data set.

X‘1C’ Allocate a DDNAME to a terminal.

X24 Allocate a data set by DDNAME or DSNAME.
X‘28’ Perform a list of operations.

X2C* Mark data sets as not in use.

X‘30° Allocate a SYSOUT data set.

X34 Associate DCB parameter with a specified name for use with subsequent allocations.

Figure 10-3. DAIR Entry Codes and Their Functions

The DAIR parameter blocks have the formats shown in the following tables. The
formats of the blocks depend upon the function requested by the calling routine.

Chapter 10. Dynamic Allocation of Data Sets - The Dynamic Allocation Interface Routine (DAIR) 10-5

Code X‘00’ - Determine if DDNAME or DSNAME Allocated

Build the DAIR parameter block shown in Figure 10-4 to request that DAIR
determine whether or not the specifietd DSNAME or DDNAME is allocated.

Number
of Bytes

Field

Contents or Meaning

2
2

DAO00CD
DAOOFLG

Byte 1
0000
L
q..

.1

1

Byte 2
0000 0000

DAOOPDSN

DAOODDN

DAO0OCTL
00.0 0000

DA00DSO

Entry code X‘0000’

A flag field set by DAIR before returning to the calling routine. The
flags have the following meaning:

Reserved. Set to zero.

DSNAME or DDNAME is permanently allocated.
DDNAME is a DYNAM.

The DSNAME is currently allocated.

The DDNAME is currently allocated to the terminal.

Reserved. Set to zero.

Place in this field the address of the DSNAME buffer. The DSNAME
buffer is a 46 byte field with the following format:

The first two bytes contain the length, in bytes of the DSNAME; the
next 44 bytes contain the DSNAME, left justified, and padded to the
right with blanks.

Contains the DDNAME for the requested data set. If a DSNAME is
present, the DAIR service routine ignores the contents of this field.

A flag field:

Reserved bits. Set to zero.
Prefix userid to DSNAME.

Reserved bytes; set these bytes to zero.

A flag field. These flags describe the organization of the data. They are
returned to the calling routine by the DAIR service routine.

Indexed sequential organization

Physical sequential organization

Direct organization

BTAM or QTAM line group

QTAM direct access message queue
QTAM problem program message queue
Partitioned organization

Unmovable

Figure 10-4. DAIR Parameter Block -- Entry Code X‘00’

After DAIR searches the data set entry for the fully qualified data set name,
register 15 contains one of the following DAIR return codes:

0, 4, 52

See “Return Codes from DAIR?” for return code meanings.

10-6 TSO/E Guide to Writing a TMP or a CP

Code X‘04’ - Determine if DSNAME Allocated or in System Catalog

Build the DAIR parameter block shown in Figure 10-5 to request that DAIR
determine whether or not the specified DSNAME is allocated. DAIR also
searches the system catalog to find an entry for the DSNAME.

Number
of Bytes Field Contents or Meaning

2 DA04CD Entry code X‘0004°

2 DAO4FLG A flag field set by DAIR before returning to the calling routine. The
flags have the following meaning:

Byte 1
0000 0..0 Reserved bits. Set to zero.

1. DAIR found the DSNAME in the catalog.
T The DSNAME is currently allocated.
Byte 2
0000 0000 Reserved. Set to zero.
2 Reserved. Set to zero.

2 DAO4CTRC | These two bytes will contain an error code from the catalog
management routines if an error was encountered by catalog
management.

4 DAO4PDSN | Place in this field the address of the DSNAME buffer. The DSNAME
buffer is a 46-byte field with the following format:

The first two bytes contain the length, in bytes, of the DSNAME; the
next 44 bytes contain the DSNAME, left justified, and padded to the
right with blanks.

1 DAO4CTL A flag field:

00.0 0000 Reserved bits. Set to zero.
I P Prefix userid to DSNAME.

2 Reserved bytes; set these bytes to zero.

1 DA04DSO A flag field. These flags are set by the DAIR service routine; they
describe the organization of the data set to the calling routine. These
flags are returned only if the data set is currently allocated.

I.. ... Indexed sequential organization
d. Physical sequential organization
W Direct organization
% D BTAM or QTAM line group
| QTAM direct access message queue
1. QTAM problem program message queue
L Partitioned organization
.1 Unmovable

Figure 10-5. DAIR Parameter Block -- Entry Code X‘04’

After attempting the requested function, DAIR returns one of the following codes
in register 15:

0, 4,8, 52

See “Return Codes from DAIR” later in this section for return code meanings.

Chapter 10. Dynamic Allocation of Data Sets - The Dynamic Allocation Interface Routine (DAIR) 10-7

Code X‘08’ - Allocate a Data Set by DSNAME

Build the DAIR parameter block shown in Figure 10-6 to request that DAIR
allocate a data set. The exact action taken by DAIR depends upon the presence
of the optional fields and the setting of bits in the control byte.

If the data set is new and you specify DSNAME, (NEW, CATLG) the data set is
cataloged upon successful allocation. This is the only time a data set will be
cataloged at allocation time. If the catalog attempt is unsuccessful, the data set is
freed. If the proper indices are not present, the indices are built.

To allocate a utility data set use DAIR code X‘08’ and use a DSNAME of the
form &name. If the &name is found allocated, that data set is used. If the
&name is not found, a new data set is allocated.

To supply DCB information, provide the name of an attribute list that has been
defined previously by a X‘34’ entry into DAIR.

When setting disposition in a parameter list, only one bit should be on.

The DAIR parameter block required for entry code X‘08’ has the format shown
in Figure 10-6.

Number
of Bytes

Field

Contents or Meaning

2
2

DA0SCD
DAOSFLG

Byte 1
1.

.000 0000
Byte 2
DAO0SDARC

DAOSCTRC

DAOSPDSN

DA0SDDN

Entry code X‘0008’

A flag field set by DAIR before returning to the calling routine. The
flags have the following meaning:

The data set is allocated but a secondary error occurred. Register 15
contains an error code.

Reserved bits. Set to zero.
Reserved. Set to zero.

This field contains the error code, if any, returned from the dynamic
allocation routines. (See “Return Codes from Dynamic Allocation.”)

This field contains the error code, if any, returned from catalog
management routines. (See “Return Codes from DAIR.”)

Place in this field the address of the DSNAME buffer. The DSNAME
buffer is a 46 byte field with the following format:

The first two bytes contain the length, in bytes, of the DSNAME; the
next 44 bytes contain the DSNAME, left justified and padded to the
right with blanks. If this field (DAOSPDSN) is zero, the system
generates a data set name unless bit 5 in DAO8CTL is on, in which case
a DUMMY data set is allocated. The system also generates a name if
the DAOSPDSN field points to a DSNAME buffer which has a length
of 44, is initialized to blanks, and bit 5 in DAO8CTL is off.

This field contains the DDNAME for the data set. If a specific
DDNAME is not required, fill this field with eight blanks; DAIR will
place in this field the DDNAME to which the data set is allocated.

Figure 10-6 (Part 1 of 3).

10-8 TSO/E Guide to Writing a TMP or a CP

DAIR Parameter Block -- Entry Code X‘08’

Number
of Bytes

Field

Contents or Meaning

DAOSUNIT

DAOSSER

DAOSBLK

DAOSPQTY

DAOSSQTY

DAO0SDQTY
DAOSMNM
DAOSPSWD

DAO0SDSP1
0000

This is an eight-byte field containing an esoteric group name, a generic
group name, or a specific device address (in EBCDIC). If the unit
information is less than eight characters, it must be padded to the right
with blanks. If no information is to be provided, the field must be
blank. In this case, DAIR will obtain information from the protected
step control block. If there is no unit information in the PSCB, then a
default of all direct access devices is used. The specified unit
information will be ignored if volume information is obtained from the
catalog, unless the unit specification is a subset of that obtained from
the catalog. In this case the specified unit information will override the
returned information.

Serial number desired. Only the first six bytes are significant. If the
serial number is less than six bytes, it must be padded to the right with
blanks. If the serial number is omitted, the entire field must contain
blanks. In this case the following is done: if the data set is a new data
set, the system determines the volume to be used for the data set based
on the unit information. If the data set already exists, volume and unit
information are obtained from the catalog. If the information is not
found in the catalog, the allocation request is denied.

This is a four-byte field used as follows: if the data set is a new data
set and bit 0 in DAOSCTL is off and bit 1 in DAOSCTL is on, this field
is used with DAOSPQTY to determine the amount of direct access
space to be allocated for the data set. If bit 6 of DAOSCTL is off, the
field is also used as DCB blocksize specification. The value for
blocksize must be placed in the low-order two bytes, and the high-order
bytes must be zero.

Primary space quantity desired. The high-order byte must be set to
zero and the low-order three bytes should contain the space quantity
required. If the quantity is omitted, the entire field must be set to zero.
In the case of new direct access data sets, primary and secondary space
and type of space are defaulted. Directory quantity is used if specified
in DA0OSDQTY.

Secondary space quantity desired. The high-order byte must be set to
zero; the low-order three bytes should contain the secondary space
quantity required. If the quantity is omitted, the entire field must be
set to zero.

Directory quantity required. The high-order byte must be set to zero;
the low-order three bytes contain the number of directory blocks
desired. If the quantity is omitted, the entire field must be set to zero.

Contains a member name of a partitioned data set. If the name has
less than eight characters, pad it to the right with blanks. If the name
is omitted, the entire field must contain blanks.

Contains the password for the data set. If the password has less than
eight characters, pad it to the right with blanks. If the password is
omitted, the entire field must contain blanks.

Flag byte. Set the following bits to indicate the status of the data set:

Reserved. Set these bits to zero.
SHR
NEW
MOD
OLD

If this byte is zero, OLD is assumed. NEW or MOD is required if
DSNAME is omitted.

Figure 10-6 (Part 2 of 3).

DAIR Parameter Block -- Entry Code X‘08’

Chapter 10. Dynamic Allocation of Data Sets - The Dynamic Allocation Interface Routine (DAIR) 10-9

Number
of Bytes

Field

Contents or Meaning

DA08SDPS2

L.
1.
WL
.l

0000

DA08SDPS3

0000
1.
WL
...l

DAOSCTL

DA0SDSO

DAOSALN

Flag byte. Set the following bits to indicate the normal disposition of
the data set:

Reserved bits. Set them to zero.
KEEP

DELETE

CATLG

UNCATLG

If this byte is zero, it is defaulted as follows: if DAOSDSPI1 is NEW,
DELETE is used; otherwise, KEEP is used.

Flag byte. Set the following bits to indicate the abnormal disposition
of the data set:

Reserved bits. Set them to zero.

KEEP

DELETE

CATLG

UNCATLG

If this byte is zero, DA0OSDPS2 will be used.

Flag byte. These flags indicate to the DAIR service routine what
operations are to be performed:

Indicate the type of units desired for the space parameters, as follows:
Units are in average block length.

Units are in tracks (TRKS).

Units are in cylinders (CYLS).

Prefix userid to DSNAME.

RLSE is desired.

The data set is to be permanently allocated; it is not to be freed until
specifically requested.

A DUMMY data set is desired.

Attribute list name supplied.

Reserved bit; set to zero.

Reserved bytes; set them to zero.

A flag field. These flags are set by the DAIR service routine; they
describe the organization of the data set to the calling routine.

Indexed sequential organization

Physical sequential organization

Direct organization

BTAM or QTAM line group

QTAM direct access message queue
QTAM problem program message queue
Partitioned organization

Unmovable

Attribute list name, or a DD name from which DCB attributes should
be copied (as in a JCL DCB reference). If the name is less than 8
characters, it should be padded to the right with blanks.

Figure 10-6 (Part 3 of 3).

DAIR Parameter Block -- Entry Code X‘08’

After attempting the requested function, DAIR returns one of the following codes
in register 15:

0, 4, 8, 12, 16, 20, 28, 32, 44, 52

See the topic “Return Codes from DAIR” for return code meanings.

10-10 TSO/E Guide to Writing a TMP or a CP

Code X‘0C’ - Concatenate the Specified DDNAMES

C

Build the DAIR parameter block shown in Figure 10-7 to request that DAIR

concatenate data sets. The DDNAMES listed in the DAIR parameter block are
to be concatenated in the order in which they appear. All data sets listed by
DDNAME in the DAIR parameter block must be currently allocated.

Number
of Bytes Field Contents or Meaning
2 DAOCCD Entry code X*000C’
2 DAOCFLG Reserved. Set this field to zero.
2 DAOCDARC This field contains the error code, if any, returned from the dynamic
allocation routines. (See “Return Codes from Dynamic Allocation.”)
2 Reserved field. Set this field to zero.
2 DAOCNUMB | Place in this field the number of data sets to be concatenated.
2 Reserved. Set this field to zero.
8 DAOCDDN Place in this field the DDNAME of the first data set to be
concatenated. This field is repeated for each DDNAME to be
concatenated.

Figure 10-7. DAIR Parameter Block -- Entry Code X‘0C’

After attempting the requested function, DAIR returns one of the following codes
in register 15.

0,4,12, 52

See “Return Codes from DAIR” for return code meanings.

C

Code X‘10’ - Deconcatenate the Indicated DDNAME

Build the DAIR parameter block shown in Figure 10-8 to request that DAIR
deconcatenate a data set. The DDNAME specified within the DAIR parameter
block has been previously concatenated and is now to be deconcatenated.

Number
of Bytes Field Contents or Meaning
2 DAIOCD Entry code X‘0010’
2 DAIOFLG Reserved. Set this field to zero.
2 DAIODARC | This field contains the error code, if any, returned from the dynamic

allocation routines. (See “Return Codes from Dynamic Allocation.”)
2 Reserved field. Set this field to zero.
8 DAI10DDN Place in this field the DDNAME of the dala set Lo be deconcatenated.

Figure 10-8. DAIR Parameter Block -- Entry Code X‘10°

After attempting the requested function, DAIR returns one of the following codes
in register 15:

0,4,12, 52

See “Return Codes from DAIR” for return code meanings.

Chapter 10. Dynamic Allocation of Data Sets - The Dynamic Allocation Interface Routine (DAIR) 10-11

Code X‘14’ - Return Qualifiers for the Specified DSNAME

Build the DAIR parameter block shown in Figure 10-9 to request that DAIR J
return all qualifiers for the DSNAME specified.

You must also provide the return area pointed to by the third word of the DAIR
parameter block. If the area you provide is larger than needed for all returned
information, the remaining bytes in the area are set to zero by DAIR. If the area
is smaller than required, it is filled to its limit, and the return code specifies this

condition.
Number
of Bytes Field Contents or Meaning

2 DA14CD Entry code X'0014’

2 DAI4FLG Reserved. Set this field to zero.

4 DAI14PDSN Place in this field the address of the DSNAME buffer. The DSNAME
buffer is a 46 byte field with the following format:

The first two bytes contain the length, in bytes, of the DSNAME; the
next 44 bytes contain the DSNAME, left justified and padded to the
right with blanks. DSNAME alone represents an unqualified index
entry.

4 DAI14PRET Place in this field the address of the return area in which DAIR is to
place the qualifiers found for the DSNAME. Place the length of the
return area in the first two byles of the return area. Set Lhe next two
bytes in the return area to zero. DAIR returns each of the qualifiers it
finds in two fullwords of storage beginning at the first word (offset 0)
within the return area.

1 DAI14CTL A flag field.

Byte 1
00.0 0000 Reserved bits; set them to zero.
W Prefix userid to DSNAME. ’

3 Reserved bytes. Set this field to zero.

Figure 10-9. DAIR Parameter Block -- Entry Code X‘14°

After attempting the requested function, DAIR returns one of the following codes
in register 15:

0, 4, 36, 40
See “Return Codes from DAIR” for return code meanings.
Code X‘18’ - Free the Specified Data Set
Build the DAIR parameter block shown in Figure 10-10 to request that DAIR
free a data set. The data set name represented by DSNAME is to be freed. If
no DSNAME is given, the data set associated with the DDNAME is freed. If
both DDNAME and DSNAME are given, DAIR ignores the DDNAME.

If the specified DSNAME is allocated several times to the user, all such
allocations are freed.

When setting disposition in a parameter list, only one bit should be on.

10-12 TSO/E Guide to Writing a TMP or a CP

Number
of Bytes Field Contents or Meaning

2 DAI18CD Entry code X'0018"

2 DAISFLG A flag field set by DAIR before returning to the calling routine. The
flags have the following meanings:

Byte 1

l.. .. The data set is freed but a secondary error occurred. Register 15
contains zero and the error information is in DA1SDARC.

.000 0000 Reserved bits. Set to zero.

Byte 2 Reserved. Set to zero.

2 DAI18DARC This field contains the error code, if any, returned from the dynamic
allocation routines. (See “Return Codes from Dynamic Allocation.”)

2 DA18CTRC This field contains the error code, if any, returned from catalog
management routines. (See “Return Codes from DAIR.”)

4 DAI18PDSN Place in this field the address of the DSNAME buffer. The DSNAME
buffer is a 46-byte field with the following format:

The first two bytes contain the length, in bytes, of the DSNAME; the
next 44 bytes contain the DSNAME, left justified and padded to the
right with blanks. This field is zero if the DSNAME is not specified.

8 DAI18DDN Place in this field the DDNAME of the data set to be freed, or blanks.
If DSNAME is specified, this field is ignored.

8 DA1SMNM Contains the member name of a partitioned data set. If the name has
less than eight characters, pad it to the right with blanks. If the name
is omitted, the entire field must contain blanks.

2 DAI18SCLS SYSOUT class. The output class may be A-Z or 0-9 in the first byte.
The second byte in the field is ignored. If SYSOUT is not specified,
the first byte of this field must contain zeros or blanks.

1 DA18DPS2 Flag byte. Set the following bits to override the normal disposition of
the data set:

0000 ... Reserved bits. Set them to zero.

vee L KEEP

1. DELETE

WL CATLG

.1 UNCATLG
If the disposition specified at allocation is to be used, this field must
contain zero.

1 DAISCTL Flag byte. These flags indicate to the DAIR service routine what
operations are to be performed:

W Prefix userid to DSNAME (requires DAI18PDSN data be available).

00.. 0000 Reserved bits; set them to zero.

.1 If this bit is on, permanently allocated data sets are unallocated. If the
bit is off, the data set will be marked “not in use,” if it is permanently
allocated.

8 Reserved bytes; set this field to hexadecimal zeros.

Figure 10-10. DAIR Parameter Block -- Entry Code X‘18’

After attempting the requested function, DAIR returns one of the following codes

in register 15:
0,4, 12, 24, 28, 52

See “Return Codes from DAIR” for return code meanings.

Chapter 10. Dynamic Allocation of Data Sets - The Dynamic Allocation Interface Routine (DAIR) 10-13

Code X‘1C’ - Allocate the Specified DDNAME to the Terminal

Build the DAIR parameter block shown in Figure 10-11 to request that DAIR
allocate a DDNAME to the terminal. If the DDNAME field is left blank, DAIR
returns the allocated DDNAME in that field. To supply DCB information,
provide the name of an attribute list that has been defined previously by a X‘34’
entry into DAIR, or the DDNAME of a currently allocated data set from which
DCB attributes can be copied (as in a JCL DCB reference).

Number
of Bytes Field Contents or Meaning

2 DAICCD Entry code X‘001C’

2 DAICFLG Reserved field; set it to zero.

2 DAICDARC This field contains the error code, if any, returned from the dynamic
allocation routines. (See “Return Codes from Dynamic Allocation.”)

1 Reserved field; set it to zero.

1 DAICCTL Control byte.

1... The data set is to be permanently allocated; it is not to be freed until
specifically requested.
e Ll Attribute list name supplied.
0000 .0.0 Reserved; set to zero.

8 DAICDDN Place in this field the DDNAME for the data set to be allocated to the
terminal or blanks if the allocated DDNAME should be returned in
this field.

8 DAICALN Attribute list name that has been defined previously by a X‘34’ entry
into DAIR, or a DDNAME of a currently allocated data set from
which DCB attributes can be copied. This field is used only if Bit 6 of
DAICCTL is set to one.

Figure 10-11. DAIR Parameter Block -- Entry Code X‘1C’

After attempting the requested function, DAIR returns one of the following codes
in register 15:

0, 4, 12, 16, 20, 28, 52
See “Return Codes from DAIR” later in this section for return code meanings.
Code X‘24’ - Allocate a Data Set by DDNAME

Build the DAIR parameter block shown in Figure 10-12 to request that DAIR
allocate a data set by DDNAME.

If DAIR locates the DDNAME you specify and a DSNAME is currently
associated with it, the associated DSNAME is allocated overriding the DSNAME
pointed to by the third word of your DAIR parameter block. The DDNAME
may be found associated with a DUMMY, and if so an indicator is returned but
no allocation takes place.

If DAIR cannot allocate by DDNAME, it will give control to code X‘08’ to
allocate by DSNAME and will generate a new DDNAME.

When setting disposition in a parameter list, only one bit should be on.

10-14 TSO/E Guide to Writing a TMP or a CP

Number
of Bytes

Field

Contents or Meaning

DA24CD
DA24FLG

Byte 1

.000 .000
Byte 2
DA24DARC

DA24CTRC

DA24PDSN

DA24DDN

DA24UNIT

DA24SER

DA24BLK

DA24PQTY

Entry code X‘0024°

A flag field set by DAIR before returning to the calling routine. The
flags have the following meaning:

The data set is allocated but a secondary error occurred. Register 15
contains an error code.

DDNAME requested is allocated as DUMMY.
Reserved bits. Set to zero.
Reserved. Set to zero.

This field contains the error code, if any, returned from the dynamic
allocation routines. (See “Return Codes from Dynamic Allocation.”)

This field contains the error code, if any, returned from catalog
management routines. (See “Return Codes from DAIR.”)

Place in this field the address of the DSNAME buffer. The DSNAME
buffer is a 46-byte field with the following format:

The first two bytes contain the length, in bytes, of the DSNAME; the
next 44 bytes contain the DSNAME, left justified and padded to the
right with blanks. If the specifitd DDNAME is used, this field
(DA24PDSN) is ignored.

Place here the DDNAME for the data set to be allocated. This
DDNAME is required. If the specified DDNAME is not allocated,
then a generated DDNAME will be used with the DSNAME and the
generated DDNAME will be returned in this field.

This is an eight-byte field containing an esoteric group name, a generic
group name, or a specific device address (in EBCDIC). If the unit
information is less than eight characters, it must be padded to the right
with blanks. If no information is to be provided, the field must be
blank. In this case, DAIR will obtain information from the protected
step control block. If there is no unit information in the PSCB, then a
default of all direct access devices is used. The specified unit
information will be ignored if volume information is obtained from the
catalog, unless the unit specification is a subset of that obtained from
the catalog. In this case the specified unit information will override the
returned information.

Serial number desired. Only the first six bytes are significant. If the
serial number is less than six bytes, it must be padded to the right with
blanks. If the serial number is omitted, the entire field must contain
blanks. In this case, the following is done:

If the data set is a new data set, the system determines the volume to be
used for the data set based on the unit information. If the data set
already exists, volume and unit information are obtained from the
catalog. If the information is not found in the catalog, the allocation
request is denied.

This is a four-byte field used as follows: If the data set is a new data
set and CONTROL bit 0 is off and bit 1 is on (see below), this field is
used with PRIMARY SPACE QUANTITY to determine the amount
of direct access space to be allocated for the data set. If CONTROL
bit 6 is off, the field is also used as a DCB blocksize specification. The
value for BLOCKSIZE must be placed in the low-order two bytes. The
high-order byte must be zero.

Primary space quantity desired. The high-order byte must be set to
zero; the low-order three bytes should contain the space quantity
required. If the quantity is omitted, the entire field must be set to zero.
In this case for new direct access data sets primary and secondary
space, and type of space will be defaulted. Directory quantity will be
used if specified in DA24DQTY.

Figure 10-12 (Part 1 of 3). DAIR Parameter Block -- Entry Code X‘24°

Chapter 10. Dynamic Allocation of Data Sets - The Dynamic Allocation Interface Routine (DAIR) 10-15

Number
of Bytes

Field

Contents or Meaning

DA24SQTY

DA24DQTY

DA24MNM

DA24PSWD

DA24DSP1

DA24DPS3

Secondary space quantity desired. The high order byte must be set to
zero; the low order three bytes should contain the secondary space
quantity required. If the quantity is omitted, the entire field must be
set to zero.

Directory quantity required. The high order byte must be set to zero;
the low order three bytes contain the number of directory blocks
desired. If the quantity is omitted, the entire field must be set to zero.

Contains a member name of a partitioned data set. If the name has
less than eight characters, pad it to the right with blanks. If the name
is omitted, the entire field must contain blanks.

Contains the password for the data set. If the password has less than
eight characters, pad it to the right with blanks. If the password is
omitted, the entire field must contain blanks.

Flag byte. Set the following bits to indicate the status of the data set:

Reserved. Set these bits to zero.
SHR
NEW
MOD
OLD

If this byte is zero, OLD is assumed.

Flag byte. Set the following bits to indicate the normal disposition of
the data set:

Reserved bits. Set them to zero.
KEEP

DELETE

CATLG

UNCATLG

If this byte is zero, it is defaulted as follows: if DA24DSPI1 is new,
DELETE is used; otherwise KEEP is used.

Flag byte. Set the following bits to indicate the abnormal disposition
of the data set:

Reserved bits. Set them to zero.
KEEP

DELETE

CATLG

UNCATLG

If this byte is omitted (set to zero), DA24DPS2 will be used.

Flag byte. These flags indicate to the DAIR service routine what
operations are to be performed:

Indicate the type of units desired for the space parameters, as follows:
Units are in average block length.

Units are in tracks (TRKS).

Units are in cylinders (CYLS).

Prefix userid to DSNAME.

RLSE is desired.

The data set is to be permanently allocated; it is not be freed until
specifically requested.

A DUMMY data set is desired.
Attribute list name supplied.
Reserved bit; set Lo zero.
Reserved bytes; set them to zero.

Figure 10-12 (Part 2 of 3). DAIR Parameter Block -- Entry Code X‘24’

10-16 TSO/E Guide to Writing a TMP or a CP

Number
of Bytes Field Contents or Meaning

1 DA24DSO A flag field. These flags are set by the DAIR service routine; they
describe the organization of the data set to the calling routine.

Indexed sequential organization.

Physical sequential organization.

Direct organization.

BTAM or QTAM line group.

QTAM direct access message queue.
QTAM problem program message queue.
Partitioned organization.

Unmovable.

8 DA24ALN Attribute list name, or 2 DD name from which DCB attributes should
be copied (as in a JCL DCB reference). If the name is less than eight
characters, it should be padded to the right with blanks.

Figure 10-12 (Part 3 of 3). DAIR Parameter Block -- Entry Code X‘24’

After attempting the requested function, DAIR returns one of the following codes
in register 15:

0, 4, 8, 12, 16, 20, 52
See “Return Codes from DAIR” for return code meanings.
Code X‘28’ - Perform a List of DAIR Operations
Build the DAIR parameter block shown in Figure 10-13 to request that DAIR
perform a list of operations. This DAIR parameter block points to other DAPBs

which request the operations to be performed.

All valid DAIR functions are acceptable; however, code X‘14’ or another code
X*28’ are ignored.

DAIR processes the requested operations in the order they are requested.

DAIR processing stops with the first operation that fails.

Number
of Bytes Field Contents or Meaning
2 DA28CD Entry code X‘0028’
2 DA28NOP Place in this field the number of operations to be performed.
4 DA28PFOP DAIR fills this field with the address of the DAIR parameter block for

the first operation that failed. If all operations are successful, this field
will contain zero upon return from the DAIR service routine. If this
field contains an address, register fifteen contains a return code.

4 DA280PTR Place in this field the address of the DAIR parameter block for the first
operation you want performed. Repeat this field, filling it with the
addresses of the DAPBEs, for each of the operations to be performed.

Figure 10-13. DAIR Parameter Block -- Entry Code X‘28’

After attempting the requested function, DAIR returns one of the following codes
in register 15:

0, 4,8, 12, 16, 20, 24, 28, 32, 44, 52

For return code meanings see the topic “Return Codes from DAIR.”

Chapter 10. Dynamic Allocation of Data Sets - The Dynamic Allocation Interface Routine (DAIR) 10-17

Code X‘2C’ - Mark Data Sets as Not in Use

Build the DAIR parameter block shown in Figure 10-14 to request that DAIR J
mark data sets associated with a task control block as not in use. This allows
data set entries to be reused.

This is the code which the TMP should pass to DAIR prior to detaching a
command processor. This code should also be issued by any command processor
which attaches another command processor and detaches that command processor

directly.
Number
of Bytes Field Contents or Meaning
2 DA2CCD Entry code X‘002C’
2 DA2CFLG A flag field. Set the bits to indicate to the DAIR service routine which
data sets you want marked ‘not in use’.
Hex
Setting Meaning
0000 Mark all data sets of the indicated TCB ‘not in use’.
0001 Mark the specified DDNAME ‘not in use’.
0002 Mark all data sets associated with lower tasks ‘not in use’.
4 DA2CTCB Place in this field the address of the TCB for the task whose data sets
are to be marked ‘not in use’. DA2CFLG must be set to hex 0000.
8 DA2CDDN Place in this field the DDNAME to be marked ‘not in use’. DA2CFLG
must be set to hex 0001.

Figure 10-14. DAIR Parameter Block — Entry Code X‘2C’

After attempting the requested function, DAIR returns one of the following codes ’
in register 15:

0, 4,52
For return code meanings see “Return Codes from DAIR?” later in this section.
Code X‘30’ - Allocate a SYSOUT Data Set to the Message Class

Build the DAIR parameter block shown in Figure 10-15 to request that DAIR
allocate a SYSOUT data set to the message class. The exact action taken by
DAIR is dependent upon the presence of the optional fields and the setting of bits
in the control byte. To supply DCB information, provide the name of an
attribute list that has been defined previously by a X‘34’ entry into DAIR, or the
DDNAME of a currently allocated data set from which DCB attributes can be
copied (as in a JCL DCB reference).

To place a SYSOUT data set in a class other than the message class, use DAIR
entry code X‘30’ and when the output has been written, specify the desired class
either by using DAIR entry code X‘18°, or execute the FREE command, after the
program has completed processing.

When setting disposition in a parameter list, only one bit should be on.

10-18 TSO/E Guide to Writing a TMP or a CP

Number
of Bytes

Field

Contents or Meaning

DA30CD
DA30FLG

Byte 1

.000 0000
Byte 2
DA30DARC

DA30PDSN

DA30DDN

DA30UNIT

DA30SER

DA30BLK

DA30PQTY

DA30SQTY

Entry code X‘0030°

A flag field set by DAIR before returning to the calling routine. The
flags have the following meaning:

The data set is allocated but a secondary error occurred. Register 15
contains an error code.

Reserved bits. Set to zero.
Reserved. Set to zero.

This field contains the error code, if any, returned from the dynamic
allocation routines. (See “Return Codes from Dynamic Allocation.”)

Reserved. Set this field to zero.

Place in this field the address of the DSNAME buffer or zeros. The
DSNAME buffer is a 46-byte field which must appear as follows:

The first two bytes must contain 44 (X‘2C’); the next 44 bytes contain
blanks.

This field contains the DDNAME for the data set. If a specific
DDNAME is not required, fill this field with eight blanks; DAIR will
place in this field the DDNAME to which the data set is allocated.

This is an eight-byte field containing an esoteric group name, a generic
group name, or a specific device address (in EBCDIC). If the unit
information is less than eight characters, it must be padded to the right
with blanks. If no information is to be provided, the field must be
blank. In this case, DAIR will obtain unit information from the
protected step control block. If there is no unit information in the
PSCB, then a default of all direct access devices is used. The specified
unit information will be ignored if volume information is obtained from
the catalog, unless the unit specification is a subset of that obtained
from the catalog. In this case the specified unit information will
override the returned information.

Serial number desired. Only the first six bytes are significant. If the
serial number is less than six bytes, it must be padded to the right with
blanks. If no volume serial number is specified, the field must be
blank. In this case, the following is done: If the data set is a new data
set, the system determines the volume to be used for the data set based
on the unit information. If the data set already exists, volume and unit
informalion are obtained from the catalog. If the information is not
found in the catalog, the allocation request is denied.

Block size requested. This figure represents the average record length
desired.

Primary space quantity desired. The high-order byte must be set to
zero; the low-order three bytes should contain the space quantity
required. If the quantity is omitted, the entire field must be set to zero.
In this case for new direct access data sets primary and secondary
space, and type of space will be defaulted.

Secondary space quantity desired. The high-order byte must be set to
zero, the low-order three bytes should contain the secondary space
quantity required. If the quantity is omitted, the entire field must be
set to zero.

Figure 10-15 (Part 1 of 2). DAIR Parameter Block -- Entry Code X‘30’

Chapter 10. Dynamic Allocation of Data Sets - The Dynamic Allocation Interface Routine (DAIR) 10-19

Number
of Bytes Field Contents or Meaning

8 DA30PGNM | Place in this field the member name of a special user program to handle
SYSOUT operations. Fill this field with blanks if you do not provide a
program name.

4 DA30FORM | Form number. This form number indicates that the output should be
printed or punched on a specific output form. It is a four character
number. This field must be filled with blanks if this parameter is
omitted.

2 DA300CLS SYSOUT class. The data set will be allocated to the message class,
regardless of the class you specify here. To place a SYSOUT data set
in a class other than the message class, use DAIR entry code X‘30° and
when the output has been written, specify the desired class by using
DAIR entry code X‘18’.

1 Reserved. Set this field to zero.

1 DA30CTL Flag byte. These flags indicate to the DAIR service routine what
operations are to be performed.

XX e Indicate the type of units desired for the space parameters, as follows:
ol.. ... Units are in average block length.

10.. ... Units are in tracks (TRKS).

11.. ... Units are in cylinders (CYLS).

IO PR Prefix userid to DSNAME

A RLSE is desired.

1. The data set is to be permanently allocated; it is not to be freed until
specifically requested.

1. A DUMMY data set is desired.
.1 Altribute list name specified.
.0 Reserved bit; set to zero.

8 DA30ALN Attribute list name, or a ddname from which DCB attributes should be
copied (as in a JCL DCB reference). If the name is less than eight
characters, it should be padded to the right with blanks.

Figure 10-15 (Part 2 of 2). DAIR Parameter Block -- Entry Code X‘30°

After attempting the requested function, DAIR returns one of the following codes
in register 15:

0, 4, 12, 16, 20, 28, 52

See “Return Codes from DAIR?” later in this section for return code meanings.
Code X‘34’ - Associate DCB Parameters with a Specified Name

Build the DAIR parameter block shown in Figure 10-16 to request that DCB
parameters to be used with subsequent allocations are associated with a specified
name (attribute name). The following functions related to attribute names are
available using code X‘34’:
1. Associate a set of DCB parameters to be used in subsequent allocations.
2. Search on the attribute name.

3. Delete the attribute name.

Note: When you request that DAIR associate DCB parameters with a specified
name, you must also build a DAIR attribute control block (DAIRACB).

10-20 TSO/E Guide to Writing a TMP or a CP

Contents or Meaning

Number
of Bytes Field
2 DA34CD
2 DA34FLG
Byte 1
DA34FIND
1...
.000 0000
Byte 2
2 DA34DARC
1 DA34CTRL
DA34SRCH
DA34CHN
DA34UNCH
.0 0000
8 DA34NAME
D/ 3<ADDR

Entry code X*‘0034’

A flag field set by DAIR before returning to the calling routine. The
flags have the following meaning:

An attribute list name was found.
An attribute list name was not found.
Reserved bits. Set to zero.

Reserved. Set to zero.

This field contains the code returned from the dynamic allocation
routines. (See “Return Codes from Dynamic Allocation.”)

Flag byte. These flags indicate to DAIR what operations are to be
performed.

Search for the attribute list name specified in field DA34NAME.
Build and chain an attribute list.

Delete an attribute list name.
Reserved bits. Set to zero.

Reserved. Set to zero.
This field contains the name for the list of attributes.

This field contains the address of the DAIR attribute control block
(DAIRACB). This field need only be specified if bit 1 of DA34CTRL
is on.

Figure 10-16. DAIR Parameter Block —- Entry Code X‘34’

After attempting the requested function, DAIR returns one of the following codes

in register 15:

0,4,12,52

See “Return Codes from DAIR” later in this section for return code meanings.

DAIRACB - DAIR Attribute Control Block

Build the DAIRACB shown in Figure 10-17 when you request that DAIR
construct an attribute list. Place the address of the DAIRACB into the
DA34ADDR field of the code X‘34’ DAIR parameter block shown in

Figure 10-16.

Chapter 10. Dynamic Allocation of Data Sets - The Dynamic Allocation Interface Routine (DAIR) 10-21

Contents or Meaning

Number
of Bytes Field
8
8 DAIMASK
DAILABEL
DAIINOUT
DAIOUTIN
.00 0000
3
3 DAIEXPDT
DAIYEAR
DAIDAY
2
1 DAIBUFNO
1 DAIBFTEK
A1 L
W1
.1
0... 00.

2 DAIBUFL
1 DAIEROPT
1...

1.

...0 0000
1 DAIEKYLE
6
1 DAIRECFM
1...
1.
11.. ...
1.
R P
1.
.1
1 DAIOPTCD
1...
. L.
.0.0 .0.0
2 DAIBLKSI
2 DAILRECL
1 DAINCP
4

Reserved.
First 6 bytes and eighth byte are reserved.

Seventh-byte flags. These flags indicate the INOUT/OUTIN options of
the OPEN macro.

Use the INOUT option.

Use the OUTIN option.
Reserved bits. Should be set to zero.

Reserved. Should be set to zero.
This field contains a data set expiration date specified in binary.
The first byte contains the expiration year.

The next 2 bytes contain the expiration day, left justified. For example,
the date 99352 is specified ‘630160’B.

Reserved. Should be set to zero.

This field contains the number of buffers required.
This field contains the buffer type and alignment.
Simple buffering (S).

Automatic record area construction (A).

Record buffering (R).

Exchange buffering (E).

Doubleword boundary (D).

Fullword boundary (F).
Reserved bits. Should be set to zero.

This field contains the buffer length.
This field indicates the error options:

Accept error record.

Skip error record.

Abnormal EOT.

Reserved bits. Should be set Lo zero.

This field contains the key length.
Reserved. Should be set to zero.
This field indicates the record format:
Fixed (F)

Variable (V).

Undefined (U).

Track overflow (T).

Blocked (B).

Standard blocks (S).

ASCII printer characters (A).
Machine control characters (M).
Reserved bit. Should be set to zero.

This field contains the error option codes:

Write validity check (W).

Chained scheduling (C).

ASCII translate (Q).

User totaling (T).

Reserved bits. Should be set to zero.

This field contains the maximum block size.
This field contains the logical record length.

This field contains the maximum number of READ or WRITE channel
programs before check.

Reserved. Should be set to zero.

Figure 10-17. DAIR Attribute Control Block (DAIRACB)

The fields that you do not use must be initialized to zero.

10-22 TSO/E Guide to Writing a TMP or a CP

Return Codes from DAIR

DAIR returns a code in general register 15 to the calling routine. In addition,
further return code information may be found in the DAxxCTRC field if the
return code is 8 or in the DAxxDARC field if the return code is 12.

The DAIR return codes have the following meaning:

Return
Code

(decimal)

0

4

16

20

24

28

32

36

40

44

48

52

Meaning

DAIR completed successfully.
The parameter list passed to DAIR was invalid.

An error occurred in a catalog management routine; the catalog management error code is
stored in the CTRC field of the DAIR parameter block.

An error occurred in dynamic allocation; the dynamic allocation error code is stored in the
DARC field of the DAIR parameter block.

No TIOT entries were available for use.
The ddname requested is unavailable.
The dsname requested is a member of a concatenated group.

The ddname or dsname specified is not currently allocated, or the attribute list name
specified was not found.

The requested data set was previously permanently allocated, or was allocated with a
disposition of new, and was not deleted. DISP=NEW cannot now be specified.

An error occurred in a catalog information routine (IKJEHCIR).

The return area you provided for qualifiers was exhausted and more index blocks exist. If
you require more qualifiers, provide a larger return area.

The previous allocation specified a disposition of DELETE for this non-permanently
allocated data set. Request specified OLD, MOD, or SHR with no volume serial number.

Reserved.

Request denied by installation exit.

The return codes from catalog management, which are found in the DAxxCTRC
field if the register 15 return code is 8, are documented in SPL: Data
Management.

Chapter 10. Dynamic Allocation of Data Sets - The Dynamic Allocation Interface Routine (DAIR) 10-23

Return Codes from Dynamic Allocation

The codes returned in the DAxxDARC field of the DAIR parameter block, when J
a DAIR return code of 12 is returned, are the dynamic allocation error reason

codes. (See SPL: System Macros and Facilities.) In addition to those return

codes, which are converted from dynamic allocation codes back to the same codes

which were used in previous releases, the following reason codes may also be

returned:

Return

Code Meaning

(hexadecimal)

0304 The ddname was not specified by the calling routine.

0308 The ddname specified by the calling routine was not found.

0314 Restoring ddnames, as per this request, would have resulted in duplicate ddnames.
Duplicate ddnames are not permitted.

0318 Invalid characters are present in the ddname provided by the caller.

031C Invalid characters are present in the membername provided by the caller.

0320 Invalid characters are present in the dsname provided by the caller.

0324 Invalid characters are present in the SYSOUT program name provided by the caller.

0328 Invalid characters are present in the SYSOUT form number provided by the caller.

032C An invalid SYSOUT class was specified by the caller. J

0330 A membername was specified but the data set is not a partitioned data set.

0334 The supplied data set name exceeded 44 characters in length.

0338 The data set disposition specified by the caller is invalid.

0348

through

034C Reserved.

DAIRFAIL Routine (IKJEFF18)

The DAIRFAIL routine analyzes return codes from SVC99 or DAIR, and
performs one of the following functions, as requested:

e Issue an error message when appropriate.
® Only return the error message to the caller.
e Issue an error message, as well as return the message to the caller.

This process of returning the message(s) to the caller is referred to as extracting
the message.

DAIRFAIL may be invoked in either 24- or 31-bit addressing mode. When

invoked in 31-bit addressing mode, DAIRFAIL may be passed input that resides :
above 16 Mb in virtual storage. J

10-24 TSO/E Guide to Writing a TMP or a CP

To invoke DAIRFAIL, link to IKJEFF18. When linking to IKJEFF18, provide
the address of the following six-word parameter list in register 1:

Offset

Dec Hex Field Name

DSECT - DFDSECTD

DFS99RBP
or
0 0 DFDAPLP
4 DFRCP
DFJEFF02

DSECT - DFDSECTD

DFS99RBP
or
12 C DFIDP
16 10 DFCPPLP
20 14 DFBUFP

DSECT - DFDSECT2

DFBUFS

or
0 0 DFBUFLI1
2 2 DFBUFO01
4 4 DFBUFTI1
256 100 DFBUFL2
258 102 DFBUF02
260 104 DFBUFT2

Chapter 10. Dynamic Allocation of Data Sets - The Dynamic Allocation Interface Routine (DAIR)

Contents

Address of the failing SVC99 request block or address of the failing
DAIR parameter list.

Address of a fullword containing either the SVC99 or DAIR return code.

Address of a fullword containing either the entry point address of
IKJEFFO02 (message writer routine) or zeros, if that address is unknown.
This field (DFJEFF02) must always contain an address.

Address of a two-byte area containing:

Byte 1 Switches
Bit0: 0 - PUTLINE issued
1 - WTP issued
Bit 1: 1 - Caller wants message extracted only.
Bit 2: 1 - Caller wants message extracted as well as issued using
PUTLINE or write-to-programmer (WTO).
Byte 2 Caller identification number
X0’ - DAIR
X‘32’ - SVC99

X*‘33’ - SVC99 invoked by the FREE command

Address of the CPPL. This is needed only when IKJEFF18 is called
with an SVC99 error and the user is not requesting a
write-to-programmer message.

Address of DFBUFS buffer if bit 2 (DFBUFSW) or bit 3 (DFBUFS2) of
DFIDP is on. This is required when the message is to be extracted and
returned to the caller. If the DFBUFSW is on, the message(s) will only
be extracted. If DFBUFS2 is on, the message(s) will be issued as well as
extracted and returned to the caller. It will be possible to extract the first
level and one second level message.

A 2 byte field that will contain the total length of the first level message,
plus 4 bytes for length and offset fields.

A 2 byte field containing the offset field. It will be set to zero when a
message is extracted.

A 251 byte buffer that will contain the text of the first level message
extracted. If the message is greater than 251 bytes, the message will be
truncated.

A 2 byte field containing the total length of the first second level message
plus four bytes. If there is no second level message, this field will contain
HEX zeros.

A 2 byte field containing the offset. It will be set to zero when a message
is extracted.

A 251 byte field that will contain the text of the first second level message
extracted. If the message is greater than 251 bytes, the message will be
truncated.

10-25

The IKJEFFDF macro may be used to map the fields in the parameter list.
Specify the DFDSECT = YES option to obtain DSECT DFDSECTD instead of
storage. Specify the DFSECT2=YES option to obtain DSECT DFDSECT?2
instead of storage.

DFDSECT?2 defines a storage area supplied by the caller. DAIRFAIL will return
the requested informational message(s) in the associated buffers. It is not
necessary to initialize these buffers. On return from DAIRFAIL, the buffers will
contain the extracted message(s).

DAIRFAIL allows the user to specify that a write-to-programmer message should
be issued rather than the default PUTLINE routine. This is especially useful for
analyzing errors occurring in a batch invocation of SVC99. If the high-order bit
of the caller identification area (pointed to by DFIDP) is on, a
write-to-programmer message will be issued instead of a PUTLINE. When the
write-to-programmer feature is used, the address of the CPPL (DFCPPLP) need
not be specified.

The return code from DAIRFAIL is contained in register 15 as follows:

0 - Message issued successfully

4 - Invalid caller identification number

8 - Message writer detected an error while attempting to issue a message
12 - Extracted message buffer parameter list error

GNRLFAIL/VSAMFAIL Routine (IKJEFF19)

The GNRLFAIL/VSAMFAIL routine analyzes VSAM macro instruction failures,
subsystem request (SSREQ) failures, parse service routine or PUTLINE failures,
and ABEND codes, and issues an appropriate error message. It will insert the
meaning of return codes from the VSAM/job entry subsystem interface. Other
VSAM codes are explained in the VSAM Programmer’'s Guide.

GNRLFAIL/VSAMFAIL may be invoked in either 24- or 31-bit addressing
mode. When invoked in 31-bit addressing mode, GNRLFAIL/VSAMFAIL may
be passed input that resides above 16 Mb in virtual storage. To invoke
GNRLFAIL/VSAMFAIL, link to IKJEFF19. When linking to IKJEFF19,
provide the address of a pointer to the following parameter list in register 1:

Offset

Dec Hex Field Name Contents

0 0 GFCBPTR Pointer to VSAM ACB if GFOPEN or GFCLOSE callerid.
Pointer to VSAM RPL for other VSAM macro failures. Pointer
to SSOB if GFSSREQ caller id.

4 4 GFRCODE Error return code from register 15 or ABEND code if
GFCALLID is GFABEND.

8 8 GFO02PTR Zero, or address of TSO message issuer routine (IKJEFF02) if
already loaded.

12 C GFCALLID ID for caller’s failing VSAM macro, or other failure.

10-26 TSO/E Guide to Writing a TMP or a CP

Offset

Dec Hex
GFCALLID=
14 E

15 F

16 10
20 14
24 18
26 1A
28 1C
32 20
36 24
40 28

Field Name

Hexadecimal
01 (GFCHECK)

02 (GFCLOSE)
03 (GFENDREQ)
04 (GFERASE)
05 (GFGET)

06 (GFOPEN)

07 (GFPOINT)
08 (GFPUT)

15 (GFPARSE)

16 (GFPUTL)
IF (GFABEND)
20 (GFSSREQ)
GFBITS
GFKEYNOS8
GFSUBSYS
GFWTPSW

GFRESV1
GFCPPLP

GFECBP
GFDSNLEN
GFPGMNL
GFDSNP

GFPGMNP

GFRESV2
GFRESV3

Contents

for VSAM CHECK macro error
for VSAM CLOSE macro error
for VSAM ENDREQ macro error
for VSAM ERASE macro error
for VSAM GET macro error

for VSAM OPEN macro error
for VSAM POINT macro error
for VSAM PUT macro error

for parse service routine error, other than a return code of 4 or
20.

for PUTLINE service routine error
Issue ABEND message
for Subsystem interface request (SSREQ) error

Special processing switches

l... ... Caller notin key 0 or 8.

.1.. ... Caller used VS2 VSAM/job entry subsystem interface.

..1. ... [Issue error message as write-to-programmer instead of
PUTLINE.

Reserved.

Pointer to TMP’s CPPL control block (needed if PUTLINE
issued, or to have command name inserted in the failure
message).

Pointer to ECB for PUTLINE (optional).
Length of data set name.
Length of program name.

Pointer to data set name to insert in VSAMFAIL error messages
(optional; default is ddname).

Pointer to program name for insertion in all error messages
(optional; default is ddname).

Reserved.

Reserved.

The return code from GNRLFAIL is contained in register 15 as follows:

0
80

Other

- Message issued successfully
- Invalid input parameter list (GFPARMS) for IKJEFF19. A message is also issued.
- PUTLINE/PUTGET/IKJEFF02 message issuer error return code.

The IKJEFFGF macro may be used to map the input parameter list. Specify the
GFDSECT =YES option to obtain DSECT GFDSECTD instead of storage.

Chapter 10. Dynamic Allocation of Data Sets - The Dynamic Allocation Interface Routine (DAIR)

10-27

10-28 TSO/E Guide to Writing a TMP or a CP

Chapter 11. Using BSAM or QSAM for Terminal 1/O

The basic sequential and queued sequential access methods provide terminal I/O
support for programs operating under TSO. For a complete discussion of the use
of BSAM and QSAM, see Data Management Services.

The major benefit of using BSAM or QSAM to process terminal I/O under TSO
is that programs using these access methods do not become TSO dependent or
device dependent and may execute either under TSO or in the batch environment.
Therefore, your existing programs that use BSAM or QSAM for I/O may be used
under TSO without modification or recompilation.

This section describes:

The BSAM/QSAM macro instructions

SAM terminal routines

Record formats, buffering techniques, and processing modes
Specifying the terminal line size

End of file (EOF) for input processing

Modifying DD statements for batch or TSO processing

BSAM/QSAM Macro Instructions

Some of the BSAM and QSAM access method routines have been modified to
provide special services under TSO; others provide the same function that is
provided in a batch environment. Those BSAM/QSAM macro instructions that
are not relevant to terminal I/O act as no-ops. All of the BSAM/QSAM macro
instructions, when executed in the batch environment, provide the non-terminal
functions as explained in Data Management Macro Instructions. The
BSAM/QSAM macro instructions must be issued in 24-bit addressing mode.
Figure 11-1 shows the functions performed by the BSAM and QSAM macro
instructions when used for terminal I/O. Following the table are more detailed
explanations of the GET, PUT, PUTX, READ, WRITE, and CHECK macro
instructions.

Chapter 11. Using BSAM or QSAM for Terminal /0 11-1

SAM Macro

Instruction BSAM | QSAM Terminal Interpretation

BSP X X NOP

BUILD X X As in batch processing, the BUILD macro instruction causes a
buffer pool to be constructed in a user-provided storage area.

CHECK X Takes an EODAD exit after a READ EOF. NOP after a
WRITE.

CLOSE X X The CLOSE macro instruction frees the control blocks built to
handle I/O and deletes the loaded SAM terminal routines.

CNTRL X X NOP

REOV X X NOP

FREEBUF X As in batch processing, the FREEBUF macro instruction
causes the control program to return a buffer to the buffer
pool assigned to the specified data control block.

FREEPOOL X X As in batch processing, the FREEPOOL macro instruction
causes an area of virtual storage, previously assigned as a
buffer pool for a specified data control block, to be released.

GET X The GET macro instruction obtains data from the terminal via
the TGET macro instruction.

GETBUF X As in batch processing, the GETBUF macro instruction causes
the control program to obtain a buffer from the buffer pool
assigned to the specified data control block, and to return the
address of the buffer in a designated register.

GETPOOL X X As in batch processing, the GETPOOL macro instruction
causes a buffer pool to be constructed in a storage area
provided by the control program.

NOTE X NOP

OPEN X X The OPEN macro instruction loads the proper SAM terminal
I/O routines and constructs the necessary control blocks.

POINT X NOP

PRTOV X X NOP

PUT X The PUT macro instruction routes data to the terminal via the
TPUT macro instruction.

PUTX X The PUTX macro instruction routes data to the terminal via
the TPUT macro instruction.

READ X The READ macro instruction obtains data from the terminal
via the TGET macro instruction.

RELSE X NOP

SETPRT X X NOP

TRUNC X NOP

WRITE X The WRITE macro instruction routes data to the terminal via
the TPUT macro instruction.

Figure 11-1.

SAM Terminal Routines

BSAM/QSAM Macro Functions Under TSO

The GET, PUT, PUTX, READ, WRITE, and CHECK macro instructions
perform differently in terminal I/O than they do in the batch environment.
Descriptions of these differences are presented here, but for a detailed explanation
of how to use the macro instructions, see Data Management Macro Instructions.

11-2 TSO/E Guide to Writing a TMP or a CP

GET

PUT and PUTX

READ

The GET macro instruction causes a record to be retrieved from the terminal and
placed in either the first buffer of the buffer pool control block (locate mode) or
in a user specified area (substitute or move mode). In either case, the address of
the record is returned in register 1.

The record is moved via a TGET macro instruction which does not return control
until the transfer of data completes.

The input to the GET macro instruction consists of the DCB address and the
user’s area address (omitted for locate mode). The output is edited (that is,
specially-indicated characters are deleted from the message). Lowercase
characters are folded to uppercase characters.

When the terminal user types /*, end-of-file is indicated and control is passed to
the problem program’s EODAD routine. If no EODAD routine is specified, the
job will ABEND with a system code of 337.

Both the PUT and the PUTX macro instructions cause a record to be written to a
terminal. This transfer of data is accomplished with the TPUT macro instruction
which does not return control until the transfer is completed.

In locate mode, the first use of PUT or PUTX causes an address pointing to a
buffer to be returned in register 1. The first record is placed in this buffer by the
problem program and is written out when the next PUT or PUTX for the same
data control block (DCB) is issued. Succeeding records are written in the same
manner. The last record is written at CLOSE time.

In move or substitute mode, the PUT or PUTX macro instruction moves a record
from the user-specified work area to the terminal. You must supply the work
area address to the PUT macro instruction.

The input to the PUT and PUTX macro instruction consists of the DCB address
and the user’s area address (omitted for locate mode).

The READ macro instruction causes a block of data to be retrieved from the
terminal and placed in a user-designated area in storage. This transfer of data is
done via a TGET macro instruction which does not return control before the
transfer is completed. The data is folded to uppercase.

The input to the READ macro instruction consists of the string of parameters
explained in Data Management Macro Instructions.

Chapter 11. Using BSAM or QSAM for Terminal /O 11-3

WRITE

CHECK

Record Formats,

The WRITE macro instruction causes a block of data to be written from the
user-specified area to the terminal. This transfer of data is done via a TPUT
macro instruction which does not return control until the transfer is completed.

The input to the WRITE macro instruction consists of the string of parameters
explained in Data Management Macro Instructions.

The CHECK macro instruction used after a WRITE macro instruction results in
a NOP. When it is used after a READ macro instruction, it performs as a NOP
unless an end of file (EOF) condition is encountered. The end of file signal from
the terminal is /*. When end of file is encountered, CHECK takes the EODAD

exit specified in the data control block. If no EODAD exit is specified, CHECK
will cause the job to ABEND with a system code of 337.

The input to the CHECK macro instruction is the address of the problem
program’s data event control block (DECB).

Buffering Techniques, and Processing Modes

All record formats -- fixed (F), variable (V), and undefined (U) -- are supported
under TSO. Before passing the data to the problem program, TSO automatically
generates the first four bytes of control information for V format records coming
in from the terminal. When you send V format records to the terminal, TSO
automatically removes the control information before writing the line.

Control characters (ASCII or machine) are not supported under TSO. On output,
they are removed before the data is sent to the terminal. On input, they are
ignored.

Both simple and exchange buffering techniques are supported, as are all four
processing modes for the queued access method.

Specifying Terminal Line Size

If the LRECL and BLKSIZE fields are not specified in the DCB, the terminal
line size default (or the line size the terminal user has specified via the
TERMINAL command) is merged into the data control block fields as if it came
from the label of the data set.

For BSAM, BLKSIZE is used by TSO to determine the length of the text line it is
to process. For both BSAM and QSAM, if the text entered from the terminal is
shorter than the value specified for LRECL, and if F format is used, blanks are
supplied on the right. For either access technique, if the text entered is longer
than BLKSIZE or LRECL, the next GET or READ retrieves the remainder of
the message. If the record generated by the problem program is longer than the
specified line size, multiple lines are displayed at the terminal.

11-4 TSO/E Guide to Writing a TMP or a CP

9

9

C

End-of-File (EOF) for Input Processing

The sequential access method GET and CHECK terminal routines recognize /*
from the terminal as an end-of-file (EOF). The EODAD exit in the data control
block is taken for the EOF condition. If no EODAD exit has been specified, and
an EOF has been signaled from the terminal, the job ABENDs with a system
code of 337.

Modifying DD Statements for Batch or TSO Processing

TERM =TS, when added to a DD statement defining an input or an output data
set, is ignored in the batch processing environment, but under TSO indicates to
the system that the unit to which I/O is being addressed is a time sharing
terminal. Thus a user who wants his job to run in either the foreground or the
background could provide a DD statement as follows:

//DD1 | DD| TERM=TS,SYSOUT=A

In this example the output device is defined as a terminal under TSO processing,
and as the SYSOUT device during batch processing. For a complete description
of the TERM =TS parameter, see JCL.

Chapter 11. Using BSAM or QSAM for Terminal I/O 11-5

11-6 TSO/E Guide to Writing a TMP or a CP

Chapter 12. Using the TSO I/O Service Routines for Terminal 1/O

The TSO I/O service routines process terminal I/O requests initiated by the
terminal monitor program (TMP), command processors (CPs), and other service
routines. If you write your own command processors, or replace the
IBM-supplied terminal monitor program with one of your own design, you should
use the I/O service routines to process terminal I/O.

The I/O service routines -- STACK, GETLINE, PUTLINE, and PUTGET --
offer the following features:

1. They provide an interface between an I/O request and the TGET and TPUT
supervisor calls.

2. They provide a method of selecting sources of input other than the terminal.
Requests for input can be directed to an in-storage list or data set as well as
to the terminal.

3. They provide a message formatting facility with which you can insert text
segments into a basic message format, and display or inhibit the displaying of
message identifiers.

4. They process requests for more information (question-mark processing), and
they analyze processing conditions to determine if I/O requests should be
disregarded or honored.

You pass control to the I/O service routines and indicate the functions you want
performed by coding the operands you require in the list and the execute forms of
the I/O service routine macro instructions. Each of the I/O service routine macro
instructions (STACK, GETLINE, PUTLINE, and PUTGET) has a list and an
execute form.

The list form of each service routine macro instruction initializes the parameter
blocks according to the operands you code into the macro instruction.

The execute form is used to modify the parameter blocks and to provide linkage
to the service routines, and can be used to set up the input/output parameter list.
The input/output parameter list contains addresses required by the I/O service
routines.

Note: See the section “Processing Terminal Requests -- The TSO Service

Routines” for information on the CALLTSSR macro interface to TSO service
routines and a list of the DSECTs provided for TSO control blocks.

Chapter 12. Using the TSO I/O Service Routines for Terminal /O 12-1

The Input/Output Parameter List

The I/O service routines use two of the pointers contained in the command)
processor parameter list: the pointer to the user profile table and the pointer to

the environment control table. These addresses are passed to the service routines

in another parameter list, the input/output parameter list IOPL). The IOPL may

reside above or below 16 Mb in virtual storage. If the IOPL resides above 16

Mb, then the caller must run in 31-bit addressing mode. Before executing any of

the TSO I/O macro instructions (GETLINE, PUTLINE, PUTGET, or STACK),

you must provide an IOPL and pass its address to the I/O service routine. There

are two ways you can construct an IOPL:

1. You can build and initialize the IOPL within your code and place a pointer to
it in the execute form of the I/O macro instruction.

2. You can provide space for an IOPL (4 fullwords), pass a pointer to it,
together with the addresses required to fill it, to the execute form of the I/O
macro instruction, and let the I/O macro instruction build the IOPL for you.

The input/output parameter list, as defined by the IKJIOPL DSECT, is a
four-word parameter list. Figure 12-1 describes the contents of the IOPL.

Number
of Bytes Field Contents or Meaning

4 IOPLUPT The address of the user profile table from the CPPLUPT field of the
command processor parameter list.

4 IOPLECT The address of the environment control table from the CPPLECT field of
the CPPL.

4 IOPLECB The address of the command processor’s event control block (ECB). The)
ECB is one word of storage, declared and initialized to zero by the
command processor. Command processors with attention exits can post
this ECB after an attention interruption to cause active service routines
to exit.

4 IOPLIOPB The address of the parameter block created by the list form of the 1/O
macro instruction. There are four types of parameter blocks, one for
each of the I/O service routines:

STACK parameter block (STPB)
GETLINE parameter block (GTPB)
PUTLINE parameter block (PTPB)
PUTGET parameter block (PGPB)

Figure 12-1. The Input/Output Parameter List

The parameter block pointed to by the fourth word (IOPLIOPB) of the I/O
parameter list is built and modified by the I/O service routine macros themselves.
It is created and initialized by the list form of the I/O macro instruction, and
modified by the execute form. Thus you can use the same parameter block to
perform different functions. All you need to do is code different parameters in
the execute forms of the macro instructions; these parameters provide those
options not specified in the list form, and override those which were specified.
Each of these parameter blocks -- the STACK, GETLINE, PUTLINE, and
PUTGET parameter blocks -- is described in the separate sections on each of the
I/O macro instructions.

12-2 TSO/E Guide to Writing a TMP or a CP

Figure 12-2, an extension of Figure 10-17, summarizes the control block
interfaces established between the terminal monitor program and an I/O service
routine.

Terminal Command
Monitor Processor
Program

ATTACH

E—)

Register 1

CPPL

Figure 12-2. Control Block Interface Between the TMP and I/O Service Routine

Passing Control to the I/O Service Routines

The I/O service routines may be invoked in either 24-bit or 31-bit addressing
mode. These routines execute in 31-bit addressing mode. Input may reside above
or below 16 Mb in virtual storage, except for the list storage descriptor (LSD).
The LSD must reside below 16 Mb in virtual storage.

Service routines treat input addresses according to the addressing mode in which
they are invoked. However, if you use the GETLINE macro, the addressing
mode of the STACK macro will be used rather than your program’s addressing
mode. Address values will be treated as 24-bit or 31-bit addressing mode
depending on the addressing mode of the original issuer of the STACK macro for
that element.

Chapter 12. Using the TSO I/O Service Routines for Terminal /0 12-3

Pass control to an I/O service routine using the corresponding I/O macro
instruction:

Service Routine Macro Instruction

STACK STACK
GETLINE GETLINE
PUTLINE PUTLINE
PUTGET PUTGET

You can use the DELETE macro instruction to release the storage area occupied
by the load module when you have finished with your terminal I/O. Service of
the TSO terminal I/O service routines are contained in the IKJPTGT load
module.

The I/O Service Routine Macro Instructions

The I/O service routines -- STACK, GETLINE, PUTLINE, and PUTGET --
each perform a specific I/O function:

STACK determines the source of input.

GETLINE obtains a line of input.

PUTLINE puts a line of output to the terminal.

PUTGET puts a line to the terminal and gets a line in response.

In order to perform these functions, the I/O macro instructions use the control
blocks explained in the section “Processing Terminal Requests - The TSO Service
Routines” and other, more individualized control blocks, the parameter blocks.
Each of the I/O macro instructions has a list and an execute form. The list form
sets up the parameter block required by that I/O service routine; the execute form
can be used to set up the input output parameter list, and to modify the
parameter block created by the list form of the macro instruction.

The STACK, GETLINE, PUTLINE, and PUTGET macros may be issued in
either 24- or 31-bit addressing mode. The corresponding I/O service routines
execute in 31-bit addressing mode and return control in the same addressing mode
in which they are invoked. Input may reside above or below 16 Mb in virtual
storage, except for the list source descriptor (LSD). The LSD must reside below
16 Mb.

The parameter block required by each of the I/O service routines is different, and
each one may be referenced through a DSECT. The parameter blocks and the
DSECTS used to reference them are:

The STACK parameter block referenced by IKJSTPB
The GETLINE parameter block referenced by IKIGTPB
The PUTLINE parameter block referenced by IKJPTPB
The PUTGET parameter block referenced by IKJPGPB

Each of these blocks is explained in the section describing the I/O macro
instruction that builds it.

12-4 TSO/E Guide to Writing a TMP or a CP

C

STACK - Changing the Source of Input

Use the STACK macro instruction to establish and to change the source of input.
The currently active input source is described by the top element of the input
stack, an internal pushdown list maintained by the I/O service routines. The first
element of the input stack is initialized by the terminal monitor program (TMP),
and cannot thereafter be changed or deleted. The IBM-supplied TMP initializes
this first element to indicate the terminal as the current input source. The
STACK service routine adds an element to the input stack or deletes one or more
elements from it, and thereby changes the source of input for the other I/O service
routines.

A user can divide the input stack into substacks by creating barrier elements with
the STACK macro instruction. A barrier element separates one group of stack
elements, or substack, from another group of stack elements. Each substack can
then be treated as a separate input stack. Use the barrier function of the STACK
macro with the PUTGET or GETLINE SUBSTACK =YES services to determine
when a barrier element is reached on the input stack.

The STACK service routine saves the addressing mode of the program that
invoked it. Address values are treated as 24-bit or 31-bit addressing mode,
depending on the addressing mode of the original issuer of STACK for that
element.

This topic describes:

The list and execute forms of the STACK macro instruction
The sources of input

The STACK parameter block

The list source descriptor

Return codes from STACK

Coding examples are included where needed.

The STACK Macro Instruction - List Form

The list form of the STACK macro instruction builds and initializes a STACK
parameter block (STPB), according to the operands you specify in the macro.
The STACK parameter block indicates to the STACK service routine which
functions you want performed. Figure 12-3 shows the list form of the STACK
macro instruction; each of the operands is explained following the figure.
Appendix A describes the notation used to define macro instructions.

Chapter 12. Using the TSO I/O Service Routines for Terminal I/O 12-5

[symbol]

STACK

BARRIER=*
TOP
DELETE= |PROC
ALL
BARRIER

PROCN, PROMPT
)| ,MF=L

STORAGE=(element address,{ PROCL,PROMPT
SOURCE
*

DATASET= (INDD=addl,PROMPT,LIST
MEMBER=addr3
OUTDD=addr2,CNTL, SEQ
CLOSE

Figure 12-3. The List Form of the STACK Macro Instruction

BARRIER =*
Creates a barrier element (to divide the input stack into substacks) on top of
the input stack. (Only a STACK DELETE =BARRIER request can delete
a barrier element.)

DELETE =
Deletes an element or elements from the input stack. TOP, PROC, ALL, or
BARRIER further defines the element to be deleted.

TOP
Deletes the topmost element (the element most recently added to the input
stack). If the top element is a barrier element, STACK DELETE =TOP is
a no-operation instruction.

PROC
Deletes the current procedure element from the input stack. If the top
element is not a PROC element, deletes all elements down to, and including,
the first PROC element.

ALL
Deletes all elements, except the bottom or first element,
from the input stack. If one or more barrier elements exist on the input
stack, deletes all elements down to, but not including, the first barrier
element.

BARRIER
Deletes all elements down to, and including, the first barrier element.

STORAGE =element address
Adds an in-storage element to the input stack. The element address is the
address of the list source descriptor (LSD). The LSD is a control block,
pointed to by the STACK parameter block, which describes the in-storage
list. The LSD must reside below 16 Mb in virtual storage. The in-storage
element must be further defined as a SOURCE, PROCN, or PROCL list.
SOURCE is the default.

12-6 TSO/E Guide to Writing a TMP or a CP

9

PROMPT
Specifies prompting by commands within a command procedure. PROMPT
is used with the keywords PROCN and PROCL, which specify that the
element to be added to the input stack is a command procedure.

PROCN
The element to be added to the input stack is a command procedure and the
NOLIST option has been specified.

PROCL .
The element to be added to the input stack is a command procedure and the
LIST option has been specified. Each line read from the command
procedure is written to the terminal.

SOURCE
The element to be added to the input stack is an in-storage source data set.

MF=L
Indicates that this is the list form of the macro instruction.

DATASET
Supports the use of ACCOUNT in the background by expanding the
facilities of dataset I/O for TSO commands to include reading from a
SYSIN data set and writing to a SYSOUT dataset. To use the dataset
function, the input and output files passed to the STACK service routine
must be preallocated, either by a previously issued ALLOCATE command,
a command processor going to dynamic allocation, a DD statement
specified in the logon procedure, or, in the background, a user-supplied DD
statement.

Specifies that STACK use the bottom element in the input stack for I/O
operations. This operand is the functional equivalent of TERM =*.

INDD =addrl
Specifies the input file name.

PROMPT
Allows prompting if prompting is also allowed on the bottom element of the
input stack.

LIST
Lists the input from the input stream.

MEMBER = addr3
Specifies an 8-character member name for a partitioned data set which was
specified as the input file with the INDD operand.

OUTDD = addr2
Specifies the output file name.

CNTL
The output line has its own control character.

Chapter 12. Using the TSO I/O Service Routines for Terminal /O 12-7

CLOSE
Closes the data control blocks (DCBs) of the input stack.

SEQ
Tells dataset I/O not to remove sequence numbers.

Note: In the list form of the macro instruction, only

STACK MF=L

is required. When only STACK MF=L is specified, the STPB is zerot¢d. The
other operands and their sublists are optional because they may be supplied by
the execute form of the macro instruction.

The operands you specify in the list form of the STACK macro instruction set up
control information used by the STACK service routine. The DATASET,
STORAGE, and DELETE operands set bits in the STACK parameter block.
These bit settings indicate to the STACK service routine which options you wish
performed.

The STACK Macro Instruction - Execute Form

Use the execute form of the STACK macro instruction to perform the following
three functions:

1. To set up the input output parameter list (IOPL).

2. To initialize those fields of the STACK parameter block not initialized by the
list form of the macro instruction, or to modify those fields already initialized.

3. To pass control to the STACK service routine which modifies the input stack.
Figure 12-4 shows the execute form of the STACK macro instruction; each of the

operands is explained following the figure. Appendix A describes the notation
used to define macro instructions.

12-8 TSO/E Guide to Writing a TMP or a CP

[symbol]

STACK

[PARM=parm addr.][,UPT=upt addr.]
[,ECT=ect addr.][,ECB=ecb addr.]

BARRIER=*
TOP
DELETE= |PROC
ALL
BARRIER

PROCN,PROMPT
STORAGE=(element addr.,{ PROCL,PROMPT{)
SOURCE
TERM = &
INDD=addl,PROMPT,LIST
DATASET= |MEMBER=addr 3
OUTDD=addr2,CNTL, SEQ
| CLOSE |
[,ENTRY= ,MF=(E, [1list addr.|)
(1)

entry addr.
(15)

Figure 12-4. The Execute Form of the STACK Macro Instruction

Note: TERM =* will be allowed by STACK to provide compatibility with
existing modules when they are recompiled.

PARM = parm addr

Specifies the address of the 2-word STACK parameter block (STPB). It
may be the address of the list form of the STACK macro instruction. The
address is any address valid in an RX instruction, or the number of one of
the general registers 2-12 enclosed in parentheses. This address will be
placed in the input/output parameter list (IOPL). The STPB should be
created using the list form of STACK. The STPB must be zeroed if no list
options are specified. The STPB and IOPL (STPL) may be modified by
STACK, so they should be in reentrant storage if used in a reentrant
program.

UPT =upt addr

Specifies the address of the user profile table (UPT). This address may be
obtained from the command processor parameter list pointed to by register
one when the command processor is attached by the terminal monitor
program. The address may be any address valid in an RX instruction or the
number of one of the general registers 2-12 enclosed in parentheses. This
address will be placed in the input/output parameter list (IOPL).

ECT =ect addr

Specifies the address of the environment control table (ECT). This address
may be obtained from the CPPL pointed to by register 1 when the
command processor is attached by the terminal monitor program. The
address may be any address valid in an RX instruction or the number of
one of the general registers 2-12 enclosed in parentheses. This address will
be placed in the IOPL.

ECB=ecb addr

Specifies the address of an event control block (ECB). This address will be
placed into the IOPL. You must provide a one-word event control block
and pass its address to the STACK service routine by placing it into the

Chapter 12. Using the TSO I/O Service Routines for Terminal /O 12-9

12-10

IOPL. The address may be any address valid in an RX instruction or the
number of one of the general registers 2-12 enclosed in parentheses. ’

TERM =*
Adds a terminal element to the input stack.

BARRIER =*
Creates a barrier element (to divide the input stack into substacks) on top of
the input stack. (Only a STACK DELETE =BARRIER request can delete
a barrier element.)

DELETE
Deletes one or more elements from the input stack. TOP, PROC, ALL, or
BARRIER specifies which element(s).

TOP
Deletes the topmost element (the element most recently added to the input
stack). If the top stack element is a barrier element, STACK
DELETE=TOP is a no-operation instruction.

PROC
Deletes the current procedure element from the input stack. If the top
element is not a procedure element, deletes all elements down to and
including the first procedure element.

ALL
Deletes all elements, except the bottom or first element, from the input
stack. If one or more barrier elements exist on the input stack, deletes all J
elements down to, but not including, the first barrier element.

BARRIER
Deletes all elements on the input stack down to, and including, the first
barrier element.

STORAGE =element address
Adds an in-storage element to the input stack. The element address is the
address of the list source descriptor (LSD). The LSD is a control block,
pointed to by the stack parameter block, which describes the in-storage list.
The in-storage list must be further defined as a SOURCE, PROCN, or
PROCL list. SOURCE is the default.

SOURCE
The element to be added to the input stack is an in-storage source data set.

PROCN
The element to be added to the input stack is a command procedure and the
NOLIST option has been specified.

PROCL
The element to be added to the input stack is a command procedure and the
LIST option has been specified. Each line read from the command
procedure is written to the terminal. J

TSO/E Guide to Writing a TMP or a CP

PROMPT
Specifies prompting by commands within a command procedure. PROMPT
is used with the keywords PROCN and PROCL, which specify that the
element to be added to the input stack is a command procedure.

DATASET
Supports the use of ACCOUNT in the background by expanding the
facilities of dataset I/O for TSO commands to include reading from a
SYSIN dataset and writing to a SYSOUT dataset. To use the dataset
function, the input and output files passed to the STACK service routine
must be preallocated, either by a previously issued ALLOCATE command,
a command processor going to dynamic allocation, a DD statement
specified in the logon procedure, or, in the background, a user-supplied DD
statement.

Specifies that STACK use the bottom element on the input stack for I/O
operations.

INDD = addrl
Specifies the input file name.

PROMPT
Allows prompting if prompting is also allowed on the bottom element of the
input stack.

LIST
Lists the input from the input stream.

MEMBER = addr3
Specifies the 8-character member name for the input file.

OUTDD = addr2
Specifies the output file name.

CNTL
The output line has its own control character.

SEQ
Tells dataset I/O not to remove sequence numbers.

CLOSE
Closes the data control blocks (DCBs) of the bottom element of the input
stack.

ENTRY =entry address or (15)
Specifies the entry point of the STACK service routine. The address may be
any address valid in an RX instruction or (15) if the entry point address has
been loaded into general register 15. If ENTRY is omitted, a LINK macro
instruction will be generated to invoke the STACK service routine.

MF=E
Indicates that this is the execute form of the macro instruction.

Chapter 12. Using the TSO I/O Service Routines for Terminal /O 12-11

listaddr

)
The address of the four-word input/output parameter list IOPL). This may ‘)
be a completed IOPL that you have built, or it may be 4 words of declared
storage that will be filled from the PARM, UPT, ECT, and ECB operands
of this execute form of the STACK macro instruction. The address is any
address valid in an RX instruction or (1) if the parameter list address has
been loaded into general register 1.

Note: In the execute form of the STACK macro instruction only the following
operands are required:

STACK MF=(E,|list address|)
(1)

The PARM, UPT, ECT, and ECB operands are not required if you have built an
IOPL in your own code.

The other operands and their sublists are optional because they may be supplied
by the list form of the macro instruction.

The ENTRY operand need not be coded in the macro instruction. If it is not, a
LINK macro instruction will be generated to invoke the I/O service routine.

The operands you specify in the execute form of the STACK macro instruction

are used to set up control information used by the STACK service routine. You J
can use the PARM, UPT, ECT, and ECB operands of the STACK macro

instruction to complete, build, or alter an IOPL. The DATASET, STORAGE,

and DELETE operands set bits in the STACK parameter block. These bit

settings indicate to the STACK service routine which options you want.

Sources of Input
The input sources provided are defined as follows:
1. Terminal
If the terminal is specified in the STACK macro instruction as the input
source, all input and output requests through GETLINE, PUTLINE, and
PUTGET are read from the terminal and written to the terminal. The user at
the terminal controls TSO by entering commands; the system processes these

commands as they are entered and returns to the user for another command.

When an online job is running, the first element in the input stack is a
terminal element.

2. In-Storage List
An in-storage list can be either a list of commands or a source data set. It
may contain variable-length records (with a length header) or fixed-length

records (no header and all records the same length). In either case, no one)
record on an in-storage list may exceed 256 characters.

12-12 TSO/E Guide to Writing a TMP or a CP

When a job is running in the background, the first element in the input stack
is a data set element.

An in-storage list and its processing are specified by setting the STORAGE
operand type to PROCN, PROCL, or SOURCE.

e PROCN or PROCL - Indicates that the in-storage list is a command
procedure, a list of commands to be executed in the order specified. If you
specify PROCN, requests through GETLINE are read from the in-storage
list, but PROMPT requests from the executing command processor are
suppressed. MODE messages, those messages normally sent to the terminal
requesting entry of a command or a sub-command, are not sent but a
command is obtained from the in-storage list. If the PROCL option is
specified, the command is displayed at the terminal as it is read from the list.

e SOURCE - Indicates that the in-storage list is a source data set. Requests
through GETLINE are read from the in-storage list, but PROMPT requests
from the executing command processor are honored if prompting is allowed,
and a line is requested from the terminal. MODE messages are handled the
same way as with PROCN or PROCL. No LIST facility is provided with
SOURCE records.

Building the STACK Parameter Block

When the list form of the STACK macro instruction expands, it builds a five
word STACK parameter block (STPB). The list form of the macro instruction
initializes this STPB according to the operands you have coded. This initialized
block, which you may later modify with the execute form of the macro
instruction, indicates to the I/O service routine the functions you want performed.

By using the list form of the macro instruction to initialize the block, and the
execute form to modify it, you can use the same STPB to perform different
STACK functions. Keep in mind, however, that if you specify an operand in the
execute form of the macro instruction, and that operand has a sublist as a value,
the default values of the sublist will be coded into the STPB for any of the sublist
values not coded. If you do not want the default values, you must code each of
the values you require, each time you change any one of them.

For example, if you coded the list form of the STACK macro instruction as
follows:

STACK STORAGE=(element address,PROCN) , MF=L

and then overrode it with the execute form of the macro instruction as follows:

STACK STORAGE=(new element address),
MF=(E,list address)

The element code in the STACK parameter block would default to SOURCE, the
default value. If the new in-storage list was another PROCN list, you would have
to respecify PROCN in the execute form of the macro instruction.

Chapter 12. Using the TSO I/O Service Routines for Terminal /O 12-13

The STACK parameter block is defined by the IKJSTPB DSECT. Figure 12-5
describes the contents of the STPB.

Number
of Bytes Field Contents or Meaning

1 none Operation code: A flag byte which describes the operation to be
performed.

l.. .. One element is to be added to the top of the input stack.

d.o. The top element is to be deleted from the input stack.

W The current procedure is to be deleted from the input stack. If the top
element is not a PROC element, all elements down to and including the
first PROC element encountered are deleted, except the bottom
element.

[All elements except the bottom one (the first element) dre to be deleted.

e XXXX Reserved bits.

1 none Element code: A flag byte describing the element to be added to the
input stack.

l... .. A terminal element.

d. .. An in-storage element.

[0 PR Input DD name present.

[0 Output DD name present.

1. The in-storage element is an EXEC command element.
1. Prompting is allowed from the PROC element.

..0. The in-storage element is a source element.

L The in-storage element is a procedure element.

ROV | The list option (PROCL) has been specified.

1 Reserved.

1 none DATASET operation.

XXXX X... Reserved.

1. Do not remove sequence numbers.
.1 User-specified CNTL.

ROV | Close option.

4 STPBALSD The address of the list source descriptor (LSD). An LSD describes an
in-storage list. If the input source is the terminal, or if DELETE has
been specified, this field will contain zeros.

4 STPBINDD Pointer to input DD name.

4 STPBODDN | Pointer to output DD name.

4 STPBMBRN Pointer to membername.

Figure 12-5. The STACK Parameter Block

If the DATASET or DELETE operands have been coded in the STACK macro
instruction, the second word of the stack parameter block will contain zeroes and
the control block structure will end with the STPB. Figure 12-6 describes this
condition.

12-14 TSO/E Guide to Writing a TMP or a CP

J

Terminal Command STACK
Monitor Processor Service
Program ATTACH LINK Routine
' |
|
|
|
| |
| l
I |
Reg. 1 | Reg. 1 |
§CPPL IOPL
-~

STPB
| |
00000000
0
0

Figure 12-6. STACK Control Blocks: No In-Storage List

To add an in-storage list element to the input stack, you must describe the
in-storage list and pass a pointer to it to the STACK I/O service routine. You do
this by building a list source descriptor (LSD). The LSD must reside below 16
Mb in virtual storage.

Figure 12-7 is an example of the code required to add the terminal to the input
stack as the current input source. In this example, the execute form of the
STACK macro instruction is used to build the input/output parameter list for
you. The list form of the STACK macro instruction expands into a STACK
parameter block, and its address is passed to the execute form of the macro
instruction as the PARM operand address.

Chapter 12. Using the TSO I/O Service Routines for Terminal I/O 12-15

% | [EINTIRIY] [FIRIOM [TIMP] =] [RIEl6]) IsITIEIR] [0INIE] TcloINITIAIIINISI TA] [Plo)INITIEIRT TTl0
¥ | |TIHIE| CIPIPIL
X HIo|UIS|EIKIEIEIP]I IN[G].
X AIDIDIRIE|SIS|AIB]/ [L[I[TTY].
% SIAVIE| [AIRIE\A| |CIHIA|!IN|!IN|G
X
LR 20,1 SIAIVIE| |TIHIE| |AIDIDIRIEISIS| [0IF| [TIHIE! lclpiPIL].
L 3, 14(12]) PILIAICIE| |TIHIE| [UIPT| |AIDIDIRIEIS|S| |/ INITIO |A
RIEIG]/[S[TIEIR
L 4,(112((]2]) PILIAICIE| [TIHIE| IEICIT| |AIDIDIRIEISIS| |1 IN[TIO! 1A
% RIE|G|/|S|TIEIR
LA s, [E[c]B PILIAICIE| [TIHIE| [EICIB] |A|DIDIRIE|SIS| [/ [N[TIO] [A
X RIEG|/ |S|TIEIR
¥ | [1]S|slujg] |THIE[[E|Xe|clulT|E] |FlolRM| [0F] [TIHIE |SITIA[CIk] IMAICIRIOl [/N[SITIR[UICIT]/OIN]s
X | |SIPIEIC|/IFlY| [TIHIE| [TIEIRML!INIAIL] |AIS| ITIHIE| [IINIPUIT! ISIOIUIRICIEI;! [BlUlIILID] |TIHIE
¥ | TIoPIL| MIITIH| |TIHIE| |SITIAICIK| IMIAICIRIOl |#{N(SITIRIUICIT!! OIN].
be X
SITIAICIK| |PIAIRIMI=|S|TIAKIBILIOIK], [U[PITI=1(13D, [EICITI=IC14D L IEICIBI=I(I5])], [TIERIMI= ¥/,
MF=1(1€, IIOPIL])
¥
X PRIOICIE[S|S|/ING
X X
SITIORAIGIE| [DIEICILIARIAT] OINIS
W ¥
TI0/PL DIC 4Fl’ 9" SIPIAICIE| [FIOR! |THIE! [IINIPIUIT] [olUITIPIUIT]
X PIARAMIEITIEIR| |L|/|SIT|.
EICIR DIC Fl'ig" SIPIAICIE] [FIOR| ITIHIE] [EIVIEINT] ICIONITIRIOIL
¥ BIL|OICIK].
SITIAKBILIOK] |SITIAICIK| IMF|=|L TIHIE| |L[/|S]T| [FIOR M| [OlF| ITIHIE] ISITIAICIK
X AICIRI0| |/ INISITIRIVICITI/ONI -] 1)(T] Wl/{LIL
¥ EIXIPIAINID] [/N[T|0] |A] ISITIAICIK| |PIAIRAMIEITIEIR
X BIL10ICIK]-
ENID

Figure 12-7. Coding Example - STACK Specifying the Terminal as the Input Source

This sequence of code does not make use of the IKJCPPL DSECT to access the
command processor parameter list, nor does it provide reenterable code.

Building the List Source Descriptor (LSD)

A list source descriptor (LSD) is a four-word control block that describes the
in-storage list pointed to by the new element you are adding to the input stack.
Note that the LSD must reside below 16 Mb in virtual storage. If you are
designating the terminal as the input source, no LSD is necessary and the second
word of the STPB will be zero. If you specify STORAGE as the input source in
the STACK macro instruction, your code must build an LSD, and place a pointer
to it as a sublist of the STORAGE operand. The LSD must begin on a
doubleword boundary, and must be created in the shared subpool designated by
the terminal monitor program; the IBM-supplied TMP shares subpool 78 with the
command processors. The LSD is defined by the IKJLSD DSECT. Figure 12-8
describes the contents of the LSD.

12-16 TSO/E Guide to Writing a TMP or a CP

Number

of Bytes Field Contents or Meaning

4 LSDADATA | The address of the in-storage list.

2 LSDRCLEN | The record length if the in-storage list contains fixed-length records.
Zero if the record lengths are variable.

2 LSDTOTLN | The total length of the in-storage list; the sum of the lengths of all
records in the list.

4 LSDANEXT | Pointer to the next record to be processed. Initialize this field to the
address of the first record in the list. The field is updated by the
GETLINE and PUTGET service routines.

4 LSDRSVRD Reserved.

Figure 12-8. The List Source Descriptor

If you have provided an LSD, and specified the STORAGE operand in the
STACK macro instruction, the second word of the stack parameter block will
contain the address of the LSD, and the STACK control block structure will look
like Figure 12-9.

Chapter 12. Using the TSO I/O Service Routines for Terminal I/O0 12-17

Terminal
Monitor
Program

ATTACH

o

Command
Processor

Reg. 1 -

CPPL

Reg.

LINK

STACK
Service
Routine

IOPL

STPB

[o

L<S &DATA
RciewN
ANEXT

ExecC

LSD

\TcTLN

In=Storage List

e

Figure 12-9. STACK Control Blocks: In-Storage List Specified

12-18 TSO/E Guide to Writing a TMP or a CP

Figure 12-10 is an example of the code required to use the STACK macro
instruction to place a pointer to an in-storage list on the input stack.

In the example, the GETMAIN macro instruction is used to obtain storage in
subpool 78 for the list source descriptor and the in-storage list itself. The execute
form of the STACK macro instruction initializes the input/output parameter list
required by the STACK service routine. The list form of the STACK macro
instruction expands into a STACK parameter block, and its address is passed to
the STACK service routine via the PARM operand in the execute form of the
STACK macro instruction.

W/ ls] Icloble] Wislswbels] lemirely] lFlelop ol - lelelel/ls|7ele] o ¢ oM/ ms
7 ublolelelss| ble| [7kle| kodpdaol lelelolclelsisble] leluldamiersle Lkl islr.
b *
" Wolls leWielelA 7 v
% Upoeie|sisiaigls L/ 7]y
» sklvlel Wleenl cial/Wi/ivie
e 9
LR 2, |7 skulvie iviel Wboeelsls| o rw
M cowm Ao |PrlOKIEsS'SolR PUAWET I/~
% LISl
WIS/ w6 lciPiPLl, |2 SlE|7] WP ALIORESISABIILIZITY Flole] |7
* ClPAL| -
L 3|, iclelple \vPIr Llalcls| [rwlel Wiblolelelsis! oF| riviel kel
/wirlol W] lelee|/isiriele|.
, lclPlel e |T P lalcle| el Wplorielsis| loF| [riwiE] klclr
* /Wirid W lelelsl/Isinele.
m ¥
pel | |2Isisiel K| l6l& 'W Flow iswBlPool 78] | | l7weE] kizisi Isbwviecls
M siclel/lPrioel UWD! rE| v IsrpRlles i/ [sin |7|71siEL Usir BIE| LOEWITED
el | /W islviBlPololL| |78l
™ *
GIEITWIAl V] LI, LA = PERNES T, AI*UWSIWE] ,ISIP|=|78 |, [L0IC|=8l£)L
* . L2
o3
¥ | loBirUul/ M Irwniel APPLRIEISIS| /W IsvBplolol| |78 Flok [rwie ki oWVIRICIE]
DEISICRY IPTIOR AWD| MoWVIEl (TWIE| KISD| [7W|iTio| TWA T HeEA
L]
1A 2 AN o
v|C (16l,15)1,|AMLIS|D
lod %
| | OBITAY M TWE WDORESIS| Vv IswBlPoloL| |718| |(Folkl Irw\el |/v|-lsiriolllels] 1LY IS|T
*® | [AWMD| MolVE| [THIE| IV wi-IS|ITORKIGIE iLivisln [/wirll Tl AR
% %
/A & , AW S|IER 1
s|7 6|, [(ls) srolkle| [rwie Wiolbeslsls rwie |/W-
His &, Bl(ls]) sirlolel Ble 1c|/Ist |77 o Fl/Els

Figure 12-10 (Part 1 of 3). Coding Example - STACK Specifying an In-Storage List as the Input Source

Chapter 12. Using the TSO I/O Service Routines for Terminal /O 12-19

[] | W 1A /Is[7| IspVRIclE] bisisicle/ipl7io
yvic (7 /Wil sir
"
bl | I/|sisiwiEl WV ElXIEICUTrE| FoRM |oF FWE| SIFA K C\Wo| visiTewve7rlspy o
P | P Al Povvir 70| |THE |1vI-ISTOIPAIGE! KI7isim oW [TWEl [#wPiir] ISrAIcK .
*
STUIC K| 1PARM = |SITICIKILISIT|, WP =I(13) |; IEic | = (%) |, |EICBl= [ElCIBI4 DS,
STORAIGE = |(|(15) |, PRIoEW) |, MF|=|(£, ZIOALAIDS
L3
pe| | I7lEls|T| [TME RETTVRN (CIOPIE| FIOR ISUEICEISISKFIUL| [CloniPLEl7l o [01F] ITW]
x| | Islralckd sieevizicle leoviry vie
B¢
|7 /15,7151
Bz ERR T
X
P Aeocielslsl vie
L3
L3 - N
Rl TM
L b
x s
™
x| | |s|rolellele bEElciLhen A oMs
™
AW SID D's 4 rwWe riorull] kel olF rwiel L]/[sl7
D ‘@ ! soluecle bES|clel P, Wwmesa,] |/s
D X' dd6lH sl xIrislemM Birirels| [(bleic]/ale])
DS l
;/w:
¥
rvle |/ [s|7 c X 28! |4 4
c cl' ol br! 1dPa| olela] lolAd
plc X' Wdl7(8idddp|’
Yala C|’|7ElS 7Kl 0P s lolA7id |’
Dic AR ’
pC | lAfolA/lLiE | wiomsie 71D olARlomP !/

Figure 12-10 (Part 2 of 3). Coding Example - STACK Specifying an In-Storage List as the Input Source

12-20 TSO/E Guide to Writing a TMP or a CP

Iple X' g1 ’
D\c ‘lelxElc] WriekRbi| i]/lsiA’
= M
x| [7WE Irol7Uuld LIEVEITH| PF| rHE| (/W -IsToRAGE - /|si7|,| ewiel/isi7l,| Ivis| lomé& -
x| | Wowoeleld BrEls| (oElclrirall D).
L Lo
be| | [SIET| [UP THE| LV ISiTI OF| isire RlAlels] Awovayis| RERU REVL.| 7] A DD S
* | oA Iriwlelsl klrsi Vis| iclopiewp RKis 5 =] lolelEielavo] 1/ GETMAI/ V
| WhAcKeo| Y WisTRVET, IOM-
*
ERElslr | e 11706 1 xirelemMm BYirels Fole |7 cisid.
piC X ’i8/@’ WMo olel ksl 7wl ickiriole
pic AILI3|((7104) OWE - VWP REID BYES FolR IrweEl ¥ W=
be sirioldalslel L)/ Isirl. | slvviclel [rwiE lelel -
¥ mAa/W Maicko |1Wisirelcl7irow
% llewds eS| irivlalr irie \eElpvEsT| B
e /W/islvBLiEl B E/6HT] £ e/ ES!T]
*| ONVE - HUNMOREID - Fovie BIYITIES .
% %
X | Isielr] WISl PE| [To) LlLimoRDIS| (7ol eEICiEl V WE KIDDIREISISIEIS| RETIVRME D]
¥ | Bly] |7 G UM MAICRO /WSTRYIEr |, IOM-
% »*
AWS WiER Dc 2F '\’
¥ 9%
s|re'kie sz 7UAICK] MA=|L] W S| K787 Flo oF |7 STUAICK
M hcRag [/MsTRLICTI/IPM Peb Vi DES
* PACE e WE| IsSFACK| 1PARAME TER
M 81 lolc
* »*
c\8AIDS] 4 LN EVENT] CovrieoL B oCcK!.
rolPiLupls| | bic ‘g’ VPV loUTPIT IPARAMES v Isir
TklViclAlPl si&cr] Fleor |[rmeEl [clowmiamo
* WROCEIsisioR PPUeAMETER K|/isir.
* X
N0

Figure 12-10 (Part 3 of 3). Coding Example - STACK Specifying an In-Storage List as the Input Source

Return Codes from STACK

When it returns to the program which invoked it, the STACK service routine will
provide one of the following return codes in general register 15:

Code Meaning

0 STACK has completed successfully.

4 One or more of the parameters passed to STACK were invalid.
8 INDD was specified and the file could not be opened.

12 OUTDD was specified and the file could not be opened.
16 MEMBER was specified but was not in the partitioned data set specified by INDD.
20 GETMAIN failure (only possible if MEMBER is specified).

Chapter 12. Using the TSO I/O Service Routines for Terminal /O 12-21

GETLINE - Getting a Line of Input

You use the GETLINE macro instruction to obtain all input lines other than J
commands or subcommands, and prompt message responses. Commands,

subcommands, and prompt message responses should be obtained with the

PUTGET macro instruction.

When a GETLINE macro instruction is executed, a line is obtained from the
current source of input (the terminal or an in-storage list) or optionally, from the
terminal, regardless of the current source of input. The processing of the input
line varies according to several factors. Included in these factors are the source of
input, and the options you specify for logical or physical processing of the input
line. The GETLINE service routine determines the type of processing to be
performed from the operands coded in the GETLINE macro instruction, and
returns a line of input.

This topic describes:

The list and execute forms of the GETLINE macro instruction
The sources of input

The GETLINE parameter block

The input line format

Examples of GETLINE

Return codes from GETLINE

The GETLINE Macro Instruction - List Form

12-22

The list form of the GETLINE macro instruction builds and initializes a J
GETLINE parameter block (GTPB), according to the operands you specify in the

GETLINE macro. The GETLINE parameter block indicates to the GETLINE

service routine which functions you want performed. Figure 12-11 shows the list

form of the GETLINE macro instruction; each of the operands is explained

following the figure. Appendix A describes the notation used to define macro

instructions.
[symbol] GETLINE INPUT=(] ISTACK |],LOGICAL)
TERM ,PHYSICAL
, TERMGET=(| EDIT yWAIT) | ,MF=L
ASIS , NOWAIT
,SUBSTACK=(|NO |)
YES

Figure 12-11. The List Form of the GETLINE Macro Instruction

INPUT =
Indicates that an input line is to be obtained. That input line is further
described by the INPUT sublist operands ISTACK, TERM, LOGICAL,
and PHYSICAL. ISTACK and LOGICAL are the default values.

ISTACK

Obtain an input line from the currently active input source indicated by the
input stack.

TSO/E Guide to Writing a TMP or a CP

TERM
Obtain an input line from the terminal. If TERM is coded in the macro
instruction, the input stack is ignored and regardless of the currently active
input source, a line is returned from the terminal.

LOGICAL
The input line to be obtained is a logical line; the GETLINE service routine
is to perform logical line pro