Systems Reference Library

IBM System/360 Operating System:

Programmer’'s Guide to Debugging

0S Release 21

This publication describes, in assembler
language terms, the major debugging facilities
provided with the System/360 Operating System.
It is written for the programmer who debugs
system and application programs.

The text explains those aspects of system
control pertinent to debugging, tells what
information each debugging facility offers, and
outlines procedures for obtaining and
interpreting dumps.

The various types of storage dumps available
under the MFT and MVT control programs and event
tracing facilities are described.

Debugging facilities inherent in higher
languages and additional aids are discussed in
other SRL publications.

File No.
Order No.

$360-20
Gc28-6670-5 | 08

! | |
BN 11111

Sixth Edition (March, 1972)

This is a major revision of, and obsoletes GC28-6670-4 and
Technical Newsletters GN28-2457 and GN28-2472. See Summary
of Amendments following the Contents. Changes or additions
to the text and illustrations are indicated by a vertical
line to the left of the change.

This edition applies to release 21 of IBM System/360
Operating System and to all subsequent releases until
otherwise indicated in new editions or Technical Newsletters.
Changes are continually made to the information herein;
before using this publication in connection with the
operation of IBM systems, consult the latest IBM System/360
and System/370 SRL Newsletter, Order No. GN20-0360, for the
editions that are applicable and current.

Requests for copies cf IBM publications should be made to
your IBM representative or to the IBM branch office serving
your locality.

A form for readers' comments is provided at the back of
the publication. If the form has been removed, comments may
be addressed to IBM Corporation, Programming Systems
Publications, Department D58, P.O. Box 390, Poughkeepsie,
N. Y. 12602. Comments become the property of IBM.

© Copyright International Business Machines Corporation 1967,1968,1969,1970,1971,1972

This publication is intended to help you
use the debugging facilities provided with
the IBM System/360 Operating System. It
describes, in assembler language terms, the
major debugging facilities provided with
the System/360 Operating System, and is
directed towards the programmer who deals
with system and application program
problems.

The publication is divided into three
principal parts: "Section 1: Operating
System Concepts;" "Section 2: Interpreting
Dumps; " and "Section 3: Tracing Aids,"
plus an Introduction and a set of
Appendixes that provide specific debugging
information.

The Introduction provides a brief survey
of the material presented in the balance of
the publication.

Section 1 deals with internal aspects of
the operating system that are pertinent to
debugging. A working knowledge of this
information will provide you with the means
of determining the status of the system at
the time of failure, and the course of
events which led up to that failure. The
general precedure for debugging with an
operating system dump (Appendix A) assumes
knowledge of this control flow.

Section 2 includes instructions for
invoking, reading, and interpreting storage
dumps of systems with MFT or MVT control
programs. The material is intended to aid
you in interpreting dumps and isolating
errors.

Section 3 deals with the save area
chain, the Trace Option, and the
Generalized Trace Facility. Output from
the Generalized Trace Facility is
discussed.

Before reading this publication, you
should have a general knowledge of
operating system features and concepts as
presented in the prerequisite publications.
Occasionally, the text refers you to other
publications for detailed discussions
beyond the scope of this book.

.Preface

For information on debugging facilities
provided within higher languages, consult
the programmers' guides associated with the
respective languages. Other System/360
Operating System publications, such as
Messages and Codes, describe additional

debugging aids provided for the assembler
language programmer.

Notice: Coding level information presented
in this publication must not be used for
coding purposes or exposure to changes in
implementation may result. The information
is presented for debugging purposes only.

PREREQUISITE PUBLICAT IONS

IBM System/360: Principles of
Operation, GA22-6821

IBM System/360 Operating System:

Supervisor Services and Macro
Instructions, GC28-6646

Data Management Serxvices, GC26-3746

REFERENCE PUBLICAT IONS

IBM System/360 Operating Systems:

System Control Blocks, GC28-6628

Messages_and Codes, GC28-6631

Data Management Macrc Instructions,
GC26-3794

Service Aids, GC28-6719

TCAM Programmer's Guide and Reference,
GC30-2024.

TCAM Serviceability Aids, GY30-2027.

TCAM, GY30-2029.

TSO _Control Program, GY27-7199.

4 Programmer's Guide to Debugging (Release 21)

SUMMARY OF
OS RELEASE

AMENDMENTS FOR GC28-6670-5

S

SUMMARY OF
AS UPDATED
OS RELEASE

AMENDMENTS FOR GC28-6670-4
BY GN28-2457 AND GN28-2472
2001 . 4 . e . e .

SUMMARY OF
0S RELEASE

AMENDMENTS FOR GC28-6670-3

]

INTRODUCTION o & o o o o © © = o « =

SECTION 1: OPERATING SYSTEM CONCEPTS

Task Management .« « « « o « o « @« =
Task Control Block . . .
Request BlocksS « « « « -
Active RB Queue- .
Load List . « . . « o o
Job Pack Area Queue (MFT With
Subtasking Only) « « « « <« &« -
Effects of LINK, ATTACH, XCTL,
LOAD . « . . -
System Task Control leferences
Systems With MFT (Without
Subtasking) « « o« « o o o o o =

Main Storage Superv151on - o e e -

-

Storage Control in Systems w1th MFT

(Without Subtasking) . « « « « «
Storage Control in Systems with
MFT (With Subtasking)
Storage Control for a Region in
Systems with MVT . . . - e
Storage Control for a Subpool 1n
Systems with MVT . . . +. « <« .« «
Storage Control for a Load Module
in Systems With MVT . . « o o
System Control Blocks and Tables .« o
Communications Vector Table (CVT)
Task Input/Output Table (TIOT) .
Unit Control Block (UCB) . . .
Event Control Block (ECB)
Inputs/Output Block (IOB) .
Data Control Block (DCB) .
Data Extent Block (DEB) .
Summary of Control Block
Relationships e« « ¢ « ¢ o o « -«

SECTION 2: INTERPRETING DUMPS . . .
ABEND/SNAP Dump (MFT) . « « < =«
Invoking an ABEND/SNAP Dump (MFT)
Contents of an ABEND/SNAP Dump
(MFT) ¢ « ¢ o o o o o o o =« =
Guide to Using an ABEND/SNAP Dump
(MFT) . . . « % e e e e e
ABEND/SNAP Dump (MVT) . o o
Invoking an ABEND/SNAP Dump (MVT)
Contents of an ABEND/SNAP Dump
(MUT) & ¢ o o o o o o o o o =
Guide to Using an ABEND/SNAP Dump
COMUT) 4 v e e e e e e e e ..
Indicative DUMDP . « & « =« « « o & =
Contents of an Indicative Dump .

and

9

10

18

27

29
29
29

32
4y
46
46
ueé
63

65
65

Contents

Guide to Using an Indicative Dump . 67
Storage DUMPS =« « « « o « o« « « « « « o« 68
Damage Assessment Routine (DAR) . . . 68
Console DUMP « ¢ « « « © o « « « « « « 68
IMDSADMP Service Aid « « o « « « « « . 68
System Failure . . . e e« o = o o o « 68
The SYS1.DUMP Data Set « » o « o o o o 68
TAPE « « = o s« = @« = o« = w « « =« o o« 68
Direct ACCESS =« « o o © o o = = « « 69
IMDPRDMP Output . « = w o ¢« w =« e « « o 70
Queue Control Block Traces « « « « « « 70
Link Pack Area Maps . . e o e o e o 11
Major System Control Block Formats . . 75
MVT Control Block Formatting . « . . 75

MFT Control Block Formatting 92
TSO System Block Formatting108
Task Control Block Summaries124
The General Format « « « « < « « « - .128
Output Comments . o« « o o o « « « o 130
Guide to Storage Dumps e o o <137
Determining the Cause of the Dump .« 138
Task Structure - »138
MFT System (Without Subtasklng) . -138

MFT System (With Subtasking)139

MUT System o« « o o o o = = o « « « 2139
Task Status - Active RB Queue141
Main Storage ContentsS .« « « « « « « <142
Load List (MFT) .« 2 2 « = « =« « « 2182
Load List (MVT) . . o« = « e o o o142

Job Pack Area Queue (MFT W1th
Subtasking, MVT) . « « « o « =«
Main Storage Supervision
Free Areas in MFT Systems . .
Gotten Subtask Areas (MFT) . .
Region Structure in MVT System
I/70 Contrxol BlOCKS o o o o o o o
Queue of DEBs .

* ® e ® e @

. L]]
.
[
=
w

UCBS . « e s e s s s o @ = = L1844

DCB and TIOT e o s o o = « o = = o olUU

TJOB 4 v« o o o o o o o o = « « = o« <144

ECB . . e o s = ® = o o = o 2145
TSO Control Blocks e« = © o ® s o e o 2145
TSCUT =« © o o o =« = s « « « = « « 2145

RCB o o o ¢ o = » = » = o« « o« » « 2186
UMSM © 2 « « « o o @« « o o = = » o 21U6
SWAP DCB . 2 2 o o « « = » « =« « « 21U46

TIB <« o o o o » o « » o« o« o o« » « 2146
TSB @« o o © o © o o = = = s« o « = 2146
TIBX v « o = o o = = o« @« =« o« « s o« <1U6
PSCB @ o« « o o o o a o o« = « « « « <146
TAXE o « o o o = o o = o « o o o o 2146
SECTION 32 TRACING AIDS @ « « « « = « 147
Save Area Chain .« « « o = « =« = « « « <187
Trace Option « « « .« e s e e e = s« o148
Interpreting Trace Table Entries . . .148
Generalized Trace Facility . « - « . . .150
GTF Minimal Trace Records . . « « « 150
I0 and PCI/IO Minimal Trace Record .151

SIO Minimal Trace Record « « - . . .152

DSP Minimal Trace Record153

EXT Minimal Trace Record . . - . . .154
Contents 5

SIO
DSP
EXT
PGM
SsM

Comprehensive
Comprehensive
Comprehensive
Comprehensive
Comprehensive

Time and Lost Event
Hexadecimal Format Record

PGM Minimal Trace Record . . -«
SVC Minimal Trace Record . . .
SSM Minimal Trace Record . . =
GTF Comprehensive Trace Records .
I0 and PCI/IO Comprehensive Trace
Record . « o =

Trace
Trace
Trace
Trace
Trace

Records o « «

.- @ ® ®» e

Record . .
Record . .
Record . .
Records
Record .

GTF SVC Comprehensive Trace Records

SVC Comprehensive Trace
Group 1 -- Basic Fields
SVC Comprehensive Trace
Group 1 -- Basic Fields
SVC Comprehensive Trace

Field < ¢ @ o a o o o @

Records
Records

Records

Group 2 - Basic Fields Plus DDNAME

SVC Comprehensive Trace Records;
Group 3 - Basic Fields Plus
Parameter List Field . = . « « .« .
SVC Comprehensive Trace Records;
Group 4 - Basic Fields Plus
Variable Fields .« « « « o « « o =

«155
«156
-157
-158

-159
«161
«162
-163
-165
«166
-167
-168
-169

170
-170

«181

-182

-190

IMDPRDMP Output Comments - GTF

ProcesSsSing « = o « s o o o =« s « o » 2203
APPENDIX A: DEBUGGING WITH AN
OPERATING SYSTEM DUMP . . & =« « « « « 205
Specialized Program Checks206
Debugging Procedure Summary . - . «207
APPENDIX B: SVCS &« o o o o o « = « » 2209
APPENDIX C: COMPLETION CODES « - - « .215
APPENDIX D: SYSTEM MODULE NAME
PREFIXES o« o o « o o © o = w o = » = o« 2219
APPENDIX E: LIST OF ABBREVIATIONS . . .221
APPENDIX F: ECB COMPLETION CODES . . .223
APPENDIX G: UCB SENSE BYTES225
APPENDIX H: SERVICE AIDS .« - « « = . .229
APPENDIX J: TCAM DEBUGGING AIDS231
APPENDIX K: CONTROL BLOCK POINTERS . .233
APPENDIX L: OPEN/CLOSE/EOV DEBUGGING
AIDS ¢ o o o ¢ o o o o o o o s o o o o 241
INDEX. ¢« o o o o o o o o o o o o « o« o« 243

6 Programmer's Guide to Debugging (Release 21)

Figure 1. Control Information
Available Through the TCB . .

Figure 2. RB Formats e e e e e e .
Figure 3. Active RB Queue . . « «
Figure 4. Load List (MFT) . . « . .
Figure 5. Job Pack Area Queue . . .
Figure 6. Main Storage Snapshot (MFT
Without Subtasking) . « « ¢ « « « « &
Figure 7. Partition (MFT Without
Subtasking) . . -

Figure 8. Main Storage Snapshot (MFT

With Subtasking) e o s e e o v e o

Figure 9. Main Storage Snapshot
(MUT) « ¢ o ¢ o o © o o « s o o =« o o
Figure 10. Storage Control for a
Partition (MFT Without Subtasking) .
Figure 11.
Storage (MFT With Subtasking)
Figure 12. Storage Control for a

Region (MVT) e 4 @ o o e o s @ o & =

Figure 13. Storage Control for a
Subpool (MVT)
Figure 14. Storage Control for a Load
Module (MVT) - o - e e e e @
Figure 15. Control Block
Relationships .« ¢« o « o « o = « . .

Figure 16. Sample of an ABEND Dump
(MFT) (Part 1 of 2) « .« .
Figure 17. SYSABEND DD Statements .
Figure 18. Sample of Complete ABEND
Dump (MVT) (Part 1 of 2) © e e e o
Figure 19. Contents of an Indicative
Dump « o % % ® s & e e s e s .
Figure 20. Queue Control Block Trace
Sample - . e > 6 e o ® e
Figure 21. Llnk Pack Area Map Sample
Figure 22. Sample of MVT Major

Control Block Format .- . e e o e e
Figure 23. sSample of MFT Control
Block Format o« . o« o .
Figure 24. sSample of TSO Control
Block Format (Part 1 of 3) o s e s s
Figure 25. TSB Summary Sample for
System That Operated Under MVT or MFT
With Subtasking .« « « « o« « o = o « «
Figure 26. TCB Summary Sample for
Systems that Operated Under NMFT
Without Subtasking « o e ® o o o o @

Storage Control for Subtask

LR S S Y
-
(<))

. 22
. 22

. 30

« 33

. 71
. 73

<109

«126

«127

Figures

Figure 27. Sample of General Format
Dump c o ® w e ® @ ® e e = e o e e =
Figure 28. Permanently Assigned
Hardware Control Words o o .
F1gure 29. Finding the Partltlon TCBs
in MFT - . - o ® o ® o @
Figure 30. Finding the TCB “ v o e
Figure 31. IMDPRDMP TCB Summary o
Figure 32. Determining Module From
CDE in MVT e« o o 8 @ e« o @ & @ e o @
Figure 33. Subpool Descriptions in
MVT - IMDPRDMP Storage Print . o o
Figure 34. I/0 Control Blocks o o =
Figure 35. Save Area Trace
Figure 36. Trace Table Entries (MFT)
Figure 37. Trace Table Entries (MVT)
Figure 38. Trace Table Entries (MVT
with Model 65 multiprocessing) o o
Figure 39. Sample Trace Table Entries
(MFT) « 4 o o « o o o o o« o o o = = =
Figure 40. Sample Trace Table Entries
(MUT) &« « o o « o e « 2 2 o o o o o «
Figure #41. IO and PCI/IO Minimal
Trace Record e s ® s o @ @ o o = °
Figure 42. SIO Minimal Trace Record
Figure 43. DSP Minimal Trace Record
Figure 44. EXT Minimal Trace Record
Figure 45. PGM Minimal Trace Record
Figure 46. SVC Minimal Trace Record
Figure 47. SSM Minimal Trace Record
Figure 48. IO and PCI/IO
Comprehensive Trace Record “ o o e
Figure 49. SIO Comprehensive Trace
Record c * o o v m o e w e o w o e
Figure 50. DSP Comprehensive Trace
Record e o o e e ® o 2 @ o o a o e =
Figure 51. EXT Comprehensive Trace
Record . . e e e e e ® e @ o e e =
Figure 52. PGM Comprehensive Trace
Record e % @ s e ® 8 e e e @ a o o o
Figure 53. SSM Comprehensive Trace
Record e e e s e ® o @& s e o . o o @
Figure 54. Hexadecimal Format Record
Figure 55. Basic SVC Comprehensive
Trace Record « e e e e e e e e e w
Figure 56. Control Block Flow « o e
Figure 57. MVT Storage Control Flow

.129
~138
.139
140
«141
142
.44
.145
<147

.148
.148

-149
.150
.150
151
152
«153
<154
.155
.156
<157
.159
.161
.162
.163
.165

.166
.168

.170
«237
.239

Figures 7

8 Programmer's Guide to Debugging (Release 21)

PCP_REMOVAL
References to the PCP version of
Operating System/360 have been deleted
from the publication.

TESTRAN REMOVAL
References to the TESTRAN testing
facility of Operating System/360 have
been deleted from the publication.

IMDPRDMP SERVICE AID OUTPUT
Storage dumps as formatted and
displayed by the IMDPRDMP service aid
are now discussed in this publication.
This material was formerly in the
Service Aids publication, GC28-6719.

GENERALIZED TRACE FACILITY (GTF) OUTPUT
GTF trace records, as processed by the
EDIT function of the IMDPRDMP service
aid are illustrated and discussed in
Section 3 of the publication.

DEVICE SUPPORT
The sense byte information given in
Appendix G is updated to include
information for the:

IBM 3420 Magnetic Tape Unit and 3803
Tape Control

Summary of Amendments
for GC28-6670-5
OS Release 21

IBM 2596 Card Read Punch

IBM 3505 Card Reader

IBM 3525 Card Punch

IBM 3410 Magnetic Tape Unit

IBM 3411 Magnetic Tape Unit and
Control

PROBLEM DETERMINAT ION
Addition of an Appendix discussing
problem determination aids for
OPEN/CLOSE/EOV processing.

Updating of the completion codes and
service aids Appendixes to reflect
release 21 changes.

The Console Dump facility, used to
obtain a storage dump for later
processing by IMDPRDMP, is briefly
described in the storage dump and
IMDPRDMP formatting section of the
publication.

MISCELLANEQUS

Editorial improvements and corrections
to existing material have been made
throughout the publication.

Summary of Amendments 9

Summary of Amendments
for GC28-6670-4

as Updated by GN28-2457 and GN28-2472

OS Release 20.1

TCAM

Section 2: ABEND/SNAP Dump (PCP and MFT)
ABEND/SNAP Dump (MVT)
Appendix A
Appendix H
A brief description of TCAM debugging
Aids and a new SVC.

TSO

Section 2:

Appendix A
The addition of new SVCs and a summary
of the control blocks fomatted by
IMDPRDMP.

TSO Control Blocks

Summary of Amendments
for GC28-6670-3
OS Release 20

IMDPRDMP

"Guide to Using a_ Storage Image Dump"
IMDPRDMP is used instead of IEAPRINT to
print MFT and MVT dumps.

3330, 2305, 2319

Appendix F
Additional of sense byte information fo
new devices.

MISCELLANEQUS

Appendix C
1. Addition of module name prefixes
for emulator programs.

Appendix G
2. New features of service aid program
IMAPTFLE.

TS0

Appendix A
New SVCs in Appendix A. This
information is for planning purposes
only.

10 Programmer's Guide to Debugging (Release 21)

To debug efficiently, you should be
familiar with the system control
information reflected in dumps. This
control information, in the form of control
blocks and traces, tells you what has
happened up to the point of error and where
key information related to the program is
located. To provide an insight into the
IBM System/360 Operating System and its
complex aspects of task management and
storage supervision, Section 1 of this
publication provides an orientation in the
control functions of the operating system.

The IBM System/360 Operating System
provides extensive debugging facilities to
aid you in locating errors and determining
the system state quickly. Some debugging
aids, such as console messages, provide
limited information that may not always
help you identify the error. This manual
discusses those debugging facilities that
provide you with the most extensive
information:

a. Abnormal termination (ABEND) and
snapshot (SNAP) dumps.

b. Indicative dumps.
c. Storage image dumps.
d. Tracing facilities.

Dumps are discussed in Section 2 and
tracing facilities in Section 3.

ABEND and SNAP Dumps are invoked by ABEND
and SNAP macro instructions, respectively.
They are grouped in a single category
because they provide identical information.
In addition to a hexadecimal dump of main
storage, they can contain conveniently
edited control information and displays of
the operating system nucleus and trace
table.

Indicative dumps contain control
information useful in isolating the
instruction that caused an abnormal end of
task situation. The information is similar
to that given in an ABEND/SNAP dump, but
does not include a dump of main storage.

Storage dumps are produced by either the
system dump facility at the time of a
system failure, or by a dump program
created through use of the IMDSADMP service
aid. IMDSADMP programs must be loaded into

Introduction

storage through use of the IPL facilities

and are intended for use in situations in

which the system is not operative, e.g., a
disabled wait state or an unending system

loop.

The system dump facility writes to the
SYS1.DUMP data set. The IMDPRDMP service
aid is used to format and print the
SYS1.DUMP data set. IMDPRDMP output is
described in this publication. The
IMDSADMP programs write to tape (high-speed
dump) or to tape or printer (low-speed
dump). The output tape produced by the
high-speed dump must be processed by the
IMDPRDMP program; low-speed output to tape
may be processed by IMDPRDMP, IEBPTPCH or
the IEBGENER utility program.

Storage dumps taken by the system dump
facility consist of control information
followed by a display of printable storage
from location 00 to the capacity of
storage. Storage words are displayed in
both hexadecimal and EBCDIC notation.
Storage dumps taken by an IMDSADMP program
consist of register contents followed by a
display of storage from location 00 to the
capacity of storage. Notation is in bkoth
hexadecimal and EBCDIC.

Tracing facilities consist of the save
area chain trace, the Trace Option and the
Generalized Trace Facility.

The save area chain enables tracing of
the save areas for each level of load
module in a task. The save area trace is
displayed in ABEND/SNAP and storage dumps.

The Trace Option, if installed in the
system, provides records of system
interruptions (IO, SIO, etc.) that are
displayed in ABEND/SNAP and storage dumps.

The Generalized Trace Facility (GTF)
enables selective tracing of system and
application program events and records the
information internally, in a table which is
displayed in printouts of ABEND dumps and
storage dumps, or externally in a data set
which is processed by the IMDPRDMP service
aid to provide edited and formatted GTF
trace records. (For complete information
on GTF see the Service Aids publication.)
The GTF output, as processed by IMDPRDMP,
is discussed in Section 3 of this
publication.

Introduction 11

General Notes: : e Control block field names referred to
are those used in the IBM System/360

e Displacements and addresses shown in Operating System: System Control
the text and illustrations of this Blocks manual, GC28-6628.
publication are given in decimal
numbers, followed by the corresponding e Wherever possible, diagrams, and
hexadecimal number in parentheses, - " reproductions of dumps have been
€.g., TCB+14(E); location 28(1C); SVC included to aid you during the
42(27A). All other numbers in the text debugging process.

are decimal, e.g., the seventeenth word
-of the TCB; a 4-word control block; 15
job steps.

12 Programmer's Guide to Debugging (Release 21)

This section introduces you to the control
information that you must know to interpret
dumps. It is divided into three topics:

e task management
¢ main storage supervision
e system control blocks and tables

The first two topics deal with those
‘aspects of task management and main storage
management, respectively, that are
represented in dumps. The third topic
describes the remaining system control
blocks and tables helpful in pinpointing
€rrors.

Note: The descriptions of system control
blocks and tables in this section emphasize
function rather than byte-by-byte contents.
Appendix K summarizes the contents of those
control blocks most useful in debugging.

For a more detailed description of
system control blocks and tables, refer to
the System Control Blocks publication,
GC28-6628.

Task Management

The task management control information
most useful in debugging with a dump
includes the task control block and its
associated request blocks and elements.

the functions, interactions, and
relationships to other system features of
these items are discussed in this topic. A
summary of how task supervision differs at
each system level concludes the topic.

Task Control Block

The operating system keeps pointers to all
information related to a task in a task
control block (TCB). For the most part,
the TCB contains pointers to other system
control blocks. By using these pointers,
you can learn such facts as what I/0
devices were allocated to the task, which
data sets were open, and which load modules
were requested.

Figure 1 shows some of the control
information that can be located by using
the pointers in the TCB. Later, in the
discussion of system control blocks and
tables, Figure 1 is expanded to show the
actual block names and pointer addresses.

Section 1: Operating System Concepts

Control Information Available
Through the TCB

Figure 1.

Request Blocks

Frequently, the routines that comprise a
task are not all brought into main storage
with the first load module. Instead, they
are requested by the task as it requires
them. This dynamic loading capability
necessitates another type of control klock
to describe each load module associated
with a task -- a request block (RB). An RB
is created by the control program when it
receives a request from the system or from
a problem program to fetch a load module
for execution, and at other times, such as
when a type II supervisor call (SVC) is
issued. By looking at RBs, you can
determine which load modules have been
executed, why each lost control, and, in
most cases, which one was the source of an
error condition.

There are seven types of RBs created by
the control program:

e Program request block (PRB)

e Supervisor request block (SVRB)
e Interrupt request block (IRB)

Task Management 13

e Supervisor interrupt request block
(SIRB)

e Loaded program request block (LPRB)

Loaded request block (LRB)

e Finch request block (FRB)

Of these, you will most often encounter
the PRB and SVRB in dumps. The type of RB
created depends on the routine or load
module with which it is associated.

PRB (Systems with MFT): A PRB is created
whenever an XCTL, LINK, or ATTACH macro
instruction is issued. It is located
immediately before the load module with
which it is associated.

PRB (Systems with MVT): A PRB is created

whenever an XCTIL or LINK macro instruction
is issued. It is located in a fixed area

of the operating system.

SVRB: An SVRB is created each time a type
II, I1I, or IV supervisor call is issued.
(Type I SVC routines are resident, but run
disabled; they do not require a request
block.) This block is used to store
information if an interruption occurs
during execution of these SVC routines. A
list of svCs, including their numbers and
types, appears in Appendix A.

IRB: An IRB is created each time an
asynchronous exit routine is executed. It
is associated with an event that can occur
at an unpredictable time during program
execution, such as a timing routine
initiated by an STIMER macro instruction.
The IRB is filled at the time the event
occurs, just before control is given to the
exit routine.

SIRB: An SIRB is similar to an IRB, except
that it is associated only with
IBM-supplied input/output error routines.
Its associated error routine is fetched
from the SYS1l.SVCLIB data set.

LPRB (MFT only): An LPRB is created when a
LOAD macro instruction is issued unless the
LOAD macro instruction specifies:

* A routine that has already been loaded.

e A routine that is being loaded in
response to a LOAD macro instruction
previously issued by a task in the
partition (MFT with subtasking).

e A routine that is "only loadable"”
LRB).

(see

An LPRB is located immediately before the
load module with which it is associated.
Routines for which an LPRB is created can
also be invoked by XCTL, LINK, and ATTACH
macro instructions.

IRB_ (MFT only): The LRB is a shortened
form of an LPRB. Routines associated with
IRBs can be invoked only by a LOAD macro
instruction. This attribute is assigned to
a routine through the OL (only loadable)
subparameter in the PARM parameter of the
EXEC statement that executes the linkage
editor. The most common reason for
assigning this attribute is that linkage
conventions for XCTL, LINK, and ATTACH are
not followed. This request block is
located immediately before the load module
with which it is associated.

FRB_(MFT with subtasking only): An FRB is
created and attached to the job pack area
queue, during LOAD macro instruction
processing, if the requested module is not
already in the job pack area. The FRB
describes a module being loaded in response
to a LOAD macro instruction. Any
subsequent requests for the same module,
received while it is still being loaded,
are deferred by means of wait list elements
(WLEs) queued to the FRB. When the module
is fully locaded, an LRB or an LPRB is
created, the FRB is removed from the job
pack area queue, and any requests,
represented by wait list elements, are
reinitiated.

Figure 2 shows the relative size of the
seven types of RBs and the significant
fields in each.

In Figure 2, the "size" field tells the
number of doublewords in both the RB and
its associated load module. The PSW
contained in the "resume PSW" field
reflects the reason that the associated
load module lost control. Other fields are
discussed in succeeding topics.

This far, the characteristics of the TCB
and its associated RBs have been discussed.
With the possibility of many RBs
subordinate to one task, it is necessary
that queues of RBs be maintained. 1In
systems with MFT without subtasking, two
queues are maintained by the system -- the
active RB queue and the load list. 1In MPFT
systems with subtasking, a job pack area
queue, containing FRBs, and LRBs and LPRBs
that represent reenterable modules is also
maintained. MVT systems maintain an active
RB queue and a contents directory. The
contents directory is made up of three
separate queues: the link pack area
control queue (LPAQ); the job pack area
control queue (JPAQ); and the load list.

14 Programmer‘'s Guide to Debugging (Release 21)

LPRB

=12 Major RB address
(MFT with subtasking)

-8 Load list pointers

LRB

Load list pointers

PRB

FRB

Use Ct |4 CDE (MVT)

Use Ct) CDE (MVT)

(MFT) (MFT) Load st
-4 pointers
-4 Absent (MVT) -4 Absent (MVT)
| 0 Module name 0 Module name 0 Module name 0
(MFT) (MFT) (MFT)
Last half of user's Last half of user's Last half of user's Module name
PSW (MVT) PSW (MVT) PSW (MVT)
8 8
Size Flags Size Flags Size Flags Size Flags
12(C) |4 Entry point (MFT); 12(C) |A Entry point (MFT); 12(C) |4 Entry point (MFT); 12 (C)

Use Ct | A CDE (MVT)

Address of WLE

16 (10)
Address of TCB

20 (14)

Address of LPRB

Note: Program extent list is added to LPRB, LRB, or PRB if the

16 (10) 16 (10)
Resume PSW Resume PSW
28(1C) 28(1C)
waitcr|] NextRo Program Extent List waircr || NextRe
lTo E;':gfh of extent in -1
| hiearchy 0 |
|_-i- 4 Length of extent in program described was hiearchy block loaded,
| hiearchy 1
b e e —
+8 Address of extent in
| hiearchy 0
|+ 12(C) Address of extent in
L. hiearchy 1
SVRB IRB SIRB
0 Module name 0 Module name 0 Module name
| (MFT) (MFT) (MFT)
Last half of user's Last half of user’s Last half of user's
PSW (MVT) PSW (MVT) PSW (MVT)
8 ,)
Size Flags Size Flags Size Flags

12(C) (A Entry point (MFT);
Use Ct |[A CDE (MVT)

12(C) |A Entry point (MFT);
Use Ct 4 CDE (MVT)

12(C) |A Entry point (MFT);
Use Ct |A CDE (MVT)

Figure 2. RB Formats

16 (10) 16 (10} 16 (10)
Resume PSW Resume PSW Resume PSW
28(1C) 28 (1C) 28(1C)
Wait Ct T Next RB WaitCt T Next RB Wit Ct f Next RB
32 (20) 32 (20) 32 (20)
Register Register Register
Save Area Save Area Save Area
96 (60)
Extended
Save Area

Task Management 15

Active RB Queue

The active RB queue is a chain of request
blocks associated with active load modules
and SVC routines. This queue can contain
PRBs, SVRBs, IRBs, SIRBs, and under certain
circumstances, LPRBs. Figure 3 illustrates
how the active RB queue links together the
TCB and its associated RBs.

A B

Load

modules, .. | —

«.. and
SVC routines

HISS==r

Figure 3. Active RB Queue

The request blocks in the active RB
queue in Figure 3 represent three load
modules. Load module A invokes load module
B, and B, in turn, invokes C. When
execution of A began, only one RB existed.
When the first invoking request was
encountered, a second RB was created, the
TCB field that points to the most recent RB
was changed, and A's status information was
stored in RB-A. A similar set of actions
occurred when the second invoking request
was encountered. As each load module is
executed and control is returned to the
next higher level load module, its RB is
removed from the chain and pointers are
updated accordingly.

Load List

The load list is.a chain of request blocks
or elements associated with load modules
invoked by a LOAD macro instruction. The
load list differs from the active RB queue
in that RBs and associated load modules are
not deleted automatically. They remain
intact until they are deleted with a DELETE
macro instruction or job step termination
occurs. By looking at the lcad list, you
can determine which system and problem

program routines were loaded before the
dump was taken. The format of the load
list differs with control program levels.

Systems with MFT (without subtasking): At
this control program level, the load list
associated with a TCB contains LRBs and
LPRBs. RBs on the load list are linked
together somewhat differently from those on
the active RB queue because of the
characteristics of the LOAD macro
instruction. Because RBs may be deleted
from a load list in a different ordexr than
they were created (depending on the order
of DELETE macro instructions), they must
have both forward and backward pointers.
Figure 4 illustrates how a load list links
together a TCB and three RBs.

TC
B8
[_ho-C |

|

RB-A RB-B RB-C

TTHI i
M=
- =]l

Figure 4. Load List (MFT)

Here, each RB contains a pointer both to
the previous RB and the next most recent RB
in the list. If there is no previous or
more recent RB, these fields contain zeros
and a pointer to the TCB, respectively.

Another field of a load list RB that
merits consideration is the use count.
Whenever a LOAD macro instruction is
issued, the load list is searched to see if
the routine is already loaded. 1If it is
loaded, the system increments the use count
by one and passes the entry point address
to the requesting routine.

Each time a DELETE macro instruction is
issued for the routine, the use count is
decremented by one. When it reaches zero,
the RB is removed from the load list 'and
storage occupied by the associated routine
is freed.

16 Programmer's Guide to Debugging (Release 21)

Systems With MFT (With Subtasking): At
this control program level, the load list

is used as described for MFT without
subtasking, with the following exceptions:

1. The LRBs and LPRBs queued on the load
list represent modules that are not
reenterable. LRBs and LPRBs
representing reenterable modules are
queued on the job pack area queue.

2. When a LOAD macro instruction is
issued, the system searches the job
pack area queue before searching the
load list.

Systems With MVT: Instead of LRBs and
LPRBs created as a result of LOAD macro
instructions, the load list maintained by a
system with MVT contains elements
representing load modules. Load list
elements (LLEs) are associated with load
modules through another control medium
called the contents directory.

The contents directory is made up of
three separate queues: the link pack area

reaches zero.
format:

An LLE has the following

Byte 0: Reserved (RES).

Bytes 1-3: Pointer to the next more recent
LLE on the load list.

Byte 4: Count.

Bytes 5-7: Pointer to the corresponding

CDE.

More will be said about CDEs in the next
topic of Section 1, titled "Main Storage
Supervision.”

Job Pack Area Queue (MFT With Subtasking
Only)

control queue (LPAQ), the job pack area
control queue (JPAQ), and the load list.

The LPAQ is a record of every program in
the system link pack area. This area
contains reenterable routines specified by
the control program or by the user. The
routines in the system link pack area can
be used repeatedly to perform any task of
any job step in the system. The entries in
the LPAQ are contents directory entries
(CDEs) .

There is a JPAQ for each job step in the
system that uses a program not in the link
pack area. The JPAQ, like the LPAQ, is
made up of CDEs. It describes routines in
a job step region. The routines in the job
pack area can be either reenterable or not
reenterable. These routines however,
cannot be used to perform a task that is
not part of the job step.

The load list represents routines that
are brought into a job pack area or found
in the link pack area by the routines that
perform the Load function. The entries in
the load list are load list elements, not
CDEs. Each load list element is associated
with a CDE in the JPAQ or the LPAQ; the
programs represented in the load list are
thus also represented in one of the other
contents directory queues.

Load list elements also contain a count
field that corresponds to the use count in
a LPRB or LRB. EFach time a LOAD macro
instruction is issued for a load module
already represented on the load list, the
count is incremented by one. As
corresponding DELETE macro instructions are
issued, the count is decremented until it

In an MFT system with subtasking, the job
pack area queue is a chain of request
blocks associated with load modules invoked
by a LOAD macro instruction. The queue
contains FRBs, and those LRBs and LPRBs
that represent reenterable modules. FRBs
are queued on the job rack area queue until
the requested module is completely loaded.
When the module is coamgletely loaded into
main storage, the FRB is removed from the
job pack area queue and replaced with an
LBR or an LPR queue on the job pack area
queue if the loaded module is reenterable,
and on the locad list if it is not.

In the MFT with subtasking
configuration, the load list represents
non-reenterable modules, while the jok pack
area queue represents cnly reenterable
modules within the partition. These RBs on
the job pack area queue are not deleted
automatically, but remain intact until they
are deleted by a DELETE macro instruction,
or until job step termination occurs.
Reenterable load modules are therefore
retained in the partition for use by the
job step task or any subtasks which may be
created.

Whenever a LOAD macro instruction is
issued, the job pack area queue is
searched. If the routine is already fully
loaded and represented bty an LRB or an LPRB
on the JPAQ (the routine is reenterable),
the system increments the use count by one
and passes the module entry point address
to the requesting routine. If an FRB for
the requested module is found, a wait list
element (WLE) representing the deferred
regquest is queued to the FRB, and the
request is placed in a wait. When the

Task Management 17

requested routine is fully loaded, the
system releases the request from the wait
condition, and the request is re-initiated.
If no RB for the requested routine is
found, an FRB is created and queued on the
JPAQ. The system then searches the load
list of the requesting task for an RB for
the requested routine. If an RB for that
routine is found on the load list (the
routine is not reenterable), the use count
is incremented by one, the entry point
address of the module is passed to the
reguesting routine, and the FRB is dequeued
from the JPAQ. If no RB is found on the
load list, the FRB remains on the JPAQ and
the system begins loading the requested
module.

Each time a DELETE macro instruction is
issued for the routine, the use count is
decremented by one (the DELETE routine
ignores FRBs). When the use count reaches
zero, the RB is removed from the queue.

Figure 5 illustrates how the job pack area
queue is chained to a TCB.

In Figure 5, each RB contains a pointer to
the previous RB and a pointer to the next

RB on the queue. 1If there is no previous

RB on the queue, that pointer will contain
zero; if there is no next RB on the queue

(this RB is the most recent on the JPAQ),

the next RB pointer will point back to the
job pack area queue pointer in the PIB.

PIB

+-PIB —>

<=
| —

LPRB-A

Figure 5. Job Pack Area Queue

Two wait list elements (WLEs) are queued
to FRB-C representing deferred requests
waiting until the initial loading of the
module is completed. The last WLE contains
zero in its forward pocinter, indicating
that it is the last element on the WLE
queue.

Effects of LINK, ATTACH, XCTL, and LOAD

LINK, ATTACH, XCTL, and LOAD, though
similar, have some distinguishing
characteristics and system dependencies
worth mentioning. By knowing what harpens
when these macro instructions are issued,
you can make more effective use of the
active RB queue and the load list.

LINK: A LINK results in the creation of a
PRB chained to the active RB queue. Upon
completion of the invoked routine, control
is returned to the invoking routine. 1In
systems with MFT, the RB is removed from
the queue. The storage occupied by the
invoked routine is freed unless the routine
is also represented on the load list, or on
the job pack area queue in MFT systems with
subtasking. In systems with MVT, the use
count in the CDE is decremented by one;. if
it is then zero, the RB and the storage
occupied by the routine are marked for
deletion. A LINK macro instruction
generates an SVC 6.

ATTACH: An ATTACH is similar to the other
three macro instructions in systems with
MFT without subtasking. In systems with
MFT with subtasking or MVT, ATTACH is the
means for dynamically creating a separate
but related task -- a subtask.

At the MFT without subtasking level,
ATTACH effectively performs the same
functions as LINK with two notable
additions:

1. You can request an exit routine to be
given control upon normal completion
of the attached rocutine.

2. You can request the posting of an
event control block upon the routlne s
completion.

Exit routines are represented by additional
RBs on the active RB queue. The ATTACH
macro instruction generates an SVC 42(2a).

XCTL: An XCTL also results in the creation
of a PRB and immediate transfer of control
to the invoked routine. However, XCTL
differs from the other macro instructions
in that, upon completion of the invoked
routine, control is passed to a routine
other than the invoking routine. In fact,
an XCTL does not result in the creation of-
a lower level RB. 1Instead, the invoking
routine and its associated RBs are deleted
when the XCTL is issued. 1In effect, the RB

18 Programmer's Guide to Debugging (Release 21)

R

for the invoked routine replaces the
invoking routine's RB. The XCTL macro
instruction generates an SVC 7.

LOAD: The LOAD macro instruction was
treated previously in the discussion of the
load list. To summarize: the system
responds to a LOAD by fetching the routine
into main storage and passing the entry
point address to the requesting routine in
register 0. Because the system does not
have an indication of when the routine is
no longer needed, a LOAD must be
accompanied by a corresponding DELETE macro
instruction. If not, the routine and its
RB remain intact until the job step is
ternminated. The LOAD macro instruction
generates an SVC 8.

System Task Control Differences

Thus far, this topic has dealt with the
aspects of task supervision that are
similar for MFT and MVT. There are,
however, some major differences:

1. The number of tasks that can be known
to the system concurrently.

2. The layout of main storage.

3. The additional main storage control
information in systems with MVT.

The first two subjects are discussed
here, by system. The third subject,
because of its volume, is discussed in the
next topic of section 1.

Systems With MFT (Without Subtasking)

Figure 6 is a snapshot of main storage in a
system with MFT without subtasking.

The fixed area contains the nucleus
(including TCB queue, transient area
loading task, communications task, and
master scheduler task), and the system
queue area. Optionally it may contain
access methods and SVC routine which are
normally nonresident, a list of absolute
addresses for routines which reside on
direct access devices, and a reenterakle
load module area.

One TCB exists for each task. All TCBs
are linked by dispatching priority in a TCB
queue, beginning with the three resident
tasks.

The dynamic area is divided into a
maximum of 52 partitions. Each partition
contains one task. The dynamic area can
contain as many as 3 reading tasks, 36
writing tasks, and 15 job step tasks,
providing that the total number of tasks
does not exceed 52. Partition sizes and
attributes are defined during system
generation. Figure 7 shows the contents of
an MFT partition.

DYNAMIC
AREAS <
(PARTITIONS

FIXED
AREAﬁ

Main Storage Snapshot (MFT
Without Subtasking)

Figure 6.

DYNAMIC J
AREA

Partition (MFT Without
Subtasking)

Figure 7.

Task Management 19

Jobs are processed sequentially in a
partition, one job step at a time. An
ATTACH macro instruction does not create a
subtask.

Systems with MFT (With Subtasking):
Operating Systems that provide
multiprogramming with a fixed number of

tasks with the subtasking option (MFT with

subtasking) differ from MFT systems without
subtasking in the following major areas:

1. MPT with subtasking has an ATTACH
facility similar to the ATTACH
facility in MVT. While the number of
job step TCBs still may not exceed 15,
the number of tasks in any partition,
and therefore the total number of
tasks in the system, is now variable.
Job step task TCBs reside in the
nucleus. They are queued, following
the system task TCBs, in the same
manner as in MFT without subtasking.
When subtasks are created, however,
the subtask TCBs are placed in the
system queue area and queued to the
job step TCBs according to dispatching
priority (TCBTCB field), and according
to subtask relationships (TCBNTC,
TCBOTC, TCBLTC fields).

2. MFT with subtasking provides the
ability to change the dispatching
priority of any task within a
partition through the use of the CHAP
macro instruction.

Figure 8 is a snapshot of main storage in
an MFT system with subtasking. Note here
that the TCBs in the nucleus are all job
step TCBs, while those residing in the
sytem queue area are the subtask TCBs.

Systems with MVT: 1In Operating Systems
that provide multiprogramming with a
variable number of tasks (MVT), as many as
15 job steps can be executed concurrently.
Each job step requests an area of main
storage called a region and is executed as
a job step task. In addition, system tasks
request regions and can be executed
concurrently with job step tasks.

Regions are assigned automatically from
the dynamic area when tasks are initiated.
Regions are constantly redefined according
to the main storage requirements of each
new task.

DYNAMIC
AREAS ¢
PARTITIONS)

FIXED
AREA

Figure 8. Main Storage Snapshot (MFT With

Subtasking)

With the facility of attaching subtasks
available to each task through the ATTACH
macro instruction, the number of TCBs in
the system is variable. Tasks gain control
of the CPU by priority. To keep track of
the priority and status of each task in the
system, TCBs are linked together in a TCB
queue.

Figure 9 is a snapshot of main storage
in a system with MVT. The fixed area is
occupied by the resident portion of the
control program loaded at IPL. The system
gueue space is reserved for control blocks
and tables built by the control program.
The dynamic area is divided into
variable-sized regions, each of which is
allocated to a job ster task or a system
task. Finally, the link pack area contains
selected reenterable routines, loaded at
IPL. If an IBM 2361 Core Storage device
and Main Storage Hierarchy Support are
included in the system, a secondary link

20 Programmer's Guide to Debugging (Release 21)

pack area may be created in hierarchy 1 to
contain other reenterable routines.

LINK PACK
AREA

DYNAMIC

AREA <
(REGIONS)

SYSTEM
QUEUE
AREA

FIXED
AREA

Figure 9.

Main Storage Snapshot (MVT)

Main Storage Supervision

Storage control information is kept in a
series of control blocks called gueue
elements. In systems with MFT without
subtasking, queue elements reflect areas of
main storage that are unassigned. In MFT
systems with subtasking, a gotten subtask
area queue element (GQE) is introduced to
record storage obtained for a subtask by a
supervisor issued GETMAIN macro
instruction. In systems with MVT, more
elaborate storage control is maintained; at
any given time, queue elements reflect the
distribution of main storage in regions,
subpools, and load modules.

The dynamic area may be significantly
expanded by including IBM 2361 Core Storage
in the system. Main Storage Hierarchy
Support for IBM 2361 Models 1 and 2 permits
selective access to either processor
storage (hierarchy 0) or 2361 Core Storage
(hierarchy 1). If IBM 2361 Core Storage is
not included, requests for storage from
hierarchy 1 are obtained from hierarchy 0.
If 2361 Core Storage is not present in an
MVT system and a region is defined to exist
in two hierarchies, a two-part region is
established within processor storage. The
two parts are not necessarily contiguous.

Storage Control in Systems with MFT
(Without Subtasking)

The chain of storage control information in
an MFT system without subtasking begins at
a table called the main storage supervisor
(MSS) boundary box, located in the system
nucleus. There is one MSS boundary box for
each partition. It is pointed to by the
TCB (TCBMSS field) for the partition.

Each boundary box contains 3 words. The
first word points to the Free Queue Element
(FQE) associated with the highest free area
in the partition. The second word points
to the lowest limit of the partition. The
third word contains the highest address in
the partition plus 1.

If Main Storage Hierarchy Support is
included, the first half of each expanded
boundary box describes the processor
storage (hierarchy 0) partition segment,
and the second half describes the 2361 Core
Storage (hierarchy 1) rpartition segment.
Any partition segment not currently
assigned storage in the system has the
applicable boundary box pointers set to
zero. If the partiticn is established
entirely within hierarchy 0, or if 2361
Core Storage is not included in the system,
the hierarchy 1 pointexrs in the second half
of the expanded boundary box are set to
zero. If a partition is established
entirely within hierarchy 1, the hierarchy
0 pointers in the first half of the
expanded boundary box are set to zero.

FQE: Each free area in a partition is
described by an FQE. FQEs are chained
beginning with the FQE associated with the
free area having the highest address in the
partition. If Main Storage Hierarchy
Support is present, one FQE chain exists
for each hierarchy specified. Each FQE

occupies the first 8 bytes of the area it
It has the following format:

describes.

Bytes 0-3: Pointer tc FQE associated with
next lower free area or, if
this is the last FQE, zeros.

Bytes U4-7: Number of bytes in the free

area.

Figure 10 summarizes storage control in
systems with MFT without subtasking.

Main Stcrage Supervision 21

DYNAMIC
AREA

FIXED
AREA

Figure 10.

Storage Control for a Partition
(MFT Without Subtasking)

Storage Control in Systems with MFT (With
Subtasking)

Storage control information for the job
step or partition TCB in MFT systems with
subtasking is handled in the same way as in
MFT systems without subtasking. However,
when subtasks are created, the supervisor
builds another control block, the gotten
subtask area queue element (GQE). The GQEs
associated with each subtask originate from
a one word pointer addressed by the TCBMSS
field of the subtask TCB.

GRE: Each area in main storage belonging
to a subtask, and obtained by a supervisor
issued GETMAIN macro instruction, is
described by a gotten subtask area queue
element (GQE). GQEs are chained in the
order they are created. The TCBMSS field
of the subtask TCB contains the address of
a word which points to the most recently
created GQE.

If Main storage Hierarchy Support is
present in the system, the GQE chain can
span from hierarchy 0 to hierarchy 1 and
back in any order. Each GQE occupies the
first eight bytes of the area it describes,
and has the following format:

Bytes 0-3: Pointer tc the Previous GQE or,
if zero, this is the last GQE
on the chain.

Bytes 4-7: Number of bytes in the gotten
subtask area.

Figure 11 summarizes the chaining of GQEs
to a subtask TCB.

ONE
PARTITION §

FIXED
AREAY

Figure 11.

Storage Control for Subtask
Storage (MFT With Subtasking)

Storage Control for a Region in Systems
with MVT

Unassigned areas of main storage within
each region of a system with MVT are
reflected in a queue of partition queue
elements (PQEs) and a sexies of free block
queue elements (FBQEs).

22 Programmer's Guide to D2bugging (Release 21)

.

The partition queue associated with a

PQE:

region resides in the system queue space.
It is connected to the TCBs for all tasks
in the job step through a dummy PQE located
in the system queue space.
the following format:

A dummy PQE has

Bytes 0-3: Pointer to the first PQE in the
partition queue.
Bytes U4-7: Pointer to the last PQE in the

partition queue.

In systems that do not include the
rollout/rollin feature or Main Storage
Hierarchy Support for IBM 2361 Models 1 and
2, there is one PQE for each job step. 1If
the rollout feature is used, additional
PQEs are added each time a job step borrows
storage space from existing steps or
acquires unassigned free space to satisfy
an unconditional GETMAIN request. These
additional PQEs are removed from the queue
as the rollin feature is used. If Main

Storage Hierarchy Support is present, one
PQE exists for each hierarchy used by the
job step.

A PQE has the following format:

8 9 12(C) 13(0)

16 (10) 17 (11) 20 (14) 21 (15)

24 (18)

©25 (19) 28 (1C) 29 (1D)

Bytes 1-3: Pointer to the first FBQE or,
if there are no FBQEs, a
pointer to the PQE itself.
Bytes 5-7: Pointer to the last FBQE or, if
there are no FBQEs, a pointer
to the PQE itself.

Bytes 9-11(B): Pointer to the next PQE or,
if this is the last PQE, zeros.

Bytes 13-15(D-F): Pointer to the previous
PQE or, if this is the first
PQE, zeros.

Bytes 17-19(11-13): Pointer to the TCB of
the owning job step.

Bytes 21-23(15-17): sSize of the region, in
2K (2048) bytes.

Bytes 25-27(19-1B): Pointer to the first
byte of the region.

Byte 28(1C): Rollout flags.

FBQE: The FBQEs chained to a PQE reflect
the total amount of free space in a region.
Each FBQE is associated with one or more
contiguous 2K blocks of free storage area.
FBQEs reside in the lowest part of their
associated area. As area distribution
within the region changes, FBQEs are added
to and deleted from the free block queue.

An FBQE has the following format:

Bytes 1-3: Pointer to the next lower FBQE
or, if this is the last FBQE,
pointer to the PQE.

Bytes 5-7: Pointer to the preceding FBQE,
or, if this is the first FBQE,
a pointer to the PQE.

Bytes 8-11(B): Number of bytes in the free
block.

The remaining main storage in a region
is used by problem programs and system
programs. For convenience in referring to
storage areas, the total amount of space
assigned to a task represents one or more
numbered subpools. (Subpools can also be
shared by tasks.) Subrcols are designated
by a number assigned to the area through a
GETMAIN macro instruction. Subpool numbers
available for problem rrogram use range
from 0 through 127. Subrool numbers 128
through 255 are either unavailable or used
by system programs.

Storage control elements and queues for
a region are summarized in Figure 12.

Main Stcrage Supervision 23

DYNAMIC P,
AREAS

SYSTEM J
QUEUE
SPACE

Figure 12. Storage Control for a Region

(MVT)

Storage Control for a Subpool in Systems
with MVT

Main storage distribution within each
subpool is reflected in a subpool queue
element (SPQE) and queues of descriptor
queue elements (DQEs) and free queue
elements (FQEs).

SPQE: SPQEs are associated with the
subpools created for a task. SPQEs reside
in the system queue space and are chained
to the TCB(s) that use the subpool. They
serve as a link between the TCB and the
descriptor queue, and may be part of a
subpool queue if the task.uses more than
one subpool. If a subpool is used by more
than one task, only one SPQE is created.
An SPQE has the following format:

Byte O:

Bit 0 -~ Subpool is owned by this task
if zero; shared, and owned by
anqther task, if one.

Bit 1 - This SPQE is the last on the

queue, if ome.
Bit 2 -~ Subpool is shared and owned by
this task, if one.

Bits 3-7 -~ Reserved.

Pointer to next SPQE or, in

Bytes 1-3:
. last SPQE, zero.

Byte 4: Subpool number.

Bytes 5-7: Pointer toc first DQE or, if the
subpool is shared, a pointer to
the "owning"™ SPQE.

DQE: DQEs associated with each SPQE

reflect the total amount of space assigned
to a subpool. Each DQE is associated with
one or more 2K blocks of main storage set
aside as a result of a GETMAIN macro
instruction. Each DQE is also the starting
A DQE has the

point for the free queue.
following format:

8 9 12(C) 13(D)

Bytes 1-3: Pointer to the FQE associated
with the first free area.

Bytes 5-7: Pointer to the next DQE or, if

this is the last DQE, zeros.

Bytes 9-11(B): Pointer to first 2K block
described by this DQE.

Bytes 13-15(D-F): Length in bytes of area
described by this DQE.

FQE: The FQE describes a free area within
a set of 2K blocks described by a DQE. It
occupies the first eight bytes of that free
area. Since the FQE is within the sukpool,
it has the same protect key as the task
active within that subprool. Extreme care
should be exercised to see that FQEs are
not destroyed by the problem program. If
an FQE is destroyed, the free space that it
describes is lost to the system and cannot
be assigned through a GETMAIN. As area

distribution within the set of blocks
changes, FQEs are added to and deleted from
the free queue.
format:

An FQE has the following

24 Programmer's Guide to Debugging (Release 21)

Bytes 1-3: Pointer to the next lower FQE
or, if this is the last FQE,

2€Xos.

Bytes 5-7: Number of bytes in the free

areae.

Storage control for a subpool is
summarized in Figure 13.

DYNAMIC J
AREAS

SYSTEM
QUEUE
SPACE

I__/\;

Figure 13.

Storage Control for a Subpool
(MVT)

Storage Control for a Load Module in
Systems With MVT

Each load module in main storage is
described by a contents directory entry
(CDE) and an extent list (XL) that tells
how much space it occupies.

CDE: The contents directory is a group of
queues, each of which is associated with an
area of main storage. The CDEs in each
queue represent the load modules residing
in the associated area. There is a CDE
queue for the link pack area and one for
each region, or job pack area. The TCB for
the job step task that requested the region
Contents directory queues reside in the
system queue space. A CDE has the
following format:

16(10)

17(1) 20(14) 21(15)
Byte 0: Flag bits, when set to one,
indicate:
Bit 0 - Module was loaded by NIP.
Bit 1 - Module is in process of Lkeing
loaded.
Bit 2 - Module is reenterable.
Bit 3 - Module is serially reusartle.
Bit 4 - Module may not be reused.
Bit 5 - This CDE reflects an alias
name (a minor CDE).
Bit 6 - Module is in job pack area.
Bit 7 - Module is not only-loadakle.
Bytes 1-3: Pointer to next CDE.
Bytes 5-7: Pointer to the RB.

Bytes 8-15(F): EBCDIC name of load module.

Byte 16(10): Use count.

Bytes 17-19(11-13): Entry point address of
load module.

Byte 20: Flag bits, when set to one,

indicate:

Bit 0 - Reserxved. :

Bit 1 - Module is inactive.

Bit 2 - An extent list has been Luilt
for the module.

Bit 3 - This CDE contains a relocated
alias entry point address.

Bit 4 - The module is refreshable.

Bits 5, 6, 7 - Reserved.

Bytes 21-23(15-17): Pointer to the XL for
this module or, if this is a
minor CDE, pointer to the
ma jor CDE.

XL: The total amount cf main storage
occupied by a load module is reflected in
an extent list (XL). XLs are located in
the system queue space. An XL has the
following format:

System Control Blocks and Tables 25

Bytes 0-3: Length of XL in bytes.
Bytes U~7: Number of scattered control
sections. If the control
sections are block-loaded, 1.
Remaining Length in bytes of each
bytes: control section in the module

(4 bytes for each control
section) and starting location
of each control section (4
bytes for each control
section).

Storage control elements and queues for
load modules are summarized in Figure 14.

System Control Blocks and Tables

In addition to the key task management
control blocks (TCB and RB), several other
control blocks containing essential
debugging information are built and
maintained by data management and job
management routines. Although some of
these blocks are not readily identifiable
on a storage dump, they can be located by
following chains of pointers that begin at
the TCB.

The control blocks discussed here have
the same basic functions at each control
program level. The precise byte-by-byte
contents of the blocks can be found in the
publication System Control Blocks. Block
contents useful in debugging are listed in
Appendix K.

DYNAMIC
AREAS

SYSTEM
QUEUE
SPACE

—A—y,

Figure 14.

Storage Control for a Load
Module (MVT)

Communications Vector Table (CVT)

The CVT provides a means of communication
between nonresident routines and the
control program nucleus. Its most
important role in debugging is its pointer
to two words of TCB addresses. These words
enable you to locate the TCB of the active
task, and from there to f£ind other
essential control information. Storage
locations 16 (10) and 76(4c) contain a
pointer to the CVT.

Task Inputs/Output Table (TIOT)

A TIOT is constructed by job management for
each task in the system. It contains
primarily pointers to control blocks used
by I/0 support routines. It is usually
located in the highest part of the main
storage area occupied by the associated
task (in systems with MVT, TIOTs are in the
system queue space.) Through the ¥I0T, you
can obtain addresses of unit control blocks
allocated to the task, the job and step
name, the ddnames associated with the step,
and the status of each device and volume
used by the data sets.

26 Programmer's Guide to Debugging (Release 21)

Unit Control Block (UCB)

The UCB describes the characteristics of an
I/0 device. One UCB is associated with
each I/0 device configured into a system.
The UCB's most useful debugging aid is the
sense information returned by the last
sense command issued to the associated
device.

Event Control Block (ECB)

The ECB is a 1l-word control block created
when a READ or WRITE macro instruction is
issued, initiating an asynchronous I/0
operation. At the completion of the I/0
operation, the access method routine posts
the ECB. By checking this ECB, the
completion status of an I/O operation can
be determined. 1In all access methods but
QOTAM, the ECB is the first word of a larger
block, the data event control block.

Input/Output Block (IOB)

The IOB is the sourxrce of information
required by the I/0 supervisor. It is
filled in with information taken from an
I/0 operation request. In debugging, it is
useful as a source of pointers to the DCB
associated with the I/0 operation and the
channel commands associated with a
particular device.

Data Control Block (DCB)

The DCB is the place where the operating
system and the problem program store all
pertinent information about a data set. It
may be completely filled by operands in the
DCB macro instruction, or partially filled
in and completed when the data set is
opened, with subparameters in a DD
statement and/or information from the data
set label. The format of DCBs differs
slightly for each of the various access
methods and device types. The DCB's
primary debugging aids are.its pointers to
the DEB and current IOB associated with its
data set, and the offset value of the
ddname in the TIOT.

Data Extent Block (DEB)

A DEB describes a data set's auxiliary
storage assignments and contains pointers

to some other control blocks. The DEB is
created and queued to the TCB at the time a
data set is opened. Each TCB contains a
pointer to the first DEB on its chain.
Through this pointer you can find out which
data sets are opened for the task at a
given time, what extents are occupied by
open data sets, and where the DCB and UCB
are located.

summary of Control Block Relationships

Figure 15, an expansion of Figure 1, shows
the relationships among the principal
control blocks and tables in the System/360
Operating System.

Location +0 TCB Words
AR
=

16(10)

+13(D)

+25(19)

+45 (2D){.

+33(21)

+7(11)

Figure 15. Control Block Relationships

System Control Blocks and Tables 27

28 Programmer's Guide to Debugging (Release 21)

Topics composing Section 2 are:

e ABEND/SNAP dumps issued by systems with
MFT.

e ABEND/SNAP dumps issued by systems with
MVT.

e Indicative dumps.

e Storage dumps.

Each topic includes instructions for
invoking the dump, a detailed description
of the dump's contents, and a guide to
using the dump.

ABEND/SNAP Dump (MFT)

ABEND/SNAP storage dumps are issued
whenever the control program or problem
program issues an ABEND or SNAP macro
instruction, or the operator issues a
CANCEL command requesting a dump, and
proper dump data sets have been defined.
However, in the event of a system failure,
if a SYS1.DUMP data set has been defined
and is available, a full storage dump will
be provided, as explained in the section
"Storage Dumps."

Since, in an MFT with subtasking system,
subtasks may be created, you may receive
one or more partial dumps in addition to
the complete dump of the task that caused
the abnormal termination. A complete dump
includes a printout of all control
information related to the terminating
task, and the nucleus and all allocated
storage within the partition in which the
abending task resided. A partial dump of a
task related to the terminating task
includes only control information. The
partial dump is identified by either ID=001
or ID=002 printed in the first line of the
dump. Figure 16 ‘is a copy of the first few
pages of a complete ABEND dump of an MFT
system with subtasking. It illustrates
some of the key areas on an ABEND dump, as
issued by systems with MFT. Those portions
of the dump that would only appear on a
dump of a subtasking system are noted in
the later discussions as appearing only in
a dump of an MFT with subtasking system.

For a discussion of a formatted ABEND
dump using the telecommunications access

method (TCAM) in an MFT environment, see
IBM System/360 Operating System: TCAM

Program lLogic Manual, GY30-2029.
References to other TCAM debugging aids are

found in Appendix J.

Section 2: Interpreting Dumps

Invoking an ABEND/SNAP Dump (MFT)

ABEND dumps are produced as a result of an
ABEND macro instructiocon, issued either by a
processing program or an operating system
routine. The macro instruction requires a
DD statement in the input stream for each
job step that is subject to abnormal
termination. This DD statement must ke
identified by one of the special ddnames
SYSABEND or SYSUDUMP. SYSABEND results in
edited control information, the system
nucleus, the trace table, and a dump of
main storage; SYSUDUMP excludes the nucleus
and the trace table. In the event of a
system failure, the Damage Assessment
routine (DAR) attempts to write a storage
image dump to the SYS1.DUMP data set. A
full explanation of storage dumps may be
found in the section "Storage Dumps."

SNAP Dumps result from a problem program
issuing a SNAP macro instruction. The
contents of a SNAP dump vary according to
the operands specified in the SNAP macro
instruction. SNAP dumps also require a DD
statement in the input stream. This DD
statement has no special characteristics
except that its ddname must not be SYSABEND
or SYSUDUMP. The processing program must
define a DCB for the snapshot data set.

The DCB macro instruction must contain, in
addition to the usual DCB requirements, the
operands DSORG=PS, RECFM=VBA, MACRF=(W),
BLKSIZE=882 or 1632, and LRECL=125. 1In
addition, the DCB must be opened before the
first SNAP macro instruction is issued.

Main Storage Considerations: Three BSAM
modules (IGG019BA, IGG019BB, and the

device-dependent EOB module) are required
to process dumps. These modules should be
made resident in the Resident Access Method
(RAM) area by specifying RESIDNT=ACSMETH in
the SUPRVSOR macro instruction during
system generation. If these modules are
not resident, as much as 1352 bytes of main
storage within the partition are required
to contain them.

In addition to the area required for the
BSAM modules, 2784 bytes must be available
in the partition. 1344 of these bytes are
required for EOV processing should the
initial space specification for a direct
access device be exceeded by the dump
requirements.

ABEND/SNAP Dump (MFT) 29

* ABDUMP REQUESTED *

JOB ATHEOT24 STEP STEP TIME 000737 DATE 99366 PAGE 0001
COMPLETION COOE USER = 0123

INTERRUPT AT (6EFSA

PSW AT ENTRY TO ABEND 00150000 4006EFS5A

TCB 01CB820 RB 0007FC58 PIE 00060000 0007F78C 000TFDBO [, 14 80000078 TRN 00000003

MSS 0001CC58 PK/FLG 10810408 000001F8 00000000 TFF T 05
8 TCB 0001D0A 00 8

STAE 00000000 TCTV 00000000 00000000 RESV 00000000 JSCB 00000000

ACTIVE RBS
PRB 06EE28 NM TATHBL0G6 SZ/STAB 00302000 USE/EP O106EE48 PSW 00150000 4006EFSA Q 000000 WT/LNK 0001CB20

SVRB 07FD20 NM SVC-601C SZ/STAB 0012D062 USE/EP 00007B78 PSW FF040033 50007D20 Q 900390 WT/LNK 0006EE28
RG 0-7 000002A0 80000078 00000000 00080000 D00TFE4S 00000098 00005508 0007FC30
8-15-7 0006EE6O 0007FFT8 0007FFBO O0O07FFF8 4006EE4E 0006EE6D 00009848 00000000

SVRB 07FC58 NM SVC-AQSA SZ/STAB 000CD062 USE/EP 00007878 PSW FFO4000E B800LE7EC Q FBO3F8 WT/LNK 0007FD20
RG 0~7 0007FTES 0007FD80 4000787A 000097F 8 0001CB20 0007FD20 0006F230 00005508
8-15-7 O0007F7ES 0006F296 0001CC56 0000225¢C 0001C820 0006F230 90007CBC 0001E7C8

P/P STORAGE BOUNDARIES 0006E800 TO 00080000
FREE AREAS SIZE

'06EB90 00000060
06ECS0 00000050
06F588 0000FC58
07F668 60000098
O7F 708 00000010
07F840 00000228
07FB90 000000C0
C7FEES 0000C018

Figure 16. Sample of an ABEND Dump (MFT) (Part 1 of 2)

30 Programmer's Guide to Debugging (Release 21)

SAVE ARE

A TRACE

TATHBLOG WAS ENTERED

SA O6EBFS8 WDl

R1
R7

SA 06EE6D0 WDL
Rl

R7

0606EACS
0001CC80
0007FC30

00000000
00000000
00000000

00000100
00000000
0006ECEQ

0006EBFS
00000000
00000000

PROCEEDING BACK VIA REG 13

SA 06E

TATHB10G
SA 06E

€60 WDl
R1
R7

00000000
00000000
00000000

WAS ENTERED

BF8 WD1
R1
R7

DATA SETS

SNAP2
DuUMDCS
JOBLIB
SYSPRINT

ucs

SYSABEND uce

SNAPL

ucs

Q606EACS
0001CC80
0007FC30

192
192
190

REGS AT ENTRY TO ABEND

FL.PT.RE

REGS 0-7
REGS 8-1

NUCLEUS

000000
000020
000040
000060
000080
0000A0
LINES
000160
000180
000140
LINE
OOO0LEQ
000200
000220
000240
000260
000280
000240
.0002C0
0002E0
000300
000320

Figure 16.

GS 0-6

5

000CC000
0004000A
1007F5€E8
00040000
00015380
00000000

0006EBF8
00000000
00000000

00000100
00000000
0006ECEO

00225C
00225C
00218C
00225C

00225¢C
00218C

0006EE60
00080000
Q007FF78

00000000
00000000
00000000

00000000
00000000
00000000

O0006EE60
00080000
O007FFT78

DEB OTF78C

DEB O7FAF4

00.000000 00000000

00000240

0006EE6!

0000051C
50006846
50000000
0000033A
00000000
00000000

0000C0-000140

00000000
0001CB820
006000000

0001CO
000079F0
0000846C
00013340
40100038
02070440
04409C29
90A19030C
91800018
01A098CD
000012AA
Q78850F0

00000000
00007E91
00000000
SAME
00006888
000083E4
00234700
94FD4011
003847F0
018091F0
58990000
478002CE
00285880
47000332
002C41€0

FOFOF5CL
00000000
00001480
00040000
00000000
00000000

80000078
0 QQ07FF78

00000000
00000000
000097F8
000002DE
00000000
00000000

SAME AS ABOVE

00000000
0006F465
00000000
AS ABOVE
0000A43A
00006780
024C96F0
90A13030
024C 940F
02384780
Dp2079010
58200208
02189101
90C2B004
02DC98BAD

82000170
80007016
00000000

00000001
00006942
02279029
5890021C
02279829
029C90A1
001894FD
052247F0
00290788
181B5880
01A08200

00000000
O007FFBO 0007

00.,000000 00000000

000097F8
0000FF0O0
60C85DC0
00000000
00000000
00000000

00040000
00000080
00000000

40007720
00001000
01805830
05895850
018091F0
01EOD207
90119140
026A0000
58A006C4
02189280
00281818

Sample of an ABEND Dump (MFT)

00080000

00009848
000TFE4S
0007FF80

00000000
00000000
00000000

00000000
00000000
00000000

00009848
0007FE48
0007FFBO

DCB O6EFB4
DCB 06EFSC

FFF8

00013440 01040080
00000000 FFO4000E
00000000 00040000
00008278 00040000
00000000 00000000
00000000 00000000

0003A7A0 00000000
0006F491 00000001
00000000 00000000

0000AD42 90001520
00000F28 00009730
06C45840 30004700
02105890 021407F9
02384780 044898A1
04400018 47F00282
00184780 02€05820
00015388 000087DA
58A0A004 12AA07CB
100098F0 A0008900
58800218 07FB90OF

0007FE48
4006EE4E

4006EE48
00000098
O007FFF8

00000000
00000000
00000000

00000000
00000000
00000000

4006EE48
00000098
OOQ7FFF8

8003ACD4
AOOOQ7E2A
00000282
00000226
00000000
00000000

00000000
0006F4A8
00000000

00000000
0001335C
025CD207
90AL01E0
01E08200
589006C4
02040522
0A0390A9
18BAS8AA
€0001200
04005890

(Part 2 of 2)

PAGE 0002

000098CE
00005508
4006ECCE

00000000
00000000
00000000

00000000
00000000
00000000

000098CE
00005508
4006ECCE

00,000000 00000000 00.000000 00000000

00000098 00005508 0007FC30
O006EE60 00009848 00000000

¥eeeeeee0005A00000aeBane seassaslk

*
*
*
*

Keseoossssevecssercsssssosensaces
ssesssssac¥
¥eoseosvssssecsensssnsssesercsccos

¥e0o00cserercocns ssensevossenscce
¥eeoaesel esecasee

*eee » oeDe

* cseee o cesesse

*Keo oee0. e0cceanss

*e essesl eeel

L

ABEND/SNAP Dump (MFT)

31

Device and Space Considerations: DD
statements for ABEND/SNAP dumps, must
contain parameters appropriate for a basic
sequential (BSAM) data set. Data sets can
be allocated to any device supported by the
basic sequential access method. There are
several ways to code these DD statements
depending on what type of device you choose
and when you want the dump printed.

If you wish to have the dump printed
immediately, code a DD statement defining a
printer data set.

//SYSABEND DD UNIT=1443,DCB=(...

e e i

A printer is associated with the SYSouT
class, you can also obtain immediate
printing by routing the data set through
the output stream.

r
| #//SNAPDUMP DD SYSOUT=A,DCB=(...
L

Sy—

This type of request is the easiest,
most economical way to provide for a dump.
All other DD statements result in the tying
up of an output unit or delayed printing of
the dump.

If you wish to retain the dump, you can
keep or catalog it on a direct access or
tape unit. The last step in the pertinent
job can serve several functions: to print
out key data sets in steps that have been
abnormally terminated, to print. an ABEND or
SNAP dump stored in an earlier step, or to
release a tape volume or direct access
space acquired for dump data sets.
Conditional execution of the last step can
be established through proper use of the
COND parameter and its subparameters, EVEN
and ONLY, on the EXEC statement.

Direct access space should be requested
in units of average block size rather than
in cylinders (CYL) or tracks (TRK). 1If
abnormal termination occurs and the data
set is retained, the tape volume or direct
access space should be released (DELETE in
the DISP parameter) at the time the data
set is printed.

Sample DD_Statements: Figure 17 shows a
set of job steps that include DD statements
for ABEND dump data sets.

The SYSABEND DD statement in STEP2 takes
advantage of the direct access space
acquired in STEP1 by indicating MOD in the
DISP parameter. Note that the space
request in STEP1 is large so that the
dumping operation is not inhibited due to
insufficient space. The final SYSABEND DD
statement in the job should indicate a
disposition of DELETE to free the space
acquired for dumping.

Contents of an ABEND/SNAP Dump (MFT)

This explanation of the contents of
ABEND/SNAP dumps for systems with MFT is
interspersed with sample sections taken
from an ABEND dump. Capital letters
represent the headings found in all dumps,
and lowercase letters, information that
varies with each dump. The lowercase
letter used indicates the mode of the
information, and the number of letters
indicates its length:

e h represents 1/2 byte of hexadecimal
information

e d represents 1 byte of decimal
information

e c represents a l-byte character

You may prefer to follow the explanation
on your own ABEND or SNAP dump.

32 Programmer's Guide to Debugging (Release 21)

//STEPI | [EXEC | [PGN=PIROGRAMI

//SYSABEND DD | DSNAME=DUMP,UNI[T=231|I,DISP=(,KEEP,KEEP), X
// VOLUME=SER[=1234|,SPACE= (TRK,(110, 10D
othlelr DD isitatements
//STEP2 | EXEC | [PGM=PROGRAM2
/SYSABEND DD [[DSNAME=%.S|TEP ! .[SYSABIEND, D! SP=(IMOD,DIELETE|, KEEP)), X
// VOL=R[EF=%.STEPI|. SYSABEND
Figure 17. SYSABEND DD Statements

ABEND/SNAP Dump (MFT)

33

***ABDUMP REQUEGSTETD®* * *
*cccececC..

JOB ccececcee STEP cccccccee

COMPLETION CODE
CCCCCCys e

INTERRUPT AT hhhhhh

PSW AT ENTRY TO ABEND (SNAP) hhhhhhhh hhhhhhhh

SYSTEM = hhh (or USER = dddd)

TIME dddddd

DATE dddad PAGE dddd

* * * ABDUMP REQUEST

*

*

in the free area specified by

ED %
identifies the dump as an ABEND or
SNAP dump.

¥CCCCCCCecnew

is omitted or is one or more of the
following:

*CORE NOT AVAILABLE, LOC.

hhhhhhhhhhhh TAKEN...
indicates that the ABDUMP routine
confiscated storage locations
hhhhhh through hhhhhh because not
enough storage was available.
This aréa is printed under P/P
STORAGE, but can be ignored
because the problem program
originally in it was overlaid -
during the dumping process.

*MODIFIED, /SIRB/DEB/LLS/ARB/MSS...
indicates that the one or more
queues listed were destroyed or
their elements dequeued during
abnormal termination:

e SIRB -- system interruption
request block gueue. One or
more SIRB elements were found
in the active RB queue: these
elements are always dequeued
during dumping.

e DEB -- DEB queue. If the first
message also appeared, either a
DEB or an associated DCB was
overlaid.

e LLS -- load list. If the first
message also appeared, one or
more loaded RBs were overlaid.

e ARB -- active RB queue. If the
first message also appeared,
one or more RBs were overlaid.

e MSS -- boundary box queue. One

or more MSS elements were

dequeued, but an otherwise
valid control block was found

an Mss element.

*FOUND ERROR IN /DER/LLS/ARB/MSS...
indicates that one or more of the
following contained an error:

e DEB: data extent block
e LIS: load list

e ARB: active RB

e MSS: boundary box

This message appears with either
the first or second message
above. The error could be:
improper boundary alignment,
control block not within storage
assigned to the program being
dumped, or an infinite loop (300
times is the maximum for this
test). For an MSS block, 4 other
errors could also be found:
incorrect descending sequence
(omitting loop count),
overlapping free areas, free area
not entirely within the storage
"assigned to the program being
dumped, or count in count field
not a multiple of 8.

JOB ccceccceccece

is the job name specified in the JOB
statement. ; : :

STEP cccccccce
is the step name specified in the EXEC
statement for the problem program
being dumped.

TIME dddddd :
is the hour (first 2 digits), minute
(second 2 digits), and second (last 2
digits) when the ABDUMP routine Legan
processing.

DATE ddddd

34 Programmer's Guide to Debugging (Release 21)

is the year (first 2 digits) and day
of the year (last 3 digits). For
example, 67352 would be December 18,
1967. .

PAGE dddd
is the page number.
top of each page.

Appears at the

COMPLETION CODE SYSTEM=hhh or COMPLETION

CODE USER=dddd
is the completion code supplied by the
control program (SYSTEM=hhh) oxr the
problem program (USER=dddd). Either
SYSTEM=hhh or USER=4ddd is printed,
but not both. Common completion codes
are explained in Appendix B.

CCCCCCewn
‘explains the completion code or, if a
program interruption occurred:
PROGRAM INTERRUPTION cCCCCe.. AT
LOCATION hhhhhh,

where ccccc is the program
interruption cause -- OPERATION,
PRIVILEGED OPERATION, EXECUTE,
PROTECTION, ADDRESSING, SPECIFICATION,
DATE, FIXED-POINT OVERFLOW,

FIXED-POINT DIVIDE, DECIMAL OVERFLOW,
DECIMAL DIVIDE, EXPONENT

OVERFLOW, EXPONENT UNDERFLOW,
SIGNIFICANCE, or FLOATING-POINT
DIVIDE; and hhhhhh is the starting
address of the instruction being
-executed when the interruption
occurred.

INTERRUPT AT hhhhhh
is the address of next instruction to
be executed in the problem program.
It is obtained from the resume PSW of
the PRB or LPRB in the active RB queue
at the time abnormal termination was
requested.

PSW AT ENTRY TO ABEND hhhhhhhh hhhhhhhh or
PSW AT ENTRY TO SNAP hhhhhhhh hhhhhhhh
is the PsW for the problem or control
program that had control when abnormal
termination was requested or when the
SNAP macro instruction was executed.

TCB hhhhhh- RB hhhhhhhh PIE hhhhhhhh
Mss hhhhhhhh PK/FLG hhhhhhhh

STAE hhhhhhhh TCT hhhhhhhh

DEB hhhhhhhh
FLG hhhhhhhh

TME hhhhhhhh
ECB hhhhhhhh
USER hhhhhhhh

RG 0-7 hhhhhhhh hhhhhhhh hhhhhhhh
RG 8-15 hhhhhhhh hhhhhhhh hhhhhhhh
FSA hhhhhhhh TCB hhhhhhhh
LTC hhhhhhhh IQE hhhhhhhh

hhhhhhhh
hhhhhhhh
hhhhhhhh

TIOT hhhhhhhh CcMp
LLS hhhhhhhh JLB
hhhhhhhh hhhhhhhh

hhhhhhhh hhhhhhhh hhhhhhhh

PIB hhhhhhhh NTC hhhhhhhh
XTCB hhhhhhhh LP/FL hhhhhhhh
DAR hhhhhhhh RESV hhhhhhhh

TRN hhhhhhhh

JST hhhhhhhh
hhhhhhhh hhhhhhhh
hhhhhhhh hhhhhhhh

OTC hhhhhhhh

RESV hhhhhhhh

JSCB hhhhhhhh

TCB hhhhhh
is the starting address of the TCB.

RB hhhhhhhh
is the TCBRBP field (bytes 0 through
3): starting address of the active RB
queue and, consequently, the most
recent RB on the queue (usually
ABEND's RB).

PIE hhhhhhhh
is the TCBPIE field (bytes 4 through
7): starting address of the program
interruption element (PIE) for the
task.

DEB hhhhhhhh
is the TCBDEB field (bytes 8 through
11): starting address of the DEB
queue.

TIOT hhhhhhhh
is the TCBTIO field (bytes 12 through
15): starting address of the TIOT.

CMP hhhhhhhh
is the TCBCMP field (bytes 16 through
19): task completion code in

hexadecimal. System codes are shown
in the third through fifth digits and
user codes in the sixth through
eighth.

TRN hhhhhhhh
is the TCBTRN field (bytes 20 through
23): starting address of control core
(table) for controlling testing of the
task by TESTRAN.

-

MSS hhhhhhhh
is the TCBMSS field (bytes 24 through
27): starting address of the main
storage supervisor's boundary box.

PK/FLG hhhhhhhh
contains, in the first 2 digits, the
TCBPKF field (byte 28): protection
key.

FLG hhhhhhhh
contains, in the first 4 digits, the
last 2 bytes of the TCBFLGS field
(bytes 32 and 33): 1last 2 flag Lytes.

ABEND/SNAP Dump (MFT) 35

contains, in the next 2 digits, the
TCBLMP field (byte 34): number of
resources on which the task is queued.

contains, in the last 2 digits, the
TCBDSP field (byte 35):

e Reserved in MFT without subtasking;
both digits are zero.

e In MFT with subtasking, this field
contains the dispatching priority of
the TCB.

LLS hhhhhhhh -
is the TCBLLS field (bytes 36 through
39): starting address of the RB
most recently added to the load
list.

JLB hhhhhhhh
is the TCBJLB field (bytes 40 through
43): starting address of the DCB
for the JOBLIB data set.

JST hhhhhhh
is the TCBJST field (bytes 44 through
47). Not currently used in MFT
without subtasking. In MPT with
subtasking - the starting address of
the TCB for the job step task.

RG 0-7 and RG 8-15
is the TCBGRS field (bytes 48 through
111): contents of general registers 0
through 7 and 8 through 15, as stored
in the save area of the TCB when a
task switch occurred. These 2 lines
appear only in TCBs of tasks other
than the task in control when the dump
was requested.

FSA hhhhhhhh
contains, in the first 2 digits, the
TCBIDF field (byte 112): TCB
identifier field.

contains, in the last 6 digits, the
TCBFSA field (bytes 113 through 115):
starting address of the first problem
program save area. This save area was
set up by the control program when the
job step was initiated.

TCB hhhhhhhh
is the TCBTCB field (bytes 116 through
119): starting address of the next
TCB of lower priority orx, if this is
the last TCB, zeros.

36 Programmer's Guide to Debugging (Release 21)

TME hhhhhhhh

is the TCBTME field (bytes 120 through
123): starting address of the timer
element created when an STIMER macro
instruction is issued by the task.
This field is not printed if the
computer does not contain the timer
option.

PIB hhhhhhhh

is the TCBPIB field (bytes 124 through
127): starting address of the program
information block.

NTC hhhhhhhh

is the TCBNTC field (bytes 128 through
131):

MFT without subtasking: =zeros.

MFT with subtasking: the starting
address of the TCB for the previous
subtask on this subtask TCB queue.
This field is zerc both in the jok
step task, and in the TCB for the
first subtask created by a parent
task.

OTC hhhhhhhh

is the TCBOTC field (bytes 132 through
135): starting address of the TCB for
the parent task. Both in the TCB for
the job step task, and in MFT systems
without subtasking this field is zero.

LTC hhhhhhhh

is the TCBLTC field (bytes 136 through
139): starting address of the TCB for
the most recent subtask created Ly
this task. This field is zero in the
TCB for the last subtask of a job
step, or in the TCB for a task that
does not create subtasks. This field
is always zero in an MFT system
without subtasking.

IQE hhhhhhhh

is the TCBIQE field (bytes 140 through
143).

MFT without subtasking: zero.

MFT with subtasking: starting address
of the interruption queue element
(IQE) for the ETXR exit routine. This
routine is specified by the ETXR
operand of the ATTACH macro
instruction that created the TCB being
dumped. The routine is to be entered
when the task terminates.

ECB hhhhhhhh

is the TCBECB field (bytes 144 through
147).

MFT without subtasking: zero.

MFT with subtasking: starting address
of the ECB field to be posted by the
control program at task termination.
This field is zero if the task was
attached without an ECB operand.

XTCB hhhhhhhh
reserved for future use.

LP/FL hhhhhhhh

MFT without subtasking: reserved.
MFT with subtasking: contains in the
first byte, the limit priority of the
task (byte 152). contains, in the
last three bytes the field TCBFTFLG
(bytes 153 through 155) - flag bytes.

RESV hhhhhhhh
reserved for future use.

STAE hhhhhhhh
contains, in the first 2 digits, STAE
flags (byte 160).

contains, in the last 6 digits, the
TCBNSTAE field (bytes 161 through
163): starting address of the current
STAE control block for the task. This
field is zero if STAE has not been

TCT hhhhhhhh
is the TCBTCT field (bytes 164 through
167):

Address of the Timing Control Takle
(TCT): zexros if the System Management
Facilities option is not present in
the system.

USER hhhhhhhh
is the TCBUSER field (bytes 168
through 171): +to be used as the user
chooses. ' :

DAR hhhhhhhh
contains, in the first 2 digits,
Damage Assessment Routine (DAR) flags
(byte 172);

contains, in the laSt 6 digits, the
secondary non-disgpatchability bits
(bytes 173 through 175).

RESV hhhhhhhh
reserved for future use.

JSCB hhhhhhhh
is the TCBJSCB field (bytes 180
through 183): the last three bytes
contain the address of the Jok Step

issued. Ccontrol Block.
ACTIVE RBS
ccce hhhhhh NM cccececc S2/STAB hhhhhhhh USE/EP hhhhhhhh PSW hhhhhhhh hhhhhhhh Q hhhhhh WT/LNK hhhhhhhh
RG 0=7 hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh
RG 8-15 hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh
ACTIVE RBS Note: Three SVRBs for ABEND

identifies the next lines as the
contents of the active RBs queued to
the TCB.

cccc hhhhhh
indicates the RB type and its starting
address.
The RB types are:
PRB Program request block

SIRB Supervisor interrupt request'
block

LPRB Loaded program request block

IRB Interruption request block

SVRB Supervisor request block

processing exist in the nucleus. They
are used when there is insufficient
space in the partition to create an
SVRB.

NM XXXXXXXX
is the XRBNM field (bytes 0 through
7): in PRB, LRB, and LPRB, the
program name; in IRB, the first byte
contains flags for the timer or, if
the timer is not being used, contains
no meaningful information; in SVRB for
a type 2 SVC routine, the first 4
bytes contain the TTR of the load
module in the SVC library, and the
last 4 bytes contain the SVC numker in
signed, unpacked decimal.

ABEND/SNAP Dump (MFT) 37

SZ/STAB hhhhhhhh

contains in the first 4 digits, the
XRBSZ field (bytes 8 and 9): number
of contiguous doublewords in the RB,
the program (if applicable), and
associated supervisor work areas.

contains in the last 4 digits, the
XSTAB field (bytes 10 and 11): flag
bytes.

USE/EP hhhhhhhh

contains, in the first 2 digits, the
XRBUSE field (byte 12): use count.

contains; in the last 6 digits, the
XRBEP field (bytes 13 through 15):
address of entry point in the
associated program.

PSW hhhhhhhh hhhhhhhh

is the XRBPSW field (bytes 16 through
23): resume PSW.

Q hhhhhh

is the last 3 bytes of the XRBQ field

(bytes 25 through 27): in PRB and
LPRB, starting address of an LPRB for
an entry identified by an IDENTIFY
macro instruction; in IRB, starting
address of a request element; in SVRB
for a type 3 or 4 SVC, size of the
program in bytes.

WT/LNK hhhhhhhh
contains, in the first 2 digits, the
XRBWT field (byte 28): wait count.

contains, in the last 6 digits, the
XRBLNK field (bytes 29 through 31):
primary queuing field. It is the
starting address of the previous RB
for the task or, in the first RB to be
placed on the queue, the starting
address of the TCB.

RG 0-7 and RG 8-15
is the XRBREB field (bytes 32 through
95 in IRBs and SVRBs): contents of
general registers 0 through 15 stored
in the RB. These 2 lines do not
appear for PRBs, LPRBs, and LRBs.

LOAD LIST

cccc hhhhhh NM cccccccce SZ/STAB hhhhhhhh USE/EP hhhhhhhh PSW hhhhhhhh hhhhhhhh Q hhhhhh WT/LNK hhhhhhhh

LOAD LIST

CcCccc

identifies the next lines as the
contents of the load list queued to
the TCB.

hhhhhh
indicates the RB type and its starting
address.

The RB types are:

LRB Loaded request block

LPRB Loaded program request block

D-LPRB Dummy loaded program request
block. (Present if the
resident reenterable load
module option was selected).

NM cccceccceccc

is the XRBNM field (bytes 0 through
7): program name.

SZ/STAB hhhhhhhh

38

contains, in the first 4 digits, the
XRBSZ field (bytes 8 and 9): number
of contiguous doublewords for the RB,
the program (if applicable), and
associated supervisor work areas.

contains, in the last 4 digits, the
XSTAB field (bytes 10 and 11): flag
bytes.

USE/EP hhhhhhhh
contains, in the first 2 digits, the
XRBUSE field (byte 12): use count.

contains, in the last 6 digits, the
XRBEP field (bytes 12 through 15):
address of entry roint in the program.

PSW hhhhhhhh hhhhhhhh
is the XRBPSW field (bytes 16 through
23): resume PSW.

Q hhhhhh
is the last 3 bytes of the XRBQ field
(bytes 25 through 27): in LPRB,
starting address of an LPRB for an
entry identified by an IDENTIFY macro
instruction; in LRB, unused.

WI'/LNK hhhhhhhh
contains, in the first 2 digits, the
XRBWT field (byte 28): wait count.

contains, in the last 6 digits, the
XRBLNK field (bytes 29 through 31):

Programmer's Guide to Debugging (Release 21)

primary queuing field for LRBs and
LPRBs also on the active RB queue. It
points to the previous RB for the task
or, in the oldest RB in the queue,
back to the TCB.

JOB PACK AREA QUEUE

cccc hhhhhh NM cccccccce
cccc hhhhhh NM cccccecce
cccc hhhhhh NM ccceccecce

SZ/STAB hhhhhhhh WTL

SZ/STAB hhhhhhhh USE/EP hhhhhhhh PSW hhhhhhhh hhhhhhhh Q@ hhhhhh WT/LNK hhhhhhhh
hhhhhhhh REQ hhhhhhhh TLPRB hhhhhhhh
S82/STAB hhhhhhhh USE/EP hhhhhhhh PSW hhhhhhhh hhhhhhhh Q hhhhhh WT/LNK hhhhhhhh

JOB PACK AREA QUEUE (MFT with subtasking
only)
identifies the next lines as the
contents of the job pack area queue
originating in the partition
information block (PIB).

cccc hhhhhh
indicates the RB type and its starting
address.

The RB types are:

FRB Finch request block
LRB Loaded request block
LPRB Loaded program request block

NM ccccccee
is the XRBNM field (bytes 0 through
7): Program name.

SZ/STAB hhhhhhhh
contains, in the first 4 digits, the
XRBSZ field (bytes 8 and 9): number
of contiguous doublewords for the RB,
the program (if applicable), and
associated supervisor work areas.

contains, in the last 4 digits, the
XSTAB field (bytes 10 and 11): flag
bytes.

USE/EP hhhhhhhh (LPRB, LRB Only)
contains, in the first 2 digits, the
XRBUSE field (byte 12): use count.

contains, in the last 6 digits, the
XRBEP field (bytes 13 through 15):
address of entry point in the program.

WTL hhhhhhhh (FRB Only)
is the XRWTL field of the FRB (bytes

12 through 15): address of the most
recent wait list element (WLE) on the
WLE queue.

PSW hhhhhhhh hhhhhhhh (LPRB, LRB Only)
is the XRBPSW field (bytes 16 through
23): resume PSW.

REQ hhhhhhhh (FRB Only)
is the XRREQ field of the FRB (bytes
16 through 19): address of the TCB of
the requesting task.

TLPRB hhhhhhhh (FRB Only)
is the XRTLPRB field of the FRB (bytes
20 through 23): address of the LPRB
built by the Finch routine for the
requested program.

Q. hhhhhh (LRB, LPRB Only)
is the last 3 bytes of the XRBQ field
(bytes 25 through 27):

e in an LPRB, the starting address of
an LPRB for an entry identified by
an IDENTIFY macro instruction.

e in an LRB, unused.

WI'/LNK hhhhhhhh (LRB, LPRB Only)
contains, in the first 2 digits, the
XRBWT field (byte 28): wait count.

contains, in the last 6 digits (bytes
29 through 31): grimary queuing field
for RBs. These RBs may be queued
either on the job pack area gqueue or
on the active RB queue. It points to
the previous RB for the task or, in
the oldest RB on the queue, back to
the TCB.

ABEND/SNAP Dump (MFT) 39

P/P STORAGE BOUNDARIES hhhhhhhh TO hhhhhhhh

FREE AREAS SIZE
hhhhhh hhhhhhhh

GOTTEN CORE SIZE
hhhhhh hhhhhhhh

SAVE AREA TRACE

ccccccce WAS ENTERED VIA LINK (CALL) ddddd AT EP CCCCC.ess

SA hhhhhh WDl hhhhhhhh HSA hhhhhhhh LSA hhhhhhhh RET hhhhhhhh EPA hhhhhhhh RO hhhhhhhh
Rl hhhhhhhh R2 hhhhhhhh R3 hhhhhhhh R4 hhhhhhhh R5 hhhhhhhh R6 hhhhhhhh
R7 hhhhhhhh R8 hhhhhhhh R9 hhhhhhhh R10 hhhhhhhh R1l hhhhhhhh R12 hhhhhhhh

INCORRECT BACK CHAIN

PROCEEDING BACK VIA REG 13

P/P STORAGE BOUNDARIES hhhhhhhh TO hhhhhhhh cccccccc WAS ENTERED

gives the addresses of the lower and is the name of the program that stored
upper boundaries of a main storage register contents in the save area.
area assigned to the task. This This name is obtained from the RB.

heading is repeated for every
noncontiguous block of storage owned

by the task. VIA LINK (CALL) ddddd
indicates the macro instruction (LINK
FREE AREAS SIZE or CALL) used to give control to the
next lower level module, and is the ID
hhhhhh hhhhhh operand, if it was specified, of the
. . LINK or CALL macro instruction.
. . AT EP CCCCC...
hhhhhh hhhhhh is the entry point identified, which
are the starting addresses of free appears only if it was specified in
areas and the size, in bytes, of each the SAVE macro instruction that filled
area contained within the P/P STORAGE the save area.
BOUNDARIES field listed above.
SA hhhhhh
GOTTEN CORE SIZE is the starting address of the save
area.
hhhhhh hhhhhhhh
- - WD1 hhhhhhhh
. . is the first word of the save area:
- . use of this word is optional.
hhhhhh hhhhhhhh
(Printed only in a dump of a system HSA hhhhhhhh
with the MFT with subtasking option). is the second word of the save area:
These figures represent the starting starting address of the save area in
addresses of the gotten areas (those the next higher level module. In the
areas obtained for a subtask through a first save area in a job step, this
supervisor issued GETMAIN macro word contains zeros. In all other
instruction), and the size, in bytes, save areas, this word must be filled.

of each area contained within the P/P
STORAGE BOUNDARIES field listed above. ISA hhhhhhhh

If main storage hierarchy support is is the third word of the save area
included in the system, the values in (register 13): starting address of
this field can address storage in the save area in the next lower level
either hierarchy 0 or hierarchy 1, or module.
both.
RET hhhhhhhh

SAVE AREA TRACE is the fourth word of the save area
identifies the next lines as a trace (register 14): return address.
of the save areas for the program. Optional.

40 Programmer's Guide to Debugging (Release 21)

EPA hhhhhhhh
is the fifth word of the save area
(register 15): entry point to the
invoked module. Optional.

RO hhhhhhhh R1 hhhhhhhh ... R12 hhhhhhhh
are words 6 through 18 of the save
area (registers 0 through 12):
contents of registers 0 through 12
immediately after the linkage for the
module containing the save area.

INCORRECT BACK CHAIN
indicates that the following lines may
not be a save area because the second

word in this area does not point back
to the previous save area in the
chain.

PROCEEDING BACK VIA REG 13

indicates that the next 2 save areas
are (1) the save area in the lowest
level module, followed by (2) the save
area in the next higher level module.
The lowest save area is assumed to be
the save area pointed to by register
13. These 2 save areas appear only if
register 13 points to a full word
boundary and does not contain zeros.

DATA SETS
%k%x N OT F O RMAT T E D *#*kk»

cccceccce uUcCB dad hhhhhh DEB hhhhhh

D/S FORMATTING TERMINATED

DCB hhhhhh

DATA SETS
indicates that the next lines present
information about the data sets for
the task. For unopened data sets,
only the ddname and UCB information
are printed.

NOT FORMATTED
indicates that the abnormal
termination dump routine confiscated
storage (indicated by *CORE NOT
AVAILABLE, LOC. hhhhhh-hhhhhh TAKEN);
because DCBs may have been overlaid,
or that the dump is for an OLTEP task.
Data set information is not presented.

cccecccce
is the name field (ddname) of the DD
statement.

UCB d4dd hhhhhh
is the unit to which the data set was

assigned, and the starting address of
the UCB for that unit. If the data
set was assigned to several units, the
additional units are identified on
following lines.

DEB hhhhhh
is the starting address of the DEB for
the data set. Arpears only for open
data sets.

DCB hhhhhh
is the starting address of the DCB for
the data set. Arpears only for open
data sets.

D/S FORMATTING TERMINATED
indicates that no more data set
information is presented because a DCB
is incorrect, possibly because a
program incorrectly modified it.

ABEND/SNAP Dump (MFT) 41

TRACE TABLE ~ STARTING WITH OLDEST ENTRY

dddd I/0 ddd PSW hhhhhhhh hhhhhhhh CSwW hhhhhhhh hhhhhhhh
dddd SI0 ddd cC = d CAW hhhhhhhh OLD CSW hhhhhhhh hhhhhhhh (or CSW STATUS‘hhhh)
dddd svVC ddd PSW hhhhhhhh hhhhhhhh RG 0 hhhhhhhh RG 1 hhhhhhhh

TRACE TABLE -- STARTING WITH OLDEST ENTRY
identifies the next lines as the
contents of the trace table. Each
entry is presented on one line. The
types of entries are:

170 Input/output interruption entry

SIO start input/output (SIO) entry

SVC supervisor call (SVC) interruption

entry

adad
is the number assigned to each entry.
The oldest entry receives the number
0001.

170 4dd
is the channel and unit that caused
the input/output interruption.

PSW hhhhhhhh hhhhhhhh
is the program status word that was
stored when the input/output
interruption occurred.

CSW hhhhhhhh hhhhhhhh
is the channel status word that was
stored when the input/output
interruption occurred.

SIo ddd
is the device specified in the SIO
instruction.

cc=d
is the condition tode resulting from
execution of the SIO instruction.
Zero indicates a successful start.

CAW hhhhhhhh .
is the channel address word used by
the SIO instruction.

OLD CSW hhhhhhhh hhhhhhhh
is the channel status word stored
during execution of an SIO operation.
It appears when CC is not equal to 1.

CSW STATUS hhhh
is the status portion of the channel
status word stored during execution of
an SIO instructicn. Appears when CC
is equal to 1.

SvCc ddd
is the SVC instruction's operand.

PSW hhhhhhhh hhhhhhhh
is the PSW stored during the SVC
interruption. An F in the fifth digit
of the first word identifies the entry
as representing a task switch.

RG 0 hhhhhhhh
is the contents of register 0 as
passed to the SVC routine.

RG 1 hhhhhhhh
- 'is the contents of register 1 as
passed to the SVC routine.

42 Programmer's Guide to Debugging (Release 21)

REGS AT ENTRY TO ABEND (SNAP)

FLTR 0«6 hhhhhhhhhhhhhhhh hhhhhhhhhhhhhhhh hhhhhhhhhhhhhhhh hhhhhhhhhhhhhhhh
REGS 0-7 hhhhhhhh hhhhhhhh hhhhhhhh hhhhbhhhh hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh
REGS 8~15 hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh

REGS AT ENTRY TO ABEND or REGS AT ENTRY TO FLTR 0-6

SNAP . is the contents of floating point
identifies the next 3 lines as the registers 0, 2, 4, and 6.
contents of the floating point and
general registers when the abnormal REGS 0-7
termination routine received control is the contents of general registers 0
in response to an ABEND macro through 7.

instruction or when the SNAP routine
received control in response to a SNAP REGS 8-15

macro instruction. is the contents of general registers 8
through 15.
NUCLEUS
hhhhhh hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh *ccccecceccccccccecceccccccccccecc®
hhhhhh hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh *ccceccececcceocecccecccccececcccceec®
LINE hhhhhh SAME AS ABOVE
hhhhhh hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh *CCCCCCCCCCCCCCCCCCCECCCCCCCECCee?
LINES hhhhhh-hhhhhh SAME AS ABOVE
hhhhhh hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh *cccececccececcecccecccecccececccceccec®
P/P STORAGE
hhhhhh hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh *cceccceccecceccccecceccccceecccecccecec?
hhhhhh hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh *ccceccccececccecceccecccccecccccccce®
hhhhhh hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh *cccececccccccccccccceccccccccccecc®
LINES hhhhhh=hhhhhh SAME AS ABOVE
hhhhhh hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh *ccccccccecceccccoccecccccececcccccec®

END OF DUMP

The content of main storage is given differs from the contents during
under 2 headings: NUCLEUS and P/P STORAGE. printing of the hexadecimal characters
Under these headings, the lines have the because a portion of the work area is
following format: used to write lines to the printer.

This exception should not create any
e First entry: the address of the problems since the contents of the
initial byte of main storage contents ABDUMP work area is of little use in
presented on the line. debugging.
e Next 8 entries: 8 full words (32 The following lines may also arpear:

bytes) of main storage in hexadecimal.
LINES hhhhhhhh-hhhhhhhh SAME AS ABOVE

e Last entry (surrounded by asterisks): are the starting addresses of the
the same 8 full words of main storage first and last line of a group of
in EBCDIC. Only A through Z, 0 through lines that are identical to the line
9, and blanks are printed; a period is ~ immediately preceding.
printed for anything else. An
exception occurs in the printed lines LINE hhhhhh SAME AS ABOVE
representing the ABDUMP work area. The is the starting address of a line that
contents of the ABDUMP work area during is identical to the line immediately
the printing of EBCDIC characters preceding.

ABEND/SNAP Dump (MFT) 43

NUCLEUS - :)) :
identifies the next lines as the
contents of the control program
nucleus. . : .

P/P STORAGE
identifies the next lines as the
contents of the main storage area
assigned to the task (problem
program).

END OF DUMP

indicates that the dump or snapshot is
completed.

Guide to Using an ABEND/SNAP Dump (MFT)

Cause of Abnormal Termination: Evaluate
the user (USER Decimal code) or system
(SYSTEM=hex code) completion code using
Appendix C or the publication Messages and
Codes .

Active RB Queue: The first RB shown on the
dump represents the oldest RB on the queue.
The RB representing the load module that
had control when the dump was taken is
third from the bottom. The last RB
represents the ABDUMP routine, and the
second from last, the ABEND routine. The
names of load modules represented in the
active RB queue are given in the RB field
labeled NM in the dump. Names of load
modules in SVC routines are presented in
the format:

1
NM SVC-mnnn |
J

where m is the load module number (minus 1)
in the routine and nnn is the signed
decimal SVC number. The last two RBs on an
ABEND/SNAP dump will always be SVRBs with
edited names SVC-105A (ABDUMP--SVC 51) and
SVC-401C (ABEND~-SVC 13).

Resume PSW: The resume PSW field is the
fourth entry in the first line of each RB
printout. It is identified by the

. subheading PSW. For debugging purposes,
the resume PSW of the third RB from the
bottom, on the dump, is most useful. The
last three characters of the first word
give the SVC number or the I/O device
address, depending on which type of
interruption caused the associated routine
to lose control. It also provides the CPU
state at the time of the interruption (bit
15), the length of the last instruction
executed in the program (bits 32,33), and
the address of the next instruction to be
executed (bytes 5-8).

Ioad List and Job Pack Area Queue: The
load module that had control at the time of
abnormal termination may not contain the
instruction address pointed to by the
resume PSW. In that case, look at the RBs
on the load list and on the job pack area
queue (MFT with subtasking). Compare the
instruction address with the entry points
of each load module (shown in the last 3
bytes of the field labeled USE/EP). The
module which contains the instruction
pointed to by the resume PSW is the one in
which abnormal termination occurred. The
name of the load module is indicated in the
field labeled NM.

Trace Table: Entries in the trace takle
reflect SI0, 1I/0, and SVC interruptions and
task switching. SIO entries can be used to
locate the CCW (through the CAW), which
reflects the operation initiated by an SIO
instruction. If the SIO operation was not
successful, the CSW STATUS portion of the
entry will show you why it failed.

I1/0 entries reflect the I/70 old PSW and
the CSW that was stored when the
interruption occurred. From the PSW, you
can learn the address of the device on
which the interruption occurred (bytes 2
and 3), the CPU state at the time of
interruption (bit 15), and the instruction
address where the interruption occurred
(bytes 5-8). The CSW provides you with the
unit status (byte 4), the channel status
(byte 5), and the address of the previous
CCW plus 8 (bytes 0-3).

SVC entries provide the SVC old PSW and
the contents of registers 0 and 1. The PSW
offers you the hexadecimal SVC number (bits
20-31), the CPU mode (bit 15), and the
address of the SVC instruction (bytes 5-8).
The contents of registers 0 and 1 are
useful in that many system macro
instructions use these registers for
parameter information. Contents of
registers 0 and 1 for each SVC interruption
are given in Appendix A.

A task switch entry is similar to an SVC
entry, except that words 3 and 4 of the
entry contain the address of the TCBs for
the "new" and "0ld" tasks being performed,
respectively. The trace table entries for
one particular task are contained between
sets of two task switch entries. Word 3 of
the beginning task switch entry and word 4
of the ending task switch entry point to
the TCB for that task. Task switch entries
are identified by a fifth digit of 'F'.

Notes: If an ABEND macro instruction is
issued by the system when a program check
interruption causes abnormal termination,
an SVC entry does not arpear in the trace
table, but is reflected in the PSW at entry
to ABEND.

44 Programmer's Guide to Debugging (Release 21)

Dumps issued by systems with MFT contain
only the last four characters of the module
name in the RB APSW field. You cannot
distinguish between IFGOxxxx and IGGO0XXxXxX.
After an SVC 19 has been issued, the OPEN
where-to-go table should be checked for the
module name.

Free Areas: ABEND/SNAP dumps do not print
out areas of main storage that are
available for allocaticn. Since the ABEND
routine uses some available main storage,
the only way you can determine the amount
of free storage available when abnormal
termination occurred is to re-create the
situation and take a stand-alone dump.

ABEND/SNAP Dump (MFT) 45

ABEND/SNAPvanp(MVT)

MVT dumps differ from PCP and MFT dunps in
the addition of detailed main storage
control information, the omission of a
complete main storage dump, and the
omission of a trace table in ABEND dumps.
MVT dumps occur immediately after an
abnormal termination, provided an ABEND or
SNAP macro instruction was issued and
proper dump data sets were defined.
However, if a system failure has occurred
and a SYS1.DUMP data set has been defined
and is available, a full storage image dump
is provided, as explained in the section
headed "Storage Image Dump."

With MVT's subtask creating capability,
you may receive one or more partial dumps
in addition to a complete dump of the task
that caused abnormal termination. A
complete dump includes all control
information associated with the terminating
task and a printout of the load modules and
subpools used by the task. A partial dump
of a task related to the terminating task
includes only control information. A
partial dump is identified by either ID=001
or ID=002 printed in the first line of the
dump. Figure 18 shows the key areas of a
complete dump.

In systems with MVT, you can effect
termination of a job step task upon
abnormal termination of a lower level task.
To do this, you must either terminate each
task upon finding an abnormal termination
completion code issued by its subtask or
pass the completion code on to the next
higher level task.

For a discussion of a formatted ABEND
dump using the telecommunications access
method (TCAM) in an MVT environment, see
IBM System/360 Operating System: TCAM
Program Logic Manual, GY30-2029.

References to other TCAM debugging aids are
found in Appendix J.

Invoking an ABEND/SNAP Dump (MVT)

ABEND/SNAP dumps issued by systems with MVT
are invoked in the same manner as those
under systems with PCP and MFT. They
result from an ABEND or SNAP macro
instruction in a system or user program,

accompanied by a properly defined data set.

In the case of a system failure, the damage
assessment routine (DAR) attempts to write
a storage image dump to the SYS1.DUMP data
set. A full explanation of storage image
dumps may be found in the section headed
"Storage Image Dump." The instructions
that invoke an ABEND/SNAP dump in MVT

environment are the same as. those given. in

the preceding topic for systems with MFT.‘

However, some: additlonal consideratlons

- ‘mast be made in requesting main storage and

direct access space.

MVT Considerations: In specifying a region
size for a job step subject to abnormal
termination, you must consider the space
requirements- for opening a SYSABEND or
SYSUDUMP data set (if thexe is one), and
loading the ABDUMP routine and required -
data management routines. This space
requirement can run as high as 6000 bytes.

Direct access devices are used
frequently for intermediate storage of dump
data sets in systems with MVT. To use'
direct access space efficiently, the space
for the dump data set should be varied,
depending on whether or not abnormal A
termination is likely. A small quantity
should be requested if normal termination
is expected. To prevent termination of the
dump due to a lack of direct access space,
always specify an incremental (secondary)
quantity when coding a SPACE parameter for
a dump data set. You can obtain a ' ‘
reasonable estimate of the direct access
space required for an ABEND/SNAP dump by
adding, (1) the number of bytes in the
nucleus, (2) the part of the system queue
space required by the task (9150 bytes: is a
sufficient estimate), and (3) the amount of
region space occupied by the task.

Multiply the sum by 4, and request this
amount of space in 1024-byte blocks.

This formula gives the space
requirements for one task. Request
additional space if partial dumps of
subtasks and invoking tasks will be
included.

Contents of an ABEND/SNAP Dump (MVT)

This explanation of the contents of :
ABEND/SNAP dumps issued by systems with MVT
is interspersed with sample sections from
an ABEND dump. Capital letters represent
the headings found in all dumps, and
lowercase letters, information that varies
with each dump. The lowercase letter used
indicates the mode of the information -and
the number of letters indicates its length:

e h represents 1/2 byte of hexadecimal
: .1nformat10n ‘ , : :

. a represents 1 byte of decimal
information

e c represents a l-byte character

You may prefer to follcw the explanation on
your own ABEND or SNAP dump.

46 Programmer's Guide to Debugging (Release 21)

JO8 1PCT41 STEP EXSTEP TIME 002409 DATE 99366 PAGE 0001
COMPLETION CODE SYSTFM = 837
PSW AT ENTRY TN ABEND FFO4000D 5000C408

TCB 02FN28 RAP 0002ECT8 PIE 00000000 0002EN34 000302F0 cMp 80837000 00000000
MSS 01031738 PK~FLG F0850409 00000000 00030980 JLB 00000000 000301€E8
FSA 0106D768 TC8 00000000 00000000 0002F028 NTC 00000000 00030508
Lvec 00000000 10€E 00000000 00030484 00000000 D-PQE 00032668 0002€AA0
NSTAE 00000000 T 00030268 00000000 00000000 RESY 00000000 0003146C

ACTIVF RBS

_PRB 030DF8 RESV 00000000 APSW 00000000 WC-52-STAB 00040082 FL-CDE 00031290 PSW FFF50006 T003553E
Q/TTR 00000000 WT-LNK 0002F028

PRR 030988 RESV 00000000 APSW 00000000 WC-SZ-STAB 00040002 FL-CDE 00030ERD PSW FFFS0037 520TEC4A
9/TTR 00000000 WT-LNK 00030DF8

02FO0E0 TAB-LN 00980400 APSW FSFSFOE2 WC-$SZ-STAB 00120002 TQN 00000000 PSH FF04000D S000C408
Q/TTR. 00003COF WT-LNK 00030988 .
RG 0-7 00000FD9 000396F4& 00000003 00000006 00000073 00038C00 00036E88 0003CC33
RG 8-15 00039100 000396F4 00060620 0003A158 0003ACE1 000395C0 5207E434 0007ECL1O
EXTSA E2EBE2FS E3D6C340 0006DDEOD 0002EEF & 0002EFC4 0006DFB8 00000837 0003036C
80002648 00000001 O0006DFEQ C3C45D04

02F170 TAB-LN 008803C8 APSW F2FOF1C3 WC-SZ-STAB 00120002 TaN 00000000 PSW 00040033 SO000COCE
Q/TTR 00006109 WT-LNK 0002FOEO
RG 0-7 80000000 80B37000 000396F4 4000C182 0006DDEO 0002EED4 0002EFC4 0006DF88
R3 8-15 00000837 0003036C 80002648 00000001 _0006DFEQ 00002648 00000868 00000001
EXTSA 0000298BE 0006DD88 2000FFFF '00060BEO FF030000 O0002F1EC - OO002F1F4 E2EBE2C9
CSC1FOFL cocscl28 C1C2C505 C4078386

02€C78 TAB-LN 00C803C8 APSH FLFOF5C1 WC-SZ-STAB 00120002 TON 00000000 PSHW FFO40001 400TEBA4
Q/TTR 00006201 HWT-LNK 0002F170
RG 0-7 00000000 0002F100 800080CA 00000868 0002F028 0002F170 00031290 00000000
RG 8-15 0002F028 4000BD3A 0002F028 0006DD88 00030320 0002F1F & 40000594 00000000
EXTSA 00620300 00090040 0008000A 18002648 00000040 00090041 00028460 00000018
0012C002 00000000 00000000 00000000

LISY

NE 00030RES RSP-COE 020301€8 NE 00030DFO RSP-CDE 01032390 NE 00031078 = RSP-CDE 010322968
NE 00031080 RSP-CNE 01032260 NE 000310C8 RSP-CDE 01032390 NE 00031170 RSP-CDE 01032200
NE 000311CO RSP-CNE 010323C0 NE 00000000 RSP~CDE 010308F0

. 031290 000000 ROC-RB 00030DF8 NM GO oL 035508 XL/MJ 031260
030£80. ER1 031290 ROC-RB O 988 NM TEKAAOO 036240 ALZND Q2F490
0301E8 0308F0 ROC-RB00000000 NM 1GCOAOSA | 06C980 - XL/MJ -030ABO
032390 0323C0 ROC~R8 00030000 16G019CD OTEAOO XL/MJ 032380
032290 ¢ 0322C0 ROC~RB 00000000 16G019BA 0TE4AD XL/MJ 032280
032260 . 032290 ROC-R8 00000000 16601988 07€E880 XL/MJ 032250
032390 0323C0 ROC-RB 00000000 166019CD 0T€A00 XL/MJ 032380

- 032200 032230 ROC-RB 00000000 . 1GGOL9AJ OTE3A0 XL/MJ 0321F0
0323C9 J 0323F0 ROC-RB 00000000 16601 9AR O07€C10 © o .XL/MJ 032380
0308F0 030E8D RNC-RB 00000000 TEWSZOVR 06C480 XL/M3 030B88

LN ADR LN . ADR i . ADR

031280 00000010 00000001 800002F8 00035508 .
02F398 SZ -0000004C 00000001 80016€E38 000359C8 000359C8 00030800 010A0400, 01000500
011C0300 01100300 011E0200 = 01290400 012€0500 01300500
01320300 013A0100 01460600 01480400 01400500
030ABO 00000010 00000001 80000680 . 0006C980
032380 00000010 00000001 80000210 0007EAOO
032280 00000010 . 00000001 80000180 000TE4AO
032250 00000010 00000001 80000058 0007€880
‘032380 7 00000010 00000001 80000210 0007EA00D
0321F0 - 00000010 00000001 80000100 0007E3A0
032380 00000010 00000001 80000090 0007€C10
030888 00000010 00000001 -80000350 0006C4B0

DESB .

02€D00 y

02€020 00000050 00000000 0000020A 00002BEO . 0E000000 0002F028 0402EED4 98000000 sessevelecescMecec?®
02€D40 8F000000 01000000 00000000 FFO6DD88 . 0402EDL0 18002648 00000031 00010032 sevssecscscssccsssicesceac®
02€ED60 00010008 00010001 C2C2C2C1 C3C40000 00000000 00000000 00000000 C3C40000 #eee0000eBBBACD cccccccccvesclDen®.

00000050 00000050 00000050 00000050 esvscsscccce®

Figure 18. Sample of Complete ABEND Dump (MVT) (Part 1 of 2)

ABEND/SNAP Dump (MVT) 47

DER. PAGE 0002

02EEA0 00009D50 00000050 00000050 00000050 *eePovsonee “sescssescscscs®
02EECO 00000050 00000000 0000020€ DOOL1AEQ 2A000000 0302F028 04000000 88000000 *ooseseeose vesecsesefeccacccac®
02EEED OF 000000 10000000 00000000 FFO396F4 0402E€EB0 18002648 00000039 0009003E ¥oeesnones esbevssecersncssnnek
02€F00 00080032 18002648 0000003E 0009003F 0008000A 18002648 0000003F 00090040 ¥asesssecsssscesscecoscsssconnes *
02EF20 0008000A 18002648 00000040 00090041 0008000A 18002648 00000041 00090042
02€F40 0003000A 18002648 00000042 00090043 0008000A 18002648 00000043 00090044
02EF60 0008000A 18002648 00000044 00090045 0008200A 18002648 00000045 00090046
02EF80 0008000A 18002648 00000046 00090047 0008000A 18002648 00000047 00090048
02EFAO 00038000A 18002648 00000048 00090049 0008000A 18002648 00000049 0009004A
02EFCO 0008000A 18002648 0000004A 00090048 ‘0008)00A 18002648 00000048 0009004C
02EFED 0008000A 18002648 0000004C 0009004D °~ 0008200A 00010001 C1D9ICLIDL1 C3C4F6CO KeovesssscscscesscnccnsssARAJCDG*

TI0T Jos 1PCT41 STEP EXSTEP
00. 14040101 PGM=%,DD 00230F00 80002648
14040100 SYSABEND 00240900 80002648
14040180 FT06F001 00240C00 80002648
14040100 FTNLIN 00250100 80003984
14000000 SYSPUNCH 00250800 00000000
14040100 SYSPRINT 00240F00 80002648
14040101 SYSIN: 00250A00 80002648

SPQE’ d DQE FQE *%ktksax
NSPQE SPID DQE B8LK © FQE LN . NDQE NFQE LN
031738) 031740 251 031250 00035000 00035000 00000800 000310F0 00000000 00000508
00035800 00035800 00017000 00000000 00000000 © 000001C8
031740 031488 .252 0314C0 00060800 00060800 00000800 00030878 00000000 00000588
0006C000 0006C000 00000800 00030308 00000000 00000480
0006C800 0006C800 00000800 0002F383 00000000 00000180
. . . 00068800 0006B800 00000800 00000000 00000000 000001A0
031488 000000 000 0314D0
031400 000000 000 031488 0006D000 0006D748 00000800 00000000 00060000 00000020
00000000 00000518
D-PQE 00032668 FIRST 00031460 LAST 00031460
PQE 031460 FFB 0004C800 LF8 0004C800 NPQ 00000000 PPQ 00000000
TCB 00030508 RSI 00039000 RAD 00035000 FLG 0000

FBOF 04C800 NF8 00031460 PFR 00031460 $Z 0001F000

QC8 TRACE
_MAY 0311C8 NMAJ 00030100 0001C6A0 00031088 NM SYSDSN
MIN 031088 FQEL 00031698 000311C8 00000000 NM FF SYS1.MACLIB
NOEL 00000000 80031088 00030508 SVR8 00030100
MAJ 030100 NMAJ 00000000 000311C8 000301A0 NM SYSIEAOL
MIN 030140 FQEL 00030190 00030100 00000000 NM FO IEA
NQEL 00000000 000301 A0 0002F028 SVRB 0002EBES
SAVE AREA TRACE
sA 060768 WD1 00000000 00000000 00000000 00000000 00000000 00000000

R1 00000000 00000000 00000000 00000000 00000000 00000000
R7 00000000 00000000 00000000 00000000 00000000 00000000

INTERRUPT. AT OTEC4A

PROCEEDING BACK VIA REG 13

SA 0395C0 WN1 957095FF 76064780 95789180 80064710 958C1811 5203936€F
' Rl 9207€3A0 0006D570 000396F4 000396F4 00060570 TFO6D5CC
R?7 00060688 0006D78C 00000ED9 0007EC10 5207E434 0007€C10

SA 004780 WD1 47900000 FF000000 00000000 00000000 47A00000 0 FFO00000
RT 60000000 00000000 47800000 FF000000 00000000 00000000
R7 47C00000 FF000000 00000000 00000000 47000000 FF000000

NUCLEUS
000000 00000000 00000000 00000000 00000000 0000DB68 00000000 FFO40080: 8003BT24 ¥icssescessessecssesvescssssccsnck

000020 FFO50001 4007EC3C FFFS0001 02036CF2 0000FF00 00000000 FF060336 80000000 *eao Seeceelecssose coo®
000040 0000A7C8 0COD0000 000725A0 0000NB6S 0B36E88C 0001389C 00040000° 0000F678 *eooHoooonaoessesseYeosaosoesooabe®

Figure 18. sSample of Complete ABEND Dump {(MVT) (Part 2 of 2)

48 Programmer's Guide to Debugging (Release 21)

JOB

cceceeccce STEP ccccccece TIME dddddd

COMPLETION CODE SYSTEM = hhh (or USER = dddd)

PSW AT ENTRY TO ABEND (SNAP) hhhhhhhh hhhhhhhh

DATE ddddd ID = ddd PAGE ddad

JOB ccccccce

STEP

TIME

DATE

is the job name specified in the JOB
statement.

ccececcecce

is the step name specified in the EXEC
statement for the problem program
associated with the task being dumped.

dddddd

is the hour (first 2 digits), minute
(next 2 digits), and second (last 2
digits) when the abnormal termination
dump routine began processing.

ddddd

is the year (first 2 digits) and day
of the year (last 3 digits). For
example, 67352 would be December 18,
1967.

ID=ddd

is an identification of the dump. For
dumps requested by an ABEND macro
instruction, this identification is:

e Absent if the dump is of the task
being abnormally terminated.

e 001 if the dump is of a subtask of
the task being abnormally

terminated. (Note that, when a task
is abnormally terminated, its
subtasks are also abnormally
terminated.)

e 002 if the dump is of a task that
directly or indirectly created the
task being abnormally terminated, up
to and including the job step task.

PAGE dddd
is the page number. Appears at the
top of each page. Page numbers kegin
at 0001 for each task or subtask
dumped.

COMPLETION CODE SYSTEM=hhh or COMPLETION
CODE USER=dddd
is the completion code supplied Ly the
control program (SYSTEM=hhh) or the
problem program (USER=dddd).

PSW AT ENTRY TO ABEND hhhhhhhh hhhhhhhh or

PSW AT ENTRY TO SNAP hhhhhhhh hhhhhhhh
is the PsW for the problem program or
control program routine that had
control when abnormal termination was
requested, or when the SNAP macro
instruction was executed. It is not
necessarily the PSW at the time the
error condition occurred.

TCB

hhhhhh RBP hhhhhhhh PIE hhhhhhhh DEB hhhhhhhh TIO hhhhhhhh CcMP hhhhhhhh TRN hhhhhhhh
MsS hhhhhhhh PK~FLG hhhhhhhh FLG hhhhhhhh LLS hhhhhhhh JLB hhhhhhhh JPQ hhhhhhhh

RG 0=7 hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh
RG 8-15 hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh
FSA hhhhhhhh TCB hhhhhhhh TME hhhhhhhh JST hhhhhhhh NTC hhhhhhhh oTC hhhhhhhh
LTC hhhhhhhh IQE hhhhhhhh ECB hhhhhhhh STA hhhhhhhh D=PQE hhhhhhhh $0S hhhhhhhh
NSTAE hhhhhhhh TCT hhhhhhhh USER hhhhhhhh DAR hhhhhhhh RESV hhhhhhhh JSCB hhhhhhhh

TCB hhhhhh

is the starting address of the TCB.

RBP hhhhhhhh

is the TCBRBP field (bytes 0 through
3): starting address of the active RB
queue and, consequently, the most
recent RB on the queue.

PIE hhhhhhhh
is the TCBPIE field (bytes 4 through
7): starting address of the program
interruption element (PIE) for the
task; however, in an abnormal
termination dump for the task causing
the abnormal termination, zexros. The
field is zeroed by the ABEND routine
to prevent interruptions during
dumping.

ABEND/SNAP Dump (MVT) 49

DEB hhhhhhhh

is the TCBDEB field (bytes 8 through
11): starting address of the DEB
queue. Under the heading DEB in the
dump, the prefix section for the first
DEB in the queue is presented in the
first 8-digit entry on the first line.
The 6-digit entry at the left of each
line under DEB is the address of the
second column on the line, whether or
not the column is filled. The

contains, in the next 2 digits, the

TCBLMP field (byte 34): 1limit
priority (converted td an 1nterna1
priority, 0 to 255). .

contains, in the last 2 digits, the
TCBDSP field (byte 35): dispatching
priority (converted to an internal
priority, 0 to 255).

contents of the TCBDEB field may LLS hhhhhhhh

differ in the main storage printout
from what appears in the TCBDEB field
of the formatted section. This occurs
when the number of extents specified
in the DEB for the dump data set is

is the TCBLLS field (bytes 36 through
39): starting address of the load
list element most recently added to
the lcad list.

not. sufficient to complete ABDUMP JLB hhhhhhhh

processing. When the dump of main
storage is given, the END OF VOLUME
routine may have built another DEB
having additional extents for the dump

is the TCBJLB field (bytes 40 through
43): starting address of the DCB for
the JOBLIB data set.

data set and dequeued the original JPQ hhhhhhhh

DEB. Therefore, the TCBDEB field in
the main storage printout may contain
the address of the new DEB built by

- END OF VOLUME.

TIO hhhhhhhh

is the TCBTIO field (bytes 12 through
15): starting address of the TIOT.

CMP hhhhhhhh

is the TCBCMP field (bytes 16 through
19): task completion code or contents
of register 1 when the dump was
requested. System codes arxe given in
the third through fifth digits and
user codes in the sixth through eight

is the TCBJPQ field (bytes 41 through
47): when translated into binary
bits: .

e Bit 0 is the purge flag.

e Bits 1 through 7 are reserved for
future use and are zeros.

e Bits 8 through 31 are the starting
address of the queue of CDEs for the
jOb pack area control queue, which
is for programs acquired by the job
step.

The TCBJPQ field is used. only in the
first TCB in the job step, it is zeros
for all other TCBs.

digits. RG 0-7 and RG 8-15

TRN hhhhhhhh

is the TCBTRN field (bytes 20 through
23): starting address of the control
core (table) for controlling testing

of the task by TESTRAN.

MSS hhhhhhhh

is the TCBMSS field (bytes 24 through

is the TCBGRS field (bytes 48 through
111): contents of general registers 0
through 7 and 8 through 15, as stored
in the save area of the TCB when a
task switch occurred. These 2 lines
appear only in dumps of tasks other
than the task in control when the dump
was requested.

27): starting address of SPQE most FSA hhhhhhhh

recently added to the SPQE queue.

PK-FLG hhhhhhhh

contains, in the first 2 digits, the
TCBPKF field (byte 28): protection
key.

contains, in the last 6 digits, the
first 3 bytes of the TCBFLGS field
(bytes 29 through 31): first 3 flag
bytes.

contains, in the first 2 digits, the
TCBQEL field (byte 112): count of
enqueue elements.

contains, in the last 6 digits, the
TCBFSA field (bytes 113 through 115):
starting address of the first problem
program save area. This save area was
set up by the control program when the
job step was initiated.

TCB hhhhhhhh

FLG hhhhhhhh

50

contains, in the first 4 digits, the
last 2 bytes of the TCBFLGS (bytes 32
and 33): last 2 flag bytes.

Programmer's Guide to Debugging (Release 21)

is the TCBTCB field (bytes 116 through
119): starting address of the next
lower priority TCB on the TCB queue
or, if this is the lowest priority
TCB, zeros.

TME hhhhhhhh
is the TCBTME field (bytes 120 through
123): starting address of the timer
element created when an STIMER macro
instruction is issued by the task.

JST hhhhhhhh
is the TCBJSTCB field (bytes 124
through 127): starting address of the
TCB for the job step task. For tasks
with a protection key of zero, this
field contains the starting address of
the TCB.

NTC hhhhhhhh

is the TCBNTC field (bytes 128 through
131): +the starting address of the TCB
for the previous subtask on this
subtask queue. This field is zero in
the job step task, and in the TCB for
the first subtask created by a parent
task.

OTC hhhhhhhh
is the TCBOTC field (bytes 132 through
135): starting address of TCB for the
parent task. In the TCB for the job
step task, this field contains the
address of the initiator.

LTC hhhhhhhh

is the TCBLTC field (bytes 136 through
139): starting address of the TCB for
the most recent subtask created by
this task. This field is zero in the
TCB for the last subtask of a job
step, or in a TCB for a task that does
not create subtasks.

IQE hhhhhhhh
is the TCBIQE field (bytes 140 through
143): starting address of the
interruption queue element (IQE) for
the ETXR exit routine. This routine
is specified by the ETXR operand of
the ATTACH macro instruction that
created the TCB being dumped. The
routine is to be entered when the task
terminates.

ECB hhhhhhhh
is the TCBECB field (bytes 144 through
147): starting address of the ECB to
be posted by the control program at
task termination. This field is zero
if the task was attached without an
ECB operand.

STA hhhhhhhh
contains zeros, reserved for future
use.

D-PQE hhhhhhhh
is the TCBPQE field (bytes 152 through
155): starting address minus 8 bytes
of the dummy PQE. This field is
passed by the ATTACH macro instruction
to each TCB in a job step.

SQS hhhhhhhh
is the TCBAQE field (bytes 156 through
159): starting address of the
allocation queue element (AQE).

NSTAE hhhhhhhh
contains, in the first 2 digits,
flags (byte 160).

STAE

contains, in the last 6 digits, the
TCBNSTAE field (bytes 161 through
163): starting address of the current
STAE control block for the task. This
field is zero if STAE has not been
issued.

TCT hhhhhhhh
is the TCBTCT field (bytes 164 through
167): address of the Timing Control
Table (TCT).

USER hhhhhhhh
is the TCBUSER field (bytes 168
through 171): +to be used as the user
chooses.

DAR hhhhhhhh
contains, in the first two digits,
Damage Assessment Routine (DAR) flags
(byte 172).

RESV hhhhhhhh
reserved for future use.

JSCB hhhhhhhh
is the TCBJSCB field (bytes 180
through 183): the last three bytes
contain the address of the Job Step
Control Block.

ABEND/SNAP Dump (MVT) 51

ACTIVE RBS

APSW hhhhhhhh
WT=-LNK hhhhhhhh
hhhhhhhh
hhhhhhhh
hhhhhhhh
hhhhhhhh

ccec hhhhhh ccceccee hhhhhhhh
Q/TTR hhhhhhhh
RG 0=~7 hhhhhhhh
RG 8=15 hhhhhhhh
EXTSA hhhhhhhh

hhhhhhhh

hhhhhhhh
hhhhhhhh
hhhhhhhh
hhhhhhhh

WC=-5Z=-STAB hhhhhhhh

ccccce hhhhhhhh PSW hhhhhhhh hhhhhhhh
hhhhhhhh
hhhbhhhhh
hhhhhhhh
hhhhhhhh

hhhhhhhh
hhhhhhhh
hhhhhhhh

hhhhhhhh
hhhhhhhh
hhhhhhhh

hhhhhhhh
hhhhhhhh
hhhhhhhh

hhhhhhhh
hhhhhhhh
hhhhhhhh

ACTIVE RBS
identifies the next lines as the
contents of the active RBs queued to
the TCB, beginning with the oldest RB
first.

cccc hhhhhh
indicates the RB type (cccc) and
starting address (hhhhhh).

The RB types are:

PRB program request block :
IRB interruption request block
SVRB supervisor request block

ccceccc hhhhhhhh
indicates the RB's function (ccccce)
and bytes 0 through 3 of the RB
(hhhhhhhh) :

e RESV hhhhhhhh indicates PRB or SVRB
for resident routines. Bytes 0
through 3 are reserved for later use
and contain zeros.

e TAB-LN hhhhhhhh indicates SVRB for
transient routines. The first &4
digits contain the RBTABNO field
(bytes 0 and 1): displacement from
the beginning of the transient area
control table (TACT) to the entry
for the module represented by the
RB. The last 4 digits contain the
RBRTLNTH field (bytes 2 and 3):
length of the SVC routine.

e FL-PSA hhhhhhhh indicates IRB. The
first 2 digits contain the RBTMFLD
field (byte 0): indicators for the
timer routines. This byte contains
zeros when the IRB does not
represent a timer routine. The last
6 digits contain the RBPSAV field
(bytes 1 through 3): starting
address of the prcblem program
register save area (PSA).

APSW hhhhhhhh :
is the RBABOPSW field (bytes 4 through
7): ‘

e In PRB, right half of the problem
program's PSW when the. interruption
occurred.

e In IRB or SVRB for type II SVC
routines, right half of routine's
PSW during execution of ABEND or
ABTERM, oOr zeros.

e In SVRB for type III or IV SVC
routines, right half of routine's
PSW during execution of ABEND or
ABTERM, or the last four characters
of the name of the requested
routine. (The last two characters
give the SVC number.)

WC~SZ-STAB hhhhhhhh
contains, in the first 2 digits, the
RBWCsSA field (byte 8): wait count in
effect at time of abnormal termination
of the program.

contains, in the second 2 digits, the
RBSIZE field (byte 9): size of the RB
in doublewords.

contains, in the last 4 digits, the
RBSTAB field (bytes 10 and 11):
status and attribute bits.

cccccce hhhhhhhh
indicates the RB's function (cccccce)
and bytes 12 through 15 of the RB
(hhhhhhhh) :

e FL-CDE hhhhhhhh indicates SVRB for
resident routines, or PRB. The
first 2 digits contain the RBCDFLGS
field (byte 12): control flags.

52 Programmer's Guide to Debugging (Release 21)

The last 6 digits contain the RBCDE
field (bytes 13 through 15):
starting address of the CDE for the
module associated with this RB.

EPA hhhhhhhh is the RBEP field of an
IRB (bytes 12 through 15):
entry-point address of
asynchronously executed routine.

TON hhhhhhhh indicates SVRB for
transient routines. Is the RBSVTQN
field (bytes 12 through 15):
address of the next RB in the
transient control queue.

e In SVRBs for transient routines the
first 2 digits contain the RBTAWCSA
field (byte 24): number of requests
(used if transient routine is
overlaid) and the last 6 digits, the
RBSVTTR field (bytes 25 through 27):
relative track address for the SVC
routine.

WI-LNK hhhhhhhh
contains, in the first 2 digits, the
RBWCF field (byte 28): wait count.

contains, in the last 6 digits, the
RBLINK field (bytes 29 through 31):
starting address of the previous RB on
the active RB queue (primary queuing
field) or, if this is the first or
only RB, the starting address of the
TCB.

PSW hhhhhhhh hhhhhhhh
is the RBOPSW field (bytes 16 through
23): resume PSW.

Q/TTR hhhhhhhh
e In PRBs and SVRBs for resident

routines, contains zeros in the
first 2 digits. The last 6 digits
contain the RBPGMQ field (bytes 25
through 27): queue field for
serially reusable programs (also
called the secondary queue).

RG 0-7 and RG 8-15
is the RBGRSAVE field (bytes 32
through 95): in SVRBs and IRBs,
contents of registers 0 through 15.

EXTSA

e In IRBs, contains the RBUSE field in e In IRBs, contains the RBNEXAV field

the first 2 digits (byte 24): count
of requests for the same exit
(ETXR). The RBIQE field in last 6
digits (bytes 25 through 27):
starting address of the queue of
interruption queue elements (IQE),

in the first 8 digits (bytes 96
through 99): address of next
available interruption queue element
(IQE), and in the remaining digits,
the interruption queue element work
space (up to 1948 bytes).

or zeros in the first 4 digits and

the RBIQE field in the last 4 digits e In SVRBs, contains the RBEXSAVE
(bytes 26 and 27): starting address field (bytes 96 through 143):

of the request queue- elements. extended save area for SVC routine.

LOAD LIST

NE hhhhhhhh RSP=CDE hhhhhhhh NE hhhhhhhh RSP=CDE hhhhhhhh NE hhhhhhhh RSP=-CDE hhhhhhhh

LOAD LIST
identifies the next lines as the
contents of the load list elements
(LLEs) gueued to the TCB by its TCBLLS
field. The contents of 3 load list
elements are presented per line until
all elements in the queue are shown.

RSP-CDE hhhhhhhh
contains, in the first 2 digits, LLE
byte 4: the count of the number of
requests made by LOAD macro
instructions for the indicated load
module. This count is decremented by
DELETE macro instructions.

NE hhhhhhhh
contains, in the first 2 digits, LLE
byte 0: =zeros.

contains, in the last 6 digits, LLE
bytes 5 through 7: starting address
of the CDE for the load module.
contains, in the last 6 digits, LLE

bytes 1 through 3: starting address

of the next element in the load list.

ABEND/SNAP Dump (MVT) 53

CDE

hhhhhhhh ATR1 hh NCDE hhhhhh

ROC«RB hhhhhhhh

NM cccccccc USE hh EPA hhhhhh ATR2 hh XL/MJ hhhhhh

CDE
identifies the next lines as the
contents directory addressed by an LLE
or RB. One entry is presented per
line.

hhhhhhhh
is the starting address of the entry
given on the line.

ATR1 hh
is the attribute flags.

NCDE hhhhhh

is the starting address of the next
entry in the contents directory.

ROC-RB hhhhhhhh
contains, in the first 2 digits,
Zeros.

contains, in the last 6 digits, the
starting address of the RB for the

NM cccccccce
is the name of the entry point to the
load module represented by this entry.

USE hh
is the count of. the uses (through
ATTACH, LINK, and XCTL macro
instructions) of the load module, and
of the number of LOAD macro
instructions executed for the module.

EPA hhhhhh
is the entry point address associated
with the name in the NM field.

ATR2 hh
is the attribute flags.

XL/MJ hhhhhh
is the starting address of the extent
list (XL) for a major CDE, or the
starting address cof the major CDE for
a minor CDE. (Minor CDEs are for

load module represented by this entry. aliases.)
XL LN ADR LN ADR LN ADR
hhhhhh SZ hhhhhhhh NO hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh
XL NO hhhhhhhh

indicates the next lines are entries
in the extent 1list, which is queued to
the major contents directory entry.
Each extent list entry is given in one
or more lines. Only the first line
for an entry contains the left 3
columns; additional lines for an entry
contain information only in the right
6 columns.

hhhhhh
is the starting address of the entry.

SZ hhhhhhhh
is the total length, in bytes, of the
entry.

is the number of scattered control
sections in the lcad module described
by this entry. If this number is 1,
the load module was loaded as one
block.

LN hhhhhhhh
gives the length, in bytes, of the
control sections in the load module
described by this entry. Bit 0 is set
to 1 in the last, or only, LN field to
signal the end of the list of lengths.

ADR hhhhhhhh
gives the starting addresses of the
control sections. Each ADR field is
paired with the LN field to its left.

54 Programmer's Guide to Debugging (Release 21)

DEB
hhhhhh hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh
hhhhhh hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh
hhhhhh hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh
hhhhhh hhhhhhhh hhhhhhhh

TIOT JOB c¢ccccccce STEP ccccecce PROC cccccccee
DD hhhhhhhh ccccccee hhhhhhhh hhhhhhhh

DEB JOB ccccceccecce

identifies the next lines as the
contents of the DEBs and their prefix
sections. The first 6 digits in each
line give the address of the DEB

is the name of the job whose task is
being dumped.

contents shown on the line, beginning STEP ccccccec
with the second column. The first six is the name of the step whose task is
digits of the first line contains the being dumped.
prefix section for the first DEB on
the queue.
PROC ccccecce
Note: DEBs are not formatted if the is the name for the job step that
dump is for an OLTEP task. If a dump called the catalcged procedure. This
of the DEB chain is desired, use a field appears if the job step whose
SYSABEND DD card so that the nucleus task is being dumped was part of a
will be dumped. cataloged procedure.
TIOT DD
identifies the next lines as the identifies the line as the contents of
contents of the TIOT. the DD entry in the TIOT.
MSS I EEE XXX R SPQE RN RENNNR ARRARNA R A AN RN DQE RRRRERAARA AR ok kR xR FQE EEE XX XS X
FLGS NSPQE SPID DQE BLK FQE LN NDQE NFQE LN
hhhhhh hh hhhhhh dadd hhhhhh hhhhhh hhhhhh hhhhhh hhhhhh hhhhhhhh hhhhhhhh
D=PQE hhhhhh FIRST hhhhhhhh LAST hhhhhhhh
PQE hhhhhh FFB hhhhhhhh LFB hhhhhhhh NP0 hhhhhhhh PPO hhhhhhhh
TCB hhhhhhhh RSI hhhhhhhh RAD hhhhhhhh FLG hhhhhhhh
FBQE hhhhhh NFB hhhhhhhh PFB hhhhhhhh s2 hhhhhhhh
PéE hhhhhh FéB hhhhhhhh LéB hhhhhhhh N;Q hhhhhhhh PPO hhhhhhhh
TCB hhhhhhhh RSI hhhhhhhh RAD hhhhhhhh FLG hhhhhhhh
FBOE hhhhhh NFB hhhhhhhh PFB hhhhhhhh sz hhhhhhhh
Mss hhhhhh
identifies the next lines as the is the starting address of the first
contents of the main storage element shown on the line.
supervisor queue. This queue includes
subpool queue elements (SPQE), SPQE

descriptor queue elements (DQE), and
free queue elements (FQE).

identifies the 4 columns beneath it as
the contents of SPQEs.

ABEND/SNAP Dump (MVT) 55

FL.GS hh
is the SPQE flag byte.

NSPQE hhhhhh
is the starting address of the next
SPQE in the queue.

SPID ddd
is the subpool number.

DQE hhhhhh
for a subpool owned by the task being
dumped: the starting address of the
first DQE for the subpool.

for a subpool that is shared: the
starting address of the SPQE for the
task that owns the subpool.

DQE
identifies the 4 columns beneath it as
the contents of DQEs.

BLK hhhhhh
is the starting address of the
allocated 2K block of main storage or
set of 2K blocks.

FQE hhhhhh
is the starting address of the first
FOE within the allocated blocks.

LN hhhhhh
is the length, in bytes, of the
allocated blocks.

NDQE hhhhhh
is the starting address of the next
DQE.

FQE

identifies the 2 columns beneath it as
the contents of FQEs.

NFQE hhhhhhhh
is the starting address of the next
FQE.

LN hhhhhhhh
indicates the number of bytes in the
free area.

D-PQE hhhhhh
is the TCBPQE field (bytes 152 through
155): starting address minus 8 bytes
of the dummy PQE shown on the line.

FIRST hhhhhhhh
is the starting address of the first
PQE.

LAST hhhhhhhh
is the starting address of the last
PQE.

PQE hhhhhh
is the starting address of the PQE
shown on the line.

FFB hhhhhhhh
is bytes 0 through 3 of the PQE:
starting address of the first FBQE.
If no FBQEs exist, this field is the
starting address of this PQE

LFB hhhhhhhh
is bytes 4 through 7 of the PQE:
starting address of the last FBQE. If
no FBQEs exist, this field is the
starting address of this PQE.

NPQ hhhhhhhh
is bytes 8 through 11 of the element:
starting address of the next PQE or,
if this is the last PQE, zeros.

PPQ hhhhhhhh
is bytes 12 through 15 of the element:
starting address of the preceding PQE
or, if this is the first PQE, zeros.

TCB hhhhhhhh
is bytes 16 through 19 of the element:
starting address of the TCB for the
job step to which the space belongs
or, if the space was obtained from
unassigned free space, zeros.

RSI hhhhhhhh
is bytes 20 through 23 of the element:
size of the region described by this
PQE (a multiple of 20u48).

RAD hhhhhhhh
is bytes 24 through 27 of the element:
~ starting address of the region
described by this PQE.

FIG hhhhhhhh
is byte 28 of the element:

bit 0 when 0, indicates space
described by this PQE is owned;

when 1, indicates space is
borrowed.

bit 1 when 1, indicates region has
been rolled cut (meaningful only
when bit 0 is 0).

bit 2 when 1, indicates region has
been borrowed.

bit 3-7, reserved for future use.

Note: PQE information is contained in two
lines on the dump. When the rollout/rollin
feature or Main Storage Hierarchy Support
is included in the system, PQE information
(with associated FBQEs) appears once in the
dump for each region segment of the job
step. (Each PQE on the partition queue
defines a region segment. A job step's
region contains more than one segment only
when the step has rolled out another step
or steps, or Main Storage Hierarchy Support
is present.)

56 Programmer's Guide to Debugging (Release 21)

e

FBQE hhhhhh
is the starting address of the FBQE
shown on the line.

NFB hhhhhhhh
is bytes 0 through 3 of the element:
starting address of the next FBQE. 1In
the highest or only FBQE, this field
contains the address of the PQE.

PFB hhhhhhhh
is bytes 4 through 7 of the element:
starting address of the previous FBQE.
In the lowest or only FBQE, the field
contains the address of the PQE.

SZ hhhhhhhh
is bytes 8 through 11 of the element:
size, in bytes, of the free area.

QCB TRACE
MAJ hhhhhh NMAJ hhhhhhhh PMAJ hhhhhhhh FMIN hhhhhhhh NM cccccece
MIN hhhhhh FQEL hhhhhhhh PMIN hhhhhhhh NMIN hhhhhhhh = NM XX XXXXXXXX

NQEL hhhhhhhh PQEL hhhhhhhh TCB hhhhhhhh SVRB hhhhhhhh

QCB TRACE PMIN hhhhhhhh

identifies the next lines as a trace
of the queue control blocks (QCB)
associated with the job step. Lines
beginning with MAJ show major QCBs,
lines beginning with MIN show minor
QCBs, and ‘lines beginning with NQEL
show queue elements (QEL).

MAJ hhhhhh
is the starting address of the major
QCB whose contents are given on the
line.

NMAJ hhhhhhhh
is the starting address of the next
major QCB for the job step.

PMAJ hhhhhhhh
is the starting address of the
previous major QCB for the job step.

FMIN hhhhhhhh
is the starting address of the first
minor QCB associated with the major
QCB given on the line.

NM cccccccce
is the name of the serially reusable
resource represented by the major QCB.

MIN hhhhhh
is the starting address of the minor
QCB whose contents are given on the
line.

FQEL hhhhhhhh
is the starting address of the first
queue element (QEL), which represents
a request to gain access to a serially
reusable resource or set of resources.

is the starting address of the
previous minor QCB.

NMIN hhhhhhhh
is the starting address of the next
minor QCB.

NM XX XXXXXXXX
indicates, in the first 2 digits, the
scope of the name or address of the
minoxr QCB being dumped. If the scope
is hexadecimal FF, the name is known
to the entire operating system. If
the scope is hexadecimal 00 or 10
through FO, the name is known only to
the job step; in this case, the scope
is the protection key of the TCB
enqueuing the mincr QCB.

Also contains, in the last 8 digits,
the name or the starting address of
the minor QCB.

NQEL hhhhhhhh
indicates, by hexadecimal 10 in the
first 2 digits, that the queue element
on the line represents a request for
step-must-complete; by 00, ordinary
request; and by 20, a
set-must-complete request.

Also contains, in the last 6 digits,
the starting address of the next queue
element in the queue, or for the last
queue element in the queue, zeros.

PQEL hhhhhhhh
indicates, by hexadecimal 80 in the
first 2 digits, that the queue element
represents a shared request or, Ly
hexadecimal 00, that the element
represents an exclusive request. (If

ABEND/SNAP Dump (MVT) 57

the shared DASD option was selected,
hexadecimal 40 in the first 2 digits
indicates an exclusive RESERVE request
and 00 indicates a shared RESERVE
request.)

TCB hhhhhhhh
is the starting address of the TCB
under which the ENQ macro instruction
was issued.

SVRB hhhhhhhh . :

is the starting address, of the SVR
under which the routine for the ENQ
macro instruction is executed, or,
after the requesting task receives
control of the resource, the UCB
address of a device being reserved
through a RESERVE macro instruction
(the latter value occurs only when the
shared DASD option was selected).

SAVE AREA TRACE

cccccece WAS ENTERED VIA LINK (CALL) d4dddd AT EP CCCCCaas

sa hhhhhh WDl hhhhhhhh HSA hhhhhhhh LSA hhhhhhhh
Rl hhhhhhhh R2 hhhhhhhh R3 hhhhhhhh
R7 hhhhhhhh R8 hhhhhhhh R9 hhhhhhhh

INCORRECT BACK CHAIN

INTERRUPT AT hhhhhh

PROCEEDING BACK VIA REG 13

RET hhhhhhhh EPA hhhhhhhh RO hhhhhhhh
hhhhhhhh R5 hhhhhhhh R6 hhhhhhhh
R10 hhhhhhhh R11 hhhhhhhh R12 hhhhhhhh

SAVE AREA TRACE
identifies the next lines as a trace
of the save areas for the program.

- Each save area is presented in 3 or 4
lines. The first line gives
information about the linkage that
last used the save area. This line
will not appear when the RB for the
linkage cannot be found. The second
line gives the contents of words 0
through 5 of the save area. The third
and fourth lines give the contents of
words 6 through 18 of the save area;
these words are the contents of
registers 0 through 12. Save areas
are presented in the following order:

1. The save area pointed to in the
TCBFSA field of the TCB. This
save area is the first one for the
problem program; it was set up by
the control program when the job
step was initiated.

2. If the third word of the first
save area was filled by the
problem program, then the second
save area shown is that of the
next lower level module of the
task. However, if the third word
of the first area points to a
location whose second word does
not point back to the first area,
the message INCORRECT BACK CHAIN
appears, followed by possible
contents of the second save area.

58 Programmer's Guide to Debugging (Release 21)

3. The third, fourth, etc. save
areas are then shown, provided the
third word in each higher save
area was filled and the second
word of each lower save area
points back to the next higher
save area. This process is
continued until the end of the
chain is reached (the third word
in a save area contains zeros) or
INCORRECT BACK CHAIN appears.

Following the forward trace, the
message INTERRUPT AT hhhhhh appears,
followed by the message PROCEEDING
BACK VIA REG 13. Then, the save area
in the lowest level module is
presented, followed by the save area
in the next higher level. The lowest
save area is assumwed to be the 76
bytes beginning with the byte
addressed by register 13. These two
save areas appear cnly if register 13
points to a full word boundary and
does not contain zeros.

cceccccece WAS ENTERED

is the name of the module that stored
register contents in the save area.
This name is obtained from the RB.

VIA LINK ddddd or VIA CALL ddddd

indicates the macro instruction (LINK
or CALL) used to give control to the
next lower level module, and is the ID

operand, if it was specified, of the
LINK or CALL macro instruction.

AT EP cCCCCe...
is the entry point identifier, which
appears only if it was specified in
the SAVE macro instruction that filled
the save area.

SA hhhhhh
is the starting address of the save
area.

WD1 hhhhhhhh
is the first woxrd of the save area
(optional).

HSA hhhhhhhh
is the second word of the save area:
starting address of the save area in
the next higher level module. In the
first save area in a job step, this
word contains zeros. In all other
save areas, this word must be filled.

LSA hhhhhhhh
is the third word of the save area
(register 13): starting address of
the save area in the next lower level
(called) module. If the module
containing this save area did not fill
the word, it contains zeros.

RET hhhhhhhh
is the fourth word of the save area
(register 14): return address
(optional); if the called module did
not fill the word, it contains zeros.

EPA hhhhhhhh
is the fifth word of the save area

(register 15): entry point to the
called module. Use of this word is
optional; if the called module did not
fill the word, it contains zerxos.

RO hhhhhhhh R1 hhhhhhhh ... R12 hhhhhhhh
are words 6 through 18 of the save
area (registers 0 through 12):
contents of registers 0 through 12 for
the module containing the save area
immediately after the linkage. Use of
these words is optional; if the called
module did not f£ill these words, they
contain zeros.

INCORRECT BACK CHAIN
indicates that the following lines may
not be a save area because the second
word in this area does not point back
to the previous save area in the
trace.

INTERRUPT AT hhhhhh
is the address of the next instruction
to be executed in the problem program.
It is obtained from the resume PSW
word of the last PRB or LPRB in the
active RB queue.

PROCEEDING BACK VIA REG 13
indicates that the next 2 save areas
are (1) the save area in the lowest
level module, followed by (2) the save
area in the next higher level module.
The lowest save area is the save area
pointed to by register 13. These 2
save areas appear only if register 13
points to a fullword boundary and does
not contain zero.

ABEND/SNAP Dump (MVT) 59

CPUx PSA

hhhhhh hhhhhhhh hhhhhhhh hhhhhhhh
hhhhhh hhhhhhhh hhhhhhhh hhhhhhhh
NUCLEUS

hhhhhh hhhhhhhh hhhhhhhh hhhhhhhh
hhhhhh. hhhhhhhh hhhhhhhh hhhhhhhh

hhhhhhhh
hhhhhhhh

hhhhhhhh
hhhhhhhh

hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh
hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh

hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh
hhhhhhhh hhhhhhhhhhhhhhhhh hhhhhhhh

NUCLEUS CONT.

hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh
hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh

hhhhhh
hhhhhh

REGS AT ENTRY TO ABEND (SNAP)

LOAD MODULE cccccccece

hhhhhh hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh

hhhhhh hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh
LINES hhhhhh-hhhhhh SAME AS ABOVE

hhhhhh hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh

hhhhhh hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh
LINE hhhhhh SAME AS ABOVE

CSECT dd OF ccccecccc

hhhhhh
hhhhhh

hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh
hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh

hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh

hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh

hhhhhhhh
hhhhhhhh

hhhhhhhh
hhhhhhhh

hhhhhhhh
hhhhhhhh

hhhhhhhh hhhhhhhh hhhhhhhh
hhhhhhhh hhhhhhhh hhhhhhhh

hhhhhhhh hhhhhhhh hhhhhhhh
hhhhhhhh hhhhhhhh hhhhhhhh

hhhhhhhh hhhhhhhh hhhhhhhh
hhhhhhhh hhhhhhhh hhhhhhhh

*¥cccecccececcaccceccecceccecececcceck
*¥cceccecccceeeccceccececcceecceececce®

CCCCCCéCCCCCCCCCCCCCCCCCCCCCCCCC
¥ccecocoeccccecoccoococcecceccececec

¥ceoccecceoccecccecoccccecceeceececce*
¥ccececceoeoccecccecececceceeccceeceack

FLTR 0-6 hhhhhhhhhhhhhhhh hhhhhhhhhhhhhhhh hhhhhhhhhhhhhhhh hhhhhhhhhhhhhhhh
REGS 0-7 hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh
REGS 8-15 hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh

¥cccecececceeccccceccccecccecceccccec
¥ccececoccececcccecccececccecccccecec*

*¥ccecceccccccccccecccceccecceceeec®
¥cccccccccoccoccocccececcceccececk

¥cceccoceocecccaccecceeccecceceecceec
*¥ccecoeoececcececceccccceececceeccecec®

The contents of main storage are given
under 6 headings: CPUx PSA, NUCLEUS,
NUCLEUS CONT., LOAD MODULE ccccccec, CSECT
dd OF cccccecece, and in the trace table, SP
ddd BLK hh. Under these headings, the
lines have the following format:

e First entry: the address of the
initial bytes of the main storage
presented on the line.

e Next 8 entries: 8 full words (32
bytes) of main storage in hexadecimal.

e Last entry (surrounded by asterisks):
the same 8 full words of main storage
in EBCDIC. Only A through Z, 0 through
9, and blanks are printed; a period is
printed for anything else.

The following lines may also appear:

LINES hhhhhh~hhhhhh SAME AS ABOVE
are the starting addresses of the
first and last lines for a group of
lines that are identical to the line
immediately preceding.

LINE hhhhhh SAME AS ABOVE

is the starting address of a line that

is identical to the. line immediately

preceding.

60 . Programmer's Guide to Debugging (Release

CPUx PSA (Model 65 Multiprocessing dumps

only)
identifies the next lines as the
contents of the prefixed storage area
(PSA) -- 0 through 4095 (FFF). If the
system is operating in partitioned
mode (1 CPU), x is the CPU
identification. If the system is
operating in a 2 CPU multisystem mode,
both PSAs are printed, the first under
the heading CPUA PSA and the second
under CPUB PSA.

NUCLEUS .
identifies the next lines as the
contents of the nucleus of the control
program.

NUCLEUS CONT.
identifies the next lines as the
contents of the part of the nucleus
that lies above the trace table.

REGS
SNAP

AT ENTRY TO ABEND or REGS AT ENTRY TO

identifies the next 3 lines as the
contents of the floating point and
general registers when the abnormal
termination routine received control
in response to an ABEND macro
instruction or when the SNAP routine
received control in response to a SNAP

21)

macro instruction. These are not the
registers for the problem program when
the error occurred.

FLTR 0-6
indicates the contents of floating
point registers 0, 2, 4, and 6.
REGS 0-7
indicates the contents of general
registers 0 through 7.
REGS 8-15

indicates the contents of general
registers 8 through 15.

LOAD MODULE cccccccc
identifies the next lines as the
contents of the main storage area
occupied by the load module ccccccce
addressed by an LLE or RB. All the
modules for the job step are dumped
under this type of heading. Partial
dumps do not contain this information.

CSECT hhhh OF cccccccce
identifies the next lines as the
contents of the main storage area
occupied by the control section
(CSECT) indicated by hhhh. This
control section belongs to the
scatter-loaded load module cccccccc.

TRACE TABLE

DSP NEW PSW hhhhhhhh hhhhhhhh R15/R0 hhhhhhhh
I/0 OLD PSW hhhhhhhh hhhhhhhh R15/R0 hhhhhhhh
SIO CC/DEV/CAW hhhhhhhh hhhhhhhh csw hhhhhhhh
SVC OLD PSW hhhhhhhh hhhhhhhh R15/R0O hhhhhhhh
PGM OLD PSW hhhhhhhh hhhhhhhh R15/R0O hhhhhhhh
EXT OLD PSW hhhhhhhh hhhhhhhh R15/R0 hhhhhhhh

hhhhhhhh
hhhhhhhh
hhhhhhhh
hhhhhhhh
hhhhhhhh
hhhhhhhh

Rl
Rl

hhhhhhhh
hhhhhhhh

RES hhhhhhhh

Rl
Rl
Rl

hhhhhhhh
hhhhhhhh
hhhhhhhh

SW

RES
RES
RES
RES
RES

hhhhhhhh
hhhhhhhh
hhhhhhhh
hhhhhhhh
hhhhhhhh
hhhhhhhh

TCB
TCB
TCB
TCB
TCB
TCB

hhhhhhhh
hhhhhhhh
hhhhhhhh
hhhhhhhh
hhhhhhhh
hhhhhhhh

TME
TME
TME
TME
TME
TME

hhhhhhhh
hhhhhhhh
hhhhhhhh
hhhhhhhh
hhhhhhhh
hhhhhhhh

TRACE TAELE (SNAP dumps only)
identifies the next lines as the
contents of the trace table. Each
trace table entry is presented on one
line; the name at the beginning of
each line identifies the type of entry
on the line:

e DSP Dispatcher entry

e I/0 Input/output interruption entry

e SIO Start input-output (SIO) entry

e SVC Supervisor call (SVC)
interruption entry

e PGM Program interruption entry

e EXT External interruption entry

OLD PSW hhhhhhhh hhhhhhhh
is the PSW stored when the
interruption represented by the entry
occurred.

NEW PSW hhhhhhhh hhhhhhhh
is the new PSW stored in the entry.

CC/DEV/CAW hhhhhhhh hhhhhhhh
contains, in the first 2 digits:
completion code.

contains, in the next 6 digits:
device type.

contains, in the last 8 digits:
address of the channel address word
(CAW) stored in the entry.

R15/RO hhhhhhhh hhhhhhhh
contains, in the first 8 digits:
contents of register 15 stored in the
entrye.

contains, in the last 8 digits:
contents of register 0 stored in the
entry. ,

CSW hhhhhhhh hhhhhhhh
is the channel status word (CSW)
stored in the entry.

R1 hhhhhhhh
is the contents of register 1 stored
in the entry.

RES hhhhhhhh
is reserved for future use;
are zeros.

all digits

SW hhhhhhhh
is reserved for future use;
are zeros.

all digits

TCB hhhhhhhh
is the starting address of the TCB
associated with the entry.

TME hhhhhhhh

is a representation of the timer
element associated with the entry.

ABEND/SNAP Dump (MVT) 61

TRT
X DSP NEW PSW hhhhhhhh hhhhhhhh R15/R0 hhhhhhhh hhhhhhhh ~ R1 hhhhhhhh NUA hhhhhhhh NUB hhhhhhhh TME hhhhhh
X I/O OLD PSW hhhhhhhh hhhhhhhh CSW hhhhhhhh hhhhhhhh R1 hhhhhhhh OLA hhhhhhhh OLB hhhhhhhh TME hhhhhh
X 8I0 CC/DEV/CAW hhhhhhhh hhhhhhhh CSW hhhhhhhh hhhhhhhh TCB hhhhhhhh OLA hhhhhhhh OLB hhhhhhhh ~ TME hhhhhh
X SVC OLD PSW hhhhhhhh hhhhhhhh R15/R0 hhhhhhhh hhhhhhhh ~ R1 hhhhhhhh OLA hhhhhhhh OLB hhhhhhhh ~ TME hhhhhh
X PGM OLD PSW hhhhhhhh hhhhhhhh R15/R0 hhhhhhhh hhhhhhhh R1 hhhhhhhh OLA hhhhhhhh OLB hhhhhhhh TME hhhhhh
X EXT OLD PSW hhhhhhhh hhhhhhhh R15/R0 hhhhhhhh hhhhhhhh R1 hhhhhhhh ~ MSK hhhhhhhh TQE hhhhhhhh - TME hhhhhh
X $SM OLD PSW hhhhhhhh hhhhhhhh R15/R0 hhhhhhhh hhhhhhhh R1 hhhhhhhh AFF yyhhhhhh OLB hhhhhhhh TME hhhhhh
TRT (MVT with Model 65 multiprocessing CSW -hhhhhhhh hhhhhhhh
dumps only) is the channel .status word stored in

identifies the next lines as the
contents of the trace table. Each

the entry.

trace table entry is presented on one R1 hhhhhhhh

line; the letter and name at the

beginning of each line identify the:

CPU and the type of entry,

respectively: TCB

e DSP Dispatcher entry.

NUA
e I/0 Input/output interruption
entry.
e SIO Start input/output entry. oLA
e SVC Supervisor call interruption
entry.
, MSK
e PGM Program interruption entry.
e EXT External interruption entry.
NUB
e SSM Set system mask entry.
OLD PSW hhhhhhhh hhhhhhhh
is the PSW stored when the OLB
interruption represented by the entry
occurred.
NEW PSW hhhhhhhh hhhhhhhh TQE

is the new PSW stored in the entry.

CC/DEV/CAW hhhhhhhh hhhhhhhh
contains, in the first 2 digits:
completion code; in the next 6 digits: TME
device type; in the last 8 digits:
address of .the channel address word
stored in the entry.

R15/R0 hhhhhhhh hhhhhhhh
contains, in the first 8 digits:
contents of register 15; in the last 8
digits: contents of register 0, both
as stored in the entry.

62 Programmer's Guide to Debugging (Release 21)

is the contents of register 1 as
stored in the entry.

hhhhhhhh
is the starting address of the TCB
associated with the entry.

hhhhhhhh

is the starting address of the new TCB
for CPU A, as stored in the entry.
hhhhhhhh

is the starting address of the old TCB
for CPU A, as stored in the entry.
hhhhhhhh

is the STMASK of the other CPU as
stored in the entry.
hhhhhhhh

is the starting address of the new TCB
for CPU B, as stored in the entry.
hhhhhhhh

is the starting address of the old TCB
for CPU B, as stored in the entry.
hhhhhhhh

is the first word of the timer queue
element stored in the entry, prov1ded
a timer interrupt occurred. .

hhhhhhhh
is a representation of the timer
element associated with the entry.

- yyhhhhhh

contains, in the first 2 digits: the
ID of the locking CPU at the time of
the interrupt; in the last 6 digits:
starting address of the old TCB for
CPU A, as stored in the entry.

sp ddd

*cececcecceccccecececceccecgecceccccececcecc?
*cccceccccoceccacceeccecccecccccece®

hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh
hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh

hhhhhh
hhhhhh

hhhhhhhh hhhhhhkhh hhhhhhhh hhhhhhhh
hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh

END OF DUMP

SP ddd
identifies the next lines as the
contents of a block of main storage
obtained through a GETMAIN macro
instruction, and indicates the subpool
number (ddd). The part of subpool 252
that is the supervisor work area is
presented first, followed by the
entire contents of any problem program
subpools (0 through 127) in existence
during the dumping.

END OF DUMP .
indicates that the dump or snapshot is
completed. If this line does not
appear, the ABDUMP routine was
abnormally terminated before the dump
was completed, possibly because enough
space was not allocated for the dump
data set.

Guide to Using an ABEND/SNAP Dump (MVT)

Cause of Abnormal Termination: Evaluate
the user (USER=decimal code) or system
(SYSTEM=hex code) completion code using
Appendix B or the publication Messages and
Codes.

Dumped Task: Check the ID field for an
indication of which task is being dumped in
relation to the task that was abnormally
terminated:

e 001 indicates a partial dump of a
subtask

e 002 indicates a partial dump of the
invoking task

If the ID field is absent, the dump
contains a full dump of the task that was
abnormally terminated.

Active RB Queue: The first RB shown on the
dump represents the oldest RB on the queue.
The RB representing the load module that
had control when the dump was taken is
third from the bottom. The last RB
represents the ABDUMP routine and the
second from last, the ABEND routine. The
load module name and entry point (for a
PRB) are given in a contents directory
entry, the address of which is shown in the
last 3 bytes of the FL/CDE field.

Program Check PSW: The program check old
PSW is the fifth entry in the first line of
each RB printout. It is identified by the
subheading APSW. For debugging purposes,
the APSW of the third RB from the bottom of
the dump is most useful. It provides the
length of the last instruction executed in
the program (bits 32,33), and the address
of the next instruction to be executed
(bytes 5-8).

Iload List: Does the resume PSW indicate an
instruction address outside the limits of
the load module that had control at the
time of abnormal termination? If so, look
at the LLEs on the lcad list. Each LLE
contains the CDE address in the dump field
labeled RSP-CDE.

CDEs: The entries in the contents
directory for the region are listed under
the dump heading CDE. The printouts for
each CDE include the locad module and its
entry point. If you have a complete dump,
each locad module represented in a CDE is
printed in its entirety following the
NUCLEUS section of the dump.

Trace Table (SNAP dumps only): Entries on
an MVT SNAP dump, if valid, represent
occurrences of SIO, external, SVC, program,
I1/0, and dispatcher interruptions. SIO
entries can be used to locate the CCW
(through the CAW), which reflects the
operation initiated by an SIO instruction.
If the SIO operation was not successful,
the CSW STATUS portion of the entry will
show you why it failed. EXT and PGM
entries are useful for locating the
instruction where the interruption occurred
(bytes 5-8 of the PSW).

SVC trace table entries provide the SVC old
PSW and the contents of registers 0, 1, and
15. The PSW offers you the hexadecimal SVC
nunber (bits 20-31), the CPU mode (bit 15),
and the address of the SVC instruction
(bytes 5-8). The contents of registers 0
and 1 are especially useful in that many
system macro instructions pass key
information in these registers. (See
Appendix A.)

1/0 entries reflect the 170 old PSW and the
CSW that was stored when the interruption
occurred. From the PSW, you can learn the

ABEND/SNAP Dump (MVT) 63

address of the device that caused the
interruption (bytes 2 and 3), the CPU state
at the time of interruption (bit 15), and
the instruction address where the
interruption occurred (bytes 5-8). The CSW
provides you with the unit status (byte 4),
the channel status (byte 5), and the
address of the previous CCW plus 8 (bytes
0-3).

You can use the DSP entry to delimit the
entries in the trace table. To find all
entries for the terminated task, scan word
7 of each trace table entry for the TCB
address in a DSP entry. The lines between
this and the next DSP entry represent
interruptions that occurred in the task.

Region Contents: Free areas for the region
occupied by the dumped task are identified
under headings PQE and FBQE. The field

labeled SZ gives the number of bytes in the
free area represented by the FBQE.

Subpool Contents: Free and requested areas
of the subpools used by the dumped task are
described under the dump heading MsSsS.
Subpool numbers are given under the SPID
column in the list of SPQEs. If a GETMAIN
macro instruction was issued without a
subpool specification, space is assigned
from subpool 0. Thus, two SPQEs may exist
for subpool 0. The sizes of the requested
areas and free areas are given under the LN
column in the lists of DQEs and FQEs,
respectively.

Load Module Contents: The contents of each
load module used by the job step are given
under the heading XL. Each entry includes
the sizes (LN) and starting addresses (ADR)
of the control sections in the load module.

64 Programmer's Guide to Debugging (Release 21)

Indicative Dump

An indicative dump is issued when a task is
abnormally terminated by an ABEND macro
instruction, and a dump is requested, but a
dump data set is not available, due either
to omission or incorrect specification of a
SYSABEND or SYSUDUMP DD statement. An
indicative dump is issued autamatically on
the system output (SYSOUT) device.

Systems with MVT do not issue indicative
dumps .

Contents of an Indicative Dump

This explanation of indicative dumps
utilizes capital letters for the headings
found in all dumps, and lowercase letters
for information that varies with each dump.
The lowercase letter used indicates the
mode of the information, and the number of
letters indicates its length:

e h represents 1/2 byte of hexadecimal
information

e d represents 1 byte of decimal
information

e c represents a 1l-byte character

Figure 19 shows the contents of an
indicative dump. You may prefer to follow
the explanation on your own indicative

dump.

CONTROL BYTE=hh
describes the contents of the
indicative dump.

First digit:

Bit Setting Meaning

0 0] Instruction image not
present
Instruction image present

Floating-point registers
not present
Floating-point registers
present

1
1 0
1

One general register set
present
1 Two generxal register sets
present

All active RBs present
1 All active RBs not present

Last digit:

Digit in
Hexadecimal Meaning
0 All locaded RBs present
8 All loaded RBs not present

TCB FLAGS=hh
is the first byte of TCBFLGS field
(byte 29 in the TCB for the program
being dumped): task end flag byte:

Bit Setting Meaning

0 1 Abnormal termination in
process

1 1 Normal termination in
process

2 1 Abnormal termination was

initiated by the resident
ABTERM routine

CONTROL BYTE=hh TCB FLAGS=hh NO. ACTIVE RB=dd NC. LOAD RB=dd

COMPLETION CODE ~ SYSTEM=hhh USER=dddd

€CCCCCean
REGISTER SET 1

hhhhhhhh hhhbhhhhh

hhhhhhhh
bhhhbhhh

hhhhhhhh
hhhhhhhh

hhhhhhhh hhhhhhhh
hhhhhhhh bhhhbhhh

hhhhhhhh hhhhbhhhh
hhhhhhhh hhhhhhhh
REGISTER SET 2

hhhhhhhh hhhhhbhh

hhhhhhhh
hhhhhhhh

hbhhhhhhh
hhhhhhhh

hhhhhhhh

: hhhhbhhh hbhhbhhhh bhhhhhhbh
hhhhhhhh - hhhhhhhh D o

bhhhhhhh hhhhhhhh hhbhhhhh hhhhhhhb hhhhhhhh
INSTRUCTION IMAGE=hhhhhhhhhhhhhhhhhhhhbhhh
hhhhhhhhhhhhhhhh hhhhhhhhhhhhhhhh hhhhhhhhhhhbhhhh
PROGRAM ID=cccceccc RB TYPE=hh ENTRY POINT=hhhhhh
RESUME PSW SM=hh K=h AMWP=h IC=hhhh IL.CC=h PM=h IA=hbhbhhh
PROGRAM ID=ccccccce RB TYPE=hh ENTRY POINT=hhhhhh

hhhhhhhhhhhhhhhh

.

Figure 19. Contents of an Indicative Dump

Indicative Dump 65

3 1 = ABTERM routine’ entered
because of program

interruption
4 1 Reserved for future use
5 1 Data set closing initiated

by the ABTERM routine

6 1 The ABTERM routine
overlaid some or all of
the problem program

7 1 . The system prohibited
queuing of asynchronous
exit routines for this
task

e Lost control to the input/output
interruption handler, which
subsequently terminated abnormally.

. & Was abnormally terminated by the

control program because of a program
interruption.

e Issued an ABEND macro instruction to
request an abnormal termination.

If REGISTER SET 2 also appears in the
dump, the lines under REGISTER SET 1
give the general register contents for
a type II, III, or IV SVC routine
operating under an SVRB.

REGISTER SET 2

NO. ACTIVE RB=dd
is the number of active RBs presented
in the dump.

NO. LOAD RB=dd
is the number of RBs in the load list
presented in the dump. ‘

indicates that the next 2 lines give
the contents of general registers 0
through 7 and 8 through 15 for a
program being executed under control
of an RB other than an SVRB when the
program last passed control to a type
11, III, or IV SVC routine.

INSTRUCTION IMAGE=hhhhhhhhhhhhhhhhhhhhhhhh

COMPLETION CODE SYSTEM=hhh USER=dddd
is the completion code supplied by the
control program (SYSTEM=hhh) or the
problem program (USER=dddd). Both
SYSTEM=hhh and USER=dddd are printed;
however, one of them is always zero.

CCCCCCae e

is 12 bytes of main storage, with the
instruction that caused a program
interruption in the right part of the
printout. This field appears only if
a program interruption occurred and is
also valid when the instruction length
in the resume PSW is 0.

explains the completlon code or, if a hhhhhhhhhhhhhhhh hhhhhhhhhhhhhhhh
program interruption occurred: hhhhhhhhhhhhhhhh hhhhhhhhhhhhhhhh

PROGRAM INTERRUPTION ccccC... AT

LOCATION hhhhhh
where ccccc is the program
interruption cause: OPERATION, .
PRIVILEGED OPERATION, EXECUTE,
PROTECTION, ADDRESSING,
SPECIFICATION, DATE, FIXED~POINT
OVERFILOW, FIXED-POINT DIVIDE,
DECIMAL OVERFLOW, DECIMAL DIVIDE,
EXPONENT OVERFIOW, DECIMAL

are the contents of floating-point
registers 0, 2, 4, and 6 when the.
abnormal termination occurred. This
field appears only if the floating
point option is present. The first 2
digits of each register are the
characteristic of the floating point
number. The last 14 digits are .the
mantissa.

DIVIDE, EXPONENT OVERFLOW, PROGRAM ID=cccccccece

EXPONENT UNDERFLOW, SIGNIFICANCE,
or FLOATING-POINT DIVIDE; and
hhhhhh is the address of the)
instruction being executed when.
the interruption occurred.

REGISTER SET 1
. indicates that the next 2 lines give .
the contents of general registers 0
through 7 and 8 through 15 for a
program being executed under control
of an RB when it:

e Passed control to a type I SVC
routine through an SVC instruction
and the routine terminated
abnormally.

66 Programmer's Guide to Debugging (Release 21)

is the XRBNM field (bytes 0 through -
7): in PRB, LRBs, and LPRBs, the.
program name; in IRBs, the first
character contains flags for the timer
or, if the timer is not being used, .
contains no meaningful information; in
SVRBs for a type II SVC routine,
contains no meaningful information; in
SVRBs for a type III or IV SVC
routine, the first 4 bytes contain the
relative track address (TTR). of: the
load module in the SVC library and the
last 4 bytes contain the SVC number in
signed, unpacked decimal; in SIRBs,
the name of the error routine
currently occupying the 400-byte
input/output supervisor transient
area.

RB TYPE=hh
indicates the type of active RB

hh Type of RB

00 PRB that does not contain entry
points identified by IDENTIFY
macro instructions

10 PRB that contains one or more
entry points identified by
IDENTIFY macro instructions

20 LPRB that does not contain entry
points identified by IDENTIFY
macro instructions

30 LPRB that contains one or more

entry points identified by
IDENTIFY macro instructions

40 1IRB
80 SIRB
C0 SVRB for a type II SVC routine

DO SVRB for a type III or IV SVC
routine

EO0 LPRB for an entry point identified
by an IDENTIFY macro instruction

FO LRB

ENTRY POINT=hhhhhh
is the XRBEP field (bytes 13 through
15): address of entry point in the
program.

RESUME PSW
XRBPSW field (bytes 16 through 23):
is the contents of the resume PSW.

SM=hh
is bits 0 through 7 of PSW: system
mask.

=h
is bits 8 through 11 of PSW:
protection key.

AMWP=h
is bits 12 through 15 of PSW:
indicators.

IC=hhhh

is bits 16 through 31 of PSW:
interruption code.

IL.CC=h
is bits 32 through 35 of PSW:
instruction length code (bits 32 and
33) and condition code (bits 34 and
35).

PM=h
is bits 36 through 39 of PSW:
mask.

program

IA=hhhhhh
is bits 40 through 63 of PSW:
instruction address.

PROGRAM ID=ccccccce
is the XRBNM field (bytes 0 through
7): program name.

RB TYPE=hh
indicates the type of RB:

bhh Type of RB
20 LPRB that does not contain entry

points identified by IDENTIFY
macro instructions.

30 LPRB that contains one or more
entry points identified by
IDENTIFY macro instructions.

E0 LPRB for an entry point identified
by an IDENTIFY macro instruction.

FO LRB.

ENTRY POINT=hhhhhh
is the XRBEP field (bytes 13 through
15): address of entry point in the
program.

Guide to Using an Indicative Dump

Completion Code: Evaluate the user
(USER=decimal code) or system (SYSTEM=hex
code) completion code using either Appendix
C of this publication or the publication
Messages_and Codes. The line under the
completion code gives a capsule explanation
of the code or the type of program
interruption that occurred.

Instruction Address: If a program
interruption occurred, get the address of
the erroneous instruction in the last 3
bytes of the field labeled INSTRUCTION
IMAGE.

Active RB Queue: RBs are shown in the
first group of two-line printouts labeled
PROGRAM ID and RESUME PSW, with the most
recent RB shown first. There are two lines
for as many RBs indicated by NO. ACTIVE
RB=d4d.

Register Contents: General register
contents at the time a program last had
control are given under the heading
REGISTER SET 2 or, if this heading is not
present, under REGISTER SET 1. Register
contents, particularly those of register
14, may aid you in locating the last
instruction executed in your program.

Indicative Dump 67

Storage Dumps

Storage dumps record the contents of main
storage from location 00 to the end of
printable storage.

Storage dumps are produced by the damage
assessment routine (DAR) or other system
recovery routines, the Console Dump
facility, or the stand-alone service aid
program IMDSADMP.

DAMAGE ASSESSMENT ROUTINE (DAR)

The damage assessement routine produces a
storage dump when a system task fails and
is designed to provide increased system
availability in the event of system
fajlure. The storage dump is written to
the SYS1.DUMP data set.

If a system routine fails, DAR attempts
to reinitialize the failing task, thereby
permitting the system to continue operation
without interruption. DAR permits the
system to continue processing in a degraded
condition if it encounters a system failure
that does not permit total reinstatement of
the affected task or region. The operator
will be informed, via a WTO, that the
system is in an unpredictable state; he
then must decide whether or not
already-scheduled jobs should be allowed to
attempt completion.

Note: If TSO is installed in the systenm
and a failure occurs in the TSO subsystem
or in the operating system the TSO SWAP
data set must be recorded for use in
diagnosis if needed. The system recovery
routines do not do this. The IMDPRDMP
service aid can be used as a
high~performance dumping program for this
purpose by directing its output to tape.
Refer to the Service Aids publication for
details of this usage of the IMDPRDMP
program.

CONSOLE DUMP

The Console Dump function is designed to
meet the requirements for a dynamic main
storage dumping tool in the operating
system. The operator initiates the Console
Dump from the primary console via a DUMP
command. Execution of the function allows
a dump to be taken to the SYS1.DUMP data
set of all or selective portions of main
storage. The dump operation is performed
during system operation and requires no
IPL. The storage dump may then be
formatted and printed by the IMDPRDMP
Service Aid program. Refer to the
Operator's Guide publication for details of
the DUMP command.

IMDSADMP SERVICE AID

In situations where the system is not
operative, an IMDSADMP program is loaded
into storage through use of the IPL
facilities. The storage dump taken may be
written in a high-speed version to tape or
disk, and in a low speed version to tape or
printer. The high-speed IMDSADMP dump must
be processed by the IMDPRDMP program. The
low-speed tape output may be processed by a
program such as the IEBGENER utility
program. The format of the low-speed
IMDSADMP output is similar to the general
format listing produced by the IMDPRDMP
program and therefore is not illustrated in
this publication. A sample IMDSADMP
listing and a discussion of the program are
contained in the Sexrvice Aids publication.

SYSTEM FAILURE

If a system failure occurs, the damage
assessment routine immediately attempts to
write a storage dump to the SYS1.DUMP data
set. A system failure may be caused by a
failure in any of the following system
tasks:

MFT:

Communications Task
Master Scheduler Task
Log Task

MVT:

System Error Task
Rollout/Rollin Task
Communications Task
Master Scheduler Task
Transient Area Fetch Task

A system failure is also caused by an
ABEND recuxsion in other than OPEN, CLOSE,
ABDUMP, or STAE; by a failure of a task in
'must complete' status; or, in MFT only, by
a failure in the scheduler if no SYSABEND
or SYSUDUMP DD card is provided.

THE SYS1.DUMP DATA SET

The SYS1.DUMP data set may reside on tape
or on a direct access device.

Tape

If you wish to have the SYS1.DUMP data set
reside on tape, you may specify the tape
drive during IPL. If the drive has not
been made ready prior to IPL, a MOUNT
message is issued to the console,
specifying the selected device. The device
should be mounted with an unlabeled tape.

68 Programmer's Guide to Debugging (Release 21)

After writing a storage image dump, the
damage assessment routine writes a tape

mark and will position the tape to the next

file. The tape drive will remain in a
ready state to receive another storage
image dump.

Direct Access

If you wish to have the SYS1.DUMP data set
placed on a direct access device, you may
preallocate the data set at system
generation or prior to any IPL of the
system. The following restrictions apply:

e The data set name must be SYS1.DUMP.

e The data set must be cataloged on the
IPL volume.

e The data set may be preallocated on any
volume that will be online during
system operation.

e The data set must be sequential.

e sufficient space must be allocated to
receive a storage image dump for all of
main storage.

When a direct access device is used for
the SYS1.DUMP data set, the data set can
hold only one storage dump. If additional
failures occur, and if the SYS1.DUMP data
set is occupied, DAR does not attempt to
write another storage image dump.

Use the IMDPRDMP sexvice aid to format
and list the SYS1.DUMP data set.

Storage Dumps 69

IMDPRDMP Output

Main storage information processed by the
IMDPRDMP program is presented in six
different output formats. The output
format used is determined by the function
of the particular area of the dumped
system's main storage that is being
printed. Two of these formats, the gueue
control block trace and the link pack area
map, are invoked by specific format
statements. A third format is used to
print the major system control blocks. Two
formats are used for TSO; one for system
control blocks and the other for user
control blocks. Any areas of the dumped
system's main storage that do not fall into
any of the aforementioned functional
categories are processed in the general
format.

Dump List Headings: Each page of output
listing contains a heading. This heading
has the optional user specified title, the
name of the module that invoked the dump,
the date and the time the dump was taken
except when processing Generalized Trace
Facility output when the heading will be
"EXTERNAL TRACE - DD ddname." Note: If
the dump was produced by IMDSADMP on a
system with the time-of-day (TOD) clock,
IMDPRDMP can not determine the time at
which the dump was taken; the time is
replaced by "TOD CIK."

Dump Header: If the dump was produced by
SVC DUMP, IMDPRDMP will print the title
taken from the dump header record. A
maximum of 100 characters are printed on
the second line of the first page of the
output listing. '

Output Comments: While formatting the
dump, the IMDPRDMP program occasionally is
unable to locate, format and print a
control block. On those occasions IMDPRDMP
prints a comment explaining why the control
block could not be formatted and printed.
These comments are printed within the body
of the formatted dump and are part of the
IMDPRDMP output. A complete list of these
output comments along with further
explanations is contained at the end of
this chapter.

Summary Information: In addition to
formats, the following summary information
is printed at the end of each execution of
IMDPRDMP :

e The number of entrles to the read
routine;

e The number of times that the required
address was not found in a buffer;

e The number of blocks read from the dump
data set;

e The number of permanent 1I/0 errors .
encountered during the execution;

e The average number of buffers used for
each operation performed during this
execution;

e The number of blocks read from the:Tso
swap data sets;

e The ratio of the number of times the
read routine was called to the number
of times the requested address was not
in a buffer.

e When processing Generalized Trace
Facility output, the number of trace
records processed.

QUEUE CONTROL BLOCK TRACES

In a multiprogramming environment, requests
for system resources are enqueued. This
process is accomplished through the use of
queue control blocks (QCBs).

Certain system failures, such as task
contention deadlocks, become evident to the
user upon examination of a queue control
block trace. When requested through the
use of the QCBTRACE statement, the QCB
trace appears on a separate page of the
IMDPRDMP program dump listing. The trace,
a sample of which appears in Figure 20,
contains a listing of all gqueue control
blocks that were present in the dumped
system, and is available to users who are
processing main storage information
gathered from an MVT or MFT system.

(For more information on system resource
queuing, see 1IBM System/360 Operating
System: MVT Supervisor, GY28-6659.)

The page of the IMDPRDMP listing
containing the Queue Control Block trace is
identified by two heading lines. The first
line contains an optional title, the name
of the module that invcked the dump, and
the date and time that the information was
gathered from the dumped system. The
second line of the heading identifies the
page as containing a Queue Control Block
trace. The individual QCBs are then listed
for each Task Control Block. Each Queue
Control Block is formatted as follows:

MAJOR hhhhhh ‘
The starting address of a major queue
control block, the contents of which
are given, indented, on the 11ne or
lines below.

NAME cccccccc
The name of the system resource
represented by the major QCB.

70 Programmer's Guide to Debugging (Release 21)

SAMPLE QCB TRACE MODULE IMDSADMP

* % * %

|
| MAJOR 024100 NAME SYSDN

MINOR 0239%A0

QEL 024068 TCB 023488 SHARED
MINOR 023838 NAME FF SYS1.MACLIB
QEL 023ED8 TCB 023448 SHARED
MAJOR 0235E8 NAME SYSIEFSD

| MINOR 0235C8 NAME FF Q5
| QEL 023208 TCB 023480 EXCLUSIVE
| QEL 023C10 TCB 0238E(Q EXCLUSIVE
|
L

DATE

QUEUE CONTROL BLOCK TRACE

NAME FF SYS1.LINKLIB

7704770 TIME 0.10 PAGE 2

* % * %

S ———

Figure 20. Queue Control Block Trace Sample

MINOR hhhhhh
The starting address of the minor
queue control block. Contents are
given on this line or the lines below.

hh ccccccce

The first two characters appearing
after the NAME field identifier
indicate the scope of the minor QCB
being dumped. If the scope is given
as hexadecimal FF, the name of the QCB
is known to the entire operating
system. If the scope indicator is
hexadecimal 00 or 10 through F0, the
name of the QCB is known only to the
job step. The scope indicator shows
the storage protection key of the TCB
that enqueued this minor QCB. The
NAME field also contains the name of
the specific system resource
represented by the minor QCB.

NAME

QEL hhhhhh
The address of a queue element (QEL)
associated with the minor QCB
described on the line above. A QEL
line appears for each resource
requested by the task associated with
the minor QCB.

TCB hhhhhh
The starting address
control block of the
This task requests a specific system
resource through the use of the QEL
indicated on this 1line.’

of the task
requesting task.

SHARED or EXCLUSIVE
This indicator tells whether the
system resource is available to ome
task (EXCLUSIVE) or several tasks
(SHARED) .

LINK PACK AREA MAPS

Information on routines residing in either
the MVT link pack area or the MFT resident
reenterable load module area of the dump
system is available to the user through use
of the LPAMAP (link pack area map) format
statement.

For users who are processing an MVT
dump, the IMDPRDMP program produces a
listing of all routines loaded into the
link pack area by the nucleus
initialization program (NIP). For MFT
dumps, this list contains information
pertaining to all resident reentrant
routines loaded into the reenterable load
module area by NIP.

The IMDPRDMP user will find the link
pack area map, for MVT, or the reenterable
load module area map, for MFT, to be a
useful tool in isolating system failures
that occurred in program modules that
reside outside the user's partition or
region. If requested, the applicable map
appears on a separate page of the IMDPRDMP
program dump listing. A sample Link Pack
Area map is shown in Figure 21 .

The dump listing page containing the
link pack area map is identified by two
heading lines. The first line contains the
optional title supplied by the user, the
name. of the module that invoked the dump,
and the date and time that the information
was gathered from the dumped system. The
second line of the heading identifies the
page as containing a link pack area map.
Information on each module contained in the

IMDPRDMP Output Formatting: Link Pack Area Maps 71

link pack area or reenterable load module LNGH
area, is given in the following format:

NAME cccccecce
The name of the load module TYPE
represented by this entry.

EPA hhhhhh
The entry point address of the module
jdentified on the corresponding line
in the NAME column.

STA hhhhhh

The starting address of the named
module's control section.

72 Programmer's Guide to Debugging (Release 21)

hhhhhh

The length, in bytes, of the control -
sections in the load module described
on this line.

ccecce
The attributes of the control block
associated with the module being
described on this line. Under MVT,
the type of the contents directory
entry (CDE) associated with the module
is given. The type may be either
MAJOR or MINOR. Under MFT, the type
is shown as either a loaded request
block (LRB) or a loaded program
request block (LPRB).

tbutiremxod Indan0 dNAIAAWT

sdey eaxy yoegd YUTT

€L

MODULE IMDSADMP DATE 11/12/70 TIME 00.15 PAGE 0001
* kb % LINK PACK AREA MaAP * % & %

NAME EPA STA LNGH TYPE
TEELWAIT 072418 072418 0O003E8 MAJOR
16602092 C748C0 C74800 000400 MAJOR
16602012 €74C00 C74C00 000400 MAJOR
1660201Y C75000 C75000 000400 MAJOR
16662002 C75400 (75400 000400 MAJOR
1660200Y C75800 (75800 000400 MAJOR
1660200H C75C00 C75CCO 000400 MAJOR
16602006 076000 C760C0 000400 MAJOR
1GG0200F 076400 0764C0 000400 MAJOR
1660200A (76800 076800 000400 MAJOR
1660199M 076C00 076C00 000400 MAJOR
16601968 C77000 077000 000400 MAJOR
16GG0196A C77400 C77400 000400 MAJOR
16601917 C77800 C778C0 000400 MAJOR
16601911 C77C00 077C00 C00400 MAJOR
16601910 C78000 078000 CO0400 MAJOR
16601910 78400 C78400 000400 MAJOR
16601916 €78800 (78800 000400 MAJOR
I660191D C78COC C78C00 000400 MAJOR
16661918 €79000 €79000 000400 MAJOR
1GGO191A (79400 C79400 000400 MAJOR
16601908 C79800 C79800 000400 MAJOR
1GGO190N 079C00 C79C00 000400 MAJOR
IGGO190M C7A000 CT7A000 000400 MAJOR
1660190L C7A400 C7A400 000400 MAJOR
1GCOOOSE C7A800 C7A800 000400 MAJOR
15€C002 C7AC00 C7ACO0 000400 MAJOR
16CCOO0L1 C78360 C7B360 000400 MAJOR
166019CK C7CA00 CTCAO0 000060 MAJOR
1660198C C7CA60 C7CA6C 0000E8 MAJOR
15601980 C7CB48 C7CB48 000128 MAJOR
166019AD C7CC70 CT7CCT0 0000CO MAJNR
1GGO19AL €C7CD30 07CD30 000158 MAJOR
1GC019AC C70848 07D848 O0000E8 MAJOR
IGGO19CA C7D$30 C7D930 000088 MAJOR
166C19CB C7D9B8 C7D9B8 000098 MAJOR
IGGO19AG C7DASO C7DA50 00C090 MAJOR
16G0198E C7CAEQ CTDAEO 000188 MAJOR
I1GG019AM C7DC68 07DC68 000078 MAJOR
I16GG19AN C7DCEO0 C7DCE0 0000D8 MAJOR
16G019AV C70DB8 C7DDB8 000058 MAJOR
166019M0 O7DEL10 C7DE10 OOO0OFO MAJOR
1GGO19MB 078760 078760 O0010A0 MAJOR
1GGO19MA C7CE88 O7CE88 000978 MAJOR
166019CL C7E820 OTE820 000040 MAJOR
16GO19CF C7DF00 C7DFCO 000100 MAJOR
1GGO19CE 07E038 O7E038 000088 MAJOR
1GGO19AJ C7EQCO O07EOCG 000120 MAJOR
16G019A1 C7E1E0 C7E1EQC 000080 MAJOR
16601988 C7EBEC CTEB60 00CC58 MAJCR
15601984 C7E260 C7E260 000180 MAJOR

Fiqure 21. Link Pack Area Map Sample

(TZ @seayay) burbbngsag 03 SPINO s, adumeabord. 41

TI0T 02EL1FO

MODULE IMDSADMP

TCB 0402D400 NDEB 1CC00CO00 ASYN F8000000 SPRG 00000000 UPRG 01068

AVT 0402CA98

FM-UCB START END TRKS

580026AC 000200G3 €0C20003 0001

JGB JOB4 STEP GO PROC STEP1

OFFSET LN-STA CONAME TTR-STC sSTe-UcCB
0018 14040101 PGM=%.,DD 00271590 800026AC
002C 140401C1 ouMMY 00271900 8C0026AC

DATE 11/12/70 TIME 00.15

OAGE 002¢

JoB J0OB4 STEP GO PROCSTEP STEP1
Ak CURRENT TASK kAR

TC8 020400 RBP 0002E410 PIE 00000000 DEB 0002DABC TIO 0002E1FO CMP 00000000 TRN 00000000
MSS 0002E770 PK-FLG FCQ00000 FLG 00001B18 LLS OCO2E3EOQ JLe 00000000 JPQ 0002E3ES
RG 0-7 000000C0 €000C066 0002DF8BC 00000000 00020660 0002D1ES8 0002E234 0002DBAS8
RG 8-15 0CO020FAQ 0J0C0000 - 0002DFC8 0005DF08 4005DES56 0005DFO8 6007F060 60008342
FSA 0006BF68 TCB 00€00000 TME 00000000 JST 0002D400 NTC 00000000 OTC 0002D1€8
LTC 00000000 1QE 000006000 ECB 0002DFC4 TSPR 00000000 D-PQE 0002E770 SQS 0002DA90
STA €C00GO000 T 0002CF28 USR 00000000 DAR 00000000 RES 00000000 JSCB 0002E33C

ACTIVE RBS

PRB 02E410 RESV 0000600 APSHW 000000C0 WC—-SZ-STAB 00040082 FL-CDE 0002ESES PSW FFF50009 ACOS5DEFS
Q/TTR 00000000 WT—LNK 0002D400 NM GO EPA 05DES0 STA 05DES50 LN 000180 ATR1 OB

MAIN STORAGE

D-PQE 0O002E770 FIRST 0002E688 LAST 0002E688

PQE 02E688 FFB 00CSECCO LFB CCCEEO000 NPQ 00000000 PPQ 00000000
TCB 0002D1ES8 RST COOOF000 RAD 0005D800 FLG 0000

LGAD LIST

CDE OZ2E3ES8 NM RETURNS USE 01 RESP 01 ATR1 OB EPA 0SDDCS8 STA 05DDC8 LN 000088

CDE 028BB50 NM 166019CC USE 03 RESP 01 ATR1 BO EPA 07E928 STA 07€E928 LN COo00D8

CDE 028BB20 NM IGGO19CH USE 03 RESP 01 ATR1 BO EPA 07E£8B8 STA 07ES8BS LN 000070

CDE 02B730 NM 1GGO19AC LSE 02 RESP 01 ATR1 BO EPA 07D848 STA 07D848 LN OOOOQE8

CDE 02BBFO NM IGGO01SAQ USE 03 RESP 01 ATR1 BO EPA Q7F020 STA 07F020 LN 000078

JOB PACK QUEUE

CDE O0Z2E3ES8 NM RETURNS USE 01 RESP NA ATR1 0B EPA 05DDC8 STA 050DC8 LN 000088

CDE OZ2E5ES NM GO USE 01 RESP NA ATR1 OB EPA 05DESOQ STA 05DE50 LN 00018C

DEB 020ABC APPENDACES END OF EXT O7ES8B8 SI0 000D72 PCI 000D72 CH END 000D72 AB END 000D72
PFX 00C00000 65000006 000108BEO 1100C000

El18 PLST 1B80000CO DCB FFOSDFAQ

Figure 22.

Sample of MVT Major Control Block Format

MAJOR SYSTEM CONTROL BLOCK FORMATS

Formatting of the major system control
blocks associated with a task is a function
of either a FORMAT control statement, or
one of the several noted parameters
associated with the PRINT control
statement. The control blocks of several
tasks may be printed during one execution
of IMDPRDMP. When more than one task is
printed, the associated task control blocks
(TCBs) are grouped into a TCB summary,
listed following the printing of all
requested tasks. This summary provides an
index to the formatted TCBs by jobname.

See the discussion "Task Control Block
Summaries."

For ease of identifying various dump
printouts, specific headings are printed on
each dump; such as FORMAT, DAR AND FO03
TASKS, PRINT CURRENT, and PRINT JOBNAME.

Each task being printed begins on a new
page, identified by two heading lines. The
first heading line contains the optional
title supplied by the user, the name of the
module that invoked the dump, and the date
and time that the information was gathered
from the dumped system, and a page number.
The second line of the heading identifies
the particular task being printed. This
task information is broken down into the
following named fields: '

JOB cccccccce
The JOB field displays the
eight-character name that was
specified in the label field of the
JOB statement.

STEP cccccccece :
The STEP field shows the eight-
character step name of the problem
program associated with the task being
dumped. This name was supplied in the
label field of the EXEC statement.

PROCSTEP cccccccece
If the job step being displayed was
invoked from a cataloged. procedure,
the step name of the cataloged
procedure, as contained in the
cataloged procedure's EXEC statement,
is displayed in this field.

If the task being printed was in control
at the time the dump was taken, a third
heading line follows the two previously
described. The line "#*** CURRENT TASK

**+%*" jdentifies the TCB associated with
the task in control when the dump was
taken.

While formatting the dumped control
blocks, IMDPRDMP may issue various output
comments to assist the person who analyzes
the printout. The output comments are
discussed following the control block
discussion.

specific formatting of the major system
control blocks is dependent upon the
operating system option under which the
dumped system was operating. To allow the
reader to concentrate on the particular
operating system with which he is
concerned, the discussion of control block
formatting is divided into three parts:
MVT, MFT, and the TSO option of MVT.

MVT _Control Block Formatting

The formats described below are repeated
for each requested task that is printed. A
sample of the major system control blocks,
as formatted from an MVT dump, is shown in
Figure 22.

MVT TASK CONTROL BLOCK (TCB) FORMATTING:
The task control block (TCB) contains
information that pertains to the specific
task named in the heading lines that appear
at the top of the page. Each TCB is
formatted as follows:

TCB hhhhhh
The address of the task control block
being displayed is given in this first
field.

RBP hhhhhhhh
The address of the request block (RB)
that was currently associated with the
task represented by this TCB.

PIE hhhhhhhh
The address of the first program
interrupt element (PIE) enqueued by
this TCB.

DEB hhhhhhhh
The address of the beginning of the
data extent block (DEB) queue that was
associated with this task.
Information on the contents of each
DEB in the queue is given in a
separate portion of this MVT dump
listing.

IMDPRDMP Output Formatting: MVT -- TCB 75

76 Programmer's

TIO hhhhhhhh

The address of the task input output
table (TIOT) that was constructed
during device allocation for the task
represented by this TCB. The contents
of this table are displayed in a later
portion of this task's display. '

CMP hhhhhhh

This word contains ABEND indicators
and user and system completion codes.
The usage of this field is as follows:

byte 0

leee ceas Bit 0 indicates that a
dump had been requested.

edlee ceee Bit 1 set indicates that
a step ABEND had been
requested.

« e XX XXXX Bits 2 through 7 are
reserved for future use.

bytes 1-3

The first 12 bits contain a system
completion code. These codes and
their meanings are explained in the
publication IBM System/360 Operating
System: Messages and Codes, GC28-6631
under the heading "System Completion
Codes." A user completion code is
contained in the last 12 bits.

TRN hhhhhhhh

Contains flags and TESTRAN indicators
as follows:

byte 0

b Bit 0 set indicates that
both TESTRAN and decimal
simulator programs were
being used on a
System/360 Model 91
machine.

elee eene Bit 1 set indicates that
checkpoints were not
taken for this step.

eele cene Bit 2 set indicates that
the TCB being displayed
belonged to either a
graphics foreground or
the graphic job
processor.

eeel caas Bit 3 set indicates that
the TCB being displayed
was associated with a
7094 emulator task that
was being run on a
System/360 Model 85
machine.

cane Xeoo Bit 4 is reserved for
future use.

eese olee Bit 5 set indicates that
this is a time shared
task under control of
the TEST command
processor.

Guide to Debugging (Release 21)

P I Bit 6 set indicates that
the OLTEP functions
require cleanup before
abnormal termination can
be invoked.

ceas seeX Bit 7 is reserved for
future use.

bytes 1-3 o

The address of the control core table
that was used by TESTRAN.

MSS hhhhhhhh

Main storage supervision information
as follows:

byte 0

This byte determined roll-out
eligibility for the job step
associated with this TCB.

00 in this byte indicated that the job
step may be rolled out.

nz (nonzero) in this byte indicated
that the job step may not be rolled
out.

bytes 1-3

These bytes contain the starting
address of the last subpool queue
element (SPQE).

PK-F1G hhhhhhhh

The storage protection key of the task
and a series of flags. This word is
divided into several subfields. These
are:

byte 0

XXXX eees The storage protection
key of the task
represented by this TCB.

eeeas 0000 Always contain zeros.

byte 1

leee woee Bit 0 set indicates
thatan abnormal
termination was in
progress at the time the
dump was taken.

elee caes Bit 1 set indicates that
a normal termination was
in progress at the time
the dump was taken.

“eale eees Bit 2 set causes the
Erase routine in ABEND
to enter when ABEND is
in control again.

ewel ceae Bit 3 set causes the
Purge routine in ABEND
to enter when ABEND is
in control again.

eeee laue Bit 4 set indicates that
the Graphics Abnormal
Termination routine was
in control of the task
associated with this TCB

®ene

- emwm

byte 2
1‘.-‘

«1l..

welae

P §

vol.'-

P

maaol

.o e e

. o0

1‘--

-1..

eel.

S

at the time the dump was
taken. Bit 7 in byte 3
of this word must also
be on.

Bit 5 set indicates that
the top task in the TCB
chain (usually the job
step TCB) was in the
process of being
terminated when the dump
was taken.

Bit 6 set indicates that
an abnormal dump has
been completed.

Bit 7 indicates that
asynchronous exits could
not be scheduled.

Bit 0 set indicates that
the SYSABEND (or
SYSUDUMP) data set for
the job step is being
opened. Operands of
ABEND macro instruction
have been saved in
TCBCMP field.

Bit 1 set indicates that
if this is an initiator
TCB, the second job step
interval has expired.
Bit 2 set indicates that
for a job step TCB, the
job step can cause
rollout.

Bit 3 set indicates that
the current task had a
forced completion
imposed upon it. Other
tasks in the system
could not have been
performed until the
current task had been
completed.

Bit 4 set indicates that
the job step had a
forced completion
imposed upon it. Other
tasks in the job step
could not have been
performed until the
present job step had
been completed.

Bit 5 set indicates that
the SYSABEND (or
SYSUDUMP) data set has
been opened for the job
step.

Bit 6 set indicates that
an EXTR exit was
requestéd by an
attaching task.

Bit 7 set indicates that
the task associated with
this TCB was a member of
a time-sliced group.

byte 3
1...

Jd..

-ene

el

-ew oo

eeel LeeX

leeX

d..

eelx

eeaeX XoX1

FLG hhhhhhhh

Bit 0 set indicates that
a PSW associated with
the task represented by
this TCB was in the
supervisor state.

Bit 1 set is applicable
to job step TCBs.
Setting of this bit
indicates that the job
step had invoked
rollouts that were still
in effect at the time
the dump was taken.

Bit 2 set indicates that
ABEND was processing in
such a manner as to
prevent multiple ABENDS
from occurring in the
dumped system.

Bit 3 set indicates that
the SYSABEND (or
SYSUDUMP) data set is
being opened by this
task. (See also bit 7.)
Bit 4 set indicates that
an ABDUMP was in process
for the task associated
with this TCB at the
time the dump was taken.
(see bit 7 of this
byte.)

Bit 5 set is applicable
only for job step TCBs.
With this bit set, no
abnormal termination
dumps could have been
provided within the job
step represented by this
TCB.

Bit 6 set indicates that
a CLOSE had been issued
during ABEND processing.
(see bit 7 of this
byte.)

Bit 7 set, in
conjunction with bits 3,
4, or 6 of this byte or
bit 4 in byte 1 of this
word indicates that, had
the dumped system been
allowed to continue
processing without
interruption by the
IMDSADMP dump program, a
valid reentxy to ABEND
would have been :
effected.

This field displays a further series
of flags and certain priority

indicators.

This word is divided into

subfields as follows:

IMDPRDMP Output Formatting:

MVT -- TCB 77

byte 0

78 Programmer's

If any one of the flags comprising
this byte were set at the time the
dunp was taken, the task represented
by this TCB was considered to be
non-dispatchable.

.-Bit 0 was set by ABDUMP
Bit 1 is reserved for
future use.)
Bit 2 set indicates that
the supply of I/O »
request queue. elements
(RQEs) had been
exhausted.

Bits 3 through 5 are

lece coee

eXee woee

‘."1‘. - e e e

eeeX XXo.e

reserved for future use.

Bit 6 is applicable only
to M65 multiprocessing
situations. The setting
of this bit indicates
that the task
represented by this TCB
had been flagged
non-dispatchable by one
CPU to prevent any CPU
from working on it.

Bit 7 set indicates that
the task associated with
this TCB entered the
ABEND routine while the
data control block
representing the
SYSABEND data set was
being opened for another
task.

cens eele

PR |

byte 1

If any one of the flags comprising
this byte were set at the time the
dump was taken, the task represented
by this TCB was considered to be
non-dispatchable.

Bit 0 set indicates that
the task represented by
this TCB was terminated
prior to the time the
dump was taken.

Bit 1 set indicates that
the task represented by
this TCB was a candidate
for termination by
ABEND.

"Bit 2 set indicates that
a routine of the task
represented by this TCB
issued an unconditional
GETMAIN that could only
have been satisfied by
the rolling out of
another job step.

Bit 3 indicates that the
job step associated with
this TCB was rolled out.
Bit 4 set indicates that
another task was in
system—mustfcomglete
status.

loce veea

elee cans

voele aaaw

S TR

R

Guide to Debugging (Release 21)

Bit 5 set indicates that
another task in this job
step was in
step-must-complete
status at the time the
dump was taken.

Bit 6 is applicable only
for an initiator task.
Setting of this bit
indicates that a request
for a region could not
be satisfied. |

Bit 7 is the primary
non-dispatchability
-indicator. Setting of
this bit indicates that
one or more of the
secondary
non-dispatchability bits
(bytes 1-3 of the DAR
field) was set at the
time the dump was taken.

mwenn slaa

eene seala

ceee eeal

byte 2

The dispatching priority 1limit for the
task represented by this TCB.

byte 3

The dispatching priority of the task
represented by this TCB.

LLS hhhhhhhh

The load list element (LLE) for the
program that was loaded by means of
the LOAD macro instruction.

JLB hhhhhhhh

The address of the data control klock
associated with the JOBLIB associated
with the task.

JPQ hhhhhhhh

Contains information pertaining to a
job step TCB as follows:

byte 0

Bit 0 set indicates that
if the associated job
ster had been allowed to
continue processing
without being
interrupted by the dump
program, the job step
would have been purged.
Bits 1 through 7 are
reserved for future use.

love wene

« XXX XXXX

bytes 1-3

The address of the last contents
directory entry for a job pack area
(JPA) control queue.

RG 0-7 and RG 8-15

The register save area of the TCB
being displayed. The general
registers were stored in this area
upon entry to the first routine
invoked in the task. On entry to any

TCB

TME

JSsT

LTC

IQE

ECB

task, register 13 points to this TCB's
register save area. This pointer is
useful in locating the entry points of
first routines and in tracing the save
area chains.

hhhhhhhh
The address of the first problem
program save area.

hhhhhhhh

The address of the TCB that had the
next lowest priority on the ready
queue at the time the dump was taken.

hhhhhhhh
The address of the timer element.

hhhhhhhh

The address of the first TCB for a job
step. - For tasks with a storage
protection key of zero (as shown in
the first byte of the PR-FIG field),
this word contains the address of this
TCB.

hhhhhhhh
The address of the previous TCB that
existed on the originating task's
queue of subtask TCBs (sister). If
this TCB was the first on the ‘queue,
this field contains zeros.

hhhhhhhh
The address of the TCB representing
the originating task (mother).

hhhhhhhh
The address of the last TCB that
existed on the originating task's
queue of subtask TCBs at the time the
dump was taken (daughter). If this
TCB was the last on the queue, this
field contains zeros.

hhhhhhhh

The address of the interruption queue
-element (IQE) that was used in
‘scheduling the EXTR routine on the
originating task.

hhhhhhhh
The address of the event control block
(ECB) that would have been posted by
the supervisor's task termination
routines had either normal or abnormal
task termination been allowed to
occur.

TSPR hhhhhhhh

byte 0

This field contains flags that -
indicate the status of the time
sharing (TSO). Without TSO or when
TSO has not been started this field
contains zeros.

lees <ee. Bit 0 set indicates that
this task is a time sharing
task.

elee <.e. Bit 1 set indicates that the
time sharing task should be
set non-dispatchable. This
bit was set by the TCBSTP
routine while the routine
was not- executing as a
privileged program.

eele ... Bit 2 set indicates that the
system is executing and
requires that the time
sharing task must not be
interrupted by the attention
exit or by the STATUS sVC.

eeel Bit 3 set indicates that a
terminal I/0 purge is
required.

eeee XXXxX Bits 4 through 7 are
reserved for future use.

byte 1
This field contains the number of SET
STATUS starts required to make this
time sharing task dispatchable.

byte 2
This field contains the limit priority
of the time sharing task.

byte 3
This field contains the dispatching
priority of the time sharing task.

D-PQE hhhhhhhh
The address of the region dummy
partition queue element minus 8
(DPQE-8).

S$QS° hhhhhhhh
The address of an allocated queue
element (AQE) which contains the
amount of available bytes assigned to
this task in the system queue area
(sQa), and a pointer to the next AQE
for this task.

STA hhhhhhhh
Internal STAE routine flags and the
address of the STAE control block that
was in effect at the time the dump was
taken.

TCT hhhhhhhh
This word contains information
pertaining to the dumped system's
timing control table (TCT). The TCT
field is divided into the following
two subfields:

byte 0
Resexved for future use.

IMDPRDMP Output Formatting: MVT -- TCB 79

bytes 1-3

If the .system management facilities
option was present in the dumped
system, these bytes contain the
address of the dumped system's timing
control table.

USR -hhhhhhhh

This word is available to the user of
the dumped system. It contains any
information placed in it by the user.

DAR hhhhhhhh

The contents of this field were used
by the damage assessment routines
(DAR). Certain subfields displayed in
this word were also used to control
the dispatchability of the dumped
task. The DAR field is divided into
the following subfields:

byte 0

The first byte of the DAR field ,
contains DAR flags. These flags are
as follows:

laee waee Bit 0 set indicates that
primary DAR recursion
occurred in the dumped
system. The damage
assessment routine
failed while writing a
main storage image dump.

elee coew Bit 1 set indicates that
secondary DAR recursion
occurred in the dumped
system. The damage
assessment routine
failed while attempting
to reinstate a failing
region or partition.

eeXX ecewe Bits 2 and 3 are
reserved for future use.

woan loes Bit 4 set indicates that
the system error task is
failing. The DAR dump
should not request any
error recovery procedure
(ERP) processing.

eese »XXe Bits 5 and 6 are
reserved for future use.

eeen eawl Bit 7 set indicates that
an SVC dump is executing
for this task.

byte 1

Bytes 1 through 3 of the DAR field are
used to store secondary
non-dispatchability flags. If any of
the flag bits in this subfield were
set, the primary non~dispatchability
bit (the last bit in the FIG field)
will also have been non-dispatchable.
The bit settings that may appear in
byte 1 are as follows:

" XXes seee Bits 0 and 1 are set by
the damage assessment
routines. Their
meanings are:

80 Programmer's Guide to Debugging (Release 21)

lewe waee Bit 0 set indicates that
the task rkpresented by
this TCB is temporarily
non-dispatchable.

elee wens Bit 1 set indicates that
the task represented by
this TCB is permanently
non-dispatchable.

2eXX cenw Bits 2 and 3 are
recovery management
suppoxrt and system error
recovery flags. Their
meanings are:

eale cene Bit 2 set indicates that
the task represented by
this TCB is temporarily
non-dispatchable.

eeel neee Bit 3 set indicates that
the task represented by
the TCB is permanently
non-dispatchable.

eees Xeas Bit 4 is reserved for
future use.

cenes sles Bit 5 set indicates that
this task is temporarily
non-dispatchable. Timer
services have been
requested and the
time-of-day clock is
still inoperative.

ecee =eXX Bits 6 and 7 are
reserved for future use.

byte 2

The bit settings for byte 2 are as
follows:

Xeow anne Bit 0 is reserved for
future use.

elee nace Bit 1 set indicates that
this task has been
storped by a STATUS
stop.

eele cea Bit 2 set indicates that
task is
non-dispatchable. - An
SVC dump is executing
for another task.

eeel ceee Bit 3 set indicates that
this task is being
swapped out by the time
sharing (TSO).

weaa Llaaa Bit 4 set indicates that
this task is in an input
wait state.

cenn olee Bit 5 set indicates that

: this task is in an

output wait state.

cemw =eXX Bits 6 and 7 are
reserved for future use.

byte 3

Reserved for future use.

RES hhhhhhhh

Reserved for future use.

JSCB hhhhhhhh
The address of the job step control
block.

MVT ACTIVE REQUEST BLOCK (RB) FORMATTING:
Request blocks (RBs) were used by the lines
at the top of the dump page and in the

preceding

TCB display, are listed in the

portion of the dump listing labeled "ACTIVE
RBS." Information on each RB associated
with the task is formatted as shown below:

PRB

IRB hhhhhh

SVRB

SIRB
Each RB display is preceded by a field
that indicates the type and address of

the RB being displayed. The four
types of RBs that may be displayed
under an MVT task are:

PRB

IRB

SVRB

SIRB

program request block

interruption request block

supervisor request block (SVRBs
may be divided into two
categories; type 2 for resident
routines and type 3 or 4 for
transient routines)

system interruption request
block.

The type acronym for each RB is
displayed in the first portion of the
field. The starting address of the
indicated request block appears in the

. last

portion of the field. The

contents of certain fields in the body
of the formatted display are dependent

upon

the type of RB being displayed.

Variations in display field usage are
noted in the descriptions of the
fields in which they occur.

RESV

TAB-LN hhhhhhhh

FL-PSA
This

field shows both the function and

the first word of the request block
being displayed. The meanings of the
function indicators and the values

that

RESV

follow them are:

[

indicates that the request block
is either a PRB or an SVRB for
resident routines. The first
word of these particular RBs is
reserved for future use and
contains zeros.

TAB-LN

indicates that the request block
being displayed is used as an
SVRB for transient routines. The
value field is divided into two
subfields of two bytes each. The
first two bytes show the
displacement of the entry point
of the module represented by this
SVRB from the beginning of the
transient area control table
(TACT). The second subfield
shows the length, in bytes, of
the SVC routine.

FL-PSA

indicates that the RB being
displayed is an IRB. The value
portion of this field is divided
into two subfields. The first
subfield has a length of one byte
and contains indicators for the
timer routines. When there were
no timer routines, this field
contains zeros. The timer
routine indicators set at the
time the dump was taken are shown
as:

leee ee.. indicates that the
timer element was not
on queue.

elee «..» indicates that the
local time-of-day
option was used.

««00 indicates that the
time interval was
requested in timer
units.

«e01 1indicates that the
time interval was
requested in binary
units.

eell 1indicates that the
time interval was
requested in decimal
form.

eses l... indicates that the
time interval had
expired.

esee 2000 indicates a task
request

«see 2100 indicates a task
request with an exit

specified.

eess 2001 indicates a wait
request.

eees 2011 indicates a real
request.

weese +111 dindicates a real
request with an exit
specified.

The second subfield is three
bytes long and contains the
starting address of the problem
program register save area (PSA).

IMDPRDMP Output Formatting: MVT -- TCB 81

APSW hhhhhhhh

The APSW field displays information
pertaining to the program status word
.that was active at the time the Adump
was taken. The functional variations
associated with the usage of this
field are:

e PRBs being formatted contain the
right half (bytes 4 through 7) of
the problem program's PSW when an
ABTERM interruption occurred.

o IRBs, SIRBs, and SVRBs for resident
routines use this field to display
the right half (bytes 4 through 7)
of the PSW that was active, in the
dumped system, during the
execution of an ABEND or ABTERM
routine. If no ABEND or ABTERM
routine was envoked in the dumped
system, this field contains zeros.

e SVRBs for transient routines use
this field in much the same way as
SVRBs for resident routines. If
an ABEND or ABTERM routine was
invoked in the dumped system,
bytes 4 through 7 of the
associated PSW are displayed in
this field. If an ABEND or ABTERM
routine was not invoked, this
field contains the last four
characters of the name of the
requested routine. (The last two
characters of the name represent
the SVC number.)

WC—SZwSTAB hhhhhhhh

This field contains informatlon
pertaining to wait conditions, request
block sizes, and RB status and
attribute characteristics. This field
is divided into three subflelds, as
follows-

byte 0

The wait count that was in effect at
the time of the dump.

byte 1

‘The size of this ‘request block. This
RB size is expressed as the number of
doublewords comprising the block.

byte 2

“‘The last two bytes of the WC-SZ-STAB
field contain bit settings that
reflect the status and attributes of
the request block. The settings that
may appear in byte 2 are:

XXee enae Bits 0 and 1 indicate
: © the type of RB being
displayed. The possible
settings for these two
bits and their meanings
are:

82 Programmer's Guide to Debugging (Release 21)

00ce cewe This is a program
- request block (PRB).

0les wcee This is an interrupt
request block (IRB).

10ce wewe This is a system
interrupt request block
(SIRB).

11.. e This is a supervisor
request block (SVRB).

eeXa XoXX Bits 2, 4, 6 and 7 are
reserved for future use.

enel eccle Bit 3 set indicates that
this request block is an
SVRB for a transient
routine.

evee alee Bit 5 is applicable only

‘ if the request block

being displayed is an
SVRB. If this bit is
set, a checkpoint could
have been taken in a
user exit from the SVC
routine associated with
this RB.

byte 3

The last byte of the WC-SZ-STAB field
contains more status and attribute
flags. The possible settings for this
subfield and their meanings are: '

leee wcea Bit 0 set indicates that
the WT-LNK field in this
RB display, contains in
its last three bytes,
the address of the TCB
to which this request
block is linked.
B Bit 1 applies only to
: IRBs and SIRBs. If this
bit is set, the
indication is that at
the time the dump was
taken, the program
associated with this RB
: was active.
CweXe weaw Bit 2 is reserved for
future use.
ceel caan Bit 3 is applicable only
to IRBs. The setting of
this bit is an
indication that the IRB
was associated with an
ETXR exit routine.
evee XXew Bits 4 and 5 concern
interruption queue
elements (IQEs) and
request queue elements
(RQEs). This flag is
used as follows:
eees 00.. This setting indicates
: that the request queue
element was not to be
returned to the free
list when the exit was
taken.

eees Ol.. This setting indicates
that the IRB had queue
elements for
asynchronously executed
routines that were RQES.
This setting is
applicable only if the
RB being displayed is an
IRB.

ewon 10.. This setting indicates
that the IQE was not to
have been returned at
EXIT.

enee 1l.. This setting is
applicable only to IRBs.
If this setting appears,
the indication is that
the IRB had queue
elements for
asynchronously executed
routines that were IQEs.

eoee wela Bit 6 set indicates that
request block storage
could be freed at the
time of exit.

emes wewX Bit 7 indicates request
wait conditions. The
meanings of the two
possible settings for
this bit are:

meane weal Bit 7 not set indicates
that the request had to
wait for a single event
or all of a number of
events.

wees weal Bit 7 set indicates that
the request had to wait
for a number of events.
This number of events
was less than the total
nurnber of events that
were waiting.

FL-CDE

EPA
TON

hhhhhhhh

This field shows both the function and
the fourth word of the request block
being displayed. The meaning of the
function indicator and the value
following it is given belaw:

FL-CDE
the request block being displayed
is either a PRB or an SVRB for a
resident routine. The value
field is divided into two
elements. The first subfield has
a length of one byte and contains
control flag settings.

These control flags are as
follows:

XXXX X... Bits 0 through 4 are
reserved for future
use.

eese wle.. dindicates that a SYNC
macro instruction was
requested.

eses =el. dindicates that an
XCTL macro
instruction was
requested.

«swe seel dindicates that a LOAD
macro instruction was
requested.

The second subfield is three
bytes long and contains the
address of the contents directory
entry (CDE) representing the
module that this request block
was associated with.

EPA
The request block being displayed
is an IRB. The value field
contains the entry point address
of a routine that was
asynchronously executed.

TON

The request block being displayed
represents a transient routine

SVRB. The value field contains
the address of the next request
block that was on the queue of

transient routines.

PSW hhhhhhhh hhhhhhhh

The resume program status word. This
PSW represents the status of the
program represented by the RB being
displayed when a new RB was created.
Had the dumped system been allowed to
continue processing without being
interrupted by the dump program,
operation would have resumed on this
PSW.

Q/TTR hhhhhhhh

This word is used to display various
data, depending upon the type of
request block being . displayed. Usage
of the Q/TTR value field is used by
each type of request block as follows:

e PRBs and SVRBs that represented
resident routines do not use this
field; the first byte always
contains zeros. Bytes 1 through 3
of the field show the address of a
request block that requested the use
of the same serially reusable
programe.

e IRBs utilize this field in one of
two ways, to show either the
three-byte link-field segment or the
two-byte link-field segment,
depending upon the IRB usage. The
three-byte link-field segment
appears in the Q/TTR value field as
follows:

IMDPRDMP Output Formatting: MVT -- TCB 83

byte 0
Contains a count of the number of
requests for the same exit (ETXR).
This use count is utilized by the
ATTACH macro instruction.

byte 1-3
Contains the starting address of
the queue of interruption queue
‘elements (IQEs).

Alternately, the Q/TTR value field
may be formatted to show the
two-byte link-field segment. In
this instance, the field is used
thusly:

byte 0-1
Reserved for future use.

bytes 2-3
The starting address of the queue
of request queue elements (RQEs).

e SVRBs that represented transient
routines display two data elements
in this field. The first subfield
has a length of one byte and shows
the number of requests if the
transient routine was overlaid. The
last three bytes of the Q/TTR field
contain the relative direct access
device address for the associated
supervisor routine in the form TTR.

WI'-LNK hhhhhhhh

This field displays information
pertaining to wait counts and request
block linkages. In the case of a
transient svC, if this field contains
x"'FF*', either the routine represented
by the SVRB is currently being brought
into the transient area, or this
routine has been displaced in the
transient area by a routine requested
by a higher priority task. To tell
what has happened, compare the APSW
and NM field contents as described
under NM below. This field is divided
into two subfields, one with a length
of one byte and the other with a
length of three bytes. These
subfields show the following:

byte 0

The number of requests that were
" pending at the time the dump was taken
(wait count).

byte 1-3

The address of the next request block
on the RB queue. In the last RB on
the queue, this field contains the
address of the task control block
(TCB) .

NM ccccccec

The eight character name of the load
module represented by the request
block being displayed with a possible
exception for transient SVRBs.

If byte 0 of the WT-LNK field contains
x"FF', it is possible that the module
represented by this SVRB has been
overlaid in the transient area by a
module requested by a higher priority
task. Compare the APSW field,
(providing it contains the four
low-order bytes of a module name) with

~the last four characters (the

hexadecimal should be translated to
EBCDIC) of the module name in the NM
field. No match indicates the user of
the transient area has been pre-empted
by a higher priority task. NM
therefore represents the module
currently in the transient area, not
the module represented by this SVRB.

If a match results, NM correctly
identifies the module name requested
by this SVRB.

EPA hhhhhh

The address of the entry point of the
module named in the NM field of this
RB display.

STA hhhhhh

The starting address of the module
identified in the NM field of this
RB's display.

LN hhhhhh

ATR1

84 Programmer's Guide to Debugging (Release 21)

The length, in bytes, of the load
module that is represented by this
request block.

hh
This one byte field displays the
attributes of the described module.
These attributes are taken from the
contents directory entry associated
with the module. The meanings of the
attribute flag settings are given
below:
1... Bit 0 set indicates that
the module was resident
in the link pack area.
Bit 1 set indicates that
at the time the dump was
taken, the module
represented by this
request block was in the
process of being
fetched.
Bit 2 set indicates that
the module was
reenterable.
Bit 3 set indicates that
the module was serially
reusable. S

..

R

cenel woen

~ro

1... Bit 4 set indicates that
the module could not
have been reused. This
flag setting is not
applicable if either bit
2 or 3 is set.)
Bit 5 set indicates that
the contents directory
entry associated with
this module reflects the
use of an alias name.
This information applies
only to minor CDEs.

Bit 6 set indicates that
the module was in the
job pack area.

Bit 7 set indicates that
the module was
considered not
only-loadable.

ER X XY

«l..

.- 1.

00-01

- e

MVT MAIN STORAGE INFORMATION: Each task
operating under the MVT option of the
operating system was dynamically assigned a

region of main storage that consisted of

one or more 2K-byte subpool areas. To keep
track of main storage allocations, the MVT
supervisor maintained a partition queue
associated with each region. Composed of
partition queue elements (PQEs), and
residing in the system queue area, this
partition queue was connected to the TCBs
for each task in a job step through a dummy
partition queue element (DPQE).

Information on the areas of main storage
allocated to each task, is presented to the
user in a separate portion of each task's
dump listing headed "MAIN STORAGE." This
main storage information is formatted as
shown below:

D-PQE hhhhhhhh
The address minus eight bytes of the
dummy partition queue element (DPQE-8)
connecting the partition queue to this
task's TCB.

FIRST hhhhhhhh
The starting address of the first
partition queue element (PQE) on this
region”s partition queue.

LAST hhhhhhhh
The starting address of the last PQE
on the partition queue.

PQE hhhhhh
The starting address of one of the
partition queue elements on the
partition queue bounded by the
addresses given on the line above.

FFB hhhhhhhh
The starting address of the first free
block queue element (FBQE) on the free
block queue associated with this PQE.

IMDPRDMP Output Formatting:

NPQ

PPQ

TCB

F1G

If no FBQEs exist, this field contains
the address of the PQE being displayed

hhhhhhhh

The starting address of the last free
block queue element (FBQE) on the free
block queue associated with this PQE.
If no FBQEs exist, this field shows
the starting address of this PQE.

hhhhhhhh

The starting address of the next
partition queue element on the
partition queue. If the PQE being
displayed was the last PQE on the
queue, this field contains zeros.

hhhhhhhh

The starting address of the partition
queue element on the partition queue
that preceded this PQE. 1If this PQE
was the first on the queue, this field
contains zeros.

hhhhhhhh
The starting address of the TCB of the
job step to which the described region
is assigned. If this field contains
zeros, the indication is that the area
of main storage was obtained from
unassigned free space.

hhhhhhhh

The size of the region being
described. This number is a multiple
of 2K (2048).

hhhhhhhh
The starting address of the region
being described by this PQE.

hhh

The FLG field shows the settings of
several PQE flags whose meanings are
given below:

Xeas Bit 0 indicates region
ownership. The meanings
of the settings are:
indicates that the space
described by this PQE
was owned by the
associated task.
indicates that the space
described by this PQE
was borrowed.

The setting of bit 1 is
meaningful only if bit 0
was not set. If this
bit is set and bit 0 is
not set, the indication
is that the region had
been rolled out.

Bit 2 set indicates that
the region described by
this PQE was borrowed by
another task.

Bits 3 through 7 are
resexrved for future use.

LI

0...

1...

elee

S

weeX XXXX

MVT -- Load List 85

MVT LOAD LIST FORMATTING: A load list was
maintained by the dumped system's
supervisor in order to keep track of the
load modules that were in main storage and
the area of main storage each occupied.

The load list maintained by a system
operating under the MVT option of the
operating system contained a series of load
list elements (LLEs), each of which was
associated with a particular load module
through the use of a control block called a
contents directory entry (CDE). A
formatted listing of the dumped system's
MVT load list appears as follows:

CDE hhhhhh
The starting address of the contents
directory entry associated with this
load list item.

NM cccccecccce
The eight-character name of the entry
point to the load module represented
by this entry.

USE hh
The count of the number of uses
(through the ATTACH, LINK and XCTL
macro instructions) of the load
module, and the number of times a LOAD
macro instruction was issued for the
module.

RESP hh
The responsibility count contained in
the load list entry associated with
the load module. This count indicates
the number of requests made by the
LOAD macro instruction for the
indicated load module. This count was
decremented by one for each occurrence
of the DELETE macro instruction.

ATR1 hh
The attributes of the load module
described in this load list entry.
These attributes are taken from the
contents directory entry associated
with the module. The meanings of the
attribute flag settings are given
below:
l... Bit 0 set indicates that
the module was resident
in the link pack area.
Bit 1 set indicates that
at the time the dump was
taken, the load module
represented by this load
list element was in the
process of being loaded.
Bit 2 set indicates that
the load module was
reenterable.
Bit 3 set indicates that
the load module was
serially reusable.

I

el

Ov."l - .. e

Bit 4 set indicates that
the load module could
not have been reused.
This flag setting is not
applicable if either bit
2 or-3 is set.

Bit 5 set indicates that
the contents directory
entry associated with
this load module
reflects the use of an
alias name. If this bit
is set, this line of the
load list display
reflects information
taken from a minor CDE.

- e e e 1'.'

weew alea

esas eela Bit 6 set indicates that
the load module was in
the job pack area.

ecee eesl Bit 7 set indicates that

the load module was
considered not
only-loadable.

EPA hhhhhh
The address of the entry point of the
load module named in the NM field of
this load list display line.

STA hhhhhh
This field contains the starting
address of the load module identified
in the NM field of this load list
display line.

LN hhhhhh
The LN field supplies the user with
the length, in bytes, of the load
module represented by this load list
entry (LLE).

MVT_JOB PACK QUEUE FORMAT: A job pack area
control queue (JPACQ) exists for each job
step in the dumped system that used a
program not in the link pack area. The job
pack queue, like the link pack area, is
made up of contents directory entries
(CDEs). This area describes routines in a
job step region that were brought into main
storage by contents supervision routines to
perform a task in the job step. The
IMDPRDMP program displays the contents of
the dumped MVT system's job pack queue as
follows:

CDE hhhhhh :
The starting address of the contents
directory entry associated with this
job pack queue element.

NM cccceccec :
The eight-character name of the entry
point to the load module represented
by this entry.

86 Programmer's Guide to Debugging (Release 21)

USE hh

RESP

ATR1

The count of the number of uses
(through the ATTACH, LINK and XCTL
macro instructions) of the load
module, and the number of times a LOAD
macro instruction was issued for the
module.

NA

This responsibility count field is
flagged 'NA' to indicate that the
information is not applicable to
modules displayed in the job pack
queue.

hh
The attributes of the load module
described in this job pack queue
entry. These attributes are taken
from the contents directory entry
associated with the module. The
meanings of the attribute flag
settings are:
lene ceee Bit 0 set indicates that
the module was resident
in the link pack area.
elee eaee Bit 1 set indicates that
at the time the dump was
taken, the load module
represented by this job
pack queue entry was in
the process of being
loaded.
eele weee Bit 2 set indicates that
the load module was
reenterable.
enal coan Bit 3 set indicates that
the load module was
serially reusable.
eens leae Bit 4 set indicates that
the load module could
not have been reused.
This flag setting is not
applicable if either bit
2 or 3 is set.
esen olen Bit 5 set indicates that
the contents directory
entry associated with
this load module
reflects the use of an
alias name. If this bit
is set, this line of the
job pack queue display
reflects information
taken from a minor CDE.
eese sole Bit 6 set indicates that
the locad module was in
the job pack queue area.
eeue eeal Bit 7 set indicates that
the locad module was
considered not
only-loadable.

EPA hhhhhh

The address of the entry point of the
load module named in the NM field of
this job pack queue entry display
line.

STA hhhhhh
This field contains the starting
address of the load module identified
in the NM field of this job pack queue
entry display line.

LN hhhhhh
The LN field supplies the user with
the length, in bytes, of the load
module represented by this job pack
queue entry.

MVT_DATA EXTENT BLOCK (DEB) FORMATTING:
Data extent blocks (DEBs), describing a
data set's external storage requirements,
were queued to those task control blocks
(TCBs) that represented tasks requiring
auxiliary storage input/ocutput processing.
External storage information, taken from
each DEB, is formatted as shown below:

DEB hhhhhh
The starting address of the basic
section of the DEB being displayed.

APPENDAGES
The word "appendages" informs the user
that the five named fields on this
line contain information taken from
the appendage vector table preceding
the DEB being displayed. The named
fields appearing on the rest of this
line are:

END OF EXT hhhhhh
The entry point of the end-of-extent
appendage routine.

SIO hhhhhh
The entry point of the start I/0
appendage routine.

PCI hhhhhh
The entry point of the
program-controlled-interruption
appendage routine.

CH END hhhhhh
The entry point of the channel-end
appendage routine.

AB END hhhhhh
The entry point of the abnormal-end
appendage routine.

PFX hhhhhhhh hhhhhhhh hhhhhhhh
The second line of a DEB display
contains information taken from the
prefix section of the DEB being
displayed. The area is subdivided as
follows:

byte 0
The first byte of the prefix area
contain the contents of the I/0
support work area. This area is used
only by DEBs dealing with direct
access storage devices.

IMDPRDMP Output Formatting: MVT -- DEBs 87

bytes 1-7

b

b

b

TCB

b

b

NDEB

b

b

88

The next seven bytes of the DEB prefix
section are used by DEBs associated
with direct access storage device
functions. This subfield displays the
data set control block's (DSCB)
address used by I/O support. The
address is expressed in the following
format:

bytes 1 and 2 the bin (cell) number.
bytes 3 and 4 the cylinder address.
bytes 5 and 6 <the track address.

byte 7 the record number.
ytes 8-11

The third word of the PFX field
contains the data control block (DCB)
modification mask that was used by I/O
support.

yte 12

The length of the DEB in doublewords .
ytes 13-15

The remainder of the DEB prefix
section is reserved for future use.
hhhhhh

This field marks the beginning of the
basic section of the data extent
block. The TCB field is divided into
two subfields as follows:
yte 0

The number of subroutines for which a
LOAD macro instruction was issued
during the execution of the OPEN
executor routines.

ytes 1-3

The starting address of the task
control block to which this DEB was
enqueued.

hhhhhh

The NDEB field is also used to display
two data elements. It is subfielded
as follows:
yte 0

The overall length of a data extent
block includes the length of a
variable length access method
dependent section. The first byte of
the NDEB field, expresses the length
of the access method dependent section
in bytes. If the access method was
BDAM, this indicator is expressed as a
number of fullwords.
ytes 1-3

The last portion of the NDEB field
displays the starting address of the
basic section of the next DEB on the
task's queue. If this DEB was the
last on the queue, the contents of
this field are the starting address of
the TCB that enqueued this DEB.

Programmer's Guide to Debugging (Release 21)

ASYN hhhhhhhh

This field contains fata set status
flags and the address of the '
associated IRB. This field is used as
follows:

byte 0

The first byte of the ASYN field
contains data set status flags. These
flags have the following meanings:

Bits 0 and 1 indicate
the data set's
disposition. The
possible settings are:
This setting indicates
that the disposition was
OLD.

This setting indicates
that the disposition of
the data set was MOD
(modify).

This setting indicates
that the disposition was
NEW.

Bit 2 set indicates that
an end-of-volume (EOQOV)
or end-of-file (EOF)
condition had been
encountered.

The setting of bit 3 has
one of two meanings
depending upon the
external storage medium.
For disk this indicator
reflects a release of
unused external storage.
For tape, the meaning of
this indicator is that
an emulator tape with
second generation format
was being used.

Bit 4 set is a data
control block (DCB)
modification indicator.
Bit 5 set has two
meanings, depending upon
the auxiliary storage
recording medium. For
disk, the setting of bit
S indicates that a split
cylinder was
encountered. For tape,
this flag indicates that
an emulator tape with
possible mixed parity
records was used.

Bit 6 set indicates the
use of nonstandard
labels.

Bit 7 set indicates that
reduced error recovery
procedures were used on
magnetic tapes
containing the data set
represented by this DEB.

XXee osee

0lee cowe

10-- "eew

110- EX R Y

sele wena

veel aen

evee laee

samee Ql..

cese sala

seee .t.l

bytes 1-3
The last portion of the ASYN field
shows the starting address of the IRB
that was associated with asynchronous
appendage exit scheduling.

SPRG hhhhhhhh
This field contains information on I/0O
processing methods and the system
PURGE routine. The usage of this
field is as follows:

byte 0

The first byte of this field contain
flags that indicate the method of
input/output processing and the
disposition of the data set that was
to have been performed when an end-of-
volume condition occurred. These flag
settings are:

Jece ceeae Bit 0 was set by ABEND.
The setting of this bit
indicates that the data
set associated with this
DEB was a SYSABEND or
SYSUDUWMP data set.

eOuae wuea Bit 1 is always zero.

eeXX eeee Bits 2 and 3 show the
end-of-volume
disposition procedure.
The values for this flag
are:

ee01l wuee REREAD

well ... LEAVE

»eee XXXX The last half of this
byte contains flags that
indicate the type of
input/output processing
that was performed on
the data set represented
by this DEB. The values
for this flag are:

«ees 0000 INPUT

eees 1111 OUTPUT

...« 0011 INOUT

eeee 0111 OUTIN

eees 0001 RDBACK

eews 0100 UPDAT

byte 1
The quiesce count. The byte is
associated with the system PURGE
routines (SVC 16) and indicates the
number of auxiliary storage devices
that were executing the user's channel
programs.

bytes 2-3
Reserved for future use.

UPRG hhhhhhhh

The UPRG field contains extent
information and data used by the
user's purge routines. This field is
divided into the following two
subfields:

byte 0 .
The number of extents that were
specified in the DSCBs associated with
this DEB.

bytes 1-3
The address of the first input/output
block (IOB) in the user's purge chain.

hhhhhhhh

Task priority and supervisor purge
information are contained in this
field. This field is formatted as
follows:

PLST

byte 0
The priority of the task under which
this DEB was enqueued.

bytes 1-3
The starting address of a parameter
list that was used to locate the purge
event control block (ECB) for a
supervisor purge request.

DCB hhhhhhhh
The DCB field contains three data
elements. These are displayed in the
format given below:

byte 0

XXXX eeew The storage protection
key that was associated
with the task under
which this DEB was

enqueued.

aese 1111 A hexadecimal "F' in
bits 4 through 7 of this
field identify this
control block as a data
extent block (DEB).
bytes 1-3

The starting address of the data
control block (DCB) that was
associated with this DEB.

AVT hhhhhhhh
The AVT field displays two DEB data
elements and is subfielded as follows:

byte 0
The DEB extent scale that is used to
determine the size of the device

dependent section of this DEB. For
direct access devices, a 4 is
displayed in this subfield. For a

nondirect access device or a
communication device, a 2 is
displayed.

bytes 1-3
In most cases the last portion of the
AVT field shows the starting address
of the appendage vector table
preceding this DEB. This table of
appendage routine addresses appears on
the first line of this DEB's display.

IMDPRDMP Output Formatting: MVT -- DEBs 89

OP-UCB hhhhhhh

" The contents of this field have
‘meaning only when the DEB being
displayed describes a data set that
was assigned to a unit record or
magnetic tape device. This
information is formatted from the
device dependent section of the DEB.
The OP-UCB field is subfielded as
follows:

byte 0
This first subfield is applicable only
to data sets assigned to magnetic tape
devices and shows the SET MODE
operation code. For a data set that
was assigned to a unit record device,
this subfield is reserved.

bytes 1-3
The starting address of the unit
control block (UCB) associated with
the data set described by the DEB
being displayed.

The following four fields are present only

for data sets assigned to the IBM 3525 Card
Punch for multi-function. The information

is formatted as shown below:

UCB hhhhhhhh

byte 0
The device modifier field (not used
for the 3525).

bytes 1~3
The starting address of the unit
control block (UCB) associated with
the data set described by the DEB
being displayed.

RDRDCB hhhhhhhh
The starting address of the data
control block (DCB) for the read
associated data set.

PCHDCB hhhhhhhh
The starting address of the data
control block (DCB) for the punch
associated data set.

WTRDCB hhhhhhhh
The starting address of the data
control block (DCB) for the print
associated data set.

The final portion of a DEB display shows
information pertaining to a data set that
was assigned to a direct access device.
This information, taken from the DEB's
device dependent section, is arranged in
columnar format with a line for each
extent. The information is formatted as
shown below:

FM-UCB hhhhhhhh
The first column displays two data
elements and is formatted as follows:

byte 0
The device modifier showing the file
mask.

bytes 1-3
The starting address of the unit
control block (UCB) that was
associated with the data extent.

START hhhhhhhh
The address of the beginning of the
direct access device extent. The
first four characters represent the
cylinder address and the last four
characters represent the track
address.

END hhhhhhhh
The address of the end of the data
extent. Cylinder and track references
are formatted as in the extent
beginning address, described above.

TRKS hhhh
The number of direct access tracks
bounded by the starting and ending
addresses shown in the previous two
columns.

MVT_TASK INPUT/OUTPUT TABLE (TIOT)
FORMATTING: A task input output table
(TIOT) was constructed for each task in the
dumped system by MVT job management
routines. Residing in the system queue
area, this table contained primary pointers
to control blocks used by I1I/0 support
routines. As the functions of several TIOT
fields were dependent upon the state of
associated external storage devices,
multiple definitions may apply. The TIOT
that was constructed in an MVT system is
formatted as shown.

TIOT hhhhhh
The starting address of the task
input/output table being displayed.

JOB cccccccee
The eight-character name of the job
for which this TIOT was constructed.

STEP cccccecce
The eight-character name specified in
the label field of the EXEC JCL
statement associated with this job
step.

PROC ccccecccce
If the job step for which this TIOT
was constructed was invoked from a
cataloged procedure, the procedure
name, as contained in the EXEC JCL
statement, is displayed in this field.

Each data set associated with the indicated
task is represented by a separate DD entry
that is included in the TIOT. Each TIOT
entry is displayed on a separate line in

90 Programmer's Guide to Debugging (Release 21)

columnar format. The use and meaning of
each column is given below:

OFFSET hhhh
The offset of this DD entry from the
beginning of the TIOT in hexadecimal.

LN-STA hhhhhhhh
Four bytes of length and status
information, described below:

byte 0
The total length (including all device
entries) in bytes of the DD entry
being displayed on this line.

byte 1
Status byte A, one of three status
bytes in a TIOT entry. The meanings
of the status byte settings are:

KXeee oXeoo Bits 0 and 5 indicate
the tape label
processing that was to
have been performed.
The meanings of the
settings are:

Oeee w0a. Nonlabeled tape or an
indication to bypass
-label processing.

Oeee 1.. Standard labels and
standard user labels.

leee 0. Nonstandard labels.

edlee caee The setting of status
bit 1 has two meanings,
depending upon the
processing phase that
had been reached at the
time the system was
dumped. During
allocation processing,
the setting of this bit
indicates that this
entry represents a split
cylinder primary space
allocation DD. If the
dump was taken during
step termination
processing, the setting
of this bit indicated
that no unallocation of
space was necessary.

eele eee.. The setting of status
bit 2 works under the
same philosophy as
status bit 1. During
allocation processing,
the setting of this bit
indicates that this
entry represents a split
cylinder secondary space
allocation DD. If the
dump was taken during
step termination
processing, the
indication was one of
rewinding with no
unload.

ool waen

caee laae

R

eems weal

byte 2

Bit 3 set indicates that
this DD entry represents
a JOBLIB.

Bit 4 set indicates that
direct access device
space management was
deemed necessary.

The setting of bit 6
specifies that the tape
volume was to have been
rewound and unloaded.
The setting of bit 7
specifies that the tape
volume was to have been
rewound.

The third byte of this column has
meaning only during the allocation
phase. This disrlays the number of
devices that were requested by the
data set represented by the TIOT entry
displayed on this line.

byte 3

The last byte of the LN-STA field
displays a TIOT field that had meaning
at two points during the processing of

this task.

During the allocation

process, this field contained a link
to the appropriate prime split, unit
affinity, volume affinity or
suballocate TIOT entry. After CLOSE
processing, this byte was used thusly:

lewo woae

- XXX XXXX

DDNAME cccccccce

The setting of bit 0
indicates that the data
set represented by this
DD entry was a SYSOUT
data set that contained
data.

Bits 1 through 7 are
reserved for future use.

The eight-character DD name associated
with the TIOT entry being displayed.

TTR-STC hhhhhhhh

The first three bytes of this column
display the relative track address
(ITR) of the job file control block
(JFCB) associated with this entry.

STB-UCB hhhhhhhh

The last column in a TIOT display
contains information taken from the
one-word device entries that are
appended to each TIOT entry. One TIOT
-device entry exists for each allocated
device. This display field shows this
information in the following format:

IMDPRDMP Output Formatting: MVT -- TIOT 91

byte 0
Status byte B. The status bits have
the following meanings:
Bit 0 set indicates that
the data set associated
with this line of the
TIOT display was present
on the device
represented by this TIOT
device entry.
Bit 1 set indicates that
the data set associated
with this line of the
TIOT display would have
used the device
represented by this TIOT
device entry.
Bit 2 set indicates that
the device represented
by this device entry
violated separation.
Bit 3 set indicates that
a volume serial number
was present.
Bit 4 set indicates that
a setup message was
required.
Bit 5 indicates the
device disposition that
would have taken place
had the dumped system
been allowed to continue
processing this task.
The settings for this
bit are:
Indicates that if the
volume was required to
be unloaded, the volume
was to have been
deleted.
Indicates that if the
volume was requires to
be unloaded, the
unloaded volume was to
have been retained.
Bit 6 indicates that an
unload requirement had
been made.
Bit 7 set indicates that
a load or label
verification requirement
had been made.

1'.’.‘. - .. e

.1:-- CEX Y

- .1"

ewae

.Qﬂl LA

l...

eXe o

«w ue

.0..

eeee wlaee

.. 1.

eenl

©®ae

bytes 1-3
The address of the UCB that was used
in all cases except when the device
was a 2321 data cell drive. For a
2321, this address is that of the
description in the UCB of the cell in
the bin.

MFT Control Block Formatting

The formats described below are repeated
for each requested task that is printed. A
sample of the major system control blocks,
as formatted from an MFT dump, is shown in
Figure 23.

MFT TASK CONTROL BLOCK {(TCB) FORMATTING:
The task control block (TCB) contains
information pertaining to the specific task
identified in the heading lines at the top
of the dump listing page. It is formatted
as follows:

TCB hhhhhh
The address of the task control block
being displayed is given in this first
display field.

RBP hhhhhhhh .
The starting address of the request
block (RB) that was currently ’
associated with the task represented
by this TCB.

PIE hhhhhhhh
The address of the first program
interrupt element (PIE) enqueued by
this TCB.

DEB hhhhhhhh
The address of the beginning of the
data extent block (DEB) queue that was
associated with this task.
Information on the contents of each
DEB in the queue is given in a
separate portion of this MFT task's
dump listing.

TIO hhhhhhhh
The starting address of the task
input/output table (TIOT) that was
constructed during device allocation
for the task represented by this TCB.
The contents of this table are
displayed in a later portion of this
task's display.

CMP hhhhhhhh
This word contains ABEND indicators
and user and system completion codes
as follows:

byte 0

lece cwos Bit 0 set indicates that
a dump had been
requested.
Bit 1 is reserved for
future use but is set
for MVT compatibility.
Bit 2 set indicates that
a portion of the problem
program's main storage
area was overlaid by a
second load of ABEND.
A first load overlay is
indicated by the setting
of bit 14 of the PK-FLG
field. :
Bit 3 is reserved for
future use.
Bit 4 set indicates that
a double ABEND occurred
in the dumped task.

dlee cena

.el.

seeeX ocese

evee Laae

92 Programmer's Guide to Debugging (Release 21)

butizenzogd Indin0g JWAIIANI

€6 €O& -- LIW

MFT DUMP LISTING MJIOULE IMDSADMP DATE 11/12/70 TIME 00450 PAGE 0011
Jusd J0B5 STEP GO PROCSTEP STEPL
H & CURRENT TASK Ak

TC3 009148 R8P 00009228 PIE 00000000 DEB 00071634 TIO 20071728 CMP QCO00C0O0C TRN €OCCCOCO
MSS 00009210 PK-FLG 10G00008 FLG 0C0001E3 LLS 000712F8 JLB C000000C JST 006CsS148
RG 10-1 00071780 0C02A910 5002A826 9BC71280 4002A896 5CO007FD2 CCCOCOGe 000C011A
RG 2-9 30000000 0002C304 0007176C 0000004C 00009148 000717F8 0CC71778 000C0C00
FSA 08071730 cs 00009348 TME 00009228 PIg EQOOQ19AB8 NTC 00000CCC CTC 0000G0GO
LTe GGGUG0D0 IQE 00000000 EC8 0CC0000C XTCB 00000000 LP/FL E300000C RES 00000000
STA CGudoLv0 T 00020948 USR 00003060 CAR 000C0000 RES C€0000COC JSCB 00021284

ALTIVE RBS
PRo 02A800 nM GO S2/STAB 0C2C00CO USE/EP 0002A820 PSW FF150G80 9002AE&7A Q 00000000 WT—LNK 00C0S148

IR3 009228 N4 $GKJI ARY SZ/STAB8 O0COE404C USE/EP 0002A87E PSW FF150193 8002A8AA Q CCcCs2¢s WT-LNK CCC24A800
RG 10-1 FA00C048 00009228 00000000 0002C304 J007176C 000C0C4C 0G00S5148 CO0717F8
kG 2-9 00071778 €00006000 00071780 0G02A910 5002A826 0C02AS10 13C0G60CC 400122EA
EXTSA 09000000 00071280 00€09228 00009148

P/P BOUNDRIES

HIER 0 0002A3CGv TO 00071800 HIER 1 00C000GO TO 00000000

LGAD LIST

LRB 071300 NM DUMAYGL SZ ccoo8s USE/ZEP 01071310
LPRB 071390 NM RETURNS SZ C000A8 USE/EP Cl071380

JU3 PACK QUEUE

NOTHING IN JOB PACK

DE3 07163% APPENDAGES END CF EXT 0229C0 SI0 O03FF4 PCI Q0 3FF4 CH END CC3FF4 AB END OO03FF4
PFX 0GJCGU00 G5C00005 00010BEO 11000000
TLg J4009148 NDEB 1007150C ASYN F8CGC0000 SPRG 00002000 UPRG 0107144C PLST E3CC0OCO0 CCB 1F02A8BO
AVT 04071610
FM-UCB START END TRKS
5800156C 000200063 $0020C03 0001

DEB 07150C APPENDAGES ENC OF EXT 0138F0 SIG 013922 PCI 01 36F8 CH END 013864 AB END (C13922
PFX 080GCUVD 05C00007 C00007EO 0F000000
TC3 0CU0SLl48 NDEB 0CO00000 ASYN A80000GO SPRG U0 000000 UPRG 010C0CCC PLST E3C€C0C00 CCB OF071778
AVT 040136C4
FM-UC3 START END | TRKS
530015:C 00C40003 0CC50009 0011

TIOT 071728 JOB JOBS STEP GO PROC STEPL
OFFSET LN=-STa DDNAME TTR-STC STe~-UCB
0018 140401G0 PGM=%,0D 007D0CCO 800015EC
v02C 14040100 DUMMY 007F0300 8000156C

Figure 23. Sample of MFT Control Block Format

CMP hhhhhhhh -- byte 0 -- (continued)

ecse wlee Bit 5 set indicates that
a dump message (WTO) was
to have been issued.

Bit 6 set indicates that
the dumped system's
scheduler was to have
printed an indicative
dump.

Bit 7 set indicates that
an ABEND message, to be
printed by the ABDUMP
routine, was provided.

.ol

eves aesl

bytes 1-3

The first 12 bits contain a system
completion code. These codes and
their meanings are explained in the
publication IBM System/360 Operating
‘System: Messages and Codes, GC28-6631
under the heading "System Completion
Messages." A user completion code is
contained in the last 12 bits.

TRN hhhhhhhh

Contains flags as follows:

byte 0

decimal simulator
programs were being used
on a System/360 model 91
machine.

Bit 1 set indicates that
checkpoints were not
taken for this step.

Bit 2 set indicates that
the TCB being displayed
was associated with
either a graphics
foreground job or the
graphic job processor.
Bit 3 set indicates that
the TCB being displayed
was associated with a
7094 emulator task that
was being run on a
System/360 model 85
machine.

Bits 4 through 7 are
reserved for future use.

S

.el.

»eoe

eeel aeen

eoe s XXXX

bytes 1-3

Reserved.

Mss hhhhhhhh

Main storage supervision as follows:

byte 0

This byte is reserved for future use.

bytes 1-3

This subfield displays one of two
addresses. If the TCB being displayed
represents a job step, this subfield
contains the address of the boundary
box. If this TCB represents a

Bit 0 set indicates that

subtask, this field displays the
address of the gotten queue element

(GQE) .

GQEs are preset only if the

dumped system issued a GETMAIN macro
instruction for the space.

PK-FLG hhhhhhhh

The storage protection key and a
series of flags associated with the

task being displayed.
divided into several subfields.

are:

byte 0
XXXX ewewe

~ees 0000

byte 1

leca weas

elev waee

eele wann

ceel wase

cean la..

eese alaa

.el.

cese weel

byte 2

leoai eeae

94 Programmer's Guide to Debugging (Release 21)

This field is
These

The storage protection
key associated with the
task represented by this
TCB.

Always contain zeros.

Bit 0 set indicates that
an abnormal termination
was in progress at the
time the dump was taken.
Bit 1 set indicates that
a normal termination was
in progress at the time
the dump was taken.

Bit 2 set indicates that
ABEND was initiated by
the resident abnormal
termination routine.

Bit 3 set indicates that
recursion through ABEND
was permitted.

Bit 4 set indicates that
the graphics abnormal
termination routine had
been entered for the
task represented by the
TCB being displayed.

Bit 5 set indicates that
the CLOSE routine was
initiated by ABEND.

Bit 6 set indicates that
a portion of the problem
program's main storage
area was overlaid in
order to process ABEND
routines. (See also bit
2 of the CMP display
field.)

Bit 7 set indicates that
the queueing of
asynchronous exits for
the task represented by
the TCB being displayed,
was prohibited. =

Bit 0 set indicates that
ABEND was prohibited for
this task. The setting
of this bit has meaning
only if the TCB being
displayed represents a
system task.

eXXe wwXe Bits 1, 2 and 6 are
resexrved for future use.

wonl wewe Bit 3 set indicates that
the task represented by
the TCB being displayed
had a forced completion
imposed upon it. Other
tasks in the dumped
system could not have
been performed until
this task had been
completed.

woes leae Bit 4 set indicates that
the job step had a
forced completion
imposed upon it. Other
tasks in the dumped
system could not have
been performed until
this job step had been
completed.

eese eles Bit 5 indicates that
dump processing had been
initiated in ABEND.

wees «eesl Bit 7 set indicates that
the task represented by
the TCB being displayed
was a member of a time
sliced group.

byte 3

XXeX eeeX Bits 0, 1, 3 and 7 are
reserved for future use.

eele ceae Bit 2 is an exit
effector indicator. The
setting of this bit
indicates that at the
time the dump was taken,
system error routines
were operating on this
task.

D I Bit 4 set indicates that
floating point registers
existed in the dumped

_ system.

seen olae Bit 5 set indicates that
at the time the dump was
taken, job scheduler
routines were

: processing.

eemwe =l Bit 6 set indicates that
at the time the dump was
taken, an XCTL routine
was changing the storage
protection key in the
PSW from zero to the one
used by the problem
program.

FLG hhhhhhhh

This field displays a further series
of flags and certain priority
indicators. This word is formatted as
follows:

byte 0

Reserved for future use.

byte 1

XXXX XXXe Bits 0 through 6 are
reserved for future use.

esae eael Bit 7 is the primary
non-dispatchability
indicator. Setting of
this bit indicates that
one or more of the
secondary
non—-dispatchability bits
(bytes 1-3 of the DAR
field) was set at the
time the dump was taken.
If this bit is set, the
task represented by this
TCB was considered to be
non-dispatchable.

byte 2
This byte contains the number of
resources for which the task
represented by this TCB was enqueued.

byte 3
This byte displays the dispatching
priority of the task represented by
this TCB.

LLS hhhhhhhh
The address of the last request block
(RB) that was created by the loading
of a module that used the LOAD macro
instruction.

JLB hhhhhhhh
The address of the data control block
(DCB) representing the JOBLIB
associated with this task.

JST hhhhhhhh
Job step information. The contents of
this field have meaning only when the
dumped MFT system was operating with
the subtasking option. If this was
the case, this field shows the address
of the first TCB for a job step.

RG 0-7 and RG 8-15
The register save area of the TCB
being displayed. This pointer is
useful in locating the entry points of
first routines and in tracing the save
area chains.

FSA hhhhhhhh
This field displays two data elements
and is formatted as follows:

byte 0
The TCB identification code.

byte 1-3

The address of the first problem
program save area.

IMDPRDMP Output Formatting: MFT -- TCB 95

TCB hhhhhhhh

The address of the TCB that had the
next lowest priority on the ready
queue at the time the dump was taken.

TME hhhhhhhh

The address of the timer element.

PIB hhhhhhhh

The PIB field displays two items of
information in the following format:

byte 0

This byte contains flags that identify
the partition attributes. These flags
are:
XKoo Bits 0 and 1 indicate
the function of the
partition. The possible
functions are given
below:
System task partition.
Reader partition.
Writer partition.
Processing program
partition.
Bit 2 gives the
partition size. The
meanings of the possible
settings are:
Small partition.
Large partition.
Bit 3 set indicates that
CPU timing was stopped
by FINCH until a
transient routine was
loaded.
Bits 4 and S5 are
reserved for future use.
Bit 6 set indicates that
the partition associated
with this task was a
writer partition. This
bit is used by ABEND,
transient writers and
resident writers.
Bit 7 set indicates that
at the time the system
was dumped, the
scheduler was in
control. Had this
task's TIOT been written
to SYS1.SYSJOBQE, this
bit would not be set.

00..
0l1..
10..
11..

o eXe

«e0.
ooln
- o~-1

XXe o

.ll.

.o 1.

bytes 1-3

The last portion of the PIB field
shows the address of the partition
information block (PIB) that was
associated with this task's partition.

NTC hhhhhhhh

The address of the previous TCB that
existed on the originating task's
queue of subtask TCBs (sistexr). If
the TCB was the first on the queue,
this field contains zeros. The
contents of the NTC field have meaning

only if the dumped system was
operating with the MFT subtasking
option.

OTC hhhhhhhh

The OTC field is applicable only when
the dumped system was operating under
MFT subtasking option. If this was
the case, this field displays the
address of the TCB representing the
originating task (mother).

LTC hhhhhhhh

The address of the last TCB that
existed on the originating task's
queue of subtask TCBs (daughter) at
the time the dump was taken. If this
TCB was the last on the queue, this
field contains zeros. This field is
applicable only if the dumped system
was operating under the MFT subtasking
option.

IQE hhhhhhhh

The address of the interruption queue
element (IQE) that was used in
scheduling the ETXR routine on the
originating task. The contents of
this field have no meaning unless the
dumped system was operating under the
MFT subtasking option.

ECB hhhhhhhh

XTCB

If the dumped system was operating
under the MFT subtasking option, this
field displays the address of the
event control block (ECB) that would
have been posted by the supervisor's
task termination routines had either
normal or abnormal task termination
been allowed to occur.

hhhhhhhh
The XTCB field in this TCB display is
resexrved for future use.

LP/FL hh hhhhhh

Priority and dump information on tasks
that were operating under the
subtasking option of MFT. The LP/FL
field displays its data as follows:

byte 0

The limit priority of the task
represented by the TCB being
displayed.

byte 1

96 Programmer's Guide to Debugging (Release 21)

Dump information flags.

XXXX Xeoe Bits 0 through 4 are
reserved for future use.
eeees olaa Bit 5 set indicates that

the task represented by
the TCB being displayed
was the top task in the
tree of abnormally
terminating tasks.

caen oela Bit 6 set indicates that
an abnormal termination
dump had been completed.

eses =s=1 Bit 7 set indicates that
the task represented by
this TCB was enqueued on
a dump data set.

byte 2

This byte contains more dump
information flag bits. The meanings
of these bits are:

laove cone Bit 0 set indicates that
at the time the system
was dumped, an OPEN was
in process for the dump
data set.

« XXX XeaX Bits 1 through 4 and bit
7 are reserved for
future use.

eoen olee Bit 5 set indicates that
the dump data set was
open for the job step.

cses eseXa Bit 6 indicates the type
of dump data set. The
possible setting are:

sace oo0e SYSUDUMP data set.

P 1 SYSABEND data set.

byte 3

This last byte of the LP/FL field
shows abnormal termination flags as
follows:

XXX+ XoXX Bits 0, 1, 2, 4, 6 and 7
are reserved for future
use.

eeel wean Bit 3 set indicates that
a valid message
recursion occurred in
ABEND.

eves olae Bit 5 set indicates that
no abnormal termination
dumps could be provided
within the job step
associated with the TCB
being displayed.

RES hhhhhhhh

This field is reserved for future use.

STA hhhhhhhh

Internal STAE routine flags and the
address of the STAE control block that
was in effect at the time the dump was
taken.

TCT hhhhhhhh

Information pertaining to the dumped
system’s timing control table (TCT).
The TCT field is divided into the
following two subfields:

byte 0

This byte is reserved for future use.

byte 1-3

If the system management facilities
option was presented in the dumped
system, these bytes contain the
address of the dumped system's timing
control table (TCT).

USR hhhhhhhh

This word is available to the user of
the dumped system. It contains any
information placed in it by the user.

DAR hhhhhhhh

The contents of this field were used
by the damage assessment routine
(DAR). Certain subfields displayed in
this word were also used to control
the dispatchability of the dumped
task. The DAR field is divided into
the following subfields.

byte 0

The first byte of the DAR field
contains DAR flags. The flags are as
follows:

lace eene Bit 0 set indicates that
primary DAR recursion
occurred in the dumped
system. The damage
assessment routine
failed while writing a
main storage image dump.

elee enne Bit 1 set indicates that
secondary DAR recursion
occurred in the dumped
system. The damage
assessment routine
failed while attempting
to reinstate a failing
partition.

eele ceae Bit 2 set indicates that
only the dump capability
of the damage assessment
routine was requested.

ceeX aeaee Bit 3 is reserved for
future use.

cees la.a Bit 4 set indicates that
the system error task is
failing. The DAR dump
should not request any
error recovery procedure
(ERP) processing.

eecee oXXe Bits 5 and 6 are
resexrved for future use.

mese woel Bit 7 set indicates that
an SVC dump is executing
for this task.

byte 1

Bytes 1 through 3 of the DAR display
field are used to show the settings of
secondary non-dispatchability flags
bits. If any of the flags in this
subfield were set, the primary
non-dispatchability flag (the last bit
in the FLG field) will also have been
set and the task represented by this

IMDPRDMP Output Formatting: MFT -- TCB 97

TCB will have been non-dispatchable.
The bit settings that may appear in
byte 1 and their meanings are:

1...

B

- -xx

eel.

‘.\01

CRE R

KXo oo

° 1-0

byte 2
C1...

eXae

.-1.

XXX

98 Programmer's

Bits 0 and 1 were set by
the damage assessment
routines. Their
meanings are:

Bit 0 set indicates that
the task represented by
the TCB being displayed
was flagged temporarily
non-dispatchable.

Bit 1 set indicates that
the task represented by
this TCB was deemed
permanently
non-dispatchable.

Bits 2 and 3 are
recovery management
support and system error
recovery flags. Their
meanings are:

Bit 2 set indicates that
the task represented by
this TCB was flagged
temporarily
non-dispatchable.

Bit 3 set indicates that
the task represented by
the TCB being displayed
was deemed permanently
non-dispatchable.

Bit 4 is reserved for
future use.

Bit 5 set indicates that
this task is temporarily
non-dispatchable. Time
services have been
requested and the
time~-of-day clock is
still inoperative.

Bits 6 and 7 are
reserved for future use.

~Bit 0 indicates that at

the time the dumped
system was active,
ABDUMP was processing.
The setting of this flag
bit has meaning only if
the dumped system was
operating with the
subtasking option of
MFT.

Bit 1 is reserxrved for
future use.

Bit 2 set indicates that
this task is
non-dispatchable. AaAn
SVC dump is executing
for another task.

Bits 3 through 6 are
reserved for future use.

eeal Bit 7 set indicates that
at the time the system
was dumped, the dump
data set was in the

process of being opened.

byte 3
loee coee The setting of this
first bit has meaning
only if the dumped
system was operating
with the MFT subtasking
option. If this bit is
set, the indication is
that the task
represented by the TCB
being displayed was
terminated.
Bit 1 set indicates that
had the dumped MFT
system, operating with
the subtasking option,
been allowed to continue
processing without
intervention by the dump
program, the task
represented by this TCB
would have been
terminated by ABEND.
Bits 2 through 7 are
resexrved for future use.

elew

e o XX XXXX

RES hhhhhhhh
Reserved for future use.

JSCB hhhhhhhh
Contains the address of the job step
control block.

MFT ACTIVE REQUEST BLOCK (RB) FORMATTING:
Request blocks (RBs) were used by the
dumped system's supervisor to maintain
information concerning a task. RBs
associated with the task identified in the
heading lines at the top of the dump page
and in the preceding TCB display, are
listed in the portion of the dump listing
labeled "ACTIVE RBS". Information on each
RB associated with the task is formatted as
shown below:

PRB

LPRB

SVRB hhhhhh

SIRB

IRB
Each RB display is preceded by a field
that indicates the type and starting
address of the RB being displayed.
The five types of RBs that may be
displayed under an MFT task are:

PRB
program request block

LPRB
loaded program requestrblock

Guide to Debugging (Release 21)

SVRB
supervisor request block (SVRBs
may be divided into two
categories; type 2 for resident
routines and type 3 or 4 for
transient routines).

SIRB
system interrupt request block

IRB
interruption request block

The type acronym for each RB is
displayed in the first portion of the
field. The starting address of the
indicateéd request block appears in the
last portion of the field. The
contents of certain fields in the body
of the formatted RB display are
dependent upon the type of RB being
displayed. Variations in display
field usage are noted in the
descriptions of the fields in which
they occur.

NM ccccccce

The variations associated with the
usage of this field are:

e PRBs and LPRBs use this field to
display the name of the program they
represented.

e SVRBs display the SVRB type in this
field.

e SIRBs use this field to present the
eight-character name of the error
routine that was occupying the
supervisor transient area at the
time the dump was taken.

e IRBs display meaningful information
in this field only if the timer was
being used. If this was the case,
the first character in this field
represents the setting of the timer
flags. The remainder of the NM '
field is meaningless.

SZ/STAB hhhhhhhh

This field displays two data elements;
RB size information and STAB flag bit
settings. This field is subfielded as
follows: :

bytes 0-1

The number of contiguous doublewords
that were occupied by the request
block, the associated program (if
applicable), and associated supervisor
work areas. If a program extent list
was present, the program size is not
included in this figure.

byte 2

STAB flag bit settings. The meaning
of these flags are depends upon the
type of request block being displayed.
Thise flags are presented, by RB type,
below:

PRB
The following bit settings are
applicable to program request
block displays:

0000 indicates that the
program represented
by this PRB was not
loaded by a LOAD
macro instruction;
nor did it have minor
entries identified by
an IDENTIFY macro
instruction.

0001 dindicate that the
program represented
by this PRB was not
loaded by a LOAD
macro instruction but
did have minor
entries identified by
an IDENTIFY macro
instruction.

eeses XX.. Bit 4 and 5 have no
meaning in PRB
displays.

eeee «e«1l. indicates that the
program represented
by this PRB was
hierarchy block
loaded and that a
program extent list
existed.

eeee w=we.l dindicates that the
rrogram module
represented by this
PRB was refreshable.

LPRB

Loaded program request blocks

being displayed may have the

following bit settings in this
byte:

0010 indicates that the
program represented
by this LPRB was not
loaded by a LOAD
macro instruction;
nor did it have minor
entries identified by
an IDENTIFY macro
instruction.

0011 dindicates that the
program represented
by this LPRB was not
loaded by a LOAD
macro instruction but
did have minor
entries identified by
an IDENTIFY macro
instruction.

IMDPRDMP Output Formatting: MFT -- Active RBs 99

1110

.o ®w

CEY R

SVRB

s 1_

S

indicates that this
LPRB describes a
minor entry
identified by an

- IDENTIFY macro

instruction.

Bits 4 and 5 have no
meaning in LPRB
displays.

indicates that the
program represented
by this LPRB was
hierarchy block
loaded and that a
program extent list
existed.

indicates that the
program module
represented by this
LPRB was refreshable.

Supervisor request blocks display
the following bit settings in
this subfield:

1100

1101

SIRB

1...

.1-'

oo XX

‘indicates that the

program represented
by this SVRB is a
type 2 SVC routine
that had not been
loaded at the time
the dump was taken.
indicates that the
program represented
by this SVRB is a
type 3 or SVC routine
that had been loaded.
indicates that the
type 3 or 4 svVC
routine was resident.
indicates that while
the dumped system was
active, a checkpoint
could have been taken
in a user exit from
the SVC routine
represented by this
SVRB.

bits 6 and 7 have no
meaning in SVRB
displays.

The flag bit setting applicable
to supervisor interrupt request
block displays is as follows:

1000

100 Programmer's Guide to Debugging (Release 21)

XXX

indicates that the RB
being displayed is a
supervisor interrupt

" request block (SIRB).

bits 4 through 7 have
no meaning in SIRB
displays.

IRB

Interrupt request block displays

use these flag bits in the

following manner.

0100 indicates that the RB
being displayed is an
interrupt request
block (IRB).
bits 4 through 7 have
no meaning in IRB
displays.

XXXX

eoee

byte 3
The last byte of the SZ/STAB field
displays more status and attribute
flags. The possible settings for this
subfield and their meanings are:

Bit 0 set indicates that
the WT-LNK field in this
- RB display contains, in
its last three bytes,
the address of the TCB
to which this request
block is linked.
Bit 1 set indicates that
at the time the dumped
system was active, the
program associated with
the RB being displayed
was active.
Bit 2 set indicates that
had the dumped system
been allowed to continue
processing without
intervention by the dump
program, general
registers 2 through 14
would have been restored
from this RB's general
register save area,
displayed on the
following two lines.
The setting of this bit
is valid only for IRB,
SIRB and SVRB displays.
Bit 3 set indicates that
the program module
represented by this
request block was
reenterable or reusable.
Bits 4 and 5 are used
only in IRB or LPRB
displays. The settings
of these bits and their
meanings ares
This setting indicates
that the IRB being
disglayed had no
interrupt queue elements
(IQEs) associated with
it.

leee wene

wlae cnee

eele neea

enel waes

csee XXee

weese 00..

eees 0l.. This setting indicates
that the IRB being

byte 1-3
The second portion of the USE/EP field

displayed had associated displays the address of the entry

with it interrupt queue
elements that were
request queue elements
(RQES).

eses 10.. This setting indicates
that the request block
being displayed is a
dummy LPRB, in a
partition that
represents a program in
the reenterable load
module area. The LPRB
for the program is in
the reenterable locad
module area.

eeas 11.. This setting indicates
that the IRB being
displayed had interrupt
queue elements
associated with it that
were not request queue
elements (RQEs).

point of the module represented Ly
this request block.

PSW hhhhhhhh hhhhhhhh
The two words of the PSW field display
to the user the dumped system's old
program status word. If the dumped
system had been allowed to continue
processing without interruption by the
dump program, operation would have
resumed on this PSW.

Q hhhhhhhh
The information displayed in this
field depends upon type of RB being
displayed. The ccntents of this
display field are described below, by

RB type:

e PRBs and LPRBs use this field to
display the address of an LPRB
describing an entry that was

eaee owla Bit 6 set indicates that identified via the IDENTIFY macro

when the dumped system
was active, request
block storage was to

instruction. :

e SVRBs representing type 3 or 4 SVCs

have been freed when the - use this field to indicate the size

program returned.
eces eanX Bit 3 indicates wait

of the program they represent in
bytes.

request conditions. The

meanings of the two
possible settings for
this bit are:

cane se+0 Bit 7 not set indicates
that the request had to
wait for a single event
or for all of a number
of events.

e SIRBs and IRBs display in this field
the address of a 12- or 16-byte
request element.

WT'-LNK hhhhhhhh
This field displays information
pertaining to wait counts and request
block linkages. The field is divided

cane wasl Bit 7 set indicates that into the following two subfields:

the request had to wait
for a number of events.
This number of events
was less than the total
number of events that
were waiting.

USE/EP hhhhhhhh

The USE/EP field, as indicated by the
field identifier, displays two data
elements. These are shown in the
following format:

byte 0
The first byte of this field contains
the use count that was applied to the
program module represented by the
reqguest block being displayed. This
use count was calculated by
subtracting the number of invocations
of the DELETE macro instruction f£rom
the number of times the LOAD macro
instruction was used.

IMDPRDMP

byte 0
The number of requests that were
pending at the time the dump was taken
(wait count).

byte 1-3
The address of the next request block
on the RB queue. If the RB being
displayed was the last request block
on the queue, this field shows the
address of the task control block
(TCB) that enqueued this RB.

RG 0-7 and RG 8-15
The sixteen-word register save area
appears only after IRB, SIRB or SVRB
displays. These two lines display the
contents of general registers 0
through 15 as they were stored in the
request block.

MFT PROBLEM PROGRAM BOUNDARIES INFORMATION :
Each task operating under the MFT option of
the operating system was assigned a main
storage partition in which to operate. If

Output Formatting: MFT -- P/P Boundaries 101

the system confiquration included 2361
Large Core Storage, partitions may have
included area from both hierarchy 0 (main
storage) and hierarchy 1 (low speed main
storage). If 2361 Large Core Storage was
not available or was not used, hierarchy 1
pointers were set to zero. Each MFT task
displays in its dump listing the limits of
the partition in which it operated. This
display is presented under the heading "P/P
BOUNDARIES" (problem program boundaries) in
the following format:

HIER 0 hhhhhhhh
The starting address of the problem
program®s hierarchy 0 partition.

TO hhhhhhhh
The ending address of the problem
program’s hierarchy 0 main storage
partition.

HIER 1 hhhhhhhh
The starting address of the problem
program's hierarchy 1 partition. If
this field contains zeros, the
indication is that 2361 Large Core
Storage was either not available or
not utilized by this task.

TO hhhhhhhh
This last field indicates the high
limit of the problem program’'s
hierarchy 1 partition if one was used.
If this field contains zeros, either
2361 Large Core Storage was not
available or it was not used by this
task.

MFT LOAD LIST FORMATTING: A load list was
maintained by the dumped system's
supervisor in order to keep track of the
load modules that were in main storage and
the area of main storage each occupied. A
load list created by an MFT supervisor is
composed of loaded request blocks (LRBS)

~ and loaded program request blocks (LPRBs).
A formatted listing of the dumped MFT
system's load list appears as follows:

LRB

LPRB hhhhhhhh
The type of request block being
displayed and its starting address.

NM ccccccce
The eight-character name of the
program module represented by the
request block being displayed.

SZ hhhhhh
The number of contiguous double words
that were occupied by the request
block, the associated program (if
applicable) and associated supervisor
work areas. If a program extent list
was present, the program size is not
included.

USE/EP hhhhhhhh
Use count and entry point address as
follows:

byte 0
The use count that was applied to the
program module represented by the
request block being displayed. This
use count was calculated by
subtracting the numbexr of times the
DELETE macro instruction was issued
from the number of times the LOAD
macro instruction was used.

byte 1-3
The address of the entry point of the
program module named in the NM field
of this RB display line.

MFT JOB PACK QUEUE FORMATTING: A job pack
area queue was maintained by the dumped
system's supervisor for each job step that
used a program not in the resident
reenterable load module area. A job pack
queue created by an MFT supervisor consists
of loaded request blocks (LRBs), loaded
program request blocks (LPRBs) and FINCH
request blocks (FRBs). A formatted job
pack area queue display appears as follows:

IRB

LPRB hhhhhh

FRB
The type of request block being
displayed and its starting address.

NM cccccece
The eight-character name of the module
represented by the request block being
displayed.

SZ hhhhhh
The number of contiguous doublewords
that were occupied by the request
block, the associated program (if
applicable) and associated superxrvisor
work areas. If a program extent list
was present, the program size is not
included.

USE/EP hhhhhhhh

XRWTL
The usage of this display field is
dependent upon the type of request
block being displayed:

USE/EP
is used for LRBs and LPRBs and
displays the use count and entry
point address as follows:

byte 0
The use count that was applied to
the program module represented by
the request block being
displayed. This use count was
calculated by subtracting the
number of times the DELETE macro

102 Programmer's Guide to Debugging (Release 21)

instruction was issued from the
number of times the LOAD macro
instruction was used.

bytes 1-3
The address of the entry point of
the program module named in the
NM field of this display line.

XRWTL
is used for FRBs and shows the
starting address of the wait list
elenment.

XRREQ hhhhhhhh
This field appears only in FRB
displays, and shows the address of the
TCB representing the task on whose
behalf this FRB was constructed.

XRTLPRB hhhhhhhh
This field appears only in FRB
displays and shows the starting
address of the area of main storage
that was acquired by the FETCH routine
for the module identified by the NM
field of this line.

MFT DATA EXTENT BLOCK_ (DEB) FORMATTING:
Data extent blocks (DEBs), describing a
data set's external storage requirements,
were queued to those task control blocks
(TCBs) that represented tasks requiring
auxiliary storage input/output processing.
External storage information, taken from
each DEB, is formatted as shown below:

DEB hhhhhh
The starting address of the basic
section of the DEB being displayed.

APPENDAGES
The word "appendages" informs the user
that the five named fields on this
line contain information taken from
the appendage vector table preceding
the DEB being displayed. The named
fields appearing on the rest of this
line are:

END OF EXT hhhhhh
The entry point of the end-of-extent
appendage routine.

SI0 hhhhhh
The entry point of the start I/O
appendage routine.

PCI hhhhhh
The entry point of the
program-controlled-interruption
appendage routine.

CH END hhhhhh
The entry point of the channel-end
appendage routine.

AB END hhhhhh
The entry point of the abnormal-end
appendage routine.

PFX hhhhhhhh hhhhhhhh hhhhhhhh
The second line of a DEB display
contains information taken from the
prefix section of the DEB being
displayed. The area is subdivided as
follows:

byte 0
The first byte of the prefix area
contains the contents of the I/0
support work area. This area is used
only by DEBs dealing with direct
accéss storage devices.

bytes 1-7
The next seven bytes of the DEB prefix
section are used by DEBs associated
with direct access storage device
functions. This subfield displays the
data set control block's (DSCB)
address used by I/0 support. The
address is expressed in the following
format:

the bin (cell) number.
the cylinder address.
the track address.
the record number.

bytes 1 and 2
bytes 3 and 4
bytes 5 and 6
byte 7

bytes 8-11
The third word of the PFX field
contains the data control block (DCB)
modification mask that was used by I/0
support.

byte 12
The length of the DEB in double words.

bytes 13-15
The remainder of the DEB prefix
section is reserved for future use.

TCB hhhhhhhh
This field warks the beginning of the
basic section of the data extent
block. The TCB field is divided into
two subfields as follows:

byte 0
The number of subroutines for which a
LOAD macro instruction was issued
during the execution of the OPEN
executor routines.

bytes 1-3
The starting address of the task
control block to which this DEB was
enqueued.

NDEB hhhhhhhh

byte 0
The overall length of a data extent
block includes the length of a

IMDPRDMP Output Formatting: MFT -- DEBs 103

variable length access method
dependent section. The first byte of
the NDEB field expresses the length of
the access method dependent section in
bytes. If the access method was BDAM,
this indicator is expressed as a
number of full words.

bytes 1-3

ASYN

The last portion of the NDEB field
displays the starting address of the
basic section of the next DEB on the
task's queue. If this DEB was the
last on the queue, the content of this
field is the starting address of the
TCB that enqueued this DEB.

hhhhhhhh

This field contains data set status
flags and the address of the
associated IRB:

byte 0

The first byte of the ASYN field
contains data set status flags. These
flags have the following meanings:

Bits 0 and 1 indicate
the data set's
disposition. The
possible settings are:
This setting indicates
that the disposition was
OLD.

This setting indicates
that the disposition of
the data set was MOD
(modify).

This setting indicates
that the disposition was
NEW.

Bit 2 set indicates that
an end-of-volume (EOV)
or end-of-file (EOF)
condition had been
encountered.

The setting of bit 3 has
one of two meanings
depending upon the
external storage medium.
For disk, this indicator
reflects a release of
unused external storage.
For tape, this indicator
means that an emulator
tape with second
generation format was
being used.

Bit 4 set is a data
control block (DCB)
modification indicator.
Bit 5 set has two
meanings, depending upon
the auxiliary storage
recording medium. For
disk, the setting of bit
5 indicates that a split
cylinder was

XX o

01..

10..

i1..

wele

ool eeee

leaa

ER R

P P

encountered. For tape,
this flag indicates that
an emulator tape with
possible mixed parity
records was used.

Bit 6 set indicates the
use of nonstandard
labels.

Bit 7 set indicates that
reduced error recovery
procedures were used on
magnetic tapes
containing the data set
represented by this DEB.

S

eesl

bytes 1-3

The last portion of the ASYN field
shows the starting address of the IRB
that was associated with asynchronous
appendage exit scheduling.

SPRG hhhhhhhh
This field contains information on 1/0
processing methods and the system
PURGE routine.
byte 0
The first byte of this field contains
flags that indicate the method of
input/output processing and the
disposition of the data set that was
to have been performed when an end-of-
volume condition occurred. These flag
settings are:
loee cnee Bit 0 was set by ABEND.
The setting of this bit
indicates that the data
set associated with this
DEB was a SYSABEND ox
SYSUDUMP data set.
e0an wene Bit 1 is always zero.
eeXX ewwas Bit 2 and 3 show the
end-of-volume
disposition procedure.
The values for this flag
are:
we0l eceee REREAD
eall ceee LEAVE :
eeee XXxx The last half of this
byte contains flags that
indicate the type of
input/output processing
that was performed on
the data set represented
by this DEB. The values
for this flag are:
eeaes 0000 INPUT
eeees 1111 OuTPUT
eees 0011 INOUT
eees 0111 OUTIN
«ese 0001 RDBACK
eeea 0100 UPDAT
byte 1

104 Programmer's Guide to Debugging (Release 21)

The quiesce count. The byte is
associated with the system PURGE
routines (SVC 16), and indicates the

number of auxiliary storage devices
that were executing the usexr's channel
programs.

bytes 2-3
Reserved for future use.

UPRG hhhhhhhh
The UPRG field contains extent
information and data used by the
user’'s purge routines. This field is
divided into the following two
subfields:

byte 0
The number of extents that were
specified in the DSCBs associated with
this DEB.

bytes 1-3
The address of the first input/output
block (IOB) in the user's purge chain.

PLST hhhhhhhh
Task priority and supervisor purge
information are contained in this
field. This field is formatted as
follows:

byte 0
The priority of the task under which
this DEB was enqueued.

bytes 1-3
The starting address of a parameter
list that was used to locate the purge
event control block (ECB) for a
supervisor purge request.

DCB hhhhhhhh
The DCB field contains three data
elements. These are displayed in the
format given below:

byte 0

XXXX oene The storage protection
key that was associated
with the task under
which this DEB was
enqueued.
A hexadecimal "F" in
bits 4 through 7 of this
field identify this
control block as a data
extent block (DEB).

1111

bytes 1-3
The starting address of the data
control block (DCB) that was
associated with this DEB.

AVT hhhhhhhh
The AVT field displays two DEB data
elements and is subfielded as follows:

byte 0
The DEB extent scale that is used to
determine the size of the device

IMDPRDMP Output Formatting:

dependent section of this DEB. For
direct access devices, a 4 is
displayed in this subfield. For a

nondirect access device or a
communication device, a 2 is
displayed.

bytes 1-3
In most cases, the last portion of the
AVT field shows the starting address
of the appendage vector table
preceding this DEB. This table of
appendage routine addresses appears on
the first line of this DEB's display.

OP~-UCB hhhhhhhh
The contents of this field have
meaning only when the DEB being
displayed describes a data set that
was assigned to a unit record or
magnetic tape device. This
information is formatted from the
device dependent section of the DEB.
The OP-UCB field is subfielded as
follows:

byte 0
This first subfield is applicable only
to data sets assigned to magnetic tape
devices, and shows the SET MODE
operation code. For a data set that
was assigned to a unit record device,
this subfield is reserved.

bytes 1-3
The starting address of the unit
control block (UCB) associated with
the data set described by the DEB
being displayed.

The following four fields are present only
for data sets assigned to the IBM 3525 Card
Punch for multi-function. The information
is formatted as shown below:

UCB hhhhhhhh

byte 0
The device modifier field (not used
for the 3525).

bytes 1-3
The starting address of the unit
control block (UCB) associated with
the data set described by the DEB
being displayed.

RDRDCB hhhhhhhh
The starting address of the data
control block (DCB) for the read
associated data set.

PCHDCB hhhhhhhh
The starting address of the data
control block (DCB) for the punch
associated data set.

MFT -- DEBs 105

WTRDCB hhhhhhhh (
The starting address of the data
control block (DCB) for the print
associated data set.

The final portion of a DEB display shows
information pertaining to a data set that
was assigned to a direct access device.
This information, taken from the DEB's
device dependent section, is arranged in
columnar format with a line for each
extent. The information is formatted as
shown below:

FM-UCB hhhhhhhh
The first column displays two data
elements and is formatted as follows:

byte 0
The device modifier showing the file
mask.

bytes 1-3
The starting address of the unit
control block (UCB) that was
associated with the data extent.

START hhhhhhhh
The address of the beginning of the
direct access device extent. The
first four characters represent the
cylinder address and the last four
characters represent the track
address.

END hhhhhhhh
The address of the end of the data
extent. Cylinder and track references
are formatted as in the extent
beginning address, described above.

TRKS hhhh
The number of direct access tracks
bounded by the starting and ending
addresses shown in the previous two
columns.

MFT TASK INPUT/OUTPUT TABLE (TIOT)
FORMATTING: A task input/output table
(TIOT) was constructed for each task in the
dumped system by MFT job management
routines. This table contained primary
pointers to control blocks used by I/0
support routines. As the functions of
several TIOT fields were dependent upon the
state of associated extermnal storage
devices, multiple definitions may apply.
The TIOT that was constructed in the dumped
MFT system is formatted as shown.

TIOT hhhhhh
The starting address of the task
input/output table being displayed.

JOB ccccecece ‘
The eight-character name of the job
for which this TIOT was constructed.

STEP ccccccec
The eight-character name specified in
the label field of the EXEC JCL
statement associated with this job
step.

PROC ccccccecc
If the job step for which this TIOT
was constructed was invoked from a
cataloged procedure, the procedure
name, as contained in the EXEC JCL
statement, is displayed in this field.

Each data set associated with the indicated
task is represented by a separate DD entry
that is included in the TIOT. Each TIOT
entry is displayed on a separate line in
columnar format. The use and meaning of
each column is given below:

OFFSET hhhh
The offset of this DD entry from the
beginning of the TIOT in hexadecimal.

LN-STA hhhhhhhh

byte 0
The total length (including all device
entries) in bytes of the DD entry
being displayed on this line.

byte 1
Status byte A, one of three status
bytes in a TIOT entry. The meanings
of the status byte settings are:

Bits 0 and 5 indicate
the tape label
processing that was to
have been performed.
The meanings of the
settings are:

Keoeo nXeaw

0ue.. .0.. Nonlabeled tape or an
indication to bypass
label processing.

0. o1.. Standard labels or
standard user labels.

l... .0.. Nonstandard labels.

The setting of status
bit 1 has two meanings,
depending upon the
processing phase that
had been reached at the
time the system was
dumped. During
allocation processing,
the setting of this bit
indicates that this
entry represents a split
cylinder primary space
allocation DD. If the
dump was taken during
step termination
processing, the setting
of this bit indicates
that no unallocation of
space was necessary.

T .

106 Programmer's Guide to Debugging (Release 21)

~eel. <... The setting of status

bit 2 works under the
same philosophy as
status bit 1. During
allocation processing,
the setting of this bit
indicates that this
entry represents a split
cylinder secondary space
allocation DD. If the
dump was taken during
step termination
processing, the
indication was one of
rewinding with no
unload.

weel cawe Bit 3 set indicates that
this DD entry represents
a JOBLIB.

wmee leae Bit 4 set indicates that
direct access device
space management was
deemed necessary.

eese oole The setting of bit 6
specifies that the tape
volume was to have been
rewound and unloaded.

eose eewl The setting of bit 7
specifies that the tape
volume was to have been
rewound.

byte 2

The third byte of this column has
meaning only during the allocation
phase. This displays the number of
devices that were requested by the
data set represented by the TIOT entry
displayed on this line.

byte 3

The last byte of the LN-STA field
displays a TIOT field that had meaning
at two points during the processing of
this task. During.the allocation
process, this field contained a link
to the appropriate prime split, unit
affinity, volume affinity or
suballocate TIOT entxy. After CLOSE
processing, this byte was used as
follows:

Jece weaee The setting of bit 0
indicates that the data
set represented by this
DD entry was a SYSOUT
data set that contained
data.

« XXX XXXX Bits 1 through 7 are
reserved for future use.

DDNAME cccccccce

The eight character DD name associated
with the TIOT entry being displayed.

TTR-STC hhhhhhhh

The first three bytes of this column
display the relative track address
(TTR) of the job file control block
(JFCB) associated with this entry.

STB-UCB hhhhhhhh

The last column in a TIOT display
contains information tdken from the
one-word device entries that are
appended to each TIOT entry. One TIOT
device entry exists for each allocated
device. This display field shows this
information in the following format:

byte 0

Status byte B. The status bits have
the following meanings:

lene wew Bit 0 set indicates that
the data set associated
with this line of the
TIOT display was present
on the device
represented by this TIOT
device entry.

elee weve Bit 1 set indicates that
the data set associated
with this line of the
TIOT display would have
used the device
represented by this TIOT
device entry.

wele wees Bit 2 set indicates that
the device represented
by this device entry
violated separation.

eeel casa Bit 3 set indicates that
a volume serial number
was present.

eeee Llaoa Bit 4 set indicates that
a setup message was
required. .

eeee eXea Bit 5 indicates the
device disposition that
would have taken place
had the dumped system
been allowed to continue
processing this task.
The settings for this
bit are:

eeee 20ca Indicates that if the
volume was required to
be unloaded, the volume
was to have been
deleted.

eess ol.. Indicates that if the
volume was required to
be unloaded, the
unloaded volume was to
have been retained.

msss aela Bit 6 indicates that an
unload requirement had
been made.

emes weal Bit 7 set indicates that
a load or label
verification requirement
had been made.

bytes 1-3

The address of the UCB that was used
in all cases except when the device
was a 2321 data cell drive. For a
2321, this address is that of the
description in the UCB of the cell in
the bin.

IMDPRDMP Output Formatting: TSO 107

TSO System Block Formatting

The TSO control blocks are divided into two
groups: system and user. The control
blocks are discussed in the order in which
they appear when both groups are requested.
Some control blocks are formatted and
printed when either group is requested.

An example of a TSO system and user dump
listing is shown in Figure 24.

TIME SHARING COMMUNICATIONS VECTOR TABLE
(TSCVT) FORMATTING: The time sharing
communications vector table is a secondary
CVT to meet the time sharing requirements.
The time sharing CVT resides in the time
sharing region; therefore, it exists only
while the time sharing region is active.
When time sharing does not exist in the
system, the MVT CVT pointer to the TSCVT is
zero.

TSCVT hhhhhh
The address of this time sharing
communications vector table.

TJB hhhhhhhh
The address of the time-sharing job
block (TJB) table. This table
contains all of the TJBs allowed TSO
users. The first TJIB is for the
terminal job identification (TJID)
equal to zero.

RCB hhhhhhhh
The address of the region control
block (RCB) table. It is an indexed
table containing one RCB for each
possible time sharing region;
therefore, the table contains the
maximum number of RCBs that may be
used by time sharing. The first RCB
is for region one.

RPT hhhhhhhh
The address of the reference point
table (RPT). It is used by the
terminal input output coordinator
(TI0C).

FLG hhhh
These flags indicate functions
requested from the time sharing
control task (TsSC).

byte 0
leae oo« TSCSWPND: Bit 0 set
indicates that a swap has
ended. ’

wles weee TSCSWPBG: Bit 1 set
indicates that a swap should
be started.

eel. <... TSCLOGON: Bit 2 set
indicates that a logon is
required.

eesl eeee TSCDISC: Bit 3 set
indicates that a disconnect
is required.

ess« XXXX Bits 4 through 7 are
resexrved for future use.

byte 1
Reserved for future use.

FIL1 hbhh
These flags indicate atypical
functions required by the time sharing
control task (TsC).

byte 0
leae <es.e TSCSSTOP: Bit 0 indicates

that a system stop has been
requested and the time
sharing system is in the
process of stopping.

eli. ee.e TSCRSTOP: Bit 1 indicates
that a region stop has been
requested.

eel. <... TSCASTOP: Bit 2 is the
ABEND-STOP flag. When set,
it indicates to the time
sharing control task (TSC)
that time sharing should be
stopped. This flag is set
by (1) the TSO/RMS interface
return when a machine check
occurs in TCAM or (2) the
TCAM STAE exit when TCAM
abnormally terminates.

«eeX XxXx Bits 3 through 7 are
reserved for future use.

byte 1
Reserved for future use.

SDC hhhhhhhh
The address of the first data control
block (DCB) for swap data sets.

CUS hhhh
A count of the current TSO users
logged onto the system. For
additional users to be logged onto the
system, this number must be less than
the value in LUS.

108 Programmer's Guide to Debugging (Release 21)

T33ewxod IndIno ANAYJAWT

60T LADSIL -- OSL

TSCVT ODDA90C

RCB ODODFB8

UMSM ODDFAS

TJB
cus
SAV
102
SLF
svQ
oMpP

RCT
NMBR
uTTMQ
PRG
CONID

000LDCES RCB 000DDfFB8
0C04 Lus 000A
000DDB20 ECB 000DDB14
00003850 103 000D3E46
000CDF10 TSC 0001ACDO
ccccoo00 ABN 000D1C20
0C0DD998 T06 0001A5D8
0001A788 ECB C0000001
01 PKEY EOQ
0000 CUSE 0004
0E000000 PRG1 000A79DO
00 RESV 000000

ADDR-LN CA58C(60

RPT 000D9DD0

NTJ

SIA 000DDCDC
D02 000D28C8
SPL 0001B4ES8
D03 000DESS8O

MODULE {MDSADMP

DIECB 00000000

UMSMN

EXTNT O0O0A7F68
PRG2 O0O0OA7F1C

ADDR-LN 0CB880020

FLG 0000 FL1
000A SZu 0030 CTR
ICB 000DDC34 101
LCQ 00000000 TRB
RSZ 0028 RSV
FLM 0C00DFD40 Qe
TJID 0004
04 FLG 40

UMSM OOODDFAS8
QPL O0O0O0A7F10

ADDR-LN 00000000

DATE 11/12/70

STECB 00000000

TIME 00.12 PAGE 000¢

0000 SDC 00000000

0001 MUS 000A
000D38C4 TQE 00014674
00000000 LPA 00000000

0000 SVT 00000000
000DFD40 708 OOODEADS
RSIZE 0048 LSQSZz 0005
FLG2 20 FBQE 01
SDCB 00ODEF20 PQE 0001AC20

RCOVR 0BOOFFO0O

ADDR-LN 000000C0O

SWAP DCB 000000

CA5800 STORAGE KEY 0

0A5800 0 00000000 COOA58C8 00CAT260 00000000 000A5800 00002800 00CA5820 000A5820 *eeseescsecsssscsssssscscsssscsee

0A5820 0 00000000 00CAFO00 00000000 00000000 0001A7BS 00028000 000A5800 00000000

0A584C 0 06000000 000C1468 CCLCO00OC 0CO00000 00000000 00000000 00000000 0C000000

JA5860 0 C0000000 CO0G0000 GCCCOO0O 00000000 00000000 00000000 00000000 00000000 *eseesosscsscccccccsscscccsscosss®

OA5880 0 TO NEXT LINE ADDRESS SAME AS ABOVE

0A6C20 0 0012CC02 GCCO0000 FFC40000 O00OCAFS 00000000 000A7700 CO000000 00000000 *eeesecscossscesBacscocvecacocaee®

0A6C40 0O O0OCCFA3 0000C28C CO00A6D68 000A7700 4000A486 00000001 000DDD18 000D9DDO *eceeseBocssssccs oo

JA6C60 0 000AT788 00C1C1CO 00ODIDF4 0C000000 AQOOA5F8 9000A60C 00000000 00000000 FeeeeeoheaccbosssceoBaccacoscnaas¥

0A6C8C 0 00000000 00CCOC00 CCCOO0OC 0CO00000 00000000 00000000 00000000 000000CO *eeceessccessccsccceccsccccccsses™

OA6CAD O 000C0000 00000000 000AT478 CO000098 000CD710 00000000 00124034 000O0BB34 FeeessessesssccccsePessccse osocas™

OA6CCO 0 00040C00 CCCCCCCO GCCCOOOO 00000000 00000C00 00000000 0CCO0000 00000000 Feceeseesecesscscssscssscassccsas™

JASCEQ O COODOJGD COCCCOO0 CCCCO000 00GI000C. 000000CO 0000000C CO000000 00000000 *eesesssossssccssssassssscosoeans™
Figure 24. sample of TSO Control Block Format (Part 1 of 3)

(TZ @searay) burbbngsg o3 apTnO s,IuMmexboag (OTT

TJBX OATFé8

XFST O0O0OAT7DAC XLAST 000A6D68 XDSE 0Q00A7320 XSVRB 000A7700 XRQE 00000000
TAXE QO00A6CBO XLECB 00000000 XPSWD RSV 00000000 XAIQE 00000000
XNQPE 000A XNTCB 0002 XLQPL 0054 HBFL 0000 XACT 00000000

XKEYA COCA7FBO

MCDULE IMDSADMP DATE 11/12/70 TIME 00.12 PAGE 0007
Fedede ek TSO USER CONTROL BLOCKS Fededdk
*& * USER KGNO1 TJ1D=0001 ook Rk

TJ48 0DDD18 TSB 000D9DF4 ATTN 00 STAX o1 STAT 00 STAT2 00 EXTNT O00A7F68
RCB 000DCFBS8 UMSM 000DDFO8 SDCB OOODE1l20 UTTMQ 0002 RSTOR 48 UMSMN 04
USER KGNO1 IPPB 00000000 NEWID [¢]o] FLUSL 00 TJID 0001 MONI 00
RSV 0C0000

UMSM ODDFO08 ADDR-LN 0A580C38 ADDR-LN 0A980058 ADDR-LN 0CB00028 ADDR-LN 00000000

TSB ODSDF4 STAT 81 TJB 0DCD18 FLG1 00 WTSB 000000 LNSZ 78 OTBFP 000000
NOBF 00 CBFP 000000 BPKFL 00 ITBFP 000000 NITR 01 IBFP 0DAOFO
CLEAR 00 QB O0ElCCO ECB 00000000 TJID 0001 STCC 0000 ATNLC 0016
ATNTC 0000 LNNO - 00 BLNK 00 ASRCE 0000 ATNCC 0003 AUTOS 00000000
AUTOI 00000000 ERSDS 00000000

Hddk THE FOLLOWING TJBX,TAXE,PSCB,TCB'S AND STORAGE ARE FROM THE SWAPPED DATA SET Fekok Rk

XIQE 00000000
XQPL O000A7F10
XAECB 0001A534

JOB KGNO1 STEP KGNO1 PROCSTEP STARTING
TCB OA7TDAO RBP 000A7D18 FPIE ~ (€0000000 DEB 00000000 TIO O00A7864 CMP 00000000 TRN 00000000
MSS 030A79A0 PK-FLG E0000000 FLG 0001B8B8 LLS OCOATEAO JLB 00000000 JPQ OOOATEBO
RG 0-7 00000001 FFF58C74 O0001A534 0001A500 O00A7510 OOOA7DAO 00000000 00000uOl
RG 8-15 OCOA7370 FFFFFFF9 000A7564 000A6D68 600FEAB2 0O0OA7534 400FES30 . 600062FA
FSA 0300C0C0 TCB 000A6D68 = TME 00000000 JST OOOA7DAO NTC 00000000 OTC 0001A7B8
LTC 000A6D68 IQE 00000000 ECB OOODDFBC TSPR 8000B82B D-PQE 000A5810 SQS 000A6D40
STA 200CC498 = TCT 00CA73D8 USR 00000000 DAR 00001000 RES 00000000 JSCB OOOATEOO
ACTIVE RBS
PRB° OATD18 RESV 00000000 APSW 00000000 WC-SZ-STAB 00040083 FL-CDE 0001D5B0 PSW FF050001 SOOFECSA
Q/TTR 00000000 WT-LNK OLOATDAC NM IEFSD263 EPA OFEABO STA OFEABO LN 000550 ATRl B9
MAIN STORAGE
D-PQE 000AS5810 FIRST 000A5820 LAST 00C0A5820
PQE 0A5820 FFB OCCCCO0O0 LFB OGOAFO00 NPQ 000C00CO PPQ 00000000
TCB 0001A788 RSI 00028000 RAD 000A5800 FLG 0000
Figure 24. Sample of TSO Control Block Format (Part 2 of 3)

T33ewxod IndIN0 AWNAIAAWI

TTIT &LADSL -- OSL

MODULE IMDSADMP DATE 11/12/70 TIME 00.12 PAGE 0010
DEB OAT74A4 APPENDAGES END OF EXT 01516E SI0 01516C PCI 0151DC CH END 0151A0 AB END 01516C
PFX 00000000 ¢2co0c08B 00003FE2 110000C0
TCB 050A6D68 NDEB 01000000 ASYN 69000000 SPRG 00000000 UPRG 02000000 PLST B8000000 DCB EFOCCE64
AVT 04015158
FM-UCB START END TRKS
50002AF0 0C61C000 0€920013 03ES8
50002ABO 009F0000 00C60013 0320
TIOT O0A6E28 JOB KGNO1 STEP TMP PROC KGNPO1
OFFSET LN-STA DDNAME TTR-STC STB-UCB
0018 140401C0 SYSPRINT 00491600 80002570
002C 14040140 SYSCCMD 00480A00 80002AF0
0040 14040160 C0481000 80002AB0
0054 14040100 SYSUCUMP 00491800 80002530
0068 14040100 SYSUT1 00481200 80002530
. 007C 14040100 SYSUT2 004B0600 80002570
0090 14040100 BSLOUT 00491A00 800025F0
00A4 14040100 SNAPTAPE 004C1100 80002530
coB8 14000010 DD1 €04B0800 00000000
oocc 14000010 DD2 004B0CO0 00000000
00EO 14000010 DD3 004BOEOO 00000000
00F4 14060010 DD4 004E0100 00000000
0108 140C0010 DDS 004E0300 00000000
011C 14000010 DD6 004E0500 00000000
0130 140C0010 DD7 004E0900 00000000
0l44 14000010 DD8 004E0BOO 00000000
PSCB 0OA7B88 USER KGNO1 USRL 05 GPNM SYSDA ATR1 €000 ATR2 0000 CPU 00018800
SWP C04C33FD LTIM 008A0560 TCPU 00000000 TSWP 00020000 TCON 00000000 TCO1 00900000
RLGB QCCA8700 UPT O0O00A86F0 UPTL 0010 RSV1 0000 RSV2 C0000C00 USE1l 00000000
USE2 CCCCCOCOo
TAXE 0A6CBO TMFLD 00 PPSAV 0CD710 ABOPSW 00000000 WCSA 00 SIZE 12 STAB 4034
EP 00008834 LOPSW 00040000 ROPSW oeo003c2 USE 00 10E 000000 WCF 00
LINK 000000 GRO ¢000000C GR1l 00000000 GR2 00000000 GR3 00000000 GR4 00000000
GR5 00000000 GR6 000000C0 GR7 00000000 GR8 00000000 GR9 00000000 GR10 00000000
GR11 00000000 GR12 00000000 GR13 0C0C0000 GR14 00000000 GR15 00000000 NIQE 0000000C
LNK 000A6D14 PRM1 00000000 IRB 000A6CBO TCB8 000A6CBO TLNK 000A6D68 XPSW 000000C0
EXIT 00000000 STAT 00000000 PARM 000ABBF8 TATIE COOCCF7C 1RUF 00000000 USER 000CCDB4

Figure 24. sample

of TSO Control

Block Format (Part 3 of

3)

LUs

SZU

CTR

MUS

SAV

ECB

SIA

ICB

hhhh
The maximum number of TSO users that
may be logged onto the system. For
additional users to be logged onto the
system, the value of LUS must be
greater than the value in CUs. LUS
cannot exceed the value in NTJ. LUS
is set by the time sharing control
task (TSC). This field is initially
set to the same value as MUS; however,
if TSO encounters I/0 errors while
swapping users in and out, the time
sharing control task reduces this
value to limit the number of TSO
users.

hhhh

The number of time-sharing job blocks
(TIJBs) and terminal status blocks
(TSBs) allocated when TSO was started.
The dummy TJB for the terminal job
identification (TJID) equal zero is
not included. The value of LUS cannot
exceed this number.

hhhh
The number of bytes in the time
sharing job block (TJB).

hhhh
Contains the number of region control
blocks (RCBs) allocated when TSO was
started. This number cannot be
increased after the TSO system is
started.

hhhh
The maximum number of users that may
be logged onto a TSO system. This
field is set by the START and MODIFY
commands issued by the operator.

hhhhhhhh

The beginning address of three 18-word
save areas used by the time sharing
control task (TSC), the time sharing
interface program (TSIP), and the time
sharing dispatcher.

hhhhhhhh
The address of the table control block
(TSECBTAB) which contains the event
control blocks (ECBs) used to post the
time sharing control task (TSC), the
region control tasks (RCTs), and the
terminal input output coordinator
(TIOC).

hhhhhhhh
The address of the time sharing
interface area (TSIA).

hhhhhhhh
The address of the time sharing
interface control block (TSICB).

I01

TQE

102

103

D02

1cQ

TRB

LPA

SLF

TsC

SPL

SVT

112 Programmer's Guide to Debugging (Release 21)

hhhhhhhh

The address of the branch entry point
IKJEAIOl1l in the time sharing interface
program (TSIP).

hhhhhhhh
The address of the timer queue element
(TQE) used by TSO for time slicing..

hhhhhhhh

The address
IKJEAIO2 in
dispatcher.

of the entry point
the time sharing

hhhhhhhh

The address
IKJEAIO3 in
dispatcher.

of the entry point
the' time sharing

hhhhhhhh

The address of the entry point to the
TSO driver routine (IKJEADO2), or the
equivalent entry in a user written
routine.

hhhhhhhh
The address of the first element in
the logon communications queue.

hhhhhhhh
The first address in the trace control
block chain. This address is
established and used by the statistics
collection routine. It is set to zero
by the time sharing control task
(TSC).

hhhhhhhh

The address of the first contents
directory entry (CDE) in the time
sharing link pack area.

hhhhhhhh
The address of the system-initiated
logoff routine.

hhhhhhhh

The address of the task control block
(TCB) for the time sharing control
task (TSC).

hhhhhhhh
The address of the start parameter
list.

hhhh
The minimum number of 2K blocks for a
region during logon.

hhhh
Reserved for future use.

hhhhhhhh

The contents of the SVC table entry
used by the time sharing interface
program (TSIP).

SVQ hhhhhhhh
The contents of the SVC table entry
used by the TCAM/TIOC interface
program.

ABN hhhhhhhh
The address of the out-of-main storage
abnormal termination routine
(IKJEATO07). The routine is resident
in main storage.

D03 hhhhhhhh
The entry point address to the TSO
driver MODIFY routine (IKJEADO3), or
the equivalent entry point address in
a user written routine.

FLM hhhhhhhh
The entry point address IKJEFLM for
the system initiated logoff routine.

QTP hhhhhhhh
The entry point address IKJIGGQT1 for
the branch entry to the TCAM interface
program (QTIP).

T08 hhhhhhhh
The entry point address to the TSO
command routine (IJEATO08) for TSO
dumps taken by the time sharing
control task (TSC) TSO dumps.

DMP hhhhhhhh
The address of the TSO dump control
block.

T06 hhhhhhhh
The TCB address of the TSO dump
routine (IKJEAT06) for the time
sharing control task (TSC) modify
routine.

TIME SHARING REGION CONTROL BLOCK (RCB)
FORMATTING: A region control block (RCB)
contains information that is unique to a
time sharing region. There is one RCB for
each time sharing region. The RCBs reside
in the time sharing control tasks region,
they are contiguous, and they are created
during initialization of the time sharing
controller.

RCB hhhhhh
The address of the RCB.

RCT hhhhhhhh
- The address of the task control block
(TCB) for this region control task
(RCT). The TCB contains the address
of the partition queue element (PQE)
that defines the region.

ECB hhhhhhhh
The event control block (ECB) on which
this region control block (RCB) waits.
This ECB must be posted before this
region control task (RCT) can perform
one of its functions.

DIECB hhhhhhhh
The event control block (ECB) that is
posted upon completion of this region
control task (RCT). The time sharing
control task (TSC) waits for this ECB
to be posted.

hhhh

The terminal job identification (TJID)
for the time sharing job currently
executing in this region.

TJID

RSIZE hhhh
The number of 2K blocks in this
region. It is set by the time sharing
control task (TSC) when the time

sharing system is started.

ISQSZ hhhh
The number of 2K blocks in the local
system queue space (LSQS) for this
region. It is set by the time sharing
control task (TSC) when the time
sharing system is started.

hh
The identification number assigned to
this region.

NMBR

PKEY hh
The protect key (PKEY) for the time
sharing job currently executing in
this region.

UMSMN hh
The number of entries in the main
storage map which describes the main
storage image that was initialized
during logon.

FLG hh
This field contains the first byte of
the region control block (RCB) flags.
The flags indicate various functions
to be performed by the region control
task (RCT) and time sharing control
task (TsC). These flags are set by
the time sharing interface program
(TSIP), the time sharing control task
(Tsc), and the terminal input/output
coordinator (TIOC). These flags are
tested and reset by the region control
task (RCT) and the time sharing
control task (TSC).
leea «e-« RCBFQO: Bit 0 is the
quiesce flag. When set,
this flag indicates that the
current user of this region
should be quiesced.

.1. -

.o e ®

RCBFSO: Bit 1 is the swap
out flag. When set, this
flag indicates that the
current user should be
swapped out.

IMDPRDMP Output Formatting: TSO -- RCB 113

FLG2

114

eeale ee<e RCBFSI: Bit 2 is the swap
‘in flag. When set, this
' flag indicates that the
current user of this region
should be swapped in. The
user's terminal job
jdentification (TJID) is in
the region control block
(RCB) .

RCBFRS: Bit 3 is the
restore flag. When set,
this flag indicates that the
user, whose terminal job
identification (TJID) is in
the region control block
(RCB), should be restored by
the region control task
(RCT) .

emel eeee

1... RCBOCAB: Bit 4 set
indicates that the
out-of-main storage abnormal
termination routine was

invoked.

» o @i

Bit 5 is reserved for future
use.

eXea

ceae

««1. RCBFAT: Bit 6 is the
attention exit flag. When
set, this flag indicates
that an attention exit has
been requested for one or

more users.

-++1 RCBFND: Bit 7 is the END
region control task (RCT)
flag. When set, this flag
indicates that the region
control task (RCT) should
terminate normally and
return control to the time

sharing control task (TSC).

hh

This field contains the second byte of

the region control block (RCB) flags.

See FLG.

lcee «ee. RCBFSE: -Bit 0 is the swap
end flag. When set, this
flag indicates that the
swap-in operation for the
current user of this region
is complete.

-1l.. RCBSTOP: Bit 1 is the

region stop flag. When set,

this flag indicates that a

request has been made to

stop the region. Every user

of this region will be

logged off.

RCBACTV: Bit 2 indicates
the active status of the
region control task (RCT).

wele

The flag is set to one when
the region contrxol task is
initialized; it is set to
zero when the region control
task is terminated.

eeel weee RCBSTR1l: Bit 3 indicates
that a region start has been
requested, and the region
control task should be
attached.
eeees l... RCBSTR2: Bit 4 indicates
that a region start has been
requested, and a swap logon
image should be created.
eeees XXX Bits 5 through 7 are
reserved for future use.
FBQE hh
The number of free block queue
elements (FBQEs) for this region.
UTTMQ hhhh
The relative track address (TT) of the
map queue pointer. The map queue
pointer describes the location of the
region's initialized logon image on
the swap data set.
CUSE hhhh

The number of users logged on to use
this region. The time sharing control
task (TSC) increments the count before
disconnect (DISC) and decrements the
count during logon.

EXTNT hhhhhhhh

UMSM

SDCB

The address of the initialized time

sharing job block extension (TJBX).

The TJBX is created during the logon
initialization for this region.

hhhhhhhh

The address of the user main storage
map. This map describes the
initialized logon main storage image
for this region.

hhhhhhhh

The address of the swap data set
control block (SDCB). This block
points to the location of the
initialized logon image on the swap
data set for this region.

PQE hhhhhhhh

Programmer's Guide to Debugging (Release 21)

The address of the partition queue
element (PQE) pointer in the system
queue space (SQS). The PQE describes
the main storage space assigned to
this region. The PQE pointer is used
to manipulate main storage when (1)
this region control task's (RCT's)
region is obtained during start time
sharing initialization and (2) this
region control task's (RCT's) region

is freed during region control task
termination.

PRG hhhhhhhh
PRG1 hhhhhhhh
PRG2 hhhhhhhh
These three words constitute the SVC

I/0 purge parameter list.

For further

information, see the "Purge Macro
Instruction® in the publication IBM

System/ 3603

System Programmer's

Guide, GC28-6550.

QPL hhhhhhhh
The address of the quiesce I/0
parameter list.

STECB hhhhhhhh

An event control block (ECB).

During

a subsystem recovery, the time sharing
control task (TSC) waits for this ECB
to be posted by the region control

task

(RCT). The posting is done

during end processing.

RCOVR hhhhhhhh
These bits indicate the current
recovery status of the region control

task

(RCT) in the event of a subsystem

failure.

byte 0
l...

« XXX

byte 1
1...

<1l..

P

eael

«eses RCBRCOVR: Bit 0 set
indicates that the status
bits in the following 3
bytes are valid.

XX.. Reserved for future use.

« +X. RCBWTOR: WTOR restore
processing complete.

«e«X RCBTACMP: Transient area
restore processing complete.

-= RCBRSFLG

eees RCBRSTRT: Bit 0 set
indicates a restore.

RCBTCBDN: Bit 1 set
indicates that the task
control blocks (TCBs) have
been requeued.

RCBQELCM: Bit 2 set
indicates that the queue
element (QEL) restore
processing is complete.

s e aw

eeees RCBTQECM: Bit 3 set
indicates that the timer
queue element (TQE) restore
processing is complete.
l... RCBRQIQC: Bit 4 set
indicates that both the
request queue element (RQE)
and the interrupt queue
element (IQE) restore
processing is complete.

.o e

byte 2
l...

wlea

0-01.

ceel

- ...

byte 3
l...

..

IMDPRDMP Output Formatting:

«1l.e« RCBIORSC: Bit 5 set
indicates that'the 1/0
restore processing is
complete.

««XX Bits 6 and 7 are reserved
for future use.

-= RCBQUFLG

«es« RCBQUSTR: Bit 0 set
indicates that quiesce has
started.

«eees RCBIOSTR: Bit 1 set

indicates that the first
entry into the I/0 purge
routine is complete.

<= e+ RCBTADON: Bit 2 set
indicates that the transient
area gquiesce is complete.

«-++ RCBWTORD: Bit 3 set
indicates that the write to
operator with reply (WTOR)
quiesce is complete.

1... RCBQELDN: Bit 4 set
indicates that the queue
element (QEL) quiesce is
complete.

.1.. RCBIODON: Bit 5 set

indicates that the second

entry I/0 purge is complete.

»«l. RCBTQEDN: Bit 6 set
indicates that the timer
queue element (TQE) quiesce
is complete.

«e«l RCBRQIQD: Bit 7 set
indicates that both the
request queue element (RQE)
and the interrupt queue
element (IQE) are complete.

RCBSWTCH: Bit 0 indicates
the method of search used by
various subroutines in
IKJEATO07. When equal to
zero, all system users are
purged according to the
terminal job identification
(TJID). When equal to one,
all users in this region are
purged as indicated by the
region control block
addresses.

RCBSWTON: When bit 1 is set
along with bit 0 being set,
all system users are purged.
A search is made according
to the terminal job
identification (TJID) and
the request control block
(RCB) .

TSO -- UMSM 115

«=XX xxxx Bits 2 through 7 are
reserved for future use.

CONID hh
The routing code of the console that
issued the last START, MODIFY, or STOP
command.

RESV hhhhhh
Reserved fqr future use.

USER MAIN STORAGE MAP (UMSM) FORMATTING:
The UMSM. is used in the swap operation.
One user main storage map exists for each
possible time sharing user. The UMSM
contains a series of consecutive one-word
extent fields (ADDR-LN). Each one-word
extent contains a halfword address field
(ADDR) and a halfword length field (LN)
that describe the main storage space
allocated to the time sharing user. The
number of UMSM extents has established
defaults that can be modified by the
operator when he starts the time sharing
system. The number of extent entries is
stored in the time sharing job block (TJB)
at TIBUMSMN. Unused extent fields contain
ZEeros.

UMSM hhhhhh
The address of the user main storage
map.

ADDR~LN hhhhhhhh
bytes 0 and 1

Begin Address: This field contains
the two high order bytes of the
beginning address of the main storage
segment allocated to the time sharing
user. Since main storage is allocated
in 2K blocks, the low order byte is
always zero and, therefore, need not
be kept in a control block.

bytes 2 and 3
This field contains the two high-order
bytes designating the length of the
main storage space allocated to the
time sharing user. Since main storage
is allocated in 2K blocks, the
low-order byte is always zero and,
therefore, need not be kept in a
control blocke.

SWAP DATA CONTROL BLOCK (SWAP DCB)
FORMATTING: The swap data control block
(SWAP DCB) is used whenever a time sharing
user's region is swapped into or out of
main storage. Each region control task
(RCT) has one swap data control block.
Following the address of the swap data
control block is the contents of the main
storage data that was written on the swap
data set.

SWAP DCB hhhhhhhh
The address of the swap data control
block. ‘

TIME SHARING JOB BLOCK (TJB) FORMATTING:
The time sharing job block (TJB) contains
status information about the time sharing
user. The TJIB is retained in main storage
while the user is swapped out. One time
sharing job block exists for each possible
simultaneous time sharing user. The space
for the TJIB is obtained from the time
sharing control task (TSC) region during
time sharing initialization. Status
information about terminals related to this
TJB is contained in the terminal status
block (TsB). The address of the terminal
status block is the first word of the TJB.

TJB hhhhhh
The address of this TJB.

TSB hhhhhhhh
The address of the terminal status
block (TSB) that owns this terminal
job. If zero, this job was started by
an operator command.

ATTN hh
A count of the unprocessed attention
interrupts for this job.

STAX hh
The number of scheduled specify
terminal attention exits (STAXs).

STAT hh
This field contains flags that
indicate the status of the time
sharing job.
lueee eee.e TIBNJB: Bit 0 set indicates
that this TJB is currently
unused.

elee <e... TIBINCOR: Bit 1 set
indicates that this user is
currently in main storage.

eel. «... TIBLOGON: Bit 2 set
indicates that the logon
start has been set by the
terminal input output
coordinator (TIOC) during a
dialup to request a logon.
This bit is reset by the
time sharing control task
(TsC).

eeel weeo. TIBIWAIT: Bit 3 set
indicates that the terminal
job is in an input wait
state.

esee lee.. TIBOWAIT: Bit 4 set
indicates that the terminal
job is in an output wait
state.

116 Programmer's Guide to Debugging (Release 21)

eees ola.

eses n.ln

emees eesX

STATZ2 hh

TIBSILF: Bit 5 set
indicates that the user is
to be logged off the system.
This bit is set by the
IKJSILF subroutine and
tested by the region control
task (RCT) restore routine
that posts the logon ECB.
This bit is tested and reset
by the logon/logoff routine.

TIBDISC: Bit 6 set
indicates that a request has
been made to the terminal
input output coordinator
(TIOC) to disconnect the
line.

Bit 7 is reserved for future
use.

These flags indicate the status of the
time sharing job.

leee ceee

ales ..

.-.1. -e e e

ool caa.

csen leaa

eeee «XXX

EXTNT hﬁhhhhhh

TIBHUNG: Bit 0 set
indicates that the user's
comminication line
disconnected.

TIJBHOLD: Bit 1 set
indicates that an output
wait (OWAIT) exists because
of a hold option.

TJBOCAB: Bit 2 set
indicates an out-of-main
storage abnormal termination
has occurred for this user.

TIBRNAV: Bit 3 set
indicates that the user
cannot be logged onto the
time sharing system because
(1) a machine check occurred
in the user”’s region or (2)
the region is too small for
the user.

TIJBSURSV: Bit U set
indicates that on the next
swap in the swap unit is not
marked as available for the
user.

Bits 5 through 7 are
reserved for future use.

The address of the terminal job block

extension
storage.

RCB hhhhhhhh

(TdBX) when it is in main

The address of the region control
block (RCB) for this job.

UMSM hhhhhhhh
The address of the user main storage
map (UMSM) for this job.

SDCB hhhhhhhh
The address of the swap data control
block (DCB) for this job.

UTTMQ hhhh
leee eeee TIBUTTMP: Bit 0 of byte 0
set indicates a parallel
swap.

.111 1111 Bits 1 through 7 of byte 0
along with byte 1 contain
the offset into the map
gqueue. The map queue
contains a chain of
allocation units for this
user on the swap data set.
The address of the queue is
in the UTTMQ field of the
TSO region control block
(RCB) .

RSTOR hh
This field contains the status flags
used by the region control task (RCT)
restore operation.

leee <«e.. TIBOWP: Bit 0 set indicates
to the terminal input output
coordinator (TIOC) to end
the output wait (OWAIT)
condition.

l.. «... TIBIWP: Bit 1 set indicates
to the terminal input output
coordinator (TIOC) to end
the input wait (IWAIT)
condition.

eeXe essee Bit 2 is reserved for future
use.

esel TIBLOGP: Bit 3 set
indicates that the event
control block (ECB) waited
for by the logon image
should be posted. This flag
is set by the time sharing
control task (TSC) logon
routine and by the IKISILF
subroutine.

eeee lo.. TIBLWAIT: Bit 4 set
indicates that if the user
is not made ready by restore
processing, he should be
swapped out again.

eese «X.o Bit 5 is reserved for future
use.

esee sele. TIBFAT: Bit 6 set indicates
that an attention exit is
requested for this user's
job.

IMDPRDMP Output Formatting: TSO -- TJB 117

eeee weeX Bit 7 is reserved for future
use.

UMSMN hh .
: The number of entries in the user main
storage map (UMSM).

USER ccccccce
The userid of the user who owns this
job. This field may have trailing
blanks when the user identification
contains less than eight characters.

IPPB hhhhhhhh
An address pointer to the beginning of
a chain of inter-partition post blocks
that indicate the event control blocks
. (ECBs) to be posted by the restore
operation.

NEWID hh

Identifies the region where the user
should be logged on. = When this field
is zero, the TSO driver should select
the region. When this field is set by
the end-of-routine for logon/logoff,
it identifies the new region to which
the user will be shifted.

FLUSL hh
Reserved for future use.

TJID hhhh
This field contains the terminal job
identification (TJID) for this time
sharing job.

MONI hh
These flags indicate various
processing functions that cause
operator messages to be sent to this
terminal. The flags are set and reset
when the terminal user issues the
MONITOR subcommand of the OPERATOR
command.

leei eeee TIBMDSN: Bit 0 set
indicates that the first
non-temporary data set
allocated to a new volume
should be displayed as part
of the mount and keep
messages.
elee oo TIBMIBN: Bit 1 set
indicates that the name of
each job is to be displayed
on the console when each job
is initjiated and terminated,
and that the unit record
allocations are to be
displayed when a job step is
initiated.

eeees TIJBMSES: Bit 2 set
indicates'thag when a
terminal session is
initiated or terminated a
rmessage is displayed on the
operator console.

- -110

enel o<e.e TIBMSPA: Bit 3 set
indicates that the available
space on a direct access
device is to be displayed on
the operator comsole as part
of the demount message.

esee leecs TIBMSTA: Bit 4 set

: indicates that, at the end
of a job or job step,
certain data set disposition
information should be
printed with the demount
messages. These
dispositions are:
CATLG, or UNCATLG.

KEEP,

.xxx Bits 5 through 7 are
reserved for future use.

RSV hhhhhh
Reserved for future use.

TERMINAL STATUS BLOCK (TSB) FORMATTING:
Each terminal status block (TSB) contains
status information about one terminal user.
The terminal input output coordinator
(TIOC) uses this information. During
system initialization, one TSB is created
for each possible user. The main storage
space is obtained in one contiguous block
for all of the TSBs in the region of the
time sharing control task (TSC); this
contiguous string of TSBs is called the TSB
table. The origin pointer to the TSB table
is the TIOCTSB field in the TIOCRPT.

TSB hhhhhh
The address of this terminal status
block (TSB).

STAT hh
This field contains the terminal
status indicator flags.
l1.ce «c.. TSBINUSE: Bit 0 set
indicates that this TSB is
being used.

elee eee. TSBIWAIT: Bit 1 set
indicates that the terminal
keyboard is locked due to a
lack of input buffer space.

esl. TSBDSPLY: Bit 2 set
indicates that this TSB
represents a terminal which
is a graphic device.

118 Programmer's Guide to Debugging (Release 21)

TSBNOBUF: Bit 3 set
indicates that TPUT found no
time sharing buffers.

om‘-l - . we

1... TSBITOFF: Bit 4 set
indicates that this user
wishes to prevent
inter-terminal

communications.

«1l.. TSBDISC: Bit 5 set
indicates that this TSB has

been processed by logoff.

wess =eXe Bit 6 is reserved for future
use.
esee wesl TSBATNLD: Bit 7 set

indicates an attention for
an input line deletion.

TJB hhhhhh

FLG1

The address of the time sharing job
block (TJB) currently used by this
terminal. This field contains zeros
when this terminal is not associated
with a time sharing job block.

hh

This field contains terminal status
flags.

1... TSBANSR: Bit 0 set
indicates that an attention
simulation is requested.

S TSBOFLSH: Bit 1 set
indicates that the output
trailer queue is to be
flushed. This bit is set by

TCLEARQ.

eela TSBOWIP: Bit 2 set
indicates that a TPUT

operation is in progress.

esal TSBWOWIP: Bit 3 set
indicates that a task is
waiting for another task to

complete a TPUT operation.

l... TSBIFLSH: Bit 4 set
indicates that an input

queue flush is in progress.

«l.. TSBTJIJOW: Bit 5 set
indicates that this user is
already using the maximum
number of output buffers
that can be allocated. This
TSB waits on event control
block (ECB) for this TCB.
This bit is set by a TPUT
macro instruction with a
terminal job identification
(TJID).

WISB

LNSZ

Bit 6 is reserved for future
use.

oo Xe

cene

~eel TSBTIJBF: Bit 7 set
indicates that no time
sharing buffers were
available when the svVC for
TPUT with the terminal job
identification (TJID) was
issued. The system waits
for the TJB event control
block (ECB) to be posted.

... e

hhhhhh
Reserved for future use.

hh

The number of characters that can be
printed on one line for this terminal.
This field is set by either logon or
STSIZE.

OTBFP hhhhhh

NOBF

OBFP

The address of the trailer buffer if
the heading buffer for a message has
been removed from the message queue.
This field is reset to zeros when the
message has been completely moved to
the TCAM buffers.

hh

The number of buffers on the output
queue. »

hhhhhh
The address of the first buffer on the
output buffer queue.

BRKFL hh

IMDPRDMP Output Formatting:

These flags indicate the status of the
communication line.

TSBBIPI: Bit 0 set
indicates to the TSINPUT
that a partial line exists
for prompting. Set by .
TSOUTPUT.

1l...

elee TSBAUTON: Bit 1 set
indicates that automatic
input line numbering is
requested.

EE R R

TSBBRKIN: Bit 2 set
indicates that TPUT is using
the breakin option and a
partial line was assigned to
this function. This bit is
set by TSINPUT. TSINPUT is
a TCAM subtask.

P

eneal TSBAULST: Bit 3 set
indicates that automatic

line numbering has started.

l1... TSBAUTOC: Bit U4 set
indicates that automatic

character prompting is used.

7SO -- TSB 119

ewee slee TBSTAUT: Bit 5 set
indicates that the user is
being prompted with the next
line number.

emse sell TSBSATN1l: Bits 6 and 7
contain a count of the
number of characters used to
simulate attention.

ITBFP hhhhhh
The address of the first buffer in the
trailer input buffer chain.

NIBF
The number of buffers on the input
queue.
IBFP hhhhhh
The address of the first buffer in the
input buffer queue chain.
CLEAR hh
This field contains terminal status
flags.
leece ee.. TSBATTN: Bit 0 set
indicates that an attention
from this terminal has been
ignored.
elee eece TSBTIMSG: Bit 1 set
indicates that TSOUTPUT is
processing a terminal job
identification (TJID)
message.
eele eee. TSBSPIT: Bit 2 set
indicates that breakin
prompt and automatic prompt
are suppressed.
eeaal «v.. TSBNBKSP: Bit 3 set
indicates that the next
character in the user's
buffer is a backspace
character.
eeee XXXX Bits 4 through 7 are
resexrved for future use.
QCB hhhhhh

The address of the queue control block
(QCB) that contains the destination
for the message being sent.

ECB hhhhhhhh :
The event control block (ECB) at which
the inter-terminal communication (TPUT
with TJID) waits (1) when there are no
time sharing buffers, (2) when the
TSBOWIP bit is set, or (3) when the
TSBOQHLD bit is set.

TJID hhhh
The terminal job identification (TJID)
of the task waiting on this TCB's
event control block (ECB).

STCC hhhh
These two bytes define special purpose
characters that may be redefined by
the terminal user.

byte 0
TSBLNDCC: This byte contains the line
delete character.

byte 1
TSBKSPCC: This byte contains the

character delete character.

ATNLC hhhh
The number of successive lines of
printed output between attention
simulation reads.

ATNTC hhhh
The number of seconds between
attention simulation reads.

LNNO hh
When a graphic terminal device is
used, this is the number of line that
can be displayed.

BLNK hh
Reserved for future use.

ASRCE hhhh
This field contains the same
information as the PRFSRCE field in
the TCAM buffer prefix.

ATNCC cccc
This field contains from one to four
characters that are used to simulate
attention. Some of the character
positions may contain blanks.

AUTOS hhhhhhhh
This field initially contains the
starting line number for the first
input line. While the line of input
information is being received from the
terminal user, this field is updated
to contain the value of the current
line number.

AUTOI hhhhhhhh
This field contains the value that is
used to automatically increment the
value of the input line numbers. This
field can be modified by the terminal
user.

ERSDS cccc
When a graphic terminal device is
used, this word contains the
characters used to erase the display
screen.

TIME SHARING JOB BLOCK EXTENSION (TJBX)
FORMATTING: The time sharing job block
extension (TJIBX) contains user job
information that can be rolled out to the
swap data set with the user's job. The

120 Programmer's Guide to Debugging (Release 21)

TIBX resides in the local system queue
space (LSQS) for the region. The TJIBX
location is pointed to by the third word of
the time sharing job block (TJB). The
space for the TJIBX is obtained by the
region control task (RCT) during
initialization.

TJBX hhhhhh
The address of the TJIBX.

XFST hhhhhhhh
The address of the logon TCB. The
logon TCB is the first TCB on the
user's ready queue.

XLAST hhhhhhhh
The address of the last TCB on the
user's ready queue.

XDSE hhhhhhhh
The address of the data set extension
(DSE) used by TSO dynamic allocation.

XSVRB hhhhhhhh
The address of the first supervisor
request block (SVRB) purged from the
transient area queue.

XRQE hhhhhhhh
The address of the first request queue
element (RQE) purged from the
asynchronous exit queue.

XIQE hhhhhhhh
The address of the first interrupt
queue element (IQE) purged from the
asynchronous exit queue.

TAXE hhhhhhhh
The address of the queue of terminal
attention exit elements (TAXEs) used
to schedule the attention exits.

XLECB hhhhhhhh
The logon event control block (ECB)
that was posted by the region control
task (RCT) to activate logons/logoff.

XPSWD cccccccc
The password entered by the terminal
user during logon. If the password
contains less than eight characters,
the field is padded to the right with
blanks. The entire field contains
blanks when the user is not required
to enter a password.

RSV hhhhhhhh
Reserved for future use.

XAIQE hhhhhhhh
The address of the attention interrupt
queue element (IQE) currently being
processed by the attention prologue.

IMDPRDMP Output Formatting:

XQPL hhhhhhhh
The address of the quiesce parameter
list (QPL).

XNQPE hhhh
The number of entries in the quiesce
parameter list (QPL).

XNTCB hhhh
The number of task control blocks
(TCBs) active in the user's job step.
When the value in XNTCB exceeds XNQPE,
the quiesce parameter list is
enlarged.

XLOPL hhhh
The number of bytes in the quiesce
parameter list.

HBFL hhhh
Reserved for future use.

XACT hhhhhhhh
The relative track and record address
(TTR) for the account control table
(ACT) on SYSJOBQE.

XAECB hhhhhhhh
This field contains either: (1) The
address of the logon/logoff event
control block (ECB) when logon
processing begins. (2) The address of
the command scheduling block (CSCB's)
cancel event control block (ECB) after
the CSCB is created.

XKEYA hhhhhhhh
The address of the storage key save
area.

PROTECTED STEP CONTROL BLOCK (PSCB):
protected step control block (PSCB)
contains accounting information related to
a single user. All timing information is
in software timer units. A software timer
unit is equal to 26.04166 microseconds.

The

PSCB hhhhhh
The address of this PSCB.

USER ccccccce
These seven bytes contain the userid
entered by the terminal user during
logon. If necessary, it is padded to
the right with blanks. This field
uniquely identifies each terminal user
in the time sharing system.

USRL hh
The number of nonblank characters in
the userid.

GPNM cccccccc
An eight-byte group name initialized
by logon from the user attribute data
set (UADS). When a name is not
available from UADS, the unit name
used by the dynamic allocation

TSO -- TJIJBX 121

interface routine (DAIR) is used, if a
name is required.

ATR1 hhhh
Sixteen bits used to define termlnal
user attributes.

byte 0 .
leee «eese PSCBCTRL: Bit 0 set
indicates that the user may
use the OPERATOR command.
eles eeee PSCBACCT: _Bit 1 set
indicates that the user may
use the ACCOUNT command.

eese PSCBJCL: Bit 2 set
indicates that the user may
use the SUBMIT, STATUS,
CANCEL, and OUTPUT commands.

- . 11‘

e»«X Xxxx Bits 3 through 7 are
reserved for future use.

byte 1 ,
Reserved for future use.

ATR2 hhhh

bytes 0 and 1
- Reserved for use by IBM customers.

CPU hhhhhhhh
The cumulative CPU time used by this
terminal user during this session.
The CPU field is set to zero during
logon.

SWP hhhhhhhh
The cumulative time that this terminal
user has been resident in the region.
The SWP field is set to zero during
logon.

LTIM hhhhhhhh :
The actual time of day that this user
logged on to the time sharing system
for this session.

TCPU hhhhhhhh
The total CPU time used by this
term;nal user, excluding the current
session.

TSWP hhhhhhhh
The total time that the terminal user
has been resident in the region during
this accounting period, excluding the
current session.

TCON hhhhhhhh

TCO1 hhhhhhhh
TCON and TCO01l are a single eight byte
field. This field contains the total
connect time for this terminal user
during this accounting period,
excluding the current session.

RLGB hhhhhhhh
The address of the re-logon buffer
block used by logon as a pointer to
the re-logon command buffer.

UPT hhhhhhhh '
The address of the user profile table
(UPT) -

UPTL hhhh
The number of bytes in the user
profile table.

RSV1 hhhh

RSV2 hhhhhhhh
RSV1 and RSV2 are a single six byte
field that is reserved for future use.

USE1 hhhhhhhh

USE2 hhhhhhhh
USE1 and USE2 are a single elght byte
field reserved for use by IBM
customers.

TERMINAL ATTENTION EXIT ELEMENT (TAXE)
FORMATTING: The TSO terminal attention
exit element (TAXE) consists of a regular
24 word interrupt request block (IRB) plus
a TSO addendum. It is used to schedule an
attention exit resulting from a terminal
attention interruption. It is created,
queued, and dequeued by the specify
terminal attention exit (STAX) macro
instruction. The main storage space for

the TAXE is obtained in the local system

queue space (ILSQS) of the terminal user's
region.

TAXE hhhhhh
The address of this TAXE when it is in
main storage.

TMFLD hh ;
This field contains indicators for the
time routines.
l.e. «e.. Bit 0 set indicates that the
timer element was not
queued.

el.. «2e. Bit 1 set indicates that the
local time-of-day option is
used.

««00 Bits 2 and 3 set to
zero-zero indicate that the
time interval was requested
in timer units (26.04166
rmicroseconds).

ee01 Bits 2 and 3 set to zero-one

indicate that the time
interval was requested in
binary units.

«¢10 Reserved for future use.

122 Programmer's Guide to Debugging (Release 21)

eell «... Bit 2 and 3 set to one-one
indicate that the time
interval was requested in
decimal digits.

weee leee Bit U4 set indicates that the
time interval has expired.

eeee »000 Bits S5 through 7 set to
zero-zero-zero indicate an
STIMER task time request.

«eee «001 Bits 5 through 7 set to
zexro-zero-one indicate an
STIMER wait request.

eess »011 Bits 5 through 7 set to
zexro-one-one indicate an
STIMER REAL time request.

eses 2100 Bits 5 through 7 set to
one-zero-zero indicate an
STIMER task time request
with a specified exit.

«ese +111 Bits 5 through 7 set to
one-one-one indicate an
STIMER REAL time request
with a specified exit.

Other combinations of bits 5 through 7
are reserved for future use.

. PPSAV hhhhhh

The starting address of the register
save area for the problem program.

ABOPSW hhhhhhhh

WCsA

SIZE

STAB

This field displays the right half
(bytes 4 through 7) of the program
status word (PSW) that was active in
the dump system during the execution
of an ABEND or ABTERM routine. If
these routines have not been invoked,
then this field contains zeros.

hh
The number of requests waiting when
termination occurred.

hh
The number of doublewords in this
request block.

hhhh
This field contains two bytes of
status and attribute information.

byte 0

The TAXE is a type of interrupt
request block (IRB). Byte zero
identifies the type of request block;
however, for the TAXE, only the IRB
identification is used.

0l.. +«.. Bits 0 and 1 set to zero-one
indicate that this is an
interrupt request block
(IRB) .

IMDPRDMP Output Formatting:

byte 1

This byte contains various request
block indicators.

leee wee. Bit 0 set indicates that the
RBLINK field points to the
task control block (TCB).

«l.. <.... Bit 1 set indicates that the
program related to the
interrupt request block
(IRB) is active.

meles wees Bit 2 set indicates that
this interrupt request block
(IRB) is for an exit routine
(ETXR) .

eeeX 2eee Bit 3 is reserved for future
use.

wees 00.. Bits 4 and 5 set to
zero-zero indicate that the
request queue element (IQE)
is not to be returned.

esse 0l.. Bits 4 and 5 set to zero-one
indicate that the interrupt
request block (IRB) has
queue elements for
asynchronously executed
routines that are request
queue elements (RQEs).

eeee 10.. Bits 4 and 5 set to one-zero
indicate that an interrupt
queue element (IQE) is not
to be returned at EXIT.

eesas 11.. Bits 4 and 5 set to one-one
indicate that the interrupt
request block (IRB) has
queue elements for
asynchronously executed
routines that are interrupt
queue elements (IQEs).

«ees «=1l. Bit 6 set indicates that the
request block storage can be
freed at exit.

eses s0.0 Bit 7 set to zero indicates
a wait for a single event or
all of a number of events.

eses seel Bit 7 set to one indicates a
wait for a number of events
that is less than the total
number of events that are
waiting.

EP hhhhhhhh

The address of the routine that was
asynchronously executed.

TSO -- TAXE 123

LOPSW hhhhhhhh (Left half of PSW)
ROPSW hhhhhhhh (Right half of PSW)

" This program status word (PSW)
contains the status of the program
represented by the request block being
displayed when a new request block was
created. Had the dumped system been
allowed to continue processing
normally, the operation would have
been resumed with this PSW.

USE hh
This field contains the use count as
used by ATTACH.

IQE hhhhhh
The address of the list origin for the
interrupt queue element (IQE).

WCF hh
The number of requests that were
pending when this dump was taken.

LINK hhhhhh
The address of the next request block
(RB) on this RB queue. If this is the
last request block on the gqueue, then
this field contains the address of the
task control block (TCB).

GRO hhhhhhhh

-

GR15 hhhhhhhh
The general register save area used by
the supervisor.

NIQE hhhhhhhh
The address of the next available
interrupt queue element (IQE).

LNK hhhhhhhh
The address of the next interrupt
queue element (IQE).

PRM1 hhhhhhhh
The address of the parameter list for
the asynchronous exit routine.

IRB hhhhhhhh :
The address of the interrupt request
block (IRB) to be scheduled next.

TCB hhhhhhhh
The address of the task control block
(TCB) for this TAXE.

TLNK hhhhhhhh
The address of the next TAXE on this
queue.

XPSW hhhhhhhh
The left half (bytes 0 through 3) of
the program status word (PSW) for the
user attention exit routine.

EXIT hhhhhhhh
The address of the user attention exit
routine. :

STAT hhhhhhhh
This field contains status flags for
this TAXE.)

byte 0
liee ee.. TAXEFKEY: Bit 0 set

indicates that the task
issuing the specify terminal
attention exit (STAX) macro
instruction is a problem
program.

wlee wee.e TAXEMOD: Bit 1 set
indicates that the task
issuing the specify terminal
attention exit (STAX) macro
instruction is in problem
program mode.

eele wa... TAXEFFREQ: Bit 2 set
indicates that the requested
TAXE is not available for
scheduling.

«eeX XxXx Bits 3 through 7 are
reserved for future use.

bytes 1-3
Reserved for future use.

PARM hhhhhhhh
The address of the parameter list for
the specify terminal attention exit
(STAX) macro instruction.

TAIE hhhhhhhh
The address of the terminal attention
interrupt element.

IBUF hhhhhhhh
The address of the user input buffer.

USER hhhhhhhh
The address of the user parameter list
from the specify terminal attention
exit (STAX) macro instruction.

Task Control Block Summaries

1f, during the course of program execution,
the IMDPRDMP program formatted the major
system control blocks of more than one MVT
or MFT task, a summary of each displayed
task's TCB is presented at the end of the
control block portion of the dump listing.
Depending upon the operating system option
under which the dumped task was operating,
either the MVI/MFT-with-subtasking TCB
summary format (Figure 25), or the abridged
MFT-without-subtasking TCB summary format
(Figure 26) is presented.

Both summary formats are identified by
two lines of heading information. The

124 Programmer's Guide to Debugging (Release 21)

first heading line displays the optional
dunp listing title, the name of the module
that invoked the dump, and the date and
time that the information was captured from
the dumped system. The second line of
heading displays the identifying phrase
"#kkk TCB SUMMARY ****_ "

The individual TCB summaries contain the
following information:

MVT or MFT with Subtasking TCBs: Are
summarized in the two-line array
illustrated in Figure PROUT-9 and described

below:

JOB ccccccee
The JOB field in the first line of
each task control block array displays
to the user the eight-character name
of the job associated with the TCB.

STEP cccceccce
The STEP field shows the eight-
character name of the job step as it
appeared on the label field of the
EXEC JCL statement associated with the
step.

TCB hhhhhh
The starting address of the task
control block.

CMP hhhhhhhh
This field shows the ABEND indicators
and user and system completion codes
associated with this TCB. (See the
relevant TCB discussion for the
contents of this field.)

NTC hhhhhhhh
This word contains the address of the
TCB that occurred previous to this one
on the originating task's subtask
queue. If the TCB being summarized
was the first on the queue, this field
displays zeros.

OTC hhhhhhhh
The OTC field displays the address of
the TCB representing the originating
task.

IMDPRDMP Output Formatting:

LTC hhhhhhhh
This field contains the address of the
TCB that occurred last on the
originating task's subtask queue at
the time the dump was taken. If the
TCB being summarized was the last on
the subtask queue, this field contains
Zeros.

PAGE ddd
The page of the dump listing on which
the formatted control blocks
associated with this TCB, may be
found.

MFT Without Subtasking TCBs: Are
summarized in the two line abridged array
illustrated in Figure PROUT-10 and
described below:

JOB ccccecece
The JOB field in the first line of
each task control block array,
displays to the user the
eight-character name of the job
associated with the TCB being
summarized.

STEP cccceccece
The STEP field shows the
eight-character name of the job step
as it appeared in the label field of
the EXEC JCL statement associated with
the stepe.

TCB hhhhhh
The starting address of the task
control block being summarized is
given in the first field of this
second line.

CMP hhhhhhhh
This field shows the ABEND indicators
and user and system completion codes
associated with the TCB. (See the MFT
TCB discussion for a description of
the contents of this field.)

PAGE ddd
The page of the dump listing on which
the formatted control blocks
associated with this TCB, are found.

TCB Summaries 125

9Z1T

(1Tz 9seaTay) burbbngsad o031 apInod S, I2UuMeIHOIg

Figure 25.

TSB Summary Sample for System That Operated Under MVT or MFT With Subtasking

MODULE IMDSADMP DATE 11/12/70 TIME 00.15. OAGE 0032
* ¥ & %k TCB SUMMARY * & &k %
JoB STEP
TCB 0085E8 CMP 000CCO000 NTC C0000000 0TC 00009CAQ LTC 00000000 PAGE 0004
Jos STEP
TCB 008728 CMP (QcCoCCCo0 NTC 00000000 0TC 00009CA0 LTC 00000000 PAGE 0005
418 STEP
TCB 008868 CMP 006000000 NTC 00000000 0TC 00009CAQ LTC 00000000 PAGE 0006
Jos STEP
TCB 0089A8 CMP C00000CO0 NTC €0000000 OTC 00009CAQ LTC 00000000 PAGE 0007
Jos STEP
TCB 0O08AES CMP 00000000 NTC 00000000 OTC 00009CAO LTC 00000000 PAGE 0008
Jos STEP
TCB 008C28 CMP 00000C00 NTC 00000000 OTC 00009CAQ LTC 00000000 PAGE 0009
JosB STEP
TCB 008D68 CMP 0000C000 NTC 00000000 OTC 00009CA0 LTC 00000000 PAGE 0010
Jas STEP
TCB 0OO0BEAS8 CMP 00000000 NTC €0000000 OTC 00009CAQ LTC 00000000 PAGE 0011
Jos STEP
TCB OOS8FES CMP (€00CCO00 NTC C00000CO QTC 00009CAQ LTC 00000000 PAGE 0012
L— — —— et e s s S}
MODULE IMDSADMP DATE 11/12/70 TIME 00.15 PAGE 0033
* ¥ X ¥ TCB SUMMARY * % ¥k X
JOB MASTER STEP SCHEOULR
TCB 009CAQ CMP 000COCCO NTC 000C0000 0TC 00000000 LTC 0002E268 PAGE 0022
JOB MASTER STEP SCHEDULR
TCB 0288C8 CMP 00000000 NTC 00009BAS8 OTC 00009CAOQ LTC 00000000 PAGE 0025
Jos JoB4 STEP GO
TCB 02EOF8 CMP 00000000 NTC 000288C8 OTC 00009CAQ LTC 0002D1ES8 PAGE 0027
TCB 02DlES8 CMP C0000000 NTC 00000000 OTC OCO2EOFS8 LTC 00020400 PAGE 0028
TCB 02D40C0 CMP C0000C00 NTC 00000000 OTC 0002D1€ES8 LTC 00000000 PAGE 002¢
JO0B WTR STEP CCE
TCB 02E268 CMP 00000000 NTC CO02EOF8 OTC CO0009CAQ LTC 00020108 PAGE 0030
TCB 020108 CMP 0000CJ00 NTC 00000000 OTC CO002E2683 LTC 00000000 PAGE 0031 A —)

s buTtijzewrod Indin0 dNAIdAWI

LZT 3PwIOF TRIDBU3D

MFT DUMP LISTING

J08 STEP
TCB 008778 CMP

JO8 MASTER
TCB 008358 cMP

Jas STEP
TCB 0089338 cMP

Jag STEP
TCB 008Aid CMpP

JO3 MASTER
TC8 008364 cmp

JO3 MASTER
TCB 008l43 Mp

JO3 wTR STEP PO
TCB 008944 CMP

JJgd STEP
TCB 0J)8F4d CMP

Jd3 JO85 STEP GJ
TCB 0091438 cMp

Jus STEP
TCB 0093438 [oF, 134

Jud STEP
TCB 009543 cCMe

Jas STEP
TCB 0091744 cMp

J3d3 STEP
TCB 009548 cMpP

Jag STEP
TCB 009348 cMP

Jos3 STEP
TCB 009048 o1, 14

Jos STEP
TCB 009F43 CMpP

403 STEP
TCB J0Al4s cMP

Jas STEP
TCB8 JJA34d C 4P

0000¢ccCoC

STEP SCHeDULR

00CG0000

0006cCaC

000cooocC

STEP SCHEDULR

oacoococ

STEP SCHEDULR

gggoceoc

0cooccoc

00coocoo

00000000

aGicogoc

00000GCC

000CC00C

g0000cC0C

40C00C00

00000000

300G6CC00

9C00000C

00¢ccooc

PAGE
PAGE
PAGE
PAGE
PAGE
PAGE
PAGE
PAGE
PAGE
PAGE
PAGE
PAGE
PAGE
PAGE
PAGE
PAGE
PAGE

PAGE

* % ¥ %

0001

0002

2604

0005

0Co6

6007

0C09

0010

Co11l

0013

0014

0015

0016

0017

cols

0019

0020

0021

TCB SU

M0duLc IMOSADMP DATE 11/12/70 TIME GC.5C

MMARY

* ¥ ¥ %

PAGE 0C22

Figure 26. TCB Summary Sample for Systems that Operated Under MFT Without Subtasking

THE GENERAL FORMAT

The IMDPRDMP program uses a general format
to display the hexadecimal contents of main
storage. The particular areas of main
storage displayed are determined by the
parameters entered after the PRINT user
control verb.

To identify various dump printouts,
IMDPRDMP prints specific headings on each
dump, such as ALLOCATED STORAGE, PRINT
STORAGE, and NUCLEUS and SQA PRINT. A

sample of a general format dump is shown in.

Figure 27.

The IMDPRDMP program also reverts to the
general format if it is unable to format
control block information because it
encountered either a control block error or
one of several user control statement
format errors.

Each page of an IMDPRDMP program dump
listing containing information displayed in
the general format is identified by a
heading line. This heading line shows the
optional title supplied by the user
followed by the date and time that the
information was taken from the dumped
system. A sequential page number also
appears in each heading line.

Listings being produced under control of
the PRINT ALL, PRINT CURRENT, or PRINT
STORAGE (no operands) format control
statement display the contents of the

sixteen general purpose registers. If the
dump was obtained from a multiprocessing
system and both sets of registers were
obtained, then the contents of both sets of
registers are displayed. Where applicable,
the beginning of each main storage region
is noted by a line that gives the job, step
and procedure step name.of the owning task,
followed by the status of the region
(BORROWED, ROLL-OUT, OWNED).

Then, starting at an address requested
by the user, as specified in a PRINT user
control statement, (or location zero if no
address was specified) the contents of main
storage are displayed. Each line of the
general format displays eight words of main
storage. Preceding each line of
information is the address of the first
byte displayed followed by a one~character
storage protection key indicator
representing the key associated with the
area of main storage being displayed on
this line. Following each line of
information, a 32-character translation
field is printed. This field gives the
EBCDIC translation of the translatable
characters in the eight hexadecimal words.
Untranslatable bytes are represented by
positional periods.

Printing of any line that duplicates the
contents of the line printed previously, is
suppressed. Duplicate lines are indicated
by the phrase "TO NEXT LINE ADDRESS SAME AS
ABOVE" following the line duplicated.

128 Programmer's Guide to Debugging (Release 21)

sbutazewxod ndano AWANAAWT

sjuswwo) Ind3no

62T

MODULE IMDSADMP DATE 11/12/70 TIME 00.15 DAGE 0001
R 0-7 00000000 000022C8 00000000 8000214A 00002280 0000000A 00000000 00000000 *ececesoHooocosoecccocscsccsoncne®
R 8-15 00000000 00000000 00000000 00000000 00000000 00000000 00000000 400020B4 *ececesscssccccsessscscssccce oos¥
000000 00000191 00001CO0 40002084 60000028 08000080 40000001 FFES50000 900432B6 *eceeecesss esssceccccs soosVessooe®
060020 FFC40001 5000BBB2 FFF50004 A006E7C2 0000FFO0 00000000 FF060009 80000000 %eeecossosSecseXBoasans
000040 000022E8 0C000000 00002280 00005E08 5A64336D 48100002 412000C0 50200048 *.eoYeoeoecosscscscsSes
000060 982400C8 90001000 00020000 00000003 9D001000 47700070 91030044 4750007C *ecoHeoesosocscrccossssscssocscac®
000080 310000A6 4CCOC00S 08000080 40000001 05001C00 40000500 06001C00 000004BO *eoes ecoeceses sccsace cococccsses¥
0000AQ 00000000 00000000 00000450 00020650 44500088 47F0006C D2002000 00DB4040 FeeescecescsecKeosesoaOosKeooeQ *
0000C0 020000C8 20000048 C2€5D5C4 40404040 40404040 40404040 40404040 40404040 *eeeHeooooEND x
0000EQ 40404040 40404040 40404040 404040C6 FOFBC1D7 DOFTFO040 FOFO4BF1 F140F1F4 * FOBAPRT0 00.11 14%
000100 61FOF161 FOF94040 40404040 40404040 00000000 00000000 00000000 00000000 *+01.99 B
0c0120 00000000 00000000 00000000 00060000 00000000 00000000 00000000 00000000 *eeeesssescsesscsccsssccccsasscssk
000160 00000000 00000000 00000000 82000170 00040000 00036D18 00000000 00000000 #eeesesosscccccccsssocssceoscsces®
000180 FF060009 80600000 0000018A 018A018A FFO00190 FFO00190 00000001 FFFF6528
0001A0 00009A00 00009AF4 00009968 000099B4 00009AF0 80009874 00009ADO 4000BB62
0001C0 000117E0 00009BB4 00000040 00009874 5000BCA4 6000A57A 00000030 0006FIF4 *eeevessesce soccsccscssseseseedb™
CJ01E0 000000CC 000729C0 00000000 0006F000 S006E596 000729B8 AQO6ET40 00000001 #eceeescceceoesOeceVooeoooeX coee*
€00200 000726D0 00067594 00065D40 00072798 4006ETAE 0001828C 00000000 00000000 *esceoveccvece ooes oXesoosssssoees™
000220 00004E98 00000000 41500800 1A551821 92825098 18114010 50881804 58420014 Feeeeeesocsccesccscsene socsosssst
©00240 5834002C D5022015 30194770 OED491F0 00214780 025A45E0 OE681B99 18A99LFE *eeeeNeosesooosMeDososcacccccocase®
000260 30104770 02724873 00229170 70124780 02824393 001C43A2 002089A0 9000487A Xeeeecccccccoeccccccccscsccrcccssone™
009280 302291FF 700247E0 OED491A0 50984790 029E58F0 OFC445EF C00041CO 02B258B2 ¥eeeessceeMescccooceOeDocvcecncne®
€002A0 00041BAA 43A7C00A 89A00003 41DAS2FC 07FC4012 001ED708 20082008 D4032000 *ueeececcccsccsscses sosPessccMacs®
0002C0 5084927F 20045018 000094FD 50984580 02F64TFO 02E24TF0 O2EA4T00 0DO045EQ *eeeeccccccsscceesb6e0eSe0cceccccs®
0002E0 071C1812 SBEQOFC8 O7FE4180 02D245C0 02A24TF0 03444810 OF9C1211 4740035C *eeeecseHeooooKeooaaOoaoooonoe oo*
€00300 91011001 47100352 4C710002 90231004 5001000C 92001004 D300100C 0021D201 *ececeose secescocsccsccclocaceKe®
000320 0F9C1000 40105088 18A0D200 1008A023 45EQ0ADO 91EFT006 47708008 9LFFOFBO *eeee ececeKeaoooesososcoossancas®
000340 47500E2A 91107C06 47T100DE6 48ADO006 OTFADS02 20150FD1 47800308 58A00024 *eceessesccceWesssesNosoosdeoooooas®
000360 4BA0508C 50A0C024 18B09620 B02092F0 09771899 58A0OFBC 5090A000 47FCO2E2 *eeseece
000380 91102000 471003E6 41A05020 D200A000 302045C0 0SE407BC 48A00044 546A05058 *eeeeesoWe
000340 4770065C 58AC7030 91042001 471003CO 58A20010 91012000 478003C0O S5BA20018 #eeceoosscoscsssscscsscscssosocscss™
€003C0 91082000 478003DA 50A05030 92085030 41A05028 D200502D T0L850A0 004841C0 *eeeeeoocsccoccsscosseKaossosssoss*
C003E0 066447F0 06249104 20014780 05D64TFO 03889140 702C4710 05929101 70064770 *,ee0cccccccece0c0cce sossocccocse®
000400 040694E7 20019110 20014710 05709102 70064710 04D24LA0 703140A0 503AD203 *eeeXeoeoooooocccescccKeseo oooKe¥
€00420 50007031 91012000 47100432 02077030 20201BAA 43A70030 89A00004 41AA3020 *eeeeesccsceoKessasasooesscsoccee®
000440 91082001 471C0490 D5037033 A0064740 053ED503 7033A00A 4720053E 91027013 *eeeecoeeNesssss eeNecoossassooas®
000460 471004D2 DS017031 A0D044770 053E9104 30084780 0490D501 7035A008 47400488 *eoeeKNeceooeoooooascsooNocosoe oo¥
000480 D5017035 AOOC47CO 0490D201 7035A008 41A05038 41B00ST8 45C005E8 47700688 *NieeeoeoooKeoososoonsossassfosoa*
0004A0 9D006000 47BCO4AO 48A00044 54A05058 4T77C06A8 96A27006 D2062009 00419104 *eeecesceccccocscscscssesKessoooa®
0004€0 00444780 8008945F 700691A0 50984790 80081886 88B00008 89B00002 48CB52D4 *eeeesecocssscssoscoceccscsssssaMt
0004E0 4BC05096 41A07031 40A0C002 43B07030 89800004 439B3020 4290C00D D202CO11 *eqeeecce sscccsccscascessssoKoask
000500 20119101 20004780 051CD202 CO112019 91082001 4780051C 9618CO0D 50C00048 *eeoeecooooKesooesoooossancssacse?
000520 91027013 47800530 58A00048 47F00SEO 45C00624 077C96A6 TOO64TFO 066C58F3 *ecesescessoceloccconcossseslensd®
000540 001C58FF 00000SEF 47F0055C 47F00554 4TF00432 41E00960 47F00564 92422004 *eeececvee0eesleceloccccseOecsces®
000560 41EO0DA2 94FET7006 94DF2000 47F00752 58C20018 47F0051C D5037031 50004770 *eseeeocccceselooeBoseOeeNecaooas™
000580 06249602 70064060 70044010 701447F0 04CA4910 T02A4770 ODD69148 TO2C4TLO0 *eeesee oeo oseelcescsscceDecanact
0005A0 05AE9101 70064780 0DD247F0 040E9407 702C94DF 200047F0 C40E9110 20004710 *eeeoecseoKeOeososaoocaslooccnoss®
0005C0 050658A2 00189101 20004710 050258A2 001047F0 O5E0D200 50082018 41A05008 *eDeeccccocceeKeasooDoeKooooossoae®
0005E0 41C00664 41B00624 50A00048 91202000 47800604 910C402C 47800624 943F402C *.. ceee sesssee oF
000600 94DF2000 58F3001C 58FF0004 50B05074 OSEF4TFO 061E4LEQ 096447F0 07525880 *.. e0cecoceelonas*
000620 507407FB 92000048 91017006 47800638 91102001 4710063E D3000048 100C9C00 *eeeecocescscossscsccscsoslocccccs®
000640 600005A0 88A00018 42420010 S8900FCO 05891899 40607004 40107014 58A02010 *eecesscecsccccsccccse soo sessass®
000660 04A005CC 4770068E 96A07006 43907004 1A994079 52F0D600 700C509A D7GCO700C *eesececesccccccces ¢6000acaaPoss®
000680 509A45E0 075207F8 D2C37031 50004720 070C58A0 004841A0 AD0850A0 0040D206
0006A0 20090041 471006E4 18E096A0 70069106 00454770 OF8CIL10 00444780 0T14945F ceoee
0006C0 70069120 00444710 80049608 70069140 0044071E 91840044 47808008 41808004 Feesoocscocesces soosacssccsssones

Figure 27. sample of General Format Dump

OUTPUT COMMENTS

The following output comments are printed
within the body of a formatted dump
whenever IMDPRDMP is unable to locate,
format and print a control block. These
comments explain why the referenced control
block is not printed within the dump
listing, these output comments are
separated from the main storage information
by a blank line both before and after each
output comment. Note: Output Comments
produced when IMDPRDMP is processing GTF
output are shown in Section 3 of this
publication under the heading *IMDPRDMP
Output Comments - GTF Processing’'.

DUPLICATE PREFIX FOLLOWS - ID 'A‘

Explanation: While processing a
dump from a Model 65
multiprocessing system, IMDPRDMP
has determined that the CPU
prefixes (CPUIDs) are the same.

If the task that performs the dump
is initiated on one CPU,
interrupted, dispatched to the
second CPU, and completed the rest
of the processing on the second
CPU, then the prefix shown in this
output comment is that of the
first CPU to which the task was
assigned. Processing continues.

END OF FILE ON DUMP TAPE

Explanation: While trying to
locate a block of main storage on
the dump tape, IMDPRDMP reached
the end of the tape. This message
is printed only if IMDPRDMP is
either trying to extract the CVT’
pointer or trying to extract an
area of storage for printing.

Processing terminates. If
IMDPRDMP did no formatting and the
tape does not contain a low-speed
dump produced by IMDSADMP, the job
may be rerun using the CVT control
statement to direct IMDPRDMP to
the CVT in this dump. Low-speed
dumps produced by IMDSADMP can not
be formatted by IMDPRDMP.

ERROR FINDING REGION BOUNDARIES FOR
TCB aaaaaa.

Explanation: While attempting to
determine the region boundaries
for the family of TCBs attached to
the job step TCB at address
aaaaaa, one of the following
conditions occurred:

e IMDPRDMP found a chain with
more than fifty partition
queue elements (PQEs); or,

e IMDPRDMP found (1) a TCB
family chain pointer, (2) a
" partition queue element (PQE)
pointer (TCB + X'98'), or (3)
a pointer within a PQE that:
1. Addressed an area that was
not on a word boundary;
or,
2. Addressed an area that was
~ higher than the highest
address in the dump; or,
3. Could not be extracted
' from the dump decause
either an I/0 error was
encountered while
attempting to read the
block containing the
pointer or the block
containing the pointer was
missing from the dump; a
possible cause for a
missing block is that the
routine that produced the
dump encountered an 1/0
error while attempting to
write the block. ~

Processing continues.

ERROR FORMATTING TCB

Explanation: One of the fields in
the TCB required for formatting
could not be extracted from the
dump because:

e IMDPRDMP encountered an I/0
error while attempting to read
the block that contains the
required data; or,

e The block containing the
required data was missing from
the dump; a possible cause is
that the routine that produced
the dump encountered an I/0
error while attemtping to
write the block.

Processing continues.

ERROR IN DEB CHAIN

Explanation: The routine that
formats the data extent block
(DEB) found one of the following
errors:

e A DEB chain pointer:

1. Was not on a word
boundary; or,

2. Addressed an area of main
storage higher than the
highest address in the
dump; ox,

130 Programmer's Guide to Debugging (Release 21)

ERROR IN

ERROR IN

e The address of the DEB was
invalid causing the address of
the DEB prefix (DEB - 16) to
be zero or negative; or,

e A DEB chain pointer or one of
the fields necessary to format
the DEB could not be extracted
from the dump because:

1. IMDPRDMP encountered an
I/0 exror attempting to
read the block that
contained the data; or,

2. The block containing the
data was missing from the
dump; a possible cause is
that the routine that
produced the dump
encountered an I/0 error
while attempting to write
the block.

Processing continues.
EXTENT LIST

Explanation: While formatting the
load list or job pack area of an
MVT dump, IMDPRDMP encountered a
contents directory entry (CDE)
that had a block extent list with
a relocation factor (extent 1list +
4) of zero or greater than
twenty-five. A relocation factor
of zero is an errxor; however, a
value greater than twenty-five can
be valid. The value of
twenty-five was established by
IMDPRDMP as a reasonable limit;
is improbable that a normal task
would have a program that has more

than twenty-five CSECTs causing it
to get an extent list with a
relocation factor greater than
twenty-five. Processing continues
with the next CDE. '

it

JOB PACK QUEUE

Explanation: The routine that
formats the job pack area
encountered one of the following
errors:

e A job pack gqueue chain pointer
addressed an area that:
1. Was not on a word
boundary, or,
2. Was greater than the
highest address in the
dump.

e A job pack queue chain pointer
or one of the fields in a job
pack area control block could
not be extracted from the dump
because:

IMDPRDMP Output Formatting:

ERROR IN

ERROR IN

1. IMDPRDMP encountered an
I/0 error attempting to
read the block containing
the needed data, or,

2. The block containing the

needed data was missing
from the dump; a possible
cause is that the routine
that produced the dump
encountered an 1/0 error
while attempting to write
the block.

Processing continues.

LOAD LIST

Explanation: The load list print
routine encountered one of the
following errors:

® A pointer in the load list
control block chain referenced
an area of main storage that:

1. Was not on a word
boundary, or
2. Was greater than the

highest address in the
dump.

e A field in a load list queue
control block could not be
extracted from the dump
because:

1. IMDPRDMP encountered an
I/0 error attempting to
read the block that
contained the data needed
to format the load list;
or,

The block containing the

data was missing from the

dump; a possible cause is
that the routine that
produced the dump
encountered an I/0 erxor
while attempting to write
the block.

Processing continues.
TCB CHAIN TCB aaaaaa

Explanation: The routine that
formats the TCBs encountered one
of the errors given below; the
address of the TCB associated with
the error replaces the aaaaaa
field of the output comment.

e A TCB pointer for one of the
TCBs in the TCB family chain
addressed an area not on a
word boundary; or,

Output Comments 131

e A TCB pointer or the TIOT ERROR WHILE FORMATTING PSCB

pointer in the TCB at location

aaaaaa points to an area that

could not be extracted from
the dump because:

1. IMDPRDMP encountered an
I/0 error while attempting
to read the block that
contains the pointer; or,

2. The routine that produced
the dump encountered an
I/70 error while writing
the block that contains
the pointer; therefore,
the block is missing from
the dump.

ERROR IN TIOT

Explanation: The format routine
found one of the following errors:

e The task input output table
(TIOT) pointer (TCB + X'C')
was not on a word boundary;

Explanation: One of the following
errors occurred while IMDPRDMP was
formatting the protected step
control block (PSCB):

e The address of the PSCB in the
time sharing job block
extension (TJBX) was greater
than the highest main storage
address in dump; or,

e An I/0 error occurred while
reading the block of dump
information that contained the
needed data; or,

e A block of dump information
containing part of the PSCB
was not found on either the
dump or swap data sets.

Processing continues.. IMDPRDMP
attempts to format the control
blocks for the next TSO user.

or, ERROR WHILE FORMATTING RCB

e One of the fields required to
format the TIOT could not be
extracted from the dump
because:

1. IMDPRDMP encountered an
I/0 error while attempting
to read the block that
contains the required
data, or,

2. The block containing the
required data was missing
from the dump; a possible
cause is that the routine
that produced the dump
encountered an 1I/0 error
while attempting to write
the block.

ERROR WHILE FORMATTING CONTROL BLOCKS ...
CONT INUING

Explanation: While building a
list of job step TCB's for all
partition regions in the dump data
set, PRDMP encountered one of the
following conditions:

Explanation: One of the following
errors occurrxed while IMDPRDMP was
formatting the time sharing region
control blocks (RCBs):

e The address of the RCB table
in the time sharing
communication vector table
(TSCVT) was greater than the
highest main storage address
in the dump; or,

e An I/0 error occurred while
reading the block of dump
information that contained the
needed data; or,

e A block of dump information
containing part of an RCB was
not found on the dump data
set. This happens when an I/0
error occurred while the dump
routine was writing the data
onto the dump data set.

Processing continues. IMDPRDMP
attempts to format the next entry
in the RCB table.

1. One of the TCB chain pointers ERROR WHILE FORMATTING SWAP CONTROL BLOCK

was greater than the highest
address in the dump.

2. One of the TCB chain pointers
addressed an area that was
missing from the dump dat
set. :

PRDMP will attempt to use the

partial list and continue with its
formatting.

132 Programmer's Guide to Debugging (Release 21)

Explanation: One of the following
errors occurred while IMDPRDMP was
formatting the swap control block
(SWAP DCB):

e The address of the SWAP DCB in
the time sharing communication
vector table (TSCVT) was
greater than the highest main
storage address in the dump;
or,

e An 1I/0 error occurred while
reading the block of dump
information that contained the
data; or,

e A block of dump information
containing part of the SWAP
DCB was not found on the dump
data set. This happens when
an 1/0 error occurred while
the dump routine was writing
the data onto the dump data
set.

Processing continues. IMDPRDMP
attempts to continue formatting
the time sharing job block (TJB).

ERROR WHILE FORMATTING TAXE

Explanation: One of the following
errors occurred while IMDPRDMP was
formatting the terminal attention
exit element (TAXE):

e The address of the TAXE in the
time sharing job block
extension (TJBX) was not
aligned in a fullword
boundary; or,

e The address of the TAXE in the
TJIBX was greater than the
highest main storage address
in the dump; or,

e An I/0 error occurred while
reading the block of dump
information that contained the
needed data; or,

e A block of dump information
containing part of the TJBX
was not found on the dump or
swap data sets.

Processing continues. IMDPRDMP
attempts to format the control
blocks for the next TSO user.

ERROR WHILE FORMATTING TJB

Explanation: One of the following
errors occurred while IMDPRDMP was
formatting the time sharing job
block (TJIB):

e The address of the TJB table
in the time sharing
communication vector table
(TSCVT) was greater than the
highest main storage address
in the dump; or,

e An I/0 error occurr%d while
reading the block of dum

information that contained the
needed data; or,

e A block of dump information
containing part of the TJIB was
not found on the dump data
set. This happens when an I/0
error occurred while the dump
routine was writing the data
onto the dump data set.

Processing continues. IMDPRDMP
attempts to format the next active
TJIB.

ERROR WHILE FORMATTING TJBX

Explanation: One of the following
errors occurred while formatting
the time sharing job block
extension (TJIBX):
e The terminal job block (TJB),
that contained the address of
the TJB was not aligned on a
fullword boundary; or,

e The address of the TIBX in the
TJB was greater than the
highest address in the system
dump; or,

e An I/0 error occurred while
reading the block of dump
information that contained the
needed data; or,

e A block of dump information
containing part of the TJIBX
was not found on either the
dump or swap data sets.

Processing continues. IMDPRDMP
attempts to format the control
blocks associated with the next
TSO user.

ERROR WHILE FORMATTING TSB

Explanation: One of the following
errors occurred while IMDPRDMP was
formatting the terminal status
block (TSB):

o The address of the TSB table
in the time sharing
communication vector table
(TSCVT) was greater than the
highest main storage address
in the dump; or,

e An I/0 exrror occurred while
reading the block of dump
information that contained the
needed data; or,

e A block of dump information
containing part of the TSB was
not found on the dump data

set. This happens when a I1/0
error occurregpwhile the dump

routine was writing the data
~onto the dump data set.

IMDPRDMP Output Formatting: Output Comments 133

Processing continues. IMDPRDMP
attempts to format the associated
time sharing job block extension
(TJIBX) .

ERROR WHILE FORMATTING TSCVT

Explanation: One of the following
errors occurred while IMDPRDMP was
formatting the time sharing
communication vector table
(TSCVT) :

o The address of the TSCVT in
the communication vector table
(CVT) was greater than the
highest main storage address
in the dump; or,

e An I/0 error occurred while
reading the block of dump
information that contained the
needed data; or,

e A block of the dump
information containing part of
the TSCVT was not found on the
dump data set. This happens
when a I/0 error occurred
while the dump routine was
writing the data onto the dump
data set.

Processing continues. IMDPRDMP
attempts to format the time
sharing region control blocks
(RCBs) .

ERROR WHILE FORMATTING USER MAIN STORAGE

Explanation: One of the following
errors occurred while IMDPRDMP was
formatting the user main storage
map (UMSM):

e The address of the UMSM
associated with the region
control task (RCT) or time
sharing job block (TJB) was
greater than the highest main
storage address in the dump;
or,

e An I/0 erxror occurred while
reading the block of dump
information that contained
needed data; or,

e A block of dump information
containing part of the UMSM
was not found in the dump data
set. This happens when an 1/0
error occurred while the dump
routine was writing the data
onto the dump data set.

134 Programmer's Guide to Debugging (Release 21)

Processing continues. IMDPRDMP
attempts to continue formatting
with the terminal status block

(TSB).

FORMAT ERROR DURING TCB SUMMARY

Explanation: The routine that
prints the TCB summary must
extract a TCB completion code (TCB
+ X*16") or a TCB family chain
pointer from the dump. In this
case, IMDPRDMP was unable to do so
because:

e IMDPRDMP encountered an I/0
error while attempting to read
the block containing the
completion code or pointer;
or,

e The block containing the
completion code or pointer was
missing from the dump; a
possible cause is that the
routine that produced the dump
encountered an I/0 error while
attempting to write the block.

Processing for the current control
statement is terminated.

FORMAT ERROR IN MAIN STORAGE BLOCKS

Explanation: While formatting
main storage control blocks,
IMDPRDMP encountered one of the
following errors:

e A pointer in a main storage
control block addressed an
area that: .

1. Was not on a word
boundary; or,

2. Was higher than the
maximum address in the
dump; or,

e One of the fields in a main
storage control block could
not be extracted from the dump
because:

1. IMDPRDMP encountered an
I/0 error while attempting
to read the block that
contains the required
field; or,

2. The block containing the
required field is missing
from the dump; a possible
cause is that the routine
that produced the dump
encountered an 1/0 error
while attempting to write
the block.

Processing continues.

INFINITE

INFINITE

INFINITE

LOOP IN DEB CHAIN

Explanation: While formatting the
data extent blocks (DEBs),
IMDPRDMP found more than 200 DEBs
chained to the TCB. The limit of
200 DEBs prevents IMDPRDMP from
looping. When the limit is
exceeded, a loop is assumed which
causes this comment to be printed.
Processing continues after the
first 200 DEBs are printed.

LOOP IN PQES

Explanation: The main storage
print routine found more than 50
partition queue elements (PQEs)
chained to the TCB. A limit of 50
PQEs has been established by
IMDPRDMP to prevent a possible
looping condition. When the limit
is exceeded, a loop is assumed and
this comment is issued. The first
50 PQEs are printed and then
processing continues.

LOOP IN RB CHAIN

Explanation: The RB print routine
found more than 50 request blocks
(RBs) on the RB chain. A limit of
50 RBs has been established within
IMDPRDMP to prevent a possible
looping condition. When the limit
is exceeded, a loop is assumed and
this comment is issued. The first
50 RBs are printed and then
processing continues.

INVALID TIOT

Explanation: While formatting the
task input output table (TIOT),
the FORMAT routine found an
invalid job name in the TIOT. To
be valid, the first character of
the job name must be A through Z,
or §, #, @ or a blank (X'40').
Processing continues.

NO ELEMENTS ON LOAD LIST

Explanation: The load list
pointer in the TCB (displacement
X'24') is zero. The zero pointer
indicates that (1) no programs
were loaded by the LOAD macro
instruction or (2) the load list
pointer was overlaid with zero.
Processing continues.

IMDPRDMP Output Formatting:

NO EXTENT LIST

Explanation: While fbrmatting the
load list and job pack queue for
an MVT dump, IMDPRDMP encountered
zexros in the extent list pointer
(CDE + '20') in a major contents
directoxry entry (CDE). This zero
pointer usually indicates an error
condition in which the extent 1list
pointer was overlaid with zeros.
Processing continues with the next
CDE.

NO LINK PACK AREA QUEUE

NO MAJOR

Explanation: In MFT, an LPAMAP
was requested but the link pack
area queue pointer (CVT + X'BC')
was zero. Processing continues.

QCBs

Explanation: The QCB TRACE
routine found zeros as the pointer
to the first major gqueue control
block (QCB). This indicates that
no resources have been enqueued at
the time of the dump or that the
pointer to the QCB queue has been
overlaid with zeros. Processing
continues.

NOTHING IN JOB PACK

Explanation: In MVT, the job pack
queue field of the TCB (TCB +
X'2C') is zero. In MFT, the
partition information block (PIB)
field (TCB + X'7C') or the job
pack queue pointer (PIB + X"24')
is zero. PCP does not have a job
pack pointer; therefore, this
comment does not appear in a PCP
dump. A zero job pack queue
pointer is usually a normal
condition, especially for a system
task. Processing continues.

RB FORMAT ERROR

Explanation: While formatting a
request block (RB), the RB print
routine found that the request
block (RB) chain pointer addressed
an area of main storage that:

e Was not on a word boundary;
or,

e Was higher than the highest
address in main storage; or,

e Could not be extracted from
the dump because:

Output Comments 135

1. IMDPRDMP encountered a I/0
error while attempting to
read the block that
contained the pointer; or,

2. The block that contained
the pointer was missing
from the dump. One
possible cause for this is
that the program that
produced the dump may have

TIOT pointer (TCB + T'C') was
either zero or larger than the
highest address in the dump. The
zero TIOT pointer could be a
normal condition for a system
communication task, but for a
problem program task this is an
error condition. Processing
continutes.

encountered an 1I/0 error TASK HAS TERMINATED

while writing the block.

e A field in the RB, or a
contents directory entry (CDE)
associated with the RB,
necessary to formatting the RB
could not be extracted from
the dump. Either IMDPRDMP
encountered an 1/0 errxor while

Explanation: After formatting a
TCB, this comment is printed below
the TCB if the first bit (the
terminated bit) of the flag byte
at X'21" of the TCB is set.
Processing continues with the next
TCB.

trying to read the block, or TCB CHAIN ERROR IN FO03 PRINT ROUTINE
the block that contained the TCB aaaaad...CONTINUING WITH NEXT TCB

pointer is missing from the
dump.

' REGISTERS FROM OTHER CPU ARE INVALID-NOT
FORMATTED

Explanation: Multiprocessing
systems only. Only the registers
for the CPU in which the dump
program was executed will be
displayed on the dump listing.
This can occur when the dump is
taken on a multiprocessing system
either when the NOMP option of
IMDSADMP is used or when the
direct control feature is not
operational.

TASK HAS NO OPEN DATA SETS

Explanation: IMDPRDMP found the
data extent block (DEB) pointer in
the TCB (TCB + X'8') to be zero.
This situation indicates that
there were actually no open data
sets or the DEB pointer in the TCB
was overlaid with zeros.
Processing continues.

TASK HAS NO TIOT
Explanation: While attempting to

format the task input output table
(TIOT), IMDPRDMP found that the

136 Programmer's Guide to Debugging (Release 21)

Explanation: The Print F03
routine encountered a TCB chain
pointer that:

e Was not on a word boundary;
or,

e Addressed an area that could
not be extracted from the dump
because:

1. The pointer addressed an
area higher than the
maximum address in the
dump; or,

2. IMDPRDMP encountered an
I/0 error trying to read
the record containing the
area addressed by the
pointer; or,

3. The block containing the
addressed area was missing
from the dump, probably
because the routine that
produced the dump
encountered an I/0 error
while attempting to write
the block.

The address of the TCB associated
with the error replaces the aaaaaa
field in the message. Processing
continues with the next TCB.

GUIDE TO STORAGE DUMPS

The purpose of this section is to suggest
debugging procedures that you may use with
a storage dump. This discussion applies to
the output of the following programs:

e IMDSADMP- The low speed version that
formats and dumps main storage.

e IMDPRDMP~ Reads, formats, and prints
storage dumps from MFT or MVT systems
and the high speed version of IMDSADMP.

These programs produce hexadecimal dumps of
the contents of main storage from location
zero to the highest machine address.

The IMDPRDMP program provides formatting
capabilities which can be used to display
the important system control blocks for
easy examination. The IMDPRDMP program
does most of the procedures described in
this section automatically. The cases in
which the IMDPRDMP program does not provide
formatting are identified. A complete
description of the serxvices provided by the
IMDPRDMP program is found in the
publication, IBM Systenv/360 Operating
System: Service Aids, GC28-6719.

Since the formatting for the IMDPRDMP
program depends on the contents of the
dump, it is not always possible to provide
complete formatting. For example, if the
CVT of the system to be dumped has been
overlaid, the IMDPRDMP program can provide
only a hexadecimal dump of main storage.

Guide to Storage Dumps 137

DETERMINING THE CAUSE OF THE DUMP

Main storage dumps are invoke by system
routines and these routines can be
identified by module names appearing in the
most recent request block (RB) for the
failing task. The main storage dump is
invoked by SVC 51. This SVC PSW appears as
the resume PSW in the second most recent RB
of some task in the system. The module
name in the current RB for that task must
be 201cC.

Main storage locations from zero to 128
(hexadecimal 80) are permanently assigned
and contain hardware control words. Figure
28 shows these fields, their location,
their length, and their purpose.

L) k) R} L)
|Address| Length | |
|Dec Hex|In Bytes| Purpose |
t 1 t 4
jo o | 8 |IPL PSW |
t t 1 i
8 8 | 8 |IPL CCwWl |
Lo 4L (] ’)
v Ll T 1
|16 10 | 8 IPL CCW2
L 1 X
1
|26 18 | 8 [External old PSW
L L
L] L
|32 20 | 8 |Supervisor call old PSW |
[N 4 4 4
] . L ¥ 1
40 28 | 8 |Program old PSW |
L 1 d
48 30 | 8 |Machine check old PSW |
1
S6 38| 8 |I/O old PSW
64 40 8 Channel Status Word
72 48 4 Channel Address Word
i [l iR Jd
] [}]
{76 4c | & |Unused i
I i d
] ¥ 1
80 50 | 4 |Timer |
[4 4
L} L] 1
84 54 | 4 Unused |
L 1
|
{88 58 | 8 |External new PSW
I
L]
96 60 | 8 Supervisor call new PSW
L | 4 4
1100 68 i 8 iProgram new PSW i
L 1 [l 4
] ¥) R
1112 70 | 8 |Machine check new PSW |
L L 4 |
[} ¥ ¥ 1
{120 78 | 8 | I/0 new PSW |
L L [l v |
Figure 28. Permanently Assigned Hardware

Ccontrol Words

Cause of the Dugg: Evaluate the PSWs that
appear in the formatted section of the dump
(the first four lines) to find the cause of

the dump.
format:

The PSW has the following

Program Status Word

System Mask Key AMWP Interruption Code
0 7 8 1112 15 16 31
Ic | cc P;‘Zg:zm Instruction Address
32 33 34 35 36 39 40 63

e Does the instruction address field of
the 0ld machine check PSW show either
the value E2 or E02? If so, a hardware
error has occurred.

e Does the instruction address field of
the old program check PSW have a value
other than zero? If so, a program
check at the instruction preceding that
address caused the interruption.

TASK STRUCTURE

MFT System (Without Subtasking)

There is a TCB associated with each
partition of main storage there are also
TCBs for critical system tasks such as the
master scheduler task and the transient
area loading task. Figure 28 shows
location 76 (4C) unused for hardware
control words. The control program uses
this word to contain a pointer to the CVT.
Use this CVT pointer to locate the first
byte of the CVT, then the CVTIXAVL field
(offset 124) in the CVT. The address
contained at CVTIXAVL is a pointer to the
I0s freelist. At offset 4 in the IOS
freelist is a pointer to the first address
in a list of TCB addresses. You can look
through this list of TCB addresses, and,
keeping your system options in mind, find
the TCBs for each partition. The TCB
addresses are listed in the following
order:

e Transient area loading task.

e System error task (MFT with
subtasking).

e Multiple console support write-to-log
task (optional).

e I/0 recovery management support task
(optional).

e Communications task.

e Master scheduler task.

e System management facilities task
(optional).

e Partition 0 task.

138 Programmer's Guide to Debugging (Release 21)

Partition 1 task.
®
[]

Partition n task.

Figure 29 shows how to locate the
partition TCBs in sample output from the
IMDPRDMP program.

MFT System (With Subtasking)

For MFT with subtasking (and for MVT), a
task may create a subtask. The partition
TCBs for MFT with subtasking are referred
to as job step TCBs. The task structure
for a job step may be reconstructed in a
main storage dump by using the information
in Figure 32.

For MFT with subtasking, the job step
TCB may be found using the method described
for MFT without subtasking or by a more
direct method. CVT offset 245 (F5)
contains a pointer to the partition 0 job
step TCB address in this address table.

To recreate the task structure within
any partition, simply locate the job step
TCB, and follow the TCB pointers - as
explained in the previous section.

Location 4C

MVT System

To find the current TCB, look at location
76 (4C) for a pointer to the CVT. The
first word of the CVT contains a pointer to
a doubleword of TCB addresses, which
contains pointers to the next TCB to be
dispatched (first word) and the current TCB
(second word). Beginning with the current
TCB, you can recreate the task structure
for the job step using the methods in
Figure 32.

If the first word of the current TCB
points to itself, there are no ready tasks
to be dispatched, and the system has been
placed in ah enabled Wait state. This TCB,
now in control, is called the system wait
TCBe.

All TCBs in the system are maintained in
a queue called the CVT ready queue. These
TCBs are queued according to their
dispatching priority. The CVTHEAD field,
offset +160 (A0) in the CVT, contains the
address of the highest priority TCB in the
system. Offset +116 (74) in the TCB points
to the TCB with the next lowest priority.
Figure 30 shows how to locate all of the
TCBs in the system.

000040 00000000 00000000 00000000 0000
| W

017F8E00 0000CD5C 00040000 00000288

1

00CB40
00CB60
00CB80
00CBAO
00CBCO

00000000 00000000 00000000 00000000

i

10S Freelist

004860 hhhhhhhh
b e N e — J—

| hhhhhhhh

hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh

J

01EC20
01EC40

hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh

N

008D40
008D60
008D80
008DA0

0000000 00000000

N

Figure 29.

Finding the Partition TCBs in MFT

Guide to Storage Dumps 139

(TZ oseat1od) bBurbbngag o3 SpTNO s,Isumexbord ont

Job Step TCB '

+136(88) .@

+132(84)

@ is a job step TCB and is the

TCB of the subtask created by

Offset +136(88) in

@ points to its

subtask TCB ((B)). Offset +132(84)
in the subtask TCB () points back I

to the job step TCB (@).

Figure 30.

Job Step TCB
|
|
+136

Il @9

Subfask | Subtask
TCB ' TCB
B : TCB
.@@ +128(80) +132(84) .@@
+132(84) b@@

I @ is a job step TCB, is the TCB for the first

subtask created by @ . is the TCB for the

second and most recent subtask created by @ .
Offset + 136(88‘) in @ points to the TCB of its
most recently created subtask. Offset +136(84)
in poinrs back to the creating task (@).

Offset +128(80) in poinfs to (By) the next

most recently created subtask TCB, Offset
+132(84) in points back to the originating

1c8 ((A)).

In each TCB:
Offset

+128(80) points to the TCB of the next most
recently created subtask, [f none
exists, this field is zero.

+132(84) points to the TCB of the task that

created it, If none exists, this field

is zero,

+136(88) points to the TCB of the most recent

subtask created by this task. [If none

exists, this field is zero,

Finding the TCB

Job Step TCB

+136(88)

10/0)

Subtask
TCB

TCB

00,
-@O®
10O

Subtask

TCB

TCB

0.0,

+136(88)

@ Subtask

TCB

@ Subtask
TCB

TCB

09
O®

@ is the job step TCB, is the TCB for the first subtask created by @ .is the TCB
for the second and most recent subtask created by @ . Offset +136(88) in e points to
the TCB of its most recently created subtask, Offset +132(84) in points to the TCB of the
creating task, Offset +128 in @ points to the next most recently created subtask TCB.
Offset +132(84) in poinrs back to the job step TCB (@). Offset +136(88) in
points to the TCB of its most recently created subtask (@).

points to the TCB of its creating task () and to the TCB of the subtask most
recently created by @ . contains pointers o the TCB of the originating task (@)
and to the TCB of the task most recently created by . @ contains only a pointer to
the TCB of the invoking task ().

@ Subtask
TCB

TCB

+128(80) @ @
+132(84) '@

+132(88) ’@

+128(80)

Keep in mind that all TCBs in the system
appear on this queue. Therefore, not only
does a particular job step TCB appear on
the ready queue, but all of its subtask
TCBs also appear.

You can find the job step TCB associated
with any TCB by using the TCBJSTCB field of
the TCB, offset +124 (7C). This field
contains the address of the job step TCB
for the TCB you are examining.

In response to the FORMAT control
statement, the IMDPRDMP program will do
most of this work for you. It will
recreate the task structure, format all
TCBs in the system, and provide a TCB
summary. The TCB summary shows the task
structure. Figure 31 shows a portion of
the TCB summary information from an MVT
system. TCBs associated with a particular
job are grouped together under the job name
and step name. The TCB summary contains
the TCB address, the completion code, and,
when applicable, the address of the
originating TCB and the addresses of
created TCBs.

TASK STATUS - ACTIVE RB QUEUE

The first word of the TCB contains a
one-word pointer to the first word of the
most recent RB added to the queue. 1In its
eighth word, RB+28(1C), each RB contains a
pointer to the next most recent RB. The
last RB points back to the TCB.

You can determine the idenity of the
load module by looking either in the first

and/or second words of the RB for its
EBCDIC name or in the last 3 digits of the
resume PSW in the previous RB for its sSvVC
number. The entry point to the module is
in the last 3 bytes of the fourth word in
the RB, RB-13(D).

In an MVT system, the name and entry
point of the associated load module are not
always contained in the RB associated with
the module. Instead, they are found in a
contents directory entry (CDE).

The address of the contents directory
entry for a particular load module is given
in the fourth word of the RB, RB+12(C).

The CDE gives the address of the next entry
in the directory (bytes 1-3), the name of
the load module, bytes 8-15(F); the entry
points of the module, bytes 17-19(11-13).

Figure 32 shows the formatting that the
IMDPRDMP program does for a task in an MVT
system. Notice the connection between the
RB and the CDE. The IMDPRDMP program
extracts the CDE information and displays
this information with the RB.

The wait-count field of the RB is
particularly important when locating the
TCB by using the CVT ready queue (CVTHEAD).
The high-order byte of the RB link field,
RB-28(1C), of the most recent RB for a TCB
contains a count of the number of events
for which the task is waiting. Tasks that
have a zero wait count are ready to be
dispatched (unless marked
non-dispatchable). Such a task will be
dispatched or become the current task when
all TCBs of higher priority are waiting for

JOB MASTER STEP SCHEDULER

Figure 31i.

* x * *x TCB SUMMARY®* * % %

IMDPRDMP TCB Summary

TCBhhhhhh CMPhhhhhhhh NTChhhhhhhh OTChhhhhhhh LTChhhhhhhh PAGE hhhh
JOB MASTER STEP SCHEDULER

TCBhhhhhh CMPhhhhhhhh NTChhhhhhhh OTChhhhhhhh LTChhhhhhhh PAGE hhhh
JOB WTR STEP OOE

TCBhhhhhh CMPhhhhhhhh NTChhhhhhhh OTChhhhhhhh LTChhhhhhhh PAGE hhhh

TCBhhhhhh CMPhhhhhhhh NTChhhhhhhh OTChhhhhhhh LTChhhhhhhh PAGE hhhh
JOB JOB11l STEP GO

TCBhhhhhh CMPhhhhhhhh NTChhhhhhhh OTChhhhhhhh LTChhhhhhhh PAGE hhhh

TCBhhhhhh CMPhhhhhhhh NTChhhhhhhh OTChhhhhhhh LTChhhhhhhh PAGE hhhh

TCBhhhhhh CMPhhhhhhhh NTChhhhhhhh OTChhhhhhhh LTChhhhhhhh PAGE hhhh
JOB JOB12 STEP GO

TCBhhhhhh CMPhhhhhhhh NTChhhhhhhh OTChhhhhhhh LTChhhhhhhh PAGE hhhh

Guide to Storage Dumps 141

the completion of an event. To determine
the events for which a task is waiting, use
the instruction address field in the resume
PSW to locate the WAIT macro instruction in
the source program. This will point you to
the operation being executed at the time of
the dump.

MAIN STORAGE CONTENTS
Load List (MFT)

The load list is a chain of request blocks
associated with load modules invoked by a
LOAD macro instruction. By looking at the
load list, and at the job pack area queue
described below, you can determine which
system and problem program routines were
loaded before the dump was taken. To
construct the load list associated with the
task in control, look at the tenth word in
the TCB, TCB+36(24), for a pointer to the
most recent RB entry on the load list,
minus 8 bytes (RB-8). This word, in turn,
points to the next most recent entry (minus
8), and so on. If this is the last RB,
RB-8 will contain zeroes. The word
preceding the most recent RB on the list
(RB-4) points back to the TCB's load list
pointer.

Load List (MVT)

To construct the load list associated with
the task in control, look at the tenth word
in the TCB, TCB+36(24), for a pointer to
the most recent load list entry (LILE).

Each LLE contains the address of the next
most recent entry (bytes 0-3), the count
(byte 4), and the address of the CDE for
the associated load module (bytes 5-7). If

Nt Nmme—

this is the last LLE in the list,
TCB+36 (24) will contain zeroes.

Job Pack Area Queue (MFT With Subtasking,
MVT)

' In systems with MFT with subtasking or MVT

control programs, the job pack area queue
is used to maintain reenterable modules
within a partition or region. The complete
description of this queue is found under
the topic "Task Status-Active RB Queue".

MFT System: To reconstruct the job pack
area gueue in an MFT system with
subtasking, look at TCB+125(7D) for a three
byte pointer to the partition information
block (PIB). The twelfth word of the PIB,
PIB+44 (2C), points to the most recent RB on
the job pack area queue minus 8 bytes
(RB-8). This word in turn points to the
next most recent RB minus 8, and so on.

The last RB will have zero in this field.
The word preceding the most recent RB on
the queue (RB-4) points back to the job
pack area queue pointer in.the PIB. You
can determine the identity of the load
module by looking either in the first
and/or second word of the RB for its EBCDIC
name, or in the last three digits of the
resume PSW in the previous RB for the SVC
number. The entry point of the module is
given in the last three bytes of the fourth
word in the RB, RB+29(1D), unless it is an
FRB.

The first five words of an FRB
(beginning at offset minus 8) are identical
in content to those of other RBs. The
XRWTL field, offset 12(C), contains the
address of a wait list element. The first
word of the WLE points to the next WLE, or

ACTIVE RBS

RESV hhhhhhhh APSW
Q/TTR hhhhhhhh WT-LNK hhhhhhhh NM

PRB . 02DEBO

hhhhhhhh WC-SZ-STAB hhhhhhhh FL-CDE ow PSWFF050001 5006E1C2
JLN

ATR1

/l

era BB STA

JOB PACK| QUEUE

CDE 02DFD0O NM USE 01 RESP NA ATR1

™
Module Name

Figure 32.

\/—K Entry Point Address

Determining Module From CDE in MVT

EPA STA

142 Programmer's Guide to Debugging (Release 21)

contains zeros if the WLE is the last one.
The second word points to the waiting SVRB.
You can determine the number of deferred
requests for the module by tracing the
chain of WLEs.

The XRREQ field of an FRB, offset
16(10), contains a pointer to the TCB of
the requesting task. The next word,
CRTLPRB, offset 20(14), points to an LPRB
built by the Finch routine for the
requested program. The FRB for the
requested program is removed from the job
pack area queue by the Finch routine when
the program is fully loaded.

MVT System: In MVT, the job pack area
queue is maintained in the same manner as
the load list. The distinction between the
two queues is that the job pack area queue
contains reenterable programs. There are
no FRBs in MVT.

MAIN STORAGE SUPERVISION

Free Areas in_ MFT Systems

Areas of main storage that are available
for allocation at the time the dump was
taken are described by the MSS boundary box
and a series of free queue elements (FQEs).
The seventh word of the TCB for the task,
TCB+24(18), points to a six-word MSS
boundary box. The first word of the MSsS
boundary box points to the FQE with the
highest processor storage address in the
partition (hierarchy 0), and the fourth
word, to the highest 2361 Core Storage
address in the partition (hierarchy 1).

The first word of each FQE points to the
next lower FQE; the second word of the FQE
gives the length of the area it describes.
FQEs occupy the first 8 bytes of the area
they describe.

Gotten Subtask Areas (MFT)

In MFT with subtasking, areas of a
partition allocated by the system to a
subtask within the partition are described
by gotten subtask area queue elements
(GQEs). - The seventh word of the subtask
TCB, TCB+24(18), points to a one word
pointer to the most recently created GQE on
the GQE queue. Bytes 0 through 3 of the
GQE contain a pointer to the previous GQE
or, if zero, indicate that the GQE is the
last one on the queue. Bytes 4 through 7
of the GQE contain the length of the gotten
subtask area. Each GQE occupies the first
eight bytes of the gotten subtask area it
describes.

Region Structure in MVT System

The region associated with a particular
task in an MVT system is described by

partition queue elements (PQEs). The
thirty-ninth word of the TCB, offset +152
(98) contains a pointer to the dummy PQE
(D-PQE) for the region. The first word of
the dummy PQE points to the first PQE and
the second word, to the last PQE. The
first and second words of each PQE point to
the first and last free block queue
elements (FBQEs), respectively, associated
with the PQE. Separate PQEs are used to
describe parts of a region in different
storage hierarchies or part of a region
that was obtained by another task which has
been rolled out.

FBQEs describe free areas in the region
that have a a length which is a multiple of
2048 bytes. These free areas are available
for allocation to a specific subpool.

Subpool Descriptions (SPQEs) (MVT): The
seventh word of the TCB, TCB+24(18), points
to the SPQE representing the first subpool
used by the task. Each SPQE contains the
address of the next SPQE (bytes 1-3), the
subpool number (byte 4), and the address of
the first descriptor queue element (DQE)
for the subpool (bytes 5-7) orx, if the
subpool is owned by another task (bit 0 is
1), the address of the SPQE that describes
it (bytes 5-7). ‘

Storage within a subpool is described by
a descriptor queue element. Each DQE
contains the number of bytes of main
storagé in the subpool. This count is
always a multiple of 2048 bytes. If a
request for space from a subpool cannot be
satisfied with the space described by an
existing DQE the GETMAIN routine builds
another DQE and links the new DQE to the
chain of existing DQE's. Each DQE contains
a pointer to the FQE that represents the
free area with the highest main storage
address in the subpool (bytes 1-3), a
pointer to the next DQE (bytes 5-7), and
the length of the area described by the
DQE, bytes 13-15(D-F).

Figure 33 shows the control blocks used
to describe the subpools for a task in an
MVT system.

I/0 CONTROL BLOCKS

Queue of DEBs

To f£ind the queue of DEBs for the task,
look at the third word in the TCB (TCB+8).
The address given here points to the first
word of the most recent entry on the DEB
queue. There is a DEB on this queue for
each data set opened to the task at the
time of the dump. DEBs are enqueued in the
same order as the data sets are opened.

The last three bytes of the second word in
each DEB (DEB+5) points to the next most

Guide to Storage Dumps 143

recent DEB on the queue. The queue
contains one DEB for each open data set.

UCBs

You can find unit information for each
device in your system in the unit control
block (UCB) for that device. The address
of the UCB is contained in the last 3 bytes
of the ninth word of the DEB, DEB+33(21).
If the DEB queue is empty, scan the dump
around location 4096(1000) for words whose
fifth and sixth digits are FF. These are
the first words of the UCBs for the system;
UCBs are arranged in numerical order by
device address. (You may find it easier to
locate UCBs by looking for the device
address in the EBCDIC printout to the right
of each page.) The first two bytes of the
second word of each UCB give the device
address. The device type and class are
given in the third and fourth bytes of the
fifth word, UCB+18(12), respectively. The
sense bytes, with the exception of those
for devices with extended sense, begin in
the last two bytes of the sixth UCB word,
UCB+22(16), and continue from 1 to 6 bytes
depending on the device type. For the
extended sense devices, UCB+22 and UCB+23
are ignored. UCB+24(18) in this case
contains the number of bytes of sense

hhhhhh
hhhhhh

hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh

Address of SPQE
for Subpool 0

information to be found starting at the
address specified in UCB+25(19). Sense’
bytes are given in Appendix G of this
publication. '

DCB_and TIOT

The address of the DCB, a control block
that describes the attributes of an open
data set, is located in the last 3 bytes of
the seventh DEB word, DEB+25(19). The
first two bytes of the ninth word of the
DCB, offset 40(28), contains the offset in
the task input/output table (TIOT) of the .
DD name entered for the data set.
Therefore, the address of the DD name for a
particular.data set may be found by adding
the TIOT offset in the DCB to the TIOT
address in the TCB (TCB+12), plus 24(16)
bytes for the TIOT header.

I0oB

If a data set is being accessed by a
sequential access method with normal
scheduling, the address of the input/output
block (I0B) prefix (IOB-8) is located in
the seventeenth word of the DCB,
DCB-68(44). The first word of the IOB
prefix points to the next IOB (if more than
one IOB exits for the data set). Each IOB

Address of SPQE for Subpool 251

Address of

02DA00
02DA20
02DA40

hhhhhhhh hhhhhhhh hhhhhhm 0002DEAC HENSENER 60000000 &9
hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh
hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh

SPQE for

' Subpool 0
C0000000 0002DA18 00000000 00000010

hhhhhhhh hhhhhhhh 00 ORESSEE o ofNENNN
L

/__Mh_/w

__— T DQE

s

02D280

hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh

No Free Storage Last DQE

SPQE for Subpool 252

02DEAO

0002DA30 02DA68 hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh

S

L)L

e

STORAGE KEY E

046000

FQE describing 1896 (768)
bytes of free storage

Figure 33.

hhhhhhhh hhhhhhhh

hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh

Subpool Descriptions in MVT - IMDPRDMP Storage Print

144 Programmer's Guide to Debugging (Release 21)

uep—m—
0015E0 hhhhhhhh hhhhhhhh hhhhhhhh
001600 : g :
001620 : o

011780 hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh
0117A0 g : e

0117C0
0117E0

011E00
011E20 L s i
011E40 [EUFEEEE B0 8L @ hhhhhhhh hhhhhhhh
011E60 hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh
011E80 hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh
011EA0 [REEINEsEnER : ; :

011ECO [iin

021280 hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh
021220 e ;

0212C0 |}
0212E0 |
021300 |
021320
021340

DDNAME

Volume mounted on Device

hhhhhhhh §

\g;\ii\ﬁhhh' hhhhhhbW]
Address of DCB

Device Address

DCB

TIOT Offset

hhhhhh hhhhhhhh hhhhhhhh hhhhhhhh

hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh
hhhhhhhh

5

TIOT

hhhhhhhh hhhhhhhh §

TIOT@ 21298
Offset Ad

2133C

Figure 34. I/0 Control Blocks

for an open data set contains a pointer to
the CCW list in the last three bytes of the
fifth word, IOB+17(11).

ECB

The Completion code for an I/0 operation is
posted in the first byte of the event
control block (ECB). ECB completion codes
are explained in Appendix F. If the I/0
event is not complete and an SVC I (WAIT)
has been issued, the high-order bit of the
ECB is on, and bytes one through three
contain the address of the associated RB.
For the sequential and basic partition
access methods the second word of an IOB
points to its associated ECB.

Figure 34 shows the DEB, UCB, DCB, and
I0B for a BSAM data set.

TSO CONTROL BLOCKS

The time sharing (TSO) control blocks are
obtained from the IMDPRDMP service aid
program by specifying the TSO control
statement in the input stream. The first
part of the TSO dump is the same as the
normal MVT dump. The control blocks that
IMDPRDMP formats are divided into two
group: system and user.

TSCVT

The time sharing communications vector
table (TSCVT) is a secondary CVT for the
MVT CVT. The time sharing CVT resides in
the time sharing region; therefore, it
exists only while the time sharing region
is active. When time sharing does not

exist in the system, the MVT CVT pointer to

the TSCVT (CVT+229) is zero.

Guide to Storage Dumps

145

RCB

A region control block. (RCB) contains
information that is unique to a time
sharing region. There is one RCB for each
time sharing region. The RCBs reside in
the time sharing controller's region, they
are contiguous, and they are created during
initialization of the time sharing
controller.

The TSCVT points to a region control
block table. The RCB table is an indexed
table containing one RCB address for each
possible time sharing region, therefore,
the table contains the maximum number of
RCBs that may be used by time sharing. The
first RCB is for region one, the second for
region two, etc. The time sharing job
block (TJB) of a job points to the RCB
associated with that job.

UMSM

One user main storage map (UMSM) exists for
each possible time sharing user. The UMSM
contains a series of consecutive one-word
extent fields (ADDR-LN). Each one-word
extent contains a halfword address field
(ADDR) and a halfword length field (LN)
that describes the main storage allocated
to the time sharing user. The UMSM
contains the address and length of a
storage block (a multiple of 2K bytes) that
has been allocated to the user; only this
allocated storage will be swapped out for
the user. The time sharing job block (TJB)
points to the UMSM.

SWAP DCB

The swap data control block (SWAP DCB) is
used whenever a time sharing user's region
is swapped into or out of main storage. It
describes a swap data set that contains an
I0B, area for channel programs, and the
track map queue. The TJB points to the
swap DCB.

TJB

The time sharing job block (TJB) contains
status information about a time sharing
user. The TJIB is retained in main storage"
while the user is swapped out. One time
sharing job block exists for each possible
simaltaneous time sharing user. The space
for the TIB is obtained from the time
sharing control task (TSC) region during
time sharing initialization. Status
information about the terminal related to
this TJB is contained in the terminal

.of TSBs is called the TSB table.

status block (TSB). The address of the
terminal status block is the first word of
the TJB. The first word of the TSCVT
points to the TJB.

TSB

Each terminal status block (TSB) contains
status information about one terminal. The
terminal input/output coordinator (TIOC)
uses this information. During system
initialization, one TSB is created for each
possible user. The main storage space is
obtained in one contiguous block for all of
the TSBs in the region of the time sharing
control task (TSC); this contiquous string
The
origin pointer to the TSB table is the
TIOCTSB field of the TIOCRPT.

TJIBX

The time sharing job block extension (TJBX)
contains user job information that can be
rolled out to the swap data set with the
user's job. The TJIBX resides in the local
system queue space (LSQS) for the region.
The TJIBX location is pointed to by the
third word of the time sharing job block
(TJB). The space for the TJBX is obtained
by the region control task (RCT) during
initialization.

PSCB

The protected step control block (PSCB)
contains accounting information related to
a single user. All timing information is
in software timer units. A software timer
unit is equal to 26.04166 micro seconds.
The job step control block (JSCB), offset
268, points to the PSCB.

TAXE

The TSO terminal attention exit element
(TAXE) is a physical addendum to a regular
24 word interrupt request block (IRB). It
is used to schedule an attention exit
resulting from a terminal attention
interruption. It is created, queued, and
dequeued by the specify terminal attention
exit (STAX) macro instruction. The main
storage space for the TAXE is obtained in
the local system queue space (LSQS) of the
terminal user's region.

For a more detailed description of the
TSO control blocks formatted by the
IMDPRDMP program, see the Control Block
and/or TSO Control Program PLM
publications.

146 Programmer's Guide to Debugging (Release 21)

Tracing aids available are the save area
chain, trace option, and Generalized Trace
Facility (GTF). This section provides a
description of each tracing aid, and, for
GTF, describes its output after processing
by the IMDPRDMP service aid.

Save Area Chajn

The save area chain is edited and clearly
identified in ABEND/SNAP dumps, and can be
located easily in storage dumps produced by
system dump facilities or the IMDSADMP
service aid.

A save area is a block of 72 bytes
containing chain pointers and register
It has the following format:

contents.

12(C)

16(10)

20(14)

Pointer to the next higher
level save area or, if this is
the highest level save area,
ZEeros.

Bytes

Bytes 8-11(B): Pointer to the next lower
level save area or, if this is
the lowest level save area,

unused.

Bytes 12-15(C-F): Contents of register 14
(optional)

Bytes 16-19(10-13): Contents of register

15 (optional)

20-71(14-3F): Contents of registers

0 to 12

Bytes

The save area for the first or highest
level load module in a task (save area 1)
is provided by the control program. The
address of this area is contained in
register 13 when the load module is first
entered. It is the responsibility of the
highest level module to:

Section 3: Tracing Aids

1. sSave registers 0-12 in bytes
20-71(14-3F) of save area 1 when it is
entered.

2. Establish a new save area (save area
2).

3. Place the contents of register 13 into
bytes 4-7 of save area 2.

4. Place the address of save area 2 into
register 13.

5. Place the address of save area 2 into
bytes 8-11(B) of save area 1.

At this point, the save areas appear as
shown in Figure 35.

Save area 1 Save area 2

+4

+8

+20(14)

+68(44)

Figure 35. Save Area Trace

If a module requests a lower level
module, it must perform actions 1 through 4
to ensure proper restoration of registers
when it regains control. (Action 5 is not
required, but must be performed if the dump
printout of the field is desired.) A
module that does not request a lower level
module need only perform the first action.

ABEND and SNAP dumps include edited
information from all save areas associated
with the dumped task under the heading
"SAVE AREA TRACE". 1In a stand-alone dump,
the highest level save area can be located
through a field of the TCB. Subsequent
save areas can be located through the save
area chain.

Section 3: Tracing Aids 147

TRACE OPTION

The tracing routine is an optional feature
specified during system generation. This
routine places entries, each of which is
associated with a certain type of event,
into a trace table. When the table is
filled, the routine overlays old entries
with new entries, beginning at the top of
the table (the entry having the lowest
storage address). The contents and size of
a trace table are highly system-dependent.

Systems With MFT: Trace table entries for
systems with MFT arxe 4 words long and
represent SIO, 1I/0, SVC and dispatcher
task-switching interruptions. Figure 36
shows the word contents of each type of
entry.

SIO CC/Dev CAW csw
0 1 2
1/0 1/0 OLD PSW o CswW
0 2
svC SVC OLD PSW Reg 0 Reg 1
0 2 3
Task PSW } New 1cs | f ol TCs
Switch I
0 2 3
Figure 36. Trace Table Entries (MFT)

Systems with MVT: The trace table in a
system with MVT is expanded to include more
entries and more information in each entry.
Trace table printouts occur only on SNAP
dumps and stand-alone dumps. Entries are
eight words long and represent occurences
of sI0O, external, SVC, program, and I/0
interruptions, and dispatcher loaded PSWs.

Figure 37 shows the word contents of
trace table entries for SNAP dumps and
stand-alone dumps. Figure 38 shows the
contents of trace table entries as filled
by MVT with Model 65 multiprocessing. (SSM
-- set system mask -- entries are
optional.)

INTERPRETING TRACE TABLE ENTRIES

Location 84(54) in main storage contains
the address of the first word of the three
word trace table control block. The trace
table control block immediately preceeds
the table. The trace table control block
describes the bounds of the table and the
most recent entry at the time of the dump.

T i]
Current Entry | First Entry |

L AL
0 4 8
You can locate the trace table by scanning
the contents of main storage between
locations 16,384(4000) and 32,768(8000) for
trace table entries. Entries are four
words long and begin at addresses ending
with zero. To find the table boundaries
and current entry, scan the table in
reverse until you reach the trace table
control block.

1
Last Entry|
]

Trace Table Entries in MFT: Trace table
entries for systems with MFT are 4 words
long and represent occurrences of SIO, I/O,
SVCc, and task-switching interruptions.
Figure 39 gives some sample entries and
their contents.

SI0 entries can be used to locate the CCW
(through the CAW), which reflects the
operation initiated by an SIO instruction.
If the SIO operation was not successful,
the CSW STATUS portion of the entry will
show you why it failed.

1/0 entries reflect the I/0 o0ld PSW and the
CSW that was stored when the interruption
occurred. From the PSW, you can learn the
address of the device on which the
interruption occurred (bytes 2 and 3), the
CPU state at the time of interruption (bit
15), and the instruction address where the
interruption occurred (bytes 5-8). The CSW
provides you with the unit status (byte &),
the channel status (byte 5), and the
address of the previous CCW plus 8 (bytes
0-3).

SvVC
External PSW Reg 15 Reg 0
Program
Dispatcher 0 2 3
e Timer
7
SIO Csw {
0 1 2
rTCB Timer
7
/o PSW Csw l
0 2
7
Figure 37. Trace Table Entries (MVT)

148 Programmer's Guide to Debugging (Release 21)

Dispatcher
Reg O

§ External

SVC and
Program Old PSW Reg 15
0 2 3
old TCB old TCB)
g Reg 1 T (CPU A) (CPU B) Timer ID
4 5) 7
SIO
CC/Dev CAW csw
0 1 2
TCB Old TCB Old TCB .
D
; (RQE) (CPU A) (CPU B) Timer
4 5 6 7
1/0
Old PSW csw
0 2
old TCB Old TCB) D
; Reg 1 (CPU A) (CPU B) Timer
! 5 6 7
Figure 38.

SVC entries provide the SVC old PSW and the
contents of registers 0 and 1. The PSW
offers you the hexadecimal SVC number (bits
20-31), the CPU mode (bit 15), and the
address of the SVC instruction (bytes 5-8).
The contents of registers 0 and 1 are
useful in that many system macro
instructions use these registers for
parameter information. Contents of
registers 0 and 1 for each SVC interruption
are given in Appendix B.

Trace Table Entries in MVT and M65MP:
Entries in an MVT trace table are 8 words
long and represent occurrences of SIO,
external, SVC, program, I/0, and dispatcher
interruptions. You can identify what type
of interruption caused an entry by looking
at the fifth digit:

sIo
External
SvC
Program
I/0
Dispatcher

DurvwnmR o

Figure 40 gives some sample entries and
their contents.

In dumps of Model 65 Multiprocessing
system, trace table entries differ as
follows: '

New PSW Reg 15 Reg 0 %
0
New TCB New TCB .
? Reg 1 (CPU A) (CPU B) Timer ID
4 5
Old PSW Reg 15 Reg 0 2
0
STMASK
2 Reg 1 °.|: other CPU TQE Timer 1D
4 5
Old PSW Reg 15 Reg 0 g
0
Locking [4Old TCB Old TCB T D
g Reo 1 Icpun|lcrua) | 1 (crup) fmer
4 5 6 7

sSIo

Is0

SVC and

Program

Dispatcher

External

5th
6th

7th
8th
3xd
4th
8th
6th
7th
8th
6th
7th
8th

6th
7th

8th

Section 3:

Trace Table Entries (MVT with Model 65 multiprocessing)

word
word:

word :
word
word:
word
word
word:
word :
word
word:
word :
word:

word:
word:

word:

address of TCB.
address of old TCB
for CPU A.

address of o0ld TCB
for CPU B.

CPU identification
(last byte).
contents of register
15.

contents of register
0.

CPU identification
(last byte).

address of old TCB
for APU A.

address of o0ld TCB
for CPU B.

CPU identification
(last byte).

address of new TCB
for CPU A.

address of new TCB
for CPU B.

CPU identification
(last byte).

STMASK of other CPU.
TQE if timer inter-
rupt occurred.

CPU identification
(last byte). If so, a
program check at the
instruction preceding
that address caused
the interruption.

Tracing Aids 149

SI0
Condition Device CAW Csw
code address
1/0
1/0O old PSW CSwW
SVC number
svC
SVC old PSW Register 0 Register 1
Indicates task switch
Task
Switch
Dispatched new PSW Tnew TCB Told TCB
Figure 39. Sample Trace Table Entries

(MFT)

Generalized Trace Facility

The Generalized Trace Facility (GTF) traces
system and application program events and
records information about these events.
Trace records can be stored internally --
in a table similiar to the trace table of
the Trace Option -- or they can be recorded
externally in a data set that becomes input
to the IMDPRDMP service aid program. (When
stored internally the trace table is
formatted in ABEND/SNAP dumps.) The
IMDPRDMP service aid edits and formats the
GTF external trace records as specified in
an EDIT control statement.

This section describes the output of
GT'F; it does not tell how to use GTF. For
a description of the functions performed by
GI'F and IMDPRDMP refer to the Service Aids
publication.

SIO entry identifier

SIO
Condition Device CAW Ccsw
code address
TCB address Timer
I/O entry
. identifier
Device address
/0
I/O old PSW Csw
Timer
Entry identifier
(SVC here) SVC number
svC
External
Progrom

Dispatcher

SVC old PSW Register 15 Register 0

TCB address Timer

Register 1

Figure 40. Sample Trace Table Entries
(MVT)

System events traced by GTF in MFT, MVT,
and MVT-M65MP systems are:

I0 interrupts

SIO operations

SVC interrupts

Program interrupts

External interrupts

Task Switches by the system dispatcher
SSM interrupts in multi-processing
systems

GTF MINIMAL TRACE RECORDS

The following material describes the
records produced under the minimal trace
option (SYSM) of GTF. The formats
described appear in both ABEND/SNAP dumps
(under the heading GTF TRACE TABLE) and in
IMDPRDMP output. Minimal trace records are
produced for IO and PCI/IO, SIO, SVC, PGM,
EXT, DSP, and SSM events.

150 Programmer's Guide to Debugging (Release 21)

I0 and PCI/IO Minimal Trace Record

A
B

10
PCI

H

} OLD PSW hhhhhhhh hhhhhhhh CSW hhhhhhhh hhhhhhhh RQE TCB{

K dodok ok kok ok

hhhhhhhh
N/A

OLA hhhhhhhh OLB hhhhhhhh
OLD TCB hhhhhhhh

I }

Figure 41. IO and PCI/IO Minimal Trace Record

(2}

A

B
appears in MVT-M65MP system records;
jdentifies the CPU associated with the
event.

}

identifies the type of trace record.

I0
PCI

OLD PSW hhhhhhhh hhhhhhhh
the program status word that was
current at the time the IO or PCI/IO
interrupt occurred.

CSW hhhhhhhh hhhhhhhh
the channel status word associated
with the IO or PCI/IO interrupt being

traced.

kkkkkkkik
indicates that an error occurred
while gathering the information.

LTI TR
hhhhhhhh

ROE TCB{
N/A

hhhhhhhh
is the address of the TCB of the
task for which this I/0 operation
is being performed.

N/A
indicates the interrupt was
unsolicited: either the I/0
supervisor did not issue an SIO
instruction to the device; or
there is no valid UCB for the
device.

OLD TCB hhhhhhhh
in MFT and MVT system trace records,
the address of the TCB for the task
that was in control when the interrupt
occurred.

in MVT-M65MP systems the OLA and OLB
fields replace the OLD TCB field and
contain the address of the TCB for the
task in control of CPU A and CPU B
respectively, at the time the
interrupt occurred.

Section 3: Tracing Aids 151

{

SIO Minimal Tréce Record

B

{A} SIO CC/DEV/CAW hhhhhhhh hhhhhhhh CSW hhhhhhhhhhhhhhhh RQE TCB{hhhhhhhh

OLD TCB hhhhhhhh

********} OLA hhhhhhhh OLB hhhhhhhh}
o

N/A

Figure 42. SIO Minimal Trace Record

)

B
appears in MVT-M65MP system records;
identifies the CPU associated with the

event.

SIO
identifies the type of trace record.

CC/DEV/CAW hhhhhhhh hhhhhhhh
displays the SIO condition code, the
device address, and the CAW (channel
address word) for the I/0 operation
just initiated.

The first four digits represent the
condition code returned from the SIO
operation; the next four digits
represent the device address; and the
last eight digits represent the CAW.

CSW hhhhhhhh hhhhhhhh
the channel status word associated
with this event.

kkkkkokkk
RQE TCB{hhhhhhhh
N/A

T T
indicates that an erxror occurred while
gathering the information.

hhhhhhhh
is the address of the TCB of the task
for which this I/0 operation is being
performed.

N/A
indicates the interrupt was
unsolicited, i.e., the I/0 supervisor
did not issue an SIO instruction to
the device; or, there is no valid UCB
for the device.

OLD TCB hhhhhhhh
in MFT and MVT system trace records,
the address of the TCB for the task
that was in control when the interrupt
occurred.

In MVT-M65MP systems the OLA and OLB
fields replace the OLD TCB field and
contain the address of the TCB for the
task in control of CPU A and CPU B
respectively, at the time the
interrupt occurred.

152 Programmer's Guide to Debugging (Release 21)

DSP _Minimal Trace Record

NUA hhhhhhhh NUB hhhhhhhh

{g} DSP {Sgg ggg} hhhhhhhh hhhhhhhh R15/R0 hhhhhhhh hhhhhhhh R1 hhhhhhhh {NEW TCB hhhhhhhh }

Figure 43. DSP Minimal Trace Record

{A} registers 15 and 0 as they will be
B when the task being dispatched is
appears in MVT-M65MP records; given control.
identifies the CPU associated with the
event. R1 hhhhhhhh
the contents of general purpose
DSP register 1 as it will be when the task
identifies the type of record. being dispatched is given control.
NEW PSW hhhhhhhh hhhhhhhh NEW TCB hhhhhhhh
the PSW for the task about to be the address of the TCB for the task
dispatched. about to be dispatched.
In a record obtained from a MVT-M65MP In a record obtained from a MVT-M65MP
system this field will be labeled RES system this field is replaced by the
PSW. NUA and NUB fields containing the
addresses of the tasks to be
R15/R0 hhhhhhhh hhhhhhhh dispatched on CPU A and CPU B when
the contents of general purpose processing resumes.

Section 3: Tracing Aids 153

EXT Minimal Trace Record

B

{A} EXT OLD PSW hhhhhhhh hhhhhhhh R15/R0 hhhhhhhh hhhhhhhh R1 hhhhhhhh STMSK hhhhhhhh TQE TCB{hhhhhhhh

********}

N/A

Figure 44. EXT Minimal Trace Record

5

B
appears in MVT-M65MP records;
identifies the CPU associated with the

event.

EXT
identifies the type of trace record.

OLD PSW hhhhhhhh hhhhhhhh
the program status word that was
current at the time the external
interrupt occurred.

R15/R0 hhhhhhhh hhhhhhhh
the contents of general purpose
registers 15 and 0 at the time the
interrupt occurred.

R1 hhhhhhhh
the contents of general purpose
register 1 at the time the interrupt
occurred.

STMSK hhhhhhhh
appears in MVT-M65MP records only;
displays the SHOULDER TAP MASK at the
time the interrupt occurred.

dkkkkkkk
TQE TCB{hhhhhhhh
N/A

*kkkkkkk
indicates that an error occurred
while gathering the information.

hhhhhhhh
is the address of the TCB of the
task that requested this timer
interrupt.

N/A
indicates the interrupt was other
than a timer interrupt.

154 Programmer's Guide to Debugging (Release 21)

{

PGM Minimal Trace Record

{g} PGM OLD PSW hhhhhhhh hhhhhhhh R15/R0 hhhhhhhh hhhhhhhh Rl hhhhhhhh {OLD TCB hhhhhhhh

OLA hhhhhhhh OLB hhhhhhhh}

Figure 45. PGM Minimal Trace Record

}
B

identifies the CPU associated with the
event.

PGM
identifies the type of trace record.

OLD PSW hhhhhhhh hhhhhhhh
the program status word that was
current at the time the program
interrupt occurred.

R15/R0 hhhhhhhh hhhhhhhh
the contents of general purpose
registers 15 and 0 at the time the
interrupt occurred.

R1 hhhhhhhh
the contents of general purpose
register 1 at the time the interrupt
occurred.

OLD TCB hhhhhhhh
the address of the TCB for the task
that was in control when the interrupt
occurred. :

In MVT-M65MP trace records this field
is replaced by the OLA and OLB fields
that contain, respectively, the
address of the TCB for the tasks in
control of CPU A and CPU B at the time
the interrupt occurred.

Section 3: Tracing Aids 155

SVC Minimal Trace Record

A . {OLA hhhhhhhh OLB hhhhhhhh}
{B} SVC OLD PSW hhhhhhhh hhhhhhhh R15/R0 hhhhhhhh hhhhhhhh R1 hhhhhhhh lOLD TCB hhhhhhhh

Figure 46. SVC Minimal Trace Record

{A} registers 15 and 0 at the time the
B interrupt occurred.
appears in MVT-M65MP system records;
identifies the CPU associated with the R1 hhhhhhhh

event. the contents of general purpose
register 1 at the time the interrupt
svC occurred.

identifies the type of trace record.
| OLD TCB hhhhhhhh

OLD PSW hhhhhhhh hhhhhhhh the address of the TCB for the task
the program status word that was that issued the SVC.
current at the time the interrupt
occurred. The SVC number, e.g., SVC In MVT-M65MP systems the OLA and OLB
51, is represented by the last two fields replace the OLD TCB field and
hexadecimal digits in the first word. contain the address of the TCB for the
task in control of CPU A and CPU B
R15/R0 hhhhhhhh hhhhhhhh respectively, at the time the
the contents of general purpose interrupt occurred.

156 Programmer's Guide to Debugging (Release 21)

{

SSM Minimal Trace Record

B

{A} SSM LK C OPSW hhhhhhhh hhhhhhhh R15/R0 hhhhhhhh hhhhhhhh R1 hhhhhhhh OLA hhhhhhhh OLB hhhhhhhh

Figure 47. SSM Minimal Trace Record

3

SSM

IK ¢

indicates the CPU associated with the
event.

identifies the type of trace record.

CPU affinity byte:
A indicates CPU A executing
disabled.
B indicates CPU B executing
disabled.
0 Neither CPU executing disabled.

OPSW hhhhhhhh hhhhhhhh
the program status word that was
current at the time the interrupt
occurred. Obtained from the CPU on
which the interrupt occurred.

R15/R0 hhhhhhhh hhhhhhhh R1 hhhhhhhh
The contents of general purpose
registers 15, 0, and 1 from the CPU on
which the interrupt occurred, at the
time the interrupt occurred.

OLA hhhhhhhh OLB hhhhhhhh
the addresses of the TCBs of the tasks
in control in CPU A and CPU B
respectively at the time the interrupt
occurred.

Section 3: Tracing Aids 157

GTF COMPREHENSIVE TRACE RECORDS in the output from IMDPRDMP service aid
processing of the data recorded by GTF.

The following material describes the

records produced when comprehensive tracing Comprehensive trace records are produced
is specified at the invoking of GTF for 10, PCi/1O0, siO, DsSP, EXT, PGM, SSM,
(MODE=EXT). The formats described appear and SVC events.

158 Programmer's Guide to Debugging (Release 21)

IO and PCI/IO Comprehensive Trace Record

o ek koK ok kok

cceeeeee
N/A

{

A}{IO
Bf lpPCI

CSW hhhhhhhh hhhhhhhh RQE{

} cuw OLD PSW hhhhhhhh hhhhhhhh JOBN{

khkkkdhhk dhhkkkhkhkk hhkkhkhhkk

hhhhhhhh hhhhhhhh hhhhhhhh
N/A

dekkkkkkk

cccecceée
N/A

OLA hhhhhhhh OLB hhhhhhhh
OLTCB hhhhhhhh

H |

} DDNM{
hhhhhhhh} SENS{

} RQE TCB{ hhhhhhhh}
N/A

N/A

Figure 48.

)

{A
B
This field appears only in MVT-M65MP
system I/0 or PCI trace records and
identifies the computer associated

with the event.

}

This field identifies the type of
trace record -- input/output (I0) or
program controlled interrupt (PCI).

I0
PCI

{

cuu
This field displays the device address
for the device associated with the
interrupt in channel/unit form.

OLD PSW hhhhhhhh hhhhhhhh
This field displays the program status
word that was current at the time the
I0 or PCI interrupt being traced,
occurred.

|

This field has three possible entries,
as follows:

cccceceecece
kkkkkkkk

JOBN{
N/A

cccccecee
is the one to eight character
name of the job associated with
the interrupt being traced.

kkkkkkkk

asterisks indicate that a bad
control block chain prevented the
jobname from being obtained.

N/A
in PCI trace records N/A
indicates that the interrupt was
issued by the system and there is
no associated jobname; in IO
interrupt trace records N/A
indicates either a system issued
interrupt as for PCI or an

IO and PCI/IO Comprehensive Trace Record

UCB for the device issuing the
interrupt.

|

This field has three possible entries,
as follows:

cececeeccee
kkkkkkkk

DDNM{
N/A

cccececcce
is the name of the DD statement
associated with the interrupt
being traced.

*dkkkRkk
asterisk indicate that a bad
control block chain prevented the
data definition name from being
obtained.

N/A
N/A appears in the DDNM field for
one of the following reasons:
e An interrupt was issued without
a valid UCB for the device
issuing the interrupt.
The post bit in the UCB is
‘off.’
The data event block (DEB)
pointer to the TCB is set to 0.
The DCB is not opened.
The DCB TIOT offset is outside
the valid range.
The TCB TIOT pointer is set to
0.
The DDNAME in the TIOT is not
recorded in EBCDIC characters.

OLTCB hhhhhhhh
In MFT and MVT system trace records
this field displays the address of the
TCB that was current at the time the
IO or PCI interrupt being traced,
occurred.

In MVT-M65MP system IO and PCI trace
records the following fields replace

interrupt issued without a valid

the OLTCB field:

Section 3: Tracing Aids 159

OLA hhhhhhhh
This field displays the address
of the A computer TCB that was
current when the IO or PCI
interrupt occurred.

OLB hhhhhhhh
This field displays the address
of the B computer TCB that was
current when the IO or PCI
interrupt occurred.

CSW hhhhhhhh hhhhhhhh i
This field displays the channel status
word from permanent storage location
64.

hhhhhhhh hhhhhhhh hhhhhhhh
ROE(*#kkkkk® dkdkhokdk khhkbdds
N/A
This field has three possible entries
as follows:

hhhhhhhh hhhhhhhh hhhhhhhh
is the content of the first three
words of the Request Queue
Element associated with the IO or
PCI interrupt.

Ehkkkkkk kkkkkkkk kkkkkkkE
asterisks indicate that a bad
control block chain prevented the
RQE information from being
obtained. :

N/A
indicates that the interrupt was
issued without a valid UCB for
the device issuing the interrupt.

hhhhhhhh
ROQE TCB{*#*k%kkk%
N/A

This field has three possiblé entries
as follows:

hhhhhhhh
is the address of the TCB
associated with the Request Queue
Element

kkkkkkkEk

asterisks indicate that a bad
control block chain prevented the
TCB address from being obtained.

N/A
indicates that the interrupt was
issued without a valid UCB for
the device issuing the interrupt.

SENS {hhhhhhhh}
N/A

This field has two possible entries as

follows:

hhhhhhhh

is the content of the four sense
bytes in the UCB beginning at UCB
+ 22 which describe the I0 or PCI
interrupt being traced.

N/A
indicates that the interrupt was
issued without a valid UCB for
the device issuing the interrupt.

160 Programmer's Guide to Debugging (Release 21)

{

SIO Comprehensive Trace Record

5f

N/A

CSW hhhhhhhh hhhhhhhh RQE hhhhhhhh hhhhhhhh hhhhhhhh

A : {OLA hhhhhhhh OLB hhhhhhhh
{B} SIO cuu CC hh CAW hhhhhhhh JOBN{cccccccc} OLTCB hhhhhhhh

RQE TCB hhhhhhhh

Figure 49. SIO Comprehensive Trace Record

appears in MVT-M65MP system trace
records; identifies the computer
associated with the event.

sIO v :

: the type of trace record.

cuu
the device address in channel/unit
form for the device associated with
the record.

CC hh
hh - is the condition code set by the
SIO event.

CAW hhhhhhhh
the channel address word associated
with this event -- taken from
permanent storage location 72.

JOBN{cccccccc}

N/A

cccecece
is the one to eight character
jobname of the job associated
with this event.

N/A
indicates the SIO was issued by
the system and there is no
associated jobname.

OLTCB hhhhhhhh
in MFT/MVT systems the address of the
TCB that was current when the SIO was
issued.

in MVT-M65MP systems the OLA and OLB
fields replace the OLTCB field.

OLA hhhhhhhh
is the A computer address of the
TCB that was current when the SIO
was issued.

OLB hhhhhhhh
is the B computer address of the
TCB that was current when the SIO
was issued.

CSW hhhhhhhh hhhhhhhh
the channel status word associated
with this event -- taken from
permanent storage location 64.

ROE hhhhhhhh hhhhhhhh hhhhhhhh
the first three words of the Request
Queue Element associated with the SIO
operation.

RQE TCB hhhhhhhh
the address of the TCB associated with
the request queue element.

Section 3: Tracing Aids 161

DSP_Comprehensive Trace Recorxrd

WAITTCB
Al SVC-cScc {NUA hhhhhhhh NUB hhhhhhhh}
{B} DSP RES PSW hhhhhhhh hhhhhhhh JOBN jcccccccc) MODN)SVC-RES (INUTCB hhhhhhhh PRTY hh
{N/A } **TRB***
cceeccecece
Iccccece
Figure 50. DSP Comprehensive Trace Record

A * %I RB***

{B} an asynchronous routlne is about
MVT-M65MP systems only. Identifies to be dispatched and the module
the computer associated with the name is not available.
event.

cceccecce
an asynchronous routine is about

DsP to be dispatched and the module
the type of trace record. name is not available.

cccecccee

RES PSW hhhhhhhh hhhhhhhh in MVT systems the eight
the PSW for the task about to be character module name from the
dispatched. If this task was CDE associated with the task to
interrupted at some previous point in be dispatched; ox, the name of an
time, then this was the current PSW at error exit routine from the SIRB
the interrupt. associated with the task.

JOBN{cccccccc} in MFT systems the eight

N/A character name from the LRB,
LPRB, PRB or FRB associated with
ccecceecece the task being dispatched; or an
is the eight character name of error exit routine name from the
the job associated with the task SIRB associated with the task.
being dispatched.
Icccccce

N/A .
indicates the task switch is for
a system task; no jobname is
available.

WAITTCB

SVC-ccce

MODN)SVC-RES

% JRB %%

ccceeccce

Iccccccce

WAITTCB
the WAIT task is about to be
given control.

SVC-cccc
indicates a type 3 or 4 SVC is
about to get control; cccc is the
last four characters in the
module name.

SVC-RES

indicates a resident type SVC
routine is about to be given
control.

indicates that error fetch is in
the process of loading an error
recovery module. The last seven
characters of the module name are
shown.

NUTCB hhhhhhhh
the address of the new TCB -- the TCB
of the next-to-be-dispatched task.

in MVT-M65MP systems the following

fields replace the NUTCB field:

NUA hhhhhhhh
the address of the TCB of the
next-to-be-dispatched task in the
A computer.

NUB hhhhhhhh
the address of the TCB of the
next-to-be-dispatched task in the
B computer.

PRTY hh
hh

the dispatching priority of the
next-to-be-dispatched task.

162 Programmer's Guide to Debugging (Release 21)

{

EXT Comprehensive Trace Record

WAITTCB
a SVC-ccce {OLA hhhhhhhh OLB hhhhhhhh}
{B} EXT OLD PSW hhhhhhhh hhhhhhhh JOBN{cccccccc} MODN) SVC-RES OLTCB hhhhhhhh STMSK hhhhhhhh
N/A **TRB***
ccececececcee
Icceccecece
¥ de g %k Kk k Kk hkkkkkkk
TQEFLG/TCB{hhhhhhhh} EXIT{hhhhhhhh}
N/A N/A
Figure 51. EXT Comprehensive Trace Record
A} SVC-RES
B a resident SVC routine was
This field appears only in MVT-M65MP interrupted.
system EXT trace records and
identifies the computer associated
with the event. **IRB*#*%
the EXT interrupt occurred during
execution of an asynchronous
EXT routine with an associated IRB.
This field identifies the trace record
as an EXT trace record.
cececceccee
in MVT systems the eight
OLD PSW hhhhhhhh hhhhhhhh character name of the module that
This field displays the program status was interrupted - taken from the
word that was current at the time the CDE associated with the task; or
external interrupt occurred. the name of an error routine -
: taken from the SIRB associated
JOBN{cccccccc} with the task.
N/A
This field has two possible entries as in MFT systems the eight
follows: character name of the module that
was interrupted - taken from
ccccececece either the LRB, LPRB, PRB, or
is the one to eight character FRB; or the name of an error
name of the job associated with routine - taken from the SIRB
the event. associated with the task.
N/A Icccccece
indicates that the interrupt was indicates that error fetch was in
issued by the system and there is the process of loading an error
not associated job name. recovery routine when the
interrupt occurred. The last
WAITTCB seven characters of the module
SVC-ccce name are shown.
MODN) SVC-RES
** TRB¥** OLTCB hhhhhhhh
ccececcece In MFT/MVT systems the address of the
Icccececce TCB that was current when the
interrupt occurred.
WAITTCB
The WAIT task was interrupted. In MVT-M65MP systems the OLA and OLB
fields replace the OLTCB field.
SVC-cccce

A type 3 or 4 SVC routine was

interrupted; cccc is the last

four characters of the routine
name. '

OLA hhhhhhhh
is the address of the TCB in the
A computer that was current when
the interrupt occurred.

Section 3: Tracing Aids 163

OLB hhhhhhhh
is the address of the TCB in the
B computer that was current when
the interrupt occurred.

STMSK hhhhhhhh
In MVT-M65MP systems only - the
*shoulder tap" mask from location
X'2BC' in the other computers prefix.

N/A
TQEFLG/TCB{ #**%k* 4%
hhhhhhhh

hhhhhhhh

is the first word of the timer
queue element (TQE). The first
byte of the word is the TQEFLGS
and the remaining three bytes the
TQETCB, which is the address of
the TCB for the task in which
this timer element is being used.

*khkkkek
asterisks indicate that a bad
control block chain prevented the
information £from being obtained.

N/A
indicates that this EXT interrupt
was not caused by the timer.

hhhhhhhh
EXITq N/A
*hkkkkhk

hhhhhhhh
is the address of the exit
routine - taken from the eighth
word of the TQE.

N/A
indicates that this EXT interrupt
was not caused by the timer.

kkkkkkkk
asterisks indicate that a bad
control block chain prevented the
information from being obtained.

164 Programmer's Guide to Debugging (Release 21)

PGM_Comprehensive Trace Records

{g} PGM ccc OLD PSW hhhhhhhh hhhhhhhh JOBN{cccccccc
N/A

} MODN)SVC~-RES

RO hhhhhhhh R1 hhhhhhhh R2 hhhhhhhh R3 hhhhhhhh R4 hhhhhhhh R5 hhhhhhhh R6 hhhhhhhh R7 hhhhhhhh
R8 hhhhhhhh R9 hhhhhhhh R10 hhhhhhhh R11 hhhhhhhh R12 hhhhhhhh R13 hhhhhhhh R14 hhhhhhhh R15 hhhhhhhh

WAITTCB

SVC-ccce {OLA hhhhhhhh OLB hhhhhhhh}
OLTCB hhhhhhhh

kk TRB* %%

cecececeece

Iccceecce

Figure 52.

{5}

PGM Comprehensive Trace Record

MVT-M65MP systems only; identifies the
computer associated with the
interrupt.

PGM
the type of trace record.

ccc
the completion code for the program
interrupt.

OLD PSW hhhhhhhh hhhhhhhh
the program status word that was
current at the time the program
interrupt occurred.

ccececcecc
JOBN{ N/A }

ccececccece
is the one to eight character
jobname of the job associated
with this event.

N/A
indicates a system task program
checked and no jobname is
available.

WAITTCB

SVC-cccc

MODN }SVC-RES

% TRB **

ccccccce

Icccccece

SVC-ccc
A type 3 or 4 SVC routine was
interrupted; cccc is the last
four characters of the routine
name.

SVC-RES
a resident SVC routine was
interrupted.

IRB*
the program check interrupt
occurred in an asynchronous
routine with an associated IRB.

cceccececee
in MVT systems the eight
character name of the module that
was interrupted - taken from the
CDE associated with the task; or,
the name of an error routine -
taken from the SIRB associated
with the task.

Iccccecece
indicates that error fetch was in
the process of loading an error
recovery routine when the
interrupt occurred. The last
seven characters of the module
name are shown.

OLTCB hhhhhhhh
in MFI/MVT systems the address of the
TCB that was current when the
interrupt occurred.

In MVT-M65MP systems the OLA and OLB
fields replace the OLTCB field.

OLA hhhhhhhh
is the A computer address of the
TCB that was current when the
interrupt occurred.

OLB hhhhhhhh
is the B computer address of the
TCB that was current when the
interrupt occurred.

RO hhhhhhhh
to
R15 hhhhhhhh
the content of general purpose
registers zero through fifteen at the
time of the interrupt.

Section 3: Tracing Aids 165

SSM_Comprehensive Trace Record

WAITTCB
SVC-cccce
SVC-RES
*kTRB** %
ccecececece
Icccecce

{2} SSM OLD PSW hhhhhhhh JOBN{cccccccc} MODN
N/A

OLA hhhhhhhh OLB hhhhhhhh LKID C

Figure 53.
{3}
B

SsSM

SSM Comprehensive Trace Record

identifies the computer associated
with the SSM interrupt.

identifies this trace record as an SSM
trace record.

OLD PSW hhhhhhhh hhhhhhhh
the program status word that was
current at the time the set system
mask instruction was issued.

JOBN{cccccccc}
N/A

ccececece
is the one to eight character
name of the job associated with
SSM interrupt.

N/A
indicates that the system
originated the interrupt and
there is no associated jobname.

WAITTCB

SVC-cccc

MODN{ SVC-RES

% TRB¥%

Iccceccee

WAITTCB
the WAIT task was interrupted.

SVC~-cccc
a type 3 or 4 SVC routine was
interrupted; cccc is the last
four characters of the routine
name.

SVC-RES :
a resident SVC routine was
interrupted.

IRB %
the SSM interrupt occurred during
execution of an asynchronous
routine with an associated IRB.

ccecceceec
the eight character name of the
module that was interrupted -
taken from the content directory
element (CDE) for the task; or
the name of an error routine -
taken from the SIRB associated
with the task.

Icccecece
indicates that error fetch was in
the process of loading an error
recovery routine when the
interrupt occurred. The last
seven characters of the module
name are shown.

OLA hhhhhhhh

is the A computer address of the TCB
that was current when the interrupt
occurred.

OLB hhhhhhhh
is the B computer address of the TCB
that was current when the interrupt
occurred.

IKID ¢

CPU affinity byte:

A indicates
disabled.
B indicates
disabled.
0 Neither CPU executing disabled.

CPU A executing

CPU B executing

166 Programmer's Guide to Debugging (Release 21)

TIME

GTF produces two types of time records and

AND LOST EVENT RECORDS

a lost event record as follows:

TIME

***DATE:

ddddd.dddddd

appears on the last line of every

event record if TIME=YES was specified

in the GTF start command, and
designates in decimal the number of
seconds and microseconds since the
last midnight.

DAY ddd YEAR dddd TIME dd.dd.dd

This timestamp record appears at the
beginning of the printout of each
buffer filled by GTF and represents
the time the first record was placed
in the buffer.

DAY ddd
is the Julian date.

YEAR dddd
is the year.

TIME

*%% LOST EVENTS:

dd.dd.dad

is the time since midnight in a
twenty-four hour format
(hours.minutes.seconds) .

NUM dddddddddd TIME

dd.dd.dd [GTF DISABLED]

The lost event record appears whenever
GTF loses records, whether it is
because the GTF buffers overflowed or
because GTF was temporarily disabled

by ABEND.

The record is not produced

if GTF terminates when the buffers are

full.

NUM dddddddddd

TIME

is the number of records that
were lost; one to ten decimal
digits.

dd.dd.dd

is the time GTF resumed
recording; 24-hour format
starting at midnight.

GTF DISABLED

appears only if the events were
lost because GTF was temporarily
disabled, e.g., ABEND temporarily
disables GTF in order to format
GTF output for an ABEND dump.

Section 3: Tracing Aids 167

HEXADECIMAL FORMAT RECORD

HEXFORMAT
USER
SYSTEM
SUBSYS

AID hh FID hh EID hh

hhhhhhhh hhhhhhhh hhhhhhhh / hhhhhhhh

Figure 54. Hexadecimal Format Record

Under some circumstances IMDPRDMP formats
and prints GTF records in hexadecimal
notation. The conditions under which GTF
records are formatted and printed in
hexadecimal format by IMDPRDMP are
presented in the discussion of the
hexformat record that follows:

HEXFORMAT
This label identifies a record dumped
in hex format at the request of the
user on a GTRACE macro. This request
was made by not specifying a format
appendage, that is FID=00.

USR

This label identifies this record as
dumped in hexformat because the user
requested a format appendage on the
GTRACE macro that could not be found.
This format appendage was identified
by FID=hh, and therefore its name is
IMDUSR hh.

SYSTEM
This label identifies a record that
was dumped in hex format because
either it is a GTF error record or the
format appendage for it has been
scratched by the user. If relative
bytes 0, 1 or 8, 9 contain X'EEEE',
then this is an exrror recoxd produced
by GTF. This error record was
produced as a result of an
unrecoverable error in a GTF data
gathering routine. When the error was
encountered message IHL118I was
written on the master system console
indentifying the error and the action
taken. This message is not issued if
the error occurred while building a
comprehensive SVC trace record.

Except for comprehensive SVC records,
this was the last record of its type
produced during the run of GTF that
produced it. If the X'EEEE' were not
in the record, then it was dumped in
hexformat because the IMDPRDMP format
appendage that formats this type of
record was not found by IMDPRDMP.

SUBSYS
This label identifies this record as
dumped in hexformat because the
subsystem format appendage requested
by the subsystem on a GTRACE was not
found by IMDPRDMP. The request was
made via FID=hh, and therefore, it's
name is IMDUSRhh.

AID hh
This field contains the AID of this
record, and should always be X'FF'.
The AID is the application identifier,
and GTF's is always X'FF'.

FID hh
This field contains the FID, or format
identifier. It is appended to
*IMDSYS' or 'IMDUSR' to obtain the
name of the format appendage that was
to have formatted this record.

EID hhhh
This field contains the EID, or event
identifier, for this record. The EID
uniquely identifies the event that
produced this record.

hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh
up to 64 words (256 bytes) of record
in the GTF internal format. The
internal format of GTF records is
available in the Service Aids PLM.

168 Programmer's Guide to Debugging (Release 21)

GTF SVC COMPREHENSIVE TRACE RECORDS

There are four groups of GTF SVC

Comprehensive Trace

Group 1 -- Those
Group 2 -- Those
a DDNAME Field

Group 3 -- Those
a Parameter List
Group 4 -- Those

Variable Field(s)

records.

with Basic Fields
with Basic Fields plus

with Basic Fields plus
Field
with Basic Fields plus

The following sub-index lists the SVCs in
sequence, identifies the group to which
they belong, and gives the page where
register contents and other variable fields

are noted.

SVC # Group Page

0 4 190
1 3 182
2 1 170
3 1 171
4 3 182
5 3 183
6 4 190
7 4 190
8 4 190
9 4 191
10 3 171
11 1 171
12 1 171
13 4 191
14 4 191
15 4 191
16 4 191
17 4 192
18 3 183
19 3 183
20 3 183
21 4 192
22 3 183
23 3 183
24 2 181
25 4 192
26 4 193
27 4 194
28 4 195
29 4 195
30 4 195
31 2 181
32 4 195
33 4 195
34 1 171
35 3 183
36 1 171
37 3 184
38 1 171
39 3 184
40 3 184
41 4 196
42 4 196
43 1 171
4y y 197

null

Group

PRRPRRERURRWERWURRRRERRWEEFWERRPRREFWREUR EWWREFWNRPEEFWWERWRBNNWNENRE HRWOWPRW

172

197
172
181
198
181
186
181
181
172
186
172
198
187
187
198
199
199
172
181
187
199
173
187
187
199

189
179
179
180
180
180
180

Section 3:

Tracing Aids

169

{

SVC Comprehensive Trace Records Group 1 -- Basic Fields

B

R15/R0 hhhhhhhh hhhhhhhh R1 hhhhhhhh

{A} SVC ddd OLD PSW hhhhhhhh hhhhhhhh JOBN ccccccec MODN ccccccce {OLTCB hhhhhhhh

OLA hhhhhhhh OLB hhhhhhhh}

Figure 55. Basic SVC Comprehensive Trace Record

A

B
this field appears only in MVT-M65MP
records and identifies the CPU
associated with the event.

SVC nnn
the decimal number of the SVC

OLD PSW hhhhhhhh hhhhhhhh
the program status word that was
current at the time the SVC interrupt
occurred. When SVC processing is
completed, operation is resumed under
control of this PSW.

*****#**}

JOBN{cccccccc
N/A

asterisks indicate an error occurred
while attempting to retrieve the
jobname, e.g., an incorrect TIOT
address in the TCB could result in
asterisks being placed in this field.

cccceccee is the eight character
jobname of the job issuing the SvC.

N/A indicates that the SVC was issued
by the system and there is no
associated jobname.

*% IRB** %
SVC-RES
MODN} SVC-nnnn
*ccceccce
ccecececeece
N/A
kkkokkrkk

IRB# indicates the SVC was issued
by an asychronously executed routine
with an associated IRB.

SVC-RES indicates the SVC was issued
by a resident SVC with an associated
SVRB.

SVC-nnnn indicates the SVC was issued
by a transient SVC module with an
associated SVRB. nnnn denotes the

last four characters of the module
name.

*cccccce indicates that error fetch is
in the process of loading an error
recovery module. ccccccc is the last
seven characters of the module name.

cccccece is, in MVT systems, the eight
character name of the module issuing
the SVC -- taken from the CDE
associated with the task; or the name
of an exrror routine -- taken from the
SIRB associated with the task.

In MFT systems the module name is
taken from the LRB, LPRB, PRB, or FRB
and the error routine name is taken
from the SIRB associated with the
task.

N/A indicates the RB CDE pointer was
zero.

****%*%* jndicates that an error
occurred while attempting to retrieve
the module name.

OLTCB hhhhhhhh
the address of the TCB that was
current when the SVC was issued.

In MVT-M65MP systems the OLA and OLB
fields replace the OLTCB field and
indicate the addresses of the TCBs
that were current in CPU A and CPU B
when the SVC was issued.

R15/R0 hhhhhhhh hhhhhhhh R1 hhhhhhhh
the contents of registers 15, 0, and 1
when the SVC was issued.

SVC_Comprehensive Trace Recoxrds Group 1 --
Basic Fields

SVC 2 (POST)
R15 contains no applicable
information.
RO contains the completion code to be
placed in the ECB.
Rl contains the address of the ECB to
be posted.

170 Programmer's Guide to Debugging (Release 21)

SVC 3 (EXIT)
registers contain no applicable
information.

SVC 10 (REGMAIN;
R15 contains no applicable
information.
RO contains the number of the subpool
requested in the high order byte, and
the number of bytes requested in the
low order three bytes.
R1 contains any negative value if the
request is for a GETMAIN; contains the
address of the storage to be freed if
the request is for a FREEMAIN;
contains zero value if the request is
for a FREEMAIN for an entire subpool.

SvC 11 (TIME)
R15 contains no applicable
information.
RO contains no applicable information.
R1 contains flag bits in the low order
byte that designate how the time is to
be returned in Register 0.

If the low order byte is:

x'00°'
register 0 is to contain a
32 bit unsigned binary
number representing the
number of timer units that
have elapsed. (A timer unit
is 26.04 micro-seconds).

x'01’
register 0 is to contain
elapsed time in hundredths
of a second.

x"02°
register 0 is to contain
packed decimal digits
representing elapsed time in
hours, minutes, seconds,
tenths of a second, and
hundredths of a second
(HHMMSSth).

SVC 12 (SYNCH)
R15 contains the address of the entry
point for the processing program that
is to be given control.
RO contains no applicable information.
R1 contains no applicable information.

SVC 34 (MGCR)

R15 contains no applicable
information.

RO and R1 contents are as follows:
R1, if positive, contains a
pointer to the command buffer of
the command to be processed. RO
is not used in this case.

If Rl is negative and RO is zero,
then R1 contains a pointer to the
CSCB that is to be either added
to the chain or deleted from the
chain.

If R1 is negative and RO is
positive, then R1 contains a
pointer to the CIB that is to be
added to or deleted from the
chain. RO contains a pointer to
the beginning of the chain.

If Rl is negative and RO is
negative, then RO contains a
pointer to the CIB in which the
CIB count is to be set and R1
contains the value to which the
CIB count is to be set.

SVC 36 (WTL)
R15 contains no applicable information.
RO contains no applicable information.
Rl if positive, contains a pointer to
the user record that is to be written to
the system log dataset.

If negative, contains a pointer to
the LCA indicating either
initialization, (both data sets
have to be opened), or data set
switching is required.

SVC 38 (TTROUTER)
Registers 15, 0, and 1 do not contain
any applicable information.

SVC 43 (CIRB)
R15 contains no applicable
information.
RO contains the entry point address of
the user's asynchronous exit routine.
Rl contains option bit flags in the
high order halfword and the size of
the work area requested (in double
words) in the low order halfword.

Flag settings are:

flag byte 1

lecocane

DIRB

CIRB

bits 1-4 always set
as shown

problem program key
supervisor key
problem program state
supervisor state
save area for
registers requested
no save area
requested

flag byte 2

XXXX. e XX

eeselane

Oueeceann

.1000...

weweetee
eseeel..
- e .k...l'-
cssmeal.

ecescaal

seceseal

reserved

do not return IQEs at
exit

return IQEs at exit

..Q'.‘.ll.

Section 3: Tracing Aids 171

SVC 46 (TTIMER)
R15 contains no applicable
information.
RO contains no applicable information.
R1 the low order three bytes carry
code determining how TTIMER should
work, as follows:

x'00"
the time remaining in the
current tasks time interval
is to be returned in
register 0; the interval
timer is not to be canceled.

x'01"
the current task's time
interval is to be canceled.

x'02"
the time interval of a
related task is to be
canceled.

SVC 49 (TTOPEN)
Registers 15, 0, and 1 do not contain
any applicable information.

SVC 52 (Restart/SMB Reader)
Registers 15 and 0 have no applicable
information.

R1 contents are as follows:
If sVC 52 is issued by the
Initiator for the purpose of
reading SMBs (containing JCL) for
an automatic step or checkpoint
restart, register 1 points to a
job queue DCB, SMB buffer, and
general work space.

If sVC 52 is issued from module
IEFRSTRT to initiate a check
point restart, register 1
contains a pointer to a parameter
list.

SVC 59 (OLTEP)
R15 contains no applicable
information.
RO contains a pointer to a three word
parameter list, which, in turn
contains pointers as follows:

Word 1 -- pointer to UCB

Word 2 -- pointer to DEB

Word 3 -- pointer to IECIOLTS

(I70 interrupt handlex).
R1 contains a call code used to
locate the particular OLTEP function
requested. The value will be greater
than x'00' and equal or less than
x'94".

SVC 61 (TSAV)
Registers 15 and 0 have no applicable
information.

Rl contains zeroes if the routine is
being entexred from the Overlay
Supervisor.

Rl contains the address of the DCB
used to fetch the module (set to a
negative value) if the routine is
being entered from the Contents
Supervisor.

SVC 68 (SYNADAF/SYNADRLS)

Entry from SYNADAF:

R15 contains a flag byte in the
high-order position and three bytes of
user data or an address of an entry
point to the SYNAD routine.

The flag byte contains codes as
follows:

00 EXCP request
01 BPAM request
02 BSAM request
03 QSAM request
04 BDAM request
05 BISAM request
06 QISAM request
07 BTAM request
08 QTAM request
09 GAM request

RO contains, in the three low order
bytes, the address of the DECB (BSAM,
BPAM, BDAM) or the address of the IOB
(BISAM, QISAM, QSAM).

Additionally, when a QSAM request is
made, the high-order byte contains the
offset of the first CCW in the IOB.

Rl contains a flag byte and the
address of the DCB in the high-order
byte and the three low-order bytes
respectively.

The flag byte bit settings are:
00000000

leceaeen

BISAM and QISAM
error caused by input
error caused by
output

error caused by BSP,
CNTRL, or POINT
record had been
successfully read
INVALID request

PT conversion -
invalid character
BDAM only - hardware
error

BDAM only - no space
for record

eleocans
..1.....
eseleaee

eeeelaa.

eesnceles
“'...'.1'

R |

172 Programmer's Guide to Debugging (Release 21)

Entry from SYNADRLS:
Registers 0 and 1 have no applicable
information.

R15 contains x'"FF' in the high-order
byte, indicating the SVC routine is
being entered from the SYNADRLS macro
instruction and three bytes of user
data.

SVC 72 (CHATR)
Registers 15 and 0 have no applicable
information.

R1 contains the address of a parameter
list with the following structure:

Offset
0 address of parameter
list+8
4 address of DCB
8 module name for XCTIL
16 code for OPEN/CLOSE (1
byte) ; address of UCM
entry (3 bytes)
20 address of UCM
24 address of return

SVC 76 (IFBSTAT)
R15 contains no applicable
information.

The content and applicability of
Registers 0 and 1 vary with the
presence or absence of RDE
(Reliability Data Extractor) routines
in the control program.

If RDE is present:
RO contains a positive 0 or 8.
R1 has no applicable information.

A positive 0 in RO indicates that
EOD recording is requested; a
positive 8 indicates that IPL
recording is requested.

If RDE is not present:
RO contains a negative number
representing the length in bytes
of a record to be placed in the
SYS1.LOGREC data set.
R1 contains the address of the
record to be written.

SvVC 79 (STATUS)
R15 has no applicable information.

RO contains the START/STOP code; 07
for START, 06 for STOP

R1 contains, in its three low order
bytes, the address of the subtask TCB
which is to have its START/STOP count
adjusted.

SVC_ 83 (SMFWTM)
Registers 15 and 0 contain no
applicable information.

Rl contains a pointer as follows:
If positive a pointer to the
record that is to be written to
the SMF data set.

if negative a pointer to the SMCA
indicating either initialization
or processing for a SWITCH
command to switch SMF data sets.

SVC 84 (Restart Address Routine)
SVC 84 is issued by the GPS Graphic
I/70 Control Routine to have the buffer
restart address stored in the UCB
associated with the display unit for
which the routine builds a channel
program.

R15 contains no applicable
information.

RO contains the buffer restart address
to be stored in the UCB in the high
order two bytes. The low order two
bytes point to the UCB.

Rl contains a zero
SVC 85 (SWAP)

Registers 15, 0, and 1 do not contain
any applicable information.

SVC 91 (VOLSTAT)
R15 contains no applicable
information.
RO when negative, contains the address
of the UCB. Note: If device type is
disk go to SVC 91 load 2.
RO when positive, contains the address
of the DCB.
Rl contents are as follows:
if zero, the SVC was issued by
CLOSE ' ‘
if x'32°',
DDR
if X'33" the SVC was issued by EOD
if X'63', the SVC was issued by
EQOV
if any other than the above, the
SVC was issued by UNALLOCATION

the SVC was issued by

SVC 92 (TCBEXCP)
R15 contains no applicable information

RO contains the address of the TCB for
the issuers task.

Rl contains the address of the IOB.

Section 3: Tracing Aids 173

SVC 93 (TGET/TPUT)

Entry from TGET

R15 contains no applicable information

RO the two high-order bytes are
reserved. The two low-order bytes
contain the buffer size in bytes.

R1 contains a flag byte and an address
as follows:
the high order byte is a flag byte
with these bit settings.

lececens Denotes "TGET"
specified

Deccnces Denotes "TPUT"
specified

eleceaaes Reserved.

P I, Reserved for TPUT

ecelesae Denotes "NOWAIT"

specified means that
control should be
returned to the
program that issued
the TGET whether or
not an input line is
available from the
terminal if no input
line is obtained, a
return code of # will
be found in register
15.
eenlcene Denotes "WAIT"
specified means that
control will not be
returned to the
program that issued
the TGET until an
input line has been
put into the
program's buffer if
an input line is not
available from the
terminal, the issuing
program is put into a
wait state until a
line does become
available and is
placed in the
| program's buffer
weeeleas Reserved for TPUT
evensles Reserved for TPUT
—— Reserved for TPUT
eemeaes01 Denotes "ASIS"
specified means that
normal or minimal
editing will be
performed.
csesas00 Denotes "EDIT"
specified means that
in addition to the
normal ("ASIS")
editing, further
editing will be
performed.

174 Programmer's Guide to Debugging (Release 21)

the low-order three bytes contain the
address of the buffer that is to
receive the input line.

Entry from TPUT

R15 contains no applicable
information.

RO the two high-order bytes contain
the Terminal Job Identifier number;
the two low-order bytes contain the
size of the input buffer in bytes.

Rl contains a flag byte and an address
as follows:
the high-order byte is a flag
byte with these bit settings:

leesocon Denoctes "TGET"
specified
Qecennas Denotes "TPUT"
‘ specified
leceeee Reserved
eelennes Denotes "LOWP"

specified means that
the terminal will not
receive any
inter-terminal
messages if TSBITOFF
is on even if a
key-zero task is
sending the messages
may only be specified
on a TPUT with TJID.

ea0eenee Denotes "HIGHP"
specified means that
the terminal will
receive
inter-terminal
messages even if
TSBITOFF is on if a
key~-zero task is
sending the messages
may only be specified
on a TPUT with TJID.

eeelecen Denotes "NOWAIT"
specified means that
control should be
returned to the
program that issued
the TPUT whether or
not system output
buffers are available
for the output line
if no buffers are
available, a return
code of 4 will be
found in register 15.

eeelaces Denotes "WAIT"
specified means that
control will not be
returned to the
program that issued
the TPUT until the
output line has been
placed in a system
output buffer if no
buffers are

R P,

R | P

cesenle.

AP+ F

eeeseeall

ceesesll

—— 1]

available, the
issuing program will
be put into a wait
state until buffers
do become available
and the output line
is placed in them.
Denotes "HOLD"
specified means that
the program that
issued the TPUT
cannot continue its
processing until this
output line has been
either written to the
terminal or deleted.
Denotes "NOHOLD"
specified means that
control should be
returned to the
program that issued
the TPUT as soon as
the output line has
been placed on the
output queue.

Denotes "BREAKIN"
specified means that
output has precedence
over input; that is,
if the user at the
terminal is
transmitting, he is
interrupted, and this
output line is sent
any data that was
received before the
interruption is kept
and displayed at the
terminal following
this output line.
Denotes "NOBREAK"
specified means that
input has precedence
over output; that is,
the output message
will be placed on the
output queue to be
printed at some
future time when the
terminal user is not
entering a line.
Denotes “CONTROL"
specified means that
this line is composed
of terminal control
characters and will
not print or move the
carriage on the
terminal.

Denotes "ASIS"
specified; means that
normal or minimal
editing will be
performed.

Denotes "EDIT"
specified; means that
in addition to the
normal ("ASIS")

editing, further
editing will be
performed.

the low-order three bytes contain the
address of the buffer that is to hold

the line of output.

SVC_ 94 (TERMCTL)

Entry from TCLEARQ:

R15 contains
information.

RO Contents:

Bytes
0

1-3
Rl Contents:

Bytes
0

1-3

Entry from STBREAK:

R15 contains
information.

RO Contents:

Bytes
0

1-3
Rl Contents:

Bytes
0

1-3
Entry from STCOM:

R15 contains
information.

RO Contents:

Bytes
0

1-3
Rl Contents:

Bytes
0

1-3

no applicable

80
00
0

Entry code
Reserved

"INPUT" specified
"OUTPUT" specified
Resexved

no applicable

no

80
00
0

Entry code
Reserved

"YES" specified
"NO" specified
Reserved

applicable

Entry code
Reserved

YES specified
NO specified
Reserved

Entry from STTIMEQU:

R15 contains no applicable

information.

Section 3:

Tracing Aids 175

RO Contents:

Bytes
0

1-3

R1 Contents:

Bytes
0

1-3

06 -- Entry code
0 -- Reserved

80 -- "YES" specified
00 -- "NO"™ specified
0 -~ Reserved

Entry from STCC:

R15 contains no applicable

information.

RO Contents:

Bytes
0

1-3

R1 Contents:

Bytes
0
1
2
3

07 -- Entry code
0 -- Reserved

Flag byte as follows:

leeeosns first operand
specified
eleseeese ATTN specified
eelecoe.. LD specified
evelees.. CD specified
00000000 no operands
specified,
retain
previously-used
characters.
0 -- Reserved
hh -- line delete control
character. The
hexadecimal
representation of any
EBCDIC character on the
terminal keyboard except
the new line (NL) and
carriage return (CR)
control characters.
¢ -- the character
representation of any
EBCDIC character on the
terminal keyboard.
hh -- character delete
control character. The
hexadecimal
representation of any
EBCDIC character on the
terminal keyboard except
the new line (NL) and
carriage return (CR)
characters.
¢ -- the character
representation of any
EBCDIC character on the
terminal keyboard.

176 Programmer's Guide to Debugging (Release 21)

Entry from STATTN:

R15 contains no applicable
information.

RO Contents:

Bytes

0 08 -~ Entry code

1. 00 -- Reserved’

2 hh -- Lines byte. The

number of consecutive
lines of output that can
be directed to the
terminal before the
keyboard will unlock.

00 -- output line
counting is not used.

3 hh -- Tens byte. The
tens of seconds that can
elapse before the
keyboard will unlock.

00 -- Locked keyboard
timing is not used.

Rl Contents:

Bytes
Flag byte as follows:
lecesess LINES specified
eleeececee TENS specified
weleese. input address
specified
00000000 no operands
specified,
results in a
NOP instruction.
1-3 hhhhhh -~ Character
string address.
000000 -~ no character
string was specified.

Entry from STAUTOLN:
R15 contains no applicable informtion.

RO Contents

Bytes
0 09 -- Entry code
1-3 hhhhhh -- the address of

a fullword containing the
number to be assigned to
the first line of
terminal input.

Rl Contents:

Bytes
00 -- Reserved

0

1-3 hhhhhh -- the address of
a fullword containing the
increment value used in
assigning line numbers.

Entry from STSIZE:

R15 contains no applicable
information.

RO Contents:

Bytes

0 OA -- Entry code

1,2 0000 -- Reserved.

3 hh -- lines byte. The

number of lines (depth)
that can appear on the

screen.
R1 Contents:
Bytes
0-2 000000 -- Reserxrved
3 hh -- size byte. The

logical line size (width)
in characters of the
texrminal.

Entry from GTSIZE, STAUTOCP, SPAUTOPT,
RTAUTOPT

R15 contains no applicable
information.

RO Contents:

Bytes
0 Entry codes as follows:
0B -- GTSIZE
0C -- STAUTOCP
0D -~ SPAUTOPT
0E -- RTAUTOPT
1-3 000000 -- Reserved

R1 Contents:
No applicable information, will
be zeroed.

Entry from STCLEAR:

R15 contains no applicable
information.

RO Contents:

Bytes
0 10 -- Entry code
1-3 000000 -- Reserved

R1 Contents:

Bytes
00 -- Reserved.

0
1-3 hhhhhh ~-- erasure
character string address.

Entry from TCABEND

R15 contains no applicable
information.

RO Contents:

Bytes
0 00 ~-- Entry code
1-3 0 -- Reserved

Rl Contents:
No applicable information will be
zeroed.

Entry from TSABEND

R15 contains no applicable
information.

RO Contents:

Bytes
0 OF -- Entry code
1-3 0 -- Reserved

Rl Contents:
No applicable information will be
zexoed.

SVC 95 (TSIP)

R15 contains no arplicable
information.

RO Contents:

Bytes

0,1 zexro or Terxrminal Job
Identifier (TJID) or not
applicable.

2 00 -- Reserved

3 Entry code as follows:

Entry Code Calling Routine
00 Problem Program (TMP)

01 Timer Second - Level
Interruption Handler

02 TGET/TPUT

03 Region Control Task

04 Dequeue, TIOC (Attention,
TSINPUT, TSOUTPUT), Timer
SLIH, WTOR

05 Region antrol Task

06 Enqueue

07 Dequeue

08 TSO Dispatcher

09 TSO Dispatcher

0A TSO Dispatcher

0B TSO Dispatcher

0oc Region Control Task (Quiesce)

Section 3: Tracing Aids 177

oD
OE

oF

10

11

12
13
14-18

'Region Control Task (Quiesce)

Time Sharing Control Task

(swap)

Time Sharing Control Task
(Swap)

Time Sharing Control Task
(Swap)

Time Sharing Control Task
(Swap)

Region Control Task (Restore)
Region Control Task (Restore)

Reserved

R1 Contents:

Bytes

0,1,2,3 wvariable as follows:

Entry Code Content
00 Address of 8-character
command name sign-bit:
O-ended
1-beginning
01 not applicable
02 Sign-bit:
0-Input
1-Output
Bytes 3&l4:
Number of free buffers
03-05 not applicable
06 Estimated must complete time
07-0C not applicable
0D Number of FBQEs
OE Byte 0: Swap Units
Byte 1: Swap device code
(0,4,8,c)
Bytes 2&3:
Swap size in 2K blocks
0F-13 not applicable

SVC 97 (TEST(TSO))

Entered from:
Any module of the tested program,
when used as a breakpoint

handler. If used as a breakpoint

handler the TCBTCP bit is '1' in
the current TCB and registers 15,

0, and 1 contain no applicable
information.

Any module of the TSO. Test
Command Processor when used as a
subroutine of TSO TEST. - In this
case the current TCBTCP bit is
*0' and registers are as follows:

R15 contains no applicable
information.

RO Contents:

Bytes
0

1-3

Entry code as follows:

40 -~ Set TCBTCP bit to
l1l

20 -- Set TCBTCP bit to
lol .

10 -- Alter TCBTRN field
08 -- Alter second word
of RBOPSW field

04 -- Alter specific
register in SVC 97's SVRB
register save area

04 -- Alter all registers
in SVC 97's SVRB register
save area

02 -- Alter
floating-point register
in TCB save area

01 -- Set RB wait count
to 0 (zero).

Address of target TCB,
PRB, or IRB

Rl Contents:

Register 1
follows:

Entry code
40

entry code
20
entry code

entry code
08

08

entxry code
07

entry code
o4

entry code
02

entry code
01

Svc 100
SVC 100 is

contents are variable as
Bytes
0123 not applicable

0123 not applicable

0 not applicable

1,2,3 TCBTRN value

0 instruction length,
completion code
program mask

1,2,3 address of value for
second word of
RBOPSW field.

0 register number

1,2,3 address of new value

0 x*FF'

1,2,3 address of 64-byte
value

(o] floating-point

1,2,3 register number
address of new value
for register

0,1, not applicable

2,3 . ‘

used by the SUBMIT, OUTPUT,

OPERATOR, and CANCEL/STATUS

Processoxrs.

178 Programmer's Guide to Debugging (Release 21)

Contact your FE programming
representative for information
concerning the content of General
Purpose Registers 15, 0, and 1 upon
entry to SVC 100.

SVC 101 (QTIP)

SVC 101 is used only by the TSO
sub-system and the MCP and provides an
interface between them for
inter-region communication and data
movenent.

R15 Contents:

Bytes

0 0 -- zeroed. by entry
code in RO

1-3 hhhhhh -~ variable by
entry code in RO as
follows:

00 -- not applicable
03 -- entry address of
QTIP0030 within
IEDAYAA
04-0D -- not applicable
OE -- (with savearea
address in R1) not
applicable. (Without
savearea address in
R1) entry address of
QTIP0140 within
IEDAYOO
OF-11 -- not applicable
12-16 -- entry address of
IKJGGQT1, branch entry to
QTIP SVC
17 -- address of TSB
being logged off
18 -~ (same as 12-16)
19-1A -- not applicable
1C -- entry address of
QTIP0280 within
IEDAYII
1D -- not applicable.

RO Content:

Bytes
0 0 -- zeroed.
1-3 hh -- entry codes as

follows

00 -- invokes IEDAYAA
03 -- invokes IEDAYAA
04 ~- invokes IEDAYHH
05-09 ~- invokes IEDAYII;
0A -- invokes IEDAYLL;
0B~-11 -- invokes IEDAYOQCO
12-14 -- invokes IEDAYGP
15~-16 -~ invokes IEDAYAA;
17 -- invokes IKJGGO088
18 -- invokes IEDAYOO;
19-1A -- IEDAYZZ invoked
1C -- invokes IEDAYII
1D -- IEDAYGP invoked;

R1 Content:

Byges

0 -- zeroed.

hhhhhh -- variable by
entry code in RO as
follows:

I-‘-‘O
w

00 -~ address of
savearea within AVT
03 -- not applicable
04-0D -- address of
savearea within AVT
0E -- (without entry
address in R15;
address of savearea in
AVT) (with entry
address in R15; not
applicable)
O0F-11 -- address of
savearea within AVT
12-16 -- not applicable
17 -~ zeroed;
indicates no savearea
is being passed
18 -~ not applicable
19-1A -- address of
savearea within AVT
1C -- not applicable
1D -- address of
savearea within
TIOCRPT

SVC 103 (XLATE)

R15 contains no applicable
information.

RO contains the length of the field to
be translated.

Rl Contents:

Bytes

0 hh action byte as

follows:

80-translate from
EBCIDIC to ASCII
00-translate from
ASCII to EBCDIC

1-3 hhhhhh address of field to
be translated

SVC 104 (TCAM)

R15 contains no arplicable information

RO indicates the subroutine to be
executed as follows:

Section 3: Tracing Aids 179

Bytes {1 svc 109

0-3 00000001 IGC0010D entry

point routine

00000002 GTFIELDA decode
routine

00000003 STTNME operator
command addressing
routine

00000004 IEDQCAO02 scan
routine

R1 contains the address of the
operator control work area

SVC 105 (IMGLIB)

R15 contains no applicable information
RO contains no applicable information

R1 indicates actions to be taken as

Type 3 and type 4 SVC routing routine.

R15 contains an index value, converted
to 3 digit EBCDIC number and appended
to name IGC00. This routine is then
called.

RO/R1 contain no applicable
information for SVC 109, contents are
to be used by called routine IGX00.

SVC_116

Type 1 SVC routing routine.

R15 contains an index value, used in
binary form to index into a table to
call other SVC routines.

RO/R1 contain no applicable

follows: information for SVC 116, contents are
to be used by called routines.
Bytes :
0-3 00000000 construct a DCB Ssvec 117

and DEB for
SYS1.IMGLIB

hhhhhhhh delete DCB at this
address and also
the DEB pointed to
by the DCB.

180 Programmer's Guide to Debugging (Release 21)

Type 2 SVC routing routine.

R15 contains an index value, used in
binary form to index into a table to
call other SVC routines.

RO/R1 contain no applicable
information for sSvC 117, contents are
to be used by called routines.

iz

SVC Comprehensive Trace Records Group 2 -

SVC 31 (FEOV)

Basic Fields Plus DDNAME Field

Group 2 SVC comprehensive trace records add
a DDNAME field to the fields composing the
basic record. The format is:

kkkkERkk
DDNAME{cccccccec
N/A

S TTTIT I
asterisks indicate an error
occurred while gathering the
information.

cceececee
the name of the associated DD
statement.

N/A
indicates that the DD name could
not be obtained for the following
reasons:

The DCB was not opened

The DCB TIOT offset was outside

the valid range

The DEB TCB pointer was set to 0
The TCB TIOT pointer was set to

0

The DD name in the TIOT was not

in EBCDIC notation

Following are descriptions of register 15,
0, and 1 content for the Group 2 SVCs.

SVC 24 (DEVTYPE)

R15 contains no applicable
information.

RO contains the address of the output
area or the two's compliment of the
output area address.

R1l contains the address of the DD
name, or the two's compliment of the
DD name address.

When control returns from the DEVTYPE
SVC routine, the output area will
contain 8, 20, or 24 bytes of device
data, depending on the value (+ or -)
of RO and R1, and the device type
associated with the DDNAME as follows.

Output Area Size (Bytes)

RPS-DA Da Non-DA
RO and R1
positive 20 20 8
RO negative
and
R1 positive 20 20 8
RO and R1
negative 24 20 8

R15 and RO contain no applicable
information

Rl contains the address of the DCB

SVC 53 (RELEX)

R15 contains no applicable information

RO contains the address of a parameter
list which contains either:

hhhhhhhh relative block or TTR
MBBCCHHR actual address

Rl contains the address of the DCB

SVC 55 (EOV)

R15 contains no aprlicable information

RO contains the IOB address if the
following are true:

eeelecas

DCBOFLAGS
DCBMACRF Oceccons
and RO is not equal to x'00001000°

Rl contains the DCB address

SVC 57 (FREEDBUF)

R15 contains no applicable information
RO contains the address of the DECB
Rl contains the address ofkthe DCB
SVC 58 (REQBUF/RELBUF)
R15 contains no applicable information

RO contains the request count or
release address

R1 contains the DCB address
SVC 69 (BSP)

R15 and RO contain no applicable
information

Rl contains the address of the DCB

Section 3: Tracing Aids 181

SVC Comprehensive Trace Records; Group 3 -
Basic Fields Plus Parameter List Field

Group 3 SVC comprehensive trace records add
a parameter list field to the fields
composing the basic record. The parameter
list field displays all or a portion of the
parameter list being passed to the SVC
routine by the caller. The format is:

N/A
PLIST<{hhhhhhhh hhhhhhhh hhhhhhhh ...
HkkokkkRk kkokkkkkk kkkkkkkk
N/A
indicates that there is no
applicable information

hhhhhhhh hhhhhhhh ...
parameter list display. Content
and amount varies with the sSVC
being traced.

dkkkdokdkkk kokokkkkkk

indicates that an error occurred
while gathering the information.

Following are descriptions of register 15,
0, and 1 content, and PLIST content for the
Group 3 SVCs.

SVC 1 (WAIT)
R15 contains no applicable information

RO contains the count of the events
being waited on. If zexro the wait is
treated as a NOP.

R1 if positive, contains the address
of the ECB being waited on. If
negative, contains the address of a
list of ECBs, in two's complement
form.

PLIST may contain up to 40 bytes of
information. It consists of a list of
ECB addresses up to a maximum of 10.

SVC 4 (GETMAIN)

R15 and RO contain no applicable
information.

R1 contains the address of the
parameter list passed when the SVC was
called. (If R1 is zero there is no
parameter list and the PLIST field
will not be present.)

PLIST is ten bytes in length and
breaks down as follows:

Bytes
0-~3 hhhhhhhh

182 Programmer's Guide to Debugging (Release 21)

8

hh

a. For a single area
request - the length
requested.

b. For a variable request
- the address of a
doubleword containing
the minimum and
maximum length
requested as shown

below:

Bytes

0 Zexo

1,2,3 minimum length
4 zZexro

5,6,7 maximum length

c. For a list request -
the address of a list
of GETMAIN length
requests (1 word per
request) the last word
containing x'80' in
byte 0.

hh

Hierarchy identifiex
(optional)

hhhhhhhh

a. For a single area
request - the address
of a word GETMAIN will
initialize as the
beginning allocated
core area.

b. For a variable area
request - the address
of a doubleword which
GETMAIN will
initialize with the
address of the
GETMAINed area and the
actual length
allocated.

c. For a list area
request - the address
of a list of words
which GETMAIN will
initialize with the
address of allocated
areas.

Flag byte as follows:

00
20
Co

EO0

unconditional single area
request

conditional single area
request

unconditional variable
request

conditional variable
request

80 unconditional list request
A0 conditional list request

9 hh Subpool identification

SVC 5 (FREEMAIN)

R15 and RO contains no applicable
information.

Rl contains the address of the
parameter list passed when the SVC was
called. (If R1 is zero, no list
passed, and PLIST will not appear.)

PLIST is 10 bytes in length and breaks
down as follows:

Bytes

0-3 a. For a single area request
the length to be freed.

b. For a list area request --

the address of a list of
FREEMAIN length requests
(1 word per request), the
list word containing x'80°
in byte O.

4-7 a. For a single area request
-- the address of an area
to be freed.

b. For a list area request --
the address of a list of
addresses of the areas to
be freed.

8 hh Flag byte as follows:

00 unconditional single area
request

20 conditional single area
request

80 unconditional list area
request '

A0 conditional list area
request

9 hh Subpool identification.

SVC 18 (BLDL/FIND - Type D)

R15 contains no applicable
information.

RO contains the address of the
parameter list.

R1l contains the address of the DCB and
indicates the macro instruction that
issued the SVC call; if R1 is positive
-- BLDL; if R1 is negative -- FIND.

PLIST
The BLDL parameter list is 12
bytes in length:

Bytes
0,1 the numbering entries
2,3 entry length

4-11 the hexadecimal representation
of the member name for which
the BLDL was issued.

The FIND parameter list is 8
bytes in length:

Bytes
0-7 the hexadecimal representation

of the member name for which
the FIND was issued.

SVC 19,20,22,23 (OPEN,CLOSE,OPENJ, TCLOSE)

R15 and RO contain no applicable data.

Rl contains the address of the
parameter list.

PLIST is up to 40 bytes in length and
consists of a series of l4-byte entries
(up to 10). Each entry breaks down as
follows:

Bytes _
0 hh Option byte as shown

below:
Bits

l.ee <ee.. Last Entry indicator
«011 LEAVE
-001 REREAD
<100 <.... REWIND
.010 IDLE
-000 DISP
eeee 0000 INPUT
eeee 1111 OUTPUT
eees 0011 INOUT
eeee 0111 OUTIN
«-~. 0100 UPDAT
ess. 0001 RDBACK

1-3 hhhhhh DCB address

SVC 35 (WTO/WTOR)

R15 contains no applicable
information.

RO contains console source ID.

Rl contains the address of the
parameter list being passed to the
SsvC.

PLIST is 12 bytes in length for WTO
and 20 bytes in length for WTOR.

The PLIST field for WTO breaks down as
follows:

Bytes

0 00-- indicates WTO
parameter list.

Section 3: Tracing Aids 183

1 hh-- message length plus
four.

2,3 hhhh-- MCs flag bytes; bit

settings as follows:

Byte 2

leeeecees Invalid entry

wlecenes Message is to be
queued to the console
whose source ID is
passed in Register 0.

eeleese- the WIO is an
immediate command
response.

eseele.. the WIO macro
instruction is a reply
to a WTOR macro
instruction.

enesel. Message should be
broadcast to all
active consoles.

~+ese=1l Message queued for
hard copy only.

«seesssl Message queued
unconditionally to the
console whose source
ID is passed in
register 0.

Byte 3

leeneee. time is not appended
to the message.
.1111... Invalid entry
esesel.. message is not queued
for hard copy
eeesse11l invalid entry

4-11 First eight bytes
of message

The PLIST field for WTOR breaks down
as follows:

Bytes

0 hh--length of reply

1-3 hhhhhh--address of
reply buffer

4-7 hhhhhhhh--address of
reply ECB

8 00--zeroed

9 hh--message length plus
four

10,11 hhhh--MCs flag bytes,
see WTO PLIST

12-19 first eight bytes of
message.

SVC 37 (SEGLD/SEGWT)

184

R15 contains no applicable
information.

RO if zero, entry was from SEGLD;
non-zero indicates entry from SEGWT.

Rl contains the address of the
parameter list.

PLIST is 12 bytes in length and breaks
down as follows:

Bytes

0-3 hhhhhhhh branch instruction
(to sVC 45)

4-7 hhhhhhhh address of
Referred-to Symbol

8 hh "To" segment number

9-11 hhhhhh Previous caller or 0

SVC 39 (LABEL)

R15 and RO contain no applicable
information.

Rl contains the address of the
parameter list.

PLIST is 20 bytes in length and breaks
down as follows:

Bytes

0-2 c00004 -- REWIND option
c00006 -- UNLOAD option

3 hh relative UCB in TIOT
to use for mounting
purposes.

4-7 hhhhhhhh address of 8
byte DDNAME for DD card
that allocates devices
for mounting tapes.

8-11 hhhhhhhh--address of
volume label set.

12,13 hhhh-- length of one
volume label.

14 hh~- number of labels
in volume label set

15 hh-- command byte of
control CCW

16-19 hhhhhhhh-- address of

the first 10 bytes of
volume header label.

SVC 40 (Extract)

R15 and RO contain no applicable
information.

Rl contains the address of the
parameter list.

PLIST is 12 bytes in length and breaks
down as follows:

Bytes

0 - Reserved

1-3 hhhhhh address of list area in
which the extracted
information will be
stored.

4 00 Reserved

Programmer's Guide to Debugging (Release 21)

5-7 070000 EXTRACT will obtain
information from the
current TCB and/or its
related control blocks.

hhhhhh address of TCB from
which EXTRACT is to get
requested information.
flags byte; indicates
the fields to be
extracted as follows:

Bits

leceees.. address of the
general register
save area

elec.cc.. address of floating
point register save
area

seleeceses. reserved

eenlese.. address of end-of-
task exit routine

eseele.. limit priority ¢
dispatching priority

«wssele.. task completion code

esewesesl. address of TIOT.

eesecessl address of the
command scheduler
communication list
in the CsCB

9 hh TSO only flags byte;
indicates the TSO
fields to be extracted

as follows:

Bits

leceee.. address of time-
sharing flags in TCB

eleevs.. address of protected
storage control
block

eale.ec.. terminal job
identifier for task

-« « XXXXX reserved

10,11 0000 reserved

SVC 45 (OVLYBRCH)

R15 contains the address of the Entry
Table entry which caused the SVC to be
issued.

RO and R1 contain no applicable
information.

PLIST is 12 bytes in length and breaks
down as follows:

0-3 hhhhhhhh Branch (inst. to
SVC 45)
4-7 hhhhhhhh address of

Referred-to-Symbol
"To" segment number
Previous caller or 0

8 hh
9-11 hhhhhh

SVC 47 (STIMER)

R15 contains no applicable information

RO contents:

Bytes

0 hh STIMER option byte
as follows:

x'40* TOD option
x'30" DINTVL option
x'10" BINTVL option
x'00' TUINTVL option
1-3 hhhhhh exit address

R15 contains the address of the time
value

PLIST is four or eight bytes in length
depending on the option in force:

a. For the DINTVL and TOD options
PLIST is eight bytes in length
and represents the time value.

b. For the BINTVL and TUNINTVL
options PLIST is 4 bytes in
length and represents the time
value.

SVC 48 (DEQ)

R15 and RO contain no applicable
information.

Rl contains the address of the
parameter list.

PLIST is 16 bytes in length and breaks
down as follows:

Bytes
0 hh

if set to x'FF'
indicates the last
element in the
parameter list.
Otherwise no
meaning.

the length of the
minor name whose
address is in bytes
8, 9, 10 and 11 of
this element.

00 the length of the
minor name is in the
fixrst byte of the
minor name field
whose address is in
bytes 8, 9, 10, and
11 of this element
(does not include
length byte itself).
DEQ parameters byte
as follows:

2 hh

Bit Settings

0ueeesees Exclusive request
leeeesss Shared request
«0.ccce.. MINOR name is known

only to job step

Section 3: Tracing Aids 185

elececees the scope of minor
name is SYSTEM
esle.e.. Set must complete
equal to SYSTEM
eenlee... Set must complete
equal to STEP
eneee000 RET=NONE
woeee001 RET=HAVE
eesee010 RET=CHNGE
s eeee01l RET=USE
eeeeslll RET=TEST
eeeesle . RELEASE
return code field
for codes returned
to the issuer by DEQ
4-7 hhhhhhhh address of major
resource name
. (QNAME)
8-11 hhhhhhhh address of minor
resource name
(RNAME)
12-15 hhhhhhhh if the DEQ
parameters byte bit
4 (RELEASE) is set
on this word
contains the UCB
address; otherwise
the content of this
word is
unpredictable.

3 hh

SVC 56 (ENQ)

R15 and RO contain no applicable
information

R1 contains the address of the
parameter list

PLIST is 16 bytes in length and breaks
down as follows:

Bytes

0 hh if set to x'FF'
indicate the last
element in the
parameter list.
Otherwise no
meaning.

the length of the
minor name whose
address is in bytes
8, 9, 10, and 11 of
. this element.

00 the length of the
minor name is in the
first byte of the
ninor name field
whose address is in
bytes L, 9, 10, and
11 of this element
(does not include
length byte itself).
ENQ parameters byte
as follows:

2 hh

Bit Settings
0eceenwe. Exclusive request

leec.s.. shared request

186 Programmer's Guide to Debugging (Release 21)

e0ceecees MINOR name is known
only to job step
eleeese. the scope of minor
name is SYSTEM
eele.ces Set must complete
equal to SYSTEM
esel.... Set must complete
equal to STEP
L RN] . 000 Rm::NONE
esee+001 RET=HAVE
weese010 RET=CHENGE
seeee01l1 RET=USE
weseelll RET=TEST
esenleec. RESERVE
return code field
for codes returned
to the issuer by ENQ
4-7 hhhhhhhh address of major
resource name
(ONAME)
8-11 hhhhhhhh address of minor
resource name
(RNAME)
12-15 hhhhhhhh if the ENQ
parameters byte bit
4 (RESERVE) is set
on, this word
contains the UCB
address; otherwise
the content of this
word is
unpredictable.

3 hh

SVC 60 (STAE/STAI)

R15 contains no applicable information
RO contents:

00 -- Create

04 -- Cancel

08 -- Overlay

Rl contains the address of the
parameter list. The high-order bit is
set to one if the XCTL=YES parameter
was coded.

PLIST is eight bytes in length and
breaks down as follows:

Bytes
0 flag byte as

follows:

x '"80' for STAI

processing

x '20' for STAE

processing

If zexo, the

*CAMCE:' operand is

in effect; otherwise

this is the address
of the STAE/STAIL
exit routine.

4-7 hhhhhhhh address of the exit
routine parameter
list; if zero no
exit routine
parameter list
exists.

1-3 hhhhhh

SVC 63 (CHKPT)

R15 and RO contain no applicable info.

R1 contents:
a. the address of the parameter list

b. Zero if a CANCEL request

PLIST is eight bytes in length and
breaks down as follows:

Bytes
0 00 check ID address

provided via the second
parameter of CHKPT
macro instruction
80 No check ID address
provided
1-3 hhhhhh address of checkpoint
DCB
4 00 check ID address not
provided
01 to 10check ID length
provided via third
parameter of the CHKPT
' macro instruction
FF "S" specified as third
parameter of CHKPT
macxo instruction; the
system generated check
ID is to be placed at
the address specified
in bytes 5-7
5-7 hhhhhh address for storing
system generated check
ID or address of user
provided check ID

SVC 64 (RDJFCB)

R15 and RO contain no applicable
information

R1 contains the address of the
parameter list

PLIST is up to forty bytes in length
and consists of a series of U4-byte
entries containing the DCB address.
The high-order byte has bit 0 set to
one to indicate the last entry.

SVC 70 (GSERV)

R15 and RO contain no applicable
information.

R1 contents:

Bytes

0 hh is a mask indicating
which bits in the
Graphic Control Byte
(GCB) should be reset.

1-3 hhhhhh the address of a
fullword field that
identifies the DCB
related to the GCB in
which bits are to be
reset.

PLIST is four bytes in length and
displays the fullword pointed to by
Rl. Byte 0 is a unit index factor
used to locate the UCB address in the
DEB associated with the DCB. (The GCB
to be reset is in the UCB).

SVC 73 (SPAR)

R15 and RO contain no applicable
information

Rl contains the address of the
parameter list

PLIST is up to 40 bytes in length and
consists of a series of 4-byte
entries. The first entry breaks down
as follows:

Bytes

0 hh the priority specified
for the attention
routine by the SPAR
macro instruction.

1 hh Reserved

2,3 hhhh the number of words in
the parametex list.

Each additional entry contains a GACB

address as specified by the SPAR

macro.

SVC 74 (DAR)

R15 and RO contain no applicable
information.

Rl contains the address of the
parameter list.

PLIST is up to forty bytes in length,
consisting of 4-byte entries. The
first entry breaks down as follows:

1 hh Reserved
3 hh the number of words in
the parameter list.

Each additional entry contains a GACB
address specified by the DAR macro.

SVC 77 (ONLT)

R15 contains the address of the UCB of
the line for the terminal being
tested.

RO contains the address of the first
of five '9°'s in the test request
buffer for ONLT (five '9's' indicate a
request for an online test).

Rl contains the address of the
parameter list.

PLIST is 14 bytes in length and breaks
down as follows:

Section 3: Tracing Aids 187

0-3 hhhhhhhh address of the ECB
and the prefix of the
request buffer.

4-7 hhhhhhhh address of the
GETMAIN parameters
and terminal test
pattern table.

8-11 hhhhhhhh address of special
line control
characters

12 hh 00 means test is
valid
01 means test is
invalid and not set
up

13 ‘hh 00 means no answer on
dial line
01 means answer on
dial line

SVC 80 (GJP/GFX)

(The SVC 80 Processing Routine serves
as a communication link between GJP
routines and the GFX Task, and between
the GFX task and ABEND Hook routine.)

R15 contains no applicable
information.

RO contains the address of the
parameter list.

R1 contains the address of the console
control table.

PLIST is eight bytes in length and
breaks down as follows:

Bytes

0-3 ccee indicates which
routine passed to SVC
80 as follows:

PLOG -- Log Off
PBEG -- Begin Job
Processor

ABDH -- Abend Hook
Routine

IERR -- Internal
Error Routine

NPRO -- Initial
Processor

4-7 hhhhhhhh the 2250 unit address
that indicates which
graphic job processor
is using the SVC 80
routine.

SVC 87 (DOM)

R15 contains no applicable
information.

RO the value (positive or negative) of
RO determines the content of R1l.

Rl If RO is not negative, R1l contains
a message ID word (which is also -
displayed in the PLIST field).

If RO is negative, R1l contains the
address of a list of message ID words.

PLIST is up to 40 bytes in length,
consisting of 4-byte entries. Each
entry is a message ID word. The last
entry is identified by the 0 bit in
the high-order byte being set to 1.

SVC 90 (XQMNGR)

R15 and RO contain no applicable
information.

Rl contains the address of the OMPA.

PLIST is 36 bytes in length and
contains the QMPA fields. The QMPA
and its associated control blocks are
described in the MVT Job Management
PLM, Order No. GY28-6660.

SVC 96 (STAX)

R15 and RO contain no applicable
information.

Rl contains the address of the
parameter list.

PLIST is 20 bytes in length and breaks
down as follows:

Bytes

0-3 hhhhhhhh address of user
program to get
control at attention

interrupt.

4,5 hhhh size of input buffer
(max 4095)

6,7 hhhh size of output

buffer (max 4095)
8~-11 hhhhhhhh address of output

buffer

12-15 hhhhhhhh address of input
buffer

16 hh STAX option flag

byte as follows:
Bits

l.....02<.Resexrved
«04ewee.replace=YES
ele.....replace=NO
eelece..defer=YES
eselee..defer=NO
«esesllllReserved

17-19 hhhhhh address of user
parameters for user
program.

Programmer's Guide to Debugging (Release 21)

SVC 99 (TSO Dynamic Allocation)

R15 and RO contain no applicable
information.

R1 contains the address of the
parameter list.

PLIST is up to 40 bytes in length.
Consult your FE programming
representative for information
concerning the data displayed in this
field.

SVC 102 (TCAM)

R15 and RO contain no applicable
information.

R1 contains the address of the
parameter list.

PLIST is up to 12 bytes in length
depending on the function and breaks
down as follows:

Bytes

0 hh Action code byte for

SVC 102 as follows:

leee ... Flag issuing
task not
eligible for
rollout

elee ... Post rollouts
rollin ECB
complete

eele «... Post standard
or TSO ECB
complete

eeel <... Flag issuing
task not
eligible for
swap

weee le.. Move data
across
partition
boundary

«ses »1l.. Enqueue
element on
disabled
ready queue
and post MCP
ECB complete

esee wel. Flag issuing
task eligible
for swap

eeee se.1 Flag issuing
task eligible
for rollout

1-3

5-7

9-11

hhhhhh

hh

hhhhhh

hh

hhhhhh

Section 3:

varies by action code
as follows:

Action Code

80,40,01 ECB address
20,02,10
08,04 Data Address
varies by action code
as follows:

20 x'80', last
four bytes

80,40,01,

08,04,02,

10 x'00"*
resexrved

varies by action code
as follows:

Action Code

20,02,10 TSO job ID

address
80,40,01, TCB address
08,04 Taraget

address (for
enqueuing an
element the
target
address is
the address
of . the
disabled
ready queue
in the TCAM
AVT).

varies with action code
as follows:

Action Code

80,40,20,10,08,
04,02,01 x'80", last
four bytes

varies with action code
as follows:

Action Code

80,40,01 DEB address

08,04 Length
address

10,20,02 TCB address

Tracing Aids 189

SVC Comprehensive Trace Records; Group 4 -
Basic Fields Plus Variable Fields

GTF Group 4 SVC comprehensive trace records
have a variety of fields ~- differing from
SVC to SVC -- added to the fields composing
the basic SVC record (Group 1). Format and
content of the additional fields for each
SVC are discussed in the following
material.

SVC 0 (EXCP)
Additional fields -- DDNAME, DCB, DEB.

Register 15, 0, and 1 content, and
DDNAME DCB, and DEB format and content
follow:

R15 and RO contain no applicable
information.

R1 contains the address of the IOB
associated with this request.

DDNAME cccccccce
N/A

See explanation of DDNAME field
under Group 2.

DCB hhhhhhhh

address of the DCB associated with
this 1/0 request.

DEB hhhhhhhh

address of the DEB associated with
this I/0 request.

SvC_6_(LINK)
Additional fields -- PLIST, NAME

Register 15, 0, and 1 content, and
PLIST and NAME format and content
follow:

R15 contains the address of the
parameter list.

RO and R1 contain no applicable
information.

PLIST hhhhhhhh hhhhhhhh
is eight bytes in length and
breaks down as follows:

Bytes
0 hh

flag byte as follows:
80 DE form of macro
instruction

00 EP and EPLOC form
of macro instruction

1-3 hhhhhh If byte 0 is 80; the
address of the
directory entry list.

If byte 0 is 00; the
address of the entry
point name.

hierarchy ID as
follows:

00 -- no hierarchy
01 -- hierarchy 0
02 -- hierarchy 1

5 hhhhhh address of DCB or
zero.

NAME cccccccec
is the entry points/directory
entry (EP/DE) name of the module
- to be linked to or control
transferred to.

SVC 7 (XCTL)

(same as SVC 6)

SVC 8 (LOAD)
Additional field -- NAME

R15 contains no applicable
information.

RO Content:
If byte 0 contains x'00', bytes
1, 2, and 3 contain the address
of the entry point name.

If byte 0 contains x'80', bytes
1, 2, and 3 contain the address
of the directory entry list.

Rl Content:
In LCS systems, byte 0 contains
the hierarchy ID as follows:

00 -- no hierarchy
01 -- hierarchy 0
02 -- hierarchy 1

In systems without LCS byte 0
contains no significant
information.

Bytes 1, 2, and 3 contain the DCB
address or zero if the default
for DCB was specified.

NAME cccccecec
is the entry points/directory
entry name of the module to be
loaded.

190 Programmer's Guide to Debugging (Release 21)

SVC 9 (Delete)

Additional field -- NAME

R15 and R1 contain no applicable
information.

RO contains the address of the entry
point name.

NAME ccccccece
is the entry point name of the
module to be deleted.

SVC 13 (ABEND)
Additional field -- CMP CODE

R15 and RO contain no applicable
information.

R1 contains significant information
only if SVC 13 was not called by the
ABTERM routines. In this case Rl
contains the following:

Bytes

0 hh Flag byte as follows:

Bits

l... ««.. DUMP option
«l.. <e... STEP option
«+«XX XXXX reserved

1-3 hhhhhh ABEND completion code

CMP CODE hhhhhhhh

is the ABEND completion code if
SVC 13 was called by the ABTERM
routines. It is the content of
the TCBCMP field of the current
TCB at the time the SVC interrupt
occurred. If ABEND recursion has
occurred this field will contain
the recursive completion code.

SVC 14 (SP1E)
Additional field -- PICA

R15 and RO contain no applicable
information.

R1 contains the address of the program
interrupt control area (PICA).

PICA hhhhhhhh hhhh
displays the program interrupt
control area from the associated
SPIE macro instruction.

SVC 15 (ERREXCP)

Additional fields -- DDNAME, RQE, RQE
TCB, CUU hhhh

R15 and RO contain no applicable
information. ‘

Rl contains the address of the Request
Queue Element (RQE) which was assigned
to this I/0 request by IOS.

DDNAME ccccccce
is the name of the DD statement
associated with this I/0 request.

RQE hhhhhhhh hhhhhhhh hhhhhhhh
is the first 12 bytes of the RQE
assigned to this request by IOS.
The breakdown is:

Bytes

0,1 hhhh not applicable

2,3 hhhh address of the UCB
4 hh TCB ID for MFT
5,6,7 hhhhhh address of IOB

8 hh priority byte

9 hhhhhh address of DEB

RQE TCB hhhhhhhh
is the address of the TCB
associated with the I/0 request.

CUU hhhh
device address in channel-unit
form of the device associated
with this I/0 request.

SVC 16 (PURGE)

Additional fields -- DDNAME, DCB,
PLIST

R1S and RO contain no applicable
information.

Rl address of the purge parameter
list.

N/A
DDNAME|} ccceccecce
*kEkEkkkk

ccececceee
is the name of the DD statement
associated with the requests
being purged.

DCB hhhhhhhh
is the address of the DCB
associated with the purge
request.

PLIST hhhhhhhh hhhhhhhh hhhhhhhh
displays the PURGE parameter list
which breaks down as follows:

Bytes

0 hh option byte as

follows:

0... «... Purge request
elements in complete
DEB chain starting
with DEB specified in
address field.

Section 3: Tracing Aids 191

SVC 17 (RESTORE)

l.e.e Purge the requests
associated with the
DEB specified in
address field.

Post the purge
requests with x'48°'.
Allow the active
request to quiesce.
Halt the I/0
operations.

Purge all requests.
Purge only related
requests.

Purge AEQ, RB and IOS
logical channel
queue.

Purge AEQ and IOS
logical channel
queue.

Purge by DEB

Purge by TCB

.1..

‘.0.

..1.

*® o @

weal avee

ceal cnne

«0..

e ee

Il‘..

«0.
P

1-3 hhhhhh
y hh
5-7 hhhhhh
8 hh

address of DEB.
completion code
address of TCB
quiesce indicator:
01 if one oxr more
requests are
quiescing.

9-13 hhhhhh address of IOB.

SVC 21 (STOW)

Additional fields -- DDNAME, DCB, DEB

R15 and RO contain no applicable
information. .

Rl contains the address of a pointer
to the-chain of IOBs to be restarted.

Rl contains the address of the
associated DCB.

The values, positive or negative, of
RO and R1l, indicate the directory
action STOW is to take as follows:

RO Rl Action

+ + ADD

+ - REPLACE

- + DELETE

- - CHANGE
N/A

DDNAME cccccccce
Bhkhkkkk

cccccecee is the name of the
associated DD statement.

PLIST

hhhhhhhh ... (2 or 4 woxds)

is eight or 16 bytes in length,
depending on the directory action
being performed:

For ADD, REPLACE, or DELETE
actions the PLIST field is
eight bytes long and
contains, the member name or
alias of the PDS directory
entry being acted upon.

For CHANGE the PLIST field
is 16 bytes long, the first
eight bytes containing the
old member name or alias,
and the second eight bytes
contain the new member name
or alias.

SVC 25 (TRKBAI)

N/A
DDNAMEJ cccecece
kkkkkkk

ccceeccee
is the name of the DD statement
associated with this IOB.

DCB hhhhhhhh
is the address of the DCB
associated with the IOB.

DEB hhhhhhhh
#s the address of the DEB
associated with the IOB.

192

Additional fields -- DDNAME, PLIST

R15 contains no applicable
information.

RO contains the address of the
parameter list.

Programmex's Guide to Debugging (Release 21)

Additional fields =-- DDNAME, DCBFDAD,
DCBTRBAL

R15 and RO contain no applicable
information.

R1 contains the address of the
associated DCB. Note: If R1 is
negative, the address is in complement
form and the DCBFDAD and DCBTRBAL
fields are meaningless..

N/A
DDNAME{ cccececeee
#odokdokkokok

is the name of the associated DD
statement.

DCBFDAD hhhhhhhh hhhhhhhh
is the full direct access address
(MBBCCHHR) from the DCB pointed
to by R1l.

DCBTRBAL hhhh
is the track balance -- the
number of bytes remaining on the
current track after a write. The
field is negative if no bytes
remain.

SVC 26 (CATALOG/INDEX/LOCATE)

Additional fields -- PLIST, DSN

R15 and RO contain no applicable
information.

R1 contains the address of the
parameter list when CATALOG or INDEX
issue the SVC call.

R1 contains the address of CAMLST as
generated by the CAMLST macro
instruction when LOCATE issues the SVC
call.

DSN CCCCCCCCauw
is the data set name.

PLIST hhhhhhhh ... (4 words)

is the parameter list passed to
the SVC routine by the calling
macro instruction. 1Its content
varies, depending on the macro
instruction issuing the call.

Entry from CATALOG:

Bytes
0 hh option byte as follows:
Bits
leee «... Search is to
start on
specified
CVOL
Ocvee «ee. Search is to
start on
SYS.RES
eel. Catalog a
data set
esel Recatalog a
data set
eese l... Uncatalog a
data set
1 hh option bytes as follows:

Bits

elee ... Build all
missing index
levels

waeee l... Delete all
unneeded
index levels
except the
high level

seee =el. Indicate

- presence of

DSCB TIR

2 00

3 00

4 00 Reserved

5-7 hhhhhh address of the area that
contains the data set
name

8 00 Reserved

9-11 hhhhhh the address of the CVOL
ID, or zeroed.

12 00

13-15 hhhhhh address of the volume
list

Entry from INDEX:

Bytes
0 hh

option byte as follows:

Bits

leee «es« Search is to
start on
specified
CVOL

O0cee -eo- Search is to
start on
SYS.RES

option byte as follows:

Bits

elee «e.. Build an
index

eele ee.. Build a
generation
index

eesl «¢.. Build an alias

eees l... Connect CVOLs

eees «1l.. Delete an
index

eees see.l Delete an
alias

option byte as follows:

Bits

lee. «.... Disconnect
CVOLs

elee «e.. Indicate
DELETE option

eewe le.a Indicate
EMPTY option

3 hh size of generation data

group

4 00

5-7 hhhhhh a. address of the index
. name.

b. address of an eight
byte area that
contains a high-level
index name.)

Section 3: Tracing Aids 193

¢. address of an area
“that contains an
alias to be deleted.

8 00

hhhhhh the address of the area
that contains the CVOL
ID, or zeroed.

9-11

12 00

13-15 hhhhh a. address of an
eight-byte area that
contains an alias for
a high-level index.

b. address of a ten-byte

area that contains
the U4-byte device
code of the CVOL to
be connected followed
by its 6-byte volume
serial number.

‘Entry from LOCATE:

Bytes

0 hh option byte as follows:

Bits :

l.c. ... Search is to
start on
specified
CVoL

«ess Search is to
start on
SYS.RES

.-~1l. Read a block
by TTR.:

««00- 0. 0. LOCATE a name

0...

option byte as follows:

Bits
-.000 0000 LOCATE a name

option byte as follows:

Bits
Oueaw

«sess LOCATE a name
3 00
4 00

- 5«7 ' hhhhhh address of the data set
name or the relative
track address (TTR) of
the desired block in the
catalog.

hhhhhh address of the CVOL ID
or zeroes.

9-11

12 00

13-15, hhhhhh address of a 265 byte

workarea which ‘must be
" on a doubleword

boundary. If the issuer
of LOCATE has a non-zero
protect key, then the
workarea must have a
matching storage protect
key.

SVC 27 (OBTAIN)

Additional fields -- PLIST, VOLSER,
DSN/CCHHR ’

R15 and RO contain no applicable
information.

R1 contains the address of the
parameter 1list.

PLIST hhhhhhhh ... (4 words)
displays the OBTAIN parameter
list which breaks down as

follows:
Bytes
0-3 hhhhhhhh operation code as
follows:
C1000000 SEARCH for DSNAME
SEEK for track

Cc1800000
. address

address of data
set name or
address of track
address of DSCB,
CCHHR depending
on operation
code.

4-7 hhhhhhhh

8-11 hhhhhhhh address of the
volume serial
number

12-15 hhhhhhhh address of
14-byte
workarea.

N/A }
VOLSER|ccceee

ccccee is the volume serial
number of the associated volume.

N/A indicates that the volser
pointer in the parameter list was
zero.

nnnnn
DSN/CCHHR |CCCCCCCCCC wa e

‘nnnnn is the track address in
EBCDIC notation and is displayed
when the operation code in Word 1
of the parameter list indicates
SEEK. ’ -

194 Programmer's Guide to Debugging (Release 21)

cccecee ... is the data set name
and is displayed when the
operation code in word 1 of the
parameter list indicates SEARCH.
N/A if the name is unavailable.

SVC 28 (OPENEXT)

Additional fields -- content of R13

R15 contains no applicable
information.

RO contains zeroes, or the DCB address
of the SYSCTLG to be processed.

R1 contains the UCB address of the
volume whose SYSTCLG is to be opened,
if RO contains zeroes.

SVC 29 (SCRATCH)

Additional fields -- PLIST, DSN

R15 contains no applicable
information.

RO contains zeroes; or, the address of
a UCB or a SUBUCB (for a 2321 device)
for the device upon which unmounted
volumes may be mounted.

PLIST hhhhhhhh ... (4 words)
displays the SCRATCH parameter
list which breaks-down as

follows:

Bytes

0-3 hhhhhhhh operation code
as follows:
41004000 -- check
purge date
41005000 -~
override purge
date

4-7 hhhhhhhh address of data
set name

8-11 not used

12-15 address of the

volume list

DSN ccccCcCcCCC e e e
is the data set name.
name is unavailable.

N/A if the

SVC 30 (RENAME)

Additional fields -- PLIST, OLD DSN,
NEW DSN

R1S contains no applicable
information.

RO contains the address of the UCB for
the device on which unmounted volumes
should be mounted, or zero.

Rl contains the address of the
parameter list.
PLIST hhhhhhhh ... (4 words)

displays the RENAME parameter
list which breaks-down as

follows:

Bytes

0-3 x*41002000°

5-7 hhhhhhhh address of old
data set name

8-11 hhhhhhhh address of new

12-15 hhhhhhhh address of the

volume list

OLD DSN CCCCC <.
is the fully qualified name of
the data set to be renamed. N/A
if the name is unavailable.

NEW DSN ccccC ...
is the new name for the data set
being renamed. N/A if the name
is unavailable.

SVC 32 (ALLOCATE)

Additional fields -- CUU, DSN
R15 contains no applicable information

RO when positive, contains the address
of the associated job file control
block; when negative (not
complemented--high-order bit is set
on), contains the address of the
associated model DSCB.

Rl contains the address of the UCB
list.

CUU ccc
is the unit address from the UCB
pointed to by Ri1.

DSN ccccccee ...
is the data set name from the DSN
field of the JFCB or DSCB pointed
to by RO. N/A if the DSN field
was blank.

. SVC 33 (IOHALT)

Additional fields -- CUU

R15 and RO contain no applicable
information ,

Rl contains the address of the UCB
associated with the request to be

halted.

Section 3: Tracing Aids 195

CUU hhhh
is the device address associated
with the device being halted.

SVC 41 (IDENTIFY)

Additional fields -- EPNAME

R15 contains no applicable
information.

RO contains the entry point name
address '

R1 contains the main storage address
for the entry point name being added.

EPNAME cccccccc
is the entry point name being
added.

SVC 42 (ATTACH)

Additional fields -- SUPRVLIST, PPLIST

R15 contains the address of the
parameter list being passed to the SVC
routine.

RO contains no significant
information.

R1 contains the address of the
parameter list being passed to the
called program, or zero (no parameter
list being passed).

SUPRVLIST hhhhhhhh ... (36 bytes)
is the parameter list being
passed to the SVC routine and
breaksdown as follows:

Bytes
0 hh EP/DE flag byte:
00 -- EP or EPLOC
specified
80 -- DE specified
1-3 hhhhhh address of the EP
name or directory
entry (determined
by byte 0).
hierarchy flag
(used if option
chosen) :
00 -- no hierarchy
specified
01 -- hierarchy O
02 -~ hierarchy 1
5-7 hhhhhh address of the
DCB; or zero.
8 hh Reserved.
S 9-11 hhhhhh address of the ECB
12 hh GspP flag byte:
00 -- bytes 13-15
contain subpool
number

196 Programmer's Guide to Debugging (Release 21)

13-15

16

17-19

20

21-23

24,25

26 .

27

hhhhhh

hh

hhhhhh

hh

hhhhhh

hhhh

hh

hh

Bits

01 -- bytes 13-15
contain the
address of a
listing of subpool
numbers.

a subpool number
or address of
subpool list
(determined by
byte 12) '

SHSP flag byte:

00 -- bytes 17-19
contain a subpool
number

01 -- bytes 17-19
contain the
address of a list
of subpool
numbers.

a subpool number
or address of a
subpool list
(determined by
byte 16)
Roll-In/Roll-Out
flag:

00 -- new task may
not be rolled-out
and cannot invoke
roll-out.

01 -- new task may
not be rolled-out
but can invoke
roll-out

02 -- new task may
be rolled-out but
cannot invoke
roll-out

03 -- new task may
be rolled-out and
can invoke
roll-out

address of the
end-of-task exit
routine

dispatching
priority number
limit priority
number

Key Flags byte as
follows:

Xeee .-« Reserved
«0e. Propagate the

JSCB field from
the originating
task

eles eees If the origina-

ting task has a
protect key of
0, move the
specified JSCB
address into the

attached TCB;
otherwise,
propagate the
originating
task's TCBJSCB
field
ee0e ¢ce. Subpools 251 and
252 and the job
pack queue
pointer of the
originating task
are not given
to the attached
task.
eele wo.. Subpools 251 and
252 of the job
pack queue
pointer are
given to the
attached task.
essl =s.. the attached
task is to have
a protect key
of 0.
eeoe O.ece Subpool zero is
to be shared
with other
tasks.
eess l... Subpool zero is
not to be
shared
eese «0.. A save area of
72 bytes is to
be obtained for
the task.
esse »1l.. NO save area is
to be obtained.
esae oe0. Propagate the
TCBJSTCB field
from the
originating
task.
seee sel. The TCBISTCB of
the new task is
to point to the
new task.
eess s+.0 The new task is
to operate in
problem program
mode.
eeees «e.l The new task is
to operate in
supervisor mode.
28-35 hhhh the entry point
name for EP; or
blank for EPLOC or
DE specification.

PPLIST hhhhhhhh hhhhhhhh hhhhhhhh

«.. (up to 40 bytes)
is the parameter list being
passed to the called program and
consists of a series of four-byte
entries, each entry having it's
high-order byte reserved, and an
address in the low-order three
bytes.

SVC 44 (CHAP)

Additional fields -~ CHAP TCB

R15 contains no applicable
information.

RO contains a signed value to be added
to the dispatching priority of the
specified task. A negative value will
be in two's-complement form.

Rl contains the address of an area
containing the address of the TCB
whose priority is to be changed; or
zero. If zero, it indicates that the
active task's priority is to be
changed.

CHAP TCB hhhhhhhh
is the address of the TCB of the
active task at the time the SVC
interrupt occurred.

SVC 51 (SNAP)

Additional fields -- PLIST, MODN

R15 and RO contain no applicable
information.

Rl contains the address of the
parameter list.

PLIST:
The PLIST field when SVC 51 is
called by the SNAP macro
instruction is 12 bytes in length
and breaksdown as follows:

PLIST hhhhhhhh hhhhhhhh hhhhhhhh
displays three words of the
parameter list passed to SVC

51 by SNAP.
Bytes
0 hh ID number to be
printed in the
identification
heading of the dump.
1 00
2 hh option flag bytes as
follows:
Bits

0... ABEND request

leese SNAP request

elece TCB address given

eele ... Display all
supervisor data

«=el Display trace
table

esees l... Display nucleus

eese <l.. Snapshot list is
given

Section 3: Tracing Aids 197

eeew ««1l. ID given
eees e«el Display QCBs

3 hh option flag byte as
follows:
Bits
l1... Save area (see
next flags)

e0cee Display entire
save area

..« Display heading
only ’

.1..

eele o... Display registers
on entry to ABEND
or SNAP

eeel Display link pack
area :

«ess l... Display job pack
area

ceees »l.. Display PSW on
entry to ABEND or
SNAP

.«l. Display all
subpools less
than subpool 128

..+X Reserved

4 00
5-7 hhhhhh address of DCB
8 00

hhhhhh address of the TCB
specified in the
SNAP macro
instruction; or
zero. If zero, the
dump is for the
current task.

Certain calls for SW 51 may result in
a 16 byte PLIST field being recorded.
If there is a problem in this area
please contact your FE programming
representative for programming
support.

N/A
MODN| cccececcecce

cccceccce is the name of the
module calling SVC 51.

N/A appears if no module name is
available.

SVC_54 (DISABLE)

Additional fields -- DDNAME, DCB, DEB

R15 and RO contain no applicable
information.

R1 contains the address of the
associated DCB

ClkkkkkkkEk

is the name of the DD statement
associated with this request.

N/A
DDNAME {cccccccece

DCB hhhhhhhh
is the address of the associated
DCB. .

DEB hhhhhhhh
is the address of the associated
DEB.

SVC 62 (DETACH)

Additional fields -- DETACH TCB

R15 and RO contain no applicable
information.

Rl contains the address of an area
containing the address of the TCB to
be detached. .

Note: If Rl contains zero the DETACH
TCB field is meaningless.

DETACH TCB hhhhhhhh

is the address of the TCB to be
detached.

SVC_ 65 (QWAIT)

Additional fields -- R2, QCB

R15, RO and Rl contain no applicable
information.

R2 contains the address of the QCB for
the element being waited on.

QCB hhhhhhhh hhhhhhhh hhhhhhhh
is the queue control block
pointed to by R2, and breakdown
as follows:

Bytes

0 hh queue status:
01 -- not on ready
queue
02 -- not waiting
03 -- waiting

1-3 hhhhhh address of first
element on the
queue. '
priority of the
queue when linked
onto the ready
gueue.
5-7 hhhhhh address of the next
item on the ready

, queue,
8 hh reserved.
9-11 hhhhhh address of the STCB

for the subtask to
be activated.

. 198 Programmer's Guide to Debugging (Release’ 21)

SVC 66 (BTAM TEST)

Additional fields -- IOBERINF

R15 and RO contain no applicable
information.

R1 contains the address of the IOB
pointed to when the SVC was issued.

IOBERINF hhhhhhhh ... (4 words)
is the error information field
used by BTAM error recovery
routines.

SVC 67 (QPOST)

Additional fields -- R2, QCB

R15 and RO contain no applicable
information.

R1 contains the address of the element
being posted.

R2 contains the address of the QCB to
which the element is being posted.

QCB hhhhhhhh hhhhhhhh hhhhhhhh
is the queue control block

pointed to by R2 and breaksdown
as follows:

Bytes

0 hh queue status:
01 -- not on Ready
queue
02 -- not waiting

03 -- waiting

1-3 hhhhhh address of first
element on the
queue.

4 “hh priority of the
queue when linked
onto the ready

queue.

5-7 hhhhhh address of the next

7 item on the ready
queue.

8 hh reserved.

9-11 hhhhhh address of the STCB
for the subtask to
be activated.

SVC 71 (ASGNBFR/RLSEBFR/BUFINQ)
Additional fields ~-- DDNAME, PLIST

R15 and RO contain no applicable
information

Rl contains the address of the
parameter list.

DDNAME ccccccce
is the name of the DD statement
associated with the DCB specified
by the macro instruction.

PLIST hhhhhhhh hhhh ... (up to 12
bytes)
displays the parameter list
pointed to by Rl. The content
varies according to the macro
instruction calling the SvC.

Entry from ASGNBFR:

Bytes
0 o4 request byte, 04
indicates ASGNBFR
1-3 hhhhhh the DCB address
4-7 hhhhhhhh the address of a
half-word field
containing the
number of bytes of
buffer to be
assigned.

Entry from RLSEBFR:

Bytes

0 hh request byte:
08 indicates
RLSEBFR

0C indicates
RLSEBFR ALL

1-3 hhhhhh the DCB address

4-7 hhhhhhhh the address of a
half-word field
containing the
number of bytes of
buffer to be

released.
Entry from BUFINQ:
Bytes
0 10 request byte, 10
indicates BUFINQ
1-3 hhhhhh the DCB address
4-7 hhhhhh address of the

table of buffer
addresses (must be
on a fullword
boundary)

8-11 hhhhhhhh the number of
bytes specified to
be available for
the table of
buffer addresses

SVC 75 (Dequeue Routine)

Additional fields -- IQE
R15 contains no applicable information

RO contains the address of the next
IQE on the IRB active list for the
attention routine when ATTNINQ has
specified clear mode; otherwise,
contains zero.

Section 3: Tracing Aids 199.

R1 Content: Bytes v
0-3 hhhhhhhh address of the DCB
4-7 hhhhhhhh EBCDIC character
Bytes set image ID
0 hh is a unit index to 8 . hh 'LOAD MODE
identify a indicator:
particular 2260
display station; or
00 for a 2250 e0ee «e.. no fold
station. elee cee. fold
1-3 hhhhhh the GACB address X.XX XXxX reserved
N/A 9 hh verification
IQE hhhhhhhh hhhhhhhh hhhhhhhh indicator:
when ATTNINQ specifies clear mode eeel ... verify
this field displays the first 3 eee0 cce. don't verify
words of the IQE pointed to by XXX. XxXxx reserved
RO:
) 10 hh data check
Bytes indicator:
0-3 hhhhhhhh the address of the
next IQE in the 1---' IO blOCk
chain, or zero «lee unblock
4-7 hhhhhhhh not meaningful 00.. as DCB specifies
8-11 hhhhhhhh the address of the eeees l... unfold vUCs 3211
hhhhhhhh IRB associated eeee «l.. fold UCs 3211
with the IQE. <« XX +.XX reserved
N/A 11-14 hhhhhhhh EBCDIC FCB
will appear in this field image ID
whenever the ATTNINQ macro 15 hh FCB parameter
instruction did not specify clear options:
mode.
1... verify FCB
eees ese1l align
SVC 78 (LSPACE) « XXX XXX. reserved
Additional fields -- CUU SVC 82 (DISKANAL) Entered from modules:
IEHDANAL, IEHOGETA,
R15 and R1 contain no applicable IEHDCELL, IEHDLABL,
information IEHDREST, IEHDDUMP
RO contains the address of the Additional fields -- VOLSER, DA-ADDR,
associated UCB PLIST
CUU hhhh is the unit address R15 and RO contain no applicable
information
SVC 81. (SETPRT) Rl contains the address of the
parameter list.
Additional fields -- DDNAME, PLIST
VOLSER cccccce
R15 and RO contain no applicable is the volume serial number
information
DA-ADDR N/A
R1 contains the address of the hhhhhhhh hhhhhhhh
parameter 1list.
displays a six or eight byte
DDNAME cccccccece track address or N/A, dependent
is the name of the DD statement on the options in effect for the
associated with the data set SVC routine. The breakdown is:
being printed.
Option DA-ADDR Content-
PLIST hhhhhhhh .. (four words) analyze or format six-byte track
is four words of the parameter address
list being passed to SVC 81 and post UCB eight-byte trac
breaks down as follows: address

200 Programmer's Guide to Debugging (Release 21)

(function 1F)
4

address of N/A

alternate track

CCHH

unlabeled volume eight-byte
track address

new volume N/A

PLIST hhhhhhhh ... (16 bytes maximum)

is either 8, 12, or 16 bytes of
the parameter list pointed to by
R1l. The first four bytes always
consist of a flag byte, defining
the function to be performed, and
a 3-byte UCB address. The fifth,
ninth, and thirteenth bytes, when
present, will contain a flag
indicating the last element
(4-bytes) in the list. The
breakdown is as follows:

Bytes
0 hh function byte as
follows:

8F -- new volume
1F -- address of
alternate track
CCHH
00 -- ANALYZE orx
FORMAT
08 -- POST UCB
88 -- unlabeled
volume

1-3 hhhhhh address of UCB

(function 8F)

4 80 flag byte -- last
element
5-7 hhhhhh address of DCB

80 flag byte -- last
element

5-7 hhhhhh address of

alternate track

CCHH

(function 00)

4-70 hhhhhhhh address of
alternate track
CCHH

8 80 flag byte -- last
element

9-11 hhhhhh address of
alternate track
information

(function 08)

4-7 hhhhhhhh address of serial
number

8 80 flag byte -- last
element

9-11 hhhhhh address of VTOC
address of VTOC

(function 88)

4-7 hhhhhhhh address of serial
number

8-11 hhhhhhhh address of VTOC

12 80 flag byte -- last
element

13-15 hhhhhh address of DEB

SVC 86 (ATLAS)

Additional fields -- PLIST, CCHHR
R15 and RO contain no applicable
information

Rl contains the address of the
parameter list

PLIST hhhhhhhh hhhhhhhh

is the parameter list passéd to
SVC 86 and breaks down as
follows:

Bytes
0 hh flag byte as
follows:

lece ...« User's channel
program can not be
re-executed.

« XXX XXXX reserved

1-3 hhhhhh address of IOB

4 hh flag byte as
follows:

leee <... IEHATLAS is the
calling program

.l1.. a partial count
(CCHH only) has
been passed by
the calling
program

eele «... a write special
CCW is required
for a track
overflow record

eeel a write
special
CCW is not
required

ceee XXXX reserved

5-7 hhhhhh address of count
(CCHHR) or partial
count (CCHH) field

CCHHR hhhhhhhhhh

is the five-byte track address of
the complete (CCHHR) or partial
count (CCHH) field passed by the
calling program.

Note: If entry to SVC 86 is from
the IEHATLAS program (byte 4, bit
0 in parameter list) this address
points to the CCHH part of the
count field.

Section 3: Tracing Aids 201

SVC 88 (MOD 88).

Additional fields -- DEB, DSSTAT FIGS,
DEVMOD

R15 and RO contain no applicable
information.: .

R1 contains the address: of the DCB
associated with the current task at
" the time the SVC was issued.

DEB hhhhhhhh
is the address of the data extent

block (taken from DCB pointed to v

by R1)

DSSTAT hh
the data set status flags field
(taken from the DEB)

DEVMOD hh
the device modifier fleld (taken
from the DEB)

SVC 89 (EMSERV)

Additional fields -- PLIST, RESMCW

R15 and RO contain no appllcable
information

R1 contains the address of the
parameter list

PLIST hhhhhhhh
displays four bytes from the
parameter list being passed to
the svcC routlne. The breakdown

is:
Bytes
0 hh flag byte:
CO0 -- enter emulator
mode
A0 -- leave emulator
mode-

1-3 hhhhhh address of control
storage lead name

RESMCW hhhhhhhh hhhhhhhh
displays dight bytes of the
RESMCW field from the RMS common
area.

SVC 98 (TSO PROTECT)

Additional fields -- PLIST, DSN

R15 and RO contain no applicable
information

Rl contains the address of the
parameter list

PLIST hhhhhhhh
displays the first four bytes of
the parameter list as follows:

Byte i
0 01 entry code for the
add function
02 entry code for the
' replace function
03 entry code for the
delete function
o4 entry code for the

list function

1-3 hhhhhh varies by function
as follows:

000000 --" add
function

000000 -- replace
function

000000 -- delete
function

hhhhhh -- 80 byte
buffer address

DSN CCCCCCCC enw
is the data set name

202 Programmer's Guide to Debugging (Release 21)

IMDPRDMP OUTPUT COMMENTS - GTF PROCESSING

The following comments may appear in the
listing of GTF trace records.

.1/0 ERROR ON ddname - CONTINUE

Explanation: The EDIT function of
IMDPRDMP is being used to process
a GTF external trace data set. An
170 error was encountered while
attempting to read the trace data
set identified by ddname. Fewer
than three consecutive 1/0 errors
have occurred for this data set,
so EDIT continues processing,
ignoring the current block that
caused the I/0 error.

I/0 ERROR ON ddname - EDIT PROCESSING
TERMINATED .

Explanation: The EDIT function of
IMDPRDMP is being used to process
a GTF external trace data set.
Three consecutive I/0 errors have
been encountered while attempting
to read the trace data set
identified by ddmame. EDIT
processing terminates.

ERROR IN GTF BUFFER CHAIN

Explanation: The EDIT function of
IMDPRDMP is being used to process
an internal (dump) trace data set.
While attempting to locate the GTF
trace buffers, IMDPRDMP
encountered one of the following
errors:

e A buffer pointer was not on a
word boundary.

e A buffer pointer addressed an
area of main storage that
could not be extracted from
the dump for one of the
following reasons:

1. The pointer addressed an
area higher than the
highest address in the
dump.

2. IMDPRDMP encountered an

1/0 error while attempting

to read the record
containing the area
addressed by the pointer.
3. The block containing the
addressed area was missing
from the dump, perhaps
because the program that
produced the dump
encountered an I/0 error
while attempting to write
the block. EDIT
processing is terminated.

ERROR IN GTF BUFFER - CONTINUING WITH
NEXT BUFFER

Explanation: The EDIT function of
IMDPRDMP is being used to process
an internal (dump) trace data set.
EDIT has encountered a GTF trxace
recoxrd with a length that does not
lie within the acceptable range of
4 to 272 bytes. EDIT continues
processing with the next GTF
buffer.

GTF NOT ACTIVE AT TIME OF DUMP

Explanation: The Edit function of
IMDPRDMP is being used to process
an internal (dump) trace data set.
EDIT has determined that GTF was
not active at the time that the
dump was taken. EDIT processing
is terminated.

TRACE RECORD LL INVALID, DD ddname BLOCK
NO xxxyyy - EDIT PROCESSING TERMINATED

Explanation: The EDIT function of
IDMPRDMP is being used to process
a GTF external trace data set.
EDIT has. encountered a GTF trace
record with a length that does not
lie within the acceptable range of
4 to 272 bytes. Ddname identifies
the GTF external data set being
processed; xxxyyy identifies the
number of the block containing the
faulty record. EDIT processing is
terminated.

EDIT TERMINATED UPON USER'S REQUEST

Explanation: A user exit has
requested EDIT termination by
returning to EDIT with a return
code of 24.

EXIT DELETED UPON USER'S REQUEST

Explanation: A user exit has
requested that it no longer be
invoked during the current EDIT
execution. This is the result of
a user exit routine return code of
16 or 20.

GTF OPTIONS IN EFFECT - option

Explanation: The input trace data
set was created by GTF with trace
options in effect as indicated by
option'. The Service RAids
publication describes the options
available.

Section 3: Tracing Aids 203

204 Programmer's Guide tc Debugging (Release 21)

Appendix A: Debugging With an Operating System Dump

The first facts you must determine in
debugging with an operating system dump are
the cause of the abnormal termination and
whether it occurred in a system routine or
a problem program. To aid you in making
these determinations, ABEND, SNAP, and
indicative dumps provide twa vital pieces
of informatien -- the completion code and
the active RB queue. Similar information
can be obtained from a storage image dump
or a stand-alone dump by analyzing PSWs and
re-creating an active RB queue.

A completion code is printed at the top
of ABEND, SNAP, and indicative dumps. It
consists of a system code and a user code.
The system code is supplied by the control
program and is printed as a 3-digit
hexadecimal number. The user code is the
code you supplied when you issued your own
ABEND macro instruttion; it is printed as a
4-digit decimal number. If the dump shows
a user code, the error is in your program,
and the completion code should lead you
directly to the source of error. Normally,
however, a system code will be listed; this
indicates that the operating system issued
the ABEND. Often the system completion
code gives enough information for you to
determine the cause of the error. The
explanations of system completion codes,
along with a short explanation of the
action to be taken by the programmer to
correct the error, are contained in the
publication IBM System/360 Operating
System: Messages and Codes, GC28-6631.

To locate the load module that had
control at the time the dump was issued,
find the RB associated with the module. If
the dump resulted from an ABEND or SNAP
macro instruction, the third most recent RB
on the queue represents the load module
that had control. The most recent and
second most recent RBs represent the ABDUMP
and ABEND routines, respectively. Storage
image dumps and stand-alone dumps contain
PSW information that can be used to
identify the load module in control.

Once you have located the RB or load
module, look at its name. If it does not
have a name, it is probably an SVRB for an
SVC routine, such as one resulting from a
LINK, ATTACH, XCTL or LOAD macro
instruction. To find the SVC number, look
at the last three digits of the resume PSW
in the previous RB on the queue. If a
previous RB does not exist, the RB in
question is an SVRB for a routine invoked

Appendix A:

by an XCTL macro instruction. Register 15

in the extended save area of the RB gives a
pointer to a parameter list containing the

name of the routine that issued the XCTL.

If the RB does not bear the name of one
of your load modules, either an RB was
overlaid or termination occurred during
execution of a system routine. The first
three characters of the name identify the
system component; Appendix C contains a
list of component names to aid you in
determining which load module was being
executed.

If the RB bears the name of one of your
load modules, you can be reasonably certain
that the source of the abnormal termination
lies in your object code. However, an
access method routine may be at fault.

This possibility arises because your
program branches to access method routines
through a supervisor-assisted linkage,
instead of invoking them. Thus, an access
method routine is not represented on the
active RB queue. To ascertain whether an
access method routine was the source of the
abnormal termination, you must examine the
resume PSW field in the RB. If the last 3
bytes in this field point to a main storage
address outside your program, check the
load list to see if an access method
routine is loaded at that address. If it
is, you can assume that it, and not your
program, was the source of abnormal
termination.

Abnormal Termination in System Routines:

By analyzing the RB's name field or the SVC
number in the previous RB, you can
determine which system load module
requested the termination. If the RB has a
system module name, the first three
characters tell you the name of the system
component. The remaining characters in the
name identify the load module in error.

Remember, although a system routine had
control when the dump was taken, a problem
program error may indirectly have been at
fault. Such a situation might result from
an incorrectly specified macro instruction,
an FQE modified inadvertently, a request
for too much storage space, a branch to an
invalid storage address, etc. To determine
the function of the load module that had
control, consult Appendix C. With its
function in mind, the completion code
together with an examination of the trace
table may help you to uncover which
instruction in the problem program
incorrectly requested a system function.

Debugging With an Operating System Dump 205

Program Check Interruptions in Problem
Programs: If you have determined from the
completion code or PSWs and evaluation of
the RB queue that the dump resulted from a
program check in your problém program,
examine the status of your program in main
storage. (If you have received only an
indicative dump, you must obtain either an
ABEND/SNAP dump or a stand-alone dump at
this point.) Locate your program using
pointers in the RB. If its entry point
does not coincide with the lower boundary
of the program, you can find the lower
boundary by adding 32(20) to the address of
the RB (systems with MFT). The RB's size
field gives the number of doublewords
occupied by the RB, the program, and
associated supervisor work areas.
ABEND/SNAP dumps with MFT have the storage
boundaries of the problem program
calculated and printed.

Next, locate the area within your
program that was executed immediately prior
to the dump. To do this, you must examine
the program check old PSW. Pertinent
information in this PSW includes:

Bits 12-15: AMWP bits

Bits 32,33: Instruction length in
halfwords.

Bits 40-63: Instruction address

A useful item of information in the PSW
is the P bit of the AMWP bits (bits 12-15).
If the P bit is .on, the PSW was stored
while the CPU was operatlng in the problem
program state. If it is off, the CPU was
operating in the supervisor state.

Find the last instruction executed
before the dump was taken by subtracting
the instruction length from the instruction
address. This gives you the address of the
instruction that caused the termination.

If the source program was written in a
higher level language, you must evaluate
the instructions that precede and follow
the instruction at fault to determine their
function. You can then relate the function
to a statement in the source program.

Other Interruptions in Problem Programs:
If the completion code or PSWs and the
active RB queue indicate a machine check’
interruption, a hardware error has
occurred. Call your IBM Field Engineering
representative and show him the dump.

If an external interruption is
indicated, with no other type of
interruption, the dump probably was taken
by the operator. Check with him to find
out why the dump was taken at this point.
The most likely reasons are an unexpected

wait or a program loop. If a trace table
exists, examine it for the events preceding
the trouble or, if the trace table was made
ineffectual by a program loop, resubmit the

-job and take a dump at an earlier p01nt 1n

the program.

The remaining causes of a dump are an.
error during either execution of an SVC or
an I/0 interruption. In either case, ,
examine the trace table. Entries in the
table tell you what events occurred leading
up to termination. From the sequence of
events, you should be able to determine
what caused a dump to be taken. From here,
you can turn to system control blocks and
save areas .to get specific information.

For example, you can find the sense
information issued as a result of a unit
check in the UCB, a list of the open data
sets from the DEB chain, the CCW list from
the IOB, the reason for an 1I/0 interrupt in
the status portion of the CSW, etc.

Specialized Program Checks

In addition to the error program checks
(1-15), other system events cause program
checks which are normally transparent to
the user. They could, however, if seen in
a dump (except ABEND dumps where they do
not appear, result in some confusion. One
such event is the monitor call interrupt.
on 360 CPU's, the monitor call: appears as a
01 (operation) interrupt code in the
program old PSW. To verify that a
simulated monitor call occurred, check the
address in the program old PSW. A monitor
call occurred if:

1. The address (-4) points to an
execution instruction (*44°);

2. The execute is operating on an x'AF00°*
in low core;

3. A NOP (x'470') follows the execute.

370 CPU's support the real monitor call
interrupt. The code in the program old PSW
is a x'40", and the PSW address (-U4) points
directly at an x'AF' instruction.

On 360 CPU's, the x'AF'
as follows:

opcode is simulated

1. The first time an x'AF' instruction is
encountered, an execute instruction is
substituted for the x'AF'.

2. The execute is of an instruction in a
low-core table (Class Mask Table).

3. If the monitor call should occur, the
instruction in the Class Mask Takle is
an x"AF00'; if it should not occur,
the instruction is a x'0700°' (NOP).

206 Programmer's Guide to Debugging (Release 21)

4.

Required class and ID information for

the monitor call are contained in the

x*'470" NOP following the execute.

Oon 370 CPU's, the monitor call occurs under
control of a mask in Control Register 8.

The Generalized Trace Facility (GTF) is a

user of the monitor call interrupt.
more detailed information,

For
refer to the

Service Aids Logic PLM, GY28-6721.

Debugging Procedure Summary

1.

2!.

3.

Look at the completion code or PSW
printouts to find out what type of
error occurred. Common completion
codes and causes are explained in

Appendix C.

Check the name of the load module that
had control at the time the dump was
taken by looking at the active RB's.

If the name identifies a system
routine, proceed to step 4. If the
name identifies a problem program and
the completion code or PSW indicates a
program check, proceed to step 6. If
the name identifies a problem program,
and the completion code or PSW
indicates other than a program check,
proceed to step 10.

Find the function of the system
routine using Appendix D.

. If the dump contains a trace table,

begin at the most recent entry and

Appendix A:

7.
8‘

10.

11.

12.

proceed backward to locate the most
recent SVC entry indicating the
problem state. From this entry,
proceed forward in the table,
examining each entry for an error that
could have caused the system routine
to be terminated.

If the name identifies one of your
load modules, check the instruction
address and the load list to see if an
access method routine last had
control. If so, return to step 4.

Locate your program in the dump.

Locate the last instruction executed
before the dump.

Examine the instruction and, if the
program was written in a high-level
language, the instructions around it
for a possible error in object code.

If a machine check interruption is
indicated, call your IBM Field
Engineering representative.

If only an external interruption is
indicated, ask the operator why he
took the dump. Resubmit the job and
take a dump at the point where trouble
first occurred.

Examine the trace table, if one is
present, for events leading up to the
termination. Use trace table entries
and/or information in system control
blocks and save areas to isolate the
cause of the error.

Debugging With an Operating System Dump 207

208 Programmer's Guide to Debugging (Release 21)

Appendix B: SVCs

Register contents at entry to an SVC routine are often helpful in
finding pointers and control information. The table below lists SVC
numbers in decimal and hexadecimal, and gives the type, associated macro
instruction, and significant contents of registers 0 and 1 at entry to
each SVC routine.

r L T T T 1 h]
|Decimal |Hex. | | | | |
! No. ! No. 1 Ty pe i Macro ! Register 0 ! Register 1 l
[T T T 1 1 1
| 0 I 0 | I | EXCP | | IOB address
o ol T jome | | |
| I I | I [
i 1 I 1 | I- | WAIT |Event count |ECB address]
I	i		
1	1 I WAITR	Event count	2*s complement of
i :		ECB address	
-		I I	
1	1 I	PRTOV i	
	'	I	
2	2 I POST	Completion code	ECB address i
I			
3	3	1	EXIT
I ! I			I
4	4	I	GETMAIN
I		I I	
5	5	I	FREEMAIN I
I !		I I I	
6	6	II	LINK
7	7	1I	XCTL
I I		I	
8	8	II	LOAD jAddress of entry point
L -			
9	9	I, II	DELETE
		I I	
10	A&	I	GETMAIN or
			FREEMAIN
			(R Operand)
10	a	I	FREEPOOL i
! I		I	
11	B	I, III	TIME
	I		
[12	¢	II	SYNCH
I			
13	D	1v	ABEND
			!
14	E	II, III	SPIE
I	I] ! I		
15	F	I	ERREXCP
	I		
L 1 L L L L 4
(Part 1 of 5)

Appendix B: SVCs 209

-

r T T T T T 1
|Decimal |Hex. | i | |
| No. | No. | Type | Macro Register 0 | Register 1 |
b b=t : + :
| 16 | 10 | III |PURGE i |
[| I | | g
| 17 | 11 | III |RESTORE | | I0B chain address |
| I | | | |
| 18 } 12 | II | BLDL |Address of build list |DCB address]
| | | I I | I
18	12	II	FIND		
	I				
219	13	1V	OPEN Address of parameter list		
					of DCB addresses
I	I				
20	4.	IV	CLOSE Address of parameter list		
			of DCB addresses ~		
			I		
21	15	III	STOW	Parameter list address	DCB address
				I I	
22	16	1Iv	OPEN TYPE=J		Address of parameter 1listj
]	{of DCB addresses]		
!					
23	17	1I1Iv	CLOSE TYPE=T		Address of parameter list
				jof DCB addresses	
		I I]			
24 { 18	III	DEVTYPE		ddname address	
	I	I I			
25	19	III	TRKBAL	{DCB address i	
I				-	
26	1A	IV	CATALOG		Parameter list address
! I I I I _					
26	1A	IV	INDEX	{Parameter list address	
		!			
26	1A	III	LOCATE	{Parameter list address	
I		.			
27	1B	III	OBTAIN		Parameter list address
				I !	
28	1I¢	IV	cvoL		
I	I				
29	1Ib	IV	SCRATCH	UCB address	Parameter list address
	I] !			
30	1E	IV	RENAME	UCB address	Parameter list address .
I					
31	aF	IV	FEOV		DCB address
	I I	I I			
32	20	1Iv	ALLOC		Address of UCB list
		I	I		
33	22	III	IOHALT		UCB address
	f I I I				
34	22	1V	MGCR (MAST		
			CMD EXCP)]
]			
35	23	IV	WTO		Message address
				!	
35	23	1Iv	WTOR		Message address
			I	I	
36	26	IV	WTL		Address of message
		I [
37 25	II	SEGLD		Segment name address	
o		I , I			
37	25	1II	SEGWT		Segment name address
		!			
38 26	II	TTROUTER i			
	I !				
39 27	III,IV	LABEL		Parameter list address §	
L 1 4L L 1 A1 3
(Part 2 of 5)
210 Programmer's Guide to Debugging (Release 21)

I R T k] 1
|Dec1ma1 |Hex. | | | |
| No | No. | Macro | Register 0 | Register 1 [
L } 1 1 4 J
[} ¥ L] I { T
| 4o | 28 I, II, |EXTRACT | |Parameter list address |
I | IIr | | ! |
I | I I | |
| 41 | 29 |II, III|IDENTIFY | Entry point name address|Entry point address |
| | | |
42 | 2a II, III|ATTACH |
' |
43 2B II, III|CIRB Entry point address Size of work area in]
] doublewords |
| !
44 2c I | CHAP |+ Increase priority TCB address
- Decrease priority |
45 2D II OVLYBRCH |
]
46 | 2B | I | TTIMER | |1: Cancel
| I | I
47 | 2F 11 STIMER {Exit address Timer interval address |
| | | I
48 30 I, IT |DEQ | |QCB address |
| | | |
49 31 III |TEST | | i
| | | |
I | | |
51 33 Iv | sSNAP | |Parameter list address |
| I | |
| 52 | 34 | 1Iv | RESTART | |DCB address]
! | | I |] |
| 53 | 35 | III |RELEX | Key address | DCB address |
| | I | I | I
| 54 | 36 | II |DISABLE | | |
| I ! | | I |
| 55 | 37 | 1Iv | EOV | EOB address |DCB address |
| I | | I |
| 56 | 38 |1, II |ENQ | OEL address QCB address |
| | | i | |
| 56 | 38 |I, ITI |RESERVE |]
| I | | | I
| 57 | 39 | III |FREEDBUF | DECB address |DCB address
I I I I I | |
| 58 | 3 | I | RELBUF | |DCB address |
| | ! | I |
| 58 | 38 | 1 | REQBUF | DCB address !
| I | I I | I
| 59 | 33 | III |OLTEP | | |
| | | | I I I
| 60 | 3¢ | III |STAE |0 Create SCB |Parameter list address |
| | | | |4 Cancel SCB | |
I | | | jg o0 | . |
| 61 | 3D | III |TTSAV] |Parameter list address !
| | I I I | |
| 62 | 3B | 1II | DETACH | |TCB address
| | | | | I |
63 | 3F | IV |CHKPT | |DCB address |
| | | | | I
64 | 40 | 1III |RDJFCB | |Address of parameter list |
| | | | |of DCB addresses
! | | | g} |
65 | 41 | II | QWAIT | |Parameter list address |
| | | | | |
66 | 42 | 1V | BTAMTEST | | |
1 1 i : i 1 [}
)

(Paxt 3 of 5

Appendix B: SVCs

211

[) Ll L] X] L] L |
|Decimal |Hex. | | | |
| No. | No. | Type | Macro | Register 0 } Register 1
67 i 43 i 1I]LENDREADY T iQPOST
|] |] |
| 68 | 44 | IV | SYNADAF | same as register 0 on |same as register 1 on |
| | = = :entry to SYNAD :entry to SYNAD =
|
68 | 44 v | SYNADRLS | | |
|
69 45 | III |BsP DCB address
|
70 e II | GSERV | |Parameter list address
| I |
71 47 III |RLSEBFR Parameter list address
|
71 47 III |ASGNBFR Parameter list address
I					
71	47	III	BUFINQ		Parameter list address
I					
72 48	IV	CHATR	Parameter list address		
		I			
73 49 III SPAR Parameter list address					
74 4a III	DAR Parameter list address				
	I				
75 4B III	DQUEUE Parameter list address				
I					
76 4c v IFBSTAT					
77	4D IV	QTAMTEST			
	I				
78 LE III	WSCAN				
79 47	I	STATUS i]			
I					
80	50	III	IKASVC		
!					
81 51 IV	SETPRT				
		I			
82 52 IV	DASDR	1			
				!	
83	53	III	SMFWTM		Message address
!]			I		
84 54 I	GRAPHICS	UCB address and buffer			
	i	restart address			
I					
85	55 v	DDRSWAP]		
				' I	
86	56	IV	ATIAS		Parameter list address
]			
87	57 III	DOM	1f zero	A DOM message I.D.	
	}	If negative	A pointer to a list of DOM		
: } : }	:nessage I.Ds				
88	58	III	MODS88	Routine code	DCB address
]					
89	59	III	EMSRV	Parameter list address	
{					
] 90	5	IV	XOMNGR Address of list of	QMPA address	
		\	ECB/IOB pointers		
]	(optional)		
	I	b			
91	SB	III	VOLSTAT DCB address	zero: issued by CLOSE	
	I				
L. L L i

L

|Non-zerxo: issued by EOV

L

A |

212 Programmer's Guide to Debugging (Release 21)

(Part 4 of 5)

o —

L] L) T L) 1
Decimal |Hex. | | | | |
No. No. | Type | Macro | Register 0] Register 1 |
} 1 + 4 {
92 5 | I |TCBEXCP | | |
! i | | |
| 93 | 5D | IV | TGET/TPUT | TIID & buffer size |Address of User's Buffer |
I | | | I | |
| 94 | 5E | IV | STERMINAL |Entry code | |
| | STATUS |
| |
95 S5F I	TSEVENT TJID/Entry Code or 0 Not Always Applicable		
96	60 III	STAX	Parameter List Address
			I I
97 61 III	TEST-TSO		
98 62 IV	PROTECT Parameter List Address		
929	63 IV	none	
I			
100 64 III	FIB		
101 65 I QTIP Entry code Parameter List Address			
102 66 I	AQCTL Parameter List Address		
103 67 XLATE Field length Action byte and field			
address			
104	68	IV	TOPCTL
105	69	III	IMAGLIB]
]		
109 6D	v		-- contents used by called routine --
[
116 74	I JAT	-- contents used by called routines --	
I	I		
117 75	II		== contents used by called routines --
L 1 L L J
)

(Part S5 of

Appendix B: SVCs

(%]

213

214 Programmer's Guide to Debugging (Release 21)

Completion codes issued by operating system
routines are often caused by problem

program e€errorse.

This appendix includes the

most common system completion codes, their
probable causes, and how to correct the
error or locate related information using a

dump.

For a more comprehensive coverage of

completion codes, see the publication
Messages and Codes.

0Cx A program check occurred without a

OF1

recovery routine. If bit 15 of the
old program PSW (PSW at entry to
ABEND) is on, the problem program had
control when the interruption
occurred; "x" reflects the type of
error that causes the interruption:

Cause

Operation :
Privileged operation
Execute

Protection
Addressing
Specification

Data

Fixed-point overflow
Fixed-point divide
Decimal overflow
Decimal divide
Exponent overflow
Exponent underflow
Significance
Floating-point

HEHODOEYDPOVONOUEWN RIX

The correct register contents are
reflected under the heading "REGS AT
ENTRY TO ABEND" in an ABEND/SNAP dump.
In a stand-alone dump, register
contents can be found in the register
save area for ABEND'S SVRB.

A program check occurred in the
interruption handling part of the
input/output supervisor. The
applicable program check PSW can be
found at location 40(28). (In systems
with MFT, this PSW is wvalid only if
the first four digits are 0004).

The problem p%bgqam can be responsible
for this code if:

1. An access method routine in the
problem program storage area has
been overlaid.

2. An IOB, DCB, or DEB has been
modified after an EXCP has been
issued, but prior to the
completion of an event.

OF2

100

101

102

106

Appendix C: Completion Codes

If a trace table exists (trace option
was specified at system generation),
the instruction address in the new
program check PSW, location 104(68),
contains the address of a field of
register contents. This field
includes registers 10 through 9 on an
ABEND/SNAP dump, or 10 through 1 on a
stand-alone dump.

If no trace table exists, the above
field contains registers 10 through 1
on both ABEND/SNAP (MFT only) and
stand-alone dumps.

Most frequently caused by incorrect
parameters passed to a type I SVC
routine.

A device has been taken off-line
without informing the system, or a
device is not operational.

If a trace table exists, the most
current entry is an SIO entry
beginning with 30. The last 3 digits
of the first word give the device
address.

1f a trace table does not exist,
register 1 (in the SVRB for the ABEND
routine) contains a pointer to the IOB
associated with the device.

The wait count, contained in register
0 when a WAIT macro instruction was
issued, is greater than the number of
ECBs being waited upon.

An invalid ECB address has been given
in a POST macro instruction.

If a POST macro instruction has been
issued by the problem program, the ECB
address is given in register 1 of
either the trace table entry or the

SVRB for the ABEND routine.
Q

If the POST was issued by an I/0
interruption handler, the ECB address
can be found in the IOB associated
with the event.

During a transient area load or a
dynamic locad resulting frgom a LINK,
LOAD, XCTL, or ATTACH macro
instruction, the fetch routine found
an error. A description of the error
is contained in register 15 of ABEND's
SVRB register save area:

Appendix C: Complétion Codes 215

122

155

200

201

202

213

216

0D The control program found an
invalid record type.

0E The control program found an
invalid address. The problem
program may contain a relocatable
expression that specifies a
location outside the partition
boundaries.

OF A permanent I/0 error has
occurred. This error can probably
be found in the trace table prior
to the ABEND entry.

Register 6 of ABEND's SVRB register
save area points to the work area used
by the fetch routine. This area
contains the IOB, channel program, RLD
buffer, and the BLDL directory entry
associated with the program béing
loaded.

The operator cancelled the job and
requested a dump.

An unauthorized user (a user other
than dynamic device reconfiguration)
has issued SVC 85. The user's task
has been abnormally terminated by
dynamic device recognition.

The error was detectéd when an 1/0
operation was requested and the
storage protection keys of the IOB,
ECB, and DCB were not the same as the
key in the DEB. (checked for MVT
only)

This completion code is identical to
102, but applies to the WAIT macro
instruction instead of POST.

An invalid RB address was found in an
ECB. The RB address is placed in the
ECB when a WAIT macro instruction is
issued.

The error occurred during execution of
an OPEN macro instruction for a data
set on a direct~access device.

Either:

1. The data set control block (DSCB)
could not be found on the direct
access device.

2. An uncorrectable input/output
error occurred in reading orxr
writing the data set control
block.

Register 4 contains the address of a
combined work and control block area.
This address plus x'64' is the address
of the data set name in the JFCBDSNM
field of the job file control block
(JFCB) .

222

301

308

400

406

506

Programmer's Guide to Debugging (Release 21)

- XCTL,

The operator cancelled the job without
requesting a dump. The cancellation
was probably the result of a wait
state or loop.

A WAIT macro instruction was issued,

specifying an ECB which has not been

posted complete from a previous event.

Either: :

1. The ECB has been reinitialized by
the problem program prior to a
second WAIT on the same ECB, or

2. The high order bit of the ECB has
been inadvertently turned on.

The problem program requested the
loading of a module using an entry
point given to the control program by
an IDENTIFY macro instruction.

Register 0 of LOAD's SVRB register
save area contains the address (or its
complement) of the name of the module
being loaded.

The control program found an invalid
I0B, DCB, or DEB. Check the following
blocks for the indicated information:

® IOB - a valid DCB address.
* DCB - a valid DEB address.

e DEB - ID of OF and a valid UCB
address.

e UCB - a valid identification of
FF. -

Note: In systems with MVT, this code
may appear instead of a 200 code, for
the reasons given undexr 200.

A program has the "only loadable"
attribute or has an entry point given
to the control program by an IDENTIFY
macro instruction. In either case,
the program was invoked by a LINK,

or ATTACH macro instruction.

Register 15 of the LINK, XCTL, or

" ATTACH SVRB register save area

contains the address of the name of
the program being loaded.

The error occurred during execution of
a LINK, XCTL, ATTACH, or LOAD macro
instruction in an overlay program or
in a program that was being tested
using the TESTRAN interpreter.

The program name can be found as
follows: v ,

1. If a LOAD macro instruction was
issued, register 0 in the trace
table SVC entry or in the SVRB

604

605

606

60A

613

700

register save area contains the
address (or its complement) of
the program name.

2. If a LINK, XCTL, or ATTACH was
issued, register 15 of the
associated SVRB register save
area contains the address of a
pointer to the program name.

Note: Programs written in an overlay
structure or using TESTRAN should not
reside in the SVC library.

During execution of a GETMAIN macro
instruction, the control program found
one of the following:

1. A free area exceeds the
boundaries of the main storage
assigned to the task. This can
result from a modified FQE.

2. The A-operand of the macro
instruction specified an address
outside the main storage
boundaries assigned to the task.

During execution of a FREEMAIN macro
instruction, the control program found
that part of the area to be freed is
outside the main storage boundaries
assigned to the task, possibly
resulting from a modified FQE.

Item 1 under the 604 completion code
is also applicable to 605.

During execution of a LINK, XCTL,
ATTACH, or LOAD macro instruction, a
conditional GETMAIN request was not
satisfied because of a lack of
available main storage for a fetch
routine work area. Consequently, the
request was not satisfied.

The name of the load module can be
found as described under completion
code 506.

Results from the same situations
described under 604 and 605 for R~-form
GETMAIN and FREEMAIN macro
instructions.

The error occurred during execution of
an OPEN macro instruction for a data
set on magnetic tape. An
uncorrectable input/output error
occurred in tape positioning or in
label processing.

A unit check resulted from an SIO
issued to initiate a sense command.

The defective device can be determined
from the SIO trace table entxry that

704

705

706

804

806

reflects a unit check in the CSW
status.

A GETMAIN macro instruction requested
a list of areas to be allocated. This
type of request is valid only for
systems with MVT.

The applicable SVC can be found in a
trace table entry oxr in the PSW at
entry to ABEND.

Results from the same situations
described under 704 foxr FREEMAIN macro
instructions.

During execution of a LINK, LOAD,
XCTL, or ATTACE macro instruction, the
requested load module was found to be
not executable.

The name of the module can be found as
described under the completion code
506.

The error occurred during execution of
a GETMAIN macro instruction with a
mode operand of EU or VU. More main
storage was requested than was

available.

The error occurred during execution of
a LINK, XCTL, ATTACH, or LOAD macro
instruction.

An error was detected by the control
program routing for the BLDL macro
instruction. This routine is executed
as a result of these macro
instructions if the problem program
names the requested program in an EP
or EPLOC operand. The contents of
register 15 indicate the nature of the
errox:

X'04' The requested program was
not found in the indicated
source.

X'08' An uncorrectable

input/output error occurred
when the BLDL control
program routine attempted to
search the directory of the
library indicated as
containing the requested
program.

Register 12 contains the address of
the BLDL list used by the routine. 1In
systems with MFT this address plus 4
is the location of the 8-byte name of
the requested program that could not
be loaded. In systems with MVT,
registers 2 and 3 contain the name of
the requested module.

Appendix C: Completion Codes 217

B S B R,

80A

905

90A

AO0S5

AOA

BO4

218

The error occurred during execution of
an R-form GETMAIN macro instruction.
More main storage was requested than
was available.

The address of the area to be freed
(given in a FREEMAIN macro
instruction) is not a multiple of
eight. The contents of register one
in either the trace table entry or
ABEND's SVRB register save area
reflect the invalid address.

Results from the same situations
described under 905 for R-form
FREEMAIN macro instructions.

The error occurred during execution of
a FREEMAIN macro instruction. The
area to be freed overlaps an already
existing free area. This error can
occur if the address or the size of
the area to be freed were incorrect or
modified.

The contents of registers 0 and 1 in
either the SVC trace table entry or
ABEND's SVRB register save area
reflect the size and address.

Results from the same situations
described under A05 for R-form of
GETMAIN and FREEMAIN macro
instructions.

This error occurred during execution
of a GETMAIN macro instruction. A
subpool number greater than 127 was
specified. The problem program is
restricted to using subpools 0-127.
This error can occur if the subpool
number was either incorrectly
specified or modified.

BOS

BOA

B37

Fnn

Programmer's Guide to Debugging (Release 21)

A displacement of nine bytes from the
list address passed to GETMAIN in
register 1 contains the subpool
number. Register 1 can be found in
either the SVC trace table entry or
ABEND's SVRB register save area.

Results from the same situation
described under BO4 for FREEMAIN macro
instructions.

Results from the same situations
described under BO4 and BOS5 for R-form
of GETMAIN and FREEMAIN macro
instructions.

The subpool number can be found in the
high order bytes of register 0 in
either the SVC trace table entry or
ABEND's SVRB register save area.

The error occurred at an end of
volume. The control program found
that all space on the currently
mounted volumes was allocated, that
more space was required, and that no
volume was available for demounting.

Either allocate more devices or change
the program so that a device will be
free when a volume must be mounted.

An SVC instruction contained an »
invalid operand; nn is the hexadecimal
value of the sVC.

This error can occur if either an
invalid instruction was issued by the
problem program or an operand
referring to an optional function was
not included during system generation.

Appendix D: System Module Name Prefixes

All load modules associated with a specific operating system component
have a common prefix on their module names. This appendix lists the
module name prefixes and the associated system component(s).

Prefix Component Prefix Component
IBC Independent utility programs IFF Graphic programming support
IEA Supervisor, I/0 supervisor, and IFG Close, open, and related routines
NIP
IEB Data set utility programs IGC Transient SVC routines
IEC Input/output supervisor IGE I/0 error routines
IEE Master scheduler IGF Machine check handler program
IEF Job scheduler IHA System control blocks
IEG TESTRAN IHB Assembler during expansion of
supervisor and data management
IEH System utility programs macro instructions
IEI Assembler program during system IHC FORTRAN library subroutines
generation
IHD COBOL library subroutines
IEJ FORTRAN IV E compiler
IHE PL/I library subroutines
IEK FORTRAN IV H compiler
IHF PL/1I library subroutines
IEM PL/I F compiler ‘
THG Update analysis program
IEP COBOL E compiler
IHI Object program originally coded in
IEQ COBOL F compiler ALGOL language
IER Sort/Merge program IHJ Checkpoint/restart
IES * Report program generator IHL Generalized Trace Facility
IET Assembler E IHK Remote job entry
IEU Assembler F IIN 7094 emulator program for the
Model 85
IEW Linkage editor/overlay
supervisor/program fetch II0 7074 emulator program on the
Models 155 and 165
IEX ALGOL compiler
iIp 7080 emulator program on the Model
IEY FORTRAN IV G compiler 165
IEZ System Interfaces I1Q 1401/1440/1460 emulator program on
Models 135, 145, and 155
IFB Environment recording routines
IIR 1440/7010 emulator program on
IFC Environment recording and print Models 145 and 155
routines
IIT 709/7090/7094/7094 II emulator
IFD Online test executive program program on the Model 165

Appendix D: System Module Name Prefixes 219

220 Programmer's Guide to Debugging (Release 21)

CCW
CDE

CPU

DAR
DCB
DD

DDR

DEB

IOB
IPL

IRB

abnormal end-of-task

alternate path retry

channel command word

contents directory entry
central processing unit
channel status word
communications vector table
damage assessment routine
data control block

data definition

dynamic device reconfiguration
data extent block

dummy partition queue element
descriptor queue element
event control block

free block queue element

free queue element

finch request block

gotten subtask area queue element
input/output block

initial program loading
interrupt request block

load list element

loaded program request block

loaded request block

Appendix E: List of Abbreviations

NIP
PIB
PQE
PRB

PSA

QoCB
QEL

SCB
SIO
SIRB
SPQE
svcC
SVRB
SYsout
TCB
TIOT
ucB
WLE
XCTL

XL

Appendix E:

multiprogramming with a fixed
number of tasks

multiprogramming with a variable
number of tasks

nucleus initialization program
partition information block
partition queue element
program request block

prefixed storage area

program status word

queue control block

queue element

request block

STAE control block

start input/output

supervisor interrupt request block
subpool queue element
supervisor call

supervisor réquest block
system output

task control block

task input/output table

unit control block

wait list element

transfer control

extent list

List of Abbreviations 221

222 Programmer's Guide to Debugging (Release 21)

Appendix F: ECB Completion Codes

r T 1
| Hexadecimal | |
| Code | Meaning |
L [l]
v 1 1
| 7F000000 | Channel program has terminated without error. (CSW contents can be |
[| useful.) |
41000000	Channel program has terminated with permanent error. (CSW contents can
	be useful.)
I I	
42000000	Channel program has terminated because a direct access extent address
	has been violated. (CSW contents do not apply.)
I '	
44000000	Channel program has been intercepted because of permanent error
associated with device end of previous request. You may reissue the	
intercepted request. (CSW contents do not apply.)	
	I
48000000	Request element for channel program has been made available after it
	has been purged. (CSW contents do not apply.)
'	
4F000000 Error recovery routines have been entered because of direct access	
error but are unable to read home address of record 0. (CSW contents	
	do not apply.)
[] J
Appendix F: ECB Completion Codes 223

224 Programmer's Guide to Debugging (Release 21)

BYTE 0 BYTE 1
BIT
DEVICE 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7
WORD |DATA 00-NON-XST TU AT FILE NOT
emp | Nt | Bus | EQ | DATA | Over- 7 WRT
2400 CNT |cNVTT | | NoISE [ot-nor reroy LOAD PROT- | CAP-
HK .
REJ | REQ | OUT | CHK | CHK |RUN | epe |cuk rovanwone | | |POINT [STATYS [ger | bt
2311, cMD | INT | BUS EQ |DATA |ovEr- |TRK |seek DATA |TRK ~|END |IN= INO jg e |missing | OVER-
2841 REJ | REQ | OUT | CHK [CHK |RUN [SCND lepy CHK |OVER= |OF |VALID |REC Jppop [AOR | FLOW
CHK FLD. |RUN [CYL [SEQ |FOUND wRKR | INL
2301, 2302 DATA |TRK |END NO ISERVICE | OVER-
: cMD | INT | BUS EQ |DATA |OVER- INVAL
203,01 | @) | e |our | K |cHK | RUN ADDR CHK IN} OVER- |OF bRor |OVER- | FLOW
2319, 2820 COUNT|RUN |CYL RUN
SHOULD SHOULD SHOULD| BUFFER [SHOULD| | LIGHT | END
2250 &) Inot guUsT NOT | ond INOT |RUN- |NoOT PEN | ORDER | SR
OCCUR OCCUR OCCUR |NING |occur | |DETECT | SEQ
oMo | Nt | Bus tQ |pata [SHOULD[SHOULD /o READ | FILM__|RECRDR [SHOULD|SHOULD
2280 RE) | REQ | oUT | cHK |cHk [NOT ~[NOT igrq COUNT) LOW
OCCUR |OoCCUR CHK
cMD | INT |8Us | EQ |DATA [SHOULD|SHOULDY | | [READ g\
2282 REJ | REQ | OUT | CHK |CHK NOT ISEGN COUNT| | S
OCCUR
1052, | cMp | INT | BUS £€Q
2150 REJ | REQ | OUT | CHK |
1285 cmMp | INT | BUS EQ KYBD
REJ | REQ | OUT | CHK | RUN CORR
1287 eMp | INT | BUS EQ |DATA |OVER- |NON |KYED
REJ | REQ | OUT | CHK |CHK |RUN [RCVY |CORR
1288 cMp | INT | BUS EQ |DATA |OVER- [NON f:g”m
RE) | REQ | OUT | CHK [CHK |RUN [Rcvy [NOT o
2495 cMD | INT | BUS EQ | DATA fq”&“'-” POSN ﬂ'gu'-‘)
RE) | REQ | OUT | CHK | CHK occur CHK
2540, | cMD | INT | BUS EQ | DATA :
2021 REJ | REQ | OUT | CHK | CHK
3505, | cMp | INT | BuUs EQ | DATA |NOT |Aev
3525 REJ | REQ | OUT | CHK |CHK |USED
cMD | INT | BUS EQ | DATA |BUFFER |1oap
m REJ | REQ | ouT | cHk |cHx |PARITY |cpg [CH?
CHK
1403, | cMD | INT | BUS EQ cHo
1443 REJ REQ ouT CHK TYPE TYPE
BAR BAR
1442,2596 | cMD | INT | BUS EQ |DATA | OVER-
2501,2520 | REJ | REQ | OUT | CHK | CHK |RUN"
271, | CMD | INT | BUS EQ | DATA
2822 REJ | REQ | OUT | CHK | CHK
oo | ot | sus eq [SHOULD|SHOULDSHOULD SHOULD
2260 P ke | B | Sk Ivot ot iNot INOT . -
OocCUR |OCCUR [occur {occur . -
2701, | cmp | INT | BUS EQ |DATA |OVER- |LOST |TIME _ - =
2702 REJ | REQ | OUT | CHK |CHK |RUN |DATA |ouT , .
#
1419/1275 | <MD | INT | BUS | NOT|DATA |OVER- |AUTO |NOT s o o Ml Rl
1ELD
PCU RE) | REQ | OUT | USED|CHK |RUN |SELECT |UsED VALD |2 VaLID [VALID [VALID
1419/1275 | cMD | INT f)UUST NoT | NoT [IATE | AuTO |OP ' .
scu REJ | ReQ | OoF | used|usep | SR |sELECT AT .
_ INVLD WRITE |OPER-
U Bl U A I elall e FERM e ReC | PIE - |INwiIBIT [ATION
FORMAT] FOUND] INL
emp | InT | Bus EQ | DATA | OVER~ |WORD [DATA v wir | FILE_[NOT
3410/3411 ONT |eNviT| | NotsE | sTATUs PROT- |CAP-
RE) | REQ | OUT | CHK |CHK |RUN |CNT " CNY ‘! status | PeoT™ | SO
cMD | INT | BUS EQ | DATA | OVER- oem INVLD FiLe OPER-
2305 REJ | REQ | OUT | CHK | CHK |RUN PaRM [TRK o ATION
FORMAT INL
“IWORD |DATA] FILE | NOT
3420/3803 ESD L'gg %UST g‘f"(gﬁLA %V,ER eNT |envrT| | Noise | sTaTus s [prOT= | CAP-
ZERO | cHK A ECT |ABLE

Appendix G:

UCB Sense Bytes

Appendix G: UCB Sense Bytes

225

2311,2841

BYTE 2 BYTE 3
BIT .
DEVICE 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7
6 & 7 INDICATE SKEW
0-1600 | BKWD | COM-
2400 BITS 0-7 INDICATE A TRACK IS IN ERROR NO ERROR OR \%‘z LRCR | SKEW | CRC [REQ 1-800 | STATUS| PARE
MULTI-ERROR
TAG :
UN- ALU ON [READ |WRITE
2311,284] LINE
‘ SAFE o | ch READY | |INE [SAFETY |SAFETY
oo |- CTR | COMP RC | ke | tRe | LRC
2319, 2820 SAFE CHK | CHK BIT 0 BIT1 | BIT2 | BIT3
BUFFER ADDRESS REGISTER BUFFER ADDRESS REGISTER
smsl anul BIT 13 ‘ BIT 12 l BIT 11 J BIT 10 l BIT 9 BIT 8 [BIT7 ‘ BIT 6 ’ BIT5 |an4 ,nn‘s 1 BIT 2 ‘ BIT 1
BUFFER ADDRESS REGISTER BUFFER ADDRESS REGISTER
BITI5| BITI4IBITIS‘BITIZ)BITHIBITIO'BIT? BITS | BIT7 | snﬂ BIT 5 IBIT4 |B|T3 [BIT 2 lsm
BUFFER ADDRESS REGISTER , BUFFER ADDRESS REGISTER
BIT 15‘ BIT 14| BIT 13 [BIT 12 | BIT 11 | BIT 10 l BIT 9 BITS | BITZ | BIT6 | BITS [BIT4 |BIT3 | BIT2 | BITH
CARR |CARR [PLATEN [PLATEN RIBBON |TRAIN ucss |ps lrce COIL [HAM= | cjp | USCAR [SEP
PARITY | PARITY [PARITY | PROT [MER | pyg | SYNC | SYNC
CHK |FIRE CHK | CHK
RESTART COMMAND
2305 RESTART COMMAND
FULL
3505,3525 USED FOR DIAGNOSTIC PURPOSES ONLY USED FOR DIAGNOSTIC PURPOSES ONLY
MTE/ BATa | ENV | BPT
BP.
3410/3411 TRACK. IN ERROR VRC IRCh | SKEW | 27 | chk | serm | BKWD
CRCR TU
END VRC | 1600
3420/3803 TRACK IN ERROR 5/RW MIE/ | skew | 545 | ENV | ST | BkwD | COM-
C C tre | ok | T PARE
BYTE 4 BYTE 5
echo | RES |READ |WRITE |DELAY |SEQ | SEQ [SEQ COMMAND N PROGRESS WHEN OVERFLOW INCOMPLETE OCCURS
2400 o TAPE |CLOCK|CLOCK |CNTR [tND | IND | IND
UNIT [ERR |ERR ERR |C B A

ZERO

2301,2302 | SEQ SEQ SEQ SEQ ‘SEQ SEQ SEQ SEQ

2303,2314 | IND IND IND IND IND IND IND IND

2319,2820 | O 1 2 3 4 5 6 7
3330 PHYSICAL DRIVE IDENTIFICATION

WRITE

X'05*

Cy

COMMAND IN PROGRESS WHEN OVERFLOW INCOMPLETE OCCURS
OR
ZERO

LINDER ADDRESS

CYLINDER ADDRESS
NEW | NEwW WR;'E PE PARITY [TACHO- FALSE
3410/3411 EOT SuB- | sus- g% | ID |COM- IMETER [END | RPQ
e SYSTEM |SYSTEM | chk BURST [PARE [CHK | MARK
TAPE |WRITE NEW NEW | WRT PE START
3420/3803 | "ARD- | APE | INDI- [TGR sus- | su- [IA | D |ReaD [PeRUIALIPOST | peq
grrRoR | UNIT | CATE "|VRC SYSTEM |SYSTEM | chk BURST | CHK or T™
BYTE 6 BYTE 7
RE- CYL |DIFFER FORMAT OF REMAINING ENCODED ERROR
3330* | VERSE | HIGH |HIGH HEAD ADDR SENSE BYTES (8-23) MESSAGE
2305* CURRENT HEAD ADDR ENCODED ERROR MESSAGE
o [PoAL Taer P L
3410/3411 GAP |DEN- | NATE TU MODEL FAILURE RESET
MODE [sITY | PENSITY cHK |ome |ewem" | KeY
DUAL | NRzl
WRT
3420/3803 | 7 TRK |CUARENT |DEN= | DEN= TAPE UNIT MODEL DEFINED LAMP |, J8%%om | aorTom | RESET
FAILURE g 1y SITY FAILURE (LEFT RIGHT KEY

226 Programmer's Guide to Debugging (Release 21)

BYTE 9

BIT
DEVICE 4 7
NO MARG-
READ~ INAL
3410/3411 e T
DATA city
EARLY | SLOW | SLOW
3420/3803 END | BEGIN| END | VELO- SDR | veLgemy
cy CNT [GHEE SDR CNTRS
RDBK | RDBK | RDBK
cHK | chk |cnk | RETRY WRTNG
BYTE 11
WM B1 BUS XFR/ a1 | DBUS
3420/3803 NOT par/LsR| ROS! | Low INSTRU=) Micro- | pag soc
DETECT ADDR | eer | 1€1 IDecope| Sbwa | AtV |
ERR ERR
BYTE 13
XFR/ aw2 D
INSTR '
3420/3803 %:.;‘.‘i‘gm Roae Low Inecone| Make- |Bus | soc CONTROL UNIT CONTROL UNIT
BR e |IS2 o Bt |PARITY ALU2 DENSITY UNIQUE ID HIGH
ALU
BYTE 14 BYTE 15
3420/3803 CONTROL UNIT TAPE UNIT
o/ UNIQUE ID LOW UNIQUE ID
BYTE 16 BYTE 17
™WO
UNIQUE ID ;‘;,flLs)SW SWITCH FEATURES
BYTE 18 BYTE 19
' PRIMED FOR DEVICE END
3420/3803 EC LEVEL OF TAPE UNIT
U7 | U6 | U5 l TU 4 | TU3 | TU 2 l U1 l TUO
BYTE 20 BYTE 21
ED R DEVICE END
PRIMED FO LoAD | rerr | ReelT | TaPE [REELS [LOAD |LOAD |LOAD
3420/3803 BUTTON| ToRr _ | forue | PRE- |LOADED|REWIND|COM- | CHECK
TUF | TUE| TUD | TUC | TUB | TUA | U9 | s DEPRESS| NG |ING | SENT PLETE
BYTE 22 BYTE 23
3420/3803 FRU IDENTIFIERS FOR CONTROL UNIT FRU IDENTIFIERS FOR CONTROL UNIT

Appendix G: UCB Sense Bytes 227

228 Programmer's Guide to Debugging (Release 21)

Appendix H: Service Aids

In addition to the debugging facilities discussed in this manual, IBM
provides the following service aid programs to aid you in debugging. A
complete description of each of these service aids and instructions for
their use are found in the publication IBM System/360 Operating System
Service Aids, GC28-6719.

Program Name Functional Description
IMDSADMP A stand-alone program, assembled with user-selected

options, that dumps the contents of main storage onto a
tape or a printer. The program has two versions:

e A high speed version that dumps the contents of main
storage to a tape.

e A low speed version that formats and dumps the
contents of main storage either to a tape or directly
to a printer.

IMDPRDMP A problem program that allows the user to format and print
IMSADMP output data sets, the SYS1.DUMP data set, the TSO
dump data set and its associated swap data sets, and
Generalized Trace Facility output data sets. IMDPRDMP can
also be used to transfer a system dump from a SYS1.DUMP
data set on a direct access device to another data set for
later formatting and printing.

IMCJIQDMP A stand-alone program that reads, formats, and prints
either the entire operating system data set SYS1.SYSJOBQE,
or selects and prints information related to a specific
job in that data set. Because it operates independently
of the operating system, IMCJQDMP can print the contents
of the job queue as it appeared at the time of abnormal
termination.

IMCOSJQD A problem program that reads, formats, and prints the
contents of the system job queue data set (SYS1.SYSJOBQE).
Either the entire job queue or information related to a
specific job may be printed.

Because the program can be run under OS, it is not
necessary to re-IPL the operating system as with IMCJQDMP.

IMBLIST A problem program that produces formatted listings of
object modules, load modules, module cross references,
CSECT identification records (IDRs), and PTFs.

IMBMDMAP A problem program that produces a map of the system
nucleus, any load module, the resident reenterable load
module area of an MFT system, or the link pack area of an
MVT system. The listing produced by this program shows
the locations of CSECTS, external references, and entry
points within a load module.

IMASPZAP A problem program that can inspect and modify either data
records or load modules located on a direct access storage
device.

Appendix H: Service Aids

229

IMAPTFLE A problem program that generates job control language
(JCL) statements necessary to add a PTF to the Operating
System in a later step, or applies PTFs to the Operating
System by dynamically invoking the linkage editor.

IFCDIPOO A problem program that initializes the SYS1.LOGREC data
set. v
IFCEREPO A problem program that edits, writes, and accumulates

environment records on the SYS1.ILOGREC data set.

230 Programmer's Guide to Debugging (Release 21)

Appendix J: TCAM Debugging Aids

In addition to the debugging facilities described in this publication,
the telecommunications access method provides the following aids to
debugging:

I/0 error recording procedures.

I/0 interrupt trace table (line trace).

A dispatcher subtask trace table (STCB trace).

Sequential listings of buffers and message queue data sets.

Optional formatted listings of the line and STCB traces are available
with TCAM. These debugging aids are described in the publications IBM
System/360 Operating System: TCAM Programmer's Guide and Reference
Manual, GC30-2024, and IBM System/360 Operating System: TCAM
Serviceability Aids Program Logic Manual, GY30-2027. A discussion of
the TCAM formatted ABEND dump is given in the publication IBM System/360
Operating System: TCAM Program Logic Manual, GY30-2029.

Appendix J: TCAM Debugging Aids

231

232 Programmer's Guide to Debugging (Release 21)

Appendix K: Control Block Pointers

This appendix summarizes the contents of the control blocks that are

most useful in debugging.

Control blocks are presented in alphabetical

order, with displacements in decimal, followed by the hexadecimal

counterpart in parentheses.

Figure 56 illustrates control block
relationships in the System/360 Operating System.

Figure 57 shows

relationships between storage control elements in a system with MVT.

CVT - Communications Vector Table

+0 Address of TCB control words

+53(35) Address of entry point of ABTERM

+193(C1l) Address of secondary CVT (used
only with Model 65
Multiprocessing systems and TSO)

DCB - Data Control Block

+40(28) ddname (before open); offset to
ddname in TIOT (after open)

+45(2D) DEB address

+69 (45) IOB address

DEB - Data Extent Block

+1 TCB address

+5 Address of next DEB
+25(19) DCB address

+33(21) UCB address

+38(26) Address of start of extent
+42(23) Address of end of extent

ECB - Event Control Block
+1 RB address or completion code

I0OB = Inputs/Output Block

-7 Address of next IOB (BSAM, QSAM,
and BPAM)

+2 Sense bytes

+5 ECB address

+9 CSW

+17(11) CCW list address

+21(15) DCB address

RB - Request Block (PCP and MFT)

-8 Address of previous RB on load
list

-4 Address of next RB on load list.

+0 Module name

+13(D) Entry point address

+16 (10) Resume PSW

+29 (1D) Address of previous RB

RB - Request Block (MVT)
+4 Last half of user's PSW

+13 (D) CDE address
+16(10) Resume PSW
+29(1D)

Address of previous RB

TIOT - Task Input/Output Table

+0 Job name
+8 Step name
+24(18) DD entries begin (one variable-

length entry for each DD

statement)

+0 Length of DD entry

+4 ddname

+16(10) Device entries begin (one 4-byte
entry for each device)

+20(14) Next device entry (if there is

one)

(Next DD entry begins at 24(18)
plus length of first DD entrxy)

TCB - Task Control Block (PCP and MFT)

+1 Address of most recent RB

+9 Address. of most recent DEB

+13(D) TIOT address

+16 (10) Completion code

+25(19) MsS boundary box address

+37(25) Address of most recent RB on load
list

+113(71) Address of first save area

+161 (A1) Address of STAE control block

+181 (B5) Address of the job step control

block

TCB - Task Control Block
(MFT) with Subtasking .

+45(2D) Address of TCB for job step task

+129(81) Address of TCB for next subtask
attached by same parent task

+133(85) Address of TCB for parent task

+137(89) Address of TCB for most recent
subtask

+145(91) Address of ECB to be posted at
task completion

+181 (BS) Address of the job step control

block

Appendix K: Control Block Pointers 233

TCB - Task Control Block (MVT)

+1

+9
+13(D)
+16(10)
+25(19)
+33(21)
+37(25)
+113(71)
+125(7D)
+129 (81)

+133(85)
+137(89)

+145(91)
+153(99)

+161(A1)

Address of most recent RB
Address of most recent DEB

TIOT address

Completion code

Address of most recent SPQE

Bit 7 -- Non-dispatchability bit
Address of most recent LLE
Address of first save area
Address of TCB for job step task
Address of TCB for next subtask
attached by same parent task
Address of TCB for parent task
Address of TCB for most recent
subtask ,
Address of ECB to be posted at
task completion

Address of dummy PQE minus 8
bytes

Address of STAE control block

+181 (B5)

Address of the job step control
block

UCB - Unit Control Block

-3

+2

+4
+13(D)
+18(12)
+19(13)
+22(16)

+24(18)
+25(19)
+40(28)

234 Programmer's Guide to Debugging (Release 21)

CPU ID (used only with Model 65
Multiprocessing systems)

FF (UCB identification)

Device address

Unit name

Device class

Device type

Sense bytes (except devices with
extended sense)

Number of sense bytes (devices
with extended sense)

Address of sense bytes (devices
with extended sense)

Number of outstanding RESERVE
requests (shared DASD only)

junod

sbo|4

pypQ &

apoD

MI9

xcemmo_«

93a «

+85430
LOIL

mmOLTTD

(az) v

(82) ov

(d)zi

g0/

20

mo_§mz«

SwWoN]
Hun

(v1) 0z

(o1) 91

(0) zt

xyo4d

Control Block Flow

Figure 56.

237

inters

Control Block Po

Appendix K:

:M xTpuaddy

SI9UTOJ }O0Td TOIUCD

LET

Load List

RB

> TNexf RB

T Previous RB

s }rcs

Prefix

? Previous RB
0

Resume PSW|

16 (10)

“9G 2anbrd

MmOTd YooTd TOXIUOD

KRB

T Next RB

for each
device

o

Prefix

TNext 108
/0B
T Next 1OB
-8
ECB d
-4 __ ——_——— 1
Sense
0 bytes
cC
4
8 csw
12 (C)
t cow
16 (10)
} ocs
20 (14)

R ted
epeate: {40

Loc 16 (10)

‘1 evT
cvr -
T TCB Words

/ 7CE Words
Current

TNew TCB T o8

0]

TcE

? Newest RB

} DEB Queue

Y 1ot

12 (C)

1 Load List

7ior

DEB Queue

Active RB Queue

DEB

jobname
0
t
8 stepname |
ddname Repeat
28 (1C) for each
ddname
ucCs
(28) 1 0

Next

z

32 (20)

12(C)

Unit

Name

108

108

12 (C)

40 (28)

44 (2D)

68 (44)

DEB

Next
DEB

7
N

MNANANAN

RB

RB : /
Module vl
ol Name
/]
/ Resume PSW Re | 111
16 (10) ——
/ 28 (1C) TPrevious RB
Direct
access
address /
TIOT
Offset
? DEB
T IOB Prefix
e ccw
: Code T Data Flags Count

238 Programmer's Guide to Debugging (Release 21)

7CB

o 4RB Queve
25 (19) IfSubpool Queve
a7 25) [#Load List
Load List Subpool Queue Active RB Queue
Ie ~ Vs ~ Is
LLE SPQRE RB
LLE SPQE RB
LLE SPQE RB
0 4 Next LLE o 4 Next SPQE
o |#coE o 4 ocE 12 @ __|FE
28 (1C) Iﬂrevious RB
Descriptor Queuve
I ~
DQE
DQE
DQE
0 A FaE
4 4 Next DQE
Free Queve
Ie N
FQE
FQE
FQE
0 4 Next FQE
4 Length
Contents Directory
I'd N
COE 0 XL
Length
COE 4 Number CSECTs
8 Length CSECT-1
CDE
*Next CDE | _Length CSECT-N
Location CSECT-1
af [4R8 e
8 Program
20 Name Location CSECT-N
16 (10) 4 Entry point
XL MVT
20 (14) 4 Storage Control
Pointers
Figure 57. MVT Storage Control Flow

Appendix K:

Control Block Pointers

239

240 Programmer's Guide to Debugging (Release 21)

Appendix L:

There are two types of traces that may be
performed during OPEN/CLOSE/EOV processing,
provided that GTF is active.

e ABEND trace - A trace performed before
an OPEN/CLOSE/EOV problem determination
module calls an ABEND routine.

e Optional work area trace - A trace
performed when an OPEN/CLOSE/EOV module
has finished execution. This trace is
made only if DCB=DIAGNS=TRACE is
specified in the DD statement of the
data set for which the trace is
desired.

Further information on requesting these
traces is contained in IBM System/360
Operating System: Data Management
services, GC26-3746.

The format of both types of
OPEN/CLOSE/EOV trace output is as follows:

1
control block fields |

r
|USRFF FFF ccc
1

USRFF
is the name (excluding the IMD prefix)
of the IMDPRDMP appendage which
formats the control block and work
area information collected by
OPEN/CLOSE/EOV and included in the GTF
output data set. FF is the format ID
for OPEN/CLOSE/EOV.

Appendix L:

OPEN/CLOSE/EOV Debugging Aids

FFF
is the event ID which defines the
event which caused the trace entry.
Everything traced by OPEN/CLOSE/EOV
has an event ID of FF.

ccce
is the control block that was traced
to provide the problem program with
OPEN/CLOSE/EOV data for debugging
purposes.

When the OPEN/CLOSE/EOV ABEND trace
occurs, only those control blocks
meaningful to an ABEND condition will
be traced. The selection of these
control blocks is described in IBM
System/360 Input/Output Support
(OPEN/CLOSE/EQV) PLM, GY28-6609.

If the optional work area trace has
been requested, the OPEN/CLOSE/EOV
work area and the user's DCB will be
traced after the execution of each
OPEN/CLOSE/EOV module.

control block fields
are the contents of fields in control
block ccc. For descriptions of the
fields shown, refer to IBM System/360
Operating System: System Control
Blocks, GC28-6628 or IBM System/360
Operating System: Input/Output
Support (OPEN/CLOSE/EOV) PLM,
GY28~-6609.

OPEN/CLOSE/EOV Debugging Aids 241

242 Programmer's Guide to Debugging (Release 21)

Indexes to systems reference library
manuals are consolidated in the publication
IBM System/360 Operating System: Systems
Reference Library Master Index, GC28-6644.
For additional information about any
subject listed below, refer to other
publications listed for the same subject in
the Master Index.

When more than one page reference is
given, the major reference is first.

ABEND dumps
contents of (MVT)
contents of (MFT)
guide to using (MVT) 63-64
guide to using (MFT) 44-45
how to invoke (MVT) 46
how to invoke (MFT) 29
introduction to 11
samples of (MVT) 47-48
samples of (MFT) 30-31

Abnormal termination, cause of
in an ABEND/SNAP dump (MVT) 63
in an ABEND/SNAP dump (MFT) 4i4

Abnormal termination dumps (see ABEND

dumps)

Active RB gueue
description of 16
instructions for using 205
in a storage dump 141
in an ABEND/SNAP dump (MVT) 52,63
in an ABEND/SNAP dump (MFT) 37,44
in an indicative dump 67

AMWP bits
in an indicative dump 67
meaning of 206

APSW field, in an ABEND/SNAP dump

(MVT) 52,63
ATTACH macro instruction, effects of 18
Attaching subtasks 20

46-64
29-45

Boundary
problem program 40,206
Catalog dump 32
CDE
as used with the load list 17
format of 25
in an ABEND/SNAP dump 54
in a storage dump 141
Communications vector table (see CVT)
Complete dump (MVT)
description of 46
sample of 47,48
Completion codes
description of common 215
explanation of 205
in an ABEND/SNAP dump (MVT) 49
in an ABEND/SNAP dump (MFT) 35
in an indicative dump 67

Index

| console dump facility 68

COND parameter,
to requlate job step execution 32
Contents directory
description of 17,25
entries (see CDE)
Control blocks
descriptions of 26,27
pointers in 231
relationships between 27
use in debugging 205
Control block displays (IMDPRDMP output)
Tu4-122
MFT DEB format 103
MFT job pack queue format 102
MFT load list format 102
MFT problem program boundaries
MFT RB format 98
MFT TCB format 92-98
MFT TIOT format 107
MVT DEB format 87-90
MVT job pack queue format 86-87
MVT load list format 86
MVT main storage information 85
MVT RB format 81-85
MVT TCB format 75-80
MVT TIOT format 90-92
TSO PSCB format 121
TSO RCB format 113
TSO SWAP DCB format 116
TSO TAXE format 123
TSO TJB format 116
TSO TJIBX format 120-121
TSO TSB format 118
TSO TSCVT format 108
TSO UMSM format 116
Control information 13
Control program nucleus
ABEND/SNAP (MVT) 60
ABEND/SNAP (MFT) 43-44
cvT
description of 26
in a storage image dump 138,139
pointers in 231

101-102

Data control block (see DCB)
Data event control block 27
Data extent block (see DEB)
Damage assessment routine (DAR) 68
DCB
description of 27
in a storage dump 144
pointers in 231
DD statements
required with ABEND/SNAP dumps
sample of SYSABEND 32
DEB
description of 27
in a storage dump 143
in an ABEND/SNAP dump (MVT) 55
in an ABEND/SNAP dump (MFT) 41
pointers in 231

29,32

Index 243

DEB gueue
in a storage dump 143
in an ABEND/SNAP dump (MVT) 50
in an ANDED/SNAP dump (MFT) 35
Debugging procedure
description of 205
summary 207
DELETE macro instruction 16
Dequeued elements 34
Descriptor queue element (see DQE)
Destroyed queues 32
Device considerations,
for ABEND/SNAP dumps 29,32
Dispatcher trace table entry (MVT)
format of 148,149
in a SNAP dump 61,64
in a storage image dump 146
Dispatching priority 19,20
DQE
format of 24
in a storage dump 143
in an ABEND/SNAP dump 56,64
Dump (see individual type of dump, e.g.,
ABEND, indicative)
Dump data set
MVT 46
MFT 29
Dump list heading (IMDPRDMP output) 70
Dynamic area
in systems with MVT 20
in systems with MFT 19

ECB
completion codes, list of 223
description of 27
in a storage dump 145
pointers in 231
posting of, using ATTACH 18
Event control block (see ECB)
Extent list (see XL)
External interruption 206
External trace table entry
format of 148
in a SNAP dump 61,63,64
in a storage dump 148,149

FBQE

format of 22-23

in a storage dump 146

in an ABEND/SNAP dump 57,64
FINCH request block 14
Finding the partition TCB 141
FRB 14
Fixed area

in systems with MFT 19

in systems with MVT 20
FQE

format of (MFT) 21

format of (MVT) 24
Free areas

in an ABEND/SNAP dump (MFT) 44
Free block queue element (see FBQE)
Free queue element (see FQE)

General debugging procedure
description of 205-207
summary 207
General format (IMDPRDMP output) 128
Generalized trace faility (GTF) 150-203
comprehensive trace records
158-166,169-202

DsSP 162
EXT 163
I0 159
PCI/IO 159
PGM 165
SIO 161
SSM 166
svC 170

description of 15
hexadecimal format record 168
lost event record 167

minimal trace records 150-157
DsSP 153
EXT 154
I0 151
PCI/I0O 151
PGM 155
SIO 152
SsM 157
SVC 156

SVC comprehensive trace records 169-202
sub-index 169
time record 167
GETMAIN macro instruction 21-22
Gotten subtask area queue element 21-22
GQE 21-22
GTF (see Generalized Trace Facility)
GTF trace table
in ABEND/SNAP dumps 150
in IMDPRDMP output 150
Guide to using storage image dump 137

Hardware error 205,206

Hierarchy, main storage 20-22

IFCDIPO0 230
IFCEREPO 230
IMAPTFLE 230
IMASPZAP 229
IMBLIST 229
IMBMDMAP 229
IMCJQDMP 229
IMCOSJQD 229
IMDPRDMP 229
IMDSADMP 229
Indicative dumps
contents of 65-67
description of 65
guide to using 67
introduction 11
Inputs/output block (see IOB)
Interrupt request block 14
Interruptions 205,206
IOB
description of 27
in a storage dump 144-145
pointers in 231

244 Programmer's Guide to Debugging (Release 21)

~ i

1/0 trace table entry
format of 148
in a storage dump (MFT) 148-149
in a storage dump (MVT) 148
in a SNAP dump (MVT) 61,63-64
in an ABEND/SNAP dump (MFT) 42,44
IRB 14

Job pack area 14,17
Job pack area queue 17
Job step 19

Job step task (MVT)
JPAQ 17

20,46

LINK macro instruction, effects of 18
Link pack area (MVT) 20-21
Link pack area maps (IMDPRDMP output)
71-73
LLE
count field 17
description of 17
in an ABEND/SNAP dump (MVT) 50
Load 1list
description of 16
instruction for using 205,207
in a storage dump 142
in an ABEND/SNAP dump (MVT)
in an ABEND/SNAP dump (MFT)
in an indicative dQump 66
in systems with MvT 17
in systems with MFT 16-17
Load list element (see LLE)
LOAD macro instruction, effects of 18-19
Load module, storage control for
in an ABEND/SNAP dump (MVT)
in systems with MVT 25-26
Loaded program request block 14
LPRB 14
LRB 14

53,63
38,44

53-54,64

Main storage hierarchy support
inclusion of 20-22
effects on MSS boundary box 21
effects on partition queue 21
Main storage layout
in systems with MFT with subtasking
19-20
in systems with MFT without subtasking
19
in the systems with MVT 20
Main storage supervisor's boundary box
(see MSS)
Machine check interruption
MFT, systems with
considerations in using an ABEND/SNAP
dump of 4u4-45
contents of an ABEND/SNAP dump of 34-45
guide to using a storage
dump of 137
how to invoke an ABEND/SNAP
dump of 29
main storage layout in 20
storage control in 21-23
task control characteristics of 19-20
trace table entries in 148

205-207

Model 65 Multiprocessing system
trace table formats 149
prefixed storage area, as shown in an
ABEND/SNAP dump (MVT) - 60
trace table entries in a SNAP dump 62
Module name prefixes, list of 219
description of (MFT) 21-22
in an ABEND/SNAP dump (MVT)
starting address (MFT) 35
Multiprogramming with a fixed number of
tasks (see MFT, systems with)
Multiprogramming with a variable number of
tasks (see MVT, system with)
MVT, systems with
complete ABEND/SNAP dqump of 47-48
contents of an ABEND/SNAP dump 46-64
guide to using a storage image dump of
137-146
guide to using an ABEND/SNAP dump
of 63-64
how to invoke an ABEND/SNAP dump of 46
load list 16
main storage layout in 20
storage control in 22-26
task control characteristics in 20
trace table entries in 148

55~-56

Nucleus
contents of 19-20
in an ABEND/SNAP dump (MVT) 60
in an ABEND/SNAP dump (MFT) ug

Only loadable (OL) 14
OPEN/CLOSE/EOV debugging 241
Output comments (IMDPRDMP output)
from GTF processing 203
Overlaid problem program 34

130-136

Partition (MFT) 19-20
Partition queue element (see PQE)

Partition TCBs 138-141

PIE 35,49

Pointers, control block 231
PQE

format of 23
in a storage dump 143
in an ABEND/SNAP dump 56-64
PRB 14
Priority 19-20
Problem program, how to locate in a
dump 205-207
Problem program storage boundaries, in an
ABEND/SNAP dump (MFT) 40
Program check interruption
Program check old PSW
in an ABEND/SNAP dump (MVT)
information in 205,206
Program check trace table entry
format of 148
in a SNAP dump 61-62
in a storage dump 145-146
Program interruption element (see PIE)
Program request block 14
Protection key 35
PSCB 146

205,206

52,63

Index 245

PSW at entry to ABEND
in an ABEND/SNAP dump (MVT) 49
in an ABEND/SNAP dump nMFT) 35
PSW, program check old (see program check
old PswW)
PSW, resume (see resume PSW)

QCB 57
Queue control block trace (IMDPRDMP
output) 70-71
Queue elements (MVT) 21,22-26
Queues destroyed 34
RB
as affected by LINK, ATTACH, XCTL and

LOAD 18
formats of 13-16
in an ABEND/SNAP dump (MVT) 52-54
in an ABEND/SNAP dump (MFT) 37,38,44
in an indicative dump 66
most recent 35,49
name field, in a dump 205
purpose of 13
pointers in 231
pointers to, in a storage dump 141-142
queuve (see active RB queue)
sizes of 15
types of 13-14
when created 13
which ones appear in a dump 205
RCB 145
Re-creating the task structure
MFT with subtasking 139
MvT 139
Reenterable load module area (MFT) 19
Region (MVT)
contents of, in an ABEND/SNAP dump 64
description of 20
storage control for
Register contents
in a save area 147
in an ABEND/SNAP dump (MVT) 60-61
in an ABEND/SNAP dump (MFT) 43
in an indicative dump 66
Request block (see RB)
Resume PSW

22-24

in an ABEND/SNAP dump (MVT) 53,62
in an ABEND/SNAP dump (MFT) 38,44
in an indicative dump 67

Retain dump 32

Rollout/rollin
effects on partition queue 22-23

Save areas
format of 147
in an ABEND/SNAP dump (MVT) 58
in an ABEND/SNAP dump (MFT) 40
Save area chain 147
Sense bytes, UCB
table of 225
Sequential partitioned system (see MFT,
systems with)
Service aids 229
Set system mask trace table entry
format of 149
in an ABEND/SNAP dump 62

SIO trace table entry
format of (MFT) 148
format of (MVT) 148
in a SNAP dump (MVT)
in an ABEND-SNAP dump

(MFT). 42,44-45

62-63

SIRB 14

SNAP dumps
contents of (MVT) U46-63
contents of (MFT) 32-44

guide to using (MVT) 63-64
guide to using (MFT) U44-45
how to invoke (MVT) 46
how to invoke 5MFT) 29
introduction to 11
Snapshot dumps (see SNAP dumps)
Space considerations, for ABEND/SNAP
dumps 32
SPQE
format of 24
in a storage dump 143
in an ABEND/SNAP dump 55,64
SQS (see system queue space)
SSM (see set system'mask trace table entry)
Storage control
in systems with MFT with subtasking 22
in systems with MFT without subtasking
21
in systems with MVT
Storage dumps
discussion of 68
qguide to using 137
introduction to 11
Subpool
definition of 24
in a storage dqump 143
in an ABEND/SNAP dump 55,64
queue elements (see SPQE)
Subtask, as created by ATTACH 18
Supervisor calls, list of 209
Supervisor interrupt request block 14
Supervisor request block 14
SVC trace table entries
format of (MFT) 148
format of (MVT) 148
in a SNAP dump (MVT) 61-62
in an ABEND/SNAP dump (MFT)
SVCs, list of 209
SVRB 14
SYSABEND DD statement
description of 32
samples of 33
SYSOUT, as a dump data set 32
System control blocks (see control blocks)
System differences in task control 18-20
System failure 68
System queue space (MVT) 20
System tasks 18-20
System wait TCB 75
SYS1.DUMP data set 68,29
SYSUDUMP DD statement 29

25,26

42-44

Task completion code (see completion codes)
Task control block (see TCB)

Task control differences, by system 18-20
Task dispatching priority 20

Task input/output table (see TIOT)

246 Programmer's Guide to Debugging (Release 21)

Task management 13-21

Task supervision 13-21

Task structure, recreating the, using a

storage dump (MVT) 139

Task switch trace table entry (MFT)
format of 148
in an ABEND/SNAP dump 44

Task switching (MFT) 20

TAXE 146
TCAM Debugging Aids 231
TCB

description of 13

in an ABEND/SNAP dump (MVT) 49-51
in an ABEND/SNAP dump (MFT) 35-37
information available through 13
locating, in a storage dump 138-141
pointers in 231

pointers to, in a storage dump (MFT)

138-139

queue (MFT) 19,20

queue (MVT) 20

relationships 19-20

summary display (IMDPRDMP output)
124-127

MFT without subtask TCBs 125
M¥FT or MVT with subtask TCBs 125

TCBLCT 20,233
TCBNTC 20,233
TCBOTC 20,233
TCBTCB 20,233

Telecommunications Access Method (see TCAM)

Termination, abnormal (see abnormal
termination)
TIOT
description 26
in ABEND dump (MVT) 55
in IMDPRDMP output (MVT) 90
pointers in 233

TJIJB 146

TIBX 146

Traces 147-150

Trace table
control block 148
delimiting entries, in an ABEND/SNAP

dump (MFT) 44

description of 148
format of entries (MFT) 148
format of entries (MVT) 149
format of entries

(Mod 65 multiprocessing systems) 149

in a SNAP dump (MVT) 61-62
in a storage dump 148-149
in an ABEND/SNAP dump (MFT) 42
samples of entries 148-149
usefulness in debugging 206
TSB 146
TSCVT 145

TSO Control Blocks 145-146

UCB
description of 27
in a storage dump 144
in an ABEND/SNAP dump (MFT) 41
pointers in 234
UMSM 146
Unit control block (see UCB)
Use count 17

Wait list 17
Wait list element 17,18
WLE 17

XCTL macro instruction, effects of 18
XL

description of 25

in a ABEND/SNAP dumps 54,64

Index

247

GC28-6670-5

TIBIM

International Business Machines Corporation
Data Processing Division

112 East Post Road, White Plains, N.Y. 10601
[USA Only]

IBM World Trade Corporation
821 United Nations Plaza, New York, New York 10017
[International]

(02-09g5) opino Buibbngeq SO 09g/Waishs

*V°S°N ul pajulyg

6~0£99-8229

READER’S COMMENT FORM

IBM System/360 Operating System
Programmer's Guide to Debugging Order No. GC28-6670-5

Please use this form to express your opinion of this publication. We are interested in your
comments about its technical accuracy, organization, and completeness. All suggestions
and comments become the property of IBM.

Please do not use this form to request technical information or additional copies of publications.
All such requests should be directed to your IBM representative or to the IBM Branch Office

serving your locality.

® Please indicate your occupation:

® How did you use this publication?
[0 Frequently for reference in my work.
(O As an introduction to the subject.
O As a textbook in a course.

[0 For specific information on one or two subjects.

e Comments (Please include page numbers and give examples.):

® Thank you for your comments. No postage necessary if mailed in the U.S.A.

GC28-6670-5

YOUR COMMENTS, PLEASE . . .

This manual is part of a library that serves as a reference source for systems analysts,
programmers and operators of IBM systems. Your answers to the questions on the back
of this form, together with your comments, will help us produce better publications for
your use. Each reply will be carefully reviewed by the persons responsible for writing
and publishing this material. All comments and suggestions become the property of IBM.

Note: Please direct any requests for copies of publications, or for assistance in using your

IBM system, to your IBM representative or to the IBM branch office serving your locality.

FIRST CLASS
PERMIT NO. 81
POUGHKEEPSIE, N.Y.

BUSINESS REPLY MAIL
NO POSTAGE STAMP NECESSARY IF MAILED IN THE UNITED STATES

POSTAGE WILL BE PAID BY ...

IBM Corporation
P.O. Box 390
Poughkeepsie, N.Y. 12602

Attention: Programming Systems Publications
Department D58

B

International Business Machines Corporation
Data Processing Division

112 East Post Road, White Plains, N.Y.10601
[USA Only] .

IBM World Trade Corporation
821 United Nations Plaza, New York, New York 10017
[International)

euq Buojy inD

(02-09€$) 9PinD BuibBngeq SO 09¢/aishs

“V*STN Ul pajulyd

6-0£99-82209

