File No. S360-36
Order No. GC28-6763-0 | 0§

Systems Reference Library

) A —— -

IBM System/ 360 Operating System:
Time Sharing Option

Terminal User's Guide

The Time Sharing Option (TSO) of the IBM
System/360 Operating System lets you use the
facilities of a computer fror a terminal. You
define your work to the system through the TSO
Command Language. This publication explains to
all users of TSO how to use the TSO Command
Language to perform the following functions:

Start and end a terminal session.
Enter and manipulate data.
Program at the terminal.

Test a program.

Write and use cormand prccedures.
Control a system with TSO.

After becoming familiar with the information
presented in this manual, you may use IBM
System/360 Operating System: Time Sharing
Option, Command Lanquage Reference, GC28-6732
for review and reference.

Information in this publication for TSO
is for planning purposes until that item is
available, ‘

Preface

This publication describes how to use the
TSO Command Language to all TSO terminal
users. The commands can be used to perform
the following functions:

Start and end a terminal session.
Enter and manipulate data.
Program at the terminal.

Test a program.

Write and use conmand procedures.
Control a system with TSO.

This publication tells you what commands to
use to perform these functions. For
details on how to code each command, refer
to the publication IBM System/360 Operating
System: Time Sharing Option, Command
Lanquage Reference, GC28-6732.

First Edition (March, 1971)

Before reading this manual you should be
avare of three facts:

e Program Products are nct discussed in
this manual.

e All examples in this manual show the
user's input in lowercase letters and
the system output in uppercase letters.

e All examples in this manual assume that
you are using an IEM 2741
Conmmunications Terminal, and that you
must press the RETURN key to enter
data. For information on your type of
terminal refer to the puklication IBM
System/360 Operating System: Time
Sharing Option, Terminals, GC28-6762.

This edition applies to release 20.1, of IBM System/360
Operating System, and to all subsequent releases until
otherwise indicated in new editions or Technical Newsletters.
Changes are continually made to the information herein;

before using this publication in connection with the

operation of IBM systems, consult the latest IBM System/360
SRL Newsletter, Order No. GN20-0360, for the editions that

are applicable and current.

Requests for copies of IBM publications should be made to
your IBM representative cr to the IBM kranch office serving

your locality.

A form for readers' comments is provided at the back cf

this publication.

If the form has been removed, corments may
be addressed to IBM Corpcration, Programming Systems

Publications, Department D58, PO Box 390, Poughkeepsie, N.Y.

12602

© Copyright International Business Machines Corporation 1971

INTRODUCTION o « o o 2 « o « o a o « o o

WHAT YOU MUST KNOW TO USE TSO o o« « « «
Entering Information at the Terminal . .
COMMANAS « « « o« o o o o o o o o « o o o
When to Enter a Command or Subcommand
How to Enter a Command or Subcommand .
MESSAgES « o« o o a « o @ 2 o o« o o o o
Mode MESSAGES o « o « o o o = « o a
Prompting Messages « « « « « o « « «
Informational Messages . .
Broadcast Messages
The Attention Interruption .
The HELP Command « « « « « «

s & s B
.
.
.
.
L N)

STARTING AND ENDING A TERMINAL SESSION .
Identifying Yourself to the System . . .
Defining Operational Characteristics . .
Receiving and Sending Broadcast
MESSAgES o o o o o o « o o o a o w o o o
Receiving Broadcast Messages . . « < «
Sending Broadcast Messages . . . « < .
Displaying Session Time Used . « « « . -
Ending Your Terminal Session « « « « « «

ENTERING AND MANTPULATING DATA . o« « « «
Identifying the Data Set
Creatlng A Data Set . o o o 4 o o @« o @
Placing Data into COlUMNS .« o @« o « o« =
Finding and Positioning the Current
Line POINter « o« o o o o o o o o « o o
Finding the Current Line Pointer . . .
Positioning the Current Line Pointer .
Updating a Data Set “ o
Deleting Data From a Data Set «
Inserting Data in a Data Set . . .
Replacing Data in a Data Set . . .
Renumbering Lines of Data
Listing the Contents of a Data Set .
Storing a Data Set « ¢« « ¢ « o o « o
Ending the Edit Functions .
Renaming a Data Set
Deleting a Data Set . « « « « « o &
Establishing Passwords for a Data Set
Allocating a Data Set . o« < @ « o« o o «
Freeing an Allocated Data Set

Contents

Listing the Names of Your Data Sets .

PROGRAMMING AT THE TERMINAL
Creating a Program . o« « <« o < =
Compiling a Program
Link Editing a Compiled Program
Executing a Program .« « « « < «
Loading a Program . « « « « <«
Processing Background Jobs . . .
Submitting Background Jobs . . . -
Displaying the Status' of Background
JObS & ¢ @ o o o W c e o o o o o =
Cancelling Background JObsS « « o & &
Controlling the Output of a

s s & 2
s & s 8 2 s

¢ & 8 s 8

Background Job . . < ¢ &4 @ ¢ o o o &

TESTING A PROGRAM . <« 2 ¢ « « o o «

USING AND WRITING COMMAND PROCEDURES .
Using Command Procedures . . « . « « .
Calling a Command Procedure
Assigning Values to Symbolic Values
Writing Command Procedures
Assigning Symbolic Values
Testing Conditions for Termination .
Ending the Command Procedure

CONTROLLING A SYSTEM WITH TSO .« « « «

The OPERATOR Command . . « « « « « o «
Monitoring Terminal Activity
Displaying TSO Information
Cancelling a Session or Background
JOD 4 o o ¢ @ o o o o @ o o o o o @
Sending Messages to Terminal Users .
Modifying Time Sharing Parameters .
Ending Operation of the Operator
Command .« o« « o « o o o © o o o o @

The ACCOUNT Command . « « « o« « « « «
Adding New Entries or Data to an
ENtZYy o« o o o o o o o o o o o o o «
Deleting Entries or Parts of Entries
Changing Data in an Entry . . -
Displaying the Contents of an Entry
Displaying All User Identifications
Ending Operation of the ACCOUNT
COmrmMand « o« o o o o « o o 2 « « « =

GLCSSARY 2 2 4 o « o o o o 2 o« o « o« »

INDEX:e o ¢ ¢ o o o o o o o o o o o o

Contents

97

197

3

Illustrations

Figures

Figure 1. Sample Instruction Sheet
for a Terminal e o o o o e e o e o
Figure 2. Sample Data Set
Figure 3. Allocating Data Sets for
the Assembler F . ¢ ¢ ¢ ¢ ¢ o o o o »
Figure 4. Creating an assembler
source program « % ® @ s % = a ® ® @
Figure 5. COBOL Compilatio o o o o
Figure 6. Link editing and executing
QA PrOgram o o = = o« o o o = « « « o

Tables

Table 1. TSO Commands and
Subcommands, Including Abbreviations .
Table 2. Descriptive Qualifiers . .
Table 3. Default Tab Settings . . .
Table 4. Values of the Line Pointer
Referred to by an Asterisk (¥
Table 5. Data Set Names of the
COMPilerS =« o o o o o o « « o « = o«

4 TSO Terminal User's Guide (Release 20.1)

35
52

56
58

62

10
32
34
57

Figure 7. Loading a Program
Figure 8. Submitting a Program as a
Background Job e a o o @ ° @ o o o
Fiqure 9. Symbolic Values for a

Command ProceduUre . . « « o o « o o «
Figure 10. The Simplest Structure

That an Entry in the UADS Can Have .
Figure 11. A Complex Structure for an
Entry in the UADS e e e e e« e e e @

65
67
74
86
86

Introduction

TSO is the time sharing option of the IBM System/360 Operating System.
TSO lets you use the facilities of a computer at a terminal. A terminal
is a typewriter-like device connected through telephone cr cther
communication lines to the computer. A terminal can be at any distance
from the computer -- in the same room or in another city. PRecause the
system processes instructions much faster than ycu can enter them
through the terminal, it can process input from many terminals at the
same time besides processing work entered in the conventional manner in
the computer roow. However, due to the speed of the system, you will
think you have almost exclusive use of the system.

You tell the system what work you want dcne by typing in cne or more
of the commands that form the TSC command language. The commrand
language can be used to:

e Enter, store, modify, and retrieve data at the terminal.

e Solve mathematical problems.

e Develop programs written in Assembler, FORTRAN, COBOL, PL/I, or
other languages.

e Execute programs.

e Control the operation of a system with TSO from the terminal.

Your installation determines which of the facilities of the system
you can use. That is, the installation determines which ccmmands are
available to you.

When you enter a command in the system, the system performs the work
requested by that command and sends messages back to your terminal. The
messages tell you the status of your prograrm and whether the system is
ready to accept another command. You can interrupt the processing of a
comrand at any time and enter a new one.

If you make a mistake typing in a command, or if you fail to include
some necessary information with the command, the system sends you a
message prompting you for the necessary infcrmation. You then respond
by typing in the information requested.

If you receive a wessage you don't understand, you can tyge in a
question mark to request more information. The system will then send
you a more detailed message, if available.

Whenever you are not sure which comrand tc use or how to use a
particular cormmand, you can type HELP. HELP is a comwand that provides
you with information on all other TSO conrands.

This manual explains how to use the command language. The manual is
divided into the following sections:

1. What you must know to use TSO.

2. Starting and ending a terminal session.
3. Entering and manipulating data.

4. Programrming at the terminal.

5. Testing a program.

6. Using and writing command procedures.
7. Controlling a system with TSO.

The first three items must ke known by all system users. The

remaining items depend on what your installation has authorized you to
do. o

Intrcduction 5

This manual tells you what commands to use to perform the functions
mentioned above. For details on how to code each command, refer to the
manual IBM Systemn/360 Operating System: Time Sharing Option, Command
Lanquage Reference.

6 TSO Terminal User's Guide (Release 20.1)

What You Must Know to Use TSO

Before you begin a terminal session, you shculd know:

How to enter information at the terminal.
How to use the TSO commands.

How to interpret TSO messages.

How to use the attention interruption.
How to use the HELP command.

Entering Information at the Terminal

All TSO terminals have a typewriter-like keybcard through which you
enter information into the system. The features of each keykoard vary
from terminal to terminal; for example, one terminal may not have a
backspace key, while another may not allow fcr lcwercase letters. The
features of each terminal as they apply to TSO arxre described in the
publication, IBM System/360 Operating System: Time Sharing Ocrtion,
Terminals.

Certain conventions apply to the use of all TSO terminals. They are:

e Any lowercase letters you type are interrreted by the system as
uppercase letters. For example, if you type in:

abcDe8-fqg
the system interprets it as:
ABCDES-FG

The only exceptions are certain text-handling applicaticns which
allow you to type in text with both uppercase and lowercase letters.
Text handling is discussed in the secticn "Entering and Manipulating
Data".

e All messages or cther output sent to you by the system ccme out in
uppercase letters., The only exception is the ocutput from the
special text-handling applications menticned previously which comes
out both in uppercase and lowercase.

TSO also provides a way of correcting your typing mistakes. You can
request that the character you just typed be deleted or that all the
preceding characters in the line be deleted. You can define youxr own
character-deleticn and line-deletion characters, or you can use the
default characters in the system. For exarple, if the default
characters are the quotation mark (") for deleting the preceding
character, and the percent sign (%) for deleting all the preceding
characters of the line and you type the follcwing message:

first ent%Sect"onft""d ENR"try
it is received by the system as:
SECOND ENTRY
Note that you can use the character-deletion character repetitively to

delete more than one of the preceding characters in the line.

What you Must Know to Use TSO 7

The blank space produced when you hit the space bar is also
considered to be a character, and you can delete it using the
character-deletion or line-deletion characters. For example, if you
type the following line:

a b%cd "E "f
it is received by the system as
CD EF

After you type a line and make any necessary correcticns, you enter
that line as follows:

e Press the RETURN key on an IBM 2741 Communications Terminal.

e Press the RETURN key on an IBM 1052 Printer-Keyboard (If the 1052
does not have the automatic EOB feature, use the ALTN ccde).

e Hold the CTRL key and press the XOFF key on a Teletype terminal.

Notes: /

e All examples in this manual assume that you are using an IBM 2741
Communications terminal, and that you must press the RETURN key to
enter a line. For information on your type cof terminal, refer to
the publication IBM System/360 Operating System: Time Sharing
Option, Terminals, GC28-6762.

e If you want to enter a null line, that is a line with no characters
in it, press the key used to enter data.

You cannot use the character-deletion and line-deletion characters to
make corrections to the line after you enter it. If the line you
entered was a comrmand, you must use the attention interruption
(described laterxr in this section) to cancel the command, and then you
must reenter the command. If the line you entered was data, you can
change it using the EDIT command (described in the secticn, "Entering
and Manipulating Data".)

Normally, you will use the default characters in the system.
However, you can use the PROFILE command tc establish your cwn
character-deleticn and line-deletion characters. The PROFILE command is
described in the section, "Starting and Ending a Terminal Session". The
ability to change the character-deletion and line-deletion characters is
particularly useful when you use more than one type of terminal. For
example, the backspace key and the attention key are the usual default
characters. Any time you have to use a terminal that does not have
backspace and attention keys, you can use the PROFILE command to select
two other suitable characters as the character-deletion and
line-deletion characters.

Commands

You can communicate with the system by typing requests for work,
commands, at the terminal. Different cormmands specify different kinds
of work. You can store data in the system, change the data, and
retrieve it at your convenience. You can create programs, test them,
execute them and obtain the results at your terminal. The ccmmands make
the facilities of the system available at your terminal.

8 TSO Terminal User's Guide (Release 20.1)

When you use a command to request work, the command estaklishes the
scope of the work to the system. For some ccmmands, the sccpe of the
WOrk encompasses several operations that ycu can identify serarately.
After entering the command, you may specify cne of the separately
identifiable operations by entering a subcommand. A subcommand, like a
command, is a request for work; however, the work requested Lty a
subcommand is a particular operation within the scope of work
established by a command.

The commands and subcommands recognized by TSO form the TSO command
language. The command language is designed to be easy to use. The
command names and subcommand names are typically familiar English worxds,
often verbs, that describe the work to be dcne. The number cf command
names and subcommand names that you must learn has been kept to a
minimum. (Your installation can add its own cormands to perfcrm
functions not provided by the TSO command language.)

Besides entering the name of the command cr subcommand, you are often
required to specify additional information tc pinpoint the function you
want performed. You define the additional information with orerands
(words or numbers that accompany the command names and subcommand
names.) Most of the operands have default values that are used ky the
system if you chcose to omit the operand from the command or subcommand.
However, some operands do not have default values. If you fail to
provide a required operand for which there is no default, the system
sends you a prompting message asking you to supply the operands. The
publication, IBM System/360 Operating System: Time Sharing Ortion,
Command Lanquage Reference shows all operands for each command, and
indicates the default values where applicable, and describes how to
enter the cormands.

You can abbreviate many of the command names, subcommand names and
operands. Together, the defaults and abbreviations decrease the amount
of typing required. (The abbreviations and their use are discussed in
the publication IBM System/360 Operating System: Time Sharing Option,
Command Languaqge Reference.)

Table 1 lists the commands and their subccmmands in alphaketical
order.

What you Must Know to Use TSO 9

Table 1. TSO Ccmmands and Sukcommands, Including Abbreviations

r

COMMAND (abbreviation)

SUBCOMMAND (abbreviation)

COMMAND (abbreviation)

SUBCOMMAND (abbreviation)

ACCOUNT
ADD (A)
CHANGE (C)
DELETE (D)
END
HELP (H)
LIST (L)
LISTIDS (LISTI)

ALLOCATE (ALLOC)

*ASM

*CALC

*DELETE

*END

*HELP

*SAVE

CALL

CANCEL

*COBOL (COB)

*CONVERT (CON)
*COPY

DELETE (D)

EDIT
BOTTOM (B)
CHANGE (C)
DELETE (D)
DOWN
END
FIND (F)
*FORMAT (FORM)
HELP (H)
INPUT (I)
INSERT (IN)
LIST (L)
*MERGE (M)
PROFILE (PROF)
RENUM (REN)
RUN (R)
SAVE (S)
SCAN (SC)
TABSET (TAB)
TOP
UP
VERIFY (V)

EXEC (EX)

*FORMAT (FORM)

*FORT

FREE

HELP (H)

LINK

*LIST (L)

LISTALC (LISTA)

LISTBC (LISTB)

LISTCAT (LISTC)

.
|
|

1
T
|
|

b e e e e e e e o e e e e e e e e 7 . e e e e S e e

LISTDS (LISTD)
LOADGO (LOAD)
LCGOFF
LOGON
*MERGE
OPERATOR (OPER)
CANCEL (C)
DISPLAY (D)
END
HELP (H)
MODIFY (F)
MONITOR (MN)
SEND
STOP (P)
OUTBUT (OUT)
CONTINUE (CONT)
END
HELP (H)
SAVE (S)
PROFILE (PROF)
PROTECT (PROT)
RENAME (REN)
RUN (R)
SEND (SE)
STATUS (ST)
SUBMIT (SUB)
TERMINAL (TERM)
TEST
AT
CALL
DELETE (D)
DROP
END
EQUATE (EQ)
FREEMAIN (FREE)
GETMAIN (GET)
GO
HELP (H)
LIST (M)
LISTDCB
LISTDEB
LISTMAP
LISTPSW
LISTTCB
LOAD
CFF
CUALIFY (Q)
RUN (R)
WHERE (W)
TIME
**END
¥¥PRCC
**WHEN

*Available as rrogram products
**For use in command procedures

e s s e e A S S — — — — — — —— —— S — S G— — — — — A— ———— — — — — — — E——— f— ——— T—— e — — ——_ S ——— — — t——, S — {—— — — — —— t——]

10 TS0 Terminal User's Guide

(Release 20.1)

WHEN TO ENTER A COMMAND OR SUBCCMMAND

The system lets you know when it is ready tc accept a new ccrmrmand by
sending you the message:

READY

The ACCOUNT, EDIT, OPERATOR, OUTPUT and TEST commands have
subcommands. After entering one of these cormands the system lets you
know it is ready to accept a sukcommand ky sending you back the name of
the command. For example, in the following sequence you enter the
OPERATOR comrand after receiving a READY message. The system then sends
you the OPERATOR message indicating that you can enter any of the
subcommands of the OPERATCR command:

READY
operatcr
OPERATOR

If instead of entering a sukbcommand you want to enter a ccmmand,
request an attention interruption (described later in this chargter) or
enter the END subcommand to make the READY message appear again.

The systen remains able to receive cormmands until you enter one of
the five comrands that have sukcommands. The system then accepts only
that command's subcommands until you request a READY message.

HOW TO ENTER A COMMAND OR SUBCOMMAND

After you receive the appropriate message tc let you know the system is
ready to receive a ccmmand or sukcommand:

1. Type the command or subcommand name and the selected orerands.

2. Correct any typing mistakes with the character-delete and
line-deleticn characters.

3. Press the RETURN key.

If all the orerands do not fit in one line ycu should follow this
sequence:

1. Type the command and subcommand name and the selected orerands.

2. Type a hyphen (-) at the end of the line.

3. Press the RETURN key.

4. Continue entering the operands. If they do not fit in the second
line rereat from 2.

5. Press the RETURN key to enter the command.

You can type command and subcommand nawes and operands in either
uppercase or lowercase letters. You may prefer to type your commands
and subcommands in lcwercase so you can distinguish your input from the
system's messages in your listing. (The system prints in ugrercase
letters.) Typing your input in lowercase letters is alsc faster than
typing in uppercase letters. All examples in this manual shcw the
user's input in lowercase letters, and the system output in urpercase
letters.

Messages
There are four types of messages:

Mode messages.
Prompting messages.
Informational messages.
Broadcast messages.

What you Must Know to Use TSO 11

MODE MESSAGES

A mode message tells you when the system is ready to accept a new
command or subcommand. (See "When to Enter a Command".) When the
system is ready to accept a new command it prints:

READY

When you enter a command that has subcormands and the system is ready
to accept its subcommands, it prints the name of the command which can
be any of the fcllowing:

ACCOUNT
EDIT
OPERATOR
OUTPUT
TEST

You can then enter the subcommands you want to use. The TEST message
also appears after each TEST sukcommand has been processed. If the
system has to print any output or other messages as a result of the
previous command oxr TEST subcommand, it does sc before printing the mode
message. (The use of mode messages in the EDIT command is discussed in
the section "Entering and Manipulating Data".)

Sometimes you can save a little time by entering two or mcre commands
in succession without waiting for the intervening READY message. The
system then prints the READY messages in succession after the commands.
For example, if you entexr the DELETE, FREE, and RENAME ccmmands and wait
for the intervening mode message between the commands, the output (or
listing) will be:

READY
delete...
READY
free...
READY
renan€.. .
READY

If you enter the same commands without waiting for the intervening
mode messages, ycur listing will be:

READY
delete...
free...
renam€.. .«
READY
READY
READY

There is a drawback to entering commands without waiting for the
intervening rode messages. If you make a mistake in one cf the
commands, the system sends you messages telling you of your mistake, and
then it cancels the remaining commands you have entered. After you
correct the error, you have to reenter the cther commands.

Unless you are sure that there are no mistakes in your ingut, you
should wait for a READY message kefore entering a new command.

Note: Some terminals "lock" the keyboard after you enter a ccmmand, and
therefore you cannot enter commands without waiting for the intexvening
READY message. See the publication IBM System/360 Operating System:
Time Sharing Option, Terminals for informaticn on your terminal.

12 TSO Terminal User's Guide (Release 20.1)

PROMPTING MESSAGES

A prompting message tells you that required information is missing or
that information you supplied was incorrectly specified. A prcmpting
message asks you to supply or correct that information. For example,
"data set name" is a required operand of the CALL command; if you enter
the CALL comrand without that operand the system will prompt you for the
data set name and your listing will look as follows:

READY
call
ENTER DATA SET NAME -

You should respond by entering the requested cperand, in this case
the data set name, and by pressing the RETURN key to enter jit. For
example if the data set name is ALPHA.DATA ycu wculd complete the
prompting message as follows:

ENTER DATA SET NAME-alpha.data

To specify whether or not you want to receive prompting messages, use
the PROMPT or NOPROMPT operand of the PROFILE command. This command is
described in the section, "Starting and Ending a Terminal Session".

Sometimes you can request another message that explains the initial
message more fully. If the second message is not enough, ycu can
request a further message that will give you more detailed information,
and so on.

To request an additional level of message:
1. Type a question mark (?) in the first position of the line.

2. Press the RETURN key.

If you enter a question mark when there are nc other messages that
explain the one you received, you receive the following message:

NO INFORMATION AVAILABLE

You can stop a prompting sequence by entering the requested
information or by requesting an attention interruption.

INFORMATIONAL MESSAGES

An informatiocnal message tells you akout the status of the system and
your terminal session. For example, an infcrmational message can tell
you how much time you have used. Informational messages dc nct require
a response.

If your informational message ends with a plus sign (+) ycu can
request an additional message by entering a question mark after READY
(?) as described for prompting messages. Informational messages only
have a second level of messages, while prompting messages may have more
than one.

What you Must Know to Use TSO 13

BROADCAST MESSAGES

Broadcast messages are messages of general interest to users of the
system. Both the system operator and any user of the syster can send
broadcast messages. The system operator can send messages to all users
of the system or to individual users. For example, he may send the
following message to all users:

DO NOT USE TERMINALS #4, 5 AND 6 ON 6/30. THEY ARE RESERVED FOR
DEPARTMENT 791.

You, or any other user, can send messages to other users cr to the
system operator. For example, you may send, or receive, the fcllowing
message:

ACCOUNT NO. 4672 WILL BE CHANGED TO 4675 STARTING 8/25

A message sent by another user will show his user identification so
you will know whc sent you the message.

To find out hcw to send or receive broadcast messages, refer to the
section "Starting and Ending a Terminal Session".

The Attention Interruption

The attention interruption allows you to interrupt processing cof your
job so that you can enter a new command or subcommand. The akility to
interrupt processing prevents you from being "locked out" by the system
while a long-running program executes or while vcluminous ocutput is
displayed at your terminal. You can use the attention interruption for
access to the system at any time.

When you enter an attention interruption the system cancels
processing and sends you a mode message. If the system was processing a
command, the mode message it prints is:

READY

You can then enter a mnew command. If the system was processing a
subcommand, the mode message will be the name cf the command to which
the subcommand belongs:

ACCOUNT
EDIT
OPERATOR
OUTPUT
TEST

If you do not want to enter another subcommand, you should enter
another attention interruption which will cause the READY message to
appear.

There are two ways to cause an attention interruption:

1. Press the attention key which can be any of the following:
e ATTN key cn an IBNM 2741 Communicaticns terminal.
e LINE RESET key on an IBM 1052 Printer-Keyboard. (If the

"proceed" light is on, press the ALTERNATE CODING and "6" keys
instead of the LINE RESET key.)

14 TSO Terminal User's Guide (Release 20.1)

e BREAK key on a Teletype terminal.

If the attention key is also the line-deletion character and you
have entered any characters in a line of input, you must press it
twice to enter an attention interrupticn. (You need only press it
once if you have not entered any characters in the line.)

2. Use a simulated attention key:

If your terminal does not have a Kkey that can be used fcr attention
interruption, ycu can use the facilities of the TERMINAL command to
simulate the attention key. The TERMINAL command lets you specify
a string of characters, such as HALT or ATTN, that when entered as
a line cof input is interpreted by the system as a request for an
attenticn interruption. The TERNINAL ccmmand also lets you request
an interruption at specified intervals while output is keing
produced. The TERMINAL command is described in the section,
"Starting and Ending a Terminal Session".

The HELP Command

The HELP comrand provides you with informaticn about all other TSO
commands. At the most general level you can enter:

help

and receive a list of all commands and a brief explanaticn cf their
functions. ’

If you want all the information available on a specific ccmmand, for
example CALL, enter the HELP command and use the other command's name as
an operand:

help call

If you want tc know only the function, syntax, or operands, of the
CALL command, enter one of the following:

help call function
help call syntax
help call cperands

.

You can also cbtain the same information for the subcormands of the
ACCOUNT, EDIT, OPERATOR, OUTPUT and TEST ccmnmands. To dc this, enter
the command with any required operands and wait for the mode message.
After you have received it, you can enter:

help
and receive a list of all subcommands.

If you want all the availakle information on a given subcommand,
enter the HELP command and use the subcormmand name as an orerand. For
example, the following sequence could be used tc obtain all the
information available on the DISPLAY subcormand cf the OPERATOR command:

READY
operatcr
OPERATOR
help display

What you Must Know tc Use TSO 15

If you want to know cnly the function, syntax, cr operands cf the
DISPILAY subccrmand you would enter one of the fcllowing:

help display function
help display syntax
help display operands

There is cne restriction on using the HELP command; you cannot use it
before you use the LOGON command. As it is explained in the section
"Starting and Ending a Terminal Session", LOGON must be the first
command used in your session kecause it identifies you as an authorized
user of the system.

Note: Your installation can add "help" information to the system Ly
following the instructions in the publicaticn IBM System/360 Orerating
System: Time Sharing Option Guide to Writing a Terminal Mcnitcr Program
or a Command Processor, GC28-6764.

[

16 TSO Terminal User's Guide (Release 20.1)

Starting and Ending a Terminal Session

This section describes the commands you can use to:

Identify yourself to the system.

Define operational characteristics of ycur session.
Receive and send broadcast messages.

Display session time used.

End your terminal session.

Identifying Yourself to the System

The first thing you must do to start your terminal session is to turn on
- the power according to instructions provided by your installation. 1In
many cases, you will find an instruction sheet such as the cne shown in
Figure 1 attached to the terminal. In the example shown in Figure 1,
instructions 1 through 8 must ke followed to turn on the power and to
establish the connection with the system. If there is no instruction
sheet attached tc the terminal, consult the publication, IBM System/360
Operating System: Time Sharing Option, Terminals.

After you turn on the power you must use the LOGON command to
identify yourself to the system. You must supply, as operands of LOGON,
the user attributes assigned to you by your installation. Your user
attributes are:

1. User identification (required) -- The name or code by which you are
known to the system.

2. Password (required if your installation assigns you one) -- A
further identification used for additicnal security protection.

3. Account number (optional) -- The account to which ycur terminal
session is charged.

4. Procedure name (optional) -- The name cf series of statements that
defines your job to the system.

Starting and Ending a Terminal Session 17

| TERMINAL #7

(Available 9:00 a.m. - 3:00 p.m.
For additicnal time call A. Jones ext. 1234)

| 1. Turn ON/OFF switch to CN.
2. Make sure the COM/LCL switch is set to COM.

3. Remove handset from telephone (data set).

4. Press TALK button on telephone.

5. Dial ext. 5555, 5556, or 5557.

6. Wait for a high pitchéd tone. When ycu hear this tone you
are in contact with the computer. If you get a busy signal
or no answer, hang up and repeat from 3 trying anocther
extension.

7. Push the DATA button on the telephone. If DATA button light
goes off at any point during session, repeat from (3).

8. Replace handset on the cradle.

9. Enter LOGON cormand:

logon / acct() proc () size() | notices mail
\, nonotices 1

nomai
userid password account procedure nnnn
10. The default TERMINAL command is:
terminal nclines noseconds noinput break nctimeout linesize (120)

If you want to change any of the follcwing defaults use this
TERMINAL ccmmand:

terminal lines() seconds() input() linesize()

s —— — — —— — — ——— —— — — — —— — —————— —— —— — t—— — ———— —— t—]

11. If you want to change your user profile, use the PROFILE
command :
-
char() line() prompt interccom pause msgid]]
profile | char(bs)|| line(attn)||noprompt nointercon | | nopause | [nomsgid
nochar noline
The following operands are recommwended for this terminal:

char(bs) and 1line(attn) » |

Note: Please turn ON/OFF switch to OFF after you enter LOGOFF.

I
|
|
L

Figure 1. Sample Instruction Sheet for a Terminal

Your user attributes are recorded in the system together with the
attributes of all other terminal users. When you log on, the system
compares the attributes you specify with the LOGON command tc the
recorded attributes of each user to determine if you are an authorized
user of the system.

18 TSO Terminal User's Guide (Release 20.1)

You can have a simple set of attributes, such as the fcllowing:

SMITH User identification
LOCK Password

79345 Account Number

P79 Procedure name

or a more cornplex set, such as

SMITH User identificaticn
LOCK SEVEN KEY Passwords
79345 79374 74325 Account Numbers
P79 P80 P8l P82 Procedure Names

The latter set has three passwords (LCCK, SEVEN, and KEY) associated
with your user identification. If you use the password LOCK, you can
only have your processing charged only to account 79345 and ycu can use
only procedure P79. If you use the password SEVEN, you can have your
processing charged to either account 79374 cr 74325. If ycu choose
account 79374, ycu can use either procedure P80 or P81. If you choose
account 74325, ycu can use only procedure P82. BAncther way cf using
procedure P82 is to choose password KEY. KEY only has account 74325 and
procedure P82 associated with it.

The LOGON command is a simple means of telling the system your user
identification, password, account number and procedure name. For
example, if you want to use procedure P81, ycu must enter:

logon smith/seven acct(79374) proc(p8l)

Whenever there is only one account nurber or procedure name
associated with the user identification and password the system selects
it by default. For example, account 79345 and procedure P79 are the
only account and procedure associated with password LOCK. Therefore,
when you log on you need only enter:

logon smith/lock
instead of:
logon smith/lock acct(79345) proc(p79)

If you choose password SEVEN, you must specify which acccunt number
you want. If you select account 74325, you do not have to srecify the
procedure because there is only one procedure associated with the
account.

logon smith/seven acct (74325)

If you select account 79374, you must alsc select a procedure name
because there are two procedures associated with the account. For
example,

logon smith/seven acct(79374) proc(p80)
If you choose password KEY you do not have to specify an account

number and procedure name because there are only one account numker and
one procedure name associated with KEY.

Starting and Ending a Terminal Session 19

Note: In some instances your installation may require a modification in
the way that you enter the LCGON command; for example, ycu may have to
precede LOGON with a quotation mark ("LOGON). Ycur installation's
management is responsible for advising you cf such a change.

Defining Operational Characteristics

Operational characteristics can ke divided into terminal characteristics
and a user profile. Terminal characteristics identify:

e How you can request an attention interrurtion.

e Whether the keybocard is to lock up if ycu do not enter anything for
a while.

e What the length of the line that can be displayed or printed at your
terminal is.

A user profile identifies:

e What your character-deletion and line-deleticn characters are.
e Whether you want to receive prompting messages.

e Whether you will accept messages from other terminals.

Your installation establishes default terminal characteristics for
all the TSO terminals. If you want to change any of those
characteristics for the duration of your sessicn you can use the
TERMINAL command. After your session is over the defaults selected by
the installation will again be valid for the terminal. For example,
assume that the default for the number of lines of continuous output
that are printed befcre you receive an automatic interruption is 50.
You can use the TERMINAL command to request that 100 lines ke printed
before you receive an interruption. When ycu log on for your next
session, 50 lines will again ke the default.

The syster has a user profile for you. When you log cn that profile
will be in effect. If you want to change any item in your rrofile, you
can do so with the PROFILE command. Any change you make beccmes part of
your profile. That is, the next time you log on that change will ke in
effect. For example, assume that the line-deletion character in your
profile is a percent (%) sign. You can use the PROFILE cormand to
change it to a numbexr (#) sign, throughout the current sessicn. When
you log on for ycur next session your line deletion character will be
the number sign. If you want to change it back to the original prercent
sign you must again use the PROFILE command.

Receiving and Sending Broadcast Messages

There are twc tyres of broadcast messages ycu can receive:

e Notices -- Messages sent by the syster cperator to all users.
e Mail -- Messages sent by the operator or other user directly to you.

You can send messages (mail) to other users and to the system
cperator.

20 TSO Terminal User's Guide (Release 20.1)

RECEIVING BROADCAST MESSAGES

You can use three cormands to control which broadcast messages you
receive:

LOGON, PROFILE, and LISTBC

When you log on, broadcast messages sent to all users (nctices) and
those broadcast messages intended for you (mail) are displayed at your
terminal. You can use the following operands of the LOGON ccmmand to
prevent ‘printing either type of messages at your terminal:

e NONOTICES surpresses printing of kroadcast messages intended for all
terminal users.

e NOMAIL suppresses printing of broadcast messages intended
specifically for you.
|

For example, if you enter:
logon -smith acct(72411) nomail

You will not receive mail but you will receive all notices that are
available at the time.

NONOTICES and NOMAIL suppress those broadcast messages outstanding at
the time you log on. You will automatically receive any broadcast
messages issued after you log on. You cannot stop the operator from
sending you notices, but you can specify that you do not want to receive
any mail by using the NOINTERCOM operand of the PROFILE corrand. For
example, if you enter the following commands:

logon jones/clcud proc (ak)
READY
profile ncintercom

you request that all broadcast messages available at the time ke
displayed, but that all mail sent to you after ycu log on ke suppressed
throughout your session. (Note that NOINTERCOM can be a default of your
user profile, and therefore you may not have to specify it with the
PROFILE command.)

At any time during your session you can use the LISTBC command to
request that either all availakle notices for users, or all your mail
(or both) be displayed. If you enter:
listbc

you will get all brcadcast messages. If ycu enter:
listbc nomail

you will get only notices. If you enter:
listbc nonctices

you will get only youxr mail.

The notices ycu get are both the notices available at the time you
logged on and those issued throughout your sessicn. This enakles you to
see what notices were available at log on time if you specified
NONOTICES in your LOGON command. (The system operator can delete

notices at any time. Consequently you will get cnly those nctices he
has not deleted.)

Starting and Ending a Terminal Session 21

Mail messages sent directly to you are autocmatically deleted by the
system after you receive them. Therefore the mail you get when you use
the LISTBC cormand are those available at lcg on time if you specified
NOMAIL in your LOGON command, and those suprressed as a result of the
NOINTERCOM operand of the PRCFILE command. After you use the LISTBC
command to see ycur mail, the NCINTERCOM oprerand will again ke in
effect.

If there are no messages available when ycu use the LISTBC command
you will receive the following message:

NO BROADCAST MESSAGES

If you want tc cancel the effect of the NOINTERCOM operand, enter:
profile intercom l

You will receive any mail issued after ycu enter this cormand. To

obtain your mail messages issued before you entered INTERCOM, use the
LISTBC conmrand.

SENDING BROADCAST MESSAGES

You can use the SEND command to send mail messages to ancther terminal
user or to a system cperator. The SEND cormmand can be used at any time
after you log on.

You can send a mail message to another user only if you kncw his user
identification. For example, the command:

send 'do nct use procedure 245 until nctified' user(jcnes,depti)
will send the message enclosed in quotes to the two users whcse

identificaticns are JONES and DEPT4.

When you send a message to another user, he will receive it
immediately provided that he 'is logged on and is accepting messages. If
he is not logged on ¢or is not accepting messages, you are nctified and
your message is deleted. For example, assume that SMITH is not logged
on, JONES is not accepting messages, and CLARK is both lcgged on and
accepting messages. When you send the follcwing message:

send 'this is a message' user (smith, jones,clark)
SMITH and JONES do not receive the message, you are notified, and the

nessage is deleted. CIARK receives the message.

You can request the system to save your message until the user you
sent it to logs cn or decides to accept messages, by using the LOGON
operand of the SEND command. For example, if you enter:

send 'this is a message' user(smith,jcnes,clark) lcgcn

. SMITH will receive your message when he logs on, JONES will receive it
when he uses the LISTBC command, and CLARK will receive it immediately.

You can send a message to only one operator at a time. With the SEND
command, you can identify an operator by a number. For examrle,

send 'impcrtant message' operator(7)

22 TSO Terminal User's Guide (Release 20.1)

If there is only cne operator at your installation, you can omit the
number. For example,

send 'important message' operator

If there are several operators and you omit the number, ycur message
is sent to the main operator.

Displaying Session Time Used

You can use the TIME command to find out how much time you have used
during the current session. If you enter:

time

the system sends you a message telling you hcw lcng you have keen using
the terminal since you logged on.

If you are executing a program, you can use the TIME corrand to find
out how long the program has keen running. You must first enter an
attention interruption and then enter the TIME command. The system then
sends you a message telling you how long a program has been running. If
you want to continue processing the program, press the RETURN key and
the program continues. If you want to stop processing the program,
enter another attenticn interruption and wait for the READY message
before you enter another command.

Ending Your Terminal Session

You can end your terminal session in either cf two ways:

e By entering the LOGOFF command to end the session.
e By entering the LOGCN command to start a new session.

The LOGOFF ccmmand:

e Displays your user identification.

e Displays the length of time you have been using the terrinal, and
the time of day and date your session ended.

e Disconnects your terminal from the system.

The LOGON cormmand terminates your current session and starts a new

session at the same time. LCGON must ke specified as descriked in
"Identifying Yourself to the System".

Starting and ‘Ending a Terminal Session 23

Entering and Manipulating Data
|

Almost all system applications are concerned with the prccessing of
data. Therefore, you should learn how to enter data intoc the system and
how to modify, store, and retrieve data after it has been entered. Any
group of related data entered into the system is called a data set. For
example, a data set may contain:

e Text used for information storage and retrieval.
e A source program.
e Data used as input to a program.

When you create a data set you must give it a name. The system uses
the name to identify the data set whenever you want to mcdify or
retrieve it.

The EDIT command which is used to create and manipulate data sets
operates in either of two modes: input mode or edit mode. When you use
the EDIT command to enter data into a data set, you are using the input
mode. When you use the EDIT command to enter subcommands tc manipulate
the data in a data set you are using the edit mode.

In input mode, you can type a line of data and then enter it into the
data set by pressing the RETURN key. You can continue entering lines of
data as long as EDIT is operating in input mode. If you enter a command
or subcommand while in input mode the system adds it to the data set as
input data.

You can have the system assign a line nurber to each line as it is
entered. Line numbers make edit mode operations much easier, since you
can refer to each line by its own number. When you are working with a
line-numbered data set, you can request the system to print cut the new
line number at the start of each new input line. If the data set does
not have line numbers, you can request that a prompting character ke
displayed at the terminal before each line is entered.

After you finish entering data in the data.set, you can switch to
edit mode by entering a null line. (Press the RETURN key to enter a
null line.)

The systenm lets you know you are in edit mode by printing the
following message:

EDIT

In edit mode you can enter sukcommands tc point to particular lines
of the data set, to modify or renumber lines, to add and delete lines,
or to control editing of input.

When EDIT is operating in edit mode, it uses an indicator called the
current line pointer to keep track of the next line of data to be
processed. The cperations you indicate with the subcomrmands are
performed starting at the line indicated by the pointer. Fcr example,
the DELETE subcormand, deletes the line indicated by the pointer. After
a subcommand is executed the system repositicns the pointer.

You may want to reposition the pointer before a subcormand is
executed. You can do so by using one of twc methods: 1line number
editing or context editing. Line number editing can be used cnly if
your data set has line numbers. You can specify a line numker as an

Entering and Manipulating Data 25

cperand of a subcommand and the system will move the pointer tc that
line before it executes the sukcommand. Context editing can ke used for
data sets with or without line numbers. A set of subcommands (UP, DOWN,
TOP, BOTTOM, and FIND) allows you to move the pointer up or down a
specified number of lines, or to find a line with a particular series of
characters in it and move the pointer to it. After the pointer is
positioned you can enter the sukcommand that performs the functions you
require. The subcommand can use an asterisk (*) instead of a line
number to specify the line indicated by the rointer.

After you finish editing the data, you can swvitch to input mode by
either of twc methods:

1. Entering the INPUT or INSERT subcommand.
2. Entering a null line. (Press the RETURN key to enter a null line.)

The systen lets you know you have selected input mode by rrinting the
following message:

INPUT

You can terminate the EDIT command at anytime by switching to edit
mode (if not already in edit mode) -and entering the END subcommand. The
system then prints a READY message, and you can enter any ccmmand you
choose.)

Note: If you want to enter a blank line in your data set, ycu must
enter a blank by pressing the space bar, and then press the RETURN key.
You can then enter other lines after the blank line. If ycu fail to
enter a blank and press only the RETURN key, you enter a null line which
causes EDIT to switch modes.

The remainder of this chapter describes how ycu can:

Identify a data set.

Create a data set.

Place data into columns.

Find and position the current line pointer.
Update a data set.

List the contents of a data set.

Store a data set.

End the EDIT functions.

The following functions described in this charter are perfcrmed with
commands other than EDIT:

Rename a data set.

Delete a data set. ,
Establish passwords for a data set.
Allocate a data set.

Free an allocated data set.

List the names of your data sets.

Identifying the Data Set

The EDIT comrand is used to specify the name of a data set and whether
you want to create it or edit it. If you indicate that you are going to
create a new data set, the system enters input mode. If ycu indicate
that you are going to edit an existing data set, the syster enters edit
mode after ycu enter the EDIT command. For example, the NEW cperand in

26 TSO Terminal User's Guide (Release 20.1)

the following EDIT command specifies that you are going to create a new
data set named ACCTS.DATA. After you enter the command the system
enters input mode.

READY
edit accts.data new
INPUT

In the following example, the OLD operand of the EDIT ccmmand
specifies that you want to edit an existing data set named PARTS.TEXT.
After you enter the command, the system enters edit mode.

READY
edit parts.text old
EDIT

As you can see, the NEW operand specifies that you are going to
create a data set, and the OLD operand specifies that the data set
already exists.

The name you give a data set should follow certain conventions. A
data set name has three fields.

1. Identification qualifier.
2. User-surplied name.
3. Descriptive qualifier.

The fields must be separated Ly periods. The total length of the
name, including reriods, must not exceed 44 characters. For example, a
typical data set name is:

SMITH.ACCTS.DATA

Identification qualifier J

User-supplied name

Descriptive qualifier

When you create a data set you need only specify the user-supplied
name. The system supplies values for the other two fields. The
identificaticn qualifier is the user identification you specified with
the LOGON command. The descriptive qualifier must be one of those
listed in Table 2. The system oktains it frcm operands you srecify in
the EDIT command. If you do not supply it in ancther operand, the
system prompts ycu for a descriptive qualifier. If you prefer, you can
specify the descriptive qualifier as part of a data set name, for
example,

PARTS.DATA

You may specify a fully qualified name (a mame with all three
qualifiers) by enclosing it in apostrophes. For example,

'JONES.PROG1.ASM"*

This is a useful procedure when you have to use a data set with an
identification qualifier other than your own user identification.

Entering and Manipulating Data 27

Table 2. Descriptive Qualifiers

i Descriptive Qualifier j Data Set Contents i

[ASM T Assembler (F) input }
BASIC I ITF: EASIC statements '

| FORT | FORTRAN IV (E, G, Gl or H) |

| staterents and free- or |

} fixed-format FORTRAN statements |
IPLI ITF:PL/1I statements

= PLI PL/I (F) statements

I COBOL Arerican Naticnal Standarxd COBOL

| | statements |

} TEXT } Uppercase and lowercase text !

I DATA : Uppercase text

| CNTL i JCL and SYSIN for SUBMIT command |
CLIST } TSO conmands

} STEX { STATIC external data from ITF:PLI !
OBJ } Object module

{ LIST } Listings l

} LOAD } Ioad module |

{ LINKLIST } Output listing from linkage editor,|

} LOADLIST { Output listing from loader |

l TESTLIST } Output listing from TEST command :

i OUTLIST j Output listing from OUTPUT commandi

Any name that does not conform to the naming conventions must also be

enclosed in apostrorphes.

For example, if ycu have a data set named

RECORDS, with no identification or descriptive qualifiers, enter

'records"'

The system will nct append the identification and descrigtive

qualifiers to such a name.

You can refer to an existing data set by its user-supplied name. 1In

some cases, you may also have to include the descriptive qualifier.

example, if two of your data sets were named:

SMITH. PART1.ASM
SMITH. PART1.DATA

and you want to refer to the latter, you must specify:

partl.data

28 TSO Terminal User's Guide

(Release 20.1)

For

You can also create and edit partitioned data sets. A partitioned
data set consists of one or more data sets called members. Each member
can be created and edited separately and each has a name. The memker
name is enclosed in parentheses and appended to the right of the fully
qualified data set name. For example, the fully qualified name of
member MEM1 of the SMITH.PART1.DATA data set is:

SMITH.PART1.DATA (MEM1)

You need cnly use the user-supplied nawme and member name to refer to
the member. The system appends the identification and descrigtive
qualifiers. For example, to refer to member MEM1 you can sgecify:

partl (meml)

In the following example you use the EDIT command to create memker
ONE of a partiticned data set named JONES.TU42.DATA. The seccnd EDIT
command, creates member TWO of JCNES.T42.DATA. Note that the NEW
operand must be specified in koth cases. The third EDIT ccrmand,
specifies that changes are to ke made to rember ONE.

READY
edit tu42.data(cne) new
INPUT

READY
edit t42.data(two) new
INPUT

READY
edit t42.data(one) old
EDIT

-
-

After you specify the data set name and the NEW or OLD orerand, you
should specify the data set type. The data set type is an orerand that
describes the purpose for which the data set is to be or was created.
The type operand is cne of the sources from which the system can oktain
the descriptive qualifier. The valid types are:

ASM
COBOL
GOFORT
FORT
FORTE
FORTG
FORTH
PLI
PLIF
IPLI
BASIC
DATA
TEXT
CLIST
CNTL

Entering and Manipulating Data 29

You do not have to specify the type operand if you specify it as the
descriptive qualifier. For example, the following two ccmmands have the
same effect:

edit ab75 new asm
edit ab75.asm new

If the system cannot find the data set type from other scurces, you
are prompted for it.

If you do not want your data set to have line numbers, use the NONUM
operand. For example,

edit ab75 new asm nonum

Do not specify NONUM for the BASIC, IPLI, and GOFORT data set types,
because they must always have line numbers.

Except for one case, lines of input are translated to uprercase
letters by the system. If you want the system to retain your input in
the same form as you enter it (uppercase and lowercase), code the ASIS
operand. For example,

edit records new data asis
Creating a Data Set

You usually create a data set when EDIT is in input mode. Ycu request
input mode when you enter one of the following:

e The NEW operand in the EDIT command.
e The INPUT subcommand while you are in edit mode.

After you enter the EDIT command with the NEW operand the system sends
you the following message:

INPUT

After this message is printed the system prints the first line number of
your data set unless you specified NONUM in the EDIT comrand. The first
line number printed is 00010. Type the first line of input tc the right
of the line number and press the RETURN key to enter it. The system
then prints the second line numker, which is 00020, and you may then
enter your second line of input, and so on. When you reach the end of
the data you want to enter, press the RETURN key without entering
anything (a null line) and the system switches to edit mode. The
following example illustrates the points just discussed:

READY

edit accts new data

INPUT

00010 #23942 5 a2.75 acme inc
00020 #32135 21 23.90 bbb coxp
00030 #32174 12 21.80 alpha inds
00040 #49213 35 a7.95 xyz dist
00050 #52221 50 82.35 beta mfg
00060 (null line)

EDIT

30 TSO Terminal User's Guide (Release 20.1)

In the example, the line numkers have the standard increment of 10.
If you prefer a different increment, you can use the INPUT sukcommand to
create the data set. To do this you must first request a switch to edit
mode by entering a null line after you receive the INPUT message. Then
enter the INPUT subccmmand specifying the number of the first line and
the size of the increment. After entering the INPUT subcommand the
system switches to input mode and prompts you with the first line
number. For example, to start with line 5 and use increments of 5, you
could use the fcllowing sequence:

READY

edit accts new data

INPUT

00010 (null line)

EDIT

input 5 5

INPUT

00005 #23942 5 a2.75 acme inc
00010 #32135 21 @3.90 bbb corp
00015 #32174 12 21.80 alpha inds
00020 #049213 35 a7.95 xyz dist
00025 #52221 50 a2.35 beta mfg
00030 (null line)

EDIT v

You can create the same data set in edit mode. However, ycu must
enter the line numbers you wish to use.

READY

edit accts new data

INPUT

00010 (null 1line)

EDIT

5 #23942 5 a2.75 acme inc
10 #32135 21 23.90 bbb corxp
15 #32174 12 21.80 alpha inds
20 #49213 35 a7.95 xyz dist
25 #52221 50 22.35 beta mfg

Note: Requesting an increment larger than 1, makes it easier for you to
insert lines in your data set later on. (See the section "Urdating a
Data Set" for instructions on how to insert lines in your data set.)

Placing Data into Columns

You can use the TAB key of your terminal to align your data in columns,
just as you would with an ordinary typewriter. However, this mechanical
tab setting is nct recognized ky the system which interprets each
striking of the TAB key as a space. For example, if you enter the
following three lines and align them with the TAB key, they arpear at
the terminal as follows:

39427 abcde 49211 72669 akl
22 fghijkl 441 123456 72de
987654 mnop 2 31 Xyz

but they are received by the system as follows:
39427 ABCDE 49211 72669 ABU

22 FGHIJKL 441 123456 72DE
987654 MNOP- 2 31 XYZ%

Entering and Manipulating Data 31

{

If you want the system to place your data into columns, you must
establish logical tab settings with the TABSET subcomrand cf the EDIT
command or else use the defaults provided by the system. If you have
established logical tab settings for your data set, the system will
receive each item in its proper column whenever you press the TAB key.
The mechanical tab settings in your terminal need not corresrond to the
logical tab settings. For example, assume that the logical tak settings
for the data set are columns 10, 20, and 30, while the mechanical tab
settings in the terminal are columns 5, 10 and 15. When you type in the
following three lines using the TAB key: .

abc def ghi jkl1

mno pqr stu vwx

yz0 123 456 789

l | L —w column 15
» column 10
» column 5

» column 1

they are received by the system as follows:

ABC DEF GHI JKL
MNO POR STU VWX
YZ0 123 456 789

= cclumn 20
» cclumn 10
» cclurn 1

‘ L = cclumn 30

You may find it convenient to make the mechanical tab settings
coincide with the logical talb settings.

The default tab settings used by the system vary with the data set
type. They are shown in Table 3.

Table 3. Default Tab Settings

r T 1
| Data Set Type | Default Tab Setting Columns |
L]

[}]

| I

| COBOL | 8,12,72

| PLI | 5,10,15,20,25,30,35,40,45,50

| PLIF | 5,10,15,20,25,30,35,40,45,50

| FORT | 7,72

| ASM l 10,16,31,72

| TEXT | 5,10,15,20,30,40 |
| DATA | 10,20,30,40,50,60

| CLIST l 10,20,30,40,50,60

| CNTL i 10,20,30,40,50,60

| IPLI | 5,10,15,20,25,30,35,40,45,50

| BASIC i

L 1

10,20,30,40,50,60 |

If you want to change the default settings or other settings you
previously established, or nullify all tabs, you must use the TABSET
subcommand. If you want to change the default settings, you will
probably do so before you create the data set. That means you must
request edit mode after you enter the EDIT ccmmand, then enter the
TABSET subcornmand and return to the input mode to create the data set.
For example, if you want to create a TEXT data set with the logical tabs
at columns 10, 25, and 35, you can use the following sequence:

32 TSO Terminal User's Guide (Release 20.1)

READY

edit series new text

INPUT

00010 (null line)

EDIT

tabset 10 25 35
(null line)

INPUT
00010

If you prefer, you can define the tab settings with a line that
consists of blanks and t's. For example, tc establish tab settings in
columns 10, 25, and 35 you can use the TABSET subcommand as fcllows:

tabset image
t t t

You must produce the spaces ketween t's by pressing the srace bar as
many times as necessary. Do not use the TAE key with mechanical tabs to
produce those spaces.

If you want to nullify the existing tab settings for the data set,
enter the TABSET subcommand as follows:

tabset off

Finding and Positioning the Current Line Pointer

Unless you plan to use line numkers for all your edit operaticns, you
should know how to find and reposition the current line pointer. These
operations are described in the following paragraphs.

FINDING THE CURRENT IINE POINTER

The location of the current line pointer is determined by the last
subcommand you entered. Table 4 shows the lccation of the pcinter at
the end of each subcommand. If you do not remember this information,
you can use the LIST subcommand with the * cperand to find the line at
which the pointer is positioned. For example:

list *
USER,HOWEVER,MPST SUPPLY A DATA SET

You can also have the system display the line at which the‘pointer is
positioned everytime the pointer changes as a result of the CHANGE, TOP,
BOTTOM, UP, DOWN, FIND and DELETE subcommands. To do this use the
VERIFY subcormand as follows:

verify

The VERIFY subcommand is in effect until you enter it again with the
OFF operand:

verify off

Entering and Manipulating Data 33

Table 4. Values of the Line Pointer Referred tc by an Asterisk (%)

I T
|Edit Subcomnmands | Vvalue of the Pointer at Cocmpletion of Subcommand
i o _
L] L]
| BOTTOM jLast line (or line zero for empty data sets)
CHANGE Last line changed
DELETE Line preceding deleted 1line, if any, else zero
i | g9 Y
DOWN Line after last line referred to
(or line zero for empty data sets)

| END |No change
FIND Found line, if any, else no change
| l ‘ °
| HELP | No change
I .
| INPUT Last line entered
I I
| INSERT Last line entered

|Insert/Replace/Delete|Inserted line or line preceding the deleted line

o e s e e S . S S o S o " S——— S— . o S S —— — — —— ——— —— —— {— — o— — {— t— t— o oo 2o ol S]

|LIST Last line listed

| PROFILE INO change

=RENUM =Same relative record

RUN }Fo change

| SAVE }No change

SCAN iLast line referred to, if any

| TABSET INo change

lTOP =Zero value

|uP =Line before last line referred to
- | (oxr line zero for empty data sets)

VERIFY iNo change

POSITIONING THE CURRENT LINE POINTER

You can use the UP, DOWN, TOP, BOTTOM and FIND subcomrands tc move the
current line pointer.

The UP subcommand moves the pointer a specified number of lines
towards the beginning of your data set. For example, to mcve the
pointer so that it refers to a line located five lines before the
location currently referred to, enter:

up 5
The DOWN subccmmand moves the pointer a specified number of lines
towards the end of your data set. For examgle, to move the pointer so
that it refers tc a line located 12 lines after the location currently
referred to, enter:

down 12

34 TSO Te;minal User's Guide (Release 20.1)

’

The TOP subcommand moves the pointer to the position preceding the
first line of your data set. TCP is often used in combinaticn with the
DOWN subcommand. For example, if you want the pointer to refer to the
third line of your data set, use the following sequence:

top
down 3

The BOTTOM subcommand moves the pointer tc the last line of the data
set.

The FIND subcommand moves the pointer to a line that contains a
specified sequence of characters. For example, to move the pointer to
the line that contains PLACED BEFORE ENTRY enter:

find xplaced before entry

The "x" inserted before "placed" is a special delimiter that marks
the beginning of the sequence of characters the system has tc search
for. The special delimiter can ke any character other than a number,
semicolon, blank, tab, comma, parenthesis, asterxrisk, or cne of the
characters in the sequence you want to find. The special delimiter must
be placed next to the first character of the sequence yocu want to find.
Do not insert a blank between the special delimiter and the first
character.

If you prefer, you can have the syster start the search fcr the
sequence of characters starting at the same column of each line. For
example, if you want the search for PLACED BEFORE ENTRY to start in
column seven of each line, enter:

find xplaced before entry x7

Note that the same special delimiter used at the beginning of the
sequence of characters must also precede the column number.

The FIND subcommand starts looking for the sequence of characters
beginning with the line at which the pointer is located. Therefore,
unless you are sure the characters are in a line following the one
indicated by the pointer, you should use the TOP subcommand to move the
pointer to the beginning of the data set. Fcr example:

top
find xrlaced before entry

Figure 2 shows a data set used to illustrate the examples cf
positioning the current line pointer. Although this data set has line
numbers, they are not used in the examples.

r)]
1 00010 TEMPERATURE DATA FOR 7/29/70 |
| 00020 HIGHEST, 90 AT 12:30 P.M. I
i 00030 LCWEST, 73 AT 5:40 A.M. |
l 00040 MEAN, 83 |
| 00050 NORMAL ON THIS DATE, 77 |
I 00060 DEPARTURE FROM NORMAL, +6 |
| 00070 HIGHEST TEMPERATURE THIS DATE, 99 IN 1949 i
| 00080 LCWEST TEMPERATURE THIS DATE, 59 IN 1914]
| 00090 TEMPERATURE HUMIDITY INDEX, 81 i
L 1

Figure 2. sSample Data Set

Entering and Manipulating Data 35

Assume that ycu do not know the present lccation of the current line
pointer, and would like to move it to the fifth line (00050). Enter:

top
down 5

To move the pointer from the fifth line (00050) to the third 1line
(00030), enter:

up 2

To move the pointer to the line that contains FROM NORMAL enter:
find xfrom normal

To move the pointer to the last line (00090), enter:

bottom

Updating a Data Set

The subcommands cf the EDIT command allow ycu to update a data set.
That is, they allow you to:

Delete data from a data set.
Insert data in a data set.
Replace data in a data set.
Renumber lines of a data set.

These functicns are descriked in the follcwing paragraphs.

DELETING DATA FROM A DATA SET

If you want to delete only one line of data you do not need a
subcommand. Indicate only the line number cr an asterisk. Fcr example,
if you wvant to delete line 30, enter:

30

If you want to delete the line indicated by the current line rointer,
enter: '

*

You can also use the DELETE sukcommand to perform the same function.
For example,

delete 30
or
delete *

DELETE also allows you to delete more than one consecutive line. To
do so you can sgpecify the line numbers of the first and last lines to be
deleted, or the number of lines to be deleted starting with the line
indicated with the current line pointer. For example, if ycu want to
delete all the lines between, and including lines 15 and 75, enter:

delete 15 75

36 TSO Terminal User's Guide (Release 20.1)

If you want to delete 12 lines starting with the line indicated Ly the
current line pointer, enter:

delete * 12

INSERTING DATA IN A DATA SET

To insert only one line of data you do not need a subcommand; indicate
only the line nurmber. The line number referred to should nct exist.
For example, if you want to insexrt "RECORDELC DAILY IN CENTRAL" in line
22, enter:

22 reccrded daily in central

The characters you want to enter must be separated from the line
number or the asterisk by one blank or one ccmma. Any additicnal Lblanks
or commas are considered to be part of the input data.

To insert more than one line, use the INSERT or INPUT subccmmands.
INSERT can be used only for data sets without line numbers. INPUT can
be used for data sets with or without line numbers.

The INSERT subcommand inserts one or more lines of data following the
location pointed to by the current line pointer. For example, assume
that you have the following data set:

A. CARSON DEPT A72
T. DANIELS DEPT 795
C. DICKENS DEPT 981
R. EMERSON DEPT - 245
E. FARRELL DEPT B32
C. LEVI DEPT' 229
D. MADISON DEPT D49

To insert three lines after the entry for E. FARRELL and kefore the
entry for C. LEVI you must first position the current line pcinter at
the fifth line. Your listing would lcocok like this:

EDIT

top

down 5

insert

INPUT

€. glotz dept 741

p- henry dept 333

h. hill dept R92
(null line)

EDIT

You must enter a null line to indicate the end of your input.

The INPUT subcommand is used in a manner similar to the INSERT
subcommand if your data set does not have line numbers. Use an asterisk
in the INPUT subcommand to indicate that the lines of input that follow
are to be inserted in the location following the current line rointer.
Using the preceding example, to insert the lines:

E. GLOTZ DEPT 741

P. HENRY DEPT 333
H. HILL DEPT R92

after the line for E. FARRELL and before the 11ne for C. LEVI, your
listing would lock 1like this:

Entering and Manipulating Data 37

EDIT

top

down 5

input *

INPUT

e. glotz dept 741

p- henry dept 333

h. hill dept R92
(null line)

EDIT

Note that after entering the INSERT or the INPUT subcommand EDIT
switches to input mode.

If your data set has line numkers, you can use the INPUT subcommand
to insert one or more lines of data between two existing lines of the
data set. You can also indicate a smaller increment for the new line
numbers so that they fit between the line numbers of the existing lines.
For example, assume you have the following data set:

00010 1932 $1.50
00020 2579 $1.39
00030 4798 $1.75
00040 5344 $2.49

To insert three lines between lines 20 and 30, to have the first line
numbered 22, and to increment this number by two in the follcwing lines,
your listing would look as follows:

EDIT

input 22 2

INPUT

00022 2795 $0.79
00024 3241 $2.81
00026 4152 $1.79
00028 (null line)
EDIT

The updated data set would look like this:

00010 1932 $1.50
00020 2579 $1.39
00022 2795 $0.79
00024 3241 $2.81
00026 4152 $1.79
00030 4798 $1.75
00040 5344 $2.49

If you do not change the increment, and there is no room for the new
lines, you receive an error message. If you wish, you can renumber the
lines of your data set. This procedure is explained in the section
"Renumbering Lines of Data".

To enter lines at the end of the data set, enter the INPUT subcommand
without operands. If the data set has line numbers you will ke prompted
with the line number. For example,

EDIT

input

INPUT

00050 6211 $3.95
00060 7199 $0.85
00070 (null 1line)
EDIT

38 TSO Terminal User's Guide (Release 20.1)

REPLACING DATA IN A DATA SET

You can replace an entire line, or a sequence of characters in a line or
in a range of lines.

If you are only replacing one line of data, you do not need a
subcommand. Indicate only the line number or an asterisk. For example,
if you want to replace the contents of line 70 with "SEVERAL REPORTS
WERE MADE", enter:

70 several reports were made

If you want to replace the contents of the line indicated by the current
line pointer, enter:

* several reports were made

The characters you want to enter must be separated from the line
number or the asterisk by only one blank or a comma. Any additional
blanks or commas are considered to be part of the input data.

You can also replace lines of data when you use the INPUT subcommand.
If you use the R operand, the lines starting with the line indicated by
the line number or the asterisk are replaced by the lines you enter.
For example, assume that you have the following data set:

COMPLETION SCHEDULE
STAGE 1 /719
STAGE 2 8715
STAGE 3 9/29

To replace the third and fourth lines, you must first positicn the
current line pointer at the third line.

EDIT

top

down 3

input * r

INPUT

stage 2 8/21

stage 3 9/15
(null line)

EDIT

Your updated data set would look like this:

COMPLETION SCHEDULE
STAGE 1 7719
STAGE 2 8/21
STAGE 3 9/15

In the following example, assume that the data set has line numbers:

00010 COMPLETION SCHEDULE
00020 STAGE 1 7/19
00030 STAGE 2 8/15
00040 STAGE 3 9/29

Entering and Manipulating Data 39

To replace lines 30 and 40, your listing should look as fcllcws:

EDIT

input 30 r

INPUT

00030 stage 2 8/21
00040 stage 3 9/15
00050 (null line)
EDIT

Your updated data set will look as follows:

00010 COMPLETION SCHEDULE
00020 STAGE 1 7/19
00030 STAGE 2 8r21
00040 STAGE 3 9/15

If the data set has line numkers, you can replace a line and insert
additional lines. For example, assume the same data set:

00010 COMPLETION SCHEDULE
00020 STAGE 1 7/19
00030 STAGE 2 8/15
00040 STAGE 3 9729

To replace line 30 and insert two lines with a line increment of 2, your
listing should lcok as follows:

EDIT

input 30 2 r

INPUT

00030 stage 2 part 1 8/15
00032 stage 2 part 2 8/21
00034 stage 2 part 3 9/15
00036 (null line)
EDIT

Your updated data set will look as follows:

00010 COMPLETION SCHEDULE
00020 STAGE 7719

00030 STAGE PART 1 8/15
00032 STAGE PART 2 8/21
00034 STAGE PART 3 9715
00040 STAGE 9/29

wNoNN e

To replace more than one line with a greater number of lines, you can
also use the DELETE subcommand to delete thcse lines and then use either
INPUT or INSERT to insert the replacement lines. Use this procedure
when the data set does not have line numbers.

Use the CHANGE subcommand to change only part of a line cor lines.
For example, to change the characters "DAILY INVENTORY" to "WEEKLY
REPORT" in line 12 of your data set, enter:

change 12/daily inventory/weekly report/

The "/" placed before the characters to be changed and the
replacement characters is a special delimiter that marks the beginning
of those sequences of characters. The special delimiter can be any
character other than a number, klank, tab, comma, semicolon,
parentheses, or asterisk. Make sure the character you select as a
- special delimiter does not appear in the sequence of characters you
specify. If you leave blanks between the last character to ke replaced

40 TSO Terminal User's Guide (Release 20.1)

and the special delimiter for the replacement characters, the klanks are
considered part of the characters to be replaced.

Instead of using a line number you can use an asterisk. For example
if the change is to be made to the line indicated by the current line
pointer, enter:

change * xdaily inventoryxweekly reportx

You can have the system search for a sequence of characters in a
range of lines rather than in one line. You can indicate the range of
lines by giving the numbers for the first and last lines of the range,
or by indicating the current line pointer and the number of lines you
want to have searched. For example, if the characters "DAILY INVENTORY"
appear somewhere between lines 15 and 19, enter:

change 15 19 !daily inventory!weekly report!

If the characters appear within the 10 lines starting with the one
indicated by the current line pointer, enter:

change * 10 ?daily inventory?weekly report?

You can change the sequence of characters every time it agpears
within the range of lines. To do this specify the ALL operand after the
replacement sequence. ALL must ke preceded by the same special
delimiter that precedes the character sequences. For example,

change 15 19 !daily inventory!weekly report! all
or
change * 10 !daily inventory!weekly report! all

If you wish, you can have the system locate a sequence of characters
in a line and print that line up to those characters. You can then type
new characters to complete the line and enter the new line when you
press the RETURN key. For example, assume that you want to change the
characters “TUESDAY" to "THURSDAY" in the following 1line:

00015 PARTS DELIVERIES ARE MADE ON TUESDAY
Your listing will look as follows:

change 15/tuesday :

00015 PARTS DELIVERIES ARE MADE ON thursday
If the characters you want to change are in the line indicated by the
current line pointer, your listing would lcck like this:

change #*/tuesday

00015 PARTS DELIVERIES ARE MADE ON thursday

You can also request that the system print out the first few
characters of a given line. Then you can enter the characters you want
to replace the remaining characters in the line. For example, you can
request that the first 29 characters of the line "PARTS DELIVERIES ARE
MADE ON TUESDAY" be printed:

change 15 29
00015 PARTS DELIVERIES ARE MADE ON thursday

Entering and Manipulating Data 41

You must use line numbers for this type of reference. You can also
have the system print the first characters of a range of lines. This is
particularly useful when you want to change a column in a takle. For
example, assume that you have the following data set:

00010 ENROLLMENT DATES

00012 P. JONES MAY 15 JUNE 12

00014 A. SMITH MAY 31 JULY 19

00016 J. DOE JUNE 7 JULY 17

00018 B. GREEN JUNE 9 AUGUST 3

If you want to change the data in the last cclumn, which begins in
position 17, enter:

change 10 18 17

00010 ENROLLMENT DATES

00012 P. JONES MAY 15 june 25
00014 A. SMITH MAY 31 july 23
00016 J. DOE JUNE 7 Jjuly 31
00018 B. GREEN JUNE 9 august 10

RENUMBERING LINES OF DATA

You can use the RENUM subcommand to assign line numbers to a data set
without line numbers, or to renumber the lines of a data set with line
numbers. If you enter:

renum
the system assigns new line numbers to all the lines of the data set

beginning with number 10 and incrementing the following line numbers by
10.

You can assign a number to the first line of the data set. For
example if you want the first line to have number 5, enter:

renum 5
The remaining line numbers will ke 15,25,35, etc.

You can specify an increment other than 10 in addition to the number
of the first line. For example if you want the first line tc ke number
one, and the remaining line numbers to increase by 3, enter:

renum 1 3

If your data set already has line numbers you can specify that
renumbering is to start at a given line. You must also specify the new
number for this line (which must be equal tc or greater than the old
line number) and the increment. For example, if you want to start
renumbering at line 23, and the new line number is to be 25 and the
increment is to be 5, enter:

renum 25 5 23

42 TSO Terminal User's Guide (Release 20.1)

Listing the Contents of a Data Set

The LIST subcommand allows you to display the contents of a data set at
your terminal. To list the entire contents of the data set, enter:

list

. Yyour data set is listed here

To list a group of lines, enter the number of the first and last
lines of the group. For example, to list lines 20 through 110 of the
data set, enter:

list 20 110

If your data set does not have lines numbers you can use the current
line pointer and the number of lines to be listed. For examrle, to list
the 20 lines that begin with the line indicated by the pointer enter:

list * 20

To list only cne line, indicate the line number or the current line
pointer. For example, if you wish to list line 22, enter:

list 22

If you want to list the line pointed at by the current line rointer,
enter:

list #*

You can use the SNUM operand to suppress listing the line numbers of
a line-numbered data set. (If your data set does not have line numbers,
this operand has no effect.) For example, any of the following commands
produces a listing of the lines indicated without their line numkers:

list snum

list 20 110 snum
list * 20 snum
list 22 snum
list * snun

Storing a Data Set

The data set you have created or the changes you made to a previously
existing data set are retained ky the system only until you finish using
the EDIT command and its subcommands. That is, as soon as ycu notify
the system that you want to use another cormand and you get a READY
message, your newly created data set, or your new set of changes, is
discarded. If you want the system to make your new data set a permanent
data set, or if you want the system to incorporate your changes into the
existing data set, you must use the SAVE subcommand of the ELCIT command.

Entering and Manipulating Data 43

For example, in the following sequence ycu create a data set named
RECORDS and ask the system to store it as a permanent data set:)

READY
edit records new data
INPUT
00010
00020
00030
00040
EDIT
save
SAVED
end
READY

project 21

project 23

project 39
(null line)

7/10-8/25 a. jomes
7/10-9/12 pP. smith
8/1-9/15 r. brown

In the following sequence you add a line to the RECORDS data set and
ask the system to make it part of the data set:

READY

edit records o0ld data
EDIT

40 project 42
save

SAVED

end

READY

8/15-9/21 s. green

In some cases you may want to preserve the existing data set intact
and have the system make the changes to a data set that is a copy of the
original data set. To do this you must enter a new data set name for
the copy when you enter the SAVE subcommand. For example, if you want
to keep the RECORDS data set intact, and you want your changes to ke
made to a copy of RECORDS named PROJS, use the fcllowing sequence:

READY

edit records old data
EDIT

40 project 42
save projs
SAVED

end

READY

8/15-9/21 s. green

Now you have

00010
00020
00030

The data

00010
00020
00030
00040

44 TSO Terminal Userxr's Guide

two data sets. The one named REC

PROJECT 21 7/10-8/25 A. JONES
PROJECT 23 7/10-9/712 P. SMITH
PROJECT 39 8/1-9/15 R. BROWN

set named PROJS looks as follows:

PROJECT 21 7/10-8/25 A. JONES
PROJECT 23 7/10-9/12 P. SMITH
PROJECT 39 8/1-9/15 R. BROWN
PROJECT 42 8/15-9/21 S. GREEN

(Release 20.1)

ORDS looks like this:

You can use the SAVE subcommand whenever you are using the EDIT

command. For example, you can create a data set and save it.

Then you

can start making changes to the data set and once you are satisfied with
those changes you can save them to make them part of the data set.
example, in the following sequence you create a data set, save it,

replace line 30, insert three lines after line 50, list the data set,

delete line 56, renumber the data set, and save it.

READY

edit phones new text

INPUT
00010
00020
00030
00040
00050
00060
00070
00080
00090
EDIT
save
SAVED
30
input 52 2
INPUT
00052
00054
00056
EDIT
list

00010
00020
00030
00040
00050
00052
00054
00056
00060
00070
00080
delete 56
renum
save
SAVED
end
READY

telephone listing - sales dept

Je
C.
Ade
b.
e.
f.
d.

Ce

1‘.
Je
e.

adams
allan
bailey
crane
foster
graham
murphy

alden

davis
egan
foster

TELEPHONE

Ja
C.
A.
B.
L.
Je
E.
E.
F.
D.

ADAMS
ALDEN
BAILEY
CRANE
DAVIS
EGAN
FOSTER
FOSTER
GRAHAM
MURPHY

1291
2431
3255
4072
1384
2291
9217

2441

4119
6835
1384

LISTING
1291
24413
3255
4072

- SALES DEPT

Entering and Manipulating Data

For

45

Ending the EDIT Functions

Use the END subcommand to terminate the operation of the EDIT command.
If you have made changes to your data set and have not entered the SAVE
subcommand, the system will ask you if you want to save the modified
data set. If so you can enter the SAVE subcommand. If you do not want
to save the changes, reenter the END subcommand.

After you enter the END sukcommand you receive the READY message.
You can then enter any command you choose.
{

Renaming a Data Set

The RENAME command allows you to:

e Change the name of a data set.
e Change the name cf a member of a partitioned data set.
e Assign an alias to a member of a partitioned data set.

If you have a data set named SMITH.RECPT.DATA and you want to change
it to SMITH.ACCT.DATA, you can do so with any of the following RENAME
commands :

rename 'smith.recpt.data‘ *smith.acct.data’
rename recrt.data acct.data
rename recpt acct

Note that the fully qualified name must be enclosed in apostrophes.

The simple user-supplied name can be used if you have only one data
set with that name. For example, if you have two data sets named
SMITH.RECPT.DATA and SMITH.RECPT.TEXT, you must specify either
RECPT.DATA or 'SMITH.RECPT.DATA' in the RENAME subcommand. If you do
not specify the descriptive qualifier, the system will prompt you for
it.

The following examples show how you can use RENAME to change the
identification qualifier or the descriptive qualifier.

rename 'smith.acct.data' *jones.acct.data"
rename acct.data acct.text

The following examples show how you can change more than one qualifier.

rename 'smith.acct.data' 'jones.recpt.text®
rename acct.data recpt.text

When changing the name of a member of a partitioned data set, you
must specify the existing data set name and member name and the new
nmember name. For example, to change the name of a member of JONES.AB79.
DATA from INPUT to ENTRY, you can do so with any of the follcwing
commands :

rename 'jones.ab79.data(input)' (entry)
rename ab79.data(input) (entry)
rename ab79(input) (entry)

Use the ALIAS operand to indicate that the new member name is an

alias and not a replacement. For example to assign the alias DAILY to
member INPUT of JONES.AB79.DATA, use any of the following:

46 TSO Terminal User's Guide (Release 20.1)

rename °‘jones.ab79.data(input)' (daily) alias
rename ab79.data(input) (daily) alias
rename ab79(inrut) (daily) alias

After entering this command the name of the member is either
JONES.AB79.DATA (INPUT) or JONES.AB79.DATA(DAILY).

Sometimes you may have two or more data set names that are identical
in all but one of their qualifiers. For example, you may have these
data sets:

JONES.ALPHA.DATA

JONES.BETA.DATA
ox

JONES.ALPHA.DATA

JONES.ALPHA.ASM
or

JONES.ALPHA.DATA

SMITH.ALPHA.DATA

You can use the RENAME command to replace one or both of their common
qualifiers. For example, you may want to change the group:

JONES.ALPHA.DATA

JONES.BETA.DATA
to

JONES.ALPHA. TEXT

JONES.BETA.TEXT
or to

SMITH.ALPHA.DATA

SMITH.BETA.DATA
or to

SMITH.ALPHA.TEXT

SMITH.BETA.TEXT

In order to make the change, replace the dissimilar qualifier with an
asterisk. For example,

jones. *.data
stands for "all data sets vhose identification qualifier is JONES and
whose descriptive qualifier is DATA". You can then enter the RENAME
command :

rename *.data *.text

to change the group

JONES.ALPHA.DATA
JONES. BETA.DATA

to

JONES.ALPHA. TEXT
JONES.BETA.TEXT

Enter the command
rename 'jones.*.data' 'smith.*.data’
to chahge the grcup
JONES.ALPHA.DATA
JONES.BETA.DATA

Entering and Manipulating Data 47

to

SMITH.ALPHA.DATA
SMITH.BETA.DATA

Enter the command
rename 'jones.*.data' 'smith.*.text’
to change the group

JONES. ALPHA.DATA
JONES.BETA.DATA

to

SMITH.ALPHA.TEXT
SMITH.BETA.TEXT

Deleting a Data Set

Use the DELETE ccmmand to delete one or more data sets or one or more
nmembers of a partitioned data set.

If you have a data set named BROWN.INPUT.TEXT and you want to delete
it, enter

READY
delete input
READY

If you have two data sets named BROWN.INPUT.TEXT and BROWN.DAYS.DATA
and you want to delete them, enter:] ’

READY
delete (input days)
READY

If you want to delete member FIRST of the MARY.ALPHA.ASM tartitioned
‘data set enter: ‘

READY
delete alpha(first)
READY

If member FIRST has the alias LAST, and you want to delete both the
member name and its alias, enter:

READY
delete alrha(first) alpha(last)
READY

You may have a group of data sets whose names differ only in the
user-supplied name or in the descriptive qualifier. For examgle,

HELEN.LIST.DATA

HELEN.LINES.DATA

HELEN.DATES.DATA
or

LUCY.WEATHER.ASM

LUCY.WEATHER.DATA

LUCY.WEATHER. TEXT

48 TSO Terminal User's Guide (Release 20.1)

To delete the entire group, place an asterisk in the position where
the names do not match. (The asterisk cannot replace the user
identificaticn.) For example, to delete the first group use the
following:

READY
delete *.data
READY

To delete the second group use the following:

READY
delete weather.#*
READY

Establishing Passwords for a Data Set

Use the PROTECT command to estaklish passwords for your data set.
Passwords prevent unauthorized persons from reading (listing) or writing
(making changes to) your data set. Whenever anyone attempts to use a
password-protected data set, the system requests a password unless the
data set is protected with the same password that was entered in the
logon procedure. The system allows two chances to provide the correct
passvword. If your terminal has the "print-inhibit" feature, the system
disengages the printing mechanism at your terminal while ycu enter the
password in response. However, the "print-inhibit" feature is not used
if the prompting is for a new password you are adding to the data set.

The PROTECT command also specifies what the person who kncws the
password can do to the data set; that is, whether he is allowed to read
it, or write in it, or both. You can require a password for both
reading and writing; or just for reading and not writing. You can also
assign one password for reading and a different one for writing. The
operands that control the type of operations are:

PWREAD -- you must specify a password before you can read from the data
set. .

PWWRITE -- you must specify a password before you can write in the data
set.

NOPWREAD -- you can read from the data set without specifying a
password.

NOWRITE -- you cannot write into the data set (with this password).
There are three valid combinations of operands:

PWREAD PWWRITE -- the password is required for either reading or writing
your data set.

PWREAD NOWRITE -- the password is required for reading. Writing is not
allowed with this password.

NOPWREAD PWWRITE -~ you can read without a password. The password
allows you to both read and write the data set.

Entering and Manipulating Data 49

If you specify only one operand you get two values by default. They
are:

Operand Default Values
PWREAD PWREAD PWWRITE
NOPWREAD NOPWREAD FWWRITE
PWWRITE NOPWREAD PWWRITE
NOWRITE PWREAD NOWRITE

The type of password operand, the number of times the password is
used, and optional security information that you can specify are
recorded in the PASSWORD data set of the operating system.

The following example adds the password HUSH for reading and writing
the JONES.SECRET.DATA data set:

READY .
protect secret add(hush) pwread
READY

The following example adds another password, WHUSH, to the same data
set. This password can be used only for reading the data set:

READY
protect secret/hush add(whush) nowrite
READY

Note how you must use the password in subsequent commands once you
bhave established it.

You can replace a password. For example, to replace the password
SESAME for HUSH in the JONES.SECRET.DATA data set, enter

READY
protect secret/hush replace (hush,sesame)
READY

Note that when you are replacing a password you do not have to
specify the function of the password.

You can also delete a password. For example, if you no lcnger
require the WHUSH password for reading the data set, enter

READY
protect secret/sesame delete(whush)
READY

You can use the DATA operand to specify optional security information
to be recorded in the system. For example, when you establish the
password AB#72 for the SMITH.SALES.TEXT data set, you can alsc specify
other information:

READY
protect sales add(ab#72) data(password changes on monday)
READY

To find out what the optional information is, the type of operation
allowed, and the number of times the password has been used, use the
LIST operand. For example,

protect sales list(ab#72)

Note: When a data set is renamed you should update the password data
set to reflect the change. This prevents your having insufficient space
for future entries.

50 TSO Terminal User's Guide (Release 20.1)

Allocating a Data Set

This section is intended for those users who are going to compile, link
edit, or execute (or load) a program. Knowledge of a programming
language (such as System/360 Assembler, COBOL, FORTRAN or PL/I) and of
the Job Control Language (JCL) statements required to compile, link
edit, and execute the program is useful for understanding this section.

The compiler, linkage editor, loader, and your own program require
data sets in order toc operate. In an operating system without TSO these
data sets are defined with data definition (DD) JCL statements. In TSO,
these data sets are defined through the EDIT and ALLOCATE commands. You
can use the EDIT command to define and create input data sets. You can
use the ALLOCATE command to define output and work data sets and
libraries, and to allocate the data sets you created with the EDIT
command. This section discusses the ALLOCATE command.

Note: Compilers that have prompters associated with them will allocate
data sets for you. Your installation can tell you if these Program
Product facilities are available to you. The data sets for the linkage
editor and loader are allocated for you by the LINK and LOADGO commands,
respectively. You need only allocate them if you invoke the linkage
editor or the loader with the CALL command.

The number of data sets you need is determined by the prcgram
(compiler, linkage editor, loader, or your own program) you are going to
use. (The publications associated with the IBM-supplied prcgrams list
the data set requirements.) The number of data sets you can allocate
depends on the number of data sets assigned to you in your LOGON
procedure. The LOGON procedure defines a series of data sets. Some of
these data sets are fully defined and correspond to data sets that you
alvays need in your processing. The remaining data sets are left
undefined; they are defined when you define a data set with an ALLOCATE
or EDIT command.

When you define a data set with the ALLOCATE command, it remains
allocated until you use the FREE command to free the data set
definition. (The FREE command is described in "Freeing an Allocated
Data Set.")

When you create a data set with the EDIT command, the system uses one
of the undefined data sets in the LOGON procedure to define the data
set. When you save the data set and end the EDIT command, the system
saves the data set, enters its name in the system catalog, and frees the
definition in the LOGON procedure for further use. When you again use
the EDIT command to make changes to the saved data set, the system finds
the data set through the system catalog and uses another of the
available definitions to define the data set. When you end the EDIT
command, the system frees the data set definition. If you want the data
set to remain allocated in your LOGON procedure, you must use the
ALLOCATE command.

You can list the data sets allocated to you with the LISTALC command
(described in "Listing the Names of Your Data Sets"). The system lets
you know, as part of the LISTALC listing, how many DD statements are
available for allocation. For example, if there are five available data
sets you get the following message:

5 DATA SETS CAN BE ALLCCATED DYNAMICALLY

You can allocate as many data sets as there are available
definitions. If you need more data sets you can free a previously
allocated data set with the FREE command {(described in "Freeing an
Allocated Data Set"). After you free a data set, you can use the

Entering and Manipulating Data 51

available definition to allocate another data set with the ALLOCATE
command.

If you have to allocate the same data sets everytime you logon, you
can have your installation allocate them in the form of fully defined
data sets in the LOGON procedure. In this way you do not have to
allocate the same data sets everytime you logon.

The example in Figure 3 illustrates the use of the ALLOCATE command
for allocating the data sets required for an execution of the Assembler
F compiler. The assembler requires eight data sets for this
compilation. They are:

SYSLIB The macro likbrary (SYS1l.MACLIB).

SYSUT1 Work data set.

SYSUT2 Work data set.

SYSUT3 Work data set.

SYSPRINT Output listing data set. Your terminal is allocated

for this purpose.

SYSPUNCH Data set for a punched deck of an object mcdule. It .

is to be produced on the standard message output
class. (To change this output class to a runch
output class, see "Freeing an Allocated Data Set".)
SYSGO Data set for the object module.
SYSIN Input source statements to the Assembler. It is
created with the EDIT command and defined to the
assembler with the ALLOCATE command.

READY
edit input.asm new
INPUT
.source statements

-

EDIT

save

SAVED

end

READY

allocate dataset('sysl.maclib') file(syslib) shr
READY

allocate file(sysutl) new block(400) space(400,50)
READY

allocate file(sysut2) new block(400) space(400,50)
READY

allocate file(sysut3) new block(400) space(400,50)
READY

allocate dataset(*) file(sysprint)

READY

allocate file(syspunch)sysout

READY

allocate dataset(prog.obj) file(sysgo) new block(80) space(200,50)
READY

allocate dataset(input.asm) file(sysin) old

READY

e o B - (i ——— ——— A S — —- — — — — —f— Sp— ———— — — — — {— — S— f— T——— — —]

L e e T A S e A _— — — —— ———— T —— S S o S S S L fo S S S ot i S —— i, e g}

Figure 3. Allocating Data Sets for the Assembler F

52 TSO Terminal User's Guide (Release 20.1)

Freeing an Allocated Data Set

Use the FREE command to release any data sets allocated to ycu. You can
also use this command to change the output class of a SYSOUT data set.

To free a data set specify its data set name or its file name
(ddname). If your terminal has keen allocated as a data set, you must
free it through its file name. You can use the LISTALC command to
obtain the file names and data set names of the data sets allocated to
you. (LISTALC is described in the Section, "Listing the Names of Your
Data Sets".)

The following examples free the data sets allocated in Figure 3 of
the section "Allocating a Data Set". The output class of the SYSPUNCH
data set is changed to B.

free dataset('sysl.maclib',prog.obj,input.asm) file(sysutl,-
sysut2, sysut3, sysprint, syspunch) sysout (b)

Listing the Names of Your Data Sets

Use the LISTALC, LISTCAT, and LISTDS commands to list the names of your
data sets and obtain further information about them.

LISTALC lists the data sets defined in your LOGON procedure. Both
the fully defined data sets and those available for allocation are
listed.

LISTCAT lists the names of all cataloged data sets that have your
user identification. Cataloged data sets are those whose names are
entered in the system catalog. The system catalog is a list the system
keeps of the names and locations of cataloged data sets. Your cataloged
data sets may or may not be defined in your LOGON procedure. Data sets
that are cataloged but not entered in the LOGON procedure are those that
you create and save with the EDIT command but do not allccate with the
ALLOCATE command. Other cataloged data sets are those that you have
created and saved during previous terminal sessions but never deleted
with the DELETE command.

LISTDS gives you information on specific data sets which are
currently cataloged or allocated, or both. The information you receive
includes:

e The serial number of the volume on which the data set resides.

o The record format, logical record length, and blocksize of the data
set.

e The data set organization.

e Directory information for a member of a partitioned data set.

This information is described in detail in the publicaticn IBM
System/ 360 Operating System: Jok Control lLanquage User's Guide,
GC28-6703.

Entering and Manipulating Data 53

In addition to the information listed above for the three ccmmands,
there are certain operands you can use to cobtain additional information
on the data sets. The operands and the commands to which they apply
are:

Operand LISTALC LISTCAT LISTDS
STATUS X X
HISTORY X X X
MEMBERS X X X
SYSNAMES X

VOLUMES X

LEVEL X

LABEL ’. X

The STATUS operand provides you with:
e The file name(ddname) for the data set.

e The scheduled disposition and conditional disposition of the data
set. The scheduled disposition determines whether the system will
retain or delete the data set after it is used. The conditional
disposition determines whether the system is to retain or delete the
data set in case of abnormal termination. The keywords that denote
the dispositions are CATLG, KEEP, DELETE and UNCATLG. CATLG means
that the data set is retained and its name is kept in the system
catalog. KEEP means that the data is retained but nct cataloged.
DELETE means that all references to the data set are to ke removed
from the system and that the space it occupies is to be released for
use by other data sets. UNCATLG means that a previously cataloged
data set is retained, but its name is removed from the catalog.

The HISTORY operand provides you with:

e The creation date of the data set.

e The expiration date of the data set.

e An indication as to whether or not the data set has password
protection.

e The data set organization.

The MEMBERS orperand provides you with a list of the member names of a
partitioned data set including any aliases.

The SYSNAMES operand provides you the names assigned by the system to
any allocated data set you did not name.

The VOLUMES orperand provides you with the serial numbers cf the
volumes on which your cataloged data sets reside.

The LEVEL operand lets you request a listing of only part of your
cataloged data sets, or a listing of some other user's cataloged data
sets.

The LABEL operand provides you with the information in the Data Set
Control Block (DSCB) of a specific data set.

54 TSO Terminal User's Guide (Release 20.1)

Programming at the Terminal

You can use the TSO facilities to compile, link edit, and execute (or
compile and load) your source program at the terminal. TSO also allows
you to use any other program, such as utilities, at the terminal. That
is, instead of taking your jok to the computer room to run it directly
under the operating system, you can use the TSO facilities tc enter it
through your terminal. These facilities reduce your job turnaround time
because you get immediate results at the terminal.

You can also use the terminal to submit your job for processing at
the computer in the conventional manner. That is, you submit your job
through the terminal but do not want to get immediate results at the
terminal. The results are sent to you from the computer room after your
job is executed or you may obtain them at the terminal at a later time.
Jobs submitted in this manner are called background jobs.

Most compilers or assemblers that can be used under the orerating
system can be used from your TSO terminal. They can be used to obtain
results at the terminal, or for background jobs. 1In additicn to these
programs, your installation may have one or more of the special TSO
Program Product compilers and other TSO programs for your use at the
terminal. They are:

e Interactive Terminal Facility (ITF): PL/I -- A problem-solving
language processor.

s Interactive Terminal Facility (ITF): BASIC -- A problem-solving
language processor.

e Code and Go FORTRAN -- A FORTRAN compiler designed fcr a very fast
compile-execute sequence at the terminal. .

e FORTRAN IV (Gl) -- A version of the FORTRAN IV (G) compile modified
for the terminal environment.

e TSO FORTRAN Prompter —-- An initializaticn routine to promgt you for
options and invoke the FORTRAN IV (Gl) Processor.

e FORTRAN IV Library (Mod I) -- Execution-time routines for use with

either Code-and-Go FORTRAN or FORTRAN IV (Gl).

e Full American National Standard COBOL Version 3 -- A version of the
American National Standard COBOL modified for the terminal
environment.

e TSO COBOL Prompter —- An initialization routine to prompt you for

options and invoke the full American National Standard COBOL Version
3 Processor.

e TSO Asserbler Prompter -- An initialization routine to prompt you
for options and invoke the Assembler (F).

If your installation has one or more of the TSO Program Products, it
will provide you with documentation that explains how to use them. This
section explains how to use the programs normally availakle under the
operating system. The following paragraphs describe how you can:

Create a program

Compile your program
Link edit a compiled program

Programming at the Temminal 55

Execute a program

Load a program

Process backaground jobs

It is assumed that you are familiar with a programming language and
with the information in the Guide to Writing a Terminal Monitcx Program
or a Command Processor or Terminal User's Guide that correspcnds to that
language. The ortions and data set requirements of the comgilers,
linkage editor, and loader are summarized in the publication, IBM
System/ 360 Operating System: Job Control lLanquage User's Guide,
GC28-6703.

Creating a Program v

Before your source program is compiled you must introduce it to the
system. You do so with the EDIT command, as described in the section,
"Entering and Manipulating Data".

When you enter the EDIT command you must specify the type orerand or
give a descriptive qualifier to the data set name. The type (or
descriptive qualifier) tells the system which programming language you
are using. If you are writing a program and JCL statements to be
submitted as a background job, use CNTL as the type or descriptive
qualifier.

The EDIT command allows you to specify certain options for your
source program. You can use the SCAN operand to request syntax checking
when the data set type is GOFORT, FORT, BASIC, PLIF, PLI, or IPLI. You
can use the LINE operand specify the length cf the input line for PL/I
source programs. The length of the input line for the Assemkler,
FORTRAN, and COBOL is 80 characters.

After you create your source program you must use the SAVE subcommand
to save the data set before you end the EDIT command. Your source
program is now ready for compilation.

The example in Figure 4 shows the creation of an assembler source
programe.

READY
edit progl newv asm
INPUT
- |
- |
| - source program |

| EDIT
save
SAVED
| end

| READY
L

RS |

Figure 4. Creating an assemkler source program

56 TSO Terminal User's Guide (Release 20.1)

/

Compiling a Program

If you are using a TSO Program Product compiler and prompter, you can
ignore this section. The promptexr allocates data sets and calls the
compiler for you.

You can use the CALL command to invoke the compiler that will compile
your source program. Before you use the CALL command to invcke the
compiler you must use ALLOCATE commands to allocate all the data sets
required for comgpilation. Data set allocation is discussed in
"Allocating a Data Set" in the section "Entering and Manipulating Data".
The data sets required by your compiler are described in the Guide to
Writing a Terminal Monitor Program or a Command Processor or Terminal
User's Guide associated with your compiler.

You must give the data set name of your compiler in the CALL command.
The data set names are shown in Table 5.

Table 5. Data Set Names of the Compilers

r T
|Compiler |Data Set Name
}

'SYS1.LINKLIB(IEUASM) '
|COBOL E 'SYS1.LINKLIB(IEPCBLO00)"
|coBOL F 'SYS1.LINKLIB(IEQCBLO00)"'

]
] T
|Assembler F |
|

|American National Standard COBCL | "SYS1.LINKLIB(IFFCBLO00) "
|
|
|
I
1

| FORTRAN E 'SYS1.LINKLIB(IEJFAAARCQ)"

| FORTRAN G *SYS1.LINKLIB(IEYFORT) "

| FORTRAN H 'SYS1.LINKLIB (IEKAA00) '
'*SYS1.LINKLIB(IEMARA)"

Sy S S

|PL/I F
L

Note that the data set name is a fully qualified name and must be
enclosed in apostrophes. For example, if you want to use the FORTRAN H
compiler, enter:

READY
call '"sysl.linklib(iekaa00)"*

In additicn to the compiler's data set name, you can enter the
compiler options you desire in the CALL command. These opticns are
those specified with the PARM parameter of the EXEC statement when you
are running your program directly under the operating system rather than
through TSO. For example, if you want to use the MAP, NOID, and OPT=2
options of the FORTRAN H compiler, enter:

READY
call "sysl.linklib(iekaa00)"' 'map noid opt=2"

Any messages and other output produced by the compiler will appear in
your listing after the CALL command. Once the compiler comgletes its
processing you receive the READY message. You can then free any
allocated data sets you no longer need.

Figure 5 shows the commands required to create a COBOL source
program, allocate the eight data sets required for compilaticn, call the
COBOL F compiler, and free all allocated data sets except the one that
contains the compiled program (okject module). It is assumed you are
using your user identification as part of all data set names except
SYS1.COBLIB.

Programming at the Terminal 57

READY
edit prog2 newv cobol
INPUT

— e =
—— —)

- source program |
- |

EDIT
save
SAVED
end
READY |
allocate dataset('sysl.coblib') file(syslib) shr i
READY

allocate file(sysutl) new block(460) space(700,100)
READY

allocate file(sysut2) new block(460) space(700,100)
READY

allocate file(sysut3) new block(460) space(700,100)
READY

allocate file(sysut#4) new block (460) space(700,100)
READY

allocate dataset(#*) file(sysprint)

| READY |
| allocate dataset(prog2.obj) file(syslin) new block(80) space(500,100) |
READY

allocate data set(prog2.cobol) file(sysin) old

READY

call '"sysl.linklib(ieqcbl00)' 'map load nodeck flagw®

-

COBOL listings and messages

| READY |
free file(syslib,sysutl,sysut2,sysut3,sysutl,sysprint,sysin)

READY
L 1

Figure 5. COBOL Compilation

Link Editing a Compiled Program

The LINK command makes availakle to you the services of the linkage
editor. The linkage editor processes the compiled program (cbject
module) and readies it for execution. The processed object module
becomes a load module. Optionally, the linkage editor can process more
than one object module and/or load module and transform them into a
single load module. For complete informaticn on the linkage editor,
refer to your Guide to Writing a Terminal Mcnitor Program or a Command
Processor and to the publication, IBM System/360 Operating System:
linkage Editor and Loader, GC28-6538.

In your LINK command you must first list the name or names of the
ocbject modules you vwant to link edit. (If you omit the descrirtive
qualifier the system assumes OBJ.) After the names of the cbject
modules you should use the LOAD operand to indicate the name of a member
of a partitioned data set where you want the load module placed. (If
you omit the user-supplied name of the load module data set the system
assumes it has the same user-supplied name as the object module. If you

58 TSO Terminal User's Guide (Release 20.1)

omit the descriptive qualifier the system assumes LOAD. If you omit the
member name the system assumes TEMPNAME.) For example, if you want to
link edit the load module in the JONES.PROG2.0BJ data set and place the
resultant load module in member TEMPNAME of the JONES.PROG2.LOAD data
set, enter:

READY
link prog2

If you vwant to link edit the load module in the JONES.PROG2.0BJ data
set and place the resultant load module in member ONE of the
JONES.MODS.LOAD data set, enter:

READY
link prog2 load (mods(one))

The following example shows how to link edit the two object modules
in the SMITH.PGM1.0BJ and SMITH.PGM2.0BJ data sets. The resultant load
module is placed in member TEMPNAME of the SMITH.LM.LOAD data set.

READY
link pgml,pgm2 load (1lm)

You can control the link editing process with linkage editor control
statements. These control statements can be in a previously created
data set, or can be introduced through the terminal. You must give the
name of the data set, or an asterisk (indicating that you will introduce
the control statements through the terminal) in the list of input data
sets. The following example shows how to link edit the object module in
the CARTER.TRAJ.OBJ data set. There are control statements in the
" CARTER.CNTL.DATA data set. The load module is placed in member TEMPNAME
of CARTER.TRAJ.LOAD.

READY
link(traj,cntl.data)

Using the same example, if you want to introduce the control
statements through your terminal, enter:

READY
link(traj,®

The system will prompt you for the control statements at the
appropriate time. You must follow your last control statement with a
null line.

You can also have the linkage editor search a subroutine library to
resolve external references. (External references are references to
other modules.) The subroutine library is usually one of the language
libraries and it is specified with one of the following operands:

Operand Subroutine Library
COBLIB SYS1.COBLIB
FORTLIB SYS1.FORTLIB
PLILIB SYS1.PL1LIB

In addition to, or instead of a language library, you can use the LIB
operand to specify the name of one or more user libraries. The
libraries are searched in the order you specify.

Programming at the Terminal 59

The following example shows how to link edit the object mcdule in
JAMES.PRG.OBJ. The load module is placed in JAMES.PRG.LOAD (TEMPNAME).
The libraries SYS1.PL1LIB, and DEPT39.LIB. SUBRTZ are to be searched to
resolve external references.

READY
link prg plilib lib('dept39.lib.subrt2"')

The LINK command also lets you specify the linkage editor ortions.
These options are those specified with the PARM parameter of the EXEC
statement when you are running the linkage editor directly under the
operating system rather than through TSO. For example, if ycu want to
use the LET and XCAL options when the object module in AGNES.RET.OBJ is
link edited and placed in AGNES.TBD.LOAD(MOD), enter:

READY
link ret load(tbd(mod)) let xcal

Linkage editor listings (specified with the MAP, XREF, and LIST
options) are directed to a data set or to your terminal. You indicate
your choice with the PRINT operand. The following example shows that
the object module in BILL.PRGM.OBJ is to be link edited and placed in
BILL.PRGM.LOAD(TEMPNAME). The listing produced by the MAP crtion is to
placed in the BILL.LIST.LINKLIST data set.

READY
link prgm map print(list)

Note that if you omit the descriptive qualifier from the print data set
name, the system assumes LINKLIST. If you omit the user-surrlied name,
the system assumes it has the same user-supplied name as the object
module. For example if the listing is to be placed in the
BILL.PRGM.LINKLIST data set, enter:

READY
link prgm map print

Using the same example, if you want the listing to appear cn your
terminal, enter an asterisk in the PRINT operand.

READY
link prgm map print (%)

Error messages are listed at the terminal as well as on the rrint data
set when you specify a data set name instead of an asterisk. If you
want the error messages to appear only on the print data set, enter the
NOTERM operand. For example,

READY
link prgm map print noterm

60 TSO Terminal User's Guide (Release 20.1)

Executing a Program

You can use the CALL command to execute your program after it has been
link edited. You can also use CALL to execute any other prcgram in load
module form, such as utilities and compilers.

Before you use CALL to execute your program you can use the EDIT and
ALLOCATE commands to define your data sets. Use EDIT to create your
input data sets, and ALLOCATE to allocate your input, work, and output
data sets.

You must specify the data set name and member name of the member that
contains your program in load module form. For example, if you want to
execute a program that resides in DEPTB.PROGS.DAILY (NUM3), enter:

READY
call ‘'deptb.progs.daily{(num3)"’

If you onit the descriptive qualifier and member name, the system
assumes LOAD and TEMPNAME, respectively. For example, if your program
resides in JONES.LIB.LOAD(MEM2), enter:

READY
call lib(mem2)

I1f your program resides in JONES.LIB.LOAD(TEMPNAME), enter:

READY
call 1lib

You can pass rarameters to your program if you wrote it in assembler
or PL/IF. These are the parameters you would specify with the PARM
parameter of the EXEC statement if you were running your program
directly under the operating system. For example, if you want to pass
the parameters OPTION1 and OPTIONS5S to a program that resides in
SMITH.ASMPG.LOAD (MEM3), enter:

READY
call asmpg(mem3) 'optionl option5*

Figure 6 shows how the COBCL program created and compiled in Figure 5
can be link edited and executed. In Figure 5, the compiled program
(object module) was placed in PROG2.0BJ. After link editing, the load
module is placed in PROG2.LOAD (TEMPNAME). Your program requires three
data sets for execution. The input data set, INPUT.DATA, is created
with the EDIT command. ALLOCATE commands are used to allocate the input
data set, a work data set, and an output data set. CALL is used to
execute your program. The PROG2.COBOL, PROG2.0BJ, PROG2.I.OAL, and
INPUT.DATA data set are deleted. (The other data sets are automatically
deleted because they were not given a data set name when allccated.) It
is assumed you are using your user identification as part of the data
set names.

Programming at the Terminal 61

READY
link prog2 print(#*) map

linkage editor messages and listings

READY
edit input.data new
INPUT

input data

EDIT

| save

| SAVED

end

READY

allocate dataset(input.data) file(input) ocld
READY

allocate file(work) new block(100) space(300,10)
READY

allocate dataset(*) file(print)

READY

call prog2

output from your program

READY
delete (prog2.* input.data)
READY

= —— S— — S e — —— Sm—— S—.

Figure 6. Link editing and executing a program

62 TSO Terminal User's Guide (Release 20.1)

Loading a Program

The LOADGO ccmmand makes availakle to you the services of the loader.
The loader combines the basic functions of the linkage editcr and
program fetch. That is the loader link edits and executes ycur program.
Therefore, the LOADGO command combines the basic functions cf the LINK
and CALL commands. For complete information on the loader, refer to the
Guide to Writing a Terminal Monitor Program or a Command Prccessor and
to the publication, IBM System/360 Operating System: ILinkage Editor and
Loader, GC28-6538.

The loader can process and execute a compiled program (object module)
or a link edited program (load module). Optionally, it can combine
object modules and/or load modules and execute them. (If you want to
load and execute a single load module, the CALL command is mcre
efficient.)

Before you use the LOADGO command you can use the EDIT and ALLOCATE
commands to create and allocate any data sets required to execute your
program.

In your LOADGO command you must list the name or names of the object
and load modules you want to load. For example, if you want to load the
object module in JONES.PROG3.0BJ, enter:

READY
loadgo prog3

If you want to locad the object modules in JONES.PROG3.0BJ,
JONES.COB.OBJ, and the load module in JONES.COB.LOAD(TWO), enter:

READY
loadgo (prog3 cob.obj cob.load(two))

You can also rass parameters to your program if you wrote it in
assenbler or PL/IF. These are the parameters you would specify with the
PARM parameter of the EXEC statement if you were running your rrogram
directly under the operating system. For example, if you want to pass
the parameters OPTION1 and OPTIONS to a compiled program that resides in
SMITH.ASMPG.OBJ, enter:

READY
loadgo asmpg ‘optionl option5*

You can have the loader search a subroutine library to resoclve
external references. The subroutine library is usually cne of the
language libraries and it is specified with one of the following
operands:

Operand Subroutine Library
COBLIB SYS1.COBLIB
FORTLIB SYS1.FORTLIB
PLILIB SYS1.PL1LIB

In addition to, or instead of a language library you can use the LIB
operand to specify the name of one or more user libraries. The
libraries are searched in the order you specify.

Programming at the Terminal 63

The following example shows how to load the object module in
JAMES.PRG.OBJ. The libraries SYS.PL1LIB, and DEPT39.LIB.SUBRT2Z are to
be searched to resolve external references.

READY
loadgo prg plilib 1lib('dept39.lib.subrt2")

The LOADGO command also lets you specify the loader opticns. These
options are those specified with the PARM parameter of the EXEC
statement when you are running the loader directly under the orerating
system. For example, if you want to use the LET and EP(MAIN) options
when the object module in BROWN.CIR.OBJ is loaded, enter:

READY
loadgo cir let ep(main)

Loader listings (specified with the MAP option) are directed to a
data set or to your terminal. You indicate your choice with the PRINT
operand. The following example shows that the object module in
BILL.PRGM.OBJ is to be loaded. The listing produced by the MAP option
is to be placed in the BILL.LIST.LOADLIST data set.

READY
loadgo prgm map print(list)

Note that if you omit the descriptive qualifier from the rrint data
set name, the system assumes LOADLIST. If you omit the user-supplied
name, the system assumes it has the same user-supplied name as the
object module. For example, if the listing is to be placed in the
BILL.PRGM.LOADLIST data set, enter:

READY
loadgo prgm map print

Using the same example, if you want the listing to appear on your
terminal, enter an asterisk in the PRINT operand.

READY
loadgo prgm map print(*)

Error messages are listed on the terminal as well as on the rrint data
set when you specify a data set name instead of an asterisk. If you
want the error messages to appear only on the print data set, enter the
NOTERM operand. For example, '

READY
loadgo prgm map print noterm

Figure 7 shows how the COBOL program created and compiled in Figure 5
can be loaded. The loading operation shown in Figure 7 is the
equivalent of the link editing and execution shown in Figure 6. The
same data sets required for execution of your program in Figure 6 are
required in this example. The okbject module resides in PROG2.0BJ. A
load module is not produced by the loader, therefore, only PROG2.COBOL,
PROG2.0BJ, and INPUT.DATA are deleted at the end. It is assumed you are
using your user identification as part of the data set names.

64 TSO Terminal User's Guide (Release 20.1)

READY
edit input.data new
INPUT

—— —

input data |

EDIT

save

SAVED

end

READY

allocate dataset (input.data) file(input) ocld
READY

allocate file(work) new block(100) space(300,10)
READY

allocate dataset(*) file(print)

READY

loadgo prog2 map print (%)

S —— ——— — — S— t— — — D— — ——— —
s 5 s 8 8 b s
—

loader listings and output from your program |

READY |
delete(prog2.* input.data)
READY

Figure 7. Loading a Program
Processing Background Jobs

You can submit background jobs for processing if your installation
authorizes you to do so. This authorization is recorded in the system
with your user attributes. If you have this authorizaticn, the system
lets you use the four commands (SUBMIT, STATUS, CANCEL and OUTPUT) that
control the processing of background jobs. You can use those commands
to submit a background job, to display the status of a background job,
to cancel execution of a background job, and to control the output of a
background job.

SUBMITTING BACKGROUND JOBS

.Before you submit a background job with the SUBMIT command ycu can use
the EDIT command to create a data set (or a member of a partitioned data
set) that contains the job or jobs you want to submit. Each job
consists of Job Control Language (JCL) statements and of program
instructions and/or data.

The JCL Statements required for a job must conform to System/360
Operating System (MVT) standards. They are described in the
publications, IBM System/360 Operating System: Job Control Langquage
User's Guide, GC28-6703, and IBM System/360 Operating System: Job
Control Language Reference, GC28-6704.

Programming at the Terminal 65

The first JCL statement in the data set is usually a JOB statement.
The jobname in the JOB statement can be up to eight characters in length
and consists of your user identification followed by one or more letters
or numbers. For example SMITH23 or JONESXYZ.

If the jobname consists of only your user identification, the system
will prompt you for a single character to complete the jobname. When
you submit the job with the SUBMIT command this allows yocu toc change
jobnames without re-editing the data. For example, you may subkmit the
same job several times, and supply a different character for the job
name each time you are prompted.

If the jobname does not begin with your user identification, you can
submit it with the SUBMIT command and request its status with the STATUS
command, but you cannot refer to it with the CANCEL or OUTPUT command.

If the first statement of your data set is not a JOB statement, the
system generates the following JOB statement when you submit it with the
SUBMIT command.

//userid JOB +GENERATED JOB STATEMENT
Vo4 userid,

Vo4 MSGLEVEL=(1,1),

7/ NOTIFY=userid

You will be promrted for a character to complete the jobname. The
account number used is the same you used in the LOGON command.

When you entér the SUBMIT command you must give the name of the data
set (or data se%s) that contains the background jobs. You can also
specify the NONOTIFY operand to specify that you do not want to be
notified when a background job with a generated JOB statement
terminates. ,

|
|

Figure 8 shéus how to create and submit a background job. Note that
the data set type in the EDIT command must be CNTL.

You may include more than one job in one data set. You can omit the
JOB statement for the first job, but all jobs after the first must have
their own JOB Statement. Although you submit all jobs in the data set
with one SUBMIT command, you can subsequently refer to each job with
separate STATUS, CANCEL, and OUTPUT commands.

If an error occurs while the jobs are being processed by TSO before
actually being submitted, further processing will be terminated. No
other input specified by the SUBMIT command will be processed. When you
submit more than one job with a single command, and TSO finds an errxror.
while processing the first job, the second job is not processed. An
error that occurs in the second job does not affect the first. Any jobs
processed prior to the error are submitted for execution; jobs that were
not processed because of the error cannot be submitted.

66 TSO Terminal User's Guide (Release 20.1)

.
READY |
edit backpgm new cntl nonum |
INPUT
//smith3 job 7924 ,smith,msglevel=(1,1)

//stepl exec pgm=iepckl00,parrm=(deck, ,maps,list)
//syslib dd dsname=sysl.coblib,disp=shr |

| 7/sysutl dd unit=2311,space=(trk, (50,10))

| 7/sysut2 dd unit=2400

| //sysut3 dd unit=2400
Z/sysprint dd sysout=a
//syspunch ad dsname=comp.cobol,disp=(,catlg) ,unit=2400

| //sysin dad *

- source statements

Ve,
//step2 exec pgm=loader,parm={(map,let,call)
//syslib dad dsname=sysl.coblib,disp=shr |
//syslout dd sysout=a |
//syslin dd dsname=#*,stepl.syspunch
//master dad dsname=order ,disp=o0ld
//print dad sysout=a |
| 7/input dd * |
. |
- input data
| - |
- |
/¥ |
/77 |
(null line) |
EDIT |
save |
SAVED |
end |
READY l
| submit backpgm nonotify |
| READY |
J

L
Figure 8. Submitting a Program as a Background Job

DISPLAYING THE STATUS OF . BACKGROUND JOBS

Any time after you submit a background job you can use the STATUS
command to have its status displayed. The display will tell you whether
the job is awaiting execution, is currently executing, or has executed.
For example, if you want to display the status of SMITH23, enter: '

READY
status smith23

Programming at the Terminal 67

If you want to know the status of all the jobs that begin with your
user identification, enter the STATUS command without operands:

READY
status

CANCELLING BACKGROUND JOBS

You can use the CANCEL command to cancel execution of a background job.
If the job has already been executed, the CANCEL command has no effect.

For example, if you want to cancel job JONESAB, enter:

READY
cancel jonesab

After you enter the CANCEL command, the system will send you a message
telling you that the jobs specified have been cancelled.

CONTROLLING THE OUTPUT OF A BACKGROUND JOB
You can use the OUTPUT command to:

e Direct the JCL statements and system messages (MSGCLASS) and system
output data sets (SYSOUT) produced by a background job to your
terminal.

e Direct the MSGCILASS and SYSOUT output from a background job to a
specific data set.

e Change an output class used in a background job.

e Delete the output data sets (SYSOUT) or the system messages
(MSGCLASS) for background joks.

Unless you use the NONOTIFY operand of the SUBMIT command, a message is
placed in the broadcast data set when the background job terminates.
You can then use the OUTPUT command to control the output prcduced by
the job on the MSGCLASS and SYSOUT classes before the system rrocesses
them.

For example, assume that job GREEN 67 produces output on classes A,
B, D, G, and M. If you want the output on classes G and M listed at the
terminal, enter:

READY
output green67 class(g m) print(*)

If you want the output of class B to be listed in the GREEN.KEEP.OUTLIST
data set, enter:

READY
output green67 class(b) print(keep)

If you wvant to change the output in class A to class C, enter:

READY
output green67 class(a) noprint(c)

68 TSO Terminal User's Guide (Release 20.1)

If you want to delete the output from class D, enter:

READY
output greené67 class(d) noprint

If you wish, you can enter the PAUSE operand in the OUTPUT ccmmand.
PAUSE will make the system stop after each data set is listed on your
terminal or on the data set you indicate with the PRINT operand. When
the system pauses it sends you the message OQUTPUT. You then have the
option of pressing the RETURN key to continue processing or entering the
CONTINUE or SAVE subcommand.

The CONTINUE subcommand allows you to continue processing your output
after an interruption occurs. BAn interrupticn occurs when:

e An output operation completes and you used the PAUSE operand in the
OUTPUT command.

e An output operation terminates because of an error condition.
e You press the attention key.

When you enter the CONTINUE subcommand, the system will resume
printing with the next data set being processed or with the next message
if a block of messages is being processed. In the following example you
request that the data sets in output classes B and C be listed at your
terminal. The system pauses after printing the data set in B. You
enter the CONTINUE subcommand to resume processing with the data set in
C.

READY
output jones2 class(b c¢) print(*) pause

- output class B

OUTPUT
continue

output class C

. LI s 8 []

If the interruption was not caused by a pause, you may prefer to
resume printing at the beginning of the data set being processed or
approximately ten lines before the interruption. If you want to resume
printing at the beginning, enter:

OUTPUT
continue begin

If you prefer to resume printing a few lines before the interruption
occurred, enter:

OuUTPUT
continue here

Programming at the Terminal 69

The CONTINUE subcommand also lets you respecify the PAUSE orerand of
the OUTPUT command. If you entered PAUSE in the OUTPUT command, you can
enter NOPAUSE in the CONTINUE subcommand, for example,

READY .
output smithc class(d) print(data) pause

OouTPUT
continue begin nopause

If you did not specify PAUSE in the OUTPUT command, you can do so in the
CONTINUE subcommand. This causes the system to pause at the end of each
data set processed subsequently.

The SAVE subcommand allows you to place the data set listed before
the pause into another data set. This allows you to retrieve the data
set at a later time. In the following example you request that data
sets in output classes E and F be listed at your terminal. After
listing the data set in E you request that it be saved in the
BROWN.OUTDATA.OUTLIST data set. You continue processing the next data
set after saving the data set in class E.

READY .
output browne class(e £) print(*) pause

ouTPUT

save outdata
OUTPUT
continue

The END subcommand is used to terminate the OUTPUT command. For
example,

READY
output dert30a class(a) print(*¥) pause

OUTPUT
end
READY

70 TSO Terminal User's Guide (Release 20.1)

Testing a Program

The operating system provides you with facilities to test ycuxr program
from the terminal. They are the test facilities, if any, prcvided by
your compiler, and the TSO TEST command. The compiler test facilities
are described in the publications associated with the compiler. A brief
description of the TEST command follows.

The TEST command allows you to "debug" your program. That is, it
helps you to test a program for proper execution and to find programming
errors. To use TEST effectively, you should be familiar with the
assembler language. If you are using another language, for example
COBOL, you can still use the TEST command to obtain listings and other
information to give to your installation's system progranmer who can
help you debug yocur program. (You can use the full facilities of the
TEST command to debug your program if you can correlate the statements
in your source program listing to the resultant assembler language
statements in the object listing.)

If you are an assembler programmer, refer to the publicaticns IBM
System/360 Operating System: Time Sharing Option, TSO Guide to Writing
a Terminal Monitor Program or a Command Processor and IBM System/360
Operating System: Time Sharing Option, Command Lanquage for a complete
description of the facilities of the TEST command.

If you are not an assembler programmer, your system programmer will
probably provide you with a test procedure. The most common situation
he may provide for occurs when your program is executing and you receive
a message that the program has begun to abnormally terminate. He may
tell you to enter the TEST command and then the LOAD subcommand with the
name of a program that will test your program. For example, if the name
of the program that will test yours is DPTEST, use the following
sequence.

test
TEST
load (dptest)

If the system programmer does not give you the name of a testing
program, he may instruct you to use the TEST command and a set of its
subcommands that produce listings of your program and other rertinent
information. For example, he could ask you to perform procedures
similar to the following.

Example 1:

test

TEST

listpsw

FFE5006 40088540

where 88540.

88540. LOCATED AT +3C IN (load-module-name.csectname) UNDER TCB
LOCATED AT 86B68.

list 88540. -32n length (32)

First, you begin testing by entering the TEST command. You can now use
the subcommands of TEST to "debug" your program.

Enter the LISTPSW subcommand fo determine the address of the instruction

that failed in your program. The last five characters of the PSW that
is listed can then be entered after the WHERE subcommand and the system

Testing a Program 71

will then provide the location and the program name in which the ABEND
occurred. When LIST is entered in the preceeding manner, the thirty-two
bytes of instructions prior to the ABEND will be displaed.

At this time all the registers may be listed in the following manner to
aid you in solving the problem:

list OR:15R

If you wish to trace the execution of your program you may enter the
following:

Example 2:

at +0: 9000 (go)
at +32)

at +8c

at +10a

go

In this case breakpoints will be set starting at +0 and ending when an
invalid instruction is encountered. Specifying the GO subcommand will
allow continued execution until one of the breakpoints set in subsequent
AT subcommands is encountered. The setting of these additional
breakpoints allows you to interrupt execution so that you can examine
registers or storage at predetermined intervals.

Example 3:
To supply new values for a range of registers, you can enter:
Or=(x"0',x'0',x'0")

‘The values specified would be assigned starting with register 0,
register 1, etc. until all values in the list have been assigned.

Example 4:

If you want to display storage at a known relative address you may
enter:

list +34
+34 47F0C220

If you want not only to display storage, but also to find out the
absolute address associated with the relative address, you can enter:

“list +34+0
A0680. U47F0C220

If you prefer, you can elect not to test your program. Tc do so,
press the RETURN key after you receive the message informing you that
your program is abnormally terminating. You will then receive a READY
message, which allows you to enter any command you wish.

72 TSO Terminal User's Guide (Release 20.1)

Using and Writing Command Procedures

In many cases a given function is performed by a sequence of commands.
For example, several commands are needed to allocate data sets for a
compilation. Every time you want to accomplish that function you must
enter the same sequence of commands, or else, you can simplify your work
by using a command procedure. A command procedure is a set of TSO
commands, and, optionally, subcommands and data that have keen placed in
a data set. Whenever you want to accomplish the functions performed by
the command procedure you can use the EXEC command to call the
procedure. The command procedure you call may contain symbolic values.
A symbolic value stands as a symbol for an operand or the value of an
operand. Symbolic values are used so that the command procedure can be
easily modified when it is called by the EXEC command.

This section consists of two parts. The first part, "Using Command
Procedures", describes how to call a command procedure and hcw to assign
actual values to -symbolic values. The second part, "Writing Command .
Procedures" describes how to write a command procedure and place it in a
data set. ‘

Using Command Procedures

Use the EXEC command to call a command procedure and to assign values to
any symbolic values it may contain. You will not get any prompting
messages once execution of the command procedure has begun.

CALLING A COMMAND PROCEDURE

To call a command procedure, enter an EXEC ccmmand. In the EXEC command
you identify the command procedure in one of two ways:

1. If the command procedure is in a data set, enter EXEC fcllowed by
the name of the data set. The following example calls the command
procedure that resides in the JP.COMPROC.CLIST data set:

READY
exec comproc

Note that if you omit the descriptive qualifier the system assumes
CLIST. If the descriptive qualifier is not CLIST you must enter
the fully qualified name enclosed in apostrophes. For example, if
the command procedure resides in the data set JP.COMPROC.CP, you
must enter:

READY
exec 'jp.comproc.cp"

2. If the command procedure resides in a member of a partitioned data
set (called a command procedure library) enter only the member
name. (The command procedure library must have been defined by
your installation.) The following example shows how to call the
command procedure in member PROC3 of your command procedure
library:

READY
proc3

Using and Writing Command Procedures 73

ASSIGNING VALUES TO SYMBOLIC VALUES

If the command procedure contains symbolic values, the installation
should provide you with a list of the symbolic values used, what meaning
is associated with each symbolic value, whether you must supply an
actual value for each symbolic value, and whether a symbclic value will
assume a default value if you fail to provide one. Figure 9 shows a

sample sheet for a command procedure such as your installaticn may
provide you

Command Prccedure: LISTUFDT (member name)
Purpose: Update inventory list
Symbolic values:

WEEKIN WEEKOUT NEW OUTPUT (*)

—— o}

WEEKIN: Required. Replace with name of input data set.
WEEKOUT: Required. Replace with name of output data set.
NEW: Optional. Code NEW if output data set does not exist.
omit if output data set already exists.
OUTPUT(#*) : Optional. Directs reports prepared by procedure to
your terminal. If you want to direct reports to a
data set, replace the * with the data set name.

S S Ry Sy S ——

Figure 9. Symbolic Values for a Command Procedure

After you decide which values you are going to replace for the required
symbolic values, and which optional symbolic values you are going to
use, enter the values in the EXEC command used to call the procedure.
The values must follow the name of the data set or mewmber that contains
the procedure. If the procedure resides in a data set, enclose the
values in apostrophes. The required values must be entered in the order
given to you. Ortional values can be entered in any order after you
enter the required values. The following example calls the procedure
shown in Figure 9. The name of the input data set is JONES.W26IN.DATA.
The name of the output data set is JONES.W260UT.DATA. The output data
set does not yet exist. The reports produced by the command procedure
are directed to the JONES.W26REP.DATA data set.

READY
listupdt w26in w260ut output(w2é6rep) new

Writing Command Procedures

Functions that are performed on a regular basis, such as calling a
compiler, can be simplified when the commands that perform the functions
are kept as command procedures. Once the commands are placed in a
partitioned or sequential data set or in a command procedure library (a
partitioned data set), any terminal user who wants to perform those
functions need only enter an EXEC command.

Command procedures contain commands and, optionally, subcommands,
data and line numbers. A command procedure may also contain command
procedure statements (PROC, WHEN, and END) that control execution of the
procedure. The PROC statement defines symbolic values in the gprocedure.
The WHEN statement initiates or terminates a procedure according to
certain conditions. The END statement marks the end of the procedure.

The command procedure is entered in the data set or into a member of
a command procedure library with the EDIT command. The descriptive

qualifier normally used is CLIST. You must also use the SAVE subcommand
to save the command procedure.

74 TSO Terminal User's Guide (Release 20.1)

ASSIGNING SYMBOLIC VALUES

When you enter the commands and subcommands in the procedure, you can
include symbolic values for any operand or value of an operand. A
symbolic value is characterized by a name preceded by an ampersand (§).
The name consists of letters and numbers, but it must begin with a
letter. For example, if you want to substitute the symbolic value
§DSNAME for the 'data set name' operand in the following statement:

EDIT data set name NEW DATA
enter:
edit &édsname new data

If the symbolic value must be immediately followed by a character
(such as a right parenthesis or an apostrophe), the symbolic value must
end with a period. For example, if you want to substitute the symbolic
value &DSNAME for the "data set name" operand in the following
expression:

DATASET(data set name)
enter:
dataset(€&dsname.)

A command prccedure that contains symbolic values must begin with a PROC’
statement. The symbolic values that are identified by ampersands are
defined by the operands of the PROC statement. There are twc types of
symbolic values:

s Required —-- a positional operand that must be replaced by the user
in the EXEC command. It can contain up to 252 characters.

e Optional -- a keyword operand that can be replaced by the user'if
desired. It can contain up to 31 characters.

The PROC statement must indicate the number of required symkolic values
to be supplied by the user. (If none of the symbolic values are
required, enter zero.) After the number, list the required symbolic .
values omitting their ampersands. After the required symbolic values,
list the optional symbolic values omitting their ampersands. For
example, assume you have the following command procedure named PR39:

PROC 3 INPUT OUTPUT LIST LINES ()

ALLOCATE DATASET(EINPUT.) FILE(INDATA) OLD
ALLOCATE DATASET(&§OUTPUT.) BLOCK(100) SPACE(300,10)
ALLOCATE DATASET(ELIST.) FILE(PRINT)

CALL PROG2 "ELINES.'

END

The PROC statement indicates that the three symbolic values §INPUT,
&OUTPUT, and §LIST are required, and that the symbolic value &LINES is
optional. When the user substitutes values for the required symbolic
values in the EXEC command he must provide the required values in the
same order in which they appear in the PROC statement. The optional
values can follow the required values in any order. For example, if the
user wants to replace ALPHA for INPUT, BETA for OUTPUT, COMMENT for
LIST, and 20 for LINES, he would enter:

READY
pr39 alpha beta comment lines(20)

Using and Writing Command Procedures 75

In this case, the following substitutions will be made in the command
procedure:

ALLOCATE DATASET(ALPHA) FILE(INDATA) OLD
ALLOCATE DATASET(BETA) BLOCK(100) SPACE(300,10)
ALLOCATE DATASET(COMMENT) FILE (PRINT)

CALL PROG2 '20°

END

You can also use the PROC statement to assign default values to optional
symbolic values. That is, if the user fails to provide an actual value
for the symboclic value, the system will use the default value to replace
the symbolic wvalue. You assign a default value by enclosing it in
parentheses after the symbolic value in the PROC statement. For
example, in the command procedure illustrated above, you may want to
assign 35 as a default value for ELINES. To do this, enter LINES(35) in
the PROC statement. That is, the PROC statement would be as follows:

PROC 3 INPUT OUTPUT LIST LINES(35)
If the user enters the following EXEC command:

READY
pr39 alpha beta comment

the following substitutions will be made in the command procedure:

ALLOCATE DATASET(ALPHA) FILE(INDATA) CLD
ALLOCATE DATASET(BETA) BLOCK(100) SPACE(300,10)
ALLOCATE DATASET(COMMENT) FILE (PRINT)

CALL. PROG2 "'35'

END

TESTING CONDITIONS FOR TERMINATION

The programs invoked with a CALL or LOADGO command can issue a return
code (a number) to indicate its relative "success". The return codes of
IBM-supplied programs are listed in the publications associated with the
program. Only those user programs written in the assembler language or
PL/I can issue return codes. User return codes are usually standardized
in each installation.

You can insert a WHEN statement after any CALL or LOADGO command or a
processor (such as a compiler or 1link editor) in the command procedure
to test its return code. If the test you request is true, ycu have the
option of ending the command procedure or of executing another procedure
or another ccmmand. If the test you request is not true, the command
procedure will continue its course. The test is specified with the
SYSRC operand of the WHEN statement. For example, assume that you want
to end a procedure if a given CALL command produces a return code of 8.
Enter the following WHEN statement after the command you want to test:

call 'sysl.linklib(ieqgcbl00)' 'nodeck"
when sysrc(eq 8) end

76 TSO Terminal User's Guide (Release 20.1)

If instead of ending the procedure when the test is true, ycu want to
execute another procedure that resides in the JONES.PROC5.CLIST data
set, enter:

when sysrc(eq 8) exec proc5

If instead of executing a procedure, you want to enter a LIST
command, enter:

when sysrc(eq 8) list pgm.list snum

ENDING THE COMMAND PROCEDURE

You must write an END statement after the last line of the command
procedure. When the system encounters an END statement in a command
procedure it sends a READY message to the terminal so you can enter
another command.

Using and Writing Command Procedures 77

Controlling a System with TSO

Two commands are used to control TSO: OPERATOR and ACCOUNT. The
OPERATOR command is used to regulate the operation of the system from a
terminal. The ACCOUNT command is used to maintain the list of
authorized users of the system.

You must have authorization from your installation to use either the
OPERATOR or the ACCOUNT command. This authorization is recorded in the
system with your user attributes. Use of the OPERATOR command is
restricted to terminals that have the transmit-interxrrupt capability.

The Operator Command

The OPERATOR command, through its subcommands, allows you to perform the
following functions:

Monitor terminal activity (MONITOR and STOP subcommands).

Display TSO information (DISPLAY subcommand).

Cancel a terminal session or a background job (CANCEL subcommand).
Send messages to terminal users (SEND subcommand).

Modify time sharing parameters (MODIFY subcommand).

End operation of the OPERATOR command (END subcommand).

You must first enter the command and then the subcommand you wish to
use. For example, use the following sequence to enter the MONITOR
subcommand :

READY
operator
OPERATOR
monitor...

For further information on system operator commands and procedures refer
to the publications, IBM System/360 Operating System: Time Sharing
Option, Command Lanquage Reference, and IBM System/360 Orerating System:
Operator's Procedures, GC28-6692.

MONITORING TERMINAL ACTIVITY

The MONITOR subcommand lets you keep track of the users of the system
and of any background jobs submitted with the SUBMIT command.

If you want to be notified whenever a terminal session starts or
ends, enter the SESS operand of the MONITOR subcommand. For example,
after using the following sequence:

READY
operator
OPERATOR
monitor sess

you will receive messages, such as the following, interspersed with
other messages and input at your terminal:

Controlling a System With TSO 79

IEF1251 JONES LOGGED ON
IEF125I SMITH LOGGED ON

IEF126I JONES LOGGED OFF

IEF125I BROWN LOGGED ON
IEF1261 BkOWN LOGGED OFF

IEF126I SMITH LOGGED OFF

The message informing you that a user logged on, consists of his user
jidentificaticn, for example, :

JONES LOGGED ON

The message informing you that a user's session has ended (logged off)
consists of the user identification and the words "LOGGED OFF", for
example,

JONES LOGGED OFF

You can also request the time at which the session starts and ends as
rart of the message. You do this by entering SESS,T with the MONITOR
subcommand. For example, if you enter:

monitor sess,t

/
the message informing you that JONES logged on may appear as follows:

IEF125] JONES LOGGED ON TIME = 1.35.05
The LOGON time is shown in hours, minutes and seconds.

If you want the name of each background job submitted during a
terminal session displayed when the job starts and ends, you must enter
another MONITOR subcommand. For example, after using the following
sequence:

OPERATOR
nmonitor jobnames

you will start geceiving messages, such as the following, interspersed
with other messages and input at your terminal:

80 TSO Terminal User's Guide (Release 20.1)

IEF403I JONES79 STARTED

IEF403I COPYDS STARTED

IEF404I JONES79 ENDED

IEF4O4I COPYDS ENDED

The message informing you that a background job started execution,
consists of the jobname, for example,

IEF403I JONES79 STARTED

The message informing you that a background job has ended consists of
the jobname and the word "ENDED", for example,

IEF404I JONES79 ENDED
You can also request the time at which the background job starts and
ends as part of the message. You do this by entering JOBNAMES,T in the
subcommand. For example, if you enter:
monitor jobnames,t
the message informing you that job COPYDS ended may appear as follows:
IEF404I COPYDS ENDED TIME = 17.11.58

where the time the background jok ended is shown in hours, minutes, and
seconds .

You can also use MONITOR subcommands to obtain information on data
sets and space available on direct access devices. The following
subcommand :

monitor status
requests that the data set names and volume serial numbers ke displayed
whenever data sets with dispositions of KEEP, CATLG, or UNCATLG are
unallocated.
The following subcommand:

monitor space
requests that the system display in demount messages the amount of space
available in a direct access device. (Demount messages are explained in

the publication IBM_System/360 Operating System: Operator's
Procedures.) .

The following subcommand:
monitor dsname

requests that the system display within the mount and K-type demount
messages, the name. of the first nontemporary data set allocated to the
volume to which the message refers. (These concepts are explaned in the
publication IBM System/360 Operating System: Operator's Procedures.)

Controlling a System With TSO 81

You can use the STOP subcommand to stop the monitoring operations of
the MONITOR subcommand. For example, if you issue the follcwing
subcommands:

READY

operator

OPERATOR

monitor jobnames, t
monitor space
monitor status
monitor sess

and you want to stop receiving messages about background jobs and freed
data sets, enter:

stop jobnames
stop status

DISPLAYING TSO INFORMATION

You can use the DISPIAY subcommand to obtain information about users
currently logged on. If you enter:

display user

you will get the number of active terminals, the identification of each
user and the corresponding region number of each user. If you want to
knovw only the number of active terminals, enter:

display user=nmbr

You can also use DISPIAY to obtain a list of the jobnames of background
jobs on the input, hold, output, BRDR, and ASB queues. (These queues
are described in the publication IBM System/360 Operating System:
Operator's Procedures.) To oktain this list enter:

display n
If you want only the jobnames in up to four specific queues enter the
input work queue name (A-0), SOUT for system output queues, BRDR for
background reader, or HOLD for system hold queue. For example, if you
want the jobnames of background jobs in queues B, F, M, and the hold
queue, enter:

display n=(b,f,m,hold)

If you want to know only the numker of entries on the input, hold,
output, BRDR and ASB queues, enter:

display g

You can also obtain the number of entries in up to four specific queues,
for example:

display g=(b,f,m,hold)
You can enter a jobname as the operand of DISPLAY to obtain status
information about that job. The status information consists of jobname,
class, job priority, type of queue the job is in, and the job's position
in the queue. For example, to obtain the status of job JONES79, enter:

display jones79

82 TSO Terminal User's Guide (Release 20.1)

DISPIAY also lets you obtain a listing of messages from background jobs
that are awaiting reply from an operator. To obtain such a listing
enter:

display r
If you want to know the time of day and the date, enter:

display t

CANCELLING A SESSION OR BACKGROUND JOB
You can use the CANCEL subcommand of the CPERATOR command tc cancel a
terminal session or a background job submitted by a terminal user. To
cancel a session enter the U=user identification operand in the CANCEL
subcommand. For example, if you want to cancel the session of user
SMITH, enter:

cancel u=smith

SMITH will be presented with information that notifies him of the end of
his session.

To cancel a background job, enter its jobname in the CANCEL subcommand.
For example, if you want to cancel job AB999, enter:

cancel ab999

You can also request that when the job is cancelled a dump be taken of
any step of that job currently being executed, for example,

cancel ab9%999,dump

In addition to the dump, you can request that all input and output for
the job be cancelled. For example,

cancel ab999,dump,all

SENDING MESSAGES TO TERMINAL USERS
You can use the SEND subcommand to send broadcast messages (notices) to
all users or to individual users. For example, if you want to send the
message TSO NOT AVAIIABLE ON TUESDAY 9/29 to all users, enter:
send 'tso not available on tuesday 9/29°
If you only want users SMITH and JONES to receive the message, enter:
send 'tso not available on tuesday 9/29', user=(smith jones)
SMITH and JONES will receive the message only if they are logged on. If
you want to make sure that they receive the message when they log on,
enter
send 'tso not available on tuesday 9/29', user=(smith jones) logon
When the LOGON operand is specified and Smith and Jones are already
logged on, the message will be put in the Broadcast Data Set. It will

be issued to the specified user only when he enters either LISTBC or
another LOGON command.

Controlling a System With TSO 83

Messages that you send to all users are given a number and are retained
by the system. If you want to receive a list of all retained messages,
enter

send list

If you wvant to delete a given message, enter its number in the SEND
subcommand. For example, if you want to delete message number three
enter:

send 3

If you vant to list a given message without deleting it, enter the LIST
operand. For example

send 3,list

MODIFYING TIME SHARING PARAMETERS

You can use the MODIFY subcommand to change the time sharing parameters
specified during system generation or specified by the system operator
with the START command. For information on this subcommand refer to the
publication, IBM System/360 Operating System: Time Sharing Option,
Command Lanquage Reference, and IBM System/360 Operating System:
Operator's Procedures.

ENDING OPERATION OF THE OPERATOR COMMAND

Whenever you want to end the OPERATOR command, enter the END subcommand.
After you enter the END subcommand you receive the READY message. You
can then enter any command you choose.

The Account Command

The user attributes of each authorized user of TSO are recorded in the
User Attribute Data Set (UADS). There is an entry in the UALS for each
user. Each entry contains:

1. A single user identification.

2. One or more passwords, or a single null field, associated with the
user identification.

3. One or more account numbers, or a single null field, associated
with each password.

4. One or more procedure names associated with each account number.
Each procedure name identifies a LOGON procedure that is invoked
when the user begins a terminal session by entering the LOGON
command .

5. The main storage region size requirements for each procedure.

6. The name of the group of devices that the user is allowed to use
vhen he does not request specific devices.

7. The authority to use, or a restriction against using, the ACCOUNT
command . :

‘84 TSO Terminal User's Guide (Release 20.1)

8. The authority to use, or a restriction against using, the OPERATOR
command .

9. The authority to use, or a restriction against using, the SUBMIT,
STATUS, CANCEL, and OUTPUT commands.

10. The maximum main storage region size authorized for this user.

Figure 10 shows the simplest structure that an entry in the UADS can
have, and Figure 11 shows a more complex structure.

The ACCOUNT command allows you to update entries in the UADS.
Specifically, it allows you to:

Add new entries or more data to an existing entry.
Delete entries or parts of entries.

Change data in an entry.

Display the contents of an entry.

Display the user identifications for all entries.
End operation of the command.

These functions are performed with the subcommands of the ACCOUNT
command. You must first enter the command and then the subcommand you
want to use. For example, use the following sequence before entering
the ADD subcommand:

READY

account

ACCOUNT
add...

ADDING NEW ENTRIES OR DATA TO AN ENTRY

You can use the ADD subcommand to add a new entry to the UADS or to add
new data to an existing entry.

To add a new entry, enter the user identification, password, account
or procedure name. For example, to add the following entry:

JONES
ZZZ
D993
PROCAB

enter

~add (jcnes zzz 4993 procak)

Controlling a System With TSO 85

UADS
data set

oy e — gl

= e of

r

|
|identification
L

user

)

4

[o . ey

a null
field

]

L

a null
field

procedure
name

b e e el

Figure 10. The Simplest Structure That an Entry in the UADS Can Have

r 1
| UADS |
| data set |
L 1
1
J user |
identification |
- J
r i L}
1 L
) 1 v . 1
| password | | password |
I | | |
L T J L T J
: ' . | |
/
r 1 1 i 1 [} L 1
| account | account | | account |
| mnumber | number | | number |
L T J T /] L J
I L 1 I L . |
L BN L L
1] 1 T 1 13 1 T i 1 ¥) |
| procedure | | procedure | | procedure | | procedure | | procedure |
| name | 1 name | | name | 1 name I name |
L d L |] L] L J L]

Figure 11. A Complex Structure for an Entry in the UADS

86 TSO Terminal User's Guide

(Release 20.1)

If either the password or the account (or both) is a null field,
enter an asterisk to indicate its absence. For example, to add the

following entry:

SMITH
null
null
PRO7

enter

add (smith * * pro7)

In addition to the user identification, rassword, account, and
procedure name, you can enter one or more of the following orerands:

Operand
SIZE (integer)

UNIT (name)

MAXSIZE (integer)

ACCT

OPER

JCL

Meaning

Region size (in units of 1024 bytes) of the procedure
added. For example for a 10K region size specify
SIZE(10). If you omit this parameter the minimum
region size established by the installation is
assumed.

The name of the group of devices that can ke used for
the user's data set.

The maximum region size (in units of 1024 bytes) that
the user can request when he logs on. If you omit
this parameter, no maximum limit is enforced.
Authorization to use the ACCOUNT command.
Authorization to use the OPERATOR command.

Authorization to use the SUBMIT, STATUS, CANCEL, and
OUTPUT commands.

You can use the MAXSIZE, ACCT, OPER, and JCL operands only when you
are adding a complete entry to the UADS.

For example, if you want to add the following entry

BRfWN
null
DEPTS

PR37

and you also want to establish the-region size for PR37 as 12K, and
authorize the user to submit background jobs, enter:

add (brown * dept5 pr37) size(12) jcl

Controlling a System With TSO 87

You can follow a similar procedure to add data to an existing entry.
For example, assume the following entry already exists in the UADS:
MCS
HUSH
79325
V
PRO67

If you want to add the password SECRET with account 3925 and procedure
PRO53, enter:

add (mcs) data(secret 3925 pro53)

the resulting entry will be:

MCS
HUSH N SECRET
7 9*32 5 3925
PR*()67 "~ PROS3

Now assume you want to add to password HUSH, account 83241 and procedure
PRO77. Enter:

add (mcs hush) data (83241 pro77)
The resulting entry will be:
MCs
HUSH SECRET
rd
79325 83241 3925
PRO67 PRO77 PRO53

If you want to add account 4522 and procedures PRO54 and PRO55 to
password SECRET, enter:

add (mcs secret) data(4522 (pro54 pro55))

The resulting entry will be:

‘///MCS
HUSH SECREE\
79325 83?“1 39?5 4522

PRO67 PRO77 PROS53 PROS54 PRO5S
If you want to add the same data to all user identifications, or
passvords, or account numbers, replace that field with an asterisk. For
example, if you want to add account 9999 and procedure PRO99 to all
passwords in the MCS entry, enter:

add (mcs *) data (9999 pro99)

88 TSO Terminal User's Guide (Release 20.1)

The resulting entry will be:

MCs
SECRET

A////// \\\\\\‘\\
i N

79325 83241 9999 3924 4522 9999

4

Y \
PRO67 PRO77 PRO99 PRO53 PROS54 PRO55 PRO99

HUSH

When you are adding data to an existing entry, you can specify the SIZE
operand, to give the region size of the new procedure. For example, if
the region size of procedure PRC99 is 25K, enter:

add (mcs *) data(9999 pro99) size(25)

Note: You cannot add a password or an account number to an entry that
has a null field for that item. You must delete the old entry that has
the null fields, then add a new entry including the new password and
account number.

DELETING ENTRIES OR PARTS OF ENTRIES

You can use the DELETE subcommand to delete an entry or portions of an
entry.

To delete an entire entry, simply enter the user identification in
the DELETE subcommand. For example, to delete the entry for SMITH,
enter:

delete (smith)
To delete a password, and consequently all accounts and procedures

associated with the password, enter the password in the DATA operand.
For example, assume the following entry:

’/;'IONES\\\\\\s

SECRET HUSH
AN
2531 2922 2922 ’;998
PROCA PROCB PROCC PROCD PROCA

If you want to delete password SECRET and its accounts and procedures,
enter:

delete (jones) data(secret)
The resultant entry is:
JONES
HUSH
2922 3998

PROCC PROCD PROCA

Controlling a System With TSO 89

If the password happens to be the only password associated with the
user identification, the entire entry is deleted. For example, if you
now enter:

delete (jones) data(hush)
the entire entry is deleted.
To delete an account number, and consequently all procedures

associated with the account, enter the account number in the LCATA
operand. For example, assume the following entry:

JAMES
ALPHA BETA
221 223 224
A91 2A92 A93 A94
To delete account 224 and its procedures, enter:
delete (james beta) data(224)
the resultant entry is:
JAMES
ALPHA BETA
221 2?3
A91 A92
If the account number happens to be the only account associated with
the password, then the password is also deleted. For example, if you
now enter:
delete (james beta) data(223)
The resultant entry is:
JAMES
ALPHA
221

A91

To delete a procedure, enter the procedure name in the DATA operand.
For example, assume the following entry:

JASON
WHO
N
1234 2345 3456
PR1 PR2 PR3 PR4

To delete procedure PR3, enter:

delete (jason who 3456) data(pr3)

90 TSO Terminal User's Guide (Release 20.1)

the resultant entry is:
JASON
WHO
1234 2%“5 3456
PR1 PR2 PRU4
If the procedure happens to ke the only procedure associated with the
Zgigg?t, then the account is also deleted. For example, if you now

delete (jason who 2345) data(pr2)

the resultant entry is:

JASON
WHO
1234 3456
Pgl PRY

|

If you want to delete the same data from all user identifications, or
passwords, or account numbers, replace that field with an asterisk. For
example, if you want to delete password SECRET from all user
identifications in the system, enter:

delete (*) data(secret)
To delete account 3994 from all passwords in the system, enter:
delete (+ *) data (3994)

If you only want to delete account 3994 from all passwords in the
following entry:

ACR
NO“4’///”‘/’Ygs\\\\\\‘MAYBE
3994 3995 3996 3994 3997
ONE TWO THREE FOUR FIVE SIX SEVEN
enter:

delete (acr *) data(3994)

the resultant entry is:

‘/////A$R
gf Y?S MAYBE
3995 3996 3997

¥
TWO THREE FOUR SIX SEVEN

To delete procedure P67 from all account numbers in the system,
enter:

delete (* * %) data(p67)

Controlling a System With TSO 91

If you only want to delete procedure P67 from all accounts in the
following entry:
ROGER

AA/ m‘cc
7\ r’d
12 23 3 45 5

6
L v /
P65 P67 P68 P67 P62 F67 P67
enter:
delete (roger * *) data(p67)
the resultant entry is:
ROGER
4
AA BB
12/’ 23 34
P65 P68 P62

To delete procedure P67 from all accounts under password HUSH of the
following entry:

SECRET HUSH
;//‘\\
999 888 777 666
{ V'a v N\
P67 P68 P69 P67 P67 P70

enter:
delete (ks hush *) data(p67)
the resultant entry is:
Ks
SECRET HUSH

{

999 888 666

s

Y
P67 P68 P69 P70

The asterisk is also used to denote a null field. For example,
assume the following entry:

MARY
null
77i 888
AB CD EF
to delete procedure CD, enter:
delete (maxry * 777) data(cd)

Note: You cannot delete a null field.

92 TSO Terminal User's Guide (Release 20.1)

CHANGING DATA IN AN ENTRY
You can use the CHANGE subcommand to change any item of data in an UADS
entry. For example, if you have the following entry:
JONES
CHECK
AB25
P792
and you vant to change the user identification to SMITH, enter:
change (jones) data(smith)
If you have the following entry:
JONES
CHECK
AB25
P792
and would like to change password CHECK to PASS, enter:
change (jones check) data{pass)
The resultant entry will be:
JONES
PASS
\
AB25
P792

If you have the following entry:

SMITH

ALPHA
B222‘// B212
P9292 P1314

and would like to change account B222 to B333, enter:
change (smith alpha b222) data(b333)
The result will be:
SMITH
ALPHA\\\

B333 B212

P9292 P1314

Controlling a System With TSO 93

If you have the following entry:

BOB
{
’////BETA\\\\
%f BB
B25 B75

and would like to change procedure B25 to B88, enter:
change (bob beta ba b25) data(b88)

The result will be:

BOB
/BE'IA\
BA BB
i \
B88 B75

In addition to changing the user identification, passwords, accounts,
and procedures, you can change any user attributes. For example, if you
want to authorize user JONES to use the OPERATOR command, enter:

change (jones) oper

If you want to take away the authorization to submit background jobs
from user SMITH, enter:

change (smith) nojcl

DISPLAYING THE CONTENTS OF AN ENTRY

You can use the LIST subcommand to display the contents of all entries
in the UADS, of cne particular entry, or of parts of one entry. To
display the contents of all entries,-enter:

list (%)

To display the contents of entry GREEN, enter:

list (green)
If you want to display all the account numbers under password BBB of
entry GREEN, enter:

list (green bbb)
If you want to display all the procedures in account 3399 of password
BBB of entry GREEN, enter:

list (green bbb 3399)

94 TSO Terminal User's Guide (Release 20.1)

DISPLAYING ALL USER IDENTIFICATIONS

You can use the LISTIDS subcommand to list all user identifications in
the UADS. The contents of each entry will not be displayed. To list
the user identifications, enter:

listids

ENDING OPERATION OF THE ACCOUNT COMMAND
When you want to end the ACCOUNT command, enter the END subcommand.

After you enter the END subcommand you receive the READY message. You
can then enter any command you choose.

Contrclling a System With TsO 95

The following are definitions of words and
phrases used in this publication.

abnormal end of task (ABEND): Termination
of a task prior to normal completion
because of an error condition.

address: The locaticn of information in
main storage.

alias: BAn alternate name for a particular
member of a partitioned data set.

allocate: To assign a resource for use in
performing a specific task.

attention interruption: An interruption of
instruction execution caused by a terminal
user pressing the attention key. See also
"simulated attention".

attention key: A function key that is used
to cause an attention interruption.

BASIC: An algebra-like language used for
problem solving by engineers, scientists,
and others who may not be professional
programmers.

broadcast data set: A system data set
containing messages and notices from the
system operator, administrators, and other
terminal users.

catalog:

1. noun: In the System/360 Operating
System, a collection of data set
indexes that are used by the control
program to locate a volume containing
a specific data set.

2. verb: To include the volume
identification of a data set in the
catalog.

cataloged data set: The quality attributed
to a data set whose name and location are
stored in the system catalog. A data set
that is represented in an index or
hierarchy of indexes which provide the
means for locating the data set.

character-deletion character: A character
within a line of terminal input specifying
that the immediately preceding character is
to be deleted from the line.

Code and go FORTRAN: A version of FORTRAN
IV modified for rapid compilation and
execution of programs.

Glossary

command: Under TSO, a request from a
terminal for the executicn of a particular
program called a command processor. The
comrand processor is in a command likrary
under the command name. Any subsequent
commands processed directly by that command
processor are called subcommands. The
conrand processor perfcrms: the function
that the user requested.

command lanquage: The set of commands,
subceormands and operands, recognized Ly
TSO.

command name: The first term in a command,
usually followed by orerands.

command procedure: A data set or memker of
a partitioned data set containing TSO
commands to be performed sequentially Ly
the EXEC command.

communication line: Any medium such as a
wire or a telephone circuit, that connects
a terminal with a comguter.

compile: To prepare a machine language
program from a computer program written in
a high-level source language.

computing system: A central processing
unit with main storage, input/output
channels, control units, storage devices,
and inputs/output devices connected to it.

conscle: The computer hardware that is
used by the system operator to operate the
system.

context editing: A method of editing a
line data set without using line numbers.
To refer to a particular line, all or part
of the contents of that line are specified.

control dictionary: The external symkol
dicticnary and relocation dictionary,
collectively, of an object or load module.

contrcl terminal: Any terminal at which a

TSO user authorized to enter commands
affecting system execution is logged on.

conversaticnal: Describing a program or a
system that carries on a dialog with a
terminal user, alternately accepting input
and then responding to the input quickly
enough for the user to maintain his train
of thought. :

current line pointer: A pointer maintained

by the Edit command processor that
indicates the line of a line data set with

Glossary 97

which a user is currently working. A
terminal user can refer to the value of the
current line pointer by entering an
asterisk (¥) with EDIT subcommands.

data: Information used as a basis for
calculation, measurement and decision.

data set:

1. A collection of data that is
accessible by the system. The data
set usually resides on an auxiliary
storage device.

2. A telephone device used to transmit
telecommunications data.

data set catalog: (See catalog).

data set name: The term or phrase used to
identify a data set (see qualified name).

.debug: To detect, locate, and remove
mistakes from a routine.

default option: A language statement
option that is selected by the operating
system control program or a processing
program in the absence of a selection by a
user.

delimiter: A character that groups or
separates words or values in a line of
input.

device type: Usually, the general name for
a kind of device, specified at the time the
system is generated. For example, 2311 or
2400.

dump (main storage) :

1. verb: To copy the contents of all or
part of main storage onto an output
device.

2. noun: The data resulting from (1).

3. noun: A routine that will accomplish
(1.

edit mode: Under the EDIT command an entry
mode that accepts successive subcommands
suitable for modifying an existing line
data set. ' '

external reference: The use of a name or
symbol defined in ancther module or
program. :

external symbol: A control section name,
entry point name, or external reference; a
symbol in the external symbol dictionary.

field, data: One or more items of
information that together make up a record
such as an account number or the name of a
person.

98 TSO Terminal User's Guide

(Release 20.1)

file name: A name of a collection of data
(the file name corresponds to the data
definition name).

foreground job: For TSO, a program
executed in a region devocted to time
sharing operations.

function key: A terminal key, such as the
attention key, that causes the transmission
of a signal not associated with a
character. Detection of the signal usually
causes the system to perform a predefined
operation for the user.

IBM System/360: A collection of computing
system devices that can be connected
together in many combinations to produce a
vide range of unique and unified computing
systems. Although the systems vary in size
and performance, they share many
characteristics, including a common machine
language.

IBM System/360 Operating System: An
application of the System/360 computing
system, in the form of program and data
resources, that is specifically designed
for use in creating and controlling the
performance of other arplications. TSO is
an optional facility of the Operating
System.

input device: A machine used to enter data
into the system.

input _mode: Under the EDIT command an
entry mode that accepts successive lines of
input for a line data set. The lines are
not checked for the presence of
subcommands. .

installation: A general term for a
particular computing system, in the context
of the overall function it serves and the
individuals who manage it, operate it,
apply it to problems, maintain it, and use
the results it produces.

interruption: A transfer of CPU control to
the control program of the Operating
System. The transfer is initiated :
automatically by the computing system or by
a problem state program through the
execution of a supervisor call (SVC)
instruction. The transfer of control
occurs in such a way that control can later
be restored to the interrupted program, or,
in systems that perform more than one task
at a time, to a different program.

ITF:BASIC: A conversational subset of
BASIC designed for ease of use at a
terminal. :

ITF:PL/I: A conversational subset of PL/I
designed for ease of use at a terminal.

job: |

1. In the background environment, a
collection of related problem
programs, identified in the input
stream by a JOB statement followed by
one or more EXEC and DD statements.

2. In the foreground environment, the
processing done on behalf of one user
from LOGON to LOGOFF -- one terminal
session.

Jdob Control Language: A high-level
programming language used to code
statements that control the initiation and
execution of jobs.

job definitions: A series of job control
statements that define a job. (See job.)

job library: A set of user-identified
partitioned data sets used as the main
source of load modules for a given job.

job _output device: A device assigned by
the operator for common use in recording
output data for a series of jobs.

job (JOB) statement: A job control
statement that identifies the beginning of
a job. It contains information such as the
name of the job, an account number, and the
class and priority assigned to the job.

keyword: A command operand that consists
of a specific character string (such as
FORTLIB or PRINT) and optionally a
parenthesized value.

language statement: A phrase that is coded
by a programmer, operator, or user of a
computing system. The phrase conveys
information to a processor such as a
language translator program, service
program, or control program. A language
statement may signify that an operation is
to be performed or may simply contain data
that is to be passed to the processing
program.

lanquage translator: Any assembler,
compiler, or other routine that accepts
statements in one language and produces
equivalent statements in another language.

library:

1. A collection of data sets associated
with a particular use -and identified
in a directory.

2. Any partitioned data set.

1. A single line of one or more
characters typed at a terminal and
entered into the system.

2. A circuit, such as a telephone line,
over which data is communicated.

line data set: A data set with logical
records that are printable lines.

line-deletion character: A character that
specifies that it and all preceding
characters are to be deleted from a line of
terminal input.

line number: A number associated with line
in a line data set, which can be used to
refer to the 1line.

line number editing: A mode of operation
under the EDIT command in which lines to be
modified are referred tc by line number.

linkage editor: A program that produces a
single load module frcocm cne or more okject
and/or load modules.

link library: A generally accessible
partitioned data set which contains load
modules such as those referred to by macro
instructions or system facilities.

listing: A display or printout of data.
load: To place a program in main storage

so that it can be executed.

loader: A program that combines the kasic
editing and loading functions of the
linkage editor. It loads object and/or
load modules into main storage for
execution; however, it does not produce
load modules.

load module: The output of the linkage
editor; a program in a form suitable for
loading into main storage for execution.

IOGOFF: The TSO command that terminates a
user's terminal sessicn.

LOGON: The TSO command that a user must
enter to initiate a terminal session.

LOGON procedure: A cataloged procedure
that is executed as a result of a user
entering the LOGON command.

member: A partition cf a partitioned data
set.
message: In telecommunications, a

conbination of characters and symbols
transmitted from one pcint to another on a
netwvork.

Glossary 99

message text: A part of a teleprocessing
message consisting of the information that
is routed to a user at a terminal or to a
program in a central system that is to
process it (not including line control
characters).

module: The input to, or output from, a
single execution of an assembler, compiler,
or linkage editor; a source, object, or
load module; hence, a program unit that is
discrete and identifiable with respect to
compiling, combining with other units, and
loading.

name: A one to eight character alphameric
term that identifies a data set, a command
or control statement, a program, Oor a
cataloged procedure. The first character
of the name must be alphabetic.

national characters:
and a.

The characters #, §$,

object module: The output of a single
execution of an assembler or compiler; the
output constitutes input to the linkage or
loader. BAn object module consists of one
or more control sections in relocatable,
though not executable, form and an
associated control dictionary.

object module library: A partitioned data
set that is used to store object modules.

object program: A program that has been
compiled or assembled by a language

translator. (See object module.)
operand: In the TSO command language,

information entered with a command name to
define the data on which a command
processor operates and to control the
execution of the command processor. Some
operands are positional, identified by
their sequence in the command input line;
others are identified by keywords.

operating system: An application of a
computing system, in the form of organized
collections of programs and data, that is
specifically designed for use in creating
and controlling the performance of other
applications. (See IBM System/360
Operating System.)

operator: A member of a data processing
installation who is responsible for
directing the overall operation of a
computing system.

output class: Any one of up to 36
different output data classes, defined at
an installation, to which output data can
be assigned.

100 TSO Terminal User's Guide

(Release 20.1)

output device: A machine (such as a
printer, terminal, or tape drive) that will
accept the output from the system.

partitioned data set: A data set that is
stored in direct access storage and can be
cataloged like any other data set. A
partitioned data set is often called a
program library. It is divided into
independent partitions called members, each
of which normally contains a program or
part of a program, in the form of one or
more sequential blocks. Each program
library contains a built-in directory (or
index) that the control program can use to
locate a program in the library. Each
menmber has a unique name listed in a
directory at the beginning of the data set.
Members can be added or deleted as needed.
Records within members are orxrganized
sequentially.

password: A one-to-eight character symbol
assigned to a user that he can be required
to supply at LOGON. The password is
confidential, as opposed to the user
identification. Users can also assign
passwords to data sets.

PL/I: A high-level programming language
that has features of both COBOL and
FORTRAN, plus additional features.

priority: A rank assigned to a task that
determines its precedence in receiving
system resources.

private library: A partitioned data set
other than the link library or the jok
library.

processor: A program performing some fixed
function on input, such as a compiler or
the linkage editor.

profile (user): The set of characteristics
that describe the user to the system.

program: A logically self-contained
sequence of instructions that can be
executed by a computing system to attain a
specific result.

program library: A partitioned data set
containing programs in load module form for
general or assorted applications.

prompting: A system function that helps a
terminal user by requesting him to supply
operands necessary to continue processing.

qualified name: A data set name that is
composed of two or more names separated by
periods. (For example, MOORE.SALES.JUNE.)

record: One or more data fields that
represent an organized body of related
data, such as all of the basic accounting

information concerning a single sales
transaction.

receive interruption: The interxruption of
a transmission to a terminal by a higher
priority transmission from the texrminal.
Also called a "break".

region: An area of main storage allocated
to a job step and assigned a unique storage
protection key. Time sharing jobs share
regions. Each job occupies a region
briefly, then is swapped out to auxiliary
storage and another job is swapped into the
vacated main storage area for execution.
The jobs are swapped in and out until they
are completed.

resource: Any facility of the system
required by a job or task, including main
storage input/output devices, the central
processing unit, data sets, and control and
processing programs.

return ccde: A number placed in a
designated register (the "return code
register™) at the completion of a program.
The number is established by user
convention and may be used to influence the
execution of succeeding programs or, in the
case of an abnormal end of task (ABEND), it
may simply be printed for programmer
analysis.

session time: The elapsed real time from
LOGON to LOGOFF.

service program: A processing program,
such as the linkage editor, sort/merge

program, or a utility program that performs
specific services for a user of the
program.

simulated attention: A function that
allows terminals without attention keys to
interrupt processing. The terminal is
queried (for a specified character string
meaning "attention") after a specified
number of minutes of uninterrupted
execution or after a specified number of
lines of consecutive outgput.

source lanquage: The input to a language
translator; for example, FORTRAN, COBOL,
PL/1I.

source module: A series of language
statements that represent the input to a
language translator.

source module library: A partitioned data
set that is used to store and retrieve a
source module.

source program: A program written in a

‘source language.

statement: A phrase consisting of words or
terrs of a programming language.

storage dump: A recording of the contents
of main or auxiliary storage so that it can
be examined by a programmer or operator.
(see also "dump".)

subcommand: For TSO, a subcommand is a
request for a particular operation to be
performed, the particular operation falling
within the scope of work requested Ly the
conmmand to which the sukcommand applies.

symbol: A unique word, composed of as many
as eight alphameric characters and
beginning with an alphaketic character,
which is used to identify an address,
module, etc.

syntax checker: A prcgram that tests
source statements in a programming language
for vioclations of that language's syntax.

SYSIN: A system input stream. Also, a
name used as the data definition name of a
data set in the input stream.

SYSOUT: A system cutput stream.
indicator used in data definition
statements to signify that a data set is to
be written on a system output unit.

Also, an

System catalog: (See catalog)

system output device:
shared by all jobs.

An output device

system generation: The process of using
one operating system to assemble and link
together into a coherent whole all the
required, alternative, and optional parts
that form a new operating system.

system library: A program library in
auxiliary storage in which the various
parts of an operating system are stored.

system programmer :

1. A precgrammer who is assigned to plan,
generate, maintain, extend, and
control the use of an operating system
with the aim of improving the overall
productivity of an installation.

2. A programmer who designs programming
systems and other applications.

terminal: A device resembling a typewriter
that is used to communicate with the
system.

terminal job: A foregrocund job; a session
from LOGON to LOGOFF. Also used to refer
to the time sharing region assigned to a

user and associated system control blocks.

Glossary 101

terminal user: See "usex".

time sharing: A method of using a
computing system that allows a number of
users to execute programs concurrently and
to interact with them duxring execution.

user: Under TSO, anyone with an entry in
the User Attribute Data Set; anyone
eligible to log on.

user attributes: A set of parameters in
the User Attribute Data Set (UADS). The
parameters describe the user to the system:
whether he is authorized to use the ACCOUNT
command, what size main storage region he
is to be assigned, etc.

User Attribute Data_ Set (UADS): A
partitioned data set with a member for each
authorized system user. Each member

102 TSO Terminal User's Guide
I

contains the approrriate user
identifications, passwords, account
numbers, LOGON procedure names, and user
characteristics defining the user's
profile.

user identification: A one to seven

verification:

character symbol identifying each system
user.

utility programs: Service programs that
assist the user in organizing and
maintaining data.

An operation under the EDIT
command in which all sukcommands are
acknowledged and any text changes are
displayed as they are made.

(Release 20.1)

Indexes to systems reference library

manuals are consolidated in the publication

IBM System/360 Operating System: Systems
Reference Library Master Index, Order No.
GC28-664L4., For additional information
about any subject listed belcw, refer to
other publications listed for the same
subject in the Master Index.

abbreviations 9 .

access to the system 14

ACCOUNT command 84

ACCOUNT command, authority tc use 84
account message 12

account number 17,84

account number, delete an 90

add data to the UADS 85

ADD subcommand 85

alias, assign an U46

allocate a data set 51

ampersand, use of 75

apostrophes, use of 27

assign values to symbolic values 73
attention interruption 8,14
attention, simulated 15

attributes, user 17

background jobs
cancel 68,83
control the output of 68
display status of 67
submit 65

blank line 26

BOTTOM subcommand 34

broadcast messages 11,14,20
displaying 21
receiving 21
sending 22
suppressing 21

55,65,79,80

call command 57,61,76

CANCEL command 68

CANCEL command, authority tc use 85

CANCEL subcommand 83

cataloged data sets 53

change a part of a line 40

change data in the UADS 93

CHANGE subcommand 40,93

change the output class 53

characteristics, operaticnal 20

characteristics, terminal 20

character-deletion character 7

character-deletion character, changing the
8

CLIST 74

columns of data 31

command language, uses fcr 5

command procedure library 73

Index

command prccedure,
using a 73
writing a 74
compands,
definition of 8
function of 15
how to enter 11
list of 10
ACCOUNT 84
CALL 57,61,76
CANCEL 68
DELETE 48
EDIT 25,56
EXEC 57,73
FREE 53
LINK 58
LISTALC 51,53
LISTBC 21
LISTCAT 53
LISTDS 53
LOADGO 63,76
LOGOFF 23
LOGON 17,23
OPERATOR 79
QUTPUT 68
PROTECT 49
RENAME 46
SAVE 56
STATUS 67
TEST 71
TIME 23
SEND 22
SUBMIT 65
WHEN 74,76
operands of 15
syntax of 15
communication lines 5
compile 55
compiler 51
compilers, data set names 57
context editing 26
conventions 7
create a data set 30
create a program 56
current line gpointer 25
finding 33
positioning 33

data definition statement (DD) 51
data set defined with ALLOCATE or EDIT
command 51
data set name 26
data set naming conventions 27
data set type 29
data sets,

allocate 51

cataloged 53

change the name of 46

create 30

definition of 25

delete 48

Index

103

data sets, (continued)
free 53
list the contents of 43
list the names of your 53
password 50
passwords for 49
protect 49
rename 46

store 43
updating 36
data,

delete from a data set 36
entering 25
insert in a data set 36
insert into a data set 37
manipulating 25
replace in a data set 36,39
DD statement 51
debug 71
default tab setting 32
default values 9,74
delete a data set 48
DELETE command 48
delete data from a data set 36
delete data from the UADS 89
DELETE subcommand 89
delimeter, special, FIND subcommand 35
delimiter, special, CHANGE subcommand 40
descriptive qualifier 27 .
descriptive qualifiers, list of 28
descriptive qualifier 74
display contents of the UADS 94
DISPLAY subcommand 82
displaying broadcast messages 21
displaying time used 23
DOWN subcommand 34

EDIT command 25,56

edit function, end the 46
edit message 12

edit mode 25

END statement 74,76

end subcommand 84,95

end the edit function U6
ending a terminal session 23
entering a line 8
entering data 25

error messages 60

errors, correcting 7

EXEC command 57,73
execute 55

executing a program 61
external references 59,63

FIND subcommand 34

free a data set 53

FREE command 53

fully qualified name 27
function of command 15
function of subcommands 16

104 TSO Terminal User's Guide (Release 20.1)

HELP ccmmand 5,15

identificaticn qualifier: 27
identificaticn, user 17,84

identify ycurself to the system 17
increment, line number 31
informational messages 11
information, requesting additional = 13
input mode 25

INPUT subccmmand 31,39

insert data into a data set 36,37
interruption, attention 8,14

JCIL statement 51,66
job statement 66
jobname 66 :

keybocard 7

library, subroutine 59,63
line number 25
line number editing 25
line number increment 31
line numbers, suppressing 43
line pointer 25

finding 33

positioning 33
line-deletion characters 7
line-deletion character, changing the
lines, renumber 42
line, entering 8
LINK command 58
link edit 55
link editor 51,58
list data set names 53
list line numbers 43
LIST subcommand 33,43,94
list the ccntents of a data set 43
LISTALC ccmmand 51,53
LISTBC ccpmand 21
LISTCAT command 53
LISTDS ccmmand 53
load 55
load a prcgram 63
load module 58,61
loader 51
LOADGO ccmmand 63,76
locking the terminal 12
logical tab settings 32
LOGOFF command 23
logon 21
10GON command 17,23
logon procedure 51
lowercase letters in examples 11

mail 20
main storage region size 84
manipulating data 25
messages 5

broadcast 14,20

error 60

prompting 9,13

send 83

mistakes, correcting 7
mode messages 12
mode, edit 25
mode, input 25
MODIFY subcommand 84
modify time sharing parameters 84
MONITOR subcommand 79
monitor terminal activity 79
msgclass 68

naming cocnventions 27

naming ccnventions, nonconformity to
notices 20,83

null line 26

object module 58
operands of 15
commands 15
subcommands 16
operands,
default values 9
definition of 9
operational characteristics 20
OPERATOR command 79
OPERATOR command, authority to use 84
operator message 12
output class, change the 53
output command 68
OUTPUT ccmmand, authcrity to use 85
output data set (SYSOUT) 68
output message 12

parm parameter 57
partitioned data sets 29
password 17,49,84

data set 50

delete a 89
PROC statement 74
procedure name 17,84
procedure, delete a 90
profile 21
PROFILE command 8
profile, user 20
prompting 5

messages 9,11,13

messages, response to 13
PROTECT command 49

qualified name 27

qualifier, descriptive 27
qualifier, identification 27
question mark, use of 5,13

ready message 11

receiving broadcast messages 21
region size, main storage 84
rename a data set 46

RENAME command 46

RENUM subcommand 42

renumber lines in a data 36

renumber lines 42
replace data in a data set 36,39
request session time 80

SAVE
conwand 56
subcommand 43
SEND
conmand 22
subcommand 83
sending bcradcast messages 22
session time 23,80
simulated attention 15
special delimiter,
CHANGE subcommand 40
FIND subcommand 35
statenent, END 74,76
statement, PROC 74
STATUS command 67
status command, autherity to use 85
store a data set 43
subcommands,
definition of 9
function of 16
how to enter 11
list of 10
ADD 85
BOTTCM 34
CHANGE 40,93
DELETE 89
DISPLAY 82
DOWN 34
END 84,95
FIND 34
INPUT 31,39
LIST 33,43,94
MODIFY 84
MONITOR 79
RENUM 42
SAVE 43
SEND 83
TABSET 32
TOP 34
UP 34
VERIFY 33
operands of 16
syntax of 16
SUBMIT command 65
SUBMIT ccmmand, authority to use 85
subroutine library 59,63
suppress line numbers 43
suppressing brcadcast messages 21
symbolic values 73
symbolic values, assign 75
symbolic values, types of 75
syntax of
commands 15
subcommands 16
sysout 68
system catalog 53
system pause 69

tab settings 31
tab settings, logical 32
tab setting, default 32

TABSET subcommand 32

Index

105

terminal 5

terminal characteristics 20
terminals, use of 7
termination, testing conditions foxr 76
test a program 71

TEST command 71

test message 12

.text handling 7

time 80

TIME command 23

time used 23

TOP subcommand 34

TSO 5

type of data set 29

UADS (user attributes data set) 84
UP subcommand 34

updating a data set 36
uppercase letters
in examples 11
in output 7
user
attributes 17,84
identification 17,84
profile 20
user-supplied name 27

VERIFY subcommand 33

WHEN command 74,76

106 TSO Terminal User's Guide (Release 20.1)

GC28-6763-0

T8IV

International Business Machines Corporation

Data Processing Division

1133 Westchester Avenue, White Plains, New York 10604
[U.S.A. only]

IBM World Trade Corporation
821 United Nations Plaza, New York, New York 10017
[International)

80 serIsersesesecnsssssessnns

DR XY

READER'S COMMENT FORM

IBM System/360 Operating System:
Time Sharing Option Order No. GC28-6763-0

Terminal User's Guide

Please use this form to express your opinion of this publication. We are interested in your
comments about its technical accuracy, organization, and completeness. All suggestions
and comments become the property of IBM.

Please do not use this form to request technical information or additional copies of publications.
All such requests should be directed to your IBM representative or to the IBM Branch Office
serving your locality.

® Please indicate your occupation:

® How did you use this publication?
[1 Frequently for reference in my work.
(] Asan introduction to the subject.
[0 As a textbook in a course.

O For specific information on one or two subjects.

e Comments (Please include page numbers and give examples.):

® Thank you for your comments. No postage necessary if mailed in the U.S.A.

GC28-6763-0

YOUR COMMENTS, PLEASE . . .

This manual is part of a library that serves as a reference source for systems analysts,
programmers and operators of IBM systems. Your answers to the questions on the back
of this form, together with your comments, will help us produce better publications for
your use. Each reply will be carefully reviewed by the persons responsible for writing
and publishing this material. All comments and suggestions become the property of IBM.

Note: Please direct any requests for copies of publications, or for assistance in using your

IBM system, to your IBM representative or to the IBM branch office serving your locality.

FIRST CLASS
PERMIT NO. 81
POUGHKEEPSIE, N.Y.

BUSINESS REPLY MAIL
NO POSTAGE STAMP NECESSARY IF MAILED IN THE UNITED STATES

POSTAGE WILL BE PAID BY ...

IBM Corporation
’ P.O. Box 390
Poughkeepsie, N.Y. 12602

Attention: Programming Systems Publications
Department D58

— e e e ——— ——— —— — — — — — — — —— —— — ——— et

BV

®
International Business Machines Corporation
Data Processing Division
1133 Westchester Avenue, White Plains, New York 10604
[U.S.A. only]

IBM World Trade Corporation
821 United Nations Plaza, New York, New York 10017
[International]

aury Buojy inD

BM / Technical Newsletter

IBM SYSTEM/360 OPERATING SYSTEM:
TIME SHARING OPTION
TERMINAL USER'S GUIDE

© IBM Corp. 1971

File Number
Re: Order No.
This Newsletter No.

Date

Previous Newsletter Nos.

This Technical Newsletter, a part of release 20.1 of IBM

System/360 Operating System, provides replacement pages for the
subject publication. These replacement pages remain in effect for
subsequent releases unless specifically altered. Pages to be

inserted and/or removed are:

Cover, 2
3,4,4.1
9,10
17,18
21-23
27-32

49,50,50.1
55,56
67,68
79,80
83,84

A change to the text or a small change to an illustration is
indicated by a vertical line to the left of the change; a changed
or added illustration is denoted by the symbol e to the left of

the caption.

Summary of Amendments

This Technical Newsletter includes the addition of a new keyword
for the PROFILE command, a subcommand for TEST, and editorial

changes.

Note: Please file this cover letter at the back of the manual to

provide a record of changes.

IBM Corporation, Programming Systems Publications, P.O. Box 390, Poughkeepsie, N.Y. 12602

S$360-36
GC28-6763-0
GN28-2483
June 1, 1971

None

PRINTED IN U.S.A.

File No. S360-36
Order No. Gc28-6763-0 | 0S

Systems Reference Library

IBM System/360 Operating System:
Time Sharing Option

Terminal User's Guide

The Time Sharing Option (TSO) of the IBM
System/360 Operating System lets you use the
facilities of a computer from a terminal. You
define your work to the system through the TSO
Command Language. This rublication explains to
all users of TSO how to use the TSO Command
Language to perform the following functions:

Start and end a terminal session.
Enter and manipulate data.
Program at the terminal.

Test a program.

Write and use command prccedures.
Control a system with TSO.

After becoming familiar with the information
presented in this manual, you may use IBM
Systen/360 Operating System: Time Sharing
Option, Command Language Reference, GC28-6732
for review and reference.

Page of GC28-6763-0, Revised June 1,

Preface

This publication describes how to use the
TSO Command Language to all TSO terminal
users. The commands can be used to perform
the following functions:

Start and end a terminal session.
Enter and manipulate data.
Program at the terminal.

Test a program.

Write and use command procedures.
Control a system with TSO.

This publication tells you what commands to
use to perform these functions. For
details on how to code each command, refer
to the publication IBM System/360 Operating
System: Time Sharing Option, Command
Lanquage Reference, GC28-6732.

First Edition (March, 1971)

1971, By TNL GN28-2483

Before reading this manual you should be
aware of three facts:

e Program Products are not discussed in
this manual.

e All examples in this manual show the
user's input in lowercase letters and
the system output in uppercase letters.

e All examples in this manual assume that
you are using an IBM 2741
Communications Terminal, and that you
must press the RETURN key to enter
data. For information on your type of
terminal refer to the publication IBM
System/360 Operating System: Time
Sharing Option, Terminals, GC28-6762.

This edition with the addition of Technical Newsletter
GN28-2483, applies to release 20.1, of IBM System/360
Operating System, and to all subsequent releases until
otherwise indicated in new editions or Technical Newsletters.
Changes are continually made to the information herein;
before using this publication in connection with the
operation of IBM systems, consult the latest IBM System/360

SRL Newsletter,
are applicable and current.

Order No. GN20-0360, for the editions that

Requests for copies of IBM publications should be made to
your IBM representative or to the IBM branch office serving

your locality.

A form for readers' comments is provided at the back of

this publication.

If the form has been removed, comments may

be addressed to IBM Corporation, Programming Systems
Publications, Department D58, PO Box 390, Poughkeepsie, N.Y.

12602

© Copyright International Business Machines Corporation 1971

Page of GC28-6763-0,

| SUMMARY OF MAJOR CHANGES & v o o « « =
INTRODUCTION + « o« o o v o o = o o o =
WHAT YOU MUST KNOW TO USE TSO

Entering Information at the Terminal .
COMMANAS « o o o o = o o = o o o o o =

When to Enter a Command or Subcommand

How to Enter a Command or Subcommand
MESSAgEeS v« « « « o @« o o o o o o a « =
Mode MESSAgES o o o o o o o o o o o
Prompting MESSageS e« « o « « o « « «
Informational Messages
Broadcast Messages ¢ « « « » « o
The Attention Interruption
The HELP Command . « « « o o o « «

STARTING AND ENDING A TERMINAL SESSION
Identifying Yourself to the System . .
Defining Operational Characteristics .
Receiving and Sending Broadcast
MESSAGES « « o o o o« o o = o o o o o o
Receiving Broadcast Messages . « . .
Sending Broadcast Messages . « . «
Displaying Session Time Used
Ending Your Terminal Session . « « . .

ENTERING AND MANIPULATING DATA . .
Identifying the Data Set
Creating A Data Set « . .
Placing Data into Columns . . .
Finding and Positioning the Current
Line Pointer « o o« o o o o o o o o « =«
Finding the Current Line Pointer . .
Positioning the Current Line Pointer
Updating a Data Set « o e .
Deleting Data From a Data Set o e
Inserting Data in a Data Set . . .
Replacing Data in a Data Set . . .
Renumbering Lines of Data . « '« .
Listing the Contents of a Data Set .
Storing a Data Set .« « o o o« o« « < .
Ending the Edit Functions .
Renaming a Data Set . . . «
Deleting a Data Set « o« o « « = o «
Establishing Passwords for a Data Set
Allocating a Data Set . « o« « o o« o =

Revised June 1, 1971,

By TNL GN28-2483

Contents
Freeing an Allocated Data Set 53
Listing the Names of Your Data Sets . . 53
PROGRAMMING AT THE TERMINAL « . 55
Creating a Program .« « « « « « » « « o« « 56
Compiling a Program . . . « o o o o 57
Link Editing a Compiled Program « « « « 58
Executing a Program . « « « « « o« « o« o 61
Loading a Program o« « « « « « « = « o « 63
Processing Background Jobs +. « . « « « o 65
Submitting Background Jobs « . « . . . 65
Displaying the Status of Background
JObS &« & o« o« o« o . . e e o o o o o 67
Cancelling Background Jobs e o o« o« « o 68
Controlling the Output of a
Background JOb o « o« o« o o « « o« « « . 68
TESTING A PROGRAM 4 « o &« o « o o o o o 11
USING AND WRITING COMMAND PROCEDURES . . 73
Using Command Procedure€s . « « « « o « o« 73
Calling a Command Procedure 73
Assigning Values to Symbolic Values . 74
Writing Command Procedures . « « « - - . 74
Assigning Symbolic Values . . « . « . 75
Testing Conditions for Termination . . 76
Ending the Command Procedure 77
CONTROLLING A SYSTEM WITH TSO . « « « . 79
The OPERATOR Command « « « « « « « « o« « 79
Monitoring Terminal Activity 79
Displaying TSO Information . . .« - 82
Cancelling a-Session or Background
JOD & 4 ¢« « o o o s o o o o « « « o« « 83
Sending Messages to Terminal Users . . 83
Modifying Time Sharing Parameters . . 84
Ending Operation of the Operator
Command . « . « e« e e o o o o o o« « 84
The ACCOUNT Command “ = e . . - - . 84
Adding New Entries or Data to an
ENEXY o+ o o o o o o o o o = o o« « o « 85
_Deleting Entries or Parts of Entries . 89
Changing Data in an Entry 93
Displaying the Contents of an Entry . 94
Displaying All User Identifications . 95
Ending Operation of the ACCOUNT
Command <« o« « o a o o @« o o o« » a « « 95
GLOSSARY 2 = ¢ « o o o @« o « o o o o o o 97
INDEX. ¢ ¢ o o o o o o o« s o o a o o 197
Contents 3

Illustrations

Figures

Figure 1. Sample Instruction Sheet
for a Terminal c @ o o = ® e @ @« .
Figure 2. Sample Data Set
Figure 3. Allocating Data Sets for
the Assembler FF o o 2 a o« o « = « = «
Figure 4. Creating an assembler
source program e e % e o o e o o = e
Figure 5. COBOL Compilation
Figure 6. Link editing and executing
3 PrOGTaAM « o o o o = o o o « « = =«

Tables

Table 1. TSO Commands and
Subcommands, Including Abbreviations .
Tablé 2. Descriptive Qualifiers . .
Table 3. Default Tab Settings . . .
Table 4. Values of the Line Pointer
Referred to by an Asterisk (¥)
Table 5. Data Set Names of the
COMPLllers « o« o o o o o = « o a o « ‘o

4 TSO Terminal User's Guide (Release 20.1)

18
35

52

56
58

62

10
32
34
57

Figure 7. Loading a Program
Figure 8. Submitting a Program as a
Backgrcund Job c o 4 o o = o e o o =
Figure 9. Symbolic Values for a

Conmand Procedure . « « « « « « « o« «
Figure 10. The Simplest Structure

That an Entry in the UADS Can Have .
Figure 11. A Compliex Structure for an
Entry in the UADS e o e o o o e o =

65
67
74
86

86

Page of GC28-6763-0, Revised June 1, 1971, By TNL GN28-2483

Summary of Major Changes

Release 20.1

I)] T 1)
| Item i Description | Areas Affected |
b t + 4
|CTLX keyword for | Keyword added. | 18 |
|PROFILE command | | |
b o e e e e e ittt 1
ICOPY subcommand of | Subcommand added. | 10 |
| TEST] | |
gy, Ay g S S S U L Sy S, S J

Summary of Major Changes 4.1

When you use a command to request work, the command establishes the
scope of the work to the system. For some commands, the scope of the
work encompasses several operations that you can identify separately.
After entering the command, you may specify one of the separately
identifiable operations by entering a subcommand. A subcommand, like a
command, is a request for work; however, the work requested by a
subcommand is a particular operation within the scope of work
established by a command. '

The commands and subcommands recognized by TSO form the TSO command
language. The command lanquage is designed to be easy to use. The
command names and subcommand names are typically familiar English words,
often verbs, that describe the work to be done. The number of command
names and subcommand names that you must learn has been kept to a
minimum. (Your installation can add its own commands to perform
functions not provided by the TSO command language.)

Besides entering the name of the command or subcommand, you are often
required to specify additional information to pinpoint the function you
want performed. You define the additional information with operands
(words or numbers that accompany the command names and subcommand
names.) Most of the operands have default values that are used by the
system if you choose to omit the operand from the command or subcommand.
However, some operands do not have default values. If you fail to
provide a required operand for which there is no default, the system
sends you a prompting message asking you to supply the operands. The
publication, IBM System/360 Operating System: Time Sharing Option,
Command Lanquage Reference shows all operands for each command, and
indicates the default values where applicable, and describes how to
enter the commands.

You can abbreviate many of the command names, subcommand names and
operands. Together, the defaults and abbreviations decrease the amount
of typing required. (The abbreviations and their use are discussed in
the publication IBM System/360 Operating System: Time Sharing Option,
Command Language Reference.)

Table 1 lists the commands and their subcommands in alphabetical
order.

What you Must Know to Use TSO 9

Page of GC28-6763-0, Revised June 1, 1971, By TNL GN28-2483

Table 1. TSO Commands and Subcommands, Including Abbreviations

PO DA p——

I
| COMMAND (abbreviation) | COMMAND (abbreviation)
| SUBCOMMAND (abbreviation) | SUBCOMMAND (abbreviation)
t 4
r E
| ACCOUNT | LISTDS (LISTD)
| ADD (R) | LOADGO (LOAD)
| CHANGE (C) | LOGOFF
DELETE (D) | LOGON
END | *MERGE
HELP (H) | OPERATOR (OPER)
LIST (L) | CANCEL (C)
LISTIDS (LISTI) | DISPLAY (D)
ALLOCATE (ALLOC) | END
*ASM | HELP (H)_
*CALC | MODIFY (F)
| *DELETE | MONITOR (MN)
| *END | SEND
| *HELP | START (S)
| *SAVE i STOP (P)
| CALL | OUTPUT (OUT)
| CANCEL | CONTINUE (CONT)
| *COBOL (COB) | END
| #CONVERT (CON) | HELP (H)
| #*copyY | SAVE (S)
| DELETE (D) | PROFILE (PROF)
| EDIT (E) | PROTECT (PROT)
| BOTTOM (B) | RENAME (REN)
| CHANGE (C) | RUN (R)
| DELETE (D) | SEND (SE)
| DOWN | STATUS (ST)
| END | SUBMIT (SUB)
FIND (F) TERMINAL (TERM)
*FORMAT (FORM) TEST (T)
HELP (H) Assign (=)
INPUT (I) AT
INSERT (IN) | CALL
LIST (L) COPY (C)
*MERGE (M) DELETE (D)
PROFILE (PROF) DROP
| RENUM (REN) | END
| RUN (R) | EQUATE (EQ)
| SAVE (S) | FREEMAIN (FREE)
SCAN (SC) | GETMAIN (GET)
TABSET (TAB) | GO
TOP | HELP (H)
UP | LIST (L)
VERIFY (V) | LISTDCB
| EXEC (EX) | LISTDEB
*FORMAT (FORM) | LISTMAP
*FORT | LISTPSW
FREE | LISTTCB
| HELP (H) | LOAD
| LINK | OFF
| *LIST (L) | QUALIFY (Q)
| LISTALC (LISTA) | RUN (R)
| LISTBC (LISTB) | WHERE (W)
| LISTCAT (LISTC) | TIME (TI)
[| **END
I | **WHEN
3 4

| *Available as program products
| **¥For use in command procedures

10 TSO Terminal User's Guide (Release 20.1)

Starting and Ending a Terminal Session

This section describes the commands you can use to:

Identify yourself to the system.

Define operational characteristics of your session.
Receive and send broadcast messages.

Display session time used.

End your terminal session.

Identifying Yourself to the System

The first thing you must do to start your terminal session is to turn on
the power according to instructions provided by your installation. In
many cases, you will find an instruction sheet such as the one shown in
Figure 1 attached to the terminal. In the example shown in Figure 1,
instructions 1 through 8 must be followed to turn on the power and to
establish the comnection with the system. If there is no instruction

sheet attached to the terminal, consult the publication, IBM System/360
Operating System: Time Sharing Option, Terminals.

After you turn on the power you must use the LOGON command to
identify yourself to the system. You must supply, as operands of LOGON,
the user attributes assigned to you by your installation. Your user
attributes are:

1. User identification (required) -- The name or code by which you are
known to the system.

2. Password (required if your installation assigns you one) -- A
further identification used for additional security protection.

3. Account number (optional) -- The account to which your texrminal
session is charged.

4. Procedure name (optional) -- The name of series of statements that
defines your job to the system.

Starting and Ending a Terminal Session 17

Page of GC28-6763-0, Revised June 1, 1971, By TNL GN28-2483

r :
TERMINAL #7

(Available 9:00 a.m. - 3:00 p.m.
For additional time call A. Jones ext. 1234)

1. Turn ON/OFF switch to ON.

2. Make sure the COM/ICL switch is set to COM.
3. Remove handset from telephone (data set).
4. Press TALK button on telephone.

5. Dial ext. 5555, 5556, or 5557.

extension.

8. Replace handset on the cradle.

9. Enter LOGON command:

6. Wait for a high pitched tone. When you hear this tone you
are in contact with the computer. If you get a busy signal
or no answer, hang up and repeat from 3 trying another

7. Push the DATA button on the telephone. If DATA button light
goes off at any point during session, repeat from (3).

logon / acct() proc () size() notices

userid password account procedure nnnn

10. The default TERMINAL command is:

TERMINAL command:

|
|
[
I
|
|
|
|
|
|
|
|
|
I
[
|
|
|
|
|
|
|
I
|
|
|
|
l
I
I
I
|
|
I
|
I
I
|
I
|
|
l
I
|
I
I
I
|
I|
| char(bs) and 1line(attn)
|

|

L

nonotices

terminal nolines noseconds noinput break notimeout linesize (120)

hif.you want to change any of the following defaults use this

terminal lines() seconds() input() linesize(

11. If you want to change your user profile, use the PROFILE

command :
char() line() prompt intercom
profile char(bs) line(attn) noprompt: nointercom nopause nomsgid
nochar line(ctlx)
noline

The following operands are recommended for this terminal:

Note: Please turn ON/OFF switch to OFF after you enter LOGOFF.

b s e S —— — — T — — —— T a— T — T —— T — — — — — — — — —— vt T — — — — —— — —— — — —— — — — — ————— " — —— —]

Figure 1. Sample Instruction Sheet for a Terminal

Your user attributes are recorded in-:the system together with the
attributes of all other terminal users. When you log on, the system
compares the attributes you specify with the LOGON command to the
recorded attributes of each user to determlne if you are an authorized

user of the system.

18 TSO Terminal User's Guide (Release 20.1)

RECEIVING BROADCAST MESSAGES

You can use three commands to control which broadcast messages you
receive:

LOGON, PROFILE, and LISTBC

When you log on, broadcast messages sent to all users (notices) and
those broadcast messages intended for you (mail) are displayed at your
terminal. You can use the following operands of the LOGON command to
prevent printing either type of messages at your terminal:

e NONOTICES suppresses printing of broadcast messages intended for all
terminal users.

e NOMAIL suppresses printing of broadcast messages intended
specifically for you.

For example, if you enter:
logon smith acct(72411) nomail

You will not receive mail but you will receive all notices that are
available at the time.

NONOTICES and NOMAIL suppress those broadcast messages outstanding at
the time you log on. You will automatically receive any broadcast
messades issued after you log on. You cannot stop the operator from
sending you notices, but you can specify that you do not want to receive
any mail by using the NOINTERCOM operand of the PROFILE command. Forx
example, if you enter the following commands:

logon jones/cloud proc(ab)
READY
profile nointerxrcom

you request that all broadcast messages available at the time be
displayed, but that all mail sent to you after you log on be suppressed
throughout your session. (Note that NOINTERCOM can be a default of your
user profile, and therefore you may not have to specify it with the
PROFILE command.)

At any time during your session you can use the LISTBC command to
request that either all available notices for users, or all your mail
(or both) be displayed. If you enter:
listbc

you will get all broadcast messages. If you enter:
listbc nomail

you will get only notices. If you enter:
listbc nonotices

you will get only your mail.

The notices you get are both the notices available at the time you
logged on and those issued throughout your session. This enables you to
see what notices were available at log on time if you specified
NONOTICES in your LOGON command. (The system operator can delete

notices at any time. Consequently you will get only those notices he
has not deleted.)

Starting and Ending a Terminal Session 21

Page of GC28-6763-0, Revised June 1, 1971, By TNL GN28-2483

Mail messages sent directly to you are automatically deleted by the
system after you receive them. Therefore the mail you get when you use
the LISTBC command are those available at log on time if you specified
NOMAIL in your LOGON command, and those suppressed as a result of the
NOINTERCOM operand of the PROFILE command. After you use the LISTBC
command to see your mail, the NOINTERCOM operand will again be in
effect.

If there are no messages available when you use the LISTBC command
you will receive the following message:

NO BROADCAST MESSAGES

If you want to cancel the effect of the NOINTERCOM operand, enter:
profile intercom

You will receive any mail issued after you enter this command. To

obtain your mail messages issued before you entered INTERCOM, use the
LISTBC command.

SENDING MESSAGES

You can use the SEND command to send mail messages to another terminal
user or to a system operator. The SEND command can be used at any time
after you log on.

You can send a mail message to another user only if you know his user
identification. For example, the command:

send 'do not use procedure 245 until notified' user(jones,dept#)
will send the message enclosed in quotes to the two.users whose

identifications are JONES and DEPTY4.

When you send a message to another user, he will receive it
immediately provided that he is logged on and is accepting messages. If
he is not logged on or is not accepting messages, you are notified and
your message is deleted. For example, assume that SMITH is not logged
on, JONES is not accepting messages, and CILARK is both logged on and
accepting messages. When you send the following message:

send 'this is a message' user (smith, jones,clark)
SMITH and JONES do not receive the message, you are notified, and the

message is deleted. CLARK receives the message.

You can request the system to save your message until the user you
sent it to logs on or decides to accept messages, by using the LOGON
operand of the SEND command. For example, if you enter:

send 'this is a message® user(smith, jones,clark) logon

SMITH will receive your message when he logs on, JONES will receive it
when he uses the LISTBC command, and CLARK will receive it immediately.

You can send a message to only one operator at a time. With the SEND
command, you can identify an operator by a number. For example,

send 'important message' operator(7)

22 TSO Terminal User's Guide (Release 20.1)

Page of GC28-6763-0, Revised June 1, 1971, By TNL GN28-2483

If there is only one operator at your installation, you can omit the
number. For example,

send 'important message' operator

If there are several operators and you omit the number, your message
is sent to the master console.

Displaying Session Time Used

You can use the TIME command to £ind out how much time you have used
during the current session. If you enter:

time

the system sends you a message telling you how long you have been using
the terminal since you logged onmn.

If you are executing a program, you can use the TIME command to find
out how long the program has been running. You must first enter an
attention interruption and then enter the TIME command., The system then
sends you a message telling you how long a program has been running. If
you want to continue processing the program, press the RETURN key and
the program continues. If you want to stop processing the program,
enter another attention interruption and wait for the READY message
before you enter another command.

Ending Your Terminal Session

You can end your terminal session in either of two ways:

o By entering the LOGOFF command to end the session.
e By entering the LOGON command to start a new session.

The LOGOFF command:

e Displays your user identification.

o Displays the length of time you have been using the terminal, and
the time of day and date your session ended.

* Disconnects your terminal from the system.

The LOGON command terminates your current session and starts a new

session at the same time. LOGON must be specified as described in
"Identifying Yourself to the System".

Starting and Ending a Terminal Session 23

the following EDIT command specifies that you are going to create a new
data set named ACCTS.DATA. After you enter the command the system
enters input mode.

READY
edit accts.data new
INPUT

In the following example, the OLD operand of the EDIT command
specifies that you want to edit an existing data set named PARTS.TEXT.
After you enter the command, the system enters edit mode.

READY
edit parts.text old
EDIT

As you can see, the NEW operand specifies that you are going to
create a data set, and the OLD operand specifies that the data set
already exists.

The name you give a data set should follow certain conventions. A
data set name has three fields.

1. Identification qualifier.
2. User-supplied name.
3. Descriptive qualifier.

The fields must be separated by periods. The total length of the
name, including periods, must not exceed 44 characters. For example, a
typical data set name is:

SMITH.ACCTS.DATA

Identification qualifier

User-supplied name

Descriptive qualifier

When you create a data set you need only specify the user-supplied
name. The system supplies values for the other two fields. The
identification qualifier is the user identification you specified with
the LOGON command. The descriptive qualifier must be one of those
listed in Table 2. The system obtains it from operands you specify in
the EDIT command. If you do not supply it in another operand, the
system prompts you for a descriptive qualifier. If you prefer, you can

specify the descriptive qualifier as part of a data set name, for
example,

PARTS.DATA

You may specify a fully qualified name (a name with all three
qualifiers) by enclosing it in apostrophes. For example,

* JONES.PROG1.ASM*
This is a useful procedure when you have to use a data set with an

identification qualifier other than your own user identification.

Entering and Manipuliating Data 27

Page of GC28-6763-0, Revised June 1,

1971, By TNL GN28-2483

Table 2. Descriptive Qualifiers

i Descriptive Qualifier] Data Set Contents }
; ASM T Assembler (F) input T
1 BASIC ; ITF: BASIC statements - '|
l| FORT |I FORTRAN IV (E, G, Gl or H) l|
| | statements and free- or |
] | fixed-format FORTRAN statements |
|| IPLI { ITF:PL/I statements ‘
1 PLI { PL/I (F) statements 1
= COBOL : American National Standard COBOL '1
| | statements |
: TEXT { Uppercase and 'lowercase text :
: DATA 1 Uppercase text ,
} CNTL { JCL and SYSIN for SUBMIT command :
} CLIST 1 TSO commands :
: STEX l STATIC external data from ITF:PLI }
: OBJ } Object module {
} LIST % Listings ;
= LOAD % Load module :
= LINKLIST 5 Output listing from linkage editor}
: ’ LOADLIST } Output listing from loader :
{ TESTLIST % Output listing from TEST command {
i OUTLIST i Output listing from OUTPUT commandi

Any name that does not conform to the naming conventions must be

enclosed in apostrophes.

For example, if you have a data set named

RECORDS, with no identification or descriptive qualifiers, enter

*records"'

The system will not append the identification and descriptive

qualifiers to such a name.

You can refer to an existing data set by its user-supplied name.
some cases, you may also have to include the descriptive qualifier.
example, if two of your data sets were named:

SMITH. PART1.ASM
SMITH.PART1.DATA

and you want to refer to the latter, you must specify:

partl.data

28 TSO Terminal Usexr's Guide

(Release 20.1)

In
For

Page of GC28-6763-0, Revised June 1, 1971, By TNL GN28-2483

You can also create and edit partitioned data sets. A partitioned
data set consists of one or more data sets called members. Each member
can be created and edited separately and each has a name. The member
name is enclosed in parentheses and appended to the right of the fully
qualified data set name. For example, the fully qualified name of
member MEM1 of the SMITH.PART1.DATA data set is:

SMITH. PART1.DATA (MEM1)

You need only use the user-supplied name and member name to refer to
the member. The system appends the identification and descrigptive
qualifiers. For example, to refer to member MEM1 you can specify:

partl (meml)

In the following example you use the EDIT command to create member
ONE of a partitioned data set named JONES.TU2.DATA. The second EDIT
command, creates member TWO of JONES.TU42.DATA. Note that the NEW
operand must be specified in both cases. The third EDIT command,
specifies that changes are to be made to member ONE.

READY
edit tu42.data(one) new
INPUT

READY
edit t42.data (two) new
INPUT

READY
edit t42.data(one) old
EDIT

After you specify the data set name and the NEW or OLD operand, you
should specify the data set type. The data set type is an operand that
describes the purpose for which the data set is to be or was created.
The type operand is one of the sources from which the system can obtain
the descriptive qualifier. The valid types are:

ASM
COBOL
GOFORT
FORTE
FORTG
FORTGI
FORTH /
PLI
PLIF
IPLI
‘BASIC

- DATA
TEXT
CLIST
CNTL

Entering and Manipulating Data 29

You do not have to specify the type operand if you specify it as the
descriptive qualifier. For example, the following two commands have the
same effect:

edit ab75 new asm
edit ab75.asm new

If the system cannot find the data set type from other sources, you
are prompted for it.

If you do not want your data set to have line numbers, use the NONUM
operand. For example,

edit ab75 new asm nonum

Do not specify NONUM for the BASIC, IPLI, and GOFORT data set types,
because they must always have line numbers.

Except for one case, lines of input are translated to upprercase
letters by the system. If you want the system to retain your input in
the same form as you enter it (uppercase and lowercase), code the ASIS
operand. For example,

edit records new data asis

Creating a Data Set

You usually create a data set when EDIT is in input mode. You request
input mode when you enter one of the following:

e The NEW operand in the EDIT command.
e The INPUT subcommand while you are in edit mode.

After you enter the EDIT command with the NEW operand the system sends
you the following message:

INPUT

After this message is printed the system prints the first line number of
your data set unless you specified NONUM in the EDIT command. The first
line number printed is 00010. Type the first line of input to the right
of the line number and press the RETURN key to enter it. The system
then prints the second line number, which is 00020, and you may then
enter your second line of input, and so on. When you reach the end of
the data you want to enter, press the RETURN key without entering
anything (a2 null line) and the system switches to edit mode. The
following example illustrates the points just discussed:

READY

edit accts new data

INPUT

00010 #23942 5 22.75 acme inc
00020 #32135 21 33.90 bbb corp
00030 #32174 12 21.80 alpha inds
00040 #49213 35 a7.95 xyz dist
00050 #52221 50 a2.35 beta mfg
00060 (null line)

EDIT

30 TSO Terminal User's Guide (Release 20.1)

In the example, the line numbers have the standard increment of 10.
If you prefer a different increment, you can use the INPUT subcommand to
create the data set. To do this you must first request a switch to edit
mode by entering a null line after you receive the INPUT message. Then
enter the INPUT subcommand specifying the number of the first line and
the size of the increment. After entering the INPUT subcommand the
system switches to input mode and prompts you with the first line
number. For example, to start with line 5 and use increments of 5, you
could use the following sequence:

READY

edit accts new data

INPUT

00010 (null line)

EDIT

input 5 5

INPUT

00005 #23942 5 22.75 acme inc
00010 #32135 21 23.90 bbb corp
00015 #32174 12 21.80 alpha inds
00020 #49213 35 27.95 xyz dist
00025 #52221 50 a2.35 beta mfg
00030 (null line)

EDIT

You can create the same data set in edit mode. However, you must
enter the line numbers you wish to use.

READY

edit accts new data

INPUT

00010 (null line)

EDIT

5 #23942 5 82.75 acme inc
10 #32135 21 23.90 bbb corp
15 #32174 12 21.80 alpha inds
20 #49213 35 a7.95 xyz dist
25 #52221 50 22.35 beta mfg

Note: Requesting an increment larger than 1, makes it easier for you to
insert lines in your data set later on. (See the section "Urdating a
Data Set" for instructions on how to insert lines in your data set.)

Placing Data into Columns

You can use the TAB key of your terminal to align your data in columns,
just as you would with an ordinary typewriter. However, this mechanical
tab setting is not recognized by the system which interprets each
striking of the TAB key as a space. For example, if you enter the
following three lines and align them with the TAB key, they appear at
the terminal as follows:

39427 abcde 49211 72669 abl
22 fghijkl 441 123456 72de
987654 mnop 2 31 Xyz

but they are received by the system as follows:
39427 ABCDE 49211 72669 AB4

22 FGHIJKL 441 123456 72DE
987654 MNOP Z 31 XYZ

Entering and Manipulating Data 31

Page of GC28-6763-0, Revised June 1, 1971, By TNL GN28-2483

I1If you want the system to place your data into columns, you must
establish logical tab settings with the TABSET subcommand of the EDIT
command or else use the defaults provided by the system. If you have
established logical tab settings for your data set, the system will
receive each item in its proper column whenever you press the TAB key.
The mechanical tab settings in your terminal need not correspond to the
logical tab settings. For example, assume that the logical tab settings
for the data set are columns 10, 20, and 30, while the mechanical tab
settings in the terminal are columns 5, 10 and 15. When you type in the
following three lines using the TAB key:

abc def ghi jkl1

mno pgr stu vwx

yz0 123 456 789
column 15
column 10
column 5
column 1

they are received by the system as follows:

ABC DEF GHI JKL
MNO POR STU VWX
YZO 123 456 789

column 30
column 20
column 10
column 1

You may find it convenient to make the mechanical tab settings
coincide with the logical tab settings.

The default tab settings used by the system vary with the data set
type. They are shown in Table 3.

Table 3. Default Tab Settings

T 1
| Data Set Type | Default Tab Setting Columns |
f t 4
COBOL	8,12,72
PLI	5,10,15,20,25,30,35,40,45,50
PLIF i 5,10,15, 20, 25,30,35,40, 45,50	
FORT(ALL)	7,72
ASM] 10,16,31,72	
TEXT	5,10,15,20,30,40 i
DATA	10,20,30,40,50,60
] CLIST	10, 20,30,40,50,60
CNTL	10,20,30,40,50,60
IPLI	5,10,15, 20, 25, 30,35, 40,45, 50
BASIC	10,20,30,40,50,60
L L J

If you want to change the default settings or other settings you
previously established, or nullify all tabs, you must use the TABSET
subcommand. If you want to change the default settings, you will
probably do so before you create the data set. That means ycu must
request edit mode after you enter the EDIT command, then enter the
TABSET subcommand and return to the input mode to create the data set.
For example, if you want to create a TEXT data set with the logical tabs
at columns 10, 25, and 35, you can use the following sequence:

32 TSO Terminal User's Guide (Release 20.1)

To delete the entire group, place an asterisk in the position where
the names do not match. (The asterisk cannot replace the user
identification.) TFor example, to delete the first group use the
following:

READY
delete *.data
READY

To delete the second group use the following:

READY
delete weather .*
READY

Establishing Passwords for a Data Set

Use the PROTECT command to establish passwords for your data set.
Passwords prevent unauthorized persons from reading (listing) or writing
(making changes to) your data set. Whenever anyone attempts to use a
password-protected data set, the system requests a password unless the
data set is protected with the same password that was entered in the
logon procedure. The system allows two chances to provide the correct
password. If your terminal has the "print-inhibit" feature, the system
disengages the printing mechanism at your terminal while you enter the
password in response. However, the "print-inhibit" feature is not used
if the prompting is for a new password you are adding to the data set.

The PROTECT command also specifies what the person who knows the
passwoxd can do to the data set; that is, whether he is allowed to read
it, or write in it, or both. You can require a password for both
reading and writing; or just for reading and not writing. You can also
assign one password for reading and a different one for writing. The
operands that control the type of operations are:

PWREAD -- you must specify a password before you can read from the data
set.

PWWRITE -- you must specify a password before you can write in the data
set.

NOPWREAD -- you can read from the data set without specifying a
password.

NOWRITE -- you cannot write into the data set (with this password).
There are three valid combinations of operands:

PWREAD PWWRITE -- the password is required for either reading or writing
your data set. '

PWREAD NOWRITE -- the password is required for reading. Writing is not
allowed with this passwoxrd.

NOPWREAD PWWRITE -- you can read without a password. The passwoxd
allows you to both read and write the data set.

Entering and Manipulating Data 49

Page of GC28-6763-0, Revised June 1, 1971, By TNL GN28-2483

If you specify only one operand you get two values by default. They
are:

Operand Default Values
PWREAD PWREAD PWWRITE
NOPWREAD NOPWREAD PWWRITE
PWWRITE NOPWREAD PWWRITE
NOWRITE PWREAD NOWRITE

The type of password operand, the number of times the password is
used, and optional security information that you can specify are
recorded in the PASSWORD data set of the operating system.

The following example adds the password HUSH for reading and writing
the JONES.SECRET.DATA data set:

READY
protect secret add(hush) pwread
READY

The following example adds another password, WHUSH, to the same data
set. This password can be used only for reading the data set:

READY
protect secrets/hush add (whush) nowrite
READY

Note how you must use the password in subsequent commands once you
have established it.

You can replace a password. For example, to replace the password
SESAME for HUSH in the JONES.SECRET.DATA data set, enter

READY
protect secrets/hush replace (thush,sesame)
READY

Note that when you are replacing a password you do not have to
specify the function of the password.

You can also delete a password. For example, if you no longer
require the WHUSH password for reading the data set, enter

READY
protect secret/sesame delete(whush)
READY

You can use the DATA operand to specify optional security information
to be recorded in the system. For example, when you establish the
password AB#72 for the SMITH.SALES.TEXT data set, you can also specify
other information:

READY
protect sales add(ab#72) data (password changes on monday)
READY
To find out what the optional information is, the type of operation
allowed, and the number of times the password has been used, use the
LIST operand. For example,

protect sales list(ab#72)

50 TSO Terminal User's Guide (Release 20.1)

Note:

1.

Page of GC28-6763-0, Revised June 1, 1971, By TNL GN28-2483

Data sets which are permanently allocated as part of the LOGON
procedure or by use of the ALLOCATE command cannot be accessed by
the PROTECT command. These data sets should be freed by using the
FREE cormmand prior to issuing the PROTECT command.

Wh'en a protected data set is renamed or deleted you should update

the password data set to reflect the change. This prevents your
having insufficient space for future entries.

Entering and Manipulating Data 50.1

Programming at the Terminal

You can use the TSO facilities to compile, link edit, and execute (or
compile and load) your source program at the terminal. TSO also allows
you to use any other program, such as utilities, at the terminal. That
is, instead of taking your job to the computer room to run it directly
undex the operating system, you can use the TSO facilities to enter it
through your terminal. These facilities reduce your job turnaround time
because you get immediate results at the terminal.

You can also use the terminal to submit your job for processing at
the computer in the conventional manner. That is, you submit your job
through the terminal but do not want to get immediate results at the
terminal. The results are sent to you from the computer room after your
job is executed or you may obtain them at the terminal at a later time.
Jobs submitted in this manner.are called background jobs.

Most compilers or assemblers that can be used under the operating
system can be used from your TSO terminal. They can be used to obtain
results at the terminal, or for background jobs. In addition to these
programs, your installation may have one or more of the special TSO
Program Product compilers and other TSO programs for your use at the
terminal. They are: ‘

e Interactive Terminal Facility (ITF): PL/I -- A problem-solving
language processor.

e Interactive Terminal Facility (ITF): BASIC -- A problem-solving
language processor.

e Code and Go FORTRAN —-- A FORTRAN compiler designed for a very fast
compile-execute sequence at the terminal.

e FORTRAN IV (Gl) -- A version of the FORTRAN IV (G) compile modified
for the terminal environment.

e TSO FORTRAN Prompter ~- An initialization routine to prompt you for
options and invoke the FORTRAN IV (Gl) Processor.

e FORTRAN IV Library (Mod I) -- Execution-time routines for use with
either Code-and-Go FORTRAN or FORTRAN IV (Gl).

e Full American National Standard COBOL Version 3 -- A version of the
American National Standard COBOL modified for the terminal
environment.

e TSO COBOL Prompter -- An initialization routine to prompt you for
options and invoke the full American National Standard COBOL Version
3 Processor.

e TSO Assembler Prompter -- An initialization routine to prompt you
for options and invoke the Assembler (F).

If your installation has one or more of the TSO Program Products, it
will provide you with documentation that explains how to use them. This
section explains how to use the programs normally available under the
operating system. The following paragraphs describe how you can:

Create a program

Compile your program
Link edit a compiled program

Programming at the Terminal 55

Page of GC28-6763-0, Revised June 1, 1971, By TNL GN28-2483

Execute a program
Load a program
Process background jobs

It is assumed that you are familiar with a programming language and
with the information in the Guide to Writing a Terminal Monitor Program
or a Command Processor or Terminal User's Guide that corresponds to that
language. The options and data set requirements of the compilers,
linkage editor, and loader are summarized in the publication, IBM
System/ 360 Operating System: Job Control Language User's Guide,
GC28-6703.

Creating a Program

Before your source program is compiled you must introduce it to the
system. You do so with the EDIT command, as described in the section,
"Entering and Manipulating Data".

When you enter the EDIT command you must specify the type operand or
give a descriptive qualifier to the data set name. The type (or
descriptive qualifier) tells the system which programming language you
are using. If you are writing a program and JCL statements to be
submitted as a background job, use CNTL as the type or descriptive
qualifier.

The EDIT command allows you to specify certain options for your
source program. You can use the SCAN operand to request syntax checking
| when the data set type is GOFORT, FORTE, FORTG, FORTGI, FORTH, BASIC,
PLIF, PLI, or IPLI. You can use the LINE operand specify the length of
the input line for PL/I source programs. The length of the input line
for the Assembler, FORTRAN, and COBOL is 80 characters.

After you create your source program you must use the SAVE subcommand
to save the data set before you end the EDIT command. Your source
program is now ready for compilation.

The example in Figure 4 shows the creation of an assembler source
program.

READY
edit progl new asm
INPUT

- source prodgram

EDIT
save
SAVED
end
READY

oo e e s e s, . e . . S e, e e)
S U S——

Figure 4. Creating an assembler source program

56 TSO Terminal User's Guide (Release 20.1)

[S e e e . S . s e P S P— — —— — — — —— p——— — — —— S—— {——— Tt . Bt G, S, G S s, . S . S e s

READY

edit backpgm new c¢ntl nonum

INPUT

//smith3 job 7924,smith,msglevel=(1,1)

//stepl exec pagm=iepckl00,parm=(deck,maps,list)
//syslib dd dsname=sysl.coblib, disp=shr
//sysutl dd unit=2311,space=(trk, (50,10))
//sysut2 dad unit=2400

//sysut3 dd unit=2400

//sysprint dd sysout=a

//syspunch dd dsname=comp.cobol,disp=(,catlg) ,unit=2400
//sysin ad *

source statements

b s . . — —— — —— —— —— — — — — —— — — — — — —— p— — — —— — a—— c—— — — — — — p— — —— ——— o]

/¥
//step2 exec pgm=loader,parm={map, let,call)
//syslib dd dsname=sysl.coblib,disp=shr
//syslout ad sysout=a
//syslin dad dsname=#*.stepl.syspunch
//master dd dsname=order,disp=old
//print dd sysout=a
//input dad *

- input data
/¥
/7
(null line)
EDIT
save
SAVED
end
READY
submit backpgm nonotify
READY
Figure 8. Submitting a Program as a Background Job

DISPLAYING THE STATUS OF BACKGROUND JOBS

Any time after you submit a background job you can use the STATUS

command to have its status displayed.

The display will tell you whether

the job is awaiting execution, is currently executing, or has executed.
For example, if you want to display the status of SMITH23, enter:

READY
status smith23

Programming at the Terminal

67

Page of GC28-6763-0, Revised June 1, 1971, By TNL GN28-2483

If you want to know the status of all the jobs that begin with your
user identification, enter the STATUS command without operands:

READY
status

CANCELLING BACKGROUND JOBS

You can use the CANCEL command to cancel execution of a background job.
If the job has already been executed, the CANCEL command has no effect.

For example, if you want to cancel job JONESAB, enter:

READY
cancel jonesab

After you enter the CANCEL command, the system will send you a message
telling you that the jobs specified have been cancelled.

CONTROLLING THE OUTPUT OF A BACKGROUND JOB
You can use the OUTPUT command to:

e Direct the JCL statements and system messages (MSGCLASS) and system
output data sets (SYSOUT) produced by a background job to your
terminal.

e Direct the MSGCLASS and SYSOUT output from a background job to a
specific data set.

e Change an output class used in a background job.

e Delete the output data sets (SYSOUT) or the system messages
(MSGCLASS) for background jobs.

If you use the NOTIFY operand of the SUBMIT command and you have elected
to receive messages, you will receive messages. If you are not receiving
messages, the message is placed in the Broadcast data set. You can then
use the OUTPUT command to control the output produced by the job on the
MSGCLASS and SYSOUT classes before the system processes them.

For example, assume that job GREEN 67 produces output on classes A,
B, D, G, and M. If you want the output on classes G and M listed at the
terminal, enter:

READY
output green67 class(g m) print(*)

If you want the output of class B to be listed in the GREEN,KEEP.OUTLIST
data set, enter:

READY
output green67 class(b) print(keep)

If you want to change the output in class A to class C, enter:

READY
output greené67 class(a) noprint(c)

68 TSO Terminal User's Guide (Release 20.1)

Page of GC28-6763-0, Revised June 1, 1971, By TNL GN28-2483

Controlling a System with TSO

Two commands are used to control TSO: OPERATOR and ACCOUNT. The
OPERATOR command is used to regulate the operation of the system from a
terminal. The ACCOUNT command is used to maintain the list of
authorized users of the system.

You must have authorization from your installation to use either the
OPERATOR or the ACCOUNT command. This authorization is recorded in the
system with your user attributes. Use of the OPERATOR command is
restricted to terminals that have the transmit-interrupt capability.

The Operator Command

The OPERATOR command, through its subcommands, allows you to perform the
following functions:

Monitor terminal activity (MONITOR and STOP subcommands).

Display TSO information (DISPLAY subcommand).

Cancel a terminal session or a background job (CANCEL subcommand).
Send messages to terminal users (SEND subcommand).

Modify time sharing parameters (MODIFY subcommand).

End operation of the OPERATOR command (END subcommand) .

Note: The attention interruption will not halt the output from
Operating System commands, such as DISPLAY ACTIVE.

You must first enter the command and then the subcommand you wish to
use. For example, use the following sequence to enter the MONITOR
subcommand

READY
operator
OPERATOR
monitor...

For further information on system operator commands and procedures refer
to the publications, IBM System/360 Operating System: Time Sharing
Option, Command Language Reference, and IBM System/360 Operating System:
Operator's Procedures, GC28-6692.

MONITORING TERMINAL ACTIVITY

The MONITOR subcommand lets you keep track of the users of the system
and of any background jobs submitted with the SUBMIT command.

If you want to be notified whenever a terminal session starts or
ends, enter the SESS operand of the MONITOR subcommand. For example,
after using the following sequence:

READY
operator
OPERATOR
monitor sess

you will receive messages, such as the following, interspersed with
other messages and input at your terminal:

Controlling a System With TSO 79

IEF125I JONES LOGGED ON

IEF125I SMITH LOGGED ON

IEF126I JONES LOGGED OFF

IEF1251I BROWN LOGGED ON
IEF126I BROWN LOGGED OFF

IEF126I SMITH LOGGED OFF

-
-

The message informing you that a user logged on, consists of his user
identification, for example,

JONES . LOGGED ON
The message informing you that a user's session has ended (logged off)
consists of the user identification and the words "LOGGED OFF", for
example,
JONES LOGGED OFF
You can also request the time at which the session starts and ends as
part of the message. You do this by entering SESS,T with the MONITOR
subcommand. For example, if you enter:
monitor sess,t
the message informing you that JONES logged on may appear as follows:
IEF125I JONES LOGGED ON TIME = 1.35.05
The LOGON time is shown in hours, minutes and seconds.
If you want the name of each background job submitted during a
terminal session displayed when the job starts and ends, you must enter
another MONITOR subcommand. For example, after using the following

sequences:

OPERATOR
monitor jobnames

you will start receiving messages, such as the following, interspersed
with other messages and input at your terminal:

80 TSO Terminal User's Guide (Release 20.1)

Page of GC28-6763-0, Revised June 1, 1971, By TNL GN28-2u483

DISPLAY also lets you obtain a listing of messages from background jobs
that are awaiting reply from an operator. To obtain such a listing
enter:

display r
If you want to know the time of day and the date, enter:

display t

CANCELLING A SESSION OR BACKGROUND JOB

You can use the CANCEL subcommand of the OPERATOR command to cancel a
terminal session or a background job submitted by a terminal user. To
cancel a session enter the U=user identification operand in the CANCEL

subcommand. For example, if you want to cancel the session of user
SMITH, enter:

cancel u=smith

SMITH will be presented with information that notifies him of the end of
his session.

To cancel a background job, enter its jobname in the CANCEL subcommand.
For example, if you want to cancel job AB999, enter:

cancel ab999

You can also request that when the job is cancelled a dump be taken of
any step of that job currently being executed, for example,

cancel ab9%999, dump

In addition to the dump, you can request that all input and output for
the job be cancelled. For example,

cancel 'ab9%999, dump,all
SENDING MESSAGES TO TERMINAL USERS
You can use the SEND subcommand to send broadcast messages (notices) to
all users or to individual users. For example, if you want to send the
message TSO NOT AVAILABLE ON TUESDAY 9/29 to all users, enter:

send 'tso not available on tuesday 9/29'
If you only want users SMITH and JONES to receive the message, enter:

send 'tso not available on tuesday 9/29',uset=(smith,jones)
SMITH and JONES will receive the message only if they are logged on. If
you want to make sure that they receive the message when they log on,
enter:

send 'tso not available on tuesday 9/29',user=(smith,jones),logon

When the LOGON operand is specified and Smith and Jones are already

logged on and accepting messages, the message will be sent to them
immediately. If Smith and Jones are not logged on or are not accepting
messages, the message will be put in the Broadcast data set. It will be

issued to the specified user only after he enters either LISTBC or
- another LOGON command.

Controlling a System With TSO 83

Messages that you send to all users are given a number and are retained
by the system. If'you want to receive a list of all retained messages,
enter

send list

If you want to delete a given message, enter its number in the SEND
subcommand. For example, if you want to delete message number three
enter: i

send 3

If you want to list a given message without deleting it, enter the LIST
operand. For example

send 3,list

MODIFYING TIME SHARING PARAMETERS

You can use the MODIFY subcommand to change the time sharing parameters
specified during system generation or specified by the system operator
with the START command. For information on this subcommand refer to the
publication, IBM System/360 Operating System: Time Sharing Option,
Command Language Reference, and IBM System/360 Operating System:
Operator's Procedures.

ENDING OPERATION OF THE OPERATOR COMMAND

Whenever you want to end the OPERATOR command, enter the END subcommand.
After you enter the END subcommand you receive the READY message. You
can then enter any command you choose.

The Account Command

The user attributes of each authorized user of TSO are recorded in the
User Attribute Data Set (UADS). There is an entry in the UADS for each
user. Each entry contains:

1. A -single user identification.

2. One or more passwords, or a single null field, associated with the
user identification.

3. One or more account numbers, or a single null field, associated
with each password.

4. One or more procedure names associated with each account number.
Each procedure name identifies a LOGON procedure that is invoked
when the user begins a terminal session by entering the LOGON
command .

5. The main storage region size requirements for each procedure.

6. The name of the group of devices that the user is allowed to use
when he does not request specific devices.

7. The authority to use, or a restriction against using, the ACCOUNT
cormmand .

84 TSO Terminal User's Guide (Release 20.1)

.-
«
EY

.
.
.

0 2 0 P RSP P e 0t er e tetrtesetet e000cesane0sneeesetseeecnssre

ctssscscsscens

3

READER'S COMMENT FORM

IBM System/360 Operating System:
Time Sharing Option Order No. GC28-6763-0

Terminal User's Guide

Please use this form to express your opinion of this publication. We are interested in your
comments about its technical accuracy, organization, and completeness. A|| suggestions
and comments become the property of IBM.

Please do not use this form to request technical information or additional copies of publications.
All such requests should be directed to your IBM representative or to the IBM Branch Office

serving your locality.

® Please indicate your occupation:

® How did you use this publication?
[J Frequently for reference in my work.
0 As an introduction to the subject.
[J As a textbook in a course.

O For specific information on one or two subjects.

e Comments (Please include page numbers and give examples.):

® Thank you for your comments. No postage necessary if mailed in the U.S.A.

GC28-6763-0

YOUR COMMENTS, PLEASE .

This manual is part of a library that serves as a reference source for systems analysts,
programmers and operators of IBM systems. Your answers to the questions on the back
of this form, together with your comments, will help us produce better publications for
your use. Each reply will be carefully reviewed by the persons responsible for writing
and publishing this material. All comments and suggestions become the property of IBM.

Note: Please direct any requests for copies of publications, or for assistance in using your
IBM system, to your IBM representative or to the IBM branch office serving your locality.

FIRST CLASS
PERMIT NO. 81
POUGHKEEPSIE, N.Y.

p I
BUSINESS REPLY MAIL
]
S
NO POSTAGE STAMP NECESSARY IF MAILED IN THE UNITED STATE
|
POSTAGE WILL BE PAID BY ... S—
L
]
IBM Corporation AE—
P.O. Box 390 —
Poughkeepsie, N.Y. 12602
Attention: Programming Systems Publications
Department D58
Fold Fold

BN

International Business Machines Corporation

Data Processing Division

1133 Westchester Avenus, White Plains, New York 10604
[U.S.A. only]

IBM World Trade Corporation ;
821 United Nations Plaza, New York, New York lOlJl?U
[International]

—— e ———_— e ———_——_—_—— e —————_E—_—E———————_—E—_—_E—_—_ e —— e — — — —3u}] Buopy 0D

*w*C’N Ul pamisl [AO_ARREY BnInA € 1neA e

0-£9/9-27.14

