VSE
System Control

Study Guide

1 S p
D
A A
E D T
Y Y |
D E T (
N M D N M D
m 0 G 0 P
U P D E U P E P D
| R A T
T Y | N T Y | N T Y | DE
T oG P T oG M E T oG M P T D
U 0 E N TU 0 E ST R D N ub i
Y oG E D Y oG E D D RO D N ST 0
0 M D NT DY R AM D NT D R AM D NT P O
R M ND EN D P R M ND ENT D P R M IND ENT D RO M
A IN E N U P A IN E N TU [R IN E N U R I NI
M EP NDE ST GR EP ND RA U El
D ND T STU PR D ND TU PR R D ND TU Y 0 ND
D "EN E T R G D EN E T R G D EN TU R R M END
PE D ST P O | PE D T ST P O N PE D T STU A ND N
N NT S U Y ROGR NT S UDY ROGR NT S U Y ROG EN T
E TUD PROGRAM E N uUbDY PRO RA E N ubD PRO RA ND PE S
STU PROG AM N EPE DE STU PR R N E END T ST PR G AM N EPE T T D
S Y PR GR INDEPEN EN S Y PR GR I DEPE ENT ST DY PR GR I NDEP DENT S U 1
D PR GRAM IN P ND N S D PR GRAM | P ND NT S D PRO R M | E EN T STU PRi
Y PROGR NDEP NDEN S uUDY P OGRAM NDEP NDENT TUDY PR GRAM IND PEN ENT TUDY 0 1

PROGRAM INDEPEN ENT S UDY PROG AM IND ENDE T S UDY ROGRAM | DEPENDEN STUDY PROGRAI
OGRAM INDEPENDENT STU Y PROGRAM IN EPE DENT ST D P OGRAM INDE ENDENT STUDY PROGRAM

RAM INDEPENDENT STUDY ROGRAM INDEPENDE T STUDY PR GRAM INDEPENDENT STUuDY PROGRAM IN
M INDEPENDENT STUDY PROGRAM INDEPENDENT STUDY PROGRAM INDEPENDENT STUDY PROGRAM INDE
INDEPENDENT STUDY PROGRAM INDEPENDENT STUDY PROGRAM INDEPENDENT STuUDY PROGRAM INDEPEI
DE~MNDENT STUDY PROGRAM INDEPENDENT STUDY PROGRAM INDEPENDENT STUDY PROGRAM INDEPENDI
P'AP'NT STUDY PROGRAM INDEPENDENT STUDY PROGRAM INDEPENDENT STUDY PROGRAM INDEPENDEN

NdW t STUDY PROGRAM INDEPENDENT STUDY PROGRAM INDEPENDENT STUDY PROGRAM INDEPENDENT

ENT STUDY PROGRAM INDEPENDENT STUDY PROGRAM INDEPENDENT STUDY PROGRAM INDEPENDENT STI1
T STUDY PROGRAM INDEPENDENT STUDY PROGRAM INDEPENDENT STUDY PROGRAM INDEPENDENT STUD
STUDY PROGRAM INDEPENDENT STUDY PROGRAM INDEPENDENT STUDY PROGRAM INDEPENDENT STUDY

UDY PROGRAM INDEPENDENT STUDY PROGRAM INDEPENDENT STUDY PROGRAM INDEPENDENT STUDY PR
Y PROGRAM INDEPENDENT STUDY PROGRAM INDEPENDENT STUDY PROGRAM INDEPENDENT STUDY PROG
PROGRAM INDEPENDENT STUDY PROGRAM INDEPENDENT STUDY PROGRAM INDEPENDENT STUDY PROGRA

VSE |
System Control
10072

Study Guide

Independent
Study
Program

Major Revision (August 1980)
This publication is a major revision and obsoletes all previous editions.

All rights reserved. No portion of this text may be reproduced without express
permission of the author.

References in this publication to IBM products, programs, or services do not imply
that IBM intends to make these available outside the United States.

Requests for copies of IBM publications should be made to your IBM representative
or to the IBM branch office serving your locality. Address comments concerning the
contents of this publication to IBM Corporation, Publications Services, Education
Center, South Road, Poughkeepsie, New York 12602

IBM may use or distribute any of the information you supply in any way it believes
appropriate without incurring any obligation whatever. You may, of course,
continue to use the information you supply.

© Copyright International Business Machines Corporation 1979,1980

INDEPENDENT STUDY PROGRAM
UPDATE SERVICE

Welcome to the IBM Independent Study Program.

To help you maintain this education material at the most current level,
we have available an Update Service designed to provide you with
Education Newsletters (ENLs). These newsletters contain updates and
corrections that are brought to our attention through the Reader’s
Comment Form and various other sources.

If you wish to receive these ENLs, you may do so by subscribing to our
System Library Subscription Service (SLSS). This can be accomplished
by contacting your IBM Marketing Representative.

On the next several pages you will find:

A Course Description -

Read it to make certain this is the course you want or need.
A list of Recommended Prerequisites -

Examine it to be sure you are prepared to take this course.
A list of Materials and Equipment -

Compare the list to the materials you have received or should have on hand. Be sure you
have everything you need before you start the course.

A General Outline -

Read the outline to gain an overview of the course and to see what the relationship of the
parts are to each other.

A description on How to Use this Study Program -

This section describes the features of the course. It will help you to find your way
through the course and describes how you can use the materials to maximize their
learning effectiveness.

Course Introduction and Orientation 1

SCOHRTION

This course is for persons who want to be able to compile and test programs for batch mode
implementation under VSE. The course is primarily intended for application programmers. It
will be helpful to others such as system programmers, programming managers, system analysts,
and operators who need to know the features and functions of the VSE System that relate to
the implementation of programs in the VSE environment.

This course teaches how to control a VSE system when compiling and testing programs for
batch mode implementation, including the coding of the following control statements:

e Job control language statements
o Linkage editor control statements

« Librarian program control statements

Upon completing this course, you should be able to:

1. Describe the component programs of the VSE System and the interaction of system
control and user programs.

2. Describe the characteristics of multiprogramming and virtual storage organization.
3. Code control statements to:

a. execute a production program

b. compile, link-edit, and execute a program

c. catalog phases permanently into a Core Image Library

d. create and check disk and tape labels

e. catalog, access, and alter items in the various VSE libraries, including both system
and private libraries

f. execute a cataloged procedure and use the overwrite function to temporarily
modify procedure statements for a particular execution
Guration

Thirty-six to forty study hours over a period of ten days should be allowed for taking the
course, assuming a student obtains three or four machine runs per day for doing the assigned
computer exercises.

Prereqguisites

Persons taking this course are assumed to have:
1. Successfully completed the Programming Fundamentals ISP or had equivalent training.
2. Studied the System/370 Fundamentals student text (SR20-4607) or equivalent.
3. Completed the Introduction to 4300 and DOS/VSE Facilities self study (SS057).

2 Course Introduction and Orientation

4. Received training or experience in using a programming language. This requirement is
not mandatory, but individuals completely unfamiliar with programming concepts will
have more than average difficulty with the course material.

No previous knowledge of VSE or DOS/VS is assumed or required.

Materiais and Equipment Required

The following materials and equipment are required for successful completion of this course.
Before you begin to study, take the time to check and make certain that you have everything
you will need.

DP Eguipment
The following system facilities are required if the computer exercises are to be run:
¢ Minimum VSE system
« Four cylinders of disk storage space or 250 FBA blocks per student
« One tape drive (if computer exercise five is run)

¢ One card reader and card punch (if card decks are used)

Learning Materizis

Study Guide (SR20-7300) - Appendix B contains a listing of the Computer Exercise Card
Deck (SR20-7302)

Computer Exercise Card Deck (SR20-7302) or equivalent
Computer Exercise Solutions (SR20-7301)

Audic and Video
None.
Reference Material

In order to complete the course, students will need access to the following VSE reference
material:

Introduction to the VSE System (GC33-6108)

VSE/Advanced Functions System Management Guide (SC33-6094)
VSE/Advanced Functions System Control Statements (SC33-6095)
VSE/Advanced Functions Messages (SC33-6098)

Each student must have convenient access to the reference manuals, as they are an important
part of the course material.

Course Introduction and Orientation 3

e e
Genaral Outh

Jrit 11 An Introduction to the VSE System

Assignment 1: System Components 1-3
Assignment 2: Multiprogramming Concepts 1-20
Assignment 3: Virtual Storage Concepts. 1-28

Assignment 1: The Job Control Language 2-2

Assignment 2: Introducing the ASSGN 2-14
U i or cution

Assignment 1: Using the Language Translators 3-2

Assignment 2: The ASSGN Statement 3-11

Assignment 3: Interpreting System Messages 3-25

Assignment 1: Basic Functions 4-3
Assignment 2: Building Program Phases-1 4-13
Assignment 3: Building Program Phases - II 4-24

Assignment 1: Concepts of Data Management 5-2

Assignment 2: DASD File Labels 5-16

¢ the Lihraries

Assignment 1: The Librarian Programs 7-3

Assignment 2: The Procedure Library 7-29

4 Course Introduction and Orientation

. Administration

The materials and equipment you will use to learn the subjects covered in this course have
been designed for self study. Although an advisor is not required to administer the course, it
would be helpful if you had someone you could refer to for technical advice should the
occasion arise. Someone should be available to help you interface with your installation’s
operations department when running the computer exercises.

The Independent Study Program environment allows you to create your own study plan, but it
is important that you bring the same level of attention to the material presented here as you
would to a classroom lecture. Try not to let your attention become distracted during your
studies, and do the readings and exercises when they are assigned, exactly as you would in a
regular classroom.

You or your manager may want to set up a study schedule with progress checkpoints to help
you plan your work-study time and monitor your progress. The purpose of the checkpoints is
to provide you with a daily or weekly objective and to afford you the opportunity to confer
with a more experienced person on an area in which you may have questions.

A Student Progress Form has been provided to make it convenient for you to do this. It is
found in the back of this book. You may also remove the form and use it as a place marker.

‘ The author has organized the materials in a logical sequence. Taking things in the order they
are presented will help to make your study of the course easier.

FExergises

At points throughout the course you will be asked to take a quiz, solve a problem, or run a
computer exercise. These exercises have been included to test your understanding, give you
practice, and help you to remember the material. Follow the instructions in each case, and do
not skip an exercise or look ahead to its solution until you have applied your best effort toward
developing an answer. Except where otherwise specified, quizzes and tests are to be done
without the aid of reference manuals.

If you desire to leave this text in a reusable condition, mark your answers to quiz questions on
separate scratch paper instead of entering them in this book.

Solutions will be found on the pages following the exercises. In the case of computer exercises,
solutions are located in the Computer Exercise Solutions book (SR20-7301).

Try not to allow large time gaps in your study of the material presented here. If this happens
you will tend to lose the thread of the presentations and your learning curve will suffer. On the
other hand, do not try to take it in all at once. Short breaks at the logically situated points
provided (between Assignments within a Unit, and between Units) will give you the rest you
need without destroying the continuity of your learning.

Course Introduction and Orientation 5

Unit
I) P
D
A A
E D T
Y P Y I
D U E T D
N M D N M D
0] G 0 P
‘I' U P D E U P E P D
I R A T
T Y I N T Y 1 N T Y I DE
T 0G P T oG M E T oG M P T D
J 0] E N TU 0 E ST R D N ub 0
Y 0G E D Y 0G E D D RO D N ST 0]
0 M D NT DY R AM D NT D R AM D NT P O
R M ND EN D P R M ND ENT D P R M IND ENT D RO M
A IN E N U P A IN E N TU P R IN . E N U R IND
% EP NDE ST GR EP ND RA U EPI
D ND T STU PR D ND TU PR R D ND TU Y 0 ND
D> EN E T R G D EN E T R G D EN TU R R M END
°E D ST P O I PE D T ST P O N PED T STU A ND N T
N NT S UY ROGR NT S UDY ROGR NT S U Y ROG EN T
= TUD PROGRAM E N ubY PRO RA E N UD PRO RA ND PE S
STU PROG AM N EPE DE STU PR R N E END T ST PR G AM N EPE T T D

5 Y PR GR INDEPEN EN S Y PR GR I DEPE ENT ST DY PR GR INDEP DENT S U Pl
D PR GRAM IN P ND N S D PR GRAM I P NDNTS D PRORMTI E EN T STU PRO
Y PROGR NDEP NDEN S UDY P OGRAM NDEP NDENT TUuDY PR GRAM IND PEN ENT TUDY 0 R,
"ROGRAM INDEPEN ENT S UDY PROG AM IND ENDE T S UDY ROGRAM I DEPENDEN STUDY PROGRAM
DJGRAM INDEPENDENT STU Y PROGRAM IN EPE DENT ST D P OGRAM INDE ENDENT STUDY PROGRAM Il
RAM INDEPENDENT STUDY ROGRAM INDEPENDE T STUDY PR GRAM INDEPENDENT STUDY PROGRAM IND
M INDEPENDENT STUDY PROGRAM INDEPENDENT STUDY PROGRAM INDEPENDENT STUDY PROGRAM INDEP
INDEPENDENT STUDY PROGRAM INDEPENDENT STUDY PROGRAM INDEPENDENT STUDY PROGRAM INDEPEN
DEPENDENT STUDY PROGRAM INDEPENDENT STUDY PROGRAM INDEPENDENT STUDY PROGRAM INDEPENDEI
PE.\lT STUDY PROGRAM INDEPENDENT STUDY PROGRAM INDEPENDENT STUDY PROGRAM INDEPENDENT
\ND STUDY PROGRAM INDEPENDENT STUDY PROGRAM INDEPENDENT STUDY PROGRAM INDEPENDENT S
=NT STUDY PROGRAM I[NDEPENDENT STUDY PROGRAM INDEPENDENT STUDY PROGRAM INDEPENDENT STUI
T STUDY PROGRAM INDEPENDENT STUDY PROGRAM INDEPENDENT STUDY PROGRAM INDEPENDENT STUDY
STUDY PROGRAM INDEPENDENT STUDY PROGRAM INDEPENDENT STUDY PROGRAM INDEPENDENT STUDY P
UDY PROGRAM INDEPENDENT STUDY PROGRAM INDEPENDENT STUDY PROGRAM INDEPENDENT STUDY PRO
Y PROGRAM INDEPENDENT STUDY PROGRAM INDEPENDENT STUDY PROGRAM INDEPENDENT STUDY PROGR
PROGRAM INDEPENDENT STUDY PROGRAM INDEPENDENT STUDY PROGRAM INDEPENDENT STUDY PROGRAM

VSE (Virtual Storage Extended) is a set of programs and libraries that makes efficient use of
the resources of a data processing system. VSE, through a process of system generation, can
be tailored for the specific hardware configuration of an installation and relieves the user of the
burden of developing the wide range of programming support required by today’s data
processing applications.

The VSE System consists of the DOS/VSE System Control Program, the VSE/Advanced
Functions Release 2 program product, and other related program products. It provides the
support needed for processing in a multi-programming environment. It includes the potential
for build-up of additional computing power and for adaptation to changing data processing
requirements. For example, by including the VSE/Interactive Computing and Control Facility
(VSE/ICCEF), you change the installation’s operating characteristics from a batch system to an
interactive system. (This will be explained in Unit 8).

The concept of virtual storage is an important difference between the VSE system and its early
predecessor, DOS (Disk Operating System). Users of DOS were restricted to a main memory
address space limited by the storage physically contained in the central processing unit. Users
of the VSE System, through a combination of processor hardware and programming support,
have an address space that extends beyond the machine storage physically present. With
virtual storage, the constraint imposed on program size by physical storage limitations is not
absolute. Programmers no longer need to write programs to fit entirely within a computer’s
machine storage. This increases programmer productivity, since effort previously expended to
make programs conform to size constraints can be diverted to other productive work such as
developing new applications.

As an application programmer, system programmer, Qr manager, your job will bring you into
contact with VSE in a wide variety of ways. The material presented here will give you what
you need to know to use VSE in its most common manner. If you require further education in
VSE, it is suggested that you consult the DOS/VSE pages in the current IBM Customer
Education Catalog and Schedule (G320-1244).

Upon completing this unit, you should be able to:

Assignment 1

« Describe the three control programs of VSE.

« Describe the sequence of events required to initialize VSE for execution of processing
programs.

» Describe a simple case of job-to-job transition.

Page 1 -1

Unit 1: An Introduction to the System

o Describe how the job control language is used to communicate program requirements to

VSE
« Name the VSE libraries and describe the purpose of each. .

« Define the three types of processing programs.

Assignment 2

« Define the term "multiprogramming'' and be able to justify its use in a data processing
system.

o Describe the functions of the shared virtual area.

Assignment 3

« Describe in a general way the means by which the VSE system controls storage utiliza-
tion. :

Materials Required

Study Guide (SR20-7300)

The following VSE reference material:

Introduction to the VSE System (GC33-6108)

VSE/Advanced Functions System Control Statements (SC33-6095)

Page 1 -2

Unit 1: An Introduction to the System

nonents

The capability of disk devices to access stored data directly makes them ideal for program
storage, so the programs and libraries that form the VSE System are kept on disk. Figure 1.1
shows that the disk volume containing the most important operating system programs and
libraries is called the system residence device, or SYSRES.

The three control programs of VSE are the initial program loader (IPL), the supervisor, and
the job control program. They reside in a portion of SYSRES known as the system Core Image
Library.

PROGRAMS AND LIBRARIES

SYSRES disk volume

® most important programs and libraries
® always mounted

Figure 1.1 - VSE is Disk Resident

Page 1 -3

Unit 1: An Introduction to the System

This program is used to start your VSE system. Figure 1.2 shows the elements involved.
FBA*

CKD**
DEVICES DEVICES
[
block O | cylinder 0 ,,l/

track 0 —]

]

CORE |MAGE LIBRARY

SYSRES

STORAGE
*FIXED BLOCK ARCHITECTURE
**COUNT KEY DATA

Figure 1.2 - The IPL Function

Sequence:

Bl A small program, the "bootstrap," is located at a fixed address on the SYSRES pack.
The bootstrap is brought into processor storage and executed when the operator per-
forms the console load operation.

B The bootstrap loads the IPL program. IPL performs certain required system initialization
functions that are usually of no concern to the application programmer. These functions
are described in the section '"Initial Program Load" in the VSE/Advanced Functions
System Control Statements manual.

The last thing IPL does is to load the supervisor and give it control of the system. Figure 1.3
shows the supervisor being loaded into main storage.

Page 1 -4

Unit 1: An Introduction to the System

! 1PL

“CORE IMAGE LIBRARY
SYSRES

STORAGE

The supervisor loads into storage beginning at location 0. Once loaded, it remains in storage
continuously during system operations. The supervisor initiates the loading and execution of all
other programs and handles the input and output of data that is processed by any program
executed in the system. It contains tables of control information and maintains communication
regions that allow you to communicate with your program at execution time. It holds transient
areas for certain supervisor routines that are only needed for specific functions, such as OPEN
and CLOSE file processing.

The supervisor controls main storage utilization and the use of CPU cycle time. It handles
communications to and from the operator, error recovery, and input/output operations. In a
word, the supervisor controls the system.

T . ars - I o JOgp o
Fhe Job Control Program

Job control is loaded by the supervisor to begin execution of user programs. Job control acts
on information you supply, such as program name and main storage and device requirements,
to allocate resources and prepare VSE to execute your programs. The interaction between job
control and a user program is shown in Figures 1.4 to 1.7.

Page 1 -5

Unit 1: An Introduction to the System

>

‘PAYR’

N~ M

IPL
SUPERVISOR JOB CONTROL

JOB CONTROL
PAYR

CORE |MAGE LIBRARY SUPERVISOR

SYSRES

STORAGE

Figure 1.4 - Initial State

Job control is informed that we wish to run a program named PAYR. This done by
specifying the execution of PAYR on an EXEC job control statement. Notice that

PAYR exists in the Core Image Library.

>

1.

TO

IPL
SUPERVISOR , , JOB CONTROL /L//VO
JOB CONTROL PAYR DEVICES
PAYR
CORE IMAGE LIBRARY SUPERVISOR
SYSRES
STORAGE

Figure 1.5 - Job Control Prepares for PAYR

2. Job control makes sure that the storage and device requirements of PAYR are satisfied, .
then informs the supervisor that PAYR is to be executed.

Page 1 -6

Unit 1: An Introduction to the System

~ N A

IPL
SUPERVISOR
JOB CONTROL

DEVICES

CORE IMAGE LIBRARY

SYSRES

SUPERVISOR

STORAGE
Figure 1.6 - PAYR is Loaded for Execution
3. The supervisor loads PAYR and allows it to begin execution. Figure 1.6 shows that
‘ PAYR overlays the job control program. This is possible because job control is not

needed in this area of storage during the time that PAYR is executing.

Page 1 -7

Unit 1: An Introduction to the System

Page 1 -8

=

M~ A

IPL
SUPERVISOR

PAYR

CORE |MAGE LIBRARY

SYSRES

SUPERVISOR

STORAGE

Figure 1.7 - Final State = Initial State

4. The supervisor knows when PAYR has completed its processing. It reloads job control,
overlaying PAYR. The cycle is complete and will be repeated to set up for execution of
the next user program.

Notice in this last diagram that the 1/0 links are gone. This is because they were needed only
for PAYR. The next program will probably have a different set of requirements which will in
turn be set up by job control. This sequence of events is called job-to-job transition.

In the document:

Introduction to the VSE System

Under the heading:

"Resource Management and Job Control"
Read:

Up to but not including '"Loading Programs for Execution." When you have completed the
reading assignment, do the review Exercise that follows.

(Note that this reading assignment does not specify actual page numbers in the referenced
manual. This is because the reference manuals are frequently updated, and pages are some-
times renumbered. To avoid any possible confusion, all references made here to the manuals
will be to topic headings.)

Unit 1: An Introduction to the System

Exercise 1.1

After completing the Exercise, compare your answers with those provided, then continue in
this Unit.

1. When writing a program to run in a virtual storage system, the programmer need not be
concerned with

a. program size
b. program correctness
c. program speed

d. program efficiency

2. The IPL program activates VSE. The causes IPL to be loaded.
a. job control program
b. operator
c. supervisor

d. SYSRES device

3. A program named PROGA is loaded into storage for execution by the
a. job control program
b. operator
C. supervisor

d. SYSRES device

Questions 4 to 7 refer to the following job stream:

1. // JOB A

2. // EXEC PROG1
3. /%

4. // EXEC PROG2
5. // EXEC PROG3
6. /&

7. // JOB B

8. // EXEC PROG4
9. /&

4. There are jobs in this job stream.

a. 1

b. 2

c. 3

d 4

Page 1 -9

Unit 1: An Introduction to the System

5. There are requests for program execution in this job stream.
a. 1
b. 2
c. 3
d 4

6. How many job steps are there in Job A?

a. 1
b. 2
c. 3
d 4

7. When all the statements of this job stream have been processed, what program is in
storage along with the supervisor? Explain your reasoning.

8. The statement associates a physical device with a symbolic device name.
a. EXEC
b. ASSGN
c. JOB

d. COMMENT

9. The designation SYS023 is a
a. tape drive
b. disk drive
c. system logical unit

d. programmer logical unit

10. The function of SYSRDR is to read
a. system data
b. VSE/VSAM catalog data
c. job control statements

d. error records

Page 1 -10

®

10.

AR

(e}

b
d

Cc

Unit 1: An Introduction to the System

The job control program is in storage along with the supervisor, ready to do the required

set-up operations for the next job read into the system.
b
d

C

Page 1 -11

Unit 1: An Introduction to the System

The VSE Libraries

Page 1 -12

There are four types of libraries used in a VSE System. They are called the Core Image,
Relocatable, Source Statement and Procedure libraries.

Every DASD volume used by VSE must be identified by a six character name called a volume
serial number or a volume ID. Typically the DASD volume which contains the libraries
devoted to system functions has a volume ID of DOSRES. This is also the volume used to IPL
the system.

The contiguous area on the DOSRES volume that contains libraries dedicated to the system is
referred to as the system residence file (SYSRES).

By definition any library within the SYSRES extent is called a SYSTEM library and any library
outside that area is called a PRIVATE library. Otherwise the structure, organization, and
format of system and private libraries is identical.

There can be only one system library of each type within the SYSRES extent. There can be as
many private libraries of each type as required by the installation.

Figure 1.8 shows how private libraries can exist on DOSRES as well as on other packs whose
volume IDs are SYSWK1, SYSWK2, or SYSWK3.

H
H

PRIVATE LIBRARIES MAY EXIST ON DOSRES

7

SYSRES
AREA

4

END OF _
SYSRES EXTENT

SYSWK1

~_ A

PRIVATE

RELOCATABLE

PRIVATE

SOURCE STATEMENT

PRIVATE

CORE IMAGE

PRIVATE
PROCEDURE

PRIVATE

SOURCE STATEMENT

PRIVATE

RELOCATABLE

PRIVATE
CORE IMAGE

PRIVATE
PROCEDURE

SYSTEM
LIBRARIES

PRIVATE
LIBRARIES

PRIVATE LIBRARIES MAY ALSO
EXIST ON OTHER DISK PACKS

... AND/OR .

¥—_’__/

PRIVATE

SOURCE STATEMENT

... AND/OR ...

Unit 1: An Introduction to the System

~

PRIVATE

Qri)

ETC

The system Core Image Library (CIL) is the only library that is always required. It contains
the IPL, supervisor, and job control programs, as well as all the other programs that make up
your VSE system.

Programs in a CIL are in executable format and are called phases. Any program to be executed
under VSE must first be stored in a CIL. The supervisor will load programs for execution only
from a CIL, be it system or private.

Page 1 -13

Unit 1: An Introduction to the System

Page 1 -14

When a source program is processed by a language translator (any of the compilers or the
Assembler), a machine language version of the program called an object module is produced.
Under VSE these modules may reside in a Relocatable Library (RL).

Object modules are processed by the linkage editor program to construct the executable phases
that reside in the CIL.

When you write a new program, you can place the source code in the Source Statement
Library (SSL). Programs stored in the SSL are called books. Books can be copied from the
SSL into source programs, and individual statements may be added to, deleted from, or
updated within books in the SSL. This means that a source program may be maintained in the
SSL and that maintenance of the program in card deck form (or on diskettes) is not necessary.

Frequently used sets of job control statements may be stored in a Procedure Library. They are
then called procedures. A procedure can be invoked from the procedure library with a single
job control statement. Thus, the use of procedures can reduce the volume of control cards to
be read into a system. This reduces card handling by the system operator and improves
availability of your system’s card readers.

The four libraries are structured as illustrated in Figure 1.9.

Unit 1: An Introduction to the System

DIRECTORY

TA LIBRARY

Figure 1.9 - Structure of the Libraries

A directory at the beginning of each library contains an entry for each member in the library.
Thus, the CIL directory contains an entry for each phase in the Core Image Library, the RL
directory contains an entry for each module in the Relocatable Library, and so forth. Directory
entries contain the name of the member they reference and the location of that member in the
library proper. A directory entry is made automatically when a member is added to a library.

Private libraries can be viewed as extensions of the system libraries. Individual users or user
departments can maintain phases, modules, or books in separate private libraries that are
independent of each other and of the system libraries. In this way there is no threat of running
out of room in the system libraries.

Programs being written or revised and undergoing testing can be kept in private libraries
without interfering with any production programs that reside in the system libraries. Once
development is completed and the programs are ready for operational status, they may be
retained in the private library, or they may be copied into the system library. Whether a given
program is to reside in a system or private library is determined by your installation.

Page 1 -15

Unit 1: An Introduction to the System

Page 1 -16

The VSE system control programs (IPL, the supervisor, and job control) control the execution
of another class of programs called processing programs. These consist of application pro-
grams, service programs, and language translators.

An application program (user program) is a program that applies to the work in your installa-
tion. Most application programs are written by VSE users, while some are obtained from
software vendors, such as IBM, on a purchase or lease basis.

Service programs assist in the use of VSE without contributing directly to the control of the
system or to the production of results. Examples are the librarian programs, the linkage editor,
and the system utility programs.

Librarian Programs

Librarian programs are used to maintain the VSE libraries and to display their contents.

Linkage Editor Program

The linkage editor processes object modules to produce phases, which it places in a Core Image
Library.

System Utility Programs

These programs perform functions such as copying data from one volume to another and
preparing volumes for the storage of data.

Data Management Routines

These routines are available for use by your programs whenever they need to write or read
data to or from an external storage device. They consist of Physical Input/Output Control
System (PIOCS) routines and Logical Input/Output Control System (LIOCS) routines.

PIOCS

The PIOCS routines are located in the supervisor. They work in conjunction with the LIOCS
routines to perform the work associated with transferring data between external storage (tapes,
disks, printers, etc.) and main storage. It is the PIOCS routines that actually issue the com-
mands that cause this data transfer to take place.

Liocs

These routines do the blocking and de-blocking of records, and pass requests to PIOCS to
perform data transfers to and from I/O devices. The LIOCS routines supplied by IBM may be
maintained in the system Relocatable Library, and automatically included as part of your
program by the linkage editor that prepares your program for execution.

Unit 1: An Introduction to the System

In addition to these service programs there are several programs available on a lease basis from
IBM to perform specialized functions. These include Sort/Merge, VSE/DITTO, VSE/ICCF,
and VSE/POWER.

The Sort/Merge programs are used to arrange records into some sequence or to combine
(merge) two or more files that are already in a desired sequence into a single file.

The VSE/DITTO program provides a quick and easy way for the programmer or operator to
perform a variety of unit record functions. These include the duplication of card decks and
tape or disk utility operations, as well as more sophisticated tasks.

The VSE/ICCF (Interactive Computing and Control Facility) transforms the VSE batch
system to a system that can operate in both batch and interactive modes. In interactive mode,
you are able to communicate directly with the VSE system from a display terminal.

VSE/POWER improves overall system performance by reducing the CPU’s dependence on
the relatively slow speeds of its unit record equipment (card readers, punches, and printers).
By intercepting requests for these devices and simulating their functions on direct access
storage, VSE/POWER allows unit record operations to proceed at disk speeds.

These products and others are available only to users of the VSE/Advanced Function feature.

Language Translators

Language translators convert source language programs to machine language programs called
object modules. The Assembler language translator is included with the DOS/VSE system.
Other translators are available on a lease basis.

Page 1 -17

Unit 1: An Introduction to the System

Exercise 1.2

Complete this Exercise before going on to the next Assignment. If you miss any of these ‘
questions, review the appropriate material in the text.

1. Private libraries are
a. viewed as extensions of system libraries
b. used to store programs undergoing testing
c. the same as system libraries in their structure, organization, and format

d. all of the above

2. To be loaded for execution a program must reside in a
a. Core Image Library
b. Relocatable Library
c. Source Statement Library

d. Procedure Library

3. The output of a language translator is a module that could be placed in the
a. Core Image Library
b. Relocatable Library

c. Source Statement Library

d. Procedure Library

4. Frequently used sets of job control statements may be stored in the
a. Core Image Library
b. Relocatable Library
c. Source Statement Library

d. Procedure Library

5. The linkage editor and the librarian are examples of
a. Application Programs
b. Service Programs

c. Control Programs

2

Language Translators

Page 1 -18

A I S

[N

o a o

Unit 1: An Introduction to the System

Page 1 -19

Unit 1: An Introduction to the System

Page 1 -20

The flow chart in Figure 1.10 represents a single program running under VSE in your CPU.
Examine the logic flow and see if you can determine if there is any point in the program’s

activity where there is a "hidden" time delay. Once you have made your determination, look at
Figure 1.11.

Unit 1: An Introduction to the System

START

HOUSEKEEPING

READ |
A H
RECORD ;

DO DO :

ONE ANOTHER
THING

©

END OF JOB
PROCESSING

RETURN TO
VSE

Figure 1.10 - Where is the "Hidden'" Delay?

Page 1 -21

Unit 1: An Introduction to the System

INITIATE

HOUSEKEEPING 1O
REQUEST

+

- TEST

FOR —_
/o
COMPLETION

‘ WAIT

TRANS 2
?

ONE ANOTHER
THING

END OF JOB
PROCESSING

RETURN TO
VSE

,,,,,, — PR— . W— A i

Figure 1.11 - We Must Wait For the Read to Complete

The delay involved is the ''wait" time resulting from the read 1/0 request. In order for this
program to process a transaction record, it must have that record available in processor
storage. The read 1/0O operation will retrieve the record from where it resides on cards, tape,
or disk, but countless CPU cycles (the smallest periods of time in which CPU activities take
place) are allowed to go by unused while the program waits for its I/O request to be fulfilled.

Page 1 -22

Unit 1: An Introduction to the System

Compared to the CPU’s internal speed, the rate of data transfer between an 1/O device and
processor storage is very slow. The reading or writing of data involves mechanical as well as
electronic actions. Positioning of disk access mechanisms, punching cards, and the like are time
consuming operations that slow down a program’s performance. If a given program is the only
user of the CPU, then the CPU is essentially idle while that program is waiting for completion
of its I/O operations.

Rather than waste the expensive resource of CPU time, it is preferable to allow more than one
program to be active simultaneously. These programs are independent of each other. While
Program A, for example, is waiting for an I/O operation to complete, Program B can be doing
its processing.

Remember, only one thing can take place in the CPU at any one time, so Program A and
Program B cannot both be using CPU cycles at the same instant. Either one of them, however,
can process ''in the gaps'' created by the wait time involved for the other’s I/O activity.

Storage Organization

In the document:

Introduction to the VSE System

Under the topic:

"Resource Utilization"

Read:

Up to but not including '"Multitasking."

When you have finished the reading, do the review Exercise that follows, then continue in this
text.

Page 1 -23

Exercise 1.3

Unit 1: An Introduction to the System

Which of the following operations take the longest time to complete?
a. executing a multiply instruction
b. executing an add instruction
c. reading data from a disk drive
d. retrieving data from internal storage
Multiprogramming is designed to make efficient use of
I/0 devices
b. CPU cycles
c. program interrupts
d. operator interventions

VSE allows the user to divide the problem program area into as many as
partitions.

a. 5
b. 7
c. 14
d. 12

Explain in your own words the reason for a priority system in a multiprogramming
environment.

By default, the highest priority partition under VSE is the partition.

An I/0 bound program is one in which there is a great deal of I/O activity, while a CPU
bound program is one in which there is a minimum of I/O activity and a great deal of
CPU calculations.

In a multipartition system would you choose to put an I/O bound or a CPU bound
program in the highest priority partition? Explain your answer.

The default priorities may be changed by
a. an operator command
b. a partition override
c. the supervisor

d. a problem program

Page 1 -25

Unit 1: An Introduction to the System

Solution

Page 1 -26

Rl

b
d

In an environment where more than one program may be active simultaneously, a priority
system is necessary to resolve situations when more than one of these programs is ready
to use the CPU at the same time.

F1

An I/0 bound program should go into the highest priority partition. The I/O bound
program allows for interrupts to occur as it waits for completion of its input/output
requests, and the lower priority partitions can get control of the CPU at these times.

If a CPU bound program were in the highest priority partition, it would not allow for a
sufficient number of interrupts to take place so that other partitions sharing the CPU
could gain control within reasonable periods of time.

a

Unit 1: An Introduction to the System

The Shared Virtual Area

In addition to the partitions specified at system generation time, the user must also specify the
mandatory shared virtual area (SVA). This is done by the user at IPL time. This area of
storage is used for three purposes:

1.

To hold reenterable program phases. These routines are available for use by any program
(or programs) active in any number of partitions at any time. SVA routines must be
reentrant, that is, they must allow for simultaneous use by one or more programs. Thus,
even though only one copy of the routine exists in the SVA, it can be shared by any
number of programs. In this way, the SVA routine does not have to be physically
duplicated in each program where it is needed.

This capability allows the IBM supplied modules of the Virtual Storage Access Method
(VSE/VSAM) to be loaded and executed from the SVA rather than from the user’s
partition. This means that if several programs in different partitions are using
VSE/VSAM at the same time, only one copy of the VSE/VSAM code (in the SVA) will
be needed to service these users.

To hold the system directory list (SDL). This directory contains entries (consisting of
phase names and locations in the SVA) of each SVA routine, as well as entries
(consisting of phase names and locations in the CIL) for selected CIL members that
require rapid loading when requested for execution. When one of these CIL phases must
be loaded, the supervisor locates it by using the SDL entry rather than the CIL directory
entry. Program loading is sped up by avoiding the usually required access to the CIL
directory for these phases. The SDL used in this way can be thought of as an index to
selected phases. The SDL is created at IPL time.

To hold the system GETVIS area. One of the uses of this area is to contain the IBM
supplied Rotational Position Sensing (RPS) routines. These routines increase the
efficiency with which certain disk storage devices can be accessed.

Page 1 -27

Unit 1: An Introduction to the System

Page 1 -28

One of the constraints that until recently was imposed on the computer user has been the
amount of machine storage available for the execution of programs. The user has had to be
aware of the amount of machine storage associated with his particular computer, and to take
that size limit into account when developing application packages. This size limitation often
complicated the entire development process. Assume, for example, the environment pictured
in Figure 1.12.

50K F1
40K BG 128K
38K SUPERVISOR

Figure 1.12 - Hypothetical Environment

Note: The sizes of the supervisor and partitions as shown in Figure 1.12 are for illustrative
purposes to explain the virtual storage concept. They do not represent actual VSE system
storage requirements.

Here, 128K of machine storage is available, organized as the diagram illustrates. The 128K
figure is an absolute constraint on the user--at any given time the sum of the sizes of all
programs running in the machine cannot exceed this value.

Assume that the F1 partition must have SOK allocated to it for an online data retrieval
application. That leaves 40K for the BG partition. Your job is to write a Sales Analysis
program to fit within that area. You do your best, but the program you develop exceeds
available storage by 15K. See the next illustration.

Unit 1: An Introduction to the System

F1 50K
SALES
ANALYSIS
PROGRAM
55K 27 : BG 40K
SUPERVISOR 38K

Figure 1.13 - A Problem of Size

You are not able to reduce the size of your program and have it perform according to specifi-
cations. Your only alternative at this point is to divide the program into logical segments, so
that the only piece of it occupying storage at any time is what is needed at that time. If you
have done your job correctly, your program is constructed in a modular fashion to begin with,

that is, it is made up of functional pieces (subroutines) that fit together to form the whole
program. See Figure 1.14.

SALES ANALYSIS PROGRAM

PRODUCT
25K CLASSIFICATION
BRANCH
10K OFFICE
VOLUMES
55K
FORECASTING
10K
1/0 INTERFACE
10K

Figure 1.14 - Program Components

Now assume that the 10K 1/0 Interface must be present when any other co:nponent of the
Sales Analysis program is active. Take a piece of scratch paper, draw some boxes to represent

Page 1 -29

Unit 1: An Introduction to the System

the 40K of machine storage you can use, and draw in the various combinations of parts of the
Sales Analysis program that can be active together. Use the component sizes given in Figure
1.14. When you are done, look at Figure 1.15.

25K

PRODUCT
CLASSIFICATION

10K

1/0 INTERFACE

BG

OR

10K

BRANCH
OFFICE
VOLUMES

10K

I/0 INTERFACE

20K

UNUSED

7

Figure 1.15 - The Possible Combinations

Page 1 -30

40K

40K

10K

10K

10K

10K

10K

20K

BRANCH
OFFICE
VOLUMES

FORECASTING

I/0 INTERFACE

/

—

UNUSED

/

BG

FORECASTING

1/0 INTERFACE

UNUSED

40K

40K

The most efficient use of the partition (from the point of view of storage utilization) occurs
when the Product Classification segment is active, but even here 5K is left unused. The other
possible cases leave 10K or 20K unused. Remember, the I/0 interface must always be present
(an assumption for this example), and this prevents the 25K Product Classification segment
from being active along with the Forecasting or Branch Office Volume segments.

Thought has to be given to developing and maintaining areas in machine or external storage for
communication between parts of the program. The I/O Interface portion might be designed to
hold this common communication area, but this is not the point. The point is that time, energy,

Unit 1: An Introduction to the System

and human resources have to be expended to develop an implementation technique. If the
program could be written as if it had available to it as much storage as it needed, there would
be no need to be concerned with:

1. The most efficient use of machine storage.

2. How to divide the program.

3. Communication between parts of the program.

4. Additions to the program that might cause available storage to be exceeded again.

But this is not the end of it. Take a look at one of the combinations as illustrated in Figure
1.16.

BRANCH
OFFICE

§ 10K
; VOLUMES

FORECASTING
10K

40K

I/0 INTERFACE

5K TAPE

| 10K

1/0 INTERFACE
DISK

7777777

UNUSED

i,

BG

5K

10K

—— . —— i v i ——, A~ — — O —

Figure 1.16 - What is in Use?

Notice that the I/O Interface portion has been divided into its two components, tape I/0 and
disk I/O. (Remember, these are arbitrary choices for this example). At any given time, either
the Branch Office Volumes segment or the Forecasting segment will be actively executing
instructions, and will be accessing either tape or disk. In fact, the program might not be
accessing any device--it might be just doing processing that does not require external storage.
Assume for now that the Forecasting code is active and needs information stored on disk. See
Figure 1.17.

Page 1 -31

Unit 1: An Introduction to the System

Page 1 -32

BRANCH /
OFFICE
10K /VOLUMES
10K % FORECASTING
~ 40K
ok 1/O INTERFACE
TAPE /
10K /// Z 4
I/0 INTERFACE
5K { DISK
/UNUSED
10K /

BG

Figure 1.17 - How Much Storage is Really in Use? (Shaded Areas Inactive)

You can see that less and less of the background partition is being used productively. Indeed,
the point has been reached where more space is inactive than active: 25K vs. 15K. Naturally,
there will come a time when the Branch Office Volume code and the I/O Interface Tape code
will be required--it is then that these pieces of the application are considered to be active while
the other pieces are inactive.

Suppose you can determine how much time is spent in each of these four routines during a
typical run. See Figure 1.18.

Unit 1: An Introduction to the System

BRANCH
OFFICE

1
OK VOLUMES

25% ?

FORECASTING
10K
30%

40K
I/O INTERFACE
TAPE

10K
I/0 INTERFACE
DISK
10%

10K

Figure 1.18 - Per Cent of Utilization

All kinds of games can be played with these numbers, but the point to be recognized is that for
most of the time most of the code is inactive. Only a small part of any program is required to
be active at any given point in time. In this example it is easy to see that if there were only
15K available, it would be enough to hold the active program portions. Figure 1.19 illustrates
this idea.

Page 1 -33

Unit 1: An Introduction to the System

: BRANCH
10K FORECASTING 10K OFFICE
| VOLUMES
1/0 INTERFACE /0 INTERFACE
5'({ DISK 5'({ TAPE
oR
UNUSED UNUSED
25K 25K ///
g4
BG BG

Figure 1.19 - The Active Portions

The way the program is now organized leaves 25K of the BG partition unused. This is enough
to hold the biggest segment, the 25K Product Classification code. If you wanted this code to
be available in storage at the same time as either of the two combinations shown in Figure
1.19, it could be done as illustrated in Figure 1.20.

10K { FORECASTING
| 1/0 INTERFACE
5K { DISK
PRODUCT 40K

? CLASSIFICATION

25K

BG

Figure 1.20 - Full Utilization--The Problem Solved?

We seem to have come full circle, and simply by breaking the I/0 Interface code into two 5K
pieces have achieved full utilization of the BG partition. Or have we? Take a look at Figure

1.21.

Page 1 -34

Unit 1: An Introduction to the System

10K FORECASTING
30%
1/0 INTERFACE
5K DISK
10%
2 40K
PRODUCT

| CLASSIFICATION
25K ‘

30%

Figure 1.21 - What is Missing?

The percentages indicate the amount of time each piece is active. But, as with Figure 1.18, the
numbers do not add up to 100%. That’s because for 30% of the time the Branch Office
Volume and I/0 Interface Tape code is required to be in storage, just as in Figure 1.18, 30%
of the time is required for the Product Classification code to be in storage.

What happens when the Product Classification code in Figure 1.21 needs the I/0O Interface
Tape module to fulfill a tape I/0 request? See Figure 1.22.

FORECASTING

1/0 INTERFACE ~
/ DISK/

I/0 INTERFACE
PRODUCT TAPE

CLASSIFICATION _J

N

Figure 1.22 - Block Replacement 1

The block of code called the I/O Interface Disk module must be replaced by the block of code
called the 1/0 Interface Tape module. The incoming block could fit into any 5K area in the
BG partition not currently active--the disk code seems the most convenient to be replaced in
this illustration.

Assume that the tape I/0 request is fulfilled, and that control is eventually passed to the

ot

Forecasting module. What happens when the Forecasting code needs some calculations done

Page 1 -35

Unit 1: An Introduction to the System

a I/0 INTERFACE

that are handled by the Branch Office Volume segment? Where should this 10K segment be
put? See Figure 1.23.

FORECASTING

1/0 INTERFACE
TAPE/

+PRODUCT
CLASSIFICATION

>

4 BRANCH
OR ~_ | OFFICE
~] vOLuMmEs

FORECASTING

N—

TAPE

PRODUCT
A
CLASSIFICATION

Figure 1.23 - A Matter of Choice

Page 1 -36

The Branch Office Volume code could overlay 5K of the Product Classification module along
with the 5K devoted to an I/O module, or it could overlay 10K that is entirely within the
Product Classification module.

The path of least resistance seems to be choice[f]. This means the 1/0 Interface Tape code will
not have to be brought back in the next time there is a request for a tape operation--it will be
there. But whether [§ or Bis chosen, part of the Product Classification module is going to be
overlayed by the incoming code. This presents another problem.

What if the Product Classification code about to be overlayed has been modified, that is,
changes have been made (updated tables, added to counters, incremented indices, etc.) that
will influence its action when next it gets control? This part of the program cannot be simply
destroyed, so a copy of it must be made on disk for later retrieval. When this code is needed
later, it can be loaded from disk to resume its processing functions. See Figure 1.24.

Unit 1: An Introduction to the System

FORECASTING

I/0 INTERFACE

o
___ i
PRODUCT
CLASSIFICATION
FORECASTING - L
I/0 INTERFACE w
TAPE
B

Figure 1.24 - Block Replacement 2

El The code that resides in the area of storage to be overlayed is saved.

B The code required to be active is loaded for execution.

Figure 1.25 shows what has happened to disk intermediate storage. 40K of machine storage
has been "turned into" 55K of effective storage by using a disk to hold program portions not

needed at any given time. This is exactly the concept of the Virtual Storage method of storage
organization.

Page 1 -37

Unit 1: An Introduction to the System

~—

I
FORECASTING
10K
]
BRANCH
OFFICE
VOLUMES 10K
55K
/0 40K
INTERFACE
10K ;
IR
PRODUCT
CLASSIFICATION
25K
™ ;

BG

Figure 1.25 - 40K Appears to be 55K to the User

Page 1 -38

Prior to the advent of Virtual Storage organization, the system and application programmers at
DOS installations were responsible for the mechanics of managing storage in situations like the
one in this case study. Through careful design and judicious use of the linkage editor and
various disk I/O macros, or through special language translator features such as the ANS
COBOL compiler’s segmentation option, programs were developed that managed their way in
and out of machine storage as has been done here. This approach has several disadvantages:

« It gets very complicated.
« Itrequires a lot of time and energy to implement.
« It does not solve the whole problem.

The whole problem is that all of your application programs should be treated this way. At any
given time only the active parts of programs in various partitions should be actually using
machine storage. Virtual Storage organization handles the resource of machine storage in the
way you have seen it done in the Sales Analysis application just presented.

Part of machine storage is "'turned into' a larger size of effective storage by using the disk file
known as the Page Data Set to hold program portions not needed at any given time. This
process is called mapping, and is accomplished by a combination of hardware (electronic) and
software (VSE supervisor) functions.

The units of storage mapping, corresponding conceptually (but not in size) to what we have
termed ''blocks of code" in our case study, are called pages. The programs you write occupy
some number of these pages when they execute under VSE. The supervisor ensures that only
the currently active pages are present in machine storage at any given time. The term page pool
is used to represent the portions of machine storage available for mapping operations.

The effective storage can have an upper address limit of 16 million bytes. Application
programmers can code as if they have as much storage available to them as their programs
require.

Unit 1: An Introduction to the System

The available machine storage is used for two purposes:

1. Partition and SVA mapping. This is the portion of machine storage where blocks of
active program code execute. Each virtual partition in your system, as well as the SVA,
will be mapped onto the Page Data Set and associated with part of the available machine
storage.

2. Dedicated machine storage programs. Certain applications will demand that there be no
mapping of code between storage and the Page Data Set. Remember, this transfer of
program information takes time, and highly time-dependent applications may require a
dedicated block of machine storage that is not subject to the rules of program mapping.
Only a minimum of application programs in most installations are of this type.

In general, Virtual Storage organization is meant to be "transparent’ to the user, which means
you act and code as if you had much more storage available than you really do and let VSE
handle the implementation. The application programmer does not usually need to be con-
cerned with any greater level of detail than has been presented here.

Although you may have read portions of this reading material, now you should read the whole
sections.

In the manual Introduction to the VSE System read the sections 'Initial Program Load'" and
"Resource Management and Job Control".

Page 1 -39

Unit 1: An Introduction to the System

Unit Summary

Page 1 -40

VSE is a Disk Operating System for Virtual Storage that can be tailored through the process of
system generation to run your IBM System/370 or 4300 Processor in an efficient manner. The
programs and libraries which comprise VSE reside on disk.

Three system control programs - IPL, the supervisor, and job control - are major components
of VSE. The system is started by the IPL program; operation is controlled by the supervisor;
and processing programs are prepared for execution by the job control program.

The SYSRES extent contains the system libraries. There must be at least one system library
(Core Image) and there may be as many as four system libraries: Core Image, Relocatable,
Source Statement, and Procedure. The libraries respectively contain ''phases," 'object
modules," "books," and "procedures." Any of these libraries located beyond the SYSRES
extent on that volume or on any other volume are private libraries.

The job control language is used to communicate processing requirements to VSE. Each job
and its required resources must be defined by job control statements. This enables VSE to
perform the basic functions of automatic job-to-job transition, assignment of I/O devices, and
loading programs for execution.

Application programs, service programs, and language translators comprise a classification
called processing programs; all may be efficiently controlled by VSE.

Your valuable CPU resource is handled efficiently by the facilities of multiprogramming and
virtual storage organization. Multiprogramming allows multiple users (multiple programs) to
share the CPU at the same time--VSE permits up to twelve partitions to execute programs
concurrently--while the virtual storage technique frees the application programmer from
constraints previously imposed by the amount of machine storage physically present on the
computer.

Take the Mastery Test that follows.

Unit 1: An Introduction to the System

1. Name the three control programs of VSE.
Name the four libraries and what a member of each library is called.
What differentiates a system library from a private library?

Name the three types of processing programs and define or give an example of each.

VRS S

Job-to-job transition is handled by

the supervisor

the IPL program
job control

none of the above

o o

6. A job to be executed overlays which of these programs in storage?

the supervisor

the IPL program
job control

none of the above

o o

Page 1 -41

Unit 1: An Introduction to the System

Solution

Page 1 -42

Supervisor, Job Control, Initial Program Load

Core Image - Phase
Relocatable - Module
Source Statement - Book
Procedure - Procedures

A system library resides within the SYSRES extent; a private library resides outside that
extent on same volume or any other volume.

Application programs - apply to work to be done at the installation

Service programs - assist in using VSE. Service programs include the librarian programs
and the linkage editor program.

Language translators - convert source language programs to machine language programs.
Language translators include the Assembler program, COBOL, PL/I, RPGII, and others.

C.

C.

Unit
I S P
D
A A
E D T
Y P Y I
D U E T
N M D N M D
0 G 0 P
‘l" U P D E U P E P D
I R A T
T Y I N T Y I N T Y I DE
T oG P T oG M E T oG M P T D
U 0 E N TU 0] E ST R D N ubD
Y oG E D Y 0G E D D RO D N ST 0]
0 M D NT DY R AM D NT D R AM D NT P O
R M ND EN D P R M ND ENT D P R M IND ENT D RO M
A IN E N U P A IN E N TU P R IN E N U R IN
M EP NDE ST GR EP ND RA U
D ND T STU PR D ND TU PR R D ND TU Y (0] ND
D EN E T R G D EN E T R G D EN TU R R M END
PE D ST P O I PE D T ST P O N PE D T STU A ND N
N NT S UY ROGR NT S UDY ROGR NT S U Y ROG EN T
E TUD PROGRAM E N UubDY PRO RA E N UD PRO RA ND PE S
STU PROG AM N EPE DE STU PR R N E END T ST PR G AM N EPE T TD

S Y PR GR INDEPEN EN S Y PR GR I DEPE ENT ST DY PR GR INDEP DENT S u
D PR GRAM IN P ND N S D PR GRAM I P ND NT S D PRORMTI E EN T STU PR
Y PROGR NDEP NDEN S UDY P OGRAM NDEP NDENT TUDY PR GRAM IND PEN ENT TUDY 0o
PROGRAM INDEPEN ENT S UDY PROG AM IND ENDE T S UDY ROGRAM I DEPENDEN STUDY PROGRA
OGRAM INDEPENDENT STU Y PROGRAM IN EPE DENT ST D P OGRAM INDE ENDENT STUDY PROGRAM
RAM INDEPENDENT STUDY ROGRAM INDEPENDE T STUDY PR GRAM INDEPENDENT STUDY PROGRAM IN
M INDEPENDENT STUDY PROGRAM INDEPENDENT STUDY PROGRAM INDEPENDENT STUDY PROGRAM INDE
INDEPENDENT STUDY PROGRAM INDEPENDENT STUDY PROGRAM INDEPENDENT STUDY PROGRAM INDEPE
DEPENDENT STUDY PROGRAM INDEPENDENT STUDY PROGRAM INDEPENDENT STUDY PROGRAM INDEPEND
ENT STUDY PROGRAM INDEPENDENT STUDY PROGRAM INDEPENDENT STUDY PROGRAM INDEPENDEN

T STUDY PROGRAM INDEPENDENT STUDY PROGRAM INDEPENDENT STUDY PROGRAM INDEPENDENT

ENT STUDY PROGRAM INDEPENDENT STUDY PROGRAM INDEPENDENT STUDY PROGRAM INDEPENDENT ST
T STUDY PROGRAM INDEPENDENT STUDY PROGRAM INDEPENDENT STUDY PROGRAM INDEPENDENT STUC
STUDY PROGRAM INDEPENDENT STUDY PROGRAM INDEPENDENT STUDY PROGRAM INDEPENDENT STUDY
UDY PROGRAM INDEPENDENT STUDY PROGRAM INDEPENDENT STUDY PROGRAM INDEPENDENT STUDY PR
Y PROGRAM INDEPENDENT STUDY PROGRAM INDEPENDENT STUDY PROGRAM INDEPENDENT STUDY PROG
PROGRAM INDEPENDENT STUDY PROGRAM INDEPENDENT STUDY PROGRAM INDEPENDENT STUDY PROGRA

In order to submit jobs intelligently to the VSE system, you must be familiar with the use and
functions of the job control language. This unit explains the basic concepts of job control. You
will learn to code six important job control statements, and will learn the relation between jobs
and job steps. In addition, you will be introduced to console messages, and will see how
cataloged procedures are used.

Upon completing this Unit, you should be able to:

Assignment 1

o Use the VSE/Advanced Functions System Control Statements manual to find and code
specific job control statements and commands.

« Define and justify multistep jobs.
« Describe the parts of a basic console message.

» Code the statement required to invoke a cataloged procedure.
Assignment 2

» Define device independence.
o Identify system as opposed to programmer logical units.

« Define the Logical and Physical Unit Block tables (LUBs and PUB) and describe their
use.

¢ Code a basic ASSGN statement.

¢ Code the LISTIO statement to determine device status.

Study Guide (SR20-7300)

The following VSE reference material:

Introduction to the VSE System (GC33-6108)

VSE/Advanced Functions System Management Guide (SC33-6094)
VSE/Advanced Functions System Control Statements (SC33-6095)

Page 2 -1

Unit 2: Job Flow and Job Control

Page 2 -2

VSE provides you with the capability of using job control statements (JCS) and job control
commands (JCC). Both statements and commands are included in the overall concept of the
job control language (JCL). Most statements have equivalent command types and vice versa.

The way that VSE knows whether it is dealing with a statement or a command is the presence
or absence of slashes in positions one and two. A job control statement will have these slashes,
while a job control command will not. Statements are generally used by the programmer and
are entered via cards (or in card image format from tape or diskette), while commands are
generally used by the operator and are entered via the system console.

Since the slashes are the only way VSE discriminates between statements and commands, you
could easily submit a job control command in your job stream instead of the corresponding
statement. The JCC format, however, will often cause VSE to do something different than the
JCS format. You must be aware of what you are doing when you create your job control
statements because of the significance of the slashes.

In the document:

VSE/Advanced Functions System Control Statements

Under the heading:

"Introduction"

Read:

"Control Statement Conventions"

All the VSE job control statements and commands are described in the VSE/Advanced

Functions System Control Statements manual, where they are listed in alphabetic order. When
you have finished the above reading, find and read the material on:

« the JOB card

« the EXEC card (read only the PGM= and REAL parameters at this time)
o the /* card

« the /& card

When you have finished the reading take the Review Exercise that follows, then continue with
this assignment. You may use the System Control Statements manual to help you with your
answers.

‘ 1. Identify any errors on each of the following job control cards.
a.
b.

C.

// JOB TEST.ONE$

// JOB SAMPLE D

// JOB SMITH’S

// JOB CASE2

// EXEC PGM=/TEST

// EXEC PGM=SAMPELS

// EXEC TEST14,REAL=YES

Unit 2: Job Flow and Job Control

Page 2 -3

Unit 2: Job Flow and Job Control

2. A batch of jobs as illustrated in Figure 2.1 is called a job stream. A job stream consists of
a collection of single and multiple step jobs to be run in a given partition of your system. ‘

// JOB F =

A BATCH OF JOBS
IS CALLED
A JOB STREAM

SIX JOBS

SYSRDR

Figure 2.1 - A Job Stream

Page 2 -4

Unit 2: Job Flow and Job Control

Construct the job stream necessary to run the following jobs. Each job requires the execution
of the program names shown. End of data cards are not required in this problem, but do

include end of job cards where needed.

Job Names

Casel

Case2

Case3

Program Names

Alpha, Beta

Gamma (Must run REAL)

Delta, Iota, Epsilon

3. Code the JOB, EXEC, and /& statements for the execution of the six programs de-
scribed below. Some of these programs are dependent on other programs for their input.

Arrange the JCL to take these dependencies into account.

Program Name

A
B
C
D
E

F

Function
Calculate Payroll
Print Checks
Print Cost Report

Print Inventory
Status

Update Inventory
Master File

Print Work Schedule

Dependent On

A
AB
E

Ignore specifications of input and output files, and pick your own job names.

Page 2 -5

Unit 2: Job Flow and Job Control

Solution
1. a. Job name too long.
b. D will be taken as accounting information, not as part of the job name.
c. Apostrophe (special character) not allowed.
d. No error.

e. Slash (special character) not allowed in program name.
f. No error.

g. REAL parameter incorrectly coded. When properly specified, this parameter
indicates that the program to be executed is to reside completely within machine
storage during its execution, and is not to be subject to the ordinary rules of
program mapping onto the Page Data Set.

Only a few highly specialized, time-dependent programs must be run in this fashion,
and your system programmers or operations department will be able to tell you
which ones they are at your installation.

2. // JOB CASE1
// EXEC ALPHA
// EXEC BETA

// JOB CASE2
// EXEC GAMMA,REAL

// JOB CASE3
// EXEC DELTA
// EXEC IOTA
// EXEC EPSILON

/&

3. // JOB MY1
// EXEC A
// EXEC B
// EXEC C
/&

// JOB MY2
// EXEC E
// EXEC D
/&

// JOB MY3
// EXEC F
/&

If your solution had the three jobs running in a different sequence, that would be
perfectly all right. The important thing is that within each job you observed the required
dependencies of job steps.

Page 2 -6

Unit 2: Job Flow and Job Control

Single vs. Multistep Jobs

In two of the problems you just did, there were cases of multistep jobs. Multistep jobs are used
whenever the execution of a particular job step is dependent on the completion of a previous
step. Your decision at any point as to whether to put together a single or a multistep job is
whether you want the completion or lack of completion of any given step to influence the
execution of subsequent steps.

Suppose, for example, that you have two programs, CALC and PRINT, to execute. The
CALC routine develops amounts that the PRINT program prints out. This makes execution of
PRINT dependent on the successful completion of CALC. See Figure 2.2.

Should we use Y Should we use
z a multistep gt two one-step
5 job ? - jobs 2

\ \

// JOB TWO

// EXEC CALC

// JOB MULTI ~

N

N,

\r// EXEC CALC

// JOB ONE

r ONE MULTISTEP JOB TWO ONE-STEP JOBS
Specifies execution Specify execution
of CALC and PRINT of CALC and PRINT

Figure 2.2 - One 2-Step vs. Two 1-Step Jobs

The decision of how to construct the job stream is a function of job dependencies. If you
submit these as two separate jobs, you are telling VSE that they are independent of each other.
They might well be scheduled to run in different partitions, which would make it difficult for
PRINT to get its data from CALC.

Page 2 -7

Unit 2: Job Flow and Job Control

Page 2 -8

Even if they run in the same partition, they will execute independently of each other. This
means that if CALC abnormally terminates, PRINT will nevertheless attempt execution. This
is a waste of time, as PRINT has nothing to process in this case. Since PRINT is dependent on
CALC in this example, you would want to make this a single job with two steps.

When any step of a multistep job is cancelled, all remaining steps will be bypassed by job
control until a /& or a new JOB card is found. If CALC abnormally terminates (or is cancelled
for any reason), PRINT will not be run. Since PRINT needs CALC’s output to run properly,
and there is no output in this case, this is exactly what should be done.

The program development sequence of compile, link-edit, and execute is probably the most
common example of a multistep job in any installation. Each step in this sequence is complete-
ly dependent on the successful completion of the previous step or steps.

If the compile step fails, it would be fruitless to attempt to link-edit and execute, as your
program is probably too full of errors to run properly. If the link-edit step fails, then there is
no program phase in the Core Image Library to be retrieved at execute time.

The only occasion when VSE will attempt execution of your program is when both the compile
and the link-edit steps have successfully completed their functions.

The point of batching jobs in a job stream is to permit VSE to do its processing with a
minimum of operator intervention. When one of the jobs in the stream completes, VSE
automatically looks for another one. This is automatic job-to-job transition.

The operator’s job is to respond to system requests, and to mount required volumes or act on
system or program messages.

Messages from the component programs of VSE are output to the operator on the system
console which has the logical unit name of SYSLOG. Figure 2.3 illustrates a console display of
typical system messages.

Unit 2: Job Flow and Job Control

|

| |
0«%—}13@ 000 // JOB LIMITISS
] DATE 11/14/79,CLOCK 14/18/13

. BG 000 EOJ LIMITISS
O- DATE 11/14/79,CLOCK 14/58/07, DURATION 00/39/54

Figure 2.3 - Console Messages

@ BG is the partition identifier, and means this job is running in the background partition.
The next three-digit number (000) is the reply-ID. The reply-ID is assigned by the
system. To enter a reply to a message, you must key in the reply-ID that the system had
assigned to the message. Following the reply-ID is the contents of the job card. Date and
clock are the day and time that execution of the job began and are provided by the
system.

© '"EOJ LIMITISS" is displayed when this job completes. Date and clock are the time of
completion. Duration is elapsed or 'clock time' for the execution: 39 minutes, 54
seconds.

In addition to information messages of this type, VSE will generate warnings concerning errors
or actions the system has taken. Your JCL, for example, may contain syntax (format) errors or
keypunching errors. When VSE encounters a JCL error, the operator is informed via a console
error message. See Figure 2.4.

Page 2 -9

Unit 2: Job Flow and Job Control

Page 2 -10

(/&

l// EXEB PAY2
EXEC WAS

r/ EXEC PAY1 MISPUNCHED

// JOB PAYROLL

-INVALID STATEMENT

Figure 2.4 - JCL Errors Result in Error Messages

The operator can cancel the job or enter a corrected statement from the console to allow
processing to continue. Cancellation of the job is the choice made when the operator does not
know the required correction.

Jobs may also be cancelled because of errors detected by VSE or by the processing program
during execution. See Figure 2.5. No matter how the job is cancelled, the results are the same:
any remaining job steps are bypassed.

Unit 2: Job Flow and Job Control

JOB CANCELED BY
SUPERVISOR

JOB CANCELED BY

F2 002 0P731 JOB PAYROLL CANCELED DUE TO I/0 ERROR
% F3 003 0S01I JOB INVENTRY CANCELED DUE TO OPERATOR INTERVENTION
OPERATOR

o F4 004 0S02I JOB CREDIT CANCELED DUE TO PROGRAM REQUEST
|

‘\ JOB CANCELED BY
PROGRAM

Figure 2.5 - Three Sources of Job Cancellation

0 The reason for cancellation is identified by a message number such as OP731, 0SO11,
0S021. Messages are described in the VSE/Advanced Functions Messages manual.

© F2, F3, and F4 identify the partition in which the jobs were running.

The scores of jobs an installation has to run each day could require several thousand control
statements. These must be stored for retrieval as needed. To eliminate most of the manual
retrieval and replacement of control statements, they can be stored in a Procedure Library.

Figure 2.6 shows control statements for a four step job being placed in a Procedure Library.
The VSE librarian service program MAINT is used to do this. MAINT will be covered in Unit
7.

Page 2 -11

Unit 2: Job Flow and Job Control

{ /&

// EXEC STEP4

associated statements |

// JOB A

Each collection of JCL is

given a name —~

T e

Directory X vy z

¥/

PROCEDURE
LIBRARY

Figure 2.6 - Storing Control Statements

Rather than being manually retrieved from a file drawer every time they are needed, these
statements can be obtained from a Procedure Library. Figure 2.7 shows the coding required to
invoke, or use, a procedure.

Page 2 -12

Unit 2: Job Flow and Job Control

® e

Directory Xy 2

__//

PROCEDURE LIBRARY

K o /| EXEC PROC=XYZ

// JOB A This statement
will be replaced

by statements from

a procedure library.

Figure 2.7 - Coding to Invoke a Procedure

The single statement EXEC PROC=XYZ causes the four job steps in the procedure named
XYZ to be inserted in the job stream. When the EXEC statement is processed by the job
control program, the PROC= parameter causes two things to happen:

1. The EXEC statement containing the PROC= parameter is eliminated from the job
stream internally when job control constructs the effective job stream.

‘ 2. Substituted in its place in the job stream are the statements contained in the procedure
named XYZ.

The effective job stream now includes the four job steps. This job stream is processed by the
job control program. When the four steps are encountered they are processed just as though
they had been manually submitted.

Page 2 -13

Unit 2: Job Flow and Job Control

Page 2 -14

Whenever a program needs access to a file on a storage device, VSE must be informed of the
physical address of the device involved. Your program need not specify this physical address,
but only a symbolic name which refers to a logical rather than physical unit. Before your
program is executed, the symbolic name must be associated with an actual device. This is done
with information which is either pre-set in the system or entered by the programmer or the
operator by using the ASSGN job control statement or the ASSGN job control command.

The ability to reference an I/O device by a symbolic device name instead of a physical address
permits a program to be written that is dependent only on device types and not on actual
device addresses. The programmer selects a symbolic name from a fixed set of logical names.
At execution time this name is associated with an actual physical device through tables stored
in the VSE supervisor. Symbolic device names are also referred to as symbolic names, logical
units, and logical unit names. These terms are used interchangeably.

Before we get into the details of handling device assignments, you should be familiar with the
way in which the System/370 and 4300 Processors organize the addresses of input-output
equipment. Take a look at the configuration chart in Figure 2.8.

Unit 2: Job Flow and Job Control

CONFIGURATION CHART

CPU

02C 240

CARD READER

02D 241

CARD PUNCH

242

PRINTER

5000
(

TAPE DRIVES DISK DRIVES

Figure 2.8 - Configuration Chart

This chart is not meant to represent a particular installation, but is merely designed to illustrate
a typical set of physical device addresses.

Notice that each device is associated with a three digit hexadecimal number. These physical
addresses are the means by which devices are known to the VSE supervisor. Remember, it is
the supervisor that handles program requests for I/O transmissions. The supervisor must have
a method for uniquely identifying every piece of 1/O equipment attached to the CPU. The
device addressing method that has been designed into the processor architecture is one that
represents the address of any device as a three digit hexadecimal number. The digit positions
represent channel, control unit, and device. See Figure 2.9.

Page 2 -15

'S

Unit 2: Job Flow and Job Control

CPU

CONTROL DEVICES
UNIT
CHANNEL 1 CONSOLE
0 ’///////
CARD
READER
2
! TAPE
2
DISK
- g DISK
\/

Figure 2.9 - Device Addresses

Page 2 -16

This threefold addressing system allows the user to control a great number of devices in a
simple fashion. Each three digit address represents a single device and a data path to that
device. For example, address 02C corresponds in this case to a card reader, and specifies a
path of data flow through channel 0 to control unit 2 to device C. The disk devices 240 and
241 are both on the same channel and control unit, but have different device addresses.

The supervisor must know the three digit hexadecimal address of the unit you wish to access so
it can construct the proper sequences of channel commands to handle the I/O operation. See
Figure 2.10.

Unit 2: Job Flow and Job Control

PROCESSOR STORAGE

Read from 02C
write to 181
SUPERVISOR 181

Figure 2.10 - Data Transmission

Then why not just code the device addresses right in your program? In other words, if you
need to access the disk on disk drive 240, why not simply code the hexadecimal address value
of 240 in your program? If you’re not sure of the answer to this question, take a few moments
to think about it before going on.

The point is that you want to access a particular disk, and don’t care what disk drive the disk is
on. This is the concept of device independence, a basic architectural consideration of modern
processors. If you compile your program with the specific hardware address of 240 embedded
in it, what happens when execution is attempted when device 240 is not available? You either
recompile your program to point to the address of a device that is available, or else wait until
240 comes back up.

Neither of these is a satisfactory choice, so VSE allows you to defer choosing devices the
program is to use until just before that program executes. The means by which this is accom-
plished is through symbolic (logical) unit names.

The ASSGN job control statement or command is used to make associations between symbolic
unit names in your programs and actual physical device addresses. ASSGN is the principle
means by which you relate a program to the location of the data files it is to process.

Permanent Assignments

Permanent assignments are usually made at IPL time. A permanent assignment permits a
particular symbolic name to be connected to a given device when such an association is to be
commonly used on a system. For example, SYSRDR, the device on which the job control
program looks for its input, is generally assigned to a card reader, and that assignment is rarely
changed. Permanent assignments are in effect at all times unless overridden by ASSGN job
control statements or commands.

Page 2 -17

Unit 2: Job Flow and Job Control

System logical units have names that consist of six alphabetic characters, such as SYSRDR,
SYSPCH or SYSLST. They are used by the component programs of VSE and are listed for
you along with their uses in the Introduction to the VSE System manual in the Illustration
"Logical unit names recognized by VSE/Advanced Functions."

Programmer logical Units are for the programmer’s use and have names of the form SYSnnn,
where nnn ranges in value from 000 to 254. Be careful in choosing these names, as certain of
them are also used by component programs of VSE. These include SYS000 through SYS004
and sometimes SYS00S5. The linkage editor uses SYS001 and the Assembler uses SYS001,
SYS002, and SYS003. Some IBM language translators and utilities also use SYS004 and
SYS005.

In order to use the ASSGN you must first select programmer logical units in your program.
Figure 2.11 shows how these units are designated in a variety of programming languages,

Page 2 -18

Unit 2: Job Flow and Job Control

ASSEMBLER LANGUAGE

Figure 2.11 - Specifying 1/0O Devices

: IBM Assembler Coding Form
PROGRAM R o o
1 PUNCHING
H PROGRAMMER DATE INSTRUCTIONS
STATEMENT
i Nome Operation Operand
i 1 8 10 14 16 20 25 30 35 40 45
: T T ; T T ‘
; e T BN |
§ ONE DTFMT| PEVADPR=SY|sg12 ,RECSI[ZE=84], -|. .
ﬁ N L ! | ‘ .
Two DTFPR| PEVADIDR=SYsF14,RECSI|zE=84], . ..
; T T | B -
IR B
; COBOL
IBM COBOL Codmg Form
SYSTEM o S PUNCHING INSTRUCTIONS
posra e[
PROGRAMMER l DATE g PUNCH ‘
: — B A
SEQuEncE (5 iA 8 COBOL STATEMENT
1 3 A718 "'727177 - 20 T ® a8 52 . so‘ .
’ 01LT BEREI I l [‘ lllf‘| j
i 1ENV1,\R9yA ENT D1 vrstow R R
3 [INPUT-OUTPUT sec*rrou‘ T
04 FLILE-(co TROH g5 | e
ALEmCONT -
R S\ELECT TWFLE ASSI‘GN T&O SYS¢IQ‘ UT-34«2 =S I I
‘ f*" @ELECT\T PRFLE ‘ASSI‘GN T0 sv9¢'14w uR-,az[-S. | g
‘ | H | I |
RPG
File Description Specifications
[File Type Mode of Processing File Addition/Unordered
File Designation Length of Key Field or Extent Exit Number of Tracks.
of Record Address Field g for DAM for Cylinder Overflow
End of File Record Address Type Name of Number of Extents.
Line Filename Seauence Jvoe of Fie 2 Device Symbolic Labei Exit Tape
. Fite Format o Aaanonst Ares | 8 Device f§f3 Core Index fowind
‘ t EHRE osTmp— ol
2 e S S ° g Block Record S g ey Fieid | § Continuation Lines -
: K Q2|u[3] tron | veen (s](FJof | swume | [o o B :
? o[[HaPEIM | 1Tl [F] | o8] [18 TAFE | | [sYSida2
o3| [FPRItINTER] |d F| | g 0|F] PRI N[T/E[R|SYS|dLi4
SENailn T T
ofs[eI TTTTI [T | I
j, PL/1
§ I [HQ.AA!A,,§. |] .
! SOMERT : PPROCEDURE oprroms (WAIN)
{ | DCL TPFLE FILE STREAM INPUT‘ENVQMEPIUM(Sisﬁﬁﬁ) F RECS1ZE(8/)),; o
i DCL PRFLE FILE STREAM»OUTPUW PRINT EWV(MEVHUM(SVSﬁL{ﬂ F_REQSLZE(S%))L
i : | . . ; 1 o |
; | \ :
g . . | I

Page 2 -19

Unit 2: Job Flow and Job Control

When a job is submitted for execution, connections between symbolic unit names used in the
program and actual devices (supplied by ASSGN’s) are completed. Note that the ASSGN
format is .

// ASSGN SYSnnn,cuu

where the ‘cuu’ positions represent the channel, control unit, and device portions of the three
digit hexadecimal address. See Figure 2.12.

// JOB ANYNAME
// ASSGN SYS012,181
// ASSGN SYS014,02E
// EXEC MYPROG

/&

Figure 2.12 - The Final Links

How it Works

The job control program processes ASSGN statements by making connections between tables
in the supervisor known as the LUB and PUB tables.

The LUB Tables

LUB stands for Logical Unit Block, and the supervisor contains one of these tables for each
partition in your system. The LUB Table for a partition contains an entry for each of the
symbolic names that can be used in programs that run in that partition. These names include
the system logical units (SYSRDR, SYSPCH, SYSLST, etc.), and some number of programmer
logical units in the range SYS000 through SYSmax. The range SYS000 to SYSmax is continu-
ous and has no gaps. The application programmer is usually not concerned with how the value
of SYSmax is determined. Your operations department will be able to supply you with the
proper value.

The PUB Table

PUB stands for Physical Unit Block and unlike the LUB Tables, there is only one PUB Table
to a system. It contains an entry for each physical device attached to the system. As ASSGN
statements are processed, the job control program causes the appropriate entries in the LUB
Table associated with the partition in which job control is running to point to the designated
PUB entry. See Figure 2.13.

Page 2 -20

BG

JOB CONTROL

BG LUB PUB
SYS000 02C
SYS001 .,_/ 02D
SYS002 02E
SYS003 /
SYS004 " 240
SYS005 241

SUPERVISOR

F1LUB

SYS000

SYS003

SYS004

SYS005

Figure 2.13 - ASSGN Processing

Unit 2: Job Flow and Job Control

JOB
ASSGN
ASSGN

JOB
ASSGN
ASSGN

F1J0OB1

SYs001,181

SYs002,240

BGJOB1

SYs001,02C
SYS003,02E

In this two partition example, job control is active in both BG and F1 at the same time. This is
possible because the supervisor has loaded a copy of the job control program from the Core
Image Library into both partitions.

Notice that since each partition has its own LUB table in the supervisor, it is no problem for
both BG and Fl to be referencing any of the system or logical program names simultaneously.

Here, BG and F1 are both using SYS001, but this is a different SYS001 for each partition.
There is, however, only one each of the physical devices in existence on the system and most
of these are not shareable by more than one partition at a time. See Figure 2.14.

Page 2 -21

Unit 2: Job Flow and Job Control

// JOB F1JOB2 : ’

// ASSGN SYS001,02C

(1]l JOBCONTROL
e e // ASSGN SYS002,240

BG JOB CONTROL “ // JOB BGJOB2
// ASSGN SYS003,02C
// ASSGN SYS004,02D

BG LUB PUB F1LUB
SYS000 2| o02c ?\ SYS000
SYS001 02D SYS001
SYS002 02E SYS002 |
SYS003 181 j SYS003
SYS004 240 SYS004
SYS005 241 SYS005
SUPERVISOR

Figure 2.14 - Device Contention

In this case, both F1 and BG are contending for use of device 02C at the same time. The
device can only service one partition, so one job will be held up while the other is allowed to
execute. Only direct access storage devices (DASD) are shareable among your system’s

partitions.

Information from the LUB and PUB Tables can be obtained by using the LISTIO job control
statement. The PROG parameter requests a listing of the physical units assigned to all
programmer logical units of the partition in which the LISTPROG job is run. Figure 2.15
shows a portion of the output generated by LISTIO. The numbered headings are explained

below the figure.

Page 2 -22

Unit 2: Job Flow and Job Control

OBTAINING INFORMATION FROM LUB AND PUB TABLES

// JOB LISTPROG
1 LISTIO PROG
/&

O @]

O O
| ° ** BACKGROUND ** °
@] O
: © 0 mnir Cwr ct i Owone 0
5 o sYS000 *k YA K* o
; o SYs001 ** UA ** o
| ° sYs001 PRM 2 41 o
| o SYS002 2 41 o
% o 5YS003 2 41 o
| 9 8YS004 *k UA Kk o
; o SYS005 *% UpA K* o
; ° SYS006 *% UA ** ©
; 9 sYs007 k% UL K o
| o SYS008 *k Up *x o
[° SYS009 ** UA K% o
% /\/
i o]

i
i
}
i
i

Figure 2.15 - LISTIO Output

@ Refers to the partition for which this information applies. Here you see the LUB’s
belonging to the BG partition and the PUB entries they are assigned to, if any.

© Logical Unit Names. These can be system or programmer logical units.

9 Comments. PRM means that SYS001 was permanently assigned as 241 but is temporari-
ly superseded by the assignment shown one line higher, that is, SYS001 is temporarily
unassigned.

@ The three digit hexadecimal address of a physical device. UA means unassigned: there is
no physical device assigned to the LUB. Any attempt by a program to reference a device
which has been assigned as UA will cause an abnormal termination of that program.

The UA entries can be eliminated from the listing by coding LISTIO with the ASSGN
parameter. This will cause only the currently assigned devices in the partition to be
printed.

@ The mode column indicates conversion and translation features for tape drives.

Page 2 -23

Unit 2: Job Flow and Job Control

The VSE/Advanced Functions System Control Statements manual contains complete specifica-
tions on coding the LISTIO statement.

Figure 2.16 shows the program development process and illustrates how symbolic device
names are embedded in a program from initial coding to final execution.

When the program is to be executed, these logical names are associated with real physical
devices by means of permanent assignments generated with the VSE system or through
ASSGN cards submitted with the job. The VSE supervisor can carry out all the program’s I/0O
requests correctly by using the links established in the LUB Table for the partition in which the
program is executing.

Page 2 -24

Unit 2: Job Flow and Job Control

ONLY SYMBOLIC DEVICE NAMES
EVER APPEAR IN A PROGRAM

The program is
written

EVADDR=

O s,

| DTFPRD

COMPILE

The program is
compiled

LINK EDIT

The program is
link edited

CORE IMAGE LIBRARY

The program inthe
core image library

The program in
execution

Figure 2.16 - Using Symbolic Device Names

Page 2 -25

Unit 2: Job Flow and Job Control

Unit Summary

Page 2 -26

The System Control Statements manual is your basic guide to VSE job control. Never "guess"
at how a job control statement or command is coded, but rather look it up in the manual to be
sure you have the correct format.

Whether a job stream should consist of multiple jobs or a single job with a multiple number of
steps is a function of the degree of dependence between the programs involved. The sequence
of compile, link-edit, and execute is a common example of a multiple step job. Each step in
this sequence (except the first) is dependent on the successful completion of the previous step
or steps.

During the execution of your job stream, the VSE operator is kept informed of your program’s
requirements through console messages. The structure of a VSE message includes a partition
identifier, a reply-ID, a message code, and the message text: these elements allow the operator
to respond properly to system requests.

A Procedure Library holds commonly used sets of job control statements, and the EXEC
statement is used to invoke a cataloged procedure. Later, we will cover more advanced uses of
a Procedure Library, such as how to temporarily modify the contents of an invoked procedure.

The concept of device independence is an important one in any modern operating system. It
allows programmers to reference logical names within their programs that only become
associated with actual physical devices at execution time. The user is not "locked in" to any
particular fixed addresses, and is usually able to run whatever programs must be run regardless
of the physical devices available at any given time.

Device independence is implemented under VSE by means of tables for the logical and
physical representation of I/O devices. The LUB tables (one per partition) are used to
associate system and logical unit names to the actual physical devices attached to your VSE
system. The physical devices are listed in the PUB table (one per VSE system) and the
LUB/PUB association is made via the ASSGN statement or command. ASSGN will be
discussed in more detail in the next Unit.

Finally, the LISTIO statement is available for investigating the status of device assignments at
your request.

Take the Mastery Test that follows.

Mastery Test

Unit 2: Job Flow and Job Control

The sequence compile, link-edit, and execute is a common example of a
a. multiple step job
b. multiple job step -
c. independent job
d. partition dependent procedure
Jobs may be cancelled because of errors in
a. your job control statements
b. your program’s logic
c. your instructions to the operator
d. all of these
The statement EXEC PROC=XYZ is invoking
a. amember of a Procedure Library named XYZ
b. a member of a Core Image Library named XYZ
c. amember of a Procedure Library named PROC
d. a member of a Core Image Library named PROC
Cataloged procedures are useful because they allow you to
a. reduce operator card handling
b. store frequently used job control on disk
c. save file cabinet space
d. all of these

Every piece of I/O equipment attached to a System/370 or 4300 has a three part address
consisting of R R

a. channel, control unit, device

b. control unit, channel, device

c. control unit, device, channel

d. device, channel, control unit

Device independence allows the user to

a. ignore program device requirements

b. defer choosing program devices until execution
c. embed actual device addresses within programs

d. recompile programs at will

Page 2 -27

Unit 2: Job Flow and Job Control

7. A device assignment is one that is
a. made with a job control statement
b. made by the operator
c. made to be temporary or permanent
d. all of the above
8. There is a LUB table for each
a. device
b. channel
c. partition
d. system
9. There is one PUB entry for each
a. device
b. channel
c. partition

d. system

10. The device on which the job control program looks for its data is known as

a. SYSIPT
b. SYSRDR
c. SYS000
d. SYSPCH

.r

Page 2 -28

Unit 2: Job Flow and Job Control

11. Code the JCL required to execute the program named UPDATE. Choose your own
jobname and do not be concerned with label information.

ONIZO.

SYS007 SYS008
UPDATE
02D 02E
SYS009 SYS010 SYS011

Page 2 -29

Unit 2: Job Flow and Job Control

Questions 12 through 15 are based on the following reading assignment:

In the document:

VSE/Advanced Functions System Management Guide
Under the heading:
"Relating Files to Your Program"

Read:

Through and including the sub-heading "Types of Device Assignments." (Don’t be concerned
about references to label or extent information. This material will be covered in later Units.)

12. The name SYSIN can be used to combine the functions of and

a. SYSRDR and SYSPCH
b. SYSRDR and SYSOUT
c. SYSRDR and SYSIPT
d. SYSIPT and SYSRES
13. Which one of the following assignments is invalid? Why?
a. // ASSGN SYSRDR,140
b. ASSGN SYSPCH,140
c. // ASSGN SYSRES,140
d. ASSGN SYS000,140

14. A temporary device assignment can be reset by a
a. /& statement
b. // JOB statement
c. RESET statement or command
d. any of these
15. A permanent device assignment can be changed by a
a. /& statement
b. // JOB statement

c. RESET statement or command

a

none of these

Page 2 -30

Unit 2: Job Flow and Job Control

1. a
2. d
3. a
4. d
5. a
6. b
7. d
8. ¢
9. a
10. b
11. Two solutions are provided:

// JOB NAMEX

// ASSGN SYS007,180
// ASSGN SYS008,181
// ASSGN SYS009,182
// ASSGN SYS010,02D
// ASSGN SYS011,02E
// EXEC UPDATE

// JOB NAMEY

// ASSGN SYS011,02E
// BASSGN SYS010,02D
// ASSGN SYS009,182
// ASSGN SYS008,181
// ASSGN SYS007,180
// EXEC UPDATE

The point is that the sequence of the ASSGN statements makes no difference.

12. ¢

13. c is invalid because SYSRES is "assigned" by the IPL procedure and cannot be refer-
enced as Operand 1 of an ASSGN statement.

14. d
15. d

You should have completed this test with no more than five incorrect answers. If you had more
than five wrong answers, it is suggested that you repeat your study of this Unit.

sroputer Exercise

If you successfully completed the Mastery Test, do Computer Exercise 1 in Appendix A.
When you have submitted this job for execution, continue with Unit 3.

Page 2 -31

Unit
I S P
D
A A
E D T
Y P Y I
D u E T D
N M D N M D
0 G 0 P
‘I’ u P D E u P E P D
1 R A T
T Y I NI I NOOT Y I DE
T 0G P T 06 M E T 06 M P T D
u 0 E N TU 0 E ST R D N uD)
Y 06 E D Y 06 E D D RO D N ST 0
o M D NT DY R AM D NT D R AM D NT PO
R M ND EN D P RM ND ENT D P R MIND ENT D RO M
A IN E N u P A IN E N TU P R IN E N U R IND
M EP NDE ST GR EP ND RA u EP
D ND T STU PR D ND TU PR R D ND TUY O ND
D EN E T R G D EN E T R G D EN TU R R M END
PE D ST P O I PED T ST PO N PED T STU A ND N T
N ONT S U Y ROGR NT S UDY ROGR NT S UY ROG EN T
£ TUD PROGRAM E N UDY PRO RA E N UD PRO RA ND PE S
STU PROG AM N EPE DE STU PR R N E END T ST PR G AM N EPE T TD

S Y PR GR INDEPEN EN S Y PR GR I DEPE ENT ST DY PR GR INDEP DENT S upe
D PR GRAM IN P ND N S D PR GRAM I P ND NTS D PRORMTI E EN T STU PRO
Y PROGR NDEP NDEN S UDY P OGRAM NDEP NDENT TUDY PR GRAM IND PEN ENT TUDY 0 R
PROGRAM INDEPEN ENT S UDY PROG AM IND ENDE T S UDY ROGRAM I DEPENDEN STUDY PROGRAM
OGRAM INDEPENDENT STU Y PROGRAM IN EPE DENT ST D P OGRAM INDE ENDENT STUDY PROGRAM I
RAM INDEPENDENT STUDY ROGRAM INDEPENDE T STUDY PR GRAM INDEPENDENT STUDY PROGRAM IND
M INDEPENDENT STUDY PROGRAM INDEPENDENT STUDY PROGRAM INDEPENDENT STUDY PROGRAM INDEP
INDEPENDENT STUDY PROGRAM INDEPENDENT STUDY PROGRAM INDEPENDENT STUDY PROGRAM INDEPEN
DEPENDENT STUDY PROGRAM INDEPENDENT STUDY PROGRAM INDEPENDENT STUDY PROGRAM INDEPENDE!
PE T STUDY PROGRAM INDEPENDENT STUDY PROGRAM INDEPENDENT STUDY PROGRAM INDEPENDENT
\ND STUDY PROGRAM INDEPENDENT STUDY PROGRAM INDEPENDENT STUDY PROGRAM INDEPENDENT S
INT STUDY PROGRAM INDEPENDENT STUDY PROGRAM INDEPENDENT STUDY PROGRAM INDEPENDENT STU
T STUDY PROGRAM INDEPENDENT STUDY PROGRAM INDEPENDENT STUDY PROGRAM INDEPENDENT STUDY
STUDY PROGRAM INDEPENDENT STUDY PROGRAM INDEPENDENT STUDY PROGRAM INDEPENDENT STUDY P
JDY PROGRAM INDEPENDENT STUDY PROGRAM INDEPENDENT STUDY PROGRAM INDEPENDENT STUDY PRO
Y PROGRAM INDEPENDENT STUDY PROGRAM INDEPENDENT STUDY PROGRAM INDEPENDENT STUDY PROGR.
°ROGRAM INDEPENDENT STUDY PROGRAM INDEPENDENT STUDY PROGRAM INDEPENDENT STUDY PROGRAM

| J .
nit 3:

£ EH

Controfling Program Execution

introduction

Obiective

Up to this point, much of what you have learned has been conceptual in nature, that is, you
know a lot about how VSE works but not too much about how to make it work for you. In this
Unit you will be taught a variety of the basic skills you need to work profitably within the VSE
environment.

Upon completing this Unit, you should be able to:

Assignment 1

« Use the OPTION job control statement to control language translator operations.

« Prepare the job control statements necessary to assemble or compile a source program.

Assignment 2

« Code both temporary and permanent ASSGN statements for a variety of file conditions.
« Use generic device assignments.

« Prepare a basic set of job control statements to compile (or assemble), link-edit, and
execute a program.

Assignment 3

o Use the Messages manual to respond to system messages.

Study Guide (SR20-7300)

The following VSE reference material:

VSE/Advanced Functions System Control Statements (SC33-6095)
VSE/Advanced Functions Messages (SC33-6098)

VSE/Advanced Functions System Management Guide (SC33-6094)

Page 3 -1

Unit 3: Controlling Program Execution

Page 3 -2

The compilers, or language translators, are programs that transform source code into machine
language object modules. Language translators include Assembler, COBOL, PL/I, RPGII, and
FORTRAN. This Assignment covers what information the language translators need to do
their work, how to supply that information, and how to control their operations.

Language translators require certain information about the facilities they are using, and it is up
to you to provide that information. Figure 3.1 shows the input, output, and work files required
for a compilation.

Unit 3: Controlling Program Execution

<
~N
\
ASSEMBLY
.t... FCOBOL
PLIOPT
Only if an object deck . RPGII P L ~
is desired. // FFORTRAN \ /1
/ p =
/ X]
/ J— =
’ 1]
] \‘.—”
\ |
/ |
~ P A ;
SOURCE
SYSRDR PROGRAM
SYSIPT f’) @
STORAGE ARy |
MAPPING J N
PN] |
' 1 \‘___I’
Page Data Set H !
. PROGRAM /
S —> CPU —— > LISTING (s = ;
RESIDENCE SYSLST
SYSRES ,/
’\\ //\ H
OPERATOR : -——"
CONSOLE -l H
< ! SYS001
)/ \) SYS002
SYSLOG L_-” SYS003
OBJECT DE / (SYS004 COBOL)
cx ,..::_ (SYS005 COBOL)
SYSPCH
(Optional)

Figure 3.1 - Device Assignments Required for a Compilation

There are several important points to notice about this illustration.

o Many of the required device assignments are the same for Assembler, COBOL, PL/I,
RPG, and FORTRAN. These common assignments perform the same function regardless
of which compiler is active, e.g., SYSIPT is always the unit on which source language
statements are entered, SYSLST always receives the printed output, and so on.

’ « SYSIPT and SYSRDR can have the same physical device assigned to them or they can be
assigned to separate devices.

Page 3 -3

Unit 3: Controlling Program Execution

« SYS001 through SYS003 (and through SYS005 in the case of COBOL) are associated
with work files.

« The SYSPCH assignment is optional. It is needed only if you desire an object deck.

« The ASSGN cards shown in the figure would not be needed if all the device assignments
had been made permanent. Remember, permanent assignments are retained by VSE
across jobs and across IPLs.

Most installations make these assignments permanent, so the number of job control statements
that must be submitted are kept to a minimum.

Figure 3.2 illustrates the amount of JCL you would have to submit for a COBOL compile
operation were it not for the ability of VSE to make required information standard in the
system.

* COMPILE A SOURCE PROGRAM PRODUCE A
* LISTING AND AN OBJECT MODULE

* ASSUMPTIONS: ONLY SYSRES, SYSRDR, and
* SYSLOG ARE STANDARD ASSIGNMENTS.
* NO LABEL INFORMATION IS STORED.

// JOB COMPILE
// OPTION LIST,DECK
// ASSGN SYSIPT,SYSRDR Assign SYSIPT

// ASSGN SYSLST,O02E Assign SYSLST

// ASSGN SYS001,292 Assign SYS001 Workfile
a // ASSGN SYS002,292 Assign SYS002 Workfile

// ASSGN SYS003,292 Assign SYS003 Workfile

// ASSGN SYS004,292 Assign SYS004 Workfile

// ASSGN SYSPCH,02D Assign SYSPCH

// DLBL e label information for:

// EXTENT SYS001,... the SYS001 Workfile

// DLBL e

// EXTENT SYS002,... the SYS002 Workfile
B/, pisr ...

// EXTENT SYS0O03, ... the SYS003 Workfile

// DLBL e

// EXTENT SYS004, ... the SYS004 Workfile

// EXEC FCOBOL, SIZE=64K
...COBOL source deck...

Figure 3.2 - Full JCL Requirement

Kl Assign required devices that are not permanent assignments for the installation.

Provide label checking information required for the work files. The DLBL and
EXTENT job control statements are not completely coded here. These statements will
be described in later Units.

21 he

nation Keguirems

In addition to device assignments, certain other information is required for the execution of a ‘
language translator:

Page 3 -4

Unit 3: Controlling Program Execution

« How much processor storage will be available to the language translator? You communi-
cate this to the system via the SIZE= parameter on the EXEC statement.

o Information for checking file labels is required. The translators use labeled work files,
and these labels must be checked by the system.

« What kind of output do you want? Do you want a program listing? A relocatable
module? A cross reference list? The OPTION statement is used to communicate your
needs to the compiler.

B8 o ™ pmgymenilen oo Bl oy g
G TO LOmMDne B 0

Figure 3.3 shows that just a few JCL statements are required when permanent assignments are
used and when label information required to check labels on the compiler’s work files has been
stored within the system. Figure 3.3 also shows coding for the SIZE= parameter of the EXEC
statement and for the OPTION statement.

* COMPILE A SOURCE PROGRAM, PRODUCE A
* LISTING AND AN OBJECT MODULE
*
// JOB COMPILE
// OPTION LIST,DECK
// EXEC FCOBOL, SIZE=64K
...COBOL source deck goes here...
/%
/&

Figure 3.3 - JCL to Compile a Program

El The OPTION job control statement is used to specify output requirements within the job.
LIST and DECK request a listing of the compiled program on the system printer
(SYSLST), and a punched object module on the system punch (SYSPCH).

SIZE=64K limits the COBOL compiler to the use of only 64K of the partition in which it
executes.

In the figure, the first three statements are comment statements and are not required except for
descriptive purposes. That leaves just five statements (JOB, OPTION, EXEC, /*, /&) as
necessary to this compilation.

The SIZE parameter limits the amount of partition space available to the program named in the
EXEC statement (FCOBOL in Figure 3.3). Language translators are "'storage gobblers,' that
is, they dynamically allocate processor storage to hold tables and work areas used during the
translation process. Coding the SIZE parameter constrains the translator’s use of the processor
resource and forces the tables and work areas to disk.

Your operations department should be able to tell you what the proper value of the SIZE
parameter is at your installation.

When the job control program processes the OPTION card, it sets on bits in the partition’s
communication region. When the translator executes, it checks these bits to see what the
requirements are.

Page 3 -5

Unit 3: Controlling Program Execution

Page 3 -6

In the example in Figure 3.3, the LIST option tells the translator to produce a listing of the
source language statements, while the DECK option requests an object deck.

Obviously, most people would want to get a source language listing, so is it really necessary to
code LIST on an OPTION card every time you run a translation job? The answer is generally
no, because any of the OPTION parameters can be established as system standard options when
you IPL your VSE system. When the system standard options agree with what you want from
a translation, there is no need to provide an OPTION card. LIST would be a standard at most
installations.

Figure 3.4 is a partial list of the parameters you can code on an OPTION statement. Notice
that the options are listed in pairs:

DECK AND NODECK, LIST and NOLIST, etc.

Your installation will have one or the other member of each of these pairs as standard on your
system. A complete list of all the options can be found in the VSE/Advanced Functions System
Control Statements manual under the OPTION statement.

 KEYWORD

DECK
NODECK

ALIGN
NOALIGN

LIST

NOLIST

LISTX

NOLISTX

SYM

NO SYM

XREF
NOXREF

i am O ——

' ERRS

48C
60C

NOERRS

Unit 3: Controlling Program Execution

Language translators produce object module, on SYSPCH.

Suppresses the DECK optlon

The assembler alugns constants and data areas on proper boundrres and checks the
ahgnment of addresses used in machine instructions.

Suppresses the AL|GN optlon

Language translators write the source module Irstmg on SYSLST The assemb|er also
- writes the hexadecimal object module listing and the assembler and FORTRAN write a
- summary of all errors in the source program. All are written on SYSLST.

- Suppresses the LIST option. In addition, this option overrides the printing of the ex-
; © ternal symbol dictionary, relocation list dictionary, and cross-reference list (see the
XREF optlon)

~ The ANS and DOS/VS COBOL compilers write a PROCEDURE DIVISION MAP on
SYSLST. The PL/I and FORTRAN compilers write the object modules on SYSLST.

Suppresses the LISTX optron

The American National Standard and DOS/VS COBOL compllers write a DATA DIVISION
© MAP on SYSLST; the PL/I compiler writes the symbol table on SYSLST.

Suppresses the SYM optlon

' The assembler writes the symbollc cross-reference list on SYSLST.

Suppresses the XREF optron

The FORTRAN, ANS and DOS/VS COBOL, and PL/I compllers summarize all errors in
"j the source program on SYSLST.

Suppresses the ERRS optnon

Specrfnes the 48-character set on SYSIPT (for PL/I).
Speccfles the 60-character set on SYSIPT (for PL/1).

s

Figure 3.4 - Some of the Available Options

How They Work

Let’s look at an example. Assume first that the LIST option is the system standard. This
means that a program listing is produced for every translation. But suppose you don’t want a
listing for a particular translation--you want to suppress the LIST function. You would submit
the following card with your job:

// OPTION NOLIST

NOLIST suppresses the listing for one job. At the job’s conclusion, options set via the
OPTION statement are reset automatically, and the system standard options are back in effect.
LIST will be in effect for all translations that follow yours (assuming no one else has also
suppressed the LIST function with an OPTION NOLIST statement).

Page 3 -7

Unit 3: Controlling Program Execution

Code the OPTION statement either when you want to override a system standard option or
when you are not sure what the system standard is and want to insure the proper output from
your run. It does not hurt anything to code

// OPTION LIST

when the system standard is already LIST. If you are in doubt as to what the standard is,
include the OPTION card with the parameters you want. The system standard will be taken
for any parameters you leave out.

Page 3 -8

Exercise 3.1

Unit 3: Controlling Program Execution

Do this review Exercise, then do Computer Exercise 2 in Appendix A. Do not go on in this
Unit until you have completed the review Exercise and prepared the Computer Exercise for its
first run. You may continue your work in this text while awaiting the results of the Computer
Exercise.

1.

Match each item in the left hand column with its related element in the right hand
column.

a. SYSIPT 1. Program listing
b. SYSRDR 2. Object deck

c. SYSPCH 3. Source deck

d. SYSLST 4. Work file

e. SYS001 5. JCL statements

If VSE did not have the ability to maintain permanent assignments, what other technique
could be used to reduce the number of JCL cards you would have to handle for a
translation?

Find the errors in the following sequences of JCL.

a. // JOB ANYONE
// EXEC FCOBOL,SIZE=64K
// OPTION LIST,DECK
. COBOL Source .
/*
/&

b. // JOB ANYTWO
OPTION NOLIST,NODECK
// EXEC FCOBOL,SIZE=64K
. . COBOL Source .
/*
/&

Use the System Control Statements manual to help you answer the following questions. Don’t
be concerned about any options other than the ones being asked about in each case.

4.

Code the OPTION card for a run of the VSE Assembler that will suppress the relocation
list dictionary and cancel the job if an ASSGN fails.

Code the OPTION card to cause PL/1 to:
a. Use the 48-character set
b. Produce a symbol table on SYSLST
c. Suppress the object deck

Code the OPTION card to cause any translator to pass its output to SYSLNK in prepara-
tion for later link-editing.

Page 3 -9

Unit 3: Controlling Program Execution

1 a. 3
b. §
c. 2
d. 1
e. 4

2. A Procedure Library could be used to hold the JCL required for a translation.

3. a. OPTION must precede the EXEC statement that invokes the translator, which is
COBOL in this case.

b. The OPTION statement must have slashes in columns 1 and 2.
4. // OPTION NORLD,ACANCEL
5. // OPTION 48C,SYM,NODECK
6. // OPTION LINK

Do Computer Exercise 2 in Appendix A. When you have submitted it for execution, go on to
the next Assignment in this Unit.

Page 3 -10

Unit 3: Controlling Program Execution

You learned the basic format of the ASSGN in Unit 2, and used it to associate physical devices
with symbolic unit names. In this Assignment you will learn the ASSGN statement’s full
capabilities. You will also learn how to code the JCL required for a simple compile, link-edit,
and execute operation.

Becoming proficient in the use of the ASSGN statement simply requires practice. For this
reason a number of exercises that follow require you to code ASSGN statements in a variety of
ways. It is suggested you do not skip over any of these exercises, as practice with them will
greatly reinforce your learning.

Look at the illustration of the general format of the ASSGN in the VSE/Advanced Functions
System Control Statements manual, but do not read any of the text in the manual at this time.
For now, read only the material presented below.

The ASSGN may be coded in either statement (slashes) or command (no slashes) format.
Remember that JCS format is normally used by programmers while JCC format is normally
used by the operator. Regardless of who uses it or how it is submitted (via an actual card or
typed in at the system console), the JCS format denotes a femporary device assignment while
the JCC format denotes a permanent device assignment.

A temporary assignment is in effect only during the job in which the ASSGN appears. Perma-
nent assignments are made at IPL time and are always in effect unless specifically overriden by
a temporary ASSGN or another permanent ASSGN. Normally, at IPL time, permanent
ASSGN’s are made for all the standard device assignments at the installation.

Another way to specify whether an assignment is to be temporary or permanent is with the
TEMP and PERM optional operands. If either of these operands are present on an ASSGN
card, it overrides the presence or absence of slashes in columns 1 and 2.

Other Operands

The first required operand is always a symbolic unit name of the form SYSxxx, where xxx
corresponds to one of the valid system or programmer logical unit designations. Considera-
tions for and restrictions on this operand are described in detail in the System Control
Statements manual.

OPERAND 2: This field specifies the device to which the symbolic unit name SYSxxx will be
assigned. Any supported SYSxxx can be assigned as shown in Figure 3.5.

Page 3 -11

Unit 3: Controlling Program Execution

Page 3 -12

OPERAND 2
¢ to NO device UA, IGN
« to a specific device Cuu
« to a selected device (address-list)
G from a list of devices
E
N | ¢ to adevice already SYSyyy
E assigned to another
R symbolic unit
I
C e toadevice of a 3203, 3505,
particular "type" 3310, 3340, ...
« to adevice of a READER, PUNCH
particular "class" PRINTER, TAPE
DISK, DISKETTE

CKD, FBA

Figure 3.5 - Types of Assignments

Generic assignments permit great flexibility in the way an association is made between a
symbolic unit and a physical device. In a generic assignment, a specific physical device is not
specified, rather a list of addresses, another symbolic unit name, or a device type or class is
specified. The purpose of doing this is to let the VSE system select the particular device for

you.

OPTIONAL OPERANDS: This field contains a variety of operands that generally have .
meaning only for particular device types. Exceptions to this are the TEMP/PERM operands,

which may be applied to any device assignment.

Figure 3.6 illustrates a variety of generic assignments, some of which contain one or more

optional operands.

// BASSGN
// ASSGN
// BSSGN
ASSGN
// ASSGN
// ASSGN
// BSSGN

NoUnERN =
~
~

SYS007, SYSRDR

SYS012, TAPE
SYS011,DISK, SHR
SYS013,3340,V0L=123456, SHR
SYS014, TAPE,CO

SYS016, (183,180, 182)
SYS017,FBA,VOL=111111, SHR

Figure 3.6 - Generic Assignments

1. This specifies that SYS007 is to be assigned to whatever device is currently assigned to
SYSRDR. If the SYSRDR assignment is to device 02C then SYS007 will also use 02C.

2. TAPE specifies that SYS012 is to be assigned to an available tape drive of any type. The
job control program will search the PUB table for tape drives and will associate the first
unassigned drive it finds with SYS012.

Unit 3: Controlling Program Execution

DISK specifies that SYS011 is to be assigned to any available disk. The SHR optional
parameter says that the selected drive may already be assigned to another partition. If
SHR were not specified, SYS011 could only be assigned to a disk not in use by any
partition, that is, not ASSGNed in any partition. Only direct access storage devices
(DASD) can be shared by different partitions. The method of storing data on direct
access devices allows for different programs to concurrently access data. This is not
possible for tapes, printers, or card devices, nor is it allowed for diskettes.

3340 specifies that SYS013 is to be assigned to a 3340 disk drive that has a volume
mounted with the serial number 123456. The VOL= specification cannot exceed six
alphameric characters. The disk is to be shareable, that is, it may have other assignments
associated with it.

This specifies that SYS014 is to be assigned to an available tape drive. Once the assign-
ment is made, the CO parameter is processed to set the recording made in the selected
tape’s PUB table entry. READ/WRITE operations will proceed at 1600 BPI in this case.

This specifies that SYS016 is to be assigned to the first one of these addresses (left-to-
right search order) that is not in use by another program.

FBA specifies a 3310 or 3370 Fixed Block Architecture DASD device. The FBA concept
is discussed in Unit 5. Non-FBA DASDs, such as 33xx devices, can be generically
assigned by using the CKD (Count-Key-Data) parameter in the ASSGN. If you simply
code DISK, you may get either an FBA or a CKD device.

NOTE: The generic assignment (// ASSGN SYS012, TAPE) is usually preferred over specific
device assignments (// ASSGN SYS012, 180). Generic assignments allow you to run jobs on
systems whose device addresses are different or to modify your own system’s address configu-
ration without creating new ASSGN statements.

Page 3 -13

Unit 3: Controlling Program Execution

Exercise 3.2

Before attempting this Exercise, read the section on the ASSGN statement in the System
Control Statements manual.

For the purposes of this Exercise, assume a system with the following PUB Table:

PUB Table
Physical Device Device
Unit Type Class
02C 3505 READER
02D 3525P PUNCH
02E 3203 PRINTER
180 342079 TAPE
181 342079 "
182 342079 "
183 342077 "
240 3340 DISK
241 3340 "

1. Identify the errors (if any) on the following ASSGN’s:

// BSSGN SYS001,02D,SHR

// BSSGN SYS001,02E,VOL=123456

// BASSGN SYS001, (02C,02E)

// ASSGN SYSRDR,SYSIPT

// BASSGN SYSRDR,IGN

// BSSGN SYS001,3340,VOL=7654321,SHR
// BSSGN SYS001,SYSRES

@ - 0 A 0o T o

Page 3 -14

Unit 3: Controlling Program Execution

Generic DASD assignments are shareable across partitions at the user’s option, but
explicit DASD assignments are always shareable. For the following ASSGN’s, identify
those that are shareable and those not shareable.

// ASSGN SYS001,240,PERM
// ASSGN SYS001,241,SHR
// ASSGN SYS001,DISK
// ASSGN SYS001,3340
// ASSGN SYS001,DISK,SHR

o /&0 T

Using the PUB table at the beginning of this exercise, code the ASSGN cards needed in
the following situations:

a. To make the 9-Track tapes available to SYS001, but not the 7-Track tape.
b. To allow SYS001 to share either disk with another user.
c. Toremove any physical device assignment from SYS001.

Generic assignments are commonly used for specifying temporary storage files. In the
following job, a tape file built in the first step is to be referenced in the second step.
Since the step 1 ASSGN is generic, any tape can be chosen by DOS/VSE to hold the
data, but this same tape must be accessed in step 2. Code the required ASSGN’s to make
this tape available to step 2 and to assign SYS010.

Page 3 -15

Unit 3: Controlling Program Execution

Page 3 -16

02C
SYS007 N
// JOB ANY
// ASSGN SYS007,02C
// ASSGN SYS008,TAPE >J‘ob
// EXEC STEP1 step
STEP 1 1
(create a tape file and pass it
+ to the next job step) J
SYSM PASS THE TAPE
FILE
SYS009 -» // ASSGN
-+ // ASSGN job
// EXEC STEP2 step
/& 2
STEP 2
02E

Unit 3: Controlling Program Execution

5. Permanent assignments are usuallly established in the VSE supervisor at IPL time. They
remain in effect at all times unless specifically overridden by other assignments. Program
ILLUSTD has the device requirements shown. SYSO11 and SYSO14 are standardly
assigned to tape drives 180 and 182, while the SYS012 and SYS013 assignments must be
made by you.

SYS011 INPUT Fi
ILLUSTD
(OUTPUT Fl/ :
02D 02E
SYS012 SYS013 SYS014
Code the JCL required to execute ILLUSTD, from JOB to end-of-job.
6. Discuss what is wrong with the following pair of ASSGN specifications. Remember,

you’re still referencing the PUB Table given at the start of this Exercise.

// ASSGN SYS004,182
// BSSGN SYS004,183,ALT

Page 3 -17

Unit 3: Controlling Program Execution

Solution

1. a. SHR not allowed with a 3525P device. .
b. VOL not permitted with devices other than tape or DASD.

c. It makes no sense to construct an address-list containing different device types as
this one does.

d. No error.

e. IGN not valid for SYSRDR.

f. VOL parameter cannot exceed six characters.

g. No error. SYS001 is assigned to the same device as SYSRES.
2. a. Shareable

b. Shareable. The explicit assignment (to a specific device address) is always sharea-
ble, so the SHR parameter is redundant here.

c. Not shareable
d. Not shareable
e. Shareable
3. a. // ASSGN SYs001,(180,181,182)
// ASSGN SYsS001,DISK,SHR or

// ASSGN SYS001,3340,SHR
c. // ASSGN SYS001,UA

4. // ASSGN SYS010,02E
// ASSGN SYS009,SYS008

5. // JOB ANYNAME
// ASSGN SYS012,02D
// ASSGN SYS013,02E
// EXEC ILLUSTD

Because SYSO11 and SYS014 are standardly assigned, there is no need to reference
them in your JCL.

Using generic assignments, you could substitute the following cards for the unit record
ASSGN’s:
// ASSGN SYS012,PUNCH or // ASSGN SYS012,3525P

// ASSGN SYS013,PRINTER or // ASSGN SYS013,3203

6. Device 182 is a 9-Track tape, while 183 is a 7-Track tape. It is doubtful that any file
would consist of alternating 7- and 9-Track tapes.

Page 3 -18

Unit 3: Controlling Program Execution

Disk and tape file processing requires information so far not covered--information about file
labels. Card files, however, have no label information, so you can see the way JCL is specified
to handle this type of data.

The situation that follows is one in which only a single card reader is available. This is the case
at many installations, and means that the application program has to somehow gain access to
the same device that job control uses for SYSRDR.

Let us see how the programmer logical units are specified (in an Assembler program), what the
ASSGNs look like, and where the card data goes in the job stream. See Figure 3.7.

Page 3 -19

Unit 3: Controlling Program Execution

@ - PROGRAM — named CARDIO

L]

CARDIN DTFCD TYPEFLE=INPUT,DEVADDR=SYS007, EOFADDR=END, . .
[]
L]

CARDOUT DTFCD TYPEFLE=QUTPUT,DEVADDR=SYSO008, . . .

\/\//\/

© ~ssiGN STATEMENTS

// JOB CDTOCD

// ASSGN SYS007,READER
// ASSGN SYS008,PUNCH
// EXEC CARDIO

.

/&

e PLACEMENT OF THE INPUT CARD DATA FILE — ONE CARD READER

// JOB CDTOCD Read by the i
// ASSGN SYS007,READER Job Control Program ,
// ASSGN SYs008, PUNCH from SYSRDR

// EXEC CARDIO

Read by the
CARDIO program
CARD FILE from SYS007
___.' /*
/& } Read by the Job Control

program from SYSRDR

——— The end-of-file indicator for card files.

Figure 3.7 - Specifying a Card File

@ This is the portion of the CARDIO program that specifies the two card files. CARDIN is
the name of the input card file, and CARDOUT is the name of the output card file. Note
that DTFCD (Define The File for CarDs) is an Assembler language statement. Card files
in COBOL and other programming languages are specified differently, but that is not
important for the points illustrated here.

The important thing to see is that SYSO007 is specified as the inpur card file
(TYPEFLE=INPUT), while SYSO0O8 is associated with the output card file
(TYPEFLE=OUTPUT).

Page 3 -20

2]
©

Unit 3: Controlling Program Execution

These are the required ASSGN statements. There is nothing unusual about this construc-
tion.

Look at the sequence of JCL and data as presented to the single card reader. The JCL is
first, and is read by job control from SYSRDR. When job control processes the ASSGN
for SYS007, an association is made between SYS007 and the card reader. When the
EXEC CARDIO statement is processed, the CARDIO program is loaded into the
partition and begins to execute. CARDIO accesses the card data file by referencing the
card reader through programmer logical unit SYS007. The card reader is used sequential-
ly, not simultaneously, first by job control as SYSRDR, and then by the CARDIO
Program as SYSO007.

The /* card causes end of file to be posted to the CARDIO program. If there are no
more data files to be read, CARDIO will do whatever. final processing it does, then return
control to VSE (by an EOJ macro, or a STOP in COBOL,, etc.)

Job control will return to read the /& which signals it to perform end of job processing.

Rules of Order

The two rules for specifying input card data files are:

1.

When job control statements are interspersed with input data files on one card reader, the
input data files must immediately follow the execute statement for the program that is to
process them.

Each input card data file must be followed by the end of file indicator, the /* statement.

This concludes the material on the ASSGN statement. Do the Review Exercise that follows,
then prepare Computer Exercise 3. When you have completed these tasks and have submitted
the Computer Exercise for a run, continue with the next Assignment in this Unit.

Page 3 -21

Unit 3: Controlling Program Execution

1. Code a job to execute the CARDIO program.

A S o e 4 i o i i 0 e R L R L e e e e

o 2]

02¢C 02C
SYS007 ' SYS008 !
{

CARDIO © The SYS007 file will be processed first

e The SYS008 file will be processed after

l the SYS007 file i

02D

© SYS009 f

« Indicate placement of the input card files in your solution with the words "'SYS007
DATA CARDS" and "SYS008 DATA CARDS."

o All required system logical units were permanently assigned at IPL time.

Page 3 -23

Unit 3: Controlling Program Execution

Solution

1. // JOB YOURNAME
// ASSGN SYS007,READER
// ASSGN SYS008,SYS007
// ASSGN SYS009,PUNCH
// EXEC CARDIO

(SYS007 data cards) first input card file
/%

(SYS008 cata cards) second input card file
/%
/&

The card data files must immediately follow the EXEC statement.

Both input card files are terminated by the /* statement. The /* is required as an end of file
indicator for card input files.

The sequence of the card files is critical. Because of the way its logic flow is organized, the
CARDIO program expects to process the SYS007 data cards first. These cards must therefore
follow right behind the EXEC CARDIO statement in the job stream.

Computer Exercise 3

Page 3 -24

This Exercise will require you to use some functions you have not yet been explicitly taught.
The hints below should help you get the job running, but if you find yourself having excessive
difficulty, wait until you have studied the first Assignment of Unit 4 before attempting the
Exercise again. Good Luck

o The linkage editor is a program that prepares compiler-produced object modules for
execution. It resides in the system Core Image Library, and you can assume all its device
requirements are standardly assigned.

Its program name is LNKEDT.

« In order to invoke a program that has been 'temporarily cataloged" in the CIL, use the
EXEC card with a blank operand field.

Unit 4, The Linkage Editor, will expand upon these points.

Unit 3: Controlling Program Execution

The VSE Advanced Functions Messages manual is your guide to messages produced by compo-
nent programs of VSE.

Using this manual is very much like using a dictionary. A five-character code is associated with
each message. This code is like a ""word" whose meaning you look up. You will find that many
messages have multiple causes and alternative responses. It will be up to you to determine the
cause and response applicable in any given situation.

While it is true that the operator receives and responds to most of the messages generated by
VSE, it will often be your responsibility to determine what happened during your program’s
execution by examining the messages in your output.

Figure 3.8 illustrates the format of the message code and shows what each of its five characters
represents. The two-character partition identifier is not really a part of the message code, but
is there to indicate the partition from which the message was sent.

PARTITION INDENTIFIER
REPLY ACTION INDICATOR AND REPLY IDENTIFIER
L— MESSAGE CODE

XX XXX | XXXXX | MESSAGE TEXT
BG 000 1C32A PROGRAM NOT FOUND
PARTITION '\N/'ESSAGE
IDENTIFIER : UMBER ACTION
INDICATOR
SUBCOMPONENT I — INFORMATION ONLY
IDENTIFIER A — ACTION REQUIRED
Y E — EVENTUAL ACTION
COMPONENT D — DECISION
IDENTIFIER W — WAIT

Figure 3.8 - VSE System Message Format

The component identifier tells which program in the VSE System is communicating with you.
By knowing which component sent a message, you have some knowledge of the type of error
that has occurred. For instance, a message from one of the access methods would probably
pertain to some aspect of data management. A message from job control, on the other hand,
probably would deal with an error in a job control statement.

Page 3 -25

Unit 3: Controlling Program Execution

Page 3 -26

Most of the major VSE components have some number of subcomponents. A subcomponent
may be a unique program, or it may be a major routine. For example, job control is a major
component. Within job control, the ASSGN routine, the Buffer Load program, and the Job
Initiation and Termination routine are subcomponents.

The message shown in Figure 3.8 has "1C32A" as a message code. ""1C'" messages are from
the Job Initiation and Termination Routine (C) of job control (1).

The last character in the message code ("'A" in this case) tells the operator what choices there
are in responding to the message. These action indicators have the following meanings:

I Information: Informational only. No response is necessary.

A Action: The operator must do something to respond to a system request. For
example, mount a particular volume needed by an active program.

Eventual Action: A future action will be required.

w)

Decision: The operator must select one of several alternate responses.

System Wait: The operator must respond to a hardware failure.

Use the Messages manual to locate message 1C3nA. The information provided for the message
is presented under four headings:

Cause

System Action
Programmer Action
Operator Action

The cause of this message is that the program specified for execution is not in the Core Image
Library. The manual then proceeds to describe what the system will do in such a situation, and
what the programmer and/or operator should do to remedy it.

The "A" action indicator means that the system will wait until the operator takes some action
before processing will be allowed to continue. If the error was due to a misspelled phase name,
the operator may key in the correct name and continue with the job. Otherwise the job is
cancelled.

The "n" indicates the number of fields processed in the EXEC statement when the error was
detected. This information helps you analyze the statement that caused the error. Figure 3.9
shows how the number '"n" relates to the fields of any job control statement or command.
Note that the ''//" is considered as the first field. If the message code were "1C31A", then
the field "' //" would be in error.

Unit 3: Controlling Program Execution

BG 1N24D PROCEDURE NOT FOUND

—

0 © © O

// EXEC PROC=BIGJOB

Figure 3.9 - Statement Parameter Fields are Numbered

In the messages just examined, there was only one possible cause for the error. This is not
always the case. For example, look up message 1AOnD, and note that there are more than a
dozen possible causes for this error message. What programmer action is called for in response
to this message? Absolutely none. But the operator has several alternative actions, depending
on what is determined to be the cause of the message.

In the manual VSE/Advanced Functions Messages (SC33-6098) read ''"The Message Code' and
"When You Get a Message'".

In the manual VSE/Advanced Functions System Management Guide (SC33-6094) under "Using
the System'', read ""Executing a Program'".

Page 3 -27

Unit 3: Controlling Program Execution

Unit Summary

Page 3 -28

Knowledge of how to use the language translators is essential in order to get work done at
most data processing installations. Under VSE, the compilers are handled in a straight-forward
fashion, with their output controlled primarily by the OPTION statement. System standard
options save you the trouble of repeatedly requesting the most common type of compiler
output, and the OPTION itself can be used for your specific requirements.

The program you compile references its external files by means of symbolic, or logical, unit
names. It is the ASSGN that associates these logical names with actual devices at execution
time. ASSGN card operands can tend to look a little complicated, but remember that they
must merely be specific enough to properly identify the physical devices your program needs.
The System Control Statements manual is your most important reference book for ASSGN
formats.

Generic assignments allow you greater flexibility than explicit device assignments, as you can
avoid limiting your JCL to specific devices. By requesting a device of a particular type or class,
you can avoid having to change ASSGN statements from one device to another depending on
what is available at any given time. In addition, generic assignments allow you to assign one
logical unit name to another. This is a handy feature in passing temporary work files from job
step to job step.

VSE communicates to its users by means of messages to the system console (SYSLOG) and to
the system printer (SYSLST). The Messages manual is your means of interpreting the variety
of information that accompanies a system message. Many times a mysterious situation can be
quickly resolved by a careful examination of the messages generated by the job during its
execution.

Take the Mastery Test that follows and check your answers against the solutions provided.
You may use your System Control Statements manual for reference.

Unit 3: Controlling Program Execution

1. Find the errors in the following statements:

a. // ASSGN SYS001,3330,C0
b. / ASSGN SYS001,180,VOL=123456
// BSSGN SYS001,VOL=123456

o

d. ASSGN SYS001,SYSRES, TEMP
e. ASSGN SYS001,READER, SHR

2. Multivolume Tape Files
Code a job to execute the MULTIVOL program.
INPUT
SYS001

TAPES ARE UNLABELLED

MULTIVOL
OUTPUT
One file on four tapes
SYS002 SYS002
(181 is the primary drive) (182 is the alternate drive)

« SYSO001 and SYS002 are not standard assignments.
e All required system logical units (SYSRDR, etc.) have been permanently assigned.
3. Multifile Volumes
Code a job to execute the MULTIFLE program.

Page 3 -29

Unit 3: Controlling Program Execution

INPUT
SYS007 Two files on
SYS008 one tape.
MULTIFLE TAPES ARE UNLABELLED
Y
OUTPUT
181 SYS009 Two files on
SYS010 one tape.

o The SYS007 and SYS008 input files are on the same tape volume. SYS007 is at the
beginning of the tape; SYS00S is the next file on the tape.

« The SYS009 and SYS010 output files are to be written on the same tape volume.
SYS009 is to be written at the beginning of the tape; SYS010 is to be written

following SYSO09 on the tape. .
« SYS007, SYS008, SYS009 and SYS010 have not been permanently assigned.

+ All system logical units required have been permanently assigned. (SYSRDR, etc.)

Page 3 -30

Unit 3: Controlling Program Execution

4. Code statements for JOBA, JOBB, and JOBC.

Note that SYS008 is used in each job, and must be assigned to 02C for JOBA, to 181 for
JOBB, and again to 02C for JOBC.

A permanent assignment exists for SYS008, device 241. It will have to be changed to run
these jobs. After the jobs are run, restore SYS00S to its prior assignment.

Required in this exercise (see corresponding numbers in the diagram below):
@ Assign SYS008 to 02C using a permanent assignment.
(2] Assign SYS008 to 181 using a temporary assignment.

© Restore SYS008 to its original assignment.

JOBA < o
S

02C

SYS008

PROGA

JOBB ‘___e

SYS008

PROGB

JOBC

02C

SYS008

PROGA

Page 3 -31

Unit 3: Controlling Program Execution

5. Sharing direct access devices with other partitions.

Code a job to execute the program SHAREDSK.

SYS012
241
!
HAREDSK 241 1S IN USE BY
S OTHER PARTITIONS
Y
SYS013
241

« Other partitions will also be accessing the disk pack.

« Ignore label information requirements.
« SYS012 and SYS013 have not been permanently assigned.

« All system logical units required have been permanently assigned. (SYSRDR, etc.)

Page 3 -32

6. Shareable generic DASD assignments.

Unit 3: Controlling Program Execution

Code a job to execute the CDTODISK and DISKTOTP programs.

STEP 1
Same physical
device address
as SYSRDR
CDTODISK
SYS008
Same physical
device address
as SYSPCH
STEP 2 v
DISKTOTP

TAPE
Volume

Serial No. is
ABCDEF

SYS007

SYS009

3340

Volume
Serial No.
is 123456

SYS009

SYS008

Indicate placement of the input card file with the words ''SYS007 Data Cards."

All required system logical units are permanently assigned.

Page 3 -33

Unit 3: Controlling Program Execution

7. The ANYTAPE and PRINTANY programs require a scratch tape. Any one of three
drives could be used but there is no way to determine which of them will be available

when the programs are run. . (
SYS015
STEP 1 181
ANYTAPE
SYS016
STEP 2

<«———— TEMPORARY STORAGE. USE DRIVE
183 IF IT IS AVAILABLE. IF IT IS
NOT AVAILABLE, USE DRIVE 180.
SYS017 IF 180 IS NOT AVAILABLE THEN
USE DRIVE 182.

PRINTANY

J
Same physical
device address
as assigned to
SYSLST

SYS015

All required system logical units are permanent assignments.

Code the JCL necessary to make the appropriate assignments and execute these two
programs.

Page 3 -34

Solution

Unit 3: Controlling Program Execution

Mode setting (the CO0) is allowed only with tape devices. The 3330 is a disk.
Slash missing in column 2.

Device type is missing.

No error.

A card reader is not a shareable device.

JOB TWOVOL

ASSGN SYS001,180 INPUT
ASSGN SYS002,1871 OUTPUT
ASSGN SYs002,182,ALT OUTPUT

EXEC MULTIVOL

ALT is not coded in the ASSGN for SYS002 to 181 because 181 is the primary drive.

JOB MANYFILE
ASSGN SYS007,180 INPUT
ASSGN SYsS008,180 INPUT
ASSGN SYS009,181 OUTPUT
ASSGN sSYs010,181 OUTPUT
EXEC MULTIFLE

// JOB JOBA

ASSGN SYS008,02C

// EXEC PROGA
(card input)

/&

// JOB JOBB

// ASSGN SYS008,181

// EXEC PROGB

/&

// JOB JOBC

// EXEC PROGA
(card input)

/&

ASSGN SYS008,241

This ASSGN command permanently assigns SYS008 to 02C. It could also have
been coded with the PERM operand.

This statement temporarily assigns SYS008 to 181. It overrides, for this one job,
the permanent assignment just made of SYS008 to 02C.

No ASSGN appears in this job. None is needed. Execution of PROGA requires
that SYS008 be assigned to 02C. This assignment is in effect already, because of
the permanent assignment made in JOBA. Remember, the override in the previous
job does not carry into subsequent jobs.

Finally, this ASSGN command permanently overrides the assignment made in
JOBA. Neither the RESET command or statement would work for this, as they will
only reset temporary assignments.

Page 3 -35

Unit 3: Controlling Program Execution

Page 3 -36

A Suggestion

Discuss any intended changes to permanent assignments with your system programmers or
operators before making them. They should be used with discretion, and temporary assign-
ments used where possible.
5. // JOB FOUR

// ASSGN SYS012,241

// ASSGN SYS013,241

// EXEC SHAREDSK

/&

Since these assignments were made using explicit addresses, the SHR parameter was not
required. If generic assignments had been used, SHR would be required, as shown below:

// JOB FOURMORE

// ASSGN SYS012,DISK,SHR
// ASSGN SYS013,SYS012,SHR
// EXEC SHAREDSK

/&

Notice here that SYS013 has been forced to use the same disk as SYS012, even though no
VOL information is available.

6. // JOB NAMEANY
// ASSGN SYS007,SYSRDR
// ASSGN SYS008,SYSPCH
// ASSGN SYS009,3340,VOL=123456,SHR
// EXEC CDTODISK
(SYS007 data cards)

// ASSGN SYS008,TAPE,VOL=ABCDEF
// EXEC DISKTOTP

Volume 123456 and SYS009 are used in both steps, however only one ASSGN for SYS009 is
needed. It will be in effect for the entire job since there are no other ASSGN’s for SYS009.

Because 3340 is a generic assignment, the SHR parameter is required to make the device
shareable.

7. // JOB
// ASSGN
// ASSGN
// EXEC
// ASSGN
// ASSGN
// EXEC

SOMENAME
SYS015, 181

SYS016, (183,180, 182)
ANYTAPE
SYS017,SYS016
SYS015,SYSLST
PRINTANY

Unit 3: Controlling Program Execution

SYS016 will be assigned to device 183 only if 183 is not already assigned in another partition
or is otherwise unavailable. If that is the case, job control will attempt to assign SYS016 to
180, the next device in the list. Failing that, 182 will be tried. If all three of the devices are
unavailable, the job will be cancelled.

Page 3 -37

Unit 3: Controlling Program Execution

Remedial

Page 3 -38

If you experienced difficulty with the questions on this test (three or more of the problems 2 -
7 incorrectly coded), it is due to either a lack of attention to details or a lack of understanding.

You should not proceed to the next Unit until you are confident you comprehend the material
you have studied so far. If you coded three or more of problems 2 - 7 incorrectly, do the
following:

« Reread the section on the ASSGN card in theSystem Control Statements manual.
« Review the problems you missed and try to see where you went wrong.

« If you are still confused, discuss your points of confusion with a knowledgeable person at
your installation.

Unit
I S P
D
A A
E D T
Y P Y I
D U E T [
N M D N M D
0 G 0 P
‘I’ u P D E U P E P D
I R A T
T Y I N T Y I N T Y I DE
T 0G P T oG M E T oG M P T D
U 0] E N TU 0] E ST R D N ub (
Y oG E D Y 0G E D D RO D N ST 0]
0] M D NT DY R AM D NT D R AM D NT P O
R M ND EN D P R M ND ENT D P R M IND ENT D RO M
A IN E N U P A IN E N TU P R IN E N U R I NI
M EP NDE ST GR EP ND RA U El
D ND T STU PR D ND TU PR R D ND TU Y 0] ND
D EN E T R G D EN E T R G D EN TU R R M END
PE D ST P O I PE D T ST P O N PE D T STU A ND N ’
N NT S U Y ROGR NT S UDY ROGR NT S U Y ROG EN T
E TUD PROGRAM E N UubDY PRO RA E N ubD PRO RA ND PE S
STU PROG AM N EPE DE STU PR R N E END T ST PR G AM N EPE T T D

S Y PR GR INDEPEN EN S Y PR GR I DEPE ENT ST DY PR GR INDEP DENT S U
D PR GRAM IN P ND N S D PR GRAM I P ND NT S D PRORMTI E EN T STU PR
Y PROGR NDEP NDEN S UDY P OGRAM NDEP NDENT TUDY PR GRAM IND PEN ENT TUDY (O
PROGRAM INDEPEN ENT S UDY PROG AM IND ENDE T S UDY ROGRAM I DEPENDEN STUDY PROGRAI
OGRAM INDEPENDENT STU Y PROGRAM IN EPE DENT ST D P OGRAM INDE ENDENT STUDY PROGRAM
RAM INDEPENDENT STUDY ROGRAM INDEPENDE T STUDY PR GRAM INDEPENDENT STUDY PROGRAM INI
M INDEPENDENT STUDY PROGRAM INDEPENDENT STUDY PROGRAM INDEPENDENT STUDY PROGRAM INDE
INDEPENDENT STUDY PROGRAM INDEPENDENT STUDY PROGRAM INDEPENDENT STUDY PROGRAM INDEPEI
DEPENDENT STUDY PROGRAM INDEPENDENT STUDY PROGRAM INDEPENDENT STUDY PROGRAM INDEPEND
P'ENT STUDY PROGRAM INDEPENDENT STUDY PROGRAM INDEPENDENT STUDY PROGRAM INDEPENDEN’
N STUDY PROGRAM INDEPENDENT STUDY PROGRAM INDEPENDENT STUDY PROGRAM INDEPENDENT
ENT STUDY PROGRAM INDEPENDENT STUDY PROGRAM INDEPENDENT STUDY PROGRAM INDEPENDENT STI
T STUDY PROGRAM INDEPENDENT STUDY PROGRAM INDEPENDENT STUDY PROGRAM INDEPENDENT STUD
STUDY PROGRAM INDEPENDENT STUDY PROGRAM INDEPENDENT STUDY PROGRAM INDEPENDENT STUDY
UDY PROGRAM INDEPENDENT STUDY PROGRAM INDEPENDENT STUDY PROGRAM INDEPENDENT STUDY PRI
Y PROGRAM I[INDEPENDENT STUDY PROGRAM INDEPENDENT STUDY PROGRAM INDEPENDENT STUDY PROGI
PROGRAM INDEPENDENT STUDY PROGRAM [NDEPENDENT STUDY PROGRAM INDEPENDENT STUDY PROGRAI

Prior to execution in storage, all programs must be placed in the Core Image Library. The
output of the linkage editor is an executable phase.

The name "linkage editor" appropriately reflects the editing and the linking operations that
this program performs. The linkage editor prepares a program for execution by editing the
output of a language translator into Core Image Library phases. The linkage editor also
combines separately assembled or compiled program sections or subprograms (called ''object
modules'') into phases. This process is referred to as linking.

A program can be link-edited and
« cataloged permanently
« cataloged permanently and executed immediately, or
« cataloged temporarily and executed immediately.

When a phase is cataloged permanently into the Core Image Library, the supervisor can load it
directly from the library in response to an EXEC job control statement. If the phase is
cataloged temporarily and executed immediately, link-editing is required the next time the
program is to be run. Phases are stored either temporarily or permanently, depending on the
option specified in the OPTION job control statement:

// OPTION LINK

If the LINK option is specified, the phase is stored temporarily for immediate execution in the
same job. This phase will be overwritten in the Core Image Library by the next program that is
link-edited.

// OPTION CATAL

If the CATAL option is specified, the phase is stored permanently and can be executed any
time after the catalog job.

Upon completing this Unit, you should be able to:

Assignment 1:

» Use the OPTION card to direct the linkage editor’s cataloging function.

« Prepare a basic set of job control statements to compile, link-edit, and execute a program
(if you have not yet achieved this Objective from Unit 3).

Page 4 -1

Unit 4: The Linkage Editor

Assignment 2:

« Use linkage editor control cards to structure linkage editor input and output, and control .
linkage editor operations.

Assignment 3:

« Use a Relocatable Library as an input source for the construction of program phases.

o Use private Core Image and Relocatable libraries when they are required for link-edit
operations.

» Invoke or suppress the autolink feature to control linkage editor inclusion operations.

o Code UPSI and DATE job control statements to communicate information to executing
program phases.

Materials Required

Study Guide (SR20-7300)

The following VSE reference material:

Introduction to the VSE System (GC33-6108)

VSE/Advanced Functions System Management Guide (SC33-6094)
VSE/Advanced Functions System Control Statements (SC33-6095)

Page 4 -2

Unit 4: The Linkage Editor

Before getting into link-edit operations, we will first review the activities of the program
development cycle. Figure 4.1 traces this flow and shows the relation of various VSE compo-
nents. The dotted lines from the Source Statement and Relocatable libraries indicate that they
are optional sources of input to the language translators or linkage editor respectively, although
the Relocatable Library is used as an input source to the linkage editor more often than not.

———

SYSLNK

>
SOURCE e

STATEMENT |— = — — = — —— I
LIBRARY

—

OBJECT
MOD.

Q * LINKAGE 9

EDITOR

e LANGUAGE i
TRANSLATOR ’
SOURCE ——
DECK
EXECUTABLE
PHASE
RELOCATABLE INCIL
LIBRARY ' [4)
______/

TO EXECUTION

Figure 4.1 - Evolution of a Program

@ Source code can be submitted directly to the translator or it can be cataloged to a
sublibrary of the Source Statement Library for later processing by the translator. The
language translator produces an object module from your source program statements.

© The object module is either written directly to SYSLNK by the compiler or is produced in
deck format. If it is written to SYSLNK, it is immediately available to the linkage editor.
If it is in deck format, it requires further processing.

© A Relocatable Library is used for the resolution of external references made by your
program. The linkage editor develops an executable program (called a phase) from one or
more object modules. This phase is placed in a Core Image Library.

Page 4 -3

Unit 4: The Linkage Editor

O Your phase in the CIL may be invoked and executed with the EXEC job control
statement.

Why isn’t the object code in step 2 of this sequence capable of being directly executed under
VSE? Figure 4.2 shows what happens when a translator processes your source code into
object module format.

START
: LANGUAGE
READ TRANSLATOR
WRITE
END
SOURCE
CODE
LOCATION O [————
XXX~ =
XXX = THE DASHED LINES
- - — REPRESENT MACHINE
LOCATION N b—ees LANGUAGE (HEXADECIMAL)
CODE INSTRUCTIONS.

Figure 4.2 - Source to Object

Object code has two characteristics that make it incapable of being executed as is under VSE:
1. Its internal address references are relative to O or some other fixed value; and
2. It has pieces missing.

While it may not be immediately apparent why the first of these should be a problem, it
certainly seems clear that the second could get in the way of successful program execution.
Let’s examine this first.

What is missing from the object code in Figure 4.2? Notice that the source contains READ
and WRITE statements (these could just as well be GETs and PUTs). These I/O directing
commands cause two things to be generated in the object code:

o In-line machine code to perform some basic functions; and
o An external reference to an 1/0O module or modules.

In other words, only a small part of the code required to do the I/O operation is included
in-line. Most of the code resides in an I/O module that exists in another part of the VSE
system (in a Relocatable Library, more of which will be discussed later).

This externally referenced code must somehow be associated with your object program before
execution is possible.

Page 4 -4

Unit 4: The Linkage Editor

Internal Address References

The language translators also develop addresses inside your object module in order for your
code to reference itself. These references are usually based on 0 as a starting point.

The rows of X’s in Figure 4.2 represent external references to I/O modules. Assume for a
moment that the X’s made no difference, that your program does not need them resolved.
Why is your program still incapable of being executed under VSE? See Figure 4.3.

I l

| I

BG

SUPERVISOR

LOCATION O

Figure 4.3 - The Supervisor Uses Lower Storage Addresses

The VSE supervisor uses storage starting at location 0. Your program can never overlay any
part of the supervisor, so it cannot be loaded to run at location 0. The program must be
relocated, that is, have all its internal address references modified to allow it to run in one of
the partitions BG, F1, F2, etc. This is part of the function of the linkage editor.

The linkage editor resides in the system Core Image Library where it is permanently cataloged
under the name LNKEDT. It takes one or more object modules (or parts of modules) as input
and produces executable program phases in a Core Image Library as output.

The linkage editor requires the symbolic units listed below.

SYSIPT for module input (primary input source)
SYSLST messages and listings for the programmer
SYSLOG operator messages

SYSRDR job control input (control statements)
SYSLNK input to the linkage editor

SYSGO1 linkage editor work file

All of these units will normally be permanently assigned on your system. Your primary
concern with these units is to be aware of the purpose and function of each of them.

Page 4 -5

Unit 4: The Linkage Editor

Page 4 -6

Additionally, a Core Image Library must be available to receive the Linkage Editor output.
Also at least one Relocatable Library may be needed for input to the Linkage Editor. How to
provide availability to these libraries wiil be discussed in Unit 7.

Programs are stored either temporarily or permanently in a CIL by the linkage editor depend-
ing on what is specified in the OPTION control statement:

o If LINK is specified, your program is stored temporarily in a Core Image Library for
immediate execution in the same job. The program will not be accessible after the job
completes (after the /& statement is processed by job control). The program will be
written over by the next program link-edited.

This option is usually appropriate for newly written programs in the testing stages.

« If CATAL is specified, your program is stored permanently in a Core Image Library. It
can be executed immediately or in later job steps or jobs. It can be deleted only by the
library maintenance program or by the cataloging of another program with the same
name.

LINK will be discussed right now, while CATAL will be covered in the next Assignment.

Using OPTION LINK, you can set up a single multistep job to compile a program, then
link-edit and execute it without creating a permanent entry in a CIL. This job is also referred
to as compile and test, compile and go, or compile and execute. The functions are the same
regardless of what it is called.

Figure 4.4 shows the steps performed in a job to compile, link-edit, and execute a COBOL
source program. The picture would be identical for the Assembler, PL/I, FORTRAN, and
RPG language translators except that the EXEC FCOBOL statement would be replaced by an
EXEC statement naming the Assembler, PL/I, FORTRAN, or RPG compiler programs.

Unit 4: The Linkage Editor

Source COBOL Linkage Main
— : — SYSLNK —) —: Core 1 St
Module Compiler Edit ; —_ orage
er "T“age Loader Execution
Library
N\ J \ AN
Vv ~ v J
STEP 1 STEP 2 STEP 3

TEMPORARILY CATALOG

// JOB COMPLEX
// OPTION LINK,NODECK,LIST

STEP 1

// EXEC FCOBOL, SIZE=6U4K
(source deck)
/*
STEP 2 {// EXEC LNKEDT

// ASSGN ...as required
STEP 3 // EXEC

/&

Figure 4.4 - Compile, Link-edit, and Execute

0 The three steps are the operations of compile, link-edit, and execute. Notice the presence
of SYSLNK between steps 1 and 2. It is on this file that the language translators write
their output for use as input by the linkage editor program.

The loader (step 3) is a part of the supervisor that retrieves phases from the CIL and
loads them into the CPU for execution.

@ This illustrates the job control statements required to perform the processing for the three
steps. The most important things to see here are the functions of the LINK option and
the way in which your link-edited program phase is requested for execution.

When this card is processed by job control, it causes a number of things to happen:
« A Dbit in the partition called the link bit is set on, and
« the SYSLNK file is opened. Job control does this in order to

- write linkage editor control statements onto SYSLNK.

Page 4 -7

Unit 4: The Linkage Editor

Page 4 -8

- Allow the compilers to write their object modules to SYSLNK. All the information
on SYSLNK is used by the linkage editor to produce the final executable phase.

The fact that the link bit is on directs the compilers to use SYSLNK for their output and it is
the setting of this bit that tells the linkage editor to catalog the phase on a temporary basis in a
CIL.

When an object program is temporarily cataloged (as in Figure 4.4), it is specified for execu-
tion by using an EXEC statement with a blank operand. The blank operand tells the supervi-
sor to load the last program link-edited into the Core Image Library. There is never more than
one of these temporary phases in any CIL at any one time, so there is never a problem finding
the right one.

If you are doing this operation you must have a CIL available to you. It is into that CIL that
the linkage editor will place its executable output.

When your program completes execution (reaches end of job), the link bit is turned off and
your program phase is no longer available for execution. In order to execute your program
again, you must link-edit it again.

This VSE/Advanced Function feature allows the user to invoke the compile, link-edit, and
execute sequence with a simplified JCL set-up, as follows:

// JOB IMPLICIT
// EXEC FCOBOL,GO
(source deck)

/*

/*
/&

The GO parameter on the EXEC statement causes the EXEC LNKEDT and EXEC of your
program to be done automatically. There are several points to note about this job stream:

(card data)

« The OPTION LINK statement is not needed, as GO sets the link bit on and opens
SYSLNK. An OPTION statement may be required to specify other options you may
want in this run, such as LISTX, SYM, or PARTDUMP.

In addition, if you have INCLUDE:s or other link-edit control statements in your job
stream prior to the EXEC that invokes the compiler (FCOBOL in the example shown
here), or if you are doing multiple compiles in one job, you must have an OPTION LINK
in the job stream.

o If your program has its own JCL requirements, these statements must appear in the job
stream before the EXEC of the compiler.

« No link-edit listing is produced if there are no errors in the run.
« If compiler or linkage editor errors do occur, the job is flushed to the final /& statement.

« Programs cannot be made to run in REAL mode with this set-up.

Unit 4: The Linkage Editor

In the event your program is canceled during execution, you are faced with determining the
reason for cancellation. Often this is nearly impossible unless a dump of storage at the time of
cancellation has been obtained.

A storage dump is requested (in the event of cancellation) by including in your job stream the
statement:

// OPTION PARTDUMP
or

// OPTION DUMP

The PARTDUMP parameter causes storage directly associated with the canceled program and
the contents of the registers to be dumped on the system printer (SYSLST).

The DUMP parameter requests everything that PARTDUMP does and in addition causes all of
the supervisor area to be dumped.

Normal debugging requires only a dump of the program area. So, generally, PARTDUMP is
specified for program testing.

Page 4 -9

Unit 4: The Linkage Editor

Assume SYS001, SYSLNK and other required system lcgical units are permanently assigned.

Prepare a single three step job to compile, link-edit, and test program X (written in COBOL).
The program is to be deleted from the Core Image Library after it is tested. No object deck is
desired from compilation. However, a listing of the source program should be obtained.

In the event the program is abnormally terminated, a dump of storage areas used by the
program is to be printed on SYSLST.

Use the COBOL compiler named FCOBOL for the compilation, and limit it to the use of 64K
of the partition. Indicate placement of source program and input data cards in your solution.

The input/output requirements of the program are as shown below.

INPUT
unlabeled unlabeled
SYSO1 0 SYSO] 1 SYSO1 2
Program
X
OUTPUT
\ unlabeled
7 file
SYS013 '
SYS015
Use same device
assigned to
SYSPCH
Use same device
SYS014 assigned to SYSLST

Page 4 -11

Unit 4: The Linkage Editor

// JOB ANY
// OPTION LINK,NODECK,LIST,PARTDUMP
// EXEC FCOBOL, SIZE=64K
(Source Program)
V4
// EXEC LNKEDT

// ASSGN SYS010,182
// ASSGN SYs011,02C
// ASSGN SYs012,183
// ASSGN SYS013,SYSPCH
// ASSGN SYS014,SYSLST
// ASSGN SYS015, 184
// EXEC

(Input Data Cards)

// JOB ANY

// OPTION NODECK,LIST,PARTDUMP
// ASSGN SYS010, 182

// BASSGN SYS011,02C

// ASSGN SYS012,183

// ASSGN SYS013,SYSPCH

// BASSGN SYS014,SYSLST

// ASSGN SYS015, 184

// EXEC FCOBOL, GO

(Source Program)

(Input Data Cards)

Do Computer Exercise 3 if you did not do it when it was assigned in Unit 3. When you have
submitted it for a run, go on to the next Assignment. If you have already completed this
Exercise, you may go on to Assignment 2 immediately.

Page 4 -12

Unit 4: The Linkage Editor

Figure 4.5 shows the JCL required to cause the linkage editor to catalog a member permanently
into a CIL and then to execute that member.

PERMANENTLY CATALOG

// JOB COMPLEX

© —» // OPTION CATAL,NODECK,LIST
©® —» PHASE PROGB, *

// EXEC FCOBOL, SIZE=6U4K

(source deck)

/*

// EXEC LNKEDT

// ASSGN ...as required
©® —» // EXEC ~ PROGB

/&

Figure 4.5 - Permanent Cataloging

The logical flow of operations is the same as in Figure 4.4. The difference is that in this case
the program is named and made a permanent part of a Core Image Library. There are three
differences in the job control statements to catalog a program phase permanently (Figure 4.5)
and temporarily (Figure 4.4).

@ The CATAL option. This does the same four things as the LINK option, and additional-
ly:

« causes job control to turn on a CATAL bit in the partition. This bit is the signal to
the link-edit program to perform a permanent catalog operation and to

« create a permanent directory entry in a Core Image Library.

© The PHASE card is a linkage editor control statement that names a program being
cataloged into a Core Image Library, and supplies information about the program’s
loading characteristics.

© The EXEC statement can now be used to invoke a program by the name that it has been
cataloged under--PROGB in this case. When end of job is reached, the CATAL and
LINK bits are turned off. Because your program phase is permanently cataloged, it can
be retrieved for execution under its name (PROGB in this example) whenever it is
needed.

The linkage editor creates a permanent entry for a program in a Core Image Library directory.
This directory entry is a pointer to the named program in the library itself. Part of the directo-
ry information is supplied by the user, specifically the shaded areas of Figure 4.6.

Page 4 -13

Unit 4: The Linkage Editor

NAME "~ ADDRESS RECORDS LAST RECORD ADDRESS

e
PROGW DISK NO. OF DISK |LENGTH OF ORIGIN /

A

Figure 4.6 - A Directory Entry

Page 4 -14

The meaning of each field is as follows:

Program Name: The 1-8 character alphameric name supplied on the PHASE card.

Disk Address: The starting location on disk of the named program.

Number of Disk Records: The number of disk blocks required to contain the named program.

Length of Last Record: The number of bytes in the last disk block occupied by the named
program.

Origin Address: Supplied by the PHASE card, this is the first available address in the partition
where the phase will be loaded. This address is subject to modification by the relocating loader
when the program is loaded for execution.

As long as this entry exists in a Core Image Library directory you can access the program with
an EXEC card containing its name. Information about the contents of directory entries can be
secured with certain librarian programs, to be covered in a later Unit.

There are four linkage editor control statements available to you for ordering link-edit input
and supplying required information. They are listed in Figure 4.7.

® ACTION — LINKAGE EDITOR OPTIONS
TO ® PHASE — NAME AND LOADING
STRUCTURE INFORMATION
PROGRAM
PHASES

e INCLUDE — SPECIFIES OBJECT MODULES

e ENTRY OPTIONAL TRANSFER ADDRESS

Figure 4.7 - The Four Control Statements

ACTION:

If used, this optional statement must be the first control statement presented to the linkage
editor. It specifies.a variety of options to control certain link-edit operations.

PHASE:

This statement always indicates the beginning of a program phase. The name in the PHASE
card identifies the program in the CIL. The second operand specifies the load address where in .
processor storage it is to be loaded at execution time.

Unit 4: The Linkage Editor

INCLUDE:

This control statement identifies either an object deck or a relocatable object module that is to
be made part of a program phase.

ENTRY :

This control statement specifies a symbolic address where your program phase should begin
execution when control is passed to it by the VSE supervisor. ENTRY is an optional statement
and, if not used, control is given to the program represented by the first module (in INCLUDE
statement sequence) encountered by the linkage editor in this run.

PHASE and INCLUDE are by far the most important of these four statements, for it is with
them that you structure program phases for inclusion in a Core Image Library. The PHASE
statement names your executable program and gives it a load address, while the INCLUDE
specifies object modules that are to be made part of your program phase.

name

A one to eight character alphameric name for the program phase as it will be cataloged in a
CIL. This name may not be ALL, S, or ROOT as these designators have other specific
meanings to the linkage editor.

origin

The origin, or load address, specifies where in processor storage the phase will be loaded for
execution. Remember, the linkage editor is processing your PHASE statement while running in
one of the system’s partitions. By coding the origin parameter in its most common form, as *
or S, you cause the linkage editor to assign a load address to your phase relative to the beginning
of that partition.

If you are processing multiple PHASE statements in the same run, code the origin of the first
phase as * or S, and code subsequent ones as *. The * tells the linkage editor to load phases
other than the first at locations following the previous phases.

Other specifications for origin may be found in the System Control Statements manual under
the description of the PHASE statement.

The next three parameters are optional.

noauto

Suppresses the Automatic Library Lookup (Autolink) feature for this phase only. Autolink is
discussed in the next Assignment.

sva

The presence of this parameter indicates that the phase is eligible for inclusion in the SVA.
pbdy

This parameter tells the linkage editor to ensure that the phase origins at the beginning of a
page (on a page boundary).

Page 4 -15

Unit 4: The Linkage Editor

modulename

This parameter may be left blank or may contain the one to eight alphameric character name
of a Relocatable Library module. If modulename is left blank, the object module to be
INCLUDEGJ is assumed (by job control when it processes the INCLUDE statement) to be
read from the SYSIPT device.

(namelist)

This optional parameter allows the user to specify a series of control section (CSECT) names
from which the phase will be constructed. A control section is a part of a program specified by
the programmer to be a relocatable unit. The System Control Statements manual has full details
on the use of namelist.

Figure 4.8 is an illustration of how the INCLUDE is used to process object modules that have
been output by the previous action of a compiler.

Main

: Object }?_f i Link C . .
© Module ‘ (SYSLNK i o i In?\;:e T Loader ?g:ugfion ‘
| SO R——— : i - Library - » ‘ v ‘
I\ J _J
Y Y
STEP 1 STEP 2
(LINK) (EXECUTE)
TEMPORARILY CATALOG PERMANENTLY CATALOG
// JOB LINKEX // JOB LINKEX
// OPTION LINK // OPTION CATAL
9 PHASE PROGB, *
STEP 1{ INCLUDE -a— —» INCLUDE
(object deck) (object deck)
/* /*
// EXEC LNKEDT // EXEC LNKEDT
STEP 2 // ASSGN ...as required // ASSGN ...as required
// EXEC // EXEC PROGB
/& /&

Figure 4.8 - Link-Edit and Execute an Object Deck

Page 4 -16

Unit 4: The Linkage Editor

@ The operation is considered to be in two steps because an object deck already exists from
a prior compilation.

Notice the function of SYSLNK. It is the primary input file to the linkage editor. Job
control copies the object module to SYSLNK from where it is processed by the linkage
editor to become a phase in a CIL.

e The presence of the INCLUDE card with a blank operand causes job control to copy the
object deck from SYSIPT to SYSLNK. Since SYSRDR and SYSIPT are assigned to the
same device in this example, there is no problem making the object deck part of the job
stream. If SYSIPT were assigned to another device, the object deck would have to be
placed there in order for job control to find it.

The /* following the object deck signals end of input to job control, and tells job control
to stop reading from SYSIPT and to resume reading from SYSRDR.

© The INCLUDE card must precede the object deck. Notice its relation to the PHASE card
in the OPTION CATAL job. The PHASE card names the program card being cataloged
in a CIL, and precedes the INCLUDE card. INCLUDE itself identifies the object deck
as the next thing in the job stream.

Page 4 -17

Unit 4: The Linkage Editor

Page 4 -18

In the example just discussed, the input object module was in card deck form, but it could
easily have been residing in a Relocatable Library. A RL is used for disk storage of object
modules, and is the secondary input source to the linkage editor. If a RL is available to your
partition, it will also be used as an input source to the linkage editor.

A module is specified as residing in a RL by coding its name as an operand on the INCLUDE
statement. See Figure 4.9. Here, MOD1 and MOD?2 have been previously cataloged into a RL
and they are now being made part of the input to the linkage editor.

// JOB THREEMOD
// OPTION LINK
INCLUDE
(object deck) Relocatable
/* Library

//
INCLUDE MOD1 Lln.kage W
INCLUDE MOD2 Editor W

// EXEC LNKEDT 1 ~
// EXEC \\\\\\\\\-i\\\\\\\\\\
/&

The Phase

T

|
¥

Object
deck

MOD1

MOD2

Figure 4.9 - Using the Relocatable Library

When job control reads the statements INCLUDE MOD1 and INCLUDE MOD?2, it copies
them to SYSLNK. When the linkage editor is later processing the SYSLNK file, it retrieves the
actual code for MOD1 and MOD2 from a RL.

Another thing to notice about this illustration is that there is only ore phase in the CIL, made
up of three object modules. This is the way phases in the CIL are normally constructed.

If OPTION CATAL had been used in Figure 4.9, a PHASE statement would be required prior
to the INCLUDE:s and a permanent entry would be made into the CIL.

Unit 4: The Linkage Editor

Types of Program Phases

Under prior DOS systems the linkage editor was very limited in the way it constructed phases,
and the operating system was more restricted in how it loaded phases for execution. Although
most of the program phases you will normally deal with are of the same type, relocatable, it is
important for you to be familiar with the other possible types. This is especially true if you are
involved in maintenance operations with programs written for earlier versions of DOS.

In addition, you should be aware of the existence of self-relocating programs. A self-relocating

program is one that establishes its own starting address at execution time, and does not need
- the relocating loader to adjust its internal address references. A commonly used example of

this type of program is the Sort/Merge program product.

In the document:

Introduction to the VSE System

Under the heading:

"Using the Libraries"

Read:

The section "Link-Editing a Program for Execution'

In the document:

VSE/Advanced Functions System Management Guide
Under the heading:

"Structure of a Program"

Read:

The section '"Program Phases"'

Before going on to the next Assignment, do the review Exercise and Computer Exercise 4 that
follow. Do not proceed to Assignment 3 until you have completed the review Exercise and
submitted the Computer Exercise for a run.

Page 4 -19

Unit 4: The Linkage Editor

Exercise 4.2

1.

2.

Page 4 -20

Complete the following sentences:

a.

The job control program reads JOB, OPTION, EXEC, and /& statements from
Job control reads PHASE and INCLUDE linkage editor control statements from
Job control reads object decks and /* statements from

Job control writes PHASE statements and object decks to
input file to the program.

, Which is an

The linkage editor program writes to and reads from a work file on
Phases produced by the linkage editor are written to a

A relocatable library can be used by the linkage editor, but only as an (input,
output) file.

OPTION CATAL or OPTION LINK both cause job control to
SYSLNK file.

the

Identify the errors, if any, in the following sets of JCL.

a.

// JOB TEMPCAT b. // JOB TEMPCAT

// OPTION LINK INCLUDE
INCLUDE (OBJECT DECK)
(OBJECT DECK) /*

/* // OPTION LINK

// EXEC LNKEDT // EXEC LNKEDT

// EXEC // EXEC

/& /&

// JOB TEMPCAT d. // JOB TEMPCAT

// OPTION LINK // OPTION LINK

// EXEC LNKEDT INCLUDE MOD1

INCLUDE INCLUDE MOD2
(OBJECT DECK) INCLUDE MOD3

/* // EXEC LNKEDT

// EXEC // EXEC

/& /&

// JOB PERMCAT f. // JOB TEMPCAT

// OPTION CATAL // OPTION LINK
INCLUDE // INCLUDE
(OBJECT DECK) (OBJECT DECK)

/* /*

// EXEC LNKEDT // EXEC LNKEDT

// EXEC MYPROG // EXEC

/& /&

Unit 4: The Linkage Editor

To help you answer Questions 3 - 5, do the following reading.

In the document:

VSE/Advanced Functions System Control Statements

Under the heading:

"Linkage Editor Control Statements"

Read:

The ACTION card, and the ENTRY card.

3.

S.

The following job stream, partially on SYSRDR and partially on SYSIPT, is presented as
input to a LNKEDT run. Show what the contents of the SYSLNK file will be when the
LNKEDT program begins execution:

SYSRDR SYSIPT
// JOB ANY (OBJECT DECK)
// OPTION CATAL /*

ACTION CANCEL

PHASE XYZ, *

INCLUDE

INCLUDE MOD1
// EXEC LNKEDT
/&

SYSLNK

Al ol

Sometimes jobs run correctly even though something is ''not quite right' with the job
stream. Try to discover what is "'wrong'' with the following two sets of JCL, and explain
why they will work anyway.

A. // JOB ONE B. // JOB TWO

// OPTION LINK // OPTION CATAL
PHASE ABC, * PHASE ABC, *
INCLUDE MODX INCLUDE MODX

// EXEC LNKEDT // EXEC LNKEDT
(PROPER ASSGNs (PROPER ASSGNs
FOR ABC) FOR ABC)

// EXEC // EXEC

/& /&

Identify the errors in the following linkage editor control statements.
a. ACTION AUTO
b. PHASE ROOT,*
c. PHASE ABC,*
d. PHASE XYZ, S
e. INCLUDE MYMODULES

Page 4 -21

...

Unit 4: The Linkage Editor

Solution

Page 4 -22

el

vk wLDb e

SYSRDR
SYSRDR
SYSIPT

SYSLNK, linkage editor

SYS001

CIL

input

open

Correct.

The OPTION card is out of place. It must precede the INCLUDE.

The EXEC LNKEDT statement is in the wrong place. It must follow the /* card
that follows the object deck.

Correct. MOD1, MOD?2, and MOD3 are modules in the RL.

A PHASE card must be present for an OPTION CATAL run to name the program
phase.

The INCLUDE card never has slashes in columns 1 and 2 (or anywhere).

ACTION CANCEL
PHASE XYZ,*
(object deck)
INCLUDE MOD1
ENTRY

Job control writes an ENTRY onto SYSLNK even if you have not supplied one
with your link-edit control statements. The ENTRY serves as a required end-of-file
marker for the linkage editor (so this program knows when to stop looking for input
data).

The first program to get control at execution time is the physically first module in
the job stream, which in this case is the object deck.

The PHASE card is not required in an OPTION LINK run. It will be edited by job
control, but will not affect the outcome of the link-edit operation.

You should invoke the program with an EXEC ABC card (using the program
name) since it has just been permanently cataloged. The EXEC with a blank
operand will work as shown.

Invalid parameter.
ROOT illegal as a phase name.
No error.

No blanks allowed in the operand field.

Operand is too long.

Unit 4: The Linkage Editor

Do Computer Exercise 4 at this time. It is not necessary to get the results of the Computer
Exercise before continuing as long as you have submitted the job.

Page 4 -23

Unit 4: The Linkage Editor

Page 4 -24

This Assignment uses a short case study to acquaint you with two somewhat more complex,
but nevertheless common, constructions of program phases using the Relocatable Library. In
addition, you will see when and how private Core Image libraries are used, how the autolink
feature works, and what type of diagnostic information you can expect from the linkage editor.

The Assignment concludes with a discussion of two job control statements that permit you to
pass data to your executing program: the UPSI and the DATE statements.

You have been assigned to finish the testing of a complex billing program. It consists of four
modules that currently reside in the RL, as shown in Figure 4.10. Some preliminary testing has
been done, and the modules ran all right when tested individually. You have to combine them
into a single executable phase, and test the whole program.

— —

—~— I
MAINMOD CASHMOD [CREDTMOD

—— I RL
PAYMTMOD

— -

S -

Figure 4.10 - The Object Code

A variety of transaction types have to be tested, so the executable phase you construct has to
be able to be invoked again and again from a Core Image Library, without needing the
link-edit operation repeatedly performed. In addition, you are required to insure that the
composite phase will begin its execution with the instruction at MAININ, a CSECT name
within MAINMOD, regardless of the sequence of the INCLUDE cards in your job stream.

Unit 4: The Linkage Editor

Code the JCL required to carry out the link-edit and execute run. Catalog the program phase
you are constructing under the name 456TESTA. Assume that the necessary devices for the
linkage editor and for 456TESTA are standardly assigned. When you have completed the
coding, turn to the solution that follows.

Page 4 -25

Unit 4: The Linkage Editor

Page 4 -26

g

1 - Solution

// JOB ONE
// OPTION CATAL
PHASE 456TESTA, *
INCLUDE MAINMOD
INCLUDE CASHMOD
3 INCLUDE CREDTMOD
INCLUDE PAYMTMOD
4 ENTRY MAININ
5 // EXEC LNKEDT
// EXEC 456TESTA
/&

The CATAL option is required to permanently catalog the phase into a CIL. This way it
can be retrieved again and again with the name 456 TESTA.

NN —

Required to name the phase and assign an origin address.
Any order is permissable for the INCLUDES.

This creates the proper entry to the executable code. ENTRY must follow the last
INCLUDE.

All assignments for LNKEDT and 456TESTA are assumed permanent, so no ASSGN
cards are needed in this JCL.

Unit 4: The Linkage Editor

Because of the testing done, bugs were found in the CASHMOD module. You turn that
problem over to the CASHMOD developer, who fixes the errors and hands you a new
CASHMOD object deck.

Construct the job stream to recatalog 456 TESTA using the new CASHMOD module. When
you have finished, check your answer with the solution that follows.

Page 4 -27

Unit 4: The Linkage Editor

// JOB TWO
// OPTION CATAL
PHASE 456TESTA, *
INCLUDE MAINMOD
INCLUDE
1 (CASHMOD object deck)

INCLUDE CREDTMOD
INCLUDE PAYMTMOD
ENTRY MAININ

// EXEC LNKEDT

// EXEC 456TESTA

/&

1. This can go anywhere between PHASE and ENTRY. Remember to have a /* behind the
deck to signal job control that there is no more SYSIPT data.

You now have an obsolete copy of the CASHMOD module residing in the RL. You will
want to recatalog the new CASHMOD object deck in the RL to replace the old version.
This function is accomplished with one of the librarian programs that will be discussed in
Unit 7.

L OaCHiSions

This time testing finds no errors, and you have a good copy of 456TESTA in the Core Image
Library. But what happened to the first version of 456 TESTA? Take a look Figure 4.11.

Page 4 -28

CATALOG THE
REVISED PHASE

Figure 4.11 - Replacing a Phase in the CIL

/" Core Image \

Directo ry _/

456TESTA

The 4566TESTA

\——_’/

\‘/

// JOB ANY

// OPTION CATAL
PHASE USETESTA, *
INCLUDE MAINMOD

// EXEC LNKEDT

/& '

/-' Core Image \

Director, A

The 456TESTA Phase

Unit 4: The Linkage Editor

lag——— ''0ld"’ phase

-@—— '‘old” phase is unavailable

@—— ‘new’’ phase

Notice what happens when the revised phase is cataloged. The directory entry for 456TESTA
is updated to point to where the new version resides in the CIL. The old version is unavailable,

Page 4 -29

Unit 4: The Linkage Editor

since no directory entry points to it any longer. The space it occupies is also unavailable, and
remains so until a library maintenance program (discussed in a later Unit) is run to reclaim the
space. ‘

Private
CIL ‘ » F1

—
Private -

o 2 ——
————

Private < > System
CIL F3 CIiL

pe——

Private
CiL ¢ ’ F4

|

——

Private < >
CIL BG

Figure 4.12 - Private Core Image Libraries

Figure 4.12 illustrates cataloging (link-editing) into and executing phases from both system
and private Core Image libraries.

Any partition can link-edit into the system CIL or into any private CIL assigned to it. When
the linkage editor is writing a phase into a CIL from a given partition, all other partitions are
prohibited from updating that CIL. This prevents interference from another partition until the
processing is done. When the first partition has completed its processing, the CIL is unlocked
and cataloging may proceed from another partition.

Note that the system CIL is still available to each of the partitions even though they have
private CILs assigned to them. A program may be loaded for execution from either a private
or the system CIL. When you supply a program name in an EXEC statement, the supervisor
searches in a CIL for that program in a fixed sequence that depends on the program’s name.

Phase names may or may not be prefixed with the dollar-sign character. The presence or
absence of this character will determine the order in which the VSE Supervisor searches the
available libraries. Figure 4.13 shows the search order for non-$ phase names, while Figure
4.14 shows it for $ phase names.

Page 4 -30

Unit 4: The Linkage Editor

// EXEC QUEST

System Directory
List (SDL)

llf not found

Private Core Image
Library Directory

llf not found

(if one or more are defined)

System Core Image
Library Directory

lh‘ not found

1C32A PROGRAM NOT FOUND
Figure 4.13 - Search Order, Non-$ Phases

/!l EXEC $QUEST

{

System Directory
List (SDL)

llf not found

System Core Image
Library Directory

llf not found

Private Core Image
Library Directory

‘If not found

1C32A PROGRAM NOT FOUND

Figure 4.14 - Search Order, $ Phases

In either case, as soon as the phase is found it is loaded for execution. This means, for
example, that if you had a phase name QUEST existing in both an available private CIL and in
the system CIL, the version from the private CIL would be the one executed. If the phase
name was $QUEST in both cases, the version in the system CIL would be retrieved.

The point of this convention is to reduce the time it takes to load a program. Many of the
IBM-suppiied system programs have phase names that begin with a dollar-sign. These names
will generally be included in the system directory list in the SVA. The system loader will search
here first and then in the CIL directory for dollar-sign phase names.

Page 4 -31

Unit 4: The Linkage Editor

If a phase you are developing will normally reside in a private library, then no dollar-sign
should prefix its name. On the other hand, IBM-supplied modules frequently have a dollar-sign
as the first character of their names.

To access a private CIL from a given partition, you may assign the specific symbolic unit name
SYSCLB to the device(s) containing the library or supply a // LIBDEF statement for it. The
LIBDEF statement will be explained in Unit 7. Once job control makes the connection
between the private CIL and your partition you can execute the linkage editor to store
programs in that private CIL. Remember, as long as the private CIL is assigned to your
partition, the linkage editor will use it for storing phases.

Autolink is a feature of the linkage editor that causes referenced object modules to be included
in a phase. It is an automatic feature that never needs to be invoked. It is always active unless
you specifically inhibit its functioning.

I/0 modules are the data management routines which process program requests for the input
and output of records. Since most programs perform some I/0 functions, these I/O modules
are usually needed. Autolink searches the system Relocatable Library (and a private RL, if one
is assigned) to resolve references to these and other modules.

Figure 4.15 shows part of the output from an Assembler run.

// JOB OURASSEM
’ // OPTION DECK,LIST
PSource // EXEC ASSEMBLY,SIZE=100K
rogram
ovogram OURPROG { START
{
EXTERNAL SYMBOL DICTIONARY
SYMBOL TYPE '
Language OURPROG SD (CSECT)
Translator —®| crzizo ER (EXTRN)
IUDFCZZZ ER (EXTRN)
+ IJFFZZWZ ER (EXTRN)
é Object
Deck . SOURCE STATEMENT
OURPROG LISTING

I :

Figure 4.15 - Prior to Link-edit

ESD Contents

The external symbol dictionary (ESD) shown was produced by the Assembler, but the other
compilers also produce ESDs. The ESD contains control section definitions, called CSECTs,
and intermodule references (references between modules) called external references.

Page 4 -32

Unit 4: The Linkage Editor

OURPROG is an SD type entry. SD stands for section definition. OURPROG is the CSECT
name.

The next entries are the names of the I/O modules required by the program. ER stands for
external reference. They correspond to the rows of X’s in Figure 4.2 at the beginning of this
Unit. These names were generated by the Assembler from DTF macros that defined the
program’s I/O requirements. For example, look at the name IJCFZIZ0. The Assembler
composed this name as well as the others using information from the DTF macros coded in the
program.

The arrows indicate that the ESD is included as part of the object deck. Its references will be
resolved in a linkage editor run.

When the linkage editor is invoked, it will find that it cannot resolve the three external
references within this module. The modules which the references name are not part of the
SYSLNK input. Autolink will cause link-edit to automatically search a Relocatable Library for
the three missing modules. See Figure 4.16.

Page 4 -33

Unit 4: The Linkage Editor

//
//
//

JOB OURASSEM
OPTION DECK,LIST
EXEC ASSEMBLY,SIZE=100K

Source OURPROG START

Program
OURPROG

i

SYMBOL

IJCFZ120
IJDFCZZz22

EXTERNAL SYMBOL DICTIONARY
TYPE

OURPROG SD (CSECT)

ER (EXTRN)
ER (EXTRN)

Language ——)I IUFFZZW2Z ER (EXTRN)
Translator

Object
Deck
OURPROG

Linkage
Editor

Core Image
Library

Dir ectory
.———//
RP
HAs I OURPROG
1JCFZ1Z0
The RPHAS Phase 1JDFCZZ2Z
\ IJFFZZWZ

Figure 4.16 - Link-edit With Autolink

If any of the modules cannot be found in the RL, references to them will be left as

SOURCE STATEMENT

LISTING
[]
[]
// JOB RLINK
// OPTION CATAL
PHASE RPHAS, *
INCLUDE
(object deck)
/*
// EXEC LNKEDT
/&

/ Relocatable \

IUCFZiz0

1220

FZ
\a/\CODULE

» 1IFFZZWZ
MODULE
\JDFC222

\ MODUL)

1/0
Modules

"unresolved' and the linkage editor will generate an error message on SYSLST.

Page 4 -34

Unit 4: The Linkage Editor

You can suppress autolink for the entire link-edit run by coding the NOAUTO parameter on
the ACTION card, or you can suppress autolink for a single phase by coding NOAUTO on the
PHASE card.

You would suppress autolink in order to prevent the automatic inclusion of modules from
taking place. One case in which you might do this is when you are testing revised versions of
modules that are already part of your system. You are constructing an executable phase from
test modules (supplied in object deck format) and do not want to accidentally include any of
the unrevised modules from the Relocatable Library.

The linkage editor produces a map of its activity on SYSLST. Figure 4.17 shows a sample of
the input diagnostics while Figure 4.18 shows the output diagnostics and map. If SYSLST is
not assigned, a map is not printed and any error messages are sent to SYSLOG.

JOB EX4 07/29/80 5746-XE8 REL 1.2 LINKAGE EDITOR DIAGNOSTIC OF INPUT
ACTION TAKEN MAP @

FOLLOWING LIBRARIES ARE ACTIVE FOR THIS RUN
LIBR.TYPE SEQ.NO FILENAME VOLID @

TARGET CTL 0 USRCL2 DOSRES

SEARCH RLB 1 USRRL1 DOSRES

SEARCH RLB 2 USRRL2 DOSRES

SEARCH RLB 3 USRRL3 SYSWK4

SEARCH RLB 4 PRDRLA DOSRES

SEARCH RLB 5 PRDRLB SYSWK4

SEARCH RLB 6 PRDRLC DOSRES

SEARCH RLB 7 PRDRLD SYSWK4
LIST PHASE ISPEXP1,* ©

**% MODULE TJCFZIZO V.35 M.1 AUTOLNKD FROM LIB.NO. 4
%% MODULE TJDFCZZZ V.35 M.0 AUTOLNKD FROM LIB.NO. 2, @
*% MODULE TJFFZZWZ V.35 M.1 AUTOLNKD FROM LIB.NO. 4

LIST ENTRY

Figure 4.17 - Linkage Editor Map--Input

Option MAP was specified in the ACTION statement for the linkage editor run to
indicate that a map of virtual storage is to be generated.

List and sequence of target library and search chain of (up to 30) libraries. This search
chain of libraries will be discussed in Unit 7.

A listing of control statements as submitted to linkage editor.

oo © ©

Version and modification levels of included module (when cataloged), with cross-
reference to library in list (2) above.

Page 4 -35

Unit 4: The Linkage Editor

The LIST entries indicate actions that took place, such as the PHASE card being processed or
modules from the RL being autolinked. The ENTRY statement was either provided by job
control or by the user. Since it has no operand, it is likely it was provided by job control.

Errors in the input are identified by messages prefixed with the digit 2, indicating they were
generated by the linkage editor.

A variety of information is provided by the linkage editor in its output diagnostics and map.
Figure 4.18 shows an error-free run where phase ISPEXP1 has been permanently cataloged.
Note that the name ‘PHASE***’ would have been used if this were an OPTION LINK run.

07/29/80 PHASE XFR-AD LOCORE HICORE DSK-AD LABEL LOADED REL-FR OFFSET INPUT

ISPEXP1 0322FC 032078 0330CF 00112964 e

RELOCATABLE
o o e o e ISPEXP1 032078 032078 000000 SYSLNK o

IJCFz1Z20 032CAQ0 032CA8 000C30 IJCFZIZO

IJDFCZZzZ 032D18 032D18 000CA0 IJDFC222Z
* IJDFZ22Z2 032D18

032D18 032D18 000CA0 IJDFCZZ7Z

IJFFZZWZ 032D68 032D68 000CF0O IJFFZZWZ
*1JFFZ2727Z 032D68

CONTROL SECTIONS OF ZERO LENGTH IN INPUT

ISPEXP1 This is the name under which the phase was permanently
cataloged. If the phase had been temporarily cataloged,
the phase name “PHASE***’’ would be printed here.

9 XFR-AD The transfer address (entry point) of the phase.

© LOCORE The phase origin point.

o HICORE Highest storage address location of the phase.

e DSK-AD Disk address of the phase in the core image library.

e LABEL The labels of all CSECTs of a phase in ascending order, their
LOADED load addresses, relocation factors, offsets relative to load
REL—-FR address, and input points,

OFFSET NOTE: This is the default sequence (ascending load
INPUT address). They may be printed in CSECT name
sequence (alphabetically) by specifying “ACTION
SMAP",
a RELOCATABLE Whether a phase is self-relocating or not relocating.

Figure 4.18 - Linkage Editor Map--Output

Page 4 -36

The points of information described in the Figure should be sufficient for your understanding
of most link-edit maps. If you need to know more about linkage editor functions, see the
VSE/Advanced Functions Serviceability Aids and Debugging Procedures manual (SC33-6099).

Unit 4: The Linkage Editor

The supervisor contains an area which can be used to communicate with an executing Assem-
bler Language program. This area is called the communications region, and the supervisor
maintains a communication region for each partition of your system.

There are two job control statements for changing portions of the communications region. The
UPSI (User Program Switch Indicator) statement allows you to modify a byte in the communi-
cations region called the UPSI byte, while the DATE statement allows you to alter the calendar
date for the duration of your job. By including either or both of the statements in your job
stream, you change the UPSI and DATE information available to your program.

The eight UPSI bit-switches are set by the job control program based on information you
supply in the UPSI statement. They can then be tested by your program. The specific meaning
attached to each bit-switch depends on how you have designed your program. It is your
program logic that determines the significance of these switches.

Suppose a program is written so that it produces a weekly report if bit position 7 of the UPSI
byte is a ''1". It produces a monthly report if bit position 7 of the UPSI byte is a "0'". The
code below illustrates the JCL required to obtain a weekly and then a monthly report.

// JOB ANY

// ASSGN ...as needed

// UPSI 00000001

// EXEC RPTPROG weekly report format
// UPSI 00000000

// EXEC RPTPROG monthly report format

In order to use the UPSI properly, there are two things you must know:
1. How is a program written to test the UPSI byte?
2. How do you code the UPSI job control statement to set the UPSI byte?

The first of these questions is a matter of programming technique, and is not covered in this
course. Most programming languages provide facilities to access and test the UPSI byte.

The UPSI job control statement is coded in a very straight-forward fashion, as shown in Figure
4.19, while some examples of its use are given in Figure 4.20.

Page 4 -37

Unit 4: The Linkage Editor

Job Control Statement Format

// UPSI nnnnnnnn

The operand

(nnnnnnnn)

consists of one to eight
characters of 0,1, or X.
— positions containing 0 are set to 0.
— positions containing 1 are set to 1.
— positions containing X are unchanged from
their current setting in the Communications Region.
Unspecified rightmost positions default to X.

Figure 4.19 - The UPSI Statement

Page 4 -38

The UPSI byte in the communica-

tion region

0 1 2 3 4 5 6 7
Setting from preceding job [I 0]0}I
// JOB e oo 0j0]o0 ofofo
// UPSI 00000011 010]0 O]l
// EXEC e 00 0|0 |oO o1l]I
// UPSI 111 | 11 [V |
// EXEC e oo [I o1 |1
// EXEC oo 0 (I I o1 |1
// UPSI 000XXXXXX ololo o1 |1
// EXEC e o0 ojo}o o1 {1
// UPSI 111111 11111 1 I]
// EXEC o0 0 [I I A [N I
/& olo]o ofo]jo
// JOB o0 e ojotlo ojo{o

Unit 4: The Linkage Editor

changed

changed

not changed

changed

not changed

not changed

changed

not changed

changed

not changed

changed

next job

Figure 4.20 - Setting the UPSI Switches

E Job control automatically clears the UPSI byte to zeros (at end of job time) before

reading the control statements for each job.

B The operand of the UPSI statement causes job control to modify the UPSI byte.

Page 4 -39

Unit 4: The Linkage Editor

The DATE Statement

Page 4 -40

The supervisor maintains a communication region for each partition in the VSE system. Each
of these communication regions contains both a SYSTEM DATE and a DATE field. ThJ:
SYSTEM DATE is initialized when the system is IPLed and holds the date entered during IPL.
The DATE field normally contains the same value as SYSTEM DATE. When your program
requests date information, it gets the contents of the DATE field associated with the partition
in which your program is running. The DATE job control statement allows you to temporarily
respecify the DATE field of your partition’s communication region.

There are two formats of the DATE statement:

// DATE mm/dd/yy or
// DATE yy/mm/dd

where mm - month (01 to 12), dd = day (01 to 31), and yy = year (00 to 99). The format
used is determined by your systems programmer. The job control program edits the statement
only to see that the date is eight characters in length. You must know how the field will be
used in your program before deciding to use other than the format standard for your installa-
tion.

The DATE statement may be submitted anywhere in your job stream prior to the EXEC
statement. The date will be in effect only for the duration of the job. The SYSTEM DATE
will replace your DATE in the partition’s communication region when the /& that terminates
your job is processed.

An Example
The following JCL shows the DATE card in use:
// JOB FALSIFY

// ASSGN SYS005,SYSLST
// BASSGN SYS007,TAPE
// DATE 06/15/80

// EXEC REPORT

Note that the DATE card could be anywhere between the JOB card and the EXEC card. At
end of job, the date will be reset to the value contained in the SYSTEM DATE field.

Unit 4: The Linkage Editor

Reading Assignment

In the manual VSE/Advanced Functions System Management Guide read the section ''Linking
Programs''.

In the manual VSE/Advanced Functions System Control Statements read the section ''Linkage
Editor". '

Although you may have read portions of this material before, this reading will serve as a
review.

Unit Summary

The linkage editor must process the object module output of any of the language translators to
make that output ready for execution. This output of the linkage editor is a phase in a CIL.

Output from the linkage editor can be stored temporarily or permanently in either the system
CIL or a private CIL. The OPTION statement is used to specify the type of cataloging
function, and the availability CIL will determine where the resulting phase will go.

In order to properly construct your input to the linkage editor, four control statements are
provided: ACTION, PHASE, INCLUDE, and ENTRY. Of these, PHASE and INCLUDE are
the most important, as they control the structure of the executable program.

Private libraries are handled by the linkage editor much like the system libraries. A private CIL
can be used as an extention or supplement to the system CIL, or merely as a place for pro-
grams to reside during their testing. A private RL can be used as an alternate source of object
modules to a link-edit run.

The autolink feature causes the linkage editor to bring in any modules referenced by your
program. Autolink is always active unless specifically suppressed for a particular phase or for
the entire link-edit run.

Diagnostic information and a record of the linkage editor’s activity during a run are provided
on SYSLST and SYSLOG.

Finally, there are two job control statements you can use to communicate with your phase once
it has been link-edited successfully and subsequently retrieved for execution: UPSI and DATE.
Of these, the UPSI is the more powerful as you can use it to direct your program’s execution
time activities.

Page 4 -41

Mastery Test

If you were to look at a map of processor storage, you would find
location 0.

a. user programs
b. I/0 routines
c. the supervisor
d. library call modules
Your GET and PUT statements in a program generate
a. in-line machine code
b. external references
c. both of these

d. neither of these

The logical unit is used as a linkage editor workfile.
a. SYSLNK
b. SYS001
c. SYSWRK
d. SYS000

When a compiler finds the link bit on, it
a. ignores it
b. writes its output to SYSLNK
c. reads from the Relocatable Library
d. turns on the CATAL bit

The PHASE control card is used to
a. create a CIL directory entry

b. turn off the link bit

o

identify modules in the RL
d. direct compiler operations
The INCLUDE card always
a. names a module in the RL
b. has a blank operand field
c. signals the presence of an object module

d. none of the above

Unit 4: The Linkage Editor

starting at

Page 4 -43

Unit 4: The Linkage Editor

10.

11.

12.

Page 4 -44

Use of the relocating loader provides you

a. space in the RL .

b. with the facility to execute.a phase from a CIL in any partition with any load
address

c. less debugging time
d. all of the above
The ENTRY statement acts to
a. specify program names in the CIL
b. delimit the SYSLNK file
c. control end of job processing
d. perform optional editing functions
A private CIL can be used to
link-edit in a foreground partition
b. link-edit in the background partition
c. supplement the system CIL
d. perform all of the above
The autolink feature is normally
a. suppressed

b. optional

c. active
d. not used

The ESD (external symbol dictionary)
a. contains control section definitions
b. contains external references
c. is part of the object deck

d. all of the above

The name identifies a phase link-edited in an OPTION LINK run.
a. PHASE***
b. ***PHASE
c. ISPEXP1
d. NULL***

13.

14.

15.

The job control statement
// UPSI XXX

would change
a.
b.
C.

d.

0
3
5

8

Unit 4: The Linkage Editor

bits in the UPSI byte.

The UPSI byte could (could not) be used to pass information from one job to another.
(Circle your choice).

The SYSTEM DATE field is

a.

o

[

reset
replaced
unaffected

updated

by the DATE job control statement.

Page 4 -45

Unit 4: The Linkage Editor

Page 4 -46

1. ¢
2. ¢
3. b
4. b
5. a
6. c
7. b
8 b
9. d
10. ¢
11. d
12. a
13. a
14. Could not. The UPSI byte is reset between jobs.

—
w

C

If you had more than five of these questions wrong, it is suggested that you do the following
review reading before going on to the next activity. If you passed this quiz, proceed to the
Computer Exercise below.

In the document:

VSE/Advance Functions System Management Guide
Under the heading:

"The Three Basic Applications of the Linkage Editor"

The material up to but not including "Link-editing for Execution at any Address." In addition
to this reading, you should review the material you had difficulty with in this Unit.

Prepare Computer Exercise 5 and submit it for a run before going on to the next Unit.

Unit
I S P
D
A A
E D T
Y P Y I
D U E T [
N M D N M D
0 G 0 P
‘I' U P D E U P E P D
I R A T
T Y I N T Y I N T Y I DE
T 0G P T 0G M E T oG M P T D
u 0 E N TU 0 E ST R D N ub (
Y 0G E D Y 0G E D D RO D N ST 0
0 M D NT DY R AM D NT D R AM D NT P O
R M ND EN D P R M ND ENT D P ‘R M IND ENT D RO M
A IN E N U P A IN E N TU P R IN E N u R I NI
M EP NDE ST GR EP ND RA U EF
D ND T STU PR D ND TU PR R D ND TU Y 0 ND
D EN E T R G D EN E T R G D EN TU R R M END
PE D ST P O I PE D T ST P O N PE D T STU A ND N T
N NT S U Y ROGR NT S UDY ROGR NT S U Y ROG EN T
E TUD PROGRAM E N uby PRO RA E N Ub PRO RA ND PE S
STU PROG AM N EPE DE STU PR R N E END T ST PR G AM N EPE T T D
S Y PR GR INDEPEN EN S Y PR GR I DEPE ENT ST DY PR GR INDEP DENT S U F
D PR GRAM IN P ND N S D PR GRAM 1 P ND NT S D PRO R M 1 E EN T STU PRC(
Y PROGR NDEP NDEN S UDY P OGRAM NDEP NDENT TUDY PR GRAM IND PEN ENT TUDY 0 K

PROGRAM INDEPEN ENT S UDY PROG AM IND ENDE T S UDY ROGRAM I DEPENDEN STUDY PROGRAN
OGRAM INDEPENDENT STU Y PROGRAM IN EPE DENT ST D P OGRAM INDE ENDENT STUDY PROGRAM 1
RAM INDEPENDENT STUDY ROGRAM INDEPENDE T STUDY PR GRAM INDEPENDENT STUDY PROGRAM INC
M INDEPENDENT STUDY PROGRAM INDCPENDENT STUDY PROGRAM INDEPENDENT STUDY PROGRAM INDEF
INDEPENDENT STUDY PROGRAM INDEPENDENT STUDY PROGRAM INDEPENDENT STUDY PROGRAM INDEPEN
DEPENDENT STUDY PROGRAM INDEPENDENT STUDY PROGRAM INDEPENDENT STUDY PROGRAM INDEPENDE
P'NT STUDY PROGRAM INDEPENDENT STUDY PROGRAM INDEPENDENT STUDY PROGRAM INDEPENDENT
N STUDY PROGRAM INDEPENDENT STUDY PROGRAM INDEPENDENT STUDY PROGRAM INDEPENDENT S
ENT STUDY PROGRAM INDEPENDENT STUDY PROGRAM INDEPENDENT STUDY PROGRAM INDEPENDENT STLU
T STUDY PROGRAM INDEPENDENT STUDY PROGRAM INDEPENDENT STUDY PROGRAM INDEPENDENT STUDY
STUDY PROGRAM INDEPENDENT STUDY PROGRAM INDEPENDENT STUDY PROGRAM INDEPENDENT STUDY F
UDY PROGRAM INDEPENDENT STUDY PROGRAM INDEPENDENT STUDY PROGRAM INDEPENDENT STUDY PRC
Y PROGRAM INDEPENDENT STUDY PROGRAM INDEPENDENT STUDY PROGRAM INDEPENDENT STUDY PROGF
PROGRAM INDEPENDENT STUDY PROGRAM INDEPENDENT STUDY PROGRAM INDEPENDENT STUDY PROGRARM

Data management is the control, storage, and retrieval of data to be processed by a computer.
Under VSE, data management functions are accomplished by a combination of system
routines, which interface with programs, and job control statements that relate programs to the
data files they are to process.

This Unit introduces the basic concepts of data management and presents the job control
statements required for DASD file label processing.

Upon completing this Unit, you should be able to:
Assignment 1:
« Define the terms field, record, file, volume, label, and access method.

« Describe the purpose and function of the Logical and Physical Input/Output Control
routines (LIOCS and PIOCS).

« Describe the function and use of the label information area.
« Know when to use OPTION USRLABEL, OPTION STDLABEL, and OPTION
PARSTD for storing label information.
Assignment 2:

« Describe the relation between DASD file labels and the Volume Table of Contents
(VTOCQC).

« Describe the sequence of events involved in the creation and checking of disk file labels.

« Code the DLBL and EXTENT statements for creating and checking disk file labels.

Study Guide (SR20-7300)

The following VSE reference material:

VSE System Data Management Concepts (GC24-5209)
Introduction to the VSE System (GC33-6108)

Page 5 -1

Unit 5: Data Management: DASD Files

Page 5 -2

Before investigating how data management works to give your programs access to the files
they need, let’s define some basic terms. See Figure 5.1 for an illustration of the defined
relationships.

FIELD FIELD FIELD FIELD
1 2 3 a4
RECORD h
1 ABLE FO4 25000 M
RECZORDBAKER Fa4a 13000 F
RECORD [c HARLEY| F44 22000 M LFILE
3
RECfRD DOG c12 10000 F
RECORD £ A 5y c13 11000 M
5 o
NAME DEPARTMENT SALARY SEX

Figure 5.1 - Fields, Records, and Files

Fields

Information is defined as facts about people, places, or things. Fields are the smallest units of
information. The data within a field must always be considered within the context of that
field’s definition.

In Figure 5.1, field 4 is a single byte of data that can be interpreted as information since it tells
us the sex of an individual. Any single byte of data from the Name, Department, or Salary
fields, however, is incomplete by itself and could not be considered meaningful information.
Records

There are two types of records, logical and physical.

Unit 5: Data Management: DASD Files

Logical Records

These are a collection of fields that relate to the same entity. In Figure 5.1 there are five
logical records each of which consists of four fields of information relating to specific employ-
ees.

The programs that you write will usually operate on logical records, one at a time.

Physical Records

These correspond to the way logical records are stored on the external media. The unit of
transmission between your program and external storage is usually the physical block, which
may contain any number of logical records or even a portion of a single logical record.

File

A file is a collection of related logical records. In Figure 5.1, the file is the collection of all
employee records.

Volume

A volume is one uniquely identifiable unit of storage regardless of medium. It could be a single
reel of tape or a single disk pack or diskette. The amount of information that can be stored on
a volume is limited by the physical capacity of that volume.

The Function of Data Management

Data management serves as an interface between your application program and the data it
processes. Your job as programmer is to provide the routines that perform the manipulation of
data in main storage. The job of data management is to provide your program with access to
data stored on external storage devices.

Data management will determine what to do in response to your program’s input/output
requests. The action may be to move the next record of a block into or out of your work area,
or it may be to initiate an actual read or write operation. Whatever the action taken by data
management, your program has only to issue a READ, WRITE, GET, or PUT statement to
request data management services.

Information Links

You must supply data management with information concerning the files that you want to
access, where they are located, and how they can be identified. The answers to these questions
will determine which files will be processed by your program.

There is a complete chain from yo<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>