
IBM System/360 Operating System:

Time Sharing Option

Terminal User's Guide

The Time Sharing Option (TSO> of the IBM
System/360 Operating System lets you use the
facilities of a computer frore a terminal. You
define your work to the system through the TSO
Command Language. This Fublication explains to
all users of TSO how to use the TSO Command
Language to perform the following functions:

• Start and end a terminal session.
• Enter and manipulate data.
• Program at the. terminal.
• Test a program.
• write and use corrroand procedures.
• Control a system with TSO.

After becoming familiar with the information
presented in this manual, you may use IBM
System/360 Operating System: Time Sharing
Option, Command Language Reference, GC28-6732
for review and reference.

Information in this publication for T50
is for planning purposes until that item is
available.

File No. 5360-36
Order No. GC28-6763-0 OS

Preface

This publication describes how to use the
TSO Command Language to all TSO terminal
users. ~e commands can be used to perform
the following functions:

• start and end a terminal session.
• Enter and manipulate data.
• Program at the terminal.
• Test a program.
• Write and use corrmand procedures.
• Control a system with TSO.

This publication tells you what commands to
use to perform these functions. For
details on how to code each command, refer
to the publication IBM system/360 Operating
System: Time Sharing Option, Command
Language Reference, GC28-6732.

First Edition (March, 1971)

Before reading this manual you should be
aware of three facts:

• Program Products are net discussed in
this manual.

• All examples in this manual show the
user's input in lowercase letters and
the system output in uppercase letters.

• All examples in this manual assume" that
you are using an IEM 2741
Corrmunications Terminal, and that you
must press the RETURN key to enter
data. For information on your type of
terminal refer to the publication IBM
System/360 Operating System: Time--­
Sharing Option, Terminals, GC28-6762.

This edition applies to release 20.1, of IBM System/360
Operating System, and to all subsequent releases until
otherwise indicated in new editions or Technical Newsletters.
Changes are continually made to the information herein;
before using this publication in connection with the
operation of IBM systems, consult the latest IBM System/360
SRL Newsletter, Order No. GN20-0360, for the editions that
are applicable and current.

Requests for copies of IBM publications should be made to
your IBM representative or to the IBM branch office serving
your locality.

A form for readers' comments is provided at the back of
this publication. If the form has been removed, corrments may
be addressed to IBM Corporation, Programming Systems
Publications, Departrrent D58, PO Box 390, Poughkeepsie, N.Y.
12602

©Copyright International Business Machines Corporation 1971

INTRODUCTION • • •

WHAT YOU MUST KNOW TO USE TSO
Entering Information at the Terminal
Commands • • • • • • • • • • '. • • •

5

7
7

When to Enter a Corr~and or Subcommand
How to Enter a Command or Subcommand •

8
11
11
11 Messages • • • • • •

Mode Messages •• • • •
Prompting Messages • • •
Informational Messages •
Broadcast Messages • • •

The Attention Interruption
The HELP Command '.. • • •

• • 12
13
13
14

• • 14
• • 15

STARTING AND ENDING A TERMINAL SESSION • 17
Identifying Yourself to the system. 17
Defining Operational Characteristics • • 20
Receiving and Sending Broadcast
Messages • • • • • • • • • • • •

Receiving Broadcast Messages •
Sending Broadcast Messages

Displaying Session Time Used • •
Ending Your Terminal Session

ENTERING AND MANIPULATING DATA.
Identifying the Data Set • • • •
Creating A Data Set ••• • • •
Placing Data into Columns
Finding and Positioning the Current

• • 20
• • 21
• • 22
• • 23
• • 23

• • 25
• • 26
• • 30
• • 31

Line Pointer • • • • • • • • • • • • • • 33
Finding the Current Line Pointer • • • 33
Positioning the Current Line Pointer • 34

Updating a Data Set ••• • • • 36
Deleting Data From a Data Set • • 36
Inserting Data in a Data Set • • • 37
Replacing Data in a Data Set • • • 39
Renumbering Lines of Data 42

Listing the Contents of a Data Set • • • 43
Storing a Data Set. •• • • • 43
Ending the Edit Functions • • 46
Renaming a Data Set • • • • 46
Deleting a Data Set • • 48
Establishing Passwords for a Data Set • 49
Allocating a Data Set 51
Freeing an Allocated Data Set '. •• • • 53

Contents

Listing the Names of Your Data Sets 53

PROGRAMMING AT THE TERMINAL
Creating a Program • • • • '.
Compiling a Program • •••

• • • • 55
• • 56

• 57
• 58 Link Editing a Compiled Program

Executing a Program • • • • 61
Loading a Program • • • • •
Processing Background Jobs • '.

Submitting Background Jobs
Displaying the Status'of Background

• • 63
• • 65

• 65

Jobs • • • • • • • • • • • • • • • 67
68 Cancelling Background Jobs ,. •

Controlling the Output of a
Background Job '. • • • • • • • • 68

TESTING A PROGRAM 71

USING AND WRITING COMMAND PROCEDURES • • 73
Using Command Procedures • • • • • 73

Calling a Command Procedure • • 73
Assigning Values to Symbolic Values • 74

Writing Command Procedures • • • • 74
Assigning Symbolic Values •• • • • • 75
Testing Conditions for Termination • • 76
Ending the Command Procedure • • • • • 77

CONTROLLING A SYSTEM WITH TSO
The OPERATOR Command • • • • • •

Monitoring Terminal Activity •
Displaying TSO Information •
Cancelling a Session or Background

• 79
• 79

• • 79
• 82

Job • • • • • • • • • • • • • • 83
Sending Messages to Terminal Users • • 83
Modifying Time Sharing Parameters 84
Ending Operation of the Operator
Command • • • • • • • • '. • • • • • • 84

The ACCOUNT Command • • • • • • • • • • 84
Adding New Entries or Data to an
Entry •• • • • • • • • • • 85
Deleting Entries or Parts of Entries • 89
Changing Data in an Entry • • • • • • 93
Displaying the Contents of an Entry • 94
Displaying All User Identifications • 95
Ending Operation of the ACCOUNT
COIrmand

GLCSSARY

INDEX. • •

• • 95

• • • • 97

197

Contents 3

Illustrations

Figures

Figure 1. Sample Instruction Sheet
for a Terminal ••••••••
Figure 2. Sample Data Set
Figure 3. Allocating Data Sets for
the Assembler F • • • • • •
Figure 4. Creating an assembler

• • 18
• • 35

• • 52

source program •••••••••••• 56
Figure 5. COBOL Compilation • • 58
Figure 6. Link editing and executing
a program ••••• • • • • • • • • • • 62

Tables

Table 1. 'ISO Commands and
Subcommands. Including Abbreviations • • 10
Table 2. Descriptive Qualifiers • • • 28
Table 3. Default Tab Settings • • 32
Table 4. Values of the Line Pointer
Referred to by an Asterisk (*).. '.. 34
Table 5. Data Set Names of the
Compilers ••••••••••• • • 57

4 TSO Terminal User's Guide (Release 20.1)

Figure 7. Loading a Program ••••• 65
Figure 8. Submitting a Program as a
Background Job • • • '. '. • • • • • 67
Figure 9. Symbolic Values for a
Corrmand Procedure • • • • • • • • • • • 74
Figure 10. The simplest structure
That an Entry in the UADS Can Eave 86
Figure 11. A Complex Structure for an
Entry in the UADS •• .•• • • • • • • 86

Introduction

'ISO is the time sharing option of the IBM System/360 Operating system.
'ISO lets you use the facilities of a computer at a terminal. A terminal
is a typewriter-like device connected through telephone or ether
communication lines to the computer. A terminal can be at any distance
from the computer -- in the same room or in another city. Eecause the
system processes instructions much faster than you can enter them
through the terminal, it can process input from many terminals at the
same time besides processing work entered in the conventional manner in
the computer roo~. However, due to the speed of the system, you will
think you have almost exclusive use of the system.

You tell the system what work you want dcne by typing in cne or more
of the commands that form the TSC command language. The command
language can be used to:

• Enter, store, modify, and retrieve data at the terminal.
• Solve mathematical problems.
• Develop programs written in Assembler, FORTRAN, COBOL., PL/I, or

other languages.
• Execute programs.
• Control the operation of a system with TSO from the terrrinal.

Your installation determines which of the facilities of the system
you can use. That is, the installation determines which coromands are
available to you.

When you enter a command in the system, the system performs the work
requested by that command and sends messages back to your terminal. The
messages tell you the status of your prograrr and whether the system is
ready to accept another command. You can interrupt the processing of a
command at any time and enter a new one.

If you make a mistake typing in a command, or if you fail to include
some necessary iriforroation with the co~mand, the system sends you a
message prompting you for the necessary information. You then respond
by typing in the information requested.

If you receive a rr.essage you don't understand, you can tYfe in a
question mark to request more information. The system will then SEnd
you a more detailed message, if available.

Whenever you are not sure which comrrand to use or how to use a
particular corr.mand, you can type HELP. HELP is a comroand that provides
you with information on all other TSO corrrrands.

'Ihis manual explains how to use the comroand language. The manual is
divided into the following sections:

1. What you must know to use TSO.
2. Starting and ending a terminal session.
3. Entering and manipulating data.
4. Programrring at the terminal.
5. Testing a program.
6. Using and writing command procedures.
7. Controlling a system with TSO.

The first three items must be known by all system users. The
remaining items depend on what your installation has authorized you to
do.

Introduction 5

This manual tells you what commands to use to perforre the functions
mentioned above. For details on how to code each corr.mand, refer to the
manual IBM systero/360 Operating system: Tiroe Sharing Option, Command
Language Reference.

6 TSO Terminal User's Guide (Release 20.1)

What You Must Know to Use TSO

Before you begin a terminal session, you sheuld know:

• How to enter information at the terminal.
• How to use the TSO commands.
• How to interfret TSO messages.
• How to use the attention interruption.
• How to use the HELP command.

Entering Information at the Terminal

All 'ISO terminals have a typewriter-like keyboard through which you
enter information into the system. The features of each keytoard vary
from terminal to terminal; for example, one terminal may not have a
backspace key, while another may not allow fer lowercase letters. The
features of each terminal as they apply to TSO are described in the
pUblication, IBM System/360 operating System: Time Sharing OEtion,
Terminals.

Certain conventions apply to the use of all TSO terminals. They are:

• Any lowercase letters you type are interfreted by the system as
uppercase letters. For example, if you type in:

abcDe8-fg

the system interfrets it as:

ABCDE8-FG

The only exceptions are certain text-handling applicatiens which
allow you to type in text with both uppercase and lowercase letters.
Text handling is discussed in the section "Entering and Manipulating
Data ".

• All messages or other output sent to you by the system ccme out in
uppercase letters., The only exception is the output from the
special text-handling applications menticned previously which comes
out both in uppercase and lowercase.

'ISO also provides a way of correcting your typing mistakes. You can
request that the character you just typed be deleted or that all the
preceding characters in the line be deleted. You can define your own
character-deleticn and line-deletion characters, or you can use the
default characters in the system. For exarrple, if the default
characters are the quotation mark (") for deleting the preceding
character, and the percent sign (%) for deleting all the preceding
characters of the line and you type the following message:

first ent%Sect"onft""d ENR"try

it is received by the system as:

SECOND ENTRY

Note that you can use the character-deletion character repetitively to
delete more than one of the preceding characters in the line.

What you Must Know to Use TSO 1

~he blank space produced when you hit the space bar is also
considered to be a character, and you can delete it using the
character-deletion or line-deletion characters. For example, if you
type the following line:

a b%cd "E"f

it is received by the system as

CD EF

After you type a line and make any necessary corrections, you enter
that line as follows:

• Press the RETURN key on an IBM 2741 Corrrnunications Terminal.

• Press the RETURN key on an IBM 1052 Printer-Keyboard (If the 1052
does not have the automatic EOB feature, use the ALTN code).

• Hold the CTRL key and press the XOFF key on a Teletype terminal.

Notes:

• All examples in this manual assume that you are using an IBM 2741
Communications terminal, and that you must press the RETURN key to
enter a line. For information on your type of terminal, refer to
the publication IBM System/360 Operating system: Tirre sharing
Option, Terminals, GC28-6762.

• If you want to enter a null line, that is a line with no characters
in it, press the key used to enter data.

You cannot use the character-deletion and line-deletion characters to
make corrections to the line after you enter it. If the line you
entered 'was a corrmand, you must use the attention interruption
(described later in this section) to cancel the command, and then you
must reenter the command. If the line you entered was data, you can
change it using the EDIT command (described in the section, "Entering
and Manipulating Data".)

Normally, you will use the default characters in the system.
However, you can use the' PROFILE command to establish your own
character-deletion and line-deletion characters. The PROFILE command is
described in the section, ~Starting and Ending a Terminal session". The
ability to change the character-deletion and line-deletion characters is
particularly useful when you use more than one type of terminal. For
example, the backspace key and the attention key are the usual default
characters. Any time you have to use a terminal that does not have
backspace and attention keys, you can use the PROFILE corrmand to select
two other suitable characters as the character-deletion and
line-deletion characters.

Commands

You can communicate with the system by typing requests for work,
commands, at the terrr~nal. Different corr.roands specify different kinds
of work. You can store data in the system, change the data, and
retrieve it at your convenience. you can create programs, test them,
ex~cute them and obtain the results at your terminal. The commands make
the facilities of the system available at your terminal.

8 TSO Terminal User's Guide (Release 20.1)

When you use a corrrnand to request work, the command estaclishes the
scope of the work to. the system. For sorr,e cemmands, the scef:e of the
work encompasses several operations that yeu can identify sef:arately.
After entering the command. you may specify ene of the separately
identifiable operations by entering a subcorrmand. A subcommand, like a
command, is a request for work; however, the work requested ty a
subcommand is a f:articular operation within the scope of work
established by a command.

The commands and subcommands recognized by TSO form the TSO command
language. The command language is designed to be easy to use. The
command names and subcommand names are typically familiar English words,
often verbs, that describe the work to be done. The nurr~er ef command
names and subcommand names that you must learn has been kept to a
minimum. (Your installation can add its own corr.mands to perferm
functions not provided by the TSO command language.)

Besides entering the name of the command er subcomrrand, you are often
required to specify additional information te pinpoint the function you
want performed. You define the additional information with of:erands
(words or nurr.bers that accompany the command names and subcommand
names.) Most of the operands have default values that are used ~y the
system if you cheose to omit the operand frem the comrrand or subcommand.
However, some oferands do not have default values. If you fail to
provide a required oferand for which there is no default, the system
sends you a fromf:ting message asking you to sUfply the operands. 'Ihe
publication, IBM System/360 Operating system: Time Sharing OEtion,
Command Language Reference shows all operands for each command, and
indicates the default values where applicable, and describes how to
enter the corrmands.

You can abbreviate many of the command names, subcommand names and
operands. Together, the defaults and abbreviations decrease the amount
of typing required. (The abbreviations and their use are discussed in
the publication IBM System/360 Operating System: Time Sharing Option,
Command Language Reference.)

Table 1 lists the commands and their subccmmands in alphatetical
order.'

What you Must Know to Use TSO 9

Table 1. TSO Ccmmands and Subcommands, Including Abbreviations
r----------------------------------T-----------------------------------,
I COMMAND (abbreviation) I COMMAND (abbreviation) I
I SUBCOMMAND (abbreviation) I SUBCOMMAND (abbreviation) I
.----------------------------------+-----------------------------------1

ACCOUNT LISTDS (LISTD)
ADD (A) LOADGO (LOAD)
CHANGE (C) LCGOFF
DELETE (D) LOGON
END *MERGE
HELP (H) OPERATOR (OPER)
LIST (L) CANCEL (C)
LIST IDS (LISTI) DISPLAY (D)

ALLOCATE (ALLOC) END
*ASM HELP (H)
* CALC MODIFY (F)
* DELETE MONITOR (MN)
*END SEND
*HELP STOP (P)
*SAVE OUTPUT (OUT)

CALL CONTINUE (CONT)
CANCEL END

*COBOL (COB) HELP (H)
*CONVERT (CON) SAVE (S)

*COPY PROFILE (PROF)
DELETE (D) PROTECT (PROT)
EDIT RENAME (REN)

BOTTOM (B) RUN (R)
CHANGE (C) SEND (SE)
DELETE (D) STATUS (ST)
DOWN SUBMIT (SUB)
END TERMINAL (TERM)
FIND (F) TEST

*FORMAT (FORM) AT
HELP (H) C~L
INPUT (I) DELETE (D)
INSERT (IN) DROP
LIST (L) END

*MERGE (M) EQUATE (EQ)
PROFILE (PROF) FREEMAIN (FREE)
RENUM (REN) GETMAIN (GET)
RUN (R) GO
SAVE (S) HELP (H)
SCAN (SC) LIST (L)
TABSET (TAB) LISTDCB
TOP LIST DEB
UP LISTMAP
VERIFY (V) LISTPSW

EXEC (EX) LISTTCB
*FORMAT (FORM) LOAD
*FORT OFF

FREE CUALIFY (Q)
HELP (H) RUN (R)
LINK WHERE (W)

*LIST (L) TIME
LISTALC (LISTA) **END
LISTBC (LISTB) **PRCC
LISTCAT (LISTC) **WHEN

~----------------------------------~-----------------------------------1
I *Available as ~rogram products I
1**For use in corrmand procedures I L __ J

10 TSO Terminal User's Guide (Release 20.1)

WHEN TO ENTER A COMMAND OR SUBCCMMAND

The system lets you know when it is ready te accept a new cerr,mand by
sending you the message:

READY

The ACCOUNT 1 EDIT, OPERATOR 1 OUTPUT and TEST commands have
subcommands. After entering one of these coremands the system lets you
know it is ready to accept a subcommand by sending you back the name of
the command. For example, in the following. sequence you enter the
OPERATOR comrrand after receiving a READY rressage. The system then sends
you the OPERATOR message indicating that you can enter any of the
subcommands of the OPERATOR command:

READY
operater
OPERATOR

If instead of entering a subcommand you want to enter a cemmand l

request an attention interruption (described later in this chaFter) or
enter the END subcommand to make the READY message appear again.

The systerr remains able to receive corrmands until you enter one of
the five comreands that have subcommands. The system then accepts only
that command's subcowmands until you request a READY message.

HOW TO ENTER A COMMAND OR SUBCOMMAND

After you receive the appropriate message to let you know the system is
ready to receive a command or subcommand:

1. Type the command or subcommand name and the selected o~erands.
2. Correct any typing mistakes with the character-delete and

line-deletien characters.
3. Press the RETURN key.

If all the operands do not fit in one line you should follow this
sequence:

1. Type the corr-mand and subcommand name and the selected o~erands.
2. Type a hyphen (-) at the end of the line.
3. Press the RETURN key.
4. Continue entering the operands. If they do not fit in the second

line repeat from 2.
5. Press the RETURN key to enter the corrmand.

You can type command and subcommand narres and operands in either
uppercase or lowercase letters. You may prefer to type your commands
and subcommands in lewercase so you can distinguish your in~ut from the
system's messages in your listing. (The system prints in u~~ercase
letters.) Typing your input in lowercase letters is also faster than
typing in uppercase letters. All examples in this manual shew the
user's input in lowercase letters, and the system output in u~percase
letters.

Messages

There are four types of messages:

• Mode messages .•
• Prompting messages.
• Informational messages.
• Broadcast messages.

What you Must Know to Use TSO 11

MODE MESSAGES

A mode message tells you when the system is ready to accept a new
command or subcorrmand. (See "When to Enter a Command".) When the
system is ready to accept a new command it prints:

READY

When you enter a command that has subcorrmands and the system is ready
to accept its subcommands. it prints the name of the command which can
be any of the following:

ACCOUN'I
EDIT
OPERATOR
OUTPUT
TEST

You can then enter the subcommands you want to use. The TEST message
also appears after each TEST sutcommand has been processed. If the
system has to print any output or other messages as a result of the
previous comrrand or TEST subcommand, it does so before printing the mode
message. (The use of mode messages in the EDIT command is discussed in
the section "Entering and Manipulating Data".)

Sometimes you can save a little time by entering two or mcre commands
in succession without waiting for the intervening READY message. The
system then prints the READY messages in succession after the commands.
For example, if you enter the DELETE, FREE, and RENAME commands and wait
for the intervening mode message between the commands, the output (or
listing) will be:

READY
delete •••
READY
free •••
READY
rename •••
READY

If you enter the same commands without waiting for the intervening
mode messages, ycur listing will be:

READY
delete •••
free •••
rename •••
READY
READY
READY

There is a drawback to entering corrrrands without waiting for the
intervening rrode messages. If you make a mistake in one of the
commands, the system sends you messages telling you of your mistake, and
then it cancels the remaining commands you have entered. After you
correct the error, you have to reenter the ether commands.

Unless you are sure that there are no mistakes in your input, you
should wait for a READY message tefore entering a new command.

Note: Some terminals "lock" the keyboard after you enter a ccrrmand, and
therefore you cannot enter commands without waiting for the intervening
READY message. See the publication IBM System/360 Operating System:
'lime Sharing Option, Terminals for inforrr:aticn on your terminal.

12 'ISO Terminal User's Guide (Release 20.1)

PROMPTING MESSAGES

A prompting rressage tells you that required information is missing or
that information you supplied was incorrectly specified. A prempting
message asks you to supply or correct that information. For example,
ndata set narre" is a required operand of the CALL command; if you enter
the CALL corr,wand without that operand the system will prompt you for the
data set name and your listing will look as follows:

READY
call
ENTER DATA SET NAME -

You should respond by entering the requested eperand, in this case
the data set name, and by pressing the RETURN key to enter it. For
example if the data set name is ALPHA.DATA yeu weuld complete the
prompting message as follows:

ENTER DATA SET NAME-alpha. data

To specify whether or not you want to receive prompting rr.essages, use
the PROMPT or NOPROMPT operand' of the PROFILE command. This command is
described in the section. nStarting and Ending a Terminal Session".

sometimes you can request another message that explains the initial
message more fully. If the second message is not enough, yeu can
request a further message that will give you more detailed information,
and so on.

To request an additional level of message:

1. Type a question mark (?) in the first position of the line.

2. Press the RETURN key.

If you enter a question mark when there are ne other messages that
explain the one you received, you receive the following message:

NO INFORMAT'ION AVAILABLE

You can stop a prompting sequence by entering the requested
information or by requesting an attention interruption.

INFORMATIONAL MESSAGES

An informational message tells you about the status of the system and
your terminal session. For example, an infermational message can tell
you how much time you have used. Informational messages do net require
a response.

If your informational message ends with a plus sign (+) yeu can
request an additional message by entering a question mark after READY
(?) as described for prompting messages. Informational messages only
have a second level of messages. while prompting messages may have more
than one.

What you Must Know to Use TSO 13

BROADCAST MESSAGES

Broadcast messages are messages of general interest to users of the
system. Both the system operator and any user of the systero can send
broadcast messages. The system operator can send messages to all users
of the system or to individual users. For example, he may send the
following message to all users:

DO NOT USE TERMINALS #4, 5 AND 6 ON 6/30. THEY ARE RESERVED FOR
DEPARTMENT 791.

You, or any other user, can send messages to other users cr to the
system operator. For example, you may send, or receive, the following
message:

ACCOUNT NO. 4672 WILL BE CHANGED TO 4675 STARTING 8/25

A message sent by another user will show his user identification so
you will know who sent you the message.

To find out how to send or receive broadcast messages, refer to the
section "Starting and Ending a Terminal Sessionn

•

The Attention Interruption

~he attention interruption allows you to interrupt processing of your
job so that you can enter a new command or subcommand. The atility to
interrupt processing prevents you from being "locked out" by the system
while a long-running program executes or while voluminous output is
displayed at your terminal. You can use the attention interruption for
access to the system at any time.

When you enter an attention interruption the system cancels
processing and sends you a mode message. If the system was ~rocessing a
command, the mode message it prints is:

READY

You can then enter a new command. If the system was processing a
subcommand, the mode message will be the naroe of the command to which
the subcommand belongs:

ACCOUN~
EDIT
OPERATOR
OUTPUT
TEST

If you do not want to enter another subcorrmand, you should enter
another attention interruption which will cause the READY message to
appear.

There are two ways to cause an attention interruption:

1. Press the attention key which can be any of the following:

• ATTN key en an IBM 2741 Communicaticns terminal.

• LINE RESET key on an IBM 1052 Printer-Keyboard. (If the
"proceedn light is on, press the ALTERNATE CODING and n6 n keys
instead of the LINE RESET key.)

14 TSO Terminal User's Guide (Release 20.1)

• BREAK key on a Teletype terminal.

If the attention key is also the line-deletion character and you
have entered any characters in a line of input, you must press it
twice to enter an attention interrupticn. (You need only press it
once if you have not entered any characters in the line.)

2. Use a simulated attention key:

If your terIT~nal does not have a key that can be used fcr attention
interruption, you can use the facilities of the TERMINAL command to
simulate the attention key. The TERMINAL command lets you specify
a string of characters, such as HALT or ATTN, that when entered as
a line of input is interpreted by the system as a request for an
attenticn interruption. The TER~INAL ccmmand also lets you request
an interruption at specified intervals while output is teing
produced. The TERMINAL command is described in the section,
nStarting and Ending a Terminal Sessionn •

The HELP Command

'Ihe HELP comIrand provides you with inforrratien about all other TSO
commands. At the most general level you can enter:

help

and receive a list of all commands and a brief explanatien of their
functions.

If you want all the information available on a specific cemmand, for
example CALL, enter the HELP command and use the other cornmand's name as
an operand:

help call

If you want to know only the function, syntax, or operands, of the
CALL command, enter one of the following:

help call function
help call syntax
help call eperands

You can also obtain the same information for the subcorrmands of the
ACCOUNT, EDIT, OPERATOR, OUTPUT and TEST eerrroands. To de this, enter
the command with any required operands and wait for the mode message.
After you have received it. you can enter:

help

and receive a list of all subcommands.

If you want all the availatle information on a given subcommand,
enter the HELP command and use the subcorr.mand name as an operand. For
example, the following sequence could be used to obtain all the
information available on the DISPLAY subcorrrnand of the OPERATOR command:

READY
operater
OPERATOR
help display

What you Must Rnow to Use TSO 15

If you want to know only the function, syntax, cr operands cf the
DISPLAY subcoIHnand you would enter one of the fcllowing:

help display function
help display syntax
help display operands

There is cne restriction on using the HELP corr~and; you cannot use it
before you use the LOGON command. As it is explained in the section
"starting and Ending a Terminal Session", LOGON must be the first
command used in your session because it identifies you as an authorized
user of the system.

Note: Your installation can add "help" information to the system by
following the instructions in the publicaticn IBM System/360 Operating
System: Time Sharing Option Guide to Writing a Terminal Mcnitcr Program
or a Command Processor, GC28-6764.

16 TSO Terminal User's Guide (Release 20.1)

Starting and Ending a Terminal Session

~his section describes the commands you can use to:

• Identify yourself to the system.
• Define operational characteristics of ycur session.
• Receive and send broadcast messages.
• Display session time used.
• End your terminal session.

Identifying Yourself to the System

The first thing you must do to start your terminal session is to turn on
the power according to instructions provided by your installation. In
many cases, you will find an instruction sheet such as the cne shown in
Figure 1 attached' to the terminal. In the example shown in Figure 1.
instructions 1 through 8 must be followed to turn on the power and to
establish the connection with the system. If there is no instruction
sheet attached to the terminal, consult the publication. IBM system/360
Operating System: Time Sharing Option, Terminals.

After you turn on the power you must use the LOGON command to
identify yourself to the system. You must supply, as operands of LOGON,.
the user attributes assigned to you by your installation. Your user
attributes are:

1. User identification (required)
known to the system.

The name or code by which you are

2. Password (required if your installation assigns you one) -- A
further identification used for additional security protection.

3. Account number (optional) -- The account to which ycur terminal
session is charged.

4. Procedure name (optional) -- The name cf series of statements that
defines your job to the system.

Starting and Ending a Terminal Session 17

r--,
TERMINAL #7

(Available 9:00 a.m. - 3:00 p.m.
For additienal time call A. Jones ext. 1234)

1. Turn ON/OFF switch to eN.

2. Make sure the COM/LCL switch is set to COM.

3. Remove handset from telephone (data set).

4. Press TALK button on telephone.

5. Dial ext. 5555, 5556. or 5557.

6. Wait for a high pitched tone. When yeu hear this tone you
are in contact with the computer. If you get a busy signal
or no answer, hang up and repeat from 3 trying another
extension.

7. Push the DATA button on the telephone. If DATA button light
goes off at any point during session, repeat from (3).

8. Replace handset on the cradle.

9. Enter LOGON corrrnand:

logon ___ / ___ acct(___) \" \
proc(___) size(___)

\ \ [
notices J [mail J
nonotices nomail

userid password account procedure nnnn

10. The default TERMINAL command is:

terminai nclines noseconds noinput break nctimeout linesize (120)

If you want to change any of the follewing defaults use this
TERMINAL command:

terminal lines() seconds () input () linesize(

11. If you want to change your user profile, use the PROFILE
command:

)

[
char ()] [line () ~[prompt J

profile char (bs) lin~(attn) noprompt [
intercom] [pause] rmsgid]
nointercom nopause Lnomsgid

nochar no11ne

The following operands are recommended for this terminal:
char (bs) and line (attn)

INote: Please turn ON/OFF switch to OFF after you enter LOGOFF. L __ J

Figure 1. Sam~le Instruction Sheet for a Terminal

Your user attributes are recorded in the system together with the
attributes of all other terminal users. When you log on, the 'system
compares the attributes you specify with the LOGON command te the
recorded attributes of each user to deterrrine if you are an authorized
user of the system.

18 TSO Terminal User's Guide (Release 20.1)

You can have a simple set of attributes, such as the following:

SMITH User identification

+ LOCK Password

+ 79345 Account Number

+
·P79 Procedure name

or a more corrplex set, such as

~SMfTH~ User identification

LOCK SEVEN KEY Passwords
+ t +

79345 79374 74325 Account Numbers

+ /' " t P79 P80 P81 P82 Procedure Names

The latter set has three passwords (LOCK, SEVEN, and KEY) associated
with your user identification. If you use the password LOCK, you can
only have your, processing charged only to account 79345 and you can use
only procedure P79. If you use the password SEVEN, you can have your
processing charged to either account 79374 or 74325. If you choose
account 79374, ycu can use either procedure P80 or P81. If you choose
account 74325, you can use only procedure P82. Another way of using
procedure P82 is to choose password KEY. KEY only has account 74325 and
procedure P82 associated with it.

The LOGON command is a simple means of telling the system your user
identification, password, account number and procedure name. For
example, if you want to use procedure P81, you must enter:

logon smith/seven acct(79374) proc(p81)

whenever there is only one account nurrber or procedure name
associated with the user identification and password the system selects
it by default. For example, account 79345 and procedure P79 are the
only account and procedure associated with password LOCK. Therefore,
when you log on you need only enter:

logon smith/lock

instead of:

logon smith/lock acct(79345) proc(p79)

If you choose password SEVEN, you must specify which account number
you want. If you select account 74325., you do not have to specify the
procedure because there is only one procedure associated with the
account.

logon smith/seven acct(7432S)

If you select account 79374, you must also select a procedure name
because there are two procedures associated with the account. For
example,

logon smith/seven acct(79374) proc(p80)

If you choose password KEY you do not have to specify an account
number and procedure name because there are only one account numter and
one procedure name associated with KEY.

Starting and Ending a Terminal session 19

Note: In sorre instances your installation may require a modification in
the way that you enter the LeGaN command; for example, yeu may have to
precede LOGON with a quotation mark ("LOGON). Yeur installation's
management is responsible for advising you ef such a change.

Defining Operational Characteristics

Operational characteristics can ce divided into terminal characteristics
and a user profile. Terminal characteristics identify:

• How you can request an attention interruption.

• Whether the keyboard is to lock up if you do not enter anything for
a while.

• What the length of the line that can be displayed or printed at your
terminal is.

A user profile identifies:

• What your character-deletion and line-deletion characters are.

• Whether you want to receive prompting messages.

• Whether you will accept messages from other terminals.

Your installation establishes default terminal characteristics for
all the TSO terminals. If you want to change any of those
characteristics for the duration of your session you can use the
'IERMINAL command. After your session is over the defaults selected by
the installation will again be valid for the terminal. For example,
assume that the default for the number of lines of continuous output
that are printed before you receive an automatic interruption is 50.
You can use the TERMINAL command to request that 100 lines be printed
before you receive an interruption. When you log on for your next
session, 50 lines will again be the default,.

The systero has a user profile for you. When you log en that profile
will be in effect. If you want to change any item in your profile, you
can do so with the PROFILE command. Any change you make beccmes part of
your profile. That is, the next time you log on that change will be in
effect. For example, assume that the line-deletion character in your
profile is a percent (%) sign. You can use the PROFILE cororrand to
change it to a number (#) sign, throughout the current sessicn. When
you log on for yeur next session your line deletion character will be
the number sign. If you want to change it back to the original percent
sign you must again use the PROFILE command.

Receiving and Sending Broadcast Messages

'Ihere are two types of broadcast messages yeu can receive:

• Notices -- Messages sent by the systerr cperator to all users.
• Mail -- Messages sent by the operator or other user directly to you.

You can send messages (mail) to other users and to the system
operator.

20 TSO Terminal User's Guide (Release 20.1)

RECEIVING BROADCAST MESSAGES

You can use three corrmands to control which broadcast messages you
receive:

LOGON, PROFILE, and LISTBC

When you log on, broadcast messages sent to all users (netices) and
those broadcast ~essages intended for you (mail) are displayed at your
terminal. You ean use the following operands of the LOGON ccmmand to
prevent'printing either type of messages at your terminal:

• NONOTICES su~presses printing of broadcast messages intended for all
terminal users.

• NOMAIL suppresses printing of broadcast messages intended
specifically for you.

For example, if you enter:

logon ~smith acct(72411} nomail

You will not receive mail but you will receive all notices that are
available at the time.

NONOTICES and NOMAIL suppress those broadcast messages outstanding at
the time you log on. You will automatically receive any broadcast
messages issued after you log on. You cannot stop the operator from
sending you notices, but you can specify that you do not want to receive
any mail by using the NOINTERCOM operand of the PROFILE corrrrand. For
example, if you enter the following commands:

logon jones/cleud proc(ab}
READY
profile nointercom

you request that all broadcast messages available at the time be
displayed, but that all mail sent to you after yeu log on be su~pressed
throughout your session. (Note that NOINTERCOM can be a default of your
user profile, and therefore you may not have to specify it with the
PROFILE command.)

At any tirre during your session you can use the LISTBC cemmand to
request that either all available notices for users, or all your mail
(or both) be dis~layed. If you enter:

listbc

you will get all broadcast messages. If yeu enter:

listbc nomail

you will get only notices. If you enter:

listbc nonctices

you will get only your mail.

The notices yeu get are both the notices available at the time you
logged on and those issued throughout your sessien. This enables you to
see what notices were available at log on ti~e if you specified
NONOTICES in your LOGON command. (The system o~erator can delete
notices at any time. Consequently you will get cnly those nctices he
has not deleted.)

Starting and Ending a Ter~inal session 21

Mail messages sent directly to you are automatically deleted by the
system after you receive them. Therefore the mail you get when you use
the LISTBC corrmand are those available at log on time if you specified
NOMAIL in your LOGON command, and those suppressed as a result of the
NOINTERCOM operand of the PROFILE comrrand. After you use the LISTBC
command to see your mail, the NCINTERCOM operand will again be in
effect.

If there are no messages available when you use the LISTBC command
you will receive the following message:

NO BROADCAST MESSAGES

If you want to cancel the effect of the NOINTERCOM operand, enter:

profile intercom

You will receive any mail issued after ycu enter this corrrrand. To
obtain your rrail messages issued before you entered INTERCOM, use the
LISTBC cororr,and.

SENDING BROADCAST MESSAGES

You can use the SEND command to send rrail messages to ancther terminal
user or to a system operator. The SEND corrrnand can be used at any time
after you log on.

You can send a mail message to another user only if you know his user
identification. For example, the comrrand:

send 'do not use procedure 245 until notified' user(jones,dept4)

will send the message enclosed in quotes to the two users whcse
identifications are JONES and DEPT4.

when you send a message .to another user, he will receive it
immediately provided that he [s logged on and is accepting messages. If
he is not logged on or is not accepting rressages, you are notified and
your message is deleted. For example, assume that SMITH is not logged
on, JONES is not accepting messages, and CLARK is both logged on and
accepting messages. When you send the following message:

send 'this is a message' user(smith,jones,clark)

SMITH and JONES do not receive the message, you are notified, and the
message is deleted. CLARK receives the message.

You can request the system to save your message until the user you
sent it to logs cn or decides to accept messages, by using the LOGON
operand of the SEND command. For example, if you enter:

send 'this is a message' user(smith,jones,clark) logon

SMITH will receive your message when he logs on, JONES will receive it
when he uses the LISTBC command, and CLARK will receive it irrmediately.

You can send a message to only one operator at a time. With the SEND
command, you can identify an operator by a number. For example,

send 'important message' operator(7)

22 TSO Terminal User's Guide (Release 20.1)

If there is only one operator at your installation, you can omit the
number. For example,

send 'imfortant message' operator

If there are several operators and you omit the number, ycur message
is sent to the main operator.

Displaying Session Time Used

You can use the TIME command to find out how much time you have used
during the current session. If you enter:

time

the system sends you a message telling you hcw lcng you have teen using
the terminal since you logged on.

If you are executing a program, you can use the TIME corrrrand to find
out how long the program has teen running. You must first enter an
attention interruption and then enter the TIME command. The system then
sends you a rressage telling you how long a program has been running. If
you want to continue processing the program, press the RETURN key and
the program continues. If you want to stop frocessing the frogram,
enter another attention interruption and wait for the READY message
before you enter another command.

Ending Your Terminal Session

You can end your terminal session in either of two ways:

• By entering the LOGOFF command to end the session.
• By entering the LOGON command to start a new session.

~he LOGOFF command:

• Displays your user identification.
• Displays the length of time you have been using the terrrinal, and

the time of day and date your session ended.
• Disconnects your terminal from the systew.

~he LOGON corr.wand terminates your current session and starts a new
session at the same time. LeGON must be specified as descrited in
"Identifying Yourself to the System".

Starting and~Ending a Terminal Session 23

Entering and Manipulating Data
I

Almost all system ap~lications are concerned with the precessing of
data. Therefore, you should learn how to enter data into the system and
how to modify, store, and retrieve data after it has been entered. Any
group of related data entered into the system is called a data set. For
example, a data set ffiay contain:

• 'I'ext used f or information storage and retrieval.
• A source program.
• Data used as input to a program.

when you create a data set you must give it a name. The system uses
the name to identify the data set whenever you want to modify or
retrieve it.

'Ihe EDIT command which is used to create and manipulate data sets
operates in either of two modes: input rr.ode or edit mode. When you use
the EDIT camIrand to enter data into a data set, you are using the input
mode. When you use the EDIT command to enter subcommands te manipulate
the data in a data set you are using the edit mode.

In input ~ode, you can type a line of data and then enter it into the
data set by pressing the RETURN key. You can continue entering lines of
data as long as EDIT is operating in input mode. If you enter a command
or subcommand while in input mode the systerr adds it to the data SEt as
input data.

You can have the system assign a line number to each line as it is
entered. Line numbers make edit mode operations much easier, since you
can refer to each line by its own number. When you are working with a
line-numbered data set, you can request the system to print cut the new
line number at the start of each new input line. If the data set does
not have line numbers, you can request that a prompting character be
displayed at the terminal before each line is entered.

After you finish entering data in the data ,set, you can switch to
edit mode by entering a null line. (Press the RETURN key to enter a
null line.)

The systerr lets you know you are in edit mode by printing the
following message:

EDIT

In edit mode you can enter subcommands to point to particular lines
of the data set, to modify or renumber lines, to add and delete lines,
or to control editing of input.

When EDIT is operating in edit mode, it uses an indicator called the
current line pointer to keep track of the next line of data to be
processed. The operations you indicate with the subcoremands are
performed starting at the line indicated by the ~ointer. For example,
the DELETE subcorrmand, deletes the line indicated by the pointer. After
a subcommand is executed the system repositicns the pointer.

You may want to re~osition the pointer before a subcorrmand is
executed. You can do so by using one of twc methods: line number
editing or context editing. Line number editing can be used only if
your data set has line numbers. You can specify a line number as an

Entering and Manipulating Data 25

operand of a subcommand and the system will move the pointer to that
line before it executes the subcommand. context editing can be used for
data sets with or without line numbers. A set of subcoRroands (UP, DOWN,
~OP, BOTTOM, and FIND) allows you to move the ~ointer up or down a
specified nurrber of lines, or to find a line with a particular series of
characters in it and move the pointer to it. After the ~ointer is
positioned you can enter the subcommand that performs the functions you
require. The subcommand can use an asterisk (*) instead of a line
number to specify the line indicated by the ~ointer.

After you finish editing the data, you can swftch to input mode by
either of two methods:

1. Entering the INPUT or INSERT subcommand.

2. Entering a null line. (Press the RETURN key to enter a null line.)

The systerr. lets you know you have selected in~ut mode by ~rinting the
following message:

INPUT

You can terminate, the EDIT command at anytime by switching to edit
mode (if not already in edit mode) ·and entering the END subcommand. The
system then prints a READY message, and you can enter any command you
choose. .

Note: If you want to enter a blank line in your data set, ycu must
enter a blank by pressing the space bar, and then press the RETURN key.
You can then enter other lines after the blank line. If you fail to
enter a blank and press only the RETURN key, you enter a null line which
causes EDIT to switch modes.

~he remainder of this chapter describes how you can:

• Identify a data set.
• Create a data set.
• Place data into columns.
• Find and position the current line pointer.
• Update a data set.
• List the contents of a data set.
• Store a data set.
• End the EDIT functions.

The following functions described in this cha~ter are perfcrmed with
commands other than EDIT:

• Rename a data set.
• Delete a data set.
• Establish passwords for a data set.
• Allocate a data set.
• Free an allocated data set.
• List the names of your data sets.

Identifying the Data Set

~he EDIT command is used to specify the name of a data set and whether
you want to create it or edit it. If you indicate that you are going to
create a new data set, the system enters input mode.. If you indicate
that you are going to edit an existing data set, the system enters edit
mode after yeu enter the EDIT command. For exam~le, the NEW o~erand in

26 TSO Terminal User's Guide (Release 20.1)

the following EDIT command specifies that you are going to create a new
data set named ACCTS.DATA. After you enter the command the system
enters input mode.

READY
edit accts.data new
INPUT

In the following example. the OLD operand of the EDIT command
specifies that you want to edit an existing data set nawed PARTS. TEXT.
After you enter the command. the system enters edit mode.

READY
edit parts. text old
EDIT

As you can see. the NEW operand specifies that you are going to
create a data set. and the OLD operand specifies that the data set
already exists.

The name you give a data set should follow certain conventions. A
data set name has three fields.

1. Identification qualifier.
2. User-supplied name.
3. Descriptive qualifier.

The fields' must be separated by periods. The total length of the
name. including ~eriods, must not exceed 44 characters. For example. a
typical data set name is:

SMITH.ACCTS.DATA

Identification qUalifier------------~t 1 1
User-supplied name -

Descriptive qualifier----------------------------~

When you create a data set you need only specify the user-supplied
name. The system su~plies values for the other two fields. The
identificaticn qualifier is the user identification you specified with
the LOGON corr.mand. The descriptive qualifier must be one of those
listed in Table 2. The system obtains it frcm o~erands you s~ecify in
the EDIT comrrand. If you do not supply it in another operand, the
system prompts yeu for a descriptive qualifier. If you prefer. you can
specify the descriptive qualifier as part of a data set name, for
example.

PARTS. DATA

You may specify a fully qualified name (a name with all three
qualifiers) by enclosing it in apostrophes. For example.

'JONES.PROG1.ASM '

This is a useful ~rocedure when you have to use a data set with an
identification qualifier other than your own user identification.

Entering and Manipulating Data 27

~able 2. Descriptive Qualifiers
r----------------------------------T-----------------------------------,
I Descriptive Qualifier I Data Set Contents I
.----------------------------------+-----------------------------------1

ASM Assewbler (F) input

BASIC

FORT

IPLI

PLI

COBOL

TEXT

DATA

CNTL

CLIST

STEX

OBJ

LIST

LOAD

LINKLIST

LOADLIST

TESTLIST

ITF: EASIC statements

FORTRAN IV (E, G, Gl or H)
staterrents and free- or
fixed-format FORTRAN statements

ITF: FL./I statements

FL/I (F) statements

American National Standard COBOL
staterrents

Uppercase and lowercase text

Uppercase text

JCL and SYSIN for SUBMI~ command

TSO corrwands

STATIC external data from ITF:PLI

Object module

Listings

Load module

Output listing from linkage editor

Output listing from loader

Output listing from TEST command

OUTLIST Output listing from OUTFUT command ----------________________________ ~ ___________________________________ J

Any name that does not conform to the naming conventions must also be
enclosed in apostrophes. For example, if you have a data set named
RECORDS, with no identification or descriptive qualifiers, enter

'records'

The system will not append the identification and descri~tive
qualifiers to such a name.

You can refer to an existing data set by its user-supplied name. In
some cases, you may also have to include the descriptive qualifier. For
example, if two of your data sets were named:

SMITH.PART1.ASM
SMITH.PART1.DATA

and you want to refer to the latter, you must specify:

part1.data

28 TSO Terminal User's Guide (Release 20.1)

You can also create and edit partitioned data sets. A partitioned
data set consists of one or more data sets called members. Each member
can be created and edited separately and each has a name. The merncer
name is enclosed in parentheses and appended to the right of the fully
qualified data set name. For example, the fully qualified name of
~ember MEMl of the SMITH.PART1.DATA data set is:

SMITH.PART1.DATA(MEM1)

You need cnly use the user-supplied narre and member name to refer to
the member. The system appends the identification and descriptive
qualifiers. For example, to refer to member MEMl you can specify:

partl(rreml)

In the following example you use the EDIT corr,mand to create merncer
ONE of a partiticned data set named JONES.T42.DATA. The seccnd EDIT
command, creates member 'I'WO of JCNES.T42.DATA. Note that the NEW
operand must be specified in coth cases. The third EDIT ccrrrr:and,
specifies that changes are to ce made to rrember ONE.

READY
edit t42.data(cne) new
INPUT

READY
edit t42.data(two) new
INPUT

READY
edit t42.data(one) old
EDIT

After you specify the data set name and the NEW or OLD operand, you
should specify the data set type. The data set type is an operand that
describes the purpose for which the data set is to be or was created.
'Ihe type operand is cne of the sources from which the system can obtain
the descriptive qualifier. The valid types are:

ASM
COBOL
GOFORT
FORT
FORTE
FORTG
FORTH
PLI
PLIF
IPLI
BASIC
DATA
TEXT
CLIST
CNTL

Entering and Manipulating Data 29

You do not have to specify the type operand if you specify it as the
descriptive qualifier. For example, the following two commands have the
same effect:

edit ab75 new asm
edit ab75.asm new

If the system cannot find the data set tYfe from other sources, you
are prompted for it.

If you do not want your data set to have line numbers, use the NONUM
operand. For example,

edit ab75 new asm nonum

Do not specify NONUM for the BASIC, IPLI, and GOFORT data set types,
because they must always have line numbers.

Except for one case, lines of input are translated to upfercase
letters by the system. If you want the system to retain your input in
the same form as you enter it (uppercase and lowercase), code the ASIS
operand. For example,

edit records new data asis

Creating a Data Set

You usually create a data set when EDIT is in input mode. You request
input mode when you enter one of the following:

• The NEW operand in the EDIT command •
• ~he INPUT subcommand while you are in edit mode.

After you enter the EDIT command with the NEW operand the system sends
you the following message:

INPUT

After this message is printed the system prints the first line number of
your data set unless you specified NONUM in the EDIT corrrrand. The first
line number frinted is 00010. Type the first line of input tc the right
of the line number and press the RETURN key to enter it. The system
then prints the second line numter, which is 00020, and you may then
enter your second line of input. and so on. When you reach the end of
the data you want to enter, press the RETURN key without entering
anything (a null line) and the system switches to edit mode. The
following example illustrates the points just discussed:

READY
edit accts new data
INPUT
00010 #23942 5
00020 #32135 21
00030 #32174 12
00040 #49213 35
00050 #52221 50
00060 (null line)
EDIT

0)2.75
0)3.90
0)1.80
0)7.95
0)2.35

acme inc
bbb corp
alpha inds
xyz dist
beta mfg

30 TSO Terminal User's Guide (Release 20.1)

In the example, the line numcers have the standard increment of 10.
If you prefer a different increment, you can use the INPUT sue command to
create the data set. To do this you must first request a switch to edit
mode by entering a null line after you receive the INPUT message. Then
enter the INPUT subcommand specifying the nu~ber of the first line and
the size of the increment. After entering the INPUT subcommand the
system switches to input mode and prompts you with the first line
number. For example, to start with line 5 and use increments of 5, you
could use the following sequence:

READY
edit accts new data
INPUT
00010 (null line)
EDIT
input 5 5
INPUT
00005 #23942
00010 #32135
00015 #32174
00020 #49213
00025 #52221
00030 (null line)
EDIT

5
21
12
35
50

You can create the same data
enter the line numbers you

READY
edit accts new data
INPUT
00010 (null line)
EDIT

wish

5 #23942 5
10 #32135 21
15 #32174 12
20 #49213 35
25 #52221 50

0)2.75
0)3.90
0)1.80
0)7. 95
0)2.35

set in edit
to use.

0)2.75
0)3.90
0)1.80
0)7.95
0)2.35

acme inc
bbb corp
alpha inds
xyz dist
beta mfg

mode. However.

acme inc
bbb corp
alpha inds
xyz dist
beta mfg

you must

Note: Requesting an increment larger than 1, makes it easier for you to
insert lines in your data set later on. (See the section nU~dating a
Data Set" for instructions on how to insert lines in your data set.)

Placing Data into Columns

You can use the TAB key of your terminal to align your data in columns.
just as you would with an ordinary typewriter. However, this mechanical
tab setting is net recogni'zed by the system which interprets each
striking of the TAB key as a space. For example. if you enter the
following three lines and align them with the TAB key, they a~pear at
the terminal as follows: .

39427
22
987654

abcde
fghijkl
mnop

49211
441
2

72669
123456
31

ab4
72de
xyz

but they are received by the system as follows:

39427 ABCDE 49211 72669 AB4
22 FGHIJKL 441 123456 72DE
987654 MNOP' 2 31 XYZ

Entering and Manipulating Data 31

If you want the system to place your data into columns, you must
establish logical tab settings with the TABSET subcomrrand cf the EDIT
command or else use the defaults provided by the system. If you have
established logical tab settings for your data set, the system will
receive each item in its proper column whenever you press the TAB key.
~he mechanical tab settings in your terminal need not corresfond to the
logical tab settings. For example, assume that the logical tat settings
for the data set are columns 10, 20, and 30, while the mechanical tab
settings in the terminal are columns 5, 10 and 15. When you type in the
following three lines using the TAB key:

abc def ghi jkl
mno pqr stu vwx
yzO 123 456 789

II L-__ I _________ ~ E~~~: ~~
~-------------------------~:column 1

they are received by the system as follows:

ABC DEF GHI JKL
MNO PQR STU VWX
YZO 123 456 789

I I~---------I-----------I------~:~~~~: ~~ ~---~: cclumn 1

You may find it convenient to make the mechanical tab settings
coincide with the logical tab settings.

The default tab settings used by the system vary with the data set
type. They-are shown in Table 3.

Table 3. Default Tab Settings
r-----------------------T--------------------------------------,
I Data Set Type I Default Tab Setting Columns I
.-----------------------+--------------------------------------~

COBOL 8,12,72
PL I 5,10, 15 , 20,,25 , 30 , 35, 40, 45, 50
PLIF 5,10,15,20,,25,30,35,40,45,,50
FORT 7,72
ASM 10,16.31,72
TEXT 5,10,15,20,,30,40
DATA 10 , 20, 30" 4 0 , 5 0 , 6 0
CLIST 10,20,30,40,50,60
CNTL 10,20,30,40,50,60
IPLI 5,10,15,20,25,30,35,40,45,50
BASIC 10,20,30,40,50,60 ---------______________ ~ ______________________________________ J

If you want to change the default settings or other settings you
previously established, or nullify all tabs, you must use the TAB'SE'I'
subcommand. If you want to change the default settings" you will
probably do so before you create the data set. That means you must
request edit mode after you enter the EDIT ccmmand, then enter the
'IABSET subcorrmand and return to the input mode to create the data set.
For example, if you want to create a TEXT data set with the logical tabs
at columns 10, 25, and 35, you can use the following sequence:

32 TSO Terminal User's Guide (Release 20.1)

READY
edit series new text
INPUT
00010 (null line)
EDIT
tabset 10 25 35

(null line)

INPUT
00010

If you prefer, you can define the tab settings with a line that
consists of blanks and tiS. For example, to establish tab settings in
columns 10, 25, and 35 you can use the TAESET subcommand as fcllows:

tabset image
t t t

You must produce the spaces between tis by pressing the s~ace bar as
many times as necessary. Do not use the TAE key with mechanical tabs to
produce those spaces.

If you want to nullify the existing tab settings for the data set,
enter the TABSET subcommand as follows:

tabset off

'Finding and Positioning the Current Line Pointer

Unless you plan to use line numbers for all your edit operatiens, you
should know how to find and reposition the current line pointer. These
operations are described in the following paragraphs.

FINDING THE CURRENT IINE POINTER

~he location of the current line pointer is determined by the last
subcommand you entered. Table 4 shows the lecation of the pointer at
the end of each subcommand. If you do not remember this information,
you can use the LIST subcommand with the * operand to find the line at
which the pointer is positioned. For example:

list *
USER,HOWEVER,MPST SUPPLY A DATA SET

You can also have the system display the line at which the pointer is
positioned every time the pointer changes as a result of the CHANGE, 'l'OP,
BOTTOM, UP, DOWN, FIND and DELETE subcommands. To do this use the
VERIFY subcorrmand as follows:

verify

The VERIFY subcommand is in effect until you enter it again with the
OFF operand:

verify off

Entering and Manipulating Data 33

~able 4. Values of the Line Pointer Referred to by an Asterisk (*)

r---------------------T--,
IEdit Subcomrr.ands IValue of the Pointer at Completion of Subcommand I

~---------------------+--~
BO~·TOM Last line (or line zero for empty data sets)

CHANGE

DELETE

DOWN

END

FIND

HELP

INPUT

INSERT

Last line changed

Line preceding deleted line, if any, else zero

Line after last line referred to
(or line zero for empty data sets)

No change

Found line, if any., else no change

No change

Last line entered

Last line entered

Insert/Replace/DeleteIInserted line or line preceding the deleted line
I

LIST ILast line listed
I

PROFILE INa change
I

RENUM ISame relative record
I

RUN iNa change
I

SAVE No change

SCAN

TABSET

TOP

UP

Last line referred to, if any

No change

Zero value

Line before last line referred to
(or line zero for empty data sets)

I VERIFY No change L _____________________ ~ __ J

POSITIONING THE CURRENT LINE POINTER

You can use the UP, DOWN, TOP, BOTTOM and FIND subcomrrands to move the
current line pointer.

The UP subcommand moves the pointer a specified number of lines
towards the beginning of your data set. For example, to move the
pointer so that it refers to a line located five lines before the
location currently ref~rred to, enter:

up 5

The DOWN subcommand moves the pointer a specified number of lines
towards the end of your data set. For example, to move the pointer so
that it refers to a· line located 12 lines after the location currently
referred to, enter:

down 12

34 TSO Terminal User's Guide (Release 20.1)

The TOP subcommand moves the pointer to the position preceding the
first line of your data set. TOP is often used in combinatien with the
DOWN subcorr~and. For example, if you want the pointer to refer to the
third line of your data set, use the following sequence:

top
down 3

The BOTTOM subcommand moves the pointer to the last line of the data
set.

The FIND subcommand moves the pointer to a line that contains a
specified sequence of characters. For example, to move the ~ointer to
the line that contains PLACED BEFORE ENTRY enter:

find xflaced before entry

The "x" inserted before "placed" is a special delimiter that marks
the beginning of the sequence of. characters the system has to search
for. The special delimiter can be any character other than a number,
semicolon, blank, tab, comma, parenthesis, asterisk, or one of the
characters in the sequence you want to find. The special delimiter must
be placed next to the first character of the sequence you want to find.
Do not insert a blank between the special delimiter and the first
character.

If you prefer, you can have the system start the search fer the
sequence of characters starting at the same column of each line. For
example, if you want the search for PLACED BEFORE ENTRY to start in
column seven of each line, enter:

find xplaced before entry x7

Note that the same special delimiter used at the beginning of the
sequence of characters must also precede the column number.

The FIND subcommand starts looking for the sequence of characters
beginning with the line at which the pOinter is located. Therefore,
unless you are sure the characters are in a line following the one
indicated by the pointer. you should use the TOP subcommand to move the
pointer to the beginning of the data set. Fcr example:

top
find xplaced before entry

Figure 2 shows a data set used to illustrate the exawples cf
positioning the current line pointer. Although this data set has line
numbers, they are not used in the examples.

r--,
I 00010 TEMPERATURE DATA FOR 7/29/70 I
I 00020 HIGHEST, 90 AT 12:30 P.M. I
I 00030 LOWEST, 73 AT 5:40 A.M. I
I 00040 MEAN, 83 I
I 00050 NORMAL ON THIS DATE, 77 I
I 00060 DEPARTURE FROM NORMAL. +6 I
I 00070 HIGHES'I' TEMPERATURE THIS DATE, 99 IN 1949 I
I 00080 LOWEST TEMPERATURE THIS DATE, 59 IN 1914 I
I 00090 TEMPERATURE HUMIDITY INDEX, 81 I L __ J

Figure 2. Sample Data Set

Entering and Manipulating Data 35

Assume that you do not know the present lccation of the current line
pointer. and would like to move it to the fifth line (00050). Enter:

top
down 5

To move the pointer from the fifth line (00050) to the third line
(00030), enter:

up 2

'10 move the pointer to the line that contains FROM NORMAL enter:

find xfrom normal

'10 move the pointer to the last line (00090). enter:

bottom

Updating a Data Set

The subcommands of the EDIT command allow you to update a data set.
That is, they allow you to:

• Delete data from a data set.
• Insert data in a data set.
• Replace data in a data set.
• Renumber lines of a data set.

These functions are described in the follewing paragraphs.

DELETING DATA FROM A DATA SET

If you want to delete only one line of data you do not need a
subcommand. Indicate only the line number or an asterisk. Fer example,
if you want to delete line 30, enter:

30

If you want to delete the line indicated by the current line ~oint€r,
enter:

*
You can also use the DELETE subcommand to perform the same function.
For example,

delete 30

or

delete *

DELETE also allows you to delete more than one consecutive line. To
do so you can specify the line numbers of the first and last lines to be
deleted, or the number of lines to be deleted starting with the line
indicated with the current line pointer. For example, if you want to
delete all the lines between, and including lines 15 and 75, enter:

delete 15 75

36 'ISO Terminal User's Guide (Release 20.1)

If you want to delete 12 lines starting with the line indicated by the
current line pointer, enter:

delete * 12

~NSERTING DATA IN A DATA SET

~o insert only one line of data you do not need a subcomrrand; indicate
only the line number. The line number referred to should net exist.
For example, if you want to insert "RECORDEL DAILY IN CENTRAL" in line
22, enter:

22 reccrded daily in central

The characters you want to enter must be separated from the line
number or the asterisk by one blank or one ccmma. Any additicnal blanks
or commas are considered to be part of the input data.

To insert more than one line, use the INSERT or INPUT subcommands.
INSERT can be used only for data sets without line numbers. INPUT can
be used for data sets with or without line numbers.

The INSERT subcommand inserts one or more lines of data following the
location pointed to by the current 'line pointer. For example, assume
that you have the following data set:

A. CARSON DEPT A72
T. DANIELS DEPT 795
C. DICKENS DEPT 981
R. EMERSON DEPT' 245
E. FARRELL DEPT B32
C. LEVI DEPT' 229
D. MADISON DEPT D49

To insert three lines after the entry for E. FARRELL and before the
entry for C. LEVI you must first position the current line pcinter at
the fifth line. Your listing would look like this:

EDIT
top
down 5
insert
INPUT
e. glotz dept 741
p. henry dept 333
h. hill dept R92

(null line)
EDIT

You must enter a null line to indicate the end of your input.

The INPUT subcommand is used in a manner similar to the INSERT
subcommand if your data set does not have line numbers. Use an asterisk
in the INPUT subcommand to indicate that the lines of input that follow
are- to be inserted in the location following the current line pointer.
Using the preceding example, to insert the lines:

E. GLO~Z
P. HENRY
H. HILL

DEPT 741
DEPT 333
DEPT R92

after the line for E. FARRELL and before the line for C. LEVI, your
listing would lock like this:

Entering and Manipulating Data 37

EDIT
top
down 5
input *
INPUT
e.. g lotz dept 741
p. henry dept 333
h. hill dept R92

(null line)
EDIT

Note that after entering the INSERT or the INPUT subcommand EDIT
switches to input mode.

If your data set has line numbers, you can use the INPUT subcommand
to insert one or more lines of data between two existing lines of the
data set. You can also indicate a smaller increment for the new line
numbers so that they fit between the line numbers of the existing lines.
For example, assume you have the following data set:

00010
00020
00030
00040

1932
2579
4798
5344

$1.50
$1.39
$1.75
$2.49

To insert three 'lines between lines 20 and 30, to have the first line
numbered 22, and to increment this number by two in the follcwing lines,
your listing would look as follows:

EDIT
input
INPUT
00022
00024
00026
00028
EDIT

22 2

2795 $0.79
3241 $2.81
4152 $1.79
(null line)

~he updated data set would look like this:

00010
00020
00022
00024
00026
00030
00040

1932
2579
2795
3241
4152
4798
5344

$1.50
$1.39
$0.79
$2.81
$1.79
$1.75
$2.49

If you do not change the increment., and there is no room for the new
lines, you receive an error message. If you wish, you can renumber the
lines of your data set. This procedure is explained in the section
"Renumbering Lines of Data".

To enter lines at the end of the data set, enter the' INPUT subcommand
without operands. If the data set has line numbers you will be frompted
with the line number. For example.,

EDIT
input
INPUT
00050
00060
00070
EDIT

6211 $3.95
7199 $0.85
(null line)

38 TSO Terminal User's Guide (Release 20.1)

REPLACING DATA IN A DATA SET

You can replace an entire line, or a sequence of characters ina line or
in a range of lines.

If you are only replacing one line of data, you do not need a
subcommand. Indicate only the line number or an asterisk. For example,
if you want to replace the contents of line 70 with "SEVERAL REPORTS
WERE MADE", enter:

70 several re~orts were made

If you want to replace the contents of the line indicated by the current
line pointer, enter:

* several reports were made

The characters you want to enter must be separated from the line
number or the asterisk by only one blank or a comma. Any additional
blanks or corrmas are considered to be part of the input data.

You can also replace lines of data when you use the INPUT subcommand.
If you use the R operand, the lines starting with the line indicated by
the line number or the asterisk are replaced by the lines you enter.
For example, assume that you have the following data set:

COMPLETION SCHEDULE
STAGE 1 7/19
STAGE 2 8/15
STAGE 3 9/29

To replace the third and fourth lines, you must first positicn the
current line pointer at the third line.

EDIT
top
down 3
input * r
INPUT
stage 2 8/21
stage 3 9/15

(null line)
EDIT

Your updated data set would look like this:

COMPLETION SCHEDULE
STAGE 1 7/19
STAGE 2 8//21
STAGE 3 9/15

In the following example" assume that the data set has line numbers:

00010
00020
00030
00040

COMPLETION SCHEDULE
STAGE 1 1/19
STAGE 2 8/15
STAGE 3 9/29

Entering and Manipulating Data 39

To replace lines 30 and 40, your listing should look as fellcws:

EDIT
input
INPUT
00030
00040
00050
EDIT

30 r

stage 2 8/21
stage 3 9/15

(null line)

Your updated data set will look as follows:

00010
00020
00030
00040

COMPLETION SCHEDULE
STAGE 1 7/19
STAGE 2 8/21
STAGE 3 9/15

If the data set has line numbers, you can replace a line and insert
additional lines. For example, assume the same data set:

00010
00020
00030
00040

COMPLETION SCHEDULE
STAGE 1 7/19
STAGE 2 8/15
STAGE 3 9/29

To replace line 30 and insert two lines with a line increment of 2, your
listing should leok as follows:

EDIT
input
INPUT
00030
00032
00034
00036
EDIT

30 2 r

stage 2 part 1 8/15
stage 2 part 2 8/21
stage 2 part 3 9/15

(null line)

Your updated data set will look as follows:

00010 COMPLETION SCHEDULE
00020 STAGE 1 7/19
00030 STAGE 2 PART 1 8/15
00032 STAGE 2 PART 2 8/21
00034 STAGE 2 PART 3 9/15
00040 STAGE 3 9/29

To replace more than one line with a greater number of lines, you can
also use the DELETE subcommand to delete those lines and then use either
INPUT or INSERT to insert the replacement lines. Use this procedure
when the dataset does not have line numbers.

Use the CHANGE subcommand to change only part of a line cr lines.
For example, to change the characters "DAILY INVENTORY" to "WEEKLY
REPORT" in line 12 of your data set" enter:

change 12/daily inventory/weekly report/

The "/" placed before the characters to be changed and the
replacement characters is a special delimiter that marks the beginning
of those sequences of characters. The special delimiter can be any
character other than a number, blank, tab, comma, semicolon,
parentheses, or asterisk. Make sure the character you select as a
special delirrdter does not appear in the sequence of characters you
specify. If you leave blanks between the last character to be replaced

40 TSO Terminal User's Guide (Release 20.1)

and the special delimiter for the replacement characters, the blanks are
considered part of the characters to be replaced.

Instead of using a line number you can use an asterisk. For example
if the change is to be made to the line indicated by the current line
pointer, enter:

change * xdaily inventoryxweekly reportx

You can have the system search for a sequence of characters in a
range of lines rather than in one line. You can indicate the range of
lines by giving the numbers for the first and last lines of the range,
or by indicating the current line pointer and the number of lines you
want to have searched. For example, if the characters nDAILY INVENTORy n
appear somewhere between lines 15 and 19, enter:

change 15 19 !daily inventory!weekly report!

If the characters appear within the 10 lines starting with the one
indicated by the current line pointer, enter:

change * 10 ?daily inventory?weeklyreport?

You can change the sequence of characters every time it appears
within the range of lines. To do this specify the ALL operand after the
replacement sequence. ALL must be preceded by the same special
delimiter that precedes the character sequences. For example,

change 15 19 !daily inventory! weekly report! all
or

change * 10 !daily inventory!weekly report! all

If you wish, you can have the system locate a sequence of characters
in a line and print that line up to those characters. You can then type
new characters to complete the line and enter the new line when you
press the RETURN key. For example, assume that you want to change the
characters nTUESDAyn to nTHURSDAyn in the following line:

00015 PARTS DELIVERIES ARE MADE ON TUESDAY

Your listing will look as follows:

change 15/tuesday
00015 PARTS DELIVERIES ARE MADE ON thursday

If the characters you want to change are in the line indicated by the
current line pointer, your listing would look like this:

change */tuesday
00015 PARTS DELIVERIES ARE MADE ON thursday

You can also request that the system print out the first few
characters of a given line. Then you can enter the characters you want
to replace the remaining characters in the line. For example, you can
request that the first 29 characters of the line npARTS DELIVERIES ARE
MADE ON TUESDAyn be printed:

change 15 29
00015 PARTS DELIVERIES ARE MADE ON thursday

Entering and Manipulating Data 41

You must use line numbers f9r this type of reference. You can also
have the system ~rint the first characters of a range of lines. This is
particularly useful when you want to change a column in a table. For
example, assume that you have the following data set:

00010
00012
00014
00016
00018

ENROLLMENT DATES
P. JONES MAY 15
A. SMITH MAY 31
J. DOE JUNE 7
B. GREEN JUNE 9

JUNE 12
JULY 19
JULY 17
AUGUST 3

If you want to change the data in the last column, which begins in
position 17, enter:

change 10 18 17
00010 ENROLLMENT DATES
00012 P. JONES MAY 15 june 25
00014 A. SMITH MAY 31 july 23
00016 J. DOE JUNE 7 july 31
00018 B. GREEN JUNE 9 august 10

RENUMBERING LINES OF DATA

You can use the RENUM subcommand to assign line numbers to a data set
without line numbers" or to renumber the lines of'a data set with line
numbers. If you enter:

renum

the system assigns new line numbers to all the lines of the data set
beginning with number 10 and incrementing the following line numbers by
10.

You can assign a number to the first line of the data set. For
example if you want the first line to have number 5., enter:

renum 5

The remaining line numbers will be 15,25.,35, etc.

You can specify an increment other than 10 in addition to the number
of the first line. For example if you want the first line tc be number
one, and the remaining line numbers to increase by 3, enter:

renum 1 3

If your data set already has line numbers you can specify that
renumbering is to start at a given line. You must also specify the new
number for this line (which must be equal to or greater than the old
line number) and the increment. For example, if you want to start
renumbering at line 23, and the new line number is to be 25 and the
increment is to be 5, enter:

renum 25 5 23

42 TSO Terminal User's Guide (Release 20.1)

Listing the Contents of a Data Set

~he LIST subcommand allows you to display the contents of a data set.at
your terminal. To list the entire contents of the data set, enter:

list

your data set is listed here

To list a group of lines. enter the number of the first and last
lines of the group. For example, to list lines 20 through 110 of the
data set, enter:

list 20 110

If your data set does not have lines numbers you can use the current
line pointer and the number of lines to be listed. For examfle, to list
the 20 lines that begin with the line indicated by the pointer enter:

list * 20

To list only one line, indicate the line number or the current line
pointer. For example. if you wish to list line 22. enter:

list 22

If you want to list the line pointed at by the current line fainter,
enter:

list *

You can use the SNUM operand to suppress listing the line numbers of
a line-numbered data set. (If your data set does not have line numbers,
this operand has no effect.) For example, any of the following commands
produces a listing of the lines indicated without their line numbers:

list snum
list 20 110 snum
list * 20 snum
list 22 snum
list * snum

Storing a Data Set

~he data set you have created or the changes you made to a ~reviously
existing data set are retained ty the system only until you finish using
the EDIT command and its subcommands. That is. as soon as ycu notify
the system that you want to use another corrroand and you get a READY
message, your newly created data set, or your new· set of changes, is
discarded. If you want the system to make your new data set a permanent
data set, or if you want the system to incor~orate your changes into the
existing data set, you must use the SAVE subcommand of the ECIT command.

Entering and Manipulating Cata 43

For example, in the following sequence you create a data set named
RECORDS and ask the system to store it as a permanent data set:

READY
edit records new data
INPUT
00010
00020
00030
00040
EDIT
save
SAVED
end
READY·

project 21 7/10-8/25
project 23 7/10-9/12
project 39 8/1-9/15

(null line)

a. jones
p. smith
r. brown

In the following sequence you add a line to the RECORDS data set and
ask the system to make it part of the data set:

READY
edit records old data
EDIT
40 project 42 8/15-9/21 s. green
save
SAVED
end
READY

In some cases you may want to preserve the existing data set intact
and have the system make the changes to a data set that is a copy of the
original data set. To do this you must enter a new data set name for
the copy when you enter the SAVE subcommand. For example, if you want
to keep the RECORDS data set intact, and you want your changes to be
made to a copy of RECORDS named PROJS, use the following sequence:

READY
edit records old data
EDIT
40 project 42 8/15-9/21 s. green
save projs
SAVED
end
READY

Now you have two data sets. The one named RECORDS looks like this:

00010
00020
00030

PROJECT 21
PROJECT 23
PROJECT 39

7/10-8/25
7/10-9/12
8/1-9/15

A. JONES
P. SMITH
R,. BROWN

The data set named PROJS looks as follows:

00010
00020
00030
00040

PROJECT 21
PROJECT 23
PROJECT 39
PROJECT 42

7/10-8/25
7/10-9/12
8/1-9/15
8/15-9/21

A. JONES
P. SMITH
R. BROWN
S. GREEN

44 TSO Terminal User's Guide (Release 20.1)

You can use the SAVE subcommand whenever you are using the EDIT
command. For example, you can create a data set and save it. Then you
can start making changes to the data set and once you are satisfied with
those changes you can save them to make them part of the data set. For
example, in the following sequence you create a data set, save it,
replace line 30, insert three lines after line 50, list the data set,
delete line 56, renumber the data set, and save it.

READY
edit phones new text
INPUT
00010 telephone listing - sales dept
00020 j. adams 1291
00030 c. allan 2431
00040 a. bailey 3255
00050 b. crane 4072
00060 e. foster 1384
00070 f. graham 2291
00080 d. murphy 9217
00090
EDIT
save
SAVED
30 c. alden 2441
input 52 2
INPUT
00052 1 .• davis 4119
00054 j. egan 6835
00056 e. foster 1384
EDIT
list

00010 TELEPHONE LISTING - SALES DEPT
00020 J. ADAMS 1291
00030 C. ALDEN 2441
00040 A. BAILEY 3255
00050 B. CRANE 4072
00052 L. DAVIS 4119
00054 J. EGAN 6835
00056 E. FOSTER 1384
00060 E. FOSTER 1384
00070 F. GRAHAM 2291
00080 D. MURPHY 9217
delete 56
renum
save
SAVED
end
READY

Entering and Manipulating Data 45

Ending the EDIT Functions

Use the END subcommand to terminate the operation of the EDIT command.
If you have made changes to your data set and have not entered the SAVE
subcommand, the system will ask you if you want to save the modified
data set. If so you can enter the SAVE subcommand. If you do not want
to save the changes, reenter the END subcommand.

After you enter the END subcommand you receive the READY message.
You can then enter any command you choose.

Renaming a Data Set

The RENAME command allows you to:

• Change the name of a data set.
• Change the name of a member of a partitioned data set.
• Assign an alias to a member of a partitioned data set.

If you have a data set named SMITH.RECPT.DATA and you want to change
it to SMITH.ACCT.DATA. you can do so with any of the following RENAME
commands:

rename 'smith.recpt.data' 'srnith.acct.data'
rename recpt.data acct. data
rename recpt acct

Note that the fully qualified name must be enclosed in apostrophes.

The simple user-supplied name can be used if you have only one data
set with that name. For example, if you have two data sets named
SMITH.RECPT.DATA and SMITH.RECPT.TEXT. you must specify either
RECPT.DATA or 'SMITH.RECPT.DATA' in the RENAME subcommand. If you do
not specify the descriptive qualifier, the system will prompt you for
it.

The following examples show how you can use RENAME to change the
identification qualifier or the descriptive qualifier.

rename 'smith. acct. data' 'jones.acct.data'
rename acct. data acct,. text

The following examples show how you can change more than one qualifier.

rename 'smith. acct. data , 'jones.recpt.text'
rename acct. data recpt.text

When changing the name of a member of a partitioned data set, you
must specify the existing data set name and member name and the new
member name. For example. to change the name of a member of JONES.AB79.
DATA from INPUT to ENTRY, you can do so with any of the follcwing
commands:

rename 'jones.ab79.data(input) , (entry)
rename ab79.data(input) (entry)
rename ab79(input) (entry)

Use the ALIAS operand to indicate that the new member name is an
alias and not a replacement. For example to assign the alias DAILY to
member INPUT of JONES.AB79.DATA, use any of the following:

46 TSO Terminal User's Guide (Release 20.1)

rename I jones. ab79.data (input) I (daily) alias
rename ab79.data(input) (daily) alias
rename ab79(infut) (daily) alias

After entering this command the name of the member is either
JONES.AB79.DATA(INPUT) or JONES.AB79.DATA(DAILY).

sometimes you may have two or more data set names that are identical
in all but one of their qualifiers. For example, you may have these
data sets:

or

or

JONES. ALPHA. DATA
JONES. BETA. DATA

JONES. ALPHA. DATA
JONES. ALPHA .• ASM

JONES. ALPHA. DATA
SMITH. ALPHA. DATA

You can use the RENAME command to replace one or both of their common
qualifiers. For example, you may want to change the group:

to

or to

or to

JONES. ALPHA·. DATA
JONES. BETA. DATA

JONES. ALPHA. TEXT
JONES. BETA. TEXT

SMITH.ALPHA.DA~A

SMITH. BETA. DATA

SMITH. ALPHA. TEXT
SMITH. BETA. TEXT

In order to make the change, replace the dissimilar qualifier with an
asterisk. For example,

jones.*.data

stands for "all data sets whose identification qualifier is JONES and
whose descriptive qualifier is DATA". You can then enter the RENAME
command:

rename *.data *.text

to change the group

to

JONES. ALPHA. DATA
JONES. BETA. DATA

JONES. ALPHA. TEXT
JONES. BETA. TEXT

Enter the command

rename 'jones.*.data"smith.*.data'

to change the group

JONES. ALPHA. DATA
JONES. BETA. DATA

Entering and Manipulating Data 47

to

SMITH. ALPHA. DATA
SMITH. BETA. DATA

Enter the command

rename 'jones.*.data' 'smith.*.text'

to change the group

to

JONES. ALPHA. DATA
JONES. BETA. DATA

SMITH. ALPHA. TEXT
SMITH. BETA. TEXrr'

Deleting a Data Set

Use the DELETE command to delete one or more data sets or one or more
members of a partitioned data set.

If you have a data set named BROWN.INPUT.TEXT and .you want to delete
it, enter

READY
delete input
READY

If you have two data sets named BROWN.INPUT.TEXT and BROWN. DAYS. DATA
and you want to delete them., enter:

READY
delete (input days)
READY

If you want to delete member FIRST of the MARY.ALPHA.ASM partitioned
data set enter:

READY
delete alpha(first)
READY

If member FIRST has the alias LAST, and you want to delete both the
member name and its alias" enter:

READY
delete alpha(first) alpha(last)
READY

You may have a group of data sets whose names differ only in the
user-supplied name or in the descriptive qualifier. For example,

or

HELEN. LIST. DATA
HELEN. LINES. DATA
HELEN. DATES. DATA

LUCY.WEATHER.ASM
LUCY. WEATHER. DATA
LUCY. WEATHER. TEXT

48 TSO Terminal User's Guide (Release 20.1)

To delete the entire group, place an asterisk in the position where
the names do not match. (The asterisk cannot replace the user
identificatien.) For example, to delete the first group use the
following:

READY
delete *.data
READY

To delete the second group use the following:

READY
delete weather.*
READY

Establishing Passwords for a Data Set

Use the PROTECT command to establish passwords for your data set.
Passwords prevent unauthorized persons from reading (listing) or writing
(making changes to) your data set. Whenever anyone attempts to use a
password-protected data set, the system requests a password unless the
data set is protected with the same password that was entered in the
logon procedure. The system allows two chances to provide the correct
password. If your terminal has the "print-inhibit" feature, the system
disengages the printing mechanism at your terminal while yeu enter the
password in response. However, the "print-inhibit" feature is not used
if the prompting is for a new password you are adding to the data set.

The PROTECT command also specifies what the person who knews the
password can do to the data set; that is, whether he is allowed to read
it, or write in it, or both. You can require a password for both
reading and writing; or just for reading and not writing. You can also
assign one password for reading and a different one for writing. The
operands that control the type of operations are:

PWREAD -- you must specify a password before you can read from the data
set.

PWWRITE -- you must specify a password before you can write in the data
set.

NOPWREAD -- you can read from the data set without specifying a
password.

NOWRITE -- you cannot write into the data set (with this password).

There are three valid combinations of operands:

PWREAD PWWRITE -- the password is required for either reading or writing
your data set.

PWREAD NOWRITE the password is required for reading. Writing is not
allowed with this password.

NOPWREAD PWWRITE -- you can read without a password. The password
allows you to both read and write the data set.

Entering and Manipulating Data 49

If you specify only one operand you get two values by default. They
are:

Operand
PWREAD
NOPWREAD
PWWRITE
NOWRITE

Default Values
PWREAD PWWRITE
NOPWREAD PWWRITE
NOPWREAD PWWRITE
PWREAD NOW RITE

The type of password operand, the number of times the password is
used, and optional security information that you can specify are
recorded in the PASSWORD data set of the operating system.

The following example adds the password HUSH for reading and writing
the JONES.SECRET.DATA data set:

READY
protect secret addChush) pwread
READY

The following example adds another password, WHUSH, to the same data
set. This password can be used only for reading the data set:

READY
protect secret/hush add(whush) nowrite
READY

Note how you must use the password in subsequent commands once you
bave established it.

You can replace a password. For example, to replace the password
SESAME for HUSH in the JONES.SECRET.DATA data set, enter

READY
protect secret/bush replace(husb,sesame)
READY

Note that when you are replacing a password you do not have to
specify the function of tbe password.

You can also delete a password. For example, if you no lenger
require the WHUSH password for reading the data set, enter

READY
protect secret/sesame deleteCwhush)
READY

You can use the DATA operand to specify optional security information
to be recorded in the system. For example, when you establish the
password AB#72 for the SMITH.SALES.TEXT data set, you can also specify
other information:

READY
protect sales addCab#72) dataCpassword changes on monday)
READY

To find out what the optional information is, the type of operation
allowed, and the number of times the password bas been used, use the
LIST operand. For example,

protect sales listCab#72)

Note: When a data set is renamed you should update the password data
set to reflect the change. This prevents your having insufficient space
for future entries.

50 TSO Terminal User's Guide (Release 20.1)

Allocating a Data Set

This section is intended for those users who are going to compile, link
edit, or execute (or load) a program. Knowledge of a programming
language (such as System/360 Assembler, COBOL, FORTRAN or PL/I) and of
the Job Control Language (JCL) statements required to compile, link
edit, and execute the program is useful for understanding this section.

The compiler;, linkage editor. loader, and your own program require
data sets in order to operate. In an operating system without TSO these
data sets are defined with data definition (DO) JCL statements. In TSO,
these data sets are defined through the EDIT and ALLOCATE commands. You
can use the EDIT command to define and create input data sets. You can
use the ALLOCATE command to define output and work data sets and
libraries, and to allocate the data sets you created with the EDIT
command. This section discusses the ALLOCATE command.

Note: Compilers that have p~ompters associated with them will allocate
data sets for you. Your installation can tell you if these Program
Product facilities are available to you. The data sets for the linkage
editor and loader are allocated for you by the LINK and LOADGO commands,
respectively. You need only allocate them if you invoke the linkage
editor or the loader with the CALL coronand.

The number of data sets you need is determined by the program
(compiler, linkage editor. loader, or your own program) you are going to
use. (The publications associated ,with the IBM-supplied prcgrams list
the data set requirements.) The number of data sets you can allocate
depends on the number of data sets assigned to you in your LOGON
procedure,. The LOGON procedure defines a series of data sets. Some of
these data sets are fully defined and correspond to data sets that you
always need in your processing. The remaining data sets are left
undefined; they are defined when you define a data set with an ALLOCATE
or EDIT command.

When you define a data set with the ALLOCATE command, it remains
allocated until you use the FREE command to free the data set
definition. (The FREE command is described in nFreeing an Allocated
Data Set. n)

When you create a data set with the EDIT command, the system uses one
of the undefined data sets in the LOGON procedure to define the data
set. When you save the data set and end the EDIT command, the system
saves the data set, enters its name in the system catalog, and frees the
definition in the LOGON procedure for further use. When you again use
the EDIT command to make changes to the saved data set, the system finds
the data set through the system catalog and uses another of the
available definitions to define the data set. When you end the EDIT
command, the system frees the data set definition. If you want the data
set to remain allocated in your LOGON procedure, you must use the
ALLOCATE command.

You can list the data sets allocated to you with the LISTALC command
(described in nListing the Names of Your Data sets n). The system lets
you know, as part of the LISTALC listing, how many DD statements are
available for allocation. For example, if there are five available data
sets you get the following message:

5 DATA SETS CAN BE ALLOCATED DYNAMICALLY

You can allocate as many data sets as there are available
definitions. If you need more data sets you can free a previously
allocated data set with the FREE command (described in nFreeing an
Allocated Data Set"). After you free a data set, you can use the

Entering and Manipulating Data 51

available definition to allocate another data set with the ALLOCATE
command.

If you have to allocate the same data sets every time you logon, you
can have your installation allocate them in the form of fully defined
data sets in the LOGON procedure. In this way you do not have to
allocate the same data sets every time you logon.

The example in Figure 3 illustrates the use of the ALLOCATE command
for allocating the data sets required for an execution of the Assembler
F compiler. The assembler requires eight data sets for this
compilation. They are:

SYSLIB
SYSUTl
SYSUT2
SYSUT3
SYSPRINT

SYSPUNCH

SYSGO
SYSIN

The macro library (SYS1.MACLIB).
Work data set.
Work data set.
Work data set.
Output listing data set. Your terminal is allocated
for this purpose.
Data set for a punched deck of an object rrodule. It
is to be produced on the standard message output
class. (TO change this output class to a ~unch
output class, see "Freeing an Allocated Data set".)
Data set for the object module.
Input source statements to the Assembler. It is
created with the EDIT command and defined to the
assembler with the ALLOCATE command.

r--,

READY
edit input.asm new
INPUT

.source statements

EDIT
save
SAVED
end
READY
allocate dataset('sysl.maclib'} file(syslib} shr
READY
allocate file(sysut1) new block(400) space(400,50}
READY
allocate file(sysut21 new block(400) space(400,50}
READY
allocate file(sysut3} new block(400) space(400.50)
READY
allocate dataset(*} file(sysprint)
READY
allocate file(syspunch)sysout
READY
allocate dataset(prog.objl file(sysgo) new block(SO) space(200,50)
READY
allocate dataset(input.asm) file (sysin) old
READY

L-___________________ ~ __ _

Figure 3. Allocating Data Sets for the Assembler F

52 TSO Terminal User's Guide (Release 20.1)

Freeing an Allocated Data Set

Use the FREE command to release any data sets allocated to you. You can
also use this command to change the output class of a SYSOUT data set.

To free a data set specify its data set name or its file name
(ddname). If your terminal has been allocated as a data set, you must
free it through its file name. You can use the LISTALC command to
obtain the file names and data set names of the data sets allocated to
you. (LISTALC is described in the Section, "Listing the Names of Your
Data Sets".)

The following examples free the data sets allocated in Figure 3 of
the section "Allocating a Data Set". The output class of the SYSPUNCH
data set is changed to B.

free dataset('sysl.maclib',prog.obj,input.asm) file(sysutl,­
sysut2,sysut3,sysprint,syspunch) sysout(b)

Listing the Names of Your Data Sets

Use the LISTALC, LISTCAT. and LISTDS commands to list the names of your
data sets and obtain further information about them.

LISTALC lists the data sets defined in your LOGON procedure. Both
the fully defined data sets and those available for allocation are
listed.

LISTCAT lists the names of all cataloged data sets that have your
user identification. Cataloged data sets are those whose names are
entered in the system catalog. The system catalog is a list the system
keeps of the names and locations of cataloged data sets. Your cataloged
data sets mayor may not be defined in your LOGON procedure. Data sets
that are cataloged but not entered in the LOGON procedure are those that
you create and save with the EDIT command but do not allocate with the
ALLOCATE command. Other cataloged data sets are those that you have
created and saved during previous terminal sessions but never deleted
with the DELETE command.

LISTDS gives you information on specific data sets which are
currently cataloged or allocated, or both. The information you receive
includes:

• The serial number of the volume on which the data set resides.
• The record format, logical record length, and blocksize of the data

set.
• The data set organization.
• Directory information for a member of a partitioned data set.

This information is described in detail in the publication IBM
System/360 Operating System: Job Control Language User's Guide,
GC28-6703.

Entering and Manipulating Data 53

In addition to the information listed above for the three commands,
there are certain operands you can use to obtain additional information
on the data sets. The operands and the commands to which they apply
are:

Operand LISTALC LIST CAT LISTDS

STATUS x x

HISTORY x x x

MEMBERS x x x

SYSNAMES x

VOLUMES x

LEVEL x

LABEL x

The STATUS operand provides you with:

• The file name(ddname) for the data set.

• The scheduled disposition and conditional disposition of the data
set. The scheduled disposition determines whether the system will
retain or delete the data set after it is used. The conditional
disposition determines whether the system is to retain or delete the
data set in case of abnormal termination. The keywords that denote
the dispositions are CATLG, KEEP, DELETE and UNCATLG. CATLG means
that the data set is retained and its name is kept in the system
catalog. KEEP means that the data is retained but not cataloged.
DELETE means that all references to the data set are to te removed
from the system and that the space it occupies is to be released for
use by other data sets. UNCATLG means that a previously cataloged
data set is retained, but its name is removed from the catalog.

The HISTORY operand provides you with:

• The creation date of the data set.
• The expiration date of the data set.
• An indication as to whether or not the data set has password

protecti on.
• The data set organization.

The MEMBERS operand provides you with a list of the member names of a
partitioned data set including any aliases.

The SYSNAMES operand provides you the names assigned by the system to
any allocated data set you did not name.

The VOLUMES operand provides you with the serial numbers cf the
volumes on which your cataloged data sets reside.

The LEVEL operand lets you request a listing of only part of your
cataloged data sets, or a listing of some other user's cataloged data
sets.

The LABEL operand provides you with the information in the Data set
Control Block (DSCB) of a specific data set.

54 TSO Terminal User's Guide (Release 20.1)

Programming at the Terminal

You can use the TSO facilities to compile, link edit, and execute (or
compile and load) your source program at the terminal. TSO also allows
you to use any other program, such as utilities, at the terminal. That
is, instead of taking your job to the computer room to run it directly
under the operating system, you can use the TSO facilities to enter it
through your terminal. These facilities reduce your job turnaround time
because you get immediate results at the terminal.

You can also use the terminal to submit your job for processing at
the computer in the conventional manner. That is, you submit your job
through the terminal but do not want to get immediate results at the
terminal. The results are sent to you from the computer room after your
job is executed or you may obtain them at the terminal at a later time.
Jobs submitted in this manner are called background jobs.

Most compilers or assemblers that can be used
system can be used from your TSO terminal. They
results at the terminal" or for background jobs.
programs, your installation may have one or more
Program Product compilers and other TSO programs
terminal. They are:

under the operating
can be used to obtain

In addition to these
of the special TSO
for your use at the

• Interactive Terminal Facility (ITF): PL/I -- A problem-solving
language processor.

• Interactive Terminal Facility (ITF): BASIC -- A problem-solving
language processor.

o Code and Go FORTRAN -- A FORTRAN compiler designed for a very fast
compile-execute sequence at the terminal.

• FORTRAN IV (Gi) -- A version of the FORTRAN IV (G) compile modified
for the terminal environment.

• TSO FORTRAN Prompter -- An initialization routine to prompt you for
options and invoke the FORTRAN IV (Gi) Processor.

• FORTRAN IV Library (Mod I) Execution-time routines for use with
either Code-and-Go FORTRAN or FORTRAN IV (Gi).

• Full American National Standard COBOL Version 3 -- A version of the
American National Standard COBOL modified for the terminal
environment.

• TSO COBOL Prompter -- AD initialization routine to prompt you for
options and invoke the full American National standard COBOL Version
3 Processor.

• TSO Asserrbler Prompter -- An initialization routine to prompt you
for options and invoke the Assembler (F).

If your installation has one or more of the TSO Program Products, it
will provide you with documentation that explains how to use them. This
section explains how to use the programs normally available under the
operating system. The following paragraphs describe how you can:

Create a program
Compile your program
Link edit a compiled program

Programming at the Terminal 55

Execute a program
Load a program
Process background jobs

It is assumed that you are familiar with a programming language and
with the information in the Guide to Writing a Terminal Moniter Program
or a Command Processor or Terminal User's Guide that corres~ends to that
language. The options and data set requirements of the com~ilers,
linkage editor, and loader are summarized in the publication, IBM
System/360 Operating system: Job Control Language User's Guide,
GC28-6703.

Creating a Program ,-

Before your source program is compiled you must introduce it to the
system. You do so with the EDIT command, as described in the section,
"Entering and Manipulating Data".

When you enter the EDIT command you must specify the type o~erand or
give a descriptive qualifier to the data set name. The type (or
descriptive qualifier) tells the system which programming language you
are using. If you are writing a program and JCL statements to be
submitted as a background job, use CNTL as the type or descriptive
qualifier.

The EDIT command allows you to specify certain options for your
source program. You can use the SCAN operand to request syntax checking
when the data set type is GOFORT. FORT, BASIC, PLIF, PLI, or IPLI. you
can use the LINE operand specify the length of the input line for PL/I
source programs. The length of the input line for the Assem~ler,
FORTRAN, and COBOL is 80 characters.

After you create your source program you must use the SAVE subcommand
to save the data set before you end the EDIT command. Your source
program is now ready for compilation.

The example in Figure 4 shows the creation of an assembler source
program.

r--,
READY
edit prog1 ne w asm
INPUT

EDIT
save
SAVED
end
READY

source program

L-___ J

Figure 4u Creating an assem~ler source program

56 TSO Terminal User's Guide (Release 20.1)

/

Compiling a Program

If you are using a TSO Program Product compiler and prompter, you can
ignore this section. The prompter allocates data sets and calls the
compiler for you.

You can use the CALL command to invoke the compiler that will compile
your source program. Before you use the CALL command to invcke the
compiler you must use ALLOCATE commands to allocate all the data sets
required for com~ilation. Data set allocation is discussed in
"Allocating a Data Set" in the section "Entering and Manipulating Data".
The data sets required by your compiler are described in the Guide to
Writing a Terminal Monitor Program or a Corr~and Processor or Terminal
User's Guide associated with your compiler.

You must give the data set name of your compiler in the CALL command.
The data set names are shown in Table 5.

Table 5. Data Set Names of the Compilers
r--------------------------------------T-------~-----------------------,
I Compiler I Data Set Name I
.--------------------------------------+-------------------------------~
IAssembler F I 'SYS1.LINKLIB(IEUASM) , I
ICOBOL E I 'SYS1.LINKLIB(IEPCBLOO) , I
ICOBOL F I 'SYS1.LINKLIB(IEQCBLOO) , I
IAmerican National Standard COBOL I 'SYS1.LINKLIB(IFFCBLOO) , I
IFORTRAN E I 'SYS1.LINKLIB(IEJFAAAO) , I
IFORTRAN G I 'SYS1.LINKLIB(IEYFORT) , I
IFORTRAN H I 'SYS1.LINKLIB(IEKAAOO) , I
IPL/I F I 'SYS1.LINKLIB(IEMAA) , I L ______________________________________ ~ _______________________________ J

Note that the data set name is a fully qualified name and must be
enclosed in apostrophes. For example, if you want to use the FORTRAN H
compiler, enter:

READY
call 'sys1.linklib(iekaaOO)'

In addition to the compiler's data set name, you can enter the
compiler options you desire in the CALL corr~and. These opticns are
those specified with the PARM parameter of the EXEC statement when you
are running your program directly under the operating system rather than
through TSO. For example, if you want to use the MAP, NOID, and OPT=2
options of the FORTRAN H compiler, enter:

READY
call 'sys1.linklib(iekaaOO)' 'map noid opt=2'

Any messages and other output produced by the compiler will appear in
your listing after the CALL command. Once the compiler com~letes its
processing you receive the READY message. You can then free any
allocated data sets you no longer need.

Figure 5 shows the commands required to create a COBOL source
program, allocate the eight data sets required for compilaticn, call the
COBOL F compiler, and free all allocated data sets except the one that
contains the com~iled program (object module). It is assumed you are
using your user identification as part of all data set names except
SYS1.COBLIB.

Programming at the Terminal 57

r--,
READY
edit prog2 new cobol
INPUT

EDIT
save
SAVED
end
READY

source program

allocate dataset('sys1.coblib') file(syslib) shr
READY
allocate file(sysutl) new block(460) space(700,100)
READY
allocate file(sysut2) new block(460) space(700,100)
READY
allocate file(sysut3) new block(460) space(700,100)
READY
allocate file(sysut4) new block(460) space(700,100)
READY
allocate dataset(*) file(sysprint)
READY
allocate dataset(prog2.obj) file(syslin) new block(80) space(500,lOO)
READY
allocate data set(prog2.cobol) file(sysin) old
READY
call 'sys1.linklib(ieqcb100)' 'map load nodeck flagw'

COBOL listings and messages

READY
free file (syslib. sysut1.sysut2,sysut3,sysut4 ,sysprint.,sysin)
READY L-___ J

Figure 5. COBOL Compilation

Link Editing a Compiled Program

The LINK command makes available to you the services of the linkage
editor. The linkage editor processes the compiled program (object
module) and readies it for execution. The processed object module
becomes a load module. Optionally, the linkage editor can process more
than one object module and/or load module and transform them into a
single load module. For complete information on the linkage editor,
refer to your Guide to Writing a Terminal Mcnitor Program or a Command
Processor and to the publication., IBM system/360 Operating System:
linkage Editor and Loader. GC28-6538.

In your LINK command you must first list the name or names of the
object modules you want to link edit. (If you omit the descriptive
qualifier the system assumes OBJ .•) After the names of the object
modules you should use the LOAD operand to indicate the name of a member
of a partitioned data set where you want the load mqdule placed. (If
you omit the user-supplied name of the load module data set the system
assumes it has the same user-supplied name as the object module. If you

58 TSO Terminal User's Guide (Release 20.1)

omit the descriptive qualifier the system assumes LOAD. If you omit the
member name the system assumes TEMPNAME.) For example. if you want to
link edit the load module in the JONES.PROG2.0BJ data set and place the
resultant load module in member TEMPNAME of the JONES.PROG2.LOAD data
set, enter:

READY
link prog2

If you want to link edit the load module in the JONES.PROG2.0BJ data
set and place the resultant load module in member ONE of the
JONES.MODS.LOAD data set, enter:

READY
link prog2 load (mods(one»

The following example shows how to link edit the two object modules
in the SMITH.PGM1.OBJ and SMITH.PGM2.0BJ data 'sets. The resultant load
module is placed in member TEMPNAME of the SMITH.LM.LOAD data set.

READY
link pgml,pgm2 load(lm)

You can control the link editing process with linkage editor control
statements. These control statements can be in a previously created
data set. or can be introduced through the terminal. You must give the
name of the data set .• or an asterisk (indicating that you will introduce
the control statements through the terminal) in the list of input data
sets. The following example shows how to link edit the object module in
the CARTER.TRAJ.OBJ data set. There are control statements in the
CARTER.CNTL.DATA data set. The load module is placed in member TEMPNAME
of CARTER. TRAJ,. LOAD.

READY
link (traj. cntl. data)

Using the same example. if you want to introduce the control
statements through your terminal. enter:

READY
link (traj, *)

The system will prompt you for the control statements at the
appropriate time. You must follow your last control statement with a
null line.

You can also have the linkage editor search a subroutine library to
resolve external references,. (External references are references to
other modules.) The subroutine library is usually one of the language,
libraries and it is specified with one of the following operands:

Operand

COBLIB
FORTLIB
PLILIB

Subroutine Library

SYS1.COBLIB
SYS1.FORTLIB
SYS1.PL1LIB

In addition to. or instead of a language library., you can use the LIB
operand to specify the name of one or more user libraries. The
libraries are searched in the order you specify.

Frogramming at the Terminal 59

The following example shows how to link edit the object medule in
JAMES.PRG.OBJ. The load module is placed in JAMES.PRG.LOAD(TEMPNAME).
The libraries SYS1.PLILIB. and DEPT39.LIB.SUBRT2 are to be searched to
resolve external references.

READY
link prg plilib lib('dept39.lib.subrt2')

The LINK command also lets you specify the linkage editor options.
These options are those specified with the PARM parameter of the EXEC
statement when you are running the linkage editor directly under the
operating system rather than through TSO. For example, if yeu want to
use the LET and XCAL options when the object module in AGNES.RET.OBJ is
link edited and placed in AGNES.TBD.LOAD(MOD), enter:

READY
link ret load(tbd(mod» let xcal

Linkage editor listings (specified with the MAP, XREF, and LIST
options) are directed to a data set or to your terminal. You indicate
your choice with the PRINT operand. The following example shows that
the object module in BILL.PRGM.OBJ is to be link edited and Flaced in
BILL.PRGM.LOAD(TEMPNAME). The listing produced by the MAP option is to
placed in the BILL.LIST.LINKLIST data set.

READY
link prgm map print(list)

Note that if you omit the descriptive qualifier from the print data set
name, the system assumes LINKLIST. If you omit the user-suFplied name,
the system assumes it has the same user-supplied name as the object
module. For example if the listing is to be placed in the
BILL.PRGM.LINKLIST data set, enter:

READY
link prgm map print

Using the same example, if you want the listing to appear en your
terminal, enter an asterisk in the PRINT operand.

READY
link prgm map print(*>

Error messages are listed at the terminal as well as on the print data
set when you specify a data set name instead of an asterisk. If you
want the error messages to appear only on the print data set, enter the
NOTERM operand. For example,

READY
link prgm map print noterm

60 TSO Terminal User's Guide (Release 20.1)

Executing a Program

You can use the CALL command to execute your program after it has been
link edited. You can also use CALL to execute any other program in load
module form, such as utilities and compilers.

Before you use CALL to execute your program you can use the EDIT and
ALLOCATE commands to define your data sets. Use EDIT to create your
input data sets l and ALLOCATE to allocate your input, work, and output
data sets.

You must specify the data set name and member name of the member that
contains your program in load module form. For example, if you want to
execute a program that resides in DEPTB.PROGS.DAILY(NUM3), enter:

READY
call 'deptb.progs.daily(num3)'

If you omit the descriptive qualifier and member name, the system
assumes LOAD and TEMPNAME, respectively. For example, if your program
resides in JONES.LIB.LOAD(MEM2), enter:

READY
call lib (mem2)

If your program resides in JONES.LIB.LOAD(TEMPNAME), enter:

READY
call lib

You can pass parameters to your program if you wrote it in assembler
or PL/IF. These are the parameters you would specify with the PARM
parameter of the EXEC statement if you were running your program
directly under the operating system. For example, if you want to pass
the parameters OPTION1 and OPTIONS to a program that resides in
SMITH.ASMPG.LOAD(MEM3). enter:

READY
call asmpg(mem3) 'option1 optionS'

Figure 6 shows how the COBOL program created and compiled in Figure 5
can be link edited and executed. In Figure 5, the compiled program
(object module) was placed in PROG2.0BJ. After link editing, the load
module is placed in PROG2.LOAD(TEMPNAME). your program requires three
data sets for execution. The input data set, INPUT.DATA, is created
with the EDIT command. ALLOCATE commands are used to allocate the input
data set, a work data set, and an output data set. CALL is used to
execute your program. The PROG2.COBOL, PROG2.0BJ. PROG2.LOAD, and
INPUT. DATA data set are deleted. (The other data sets are automatically
deleted because they were not given a data set name when allccated.) It
is assumed you are using your user identification as part of the data
set names.

Programming at the Terminal 61

r--,
READY .
link prog2 print(*) map

linkage editor messages and listings

READY
edit input. data new
INPUT

EDIT
save
SAVED
end
READY

input data

allocate dataset(input.data) file(input) cld
READY
allocate file(work) new block(lOO) space(300,lO)
READY
allocate dataset(*) file(print)
READY
call prog2

output from your program

READY
delete (prog2.* input.data)
READY L ___ J

Figure 6~ Link editing and executing a program

62 TSO Terminal User's Guide (Release 20.1)

Loading a Program

The LOADGO command makes available to you the services of the loader.
The loader combines the basic functions of the linkage editor and
program fetch. That is the loader link edits and executes your program.
Therefore, the LOADGO command combines the basic functions of the LINK
and CALL commands. For complete information on the loader, refer to the
Guide to Writing a Terminal Monitor Program or a Command Processor and
to the publication, IBM System/360 Operating System: Linkage Editor and
Loader, GC2B-6S3B.

The loader can process and execute a compiled program (object module)
or a link edited program (load module). Optionally" it can combine
object modules and/or load modules and execute them. (If you want to
load and execute a single load module, the CALL command is more
efficient.)

Before you use the LOADGO command you can use the EDIT and ALLOCATE
commands to create and allocate any data sets required to execute your
program.

In your LOADGO command you must list the name or names of the object
and load modules you want to load. For example, if you want to load the
object module in JONES.PROG3.0BJ, enter:

READY
loadgo prog3

If you want to load the object modules in JONES.PROG3.0BJ,
JONES.COB.OBJ, and the load module in JONES.COB.LOAD(TWO}, enter:

READY
loadgo (prog3 cob.obj cob.load(two»

You can also pass parameters to your program if you wrote it in
assembler or PL/IF. These are the parameters you would specify with the
PARM parameter of the EXEC statement if you were running your program
directly under the operating system. For example, if you want to pass
the parameters OPTION1 and OPTIONS to a compiled program that resides in
SMITH.ASMPG.OBJ, enter:

READY
loadgo asmpg 'option1 optionS'

You can have the loader se'arch a subroutine library to resolve
external references. The subroutine library is usually one of the
language libraries and it is specified with one of the following
operands:

Operand

COBLIB
FORTLIB
PLILIB

Subroutine Library

SYS1.COBLIB
SYS1.FORTLIB
SYS1.PL1LIB

In addition to, or instead of a language library you can use the LIB
operand to specify the name of one or more user libraries. The
libraries are searched in the order you specify.

Programming at the Terminal 63

The following example shows how to load the object module in
JAMES.PRG.OBJ. The libraries SYS.PL1LIB, and DEPT39.LIB.SUBRT2 are to
be searched to resolve external references.

READY
loadgo prg plilib lib('dept39.lib.subrt2 1

)

The LOADGO command also lets you specify the loader options. These
options are those specified with the PARM parameter of the EXE:C
statement when you are running the-loader directly under the o~erating
system. For example, if you want to use the LET and EP(MAIN) options
when the object module in BROWN.CIR.OBJ is loaded. enter:

READY
loadgo cir let ep(main)

Loader listings (specified with the MAP option) are directed to a
data set or to your terminal. You indicate your choice with the PRINT
operand. The following example shows that the object module in
BILL.PRGM.OBJ is to be loaded. The listing produced by the MAP option
is to be placed in the BILL.LIST .• LOADLIST data set.

READY
loadgo prgm map print(list)

Note that if you omit the descriptive qualifier from the ~rint data
set name, the system assumes LOADLIST. If you omit the user-supplied
name, the system assumes it has the same user-supplied name as the
object module. For example, if the listing is to be placed in the
BILL.PRGM.LOADLIST data set" enter:

READY
loadgo prgm map print

Using the same example, if you want the listing to appear on your
terminal, 'enter an asterisk in the PRINT operand.

READY
loadgo prgm map print(*)

Error messages are listed on the terminal as well as on the ~rint data
set when you specify a data set name instead of an asterisk. If you
want the error messages to appear only on the print data set, enter the
NOTERM operand. For example,

READY
loadgo prgm map print noterm

Figure 7 shows how the COBOL program created and compiled in Figure 5
can be loaded. The loading operation shown in Figure 7 is the
equivalent of the link editing and e~ecution shown in Figure 6. The
same data sets required for execution of your program in Figure 6 are
required in this example.. The object module resides in PROG2.0BJ. A
load module is not produced by the loader, therefore, only PROG2.COBOL,
PROG2.0BJ, and INPUT.DATA are deleted at the end. It is assumed you are
using your user identification as part of the data set names.

64 TSO Terminal User's Guide (Release 20.1)

r--,
READY
edit input. data new
INPUT

EDIT
save
SAVED
end
READY

input data

allocate dataset (input.data) file (input) old
READY
allocate file(vork} new block(100) space(300,10}
READY
allocate dataset(*} file(print}
READY
loadgo prog2 map print(*)

loader listings and output from your program

READY
delete(prog2.* input.data}
READY L ___ J

Figure 7. Loading a Program

Processing Background Jobs

You can submit background jobs for processing if your installation
authorizes you to do so. This authorization is recorded in the system
with your user attributes. If you have this authorizatien, the system
lets you use the four commands (SUBMIT, STATUS, CANCEL and OUTPUT) that
control the processing of background jobs. You can use those commands
to submit a background job, to display the status of a background job,
to cancel execution of a background job, and to control the output of a
background job.

SUBMITTING BACKGROUND JOBS

Before you submit a background job with the SUBMIT command yeu can use
the EDIT command to create a data set (or a member of a partitioned data
set) that contains the job or jobs you want to submit. Each job
consists of Job Control Language (JCL) statements and of program
instructions and/or data.

The JCL Statements required for a job must conform to System/360
Operating System (MVT) standards. They are described in the
publications, IBM system/360 Operating System: Job Control Language
User's Guide, GC28-6703. and IBM System/360 Operating system: Job
Control Language Reference, GC28-6704.

programming at the Terminal 65

The first JCL statement in the data set is usually a JOB statement.
The jobname in the JOB statement can be up to eight characters in length
and consists of your user identification followed by one or more letters
or numbers. For example SMITH23 or JONESXYZ.

If the jobname consists of only your user identification, the system
will prompt you for a single character to complete the jobnarne. When
you submit the job with the SUBMIT command this allows you to change
jobnames without re-editing the data. For example, you may submit the
same job several times, and supply a different character for the job
name each time you are prompted.

If the jobname does not begin with your user identification, you can
submit it with the SUBMIT command and request its status with the STATUS
command, but you cannot refer to it with the CANCEL or OUTPUT command.

If the first statement of your data set is not a JOB statement, the
system generates the following JOB statement when you submit it with the
SUBMIT command.

//userid JOB
//
//
//

~GENERATED JOB STATEMENT
userid,
MSGLEVEL=(l,l),
NOTIFY=userid

You will be prompted for a character to complete the jobname. The
account number used is the same you used in the LOGON corrmand.

When you ent~r the SUBMIT command you must give the name of the data
set (or data se!t.s) that contains the background jobs. You can also
specify the NON.bTIFY operand to specify that you do not want to be
notified when a background job with a generated JOB statement

I termina tes. I
I
!

Figure 8 sh6ws how to create and submit a background job. Note that
the data set type in the EDIT command must be CNTL.

You may include more than one job in one data set. You can omit the
JOB statement for the first job, but all jObs after the first must have
their own JOB statement. Although you submit all jobs in the data set
with one SUBMIT command. you can subsequently refer to each job with
separate STATUS, CANCEL, and OUTPUT commands.

If an error occurs while the jobs are being processed by TSO before
actually being submitted. further processing will be terminated. No
other input specified by the SUBMIT command will be processed. When you
submit more than one job with a single command, and TSO finds an error
while processing the first job, the second job is not processed. An
error that occurs in the second job does not affect the first. Any jobs
processed prior to the error are submitted for execution; jobs that were
not processed because of the error cannot be submitted.

66 TSO Terminal User's Guide (Release 20.1)

r--,
READY
edit backpgm new cntl nonum
INPUT
//smith3
//stepl
//syslib
//sysutl
//sysut2
//sysut3
//sysprint
//syspunch
//sysin

source

/*
//step2
//syslib
//syslout
//syslin
//master
//print
//input

job 7924.smith.msglevel=(1.1)
exec pgm=iepckl00.parm= (deck.maps. list)
dd dsname=sysl.coblib.disp=shr
dd unit=2311.space=(trk.(SO.10»
dd unit=2400
dd unit=2400
dd sysout=a
dd dsname=comp.cobol.disp=(.catlg).unit=2400
dd *
statements

exec
dd
dd
dd
dd
dd
dd

pgm=loader.parm=(map.let.call)
dsname=sysl.coblib.disp=shr
sysout=a
dsname=*.stepl.syspunch
dsname=order.disp=old
sysout=a
*

input data

/*
//
(null line)
EDIT
save
SAVED
end
READY
submit backpgm nonotify
READY L-__ _

Figure 8. Submitting a Program as a Background Job

DISPLAYING THE STATUS OF.BACKGROUND JOBS

Any time after you submit a background job you can use the STATUS
command to have its status displayed. The display· will tell you whether
the job is awaiting execution. is currently executing~ or has executed.
For example. if you want to display the status of SMITH23. enter:

READY
status smi th23

Programming at the Terminal 67

If you want to know the status of all the jobs that begin with your
user identification, enter the STATUS command without operands:

READY
status

CANCELLING BACKGROUND JOBS

You can use the CANCEL command to cancel execution of a background job.
If the job has already been executed, the CANCEL command has no effect.

For example, if you want to cancel job JONESAB, enter:

READY
cancel jonesab

After you enter the CANCEL command, the system will send you a message
telling you that the jobs specified have been cancelled.

CONTROLLING THE OUTPUT OF A BACKGROUND JOB

You can use the OUTPUT command to:

• Direct the JCL statements and system messages (MSGCLASS) and system
output data sets (SYSOUT) produced by a background job to your
terminal.

• Direct the MSGCLASS and SYSOUT output from a background job to a
specific data set,.

• Change an output class used in a background job.

• Delete the output data sets (SYSOUT) or the system messages
(MSGCLASS) for background jobs.

Unless you use the NONOTIFY operand of -the SUBMIT command, a message is
placed in the broadcast data set when the background job terminates.
You can then use the OUTPUT command to control the output produced by
the job on the MSGCLASS and SYSOUT classes before the system ~rocesses
them.

For example, assume that job GREEN 67 produces output on classes A,
B, D, G, and M. If you want the output on classes G and M listed at the
terminal, enter:

READY
output green67 class(g m) print(*)

If you want the output of class B to be listed in the GREEN.KEEP.OUTLIST
data set, enter:

READY
output green67 class (b) print (keep)

If you want to change the output in class A to class C, enter:

READY
output green67 class (a) noprint(c)

68 TSO Terminal User's Guide (Release 20.1)

If you want to delete the output from class D, enter:

READY
output green67 class (d) noprint

If you wish, you can enter the PAUSE operand in the OUTPUT ccmmand.
PAUSE will make the system stop after each data set is listed on your
terminal or on the data set you indicate with the PRINT operand. When
the system pauses it sends you the message OUTPUT. You then have the
option of pressing' the RETURN key to continue processing or entering the
CONTINUE or SAVE subcommand.

The CONTINUE subcommand allows you to continue processing your output
after an interruption occurs. An interrupticn occurs when:

- An output operation completes and you used the PAUSE operand in the
OUTPUT command.

-An output operation terminates because of an error condition.

- You press the attention key.

When you enter the CONTINUE subcommand, the system will resume
printing with the next data set being processed or with the next message
if a block of messages is being processed. In the following example you
request that the data sets in output classes Band C be listed at your
terminal. The system pauses after printing the data set in E. You
enter the CONTINUE subcommand to resume processing with the data set in
C.

READY
output jones2 class(b c) print(*) pause

output class B

OUTPUT
continue

output class C

If the interruption was not caused by a pause, you may prefer to
resume printing at the beginning of the data set being processed or
approximately ten lines before the interruption. If you want to resume
printing at the beginning. enter:

OUTPUT
continue begin

If you prefer to resume printing a few lines before the interruption
occurred, enter:

OUTPUT
continue here

Programming at the Terminal 69

The CONTINUE subcommand also lets you respecify the PAUSE operand of
the OUTPUT command. If you entered PAUSE in the OUTPUT command, you can
enter NOPAUSE in the CONTINUE subcommand, for example,

READY
output smithc class(d) print (data) pause

OUTPUT
continue begin nopause

If you did not specify PAUSE in the OUTPUT command, you can do so in the
CONTINUE subcommand. This causes the system to pause at the end of each
data set processed subsequently.

The SAVE subcommand allows you to place the data set listed before
the pause into another data set. This allows you to retrieve the data
set at a later time. In the following example you request that data
sets in output classes E and F be listed at your terminal. After
listing the data set in E you request that it be saved in the
BROWN.OUTDATA.OUTLIST data set. You continue processing the next data
set after saving the data set in class E.

READY
output browne class(e f) print(*) pause

OUTPUT
save outdata
OUTPUT
continue

The END subcommand is used to terminate the OUTPUT command. For
example,

READY
output dept30a class (a) print(*) pause

OUTPUT
end
READY

70 TSO Terminal User's Guide (Release 20.1)

Testing a Program

The operating system provides you with facilities to test your program
from the terminal. They are the test facilities, if any, prcvided by
your compiler, and the TSO TEST command. The compiler test facilities
are described in the publications associated with the compiler. A brief
description of the TEST command follows.

The TEST command allows you to "debug" your program. That is, it
helps you to test a program for proper execution and to find programming
errors. To use TEST effectively, you should be familiar with the
assembler language. If you are using another language, for example
COBOL, you can still use the TEST command to obtain listings and other
information to give to your installation's system prograrrmer who can
help you debug your program. (You can use the full facilities of the
TEST command to debug your program if you can correlate the statements
in your source program listing to the resultant assembler language
statements in the object listing.)

If you are an assembler programmer, refer to the publications IBM
System/360 Operating System: Time Sharing Option, TSO Guide to Writing
a Terminal Monitor Program or a Command Processor and IBM System/360
Operating System: Time Sharing Option, Command Language for a complete
description of the facilities of the TEST command.

If you are not an assembler programmer, your system programmer will
probably provide you with a test procedure. The most common situation
he may provide for occurs when your program is executing and you receive
a message that the program has begun to abnormally terminate. He may
tell you to enter the TEST command and then the LOAD subcommand with the
name of a program that will test your program. For example, if the name
of the program that will test yours is DPTEST, use the following
sequence .•

test
TEST
load (dptest)

If the system programmer does not give you the name of a testing
program, he rray instruct you to use the TEST command and a set of its
subcommands that produce listings of your program and other ~ertinent
information. For example, he could ask you to perform procedures
similar to the following.

Example 1:

test
TEST
iistpsw
FFE5006 40088540
where 88540.
88540. LOCATED AT +3C IN (load-module-name.csectname) UNDER TCB

LOCATED AT 86B68.
list 88540. -32n length (32)

First, you begin testing by entering the TEST command. You can now use
the subcommands of TEST to "debug" your program.

Enter the LISTPSW subcommand to determine the address of the instruction
that failed in your program. The last five characters of the PSW that
is listed can then be entered after the WHERE subcommand and the system

Testing a Program 71

will then provide the location and the program name in which the ABEND
occurred. When LIST is entered in the preceeding manner, the thirty-two
bytes of instructions prior to the ABEND will be displaed.

At this time all the registers may be listed in the following manner to
aid you in solving the problem:

list OR:15R

If you wish to trace the execution of your program you may enter the
following:

Example 2:

at +0: 9000 (go)
at +32
at +8c
at +10a
go

In this case breakpoints will be set starting at +0 and ending when an
invalid instruction is encountered. Specifying the GO subcommand will
allow continued execution until one of the breakpoints set in subsequent
AT subcommands is encountered. The setting of these additional
breakpoints allows you to interrupt execution so that you can examine
registers or storage at predetermined intervals.

Example 3:

To supply new values for a range of registers, you can enter:

Or=(x~O',x'O',x'O')

The values specified would be assigned starting with register 0,
'register 1. etc. until all values in the list have been assigned.

Example 4:

If you want to display storage at a known relative address you may
enter:

list +34
+34 47FOC220

If you want not only to display storage, but also to find out the
absolute address associated with the relative address, you can enter:

"list +34+0
A0680. 47FOC220

If you prefer, you can elect" not to test your program. To do so,
press the RETURN key after you receive the message informing you that
your program is abnormally terminating. You will then receive a READY
message, which allows you to enter any command you wish.

72 TSO Terminal User's Guide (Release 20.1)

Using and Writing Command Procedures

In many cases a given function is performed by a sequence of commands.
For example, several commands are needed to allocate data.sets for a
compilation. Every time you want to accomplish that function you must
enter the same sequence of commands, or else, you can simplify your work
by using a command procedure. A command procedure is a set of TSO
commands, and, optionally, subcommands and data that have been placed in
a data set. Whenever you want to accomplish the functions ferformed by
the command procedure you can use the EXEC command to call the
procedure. The command procedure you call may contain symbolic values.
A symbolic value stands as a symbol for an operand or the value of an
operand. Symbolic values are used so that the command procedure can be
easily modified when it is called by the EXEC command.

This section consists of two parts. The first part, "Using Command
Procedures", describes how to call a command procedure and how to assign
actual values to ·symbolic values. The second part, "Writing Command
Procedures" describes how to write a command procedure and place it in a
data set.

U sing Command Procedures

Use the EXEC command to call a command procedure and to assign values to
any symbolic values it may contain. You will not get any prompting
messages once execution of the command procedure has begun.

CALLING A COMMAND PROCEDURE

To call a command procedure. enter an EXEC command. In the EXEC command
you identify the command procedure in one of ~wo ways:

1. If the command procedure is in a data set, enter EXEC followed by
the name of the data set. The following example calls the command
procedure that resides in the JP.COMPROC.CLIST data set:

READY
exec comproc

Note that if you omit the descriptive qualifier the system assumes
CLIST. If the descriptive qualifier is not CLIST you must enter
the fully qualified name enclosed in apostrophes. For example, if
the command procedure resides in the data set JP.COMPROC.CP, you
must enter:

READY
exec 'jp.comproc.cp'

2. If the command procedure resides in a member of a partitioned data
set (called a command procedure library) enter only the member
name. (The command procedure library must have been defined by
your installation.> The following example shows how to call the
command procedure in member PROC3 of your command procedure
library:

READY
proc3

Using and Writing Command Procedures 73

ASSIGNING VALUES TO SYMBOLIC VALUES

If the command procedure contains symbolic values, the installation
should provide you with a list of the symbolic values used, what meaning
is associated with each symbolic value, whether you must supply an
actual value for each symbolic value, and whether a symbclic value will
assume a default value if you fail to provide one. Figure 9 shows a
sample sheet for a command procedure such as your installaticn may
provide you .

r--,
Command Procedure: LISTUPDT (member name)
Purpose: Update inventory list
Symbolic values:

WEEKIN WEEKOUT NEW OUTPUT(*)

WEEKIN: Required. Replace with name of input data set.
WEEKOUT: Required. Replace with name of output data set.

NEW: Optional. Code NEW if output data set does not exist.
omit if output data set already exists.

OUTPUT (*): Optional. Directs reports prepared by procedure to
your terminal. If you want to direct reports to a
data set, replace the * with the data set name. L--__ J

Figure 9. Symbolic Values for a Command Procedure

After you decide which val'ues you are going to replace for the required
symbolic values" and which optional syrnbolicvalues you are going to
use, enter the values in the EXEC command used to call the procedure.
The values must follow the name of the data set or member that contains
the procedure. If the procedure resides in a data set.. enclose the
values in apostrophes. The required values must be entered in the order
given to you. optional values can be entered in any order after you
enter the required values. The, following example calls the procedure
shown in Figure 9. The name of the input data set is JONES.W26IN.DATA.
The name of the output data set is JONES.W260UT.DATA. The output data
set does not yet exist~ The reports produced by the command procedure
are directed to the JONES.W26REP.DATA data set.

READY
listupdt w26in w260ut output (w26rep) new

Writing Command Procedures

Functions that are performed on a regular basis, such as calling a
compiler, can be simplified when the commands that perform the functions
are kept as command procedures. Once the commands are placed in a
partitioned or sequential data set or in a command procedure library (a
partitioned data set), any terminal user who wants to perform those
functions need only enter an EXEC command.

Command procedures contain commands and, optionally, subcommands,.
data and line numbers. A command procedure may also contain command
procedure statements (PROC, WHEN, and END) that control execution of the
procedure. The PROC statement defines symbolic values in the procedure~
The WHEN statement initiates or terminates a procedure according to
certain conditions. The END statement marks the end of the procedure.

The command procedure is entered in the data set or into a member of
a command procedure library with the EDIT command. The descriptive
qualifier normally used is CLIST. You must also use the SAVE subcommand
to save the command procedure.

74 TSO Terminal User's Guide (Release 20.1)

ASSIGNING SYMBOLIC VALUES

When you enter the commands and subcommands in the procedure, you can
include symbolic values for any operand or value of an operand. A
symbolic value is characterized by a name preceded by an am~ersand (t).
The name consists of letters and numbers. but it must begin with a
letter. For example. if you want to substitute the symbolic value
tDSNAME for the 'data set name' operand in the following statement:

EDIT data set name NEW DATA

enter:

edit tdsname new data

If the syrobolic value must be immediately followed by a character
(such as a right parenthesis or an apostrophe). the symbolic value must
end with a period. For example, if you want to substitute the symbolic
value tDSNAME for the ndata set namen operand in the following
expression:

DATASET(data set name)

enter:

dataset(tdsname.)

A command procedure that contains symbolic values must begin with a PROC
statement. The symbolic values that are identified by ampersands are
defined by the operands of the FROC statement. There are twa types of
symbolic values:

• Required -- a positional operand that must be replaced by the user
in the EXEC command. It can contain up to 252 characters.

• Optional
desired.

a keyword operand that can be replaced by the user if
It can contain up to 31 characters.

The PROC statement must indicate the number of required syml:olic values
to be supplied by the user. (If none of the symbolic values are
required. enter zero.) After the number. list the required symbolic.
values omitting their ampersands. After the required symbolic values.
list the optional symbolic values omitting their ampersands. For
example, assume you have the following command procedure named PR39:

PROC 3 INPUT OUTPUT LIST LINES()
ALLOCATE DATASET(&INPUT.) FILE(INDATA) OLD
ALLOCATE DATASET(tOUTPUT.) BLOCK(100) SPACE(300.10)
ALLOCATE DATASET(tLIST.) FILE (PRINT)
CALL PROG2 'tLINES.'
END

The PROC statement indicates that the three symbolic values tINPUT,
tOUTPUT, and &LIST are required, and that the symbolic value &LINES is
optional. When the user substitutes values for the required symbolic
values in the EXEC command he must provide the required values in the
same order in which they appear in the PRoe statement~ The optional
values can follow the required values in any order. For example, if the
user wants to replace ALPHA for INPUT, BETA for OUTPUT, COMMENT for
LIST, and 20 for LINES. he would enter:

READY
pr39 alpha beta comment lines(20)

Using and Writing Command Procedures 75

In this case, the following substitutions will be made in the command
procedure:

ALLOCATE DATASET(ALPHA) FILE(INDATA) OLD
ALLOCATE DATASET(BETA) BLOCK(100) SPACE(300,10)
ALLOCATE DATASET(COMMENT) FILE(PRINT)
CALL PROG2 '20'
END

You can also use the PROC statement to assign default values to optional
symbolic values. That is, if the user fails to provide an actual value
for the symbolic value, the system will use the default value to replace
the symbolic value. You assign a default value by enclosing it in
parentheses after the symbolic value in the PROC statement. For
example, in the command procedure illustrated above, you may want to
assign 35 as a default value for &LINES,. To do this, enter LINES(35) in
the PROC statement. That is, the PROC statement would be as follows:

PROC 3 INPUT OUTPUT LIST LINES(35)

If the user enters the following EXEC command:

READY
pr39 alpha beta comment

the following substitutions will be made in the command procedure:

ALLOCATE DATASET(ALPHA) FILE(INDATA) OLD
ALLOCATE DATASET(BETA) BLOCK(100) SPACE(300,10)
ALLOCATE DATASET(COMMENT) FILE (PRINT)
CALL PROG2 '35'
END

TESTING CONDITIONS FOR TERMINATION

The programs invoked with a CALL or LOADGO command can issue a return
code (a number) to indicate its relative "success". The return codes of
IBM-supplied programs are listed in the publications associated with the
program. Only those user programs written in the assembler language or
PL/I can issue return codes. User return codes are usually standardized
in each installation.

You can insert a WHEN statement after any CALL or LOADGO command or a
processor (such as a compiler or link editor) in the com~and procedure
to test its return code. If the test you request is true, yeu have the
option of ending the command procedure or of executing another procedure
or another command. If the test you request is not true, the command
procedure will continue its course. The test is specified with the
SYSRC operand of the WHEN statement. For example, assume that you want
to end a procedure if a given CALL command produces a return code of 8.
Enter the following WHEN statement after the command you want to test:

call 'sys1.linklib(ieqcb100)' 'nodeck'
when sysrc(eq 8) end

76 TSO Terminal User's Guide (Release 20.1)

If instead of ending the procedure when the test is true, you want to
execute another procedure that resides in the JONES.PROC5.CLIST data
set, enter:

when sysrc(eq 8} exec proc5

If instead of executing a procedure, you want to enter a LIST
command, enter:

when sysrc(eq 8} list pgm.list snum

ENDING THE COMMAND PROCEDURE

You must write an END statement after the last line of the command
procedure. When the system encounters an END statement in a command
procedure it sends a READY message to the terminal so you can enter
another command.

/

Using and Writing Command Procedures 77

Controlling a System with TSO

Two commands are used to control TSO: OPERATOR and ACCOUNT. The
OPERATOR command is used to regulate the operation of the system from a
terminal,. The ACCOUNT command is used to maintain the list of
authorized users of the system.

You must have authorization from your installation to use either the
OPERATOR or the ACCOUNT command. This authorization is recorded in the
system with your user attributes. Use of the OPERATOR command is
restricted to terminals that have the transmit-interrupt capability.

The Operator Command

The OPERATOR command, through its subcommands, allows you to perform the
following functions:

• Monitor terminal activity (MONITOR and STOP subcommands).
• Display TSO information (DISPLAY subcommand).
• Cancel a terminal session or a background job (CANCEL subcommand).
o Send messages to terminal users (SEND subcommand).
• Modify time sharing parameters (MODIFY subcommand).
• End operation of the OPERATOR command (END subcommand).

You must first enter the command and then the subcommand you wish to
use. For example, use the following sequence to enter the MONITOR
subcommand:

READY
operator
OPERATOR
monitor •••

For further information on system operator commands and procedures refer
to the publications, IBM System/360 Operating System: Time Sharing
Option, Command Language Reference, and IBM System/360 Operating System:
Operator's Procedures., GC28-6692.

MONITORING TERMINAL ACTIVITY

The MONITOR subcommand lets you keep track of the users of the system
and of any background jobs submitted with the SUBMIT command.

If you want to be notified whenever a terminal session starts or
ends, enter the SESS operand of the MONITOR subcommand. For example,
after using the following sequence:

READY
operator
OPERATOR
monitor sess

you will receive messages l such as the following, interspersed with
other messages and input at your terminal:

Controlling a System With TSO 79

IEF125I JONES LOGGED ON

IEF125I SMITH LOGGED ON

IEF126I JONES LOGGED OFF

IEF125I BROWN LOGGED ON

IEF126I BROWN LOGGED OFF

IEF126I SMITH LOGGED OFF

The message informing you that a user logged on, consists of his user
identification, for example"

JONES LOGGED ON

The message informing you that a user's session has ended (logged off)
consists of the user identification and the words nLOGGED OFFn, for
example,

JONES LOGGED OFF

You can also request the time at which the session starts and ends as
part of the message. You do this by entering SESS,T with the MONITOR
Subcommand. For example. if you enter:

moni tor sess" t

)

the message informing you that JONES logged on may appear as follows:

IEF1251 JONES LOGGED ON TIME = 1,.35.05

The LOGON time is shown in hours, minutes and seconds.

If you want the name of each background job submitted during a
terminal session displayed when the job starts and ends" you must enter
another MONITOR subcommand. For example" after using the following
sequence:

OPERATOR
monitor jobnames

you will start receiving messages" such as the, following" interspersed
with other messages and input at your terminal:

80 TSO Terminal User's Guide (Release 20.1)

IEF403I JONES79 STARTED

IEF403I COPYDS STARTED

IEF404I JONES79 ENDED

IEF404I COPYDS ENDED

The message informing you that a background job started execution,
consists of the jobname, for example,

IEF403I JONES79 STARTED

The message informing you that a background job has ended consists of
the jobname and the word "ENDED", for example,

IEF404I JONES79 ENDED

You can also request the time at which the background job starts and
ends as part of the message. You do this by entering JOBNAMES,T in the
subcommand. For example. if you enter:

moni tor jobnames,. t

the message informing you that job COPYDS ended may appear as follows:

IEF404I COPYDS ENDED TIME = 17.11.58

where the tirre the background job ended. is shown in hours, minutes, and
seconds.

You can also use MONITOR subcommands to obtain information on data
sets and space available on direct access devices. The following
subcommand:

monitor status

requests that the data set names and volume serial numbers be displayed
whenever data sets with dispositions of KEEP, CATLG, or UNCATLG are
unallocated.

The following subcommand:

monitor space

requests that the system display in demount messages the amount of space
available in a direct access device. (Demount messages are explained in
the publication IBM System/360 Operating System: operator's
Procedures.)

The following subcommand:

monitor dsname

requests that the system display within the mount and K-type demount
messages, the name. of the first nontemporary data set allocated to the
volume to which the message refers. (These concepts are explaned in the
publication IBM system/360 Operating System: Operator's Procedures.)

controlling a System With TSO 81

You can use the STOP subcommand to stop the monitoring operations of
the MONITOR subcommand. For example, if you issue the follcwing
subcommands:

READY
operator
OPERATOR
monitor jobnames, t
monitor space
monitor status
monitor sess

and you want to stop receiving messages about background jobs and freed
data sets, enter:

stop jobnames
stop status

DISPLAYING TSO INFORMATION

You can use the DISPLAY subcommand to obtain information about users
currently logged on. If you enter:

display user

you will get the n~ber of active terminals, the identification of each
user and the corresponding region number of each user. If you want to
know only the number of active terminals, enter:

display user=nmbr

You can also use DISPLAY to obtain a list of thejobnames of background
jobs on the input, hold, output, BRDR, and ASB queues. (These queues
are described in the publication IBM System/360 Operating System:
Operator's Procedures.> To obtain this list enter:

display n

If you want only the jobnames in up to four specific queues enter the
input work queue name (A-O>, SOUT for system output queues~ BRDR for
background reader, or HOLD for system hold queue. For example, if you
want the jobnames of background jobs in queues B, F, M" and the hold
queue, enter:

display n=(b,f,IDr,hold)

If you want to know only the number of entries on the input, hold"
output, BRDR and ASB queues" enter:

display q

You can also obtain the number of entries in up to four specific queues,
for example:

display q= (b, f"m,hold)

You can enter a jobname as the operand of DISPLAY to obtain status
information about that job. The status information consists of jobname,
class, job priority" type of queue the job is in, and the job's position
in the queue. For example, to obtain the status of job JONES79, enter:

display jones79

82 TSO Terminal User's Guide (Release 20,.1)

DISPLAY also lets you obtain a listing of messages from background jobs
that are awaiting reply from an operator. To obtain such a listing
enter:

display r

If you want to know the time of day and the date l enter:

display t

CANCELLING A SESSION OR BACKGROUND JOB

You can use the CANCEL SUbcommand of the OFERATOR command tc cancel a
terminal session or a background job submitted by a terminal user. To
cancel a session enter the U=user identification operand in the CANCEL
subcommand. For example, if you want to cancel the session of user
SMITH, enter:

cancel u=smith

SMITH will be presented with information that notifies him of the end of
his session.

To cancel a background job" enter its job name in the CANCEL subcommand.
For example, if you want to cancel job AB999, enter:

cancel ab999

You can also request that when the job is cancelled a dump be taken of
any step of that job currently being executed, for example l

cancel ab999,dump

In addition to the dump, you can request that all input and output for
the job be cancelled. For example,

cancel ab999,dump,all

SENDING MESSAGES TO TERMINAL USERS

You can use the SEND subcommand to send broadcast messages (notices) to
all users or to individual users. For example, if you want to send the
message TSO NOT AVAILABLE ON TUESDAY 9/29 to all users, enter:

send Itso not available on tuesday 9/29 1

If you only want users SMITH and JONES to receive the message l enter:

send Itso not available on tuesday 9/29', user=(smith jones)

SMITH and JONES will receive the message only if they are logged on. If
you want to make sure that they receive the message when they log on,
enter

send 'tso not available on tuesday 9/29 1
, user=(smith jones) logon

When the LOGON operand is specified and smith and Jones are already
logged on, the message will be put in the Broadcast Data Set. It will
be issued to the specified user only when he enters either LISTBC or
another LOGON command. '

Controlling a System With TSO 83,

Messages that you send to all users are given a number and are retained
by the system. If you want to receive a list of all retained messages,
enter

send list

If you want to delete a given message, enter its number in the SEND
subcommand.. For example. if you want to delete message number three
enter:

send 3

If you want to list a given message without deleting it" enter the LIST
operand. For example

send 3"list

MODIFYING TIME SHARING PARAMETERS

You can use the MODIFY subcommand to change the t,ime sharing parameters
specified during system generation or specified by the system operator
with the START command. For information on this subcommand refer to the
publication. IBM system/360 Operating System: Time Sharing Option,
Command Language Reference. and IBM System/360 Operating System:
Operator's Procedures.

ENDING OPERATION OF THE OPERATOR COMMAND

Whenever you want to end the OPERATOR corr~and, enter the END subcommand.
After you enter the END subcommand you receive the READY message. You
can then,_ enter any command you choose.

The Account Command

The user attributes of each authorized user of TSO are recorded in the
User Attribute Data Set (UADS). There is an entry in the UACS for each
user. Each entry contains:

1. A single user identification.

2. One or more passwords, ora single null field,. associated with the
user identification.

3. One or more account numbers, or a single null field, associated
with each password .•

4. One or more procedure names associated with each account number.
Each procedure name identifies a LOGON procedure that is invoked
when the user begins a terminal session by entering the LOGON
command.

5. The main storage region size requirements for each procedure.

6. The name of the group of devices that the user is allowed to use
when he does not request specific devices.

7. The authority to use,. or a restriction against using" the ACCOUNT
command.

84 TSO Terminal User's Guide (Release 20.1)

8. The authority to use, or a restriction against using, the OPERATOR
command.

9. The authority to use, or a restriction against using, the SUBMIT,
STATUS. CANCEL. and OUTPUT commands.

10. The maximum main storage region size authorized for this user.

Figure 10 shows the simplest structure that an entry in the UADS can
have, and Figure 11 shows a more complex structure.

The ACCOUNT command allows you to update entries in the UADS.
Specifically. it allows you to:

• Add new entries or more data to an existing entry.
• Delete entries or parts of entries.
• Change data in an entry.
• Display the contents of an entry.
• Display the user identifications for all entries.
• End operation of the command.

These functions are performed with the subcommands of the ACCOUNT
command. You must first enter the command and then the subcommand you
want to use. For example, use the following sequence before entering
the ADD subcommand:

READY
account
ACCOUNT
add •••

ADDING NEW ENTRIES OR DATA TO AN ENTRY

You can use the ADD subcommand to add a new entry to the UADS or to add
new data to an existing entry.

To add a new entry.. enter the user identification, ,password" account
or procedure name,. For example, to add the following entry:

JONES

+ zzz
+ D993

+ PROCAB

enter

,add (jcnes zzz d993 procab)

Controlling a System With TSO 85

r-----------------------------------,
I UADS I
I data set I
L-----------------T-----------------J

I r-----.1------_,
I user I
lidentification I
L-------T-------J

I r-------.1------_,
I a null I
I field I
L-------T-------J

I r-------.1------_,
I a null I
I field I
L-------T-------J

I
r-------.1---~--_,
I procedure I
I name I L ______________ _J

Figure 10. The Simplest Structure That an Entry in the UADS Can Have

r---------------------~-------------,
I UADS I
I data set I
L _______________ ~-----------~-----J

I r-------.1-------,
I user I
lidentification I
L ______ ~-------J

r------------------.1--------------, r------L-----, r----.L-----,
I password I I password I
I I I I
L ____ ~-----J L-----T-----J

r----------.l.------------_, I
I

r----i----, r-----~---_, r-----.L-----,
I account I I account I I account I
I -number I I number I I number I
L-____ ~----J L ____ ~--~-J L-----T-----J

r------.L------, r------~-----_, I r----.L----, r----.L-----, r-----.L----_, r-----.1~--, r-----.L-----,
I procedure I I procedure I I procedure I I procedure I I procedure I
I name I I name I I name I I name I I name I L--_______ J L-_________ J L _________ _J L ________ J L __________ J

Figure 11. A Complex structure for an Entry in the UADS

86 TSO Terminal User's Guide (Release 20.1)

If either the password or the account (or both) is a null field.,
enter an asterisk to indicate its absence. For example, to add the
following entry:

SMITH
t

null

+ null
t

PR07

enter

add (smith * * pro7)

In addition to the user identification, password, account, and
procedure narre, you can enter one or more of the following operands:

Operand

SIZE (integer)

UNIT (name)

MAXSIZE(integer)

ACCT

OPER

JCL

Meaning

Region size (in units of 1024 bytes) of the proce~ure
added. For example for a 10K region size specify
SIZE(10). If you omit this parameter the minimum
region size established by the installation is
assumed.

The name of the group of. devices that can be used for
the user' s data set,.

The maximum region size (in units of 1024 bytes) that
the user can request when he logs on. If you omit
this parameter, no maximum limit is enforced.

Authorization to use the ACCOUNT command.

Authorization to use the OPERATOR comrrand.

Authorization to use the SUBMIT, STATUS, CANCEL, and
OUTPUT commands.

You can use the MAXSIZE, ACCT, OPER, and JCL operands only when you
are adding a complete entry to the UADS.

For example, if you want to add the following entry

BROWN

+ null
~ nrTS

PR37

and you also want to establish the region size for PR37 as 12K, and
authorize the user to submit background jobs, enter:

add (brown * deptS pr37) size(12) jcl

Controlling a System With TSO 87

You can follow a similar procedure to add data to an existing entry.
For example, assume the following entry already exists in the UADS:

MCS

+ HUSH

+
79325

+
PR067

If you want to add the password SECRET with account 3925 and procedure
PROS3, enter:

add (mcs) data(secret 3925 pro53)

the resulting entry will be:

MCS

HUSH/ ~SECRET
+ +

79325 3925
t +

PR067 PR053

Now assume you want to add to password HUSH, account 83241 and procedure
PR077. Enter:

add (mcs hush) data (83241 pro77)

The resulting entry will be:

/MCS~
HUSH SECRET

/' " + 79325 83241 3925
+ t +

PR067 PR077 PR053

If you want to add account 4522 and procedures PR054 and PROSS to
password SECRET, enter:

add (mcs secret) data(4522 (pro54 proSS»

The resulting entry will be:

MCS

/ '" HUSH SECRET

/ '\ /" 79325 83241 3925 4522

+ + + / " PR067 PR077 PR053 PR054 PROSS

If you want to add the same data to all user identifications, or
passwords, or account numbers, replace that field with an asterisk. For
example, if you want to add account 9999 and procedure PR099 to all
passwords in the MCS entry, enter:

add (mcs *) data (9999 pro99)

88 TSO Terminal User's Guide (Release 20.1)

The resulting entry will be:

MCS

HUSH----- ~SECRET
/+'" ~,~

7932S 83241 9999 3924 4S22 9999
+ t + + /"- t

PR067 PR077 PR099 PROS3 PR054 PROSS PR099

When you are adding data to an existing entry, you can specify the SIZE
operand, to give the region size of the new procedure. For example, if
the region size of procedure PR099 is 2SK, enter:

add (mcs *) data(9999 pro99) size(25)

Note: You cannot add a password or an account number to an entry that
has a null field for that item. You must delete the old entry that has
the null fields, then add a new entry including the new password and
account number.

DELETING ENTRIES OR PARTS OF ENTRIES

You can use the DELETE subcommand to delete an entry or portions of an
entry.

To delete an entire entry, simply enter the user identification in
the DELETE subcommand. For example. to delete the entry for SMITH,
enter:

delete (smith)

To delete a password., and consequently all accounts and procedures
associated with the password, enter the password in the DATA operand.
For example, assume the following entry:

JONES

SECRE~ --------.. HUSH

I " / '" 2531 2922 2922 3998

+ + + I" PROCA PROCB PROCC PROCD PROCA

If you want to delete password SECRET and its accounts and procedures,
enter:

delete (jones) data (secret)

The resultant entry is:

JONES
+

HUSH

/ '" 2922 3998

t /" PROCC PROCD PROCA

Controlling a System With TSO 89

If the password happens to be the only password associated with the
user identification, the entire entry is deleted. For example, if you
now enter:

delete (jones) data(hush)

the entire entry is deleted.

To delete an account number, and consequently all procedures
associated with the account, enter the account number in the DATA
operand. For example, assume the following entry:

JAMES

,I " ALPHA BETA , /"
221 223 224
+ + , \

A91 A92 A93 A94

To delete account 224 and its procedures, enter:

delete (james beta> data(224)

the resultant entry is:

If the account number happens to be the only account associated with
the password, then the password is also deleted. For example, if you
now enter:

delete (james beta> data(223)

The resultant entry is:

JAMES
~

ALPHA ,
221

+ A91

To delete a procedure, enter the procedure name in the DATA operand.
For example, assume the following entry:

JASON

+ WHO
/+~.

1234 2345 3456
+ + / \

PR1 PR2 PR3 PR4

To delete procedure PR3, enter:

delete (jason who 3456) data(pr3)

90 TSO Terminal User's Guide (Release 20.1)

the resultant entry is:

JASON

+ WHO

/' + '" 1234 2345 3456

+ + + PR1 PR2 PR4

If the procedure happens to be the only procedure associated with the
account. then the account is also deleted. For example, if you now
enter:

delete (jason who 2345) data(pr2)

the resultant entry is:

JASON

+
/WHO~

1234 3456

+ + PR1 PR4

If you want to delete the ·same data from all user identifications, or
passwords, or account numbers, replace that field with an asterisk. For
example, if you want to delete password SECRET from all user
identifications in the system, enter:

delete (*) data (secret)

To delete account 3994 from all passwords in the system, enter:

delete (* *) data (3994)

If you only want to delete account 3994 from all passwords in the
following entry:

...---------ACR~
NO Y~S MAYBE

/'x + /'" 3994 3995 3996 3994 3997

+ I" + ~ ,I" ONE TWO THREE FOUR FIVE SIX SEVEN

enter:

delete (acr *) data(3994)

the resultant entry is:

~ACR~
NO yts MAYBE

+ + +
3995 3996 3997

,,"- + I'" TWO THREE FOUR SIX SEVEN

To delete procedure P67 from all account numbers in the system,
enter:

delete (* * *) data(p67)

Controlling a System With TSO 91

If you only want to delete procedure P67 from all accounts in the
following entry:

ROGER

AA/ ~CC
/'x /", 12 23 34 45 56

/" , 1\ + ,
P65 P67 P68 P67 P62 F67 P67

enter:

delete (roger * *) data(p67)

the resultant entry is:

ROGER

/ " AA BB
1 \ +

12 23 34
+ + •

P65 P68 P62

To delete procedure P67 from all accounts under password HUSH of the
following entry:

/KS~
SECRET HUSH

/'" /'" 999 888 777 666

+ /" + /\ P67 P68 P69 P67 P67 P70

enter:

delete (ks hush *) data(p67)

the resultant entry is:

/KS~
SECRET HUSH

/'" + 999 888 666

+ "" , P67 P68 P69 P70

The asterisk is also used to denote a null field. For example,
assume the following entry:

MARY

+ null

I " 777 888

I" + AB CD EF

to delete procedure CD, enter:

delete (mary * 777) data (cd)

Note: You cannot delete a null field.

92 TSO Terminal User's Guide (Release 20.1)

CHANGING DATA IN AN ENTRY

You can use the CHANGE subcommand to change any item of data in an UADS
entry. For example, if you have the following entry:

JONES

+ CHECK

+
AB25

+
P792

and you want to change the user identification to SMITH, enter:

change (jones) data (smith)

If you have the following entry:

JONES

+
CHECK

+ AB25

+ P792

and would like to change password CHECK to PASS, enter:

change (jones check) data(pass)

The resultant entry will be:

JONES

+ PASS
t

AB25
t

P792

If you have the following entry:

SMITH

+
ALPHA

/ '" B222 B212
+ +

P9292 P1314

and would like to change account B222 to B333, enter:

change (smith alpha b222) data (b333)

The result will be:

SMITH
+

ALPHA

B333/ "'B212

+ +
P9292 P1314

Controlling a System With TSO 93

If you have the following entry:

BOB

• /BETA~
BA BB

+ +
B25 B75

and would like to change procedure B25 to Baa. enter:

change (bob beta ba b25) data(b8a}

'The result will be:

BOB

+
/BETA""

BA BB

+ +
Baa B75

In addition to changing the user identification. passwords .• accounts.
and procedures. you can change any user attributes. For example, if you
want to authorize user JONES to use the OPERATOR command. enter:

change (jones) oper

If you want to take away the authorization to submit background jobs
from user SMITH. enter:

change (smith) nojcl

DISPLAYING THE CONTENTS OF AN ENTRY

You can use the LIST subcommand to display the contents of all entries
in the UADS. of one particular entry. ,or of parts of one entry. To
display the contents of all entries, ,-.Jenter:

list (*)

To display the contents of entry GREEN" enter:

list (green)

If you want to display all the account numbers under password BBB of
entry GREEN" enter:

list (green bbb)

If you want to display all the procedures in account 3399 of password
BBB of entry GREEN, enter:

list (green bbb 3399)

94 TSO Terminal User's Guide (ijelease 20.1)

DISPLAYING ALL USER IDENTIFICATIONS

You can use the LISTIDS subcommand to list all user identifications in
the UADS. The contents of each entry will not be displayed. To list
the user identifications l enter:

listids

ENDING OPERATION OF THE ACCOUNT COMMAND

When you want to end the ACCOUNT command l enter the END subcommand.
After you enter the END subcommand you receive the READY message. You
can then enter any command you choose.

Controlling a System With TSO 95

The following are definitions of words and
phrases used in this publication.

abnormal end of task (ABEND): Termination
of a task prior to normal completion
because of an error condition.

address: The location of information in
main storage.

alias: An alternate name for a particular
member of a partitioned data set.

allocate: To assign a resource for use in
performing a specific task.

attention interruption: An interruption of
instruction execution caused by a terminal
user pressing the attention key. See also
"simulated attention".

attention key: A function key that is used
to cause an attention interruption.

BASIC: An algebra-like language used for
problem solving by engineers, scientists,
and others who may not be professional
programmers.

broadcast data set ': A system data set
containing messages and notices from the
system operator, administrators, and other
terminal users.

catalog:

1. noun: In the System/360 Operating
System, a collection of data set
indexes that are used by the control
program to locate a volume containing
a specific data set.

2. verb: To include the volume
identification of a data set in the
catalog.

cataloged data set: The quality attributed
to a data set whose name and location are
stored in the system catalog. A data set
that is represented in an index or
hierarchy of indexes which provide the
means for locating the data set.

character-deletion character: A character
within a line of terminal input specifying
that the immediately preceding character is
to' be deleted from the line.

Code and go FORTRAN: A version of FORTRAN
IV modified for rapid compilation and
execution of programs.

Glossary

command: Under TSO, a request from a
terminal for the execution of a particular
program called a command processor. ~he
comfl1and processor is in a command library
under the command name. Any subsequent
commands processed directly by that command
processor are called subcommands. The
comrr.and processor performs the function
that the user requested.

command language: The set of commands,
subcommands and operands, recognized by
TSO.

command name: The first term in a command,
usually followed by o~erands.

command procedure: A data set or memter of
a partitioned data set containing TSO
commands to be performed sequentially ty
the EXEC command.

communication line: Any medium such as a
wire or a telephone circuit, that connects
a terminal with a com~uter.

compile: TO prepare a machine language
program from a computer ~rogram written in
a high-level source language.

computing system: A central processing
unit with main storage, input/output
channels, control units, storage devices,
and input/output devices connected to it.

console: The computer hardware that is
used by the system operator to operate the
system.

context editing: A method of editing a
line data set without using line numbers.
To refer to a particular line, all or part
of the contents of that line are specified.

control dictionary: The external symbol
dictionary and relocation dictionary,
collectively, of an object or load module.

control terminal: Any terminal at which a
TSO user authorized to enter commands
affecting system execution is logged on.

conversational: Describing a program or a
system that carries on a dialog with a
terminal user, alternately accepting input
and then responding to the input quickly
enough for the user to maintain his train
of thought.

current line pointer: A pointer maintained
by the Edit command processor that
indicates the line of a line data set with

Glossary 97

which a user is currently working. A
terminal user can refer to the value of the
current line pointer by entering an
asterisk (*) with EDIT subcommands.

data: Information used as a basis for
calculation, measurerrent and decision.

data
1.

2.

set:
A collection of data that
accessible by the system.
set usually resides on an
storage device.

is
The data

auxiliary

A telephone device used to transmit
telecommunications data.

data set catalog: (see catalog) '.

data set name: The term or phrase used to
identify a data set (see qualified name).

. debug: To detect, locate" and remove
mistakes from a routine.

default option: A language statement
option that is selected by the operating
system control program or a processing
program in the absence of a selection by a
user.

delimiter: A character that groups or
separates words or values in a line of
input.

device type: Usually, the general name for
a kind of device, specified at the time the
system is generated. For example. 2311 or
2400.

dump (main storage):

1. verb: To c9PY the contents of all or
part of main storage onto an output
device.

2. noun: The data resulting from (1).

3. noun: A routine that will accomplish
(1) •

edit mode: Under the EDIT command an entry
mode that accepts successive subcommands
suitable for modifying an existing line
data set.

external reference: The use of a name or
symbol defined in another module or
program.

external symbol: A control section name,
entry pOint name, or external reference; a
symbol in the external symbol dictionary.

field, data: One or more items of
information that together make up a record
such as an account number or the name of a
person.

98 TSO Terminal User's Guide (Release 20.1)

file.name: A name of a collection of data
(the file name corresponds to the data
definition name).

foreground job: For TSO, a program
executed in a region devoted to time
sharing operations.

function key: A terminal key, such as the
attention key, that causes the transmission
of a signal not· associated with a
character. Detection of the signal usually
causes the system to perfor.m a predefined
operation for the user.

IBM System/360: A collection of computing
system devices that can be connected
together in many combinations to produce a
wide range of unique and unified computing
systems. Although the systems vary in size
and performance, they share many
characteristic~, including a common machine
language.

IBM system/360 Operating System: An
application of the system/360 computing
system, in the form of program and ,data
resources, that is specifically designed
for use in creating and controlling the
performance of other a~plications. TSO is
an optional facility of the Operating
System.

input device: A machine used to enter data
into the system.

input mode: Under the EDIT command an
entry mode that accepts successive lines of
input for a line data set. The lines are
not checked for the presence of
subcommands.

installation: A general term for a
particular computing system, in the context
of the overall function it serves and the
individuals who manage it, operate it,
apply it to problems, maintain it, and use
the results it produces.

interruption: A transfer of CPU control to
the control program of the Operating
System. The transfer is initiated
automatically by the computing system or by
a problem state program through the
execution of a supervisor call (SVC)
instruction. The transfer of control
occurs in such a way that control can later
be restored to the interrupted program, or,
in systems that pe~form more than one task
at a time,. to a different program.

ITF:BASIC: A conversational subset of
BASIC designed for ease of use at a
terminal.

ITF:PL/I: A conversational subset of PL/I
designed for ease of use at a terminal.

job:

1. In the background environment" a
collection of related problem
programs, identified in the input
stream by a JOB statement followed by
one or more EXEC and DD statements.

2. In the foreground environment, the
processing done on behalf of one user
from LOGON to LOGOFF -- one terminal
session.

Job Control Language: A high-level
programming language used to code
statements that control the initiation and
execution of jobs.

job definitions: A series of job control
statements that define a job. (See job.)

job library: A set of user-identified
partitioned data sets used as the main
source of load modules for a given job.

job output device: A device assigned by
the operator for common use in recording
output data for a series of jobs.

job (JOB) statement: A job control
statement that identifies the beginning of
a job. It contains information such as the
name of the job, an account number. and the
class and priority assigned to the job.

keyword: A command operand that consists
of a specific character string (such as
FORTLIB or PRINT) and optionally a
parenthesized value.

language statement: A phrase that is coded
by a programmer, operator. or user of a
computing system. The phrase conveys
information to a processor such as a
language translator program, service
program, or control program. A language
statement may signify that an operation is
to be performed or may simply contain data
that is to be passed to the processing
program.

language translator: Any assembler,
compiler, or other routine that accepts
statements in one language and produces
equivalent statements in another language.

library:

1. A collection of data sets associated
with a particular use and identified
in a directory.

2. Any partitioned data set.

line:

1. A single line of one or more
characters typed at a terminal and
entered into the system.

2. A circuit, such as a telephone line,
over which data is communicated.

line data set: A data set with logical
records that are printable lines,.

line-deletion character: A character that
specifies that it and all preceding
characters are to be deleted from a line of
terminal input.

line number: A number associated with line
in a line data set, which can be used to
refer to the line.

line number editing: A mode of operation
under the EDIT command in which lines to be
modified are referred to by line number.

linkaqe editor: A program that produces a
single load module from one or more otject
and/or load modules.

link library: A generally accessible
partitioned data set which contains load
modules such as those referred to by macro
instructions or system facilities.

listinq: A display or Frintout of data.

load: To place a program in main storage
so that it can be executed.

loader: A program that combines the tasic
editing and loading functions of the
linkage editor. It loads object and/or
load modules into rrain storage for
execution; however, it does not produce
load modules.

load module: The output of the linkage
editor; a program in a form suitable for
loading into main storage for execution.

LOGOFF: The TSO command that terminates a
user's terminal session.

LOGON: The TSO command that a user must
enter to initiate a terminal session.

LOGON procedure: A cataloged procedure
that is executed as a result of a user
entering the LOGON command.

member: A partition of a partitioned data
set.

message: In telecommunications, a
combination of characters and symbols
transmitted from one peint to another on a
network.

Glossary 99

message text: A part of a teleprocessing
message consisting of the information that
is routed to a user at a terminal or to a
program in a central system that is to
process it (not including line control
characters).

module: The input to, or output from, a
single execution of an assembler, compiler,
or linkage editor; a source, object. or
load module; hence, a program unit that is
discrete and identifiable with respect to
compiling, combining with other units, and
loading.

name: A one to eight character alphameric
term that identifies a data set, a command
or control statement, a program, or a
cataloged procedure. The first character
of the name must be alphabetic.

national characters: The characters #, $,
and al.

object module: The output of a single
execution of an assembler or compiler; the
output constitutes input to the linkage or
loader. An object module consists of one
or more control sections in relocatable,
though not executable, form and an
associated control dictionary.

object module library: A partitioned data
set that is used to store object modules.

object program: A program that has been
compiled or assembled by a language
translator. (See object module.)

operand: In the TSO command language,
information entered with a command name to
define the data on which a command
processor operates and to control the
execution of the command processor. Some
operands are positional, identified by
their sequence in the command input line;
others are identified by keywords.

operating system: An application of a
computing system, in the form of organized
collections of programs and data, that is
specifically designed for use in creating
and controlling the performance of other
applications. (See IBM System/360
Operating System.)

operator: A member of a data processing
installation who is responsible for
directing the overall operation of a
computing system.

output class: Anyone of up to 36
different output data classes, defined at
an installation, to which output data can
be assigned.

100 TSO Terminal User's Guide (R~lease 20.1)

output device: A machine (such as a
printer, terminal, or tape drive) that will
accept the output from the system.

partitioned data set: A data set that is
stored in direct access storage and can be
cataloged like any other data set. A
partitioned data set is often called a
program library. It is divided into
independent partitions called members, each
of which normally contains a program or
part of a program, in the form of one or
more sequential blocks. Each program
library contains a built-in directory (or
index) that the control program can use to
locate a program in the library. Each
member has a unique name listed in a
directory at the beginning of the ,data set.
Members can be added or deleted as needed.
Records within members are organized
sequentially.

password: A one-to-eight character symbol
assigned to a user that he can be required
to supply at LOGON. The password is
confidential, as opposed to the user
identification. Users can also assign
passwords to data sets.

PL/I: A high-level programming language
that has features of both COBOL and
FORTRAN, plus additional features.

priority: A rank assigned to a task that
determines its precedence in receiving
system resources.

private library: A partitioned data set
other than the link library or the jot
library.

processor: A program performing some fixed
function on input. such as a compiler or
the linkage editor.

profile (user): The set of characteristics
that describe the user to the system.

program: A logically self-contained
sequence of instructions that can be
executed by a computing system to attain a
specific result.

program library: A partitioned data set
containing programs in load module form for
general or assorted applications,.

prompting: A system function that helps a
terminal user by requesting him to supply
operands necessary to continue processing.

qualified name: A data set name that is
composed of two or more names separated by
periods. (For example"MOORE.SALES.JUNE.)

record: One or more data fields that
represent an organized body of related
data, such as all of the basic accounting

information concerning a single sales
tr ansaction,.

receive interruption: The interruption of
a transmission to a terminal by a higher
priority transmission from the terminal.
Also called a "break".

region: An area of main storage allocated
to a job step and assigned a unique storage
protection key. Time sharing jobs share
regions. Each job occupies a region
briefly, then is swapped out to auxiliary
storage and another job is swapped into the
vacated main storage area for execution.
The jobs are swapped in and out until they
are completed.

resource: Any facility of the system
required by a job or task, including main
storage input/output devices, the central
processing unit, data sets, and control and
processing programs.

return code: A number placed in a
designated register (the "return code
register") at the completion of a program.
The number is established by user
convention and may be used to influence the
execution of succeeding programs or" in the
case of an abnormal end of task (ABEND), it
may simply be printed for programmer
analysis.

session time: The elapsed real time from
LOGON to LOGOFF.

service program: A processing program,
such as the linkage editor, sort/merge
program, or a utility program that performs
specific services for a user of the
program.

simulated attention: A function that
allows terminals without attention keys to
interrupt processing. The terminal is
queried (for a specified character string
meaning "attention") after a specified
number of minutes of uninterrupted
execution or after a specified number of
lines of consecutive output.

source language: The input to a language
translator; for example, FORTRAN, COBOL,
PL/I.

source module: A series of language
statements that represent the input to a
language translator.

source module library: A partitioned data
set that is used to store and retrieve a
source module.

source program: A program written in a
source language.

statement: A phrase consisting of words or
terms of a programming language.

storage dump: A recording of the contents
of wain or auxiliary storage so that it can
be examined by a programmer or operator.
(See also "dump".)

SUbcommand: For TSO, a subcommand is a
request for a particular operation to be
performed, the particular operation falling
within the scope of work requested by the
command to which the subcommand applies.

symbol: A unique word, composed of as many
as eight alphameric characters and
beginning with an alphatetic character,
which is used to identify an address,
module, etc.

syntax checker: A prcgram that tests
source statements in a programming language
for violations of that language's syntax.

SYSIN: A system input stream. Also, a
name used as the data definition name of a
data set in the input stream.

SYSOUT: A system cutput stream. Also, an
indicator used in data definition
statements to signify that a data set is to
be written on a system output unit .•

System catalog: (See catalog)

system output device: An output device
shared by all jobs.

system generation: The process of using
one operating system to assemble and link
together into a coherent whole all the
required, alternative, and optional parts
that form a new operating system.

system library: A program library in
auxiliary storage in which the various
parts of an operating system are stored.

system programmer:

1. A programmer who is assigned to plan,
generate l maintain, extend, and
control the use of an operating system
with the aim of improving the overall
productivity of an installation.

2,. A programmer who designs programming
systems and other applications.

terminal: A device resembling a typewriter
that is used to communicate with the
system.

terminal job: A foreground job; a session
from LOGON to LOGOFF. Also used to refer
to the time sharing region assigned to a
user and associated system control blocks.

Glossary 101

terminal user: see "user".

time sharing: A method of using a
computing system that allows a number of
users to execute programs concurrently and
to interact with them during execution.

~: Under TSO, anyone with an entry in
the User Attribute Data Set; anyone
eligible to log on.

user attributes: A set of parameters in
the User Attribute Data Set (UADS). The
parameters describe the user to the system:
whether he is authorized to use the ACCOUNT
command, what size main storage region he
is to be assigned, etc.

User Attribute Data Set (UADS): A
partitioned data set with a member for each
authorized system user. Each member

102 TSO Terminal User's Guide (Release 20.1)

contains the appropriate user
identifications, passwords, account
numbers, LOGON procedure names, and user
characteristics defining the user's
profile.

user identification: A one to seven
character symbol identifying each system
user.

utility programs: service programs that
assist the user in organizing and
maintaining data.

verification: An operation under the EDIT
command in which all sub commands are
acknowledged and any text changes are
displayed as they are made.

Indexes to systems reference library
manuals are consolidated in the publication
IBM System/360 Operating System: Systems
Reference Library Master Index~ Order No.
GC28-6644. For additional information
about any sub ject listed below" refer to
other publications listed for the same
subject in the Master Index.

abbreviations 9
access to the system 14
ACCOUNT command 84
ACCOUNT command, authority te use 84
account message 12
account number 17,84
account number, delete an 90
add data to the UADS 85
ADD subcommand 85
alias, assign an 46
allocate a data set 51
ampersand, use of 75
apostrophes. use of 27
assign values to symbolic values 73
attention interruption 8,,14
attention, simulated 15
attributes, user 17

background jobs 55,65,,79,,80
cancel 68,83
control the output of 68
display status of 67
submit 65

blank line 26
BOTTOM subcorr~and 34
broadcast messages 11~14.20

displaying 21
receiving 21
sending 22
suppressing 21

call command 57,61,76
CANCEL command 68
CANCEL command. authority to use 85
CANCEL subcommand 83
cataloged data sets 53
change a part of a line 40
change data in the UADS 93
CHANGE subcommand 40" 93
change the output class 53
characteristics. operatienal 20
characteristics" terminal 20
character-deletion character 7
character-deletion character, changing the

8
CLIST 74
columns of data 31
command language, uses fer 5
command procedure library 73

command precedure"
using a 73
writing a 74

commands,
definition of 8
function of 15
how to enter 11
list of 10

ACCOUNT 84
CALL 57,61,76
CANCEL 68
DELETE 48
EDIT 25.,56
EXEC 57,73
FREE 53
LINK 58
LISTALC 51,53
LISTBC 21
LISTCAT 53
LISTDS 53
LOADGO 63,76
LOGOFF 23
LOGON 17,23
OPERATOR 79
OUTPUT 68
PROTECT 49
RENAME 46
SAVE 56
STATUS 67
TEST 71
TIME 23
SEND 22
SUBMIT 65
WHEN 74,76

operands of 15
syntax of 15

communication lines 5
compile 55
compiler 51
compilers, data set names 57
context editing 26
conventions 7
create a data set 30
create a program 56
current line pointer 25

finding 33
positloning 33

Index

data definition statement (DD) 51
data set defined with ~~LOCATE or EDIT

command 51
data set name 26
data set naming conventions 27
data set type 29
data sets,

allocate 51
cataloged 53
change the name of 46
create 30
definition of 25
delete 48

Index 103

data sets, (continued)
free 53
list the contents of 43
list the names of your 53
password 50
passwords for 49
protect 49
rename 46
store 43
updating 36

data"
delete from a data set 36
entering 25
insert in a data set 36
insert into a data set 37
manipulating 25
replace in a data set 36,39

DD statement 51
debug 71
default tab setting 32
default values 9,74
delete a data set 48
DELETE command 48
delete data from a data set 36
delete data from the UADS 89
DELETE subcommand 89
delimeter" special" FIND subcommand 35
delimiter, special, CHANGE subcommand 40
descriptive qualifier 27
descriptive qualifiers" list of 28
descriptive qualifier 74
display contents of the UADS 94
DISPLAY subcommand 82
displaying broadcast messages 21
displaying time used 23
DOWN subcommand 34

EDIT command 25,56
edit function" end the 46
edit message 12
edit mode 25
END statement 74,,76
end subcommand 84,95
end the edit function 46
ending a terminal session 23
entering a line 8
entering data 25
error messages 60
errors, correcting 7
EXEC command 57,73
execute 55
executing a program 61
external references 59" 63

FIND subcommand 34
free a data set 53
FREE command 53
fully qualified name 27
function of command 15
function of subcommands 16

104 TSO Terminal User's Guide (Release 20.1)

HELP command 5,15

identificaticn qualifier 27
identificaticn, user 17,84
identify ycurself to the system 17
increment, line number 31
informational messages 11
information. requesting additional 13
input mode 25
INPUT subccmmand 31,39
insert data into a data set 36,37
interruption, attention 8,14

JCL statement
job statement
jobname 66

keyboard 7

51,66
66

library, subroutine 59,63
line numper 25
line number editing 25
line number increment 31
line numbers, suppressing 43
line pointer 25

finding 33
positioning 33

line-deletion characters 7
line-deletion character, changing the
lines, renumber 42
line, entering 8
LIN~ command 58
link edit 55
link editor 51,58
list data set names 53
list line numbers 43
LIST subcommand 33,43,94
list the ccntents of a data set 43
LISTALC ccmmand 51,,53
LISTBC ccmmand 21
LISTCAT command 53
LISTDS command 53
load 55
load a prcgram 63
load module 58,,61
loader 51
LOADGO command 63,,76
locking the terminal 12
logical tab settings 32
LOGOFF command 23
logon 21
LOGON command 17,23
logon procedure 51
lowercase letters in examples 11

mail 20
main storage region size 84
manipulating data 25
messages 5

broadcast 14,20
error 60
prompting 9,13
send 83

8

mistakes, correcting 7
mode messages 12
mode, edit 25

mode, input 25
MODIFY subcommand 84
modify time sharing parameters 84
MONITOR subcommand 79
monitor terminal activity 79
msgclass 68

naming conventions 27
nam~ng conventions, nonconfonnity to 28
notices 20,83
null line 26

object module 58
operands of 15

commands 15
subcommands 16

operands,
default values 9
definition of 9

operational characteristics 20
OPERATOR command 79
OPERATOR command, authority to use 84
operator message 12
output class, change the 53
output command 68
OUTPUT command, authcri ty to use 8.5
output data set (SYSOUT) 68
output message 12

parm parameter 57
partitioned data sets 29
password 17,49,84

data set 50
delete a 89

PROC statement 74
procedure name 17,,84
procedure, delete a 90
profile 21
PROFILE command 8
profile,. user 20
prompting 5

messages 9~11,13
messages, response to 13

PROTECT command 49

qualified name 27
qualifier. descriptive 27
qualifier, identification 27
question mark, use of 5,13

ready message 11
receiving broadcast messages 21
region size" main storage 84
rename a data set 46
RENAME command 46
RENUM subcommand 42
renumber lines in a data 36

renumber lines 42
replace data in a data set 36,39
request session tiRe 80

SAVE
command 56
subcommand 43

SEND
command 22
subcommand 83

sending boradcast messages 22
session time 23,80
simulated attention 15
special delimiter;

CHANGE subcommand 40
FIND subcommand 35

statement,. END 74,76
statement" PROC 74
STATUS command 67
status command, authority to use 85
store a data set 43
subcommands,

definition of 9
function of 16
how to enter 11
list of 10

ADD 85
BOTTCM 34
CHANGE 40,,93
DELETE 89
DISPLAY 82
DOWN 34
END 84,,95
FIND 34
INPUT 31.39
LIST 33,43,.94
MODIFY 84
MONITOR 79
RENUM 42
SAVE 43
SEND 83
TABSET 32
TOP 34
UP 34
VERIFY 33

operands of 16
syntax of 16

SUBMIT command 65
SUBMIT ccmmand,. authority to use 85
subroqtine library 59,63
suppress line numbers 43
suppressing broadcast messages 21
symbolic values 73
symbolic values" assign 75
symbolic values" types of 75
syntax of

commands 15
subcommands 16

sysout 68
system catalog 53
system pause 69

tab settings 31
tab settings,. logical 32
tab setting. default 32
TABSET subcommand 32

Index 105

terminal 5
terminal characteristics 20
terminals, use of 7
termination, testing conditions for 76
test a program 71
TEST command 71
test message 12
,text handling 7
time 80
TIME command 23
time used 23
TOP subcommand 34
TSO 5
type of data set 29

UADS (user attributes data set) 84
UP subcommand 34

106 TSO Terminal User's Guide (Release 20.1)

updating a data set 36
uppercase letters

in examples 11
in output 7

user
attributes 17" 84
identification 17,,84
profile 20

user-supplied name 27

VERIFY subcommand 33

WHEN command 74,,76

GC28-6763-0

International Business Machines Corporation
Data Processing Division
1133 Westchester Avenue, White Plains, New York 10604
[U.S.A. only]

IBM World Trade Corporation
821 United .Nations Plaza, New York, New York 10017
[International]

. .

..

IBM System/360 Operating System:
Time Sharing Option
Terminal User's Guide

READER'S COMMENT FORM

Order No. GC28-6763-0

Please use this form to express your opinion of this publication. We are interested in your
comments about its technical accuracy, organization, and completeness. All suggestions
and comments become the property of IBM.

Please do not use this form to request technical information or additional copies of publications.
All such requests shou Id be directed to your IBM representative or to the I BM Branch Office
serving your locality.

• Please indicate your occupation:

• How did you use this publication?

D Frequently for reference in my work.

o As an introducti on to the subject.

o As a textbook in a course.

D For specific information on one or two subiects.

• Comments (Please include page numbers and give examples.):

• Thank you for your comments. No postage necessary if mai led in the U. S .A.

GC28-6763-0

YOUR COMMENTS, PLEASE •••

This manual is part of a library that serves as a reference source for systems analysts,
programmers and operators of mM systems. Your answers to the questions on the back
of this form, together with your comments, will help us produce better publications for
your use. Each reply will be carefully reviewed by the persons responsible for writing
and publishing this material. All comments and suggestions become the property of mM.

Note: Please direct any requests for copies of publications, or for assistance in using your
IBM system, to your mM representative or to the mM branch office serving your locality.

Fold

BUSINESS REPLY MAIL
NO POSTAGE STAMP NECESSARY IF MAILED IN THE UNITED STATES

Attention: Programming Systems Publications

Department 058

Fold

POSTAGE WILL BE PAID BY •••

IBM Corporation

P.O. Box 390

Poughkeepsie, N.Y. 12602

International Business Machines Corporation
Data Processing Division
1133 Westchester Avenue, White Plains, New York 10604
[U.S.A. only]

IBM World Trade Corporation
821 United .Nations Plaza, New York, New York 10017
[International]

Fold

FIRST CLASS
PERMIT NO. 81
POUGHKEEPSIE, N.Y.

Fold

()

So
»
o
:I co
c:
:I
CD

Technical Newsletter File Number

He: Order No.

This Newsletter No.

5360-36

GC28-6763-0

GN28-2483

Date June t, 1971

IBM SYSTEM/360 oPERA~rNGSYSTEM:
TIME SHARING OPTION
TERMINAL USER'S GUIDE

© IBM Corp. 1971

Previous Newsletter Nos.

This Technical Newsletter, a part of release 20.1 of IBM
System/360 operating System, provides replacement pages for the
subject publication. These replacement pages remain in effect for
subsequent releases unless specifically altered. Pages to be
inserted and/or removed are:

Cover,2
3,4,4.1
9,10
17,18
21-23
27-32

49,50,50.1
55,56
67,68
79,80
83,84

A change to the text or a small change to an illustration is
indicated by a vertical line to the left of the change; a changed
or added illustration is denoted by the symbol • to the left of
the caption.

Summary of Amendments

This Technical Newsletter includes the addition of a new keyword
for the PROFILE command, a subcommand for TEST, and editorial
changes.

Note: Please file this cover letter at the back of the manual to
provide a record of changes.

IBM Corporation, Programming Systems Publications, P.O. Box 390, Poughkeepsie, N.Y. 12602

None

PRINTED IN U.S.A.

njc~~~l
)Jt~~JL~A~,~ Systems Reference Library

IBM System/360 Operating System:

Time Sharing Option

Terminal User's Guide

The Time Sharing Option (TSO> of the IBM
system/360 Operating System lets you use the
facilities of a computer from a terminal. You
define your work to the system through the TSO
Command Language. This ~ublication explains to
all users of TSO how to use the TSO Command
Language to perform the following functions:

• Start and end a terminal session.
• Enter and manipulate data.
• Program at the terminal.
• Test a program.
• Write and use conmand procedures.
• Control a system with TSO.

After becoming familiar with the information
presented in this manual, you may use IBM
System/360 Operating System: Time Sharing
Option, Command Language Reference, GC28-6732
for review and reference.

File No. 8360-36
Order No. GC28-6763-0 OS

Page of GC28-6763-0, Revised June 1, 1971, By TNL GN28-2483

Preface

This publication describes how to use the
TSO Command Language to all TSO terminal
users. The commands can be used to perform
the following functions:

• start and end a terminal session.
• Enter and manipulate data.
• Program at the terminal.
• Test a program.
• Write and use command procedures.
• Control a system with TSO.

This publication tells you what commands to
use to perform these functions. For
details on how to code each command, refer
to the publication IBM~ternl360 Operating
System: Time Sharing Option, Command
Language Reference, GC28-6732.

First Edition (March, 1971)

Befor~ reading this manual you should be
aware of three facts:

• Program Products are not discussed in
this manual.

• All examples in this manual show the
user's input in lowercase letters and
the system output in uppercase letters.

• All examples in this manual assume that
you are using an IBM 2741
Communications Terminal, and that you
must press the RETURN key to enter
data. For information on your type of
terminal refer to the publication IBM
System/360 Operating System: Time
Sharing Option, Terminals, GC28-6762.

This edition with the addition of Technical Newsletter
GN28-2483, applies to release 20.1, of IBM Systernl360
Operating System, and to all subsequent releases until
otherwise indicated in new editions or Technical Newsletters.
Changes are continually made to the information herein;
before using this publication in connection with the
operation of IBM systems, consult the latest IBM system/360
SRL Newsletter, Order No. GN20-0360, for the editions that
are applicable and current.

Requests for copies of IBM publications should be made to
your IBM representative or to the IBM branch office serving
your locality.

A form for readers' comments is provided at the back of
this publication. If the form has been removed, comments may
be addressed to IBM Corporation, Programming Systems
Publications, Department 058, PO Box 390, Poughkeepsie, N.Y.
12602

© Copyright International Business Machines Corporation 1971

Page of GC28-6763-0, Revised June 1, 1971, By TNL GN28-2483

I SUMMARY OF MAJOR CHANGES. 4

INTRODUCTION • • • 5

WHAT YOU MUST KNOW TO USE TSO 7
Entering Information at the Terminal 7
COIIlIIlands • • • • • • • • • • • • • • 8

When to Enter a Command or SubcoIIlIIland 11
How to Enter a Command or SubcoIIlIIland • 11

Messages • • : • • • • • • • • • 11
Mode Messages ••••• 12
prompting Messages • • • • 13
Informational Messages • • 13
Broadcast M~ssages • • • • • • 14

The Attention Interruption 14
The HELP COIIlIIland •• • • • • • • 15

STARTING AND ENDING A TERMINAL SESSION • 17
Identifying Yourself to the System. • • 17
Defining Operational Characteristics 20
Receiving and Sending Broadcast
Messages • • • • • • • • • • • • 20

Receiving Broadcast Messages • 21
Sending Broadcast Messages 22

Displaying session Time Used • • 23
Ending Your Terminal Session • • 23

ENTERING AND MANIPULATING DATA.
Identifying the Data Set •••.•
Creating A Data Set • • • • • •
Placing Data into Columns
Finding and Positioning the Current

25
26

• • 30
• • 31

Line Pointer • • • • • • • • • • • • 33
Finding the Current Line Pointer • 33
Positioning the Current Line Pointer • 34

Updating a Data Set •••••• 36
Deleting Data From a Data Set • • 36
Inserting Data in a Data set • • • 37
Replacing Data in a Data Set • 39
Renumbering Lines of Data • • 42

Listing the Contents of a Data Set • • • 43
Storing a Data Set • • • • • • • • • 43
Ending the Edit Functions 46
Renaming a Data Set 46
Deleting a Data Set • • 48
Establishing Passwords for a Data Set • 49
Allocating a Data Set • • • • • • • 51

Contents

Freeing an Allocated Data Set • • • •
Listing the Names of Your Data Sets

• 53
53

PROGRAMMING AT THE TERMINAL
Creating a Program • • • • • •
Compiling a Program ••• •
Link Editing a Compiled Program
Executing a Program
Loading a Program • • • • • •
processing Background Jobs • •

Submitting Background Jobs • •
Displaying the Status of Background
Jobs • • • • • • • • • • • • •
Cancelling Background Jobs • •
Controlling the Output of a
Background Job • • •

• • 55
• • 56
• • 57

• 58
• • 61
• • 63
• • 65
• • 65

• 67
• • 68

• • 68

TESTING A PROGRAM • • • 71

USING AND WRITING COMMAND PROCEDURES • • 73
Using COIIlIIland Procedures • • • • • 73

Calling a Command Procedure 73
Assigning Values to Symbolic Values • 74

Writing COIIlIIland Procedures • • • • • • • 74
Assigning Symbolic Values • • • • • • 75
Testing Conditions for Termination • • 76
Ending the COIIlIIland Procedure • • • • • 77

CONTROLLING A SYSTEM WITH TSO 79
The OPERATOR Command • • • • • • • • • • 79

Monitoring Terminal Activity. • 79
Displaying TSO Information • • • • • • 82
Cancelling a Session or Background
Job • • • • • • • • • • • • • • 83
Sending Messages to Te~inal Users 83
Modifying Time Sharing Parameters •• 84
Ending Operation of the Operator
Command • • • • • • • .• • • • • 84

The ACCOUNT Command • _ • • • • • • • • 84
Adding New Entries or Data to an
Entry • • • • • • • • • • • • 85
~Deleting Entries or Parts of Entries • 89
Changing Data in an Entry • • • • • • 93
Displaying the Contents of an Entry • 94
Displaying All User Identifications • 95
Ending Operation of the ACCOUNT
COIIlIIland • • 95

GLOSSARY • • 97

INDEX. • • 197

Contents 3

Illustrations

Figures

Figure 1. sample Instruction Sheet
for a Terminal •••••••• 18
Figure 2. sample Data Set 35
Figure 3. Allocating Data Sets for
the Assembler F • .• • • • • 52
Figure 4. Creating an assembler
source program •••••••••• 56
Figure 5. COBOL Compilation • • 58
Figure 6. Link editing and executing
a program •• • • • • • • • • • • • • • 62

Tables

Table 1. 'ISO Commands and
Subcommands. Including Abbreviations •
Table 2. Descriptive Qualifiers
Table 3. Default Tab settings

• 10
28
32

Table 4. Values of the Line Pointer
Referred to by an Asterisk (*> •
Table 5. Data Set Names of the

• • 34

Compilers 57

4 TSO Terminal User's Guide (Release 20.1)

Figure I. Loading a Program ••••• 65
Figure 8. Submitting a Program as a
Background Job • • • • • • • • 67
Figure 9. symbolic Values for a
Corr.mand Procedure • • • • • • • • • • • 74
Figure 10. The Simplest Structure
That an Entry in the UADS Can Have •• 86
Figure 11. A Complex structure for an
Entry in the UADS •••••••••• 86

Page of GC28-6763-0, Revised June 1, 1971, By TNL GN28-2483

Summary of Major Changes

Release 20.1
r---~-----------------T--T----------------,
I Item I "Description 1 Areas Affected 1
r---------------------+--+----------------~
ICTLX keyword for IKeyword added. 1 18 1
1 PROFILE command I I I"
r---------------------+----7---+----------------1
ICOpy subcommand of ISubcommand added. I 10 I
ITEST I I I L _____________________ L __ L ________________ J

Summary of Major Changes 4.1

When you use a command to request work, the command establishes the
scope of the work to the system. For some commands, the scope of the
work encompasses several operations that you can identify separately.
After entering the command, you may specify one of the separately
identifiable operations by entering a subcommand. A subcommand, like a
command, is a request for work; however, the work requested by a
subcommand is a particular operation within the scope of work
established by a command. .'

The commands and subcommands recognized by TSO form the TSO command
language. The command language is designed to be easy to use. The
command names and subcommand names are typically familiar English words,
often verbs, that describe the work to be done. The. number of command
names and subcommand names that you must learn has been kept to a
minimum. (Your installation can add its own commands to perform
functions not provided by the TSO comnand language.)

Besides entering the name of the command or subcommand, you are often·
required to specify additional information to pinpoint the function you
want performed. You define the additional inEormation with operands
(words or numbers that accompany the command names and subcommand
names.) Most of the operands have default values that are used by the
system if you choose to omit the operand from the command or subcommand.
However, some operands do not have default values. If you fail to
provide a required operand for which there is no default, the system
sends you a prompting message asking you to supply the operands. The
publication, IBM Systeml360 Operating System: Time Sharing Option,
Command Language Reference shows all operands for each command, and
indicates the default values where applicable, and describes how to
enter the commands.

You can abbreviate many of the command names, subcommand names and
operands. Together, the defaults and abbreviations decrease the amount
of typing required. (The abbreviations and their use are discussed in
the publication IBM System/360 Operating System: Time Sharing Option,
Command Language Reference.)

Table 1 lists the commands and their subcommands in alphabetical
order.

What you Must Know to Use TSO 9

Page of GC28-6763-0, Revised June 1, 1971, By TNL GN28-2483

Table 1. TSO Commands and Subcommands, Including Abbreviations
r----------------------------------T-----------------------------------, I COMMAND (abbreviation) J COMMAND (abbreviation) I
I SUBCOMMAND (abbreviation) I SUBCOMMAND (abbreviation) I
~----------------------------------+-----------------------------------~

ACCOUNT I LISTDS (LISTD) I
ADD (A) I LOADGO (LOAD) I
CHANGE (C) j LOGOFF I
DELETE (D) LOGON
END *MERGE
HELP (H) OPERATOR (OPER)
LIST (L) CANCEL (C)
LISTIDS (LISTI) DISPLAY (D)

ALLOCATE (ALLOC) END
*ASM HELP (H)
*CALC MODIFY (P)

* DELETE MONITOR (MN)
*END SEND
* HELP START(S)
*SAVE STOP (P)

CALL OUTPUT (OUT)
CANCEL CONTINUE (CONT)

*COBOL (COB) END
*CONVERT (CON) HELP (H)
*COPY SAVE (S)

DELETE (D) PROFILE (PROF)
EDIT (E) PROTECT (PROT)

BOTTOM (E) RENAME (REN)
CHANGE (C) RUN (R)
DELETE (D) SEND (SE)
DOWN STATUS (ST)
END SUBMIT (SUB)
FIND (F) TERMINAL (TERM)

*FORMAT (FORM) TEST (T)
HELP (H) Assign (=)
INPUT (I) AT
INSERT (IN) CALL
LIST (L) COpy (C)

*MERGE (M) DELETE (D)
PROFILE (PROF) DROP
RENUM (REN) END
RUN (R) EQUATE (EQ)
SAVE (S) FREEMAIN (FREE)
SCAN (SC) GETMAIN (GET)
TABSET (TAB) GO
TOP HELP (H)
UP LIST (L)
VERIFY (V) LISTDCB

EXEC (EX) LISTDEB
*FORMAT (FORM) LISTMAP
*FORT LISTPSW

FREE LISTTCB
HELP (H) LOAD
LINK OFF

*LIST (L) QUALIFY (Q)
LISTALC (LISTA) RUN (R)
LISTBC (LISTB) WHERE (W)
LISTCAT (LISTC) TIME (TI)

**END
**WHEN

~----------------------------------~-----------------------------------~
I *Available as program products I
1**For use in command procedures I L __ J

10 TSO Terminal User's Guide (Release 20.1)

Starting and Ending a Terminal Session

This section describes the commands you can use to:

• Identify yourself to the system.
• Define operational characteristics of your session.
• Receive and send broadcast messages.
• Display session time used.
• End your terminal session.

Identifying Yourself to the System

The first thing you must do to start your terminal session is to turn on
the power according to instructions provided by your installation. In
many cases, you will find an instruction sheet such as the one shown in
Figure 1 attached to the terminal. In the example shown in Figure 1,
instructions 1 through 8 must be followed to turn on the power and to
establish the connection with the system. If there is no instruction
sheet attached to the terminal, consult the publication, IBM System/360
Operating System: Time Shar inq Option, TerlUl..nals.

After you turn on the power you must use the LOGON command to
identify yourself to the system. You must supply, as operands of LOGON,
the user attributes assigned to you by your installation. Your user
attributes are:

1. User identification (required) -- The name or code by which you are
known to the system.

2. Password (required if your installation assigns you one) -- A
further identification used for additional security protection.

3. Account number (optional) -- The account to which your terminal
session is charged.

4. Procedure name (optional) -- The name .of series of statements that
defines your job to the system.

starting and Ending a Terminal Session 17

Page of GC28-6763-0, Revised June 1, 1971, By TNL GN28-2483

r--,
TERMINAL #7

(Available 9:00 a.m. - 3:00 p.m.
For additional time call A. Jones ext. 1234)

1. Turn ON/OFF switch to ON.

2,. Make sure the COM/LCL switch is set to COM.

3. Remove handset from telephone (data set).

4. Press TALK button on telephone.

5. Dial ext. 5555, 5556, or 5557.

6. Wait for a high pitched tone. When you hear this tone you
are in contact with the computer. If you get a busy signal
or no answer, hang up and repeat from 3 trying another
extension.

7. Push the DATA button on the'telephone. If DATA button light
goes off at any point during session, repeat from (3).

8. Replace handset on the cradle.

9. Enter LOGON command:

logon ___ / ___ acct(___) proc(___) size(___) notices
nonotices

userid password account procedure nnnn

10. The default TERMINAL command is:

mail
nomail

terminal nolines noseconds noinput break notimeout linesize (120)

,If. you want to change any of the following defaults use this
TERMINAL command:

terminal lines () seconds () input () linesize (

11. If you want to change your user profile, use the PROFILE
command:

profile
char ()
char (bs)
nochar

line() prompt
line(attn) noprompt~
line(ctlx)
noline

intercom
no intercom

pause
nopause

)

The following operands are recommerided for this terminal:
char(bs) and line (attn)

Note: Please turn ON/OFF switch to OFF after you enter LOGOFF.

msgid
nomsgid

L ___ _

Figure 1. Sample Instruction Sheet for a Terminal

Your user attributes are recorded in -:,the system together with the
attributes of all other terminal users. When you log on, the system
compares the attributes you specify with the LOGON command to the
recorded attributes of each user to determine if you are an authorized
user of the system.

18 TSO Terminal User's Guide (Release 20.1)

RECEIVING BROADCAST MESSAGES

You can use three commands to control which broadcast messages you
receive:

LOGON, PROFILE, and LISTBC

When you log on, broadcast messages sent to all users (notices) and
those broadcast messages intended for you (mail) are displayed at your
terminal. You can use the following operands of the LOGON command to
prevent printing either type of messages at your terminal:

• NONOTICES suppresses printing of broadcast messages intended for all
terminal users.

• NOMAIL suppresses printing of broadcast messages intended
specifically for you.

For example. if you enter:

logon smith acct(72411} nomail

You will not receive mail but you will receive all notices that are
available at the time.

NONOTICES and NOMAIL suppress those broadcast messages outstanding at
the time you log on. You will automatically receive any broadcast
messages issued after you log on. You cannot stop the operator from
sending you notices, but you can specify that you do not want to receive
any mail by using the NOINTERCOM operand of the PROFILE command. For
example, if you enter the following commands:

logon jones/cloud proc(ab)
READY
profile nointercom

you request that all broadcast messages available at the time be
displayed, but that all mail sent to you after you log on be suppressed
throughout your session. (Note that NO INTERCOM can be a default of your
user profile, and therefore you may not have to specify it with the
PROFILE command.)

At any time during your session you can use the LISTBC command to
request that either all available notices for users, or all your mail
(or both) be displayed. If you enter:

listbc

you will get all broadcast messages. Ify~ ~t~:

listbc nomail

you will get only notices. If you enter:

listbc nonotices

you will get only your mail.

The notices you get are both the notices available at the time you
logged on and those issued throughout your session. This enables you to
see what notices were available at log on time if you specified
NONOTICES in your LOGON command. (The system operator can delete
notices at any time. Consequently you will get only those notices he
has not deleted.)

Starting and Ending a Terminal Session 21

Page of GC28-6763-0" Revised June 1, 1971, By TNL GN28-2483

Mail messages sent directly to you are automatically deleted by the
system after you receive them. Therefore the mail you get when you use
the LISTBC command are those available at log on time if you specified
NOMAIL in your LOGON command. and those suppressed as a result of the
NOINTERCOM operand of the PROFILE command. After you use the LISTBC
command to see your mail, the NOINTERCOM operand will again be in
effect.

If there are no messages available when you use the LISTBC command
you will receive the following message:

NO BROADCAST MESSAGES

If you want to cancel the effect of the NOINTERCOM operand, enter:

profile intercom

You will receive any mail issued after you enter this command. To
obtain your mail messages issued before you entered INTERCOM, use the
LISTBC command.

SENDING MESSAGES

you can use the SEND command to send mail messages to another terminal
user or to a system operator. The SEND command can be used at any time
after you log on.

You can send a mail message to another user only if you know his user
identification. For example, the command:

send 'do not use procedure 245 until notified' user(jones,dept4)

will send the message enclosed in quotes to the two users whose
identifications are JONES and DEPT4.

When 'You send a message to another user, he will receive it
immediately provided that he is logged on and is accepting messages. If
he is not logged on or is not accepting messages, you,are notified and
your message is deleted. For example, assume that SMITH is not logged
on, JONES is not accepting messages. and CIARK is both logged on and
accepting messages. When you send the following message:

send 'this is a message' user(smith,jones,clark)

SMITH and JONES do not receive the message, you are notified, and the
message is deleted. CLARK receives the message.

You can request the system to save your message until the user you
sent it to logs on or decides to accept messages, by using the LOGON
operand of the SEND command. For example, if you enter:

send 'this is a message' user(smith,jones,clark) logon

SMITH will receive your message when he logs on, JONES will receive it
when he uses the LISTBC command, and CLARK will receive it immediately.

You can send a message to only one operator at a time. With the SEND
command" you can identify an operator by a number. For example,

send 'important message' operator(7)

22 TSO Terminal User's Guide (Release 20,.1)

Page of GC28-6763-0, Revised June 1, 1971, By TNL GN28-2483

If there is only one operator at your installation, you can omit the
number. For example,

send I important message' operator

If there are several operators and you omit the number, your message
I is sent to the master console.

Displaying Ses'sion Time Used

You can use the TIME command to find out how much time you have used
during the current session. If you enter:

time

the system sends you a message telling you how long you have been using
the termina 1 since you logged on.

If you are executing a program, you can use the TIME command to find
out how long the program has been running. You must first enter an
attention interruption and then enter the TIME command. The system then
sends you a message telling you how long a program has been running. If
you want to continue processing the program, press the RETURN key and
the program continues. If you want to stop processing the program,
enter another attention interruption and wait for the READY message
before you enter another command.

Ending Your Terminal Session

You can end your terminal session in either of two ways:

• By entering the LOGOFF command to end the session.
• By entering the LOGON command to start a new session.

The LOGOFF command:

• Displays your user identification.
• Displays the length of time you have been using the terminal, and

the time of day and date your session ended.
• Disconnects your terminal from the system.

The LOGON command terminates your current session and starts a new
session at the same time. LOGON must be specified as described in
"Identifying Yourself to the System".

Starting and Ending a Terminal Session 23

the following EDIT command specifies that you are going to create a new
data set named ACCTS.DATA. After you enter the command the system
enters input mode.

READY
edit accts.data new
INPUT

In the following example, the OLD operand of the EDIT command
specifies that you want to edit an existing data set named PARTS. TEXT.
After you enter the command, the system enters edit mode.

READY
edit parts.text old
EDIT

As you can see, the NEW operand specifies that you are going to
create a data set, and the OLD operand specifies that the data set
already exists.

The name you give a data set should follow certain conventions. A
data set name has three fields.

1. Identification qualifier.
2. User-supplied name .•
3. Descriptive qualifier.

The fields must be separated by periods. The total length of the
name, including periods, must not exceed 44 characters. For example, a
typical data set name is:

SMITH. ACCTS. DATA

Identification qualifier

User-supplied name

Descriptive qualifier

When you create a data set you need only specify the user-supplied
name. The system supplies values for the other two fields. The
identification qualifier is the user identification you specified with
the LOGON command. The descriptive qualifier must be one of those
listed in Table 2. The system obtains it from operands you specify in
the EDIT command. If you do not supply it in another operand, the
system prompts you for a descriptive qualifier. If you prefer, you can
specify the descriptive qualifier as part of a data set name, for
example,

PARTS. DATA

You may specify a fully qualified name (a name with all three
qualifiers) by enclosing it in apostrophes. For example,

'JONES.PROG1.ASM'

This is a useful procedure when you have to use a data set with an
identification qualifier other than your own user identification.

Entering and Manipulating Data 27

Page of GC28-6763-0, Revised June 1, 1971, By TNL GN28-2483

Table 2. Descriptive Qualifiers
r----------------------------------T-----------------------------------,
I Descriptive Qualifier I Data set Contents I
~---------------------------------+-----------------------------------~

"

ASM Assembler (F) input

BASIC

FORT

IPLI

PLI

COBOL

TEXT

DATA

CNTL

CLIST

STEX

OBJ

LIST

LOAD

LINKLIST

LOADLIST

TESTLIST

I

ITF: BASIC statements

FORTRAN IV (E, G, Gl or H)
statements and free- or
fixed-format FORTRAN statements

ITF :PL/I statements

PL/I (F) statements

American National Standard COBOL
statements

Uppercase and 'lowercase text

Uppercase text

J JCL and SYSIN for SUBMIT command
I
I TSO commands
I
I STATIC external data from ITF:PLI
I
J Object module
I
I Listings
I
I Load module
I
J Output listing from linkage
I
J Output listing from loader

editor I
I
I

I
I output listing from TEST command
I

I
I
I

OUTLIST J output listing from OUTPUT command I __________________________________ ~ ___________________________________ J

I Any name that does not conform to the naming conventions must be
enclosed in apostrophes. For example, if you have a data set named
RECORDS, with no identification or descriptive qualifiers, enter

'records'

The system will not append the identification and descriptive
qualifiers to such a name.

You can refer to an existing data set by its user-supplied name. In
some cases, you may also have to include the descriptive qualifier. For
example" if two of your data sets were named:

SMITH.PART1.ASM
SMITH.PART1.DATA

and you want to refer to the latter, you must specify:

partl.data

28 TSO Terminal User's Guide (Release 20.1)

Page of GC28-6763-0, Revised June 1, 1971, By TNL GN28-2483

You can also create and edit partitioned data sets. A partitioned
data set consists of one or more data sets called members. Each member
can be created and edited separately and each has a name. The member
name is enclosed in parentheses and appended to the right of the fully
qualified data set name. For example, the fully qualified name of
member MEMl of the SMITH.PART1.DATA data set is:

SMITH. PART1. DATA (MEMl)

You need only use the user-supplied name and member name to refer to
the member. The system appends the identification and descriptive
qualifiers. For example, to refer to member MEMl you can specify:

partl(meml)

In the following example you use the EDIT command to create member
ONE of a partitioned data set named JONES.T42.DATA. The second EDIT
command, creates member TWO of JONES.T42.DATA. Note that the NEW
operand must be specified in both cases. The third EDIT command,
specifies that changes are to be made to member ONE.

READY
edit t42.data(one) new
INPUT

READY
edit t42.data(two) new
INPUT

READY
edit t42.data(one) old
EDIT

After you specify the data set name and the NEW or OLD operand, you
should specify the data set type. The data set type is an operand that
describes the purpose for which the data set is to be or was created.
The type operand is one of the sources from which the system can obtain
the descriptive qualifier.. The valid types are:

ASM
COBOL
GOFORT
FORrE
FORTG
FORTGI
FORTH
PLI
PLIF
IPLI

,BASIC
DATA
TEXT
CLIST
CNTL

Entering and Manipulating Data 29

You do not have to specify the type operand if you specify it as the
descriptive qualifier. For example, the following two commands have the
same effect:

edit ab75 new asm
edit ab75.asm new

If the system cannot find the data set type from other sources, you
are prompted for it.

If you do not want your data set to have line numbers, use the NONUM
operand. For example,

edit ab75 new asm nonum

Do not specify NONUM for the BASIC, IPLI, and GOFORT data set types,
because they must always have line numbers.

Except for one case, lines of input are translated to uppercase
letters by the system. If you want the system to retain your input in
the same form as you enter it (uppercase and lowercase), code the ASIS
operand. For example,

edit records new data asis

Creating a Data Set

You usually create a data set when EDIT is in input mode. You request
input mode when you enter one of the following:

• The NEW operand in the EDIT command •
• The INPUT subcommand while you are in edit mode.

After you enter the EDIT command with the NEW operand the system sends
you the following message:

INPUT

After this message is printed the system prints the first line number of
your data set unless you specified NONUM in the EDIT command. The first
line number printed is 00010. Type the first line of input to the right
of the line number and press the RETURN key to enter ita The system
then prints the second line number, which is 00020~ and you may then
enter your second line of input, and so on. When you reach the end of
the data you want to enter, press the RETURN key without entering
anything (a null line) and the system switches to edit mode. The
following example illustrates the points just discussed:

READY
edit accts new data
INPUT
00010 #23942 5
00020 #32135 21
00030 #32174 12
00040 #49213 35
00050 #52221 50
00060 (null line)
EDIT

Cil2.75
Cil3.90
Cill.80
Cil7.95
4)2.35

acme inc
bbb corp
alpha inds
xyz dist
beta mfg

30 TSO Terminal User's Guide (Release 20.1)

In the example, the line numbers have the standard increment of 10.
If you prefer a different increment, you can use the INPUT subcommand to
create the data set. To do this you must first request a switch to edit
mode by entering a null line after you receive the INPUT message. Then
enter the INPUT subcommand specifying the number of the first line and
the size of the increment. After entering the INPUT subcommand the
system switches to input mode and prompts you with the first line
number. For example, to start with line 5 and use increments of 5, you
could use the following sequence:

READY
edit accts new data
INPUT
00010 (null line)
EDIT
input 5 5
INPUT
00005 #23942 5
00010 #32135 21
00015 #32174 12
00020 #49213 35
00025 #52221 50
00030 (null line)
EDIT

@2.75
@3. 90
@1.80
@7. 95
@2.35

acme inc
bbb corp
alpha inds
xyz dist
beta mfg

You can create the same data set in edit mode. However, you must
enter the line numbers you wish to use.

READY
edit accts new data
INPUT
00010 (null line)
EDIT
5 #23942 5
10 #32135 21
15 #32174 12
20 #49213 35
25 #52221 50

@2.75
@3. 90
@1.80
@7. 95
@2.35

acme inc
bbb corp
alpha inds
xyz dist
beta mfg

Note: Requesting an increment larger than 1, makes it easier for you to
insert lines in your data set later on. (See the section "Ur:dating a
Data Set" for instructions on how to insert lines in your data set.)

Placing Data into Columns

You can use the TAB key of your terminal to align your data in columns,
just as you would with an ordinary typewriter. However, this mechanical
tab setting is not recognized by the system which interprets each
striking of the TAB key as a space. For example, if you enter the
following three lines and align them with the TAB key, they appear at
the terminal as follows:

39427
22
987654

abcde
fghijkl
rnnop

49211
441
2

72669
123456
31

ab4
72de
xyz

but they are received by the system as follows:

39427 ABCDE 49211 72669 AB4
22 FGHIJKL 441 123456 72DE
987654 MNOP 2 31 XYZ

Entering and Manipulating Data 31

Page of GC28-6763-0, Revised June 1, 1971, By TNL GN28-2483

If you want the system to place your data into columns, you must
establish logical tab settings with the TABSET subcommand of the EDIT
command or else use the defaults provided by the system. If you have
established logical tab settings for your data set, the system will
receive each item in its proper column whenever you press the TAB key.
The mechanical tab settings in your terminal need not correspond to the
logical tab settings. For example, assume that the logical tab settings
for the data set are columns 10, 20, and 30, while the mechanical tab
settings in the terminal are columns 5, 10 and 15. When you type in the
following three lines using the TAB key:

abc def ghi jkl
rono pqr stu vwx
yzO 123 456 789

column 15
column 10
column 5
column 1

they are received by the system as follows:

ABC
MNO
YZO

DEF
PQR
123

GHI
STU
456

JKL
WX
789

column 30
column 20
column 10
column 1

you may find it convenient to make the mechanical tab settings
coincide with the logical tab settings.

The default tab settings used b¥ the system vary with the data set
type. They are shown in Table 3.

Table 3. Default Tab settings
r-----------------------T--------------------------------------,
I Data Set Type I Default Tab setting Columns I
~-----------------------+-------------------------------------~

COBOL 8,12,72
PLI 5,10,15,20,25,30,35,40,45,50
PLIF 5,10,15,20,25,30,35,40,45,50
FORT (ALL) 7,72
ASM 10,16,31,72
TEXT 5,10,15,20,30,40
DATA 10,20,30,40,50,60
CLIST 10,20,30,40,50,60
CNTL 10,20,30,40,50,60
IPLI 5,10,15,20,25,30,35,40,45,50
BASIC 10,20,30,40,50,60

-----------------------~-------------------------------------~

If you want to change the default settings or other settings you
previously established, or nullify all tabs, you must use the TABSET
subcommand. If you want to change the default settings, you will
probably do so before you create the data set. That means you must
request edit mode after you enter the EDIT command, then enter the
TABSET subcommand and return to the input mode to create the data set.
For example, if you want to create a TEXT data set with the logical tabs
at columns 10, 25, and 35, you can use the following sequence:

32 TSO Terminal User's Guide (Release 20.1)

To delete the entire group, place an asterisk in the position where
the.names do not match. (The asterisk cannot replace the user
identification.) For example, to delete the first group use the
following:

READY
delete * • data
READY

To delete the second group use the following:

READY
delete weather.*
READY

Establishing Passwords for a Data Set

Use the PROTECT command to establish passwords for your data set.
Passwords prevent unauthorized persons from reading (listing) or writing
(making changes to) your data set. Whenever anyone attempts to use a
password-protected data set, the system requests a password unless the
data set is protected with the same password that was entered in the
logon procedure. The system allows two chances to provide the correct
password. If your terminal has the "print-inhibit" feature, the system
disengages the printing mechanism at your terminal while you enter the
password in response. However, the "print-inhibit" feature is not used
if the prompting is for a new password you are adding to the data set.

The PROTECT command also specifies what the person who knows the
password can do to the data set; that is, whether he is allowed to read
it, or write in it, or both. You can require a password for both
reading and writing; or just for reading and not writing.. You can also
assign one password for reading and a different one for writing. The
operands that control the type of operations are:

PWREAD -- you must specify a password before you can read from the data
set.

PWWRITE -- you must specify a password before you can write in the data
set.

NOPWREAD
password .•

you can read from the data set without specifying a

NOWRITE -- you cannot write into the data set (with this password).

There are three valid combinations of operands:

PWREAD PWWRITE -- the password is required for either reading or writing
your data set.

PWREAD NOW RITE the password is required for reading. Writing is not
allowed with this password.

NOPWREAD PWWRITE -- you can read without a password. The password
allows you to both read and write the data set.

Entering and Manipulating Data 49

Page of GC28-6763-0, Revised June 1, 1971, By TNL GN28-2483

If you specify only one operand you get two values by default. They
are:

Operand
PWREAD
NOPWREAD
PWWRITE
NOWRITE

Default Values
PWREAD PWWRITE
NOPWREAD PWWRITE
NOPWREAD PWWRITE
PWREAD NOWRITE

The type of password operand, the number of times the password is
used, and optional security information that you can specify are
recorded in the PASSWORD data set of the operating system.

The following example adds the password HUSH for reading and writing
the JONES.SECRET.DATA data set:

READY
protect secret add (hush) pwread
READY

The following example adds another password, WHUSH, to the same data
set. This password can be used only for reading the data set:

READY
protect secret/hush add(whush) nowrite
READY

Note how you must use the password in subsequent commands once you
have established it.

You can replace a password. For example, to replace the password
SESAME for HUSH in the JONES.SECRET.DATA data set, enter

READY
protect secret/hush replace (hush, sesame)
READY

Note that when you are replacing a password you do not have to
specify the function of the password.

You can also delete a password. For example, if you no longer
require the WHUSH password for reading the data set, enter

READY
protect secret/sesame delete(whush)
READY

You can use the DATA operand to specify optional security information
to be recorded in the system. For example, when you establish the
password AB#72 for the SMITH.SALES.TEXT data set, you can also specify
other information:

READY
protect sales add(ab#72) data (password changes on monday)
READY

To find out what the optional information is, the type of operation
allowed, and the number of times the password has been used, use the
LIST operand. For example,

protect saleslist(ab#72)

50 TSO Terminal User's Guide (Release 20.1)

Page of GC28-6763-0, Revised June 1, 1971, By TNL GN28-2483

Note:

1. Data sets which are permanently allocated as part of the LOGON
procedure or by use of the ALLOCATE command cannot be accessed by
the PROTECT command. These data sets should be freed by using the
FREE command prior to issuing the PROTECT command.

2. Wh'en a protected data set is renamed or deleted you should update
the password data set to reflect the change. This prevents your
having insufficient space for future entries.

Entering and Manipulating Data 50.1

Programming at the Terminal

You can use the TSO facilities to compile, link edit, and execute (or
compile and load) your source program at the terminal. TSO also allows
you to use any other program, such as utilities, at the terminal. That
is, instead of taking your job to the computer room to run it directly
under the operating system, you can use the TSO facilities to enter it
through your terminal. These facilities reduce your job turnaround time
because you get immediate results at the terminal.

You can also use the terminal to submit your job for processing at
the computer in the conventional manner. That is, you submit your job
through the terminal but do not want to get immediate results at the
terminal. The results are sent to you from the computer room after your
job is executed or you may obtain them at the terminal at a later time.
Jobs submitted in this manner· are called background jobs.

Most compilers or assemblers that can be used
system can be used from your TSO terminal. They
results at the terminal, or for background jobs.
programs, your installation may have one or more
Program Product compilers and other TSO programs
terminal. They are:

under the operating
can be used to obtain
In addition to these

of the special TSO
for your use at the

• Interactive Terminal Facility (ITF): PL/I -- A problem-solving
language processor.

• Interactive Terminal Facility (ITF): BASIC -- A problem-solving
language process or.

• Code and Go FORTRAN -- A FORTRAN compiler designed for a very fast
compile-execute sequence at the terminal.

• FORTRAN IV (Gi) -- A version of the FORTRAN IV (G) compile modified
for the terminal environment.

• TSO FORTRAN Prompter -- An initialization routine to prompt you for
options and invoke the FORTRAN IV (Gi) Processor.

• FORTRAN IV Library (Mod I) Execution-time routines for use with
either Code-and-Go FORTRAN or FORTRAN IV (Gi) .•

• FUll American National standard COBOL Version 3 -- A version of the
American National Standard COBOL modified for the terminal
environment.

• TSO COBOL Prompter -- An initialization routine to prompt you for
options and invoke the full American National Standard COBOL Version
3 Processor.

• TSO Assembler Prompter -- An initialization routine to prompt you
for options and invoke the Assembler (F).

If your installation has one or more of the TSO Program Products, it
will provide you with documentation that explains how to use them. This
section explains how to use the programs normally available under the
operating system. The following paragraphs describe how you can:

Create a program
Compile your program
Link edit a compiled program

Programming at the Terminal 55

Page of GC28-6763-0, Revised June 1, 1971, By TNL GN28-2483

Execute a program
Load a program
Process background jobs

It is assumed that you are familiar with a programming language and
with the information in the Guide to Writing a Terminal Monitor Program
or a Command Processor or Terminal User's Guide that corresponds to that
language. The options and data set requirements of the compilers,
linkage editor, and load€:r are summarized in the publication, IBM
Systern/360 Operating System: Job Control Language User's Guide,
GC28- 6703.

Creating a Program

Before your source program is compiled you must introduce it to the
system. You do so with the EDIT command, as described in the section,
"Entering and Manipulating Data".

When you enter the EDIT command you must specify the type operand or
give a descriptive qualifier to the data set name. The type (or
descriptive qualifier) tells the system which programming language you
are using. If you are writing a program and JCL statements to be
submitted as a background job, use CNTL as the type or descriptive
qualifier.

The EDIT command allows you to specify certain options for your
source program. You can use the SCAN operand to request syntax checking

I when the data set type is GOFORT, FORTE, FORTG, FORTGI, FORTH, BASIC,
PLIF, PLI, or IPLI. You can use the LINE operand specify the length of
the input line for PL/I source programs. The length of the input line
for the Assembler, FORTRAN, and COBOL is 80 characters.

After you create your source program you must use the SAVE subcommand
to save the data set before you end the EDIT command. Your source
program is now ready for compilation.

The example in Figure 4 shows the creation of an assembler source
program.

r--,
READY
edit progl new asm
INPUT

EDIT
save
SAVED
end
READY

source program

__ J

Figure 4. Creating an assembler source program

56 TSO Terminal User's Guide (Release 20.1)

r---,
READY
edit backpgm new cntl nonum
INPUT
//smith3 job 7924,smith,msglevel=(1,1)
//stepl exec pgm=iepcklOO,parm=(deck,maps,list)
//syslib dd dsname=sysl.coblib,disp=shr
//sysutl dd unit=2311,space=(trk,(SO,lO»
//sysut2 dd unit=2400
//sysut3 dd unit=2400
//sysprint dd sysout=a
//syspunch dd dsname=comp.cobol,disp=(,catlg),unit=2400
//sysin dd *

source statements

/*
//step2
//syslib
//syslout
//syslin
//master
//print
//input

exec
dd
dd
dd
dd
dd
dd

input data

I /*
I //
I (null line)
I EDIT
I save
I SAVED
I end
I READY

pgm=loader,parm=(map,let,call)
dsname=sysl.coblib,disp=shr
sysout=a
dsname=*.stepl.syspunch
dsname=order,disp=old
sysout=a

*

I submit backpgm nonotify
I READY L ___ _

Figure 8. submitting a Program as a Background Job

DISPLAYING THE STATUS OF BACKGROUND JOBS

Any time after you submit a background job you can use the STATUS
command to have its status displayed. The display will tell you whether
the job is awaiting execution, is currently executing, or has executed.
For example, if you want to display the status of SMITH23, enter:

READY
status smith23

Programming at the Terminal 67

Page of GC28-6763-0" Revised June 1, 1971, By TNL GN28-2483

If you want to know the status of all the jobs that begin with your
user identification, enter the STATUS command without operands:

READY
status

CANCELLING BACKGROUND JOBS

You can use the CANCEL command to cancel execution of a background job.
If the job has already been executed, the CANCEL command has no effect.

For example, if you want to cancel job JONESAB, enter:

READY
canc el jon esab

After you enter the CANCEL command, the system will send you a message
telling you that the jobs specified have been cancelled.

CONTROLLING THE OUTPUT OF A BACKGROUND JOB

You can use the OUTPUT command to:

• Direct the JCL statements and system messages (MSGCLASS) and system
output data sets (SYSOUT) produced by a background job to your
terminal.

• Direct the MSGCLASS and SYSOUT output from a background job to a
specific data set.

• Change an output class used in a background job.

• Delete the output data sets (SYSOUT) or the system messages
(MSGCLASS) for background jobs.

If you use the NOTIFY operand of the SUBMIT command and you have elected
to receive messages, you will receive messages. If you are not receiving
messages, the message is placed in the Broadcast data set. You can then
use the OUTPUT command to control the output produced by the job on the
MSGCLASS and SYSOUT classes before the system processes them.

For example, assume that job GREEN 67 produces output on classes A,
B, D, G, and M. If you want the output on classes G and M listed at the
terminal, enter:

READY
output green67 class(g m) print(*)

If you want the output of class B to be listed in the GREEN. KEEP. OUT LIST
data set, enter:

READY
output green67 classCb) printCkeep)

If you want to change the output in class A to class C, enter:

READY
output green67 classCa) noprintCc)

68 TSO Terminal User's Guide CRelease 20.1)

Page of GC28-6763-0, Revised June 1, 1971, By TNL GN28-2483

Controlling a System with TSO

Two commands are used to control "TSO: OPERATOR and ACCOUNT. The
OPERATOR command is used to regulate the operation of the system from a
terminal. The ACCOUNT command is used to maintain the list of
authorized users of the system.

You must have authorization from your installation to use either the
OPERATOR or the ACCOUNT command. This authorization is recorded in the
system with your user attributes. Use of the OPERATOR command is
restricted to terminals that have the transmit-interrupt capability.

The Operator Command

The OPERATOR command, through its subcommands, allows you to perform the
following functions:

• Monitor terminal activity (MONITOR and STOP subcommands).
• Display TSO information (DISPLAY subcommand).
• Cancel a terminal session or a background job (CANCEL subcommand).
• Send messages to terminal users (SEND subcommand>.
• Modify time sharing parameters (MODIFY subcommand).
• End operation of the OPERATOR command (END subcommand).

I Note: The attention interruption will not halt the output from
Operating System commands, such as DISPLAY ACTIVE.

You must first enter the command and then the subcommand you wish to
use. For example, use the following sequence to enter the MONITOR
subcommand:

READY
operator
OPERATOR
monitor •••

For further information on system operator commands and procedures refer
to the publications, IBM system/360 Operating system: Time sharing
Option, Command Language Reference, and IBM System/360 Operating System:
Operator's Procedures, GC28-6692.

MONITORING TERMINAL ACTIVITY

The MONITOR subcommand lets you keep track of the users of the system
and of any background jobs submitted with the SUBMIT command.

If you want to be notified whenever a terminal session starts or
ends, enter the SESS operand of the MONITOR subcommand. For example,
after using the following sequence:

READY
operator
OPERATOR
monitor sess

you will receive messages, such as the following, interspersed with
other messages and input at your terminal:

Controlling a System With TSO 79

IEF125I JONES LOGGED ON

IEF125I SMITH LOGGED ON

IEF126I JONES LOGGED OFF

IEF125I BROWN LOGGED ON

IEF126I BROWN LOGGED OFF

IEF126I SMITH LOGGED OFF

The message informing you that a user logged on, consists of his user
identification, for example,

JONES LOGGED ON

The message informing you that a user's session has ended (logged off)
consists of the user identification and the words "LOGGED OFF", for
example,

JONES LOGGED OFF

You can also request the time at which the session starts and ends as
part of the message. You do this by entering SESS,T with the MONITOR
subcommand. For example, if you enter:

monitor sess,t

the message informing you that JONES logged on may appear as follows:

IEF125I JONES LOGGED ON TIME = 1.35.05

The LOGON time is shown in hours, minutes and seconds.

If you want the name of each background job submitted during a
terminal session displayed when the job starts and ends, you must enter
another MONITOR subcommand. For example, after using the following
sequence:

OPERATOR
monitor jobnames

you will start receiving messages, such as the following, interspersed
with other messages and input at your terminal:

80 TSO Terminal User's Guide (Release 20.1)

Page of GC28-6763-0, Revised June 1, 1971" By TNL GN28-2483

DISPLAY also lets you obtain a listing of messages from background jobs
that are awaiting reply from an operator. To obtain such a listing
enter:

display r

If you want to know the time of day and the date, enter:

display t

CANCELLING A SESSION OR BACKGROUND JOB

You can use the CANCEL subcommand of the OPERATOR command to cancel a
terminal session or a background job submitted by a terminal user. To
cancel a session enter the U=user identification operand in the CANCEL
subcommand. For example, if you want to cancel the session of user
SMITH, enter:

cancel u=smith

SMITH will be presented with information that notifies him of the end of
his session.

To cancel a background job, enter its jobname in the CANCEL subcommand.
For example, if you want to cancel job AB999, enter:

cancel ab999

You can also request that when the job is cancelled a dump be taken of
any step of that job currently being executed, for example,

cancel ab999,dump

In addition to the dump, you can request that all input and output for
the job be cancelled. For example,

cancel "ab999,durnp,all

SENDING MESSAGES TO TERMINAL USERS

You can use the SEND subcommand to send broadcast messages (notices) to
all users or to individual users. For example, if you want to send the
message TSO NOT AVAILABLE ON TUESDAY 9/29 to all users, enter:

send 'tso not available on tuesday 9/29'

If you only want users SMITH and JONES to receive the message, enter:

send 'tso not available on tuesday 9/29',user=(smith,jones)

SMITH and JONES will receive the message only if they are logged on. If
you want to make sure that they receive the message when they log on,
enter:

send 'tso not available on tuesday 9/29',user=(smith,jones},logon

When the LOGON operand is specified and Smith and Jones are already
logged on and accepting messages, the message will be sent to them
immediately. If Smith and Jones are not logged on or are not accepting
messages, the message will be put in the Broadcast data set. It will be
issued to the specified user only after he enters either LISTBC or

-another LOGON command.

Controlling a System with TSO 83

Messages that you send to all users are given a number and are retained
by the system. Iflyou want to receive a list of all retained messages,
enter

send list

If you want to delete a given message, enter its number in the SEND
subcommand. For example, if you want to delete message number three
enter:

send 3

If you want to list a given message without deleting it, enter the LIST
operand. For example

send 3,list

MODIFYING TIME SHARING PARAMETERS

You can use the MODIFY subcommand to change the time sharing parameters
specified during system generation or specified by the system operator
with the START command. For information on this subcommand refer to the
publication, IBM Systern/360 Operating System: Time Sharing Option,
Command Language Reference, and IBM System/360 Operating System:
Operator's Procedures.

ENDING OPERATION OF THE OPERATOR COMMAND

Whenever you want to end the OPERATOR command, enter the END subcommand.
After you enter the END subcommand you receive the READY message. You
can then enter any command you choose.

The Account Command

The user attributes of each authorized user of TSO are recorded in the
User Attribute Data Set (UADS). There is an entry in the UADS for each
user. Each entry contains:

1. A single user identification.

2. One or more passwords, or a single null field, associated with the
user identification.

3. One or more account numbers, or a single null field, associated
with each password.

4. One or more procedure names associated with each account number.
Each procedure name identifies a LOGON procedure that is invoked
when the user begins a terminal session by entering the LOGON
command.

5. The main storage region size requirements for each procedure.

6. The name of the group of devices that the user is allowed to use
when he does not request specific devices.

7. The authority to use, or a restriction against using, the ACCOUNT
command.

84 TSO Terminal User's Guide (Release 20.1)

· · ·
· ·

·

· ·
..

·

IBM System/360 Operating System:
Time Sharing Option
Terminal User's Guide

READER'S COMMENT FORM

Order No. GC28-6763-0

Please use this form to express your opinion of this publication. We are interested in your
comments about its technical accuracy, organization, and completeness. All suggestions
and comments becomr the property of IBM.

Please do not use this form to request technical information or additional copies of publications.
All such requests shou Id be directed to your IBM representative or to the I BM Branch Office
serving your locality •

• Please indicate your occupation:

• How did you use this publication?

o Frequent Iy for reference in my work.

o As an introduction to the subject.

o As a textbook ina course.

o For specific information on one or two subiects •

• Comments (Please include page numbers and give examples.):

• Thank you for your comments. No postage nec~ssary if mailed in the U.S.A.

GC28-6763-0

YOUR COMMENTS, PLEASE •••

This manual is part of a library that serves as a reference source for systems analysts,
programmers and operators of mM systems. Your answers to the questions on the back
of this form, together with your comments, will help us produce better publications for
your use. Each reply will be carefully reviewed by the persons responsible for writing
and publishing this material. All comments and suggestions become the property of mM.

Note: Please direct any requests for copies of publications, or for assistance in using your
IBM system, to your mM representative or to the mM branch office serving your locality.

Fold

BUSINESS REPLY MAIL
NO POSTAGE STAMP NECESSARY IF MAILED IN THE UNITED STATES

Attention: Programming Systems Publications
Department 058

Fold

POSTAGE WILL BE PAID BY •••

IBM Corporation

P.O. Box 390

Poughkeepsie, N.Y. 12602

International Business Machines Corporation
Data Processing Division
1133 Westchester Avenue, White Plains, New York 10604
[U.S.A. only]

IBM World Trade Corporation
821 United .Nations Plaza, New York, New York 10017~~,\
[International] V

Fold

FIRST CLASS
PERMIT NO. 81
POUGHKEEPSIE, N. Y.

Fold

(')

So
>
0-
:J

(Q

r-;.

c:
(
c
~
c.
~

G' r
'" <X
I

()o

():
(.;
I

C

