
File No. S360- 20
Order No. GC28-6698-3 OS

. Systems Reference Library

IBM System/360 Operating System:

Time Sharing Option Guide

This publication describes the concepts, features
and implementation of TSO, a general purpose
time-sharing facility operating under the MVT
configuration of the control program. This manual
is intended for those who design, generate, and
maintain a TSO installation. Topics discussed
are:

• The capabilities and advantages of time
sharing in general and TSO in particular.

• The programming languages and system
facilities available to a TSO terminal user.

• The system configurations TSO requires.
• How to generate and maintain a TSO system.
• The Program Products available with TSO.

The prerequisite publication is:

IBM· System/36 0 Operating system: MVT Guide,
GC28-6720.

I FoUrth Edition (June, 1971)

This is a major revision of, and obsoletes, GC28-6698-2.
Changes to text and illustrations are indicated by a
vertical line to the left of the change.

This edition applies to release 20.1, of IBM System/360
operating system, and to all subsequent releases until
otherwise indicated in new editions or Technical Newsletters.
Changes are continually made to the information herein;
before using this publication in connection with the
operation of IBM systems, refer to the latest IBM Systern/360
SRL Newsletter, Order No. GN20-0360, for the editions that
are applicable and current.

Requests for copies of IBM publications should be made to
your IBM representative or to the IBM branch office serving
your locality.

A form for reader's comments is provided at the back of
this publication. If the form has been removed, comments may
be addressed to IBM Corporation, Programming Systems
Publications, Department D58, PO Box 390, Poughkeepsie, N. Y.
12602

© Copyright International Business Machines Corporation 1969,1970,1971

The Time Sharing Option 1s a general
plrpose time-sharing facility for the MVT
configuration of the operating system~
This manual is an introducti on to TSO for
the system manager, system analyst, and
system programmer. It helps those with
system responsibilities to evaluate the
capabilities of TSO, and to design and
implement a TSO configuration.

The first part of this publication is a
functional description of TSO" covering:

• The advantages of a time-sharing
system, the system environment required
for TSO" the relationship of TSO to:the
operating.system, and the capabilities
of the command language,.

• The facilities available through the
command langUage .•

• The facilities available through IBM
Program Products for TSO.

The last three chapters of the manual givk
implementation planning infor.mation:

• A discussion of the TSO routines that
have been added to the MVTcontrol
program.

• A discussion of implementation
techniques •

• A discussion of TSO storage
requirements,.

There are four appendixes,.

• A list of the TSO commands by function.

• A list of the IBM Program Products
available for TSO users" and references
to further documentation for them.

• A list of the Time Sharing Driver Entry
Codes.

• A list of terminal messages requiring
installation action.

• A glossary of terms.

Readers interested in the implementation of
the system should be familiar with the
information in:

IBM· System/360 operating System:

MVT Guidg, GC28-6720.

Preface

Planning for the Telecommunications
Access Method (TeAM), GC3O-2020.

storage Estimates" GC28-6551.

TCAM Programmers Guide and Reference
Manual.

For more detail on specific components or
subjects discussed in this publication, the
following publications may be of interest.

For system operation and management:

IBM System/360 Operating System:

operator' s Reference., . GC2 8-66 91.

System Management Facilities, GC28-6712.

For I/O devices and control units:

IBM 2701 Data Adapter Unit" Component
Description, GA22~6864.

IBM Component Description, 2702
Transmission COntrol" GA22-6846.

IBM 2703 Transmission Control" Component
Description, GA27-2703.

IBM 2741 communications Terminal,
GA24-3415.

IBM 1050 system Summary,. GA24-3471,.

IBM Component Description, 2260 Display
Station -- 2848 Display Control,
GA27-2700.

Program Product references are included in
Appendix B,.

Note: For planning purposes" this manual
includes information for components and
capabilities that have been announced for
availability after the delivery date for
the Time Sharing Option. See your local
IBM representative for the availability
dates for:

• TSO with Model 65 Mul tiprocessing'!I

• PL/I Optimizing Compiler Program
Product,.

• ASCII capability for the TSO Data
utili ties Program Product,.

• OS PL/I Checkout Compiler,.

Preface 3

SUMMARY OF MAJOR CHANGES '. '. •
Release 20.1 GC28-6698-2
Release 20.1 GC28-6698-3

INTRODUCTION • '. '. • '.
Advantages of a Time Sharing system
Using a Terminal • • • ••• • • • •

starting and Stopping a Terminal
Session • • • • • • • •
Working at the Terminal

System Configuration •• • •
Terminals •• '. • • • •
Transmission Control Unit
Swap Data set Devices

The Relationship of TSO to the
Operating system • • • • '. •• •

Execution of Background Jobs from

7
7
7

9
9

11

11
• • 11

12
12
12
13

• 13

the Termina 1 • • '. • • • • • • 14
Foreground-Background Compatibility 14
Restrictions and Limitations • 14
system Control • • • '. '. • • • • • • 15
Job Definition and Scheduling 15
Tuning the Time Sharing System ••• 15

Monitoring System Use and Performance • 15
System Security • • 16

User Verification • • • • 16
Program Protection 17
Data Set Security •• 17
Authorizations • • 17

Capabilities of the TSO Command
Language • • • • • • •
IBM Program Products • • • •

Problem-solving • • • •
Programming •• '. • '. •
Text and Data Handling •

COMMAND LANGUAGE FACILITIES
Conventions at the Terminal •• '..

Logging On • • • •
Input Editing • • • •
Entry Modes
The Attention Key
Data Set Naming Conventions

Data Entry • •• • • • • • •
Creating Data Sets • •
Entry Modes for EDIT • •
Input Mode • • • • • •
Edit Mode • •• • •
Modifying Data sets • • • •

Data Set Management Commands
TSO Data Utilities • • •• •

Text-Handling •••••
Data set Manipulation • • •

Compiling and Executing Programs
Remote Job Entry • • • •
System Control,. • • •

User Authorization • •
System Operation •
Command Procedures

Other Commands

PROGRAMMING AT THE TERMINAL

17
18

' •• 18
19
19

20
20

• 20
21
21

• • 21
21

• 22
22
23
23
23
23

• • 23
24
24

• • 24
• • 25

25
26
26
26
26
27

28

Contents

COBOL • • • • • '. '. • • • • • • 28
Entering the Source Program '. 29
Compiling a COBOL Program • • 29
Program Execution • • 30
Interactive Programs • • • • • • • • 30
A COBOL Example ••• • • '. 31

FORTRAN • • • • • •• • • '. • • 34
Entering the Source Program • 34
Compiling a FORTRAN Program 34
Testing FORTRAN Programs •• • • 35

PL/I • • • • • • • • • • '. '. '.. • '. 35
Entering a PL/I Program • • •• 36
Compiling a PL/I Program • • 36
Program Execution •••• • • 36

Assembler Language • • • • • • 36
Assembling the Program • • 36
Test Mode • •• • • • 36

Other Compilers • 37
A Compiler Command Procedure ' •••• 37
Nested Procedures • • 38

PROBLEM SOLVING
ITF: BASIC • '. • •
ITF: PL/I
Code and Go FORTRAN

SYSTEM SUMMARY,. • • • '. •
The Time Sharing Driver
Control Routines • • • • • •

The Time Sharing Control Task
The Region Control Task
LOGON/LOGOFF •• • ,.

• • 40
• • 40
• • 41
• • 42

• • 45
• • • 46

• • 46
• • • 47

• 47
• 48

The Terminal Monitor ~rogram • • • • 49
TEST • • • • • • •
Service Routines •
Command Processors and User

• 50
• • 50

Progr ams '. '. • • • • • 5 2
Terminal I/O '. ,.. • • • 52

The Message Control Program 52
Mixed Environment MCP's •• 52
Message Control Program Interfaces • 52
Multi-Terminal Message Processors • 53

overview and Storage Map • • • 55
Time Sharing Algorithms • • • '. • • 57

Time Slices 57
Major Time Slices ••••• 58
Minor Time Slices '. 60

SYSTEM IMPLEMENTATION • • • • 62
Tailoring a Message Control Program 62

Mixed Environment MCPs • • • • • 62
TSO-Only MCP '. •• • • '. ,. '. • • 62
LINEGRP Macro Instruction • • • • • 63
LISTTA Macro • • '. •• • • • 66
TSOMCP Macro • • '. • • • • 66

Writing Cataloged Procedures for TSO •• 70
Message Control Program 70
Time Sharing Control Task ••• 70
Background Reader (BRDR) ,. • • • 72
TSO Trace writer • • • •• • 73
Logon cataloged Procedure • • 73

TSO System Parameters • ••• • • • 74

Contents 5

The Time Sharing Control Ta~k
Parameters .. • .. '. • ,.. '.
Driver Parameters ,. • • • '.
Buffer Control Parameters
System Parameter Format ...

Tuning the Time Shar ing Driver '.

74
75

• 75
• 76

80
Using. TSO Trace •• ,. • ,... '. '. 80

Writing Installation Exits for the
SUBMIT Command • , '.. '. •• 'e.'.,...
writing Installation Exits for the
OUTPUT status" and Cancel Commands •
Writing a LOGON Pre-Prompt Exit

STORAGE ESTIMATES '. '
Main Storage Requirements

MVT Basic Fixed Requirement
Nucleus • • • '. • • ••
Master Scheduler Region. '.
Link Pack Area '. ,. • '. ' ...
System Queue Area '.. • • • '. ..

Message Control Program Requirement

82

83
83

87
• 87

•• 87
87

• • 87
87
87

• 88
Time Sharing Control Region
Requirement • '. • •• .. •
Dynamic Area Requirements

••• '. 88
88

Illustrations

'Figures

Figure 1. Simple Identification
Scheme '........'....... • 20
Figure 2,. User Identification
Hierarchy,. • • • .. '. • • • '. •• • 21
Figure 3,. Example of Data Set Naming
Conventions • • • • • • • • • ,'. • .. '. • 22
Figure 4.. Program Control Commands • 25
Figure 5. A Command Procedure 27
Figure 6,. Entering a COBOL Program • 29
Figure 7. Compiling a COBOL program • 30
Figure 8. Defining the Terminal as a
File • • ~ .. • • • .. • • • • • .. • • 31
Figure 9,. A Terminal Session
creating a COBOL Program (Part 1 of 2) • 32
Figure 10,. FORTRAN Syntax Checker
Diagnostic 34
Figure 11. Sample of FORTRAN compiler
output '.. '. ,. '. • ,. • '. • • • • • • • 35
Figure 12. A Command Procedure to
Invoke the PL/I (F) Compiler .. '. • 38
Figure 14. Implicit use of Procedure '. 38
Figure 13,. Use of a Command Procedure 38
FigUre 15,. A Command Procedure' to
Invoke a User Program • • •• • '. • '.. 39
Figure 16. A Command Procedure for a
Compile-Load-Go Sequence • •• • • • • • 39
Figure 17. Using a compile-Load-Go
Command Procedure • • '. • • • '. '. '. • • 39
Figure 18. ITF: BASIC Sample Session 41
Figure 19,. ITF: PL/I Sample Session 42
Figure 20,. Code and Go FORTRAN Sample
Session • '. '. • '.'. • • • • • • 44
Figure 21. TSO Control Flow Diagram • 45
Figure 22,. The Time Sharing Driver •• 46
Figure 23. The Time Sharing Control
Task • ,. '. • • '. • • ,. • ,. '. 47

6 Time Sharing Option Guide (Release 20.1)

Foreground Region Requirement,., ••• 88
Auxiliary Storage Requirements • • 88

swap Data sets • • • • '. ' '. '.. '. 88
system Libraries and Data Sets • 89

• '90
• 90

90
• 91

APPENDIX A: TSO COMMANDS
Data Management
Language Processors
Program Control
Remote Job Entry •
System, Control. '.

• • • 91

Session Control • •••• •
91

• • 91

APPENDIX B: PROGRAM PRODUCTS 92

APPENDIX C: DRIVER ENTRY CODES '. 93

APPENDIX 0: TERMINAL MESSAGE REQUIRING
INSTALLATION ACTION ... '. '. '. • ,.. • • 97

APPENDIX E: MESSAGE CONTROL PROGRAM
ASSEMBLY DIAGNOSTIC ERROR MESSAGES • • .108

APPENDIX F:

INDEX

GLOSSARY ••• 111

• .118

Figure 24. The Region Control Task •• 48
Figure 25. The LOGON/LOGOFF Scheduler 48
Figure 26. LOGON Linkage '. • • • .' •• 49
Figure 27. Terminal Monitor Program • 50
Figure 28,. Service and TEST Routine • 51
Figure 29,. TCAM Message Control
PrOCJram I. '. • '., • '. I. • '. '. I. •
Figure 30. system Overview
Figure 31. Typical Main storage Map
Figure 32,. Queue Service Time
Figure 33,. Minor Time Slice
Figure 34. Job Stream to Tailor MCP
Figure 35. Sample MCP '. •• .. •
Figure 36,. sample MCP
Figure 37. sample MCP start

• 54
• • 55

'. 56
• 57

58
• 63

69
• • 69

Procedures '. .. • • • • 70
Figure 38. sample Cataloged Procedure
to Start Time Sharing Control Task •• 72
FigUre 39. Sample Background' Reader
(BRDR) Procedure • • '.. • • • '. • 72
FigUre 40.. Sample TSO Trace Start
Procedure ... • '. '. '. • .. • '. '. • 73
Figure 41. Sample LOGON Catalogued
Procedure '. • • '. '. ,. • '. • • •
FigUre 42. TSO System Parameter
Syntax (Part 1 of 2) • • • • '.
Figure 43. Sample TSO System
Parameters • • •• •
Figure 44. sample Job System, to Run

• • 74

• 77

79

TSO Trace Data set Processor 80
Figure 45. Format of the TS Trace
Data set 81
FigUre 46. Portion of Sample PL/I
Log on Pre - Prompt Exit,.. '. .. • • • • • 86
Figure 47,. Swap Allocation Unit Sizes 89

Summary of Major Changes

Release 20.1 GC28-6698-2

r---------------------T--r--------------,
I Item I Description I I
r---------------------+--+--------------~
system ImplementationlA section has been added describing the techniques

lused in implementing a TSO system. This section
Iconsists of discussions of:
I
IGenerating a Message Control Program
I Writing Cataloged Procedures Used With TSO

, Ispecifying TSO system Parameters
ITuning the Time Sharing Driver
IWriting Installation Exits for:
IThe SUBMIT Command
IThe OUTPUT, STATUS, ~nd CANCEL Conunands
IThe LOGON Command

r---------------------+--+--------------~
Istorage Estimates IMost of the information in the storage Estimates I I
I Isection, including the sample TSO configuration, I I
I I has been delet ed and moved to the publ ica tion IBM I I
I I System/360 Operating system storage Estimates I I
I I GC28-6551. I I
~---------------------+---~--t-------------_i
IDriver Entry Codes IAn appendix has been added containing the format I I
I I and meaning of the TSEVENr macro instructions used 1 I
I Ito notify the Time Sharing Driver of system I I
I I events. 1 I
~---------------------+--t--------------i
ITerminal Messages IAn appendix has been added containing messages I I
I Requiring Iwhich when received at a terminal requires the 1 I
IInstallation Action I installation to take certain actions. 1 I
r---------------------t--~-----t--------------~
IMessage Control IAn appendix has been added containing the text of 1 1
IProgram Assembly I error messages generated by the macro instructions I I
IError Messages lused to generate the Message Control Program. 1 I L _____________________ ~ __ ~ ______________ J

Release 20.1 GC28-6698-3

r---------------------T--7--------------,
I Item I Description IAreas Affected I
~---------------------+--t-------------_i
IT~~ step Library IA discussion of the advantages of concatenating 120,74 I
I I Command Library to SYS1 .. LINKLm" the Linkage I I
I I Library. 1 I
r---------------------+--t--------------~
lOS PL/I Checkout 1 A discussion of the uses and facilities of the 135-36 1
I Compiler I Checkout Compiler. 1 I
r---------------------+--t--------------~
12260,2265 IThe macro instructions for generating the MCP have163-69 I
I I additional operands for 2260 and 2265 support. I I
L ________________ ~----~--------------------------------__________________ ~ ______________ J

summary of Major Changes -- Release 20 .• 1 7

The IBM System/360 operating System Time
Sharing Option (TSO) adds general purpose
time sharing to the facilities already
available through the MVT configuration of
the control program. As a result, the
system provides a number of new
capabilities:

• It gives users access to the system
through a commandlanguaqe which is
entered at remote terminals -­
typewriter-like,keyboard-printer or
keyboard-screen devices connected
through telephone or other
communication lines to the computer.

• It gives those who may not be
programmers the' use of data entry"
editing, and retrieval facilities.

• It makes the facilities of the
operating system available to
programmers at remote terminals to
develop, test, and execute programs
conveniently, without the job
turnaround delays typical of batch
processing. Both terminal-oriented and
batch programs can be developed at
terminals.

• It allows the management of an
installation to dynamically control the
use of the system's resources from a
'terminal.

• It creates a time-sharing environment
for terminal-oriented applications.
Some applications, such as
problem-solving languages,
terminal-oriented compilers, and
text-editing facilities, are available
as IBM Program Products. Installations
can add others suited to their
particular needs~

A major consideration in the design of
TSO,is ease of use. The way in which a
user communicates with the system can be
kept simple to encourage people who may not
be programmers to take advantage of the
speed and versatility of a computing system
to solve their problems. There are four
ways in which TSO achieves this goal:

• The physical medium is easy to use.
Most users are already familiar with
the conventional typewriter keyboard.
Information is easy to enter through
the terminal's typewriter-like
keyboard, and no complex procedures are
required to obtain output from the
computer.

Introduction

• The way in which a terminal user
defines his work is uncomplicated. He
enters commands which resemble English
language words to describe the general
function he wants to accomplish. If
the user chooses, he can create his own
commands and command system.

• If a user doesn't know how to define
his work to the system, he can type
HELP and receive information pertinent
to the type of operation he is trying
to perform. In most cases, he doesn't
need to enter detailed parameters
describing every aspect of the work he
is doing; the system uses default
values that are appropriate for most
jobs. If he fails to provide
parameters the system needs to do the
work he requested, the system will ask
him for the missing information, item
by item, by npromptingn him for it in a
conversational way.

• The system keeps the terminal user
aware of what is happening, so he knows
what to do next. He n converses n with
the system on a step-by-step basis.
The system lets him know when it is
ready to accept input from him, and it
tells him immediately when there has
been a change in the status of his
program or when an error has occurred.
He may interrupt the processing of his
program at any time. If the user
receives a message he doesn't
understand, he can request more
information about the situation simply
by typing a question mark. The
messages he receives use uncomplicated
language to describe the situation.
When the messages become familiar to
him, he may request the system to use
the abbreviated messages that are
available with some of the programming
lan:Juages.

Advantages of a Time Sharing System

In a simple batch processing system, one
job at a time has access to the resources
of the system (main storage, the central
processing unit, and I/O equipment). A
programmer's job is loaded into the
computer and its operation is controlled by
the system operator. The job acquires the
resources it needs as it runs to
completion; resources the job doesn't need
are unused., When the job is finished,

Introduction 9

results are produced, a new job is loaded
and executed" and the output for the
completed job (for example" a printout) is
s'ent 'to the programmer. An inherent
problem with this type of processing is
turnaround time, the elapsed time between
the submission of a job to the comp.lter
cent er for process ing and the return of
results to the programmer. Another problem
is the inefficient use of resources.

In a multiprogramming system (e.g., a
system that operates under the control of
the MVT configuration of the System/360
Operating system)" several jobs share the
resources of the system concurrently" so
the use of resources is much more
efficient. ·Although jobs are processed
faster, the operator at the system console
still controls the system, and the
programmer still must wait for results to
be returned to him.

A time sharing system reduces delays in
receiving results,. A larger number of jobs
share the resources of the system
concurrently" and the execution of each job
is controlled primarily by a remote
terminal user. Thus" time sharing can be
defined as the shared, conversational, and
concurrent use of a computing system by a
number of users at remote terminals.

The system resources shared by the time
sharing jobs (foreground jobs) entered from
the terminals are also shared by batch jobs
(background jobs) that are being processed
at the same time. Each foreground main
storage region handles many active
foreground jobs" although only one job is
actually in the region at any moment in
time. A foreground job is assigned to a
main storage region and has access to the
system's resources for a short period of
time called a time slice. The other
foreground jobs assigned,to that region are
saved on auxiliary storage while the job
being executed in main storage receives a
time slice.

At the end of the job's time slice, or
if the job enters the wait state for
terminal I/O, the main storage image of the
job (that is, programs, work areas" and
associated control blocks) is stored on a
direct access device and another job is
brought into the same region of main
storage and given a time slice. TSO
schedules a similar time slice for each
ready foreground job. The apportionment
and duration of time slices is discussed in
detail in the "system Summary" section of
this manual.

10 Time Sharing Option Guide (Release 20,.1)

The process of copying job images back
and forth between main and auxiliary
storage is called swapping~ Writing an
image to auxiliary storage is a swap out;
reading one into main storage is a swap in.

All foreground jobs are assigned the
same priority,. The order in which
foreground and background jobs are
processed is determined ~ the operating
system task dispatcher. Job priorities,
job classes, and the dispatching of tasks
are discussed in IBM System/360 Operating
System: Concepts and Facilities,
GC28-6535.

The apportionment of slices of
processing time to foreground jobs is not
apparent to a terminal user. At the
terminal" the response of the system to
requests for action is fast enough so that
he has the impression that he is the sole
user. As far as the user is concerned the
distinctive feature of a time-sharing
system is the way in which it "converses"
or interacts on a step-by-step basis with
him as he does his work. He is prompted
for information the system needs to execute
his job. he receives immediate responses to
his requests for action" and he is notified
immediately of errors the system detects,
so that he can take corrective action at
once.

In general then" a time-sharing system
differs from a batch processing system in
three ways:

1. A terminal user concurrently shares
the resources of a computing system
with other terminal users.

2. A terminal user can enter his problem
statements and other input into the
system as he develops them, and he
receives immediate results. Thus the
problem of turnaround time (the amount
of time between when he submits his
job for processing and when he
receives results) inherent with batch
·job operations is greatly reduced.

3. A terminal user is constantly aware of
the progress of his job. He requests
results from the system one step at a
time" he is prompted for any
addi tional information the system
requires, he receives immediate
notification of the status of his
work" and he is apprised of errors as
soon as the system detects them. The
terminal user can change his problem
statements or correct errors
immediately after entering each
statement or at any time during the
current terminal session,. Thus, he
minimizes the need for reruns.

Using a Terminal

A terminal session is designed to be an
uncomplicated process for a terminal user:
he identifies himself to the system and
then issues commands to request work from
the system. As the session progresses, the
user has a variety of aids available at the
terminal which he can use if he encounters
any difficulties.

Commands specifically tailored to an
installation's needs can be written and
added to the command language or used to
replace IBM-supplied commands.

starting and stopping a Terminal session

When the user has some work to perform with
the system, he dials the system number if
he has a terminal on a switched line, or he
turns the power on if he has a terminal on
a non-switched line. A Switched line is
one in which the connection between the
computer and a terminal is established by
dialing the system's number from the

I terminal. A non-switched line is one with
a connection between the computer and the
terminal. With an IBM 2741 terminal or an
IBM 1050 terminal, the system responds by
unlocking the keyboard. In any case, the
user identifies himself by entering "LOGON"
and one or more of the following fields:

• A user identification, for example, the
user's name or initials, which the
system will use to identify his
programs and data sets.

• A password assigned by his
installation, usually known only to the
user and the system manager.

• An account number, which defines the
account in which his system usage
totals are to be accumulated.

• A LOGON procedure name, which
identifies a cataloged procedure that
specifies what system resources he will
be using.

The user may omit the last three fields if
the system manager has defined only one
account number and LOGON procedure for him
and no password is used.

The LOGON processor verifies that the
user is an authorized TSO user, then checks
the password, if it is required, and
account number in a record it keeps of user
attributes, called the User Attribute Data
Set (UADS). From the attributes, the LOGON
command operands, and a LOGON cataloged
procedure, the system builds a user
profile, which is used to control the

processing of his job. The system assigns
the user's job to a time-sharing
(foreground) region of main storage and
allocates other resources, such as
auxiliary storage space and user data sets
according to the LOGON procedure.

LOGON marks the start of a terminal
session. When the user completes his work,
he enters "LOGOFF" to end the session. The
system then updates his job's system use
totals, releases resources allocated to it,
and releases the terminal from TSO. A
session is also terminated any time the
terminal user enters LOGON to start a new
session. In this case, the old session is
terminated and a new one is begun; the
terminal is not released in the process.

Working at the Terminal

The user enters comnands to define am
execute his work at the terminal. He
enters a command by typing a command name,
such as EDIT and possibly some additional
operands. The system finds the appropriate
command processor--a load module in a
comnand library--and brings it into the
foreground region assigned to the user for
execution. For example, in response to
entering the EDIT command, the system
brings in the EDIT command processor, the
data handling routine used to create and
update data sets.

If a user does not enter all the
operands associated with a particular
command name, default values are assumed
where possible. If necessary operands are
missing, the system prompts the user for
them with a message such as "ENTER DATA SET
NAME." The user can reply with the missing
value, or enter a question mark for a
further explanation of what the system
needs. If the user chooses, he can specify
that prompting messages be suppressed.

A terminal .user can also receive
assistance through the HELP facility. He
can request information regarding the
syntax" operands, or function of any
command, subcommand, or operand. If he
enters HELP followed by a command name, he
receives an explanation of the command and
the operands required with it. HELP
followed by a subcommand name furnishes an
explanation of the subcommand if you are
working with the command at that time.
Entering HELP by itself returns a
description of the command language, a list
of the commands, and an explanation of how
to use HELP to obtain further information.

Introduction 11

During a typica 1 session,; the user
enters a series of commands to define and
perform his work. If the sequence is one
that is used often., he can store the
sequence in a data set and then execute the
sequence whenever he needs it by entering
the EXEC command.

The commands provided with the system
handle data and program entry., program
invocation in either the foreground or the
background" program testing, data
management, and session and system control.
IBM Program Products are available to
support problem solving, data manipulation,
and text formatting, to provide
terminal-oriented language processors., and
to make these processors more convenient to
use from the terminal.

System Configurations

TSO is an extension of the MVT
configuration of the control program on
System/360 Models 50 through 195, or
System/370 Models 155 and 165. TSO also
operates with the Model 65 Multiprocessing
(M65MP) configuration. The minimum machine
configuration for System/360 models must
include 384K of main storage, the required
I/O devices for MVT., plus at least one each
of the following:

• A terminal (IBM 1050, 2741" 2260 Local
or Remote, 2265" or Teletype1 Model 33
or 35 KSR and ASR).

• A transmission control unit (IBM 2701,
2702, or 2703), unless all terminals
are locally attached 2260 Display
stations.

• sufficient direct access storage space
(IBM 2301, 2311, 2303, 2305~ 2314~ or
3330) for command libraries and system
data sets.

• Sufficient direct access storage space
to swap data sets.

In a System/360 with 384K of main storage,
TSO is, in effect. a "dedicated" time
sharing system. In other words; with 384K
the system can run as a time sharing system
or as a batch job processing system, but
not both at the same time. To run both
time sharing and batch jobs concurrently or
to execute on M65MP or systeml370 models"
at least 512K of main storage is required.
At least 128K of main storage is required
for system generation,.

1Trademark of Teletype Corporation., Skokie,
Illinois.

12 Time Sharing option Guide (Release 20.1)

Terminals

Some remote terminals suitable for
interactive applications have keyboards for
entering input data and either
typewriter-like printers or display
screens. A remote terminal incorporates or
is attached to a control unit. The control
unit is in turn connected to the system by
either of two ways:

• Through a device such as a data set to
a dialed (switched) line to the system.

• Through either a direct or a leased
I ine to the system,.

At the computer site the communication
line connects to a Transmission Control
Unit~ which in turn is attached to one of
the computer system's multiplexor channels.
The IBM 2260 Display Station can be an
exception to this general configuration.
Its control unit., the IBM 2848 Display
Control" can be attached directly to a
multiplexor or selector channel. This mode
of operation is called local attachment.

TSO uses the Telecommunications Access
Method (TCAM) for terminal access. TSO
provides terminal handling programs for the
following terminals:

• IBM 2741 Communication Terminal.
• IBM 1050 Printer-Keyboard.
• TeletypeS- Model 33 and 35 KSR.
• IBM 2260 and 2265 Display stations.

The IBM 2741 Receive Interruption
Feature and the Transmit Interruption
Feature are recommended for use with the
2741. These features are described in the
publicati on IBM 2741 Communications
Terminal. '!he Transmit Interrupt, Receive
Interrupt, and Text-Timeout suppression
features are recommended for use with the
IBM 1050. 1050 multidrop is not supported.
These features are described in the
publication IBM 1050 System Summary. Note
that some of these features are not
available through the IBM 2701 Data Adapter
Unit. 2

Transmission Control Unit

TSO requires at least one of the following
transmission control units to handle
terminal communications:

2Terminals which are equivalent to those
explicitly supported may also function
satisfactorily.. The customer is
responsible for establishing equivalency.
IBM assumes no responsibility for the
impact that any changes to the
IBM-supplied products or programs may have
on such terminals.

• IBM 2701 Data Adapter Unit.
• IBM 2702 Transmission Control.
• IBM 2703 Transmission Control.

The Terminal Interruption Features are
recommended for use with the 2702 and 2703

I transmission control units and must be
present if the terminals are to use the
features. These units are described in the
following publications:

• IBM 2701 Data Adapter Unit, Component
Description.

• IBM System/360 Component Description,
IBM 2702 Transmission Control.

• IBM 2703 Transmission Control.,
Component Description.

Swap Data Set Devices

The process of copying images back and
forth between main and auxiliary storage is
called swapping.. Writing an image to
auxiliary storage is a swap out; reading
one into main storage is a swap in. The
pre-formatted data sets into which jobs are
written are called swap data sets. A swap
data set is divided into swap allocation
units, each of which consists of a
device-dependent number of 2048-byte
records. An integral number of swap
allocation units, not necessarily
contiguous" are assigned to each job to
contain the swapped out image of the job.

If there is more than one foreground
region, they share the available swap data
sets, but the cycle of swapping for each
region is essentially independent of other
regions. However, the system avoids
queuing on swap data sets if possible.

TSO requires sufficient storage capacity
on one or more of the following for swap
data sets:

• IBM 2301 Drum Storage.
• IBM 2303 Drum storage.
• IBM 2305 Fixed Head Storage,

Modell or 2.
• IBM 2314 Direct Access storage

Facility.
• IBM 3330 Disk storage Facility.

See the Storage Estimates section of
this publication for information on swap
data set siz es.

The record overflow feature is required
for the devices used to store the swap data
sets. One or more data sets on any of the
above devices can be used for swap data
sets.

The direct access storage space required
for the swapped data may be divided among
the devices listed above in either of two
ways. The user may specify that swapped

data be distributed serially among a
hierarchy of data sets, or he may specify
parallel distribution of data onto two
devices. With serial distribution, the
first data set in the hierarchy is filled
with swapped data, and then the next data
set in the hierarchy is used. For example,
a drum., because of its higher access speed,
could be assigned as the first unit in the
hierarchy, with a 2314 assigned to receive
any overflow of swapped data.

With the parallel distribution scheme, two
devices are used concurrent1:y to receive
swap data sets. The exact order in which
data sets are written on either of the
devices is determined by the system, based
on the I/O activity taking place in the
channel at the time of a swap out. For
example, if the two data sets are on
devices on separate channels, swap
performance improves substantially.

Before a terminal jcb can be swapped out
of main storage, activity associated with
the job must be brought to an orderly halt.
The halt must be performed in such a way
that the job is not aware of it, and
information must be saved to restart the
job when its next time slice is scheduled.
The orderly suspension of a job's activity
before a swap out is called guiescing the
job. Quiescing includes the removal of the
majority of the control blocks associated
with the job from the system queues so they
can be written to the swap data set along
with the contents of the main storage
region assigned to the job.

The Relationship of TSO to the
Operating System

For the data processing center, TSO is
compatible with operating system standard
formats and services, while providing the
flexibility needed for various time sharing
and terminal-based applications.

TSO is not necessarily intended to be
used as a dedicated time-sharing system,
that is, a system on which only
time-sharing operations take place. TSO
augments the facilities already available
with the operating system: batch
processing, teleprocessing, and other data
processing activities can take place
concurrently on the same system.

Once an installation has generated a
system that includes TSO r time sharing
operations can be started and stopped at
any time by the system console operator.
The operator can specify how many regions

Introduction 13

of main storage are to be assigned to time
sharing users. Each region can serve many
users, whose programs are swapped back and
forth between main and auxiliary storage.
Time sharing, or foreground operations, can
take place concurrently with batch or
background operations. (Background jobs
are not swapped.) If the user chooses, he
can dedicate his system to time sharing and
run only foreground jobs. If there are
periods when TSO is not needed in the
system, time sharing operations can be
stopped, and the system will then process
background jobs in the usual way with MVT
and TCAM.

Terminal communications are handled by
the Telecommunications Access Method (TCAM)
through an interface that allows the use of
standard sequential access method I/O
statements and macro instructions.

All of the MVT facilities are available
to a background job. Foreground jobs can
use most of the operating system access
methods for data set access (e.g., BSAM,
QSAM, BDAM etc.). All devices available to
these access methods are usable by
foreground jobs. A detailed list of
restrictions is in the "Restrictions and
Limitations" section of this manual.

Execution of Background Jobs from the
Terminal

In addition to the foreground execution of
programs, TSO allows jobs to be submitted
for execution in the background, or batch,
portion of the system. If his installation
author i ze sit, a user can submit a
background job at his terminal, be notified
of the job's status, and then receive
results of the job at the terminal. If he
chooses" he can specify that the output of
his job be produced at the computing
center, rather than at the terminal.

Fbreground-Background Compatibility

Because time sharing is carried out within
the framework of MVT job and task
management, the foreground and background
environments are compatibl e. TSO use s the
same data formats, programming conventions"
and access methods as the rest of the
operating system. The programming
languages and service programs available
with TSO are compatible with their
background counterparts.

The TSO command language is also
generally compatible with the
Conversational Remote Job Entry (CRJE)
command language. Programs can be
developed in the foreground and stored in
background libraries. These programs are
compatible with other operating system
programs. Most problem programs can be '//

14 Time Sharing Option Guide (Release 20.1)

executed in either the background or the
foreground without revision or
rec ompi la ti on.

Restrictions and Limitations

Certain facilities are unavailable to
foreground jobs" although they remain
available to background jobs. These
include:

• The BTAM and QTAM telecommunications
access methods.

• The Graphics Access Method (GAM).

• The EXCP equivalents of the BTAM, QTAM,
and GAM access methods.

• Main storage requests for hierarchy 1
(all foreground requests for main
storage are allocated to hierarchy 0).

• Use of Job Control Language in the
foreground for other than single-step
jobs (the TSO command language is used
to provide the equivalent of multi-step
jobs).

• Checkpoint/Restart Facility (foreground
requests for checkpoint are ignored).

• Rollout/Rollin Option.

• TESTRAN Facility.

• Tape volumes are not supported.

• Multivolume data sets are not supported
by Dynamic Allocation.

SVC numbers 92 through 102 (decimal) are
added to the system for TSO. The following
SVCS can be issued by problem programs in
the foreground region:

• SVC 93--TGET/TPUT (execute terminal
I/O).

• SVC 94--STCC (specify terminal control
characteristics>.

• SVC 95--TSEVENT (notify the supervisor
of an event).

• SVC 96--STAX (specify a terminal
attention exit) '.

• SVC 97--Breakpoint (used by TEST
command) •

• SVC 98--PROTECT (protect a data set
with a password).

• SVC 99--Dynamic Allocation (of a data
set> •

• SVC 100--suhmit a job to the
background.

• SVC 102--AQCTL -- used by TCAM to
communicate with problem programs.

Of these, only SVC 98--PROTECT--can be
issued by programs executing in the
background. SVCs 92 (TCB EXCP) and 101
(TCAM-TSO Communication) are used only by
supervisor programs.

Including TSO in a system adds no
restrictions to programs executed in the
background. For example. other
teleprocessing applications can be run
simultaneously.

system Control

The management of an installation can shift
most of the responsibility for controlling
the time sharing system from the operator
at the system console to users at remote
terminals, called control terminals. A
control terminal user can alter the system
configuration to meet changing work loads~
FOr instance, he can assign an extra region
of main storage to time sharing operations
during peak periods, and then release it to
be used for batch operations during slack
periods. Such changes require no shutdown
of TSO and are not noticed by the users of
other regions. Even the starting and
stopping of TSO operations is accomplished
without shutting down the system or
affecting background operations.

Job Definition and scheduling

To the operating system, each terminal
session from LOGON to LOGOFF is one
terminal job" corresponding to a single
step batch job. The job control statements
that define a terminal job are stored in
the LOGON procedure used to begin the
session,. The" EXEC" JCL statement in the
LOGON procedure identifies the program the
user wants loaded into his region for
execution. The program may be the
TSO-provided command language handler or an
installation provided application program.

An important feature of TSO is the
dynamic allocation of data sets for time
sharing users. A user may defer definition
of his data sets until he requires them.
During LOGON processing, any data sets
named on Data Definition (DD) statements in
the procedure are allocated to the terminal

I job. Any data sets requiring volwne
mounting by the operator, must be defined
here. The procedure also includes dynamic
DD statements (similar to a DD DUMMY),
which reserve control block space for data
sets the user may allocate during the
session. The dynamic allocation facility

allows data sets to be created, deleted,
concatenated, or separated without previous
allocation at the beginning of the job
step.

Tuning the Time Shar ing system

In a time sharing system, execution time is
divided among the active foreground jobs
and background jobs in brief time slices.
A time slice must be long enough to perform
a meaningful amount of processing, but not
so long that the time between successive
slices prevents quick response to
conversational users. At the same time,
time slices cannot be so short and frequent
that system overhead for swapping and task
switching becomes excessive,. Balancing
these factors depends on the number and
type of jobs the system is processing. A
solution for one job mix is not necessarily
suitable for another job mix. The TSO time
sharing algorithms -- the formulas used to
calculate the division of time among jobs
-- are based on several variables, most of
which can be specified by the installation
to tune the system for their particular
workload. Some of the tuning variables
such as the number of foreground regions

I and the maximum number of users, can be set
by the system operator or a user at a
control terminal whenever the system is
running. others are specified as
pararoeters in SYS1.PARMLIB. These
parameters are used when the operator
starts the time sharing operations.

The time sharing algorithms are
described in detail in the "System Summary"
sect ion of this manual. They are
implemented bya subroutine called Time
Sharing Driver. The Driver makes decisions
about system functions such as swapping and
task switching. An installation may
experiment with other time sharing
algorithms by modifying or replacing the
driver., and specifying use of the new
Driver in the SYS1.PARMLIB parameters used
when the operator starts time sharing
operations.

Monitoring System Use and
Performance

By extending the services of the system to
many concurrent users, TSO makes the
operating system more useful to more
people. However, installation management' s
job of monitoring system use and
performance becomes more complex. Three
tools are provided to help management
maintain a clear picture of what the system
is doing.

Introduction 15

system Management Facilities (SMF): The
SMF Option can be used with TSO. Both the
data collection and dynamic control
facilities are extended to the foreground
environment.

with the data collection facility,
records describing both the system
environment and individual user activity
are written to the SMF data sets in a
format similar to that used for background
records. The system environment data
includes:

• Machine configuration.

• Resource status.

• Library management information.

This information is recorded whenever
time-sharing operations are started,
modified, or stopped by an operator. The
user data includes:

• I/O device use.
• Data set use.
• Main storage used.
• Time resident in main storage.
• Time actually spent executing.

The user data is recorded at LOGON and
LOGOFF and during a terminal session
whenever a user changes the status of his
data sets with the dynamic allocation
facility. The information on the use of
data sets is particularly useful to the
installation for controlling the use of
secondary storage in the time-sharing
environment.

The SMF dynamic control exits give the
installation access control program
information at key points during the
processing of jobs, including foreground
jobs. The step initiation and termination
exits are taken" if present, when a user
begins or ends a terminal session. These
routines can record information and control
processing for foreground jobs just as they
do for background jobs. SMF is discussed
in detail in the publication IBM System/360
Operating System: system Management
Facilities, GC28-6712.

An additional installation exit,
separate from the SMF dynamic control
exits, is provided from the routine
handling user LOGON. This exit allows the
installation to establish its own user
verification and control procedures,
independent of those supplied with the
system. The section of this publication
Writing a Logon Pre-prompt Installation
Exits describes the parameters passed and
what actions the exit may take.

16 Time Sharing option Guide (Release 20.1)

M)NITOR Command: The MONITOR command
allows the operator to watch the changing
workload on the system over a period of
time. In addition to the job initiation,
data set, and volume information formerly
available with the DISPLAY command, he can
request notification of time-sharing users
logging on and off the system. The DISPLAY
command now gives the system workload at a
particular point in time, and has been
extended to include information relative to
the time-sharing environment, such as the
number of foreground regions and the number
of active terminals. Both MONITOR and
DISPLAY, like other operator commands
concerned with the time-sharing operation,
are available to a control user at a remote
terminal as well as the system operator at
the console.

TSO Trace Program: The TSO Trace Writer
Program provides a detailed history of what
the system does over a period of time. The
Trace Program records a stream of
information that all components of the
system are continuously passing to the Time
Sharing Driver. The Driver uses this
information in its calculations of resource
allocation. When the operator starts the
Trace Program, it intercepts these event
signals and records them with a time stamp
in a data set. Typical events recorded are
"job requesting terminal input" and "swap
completed." The TSO Trace Data set
Processor can be used at a later time to
format and print out the information
recorded by the Trace Program. The Trace
Data set Processor can be requested to list
only those events associated with a
particular component of the system, such as
the dispatcher, or to list only those
events associated with a particular
terminal or set of terminals. Using this
information, system management can
determine how well the system is responding
to the workload and make adjustments to the
tuning variables if necessary.

System Security

The need f or adequate data and program
protection is increased in the time-sharing
environment, where many persons are
simultaneously using the system. The
system itself must be protected against
unauthorized users. Each user's programs
and data must be protected against
accidental destruction by other users.
Confidential data must be safeguarded
against unauthorized access.

User Verification

Any user starting a terminal s ess ion is
required to supply a user identification
recognized by the system; that is, one that

has been defined by the system
administrator. The installation may also
require the user to supply a unique and
confidential password with the LOGON
command.

Further verification of a user's
identity can be performed by the optional
installation routine called when a user
logs on. This routine can request further
information from the applicant and deny him
access to the system if he fails to provide
it.

Program Protection

Although a number of users may have jobs
assigned to the same foreground main
storage region, only one user's job is
present in the region at a particular time
-- the other jobs are temporarily stored in
the swap data sets. No user can
accidentally destroy or tamper with another
user's job. Like the background regions
under MVT, the foreground regions have
unique storage keys, preventing a job from
modifying any area of main storage outside
its assigned r~gion.

Data Set Security

Because any user can refer to any data set
in the system catalog, the data set
security facility of the operating system
is extended to allow individual users to
protect their own data sets from
unauthorized reference. A user can assign
one or more passwords to a data set. If
anyone subsequently attempts to open the
data set, he is prompted for the
password(s). If he fails to supply the
correct password in two attempts, his
program is terminated.

The password assigned to a data set can
be the one associated with the user for
LOGON. In this case, the user will not be
prompted for the password when opening his
own data set. Any other user, however,
must supply the correct password to refer
to that data set. .

Passwords can be assigned for two levels
of protection:

• Modification protection. No password
is required to open the dataset for
reading, but a password must be
supplied to write into the data set, or
to delete it. This type of protection
is required for system libraries and
data sets, to prevent accidental
modification or to prevent a user from
assigning a password and locking out

all other users. There is no
performance degradation in opening the
data sets for reading.

• Read Protection. The password must be
supplied to open the data set for
reading.

Authorizations

.special authorizations in the User
Attribute Data Set are required for the use
of some TSO facilities. Specific·
authorization is required for:

• Submission of jobs for execution in the
background.

• Use of system operator commands from
the terminal.

• Use of commands to modify the User
Attribute Data Set itself.

The User Attribute Data Set should be
password-protected, to prevent assignment
of these authorizations by anyone other
than the system administrator or his
designate.

Capabilities of the TSO
Command Language

The TSO command language serves two
separate, but related, purposes:

• It gives the terminal user a simple
means to request the system to perform
work.

• It gives system personnel a framework
for applications.

Functions available through the commands
supplied with the system include:

• Data set management.
• Program development.
• Program execution.
• System control.

The following sections describe these
capabilities and are followed by a
description of the applications available
as IBM Program Products. Installation
management has complete control over which
functions are available to each terminal
user.

Data Set Management: The TSO command
language includes commands to enter, store,
edit, and retrieve data sets consisting of
text, data, or source programs.
Essentially, the commands give the terminal

Introduction 17

user the data set management functions of
the operating system. Through the use of
default values and data set naming
conventions, the commands can be simple
enough for the non-sophisticated user.

Data from the terminal goes into
standard operating system sequential or
partitioned data sets. Conventions for
immediate correction of keying errors are
available for each terminal device type.
At a 2741 Communications Terminal, for
instance, the user can just backspace over
an error and type in the correct
characters.

At the user's option, the system will
assign a number to each line of data as it
is entered. Later, the user can retrieve
and edit the line by referring to this line
number. The user can also retrieve a line
by specifying a string of characters
contained in the line, and having the
system scan the data set for it.

Program Development: TSO offers convenient
facilities for program development. The
programmer can use the data-handling
facilities to create source programs and to
have them syntax-checked line-by-line as he
enters them. Any operating system language
processor can be inVOked from the terminal.
Some language facilities and translators
designed especially for the terminal
environment are discussed under "IBM
Program Products."

Compiler diagnostic messages and
listings can be directed to the terminal,
allowing the programmer to correct errors
immediately and recompile the program.
Once the program compiles successfully, it
can be tested conversationally. The
programmer can start and stop execution
from the terminal, inspect and modify main
storage and register contents., trace and
control the program flow.

Because of baGkground-foreground
compatibility, programs produced at the
terminal can be executed in either
environment. Programs in the foreground
can use the sequential access methods (BSAM
and QSAM) to direct I/O to the terminal.
In the background, the same unmodified
programs can address a data set or unit
record device.

Program Execution: Programs can be invoked
at the terminal in several ways. Any load
module can be established as a command and
executed simply by keying in the program
name at the terminal. Load modules not
defined as commands can be invoked in the
foreground with the CALL command. If a
program uses data sets, a command procedure

18 Time Sharing Option Guide (Release 20.1)

can be used to allocate them. Entering the
one-word procedure name can allocate the
data sets, invoke and start the program.
and free the data sets again on program
termination. Whenever a program in the
foreground terminates with an error
condition, the testing facilities can be
used to determine the nature of the error.

The terminal user can also submit jobs
to the background job stream. Commands
similar to those used for the
Conversational Remote Job Entry (CRJE)
facility are used to create job control
language describing the job, and to submit
it to the batch job stream. The user can
request notification of job completion at
his terminal., and can have job output
directed either to his terminal or to a
device at the computer site.

system Control: Certain users can be
authorized to use commands for controlling
system operation. With the proper
authorization; a user at a remote terminal
can use standard operator commands such as
DISPLAY and MODIFY to control the
time-sharing portion of the system.

A separate control facility (ACCOUNT)
allows an authorized terminal user to
establish and maintain the profile of each
system user. Using special commands from
his terminal, he can define or modify user
passwords, account numbers. and procedure
names, and control authorizations and
restrictions for each user.

IBM Program Products

The command language is designed so that
new commands and applications can be easily
integrated into it. Applications available
from IBM as Program Products look the same
as other commands to terminal users.

The IBM Program Products available for
TSO systems are introduced briefly in the
following paragraphs. Each is discussed
more fully in later chapters of this
manual.

Problem-Sol ving

Three language processors specially
designed for matherratical problem solving
by users who are not necessarily
professional programmers are available.
Two are part of the Interactive Terminal
Facility (ITF). The third is Code and Go
FORTRAN, which is discussed with the other
FORTRAN Program Products in the next
section.

ITF: BASIC is a simple, algebra-like
language easily learned by anyone familiar
with mathematical notation.

ITF: PL/I is a subset of full PL/I that
provides a powerful conversational language
that is easy to learn and use. Because of
its relationship to full PL/I, it is an
excellent vehicle for teaching. ITF: PL/I
can be executed line-by-line as it is
entered, or collected into procedures and
subroutines for later execution. Errors in
either ITF: BASIC or ITF: PLII can be
detected as soon as the statement is
entered and can be corrected immediately.

Programming

Program Products to aid the users of
several programming languages are available
with TSO. There are three types of
products:

• Compilers.
• Libraries to support the compilers and

object programs~
• Prompters.

The compilers can be used in either the
background or the foreground environments.
In the foreground, they provide diagnostics
and listings formatted for the terminal.
For instance, diagnostic messages can
optionally refer to source errors by the
line number assigned by the EDIT command.
With the line number, the user can retrieve
and correct the statement without having a
complete listing displayed at the terminal.

Prompters are initialization routines
that allow the user to invoke a compiler
with a single command, such as FORT or RUN.
The prompter handles all data set
allocations and sets processor options. If
the user omits necessary information, such
as the name of the SOU1"Ce program to be
processed, the prompter requests the
information with a terminal message.

The following paragraphs introduce the
Program Products available for each
programming language. The chapter
"Programming at the Terminal" discusses
these products in greater detail and shows
how other operating system processors can
be us ed from the terminal.

FORTRAN: There are four Program Products
for FORTRAN programmers: two language
processors, a library for use with either
processor, and a prompter.

Code and Go FORTRAN is a quick-response,
high-performance processor to meet the
needs of both the problem-solver, who
writes, debugs, and executes relatively
short conversational programs, and the
production programmer, who debugs
components of a large program online tefore
running the program through a batch
compiler. The Code and Go FORTRAN
processor incorporates a prompter routine.

FORTRAN IV (Gl) is an extended version
of FORTRAN IV (G). It provides the ability
to store permanent object programs, and
produces source and object listings and
storage maps. The TSO FORTRAN Prompter
Program Product is available to invoke this
processor.

The FORTRAN IV Library (Mod 1) is an
extension of the FORTRAN IV library for use
with either FORTRAN IV (Gl) or Code and Go
FORTRAN. It supports new features of these
processors, such as a list-directed
input/output facility, ASCII data set
conversion, and PAUSE and STOP statements
for the terminal.

COBOL: A language processor and a prompter
are available for COBOL programmers: the
American National Standard Full COBOL
Version 3 compiler, and the TSO COBOL
Prompter.

PL/I: Two language processors and two
supporting libraries are available for PL/I
programmers: the PL/I Optimizing Compiler,
the OS PL/I Checkout Compiler, and the PL/I
Resident Library and the PL/I Transient
Library. The compilers incorporate a
prompting routine.

Assembler Language: The TSO Assembler
Prompter is available to invoke the
Assembler (F). The Assembler (F) is not a
Program Product.

Text and Data Handling

The TSO Data utilities: COPY, LIST, MERGE,
FORMAT Program Product provides four
commands to manipulate data sets, and to
format text for output either at the
terminal or on a high-speed printer.

Introduction 19

Command Language Facilities

TSO terminal users define their work in the
TSO command language. A command can be
thought of as a request from the terminal
user for the system to perform a particular
function. This chapter describes and gives
examples of the facilities available
through the command language. There are
commands for elementary functions such as
entering, editing, and retrieving data;
remote job entry; mathematical calculation;
and program development and testing in
several programming languages. These
important functions are the base on which
the installation's own terminal-oriented
applications and systems are developed.

To make the examples more meaningful,
some TSO conventions for command syntax,
entry format, data management, and terminal
operation are presented first. Many of
these conventions can be redefined at the
option of the installation, or in some
cases" at the convenience of the individual
user.

Conventions at the Terminal

The command is the means by which work is
defined at the terminal. The first word of
a command is always the command name. It
is used h¥ the system to select a command
processor (a problem program) from the
system command library or a user command
library. Any further information in the
input line, the command operands, is passed
to the command processor in a parameter
list. Operands are separated, or
delimited, by either blank spaces or
commas. A few commands require that groups
of related operands be enclosed in
parentheses.

Most operands are optional. If an
optional operand is not entered with the
command, the system assumes the default
value and proceeds as if the user had
entered that value. If the missing operand
is not one that can be defaulted., for
instance, a data set name, the system
prompts the user for it with a message such
as "ENTER DATA SET NAME". When all the
operands have been either entered or
defaulted, the command processor proceeds
to perform the desired function. Some of
the command processors., such as EDIT,
accept" interpret" and perform
sub-commands, which follOW the same
syntactic rules as the general commands.

20 Time Sharing Option Guide (Release 20.1)

wqginq On

To establish a connection with the system,
the user activates his terminal, dials the
computer, if necessary, and enters the
LOGON command. He must always supply his
user identification as an operand of the
LOGON command; if he does not supply it., a
prompting message is issued. Up to three
additional levels of identification may be
needed, depending on the accounting methods
and security procedures used by his
insta lla ti on.

The installation may require users to
enter a password with the LOGON command.
Each user can have one or more passwords

I

associated with his identification. At
terminals equipped with the print inhibit
feature, the system is able to suppress
printing of the password as it is keyed in.

Associated with each password are one or
more account numbers, and with each account
number, one or more LOGON Procedure names.
The LOGON Procedure contains the Job
Control Language statements defining the
user's terminal job, just as cataloged
procedures define background jobs. For
instance, the LOGON Procedure may have a
STEPLIB data definition (DD) statement for
a private command library. This library
will be searched before LINKLIB or the Link
Pack Area and may degrade performance.
Whenever there is only one account number
or procedure name, the system selects it by
default, and the user is not required to
enter it. Figure 1 shows a simple
identification scheme, with just one value
for each of the possible levels of
identification.

r---,
I CONRAD User Identification I
I ~ I
I JAYCEE Password I
I ~ I
ID76B Account Number I
I ~ I
IB100K Logon Procedure Name I L-__ J

Figure 1. Simple Identification Scheme

To log on, the user defined in Figure 1
would enter:

LOGON CONRAD/JAYCEE

The system will assume "D76B" as the
account number and "B100K" as the LOGON
Procedure name, since no others have been
defined for this user.

A user who has several account numbers
and LOGON Procedures can have a hierarchy
of identification values, like that shown
in Figure 2. This user could still log on
with the command shown above, since "D76B"
and "B100K" are the only account number and
LOGON Procedure name associated with the
password "JAYCEE". However, to use the
nX100K" LOGON Procedure, this user's LOGON
command would be:

LOGON CONRAD/JOEl1 ACCT(D58B) PROC(X100K)

Both the account number and the procedure
name must be included, since a choice
exists for both. The identification scheme
for each user is defined and maintained in
the User Attribute Data Set with the
ACCOUNT command, by the system manager or a
user authorized to do so.

r---,
I CONRAD User Identification I
I /." I IJAYCEE JOEl1 JOEl 2 Passwords I
I 1 ~,,~ I
ID7~B D58B SYSTEM Account Numbers I
I' ~ ~, . J I
IB100K X100K SYS200K Logon Procedures I L __ J

Figure 2. User Identification Hierarchy

The system acknowledges that the LOGON
has been accepted when it has checked the
identification supplied and has determined
that the resources requested in the LOGON
Procedure are available, and the user can
begin his work.

Input Editing

Some system editing is provided for every
line of input from the terminal. Lowercase
alphabetic characters (from terminals that
have them) are translated to uppercase,
except for certain text-handling
applications. Each user can define his own
character-delete and line-delete characters
for correcting any keying errors in input
lines. There are default character-delete
and line-delete characters for the

I typewriter-like terminals (the cursor
controls can be used on the 2260 and 2265
Display Stations). If a user defines the
quotation mark as his character-delete
character, and the percent sign as his
line-delete character, then enters the
line:

etoain%aBCc"deee"n

it is received by the system as

ABCDE

Users whose terminals have backspace and
attention keys may define those keys as

their character-delete and line-delete
characters.

Entry Modes

Immediately after LOGON, the system is
ready to accept any command in the command
libraries. The terminal is said to be in
command mode. Some commands place the
terminal in other entry modes: EDIT, for
instance, has an input mode, that accepts
successive lines of input for a data set;
and an edit mode, that accepts EDIT
subcommands. other commands, such as TEST,
ACCOUNl', OUTPUT, and OPERATOR also define
special purpose modes.

The Attention Key

The attention key can be used to transfer
from one mode to another, or to interrupt a
program or command processor during
execut ion. Any command in process can be
cancelled by hitting the attention key and
entering a new command. A user program can
be interrupted with the attention key to
transfer to the test mode for debugging
acti vi ty, then the program can be
restarted.

Assembler language user programs can
define attention exit routines with the
STAX macro instruction. Control will be
passed to such a routine when an attention
is entered.

An important function of the attention
feature is to prevent the user from being
"locked out" of the system while a
long-running program executes, or while
voluminous output is displayed at the
terminal. For terminals without attention
keys, the attention feature can be
simulated. The user can specify a string
of characters, such as "STP",·that is to be
interpreted as an attention. The system
can be instructed to interrupt any
long-running program or terminal output
periodically to accept either the. simulated
attention character string, or a digit to
specify the level of attention exit or a
null line to continue processing.

Data set Naming Conventions

Unless requested not to, the system appends
two qualifiers to a simple data set name
specified by a user: a descriptive
qualifier and a user identification
qualifier. The user identification
qualifier is the same as the user
identification specified with the LOGON
command and is appended as the left-most
qualifier of data set names that follow the
TSO naming conventions.

The descriptive qualifier is placed at
the right of the user entered data set

Command Language Facilities 21

name. It tells the system what kind of
data is recorded in the data set and for
what purposes it can be used. For
instance, the qualifier for a data set
containing COBOL source statements is
COBOL; for a load module, LOAD. Whenever
possible, the system determines the
appropriate descriptive qualifier from the
command referring to the data set, and the
user need not enter it as part of the name.
In some cases, the user must supply it, as
part of the data set name entered with the
command, or in response to a prompting
message.

The user never needs to enter his
identification qualifier; it is always
known to the system. Figure 3 is an
example of a series of commands to enter
and compile a source program (using the TSO
FORTRAN Prompter and FORTRAN IV (G1)
Program Products); linkage edit the object
program; to display the compiler listing at
the terminal; and finally, to delete all
the data sets involved.

In the EDIT, FORT, and LINK commands,
the user supplied only the simple data set
name, "PRG1". The system assigns the
descriptive qualifiers implied by the
commands and their oper ands. Wi th the LI ST
command, the user supplies the descriptive
qualifier, since he might want to display
either CONRAD.PRG1.FORT or
CONRAD.PRG1.LIST. In the DELETE command,
the user enters an asterisk in the
descriptive qualifier field, telling the
system to delete any data sets with the
identification qualifier CONRAD and the
simple name PRG1.

To refer to a data set that does not
folIo\<? the naming conventions, or that has

an identification qualifier different from
the one specified at LOGON, the user
encloses the fully qualified data set name
in apostrophes. The system does not append
any additional'qualifiers in this case, and
uses the name "as is," except for
translati on to uppercase, to search the
catalog. Using this technique, several
users may refer to a data set with the
shared attribute at the same time.

Data Entry

The EDIT command is used to enter
information into the system. Because
almost every system application will use
some of the editing facilities, an overview
of the command is presented here. Later
sections will demonstrate some of the
particular uses of the command.

Creating Data Sets

The EDIT command processor creates or
modifies data sets with sequential
organization,'ipcluding members of
partitioned data sets. The data sets
contain only printable characters in EBCDIC
representation.' A data set name is entered
with the EDIT command. If the user
specifies the data set is OLD, EDIT opens
it for modifications. If it is a NEW data
set, EDIT invokes the dynamic allocation
routines to create it. The data set
attributes, such as blocksize and record
length, can be specified by the user, or
defaulted to standard values. For data
sets containing source-language programs,
the standard attributes are determined by
the compiler to be used.

r--------------------------T----------------------T-------------------~----------------, I Input Data Sets I Command & Operands I output Data sets I Comments I
.--------------------------+----------------------+--------------------+----------------~
I none I edit prg1 new fort I CONRAD.PRG1.FORT IFORTRAN source I
I I I I program. I
~-------------------------+----------------------+--------------------+----------------~
I CONRAD. PRG1.FORT I fort prg1 print I CONRAD.PRG1.0BJ IObject program. I
I I I CONRAD.PRG1.LIST ICompiler list- I
I I I ling. I
.--------------------------+----------------------+--------------------+~-------------~
ICONRAD.PRG1.0BJ I link prg1 I CONRAD.PRG1.LOAD ILoad module, in I
I I I (TEMPNAME)la one-member I
I I I I PDS. I
~-------------------------+----------------------+--------------------+----------------~
I CONRAD. PRG1.LIST I list prg1.list I Display at ICompiler listing I
I I I terminal I I
~-------------------------+----------------------+--------------------+----------------~
ICONRAD.PRG1.FORT I delete prg1.* I IAII the data I
ICONRAD.PRG1.0BJ I I Isets are I
ICONRAD.PRG1.LIST I I I deleted. I
ICONRAD.PRG1.LOAD(TEMPNAME)I I I I L-_________________________ ~ ______________________ ~ ____________________ ~ ________________ J

Figure 3. Example of Data Set Naming Conventions

22 Time Sharing Option Guide (Release 20.1)

One input line from the terminal
normally becomes one record in the data
set. Because of this equivalency between
records and lines at the terminal, data
sets created by EDIT are called line data
sets. On request, EDIT appends a line
number to each record of the data set as it
is entered.

Entry Modes for EDIT

Depending on the type of work the user is
dOing with his data set, he uses one of two
entry modes provided by EDIT (some other
modes specifically for particular
programming languages are discussed later).
The input mode allows rapid entry of
successive lines of input for the data set.
The edit mode allows subcommands to be
entered to modify, insert, or delete lines.

Input Mode

In input mode, the user enters successive
lines of input. The lines are normally
appended at the end of the data set,
although the user can request they be
inserted at some other point. The only
subcommand recognized in the input mode is
the null line (hitting the return key with
no preceding characters), which requests
transfer to the edit mode.

services available in the input mode
include translation of lowercase letters to
uppercase, translation of tab characters to
a series of blanks, and interpretation of
the character-delete and line-delete
characters. If line numbers are being
assigned to each line" the user may request
each new number be typed out by the system
at the beginning of each input line. If
line numbers are not being assigned, the
user can request prompting for each new
line by an underscore. If no prompting is
requested, lines are entered one after
another, with no intervening response from
the system. programming language syntax
checkers can be requested to process input
lines as they are entered.

Edit Mode

In edit mode, the user enters subcommands
to point to particular records of the data
set, to modify or renumber records, to add
and delete records, to control editing of
input, or to compile and execute a program.

Whenever the terminal is in edit mode,
the user is considered to be positioned at
a particular record, or line, of the data
set. The EDIT command processor maintains
a current line pointer to keep track of the
user's position. In general, the current
line pointer, which can be referred to in
subcommands by an asterisk (*), is
positioned immediately following the last

line referred to, entered, changed, or
printed. Using the subcommands provided,
the user can move the current line pointer
to any record in the data set.

For line-numbered data sets, specifying
a line number as an operand of a subcommand
moves the pointer to that record before the
action requested by the subcommand is
carried out. This method of operation is
called line number editing.

Another method of repositioning the
current line pointer is called context
editing. A set of subcommands is provided
to reposition the current line pointer
without reference to line numbers. The
user can move the pointer up or down a
specified number of lines, or request the
system to find a line with a particular
series of characters in it, and move the
pointer to it.

Modifying Data sets

The most common use of the EDIT command for
existing data sets is the addition,
deletion, or modification of records. The
INSERT and DELETE subcommands handle single
or multiple record insertions and
deletions. The CHANGE subcommand allows
the user to replace one character string
with another, not necessarily of the same
length.

Data Set Management Commands

To allow the user to manage his data stored
on auxiliary storage devices, a set of data
set utility commands is. included in the TSO
command language. All user data is kept in
standard operating system data sets, and as
a default, data sets used by foreground
programs are entered in the system catalog,
reducing the amount of information the user
must supply about the data set from the
terminal when he refers to it.

The LISTCAT and LISTDS commands retrieve
information from the system catalog for the
user. He can find out what data sets are
currently allocated to him, and what the
attributes of the data sets are. The
RENAME command can assign a new data set
name to an existing data set, or add an
alias name to a partitioned data set
member. The DELETE command removes a data
set from the catalog, and frees the
auxiliary storage space it occupies.

The PROTECT command is the facility to
assign password protection to data sets.
Protection can be assigned for read access,
for write and delete access, or for both,
and multiple passwords can be assigned to a
single data set.

Command Language Facilities 23

The ALLOCATE and FREE commands invoke
the dynamic data set allocation routines
from the terminal. A user who wants to run
a program that requires one or more data
sets not currently allocated to his
foreground job enters ALLOCATE commands to
have the data sets assigned. The FREE
command is used to release the data sets
assigned by ALLOCATE. The ALLOCATE command
can also be used to find data sets not in
the system catalog, and to control the size

I of new data sets and the volumes to which
they are assigned.

TSO Data Utilities
The TSO Data Utilities Program Product is
available to augment the data entry and
data set management commands by providing a
text-formatting capability and data set
utilities for terminal users. The product
provides four commands:

• FORMAT, to format textual information
into pages.

• LIST, to display all or part of a data
set at the terminal.

• COPY, to copy a data set.

• MERGE, to merge all or part of one data
set into another.

The FORMAT and MERGE commands can also
be used as subcommands of EDIT (EDIT

I incorporates a less powerful listing
capability). The COpy and MERGE commands
can be used for access to ASCII tape data
sets. See the publication IBM System/360:
Planning for the Use of Information
Interchange Standards, GC28-6756, for
details.

Text-Handling

The EDI'!', FORMAT, and LIST commands provide
a facility for the entry, editing, storage,
and output of text. With the EDIT command,
the terminal user creates a data set with
the type qualifier TEXT, and enters the
material line-by-line. If his terminal has
both uppercase and lowercase letters, the
material will not be translated to
uppercase letters, but will be saved just
as entered. The user can specify what tab
settings he wants to use, and the system
will convert tabs in the material into
strings of blanks of the proper length.
The use of line numbers is optional.

The user formats the data set by
inserting format control records into it.
A format control record is entered as a
separate line in the data set, starting
with a period in the first position,

24 Time Sharing Option Guide (Release 20.1)

followed by a control word (or a
two-character abbreviation). The EDIT
processor does not interpret the controls;
they are retained in the data set for
interpretation later by the FORMAT
processor. The controls allow the user to:

• Print a heading on each page.

• Center lines of text between margins.

• Control the amount of .. space for all
four margins on the page.

• Control line spacing.

• Justify left and right margins of the
text.

• Number pages of output consecutively.

• Halt printing when desired.

• Print multiple co~ies of selected
pages.

The FORMAT processor scans the data set
for the format controls and inserts blanks,
carrier return characters, headings, and
page numbers as needed. At the user's
option, the output can be formatted for a
terminal or saved in a data set for
deferred printing, either on the terminal
(with the LIST command) or on a high~speed
printer. Either an all-capitals or an
uppercase and lowercase print chain can be
used on the printer.

Data set Manipulation

The COPY, LIST, and MERGE commands allow
the terminal user to move information
between data sets and to display data sets
at the terminal.

The COpy command will duplicate
sequential or partitioned data sets or a
member of a partitioned data set. While
doing so, it can resequence or change the
record length, blocksize, or record format
as requested. The MERGE command will copy
all or partbf one data set or member into
another data set and will resequence the
record numbers in the target data set if
requested. Both· these commands will
process tape data sets in ASCII format.
Tape devices must be allocated to a user in
his LOGON procedure.

The LIST command displays all or part of
a data set at the terminal. The user can
request that fields within records be
rearranged for output, and line numbers can
be suppressed or included.

Compiling and Executing Programs

A variety of commands are provided to give
the user control over program compilation
and execution. The form of the program
determines command selection. For those
language processors that are supported by a
prompter Program Product or that
incorporate a prompter, the terminal user
requests a compilation of a source program
with a single command. The prompter
performs the following functions:

• Requests any necessary operands with
messages to the terminal.

• sets other compiler options to default
values suitable for the terminal
environment.

• Dynamically.allocates the data sets
needed by the compiler.

• Invokes the compiler.

For instance, if an installation has the
TSO COBOL Prompter and the American
National· Standard Full COBOL Version 3
processor Program Products, the user can
enter the COBOL command to compile his
program and produce an object module. The
LOADGO command can then be used to call the
os Loader to bring the program into main
storage for execution, or the LINK command
can be used to call the Linkage Editor to
create a permanent load module.

During program development, when a
programmer is repeatedly compiling and
testing a program, he can use the RUN
command to invoke it. RUN first calls the
appropriate prompter and compiler, and then
the os Loader. It provides a
compile-load-go sequence with a single
command. RUN can be used as a command, or
as a subcommand .of EDIT. Figure 4 is a
summary of the commands for executing
programs. The chapter nprogramming at the
Terminaln has examples of the use of these
commands. You must use RUN with ITF:
PLlI, GOFORT, and ITF: BASIC.

Any load module, including language
processors for which there are no
prompters, can be invoked with the CALL
command. For instance, the FORT command
provided by the TSO FORTRAN Prompter
Program Product invokes the FORTRAN IV (Gl)
compiler. If a programmer wants to use the
FORTRAN (H) processor for a particular
compilation, he can enter the command.:

CALL 'SYS1.LINKLIB(IEKAAOO)' 'MAP,OPT=l'

The compiler is loaded into the foreground
region and given control. The options are
passed to it as though they had been
specified in the PARM field of an EXEC

statement in Job Control Language. It is
necessary for the user to allocate data
sets for the compiler's use before entering
the CALL command. A series of ALLOCATE
commands can be defined in a command
procedure, so that they need not be entered
every time a compiler is used. An example
of such a procedure is included in the
chapter nprogranming at the Terminal. n

r------T---------------------------------,
IForm of I Form of OBJECT LOAD EXECUTING I
I input: I output: MODULE MODULE PROGRAM I
I ~-------T------T------T------~----~
I I I COBOL I I . I
I SOURCE I I FORT I I RUN I
I PROGRAM I IASM I I I
I I IPLI I I I
I ~-------+------+------+-----------i
10BJECT I I I LINK I LOADGO I
I MODULE I I I I I
I ~-------+------+------+-----------i
I LOAD I I I . I CALL I
I MODULE I I I I I L-______ ~ _______ i ______ ~ ______ i_ __________ J

Figure 4. Program Control Commands

The TEST command can also be used to
invoke a user program, and to control its
execution. Before passing control to the
program, TEST allows the user to establish
initial values to be passed to the program
as test data, and to set up breakpoints
where execution is to be interrupted for

I displays and other debugging activity.

Breakpoints are established with the AT
subcommand in test terminal mode. AT
specifies a symbolic or absolute addre$s in
the program where execution is to be
interrupted. The action to be taken at the
point dE interruption, such as listing or
modifying storage and register contents,
can be specified in a pre-stored string of
TEST subcommands, or entered through the

I terminal at the time of interruption. Main
storage contents can be displayed at the
terminal or stored in a data set for
deferred printing. TEST subcommands allow
the programmer to load additional programs
into storage, to delete or replace programs
in storage, to issue GETMAIN and FREEMAIN
as subcommands from the terminal" to define
the location and attributes of symbols, and
to start and stop program execution.

Remote Job Entry

The command language includes the SUBMIT,
STATUS, OUTPUT and CANCEL commands to
handle submission of jobs for execution in
the background. These commands have the
same format as the commands available with
the Conversational Remote Job Entry (CRJE)
facility of the operating system.

Command Language Facilities 25

To have a job executed in the
background, the user places the job control
statements defining the job in a data set.
By convention the jobname is the one- to
seven-character user identification, plus a
single character to provide uniqueness.
The user then enters a SUBMIT command,
including the name of the data set as an
operand. SUBMIT will generate a standard
jobname and a JOB statement if one is not
included in the job definition. One data
set can contain more than one job
definition. Any time after entering the
SUBMIT command, the user can inquire about
the status of the job. The STATUS command
returns information such as whether the job
is waiting for resources, is executing, or
is completed. The job can be terminated
with the CANCEL command.

A new keyword has been defined for the
JOB statement to allow automatic
notification of the user when the job is
completed. By coding NOTIFY= with his user
identification, the user requests a message
to his terminal when the job completes.
The OUTPUT command allows the user to
display job output (SYSOUT) at his terminal,
to save it in a data set, or cancel it.

System Control

Two facilities are provided for the
installation manager or system programmer
to control operation of the system from his
terminal. The ACCOUNT command adds,
changes, or deletes entries in the User
Attribute Data Set, which is the list of
all authorized users of the system,
together with the characteristics defining
their profiles. The OPERATOR command
places a terminal in a special mode
allowing entry of commands normally
available only at the system console. Use
of either of these facilities requires
special authorization. Users with such
authorization are called control ~.

User Authorization

When a control user enters an ACCOUNT
command, his terminal is placed in account
mode. With subcommands, the control user
defines each user to the system, specifying
his identification, passwords, account
numbers, and LOGON Procedure names. This
information is placed in the User Attribute
Data Set., along with indications of any
special authorizations the user may have.,
such as permission to use the ACCOUNT or
Remote Job Entry facilities, and a limit on
the region size he may request. This
information will be retrieved whenever the

26 Time Sharing Option Guide (Release 20.1)

user logs on, to verify his authority to
use the system, and to define his
foreground job.

System Operation

By entering the OPERATOR command, a control
user has access to the system operator
commands MODIFY, DISPLAY, MONITOR, CANCEL,
and STOP. The commands have the same
format and affect the TSO system as if they
were entered through the operator's
console, as specified in the publication
IBM System/360 Operating System:
Operator's Reference, GC28-6691.

Command Procedures

A command procedure is a data set
containing a list of TSO commands and .
subcommands. The data set name is entered
as an operand of the EXEC command, and the
commands are executed, one-by-one in the
order in which they appear in the
procedure. When one command or subcommand
is completed, the next is read from the
procedure and processed as though it had
been entered from the terminal. The
commands can be typed out at the terminal
as they are executed., or the user can
suppress the listing with an operand of the
EXEC command.

The EXEC command can also be invoked
implicitly if the procedure is a member of
the command procedure library. The member
name of the command procedure can be
entered as a command name. When the name
is not found in the command libraries, the
system assumes it is in the command
procedure library.

Operand Substitution: Symbolic operands,
starting with an ampersand (&), can be
placed in commands and subcommands within
command procedures. Values for these
operands are supplied in the EXEC command
invoking the procedure. A procedure (PROC)
statement at the beginning of the procedure
specifies how many positional operands will
be supplied, and what keyword operands may
be present. Default values for symbolic
operands can be specified in the PROC
statement.

Conditional Statements: The WHEN statement
tests the return code from any command or
program invoked during a procedure. A
condition is stated with relational
operators such as GT or LT ("greater than"
or "less than"). If the condition is
satisfied, the command in the WHEN
statement is executed. If it is not
satisfied, the command following the WHEN
statement is executed. The command in the
WHEN statement can itself be an EXEC
command, invoking another command
procedure.

Figure 5 shows a command procedure with
a symbolic operand and a conditional
execution statement. The procedure has
commands to linkage edit an object program
(LINK), and bring it into main storage for
testing (TEST). The symbolic operand
npROGNAMn is defined in the procedure
statement beginning the procedure. If the
member name of this procedure in the
procedure library is nLDTSTn, the command
to inyoke it is:

LDTST MY PROG

The commands in the procedure are then
executed in order, with the substitution of
nMYPROGn for n&PROGNAMn wherever it
appears. A period with the symbolic
operand specifies concatenation with the
adjacent field. The value for n&PROGRAM. n
is concatenated to nOBJ" the second n.",
and the LINK command as executed is:

LINK MYPROG.OBJ TEST MAP XREF

The WHEN statement causes the return code
from the linkage editor to be tested. If
it is zero, indicating no errors, execution
proceeds with the TEST command. If the
return code is greater than zero,
indicating linkage editing errors. the
procedure is terminated, and the next
command can be entered from the terminal.

r---,
I PROC 1 PROGNAM I
I LINK &PROGNAM •• OBJ TEST MAP XREF I
I WHEN SYSRC(GT 0) END I
I TEST &PROGNAM •• LOAD (TEMPNAME) I
I END I L __ -J

Figure 5. A Command Procedure

Other Commands

Several other commands are provided to
allow the user to control the terminal
environment and to aid him in using the
command system.

The TERMINAL and PROFILE commands are
used to tailor the data entry conventions
to the terminal type and user's preference.
TERMINAL allows him to specify the
character string to be used to simulate an
attention interruption if his terminal does
not have an attention key, and to specify
how often he is to be given an opportunity
to simulate an interruption during
long-running execution or output sequences.
The PROFILE command is used to specify the
character-delete and line-delete
characters. and other user options such as
whether he wants prompting messages
suppressed.

The HELP command is available in all
entry modes. It provides the user with
reference information on command and
subcommand syntax, function, and usage.
For example, if a user has forgotten the
function of the DELETE command. he can
enter:

HELP DELETE FUNCTION

The HELP command will return information
explaining the function of the DELETE
command:

THE DELETE COMMAND IS USED TO DELETE A
SEQUENTIAL DATA SET OR A MEMBER OF A
PARI'ITIONED DATA SEl'.

Requesting this information through the
terminal is faster than searching for it in
a printed manual.

The SEND command is used to send a
message to the system operator or to
another user. The sender must know the
user identifications of other users to whom
he directs messages. Messages are
displayed immediately at the receiver's
terminal unless he has requested they be
suppressed or is not logged on. Messages
not sent immediately are saved for
transmission when the addressee next logs
on if requested.

Command Language Facilities 27

Programming at the Terminal

The time sharing environment is especially
well-suited to program development. The
advantage of programming at a time sharing
terminal is the reduction of job
turn-around delays. The programmer can
profitably devote himself to one project at
a time -- he does not need other projects
to work on while waiting for results from a
batch computing facility. TSO provides
services for terminal users at each step in
program development: coding, compiling or
assembling" testing, implementation,
documentation, and program maintenance.

Any compiler or assembler designed to
run under the operating system can be
invoked from a TSO terminal. Compilers can
be executed in the foreground, or, via the
SUBMIT command" in the background. Command
language prompters are either incorporated
in or separately available for several of
the language processors. The TSO
prompters, all IBM Program Products,
provide specific commands to invoke the
associated processors, and perform the
following functions:

• Requesting the user to enter necessary
information such as the name of his
source program.

• Allocating data sets required by the
processor and freeing them on
completion.

• Setting any compiler options specified
by the user and setting to default
values those options the user omits.

Prompters are available for American
National Standard COBOL Version 3, FORTRAN
IV (Gl), and Assembler (F). Prompters are

I incorporated in the PL/I Optimizing
Compiler, the OS PL/I Checkout Compiler,
and the problem-solving language
processors. Each of the processors accepts
a TERM option., a request for special
formatting of diagnostic and listings for
the terminal" and a NUM option, to control

I the use of EDIT line numbers in error
messages. Syntax check~ng ,of source
programs is provided for PL/I (F), FORTRAN
IV levels (E), (Gl), (G)., and (H), and the
problem-solving languages. The test mode
gives the user real-time control over
program execution for debugging. Similar
facilities for ITF: PL/I, ITF: BASIC, and

I Code and Go FORTRAN and the PL/I Checkout

28 Time Sharing Option Guide (Release 20.1)

Compiler are discussed in the next chapter,
"Problem Solving."

Either the loader or the linkage editor
can be invoked from the terminal. Users
authorized to do so can add load modules to
the system command library., where they will
be available as commands to all system
users. Any user can add programs to his
own command library. Programs written in
any language can be defined as command
processors, but only assembler language has
the facilities to make use of the command
service routines such as input scanning and
prompting.

Because of foreground-background
compatibility, production programs that
will eventually be run in the background
environment can be written and tested from
the terminal. I/O that goes to the
terminal in the foreground can be
re-directed to a sequential data set in the
background. No recompilation is necessary.

The following sections describe the
special terminal support provided for
COBOL, FORTRAN., PL/I, and Assembler
language programmers. Language processors
for which no specific terminal support is
provided can also be invoked in the
foreground. See "Other Compilers" in this
chapter for an example showing how to
invoke the PL/I (F) compiler.

COBOL
TSO provides the COBOL programmer with
facilities for entering, compiling, and
testing programs from his terminal. The
programmer can use the COBOL command for
compiling his program with the following
IBM Program Products:

• TSOCOBOL Prompter.

• American National Standard COBOL
Version 3 compiler.

The user can also invoke the COBOL (E) and
(F) level compilers, either in the
foreground or the background, but only the
American National standard COBOL compiler
provides listings and diagnostic messages
specifically formatted for a remote
terminal environment. The full American
National Standard COBOL is provided, with
the IBM extensions to the language as
defined in the publication, IBM System/360
Operating system: American National
Standard COBOL, GC28-6396.

Entering the Source Program

The COBOL programmer uses the TSO EDIT
command to create or modify his source
program. With the EDIT command, he enters
operands to name the data set containing
the program, and identify it as an old
program to be modified or a new program.

With the terminal in input mode., the
user enters successive lines of the
program. The system accepts each line when
he hits the return key of the terminal, and
types out the line number of the next line.
This line number becomes the sequence field
of the COBOL statement in columns 1-6, and
in addition is used in place of the
compiler-generated "card number" in program
listings and diagnostic messages.
Automatic line numbering can be suppressed,
if desired, by an operand of the EDIT
command.

After the line number is typed out, the
terminal is logically positioned at the
continuation column (column 7) of the COBOL
statement. The user can space or tab to
Area A (column 8) or Area B (column 12) of
the statement. These logical tab settings
are automatically set by the EDIT program
whenever a COBOL program is being
processed. EDIT converts the tab
characters to the necessary numb~r of
blanks to format the statement correctly.
The number of blanks generated is
independent of the physical tab settings at
the terminal. The user can, if he wishes,
override the standard settings by
specifying his own with an EDIT subcommand.

·r------------------------------------,
edit query. cobol new
INPUT
00010 identification division.
00020 progrmm-id. query.
00030 remarks. sample inquiry program.
00040 environment division.
00050 configuratmon section.
00060 source-computer. ibm-360-i65.
00070 input-outpulD
00070 object-computer. ibm-360-i65.
00080 input-output section.
00090
_____________________________________ -J

Figure 6. Entering a COBOL Program

Figure 6 shows an EDIT command to create
a new data set, and some lines from the
user's COBOL program as he enters them.
The five-digit line numbers are generated
by EDIT. A high-order zero is appended to
form the six-digit COBOL sequence field.
In this example, the backspace key is used
as the character-delete character, and the
attention key is the line-delete character.

In lines 00020 and 00050 the user
backspaces over keying errors to correct
them. Line 00070 is cancelled with the
attention key and re-entered. The
lowercase alphabetics are automatically
translated to uppercase ~ the EDIT
processor.

Compiling a COBOL Program

The American National Standard COBOL
compiler is invoked with the COBOL command.
The only required operand is the name of
the dataset containing the source program
to be compiled. However, any of the
compiler options (except DECK) can be
entered with the command as operands.
These options are documented in the
publication IBM Systeml360 Operating
System: American National Standard COBOL
Programmer's Guide.

. Two compiler options are available:
. TERM and NOPRINT. The TERM option orders
the compiler to issue progress messages to
the terminal as it processes the source
program, for instance, "ANS COBOL IN
PROGRESS," and to issue diagnostic messages
formatted for the terminal. An error or
warning message directed to the terminal
includes the line number of the source
statement in error, and ·the compiler error
message. Using edit mode subcommands, the
programmer can retrieve the statement by
line number, and correct the error.

The PRINl'/NOPRINl' option., available only
in the foreground, allows the programmer to
choose whether the program listing is to be
placed in a data set, displayed at the
terminal, or suppressed. When developing a
program from the terminal, it is not
normally necessary to have the complete
listing generated and displayed, since the
error and diagnostic messages are extracted
and displayed through the TERM option.
NOPRINT is the default value, and
suppresses the listing. When source
program errors have been corrected and the
program is compiled a final time, the
programmer specifies PRINT to generate the
listing, which may be display~d at the
terminal, or saved in a data set for
deferred printing, either at the terminal
or on a high-speed printer. The contents
of the listing are controlled by the other
options such as SOURCE, PMAP, and XREF.

Figure 7 is an example of a COBOL
compilation, correction of a source program
error, and re-compilation. The PRINT
operand of the second COBOL command causes
a listing to be generated and saved in the
data set QUERY.LIST.

Programming at the Terminal 29

r---,
cobol query
STATISTICS SOURCE RECORDS = 59 DATA DIVISION STATEMENTS = 15

PROCEDURE DIVISION STATEMENTS = 18
OPTIONS IN EFFECT SIZE = 81920 BUF = 2768 LINECNT = 57
OPTIONS IN EFFECT SPACE1, FLAGW, NOSEQ, NOSOURCE, NODMAP
OPTIONS IN EFFECT NOPMAP, NOCLIST, NOSUPMAP, NOXREF, NOSXREF
OPTIONS IN EFFECT LOAD, NODECK, APOST, NOTRUNC, NOFLOW, TERM
OPTIONS IN EFFECT NUM, NOBATCH, ~ONAME, COMPILE=Ol, NOSTATE
001 COMPILATION ERRORS. HIGHEST SEVERITY E
000290 IKF3001I-E INV-KY-READ NOT DEFINED. STATEMENT DISCARDED.
READY

edit query.cobol
EDIT
list 290
000290 READ PARTS-FILE INVALID KEY GO TO INV-KY-READ.
change /ky/key/
save
SAVED
end
READY

cobol query source xref dmap pmap
ANS COBOL IN PROGRESS

I READY L ___ J

Figure 7. Compiling a COBOL program

Program Execution

The object program created by the COBOL
compiler can be invoked with the LOADGO
command, which calls the Loader to bring
the program into main storage and pass
control to it. The user enters ALLOCATE
commands for any data sets needed by the
program before invoking it.

The object program can also be defined
as, or as part of, a load module with the
LINK command. As a load module, the
program can be placed in a private or
system program library. To define the
program QUERY as a command in a private
command library CONRAD.COMMANDS.LOAD, the
LINK command is:

LINK QUERY.OBJ LOAD(COMMANDS(QUERY» COBLIB

Once part of a command library, and once
the private command library is concatenated
to the command library (and linkage
library), the program is invoked simply by
entering the program name (or an alias) as
a command. TO invoke the program defined
above, the user would type:

QUERY

I The RUN subcommand of EDIT functions as a
combination of the COBOL and LOADGO
commands. It is especially useful during
the testing phase of program development,
since it can be used without leaving the

30 Time Sharing Option Guide (Release 20.1)

edit mode.- When a source program is
complete, the user enters the RUN command,
invoking first the compiler, then his
object program. Whenever he detects an
error requiring a change to the program I
the programmer can immediately update his
source program with EDIT subcommands, and
enter another RUN subcommand.

Interactive Programs

COBOL programs can be designed to interact
with a terminal user simply by defining the
terminal as a file. Programs can read
input lines from the terminal, act on the
information, and respond. Because the
terminal is defined as a sequential utility
file, the same program can be executed in
the background, reading and writing to
sequential data sets or devices, without
recompilation.

To define the terminal as a file, the
user enters ALLOCATE commands for the
external names used in the name field of
the ASSIGN clauses in the program. Figure
8 shows a FILE-CONTROL statement in a COBOL
program, and a corresponding ALLOCATE
command that assigns the file to the
terminal at execution time.

The DATASET operand of the ALLOCATE
command corresponds to the DSNAME field of
a DD statement. The * is a conventional
symbol for the terminal. The FILE operand
corresponds to a DDNAME. In this example,
any output written to ANSWER-FILE in the
program will be displayed at the terminal.

The same program could be executed in the
background, with a DD statement directing
the output to the printer or data set.

r---, I . I
ISELECT ANSWER-FILE ASSIGN TO UT-S-DDOUT I 1/1 I I
I I
lallocate dataset(*) file(ddout) I
I I L-__________________________________ ~ _____ J

Figure 8. Defining the Terminal as a File

For programs containing ACCEPT and
DISPLAY clauses, or which generate TRACE
and EXHIBIT output for debugging, the SYSIN
and SYSOUT files can be defined as the
terminal. The ALLOCATE commands are:

ALLOCATE DATASET(*) FILE(SYSIN)
ALLOCATE DATASET(*) FILE(SYSOUT)

DISPLAY output is sent to the terminal
instead of system output. TRACE and
EXHIBIT output is also sent to the
terminal.

A COBOL Example

Figure 9 is an example of a terminal
session in which the user writes, compiles,
and executes a simple inquiry program in
COBOL. The program uses a part number
entered from the terminal to select a
record from an indexed file, and prints the
information from the record out on the
terminal.

At 1, the user enters an EDIT command to
create a new data set that will contain the
COBOL source program. The EDIT processor
recognizes the descriptive qualifier
"COBOL" in the data set name, and sets the
record length and blocking factor to values
acceptable to the ANS COBOL compiler. The
tabs in the data set are set to "columns"
7,8,12, and 72. Since it is a new data
set, the EDIT processor requests input (at

2), and types out the first line number
("00010" at 3). The EDIT processor
continues to generate line numbers until 5,
where the user enters a null line to
request transfer to edit mode.

In the program itself, the user defines
an indexed sequential file in the
INPUT-OUTPUT section. This data set is
permanently allocated by a DD statement in
the user's LOGON procedure. No files need
to be defined for the terminal in the LOGON
procedure, since the ACCEPT and DISPLAY
statements can be directed to the terminal
with ALLOCATE commands defining SYSIN and
SYSOUT.

At 7, the user saves a copy of his
source program, and enters the END
subcommand to terminate the EDIT processor.
The COBOL command at 10 invokes the .ANS
COBOL compiler to process the source
program.

At 13 and 14, the user assigns SYSIN and
SYSOUT data sets to the terminal. This
same COBOL program could be executed in the
background by including SYSIN and SYSOUT DD
statements in the Job Control Language.

The LOADGO command at 15 calls on the
Loader to bring the object program into
main storage and pass control to it. The
COBLIB operand specifies that the standard
COBOL library is to be used to resolve
external references.

At 16, after his keyboard unlocks, the
user enters a part number to test the
program. The program locates the
corresponding record in the indexed file,
and displays the information in it at 17.
The user repeats the test at 19, but with a
non-existent part number. At 22, the user
invok~s the Linkage Editor to create a load
module, and add it to his command library,
a partitioned data set concatenated to the
system command library. Once the member is
added to his command library" the user can
invoke the program by entering the program
name as a command, as he does at 23.

Programming at the Terminal 31

r---,
1 edit query. cobol new
2 INPUT

identification division.
program-ide query.
environment division.
configuration section.
source-computer. ibm-360-i65.
object-computer. ibm-360-i65.
input-output section.
file-control.

3 00010
00020
00030
00040
00050
00060
00070
00080
00090
00100
00110
00120
00130
00140
00150
00160
00170
00180 01
00190
00200
00210
00220
00230
00240
00250
00260
00270
00280
00290
00300
00310
00320
00330
00340

select parts-file assign to da-2314-i-ddparts
access is random
nominal key is key-in, record key is rec-key.

data division.
file section.
fd parts-file

block contains 5 records
record contains 80 characters
label records are standard.
parts-record •.
02 delete-code
02 rec-key
02 part-hi story

working-storage section.
77 key-in
procedure division.
begin.

open input parts-file.
para-i. .

accept key-in.

picture x.
picture 9(7).
picture x(72).

picture 9(7).

read parts-file invalid key go to inv-key-read.
display rec-key, part-history.

eojb.
close parts-file. stop run.

inv-key-read.

4 00350
5 00360
6 EDIT

display 'no record found'.
go to eojb.

I
7 save

SAVED
end
READY

I 8

I 9

I
110 cobol query so x d pm
~ 1 ANS COBOL IN PROGRESS
112 READY
1
113
1
114
I
I
115
b6
117
1
1

allocate dataset(*) file(sysin)
READY
alloc da(*) f(sysout)
READY

loadgo query coblib
6367220
6367220 SHIM CLIP
READY

24 ON HAND

118 loadgo query coblib
11 9 9999999
120 NO RECORD FOUND
121 READY

10 ORDER POINI' SUPPLIER 17688

L-__ ~ _______ ~ ________________________ _

Figure 9. A Terminal session Creating a COBOL Program (Part 1 of 2)

32 Time Sharing Option Guide (Release 20.1)

r---,
122 link query load(commands(query» coblib I
I READY I
I I
123 query I
I 3288540 I
I 3288540 PAWL SPRING (4-INCH) 13 DOZ ON HAND 7 ORDER POINT I.
I . READY I L ___ J

Figure 9. A Terminal session Creating a COBOL Program (Part 2 of 2)

Programming at the Terminal 33

FORTRAN

Two versions of FORTRAN IV with special
support for the foreground environment are
available as Program Products to TSO users:

• Code and Go FORTRAN.
• FORTRAN IV (Gl).

Both processors can also be used in the
background environment. Two additional
Program Products are available to
complement the processors:

• FORTRAN IV Library (Mod I) "for use
with either processor to provide
list-directed input/output support,
ASCII data set handling, and PAUSE and
STOP output to the terminal.

• TSO FORTRAN Prompter, which allow s the
terminal user to invoke the FORTRAN IV
(Gl) processor with the FORT or RUN
commands.

A FORTRAN programmer can also invoke the
FORTRAN (E), (G), or (H) processors with
the CALL command, but not with the RUN or
FORT commands. The user is responsible for
allocating the data sets needed by these
compilers, and for specifying the compiler
options. The prompter performs these
services for the FORTRAN IV (Gl) compiler,
which also has output specially formatted
for the terminal.

Code and Go FORTRAN is optimized for a
fast compile-and-execute sequence, carried
out entirely within main storage for small­
to medium-sized programs. This makes it a
useful tool for problem-solvers. It
accepts free-form source statements, and
has simplified I/O statements for

. addressing the terminal. However, no
permanent object program is produced, and
some execution speed is sacrificed for fast
compilation. Whenever the programmer needs
to link separately compiled programs and
subroutines, when he is working with very
large programs, or when he wants to produce
an object program he can save, he will use
the FORTRAN (Gl) compiler. He may develop
and·test his program with Code and,Go
FORTRAN, and then compile it a last time
with the FORT command. The TSO CONVERT
command will change free form source
statements to fixed form or vice versa.
Code and Go FORTRAN is discussed in greater.
detail in the chapter "Problem Solving. II

Entering the Source Program

The programmer uses the EDIT command to
create a source program. An operand of the
EDIT command informs the syntax checker
what FORTRAN compiler is going to be used.
The normal value, (Gl), is selected by

34 Time Sharing Option Guide (Release 20.1)

default if no value is entered. As the
program source statements are entered, the
FORTRAN syntax checker processes each line,
interrupting the input sequence if it
detects an error • Figure 10 shows a syntax
checker diagnostic response and the user
action to correct the error. The first
CHANGE subcommand inserts a left
parenthesis, the second, a right
parenthesis.

Compiling a FORTRAN Program

When the programmer finishes entering the
source program" he saves his data set with
the SAVE subcommand, and switches to
command mode to enter the FORT command, or
stays in edit mode and uses the RUN
subcommand. Operands of FORT allow him to
specify various compiler options: whether
or not a listing is to be produced, the
contents of the listing, where it is to be
printed or stored, whether or not an object
program is to be produced, and whether
diagnostics are to be sent to the terminal.
All operands except the input data set name
can default to standard values.

r---,
1
1
100030 30 format (flO.3)
100040 12 read (2,30) a(i),i=1,5
I) REQUIRED FOR IMPLIED DO
1 EDIT
Ichange / a/ (a/
Ichange /5/5)j
1 list
100040 12 read (2,30) (A (I) ,,1=1,,5)
1
1
1 INPUT
1 do 50 i=1,5
1
1 L ___ J

Figure 10. FORTRAN syntax Checker
Diagnostic

As the compiler processes the program,
it may find program organization errors
that were not detected by the syntax
checker on a statement-by-statement basis.
Compiler diagnostic messages are sent to.
the terminal, along with the statement in
error, and a pointer to the field in error,
if possible. Figure 11 is an example of
compiler output to the terminal during a
single- compilation. The number preceding
the source statement is the line number
assigned by EDIT when the source program
was entered. The line number allows the
programmer to use the edit mode subcommands
to correct the statement quickly, without
listing the entire source program.

r---,
I Gl COMPILER ENTERED I
·1000170 30 FORMAT (16) I
I' $ I
101) IGI006I DUPLICATE LABEL I
ISOURCE ANALYZED I
I PROGRAM NAME=MAIN I
1*001 DIAGNOSTICS GENERATED, I
I HIGHEST SEVERITY CODE IS 8 I
I READY I L-_______________________________________ -J

Figure 11. Sample of FORTRAN compiler
output

When the program compiles successfully,
the programmer can print an error-free
listing, and use the LOADGO command to load
his program for execution.

Testing FORTRAN Programs

The FORTRAN programmer has two testing
facilities: The debug facility of the
FORTRAN language, and the TSO test mode.

The debug facility of FORTRAN (Gl)
allows the programmer to monitor program
execution from his terminal. Output from
the debug statements such as TRACE and
DISPLAY is sent to the terminal, unless
directed elsewhere with the UNIT option of
the DEBUG statement. DUMP and PDUMP output
also goes to the terminal. Execution of
the program can be synchronized with the
terminal by inserting READ statements in
the debug packets, forcing the program to
wait for the user to allow it to continue.
Since FORTRAN debug statements are grouped
together in the source program, they can be
easily deleted with EDIT subcommands when
testing is completed.

The test mode is also available for
FORTRAN programmers. Using an object
program listing and storage map produced by
the compiler, the programmer can insert
breakpoints to interrupt execution of his
program, list and modify variable values in
main storage, and control "program flow.
Some knowledge of System/360 instruction
formats and hexadecimal notation is helpful
in using test mode.

PL/I
The PL/I programmer can use the following
language processors from the terminal:

• ITF: PL/I.
• PL/I Optimizing Compiler.
• PL/I (F) Compiler.
• PL/I Checkout Compiler.

The ITF: PLiI Program Product is a subset
of PL/I designed for solving problems at
the terminal. It is provided by a compiler

that offers two types of processing: a
rapid compile-and-execute sequence for
small- to medium-sized programs, or
line-by-line interpretation and,execution
of PL/I statements as they are entered.
ITF: PL/I does not produce a permanent
object program. ITF: PL/I is described in
the chapter., "Problem Solving."

The PL/I Optimizing Compiler, an IBM
Program Product. is a language processor
for use in either the background or the
foreground environment. For the foreground
environment, the compiler incorporates a
prompter, which allows the user to invoke
it with the PLI or RUN commands. Compiler
options allow the user to request
diagnostics and listings formatted for the
terminal, or to request termination of,
compilation if syntax errors are found.

The PL/I programmer can also use the
PL/I (F) compiler from the terminal, but no
special prompting or output format is
available. The F-Ievel syntax checker can
be used to scan source statements as they
are entered or to scan complete programs.
The PL/I (F) compiler cannot be invoked
with the PLI command, but an example of a
command procedure that uses the CALL
command for the PL/I (F) processor is given
in the last section of this chapter. The
remainder of this section is concerned only
with the PL/I Optimizing Compiler.

The PL/I Optimizing Compiler implements
a more comprehensive subset of PL/I than
previous compilers and offers a choice of
fast compilation" optimization for speed of
object program execution, or optimization
for minimum object program size. A
subroutine library is required during
linkage editing of a compiler output
module. A second library is required for
execution of the object program. Each
library is available as an IBM Program
Product:

• OS PL/I Resident Library •
• OS PL/I Transient Library.

The PL/I Checkout Compiler is a
two-stage processing program which
translates and interprets (executes) PL/I
programs. It can be used in either the
batch or TSO environments of the IBM
System/360 Operating system.

Using the checkout compiler in a TSO
environment will often enable you to check
out a PL/I program in one session at the
terminal. Its conversational checkout
features allow you to communicate with"the
compiler during processing. The compiler
prints messages and listings at the
terminal (as requested by the TERMINAL
option) and you can respond with PL/I
subcommands. or PL/I statements for

Prograreming at the Terminal 35

immediate execution. The subcommands allow
you to change compiler options, request
more information, copy output files at the
terminal, make temporary modifications to
the PL/I program (during interpretation
only), and either continue or terminate
processing.

You can also communicate with the PL/I
program when it is being interpreted, by
using the conversational I/O feature of
PL/I.

Entering a PL/I Program

The programmer uses the EDIT command to
create his source program and save it as a
data set. He can request EDIT to assign a
line number to each line of his source
program as he enters it. If line numbers
are assigned, he can request the PL/I
Optimizing Compiler to use them in
diagnostic messages:, instead of statement
numbers. The programmer can use 'the line
number to retrieve the erroneous source
statement, correct the error,' and invoke
another compilation, all without having the
complete listing displayed at the terminal.

Compiling a PL/I Program

To invoke the compiler, the programmer uses
either the RUN command or the PLI command.
RUN can be used as a subcommand of EDIT,
allowing the user to correct errors without
entering the EDIT command again. RUN
causes a complete compile-load-go sequence
but does not produce a permanent object
program. RUN is normally used during the
initial compilations to check for source
language errors. When a program is
debugged, the PLI command can be used to
produce an object program and a full
listing. The object module can be loaded
for execution or linkage edited into a
program library for use as a load module.
Whether invoked by RUN or PLI, the PL/I
Optimizing Compiler directs diagnostic
messages to the ter~inal, in either a full
or an abbreviated format. During testing,
the programmer can have traces and other
output generated by PL/I program checkout
facilities displayed at the terminal.

Program Execution

Programs produced by the compiler can be
executed in either the background or the
foreground. In the foreground I/O can be
directed to the terminal by allocating a
'PL/I file, such as SYSIN or SYSPRINT, to
the terminal with the ALLOCATE command. In
the background these same files can be
directed to data sets or unit record
devices.

36 Time Sharing Option Guide (Release 20.1)

Assembler Language

Like programmers who use the higher level
languages, the assembler language user
enters his source program statements with
the EDIT command. Assembler (Fl accepts
free form input, but the tab setting
facilities of EDIT allow the user to create
a formatted listing. On request, EDIT
assigns line numbers to the source
statements, which are later referred to by
diagnostic messages produced during
assembly. Line number or context editing
is always available to correct errors,
modify source statements, or add comments.

Assembling the Program

When the programmer completes his source
program and saves it, he invokes Assembler
(F) with the RUN or ASM commands. The use
of these commands requires the TSO
Assembler Prompter Program Product.
Operands of ASM give him control over the
listing format, disposition of output, and
diagnostic messages.

Assembler diagnostic messages sent to
the terminal include the statement in
error" if possible; both the EDIT-assigned
line number and the assembler-assigned
statement number; and an explanation of the
error. Usually, the user will not need to
have the complete listing displayed in
order to obtain an error-free assembly.
Using the line numbers in the diagnostic
messages, the programmer can quickly locate
and fix source statement errors with the
edit mode subcommands.

Test Mode

When assembly completes without error, the
programmer creates a load module with the
LINK command, and uses the TEST command to
bring it into storage. The TEST command

, processor uses the symbol table produced by
the assembler and linkage editor, which
gives the address and attributes of each
symbolic name used in the source program.
Before passing control to the program, TEST
allows the user to establish initial values
to be passed to the program as test data,
and to set up breakpoints where execution
is to be interrupted for displays, dumps,
and other debugging activity. The user can
refer to points in the program by symbolic
names, absolute relative or indirect
addresses.

To display storage and register
contents, the programmer uses the LIST
subcommand, specifying a register range or

address range, or a list of symbolic names.
Special forms of the LIST subcommand
provide standard formats for control blocks
such as the TCB, DEB, DCB, and PSW. LIST
will also provide a current map of user
storage. List output can be directed to
either the terminal or a data set.

Other TEST subcommands allow the
programmer to load additional programs into
storage, to delete or replace programs in
storage, to issue GETMAIN and FREEMAIN as
subcommandsfrom the terminal, to define
the location and attributes of symbols not
in the symbol table, and to start and stop
program execution.

Other Compilers

Any language processor designed to execute
under the operating system can be invoked
from ·a TSO terminal. A compiler, like any
other program in load module form, is
invoked with the CALL command. Options to
control the execution of IBM compilers .-­
such as LOAD or NOXREF -- are entered with
the CALL command, in the same form as they
would be specified in the PARM field of an
EXEC statement in a background job stream.

Before a language processor is invoked;
the necessary input, output, and utility
files must be allocated under the names
expected by the processor. For the
compilers invoked directly by their own
commands (American National standard COBOL,
FORTRAN (Gi), PL/I Optimizing Compiler and
Assembler (F», the necessary allocations
are performed by initialization programs
called before the compilers.

Since the ALLOCATE statements necessary
for a particular compiler are always the
same, it· is. easiest to define them in a
command procedure to be used for invoking
that compiler. The function of the command
procedure is the same as the cataloged
procedures used to invoke compilers in the
background: to save the user the trouble
of entering a set of unchanging statements
each time the compiler is invoked. The
command procedure developed in this section
as an example is for the PL/I (F) compiler.
Similar procedures can be defined, either
by individual users or by the installation,
for any processor.

A Compiler Command Procedure

Figure 12 shows a command procedure that
could be used to invoke the PL/I (F)
compiler. This procedure would be created
with the EDIT command as a command list
(CLIST) data set, under an appropriate
member name, such as PLIF.

At 1 in the sample procedure is a PROC
statement, defining a single positional
parameter to be supplied by the user when
the procedure is invoked, in this case, the
name of his program. Whatever value the
user specifies when calling the procedure
will be filled into the following commands
wherever "&NAMEn appears.

Records 2 through 6 perform the data set
allocations required by the PL/I compiler.
Record 2 allocates the input data set
containing the source program. Although
this data set is probably already
allocated, since the user has most likely
just created it with EDIT, this ALLOCATE
command will reallocate it with the DDNAME
ftSYSINn • This data set is always OLD, no
BLOCK or SPACE values have to be supplied.
The data set name will be formed from the
program name supplied by the EXEC command,
followed by the characters " .• PLln.. Two
periods are necessary in the model command,
since the first one indicates· the following
characters are to be concatenated to the
supplied value. Records 3 and 4 similarly
allocate and assign standard names to the
data sets to hold the program listing and
the object program. since these are new
data sets, the BLOCK and SPACE values must
be supplied. Records 5 and 6 allocate the
two utility, or temporary work, data sets
the compiler needs. No data set name is
specified, so a system-generated name will
be assigned to them, and the data sets will
automatically be deleted by a FREE command.
All the other data sets will be kept and
cataloged. To use the same procedure again
for the same program, the user should enter
DELETE commands for SYSLIN and SYSPRINT.

Record 7 invokes the PL/I (F) 'compiler
by its load module name , and passes to it
the list of options to control execution.
When the compiler completes processing, the
FREE command in record 8 releases all the
data sets except the object module.

Programming at the Terminal 37

r---, 11 PROC 1 NAME I
12 ALLOCATE DATASET(&NAME •• PLI) FILE(SYSIN) I
1 3 ALLOCATE DATASET (&NAME •• LIST) FILE(SYSPRINT) BLOCK(125) SPACE(300,100) I
1'+ ALLOCATE DATASET(&NAME •• OBJ)FILE(SYSLIN) BLOCK(80) SPACE(250,100) I
15 ALLOCATE FILE(SYSUT1) BLOCK(1024) SPACE(60,60) I
1 e ALLOCATE FILE(SYSUT3) BLOCK(80) SPACE(250,100) I
1 7 CALL 'SYS1. LINKLIB (I EMAA)' 'LIST, ATR, XREF" ST Mr., MACRO' I
1 8 FREE FILE(SYSUT1,SYSUT3.SYSIN,SYSPRINT) I L __ ~ __________________________ J

Figure 12. A Command Procedure to Invoke the PL/I (F) Compiler

r---, I 1 exec plif 'exp' list '2 ALLOCATE DATASET (EXP .PLI) FILE (SYSIN)
I 3 ALLOCATE DATASET (EXP.LIST) FILE(SYSPRINT) BLOCK(125) SPACE(300,100)
I '+ ALLOCATE DATASET(EXP.OBJ) FILE(SYSLIN) BLOCK(80) SPACE(250,100)
1 5 ALLOCATE FILE(SYSUT1) BLOCK(1024) SPACE(60,60)
1 6 ALLOCATE FILE(SYSUT3) BLOCK(80) SPACE(250,100)
I 7 CALL 'SYS1.LINKLIB(IEMAA)' 'LIST,ATR,XREF,STMT,MACRO'
1 8 FREE FILE(SYSUT1,SYSUT3,SYSIN"SYSPRINT)
1 9 READY
1
110 allocate dataset(*) file(sysin)
111 READY
I
112 allocate dataset (*) file (sysout)
113 READY
I
11'+ loadgo exp.obj pl1lib L ___ J

Figure 13. Use of a Command Procedure

Figure 13 shows how the procedure might
be used from the terminal. At 1 is the
EXEC command invoking the procedure. The
LIST keyword on the command specifies that
each command is to be printed out at the
terminal as it is executed. Note that the
name supplied with the EXEC command has
been filled in as part of the data set name
field in the ALLOCATE commands. The system
continues to list commands through line 8"
then notifies the user it is again ready to
accept commands from the terminal with the
READY message in line 9. The user enters
the LOADGO command to bring his compiled
object program into storage for execution.

I If the procedure is a member of the
-command procedure library, the user can use

the EXEC command implicitly, as shown in
Figure 14. When the system does not find
"PLIF" defined in the command library" it

I looks for the command procedure in the '
command procedure library. The individual
commands are not displayed at the terminal.
When the procedure completes, the READY
message is displayed, and the user can load
his program for execution.

r---,
I plif exp I
1 READY I L __________________________ ~ _____________ _J

Figure 14. Implicit use of Procedure

38 Time Sharing Option Guide (Release 20.1)

Nested Procedures ,

A command procedure can be made into a
compile-load-go sequence -- the equivalent
of the RUN command -- by using the .
procedure nesting and conditional execution
capabilities. For instance, in Figure 13,
note that the user enters two ALLOCATE
commands, defining terminal input and
output for execution time, and a LOADGO
command to invoke his program. Like the
commands used to invoke the compiler, these
would normally be-used every time the user
wants to invoke his program, and therefore
can be reasonably placed in a command
procedure. This second procedure can be
called from the compiler-invoking

'procedure, making it a compile-load-go
procedure,;.

The procedure to load and execute the
user program might be defined as shown in
Figure 15, under a suitable name such as
LOGO. The FREE command in record 2 is the
same as the one in the PLIF procedure. It
needs to be repeated here since it will not
be executed in that procedure, as explained
below. Records 3 and 4 allocate the
terminal for any SYSIN or SYSPRINT I/O
statements in the user program, and
statement 5 is the LOADGO command causing
the program to be brought into storage and
given control.

r--, 11 PROC 1,NAMl 1
12 FREE FILE(SYSUT1,SYSUT3,SYSIN,SYSPRINT)1
13 ALLOCATE DATASET(*) FILE(SYSIN) 1
I~ ALLOCATE DATASET(*) FILE(SYSPRINT) 1
Is LOADGO &NAMl •• OBJ PL1LIB 1
16 END I L_. _______________________________________ .-J

Figure 15. A Command Procedure to Invoke a
User Program

It would be possible to call this
procedure from the PLIF procedure by
inserting a record containing:.

EXEC LDGO I &NAME '

However, it would be preferable to call it
only when the return code from the compiler
indicates successful execution is likely,
that is, no serious errors were detected
during compilation. To test the compiler
return code, the user inserts a WHEN
statement:

WHEN SYSRC(LE 4) EXEC LDGO I & NAME ,

The WHEN statement immediately follows the
CALL command invoking the compiler (record
7 in Figure 12). If the compiler return
code is less than or equal to four ("LE
4"), indicating that no errors, or only
minor errors, were detected, the EXEC
command is executed. If the return code is
greater than four, the EXEC command will be
ignored, the FREE command is executed, and
the procedure ends. The terminal returns
to command mode, and the user will probably
use the LIST command to display the
compiler listing, determine the errors in
the source program, correct them with the
EDIT command, and reinvoke the procedure
for another compilation. Figure 16 shows
the modified PLIF command procedure. A
DELETE command has been added for the
object module, since it is not executable.
Figure 17 shows a use of the procedure for
a successful compilation. The LIST operand
is specified to display each command as it
is executed.

r--~---------------------,
1 PROC 1,NAME , 1
1 ALLOCATE DATASET (&NAME •• PLI) FILE (SYSIN) 1
IALLOCATE DATASEr(&NAME •• LIST) FILE(SYSPRINT) BLOCK(125) SPACE(300,100) 1
IALLOCATE DATASET(&NAME •• OBJ) FILE(SYSLIN) BLOCK(SO) SPACE(250,100) 1
IALLOCATE FILE(SYSUT1) BLOCK(1024) SPACE(60,60) 1
IALLOCATE FILE(SYSUT3) BLOCK(SO) SPACE(250,100) 1
1 CALL 'SYS1. LINKLIB (IEMAA) 'I LIST, ATR, XREF, STMl', MACRO' 1
IWHEN SYSRC(LE 4) EXEC LDGO '&NAME' 1
I FREE FILE(SYSUT1.,SYSUT3) 1
IDELETE &NAME •• OBJ I
IrnD I L ___ J

Figure 16. A Command Procedure for a Compile-Lead-Go Sequence

r--~---------------------,
lexec plif 'derv' list
IALLOCATE DATASEr(DERV.PLI) FILE(SYSIN)
IALLOCATE DATASET(DERV.LIST) FILE(SYSPRINT) BLOCK(SO) SPACE(300,,100)
IALLOCATE DATASEr(DERV.OBJ) FILE (SYSLIN) BLOCK(SO) SPACE(250,100)
IALLOCATE FILE(SYSUT1) BLOCK(1024) SPACE(60,60)
IALLOCATE FILE(SYSUT3) BLOCK(SO) SPACE(250.,100)
1 CALL 'SYS1.LINKLIB(IEMAA) ·'LIST.,ATR,X~EF,STMT'
IWHEN SYSRC(LE 4) EXEC LOGO 'DERV'
IFREE FILE(SYSUT1,SYSUT3,SYSIN,SYSPRINT)
IALLOCATE DATASET(*) FILE(SYSIN)
IALLOCATE DATASEr(*) FILE(SYSPRINT)
ILOADGO DERV.OBJ PL1LIB
L __ -----------------------------

Figure' 17. Using a Compile-Lead-Go Command Procedure

Programming at the Terminal 39

Problem Solving

To meet the needs of users who may not be
professional programmers., three
problem-solving languages are available as
IBM Program Products with TSO: Interactive
Terminal Facility (ITF); BASIC ITF: PL/I,
and Code and Go FORTRAN. These languages
are available as separate program products.
ITF: BASIC is a simple, algebra-like
language that can be quickly learned, yet
it has the power to perform complex
mathematical calculations. ITF: PL/I is a
subset of the full PL/I language. It is a
more powerful language than BASIC for
subroutine handling, but is simpler than
the full PL/I language, making it a good
teaching tool. ITF: PL/I can be used in
two ways: statements can be interpreted
and executed as they are entered (desk
calculator mode); or they can be collected
into procedures for compilation and
execution as programs or subroutines. Code
and Go FORTRAN provides the full FORTRAN IV
language for terminal users. It has a very
fast compile-and-execute sequence, carried
out entirely in main storage. Code and Go
FORTRAN accepts free-form source
statements., and has simplified I/O
statements for terminals.

All three languages have
statement-by-statement syntax checking as
the programs are keyed in, and additional
diagnostics are sent to the terminal for
errors detected during compilation and
execution phases. For the ITF: BASIC and
PLII languages, the test mode allows the
user to monitor program execution with
breakpoints and traces, to inspect and
reset the values of variables and to modify
main storage during execution. The debug
facilities of FORTRAN (G) are included in
Code and Go FORTRAN.

Programs in any of the three languages
are created., and can be run, in edit mode.
Whenever necessary, the user can use EDIT
to replace or modify source statements.
For small to medium-sized programs
performance is better in edit mode than in
command mode, since the source statements
and., in the case of Code and Go FORTRAN,
the object program, can be kept in main
storage and do not have to be read in from
auxiliary storage.

ITF: BASIC
The ITF: BASIC Program Product is
based on the original BASIC language
created for time sharing use at Dartmouth

40 Time Sharing Option Guide (Release 20.'1)

College. With TSO, the BASIC user logs on
to the system, then enters the EDIT
command. In the input mode he enters
successive statements to define his
problem. If the system detects a syntax
error, he is notified immediately so that
he can correct the faulty statement before
continuing. The user can defer syntax
checking until compilation.. When all his
statements have been entered and syntax
checked, the user issues the RUN subcommand
to compile and execute the program. An'
operand of the RUN subcommand specifies
whether he wants to execute with short
precision (6 significant decimal digits) or
long precision (15 digits). Programs and
data can be saved from one session to the
next, or deleted after use.

BASIC statements are entered one to an
input line, and can refer to other
statements by the line number assigned by
EDIT. Variables always have one- or
two-character names. Arithmetic operators
used in BASIC statements are +, -, I, *,
and ** (exponentiation).

BASIC includes statements for defining
and handling one- and two-dimensional
arrays. Array references have the form
A(i,j) where "Aft is the array name, and "in
and"j" are variables or constants
referring to the row and column of an
element. Elements can contain 'arithmetic
or character values.

A special set of statements is included
to handle matrices. A BASIC matrix is
always a two-dimensional array, and can
contain only arithmetic values. Two
matrices with the same dimensions can be
multiplied, added, or subtracted" and a
matrix can be inverted or transposed with
built-in matrix functions.

Figure 18 shows a terminal sension
creating a BASIC program to calculate the
infinite sum <Xl

:E x-n
n= 1

to the limit of machine precision.
Statements 010 and 020 write messages to
the termina1~ describing the input
requested by statement 030., After
initializing the variables, the user states
the sum as in BASIC format: S =
S+1/(X**N). Statement 070 increments N,
and 080 is a check to see if the precision
limit has been reached. If it has, control
branches to statement 100, to print the
results at the terminal. Note that

statement 110 uses an "image" statement to
format output. while statement 130 uses the
default format.

During the execution of the program, the
"1" requests the user to enter the input.
When the results are printed and the
program terminates, the user is returned to
edit mode where he saves the program for
use in later sessions.

r---,
edit rsurnx basic
INPUT
010
020
030
040
050
060
070
080
090
100
110
120
130
140
150
EDIT
run

print 'summing l/x**n),
print 'what x'
input x
let n=O
s=O
s=s+l/(x**n)
n=n+1
if s=s+l/(x**n) then 100
goto 60
print 'number of terms:' I (n-1)
print using 120, s

'sum='##.#############
print 'last term=', 1/(x**(n-1»
end '

SUMMING 1/ (X**N)
WHAT X

1 1.065

save
SAVED
end

I READY

NUMBER OF TERMS: 176
SUM= 16.3836700000000
LAST TERM= 1.53643E-05

L __ _

Figure 18. ITF: BASIC Sample Session

ITF: PL/I
The ITF: PL/I Program Product is a subset
of the full PL/I language, suited to
problem-solving because of its simplicity
and ease of use. For example, there are no
arithmetic conversion rules to remember:
all arithmetic data is kept in decimal
floating-point format. The language is
compatible with PL/I as provided by the
PL/I (F) compiler, except that Interactive
PL/I does not require semicolons to
terminate statements, source language
programs are stored with variable-length
records, and some arithmetic data formats
that would default to fixed-point binary in
full PL/I are floating-point decimal in
ITF: PL/I. A utility command, CONVERT, is
provided to format ITF: PL/I source
programs for submission to a batch PL/I
compiler, if the user wants to create an
object program.

ITF: PLiI can be used under either the
EDIT or the CALC commands. Under EDIT,
statements are collected into a program.
When the program is complete, the RUN
subcommand is used to compile and execute
it. Under the CALC command, statements are
interpreted and executed as they are
entered. Statements are discarded as soon
as they have been executed. Variables,
however, are all defined as "static
externals" and kept in a table in main
storage. where they can be referred to by
subsequent ITF: PLiI s~atements. or
displayed at the terminal. The table of
variables created during a session using
the CALC command can be saved in a data set
for use in later sessions.

Variables included' in ITF: PL/I are
scalars of either single or double
precision, arrays of up to three
dimensions, character and bit strings,
labels, externals, and entry and return
parameters. Execution control statements
include DO loops, GOTO branch statements,
and IF THEN ELSE conditionals. Procedures
collected under the EDIT command can be
saved and invoked with the CALL statement,
either from another procedure or under the
CALC command. Only list-directed and
edit-directed stream I/O is provided,
either to a file or the terminal. An
appropriate set of the PL/I built-in
functions is included in ITF: PL/I.

Test Facility: When a user invokes an ITF:
PL/I or BASIC procedure for execution, as
an option he can specify that the program
is to be tested. In this case, the system
allows the user to set breakpoints in the
program before it is started, and to set up
program traces and displays of variables.
All output from the testing routines is
displayed at the terminal. When the
program is interrupted by a breakpoint, or
when the user hits the attention key, he
can display and modify variable values,
modify test procedures, and then restart
the program at the point of interruption.
The ITF testing subcommands are a subset of
the TEST subcommands available for the
programming languages.

Syntax errors in an ITF: PL/I source
statement are detected as soon as the
statement is entered', and the user is
notified to correct the statement. The
user can request deferral of syntax ,
checking to compile time. When operating
under EDIT. some errors will only be
detected at compile-execute time. In this
case, a message is sent to the terminal,
and the user is returned to the edit mode
to correct the error in the source program.

Problem Solving 41

r---,
edit div ipli

div: procedure(x,y);
INPUT
00010
00020
00030
00040
00050
00060
00070
OOOBO
00090
00100
00110
00120
00130
00140
00150
00160
00170
001BO

/* this procedure is a subroutine that finds the */
/* greatest common divisor of any positive x and */
/* Y of six digits or less */
xl = max(x.,y);
yl = min(x,y);
if (xl <= 0)1 (yl <= 0) then do;

put list (. inval id values');
return;

lab: rem = xl -
if rem = 0
xl = yl;
yl = rem;
go to lab;

end;
(floor(xl/yl)*yl);
then go to out;

out:
end

put list ('the common divisor is:',yl);

EDIT
save
SAVED
end
READY

calc
CALC
call dive 9,24)
THE COMMON DIVISOR IS: 3.00000E+00
end

I READY . L ___ J

Figure 19. ITF: PL/I Sample Session

Sample Session: Figure 19 shows a sample
terminal session using. ITF: PL/I to create
a procedure finding the largest common
divisor of two positive numbers. nMaxn and
nminn in statements 50 and 60, and nfloor"
in statement 110 are built-in functions.
Note that since no file is specified in the
PUT statements, the output is sent to the
terminal. At statement lBO, the user
entered a null line, indicating a switch
from the input mode to edit mode. The SAVE
subcommand stores the procedure on
auxiliary storage. The user then enters
CALC to go to the desk calculator terminal
mode, and uses a CALL statement to invoke
the procedure.

Code and Go FORTRAN

For the many problem-solvers who are
familiar with the FORTRAN programming
language, the Code and ~o FORTRAN Program
Product is available for use fr~m the
terminal. The user creates his program"
and optionally has it syntax-checked, with

I the EDIT command. He uses the RUN
subcommand to invoke the Code and Go
FORTRAN compiler. The source program is
converted to an object program in main

42 Time Sharing Option Guide (Release 20.1)

storage.. As soon as the object program is
complete,' control is passed to it. The
compiler used for Code and Go FORTRAN
bypasses certain object code optimization
processing for greater compilation speed.

The language includes all the features
of FORTRAN IV as defined in the publication
IBM system/360: FORTRAN IV Language. Two
extensions to the language are included for
ease of use from the terminal: free-form
source statements and list-directed I/O
statements similar to those provided.by
PL/I.

Free-Form statements: Code and Go FORTRAN
does not require statements to begin in
column 7. If a statement has a label, the
statement can immediately follow the label.
If it has no label, it can start in column
1.

A utility command (CONVERT) is available
to chang~ free-form source statements to
fixed form, if a user wants to submit them
to one of the batch FORTRAN compilers after
developing ·and testing them in free form.
Code and Go FORTRAN will also accept the
conventional fixed format.

List-Directed I/O: The list-directed I/O
facility can be used for any I/O device,
but was designed especially for FORTRAN
programs that read from and write to a
remote terminal. List-directed I/O
statements are written with an asterisk (*)
in the field normally used for the FORMAT
statement number. Thus, a READ statement
to fill an array of five values might be
coded:

20 READ (5, *) (A (1),1=1,5)

When execution reaches statement 20 in
the program, the line:

00020
?

is sent to the terminal. (This prompting
message is suppressed at user request or if
the device is not a terminal.) The user
can then enter a line such as:

30.7 42.85 12.3 29.1 88.43

to fill in the array. Input values can be
separated by one or more blanks, or by a
single comma. Two commas in succession
indicate a value is to be skipped. A slash
is used to indicate that no more values
will be entered, and that any remaining
variables in the list are not to be
altered. Successive occurrences of the
same value can be entered in the form
"k*constant", as in NAMELIST input. Array
A above could have been filled by the line:

5*30.7

Integer, real, literal, complex, and
logical constants can be entered for
list-directed READ statements. Real
const ants can be entered in D, E, or
unspecified format. List-directed WRITE

statements may not include literal
constants, and real constants default to E
format on output.

Sample Session: Figure 20 shows a portion
of a terminal session in which a user
writes a program in Code and Go FORTRAN and
executes it. With the EDIT command, he
specifies he is creating a new program
named "VAL"" written in Code and Go FORTRAN
(GOFORT), and that he wants it checked for
syntax errors as he enters it. READ
statement 5 allows the user to enter one of
the variables, and to specify how many
values will be supplied for the array
DELTA. Statement 10 then reads the values
for. DELTA. The WRITE statement will
display the answers from array F at the
terminal.

When the program is completely entered,
the user shifts from input mode to edit
mode by entering a null line. The SAVE
subcommand creates a copy of the program on
auxiliary storage. The RUN command invokes
the CODE and Go FORTRAN compiler, which
creates an object program in main storage,
calls the loader to resolve external .
references and bring in necessary library
programs, and start the program. Note that
the ALOG subprogram is included in the
program. The complete FORTRAN subprogram
library is available.

When execution reaches statements 5 and
10, the user. is prompted to supply values,
and as the program completes, the answers
are transmitted to the terminal. After the
program terminates the user returns to the
edit mode, 'where he could modify the source
program if necessary. The saved copy of
the program will be kept for the user on
auxiliary storage, where it will be
available in subsequent sessions.

Problem solving 43

r---,
1 READY
,edit val new gofort scan
'I INPUT
100010
100020
100030
100040
1000 50
100060
100070

real*4 delta(10) /10* 0.0/, f (9) /9* 0.0/
5 read(5,*) curnt,n
10 read(5,*) (deltaCi),i=l,n)
do io i=l~n I

20 delta(i)=alog«curnt+delta(i»/curnt)
do 30 i=2,n
30 f(i-1)=deltaCi)/deltaC1)

1 00080 n=n-1
100090 writeC6, *) (f(i) ,i=l,n)
100100 end
, 00110

EDIT
save
SAVED
run
? 00005
176.2 5
? 00010
10. , 17.1, 21.5, 37.4, 127.14
0.167791E 01 0.208565E 01 etc.
end
READY L _____________________________ ~ ___ J

Figure 20. Code and Go FORTRAN sample session

44 Time Sharing Option Guide (Release 20.1)

This chapter introduces the major control
and service routines that have been added
to the MVT control program for time
sharing. It identifies points where the
installation can control system execution,
and where modules can be modified or
replaced for specialized applications.

-o

0)

MVT Control Program

Time Sharing
Control Task

Message Control !J
,. / V Program ~.

~ __ ~~ __________ ~(T_SC~)~ (MCP) I ,-

\l ,.r===========:::::;-tV
Region
Control Tasks

Logon/Logoff
Schedulers

_II

(RCT) r

(LOGON)

r---\1~T~e-rm-i-na-I-M-o-n-ito-r--~1 J
Program .V j

(TMP)

Command
Processors
User (CP) ..

Programs

Terminal
I/o
Requests

Figure 21. TSO Control Flow Diagram

Figure 21 is a generalized diagram of
the flow of control through the system,
showing several levels of'control under the
MVT control program. The portion of the
system directly concerned with time sharing
can be divided into five levels:

System Summary

1. At the highest level are the Time
Sharing Control and the TCAM Message
Control Program tasks. The Time
Sharing Control task handles
system-wide functions such as the
initialization procedures required
when the operator starts time sharing,
and the swapping of foreground jobs.
The Message Control Program is a part
of the Telecommunications Access
Method (TCAM) and handles all I/O for
remote terminals.

2.

3~

Below the Time Sharing Control task is
a Region Control task for each
foreground region. The Region Control
task supervises those foreground jobs
assigned to its region, including the
quiescing and restoring of job
activity before and after swapping.

The LOGON/LOGOFF Scheduler is'invoked
by the Region Control task whenever a
user wants to log on or off the
system. The LOGON routine identifies
the user to the system, and defines
his foreground job using parameters in
the LOGON procedure, user profile, and
operands of the LOGON command.

4. LOGON invokes a problem program
specified by the user's LOGON
procedure at the next level. This is
normally the TSO Terminal Monitor
Program, which handles TSO and
user-supplied commands.

5. Command processors and other
application programs execute at the
lowest level of control.

These levels are conceptual only, and
are not defined by priorities or locations
in main storage. Through the course of
this chapter a more precise system flow
diagram will be built. However, some
overall design features of the system are
apparent from even the simplified picture
in Figure 21:

• TSO is highly modular -- built up from
small components with well-defined
interfaces -- and therefore flexible
and adaptable to local needs. The
Terminal Monitor Program and the
Message Control Program are designed to
be modified or replaced by the
installation for a specialized
application.

system Summary 45

• Each level of control also provides an
opportunity for the system to recover
from failures. For instance, abnormal.
termination of a command processor or
other problem program is'handled by the
Terminal Monitor Program. Only the
user who invoked the failing program is
affected -- and he is given an
opportunity to recover the program
through the TEST facility. Users at
other terminals are completely
protected.

The Time Sharing Driver

Before discussing the individual control
routines in greater detail, one program
must be added to the control flow dia~ram.
The Time Sharing Driver isolates in one
component the decision-making algorithms
for the division of system resources among
all the users of the system~ By passing
parameters to the Driver with the START
command or from the system parameter
library, the installation controls the
various scheduling algorithms to gain the
desired performance for its job mix. These
-tuning- parameters and the algorithms are
discussed in the last seqtion of this
chapter.

As shown in Figure 22, the Driver has a
unique relationship to the other control
routines. It cannot be logically assigned
to one of the control levels, but is used
as a service program by all the levels from
the MVT task supervisor down to the
Terminal Monitor Program. The calling

programs inform the Driver of events
throughou·t the system -- time slice end,
user waiting for LOGON" job waiting for
input., etc. From this stream of
information, the Driver maintains a current
picture of the system load and activity.
Based on this picture" the Driver orders
actions such as swapping, changes in
priority, and assignment of a user to a
particular region.

The Driver component· itself is
completely insulated from the rest of the
system by the Time Sharing Interface
Program, which accepts all calls to the
Driver, then passes them through a standard
interface to the Driver itself.. The Driver
returns parameters to the Interface Program
that request various actions by the other
control routines. Thus, an installation
can modify or replace the Driver -­
effectively, provide its own system
scheduler -- without modifying the system
implementation programs. The operator uses
the START command to specify which Driver
-- the standard one or an
installation-written one -- is to be used.

Control Routines

The following paragraphs discuss the
functions of each of the TSO routines.
Although the TCAM Message Control Program
logically shares the highest level of
control with the Time Sharing Control Task,
it is discussed last.

MVT Control Program

Figure 22. The Time sharing Driver

Time Sharing
Interface Program

(TSIP)

DRIVER

46 Time Sharing Option Guide (Release 20.1)

(PARAMETER LIST)

The Time Sharing Control Task

The Time ,Sharing Control task, as shown in
Figure 23, handles all functions affecting
the entire time sharing portion of the
system. This includes responding to the
START, MODIFY, and STOP operator commands, ,
and handling the swapping of foreground
jobs into and out of main storage.

When the operator enters the START
command for TSO, an initialization module
of the Time sharing Control task is given
control. The initialization module
calculates the size of the Time Sharing
Control region that will be, needed and
obtains it 'from the main storage management
routine of MVT. In this region, the Time
Sharing Control task builds the control
blocks and buffers the system will need,
and inVOkes a Region Control task for each
foreground region.

MVT Control Program

Time
Sharing
Control
Task

Command

(TSC)

Figure 23. The Time Sharing Control Task

While the time sharing system is
operating, the major function of the Time
Sharing Control task is the swapping of
foreground jobs into and out of main
storage. Swapping is handled at this level
so it can be optimized on a system-wide
basis when multiple foreground regions are
active. Whenever possible, an active job
is not quiesced for swapping 'out until a
channel will be free for the swap output.
But in many cases when there is nothing to
be gained by delaying, such as when a
foreground job is waiting for input from
the terminal., a swap out is scheduled
whether a channel is free or not.

The Time Sharing Control task maintains
an input queue and an output queue for swap
requests (one of each set if parallel
swapping is being used). It builds a
channel program for each swap request. A
program-controlled interruption (PCI) will'

occur near the end of each channel program.
When the interruption occurs, an exit
routine selects the next channel program to
execute. The exit routine inserts a
transfer to the next channel program at the
end of the current channel program. Thus
as the number of requests increases, the
swap process is carried out by a
never-ending channel program. Seek time is
minimized by attempting to swap jobs out to
the direct access area from which the last
job was swapped in, or if this is not
possible, by using the free space closest
to the current arm position.

In determining what portion of a
foreground region to swap out, the Time
Sharing Control task uses a map of the
foreground job created by the Region
Control task. Each entry in the map
identifies the starting address and length
of a section of the region that the job is
using.. The number of entries in this map
is the same for every job and is specified
by the installation in the system parameter
library. If there are too few entries,
inactive main storage must be included (and
swapped). A large number of entries cuts
down on the amount of inactive storage that

I has to be swapped, but adds to processing
'overhead.

When the operator enters a STOP command
to shut down the time sharing operation,
the Time Sharing Control task initiates a
logoff for each active user. When all
users are disconnected., the Time Sharing
Control task ensures that all the system
resources that had been assigned to it are
returned; the Time Sharing Control task
then terminates,returning its .main storage
region to the system.

The Region Control Task

A major function of the Region Control task
is quiescing and restoring foreground job
activity before and after swapping. There
is one Region Control task for'each active
foreground region, invoked by the Time
Sharing Control task with an ATTACH macro
instruction. Figure 24 shows a single
Region Control task under the Time Sharing
Control task.

Before a foreground job can be swapped
out of main storage, any activity
associated .with it must be brought to an
orderly halt, or set up to be handled by
some superVisor routine that will be
remaining in main storage. This includes
removing control blocks associated with the
job from system queues, or flagging them as
inactive.

system Summary 47

Region
Control
Task

Figure 24. The Region Control Task

Quiescing of I/O activity is initiated
by the Region Control task (at the request
of the Driver)., which issues the Purge
Supervisor Call for each task associated
with the foreground job. The Purge routine
removes I/O requests from the I/O
Supervisor's queues of pending requests if
they have not yet been initiated. If a
request has been started, that is, if data
transfer is already taking place, it is
allowed to complete before the job is
marked ready for swapping. The control
blocks associated with unstarted requests
are stored in the foreground region where
they will be swapped out of main storage
along with the job.

I/O requests that address the terminal
are an exception to the quiescing procedure
because of their long completion time.
These requests are handled through the TSO
interface with TCAM and are buffered in
supervisor main storage, not in the
foreground region. Data can be written or
read to these buffers whether the job is
present in its main storage region or not.

Many control blocks, like the I/O
requests mentioned above, reside in the
foreground region. For background jobs,
these control blocks would be created and
maintained in the System Queue Area, a
section of main storage set aside for this
purpose during nucleus initialization.
Foreground Tegions, however, each contain a
Local System Queue Area to hold control
blocks. As part of quiescing, the Region
Control task removes pointers to these
control blocks from system queues. The
blocks can then be swapped out of main
storage along with the foreground job. The
only control blocks for foreground jobs
that are assigned in the System Queue Area
(and remain in main storage) are requests
for timer interruptions, operator replies,
and assignment of resources through ENQ.

48 Time Sharing Option Guide (Release 20.1)

When a job is swapped into main storage
by the Time Sharing Control task, the
Region Control task receives control to
restore the I/O requests it intercepted at
swap out time, and to return the control
blocks associated with ·the job to the
appropriate system queues.

LOGON/LOGOFF

The LOGON/LOGOFF Scheduler routine performs
the same functions for foreground jobs that
the reader/interpreter and initiator do for
background jobs. When defining a
foreground job, LOGON uses many of the same
programs as subroutines.

When LOGON is .invoked by the Region
Control task, as shown in Figure 25, it is
swapped into the foreground region. A copy
of the LOGON/LOGOFF Scheduler for each
foreground region is kept in the swap data
set, reducing the amount of initialization
time needed.. LOGON, and all routines below
it in the control flow diagram, execute
from the foreground region, and are swapped
in ,and out of main storage.. LOGON first
validates the user's identification and
password in the User Attribute Data Set,
and reads in the rest of the user profile.
From the profile and any operands entered
with the LOGON command, LOGON· builds, in
main storage, a JOB and an EXEC statement
that define the foreground job. The EXEC
statement names the LOGON Procedure
specified by the user, and the procedure in
turn specifies the name of the program to
be invoked. The procedure also contains DO
statements for data sets the user always
wants allocated to him, and some special DO
statements that save control block space
for data sets he may allocate later,
dynamically.

One Per
User

Logon!
Logoff
Scheduler

(Logon)

Figure 25. The LOGON/LOGOFF Scheduler

The JOB and EXEC statements built by the
LOGON routine are passed to the
reader/interpreter to define the resources
required by the joh, and then to the

Atta,h 'fm ReT

r---
I

Log on/ XCTL I Reader/
Logoff

I Interp,reter
Scheduler

(LOGON) I
L- -- - -

MVT Job Scheduling Routines

XCTL
,.

- - - - --

Initiator/
Terminator

- -

-l

-

I
I
I

-.J

Program Named ATTACH
In Logon .J

Procedure

Figure 26. LOGON Linkage

initiator for allocation of the resources
-- direct access storage space), main
storage control blocks, etc., -- and
invocation of the program. Figure 26 shows
the linkage scheme used during LOGON. Use
of the system reader and initiator ensures
that foreground jobs are compatible with
normal background jobs, appearing to the
system as a job consisting of a single
step.

The LOGON/LOGOFF Scheduler executes in
the user's foreground region. Assignment
to that region is provisional until LOGON
determines the region is the correct size
. for the user's needs. If a larger region
is appropriate, LOGON can, through the
Region Control task and the Time Sharing
Control task, request that the Driver
assign a different region. If a region
switch is made, the job information LOGON
has already gathered is left in a
supervisor buffer.. The Driver, through the
Time Sharing Control task, causes LOGON to
be invoked in the new region, where
processing can proceed.

The LOGON routine is also brought into a
region whenever a user enters a LOGOFF
command, or a second LOGON command" during
a session. For logoff, the LOGON routine
ensures that all resources have been
returned to the system, and calls the
accounting routines to update the user's
statistics. A second LOGON command during
a session also causes logoff processing,
but it is immediately followed by re-logon.

The new LOGON may request a different LOGON
procedure or region size.

The Terminal Monitor Program

For users of the TSO command language, the
program named in the EXEC statement of the
LOGON Procedure is the Terminal Monitor
Program. Users of locally-provided command
systems, or terminal monitors "dedicated"
to some local application, can specify

I these programs in the LOGON Procedure. If
necessary for security reasons, user access
to particular applications can be
controlled through the profiles in the User
Attribute Data Set.

The remainder of this discussion
concerns only the IBM-supplied Terminal
Monitor Program, as shown in Figure 27.
Installation-written monitors must perform
similar functions, and can use some or all
of the service routiries described below.

When the Terminal Monitor Program
receives control from LOGON, it is passed a
pointer to the user profile. The profile
contains information to control the
environment of the current session -- the
user identification to append to data set
names, whether the user wants to be
prompted for command information" whether
he wants numerical message identifiers
included in messages to the terminal.

System Summary 49

Monitor
Program

Invoked Through
Job Mgt. Routines

Figure 27. Terminal Monitor Program

During a session., the Terminal Monitor
is called on to handle four conditions:

• A command processor or user program is
completing, and a new command must be
requested.

• A command processor or user program is
terminating because of an error.

• The user hit the Attention key,
interrupting the current program.

• A STOP operator command is forcing a
LOGOFF for the user.

'To invoke a command processor" the
Terminal Monitor Program uses the command
name to search the command library or
libraries for the processor load module.
When it is found, an ATTACH macro
instruction is used to invoke it. When the
command processor completes, the Terminal
Monitor issues a DETACH for it, and writes
a READY message to the terminal" indicating
another command may be entered.

When a command processor or a user
program invoked by a command (CALL, RUN,
etc.) terminates because of an error,
control is passed to a Terminal Monitor
Program routine that notifies the user of
the error .conditionand allows him to enter
a new command. If the new command is TEST,
abnormal termination processing (ABEND) is
cancelled and control is passed to the TEST
processor so the user can examine the
failing program and attempt to recover. If
the new command is not TEST, the failing
program completes abnormal termination and
the new command is processed.

When a user hits the attention key, or
when an attention interruption is simulated
for terminals without an att~ntion key" the
Terminal Monitor Program attention routine
is given control" unless the currently
executing program (a command processor or

50 Time Sharing Option Guide (Release 20.1)

user program) has specified an
attention-handling routine of its own. The
Terminal Monitor Program attention routine
gets a line from the terminal. If it is a
program status inquiry such as TIME the
Terminal Monitor Program handles the
inquiry and does not cancel the interrupted
program. If a new command is entered, the
interrupted program is cancelled and the
Terminal Monitor Program invokes the new
command processor. If the user enters a
null line, the interrupted program is
restarted at the point of interruption
although the current content of the buffers
are lost.

When the operator or a control user
enters the STOP command to force a user
logoff, the Terminal Monitor Program
terminates any program the user may have
running, and returns to the LOGON routine
for logoff processing and accounting.

TEST

The TEST processor is handled differently
than other command processors, since it
must be able to control the execution of
programs (including command processors)
being tested. The TEST routine executes at
the same level as the Terminal Monitor
Program -- receiving control via a LINK,
rather than an ATTACH, macro instruction.

TEST reads successive subcommands from
the terminal or a command procedure. Each
subcommand requests some action -­
modification of the tested program's
registers or storage areas, insertion of
breakpoints in the program, display of
data. When the GO subcommand is
encountered, the tested program is allowed
to execute'to the next breakpoint (an
inserted SVC instruction) or to completion.
When ,a breakpoint is encountered, TEST
again receives control. It will then
handle subcommands specified p~eviously by
the user, new subcommands entered from the
terminal, or both. Another GO subcommand
will restart the tested program.

Service Routines

The command processor service routines, as
shown in Figure 28, are used by the
Terminal Monitor Program, TEST, and command

,processors. In general, they perform
services that are useful to all foreground
programs" and their availability as
subroutines saves repetitive coding in all
the command processors. They can be called
from programs written in Assembler
language.

Command Analysis: Two routines are
provided for analyzing input lines to the
Terminal Monitor Program and command
processors. The Scan routine determines if

From Logon

! I

LOAD - CALL
Or

Service LINK Terminal LINK
Routines· "' Monitor , Test

~ Program

Figure 28. Service and TEST Routine

an input line contains a syntactically
correct command name, and, if it does"
returns it to the calling program. The
Parse routine continues the analysis of a
command or subcommand by comparing the line
to a parameter list supplied by the calling
program describing the permissible operands
and default values. The Parse routine
builds a new parameter list from this
information, describing the options the
user has selected, and returns it to the
calling program.

Terminal I/O: Four service routines are
provided to handle command processor input
and output for the terminal. Command
processors normally accept input lines
containing subcommands and data from the
terminal, and send messages back to tpe
terminal. However, a command processor may
be invoked from a command procedure, and in
this case, the input to the command comes
from an in-storage list built by one EXEC
command processor from the CLIST data set
that contains the procedure. To allow the
command processors to be independent of the
source of input, I/O is handled through the
Getline, Putline, and putget service
routines.

Getline, Put line " and putget use a
push-down list to keep track of the current
input source. Entries in the list
represent a terminal, or an in-storage
list. The in-storage list may be a command
procedure or data. A fourth service
routine, Stack, is provided to manipulate
this. list as the input source changes.

When a command processor calls Getline
for a line of input, Getline checks the
list of sources to determine the current
source and returns one record from that

(TMP)

I

ATTACH I ATTACH

I (A Program To B e Tested)

~ t
Command
Processor
Or
User
Program

source. The caller need not know whether
the input came from the terminal or an
in-storage buffer. Putline also checks the
list of input sources before sending output
from the comm~nd processor. Some types of
messages, identified by a code in the
message identifier, are suppressed if the
current input source is not the terminal.
For instance" ~t is not appropriate to
issue a prompting message for command
operand information if a command procedure
is in progress. A return code to the
caller indicates whether the message was
issued or suppressed. putget combines the
functions of Put line and Getline -- first
sending a message, then returning one
record.

Dynamic Allocation: The Dynamic Allocation
Interface routine handles data set
allocation and manipulation for command
processors. Dynamic allocation uses
control block space reserved by DD DYNAM
statements in the user's LOGON Procedure.
These control biocks are used over and over
again when different data ~ets are needed,
but at anyone time, a user can have only
as many data sets allocated as he has DD

I statements in his LOGON Procedure. Command
processors calIon Dynamic Allocation to
allocate data sets, to free data sets, to
search the system catalog for a particular
data set or group of related data sets, and
to concatenate or separate groups of data
sets. '

In TSO a problem may arise from the
multiple use of a Job File Control Block
(JFCB) for an input data set. When the
data set is opened, information supplied in
the Data Set Control Block (DSCB) and the
JFCB is used to fill any zeroed fields in
the Data Control Block (DCB). The opening

System Summary 51

routines then do a reverse merge from the
DCB back into the JFCB, this time filling
any zeroed fields in the JFCB. If the same
data set is subsequently opened using
another DCB, the opening routines will
retrieve information from the JFCB for
fields not specified in the DSCB or on the
DD card. This information could be faulty
and could cause a program failure.

Command Processors and User Programs

Although command processors vary widely in
function, they have some initialization
features in common. All calIon the Parse
routine to analyze the invoking command and
prompt the user for missing or invalid
operands, and all use the Dynamic
Allocation routine to determine if
necessary data sets are allocated and to
allocate them if they are not.

At this pOint, some command processors
calIon standard system processors to carry
out the function desired. For instance,
the TSO COBOL Prompter sets up a standard
calling sequence according to the options
selected by the user, and transfers control
to the American National Standard COBOL
compiler to compile the user's program.
Except for the special formatting of output
and messages, the compiler operates exactly
as it would in the background.

User-wri tten command processors" and
other programs that are not defined as
command processors., should avoid using the
special Terminal Monitor Program-command
processor interface if they are to be
compatible with the background environment.
The CALL, LOADGO, and RUN commands allow
control information to be passed to
background-compatible programs in exactly
the same format as information in the PARM
field of an EXEC statement. Data set
allocation can be handled by ALLOCATE
commands in a command procedure used to
invoke the program .•

Terminal 1/0
The Telecommunications Access Method, or
TCAM, handles all I/O between remote
terminals and jobs in the system. TCAM
distinguishes between time sharing
applications, with emphasis on direct
control of the calling terminal, and other
teleprocessing applications" where emphasis
may be on queuing, formatting and routing
of messages between remote terminals or I between applications and remote terminals.

The Message Control Program

The Message Control Program is the TCAM
controlling routine. It contains

52 Time Sharing Option Guide (Release 20.1)

definitions and descriptions of the various
terminals that can connect to the system,
it has buffers for storing data going to

I and coming from the terminals. It
transfers data between its buffers and time
sh~ring buffers.

Most of the Message Control Program is
written using a special set of macro
instructions that is essentially a language,
suitable for defining the
telecommunications network and specifying
the handling of messages on the network and
in the system. Macro instructions to
generate a Message Control Program suitable
for handling terminal I/O for time sharing
are distributed with the TSO package.

, The Message Control Program executes as
a problem program, in a main storage region
with a nonzero protection key. Normally,
it has the highest priority of the problem
programs in the system. It must have a
higher priority then the Time Sharing
Control Task.

Mixed Environment MCP's

A TSO message control program can contain
more than one message handler. A message
handler is a sequence of code that routes
terminal I/O to the appropriate program or
terminal. A mixed environment Message
Control Program contains the message
handler for terminal I/O for TSO and in
addition one or more non-TSO message
handlers. , "'\

(l

In a mixed environment, the terminals
used with TSO are allocated to the TSO
message handler and the terminals used for
TCAM applications to the TCAM message
handlers. This is done through the macro
instructions which define the message
control program and through the catalogued
procedure that starts the message control
program.

Message Control Program Interfaces

A variety of interfaces to Terminal
services are provided in TSO. The one
suitable for a particular program depends
on whether the program is defined as a
command processor, and whether it must also
be able to execute in the background
environment.

A supervisor call routine, reached
through the TGET and TPUT macro
instructions, provides a direct route for
program I/O to a remote terminal. TGET and
TPUT transfer data between the calling
program and a set of buffers in the Time
Sharing Control Task region, that are, in
turn, emptied and filled by TCAM. Through
TGET and TPUT, the calling program can
control deletion or insertion of terminal

control characters, and whether an output
transmission is to break in on any input
transmission in progress. A program using
TGET and TPUTdoes not have to perform OPEN
or CLOSE processing, and need not provide a
DCB for the terminal. However, these macro
instructions are available only to programs
executing in the foreground.

Programs designed to be command
processors can calIon the Getline,
putline, and Putget service routines used
by the IBM-supplied command processors for
I/O. As noted earlier, these service
routines have the capability to switch the
input source from the terminal to a buffer
in main storage, and to suppress certain
types of output if the terminal is not the
current input source.

The sequential access methods, BSAM
(READ, WRITE, CHECK) and QSAM (GET, PUT),
have been extended to calIon TCAM (TGET,

I TPUT) when called from foreground programs
for terminal I/O. This is the normal route
for terminal I/O from programs that must be
executable in the background as well as the
foreground, or which are coded in a higher
level language, such as FORTRAN or COBOL.

Programs using BSAM or QSAM to reach the
terminal use the standard macro
instructions or I/O statements. When the
program is executed, the DD statement or
ALLOCATE command defines whether the I/O is
for a data set or the terminal. No
recompilation is necessary to switch from
one to the other, only a change in the DD
statement.

Getline, Putline, Putget and the
sequential access methods all issue TGET or
TPUT for 'the caller when the I/O is for a
terminal. Figure 29 shows this SVC routine
handling calls from anywhere in the TSO

system and passing the requests to the TCAM
Message Control Program.

Multi-Terminal Message Processors

Independent of TSO, the Telecommunications
Access Method includes facilities for
routine messages received from remote
terminals to queues for an application
program, and transmitting replies generated
by'the applications program to queues for a
terminal. In a system without TSO, such a
message processing program must reside in
main storage in one of the problem program
regions, when it is to be available if one
of the terminals in the telecommunication
network sends a message that requires
processing. With the addition of TSO, a
terminal user logged on to TSO can execute
a TCAM message processing program in a
foreground region. He can do this by
invoking it through the TSO command
language, or by specifying it instead of
the TSO Terminal Monitor Program on his
LOGON procedure. The DD statements which
define the process queues must be contained
in the LOGON procedure. The program will
be swapped in whenever needed, but will not
occupy main storage space when it has no
messages to process. Unlike standard
foreground jobs, which are associated with
a single terminal, these message processing
programs can' accept GET/READ, PUT/WRITE
TCAM oriented input from any terminal
defined to the TCAM processing queues,
through the QNAMES operand of the
statements on the LOGON procedure. In
addition, the standard TSO terminal
interfaces, can be used to interact with
the terminal executing the Message
processing Program. For further
information on message processing programs,
see IBM system/360, TCAM Programmer's Guide
and Reference Manual.

System Summary 53

Terminal I/o
Requests
From TSO
Routines
Or
User Programs

TSO Control

TPUT­
TGET
SVC

MVT Control Program

Operator
Start
Command

Mes~ge
Control
Program

(MCP)

Figure .29. TeAM Message Control Program

54 Time Sharing Option Guide (Release 20.1)

I/O
Supervisor

To/From
Terminals

Overview and Storage Map

Figure 30 is an overview of the complete
time-sharing system as developed in the
preceding sections. The picture is
simplified in that it shows only one task
at each level of control; there is actually

START

Time
Sharing
Control
Task

Region
Control
Task

ATTACH

-aej;y ThisLI';-~t!n;$ - - -
. Are In The Foreground

(Swapped) Region
Logon!
Logoff .
Scheduler

ATTACH Through
r--_~...:M.:.:.V~T:...jJob Mgt.

Terminal
Monitor
Program

ATTACH

Command
Processor
Or User
Program

Figure 30. System Overview

one Region Control Task for each foreground
region, and one LOGON-Terminal Monitor
Program for each. user. Many of the
programs themselves are re-enterable, and
can be placed in an extension to the link
pack area (LPA) built when the operator
starts TSO.

MVT Control Program

Time Sharing
Interface Prg.

START.

TCAM
Message
Control
Program

Terminal
I/o

System Summary 55

Figure 31 is a map of a typical main
storage layout when TSO is operating.
Almost all the additional storage
requirement for TSO control functions is
included in the Time Sharing Control Task

System Queue
Area

MVT
Nucleus

High
Main
Storage

Dynamic
Area

Low
Main
Storage

Figure 31. Typical Main S~orage Map

56 Time Sharing Option Guide (Release 20.1)

region. This region is not assigned until
the operator enters the START TS command,
so the presence of TSO in the system has no
effect on MVT throughput when time sharing
is not active,.

Link Pack Area]
~----M-a-s-te-r-S-c-he-d-u-Ie-r----------~ Key=O

Message Control
,Program & Buffers

TS Control Region
• Time Sharing Control Task
• Region Control Tasks
• Driver
• Extended Link Pack Area
• Buffers

Foreground
Region

Local System
Queue Area

Background
Region

KeylO

Key = 0

Time Sharing Algorithms

As noted earlier in this chapter, the Time
Sharing Driver is responsible for dividing
the system resources -- most importantly,
execution time-- among the various jobs in
the system. So that this may be done
effectively, the Driver is given a constant
stream of information about the status of
each job in the system -- whether it is
ready to execute, whether it is waiting for
I/O, whether it is in main storage or has
been swapped out.

In a time sharing system, execution time
is divided among the active foreground jobs
and background jobs in brief time slices.
A time slice must be long enough to perform
a meaningful amount of processing, but not
so long that the time between successive
slices prevents quick response to
conversational users. At the same time,
time slices cannot be so short and frequent
that system overhead for swapping and task
switching becomes unreasonable.

Balancing these factors depends partly
on the number and type of jobs the system
is processing: a solution for one job mix
is not necessarily suitable for another job
mix. The Driver's time sharing algorithms

Swap
Data
Set

O-Jeue Service Time

A's B's C's
Major Major Major
Slice Slice Slice

~
Elapsed

Figure 32. Queue Service Time

~I
D's
Major
Slice

-- the formulas it uses to calculate the
division of execution time among the jobs
in the system -- are based on several
variables, many of which can be specified
by the installation to tune the system for
the local job mix. These variables may
specify the system configuration, such as
the number of foreground regions to be
activated; they may request the Driver to
use one of several algorithms it has for a
particular calculation; or they may specify
constants used in the algorithms. The
variables are stored in a member of the
system parameter library.

Time Slices

The Driver uses two important cycles in
calculating time slices. One is the cycle
of foreground jobs assigned to a region
being swapped into the region, then" back
out to the swap data set on auxiliary
storage. T1he average length of time to
comple"te one cycle -- swapping each job
assigned to the region into it one time
can be controlled by the installation for
each foreground region. The length of time
each job gets to remain in main storage
during a cycle is called the major time
slice. Figure 32 shows a cycle of major
time slices and the swapping of jobs
between the main storage region and a swap
data set.

}

Foreground
Region

/-------i

Main Storage

System Summary 57

Time_

Minor
Time

I-- Slice--l

Region l'
Queue Service
Time

Region 2
Queue'Service
Time

Region
2

Region
3

Available Execution Time

Figure 33. Minor Time Slice

Job A
Major
Slice

Job E
Major
Slice

JobS
Major
Slice

I
I
I

The other cycle used by the Drive~ is
the ql16cation of execution time to the
jobs in main storage. At a particular time
there are likely to be several regions
containing jobs ready to execute -- one or
more foreground regions containing jobs
swapped in for major time slices, and some
background jobs in their own regions. The
Driver divides the amount of time remaining
until the next scheduled swap out among the
jobs than are ready to execute, resulting
in a minor time slice for each. For the
duration of its minor time ,slice, each job
has the highest effective priority of the
problem programs (excluding TCAM). As in
batch MVT, if the job cannot execute
because it is waiting for I/O or some
syst'em resource, another job runs until the
higher-priority job is ready again.

Figure 33 shows the indirect
relationship between major and minor time
slices. A major slice is a fraction of a
cycle of swaps into a foreground region,
and is the length of a job's stay in main
storage. The minor slice is a fraction of
the time remaining before the next
scheduled swap out for any region (called
the-available execution time), and
determines how long each job will remain at
the highest effective priority; that is,
how much execution time the job is
allotted.

Major and minor time slices can be
calculated using only the number of ready
jobs, and the available execution time.

Job C
Major
Slice

Job F
Major
Slice

Job D
Major
Slice I

I

Job C

Job F

I

Job N

Main Storage

I
Foreground
Region 1

Foreground
Regi.on 2

Background
Region 3

However, the Driver algorithms have the
capability to distinguish among varying
user needs to provide the best service to
each foreground job. The following two
sections show how the tuning variables can
be used to make the calculation of time
slices most. efficient for varying job
mixes.

Major Time Slices

Swapping a job into a foreground region
from a queue of ready jobs assigned to that
region is called servicing the job. The
length of time used to service all ready
jobs on one queue is called the queue

'service time. The average queue service
time for each queue of foreground jobs is
an installation parameter" passed to the
Driver. The specified queue service time
is divided by the number of ready
foreground jobs on the queue, yielding a
major time slice value for each job for
that service cycle. As the number of jobs
assigned to that queue increases, the major

'time slice value gets smaller. The time
between services for each job remains
fairly constant, which is important for
conversational users expecting quick
responses.

A problem may arise when a large number
of users are assigned to the queue. The
division of queue service time may result
in a major time slice too short to perform
any meaningful amount of processing for the
user, and the system will be spending all

58 Time Sharing Option Guide (Release 20.1)

its time swapping. To avoid this
condition, the installation specifies a
minimum major time slice for each queue.
Each job is guaranteed at least that amount
of time in main storage on each cycle
(provided it is ready to execut'e). When
the minimum slice is being used, the actual
queue service time will exceed the
specified average queue service time.

Multiple Region Queues: To meet varying
needs of users performing different kinds
of processing, the installation can
establish multiple service queues for each
foreground region. Queue service cycles
can be rotated equally among these queues.,'
or priorities can be specified among them.
Each queue is assigned its own average
queue service time. The installation can
also specify that a queue is to be given
multiple cycles before the next queue is
serviced, or that it is to be serviced
until empty -- that is, until no jobs are
left on the queue that are ready to run.

Assignment to queues can be based on the
amount of main storage the job is using, or
the degree of interaction with the
terminal, or both. The amount of main
storage assigned to the job is called swap
load, since it is a measure of the amount
of I/O necessary to swap the job in and out
of storage. A swap load limit can be
specified.for each queue. If a job's
storage needs grow beyond the limit, it is
assigned to a lower queue, with a higher
limit. The lower queues can be set up to
receive fewer services, but longer major
time slices at each service. Therefore the
larger jobs will not have to be swapped so
often.

The degree of interaction with the
terminal is measured by the amount of
processing time used by the job since its
last request for I/O to the terminal. A
terminal I/O request is called an
interaction, and the length of execution
time between interactions is called I inter action time or occupancy. Very long
interaction times indicate the user is not
currently processing conversationally -­
perhaps he is compiling a program, or
executing some long-rUnning problem
program. In this case, his job does not
require the quick response times provided
by the higher region queues" and can be
moved to a lower queue where it will
receive fewer, but longer, major time
slices. Each queue can be assigned an
interaction time limit, to allow for this

I
differentiation. The. occupancy and swap
load limits for a given queue must be
higher than the next lowest queue.

Either the swap load or the interaction
time limits can be suppressed when the time
sharing operation is started for the day,

but if both are suppressed" only one queue
per foreground region is maintained. The
rotation of service cycles around the
queues for a region can also be made
preemptive: any time a job on a higher
queue becomes ready to execute; for
instance, if a terminal I/O request
completes, the service cycle of any lower
queue is interrupted to service the job on
the higher queue. This scheduling scheme
tends to make responses to trivial terminal
requests very fast" while lengthening
somewhat the response to requests requiring
a lot of processing time.

Region Assignment: The last factor
involved in calculating major time slices
is choosing a foreground region for the
user logging on. The minimum region size
needed by the user is stated in his LOGON
procedure, and only those foreground
regions large enough are considered.

If a choice must be made among two or
more regions, the system can try to balance
the workload by assigning the new user to
the region with the fewest logged~on users.
However, this leaves open the possibility
that a group of users all requiring a lot
of execution time will be assigned to one
region, while another region has a
preponderance of users processing
conversationally. Neither group will
receive the best service possible.. To
.prevent this condition, the installation
can specify that an average region activity
be maintained for each foreground region.
The average region activity is the number
of jobs likely to be ready to execute (not
waiting for terminal I/O, for instance) at
the beginning of the next cycle of major
time slices. A new user is then assigned
to the region with the lowest region
activity, which is not necessarily the
region with the fewest logged-on users.

The region activity estimate is based on
the number of ready jobs on the region's
queues during recent major cycles. Values
from more recent cycles are "weighted" in
calculating the average. The weighting
factor, called the region activity decay
constant, is specified by the installation.
Use of decay constant prevents wild '
fluctuations in the region activity because
of a few unusual cycles., but allows gradual
change to reflect changing workload.

Major Slice Variables: To summarize, the
system programmer can specify the following
variables affecting the major time slice
calculation:

• The maximum number of users logged on'.

• The number of foreground regions.

system Summary 59

• The method for assigning users to
regions.

• The number of service queues for each
region.

For each region queue, the following
variables can be specified:

• The average queue service time.

• The number of service cycles before
advancing to the next queue .•

• The minimum major time slice.

• The swap load limit.

• The interaction time limit.

Variables can be omitted or ignored, if the
job mix and workload allow simplification
of the algorithm. In general, the more
homogeneous the job mix, the more the
algorithm can be simplified, dividing time
almost equally among the jobs •. Remember
that the major time slice determines only
how long a job remains in main storage" not
how much execution time it receives·.
Calculation of the minor time slice, which
determines execution time, is discu~sed
next,.

Minor Time Slices

The minor time slice is the result of
dividing the available execution time among
the regions of main storage containing
either a ready foreground job or a ready
background job. Available execution time,
in this sense, is the period from the time
of the calculation until the next scheduled
swap out. Whenever a major time slice
expires, the calculation is repeated with
the new number of ready regions.

The minor time slice is not quite
equivalent to a period of execution time
a job may have to wait for I/O or some
resource during its minor time slice. In
this case, control is given to another
region until the waiting job is ready
again. If it does not become ready before
its minor time slice expires, it may wait
until the next cyc Ie of minor time slices
before executing again.

All terminal jobs are assigned the same
dispatching priority, so their Task Control
Blocks (TCBs) are gr~ped together on the
queue of active TCBs maintained by the
operating system task supervisor. Because
the dispatcher always searches this queue
from the top when looking for the next task
to receive control, there is an effective
priority within the time-sharing TCB group
based on the order in which the TCBs are
found. The TSO control routines adjust

60 Time Sharing Option Guide (Release 20.1)

this order to effect the dispatching of a
task currently assigned a minor time slice.
When the minor time slice of the top
foreground job expires, its TCBs are moved
to the bottom of the group.

The installation can adjust or weight
the fraction of available execution time
assigned to each ready region, or it can
suppress division of the time altogether.
The system operator, or a control use~,
specifies how many regions are active, and
how much execution time, if any, is to be
guaranteed to jobs running in the
background regions. Three possible methods
of calculating the minor time slices,
called simple, ~, and weighted
dispatching, are described in the following
paragraphs.

simple Dispatching: In this case, the
minor time s lice is set equal to the
available time, and assigned to the TCB at
the top of the time-sharing TCB group
(which will always be the job swapped in
longest ago). Expressed as an algorithm:

Ms = AT

where MS is the minor time slice and AT is
the available execution time" or the time
remaining before the next scheduled swap
out.

If the operator has requested a
percentage of execution time for the
background regions, available time is
reduced by that amount before the minor
time slice is calculated. When the minor
time slice expires, in this case before
time for a swap out, the remaining time is
assigned to TCBs representing jobs in the
background regions, in whatever priority
they may have. If no backgroung percentage
is requested, any background jobs will
receive only the execution time that the
foreground jobs cannot use.

Simple dispatching is always used
whenever only one foreground region is
present in the system.

Even Dispatching: When more than one
foreground region is defined, the
installation can specify even dispatching
of the foreground jobs. In this case, the
available execution time is divided evenly
among the ready foreground regions.

The algorithm is:

AT
MS = N

Where N is the number of foreground regions
containing jobs ready to execute. As in
simple dispatching, available time is

reduced before the calculation by any
guaranteed background percentage.

The first minor time slice is assigned
to the foreground job at the top of the
group of time-sharing TCBs on the queue.
When the minor slice expires, the TCBs
associated with that job are moved to the
bottom of the time-sharing group, and the
next foreground job receives a minor time
slice.

weighted Dispatching: The third way the
minor time slice calculation can be
performed is on a weighted basis. This'
method allows the system to compensate for
jobs, that are likely to spend much of their
minor time slice in the wait state, usually
because of pending I/O requests. (But not
for pending terminal I/O, since a job
waiting for terminal I/O is not swapped in,
and never becomes eligible for a minor time
slice.> Under weighted dispatching, the
system keeps an estimated wait time
percentage for terminal job, based on
averages of time spent waiting by each job
during previous major time slices. Jobs
with a high estimated wait time percentage
tend to be I/O-bound, and will donate much
of their time slices to jobs with TCBs on
the queue below them. Jobs with low
estimated wait time percentages tend to be
compute-bound, and will use most' of their
minor time slice themselves. It is often
desirable to assign the I/O-bound job a
weighted, or longer, minor time slice to
conpensate for its "donation" of execution
time to other jobs. '

To weight the minor time slices, the
system forms a sum of the estimated wait
time percentages of the jobs to be assigned
minor slices in the current cycle. Each
job is then given a fraction of the
available execution time equal to its
fraction of the total estimated wait time
percentages.

The algorithm is:

This job's EWT%
MS x (AT).

Sum of EWT%s

where MS is the minor slice to be assigned
to a terminal job., EWT% is the estimated
wait time percentage, and AT is the
available execution time for this minor
slice cycle, again adjusted for any
guaranteed background percentage.

As an example, consider a minor time
slice calculation for two foreground
regions, one containing Job A, which is
expected to wait 40 percent of its minor
time slice; the other containing Job B,
which is expected to wait only 10 percent.
The sum of the estimated wait time
percentages is 50 percent. Job A gets
40/50, or 4/5, of the available execution
time as its minor t'ime slice. Job B is ,
assigned 10/50, or 1/5, of the available
execution time. However, Job B will
probably be able to execute for about 40
percent of Job A's minor time slice too .
(while Job A is waiting for I/O), and so
will end up with just under half the
available execution time -- about what it
would have been assigned on an equal
division.. Job A, however, will be able 'to
get its I/O started, wait for it to
complete, and still have some processing
time left to handle the data or issue
another I/O request. On an equal division
of available time, its minor time slice
might have expired before its first I/O
request completed.

The estimation of wait time percentage
is made by updating a running average of a
job's wait time percentages at the end of
every major time slice. In making the
average, a weighting factor is used to
emphasize recent usage over earlier usage.
The weighting factor is called the wait
time decay constant. Its purpose and
function is similar to the region activity
decay constant, and it can also be
specified by the installation. Values
appropriate for general job mixes are
included in SYS1.PARMLIB.

System Summary 61

System Implementation

This chapter is intended for the
programmers and system analysts responsible
for generating and maintaining a system
with TSO. (The discussions assume that the
reader is familiar with the system summary
chapter of this publication.) The
discussions contains specific
implementation information. For example,
the discussion "Tailoring a Message Control
Program" does not discuss the role a
message control program plays in a TSO
configuration, but rather provides the
syntax and meaning of the macro instruction
used to generate a message control program.
Included are discussions of how to:

• Generate (or tailor) a Message Control
Program.

• Write the cataloged procedures used by
TSO.

• Specify TSO starting parameters.

• Tune the Time Sharing Driver and use
TSO 'I'race.

• Write an installation exit from the
SUBMIT command processor.

• Write an installation exit from the
STATUS, OUTPUT, and CANCEL command
processors.

• Write a LOGON Pre-prompt exit.

Tailoring a Message Control Program

TSO includes a standard Message Control
Program (MCP) to handle terminal I/O for
those installations that use TSO for all

I their TCAM applications. The installation
must tailor the MCP to match its needs, in
three steps. First, it assembles three
macro instructions: LINEGRP, LISTTA, and
TSOMCP. The ·output of this assembly is a
series of TCAM (Telecommunications Access
Method) macro instructions which must, in
turn be assembled. The output 'of this
second assembly forms on MCP that must then
be link edited into SYS1.LINKLIB.

Mixed Environment MCPs

If your .installation requires a mixed
environment Message Control Program,
because you have TCAM applications
programs, (message processing programs),

'you must generate your MCP using TCAM macro
instructions instead of the special TSO MCP

62 Time Sharing Option Guide (Release 20.1)

generating macro instructions. You use the
TCAM macro instructions to generate an MCP
containing the TSO Message Handler and any
other message handlers for your particular
terminal applications, and the necessary .
terminal I/O control blocks. The
communications lines which are to be used
with TSO must be dedicated to the TSO
message Handler through the terminal' I/O
control blocks and the communications lines
for TCAM applications dedicated to their
message handlers. For further information,
see IBMSystem/360 Operating system: TCAM
Programmer's Guide and Reference Manual.

In addition to the standard TCAM macro
instructions, there is a specialized macro
instruction, the TSOMH macro instruction
which expands to form a TSO Message
Handler.

The TSOMH macro instruction has two
operands; NOLOG which specifies a
destination for non-TSO messages and CUTOFF
which specifies a maximum message length.
The syntax of the TSOMH macro instruction
is:

TSOMH [CUTOFF=integer]
300'

CUTOFF=
specifies the maximum number of bytes
before the remainder of the message is
lost to the system. The value must be
an integer between 150 and 65,535, the
default is 300.

I TSO-only MCP

The following is an explanation of each
step of the generation of the MCP supplied
with TSO:

Step 1 - Assemble the one or more LINEGRP
macro instructions each followed
optionally by one or more LISTTA
macro instructions, all followed
by the TSOMCP macro instruction.
Place the resultant output in a
temporary data set that will be
used as input to Step 2. The
output of this assembly language
source statements -- TCAM macro
instructions which constitute a
Message Control Program.

step 2 - Assemble the TCAM MCP macro
instructions that are generated
wi thin step 1'. The output of step

2 is the MCP object module and is
placed into a temporary data set.

step 3 - Linkage Edit the object modules
from Step 2 into SYS1.LINKLIB to
create an executable MCP load
module.

Figure 34 shows the Job Control Language
necessary to run these steps.

LINEGRP Macro Instruction

The LINEGRP macro is used to define a. line
group, a group of terminals with similar-­
characteristics, for example, a group of
IBM 2741 terminals. The operands specify:

• The types of terminals in the line
group. (TERM)

• The ddname of the DD statements that
define the communications lines as data
sets. (DDNAME)

• The numper of lines, that is, physical
device addresses in the line group.

(LINENO)
• The number of TCAM basic units, per

terminal buffer. (UNITNO)
• What translation tables are to be used

to translate from the terminal code to
EBCDIC. (TRANTAB)

• What character string will identify the
transmission code being used when
dynamic translation is required.
(CODE)

• Whether the terminals in this line
group are on switched or nonswitched
lines. (DIAL)

• How often polled terminals are to be
polled for input. (INTVL)

• What special features the terminals in
this line group have -- that is,
transmit or receive interruption; and
for 1050, Text Timeout suppression.
(FEATURE)

• The polling and addressing character of
terminals in this line group, for 1050
and 2260/2265. (ADDR)

• For IBM 2260 and 2265 Display Stations
the screen si,zes.

r---,
//MCPGEN JOB Job card parameters '

//STEP1

//ASM.SYSPUNCH
//

//ASM.SYSIN

/*

//STEP2

//ASM.SYSPUNCH
//

//ASM.SYSIN
//

//STEP3

//SYSLMOD

//SYSPRINT

//SYSUTl

//SYSLIB

EXEC

DD

DD
LINEGRP
LISTTA
LINEGRP
TSOMCP
END

EXEC

DD

DD

EXEC

DD

DD

DD

DD

ASMFC

DSN=&&TCM,DISP=(,PASS),
UNIT=SYSDA.SPACE=(CYL.(l,l»

*

AS,MFC, COND= (4 , LT , STEP 1. ASM)

DSN=&&OBJ,DISP=(,PASS),
UNIT=SYSDA,SPACE=(CYL,(l,l»

DSN=*.STEP1.ASM.SYSPUNCH,
DISP=(OLD,PASS)

PGM=LINKEDIT,COND=(4,LT,STEP2.ASM)

DSN=SYS1.LINKLIB(IEDQTCAM),DISP=SHR

SYSOUT=A

UNIT=SYSDA,SPACE=(1024,(50,20»

DSN=SYS1.TELCMLIB,DISP=SHR

/ /SYSLIN DD DSN=*.STEP2.ASM. SYSPUNCH,
// DISP=(OLD,PASS) L __ ~--------------

Figure 34. Job stream to Tailor MCP

System Implementation 63

LINEGRP MACRO INSTRUCTION FORMAT

r---, I Name Operation Operand I
~---~

(name)LINEGRP TERM=type

TERM=

DDNAME=ddname
LINENO=number
[UNITNO=number]

[TRANTAB=(table ,table •••)]
[CODE=(string ,string •••)]

DIAL={~~S}
[INTVL= number]
rFEATURE=~REAK') (;ATTN,) (TOSUPPR)]
L NOBREAK, NOATTN,
[ADDR=cha acter string]
[SCRSIZE=(integer, integer)]
[TERMNO=(integer, integer)]

Specifies the type' of terminal making
up this line group. Select only one
of the following:

1050 -- defines a line group
consisting of IBM 1050
Printer-Keyboards on either
switched (dial) ·or
non-switched (direct) lines.

2741 -- defines a line group.'
consistin~ of IBM 2741
Commun'icat10ns-Terminal ~ on
either switched or
non-switched lines.

5041 -- defines a line group
consisting of both IBM 2741s
and IBM 1050s. The terminals
in this line group must be on
switched (dial) lines.

3335 -~ defines a line group
consisting of Teletype Model
33 or Model 35 or both. The
terminals in this line group
must be on switched (dial)
lines.

226L -- defines a line group
consisting of IBM 2260 Display
Stations connected on a local
line.

226R -- defines a line group
consisting of IBM 2260 Display
Stations, connected on a
remote line, and optionally
IBM 2265 Display Stations.

2265 defines a line group
consisting of IBM 2265 Display
Stations.

LINENO=
Specifies the number of lines in this
line group. The value is an integer
between 1 and 51.

UNITNO=
Specifies the number of basic units
per buffer for terminals in this line
group. A basic unit is used by TCAM
to construct I/O buffers. The default
value is 1.

TRANTAB=
Specifies the translation tables to be
used for this line group. If this
parameter is omitted, all of the
supplied translation tables that are
valid for the terminal type specified
by TERM= will be included except those
marked with an asterisk.

TERM= TRANTAB= Comments

1050

2741

5041

3335

226L

1050

CR41
EB41
BC41*

1050
BC41*
EB41
CR41

TTYB
TTYC*

EBCD

Correspondence
EBCDIC
BCD

BCD
BCD
EBCDIC
Correspondence

TTY parity
TTY non-parity

DDNAME=
Specifies the ddnames of the DD
statement that define the terminal
lines in the line group as a data set.
These DD statements are found in the
cataloged procedure that is used to
start the MCP.

64 Time Sharing Option Guide (Release 20.1)

226R 2260

2265 2265'

*Not used as a default translation
table.

CODE=

DIAL=

Note: If more than one .table is
specified explicitly or implied by
default, the MCP will determine the'
proper translation table dynamically
using the CODE parameter.

Specifies the character string used to
determine the terminal character set.
Each time a terminal is connected, the
MCP translates the input line from
that terminal, using each of the
translation tables specified in the
TRANTAB operand. The MCP compares the
translated result with the character
string specified in the CODE= operand.
When the MCP finds a match, it uses
the appropriate translation table with
that terminal from then on.

The default is CODE=LOGON unless the
TRANTAB operand specified both BC41
and EB41 (2741 BCD and 2741 EBCDIC).
If both EBCDIC and BCD character sets
are present in the line group, ,the
default is CODE="LOGON.

An installation can specify a maximum
of four character strings other than
LOGON, but they must be eight or less
characters.

Specifies whether the line group is a
dial (switched) line group. If this
parameter is omitted, YES is assumed.
DIAL=NO is required for TERM=226L,
226R, 2265 and TERM=3335.

INTVL=
Specifies the poll delay intervals in
seconds for polled lines. The value
is an integer between 1 and 255. If

, this parameter is omitted, a value of
two is assumed for polled lines.

FEATURE=
Specifies the special features that
define this line group:

BREAK Specifies that terminals in
this line group have the
Transmit Interruption
feature.

NOBREAK Specifies that terminals in
this line group do not have
the Transmit Interruption
feature. This operand should
be specified when any of the
terminals in the line group
do not have the feature.

ATTN Specifies that terminals in
this line group have the
Attention feature (Receive
Interruption.)

ADDR=

NOATTN specifies that terminals in
this line group do not have
the Attention Feature.

TOSUPPR For 1050 terminals, this
operand specifies that the
optional Text Time-out
Suppression feature is
present. This operand
applies only to 1050
terminals and should be
specified only if all 1050
terminals in a 1050 or 5041
group have the feature. When
specified read inhibit rather
than read commands will be
used.

The following table describes the
features which may be specified for
the 1050, 2741, 5041, 2260 and the
3335 (TWX): where

D = Default.
A = Assumed.
I = Invalid.
o Optional.

Feature 1050 2741 5041 3335 2260

BREAK
NOBREAK

ATTN
NOATTN
TOSUPPR

o
D
D
o
o

D
o
D
o
I

o
D
D
o
0*

A
I
A
I
I

I
A
I
A
I

*TOSUPPR is optional for the 1050
terminals in a 5041 line group. It is
assumed for the 2741 terminals in the
same 5041 line group.

Specifies the station identification
character (1050) or the two byte
control unit, device address
(226R,2265) of the terminals in the
line group. The character string
should be the hexadecimal equivalent
of the appropriate transmission code.
Hexadecimal characters should be
specified without framing characters.
For example if the station
identification character is "A", the
correct specification is ADDR=E2. the
hexadecimal equivalent of the 1050
transmission code for the character
"A", not ADDR=C1, the hexadecimal
equivalent of the EBCDIC character
"An. To find the hexadecimal
equivalent of a given character in a
specific transmission code, consult
the component description
publications. For the 1050, only the
station identification character value
need be specified: the component
selection character values will
default to the common polling and
addressing values for input and

System Implementation 65

output. respectively. 1050 multidrop
is not supported.

This parameter is not valid for
TERM=2741 or TERM=3335. This
parameter is required for TERM=1050 or
5041. For configurations in which the
addressing characters vary among the
different terminals in the line group
as in 2265. the addressing characters
should be specified using LISTTA macro
instructions (see below) rather than
in the LINEGRP macro instruction.

SCRSIZE=
Specifies the screen dimensions of the
display station(s) on the line. The
first integer specifies the number of
rows on the screen. The second
integer specifies the number of
characters per row. Standard IBM
screen size are 12x80, 12x40. 6x49.
and 15x64 non-standard, sizes will be
accepted but a' warning will be given.
The default for this parameter is
(12x80) •

TERMNO= _
specifies the number of terminals
attached to each non-switched line,
used with TERM=226R, and 2265.

LISTTA Macro

The LISTTA macro instruction specifies
variations in device address (ADDR) within
a line group. One or more LISTTA macro
instructions can appear after each LINEGRP
macro instruction. Each LISTTA macro
instruction modifies one line (RLN) within
a line group.

LISTTA MACRO INSTRUCTION FORMAT

r---T----------T-------------------------,
, I Name I operation I Operand I
r----+----------+--~----------------------~
I name I LISTTA IRLN=integer I

I I I I [.ADDR= (chars ,chars. - -)] I
" , ' I I ' I [, SCRSI ZE] I L ____ ~ __________ ~ _________________________ J

RLN

ADDR=

specifies the relative line number
within a line group to which the
attributes specified in this macro
instruction call apply_ For example,
RLN=l refers to the first line in the
line group. '

Specifies the alphabetic station
identification character (1050) of the
terminal(s) on this line. One
character string must be specified for
each terminal on the line.
Subparameters must be specified in the

66 Time Sharing Option Guide (Release 20.1)

order in which polling is to take
place. Each character string should
be the hexadecimal equivalent of the
appropriate transmission code
representation for the terminal
involved. Hexadecimal characters
should be specified without framing
characters.

Example: ADDR=(COA1.COA2).

For a 1050, only the station
identification character value need ,by
specified.

SCRSIZE
Specifies the screen dimensions of the
display station(s) on the line. The
first integer specifies the number of
rows on the screen. The second
integer specifies the number of
characters per row. Standard IBM
screen size are 12x80. 12x40, 6x49,
and 15x64 non standard sizes will be
accepted but a warning will be given.
The default f~ this parameter is
(12x80) _

TSOMCP MACRO INSTRUCTION FORMAT

TSOMCP Macro

The TSOMCP macro instruction:

• Names the MCP, (provides the CSECT
name).

• Defines the size of the TCAM basic
units used to construct terminal I/O
buffers~

• Specifies which TCAM trace tables will
be provided.

• Specifies whether a cross-reference
table will be included in the MCP.

• Specifies whether the operator can
specify parameters when he starts the
MCP.

r----T----------T-------------------------,
I Name I OperationlOperand I
r----+----------+-------------------------i
I I I I

I I name I TSOMCP I UNITSIZ=number] I
I I I TRACE=number] I
I I I DTRACE:::numbe,rJ I
I I I LNUITs=number] I
I I I UNITSIz=number] I
I I I OLTEST=number.J I
I I I[OPTIONS=(XREF,PROMPT)] I
~----~----------~-------------------------~
INote: All operands are optional. I L ________________ ~ ________________________ J

name
Names the start of the MCP and
provides the CSECT label for the
generated program. This field is
required.

UNITSIZ=
Specifies the size of a TCAM basic
unit and must be a value between 33
and 255 inclusive. If omitted, the
MCP uses a default size selected to.
yield the best system performance
UNITSIZ should be a multiple of 8 plus
4 for efficient core usage.

TRACE=
Specifies the number of TCAM I/O trace
table entries in the Message Control
Program. The default value is zero.
Maximum value is 65535. See IBM
System/360 TCAM Programmers GUIde and
Reference.

DTRACE=
Specifies the number of TCAM subtask
trace table entries in the Message
Control Program. The default value is
zero. Maximum value is 65535. See
IBM System/360 TCAM Programmers Guide
and Reference.

LNUNITS=
specifies the number of TCAM basic
units (See IBM System/360 TCAM
Programmers Guide and Reference) to be
provided in the buffer pool for
creating line buffers for this MCP. A
maximum of 65,,535 may be specified •.
If this operand is omitted, the system
will calculate a default value using
the following algorithm:

LNUNITS=
2 x (number of terminals) x (UNITNO .
value) or
2.5 x (number of terminals) x UNITNO
for 2265/65

where,

UNITNO (as specified in each LINEGRP
macro) represents the number of units
per buffer for terminals defined in
the associated line group. If UNITNO
is omitted in the LINEGRP macro, the
default value (1) is used. This means
that each buffer will consist of one
basic unit.

If both the LNUNITS and UNITNO
keywords are defaulted, the buffer
pool created will consist of 2 buffers
per terminal with each buffer being
one basic unit in length using PCI
buffering for both input and output.

OLTEST=
Specifies the number of On-line Test
procedures which can execute
simultaneously. The value must be
between 0 and 255. The default is 0,
meaning On-line Test not supported.

OPTIONS
XREF
A cross-reference table
including control blocks
for each line will be
included in the MCP. If
this option is omitted. the
cross-reference table will
be excluded.

PROMPT

If PROMPT is specified, the
system operator will be
asked to enter parameters
when TCAM is started. At
that time he may enter and
override some of the
parameters specified when
the MCP was assembled. The
following TCAM parameters
are ones which an
installation may want to
specify when it starts TCAM
for TSO. The last
parameter entered must be a
"U" to end the prompting
process. See IBM '
System/360 TCAM
Programmer's Guide and
Reference for a description
of the INTRO macro
instruction and the
parameters which can be
overridden.

KEYLEN = integer
K = integer

Specifies the size of the
basic units, with which the
terminal I/O buffers are
constructed. This
corresponds to UNITSIZ=
parameter.

LNUNITS = integer
B = integer

Specifies the number of
basic units which are used
to build buffers,
corresponds to LNUNITS.
The value must be between 0
and 65,535

STARTUP
= C

S

Specifies that a "cold"
start is to be performed
following a shutdown of the
Message Control Program or

. a system failure. It is
required if OPTIONS=PROMPT

'was specified on the TSOMCP
macro instruction.

System Implementation 67

CROSSRF=integer
F,= integer

Specifies the number of
entries in the cross
reference table, a
debugging aid. If
OPTIONS=XREF is specified
in the TSO MCP, one entry
will be generated for each
line. If the operator
specifies fewer entries
than there are
simultaneously open lines,
lines opened after the
table is full will have no
entries

TRACE = integer
T = integer

Specifies the number of
TCAM I/O trace entries to
be allocated" corresponds
to TRACE= in the TSOMCP
macro instruction,.

DTRACE = integer
A = integer

Specifies the number of
entries in the TCAM
Dispatcher Trace Table,
corresponds to DTRACE= in
the TSOMCP macro. The
Dispatcher Trace Table is a
debugging aid that keeps a
sequential record of TCAM
subtasks activated by the
TCAM dispatcher. One four
word entry is created for
each subtask activated;
when the end of the table
is reached" the table is
wrapped around; new entries
overlay the oldest entries.
Maximum to be specified is
65,535: If 0 is specified,
the table is not generated.

OLTEST=number
O=number

Specifies the number of
On-line Test procedures
that can execute
simultaneously. This
parameter corresponds to
the OLTEST parameter of the
TSOMCPmacro instruction.
The default is 0" which
indicates that On-line Test
is not supported.

CIB = integer
C = integer

68 Time Sharing Option Guid-e (Release 20.1)

Specifies the maximum
number of Command Input
Blocks (CIB's) that can be
used at ~ny one time in the
TCAM subsystem, CIS's are
the buffers used to contain
operator control messages
entered at the system
console. Maximum that can
be specified is 255; if the
operand is omitted, nCIB=2 n
is assumed. At least two
CIB's should be specified,
since START uses one. If
an attempt is made to enter
an operator control message
from the system console,
and the number of CIS's
specified is already in
use, the message is
rejected by TCAM.

Figure 35 and 36 show the MCP macro
specifications for two sample systems.

The first system has:

1. 10 lines for leased, (non-switched),
2741's; all are BCD terminals and use
EBCDIC character set only. All
terminals in this line group have both
Receive and Transmit Interrupt
features.

2. 5 lines of teletype (which could be
either 33 or 35).

3. The system operator will be prompted
to enter TCAM parameters when he
starts TCAM. At that time he can
override any of the parameters
specified on the TSOMCP macro, as well"
as other TCAM parameters. See the
description of the TSOMCP macro
instruction, for parameters pertinent
to TSO. (The operator will always
have to reply ns=cun; STARTUP=COLD and
a nun to terminate prompting.) A
Dispatcher Subtask Trace Table, useful
for debugging purposes, is to be
included in the MCP. It ,'will contain
100 4 byte entries. (DTRACE=100)

The sample system shown in Figure 36 has 10
dial lines, to be used by both 1050's and
2741's. The station identification
character for the 1050's is nAn. Notice
that it is specified in terminal
transmission code, (E2) not EBCDIC (C1).

'Assume there are four, types of terminals in
the line group.

A. Three 1050's" with Text Timeout
Suppression feature, Receive and
Transmit Interrupt features.

B. One 1050, with Text Timeout
SUppression feature.

C. Five 2741's, Correspondence Code,
Receive and Transmit Interrupt
features.

D. Two· 2741's, EBCDIC code.

I The default is ATTN and NOBREAK.

Users at terminals in groups A and C would
use the TERMINAL command to request
Transmit Interrupt handling, (BREAK), the
instaillation could provide a special LOGON

cataloged procedure for these users
containing a suitable TERMINAL command as
the PARM value. Users at terminals in
groups Band D would not be able to cause
an attention interruption during output, or
while the keyboard is locked. They would
use the TERMINAL command to set up
simulated attention breaks by time interval
when the keyboard is locked. or after a
number of consecutive lines of output. when
output is being sent. This also could be
specified in a LOGON procedure.

r---,
ILINEGRP TERM=2741,DDNAME=LNGP2741,LINENO=10. X I
I TRANTAB=EB41,DIAL=NO I
ILINEGRP TERM=3335.DDNAME=LNGPTWX.LINENO=5 I
I TSOMCP OPTIONS=PROMPT.DTRACE=100 I L ___ J

Figure 35. Sample MCP

r--------------------------------------~-----------~------------------------------------,
ILINEGRP TERM=5041.DDNAME=DIAL5041.LINENO=10,ADDR=E2. X I
I FEATURE=TOSUPPR I
I TSOMCP I L ___ J

Figure 36. sample MCP

system Implementation 69

Writing Cataloged Procedures for TSO

Two categories of cataloged procedures are
used by TSO. The first includes procedures
invoked by the system operator when he
starts any of these four TSO tasks:

1. The Message Control Program (MCP)~

2. The Time Sharing Control Task (TSC).
3. The Background Reader for the SUBMIT

command (BRDR).
4. The TSO Trace Writer.

The second category 'consists of those
procedures invoked each time a LOGON
command is entered at a terminal. The PROC
operand of the LOGON command specifies the
name of the cataloged procedure which:

1. Contains the JCL statements that
define the data sets available to the
terminal user.

2. Specifies the name of the Terminal
Monitor Program (TMP) supplied with
TSO or the user-written substitute for
the TMP.

Both categories of cataloged procedures
must be members of SYS1.PROCLIB or members
of partitioned data sets concatenated to
SYS1.PROCLIB.

Message Control Program

The cataloged procedure used to start the
Message Control Program specifies through
the PGM= operand of the EXEC statement the
MCP to be started. The MCP should be named
IEDQTCAM. This name allows the MCP to run
in a region smaller than MINPART and ensure
that the MCP can not be canceled, that is
the operator must halt it.' Specify
TIME=1440 to eliminate timing. Specify
ROLL=(NO,NO) to preclude an attempt to
Rollout the MCP. Specify DPRTY=(15,15) to
insure high priority. The MCP must run at .
a higher priority than the TSC.

The cataloged procedure used to start
the MCP also must define any terminals
attached to the system as data sets. This
is done through the ddnames specified in
the LINEGRP macro instructions used in
generating the MCP. Figure 37 shows two
procedures that can be used to start the
two sample MCPs generated in Figure 34.

Time Sharing Control Task

The cataloged procedure used to start the
Time Sharing Control Task contains the Job
Control statements defining all the system
resources the TSC requires. The procedure
consists of an EXEC statement and several
Data Definition statements.

r--,
//MCPl EXEC PGM=IEDQTCAM,ROLL=(NO,NO) ,TIME=,1440,DPRTY=(15,15) ,REGION=70K I
//LNGP2741 OD u'NIT=021 FIRST LINE GROUP DATA SET 2741 I
// OD UNIT=022 I
// DD UNIT=023 I
// 00 UNIT=024 I
// DD UNIT=025 I
// OD UNIT=026 I
// OD UNIT=027 I
// DD UNIT=028 I
// DD UNIT=029 I
// 00 UNIT=02A
//LNGPTWX DD UNIT=02B SECOND LINE GROUP DATA SET TWX
// OD UNIT=02C
// OD UNIT=02D
// DD UNIT=02E
// OD UNIT=02F

/ /MCP2 EXEC PGM= IEDQTCAM, ROLL= (NO, NO) .,TIME=1440, DPRTY= (15,15) ,REGION=66K
//OIAL5041 OD UNIT=021 LINE GROUP DATA SET
// DO UNIT=022
// DO UNIT=023
// OD UNIT=024
// DO UNIT=025
// OD UNIT=026
// DD UNIT=027
// OD UNIT=028
// DD UNIT=029
// OD UNIT=02A
L~---________________________________ _
Figure 37. Sample MCP Start Procedures

70 Time Sharing Option Quide (Release 20.1)

The EXEC statement of the cataloged
procedure that starts the Time Sharing
Control Task .• specifies:

• The TSC program name. which is
IKJEATOO.

• The TSC region size. If the TSC needs
a different sized region. it will
obtain one.

• ROLL= (NO, NO) to preclude an attempt to
Rollout the TSC region, if
OPTIONS=ROLLOUT has been specified
during system generation.

• DPRTY=to set a priority for the TSO.
It must be lower than the MCP.

Six data sets must be defined .•

• SYSPARM -- The library containing TSC
initiation parameters,. These
parameters are ,discussed under ·Writing
TSO System Parameters".

• SYSUADS -- The User Attributes Data
Set. this data set cannot be
concatenated.

• SYSLBC -- The broadcast data set which
contains messages from the SEND
command.

• SYSWAPOO -- The swap data sets.

• IEFPDSI -- The partitioned data set
containing LOGON cataloged procedures.
This data set may be either
SYS1.PROCLIB or a partitioned data set
dedicated to LOGON procedures. A
dedicated data set will speed up LOGON
processing.

• SYSTSDP the TSO dump usually a tape
volume.

FOr each of these data set definitions.
DIS.P=SHR should be specified.

Figure 38 shows a sample cataloged
proced ure to start the TSC.

The data definition ddname on the DD
statement defining the SWAP data set
specifies whether serial or parallel
swapping is to be used. The ddname is of
the form

SYSWAPln

I
Where 1. indicates the. level of the data
set, i.e., 0 for prime, 1 for first
overflow; and n is the data set number at
this level.

For example, if an installation has two
data sets and wants to use parallel

swapping it would use'SYSWAPOO and SYSWAP01
as the ddnames .•

'If an installation wanted to use a IBM
2301 drum for a prime swap data set and a
IBM 2314 as overflow, the ddnames would be
SYSWAPOO for the 2301-the prime data set.
and SYSWAP10 for the 2314., the first
overflow data set. If a system or TSO
failure causes TSO to be restarted, you can
use IMDPRDMP program to save the swap data
sets before attempting to restart TSO.
When invoking IMDPRDMP, the DD statements
for the swap data sets should be the same
as those in the TSO cataloged procedure;
the //PRINTER DD statement writes to tape
with chained scheduling and a large
blocking factor so that the data sets are
dumped quickly. The publication IBM
System/360 Operating system: Service Aids,
GC28-6719 shows the procedures for
analyzing system failures and how to use
the IMDPRDMP program to save the swap data
sets.

STARTING AND STOPPING TSO

When the oper~tor starts TSO for the day.
he must:

1,. Issue a .START command to start the
Message Control Program. The operand
of the START' command is the name of
the cataloged procedure that provides
the, Job Control statements necessary
to execute the MCP. For example if
the cataloged procedure used to start
the MCP is named TCAM, the operator
will issue a START TCAM command.

2. Issue'a START command to start the
Time Sharing Control Task (TSC). The
operand of this command names a
cataloged procedure used to start the
TSC.. For example if the cataloged
procedure used to start the TSC is
named. TS., the operator would issue a
START TS command.

When the operator stops TSO for the day,
he must:

1.. Issue a STOP command to stop the Time
Sharing Control Task. The operand of
the STOP command must be the same as
the operand that was used to start the
TSC.

2. Issue a HALT command to stop the
Message Control Program. If the PGM=
operand of the EXEC statement in the
cataloged procedure used to start the
MCP is IEDQTCAM, then the MCP cannot
be cancelled with a CANCEL command.
If the operator cancels the MCP. the
TSO must be stopped before the MCP is
restarted. The MCP cannot be halted

System Implementation 71

r---,
I//IEFPROC EXEC PGM=IKJEATOO,ROLL=(NO,NO),DPRTY=(13,13) I
I//SYSPARM - DD DSN=SYS1.PARMLIB,DISP=SHR I
I//SYSUADS DD DSN=SYS1.UADS,DISP=SHR I
I//SYSLBC DD DSN=SYS1.BRODCAST DISP=SHR I
I//SYSWAPOO DD DSN=SYS1.SWAP1,DISP=SHR I
1//SYSWAPOl DD DSN=SYS1.SWAP2,DISP=SHR I
1/ /IEFPDSI DD DSN=SYSl. PROCLIB"DISP=SHR . I L __ ~ ______________ ~J

Figure 3S. sample Cataloged Procedure to Start Time Sharing Control Task

with a HALT command unless the TSO is
stopped.

DEFINING A UADS USING THE TSC PROCEDURE

When a TSO system is first started after
system generation, it is necessary to
construct a UADS using the ACCOUNT command.
The distributed UADS contains one valid
user:IBMUSER and this user is authorized to
use one procedure: IKJACCNT. He should
use the ALLOCATE command to define a new
UADS, specifying its volume serial number,
and define his DADS structure with a series

, of ACCOUNT command ADD subcommands. He
should then log off " stop the system:, and
change the SYSUADS DD statement in the TSC
start procedure, to point to the new UADS .•
If the cataloged procedure defines SYSUADS
though a DSN= operand, then he need only
recatalog the data set name in his system
catalog.

Background Reader (BRDR)

The cataloged procedure used to start the
Background Reader (BRDR) contains Job
Control statements that

• Specify the program name of the
Background Reader.

• Pass the Background Reader standard
Reader-Interpreter parameters.

• Define required data sets.

The Background Reader, (BRDR), runs as a
system task. It is started by the
operator. It interprets Job Control
Language passed by a terminal user with the
SUBMIT command. If there is no input for
the BRDR, it will relinquish its region and
wait for input. OUtput from the BRDR is
placed on SyS1.JOBQE and is queued for
execution by a standard initiator. The
cataloged procedure that provides the Job
Control Language to start the Background
Reader is similar to other reader
procedures. The BRDR program name is
IKJEFF40. Figure 39 shows an example of a .
BRDR procedure. For further information on
writing system reader/interpreter cataloged
procedures, see IBM System/360 Operating
System: System Programmers Guide,
GC2S- 6550.

An installation exit can gain access to and
modify or delete any JCL passed by the
SUBMIT command processor. The section,
"Writing Installation Exits for the SUBMIT
Command" describes how to write this exit.

r--------------------------------------~--,
I//BRDR EXEC PGM=IKJEFF40" I
1// REGION=70K" I
1// PARM= • READERPARM' 1
1/ /IEFPDSI DD DSN=SYS1. PROCLIB, 1
1// DISP=SHR I
I//IEFDATA DD UNIT=SYSDA I
1// SPACE= (SO, (500,50) ,RLSE,CONTIG) " 1
1// DCB= (BUFN0=2"LRECL=SO"BLKSIZE=SO,DSORG=PS, 1
1 / / RECFM=F" BUFL=SO) 1
I//IEFRDER DD DUMMY 1 L ___ J

Fi~ure 39. Sample Background Reader (BRDR) Procedure

72 Time Sharing Option Guide (Release 20.1)

r--~--------------------------,
//TSTRACE PROC TRREGN=20K, DEFAULTS: REGION SIZE=20K .
// TRPARM=100, ENTRY RATE=100 ENTRIES/SEC
// VOLCNT=20, VOLUME COUNT=20
// BLKSIZh=2048 BUFFER SIZE=2048
//*
//* DESCRIPTION OF SYMBOLIC PARAMETERS
//* TRREGN -
//* TRPARM

TRACE WRITER REGION SIZE
AN ESTIMATE OF THE RATE AT WHICH ENTRIES WILL BE MADE
INTO TRACE BUFFERS IN NUMBER OF ENTRIES PER SECONDS
MAXIMUM NO. OF VOLUMES AVAILABLE FOR TRACE DATA SF!'
PER RUN. MAXIMUM VALUE ALLOWED IS 255.

//*
//* VOLCNT
//*
//* BLKSIZE­ SIZE OF TRACE BUFFERS. MINIMUM SIZE ALLOWED BY TRACE

WRITER IS 128iMAXIMUM ALLOWED BY SYSTEM IS 32,,760 //*
//*
//IEFPROC
l//
1//
1//
1//*

EXEC PGM=IKJFATRC,
DPRTY=14,
REGION=&TRREGN.
PARM=&TRPARM

INVOKES INITIALIZATION MODULE
PRIORITY SHOULD AT LEAST BE HIGHER
THAN CPU-BOUND JOBS IN THE qYSTEM

I//IEFRDER DD DSNAME=TSTRACE, NAME OF TRACE DATA SET
DATA SET CREATED ON 9-TRK TAPE(S) 1// DNIT=2400,

1// DISP=(NEW,KEEP),
1// DCB=(BLKSIZE=&BLKSIZE),
1// VOLUME=(",&VOLCNT) L __ _

Figure 40. Sample TSO Trace Start Procedure

TSO Trace Writer

The TSO Trace Writer collects Time Sharing
Driver Entry Codes and writes them out to a
data set. The Trace Writer operates in its
own partition and is started by the
operator. A cataloged procedure
distributed with TSO defines the resources
needed to run TSO Trace.

The cataloged procedure used to start
the TSO Trace Writer:

• Specifies the program name of the TSO
Trace facility.

• Passes to the Trace Writer a parameter
which controls sampling rate.

• Defines the TSO Trace output data set.

Figure 40 shows the procedure. The
sample procedure specifies that the Trace
Writer output data set is to be written to
a 2400 tape unit. The output data set can
also reside on disk. The user may specify
that chained scheduling be used if trace
data set is on tape. If an installation
specifies in the DCB operand of the DD
statement an NCP value, it must be at least
three, that is, .

DCB=(BLKSIZE=&BLKSIZE,NCP=3).

An installation should not include a
SYSABEND or SYSUDUMP statement in the TSO
TRACE cataloged procedure.

Logon Cataloged Procedure

The LOGON cataloged procedure defines the
system resources that the terminal user can
use. The LOGON cataloged procedure can be
named in the PROC operand of the LOGON
command, supplied through a user exit from
the LOGON processor. This procedure:

• Defines or allows for dynamic
allocation of all data sets used by the
terminal user.

• Specifies which program is to be
invoked after LOGON, the TMP
distributed with TSO or a user written
program.

The data sets defined can include the
common system utility data sets, and data
sets used by the compilers such as SYSUT1,
SYSUT2 or even the specialized data sets
used by the Assembler or the Linkage
Edito~.

In addition any data sets that will be
allocated through the ALLOCATE command must
have a corresponding DD DYNAM statement.
Any data sets needed by a processing
program such as a compiler or a system
utility can be def,ined dynamically through

I the ALLOCATE command or through Dynamic
Allocation.

The Terminal Monitor Program distributed
with TSO is named IKJEFT01. If a user
written TMP is to be used for a particular
procedure, then its module name should be

system Implementation 73

substituted for IKJEFTOl in the PGM=operand
on the EXEC statement.

The PARM operand on the EXEC statement
is interpreted by the Terminal Monitor
Program (TMP) as the first line of input
from the terminal. '

ROLL=(NO,NO) should be specified to
preclude rolling out the Time Sharing
Region.

REGION= is ignored

The command library, SYS1.CMDLIB,
contains the command processor load
modules. An installation can also load
many of these modules into the TSO Link
Pack Area. The command library can be
concatenated to SYS1.LINKLIB or defined in
the LOGON procedure as a step library.

Note: If the command library is defined
in the LOGON procedure as a step library,
the modules in the TSO Link Pack Area will
not be used. This will degrade
performance.

To concatenate SYS1.CMDLIB to
SYS1.LINKLIB, use the LNKLSTOO member of
SYS1.PARMLIB. See IBM system/360 Operating
system: system Programmer's Guide,
GC28-6550 for further information about
using LNKLSTOO.

Figure 41 'shows an example of a LOGON
procedure.

The sample LOGON procedure can be useful
to a programmer using COBOL. statement 1
specifies the TSO standard TMP for
execution. statement 2 defines the data
set containing the HELP command messages.
statement 3 defines a utility data set used
by several command processors while

statement 4 defines the EDIT utility data
set., statements 5" 6, and 7 define utility
data sets used by the COBOL compiler.
statement 8 defines the COBOL subroutine
library. statements 11 through 17 define
data sets which can be allocated during the
terminal session by the user or a program
he inVOkes, using the ALLOCATE command.
statement 18 defines SYSPROC, an
installation defined partitioned data set
containing command procedures,.

TSO System Parameters

When 'the Time Sharing Control Task
initializes the TSO system, it reads a
series of parameters from a member of the
partitioned data set named on the SYSPARM
DD statement. The SYSPARM DO statement

, appears in the cataloged procequre used to
start the TSC. The member name is IKJPRMOO
or a name supplied by the operator on the
START' command. There are three types of
parameters.

• TSC parameters.
• Time Sharing Driver parameters.
• Parameters dealing with the allocation

of terminal buffers.

All of these parameters have an effect on
the size of the, TSC region. The
publication IBM system/360 Operating
System: Storage Estimates gives formulas
for assessing the effects of these
parameters on region size.

The Time Sharing Control Task Parameters

The TSC pa'rameters:

• Define the number and size of the Time
Sharing regions.

r---,
I//COPROC EXEC PGM=IKJEFT01,ROLL=(NO,NO) 001
I//SYSHELP DD DSN=SYS1.HELP,OISP=SHR 002
1//SYSUTl 00 DSN=&SYSUT1,UNIT=SYSDA, SPACE= (CYL, (10,10» 003
I//SYSEDIT 00 DSN=&EOIT, UNIT=SYSDA, SPACE= (1688., (50,20» 004
1 / /SYSUT2 DO OSN= &SYSUT2, UNIT=SYSDA, SPACE= (TRK, (10,,5» 005·
1//SYSUT3 00 OSN=&SYSUT3,UNIT=SYSOA,SPACE=(TRK,(10,5» 006
1 / /SYSUT4 DO OSN= &SYSUT4, UNIT=SYSDA, SPACE= (TRK, (10,,5» 007
I//SYSLIB OD DSN=SYS1.COBLIB,OISP=SHR ' 008
I//SYSIN 00 TERM=TS 009
I//SYSPRINT DO TERM=TS 010
1//001 00 OYNAM 011'
1//002 DO OYNAM 012
1//003 DO OYNAM 013
1//004 DO OYNAM 014
1//005 DO OYNAM 015
1//006 DD OYNAM 016
1//007 00 OYNAM 017
1/ /SYSPROC DO DSN=CMDPROC.DISP=SHR 018 L ___ J

Figure 41. Sample LOGON Catalogued Procedure

74 Time Sharing Option Guide (Release 20.1)

• specify the number of users.

• specify whether SMF is to be used.

• Specify which DRIVER to use.

• Limit the number of tracks the SUBMIT
command can use to queue jobs.

• Defines the module contents of the Time
Sharing Link Pack Extension.

The contents of the Time Sharing Link
Pack Area, that part of the TSC region
containing reenterable modules common to
different TSO applications has a direct
effect on system response and overhead.
The following routines are used by
different users many times during an
average session and should reduce loading
time if included.

• The I/O Service routines -- that is
GETLINE, PUTLINE, PUTGET, and STACK .•

• The TMP mainline routines.

• Command S~an a service routine used
to check the syntax of commands.

• TIME -- a routine used to get the time
of day.

• PARSE -- a routine that analyzes the
syntax of commands.

In addition ~f EDIT is being used
extensively, portions of the EDIT command
processor should be included.

-.The Edit Mainline routines.

• INPUT subcommand processor.

• LIST subcommand processor.

- CHANGE subcommand processor.

• Implicit change processor, that is, the
update function for portions of
individual lines.

Driver Parameters

The DRIVER parameters specify:

1.. What type of queueing service to use
in a region~

2. What the cutoff points for each queue
are.

For example, the SWAPLOAD/NOSWAPLOAD
parameter specifies whether or not swap
load will be used as a criterion for

determining which queue a user will be put
in. If SWAPLOAD has been specified, the
~XSWAP parameter defines the maximum swap
load for .each queue. .

In a single region system, NOWAIT and
NOACTIVITY should be specified.

The decay constant for the wait estimate
(DECAYWAITl and the activity estimate
(DECAYACT) if set to lOa, (that is, a decay
constant of one since the value is in
hundredths >.. will mean tha t the current
value has a weight equal to the total prior
value. This will "smooth" out the effects
of excessive variations.

MINSLICE, the minimum amount of time
given to a terminal user, should be set to
allow a useful amount of execution time.

If PREEMPT is specified, CYCLES should be
set to zero. since a· higher priority queue
will preempt a lower priority queue.

Buffer Control Parameters

TSO controls the allocation of terminal
buffers in the TSC region. Buffers
allocations are based on initial parameters
specified in SYS1.PARMLIB.

The BUFSIZE= parameter specifies the
size in bytes of each TSO. terminal buffer.

The BUFFERS= parameter specifies the
total number of TSO buffers. The remaining
parameters deal with allocating the number
of buffers per user when a given number of
users is logged on.

TSO maintains a count of the number of
allocated buffers per user, both for input
and output. When the number of buffers
either for input or output rises to a given
level, the user is prevented from
continuing until more buffers are
available~ If the specified maximum number
of input buffers are allocated, the
keyboard is locked up. If the maximum
number of output buffers are allocated. the
user's program is put into a wait. This
level is determined by the OWAITHI value
for output and the INLOCKHI value for
input.

When the number of logged on users
changes by the percentage specified in the
USERCHGE parameter. and when the number of
users falls below SLACK value, the number of
buffers per user is readjusted. . The number
of buffers for input and output are
distributed in the same ratio as specified
by INLOCKHI and OWAITHI.

System Implementation 75

system Parameter Format • TIOC -- parameters controlling terminal

The format of the parameter records is:

parameter-owner keyword=value •• '.

The possible parameter-owners are:

• TS -- parameters for the Time Sharing
Control Task.

• DRIVER -- parameters for the Time
Sharing Driver.

76 Time Sharing Option Guide (Release-20.1)

buffer allocation.

Keywords cannot be continued but may be
repeated. This has the effect of
continuation, as repeated keyword values
are added on to those already specified.­
When two parameters conflict, the last
value is used. Figure 42 shows an example
of system parameters for a single region
model 50 and for a double region model 65.
Figure 43 shows the syntax and meaning of
the start parameters.

PARAMETER
OWNER

TS

DRIVER

KEYWORD

TERMAX=nnnn

USERS=nnnn

REGNMAX=nn

MAP=nn

DSPCH=cccccc

LPA=(module list)

REGSIZE(nn)=(mmK,
iiik)

SUBMIT=nnnn

WAIT
NOWAIT

ACTIVITY
NOACTIVITY

OCCUPANCY
NOOCCUPANCY

SWAPLOAD
NOSWAPLOAD

AVGSERVICE
NOAVGSERVICE

PRIORITY
NOPRIORITY

PREEMPT/
NOPREEMPT

BACKGROUND=nn/
NOBACKGROUND

DECAYWAIT=nnnn

DECAYACT=nnnn

SUBQUEUES(n)=mmm

MEANING

Specifies maximum number of users.

specifies initial maximum number of users, defaults to
TERMAX, can be changed by MODIFY command.

Specifies number of TSO user regions.

specifies the number of MAP entries, used to reduce
swapping of unused storage.

Standard SMF parameters, see MVT Job Management.

specifies first six characters of Time Sharing
Defaults to IKJEAD, driver supplied with TSO.
parameter defines the names of all four Driver
modules. That is the driver supplied with TSO
four modules, IKJEADOO to IKJEAD03.

Driver.
This

has

List of modules to be included in Time Sharing Link
Pack Extension.

specifies region size (mmk) and LSQS size (iiik)
for region nne Defaults to zero.

specifies the maximum number of tracks in the SUBMIT
command job queue. Defaults to limit set at System
Generation.

Specifies use of wait estimate option.

specifies whether Region activity estimate is to be
used in assigning a user to a region. NOACTIVITY
required for single region system.

Specifies whether core occupancy estimates are to be
used in queue selection.

Specifies whether swapload is to be used in queue
placement.

Specifies average queue service time to be used.

specifies whether priority scheduling is to be used.

Specifies whether preemptive scheduling is to be used.

Specifies a percentage of CPU time guaranteed to
the background or no guaranteed time.

Specifies in lOOths the decay constant for the wait
estimate. Assumes WAIT specified.

specifies in lOOths the decay'constant for the
activity estimate. Assumes ACTIVITY specified.

Specifies the number of queues for region n.,

Figure 42. TSO System Parameter Syntax (Part 1 of 2)

System Implementation 77

PARAMETER
OWNER

TIOC

KEYWORD

CYCLES (n,m)=iii

MAXSWAP=(n,m)=iii

MAXOCCUPANCY (n,
m)=iii

SERVICE (n,m)=iii

MINSLICE(n,m)=iiii

BUFSIZE=nn

BUFFERS=nn

OWAITHI=nn

INLOCKHI=nn

OWAITLO=nn

INLOCKLO=nn

US ERCHG=nn

RESVBUF=nn

SLACK=nn

MEANING

Specifies the number of service cycles to be given to
the mth queue of the nth region.

specifies the maximum number of 1024 byte blocks which
may be allowed to a user on queue m, in region n.
Assumes SWAPLOAD specified.

Specifies the maximum amount of time in 100th of a
second a user on queue m in region n can reside in
core.

specifies the average service time in 100ths of a
second for a user on queue m in region n.

specifies the minimum time slice in 100th of a second
to be given to a user on queue m in region n.

specifies size of terminal buffer. Default 44.

Total number of buffers.

Specifies maximum number of allocated output terminal
buffers per user in.order to put a user program into
output wait.

specifies the maximum number of allocated input
terminal buffers per user in order to lock a users
keyboard.

Specifies the number of allocated output buffers to
bring a user out of output wait state. In other words
if OWAITLO=4, when 4 or less buffers remain allocated,
the user is brought out of output wait.

Specifies the number of currently allocated input
buffers to unlock the terminal keyboard for input. In
other words, when the number of allocated input
buffers falls to or below the INLOCKLO value, the
user's keyboard is unlocked.

Specifies percentage of change -in logged on users
needed to redistribute buffers and recalculate the
OWAITHI- and INLOCKHI numbers during slack time.

Specifies the total number of terminal buffers that
must be free to avoid locking all terminals to prevent
input.

Specifies number of logged on users that constitute
slack time.

Figure 42. TSO System Parameter Syntax (Part 2 of 2)

78 Time Sharing Option Guide (Release 20.1)

r--------------------------------~--,
ITS TERMAX=10 REGNMAX=l REGSIZE(1)=(100K.8K)
ITS LPA= (IKJPTGT, IKJSCAN., IKJEF 02, IKJEFT25')
TS LPA=(IKJPARS)
DRIVER AVGSERVICE PREEMPT SUBQUEUES(1)=3
DRIVER CYCLES (1,1)=0
DRIVER CYCLES (1.2)=0
DRIVER CYCLES (1., 3)=0
DRIVER MAXOCCU PAN CY (1"1)=750 MINSLICE(1,1)=150
DRIVER MAXOCCUPANCY (1,,2) =1500 MINSLICE (1,,2)=750
DRIVER MAXOCCUPANCY(1,3)=4500 MINSLICE(l,3)=4500
DRIVER SERVICE (1, 1) =150
DRIVER SERVICE (1,2)=1500
DRIVER . SERVICE (1., 3) =6000
TIOC BUFSIZE=44

ITIOCBUFFERS=80
I TIOC OWAITHI=8
ITIOC OWAI TLO = 4
I TIOC INLOCKHI=4
ITIOC INLOCKLO=2
I TIOC SLACK=Ol
ITIOC RESVBUF=10
ITIOC USERCHG=99
I
ITS TERMAX=60 REGNMAX=2 REGSIZE (1)= (lOOK. 8K) REGSIZE (2) =(lOOK, 8K)
TS LPA= (IKJPTGT.,IKJSCAN., IKJEFT02 .• IKJEFT25)
TS LPA=(IKJEBEM4, IKJEBELP" IKJEBELT" IKJEBECH, IKJEBELI)
TS LPA=(IKJPARS)
DRIVER WAIT
DRIVER ACTIVITY
DRIVER OCCUPANCY
DRIVER AVGSERVICE
DRIVER PREEMPT
DRIVER DECAYWAIT=100
DRIVER DECAYACT=100
DRIVER SUBQUEUES(1)=3 SUBQUEUES(2)=3
DRIVER CYCLES (1,1)=0 CYCLES (1.2)=0 CYCLES (1" 3) =0
DRIVER CYCLES(2,1)=0 CYCLES(2,2)=0 CYCLES(2,3)=0
DRIVER MAXOCCUPANCY(1,1)=500 MINSLICE(1,1)=100
DRIVER MAXOCCUPANCY(1,2)=1000 MINSLICE(1,2)=500
DRIVER MAXOCCUPANCY(1,3)=3000 MINSLICE(1,3)=3000
DRIVER MAXOCCUPANCY(2,1)=500 MINSLICE(2,l)=100
DRIVER MAXOCCUPANCY(2,2)=1000 MINSLICE(2,2)=5000
DRIVER MAXOCCUPANCY(2,3)=3000 MINSLICE(2,3)=3000
DRIVER SERVICE (1.,1)=1000
DRIVER SERVICE(1,2)=1000
DRIVER SERVICE(1,3)=6000
DRIVER SERVICE(2,1)~100
DRIVER SERVICE(2,2)=1000
DRIVER SERVICE(2,3)=6000
TIOCBUFSIZE=44
TIOC BUFFERS=300
TIOC OWAITHI=8
TIOC QWAITLO=4

ITIOC INLOCKHI=4
ITIOC INLOCKLO=2
ITIOC SLACK=12
ITIOC RESVBUF=60
ITIOC USERCHG=Ol . L ___ ~ ___ __

Figure 43. sample TSO system Parameters

system Implementation 79

Tuning the Time Sharing Driver

Tuning a TSO Time Sharing Driver is the
process of specifying those values and
algorithms that give a specific
installation the best performance.

The time sharing algorithms discussed in
the System Summary section of this
publication are specified by an
installation through the Driver Parameters.
The syntax and meaning of these parameters
are discussed under "starting the System"."
This section discusses how to decide what
values to specify.

Depending on the complexity of an
installation, various measurements will be
of value in tuning the Driver. These are:

• Think time -- the amount of time the
terminal user takes to type in data,
specifically., the interval between .the
time a READ is issued for a terminal
and the time that READ is concluded.

• Swap time -- the sum of the amount of
time a given user's program is being
swapped in and the amount of time the
user's program is being swapped out.

• Execution time -- the amount of time a
given user is ready to rpn, i.e. " the
interval between when a user is
restored and is quiesced.

• Response time -- the interval between
a terminal user entering a command or
data and the time when the system
responds with output. If a user is
compiling a program, response time is
influenced by the particular program.

You determine such measurements through the
Driver Entry Codes. The TSEVENT macro
instruction is issued by system tasks to
request services of the Driver or to notify
the Driver of specific events·. The TSEVENT
macro instruction specifies an event name
that is translated into a Driver Entry
Code. Based on parameters specified to the
Driver and on the sequence of these codes,
the Driver initiates various actions.

Appendix C lists all the possible event
names, the codes they generate, their
meanings" and which task" issues these
codes. Associated with most TSEVENT macro
calls is a TJID, which identifies the user
to the Driver. The TJID is assigned when
the user "logs on.

In order to measure system performance,
it is necessary to examine the sequence of
these Driver Entry Codes during a Time
Sharing operation. The TSO TRACE facility
records all driver Entry Codes and places
them on a data set for later
interpretation .•

Using TSO Trace

The TSO Trace Data Set Processor is a
problem program that dumps the output data
set from TSO Trace and produces a formatted
listing. Figure 44 shows the job control
language required to run the TSO Trace Data
Set Processor. The example assumes that
the TSO Trace Data set has been written to
a tape volume with a volume serial number
of TTRACE. The listing shows the
parameters specified, and provides an
explanation of each entry record as well as
the contents of the record in hexadecimal
and EBCDIC. The contents of register 1 is
listed in the third column of the Trace
Data Set Processor.

TSO TRACE is a started task which
operates in its own region. All Driver
Entry Codes are recorded in buffers which
are then written to a data set. This data
set can be listed by the TSO Trace Data Set
Processor or can be analyzed by a user
wri tten program. The section of this
publication Writing Cataloged Procedures
for TSO, discusses how to define the TS
Trace data set and specify parameters
required by TSO Trace. Figure 45 shows the
format of the TSO Trace data set.

The PARM value on the EXEC statement
specifies what entries will be listed. All
"G" type records will be listed regardless
of the parameters. The individual keyword
parameters should be enclosed in
apostrophes and separated by commas. The
keyword parameters and their syntax are:

-r---,
I / /TTRDUMP JOB " MSGLEVEL=l I
I//STEP EXEC PGM=IKJFATRP,PARM='CODES=STD' I
I//SYSPRINT DD SYSOUT=AI
I//TRACEDD DD DSN=TSTRACE,VOL=SCR=TTRACE,UNIT=2400 I L ___ J

Figure 44. Sample Job system to Run TSO Trace Data Set Processor

80 Time Sharing Option Guide (Release 20.1)

r-----T---------------------------------T---,
I Entry I When Produced I Description of Contents I
IType I I I
~-----+---------------------------------+---~
I 'A' IWhen the trace writer is started. I Word 1 X'FFFFFFFD' I
I I I Word 2 # of 3-word entries per record I
I I I Word 3 Time of Day in timer units I
r-----+---------------------------------t-------~---------------------------------------~
I 'B' IWhen the trace writer is stopped. I Word 1 X 'FFFFFFFE , I
I I IWord 2 Date in packed decimal OOYYDDDS I
I I I Word 3 Time of Day in timer units I
~-----+---------------------------------t---~
I ·C· IWhen information was lost (volumelWord 1 X'FFFFFFFF' I
I Iswitching, low sampling rate, IWord 2 NUmber of entries lost I
I letc. IWord 3 Time of Day in timer units of the firstl
I I I lost entry I
~-----+---------------------------------+--~
I'D' INormal entry (contains words 1-3 IWord 1 Bytes 1-2 TJID or 0 I
I lof the DPA). I Byte 3 Reserved (x' 00') I
I I I Byte 4 Entry code I
I I I Word 2 Contents of register 1 on entry to TSIP I
I I I Word 3 Time of Day in timer units I
r-----+---------------------------------+---~
I IE' IFollowing a normal entry with I Words 1-2 Command name I
I lentry code 0 (TMP entry). IWOrd 3 Unpredictable I
r-----+-----~---------------------------t---~
I 'F' IFollowing a normal entry with IBytes 1-7 USERID I
I lentry code 25 (LOGON establishes IBytes 8-12 Unpredictable I
I IPSCB). I I
~-----+---------------------~-----------+---~
I • G', I Following a normal entry with I Diagnostic data (There will be2n+1 3-word I
I lentry code 44 (FE serviceability) I groups of data available. The value of n is I
I I ' Icontained in bits 5-7 of word 2 of the normal I
I I I entry. I L _____ ~ ____________ --___________________ ~ ______________ - ________________________________ J

Figure 45. Format of the TS Trace Data set

CODES
specifies which class of entry codes
are to be included in the listing.
The subparameters, S,T and D represent
'§ystem'codes, '.!erminal I/O' codes,
and n,Qispatcher n codes, respectively.
The listing, therefore, will contain
only those entry codes belonging to
the class, or classes, specified.
Appendix C lists the Entry Code
classes. These subparameters may be
written in any order, but must not
contain delimiters nor embedded
blanks. If the CODES parameter is
omitted, all non-dispatcher entries
will be listed, i.e., CODES=ST is the
default. option.

TJID=XXX[- YYYl
specifies that only entries associated
with the TJID specified by the number
XXX are to,be listed. If YYY is also

given, all entries associated with
TJID's in the range xxx to YYY,
inclusive, are listed. If the value
given for xxx is zero, all entries
will be listed. (This is also the
default if the 'TJID' parameter is not
specified.) Both numbers xxx and YYY
must be specified as decimal digits.
The maximum length of each number is
three digits.

CLOCK=XXXXXXX[- YYYYYYYl
indicates that no entry before time
XXXXXXX (relative to the starting time
of the first entry) is to be included
in the listing. If -YYYYYYY is
specified no entry after that time is
listed. Both numbers must be
specified as decimal digits and given
the time in seconds. The maximum
length of each number is seven digits.

System Implementation 81

Writing Installation Exits for the
Submit Command '

A user exit from the SUBMIT command allows
an installation to:

• Verify a jobname.

• Verify a userid.

• Send a message to the terminal and
optionally request a reply.

• Cancel a SUBMIT request.

The TSO SUBMIT command allows a terminal
u~er to initiate a background job. A
description of the syntax and use of the
SUBMIT command is found in IBM System/360
Operating system; Time Sharing Option,
Command Language.

The SUBMIT command processor writes the
contents of a user specified data set
consisting of Job Control Language
statements, (JCL), and input data, onto a
logical extension of SYS1.JOBQE. The size
of this extension is limited at system
gener'a tion time by the SUBMITQ operand of
the TSO OPTION macro. Size can be further
limited by the SUBMIT parameter which the
Time Sharing Control Task reads·from
SYS1.PARMLIB when the operator issues a
START TS command.

Any authorized terminal user can submit
a background job, but no jobs will be
scheduled if the operator has not issued a
START BRDR command.

An installation can control foreground
initiated background jobs through an
installation written SUBMIT exit routine.
Through the routine an installation can:

• Delete, modify, or insert statements.
• Request that a message be displayed at

the terminal and optionally request a
reply.

The routine must be linkage edited as an
independent module, given the name
IKJEFF10, and cataloged in SYS1.LINKLIB.
The SUBMIT command processor invokes the
user written exit when the first JOB
statement is read. Return codes in
register 15 control subsequent calls. The
return codes are:

o - continue -- that is process the
current statement and read the
next.

4 - reinvoke the exit for another
statement -- that is process the
current statement and invoke the
exit for the next statement.

82 Time sharing Option Guide (Release 20.1)

8 - display a message at the terminal
and invoke the exit.

12 - display a message at the
terminal., obtain a response, and
invoke the exit. (If the user has
specified NOPROMPT, this will
cause the SUBMIT processor to
abort.)

16 - abort.

Upon entry to the user written exit
routine, register 1 contains the address of
a list of six fullwords.

1st word - address of the current
statement.

If zero, entry is to get a statement
(return code from previous ,call was
4). To delete the current statement,
zero out the first word.

2nd word - address of a message to be
displayed on terminal.

If non-zero" return code from previous
call was 8 or 12. The exit may' free
the buffer •. If zero, no message, the
return code was 0, 4, or this is the
first call.

3rd word - address of response.

If the exit return code from the
previous call was 12, SUBMIT will free
the buffer. The format of both the
message and the response is LLtext
where LL is a two byte length field
containing one length of the text,
maximum length 82 bytes.

4th word - address of USERID.

The USERID is 8 characters left
justified padded with blanks.

5th word - address of control
switches.

Byte 0 specifies under what conditions
SUBMIT will call the exit.

Byte Bit Meaning

0 0 Call for JOB card
1 Exec
2 DD
3 Command
4 Null
5 Reserved
6 Reserved
7 Reserved

Byte 1 if non-zero contains the card
column where the operand field begins.
For example, if the operand field

begins in column 16" byte 1 contains
hex 10.

Byte 2. _ Specifies what the current
statement is.

Byte Bit

2 o
1
2
3
4
5
6
7

JOB statement
EXEC
DD
command
null
operand to be continued
statement to be continued
statement continuation

If bit 5 is on, bit 6 must be on, but
bit 6 can be on and bit 5 off.

Byte 3 is unused.

6th word - for exit's use.

The first time SUBMIT calls the exit,
the 6th word is initialized to zeros.
The exit can use the word for counters
or switches. The value is not changed
between calls. '

Writing Installation. Exits for the
Output, Status and Cancel Commands

An installation can write a user exit for
the OUTPUT, CANCEL, and STATUS commands.
The exit routine is common to all three
command processors and is named IKJEFF53.
An TSO supplied module performs jobname
verification if a user exit is not
supplied. The parameters and the return
codes have the same format and meaning for
all three command' processors. The user
exit determines which command processor is
invoking it from a parameter. The
parameters are passed through a standard
linkage with register one containing the
address of a list seven of full words.

Word 1 -- contains the address of the
jobname.

Word 2 -- contains the address of the
length of the jobname.

Word 3 -- contains the address of the
userid.

Word 4 -- contains the address of the
length of the userid.

Word 5 -- contains the address of a
message to be issued to the
terminal user. The format
of one message is LLtext
where LL is a two byte field
containing the length of the
entire message, maximum

length 82 bytes. If 0, the
exit is being entered to
create a message.

Word 6 -- contains the address of a
response from the terminal
user. The format of the
response is LLtext where LL
is a two byte field
containing the length of the
entire message" maximum
length 82 bytes.

Word 7 -- contains the address of the
command code.

Command codes are:

o STATUS command.
4 = CANCEL coromand.
8 = OUTPUT command.

Return codes are passed in register 15 and
are defined as:

o = Valid job name, continue
process ing •

4 = Display message, get response, and
call exit again. If the terminal
use has specified NOPROMPT on his
LOGON command, the command will­
abort and a message will be, issued
to the terminal.

8 = Display message and call exit
again.

12 = Invalid jobname, cancel request.

16 = Abort

WRITING A LOGON PRE-PROMPT EXIT

A user-written exit, cataloged in
SYS1.LINKLIB can specify most of the values
to be determined from the LOGON command or
from prompting by the LOGON command
processor. These include:

• The userid.

• The password.

• An account character string -- that is
the value specified in the ACCT
operand.

• A procedure name -- that is the name of
a cataloged procedure usually specified
in the PROC operand.

• A region size~

• A series of 80 byte card images of Job
Control Language (JCL) to be used
instead of the JOB and EXEC statements

system Implementation 83

normally constructed by the LOGON
processor.

• Portions of the Protected Step Control
Block.

• The contents of the User Profile Table.

• The contents of the Environment Control
Table.

In addition, the exit can:

• Read but not change the Event Control
Block which will be posted if the exit
terminates due to a CANCEL request.

• Read but not change the completion code
from the last step executed from the
terminal logging on.

The parameters passed are defined in the
I PL/I procedure in Figure 46. The variables

declared as either BIT or CHAR, VARYING are
passed as string Dope Vectors,. For a
definition of String Dope Vectors see IBM

I System/360 Operating system: PL/I-F
Programmer's Guide, GC28-6594. The exit
may be written in any language but since
parameters are passed as String Dope
Vectors, they can be manipulated directly
in PL/I. The exit must be Linkage Edited
and cataloged in SYS1.LINKLIB with a entry
point name which processes standard
operating system parameters and the module
must be named IKJEFLD.

LOGON passes 16 parameters to the user
exit. They are of three types:

1. Character strings defined in PL/I as
CHAR VARYING.

2. Bit Strings defined in PL/I as BIT
VARYING.

3. Fullwords defined in PL/I as BINARY
FIXED (31).

The parameters passed can be given any
name in the user written exit procedure but
their meaning is determined by the order in
which they appear. The following
explanation of the parameters uses the
names defined in the PL/I procedure in
Figure 46.

CONTROL SWITCHES -- a bit string that
specifies what actions the exit has
taken. The various bit switches are:

UADS FAIL -- if this bit is equal
to one" on entry to the
pre-prompt exit, then there was
an unsuccessful ENQ on the UADS
entry for the specified userid.

84 Time Sharing Option Guide (Release 20.1)

REGION FAIL-- if this bit is
equal to one on entry to the
pre-prompt exit, the region size
specified in the LOGON REGION
operand was too large to be
satisfied. The exit can specify
a different region size.

FAIL -- if this bit is equal to
one on entry to the pre-prompt
exit, the procedure was invoked
because of an unsuccessful
attempt to obtain an unspecified
system resource.

CANCEL'-- if this bit is equal to
one upon return from the
pre-prompt exit, the LOGON
processor will cancel the
attempted log on. No message
will be issued to the terminal
user, so the pre-prompt exit must
issue any needed message.

DONT PROMPT -- if this bit is
equal to one on return from the
procedure, the LOGON processor
will not prompt the terminal user
for any necessary LOGON operand
values but will use the values
specified by the pre-prompt exit.
These include:

• Userid.
• Password.
• Accounting string.
• Procedure name.
• Region size.

EXIT UADS -- if this bit equals
one on return from the pre-prompt
exit, the LOGON processor will
not reference the UADS but will
take all character strings and
bit strings from the procedure,.
DON'T PROMPT must be set to one
if this bit is set to one.

EXIT JCL -- if this bit is equal
to one on return from the
pre-prompt exit, the pre-prompt
exit has supplied Job Control
Language (JCL) that is to be used
instead of the JOB and EXEC
statements constructed normally
by the LOGON processor.

EXIT PSCB -- if this bit is equal
to one on return from the
pre-prompt exit, the LOGON
processor will use the PSCB
accounting string returned by the
user but will not write it to the
UADS at LOGOFF time.

EXIT ATTR1 -- if this bit is
equal to one on return from the
pre-prompt exit, the LOGON

processor will use the PSCBATRl
string provided by the exit and
will not write it into the UADS
a t LOGOFF time.

EXIT ATTR2 -- if this bit is
equal to one on return from the
pre-prompt exit, the LOGON
processor will use the PSCBATR2
string returned by the pre-prompt
exit and will not write it into
the UADS at LOGOFF time.

EXIT GROUP -- if this bit is
equal to one on return from the
pre-prompt exit, the LOGON
processor will use the PSCBGPNM
string returned by the exit
procedure, but-will not write it
to the UADS at LOGOFF time.

EXIT UPT -- if this bit is equal
to one on exit from the
pre-prompt exit, the LOGON
processor will use the UPT string
returned by the exit procedure,
but will not be written to the
UADS at LOGOFF time.

NO ENQ UADS -- if this bit equals
one and the DONT PROMPT and EXIT
UADS bits are both one, the LOGON
processor will not ENQ on the
UADS entry for the specified
user.

If both DONT PROMPT and EXIT UADS
are equal to one then

• EXIT PSCB
• EXIT ATTRl
• EXIT ATTR2
• EXIT GROUP
• EXIT UPT

also must be equal to one.

TERMINAL INPUT LINE -- this
parameter contains the-first line
entered from the terminal.

The values for the next five parameters
must be specified if the DONT PROMPT bit is
set to one.

USERID used to return a userid to
the LOGON processor.

PASSWORD -- used to return a password
to the LOGON processor.

ACCOUNT -- used to return an
accounting string to the LOGON
processor.

PROCEDURE -- used to return the name
of a'cataloged procedure containing
JCL to define the resources needed by
the terminal job.

REGION SIZE -- used to return to the
LOGON processor a region size for the
terminal job.

JCL -- used ,to provide Job Control
statements that define terminal job
resources instead the JOB and EXEC
statement constructed by the LoGON
processor.

The next six parameters must have values
specified by the pre-prompt exit if EXIT
UADS is set to one by the pre-prompt exit.

PSCB -- used by the exit procedure to
set a value for the PSCB accounting
string.

FIRST ATTRIBUTE -- used to return a
value for the PSCBATRl string.

SECOND ATTRIBUTE -- used to return a
value for the PSCBATR2 string.

GENERIC GROUP -- used to return a
value for the PSCBGPNM.

UPT -- used to return ,a value for the
Upl'.

ECT -- used to return a value for the
Environment Control Table (ECT).

The last two parameters cannot be altered
by the pre-prompt exit but may be read.

ECB -- the Event Control Block (ECB)
for the exit procedure.

COMPLETION CODE -- this full word
contains the completion code for the
l'ast job step of the last job executed
from this terminal.

For the format'of the Protected'Step
Control Block (PSCB), the User Profile
Table (UPT), and the Environment Control
Table (ECT) see the publication IBM
System/360 Operating System: System
Control Blocks.

System Implementation 85

r---,
USEREXIT: PROCEDURE

C CONTROL_SWITCHES,
TERMINAL INPUT LINE,
USERID, - -

DECLARE

PASSWORD,
ACCOUNT,
PROCEDURE,
REGION_SIZE,
JCL,
PSCB,
FIRST ATTRIBUTES,
SECOND ATTRIBUTE,
GENERIC_GROUP,
UPT,
ECT,
ECB,COMPLETION_CODE)

CONTROL_SWITCHES BIT C*) VARYING,
UADS FAIL BIT Cl) DEFINED CONTROL_SWITCHES POSITION Cl),
REGION_FAIL'BIT Cl) DEFINED CONTROL_SWITCHES POSITION (2),
CANCEL BIT Cl) DEFINED CONTROL SWI~CHES POSITION (3),
DONT PROMPT BIT Cl) DEFINED CONTROL:SWITCHES POSITION (4),
EXIT:UADS BIT ,Cl) DEFINED CONTROL_SWITCHES POSITION (5),
EXIT JCL 'BIT Cl) DEFINED CONTROL SWITCHES POSITION (6),
EXIT:PSCB BIT Cl) DEFINED CONTROL:SWITCHES POSITION (7),
EXIT_ATTRl BIT Cl) DEFINED CONTROL_SWITCHES POSITION (8),
EXIT ATTR2 BIT (1) DEFINED CONTROL SWITCHES POSITION (9),
EXIT-GROUP BIT Cl) DEFINED CONTROL:SWITCHES POSITION Cl0),
EXIT-UPT BIT Cl) DEFINED CONTROL SWITCHES POSITION (11),
NO ENQ USERID BIT Cl) DEFINED CONTROL SWITCHES POSITION (12);

DECLARE TERMINAL INPUT LINE CHAR C*) VARYING;
DECLARE USERID - - CHAR C*) VARYING;
DECLARE PASSWORD CHAR (*) VARYING;
DECLARE ACCOUNT CHAR C*) VARYING;,
DECLARE PROCEDURE CHAR C*) VARYING;
DECLARE REGION SIZE BINARY FIXED (31);
DECLARE JCL - CHAR C*) VARYING;
DECLARE PSCB BIT (*) VARYING;
DECLARE FIRST ATTRIBUTE BIT (*) VARYING;
DECLARE SECOND ATTRIBUTE BIT (*) VARYING;
DECLARE GENERIC GROUP CHAR C*) VARYING;
DECLARE UPT - BIT C*) VARYING;
DECLARE ECT BIT C*) VARYING;
DECLARE CP ABEND BIT (1) DEFINED ECT POSITION Cl);
DECLARE CP-RETURN-CODE BIT (24) DEFINED ECT POSITION (8);
DECLARE IO-WORD AREA ADDR BIT (32) DEFINED ECT

- - - POSITION (33);
DECLARE NOSEC LEVEL MSG BIT (1) DEFINED ECT POSITION (65);
DECLARE SEC_LEVEL_MSG_ADDR BIT (24) DEFINED ECT POSITION (73);
DECLARE COMMAND_NAME CHAR (8) DEFINED ECT POSITION (97);
DECLARE SUBCOMMAND NAME CHAR (8) DEFINED ECT POSITION (161);
DECLARE NO MAIL SWITCH BIT (1) DEFINED ECT POSITION (228);
DECLARE NO:NOTICE_SWITCH BIT (1) DEFINED ECT POSITION (229);
DECLARE ECB BINARY FIXED (31);
DECLARE COMPLETION CODE BINARY FIXED (31); _______________ ~ ______ = __ J

Figure 46. Portion of Sample PL/I Logon Pre-Prompt Exit

86 Time Sharing Option Guide (Release 20.1)

The estimates included in this chapter are
intended for planning purposes only. None
of these estimates have been verified, and
they are subject to change. Verified
estimates will appear in the publication
IBM System/360 Operating system: storage
Estimates, GC28-6551, when they are
available.

This chapter contains three sections:
main storage requirements, sample
configurations, and auxiliary storage
considerations. All figures in this
chapter are decimal. and "K" represents a
factor of 1024.

Main Storage Requirements

The main storage requirement for TSO is
divided into four major parts:

• An addition to the MVT basic fixed
requirement.

• The TCAM Message Control Program
requirement.

• The Time Sharing Control region
requirement.

• The foreground regions in which users'
programs are executed.

Only the first of these requirements has
any effect on the batch environment if time
sharing is not active. storage for the
TCAM, Time Sharing Control, and froeground
regions is obtained from the dynamic area
when the operator starts time-sharing
operations. This storage is returned to
the dynamic area when time sharing is
stopped, and is again available for batch
processing. '

MVT BASIC FIXED REQUIREMENT

The main storage basic fixed requirement
for an MVT system is for:

• The nucleus.
• The Master Scheduler Region.
• The Link Pack Area (LPA).
• The system Queue Area <SQA).

storage for the basic fixed requirement is
allocated by the Nucleus Initialization
Program (NIP) when the system is started
and does not normally vary while the system
is running.

Storage Estimates

rucleus

Including TSO at system generation adds
approximately 3K to the size of the
resident MVT nucleus, for a total
requirement of about 45K. In addition,
communication lines, like other I/O
devices, require 40 bytes each in the
nucleus for control blocks.

Master Scheduler Region

The master scheduler region is increased by
approximately 4K to handle new or extended
operator commands for the time-haring
environment, and for extended error
recovery. The total requirement is about
16K. '

Link Pack Area

One small TSO module is added to the
required MVT link pack area list of
resident modules. The minimum link pack
area size remains 10K. If the standard MVT
resident reenterable load module and
resident SVC lists are used, at system
generation, the LPA requirement is about
54K.. If space is available, an additional
16K of SVC modules for time sharing are
appropriate for the resident list, for a
total LPA size of 70K.

Additional resident reenterable load
modules for time sharing are placed in an
extension to the link pack area allocated
in the Time Sharing Control region, and are
resident only when time sharing is active.
The size of this extension, called the Time
Sharing Link Pack Area (TSLPA), is
discussed with the Time Sharing Control
Region requ~rement.

System Queue Area

During time-sharing operations,. use of the
system queue area is kept to a minimum by
placing as many control blocks as possible
into a local system queue area (LSQA)
defined in each foreground region. Control
blocks in the local SQA are swapped in and
out of main storage along with the '
foreground job they apply to.

Some control blocks associated with
foreground jobs, such as queue elements for
named data sets and operator reply queue
elements. must remain in main storage while
the job is swapped out. Space for these
control blocks, and for all control'blocks
associated with the tasks supervising the
time-sharing operation must be allocated

Storage Estimates 87

from the system queue area. These
requirements must be considered when
setting SQA size at system generation or at
nucleus initialization.

MESSAGE CONTROL PROGRAM REQUIREMENT

The size of the TCAM Message Control
Program regi'on depends largely on what
options are selected and what hardware is
present on the teleprocessing network,. In
addition to the minimum requirement for the
Message Control Program routines" there are
requirements for each defined line group,
each additional terminal type, and for each
permitted user. If teleprocessing
applications other than TSOare present,
additional routines to handle different
buffering and queuing techniques will be
needed.

In a system with TSO as the only
teleprocessing application, with three
terminal types and two line groups" the
Message Control Program requirement is
expected to be about46K plus 800-bytes for
each possible concurrent user. Although
the Message Control Program executes in a
problem program region, the region may be
smaller than the normal minimum problem
program region size (MINPART).

TIME SHARING CONTROL REGION REQUIREMENT

The Time Sharing Control region must
provide space for programs for the Time
Sharing Control Task, Region Control Tasks,
several resident SVC routines" the time
shari-ng extension to the link pack area,
and various control blocks. Some of the
control blocks are repeated for each
foreground region, for each swap data set,
or for each time sharing user. An
initialization routine brought in when the
operator starts time sharing analyzes the
time-sharing parameters supplied by the
installation, calculates the region size
requirement, and obtains the region from
the dynamic area.

Using a buffer length of 40 bytes, and
assuming eight buffers per time-sharing
user, a TSO configuration with two IBM 2314
swap data sets" one foreground region, and
20 users would require a time sharing
control region of about 87K. A larger
configuration, with two 2301 swap data sets
and two 2314 swap data sets, four
foreground regions, and 100 users would'
require about 117K for the time sharing
control region.

88 Time Sharing Option Guide (Release 20.1)

DYNAMIC AREA REQUIREMENTS

The SEND operator command, like several
others already in the MVT configuration,
obtains and uses an 12K operator command
region from the dynamic area when the
operator enters it. This area is freed
when processing of the command is
completed.

When it is active. the time sharing
trace facility requires a 20K region from
the dynamic area.

FOREGROUND REGION REQUIREMENT

The foreground region contains the programs
invoked by the terminal user. Space must
be provided in the foreground region for
the local system queue area (LSQA) and for
four main storage subpools used for control
blocks for the command system.

The subpools defined are:

• Subpool 0--4K.
• Subpool 1-- 4K.
• SUbpool 78--2K.
• Subpool 251--2K.

The m1nlrnum foreground region size is 72K,
and all IBM-supplied command processors
except some of the language processors can
execute in this region.

Auxiliary Storage Requirements

The major additions to the system auxiliary
storage requirements for TSO are for the
swap data sets and new or larger system
libraries and data sets. The installation
must' also consider the direct access
storage needs of the individual terminal
users, and make allowances for these in the
size of the system catalog and password
data sets.

SWAP DATA SETS

A swap data set is divided into swap
allocation units, each of which consists of
a device-dependent number of 2K records.
To avoid space fragmentation, space in the
swap data set is always assigned in
integral swap allocation units. Figure 47
shows the sizes of allocation units for
various swap devices.

r---------------------~------------T-----'
I 1 Allocation 1 1
I Device Type I Uni t . I siz e 1
~----------------------+------------+-----~
12301 Drum storage 11 track J 18K I
12303 Drum storage 14 tracks 1 18K 1
12305-1 Fixed Head I 1 1
I storage 14 tracks 1 44K I
12305-2 Fixed Head 1 I I
I storage 14 tracks I 52K 1
12311 Disk storage 11 cylinder I 32K I
12314 Direct Access I 1 I
I storage 11/2 cylinder I 64K I
13330 Disk ,Storage 13 tracks I 32K I L ______________________ ~ ____________ 4 _____ J

Figure 47. Swap Allocation Unit sizes

For a system with one foreground region,
the maximum necessary swap space can be
calculated by the algorithm:

Swap Space = (R/A)-(U+2)

where:

R is the size of the region.

A is the size of an allocation unit. as
shown in Figure 47, (R/A is rounded up
to an integer).

U is the number of concurrent foreground
jobs.

·For instance, a system with one
foreground region of 120K. an IBM 2314 swap
device, and 30 possible users would have a
maximum swap data set space requirement of:

(120/64)-(30+2) = 2-32 = 64 allocation unit
or 32 cylinders

In this case, the number of allocation
units required to hold a complete

foreground region is two. and the number of
users plus two is 32.

If TSO runs out of swap space, no
message is issued, and the system may loop,
so allow sufficient space.

SYSTEM LIBRARIES AND DATA SETS

The additions to system libraries for TSO
are expected to be (with the increments
expressed in 2311 tracks):

• SYS1.LINKLIB--30 tracks.
• SYS1.SVCLIB--20 tracks.
- SYS1.MACLIB--60 tracks.

Two new libraries, SYS1. CMDLIB (command
library) and SYS1.HELPLIB (HELP data set).
are expected to be smaller than 220 IBM
2311 tracks each.

The size of the User Attribute Data Set,
a partitioned data set with a member for
each user identification. depends on the
number of password-identification-account
number-procedure name combinations defined
for each user. A simple identification
structure for a single user with a single
value at each level requires about 200
bytes of storage space.

Typical time-sharing usage also requires
more space for the system catalog and
password data sets than batch usage. All
user data sets are cataloged as a default,
and read-only password protection is
recommended at least for system data sets.
This type of protection does not cause any
performance degradation when the data sets
are accessed for reading.

Storage Estimates 89

Appendix A: TSO Commands

The commands available to terminal users of
the Time Sharing Option are listed below,
grouped according to function.
Installations may give other names to these
commands by assigning aliases to the
respective members in the system command
library. No IBM-supplied command names
include numerals, allowing installations to
ensure uniqueness in locally named
commands.

Data Management

ALLOCATE
define and allocate a new or old data
set.

CONVERT

COpy

convert source programs written in
Code and Go FORTRAN or Interactive
PL/I to standard format FORTRAN or
PL/I.

dUplicate a sequential or partitioned
data set, or a member of a partitioned
data set, optionally modifying such
characteristics ~s blocking factor. 1

DELETE

EDIT

delete and uncatalog one or more data
sets or members.

invoke the edit mode or input mode to
modify or create a data set: provide
an interface to the language syntax
checkers and processors.

FORMAT

FREE

LIST

format a data set for printing
according to embedded controls. 1

release a data set.

display at the terminal 'all or part of
one or more data sets, optionally
re-arranging information in the
records. 1

LISTALC
display at the terminal the names and
characteristics of currently active
(allocated) data sets.

1IBM Program Products. See Appendix B.

90 Time Sharing Option Guide (Release 20.1)

LISTBC
display at their terminal any system
notices or messages from other users.

LISTCAT
display at the terminal the names and
characteristics of a group of data
sets indexed together in the system
catalog.

LISTDS

MERGE

display at the terminal the
characteristics of one or more
specified data sets.

copy all or part of one data set or
member into another. 1.

PROTECT
assign or modify password protection
to a data set.

RENAME
change the name of a data set or
member, or assign an alias to a
member.

Language Processors

ASM

CALC

invoke the prompter for1 the Assembler
(F) •

invoke the Interactive PL/I processor
for desk calculator mode. 1

COBOL

FORT

invoke the American National Standard
COBOL compiler. 1

invoke·the FORTRAN (Gl) compiler. 1

RUN BASIC
inVOke the ITF: BASIC compiler and
execution control routines. 1

RUN GOFORT
invoke the Code and Go FORTRAN
compiler and,execution control
routines. 1 .

RUN IPLI

PLI

PLIC

invoke the ITF: PL/I compiler and
execution control routines. 1

invoke the PL/I Optimizing compiler. 1

invoke the PL/I Checkout Compiler. 1

Program Control

CALL

LINK

invoke a specified program which
exists in load module form.

invoke the Linkage Editor to create a
load module from one or more object
and load modules.

LOAD GO

RUN

TEST

invoke the Loader to process a
specified object module, bring it into
storage" and give it control.

invoke a user program in source
program form, first compiling it" then
calling the 'Loader to bring it into
storage and give it control.

control the execution of a program,
interrupting it at pre-specified
points for debugging activity.

Remote Job Entry

Note: Use of these commands requires
authorization in the user profile.

CANCEL
cancel a job previously submitted for
background execution.

OUTPUT
direct SYSOUT data sets and system
messages from submitted jobs to the
terminal or a specified data set.

STATUS
display information at the terminal on
the status of a job previously
submitted for background execution.

SUBMIT
submit a data set containing job
control language for one or more jobs
for interpretation and execution in
the background.

System Control'

Note: Use of these commands requires
authorization in the user profile.

ACCOUNT
add or modify user profiles in the
User Attribute Data set.

OPERATOR
invoke the operator mode, allowing the
user to enter system commands from his
terminal.

Session Control

EXEC

HELP

invoke a command procedure.

display at the terminal information on
command function and syntax.

LOGON
start a terminal session .•

LOGOFF
end a terminal session.

PROFILE

'SEND

specifY special characters for line
editing 1 lock out and accept messages
from other users.

direct a message to the system
operator or to another user.

TERMINAL

TIME

specify the conditions under which an
attention interruption is to be
simulated, for terminals without
attention keys1 and define other
terminal-dependent characteristics.

display at the terminal the amount of
time expended during the current
session or the current program.

Appendix A: TSO Commands 91

Appendix B: Program Products

The following is a list of the IBM Program
Products available for use with TSO.
Program Products are available from IBM for
a license fee. Program Product Design
objectives for each of the Program Products'
are available from your local IBM
repre sentati vee

• Interactive Terminal Facility (ITF):
PL/I and BASIC.
A problem-solving language processor.
See the following'publications: IBM
System/360 Operating System Time --­
Sharing Option:
Interactive Terminal Facility: PL/I
and BASIC Design Objectives, GC28-6822.
ITF: PL/I General Information,
GC28-6827.
ITF: BASIC General Information,
GC28-6828.

• Code and Go FORTRAN.
A FORTRAN compiler designed for a fast
compile-execute sequence. See the
publications:
Code and Go FORTRAN Design Objectives,
GC28-6823.
FORTRAN Program Products for OS and OS
with TSO, General Information,
GC28-6824.

• FORTRAN IV (Gl).
A version of FORTRAN IV providing
specific support for the terminal
environment. See the publications:
FORTRAN IV (Gl) Processor Design
Objectives, GC28-6845.
FORTRAN Program Products for OS and OS
with TSO, General Information,
GC28-6824.

• TSO FORTRAN Prompter.
An initialization routine to prompt the
user for options, and invoke the
FORTRAN IV (Gl) Processor. See the
publications:
TSO FORTRAN Prompter Design Objectives,
GC28-6843.
FORTRAN Program Products for OS and OS
with TSO, General Information,
GC28-6824.

• FORTRAN IV Library (Mod 1).
Execution-time routines for
list-directed I/O, PAUSE, and STOP
capability, for use with either Code
and Go FORTRAN or FORTRAN IV (Gl). See
the publications:
FORTRAN IV Library (Mod 1) Design
Objectives, GC28-6844.
FORTRAN Program Products for OS and OS
with TSO, General Information,
GC28-6824.

92 Time Sharing Opti,on Guide (Release ~O.l)

• American National standard Full COBOL
Version 3.
A version of the American National
Standard COBOL compiler modified for
the terminal environment. See the
publication:
American National Standard CANS) Full
COBOL Compiler Version 3 Design
Objectives, GC28-6406.

• TSO COBOL Prompter.
An initialization routine to prompt the
user for options, and invoke the
American National Standard Full COBOL
Version 3 Compiler. See the
publ ication:
TSO COBOL Prompter Design Objectives,
GC28-6404.

• PL/I Optimizing Compiler.
A PL/I compiler designed for
compilation of efficient object
programs, incorporating a prompter
routine allowing invocation from the
terminal. See the publications:
PL/I Optimizing Compiler Design
Objectives, GC33-0013.
PL/I Optimizing Compiler, General
Information, GC33-0001.

• OS PL/I Resident Library.
A subroutine library for use during the
linkage editing of programs produced by
the PL/I Optimizing Compiler. See the
publication:
OS PL/I Resident Library Design
Objectives, GC33-0014.

• OS PL/I Transient Library.
A subroutine library for use during the
execution of programs produced by the
PL/I Optimizing Compiler. See the
publication:
OS PL/I Transient Library Design
Objectives, GC33-0015~

• TSO Assembler Prompter.
An initialization routine to prompt the
user for options and invoke the
Assembler (F). See the publication:
TSO Assembler Prompter Design
Objectives. GC26-3734.

• TSO Data Utilities: COPY, FORMAT,
LIST, MERGE.
A set of commands and EDIT subcommands
to manipulate data sets and format
text. See the publication: TSO Data
Utilities: COpy, FORMAT, LIST,! MERGE
Design Objectives, GC28-6750.

Appendix C: Driver Entry Codes

Entry Code Table (Part 1 of 4)
r-------------T--------~---------------T-------------------T----------------------------,
I Event Name I I I Input I
I (Entry Code) ICalling Routine (CLASS) IReason for Entry IRegister 0 Register 1 I
~-------------t------------------------t-------------------+-----------T----------------~
PPMODE (0) IProblem Program (S) ICommand about to be I Address of 8-

I I processed I character
. I I I command name.
I I I
I I I
I I
I I
I I
I I
I I

TSLICE (1) ITSC Timer Exit ITime slice has
IRoutine (S) I expired
I I

TERMWAIT (2) ITGET/TPUT (T) IUser is waiting for
I Iterminal I/O. Swap
I Ihim out.
I I
I I
I I
I I
I I
I I

NIOWAIT (3) IRegion Control Tasks (S) IAII user's tasks
I lare in non-I/O
I IWait.
I I

USERRDY (4) I DEQUEUE, Terminal ISwapped out user
I Handler, TSLIH, WTOR Iready to run.
I (S,T) I
I I

RUSRTRMW (5) IRegion Control Task (S) IRestored user is
I Istill in non-I/O
I IWait.
I I
I ISwap him out.
I. I

REQSTNC (6) IEnqueue (S) IUser is setting

RELMC (7)

DISPLAC (8)

I Imust complete for
I lowned resources.
I I
Dequeue (s) IUser is no longer

TS Dispatcher (D)

lin must complete
I status.
I
IA task switch has
Itaken place
Iresulting in a
Ibackground task
Ibeing dispatched.
I

IDISPSYS (9) TS Dispatcher (D) IA task switch has
I Itaken place
I Iresulting in a
I Isystem task being
I I dispatched.

o

TJID

TJID

TJID

TJID

Bit 0

o - Ended
1 - Beginning

NA

Bit 0

0: input
1: output

Bytes 3 and 4:
number of free
buffers.

NA

NA

NA

Estimated must
complete time.

L _____________ ~ _______________________ i ___________________ i ___________ i ________________ J

Appendix C: Driver Entry Codes 93

Entry Code Table (Part 2 of 4)
r-------------T------------------------T-------------------T----------------------------,
I E.vent Name I . I . I Input I
I (Entry Code) ICalling Routine (CLASS) IReason for Entry IRegister 0 Register 1 I
~-------------+------------------------+-------------------+----------~----------------~
DISPTS (10) ITS Dispatcher (D) IA task switch has TJID

I Itaken place
I Iresulting in a
I Inew time-sharing
I Itask being
I I dispatched.
I I

DISPWAIT (11) ITS Dispatcher (D) IA task switch has
I Itaken p~ace
I Iresulting in a
I I·system Wait.
I I

QSCEST (12) IRegion Control Task (S) IQuiesce is started TJID
I I

QSCECMP (13) IRegion Control Task (S) IQuiesce is complete TJID Number of
I· I FBQEs
I I

SWOUTST (14) I Time sharing Control I Swap out start- TJID
ITask (SWAP) (S) I
I I

SWOUTCMP (15) I Time Sharing Control ISwap out complete TJID
ITask (SWAP) (S) I
I I

SWINST (16) Time Sharing Control ISwap in started TJID
Task (SWAP) (S) I

I
SWINCMP (17) Time Sharing Control Iswap in complete TJID

Task (SWAP) (S) I
I

iRSTORST (18) Region Control Task (S) IRestore is started TJID
I

RSTORCMP (19) Region Control Task (S) Restore is complete TJID

(20) Reserved

(21) Reserved

(22) Reserved

(23) Reserved

(24) Reserved

LOGACCT (25) LOGON (S) Pass Logon
information for

laccounting purposes
I

Address of
accounting
information

CHGTOD (26) Timer SLIH (S) ITime of day must be 0 TOD change in
I altered 52 M value sec I
I Timer units I
I I
I Bit 0 . I
I I
I 0 - positive I
I value I
I I
I 1 - negative I
I I value I _____________ ~ ________________________ ~ ____________ ~ ______ ~ ___________ ~ ________________ J

94 Time Sharing Option Guide (Release 20.1)

Entry Code Table (Part 3 of 4)
r-------------T----------------------~-------------------T----------------------------,
I Event Name I I I Input I
I (Entry Code) ICalling Routine (CLASS) IReason for Entry IRegister 0 Register 1 I
r-------------+------------------------+-------------------+-----------T----------------~
ISPRGNSZ (27) ITimer Sharing Control ISpecify size regionl 0 Region number
I ITask. Region Control Ifor specific region
I ITask (S) I .
I I I
I I I
I (28) I Reserved I

" I 'LOGOFF (29) lEnd of Task (5) ITJID is to
" I be released.
'I ,
" I Region. can
I I Ibe released.
I I I
ILOGON (3'0) I LOGON (S) IHook user into
I I I selected region
I I I
IREQRGNID (31)ITime Sharing Control 10btain region 10
I I Task,. Logon (S) appropriate to size
I I
I IRCT and
SWINERR (32) ITime Sharing

IControl Task (SWAP) (S)
I .
I
I
I
I
I

SWOTERR (33) ITime Sharing Control
ITask (SWAP) (S)
I
I

TGETPUT (34) TGET. TPUT (T)

Swap in failed

Swap out failed. No
Iroom on SWAP data
Iset
I
ITGET was satisfied;
TPUT was satisfied

TJID

TJID

TJID

TJID

TJID

TJID

Required
region size

Region 10

Region size

Bit 0

0:· LOGON
image

1: Not LOGON
image

Bit 0:

o - TGET

1 - TPUT

For TGET.

Bit 1:

o - all data
transfered

1 - partial
transfer

Bytes 3 and 4:
Characters
transferred

IATTN (35) ITerminal Handler (T) IAttention (not linel sign bit:
I I At.ten tion I delete) I
I I I I 0 - No exit
I I I I
I I I I 1 - Exit·
I I I I
IIOERROR (36) ITerminal Handler IPermanent I/O Error I TJID
I IHANG UP(T) I Terminal I
I I I disconnected I L _____________ ~ ___________ ~ ___________ ~ __________________ ~ ___________ ~ ________________ J

Appendix C: Driver Entry Codes 95

Entry Code Table (Part 4 of 4)
r-------------T-------------------~---T-------------------T----------------------------,
I Event Name I I I Input I
I (Entry Code) ICalling Routine (CLASS) IReason for Entry IRegister 0 Register 1 I
r-------------+------------------------+-------------------+-----------T----------------~
TERMDSCN (37) I Terminal Handler IDisconnect terminal TJID

ILOGOFF (T~ Ilogically from TSO
I I

(38) I Reserved I
(39) I Reserved I

I I
RGNFAIL (40) Time sharing Control IRegion failed

Task Region Control I
Task (S) I

DONTSWAP (41) Transient Area
Handler (S)

OKSWAP (42) Transient Area
Handler (S)

UPDATACC (43) LOGOFF (S)

I FEDIAG (44) serviceability (S)

I
IDO not swap out
I user
I
IAIIow swap out of
I user
I .
IUpda~e accounting
linformation for
luser logging off
I
IFE diagnostics
Irecorded in TSO
,TRACE data set

ENQWAIT (45) Enqueue (S) User in enqueue
WAIT. Swap him out.

TJID

TJID

TJID

o

Region ID

Bit 0:
o

Bits 1-4:
Diagnostic
Identifier.
Bits 5-7: n
when 2(n+l)

equals number
of entries
Bits 8-31:
address of
data to be
recorded.

L __ ~ __________ ~ ________________________ ~ ___________________ ~ __________ ~ ________________ J

Note: On entry to the Time Sharing Driver. Register 0 contains either:

1) 0 - shown in one table as 0,.
2) A specific TJID - shown in one table as TJID.
3) The TJID of the current tasks - shown in the table as blank.

96 Time Sharing Option Guide (Release 20.1)

Appendix D: Terminal Messages Requiring Installation Action

The following section contains those TSO terminal messages that are generated for the
terminal user but that require the operator to perform certain diagnostic measures before
calling IBM for programming support. The messages are not listed by message number but
are listed alphabetically according to message text; the additional messages associated
with each initial message are listed alphabetically under each message. The KEY indicate
at the left of the message denotes the appropriate operator response for the message he
responses are listed in numeric order following the list of messages.

Appendix D: Terminal Messages Requiring Installation Action 97

!<Ex. MESSAGE

20

DATA SET dsname NOT ALLOCATED, DATA SET NOT ON VOLUME+
CATALOG INFORMATION INCORRECT

DA'I'A SET dsname NOT ALLOCATED, SYSTEM OR INSTALLATION ERROR+
CATALOG ERROR CODE 14
CATALOG ERROR CODE 1C
CATALOG I/O ERROR

ERROR IN CONCATENATING {LIBRARY} DATA SETS
INPUT

9 DADSM ERROR CODE 47 u4
10 DADSM ERROR CODE 4708
16 DADSM ERROR CODE 470C
20 DADSM ERROR CODE 4710
20 DADSM ERROR CODE 4718
20 DADSM ERROR CODE 4730
12 DADSM ERROR CODE 4734
20 DYNAMIC ALLOCATION ERROR CODE 004
20 DYNAMIC ALLOCATION ERROR CODE 008

5 DYNAMIC ALLOCATION ERROR CODE 104
5 DYNAMIC ALLOCATION ERROR CODE 108
5 DYNAMIC ALLOCATION ERROR CODE lDC
6 DYNAMIC ALLOCATION ERROR CODE 208

20 DYNAMIC ALLOCATION ERROR CODE 268
20 DYNAMIC ALLOCATION ERROR CODE 304
20 DYNAMIC ALLOCATION ERROR CODE 308
20 DYNAMIC ALLOCATION ERROR CODE 30C
20 DYNAMIC ALLOCATION ERROR CODE 310
20 DYNAMIC ALLOCATION ERROR CODE 314
20 DYNAMIC ALLOCATION ERROR CODE 318
20 DYNAMIC ALLOCATION ERROR CODE 31C
20 DYNAMIC ALLOCATION ERROR CODE 320
20 DYNAMIC ALLOCATION ERROR CODE 324
20 DYNAMIC ALLOCATION ERROR CODE 328
20 DYNAMIC ALLOCATION ERROR CODE 338
20 DYNAMIC ALLOCATION ERROR CODE 33C
20 DYNAMIC ALLOCATION ERROR CODE 340
20 DYNAMIC ALLOCATION ERROR CODE 344
20 DYNAMIC ALLOCATION ERROR CODE 350
20 DYNAMIC ALLOCATION ERROR CODE 358
20 DYNAMIC ALLOCATION ERROR CODE 40C
20 DYNAMIC ALLOCATION ERROR CODE 408
20 DYNAMIC ALLOCATION ERROR CODE 410
20 DYNAMIC ALLOCATION ERROR CODE 414
20 DYNAMIC ALLOCATION ERROR CODE 418
20 DYNAMIC ALLOCATION ERROR CODE 420
20 DYNAMIC ALLOCATION ERROR CODE 424
17 DYNAMIC AL~OCATION ERROR CODE 504

COMMAND SYSTEM ERROR+
20 DEVTYPE FAILED xx FOR DDNAME ddname
20 TIOT SEARCH FAILED FOR DDNAME ddname
10 OBTAIN ERROR CODE 8 FOR DATA SET dsname
12 OBTAIN ERROR CODE 12 FOR DATA SET dsname
16 BLDL I/O ERROR
21 OBTAIN ERROR CODE 12 FOR FORMAT 4 DSCB
20 PARSE ERROR CODE xx
20 DEFAULT ERROR CODE xx
20 SCAN ERROR CODE xx
20 DAIR ERROR CODE xx
20 PUTLINE ERROR CODE xx
20 GETLINE ERROR CODE xx
20 PUTGET ERROR CODE xx
20 STACK ERROR CODE xx

6 OUTPUT QUEUE ERROR
20 SVC 98 RETURN CODE xx

98 Time Sharing Option Guide (Release 20.1)

DATA SET dsname NOT ALLOCATED+
8 INVALID UNIT IN USER ATTRIBUTE DATA SET

USER ATTRIBUTE DATA SET NOT USABLE+
22 CANNOT OPEN DATA SET
16 BLDL I/O ERROR
16 STOW I/O ERROR
14 I/O SYNAn ERROR synadinfo
16 BACKSPACE ERROR 4

DATA SET dsname NOT USABLE+
16 BLDL FAILED, PERMANENT I/O ERROR IN DIRECTORY
14 I/O SYNADERROR synadinfo
10 OBTAIN ERROR CODE 8
21 OBTAIN ERROR CODE 12
22 CANNOT OPEN DATA SET
16 BLDL I/O ERROR
20 XDAP WRITE FAILED IN TEN TRIES
15 OPEN ERROR CODE xxxx
15 ABEND CODE xxx
16 BLDL ERROR CODE xxx

6 JOB QUEUE I/O ERROR

CAN NOT COPY INTO DATA SET dsname+
14 I/O SYNAD ERROR synadinfo
16 STOW I/O ERROR

DATA SET dsname CANNOT BE RESOLVED, SYSTEM ERROR+
20 DEFAULT ERROR CODE xx

3 CATALOG ERROR CODE 14
4 CATALOG ERROR CODE 1C

ERROR WRITING DATA SET dsname, MEMBER AND ALL MEMBERS
FOLLOWING NOT COPIED+

14' I/O SYNAn ERRORsynadinfo

INPUT DIRECTORY ERROR, CANNOT COpy DATA SET dsname+
14 I/O SYNAD ERROR synadinfo

MEMBER member CANNOT BE COPIED+
14 I/O SYNAD ERROR synadinfo

UNABLE TO COMPLETE UPDATE OF OUTPUT DIRECTORY+
16 INPUT DIRECTORY ENTRY xxxx INCONSISTENCIES FOUND

'{UTILITY DATA SET}
DATA SET dsname CANNOT BE RESOLVED, SYSTEM ERROR+

20 DAIR ERROR CODE xx
2 LOCATE ERROR CODE 1
4 LOCATE ERROR CODE 24

20 DEFAULT ERROR CODE xx

19 SYSTEM FAILED. ALL USERS TERMINATED

19 SYSTEM FAILURE, PLEASE LOGON AGAIN

UNABLE TO DELETE DATA SET dsname+
11 SCRATCH ERROR CODE 4
17 SCRATCH ERROR CODE 6
16 STOW ERROR CODE 16

SYSTEM ERROR+

20 {
UTILITY DATA SET}
DATA SET dsnarne NOT UNALLOCATED, DYNAMIC ALLOCATION ERROR CODE xx

Appendix D: Terminal Messages Requiring Installation Action 99

20 DATA SET dsname NOT UNALLOCATED, CATALOG ERROR CODE XX

function NOT AVAILABLE FOR language+
20

22
14
16

22
16
14

14
22

PROGRAM NO LONGER USABLE

FILE SYSPROC NOT USABLE+
CANNOT OPEN DATA SET
I/O SYNAD ERROR synadinfo
FIND ERROR

HELP DATA SET NOT USABLE+
CANNOT OPEN DATA SET
FI ND I/O ERROR
I/O SYNAD ERROR synadinfo

CONTROL STATEMENT DATA SET NOT USABLE+
I/O SYNAD ERROR
OPEN ERROR

20 {LIBRARY}
ERROR IN CONCATENATING, INPUT DATA SETS

HISTORY NOT AVAILABLE+
2 LOCATE ERROR CODE 4
4 LOCATE ERROR CODE 24

21 I/O ERROR DURING OBTAIN. CODE 12
11 DATA SET NOT ON VOLUME

MEMBERS NOT AVAILABLE+
16 DIRECTORY STRUCTURE ERROR
16 I/O SYNAD. ERROR DURING DIRECTORY SEARCH synadinfo

BROADCAST DATA SET NOT USABLE+
14 I/O SYNAD ERROR
22 CANNOT OPEN DATA SET

22 BROADCAST DATA SET NOT USABLE, CANNOT OPEN DATA SET .

BROADCAST DATA SET NOT ALLOCATED. DATA SET NOT ON VOLUME+
1 CATALOG INFORMATION INCORRECT

14 BROADCAST DATA SET NOT USABLE, I/O SYNAD ERROR

2
3
4

20
20

5
5
5
6

20
7
8

20
20
20
20
20
20
20
20
20
20
20
20

BROADCAST DATA SET NOT ALLOCATED,
CATALOG ERROR CODE 4
CATALOG ERROR CODE 14
CATALOG ERROR CODE lC
DYNAMIC ALLOCATION ERROR CODE
DYNAMIC ALLOCATION ERROR CODE
DYNAMIC ALLOCATION ERROR CODE
DYNAMIC ALLOCATION ERROR CODE
DYNAMIC ALLOCATION ERROR CODE
DYNAMIC ALLOCATION ERROR CODE
DYNAMIC ALLOCATION ERROR CODE
DYNAMIC ALLOCATION ERROR CODE
DYNAMIC ALLOCATION ERROR CODE
DYNAMIC ALLQCATION ERROR CODE
DYNAMIC ALLOCATION ERROR CODE
DYNAMIC ALLOCATION ERROR CODE
DYNAMIC ALLOCATION ERROR CODE
DYNAMIC ALLOCATION ERROR CODE
DYNAMIC ALLOCATION ERROR CODE
DYNAMIC ALLOCATION ERROR CODE,
DYNAMIC ALLOCATION ERROR CODE
DYNAMIC ALLOCATION ERROR CODE

,DYNAMIC ALLOCATION ERROR CODE
DYNAMIC ALLOCATION ERROR CODE
DYNAMIC ALLOCATION ERROR CODE

SYSTEM

004
008
104
108
10C
208
210
214
21C
268
308
30C
310
314
318
31C
320
324
328
;338
33C

100 Time Sharing Option Guide (Release 20.1)

ERROR+

20
20
20
20
20
20
20
20
20
20
20
20

9
10
16
20
20
20
20
20
13

DYNAMIC ALLOCATION ERROR CODE
DYNAMIC ALLOCATION ERROR CODE
DYNAMIC ALLOCATION ERROR CODE
DYNAMIC ALLOCATION ERROR CODE
DYNAMIC ALLOCATION ERROR CODE
DYNAMIC ALLOCATION ERROR CODE
DYNAMIC ALLOCATION ERROR CODE
DYNAMIC ALLOCATION ERROR CODE
DYNAMIC ALLOCATION ERROR CODE
DYNAMIC ALLOCATION ERROR CODE
DYNAMIC ALLOCATION ERROR CODE.
DYNAMIC ALLOCATION ERROR CODE
DYNAMIC ALLOCATION ERROR CODE
DYNAMIC ALLOCATION ERROR CODE
DYNAMIC ALLOCATION ERROR CODE
DYNAMIC ALLOCATION ERROR CODE
DYNAMIC ALLOCATION ERROR CODE
DYNAMIC ALLOCATION ERROR CODE
DYNAMIC ALLOCATION ERROR CODE
DYNAMIC ALLOCATION ERROR CODE
DYNAMIC ALLOCATION ERROR CODE

340
344
350
358
408
40C
410
414
418
420
424
504

4704
4708
470C
4710
4714
4718
4730
4734
4738

JMEMBERS }
HISTORY AND MEMBERS

tHISTORY NOT AVAILABLE+
21 I/O ERROR DURING OBTAIN, CODE 12

UNABLE TO LIST CATALOG+
4 I/O ERROR DURING LOCATE CODE 24
2 LOCATE ERROR CODE 4

DATA SET ATTRIBUTES NOT AVAILABLE+
21 OBTAIN ERROR CODE 12
10 OBTAIN ERROR CODE 8

DIRECTORY INFORMATION NOT AVAlLABLE+
16 I/O ERROR DURING BLDL

COMPLETE VOLUME LIST NOT AVAILABLE+
6 JFCB EXTENSION NOT AVAILABLE
2 LOCATE ERROR CODE 4
4 LOCATE ERROR CODE 24

LABEL INFORMATION NOT AVAILABLE+
10 OBTAIN ERROR CODE 8
21 OBTAIN ERROR CODE 12

userid LOGGED OFF TSO AT hh: ON month day, year+
5 I/O ERROR ON JOB QUEUE

20 ALLOCATION UNSUCCESSFUL
21 OBTAIN ERROR
20 SYSTEM ERROR
20 STEPLIB DATA SET COULD NOT BE OPENED
20 JOBLIB DATA SET COULD NOT BE OPENED

6 NOT ENOUGH JOB QUEUE SPACE TO EXECUTE LOGON

20 ATTEN~ION IGNORED, SYSTEM ERROR, LOGON RESUMED

20 LOGON TERMINATED, SYSTEM ERROR

20 LOGON TERMINATED, routine ERROR xxx

20 LOGON FAILED

20 ABEND WHILE PROCESSING BROADCAST MESSAGES, LOGON PROCEEDING

UNABLE TO RENAME DATA SET dsname+
10 RENAME ERROR CODE 4

Appendix D: Terminal Messages Requiring Installation Action 101

10 RENAME ERROR CODE 8
2 CATALOG ERROR CODE 4
3 CATALOG ERROR CODE 16
4 CATALOG ERROR CODE 1C

16 STOW ERROR CODE xx
16 BLDL ERROR CODE xx

10 NOT ENOUGH DIRECT ACCESS SPACE TO CONTAIN ALL RECORDS+
15 SYSTEM ABEND CODE code

UNABLE TO PROTECT DATA SET+
23 I/O ERROR IN PASSWORD DATA SET

UNABLE TO MODIFY PROTECTION FLAGS OF DATA SET dsname+
21 I/O ERROR WHILE UPDATING SECURITY FLAGS

DATA SET RENAMED BUT dsname STILL CATALOGED+
2 CATALOG ERROR CODE 4
3 CATALOG ERROR CODE 16
4 CATALOG ERROR CODE lC

24 NO SPACE IN DIRECTORY FOR ALIAS

UNABLE TO CATALOG, dsname+
2 CATALOG ERROR CODE 4
3 CATALOG ERROR CODE ,16
4 CATALOG ERROR CODE 1C

INPUT DATA SET dsname NOT USABLE+
14 I/O SYNAD ERROR synadinfo
15 INPUT OPEN ERROR CODE xxx

OUTPUT DATA SET FOR JOB jobname NOT USABLE+
14 SYNAD ERROR synadinfo
15 OPEN ERROR CODE xxx
10 NOT ENOUGH DIRECT ACCESS SPACE

UNABLE TO QUALIFY dsname+
2 DEFAULT ERROR CODE xx LOCATE CODE 4
4 LOCATE CODE 24

20 DEFAULT ERROR CODE xx

PRINT DATA SET NOT USABLE+
20 PERMANENT I/O ERROR
22 CANNOT OPEN DATA SET

SYMBOL ADDRESS NOT AVAILABLE, SYSTEM ERROR+
14 I/O SYNAD ERROR synadinfo
22 CANNOT OPEN DATA SET, DDNAME ddname

Jcommand name 1 ENDED DUE TO AN ERROR
tsubcommand nameJ

19 USER ABEND COD~ IS code
19 COMPLETION CODE IS code
19 SYSTEM ABEND CODE IS code
19 LINK TO SUBCOMMAND FAILED
19 INSUFFICIENT STORAGE
19 SYSTEM CODE code INSUFFICIENT STORAGE
19 SYSTEM CODE code PERMANENT ERROR DURING BLDL
'19 SYSTEM CODE code GETMAIN FAILURE
19 SYSTEM CODE code LINK FAILURE
19 SYSTEM CODE code ATTACH FAILURE
1? SYSTEM CODE code

102 Time Sharing Option Guide (Release 20.1)

subcomm FAILED+
ABEND CODE SYSTEM = code
ABEND CODE 'SYSTEM = code IC = addr
INSTR IMAGE = image

20 LINK TO PARSE FAILED
20 LOAD FA~LED
20 ATTACH FAILED
20 OPEN FAILED
20 LINK TO SYM FAILED
20 LINK TO DAIR FAILED
20 LINK TO SCAN FAILED
20 XCTL FAILED
20 LINK TO DEFAULT FAILED
20 GETMAIN ERROR CODE xxx

subcommand FAILED., COMMAND SYSTEM ERROR+
20 PARSE ERROR CODE xx
20 DAIR ERROR CODE xx
20 GETLINE ERROR CODE xx
20 PUTLINE ERROR CODE xx
20 PUTGET ERROR CODE xx

UNABLE TO LOAD PROGRAM+
22 OPEN ERROR
16 BLDL ERROR CODE xx

KEY Explanation

1. If the data set was deleted by a utility program that was also supposed to update
the catalog., but the catalog was not updated, do the following before calling IBM
for programming support:

• Retain the console sheet and instruct the terminal user to retain the terminal
listing .•

• Execute the lMAPTFLS service aid program to obtain a list of all members with a
PTF or local fix, and save the resulting output. Execute the program against the
SYS1.LINKLIB data set, the SYS1...SVCLIB data set, and the command 'library.

• Execute the IEHLIST system utility program to obtain a list of the catalog and a
list of the volume table of contents (specifying the FORMAT option) of the
associated volume, and save the resulting output.

• Execute the IEHPROGM system utility program to uncatalog the data set.

2. If the necessary control volume is mounted and the error persists, do the following
before calling IBM for programming support:

• Retain the console sheet and instruct the terminal user to retain the terminal
listing.

• Execute the IMAPTFLS service aid program to obtain a list of all members with a
PTF or local fix, and save the resulting output. Execute the program against the
SYS1.LINKLIB data set, the SYS1.SVCLIB data set, and the command library.

• Execute the IEHLIST system utility program to obtain a list of the catalog, and
save the resulting output.

3. If sufficient space exists in all necessary control volumes, do the following before
calling IBM for programming support:

• Retain the console sheet and instruct the terminal user to retain the terminal
listing.

• Execute the lMAPTFLS service aid program to obtain a list of all members with a
PTF or local fix, and save the resulting output. Execute the program against the
SYS1.LINKLIB data set,. the SYS1.SVCLIB data set, and the command library •

• Execute the IEHLIST system utility program to obtain a printed copy of the
catalog" and save the resulting output.

4. Do the following before calling IBM for programming support:

• Retain the console sheet and instruct the terminal user to retain the terminal
listing .•

Appendix D: Terminal Messages Requiring Installation Action 103

• Execute the lMAPTFLS service aid program to obtain a "list of all members with a
PTF or local fix, and save the resulting output. Execute the program against the
SYS1.LINKLIB data set, the SYS1.SVCLIB data set, and the command library.

• Execute the IEHLIST system utility program to obtain a printed copy of the
catalog" and save the resulting output,.

5. Do the following before calling IBM for programming support:

• Retain the console sheet and instruct the terminal user to retain the terminal'
listing .•

• Execute the lMAPTFLS service aid program to obtain a list of all members with a
PTF of local fix, and save the resulting output. Execute the program against the
SYS1.LINKLIB data set, the SYS1.SVCLIB data set, and the command library"

• Execute the IMCJQDMP system utility program to obtain a printed copy of the job
queue, and save the resulting output. IMCJQDMP - specify JOBNAME or TOTAL option.

6.. If sufficient space exists in the SYS1.SYSJOBQE data set, do the following before
calling IBM for programming support:

• Retain the console sheet and instruct the terminal user to retain the terminal
listing.

• Execute the lMAPTFLS service aid program to obtain a list of all members with a
PTF or local fix, and save the resulting output. Execute the program against the
SYS1.LINKLIB data set., the SYS1.SVCLIB data set, and the command library.

• Execute the IMCJQDMP service aid program to obtain a formatted copy of the
contents of the SYS1.SYSJOBQE data set, and save the resulting output, specifying
the total option.

• Execute the IMDSADMP service aid program, specifying the TYPE=HI option, to write
the contents of main storage to a tape volume. After restarting the system,
execute the IMDPRDMP service aid program, specifying the GO statement, to print a
main storage dump from the dump tape produced by the IMDSADMP service aid program.
(If a tape is not available" execute the IMDSADMP service aid program, specifying
the TYPE=LO option, to directly print a main storage dump.) Save the resulting
dump output.

7.\ If the devices of the type indicated in the User Attribute Data Set for use by this
user are actually online, do the following before calling IBM for programming
support:

• Retain the console sheet and instruct the terminal user to retain the terminal
listing.

• Execute the lMAPTFLS service aid program to obtain a list of all members with a
PTF or local fix., and save the resulting output. Execute the program against the
SYS1.LINKLIB data set, the SYS1.SVCLIB data ~et, and the command library.

• Execute the IMDSADMP service aid program, specifying the TYPE=HI option, to write
the contents of main storage to a tape volume. After restarting the system,
execute the IMDPRDMP service aid program, specifying the GO statement~ to print a
main storage dump from the dump tape produced by the lMASADMP service aid program.
(If a tape is not available, execute the IMDSADMP service aid program, specifying
the TYPE=LO option, to directly print a main storage dump.) Save the resulting
dump output.

• Have the person in the installation authorized to use the ACCOUNT command issue
the command with the LIST subcommand to list the attributes of the user having
trouble.

8. If the device of the type indicated in the User Attribute Data Set for use by this
user were actually included in the system 'at system generation time, do the
following before calling IBM for programming support:

• Retain the console sheet and instruct the terminal user to retain the terminal
listing.

• Execute the lMAPTFLS service aid program to obtain a list of all members with a
PTF or local fix., and save the resluting output. Execute the program against the
SYS1.LINKLIB data set, the SYS1.SVCLIB data set, and the command library.

• Have the system generation output available from Stage I and stage II.
• Have the person in the installation authorized to use the ACCOUNT command issue

the command with the LIST subcommand to list the attributes of the user having
trouble.

104 Time Sharing Option Guide (Release 20.1)

9. If no uncataloged data set has the same name as the new data set being created by
the user, do the following before calling IBM for programming support:

• Retain the console sheet and instruct the terminal user to retain the terminal
listing.

• Execute the lMAPTFLS service aid program to obtain a list of all members with a
PTF or local fix, and save the resulting output. Execute the program against the
SYS1.LINKLIB data set, the SYS1.SVCLIB data set, and the command library.

• Execute the IEHLIST system utility program to obtain a list of the entire catalog
and a list of the volume table of contents (specifying the FORMAT option) of all
online direct access volumes, and save the resulting output.

10. If space exists in the volume table of contents of all online volumes, do the
following before calling IBM for programming support:

• Retain the console sheet and instruct the terminal user to retain the terminal
listing.

• Execute the IMAPTFLS service aid program to obtain a list of all members with a
PTF or local fix, and save the resulting output. Execute the program against the
SYS1.LINKLIB data set., the SYS1.SVCLIB data set, and the command library.

• Execute the IEHLIST system utility program to obtain a list of the volume table of
contents (specifying the FORMAT option) of all online direct access volumes.

. .
11. Do the following before calling IBM for programming support:

• Retain the console sheet' and instruct the terminal user to retain the terminal
listing.

• Execute the lMAPTFLS service aid program to obtain a list of all members with a
PTF or local fix, and save the resulting output. Execute the program against the
SYS1.LINKLIB data set, the SYS1.SVCLIB data set, and the command library.

• Execute the IHELIST system utility programot obtain a list of the volume table of
contents of the associated volume.

12. If there are no DOS volumes online, do the following before calling IBM for
programming support:

• Retain the console sheet and instruct the terminal user to retain the terminal
listing.

• Execute the lMAPTFLS service aid program to obtain a list of ail members with a
PTF or local fix, and save the resulting output. Execute the program against the
SYS1.LINKLIB data set, the SYS1.SVCLIB data set, and the command library.

• Execute the IEHLIST system utility program to obtain a list of the volume table of
contents (specifying the DUMP option) of all online direct access volumes.

13. If the directory space requested is not larger than the first extent, do the
following before calling IBM for programming support:

• Retain the console sheet and instruct the terminal user to retain the terminal
listing.

• Execute the lMAPTFLS service aid program to obtain a list of all members with a
PTF or local fix, and save the resulting output. Execute the program against the
SYS1.LINKLIB data set, the SYS1.SVCLIB data set, and the command library.

14. Do the following before calling IBM for programming support:

• Retain the console sheet and instruct the terminal user to retain the terminal
listing.

• Execute the lMAPTFLS service aid program to obtain a list of all members with a
PTF' or local fix, and save the resulting output. Execute the program against the
SYS1.LINKLIB data set, the SYS1.SVCLIB data set, and the command library.

• Execute the IEHLIST system utility program to obtain a printed copy of the
catalog, and· save the resulting output.

15. Do the following before calling IBM for programming support:

• Retain the console sheet and instruct the terminal user to retain the terminal
listing.

Appendix 0: Terminal Messages Requiring Installation Action 105

• Consult the 'System Completion Codes' section of this publication for the
associated error code, and respond as indicated after the statement 'If the
problem recurs, do the following before calling IBM for programming support' in
the Programmer Response for that code; however" do not obtain a storage dump and
do not specify MSGLEVEL=(l,l) in the JOB statement, even if so requested.

16. Do the following before calling IBM for programming support:

• Retain the console sheet and instruct the terminal user to retain the terminal
listing.

• Execute the lMAPTFLS service aid program to obtain a list of all members with a
PTF or local fix, and save the resulting output. Execute the program against the
SYS1.LINKLIB data set,. the SYS1.SVCLIB data set, and the command library.'

• Execute the IEHLIST system utility program to obtain a printed copy of the
directory of the data set.

17. If the required volume is mounted, do the following before calling IBM for
programming support:

• Retain the console sheet and instruct the terminal user to retain the terminal
listing.

• Execute the lMAPTFLS service aid program to obtain a list 'of all members with a
PTF or 109al fix, and 'save the resulting output. Execute the program agairist the
SYS1.LINKLIB dataset,' the SYS1.SVCLIB data set, and the command library.

• Execute the IEHLIST system utility program to obtain a list of the catalog, and
save the reSUlting output. '

• Execute the IMDSADMP service aid program, spec-ifying the TYPE=HI option" to write
the contents of main storage to a tape volume. After restarting the system,
execute the IMDPRDMP service aid program, specifying the GO statement, to print a
main storage dump from the dump tape procued by ,the lMASADMP service aid program.
(If a tape is not available, execute the IMDSADMP service aid program, specifying
the TYPE=LO option, to directly print amain storage dump.) Save the resulting
dump output.

18. Do the following before calling IBM for programming support:

• Execute the IMDPRDMP service aid program to print the TSO dump data set and the
SWAP data sets.

19. Do the following before calling IBM for programming support:

• Inform the user that if a subcommand was being processed, any further information
must be obtained from the user; that is, the user should:

1) Use the ALLOCATE command to allocate a SYSOUT data set with the FILE name of
SYSUDUMP.

2) Repeat the error situation.
3) strike the 'return' key after receiving the message 'xxxxxx ENDED DUE TO

ERROR+' •
4) Use the FREE command to free the FILE named SYSUDUMP.
5) Retain the terminal listing.

• Retain the SYSOUT listing containing the dump output.

20. Do the following before calling IBM for programming support:

• Retain the console sheet and instruct the terminal user to retain the terminal
listing.

e Execute the I~APTFLS ser~ice aid prcgr~~ to obtain a list of all m~~bers with a
PTF or local fix, and save the resulting output. Execute the program against the
SYS1.LINKLIB data set, the SYS1.SVCLIB data set, and the command library.

106 Time Sharing Option Guide (Release 20.1)
I

21. Do the following before calling IBM for programndng support:

• Retain the console sheet and instruct the terminal user to retain the terminal
listing.

• Execute the lMAPTFLS service aid program to obtain a list of all members with a
PTF or local fix, and save the resulting output. Execute the program against the
SYS1.LINKLIB data set, the SYS1.SVCLIB data set, and the command library.

• Execute the IEHDASDR system utility program to obtain a list of the volume table
of contents <VTOC) of the associated volume.

22. If the file is already allocated do' the following before calling IBM for programming
support:

• Retain the console sheet and instruct the terminal user to retain the terminal
listing.

• Execute the lMAPTFLS service aid program to obtain a list of all members with a
PTF or local fix, and save the resulting output. Execute the program against the
SYS1.LINKLIB data set, the SYS1.SVCLIB data set, and the command library.

If the file is not a1located and you are currently logged on., use the ALLOCATE
command to allocate the data set.

23. Do the following before calling IBM for programming support:

• Retain the console sheet and instruct the terminal user to retain the terminal
listing .•

• Execute the'IMAPTFLS service aid program to obtain a list of all members with a
PTF or local fix, and save the resulting output. Execute the program against the
SYS1.LINKLIB data set, the SYS1.SVCLIB data set, and the command library.

• Execute the IEHDASDR system utility program to obtain a printed copy of the Master
Password Data Set.

24. If sufficient space exists in the directory. do the following before calling IBM for
programming support:

• Retain the console sheet and instruct the terminal user to retain the terminal .
listing.

• Execute the lMAPTFLS service aid program to obtain a list of all members with a
PTF or local fix, and save the resulting output. Execute the program against the
SYS1.LINKLIB data set, the SYS1.SVCLIB data set, and the command library.

• Execute the IEHLIST system utility' program to obtain a printed copy of the
directory of the data set.

Appendix D: Terminal Messages Requiring Installation Action 107

,Appendix E: Message Control Program Assembly Diagnostic

IKJ5410I LINEGRP MACRO MUST PRECEDE TSOMCP
MACRO

Explanation: Processing of a
LINEGRP macro has been terminated
because it followed a TSOCMP
macro. All LINEGRP macros must
precede the TSOMCP macro,.

IKJ54102I MORE THAN 63 LINEGRP MACROS

Explanation: Too many LINEGRP
macros were issued. The user
should check to see if theer are
two or more line groups with the
same attributes which could be
combined into one line group.
Another possible solution could
be combining 1050 and 2741 line
groups into a 5041 line group.

IKJ54103I REQUIRED OPERAND(S) NOT SPECIFIED

Explanation: Processing of this
macro has been ter~inated because
one or more required operands
were omitted.

IKJ54104I xxxx INVALID FOR yyyy OPERAND

Explanation: The value (xxxx) of
the indicated operand (yyyy) is
invalid as specified. The user
should reread the description of
this operand and determine the
permissable values.

IKJ54105I TRANTAB=xxxx INVALID FOR THIS
TERMINAL TYPE

Explanation: The indicated
translate table was ignored
because it is not compatible with
the terminal type specified in
the TERM operand.

IKJ54106I CODE OPERAND SHOULD BE SPECIFIED
ONLY IF MORE THAN ONE TRANSLATE
TABLE IS SPECIFIED

Explanation: The CODE operand
has been ignored because less
than two translate tables are
being used in the line group.

IKJ54107I CODE OPERAND CONTAINS MORE THAN 4
SUBLIST OPERANDS

Explanation: Too many
suboperands were specified in the
CODE operand sublist. The user
should reread the description of

108 Time Sharing Option Guide' (Release 20.1)

this operand to be sure he
understands dynamic translation.
If not, he should omit this
operand so that the default
values will be used.

IKJ54108I CODE SUBOPERAND TOO LONG
!

Explanation: Each suboperand of
the CODE operand must be less
than 9 characters.

IKJ54109I DIAL OPERAND NOT CONSISTANT WITH
TERM OPERAND

Explanation: The terminal type
specified in the TERM operand
cannot be supported on the type
of network (switched or
non-switched) specified by the
DIAL operand.

IKJ54110I xxxx OPERAND OUT OF RANGE,
DEFAULT VALUE USED

Explanation: The value of the
,indicated operand is outside the
valid limits. The default value
has been used instead. The user
should consult the description of
this operand to determine the
value limits and the default
value used.

IKJ54111I xxxx OPERAND CONTAINS TOO MANY
SUB LIST OPERANDS

Explanation: The indicated
operand was not processed because
it contained too many sublist
operands.

IKJ54112I SUBLIST OPERAND yy OF FEATURE
OPERAND IS INVALID

Explanation: The indicated
,sublist opera~d (1, 2, or 3) of
the FEATURE operand has been
ignored because it is not valid
for the terminal type specified
in the TERM operand.

IKJ54114I xxx x OPERAND NOT ALLOWED FOR THIS
TERMINAL TYPE

Explanation: The indicated
operand has been ignored because
it is not allowed with the
terminal type specified in the
TERM operand of the LINEGRP
macro.

IKJ54115I TERMNO OPERAND REFERENCES
NON-EXISTENT LINE(S)

Explanation: The TERMNO operand
refers to more lines than exist
for this line group. In other
words, the number of sublist
operands in the TERMNO operand is
greater than the vaue of the
LINENO operand. The extra TERMNO
sublist operands have been
ignored.

IKJ54116I SCREEN OPERAND MUST BE A
TWO-OPERAND SUBLIST

Explanation: _ The SCREEN operand
has been ignored because it is
not a sublist with two
suboperands. The default values
(12,80) have been assumed.

IKJ54117I NON-STANDARD SCREEN DIMENSIONS
ACCEPTED

Explanation: This message is a
warning that the screen
dimensions specified do not
correspond to standard IBM screen
sizes. The values specified have
been accepted, however.

IKJ54118I ADDR OPERAND INCORRECT LENGTH
IGNORED

Explanation: ADDR operand of
incorrect length has been
ignored. For a 1050 terminal,
the length must be two, for
2260/65 the length must be four.

IKJ54119I ADDR OPERAND SHOULD BE SPECIFIED
FOR THIS TERMINAL TYPE

Explanation: The ADDR operand
was omitted and the terminal type
specified in the TERM operand
requires addressing characters
which can only be specified in
this LINEGRP macro. Note that
this warning message cannot be
provided in the case of 2260/65
line groups. Omission of the
ADDR operand can be valid in the
LINEGRP macros of these line
groups since the addressing
characters may be specified in
the LISTTA macrO. Omission of
necessary addressing characters
from a LISTTA macro will be
documented by message IKJ54128I.

IKJ54120I LISTTA MACRO OUT OF ORDER -­
IGNORED

Explanation: A LISTTA macro must
follow the LINEGRP macro to which

it refers and precede the TSOMCP
macro.

IKJ54121I RLN OPERAND MISSING OR INVALID

Explanation: Processing of the
LISTTA macro has been terminated
because the RLN operand is
missing or invalid.

IKJ54122I RLN OPERAND REFERS TO
NON-EXISTENT LINE

Explanation: Processing of the
LISTTA macro has been terminated
because the value of the RLN
operand exceeds the value of the
LINENO operand of the previous
LINEGRP macro.

IKJ54123I LISTTA MACRO NOT ALLOWED WITH
TERMINAL TYPE OF PREVIOUS LINEGRP

Explanation: The TERM operand of
the previous LINEGRP macro
specified a terminal type which
doesn't permit LISTTA macros to
be issued for the line group.
This LISTTA macro was therefore
ignored.

IKJ54124I ADDR OPERAND REFERS TO
NON-EXISTENT TERMINAL(S)

Explanation: The number of
suboperands in-the ADDR operand
sublist of the LISTTA macro is
greater than the number of
terminals specified or defaulted
by the TERMNO operand of the
previous LINEGRP macro. The ADDR
operand has been ignored. The
user should recheck his
specifications for the ADDR and
RLN operands in the LISTTA macro
and the TERMNO operand in the
previous LINEGRP macro.

IKJ54125I MORE THAN ONE TSOMCP MACRO CALL
ISSUED

Explanation: Processing of this
TSOMCP macro was terminated
because it was not the first
TSOMCP macro in the assembly.
only one TSOMCP macro call is
allowed for each generation of an
MCP.

IKJ54126I NO LINEGRP MACRO ISSUED BEFORE
TSOMCP MACRO

Explanation: Processing of this
macro was terminated because no
LINEGRP macro had been issued
previously {n the assembly. At
least one LINEGRP macro must
precede the. TSOMCP macro.

Appendix E: Message Control Program Assembly Diagnostic Error Messages 109

IKJ54127I SERIOUS ERROR IN PREVIOUS MACRO
CALL PREVENTS FURTHER GENERA'I'ION

Explanation: One or more serious
errors in previous LINEGRP or
LISTTA macros has occurred,
causing MCP generation to be
bypassed. see error messages
printed in the listing prior to
this one.

110 Time Sharing Option Guide (Release 20.1)

IKJ541281 ADDRESSING CHARACTERS OMITTED FOR
TERMINAL(S) IN LINE GROUP xx

Explanation: The TSOMCP macro
has discovered a terminal whose
type requires addressing
characters, but for which none
were specified in previous
LINEGRP or· LISTTA macros. The
error message indicates the
relative number (xx) of the line
group in which the error exists.

address stop: A capability at the system
console to specify an address which when
fetched causes a halt in processing.

attributes, user: A characteristic; for
instance, attributes of data include record
length, record format., data set name,
associated device type and volume
identification" use, creation date" etc.
See also UADS.

attention interruption: An interruption of
instruction execution caused by a remote
terminal user hitting the attention key.
See also "simulated attention.."

attention exit routine: A routine that
receives control when an attention
interruption is received by the system.

attention key: A function key on remote
terminals that causes an interruption of
execution by the cpu.

background: The environment in which jobs
submitted through the SUBMIT command or
SYSIN are executed. One job step at a time
is assigned to a region of main storage,
and remains in storage to completion.
opposed to "foreground."

background job: A job entered through the
SUBMIT command or SYSIN~

Background Reader: A system task started
by the operator to process
foreground-initiated background jobs.
OUtput is identical to the normal
reader/interpreter output.

BASIC: An algebra-like language used for
problem solving by engineers, scientists.
and others who may not be professional
progr ammers •

batch processingc In TSO, describing the
processing of one job step at a time in a
region; so called because jobs are
submitted in a group or "batch".

break: See "receive interruption."

breakpoint: A point within an executing
program where execution is to be
interrupted for debugging activity. It is
similar to the address stop capability at
the system console.

Broadcast Data Set: A system data set
containing messages and notices from the
system operator" administrators, and other
users.

Appendix F: Glossary

central processing unit (CPU): A unit of a
computing system that processes data by
executing predefined sequences of

.instructions. such as add, subtract,
multiply, and divide instructions.

character-deletion character: A character
within a line of terminal input specifying
that it and the immediately preceding
character are to be removed from the line
by a scanning and editing routine.

Code and GO FORTRAN: A version of FORTRAN
IV for rapid compilation and execution of
programs.

command: Under TSO, a command is a request
from a remote terminal for the execution of
a particular program, called a command
processor. The command processor is in a
command library under the command name.
Any subsequent commands processed directly
by that command processor are called
subcommands.

command lanquaqe: The set of commands,
subcommands, and operands recognized by
TSO.

command library: A partitioned data set
consisting of command processor programs.
A user command library can be concatenated
to the system command library.

command mode: The entry mode immediately
following LOGON, or following completion of
a command processor. In command mode the
system is ready to accept any command in
the command libraries.

command procedure: A data set or a member
of a partitioned data set containing ~so
commands, to be 'performed sequentially by
the EXEC command.

command processor (CP): A problem program
executed as the result of entering a
command at the terminal. Any problem
program' can be defined as a command
processor by assigning a command name to
the program and including the program in a
command library. .

communication line: Any medium, such as a
wire or a telephone circuit, ·that connects
a remote terminal with a computer.

component: In teleprocessing, one or more
input/output devices attached to a single
control unit, and together making up one
remote terminal.

Appendix F: Glossary 111

context editing: A .method of editing a
line data set without using line numbers~
To refer to a particular line, all or part
of the contents of that line are specified.

control terminal: Any terminal at which a
user authorized to enter commands affecting
TSO operation is logged on.

conversational: Describing a program or a
system that carries on a dialog with a
remote terminal user., alternately accepting
input and then responding to the input
quickly enough for the user to maintain his
train of thought.

Conversational Remote Job Entry (CRJE): An
operating system component for entering job
control language statements from a remote
terminal, and causing the scheduling and
execution of the jobs described. The
terminal user is prompted for missing
operands or corrections.

CP: See "command processor."

CPU time: The amount of time devoted by
the central processing unit to the
execution of instructions.

current line pointer: A pointer maintained
by the Edit command processor that
indicates the line of a .line data set with
which a user is currently working. A
terminal user can refer to the value of the
current line pointer by entering an
asterisk (*) with EDIT subcomrnands.

DAIR: See "Dynamic Allocation Interface
Routine."

data base: A data set or a collection of
related data sets for simultaneous use by
many users, often accessed through simple
languages and/or specialized terminals; for
instance, a master inventory file in an
online ordering system,.

Data Set Extension (DSE): A control block
containing control information for each of
a terminal user's data sets.

DCA: See "Driver Control Area."

DCARE: See "Driver Control Area Region
Extension."

debug: To detect, locate, and remove
mistakes from a routine.

decay constant: A weighting factor used in
calculating the duration of a job's next
time slice based on its use of previous
time slices. Recent time slices are
weighted more heavily than e~rlier time
slices.

112 -Time Sharing Option Guide (Release 20.1)

dedication: Describing the assignment of a
system resource -- an I/O device, a
program, or a whole system -- to one
application or purpose.

default value: The choice among exclusive
alternatives made by the system when no
explicit choice is specified by the user.

delimiter: A character that groups or
separates the words or values in a line of
input.

dial-up terminal: A terminal on a switched
network.

Driver Control Area (DCA): A control block
representing the current state of the
time-sharing system, with a section for
each time-sharing region; maintained by the
Driver.

Driver Control Area Region Extension
(DCARE): A section of the Driver Control
Area representing a time-sharing region.

Driver Parameter Area: A parameter list
containing information for the time sharing
Driver.

DSE: see "Data set Extension. II

Dynamic'Allocation Interface Routine
(DAIR): A service routine that performs
various data management functions for CPs.

dynamic data set definition: The process
of defining a data set and allocating
auxiliary storage space for it during job
step execution rather than before job step
execution.

edit mode: Under the EDIT command' an entry
mode that accepts successive subcommands
suitable for modifying an existing line
data set.

foreground: Describing the environment in
which programs invoked by commands are
executed.' Programs are swapped in and out
of main storage as necessary to efficiently
utilize main storage contrast with
"background."

foreground-initiated background job: A job
submitted from a remote terminal for
scheduling and execution in the background
environment.

foreground job: Any job executing in a
foreground region l such as a command
processor or a terminal user's program.
Also called a "terminal job."

function key: A terminal key, such as the
attention key" that causes the transmission
of a s~gnal not associated with a
character. Detection of the signal usually

causes the system to perform some
predefined function for the user.

GETLlNE: A service routine used by command
processors to obtain input. GETLINE passes
successive lines from the source indicated
by the current input stack element: the
terminal, or an in-storage list.

input mode: Under the EDIT command an
entry mode that accepts successive line of
input for a line data set. The lines are
not checked for the presence of
subcommands.

input stack: A push-down list of sources
of input for GETLINE. possible sources are
the terminal or an in-storage list.

in-storage list: A chain of input lines in
main storage, such as commands in an EXEC
procedure, that are used in place of
,terminal input.

interaction: A basic unit used to record
system activity, consisting of acceptance
of a line of terminal input, processing of
the line, and response, if any.
Interactions are recorded when' a user task
starts its wait for a line of terminal
input.

interaction time: The duration of an
inter action.

ITF: BASIC: A simple, algebra-like
language designed for ease of use at a
terminal.

ITF: PL/I: A conversational subset of
PL/I designed for ease of use at the
terminal.

job:

1. In the background environment, a
collection of related problem
programs, identified in the input
stream by a JOB statement followed by
one or more EXEC and DD statements.

2. In the foreground environment, the
processing done on behalf of one user
from LOGON to LOGOFF -- one terminal
session.

keyword: A command operand that consists
of a specific character string (such as
FORT LIB or PRINT) and optionally a
parenthesized value.

line data set: A data set with logical
records that are printable lines.

line deletion character: A terminal
character that specifies that it and all
preceding characters are to be deleted from
a line of terminal input.

line number: A number associated with a
line in a line data set, which can be used
to refer to the line.

line number editing: A mode of operation
under the EDIT command in which lines to be
modified are referred to by line number.

.linkage editor: A program that produces a
load module from one or more object and
load modules.

Link Pack Area (LPA): An area of main
storage containing reenter able routines
from system libraries. Their presence in
main storage saves loading time when one is
needed.

Link Pack Area Extension: An extension of
the Link Pack Area containing system
routines used only when TSO is operating.
It is loaded when TSO is started by the
operator.

loader: A program that converts object
programs into executable form and loads
them into main storage for execution.

, Local System Queue Area (LSQA): A portion
of the foreground (swapped) region used for
control blocks that are to be swapped out
along with a terminal job.

logon exit: An optional installation
routine entered at user LOGON for
accounting purposes.

LPA: See "Link Pack Area."

LSQA: See "Local system Queue Area."

main storage: All addre,ssable storage from
which instructions may be executed and from
which data can be loaded into registers.

major time slice: The period of time for
which a terminal job is swapped into main
storage.

master scheduler: A control program
routine that responds to operator commands
and initiates the requested actions.

MCP : see "Message Control Program."

message: In telecommunications, a
combination of characters and symbols
transmitted from one point to another on a
network.

Message Control Program (MCP): A series of
TCAM routines which identify the
teleprocessing network to the system,
establish the line controls required for
the various kinds of terminals and modes of
connection, and control the handling and
routing of messages in accordance with the
users' (including TSO's) requirements.

Appendix F: Glossary 113

Message Handler (MH): A sequence of
instructions in the Message Control Program
that examines and processes control
information in message headers and performs
the functions necessary to prepare the
message segments for forwarding to their
destinations.

message switching: A system application
that accepts, stores, and routes messages.

MH: See -Message Handler.-

minor time slice: The period(s) of time
during a major slice in which the tasks
associated with a user have the highest
priority for execution. .

MPP: see -Message Processing Program.-

MVT: Multiprogramming with a variable
number of tasks. The operating system
control program that supervises the
concurrent execution of a variable number
of tasks in main storage, and allocates
system resources among them.

network: In teleprocessing, a number of
communication lines connecting a computer
with remote terminals.

non-I/O wait condition: A user program
wait condition not caused by an I/O
operation -- ENQ, WTOR, etc. A foreground
job is not swapped in while such a
condition is outstanding.

non-switched line: A connection between a
remote terminal and a computer that does
not have to be established by dialing.

nucleus: That portion of the control
program that is permanently resident in
main storage. The time-sharing portion of
the nucleus is resident only when time
shar~ng is active.

offline: pertaining to resources with
which the CPU has no direct communication
or control.

online: Pertaining to resources with which
the CPU has direct communication or
control.

operands: In the TSO command language,
information entered with a command name to
define the data on which a command
,processor operates and to control the
execution of the command processor. Some
operands are positional, identified by
their sequence in the command input line,
others are identified by keywords.

parse: To analyze the operands entered
with a command and build a parameter list
for the command processor from the
information.

114 Time Sharing ,Option Guide (Release 20.1)

password: A one- to eight-character symbol
assigned to a user that he can be required
to supply at LOGON. The password is
confidential, as opposed to the user
identification. Users can also assign
passwords to data sets.

priority: A rank assigned to a task that
determines its precedence in receiving
system resources. All tasks associated
with time-sharing users are assigned the
same dispatching priority, by which they
are grouped together on the queue of all
tasks in the system. Within the subgroup
of tasks associated with a single user, a
second time sharing priority is assigned,
to establish precedence within the
subgroup_ A CHAP (Change Priority) macro
instruction by a user task affects only the
time sharing priority.

problem program: A program which executes
in the problem state, is restricted from
executing privileged instructions, and'
executes from main storage with a non-zero
protection key.

processor:

1. A problem program performing some
fixed function on input, such as a
compiler or the linkage editor.

2. See Central Processing Unit (CPU).

prompting: A system function that helps a
terminal user by requesting him to supply
operands necessary to continue processing.

PUTLINE: A service routine that sends
output to the terminal. PUTLINE .
selectively puts out messages according to
whether or not a user has suppressed
prompting or is executing a command
procedure.

guiesce: To bring a program to a halt in
such a way that it can be swapped out of
main storage. This includes removing its
I/O requests from the channel queues and
taking most of its control blocks out of
system chains. '

RCT: See -Region Control Task.-

read-only: A type of access to data that
allows it to be read, but not modified.

real-time: Describing.a system application
in which response to input is fast enough
to affect subsequent input -- such as a
process control system or a computer
assisted instruction system.

real priority: -Dispatching priority- is
prefe,rred, see -priority.-

receive interruption: The interruption of
a transmission to a terminal by a higher
priority transmission from the terminal.
Also called a "break."

region: An area of main storage allocated
to a job step and assigned a unique storage
protection key. Time sharing jobs share
regions. Each job occupies a region
briefly, then is swapped out to auxiliary
storage and another job is swapped into the
vacated main storage area for execution.
The jobs are swapped in and out until they
are completed.

Region Control Tas k (RCT): The cont'rol
program routine handlingquiesce/restore
and LOGON/LOGOFF. There is one RCT for
each active foreground region.

Region Queue Element: A Region Queue
Element represents each of several service
queues for a time-sharing region.
Information in it is used to allocate time
among the users on the queue.

Remote Job Entry: submission of JCL
statements and'data from a remote terminal,
causing the jobs described to be scheduled
and executed as though encountered in the
input job stream.

remote terminal: An input/output control
unit and one .or more input/output devices
usually attached to a system through an IBM
2700-series telecommunications control
unit. It mayor may not be physically
remot e from the system.

response time: The time between the end of
a block of user input and the display of
the first character of system response at
the terminal. -

reverse break: See "transmit
interruption."

self-defining delimiter: Any character
appearing in the first position of certain
character strings in the TSO command
language. A repetition of the character
within the string is interpreted as a
delimiter.

separator: A delimiter used to separate
multiple fields in an input line to the
system.

session time: The elapsed real time from
LOGON to LOGOFF.

simulated attention: A function that
allows terminals without attention keys to
interrupt processing. The terminal is
queried for a specified character string
meaning "attention" after every "n" seconds
of uninterrupted execution or after every
"n" lines of consecutive output.

SMF: see "System Management Facilities."

STACK: A service routine that manipulates
the input stack.

STAE (Specify Task Asynchronous Exit): A
macro instruction specifying a routine to
receive control in the event of the issuing
task's abnormal termination (ABEND).

STAI (Subtask ABEND Intercept): A keyword
of the ATTACH macro instruction specifying
a routine to receive control after the
abnormal termination of a daughter task.

swap: To write an image of a foreground
jobs's main storage region to auxiliary
storage, and to read in another job's main
storage image into the region.

Swap Allocation Unit: An arbitrary unit of
auxiliary storage space into which a swap
data set is divided,-and by which it is
allocated.

swap data set: A data set dedicated to the
swapping operation.

Swap Data Set Control Block: A control
block describing a swap data set,
containing a DCB, a Space queue, and device
dependent control information.

swap in: The process of reading an image
of a terminal job's main storage region
from a swap data set into the appropriate
main storage locations.

swap out: The process of writing an image
of a terminal job's main storage region
from main storage to a swap data set.

switched: Describing a connection
established by dialing between a remote
terminal and a computer.

syntax checker: A program that tests
source statements in a programming language
for violations of that language's syntax.

system Management Facilities (SMF): An
optional control program feature that
provides the means for gathering and
recording information that can be used to
evaluate system uage.

System Queue Area (SQA): A main storage
area reserved for control blocks and tables
maintained by the control program.

system resource: Any facility of the
computing system that may be allocated to a
task. -

TCAM: see "Telecommunications Access
Method. "

Appendix F: Glossary 115

Telecommunications Access Method (TCAM): A
generalized terminal I/O support package,
providing application program independence
of terminal characteristics.

Telecommunications Control Unit (TCU): An
input/output control unit that addresses
messages to and receives messages from a
number of remote terminals.

teleprocessing: Entering data to or
controlling processing by a system via a
remote device that performs the necessary
format conversions and controls the rate of
transmission,.

terminal: See "remote terminal."

terminal I/O wait: The condition of a task
which cannot continue processing until a
message is received from a terminal, i.e.,
a TGET has been issued.

terminal job: A foreground job, a session
from LOGON to LOGOFF. Also used to refer
to the main storage region assigned to a
user and associated system control blocks.

Terminal Job Identification (TJID): A'
two-byte identification assigned to each
terminal job.

Terminal Monitor Program (TMP): A program
that accepts and interprets commands from
the terminal, and causes the appropriate
command processors to be scheduled and
executed.

terminal user: See "user."

TGET: An I/O macro instruction used by
problem programs to obtain a line of input
from the terminal.

think time: During a terminal session, the
elapsed time from the end of a line of
system output to the terminal until the
end-of-block of a line of input.

time sharing: A method of using a
computing system that allows a number of
users to execute programs concurrently and
to interact with the programs during
execution.

Time Sharing Control Task (TSC): A TSO
system task that handles system
initialization, allocation of time-shared
regions, swapping, and general control of
the time-sharing operation.

Time Sharing Driver: A TSO addition to the
Dispatcher that determines which task is to
execute next.

Time Sharing Interface Area: A TSO control
block used for communication between the
Driver and the Time Sharing Interface
Program.

Time Sharing Interface Program (TSIP):
This routine receives control from the SVC
first level interruption handler when the
TSIP SVC is detected, or by direct branch
from some routines. It passes control to
the Driver" and on return, initiates the
actions specified.

Time Sharing Option (TSO): An option of
the operating system providing
conversational time sharing from remote
terminals.

time sharing priority: A ranking within
the group of tasks associated with a single
user" used to determine their precedence in
receiving system resources. See
"priority."

time slice: A segment of time allocated to
a terminal job. See "major time slice" and
minor time slice."

TJID: See "Terminal Job Identification."

TMP: See "Terminal Monitor Program."

transaction: See "Interaction."

transmission code: A code for sending
information over communications lines.

transmit interruption: The interruption of
a transmission from ~ terminal by a higher
priority transmission to the terminal.
Also called a "reverse break."

trivial response: A response from the
system to a request for processing that
should require only one time slice; e.g., a
syntax check of one FORTRAN statement.

TSC: See "Time Sharing Control Task."

TS Dispatcher: A section of the TSIP
executed as part of the operating system
dispatcher,. It looks in TSIA for any work
requested by the Driver, and, if there is
any" initiates the work before returning to
the Dispatcher.

tuning: The process of adjusting system
control variables' such as the number of
service queues per time sharing region, the
percentage of time for background
execution, the number of permitted
foreground users, etc., to make the system
divide its resources most efficiently for
the workload.

type-in time: The time between a READ to a
terminal and the end of the input
transmission. See "Think Time."

116 Time Sharing Option Guide (Release 20.1)

type-out time: The time between a WRITE to
a terminal and the next READ.

~: Under TSO, anyone with an entry in
the User Attribute Data Set; anyone
eligible to log on.

User Attribute Data Set (UADS): ,A
partitioned data set with a member for each
authorized system user. Each member
contains the appropriate passwords, user
identifications, account numbers, LOGON
Procedure names, and user characteristics
defining the user profile.

USERID: See "User Identification."

user identification (USERID): A one- to
eight-character symbol identifying each
system user.

User Main Storage Map: A map of the
allocated storage in a user1s region, built
by the ReT, and used to determine how much
of the region needs to be swapped.

User Profile Table: A table of user
attributes kept for each active user, built
by Logon from information in the LOGON
command, the UADS, and the Logon procedure.

verification: A mode of operation under
the EDIT command in which all subcommands
are acknowledged and any textual changes
are displayed as they are made.

Appendix F: Glossary 117

Index

Indexes to-systems reference library
manuals are consolidated in the publication
IBM System/360 Operating system: systems
Reference Library Master Index, Order
No. GC28-6644. For additional information
about any subject listed below, refer to
other publications listed for the same
subject in the Master Index.

Where more than one page reference is
given, the major reference is first.

* as current line pointer 23
in data set names 22

Access methods
available in foreground 14

ACCOUNT command
usage 21,26
used in defining a UADS 71

Account number
definition 11
with LOGON 20

ACTIVITY operand of driver parameters 76
ADDR

operand of LINEGRP macro instruction 63
syntax 65

Address stop
glossary 108

ALLOCATE command
for compiler data sets 37
function 24

ANS COBOL compiler
define terminal as file 30
description 28-29
example 29-30
in terminal environment 30,19
NOPRINT option 29
TERM option 29

Apostrophes
for data set names 22

Arrays
in ITF: BASIC 40

Assembler (F) 36
Asterisk

as current line pointer 23
in data set names 22

Attention
glossary 108

Attention exit routine
description 21,50
glossary, 108

Attention key
for line-delete 21
glossary 108
handling 50
simulating 21

Attributes
glossary 108
of data sets 22

118 Time Sharing Option Guide (Release 20.1)

Authorizations
for users 26,17

Auxiliary storage Requirements 87
Available execution time

in minor time slice 59
Average queue service time 58
Average region activity' 58
AVGSERVICE operand of driver parameters 76

Background
definition 9
glossary 108

Background execution percentage
specifying 60

Background jobs
glossary 108
naming 26
submission/from terminal 14,25

Background programs
developing from terminal 16

BACKGROUND operand of driver parameters 76
BACKGROUND reader

installation exits to SUBMIT command 72
reader parameters 72
required data sets 72
sample cataloged procedure 72
specifying program 72

Backspace key
, for character-delete 21

BASIC
example 41
glossary 108
use 18,40

Basic Telecommunications Access Method
restriction 14

Batch processing
and time sharing 9
description 9
glossary 108

BRDR (see Background Reader)
Breakpoints

definition 25
establishing 36
glossary 108

Broadcast data set
glossary 108

BTAM
restriction 14

Buffer Control Parameters
operands 77
use 75

BUFFERS
operand of buffer control parameters 78

BUFSIZE
operand of buffer control parameters 78

CALC command 41
CALL command

function 25
to invoke compilers 36

CANCEL command 25
installation exit (see OUTPUT command
installation exit)

CANCEL operator command
from terminal 26

Catalog
of data sets 23

Cataloged procedures (see Writing cataloged
Procedures for TSO)

Character-delete character
definition 21
glossary 108
specifying 27

Checker (see OS PL/I Checkout Compiler)
Checkpoint/Restart

restriction 14
CIB (see Command Input Block)
CLIST data set 51
CLOCK

operand of TSO trace data set
processor 81

COBOL
see uANS COBOLn

COBOL command 29
COBOL (E) 28
COBOL (F) 28
CODE

operand of LINEGRP macro instruction 63
syntax 64

Code and Go FORTRAN
example 44
glossary 108
use 42

CODES
operand of TSO trace data set
processor 81

Commands
adding 18
format 20
glossary 108
listed 93
to define work 11

Command analysis 50
Command capabilities 17
Command library

glossary 108
use by Terminal Monitor Program 50

Command mode 21
glossary 108

Command name
def inition 10
use 20

Command procedure
CLIST data set 51
examples 27, 37
for compilers 37
function 26
glossary 108
handling 51
nested 38
when used 12

Command processor
cancelling 21
completion 50
definition 11
design 51
glossary 108
invocation 50

Command processor (continued)
programming languages ~or 28

Communication line
glossary 108

Compatibility
background-foreground 14,18,49,46
with CRJE 14,18

Component
glossary 108

Compute-bound jobs 60
Concurrent processing 13
Conditional statements

example 38
in command procedures 27

Context editing 23
glossary 109

Control routines 44
Control terminal

definition 15
glossary 109
use 26

Conversational Remote Job Entry
glossary 109
TSO compatible with 23,14,18,25

CONVERT command
for FOR'I'RAN 42
for PL/I 41

CRJE
see nConversational Remote Job Entry"

CROSSREF
as operator entered parameter 67

Current line pointer 23
glossary 109

CUTOFF
operand of TSOMH macro instruction 61

CYCLES
operand of driver parameters 77

Data Definition statements
dynamic 15
in LOGON procedure 20,48

Data entry 21
Data set management commands 23
Data sets

allocation 24
creating 22
deleting 23
line 23
naming 21
renaming 23
retrieving 24

. shared 22
Data set naming conventions 21
Data set protection

commands for 23
Data set security 17
Data utilities 24,19
DD statements

dynamic 15
in LOGON procedure 20,48

Debugging 18
glossary 109
see also "testing programs n

Decay constants
glossary 109
region activity 59
wait time 60

Index 119

DECAYACT
operand of driver parameters 76

DECAYWAIT
operand of driver parameters 76

Default values
definition 11
glossary 109
in command procedures 26
in commands 20

Defining a UADS using the TSC procedure 70
Defining terminals as data set

for MCP 70
Delimiter

glossary 109
Descriptive qualifier 22
Diagnostics

ANS COBOL compiler 29
Assembler (F) 36
FORTRAN IV (Gl) compiler 34
FORTRAN syntax checker 34
ITF: BASIC 40
ITF: PL/I 41
PL/I Optimizing Compiler 36

DIAL
operand of LINEGRP macro instruction 63
syntax 65

Dispatcher 59
DISPLAY operator command

from termina 1 26.
Driver 46
Driver entry codes

(see also TSO Trace Writer)
defined 93
syntax 93
u~ed in measuring system performance 79

Driver Parameters
operands 77
use 73

DSPCH
operand of TSC parameters 76

DTRACE
as operand of TSOMCP macro
instruction 67

as operator entered parameter 67
Dynamic allocation

commands for 24
DD statements 15
function 15
handling 51

Dynamic Allocation Interface Routine 48
glossary 51

Dynamic Area
main storage requirements 88

EDIT command
entry modes 23
for Assembler (F) 36
for COBOL 29
for FORTRAN 34
for PL/I 35
function 22

Editing
by context 23
by line number 23

Edit mode 21
glossary 109

120 Time Sharing Option Guide (Release 20.1)

Entry modes
definition 21
for CALC 41
for EDIT 23
operator 26

Error termination
of command processor 50

Estimated Wait Time Percentage 61
Even dispatching 60
EXEC command 26
EXEC statement

definition 80
used to specify background reader 72
used to specify message control

program 70
used to specify terminal monitor

program 74
used to specify time sharing control
task 70

used to specify TSO trace writer 73

Foreground job 10
glossary 72

Foreground ,region
assignment to 48,59
definition 10
main storage requirement 88
sub pools in 88

Format control records
for TEXT data sets 24

Formatting text 24
FORT command 39
FORTRAN

choice of compilers 34
list I/O 42

FORTRAN (E) 34
FORTRAN (Gl) compiler

example 34
options 34
program entry 34
testing, 34

FORTRAN (G) compiler 34
FORTRAN (H) 34
FREE command 22
Free-form source statements

in Code and Go FORTRAN 42

GAM
restriction on 14

Getline service routine 51
glossary 110

Graphics Access Method
restriction on 14

Guaranteeing a minimum amount of background
execution time 76

Halt command (See Starting and Stopping
TSO)

HELP command 27
HELP information 11
Hierarchy support

restriction on 14

IBMUSER 71
Identification qualifier 21

Identification scheme
examples 22
for LOGON 20

IEDQTCAM (see MCP start Procedure)
IEFPDSI 60
IKJACCNT 71
IKJEFLD 84
IKJEFFOl 82
IKJEFTOl 73
IKJFATRC 73
Implicit EXEC command

definition 26
example 38

Initiator
called by LOGON 48

I NLOC KHI
operand of buffer control parameters 77

INLOCKLO
operand of buffer control parameters 77

Input editing
for terminals 21

Input mode 23
glossary 110

Installation.exits
f or CANCEL command 83
for OUTPUT command 83
for STATUS command 83
for SUBMIT command 84

Interaction time
definition 59
glossary 110
limit 60

Interactive programs
in COBOL 30
in Code and Go FORTRAN 43
in ITF: BASIC 41
in ITF: PL/I 41
in PL/I 36

Interactive Terminal Facility
see "ITF:" .

INTVL
operand of LINEGRP macro instruction 63
syntax 65

I/O-bound jobs 40
ITF:

BASIC 40,18
PL/I 41,18

Job Control Language
in LOGON procedure 20

Job definition
terminal jobs 15

Job mix
for tuning 57

Job scheduling
terminal jobs 15

Language processors
ANS COBOL 28
Assembler (F) 33
Code and Go FORTRAN 42
for program development 18
FORTRAN (G1) 34
invoked by CALL command 32
ITF: BASIC 40

Language processors (continued)
ITF: PL/I 41
PL/I (F) 37
PL/I Optimizing Compiler 33

Line, communication
mul ti - drop 11
non-switched 12
switched 12

Line data set 23
glossary 110

Line-delete
character specifying 27

Line-delete character
definition 21
glossary 110
specifying 27

Line group
definition 62

Line numbering
for COBOL programs 29
for data sets 23
glossary 110

LlNEGRP
macro instruction operands of 64
macro instruction used tailoring

an MCP 62
LINENO

operand of LINEGRP macro
instruction 65

LINK command 25
Link Pack Area

main storage requirement 87
Linkage editor
LINK command 25
LINKLIB size 89
LIST command 24
List I/O

for Code and Go FORTRAN 43
LISTCAT command 23
LISTDS command 23
LISSTA macro instruction

operands of 66
used in tailoring an MCP 62

LNUNITS
as operator entered parameter 66

Loader
glossary 110
LOADGO command 25

LOADGO command
example 33
function 25

Local System Queue Area 48
LOGOFF command

to end terminal session 11
LOGON/LOGOFF Scheduler 48
LOGON cataloged procedure

defining data sets 73
naming a terminal monitor program 73
parameters on EXEC statement 75
restriction on rollout 75
sample 75
specifying dynamic allocation 73

LOGON command
entry format 20
example 20
for identification 11

LOGON exit '16
glossary 110

Index 121

LOGON pre-prompt
exit
exit entry name 84
exit module name 84
exit parameters 84
exit 'sample 87

LOGON procedure
identifying 20
invoked by LOGON 48
job definition 15

LOGON procedure name
definition 11
in LOGON command 20

Long precision
in ITF: BASIC 40

LPA
operand of TSC parameters 76

Machine requirements 12
MACLIB size 26
Main Storage Hierarchy

restriction 14
Main storage image 10
Main storage map 55
Main storage requirements 87
Major time slice

MAP

calculation of 58
definition 57
glossary 110

operand of TSC parameters 76
Master Scheduler Region

main storage requirement 87
Matrices

in ITF: BASIC' 34
MAXSWAP

, operand of driver parameters 78
MAXOCCUPANCY

MCP
operand of driver parameters 78

CSECT name 66
region priority 70
start procedure

naming the MCP 70
Message Control Program

for time sharing 51
glossary 111
main storage requirement 88
priority 51

Messages
to operator 38
to users 27

Minimum configuration 12
Minimum major time slice

specifying 59
Minor time slice

calculation of 60
definition 58
glossary 111

MINSLICE
operand of driver parameters 78

Modification protection
for data sets 17

Modifying data sets 23
MODIFY operator command

from terminal 26
handling 47

122 Time Sharing Option Guide (Release 20.1)

Modularity
of control program 45

MONITOR operator command
from terminal 26

Multidrop line 12
Multiple region queues 58
Multiprogramming

description 10
Multistep jobs

restriction in foreground 14
Multiterminal Message Processors 58

Naming conventions
example 22
for data sets 21

Nested command procedures 38
Non-switched line

definition 12
use with terminal 12

NOTIFY= keyword
on JOB statement 26

Nucleus
main storage requirement 87

Null line ,
after attention 50
definition 23

Occupancy
operand of driver parameters 73

OLTEST
as operator entered parameter 68
as operand of TSOMCP macro
instruction 69

On-line test procedure (see OLTEST)
Operand substitution '

for command procedures 26
OPERATOR command 26
Options (see also Starting TSO>

as operand of TSOMCP macro instruction
65

use in starting MCP 66
OS PL/I Checkout Compiler

as Program Product 19,90
description of 28
prompter in 28
supported by TSO 19

OUtput
from background jobs 26

OUTPUT command 26
OUTPUT command installation exit

command codes 83
parameter format 83
return codes 83

Overview of system 54
OWAITHI

operand of buffer control parameters 77
OWAITLO

operand of buffer control parameters 77

Parallel swapping
definition 13
glossary 111
specifying 71

Passwords
definition 11

Passwords (continued)
for data sets 17
glossary 111
processing 48
with LOGON command 20

.PL/I
choice of processors 35
for problem-solving 41
for programming 35

PL/I Checker (see OS PL/I Checkout
Compiler)

PL/I (F) 37
PL/I Optimizing Compiler

options 35
program entry 32
program execution 33

preemptive scheduling
definition 59

Preempt
operand of driver parameters 76

Priority
operand of driver parameters 76

Problem-solving
Code and Go FORTRAN 42
comparison of languages 40
ITF: BASIC 40
ITF: PL/I 41

PROC statement
in command procedures 27

Procedure name
for LCGON 11

PROFILE command 27
Program development

assembler language 36
COBOL 28
commands for 25
FORTRAN 34
introduction 18
PL/I 35
testing 25

Program execution
commands for 25

Program listing
Assembler 36
COBOL 30
FORTRAN 34
PL/I 35

Program Products
listed 89

Program protection 16
Prompter routine

definition 19
function 25

Prompting
definition 9
for input lines 23
for operands 20
glossary 111
user replies to 11

PROTECT command 23
Protection

of data sets 17
of programs 17

publications, recommended 2
PURGE SVC 48
PUTGET service routine 48
PUTLINE service routine "51

glossary 111

Question mark
reply to prompt 11

Queue service time
definition 58

Quiescing -
control of 47
definition 13
glossary 112
scheduling 47

Read protection
for data sets 17

Reader/Interpreter
called by LOGON 48

Record Overflow Feature
required for swapping 13

Recovery management 45
Region Control Task 47

glossary 112
Region control task

glossary 112
Region operand of EXEC statement

used to specify MCP region size 70
Region size

operand of TSO parameters 76
regsize operand of TSO parameters 76
spe-cifying 74

REGISZE
operand of TSC parameters 76

Remote job entry 25
glossary 112

Remote terminals
as COBOL files 30
definition 9
glossary 112

RENAME command 23
Required configuration 12
RESRVBUF

operand of buffer control parameters 77
Restrictions

background SVC use 14
BTAM 14
Checkpoint/restart 14
GAM 14
Hierarchy support 14
multidrop line not recommended 12
Muitistepjobs 14
Rollout/rollin 14
TESTRAN 14

Rollout/Rollin
restriction in foreground 14

RUN command 25

Sample cataloged procedure
for logon 74
for starting an MCP 70
for starting background reader 72
for starting TSC 72
for starting TSO trace writer 73

Sample MCP cataloged procedures 71
Sample TSC cataloged procedure.for TSC 72
Sample TSO system parameters 78
SCAN service routine 50
SEND command 27
Sequence field

in COBOL statements 29

Index 123

serial swapping
definition 13
specifying 71

service
operand of driver parameters 77

service routines
Dynamic Allocation Interface 51
GETLINE 51
PARSE 51
PUTGET 51
PUTLINE 51
SCAN 50
STACK 51

Shared data sets 22
Shared Language Component

see nITF: n
Short precision

in ITF: BASIC 40
Simple dispatching 60
Simulated attention function

definition 21
glossary 112
handling 50

size of SUBMIT job queue (see also SUBMIT
operand of driver parameters) 82

Slack
operand of buffer control parameters 76

SLC

SMF
see nITF: n

function 15
glossary 112
operand of TSC parameters 77

Specifying a Time Sharing Driver 77
Specifying contents of TSO Link Pack

Area 77 '
Specify Tenninal Attention Exit <STAX)

background restriction on 14
specify Terminal Control Character (STCC)

background restriction on 14
STACK service routine 51
STAE macro instruction

glossary 112
STAI keyword

glossary 112
START operator command

handling 47
Starting and Stopping TSO

as operator entered parameter 67
halting the NCP 71
starting the MCP 71
starting the TSC 71
stopping the TSC 71
as operator entered parameter 67

STATUS command 26
STAX macro instruction

background restriction on 14
use 21

STCC
background restriction on 14

STOP operator command
handling 47

storage keys
for foreground regions 16

storage map 55
Subcommands

format of 20
in edit mode 23

124 Time Sharing Option Guide (Release 20.1)

SUBMIT
operand of TSC parameters 77

SUBMIT command 26
installation exit

buffer format 82
module nare 82
parameter format 82·
return codes 82

SUBQUEUES
operand of driver parameters 77

SVC 93 (TGET/TPUT)
restriction on 14

SVC 94 (STCC)
restriction on 14

SVC 96 (STAX)
restriction on 14
use 21

SVCLIB size 89
Swap Data Set

ddname
specifying parallel swapping 71
specifying serial swapping 71

definition 13
devices 13
glossary 112
size 89

Swap devices
allocation unit sizes 89
definition 13

Swap in 10.58
Swap out 10.58
Swap load

calculation of 56
Swap Time

definition
SWAP LOAD

operand of driver parameters 77
Swapping

and major tine slice 53
and quiesce/restore 48
controlling 58
definition 10
parallel 13
separate channels for 13
serial 13

switched line
definition 12
glossary 112
use with terminal 12

Symbolic operands
in command procedures 26

Syntax checking
for problem solving languages 40
FORTRAN 34
glossary 76
in input mode 19
PL/I 35

SYSPARM (see also TSO System Parameters)
used in TSC start procedure 71

SYSUADS (see also defining a UADS) 71
SYSLBC 71
SYSSWAP 71
System

catalog 23.89
configuration 12
resources 9
security 16

System implementation 62

system control
from remote terminal 26,15

system Management Facilities
function 15
glossary 112
specifying 76

System Queue Area
definition 48
glossary 112
main storage requirement 87

SYS1. PROCLIB
used in starting TSO tasks 68

Tab characters
at terminal 21

Tab settings
for COBOL programs 27

Tailoring a message control program 62
job steps involved 62
sample MCP specification 69
sample job stream 63

Task Control Blocks
on ready queue 60

Task Supervisor 60
TCAM

see nTelecommunications Access Methodn
Telecommunications Access Method

function 51
glossary 113
main storage requirement 88
terminals supported 12
user interface 51,14

Teletypes
use with TSO 12

TERM
operand of LINEGRP macro instruction 63

TERMAX
operand of TSC parameters 77

TERMINAL command 27
Terminal coriventions

discussion of 21
entry modes 21
input editing 21
modifying 27
tab characters 23

Terminal I/O
service routines 51
TCAM function 32
user interface for 52,14

Terminal job
definition 15
glossary 113
LOGON procedure for 20

Terminal Messages Requiring Installation
Action 97

Terminal Monitor Program
description of 49
glossary 113

Terminal session
started by LOGON 11

Terminals, remote
definition 9
description 12
execution of batch jobs from 14
glossary 113

TEST command
function 36
to invoke, a program 25

Testing programs
in assembler language 36
in FORTRAN 36
in ITF: BASIC 41
in ITF: PL/I 41
in PL/I 36

Test mode
definition 25
for assembler language 36
for FORTRAN 36
for ITF: BASIC 41
for ITF: PL/I 41

TEST processor 50
TESTRAN

restriction on 14
Text processing 24,9
TGET/TPUT

background restriction 14
glossary 113
use of Message Control Program 49

Think time
definition 80
glossary 113

TIME command
handled by Terminal Monitor Program 50

Time sharing
control task cataloged procedure 70
definition 10 .
different than batch 10
starting and stopping 13

Time sharing algorithms
and tuning 15
definition 55
in Driver 46

Time Sharing Control Task
description 47
glossary 113

Time Sharing Control Region
main storage requirement 89
obtaining 47

Time Sharing Driver (see also Driver)
description 46
glossary 113

Time Sharing Interface Program
description 46
glossary 113

Time Sharing Pack Area
main storage requirement 87

Time Sharing Option
see "TSO"

Time slices
and tuning 15
calculation of 57
definition 10
glossary 113
major 58
minor 58

TIOC (see Buffer Control Parameters)'
TJID operands of TSO trace data set

processor 81
Transmission Contrpl Units

attached to multiplexor 12
types 12

Index 125

TRANTAB
operand of LINEGRP macro instruction
syntax 65

Trace
as operand of TSOMCP macro
instruction 68

as operator entered parameter 67
Trace Data set Processor

listing of FE diagnostic 81
sample job stream 80

TSC parameters

TSO

operands 76
use 80

general description 9
glossary 113

TSO link pack area
LPA operand of TSC parameters 77
relation to operating system 13

TSO link pack area
specifying contents 74
required configuration for 12

,TSO system parameters
buffer control parameters 77
driver parameters 75
format 77
SYSPARM 74
TSC parameters 74

TSO Trace Writer (see also Trace Data Set
Processor)

sample job stream 73
driver entry codes 93
output record format 81
operands on EXEC statement 81
cataloged procedure

chained scheduling restrictions 73
program name 73
required data sets 73
sample procedure 73

TSOMCP macro instruction
used in tailoring an MCP 62
syntax 66
operands of 66

Tuning
and the Driver 46
definition 15
glossary 113

Tuning the time sharing driver 80
Turnaround

definition 28
time for 10

UNITNO
operand of LINEGRP macro instruction

UNITSIZE
as operand of TSOMCP macro instruction
instruction 66

default values 67
syntax 67

Usage statistics .
description 15

USAS COBOL
see "ANS COBOL"

User Attrioute Data
authorizations in
definition 11
glossary 113

Set
17

64

126 Time sharing Option Guide (Release 20.1)

User Attribute Data Set (continued)
modifying 26
size 86
use by LOGON 48,20
use by Terminal Monitor Program 49

User' command library 20
User identification

definition 11
glossary 113
in LOGON comrrand 20

User identification qualif~er 21
User Main Storage Map

glossary' 113
use 47

User profile
defining 26
glossary' 113
modifying 26
use by Terminal Monitor Program 49'

User verfication
by LOGON 48

USERCHG .
operand of buffer control parameters 78
operand of TSC parameters 77

Wait
operand of driver parameters 77

Wait time decay constant 61
Weighted dispatching 61
WHEN statement

example 38
in command procedures 26

Writing cataloged procedures for TSO
LOGON 73
start procedure for BRDR 72
start procedure for MCP 70
start procedure for TSC 70
start procedure for TSO trace

XREF
as operand of TSOMCP macro
instruction 66

73

as operator entered parameter (see
CROSSREF) 66

1050 Data Communication System
recommended features 12
use with TSO 12

2260 Display Station 12
2265 Display Station 12
2301 Drum Storage

as swap device 13
2303 Drum Storage

as swap device 13
2305 Fixed Head Storage

as swap device 13
2311 Disk storage Drive

as swap device 13
required features 13

2314 Direct Access Storage Facility
as swap device 13
required features 13

2701 Data Adapter Unit 13
2702 Transmission Control

recommended features 13
use with TSO 13

2703 Transmission Control
recommended features 13

2741 Communication Terminal
recommended features 13

3330 Disk storage Facility
as swap device 13

Index 127

GC28-6698-3

International Business Machines Corporation
Data Processing Division
112 East Post Road, White Plains, N.Y.I060t
[USA Only]

IBM World Trade Corporation
821 United Nations Plaza, New York, New York 10017
[International J

-Vl
W
0-
o
I

W
~

READER'S COMMENT FORM

IBM System/360 Operating System:
TSO Guide Order No. GC28-6698-3

. Please use this form to express your opinion of this publication. We are interested in your
comments about its technical accuracy, organization, and completeness. All suggestions
and comments become the property of IBM.

Please do not use this form to request technical information or additional copies of publications.
All such requests should be directed to your IBM representative or to the IBM Branch Office
serving your locality.

• Please indicate your occupation: ____________________ _

• 'How did you use this publication?

o Frequently for reference in my work.

o As an introduction to the subject.

o As a textbook ina course.

01 For specific information on one or two subjects.

• Comments (Please include page numbers and give examples.):

• Thank you for your comments. No postage necessary if mailed in the U.S.A.

GC28-6698-3

YOUR COMMENTS, PLEASE

This manual is part of a library that serves as a reference source for systems analysts,
programmers and operators of mM systems. Your answers to the questions on the back
of this form, together with your comments, will help us produce better publications for
your use. Each reply will be carefully reviewed by the persons responsible for writing
and publishing this material. All comments and suggestions become the property of mM.

Note: Please direct any requests for copies of publications, or for assistance in using your
IBM system, to your mM representative or to the mMbranch office serving your locality.

Fold

BUSINESS REPLY MAIL
NO POSTAGE STAMP NECESSARY IF MAILED IN THE UNITED STATES

Attention: Programming Systems Publications
Department 058

POSTAGE WILL BE PAID BY •••

IBM Corporation

P.O. Box 390

Poughkeepsie, N.Y. 12602

Fold

FIRST CLASS
PERMIT NO. 81
POUGHKEEPSIE, N.Y.

0
5-
»
0"
::J
co
r-
;'
II

I

I
I
I
I
I
I
I
I.

VI

~
it
~
~
o
o
VI

-I
VI o
G>
c:
c:
(1)

--- ~
Fold

International Business Machines Corporation
Data Processing Division
112 East Post Road, White Plains, N.Y.106Ot
[USA OnlyJ

IBM World Trade Corporation
82i United Nations Plaza, New York, New York 10017
[lnternationalJ

Fold

G>
(')

~
I

0-
0-
-0
(Xl
I

W

Technical Newsletter File No.

Base Publ. No.

This Newsletter No.

Date:

Previous Newsletter Nos.

IBM System/360 Operating System:
Time Sharing Option Guide

© IBM Corp. 1969,1970,1971

This Technical Newsletter, applies to release 20.1 of IBM
System/360 Operating System, provides replacement pages for the
subject publication. These replacement pages remain in effect for
subsequent releases unless specifically altered. Pages to be
inserted and/or removed are:

7,8
11-14
23,24
33-36
39-42
53,54
61-72
77,78
81,82
87-92,92.1
95,96

A change to the text or a change to an illustration is indicated
by a vertical line to the left of the change.

Summary of Amendments

Provides new information about the PLII Checkout Compiler, MCP
Generation macro instructions, EDIT facilities, Background reader,
UADS construction, the Broadcast data set.

Note: Please file this cover letter at the back of the manual to
provide a record of changes.

IBM Corporation, Programming Systems Publications, P.O. Box 390, Poughkeepsie, N.Y. 12602

S360- 20

GC28- 6698- 3

GN28-2497

July 1, 1971

None

PRINTED IN U.S.A.

Summary of Major Changes

Release 20.1 GC28-6698-2

r---------------------T--,
I Item I I Description I
~--------------------+--1
Isystem Implementation A section has been added describing the techniques
I used in implementing a TSO system. This section
I consists of discussions of:
I
I Generating a Message Control Program
I Writing Cataloged Procedure's Used With TSO
I specifying TSO System Parameters
I Tuning the Time Sharing Driver
I Writing Installation Exits for:
I The SUBMIT Command
I The OUTPUT, STATUS, and CANCEL Commands
I The LOGON Command
~--------------------+------------------.--------------------------------1
Istorage Estimates IMast of the information in the Storage Estimates I
I Isection, including the sample TSO configuration, I
I Ihas been deleted and moved to the publication IBM I
I Isystem/360 Operating system Storage Estimates I
I I GC28-6551. I
r---------------------+-----------~--------------------------------------1
IDriver Entry Codes IAn appendix has been added containing the format I
I I and meaning of the TSEVENT macro instructions used I
I Ito notify the Time Sharing Driver of system I
I I events. I
r---------------------t--1
ITerminal Messages IAn appendix has been added containing messages I
I Requiring Iwhich when received at a terminal requires the I
I Installation Action I installation to take certain actions. I
~--------------------+--1
IMessage Control IAn appendix has been added containing the text of I
IProgram Assembly I error messages generated by the macro instructions I
IError Messages lused to generate the Message Control Program. I L _____________________ ~ __ J

Release 20.1 GC28-6698-3

r---------------------T--T--------------,
I Item I Description I Areas Affectedl
r---------------------+--f--------------1
ITMP Step Library IA discussion of the advantages of concatenating 120,74 I
I I Command Library to SYS1.LINKLIB, the Linkage I I
I I Library. I I
~--------------------+--f--------------~
lOS PL/I Checkout IA discussion of the uses and facilities of the 135-36 I
I Compiler ICheckout Compiler. I I
~~--------.-----------+--f--------------~
12260,2265 IThe macro instructions for generating the MCP have I 63-69 I
I I additional operands for 2260 and 2265 support. I I L _____________________ ~ __ ~ ______________ J

Summary of Major Changes -- Release 20.1 7

Page of GC28-6698-3, Revised July 1. 1971, By TNL: GN28-2497

Release 20.1 CGC28-6698-3 MODIFIED BY TNL GN28-2497

r---------------------T--r--------------,
I Item I Description IAreas Affectedl
r------------------~-+--+--------------~
ITeletype ASR IUse of paper tape reader/punches attached to 112 I
I ITeletype ASR terminals are not supported. i I
r---------------------+--+--------------~
IRestrictions to ITape and multivolume data sets are not supported 114 I
I Foreground Programs Iby most Command Processors and cannot be 1 I
I 1 dynamically allocated. I I
.---------------------+--t--------------i
ITSOMH macro IThe NOLOG operand has been removed 162 I
I instruction I I I
.---------------------+--t--------------i
12260,65 IThe SCRSIZE operand has changed to SCREEN. 164,66 I
I I I I
I 1 The valid screen sizes are 12x80, 12x40, 6x40, andl I
I 115x64. I I
.---------------------+--t--------------i
I DIAL operand 1 DIAL=YES is default for TERM=333S. 165 I
r---------------------+--+--------------~
IFEATURE operand ITWO defaults have changed. 165 I
.---------------------+--t--------------i
I Background Reader forlThe output of the backround reader for the SUBMIT 172,82 I
ISUBMIT command Icommand is placed on SYS1.SYSJOBQE. I 1
.---------------------+--t--------------i
IADDR operand 10nly one station identification character can be 166 I
I Ispecified for each non-switched line with a 1050 I t
I I terminal attached to it. I I
r---------------------+--t--------------~
lOS PL/I Checkout IThe titles of publications describing the checkout I 92-92.1 I
1 compiler 1 Compiler is added. 1 I
r---------------------+--t--------------~
ISwap data sets IIBM 2311 is not supported as a swap device. 189 I
.---------------------+--t--------------i
IBroadcast data set 1 The Broadcast data set contains a list of valid 171 I
I lusers and should not be password protected. 1 I
.---------------------+--t--------------i
IEDIT default line IThe default line pointer is positioned at the lastl23 I
I pointer Iline referenced. I I
.---------------------+--t--------------i
1 FORTRAN 1 The EDIT FORT operand has no default. 134 I
r---------------------+--t--------------~
IRelative Line Number IThe order of Relative line numbers is determined 166 I
I Iby the MCP start cataloged procedure. I I
r---------------------+------------------------~-------------------------t--------------~
IDefining a New UADS IThe new UADS should be defined with a file name ofl72 I
I ISYSUADS and a data set name other than SYS1.UADS. I I
r---------------------+--t--------------~
Istorage Estimates IThe MCP storage requirements are increased. 188 I
.---------------------+--t--------------i
IDrive Entry Codes ICLASS refers to the CODES parameter of the TSO 196 I
I CLASS ITrace Cata Set Processor. I I L _____________________ ~ __ ~ ______________ J

8 Time Sharing Option Guide (Release 20.1)

U sing a Terminal

A terminal session is designed to be an
uncomplicated process for a terminal user:
he identifies himself to the system and
then issues commands to request work from
the system. As the session progresses, the
user has a variety of aids available at the
terminal which he can use if he encounters
any difficulties.

Commands specifically tailored to an
installation's needs can be written and
added to the command language or used to
replace IBM-supplied commands.

starting and stopping a Terminal Session

When the user has some work to perform with
the system, he dials the system number if
he has a terminal on a switched line, or he
turns the power on if he has a terminal on
a non-switched line. A switched line is
one in which the connection between the
computer and a terminal is established by
dialing the system's number from the
terminal. A non-switched line is one with
a connection between the computer and the
terminal. With an IBM 2741 terminal or an
IBM 1050 terminal, the system responds by
unlocking the keyboard. In any case, the
user identifies himself by entering nLOGONn
and one or more of the following fields:

• A user identification, for example, the
user's name or initials, which the
system will use to identify his
programs and data sets.

o A password assigned by his
installation, usually known only to the
user and the system manager.

o An account number, which defines the
account in which his system usage
totals are to be accumulated.

• A LOGON procedure name, which
identifies a cataloged procedure that
specifies what system resources he will
be using.

The user may omit the last three fields if
the system manager has defined only one
account number and LOGON procedure for him
and no password is used.

The LOGON processor verifies that the
user is an authorized TSO user, then checks
the password, if it is required, and
account number in a record it keeps of user
attributes, called the User Attribute Data
Set (UADS). From the attributes, the LOGON
command operands, and a LOGON cataloged
procedure, the system builds a user
profile, which is used to control the

processing of his job. The system assigns
the user's job to a time-sharing
(foreground) region of main storage and
allocates other resources, such as
auxiliary storage space and user data sets
according to the LOGON procedure.

LOGON marks the start of a terminal
session. When the user completes his work,
he enters nLOGOFF" to end the session. The
system then updates his job's system use
totals, releases resources allocated to it,
and releases the terminal from TSO. A
session is also terminated any time the
terminal user enters LOGON to start a new
session. In this case, the old session is
terminated and a new one is begun; the
terminal is not released in the process.

Working at the Terminal

The user enters commands to define and
execute his work at the terminal. He
enters a command by typing a command name,
such as EDIT and possibly some additional
operands. The system finds the appropriate
command processor--a load module in a
command library--and brings it into the
foreground region assigned to the user for
execution. For example, in response to
entering the EDIT com~and, the system
brings in the EDIT command processor, the
data handling routine used to create and
update data sets.

If a user does not enter all the
operands associated with a particular
command name, default values are assumed
where possible. If necessary operands are
missing, the system prompts the user for
them with a message such as nENTER DATA SET
NAME.n The user can reply with the missing
value, or enter a question mark for a
further explanation of what the system
needs. If the user chooses, he can specify
that prompting messages be suppressed.

A terminal user can also receive
assistance through the HELP facility. He
can request information regarding the
syntax, operands, or function of any
command, subcommand, or operand. If he
enters HELP followed by a command name, he
receives an explanation of the command and
the operands required with it. HELP
followed by a subcomreand name furnishes an
explanation of the subcommand if you are
working with the command at that time.
Entering HELP by itself returns a
description of the comroand language, a list
of the commands, and an explanation of how
to use HELP to obtain further information.

Introduction 11

Page of GC28-6698-3, Revised July 1, 1971, By TNL: GN28-2497

During a typical session, the user
enters a series of commands to define and
perform his work. If the sequence is one
that is used often, he can store the
sequence in a data set and then execute the
sequence whenever he needs it by entering
the EXEC command.

The commands provided with the system
handle data and program entry, program
invocation in either the foreground or the
background, program testing, data
management, and session and system control.
IBM Program Products are available to
support problem solving, data manipulation,
and text formatting, to provide
terminal-oriented language processors, and
to make these processors more convenient to
use from the terminal.

System Configurations

TSO is an extension of the MVT
configuration of the control program on
System/360 Models 50 through 195, or
System/370 Models 155 and 165. TSO also
operates with the Model 65 Multiprocessing
(M65MP) configuration. The minimum machine
configuration for Systern/360 models must
include 384K of main storage, the required
I/O devices for MVT, plus at least one each
of the following:

o A terminal (IBM 1050, 2741, 2260 Local
or Remote, 2265, or Teletype1 Model 33
or 35 KSR and ASR).

• A transmission control unit (IBM 2701,
2702, or 2703), unless all terminals
are locally attached 2260 Display
stations.

o sufficient direct access storage space
(IBM 2301, 2311, 2303, 2305, 2314, or
3330) for command libraries and system
data sets.

• Sufficient direct access storage space
to swap data sets.

In a Systern/360 with 384K of main storage,
TSO is, in effect, a "dedicated" time
sharing system. In other words, with 384K
the system can run as a time sharing system
or as a batch job processing system, .but
not both at the same time. To run both
time sharing and batch jobs concurrently or
to execute on M65MP or system/370 models,
at least 512K of main storage is required.
At least 128K of main storage is required
for system generation.

1T~ademark of Teletype Corporation, Skokie,
Illinois .•

12 Time Sharing Option Guide (Release 20 .• 1)

Terminals

Some remote terminals suitable for
interactive applications have keyboards for
entering input data and either
typewriter-like printers or display
screens. A remote terminal incorporates or
is attached to a control unit. The control
unit is in turn connected to the system by
either of two ways:

• Through a device such as a data set to
a dialed (switched) line ~o the system.

• Through either a direct or a leased
line to the system.

.At the computer site the communication
line connects to a Transmission Control
Unit, which in turn is attached to one of
the computer system's rrultiplexor channels.
The IBM 2260 Display Station can be an
exception to this general configuration.
Its control unit, the IBM 2848 Display
Control, can b~ attached directly to a
multiplexor or selector channel. This mode
of operation is called local attachment.

TSO uses the Telecommunications Access
Method (TCAM) for terminal access. TSO
provides terminal handling programs for the
following terminals:

• IBM 2741 Communication Terminal.
• IBM 1050 Printer-Keyboard.
• Teletype1 Model 33 and 35 KSR and ASR.

(Paper tape is not supported for
Teletype1 •)

o IBM 2260 and 2265 Display Stations.

The IBM 2741 Receive Interruption
Feature and the Transmit Interruption
Feature are recommended for use with the
2741. These features are described in the
publication IBM 2741 Communications
Terminal. The Transmit Interrupt, Receive
Interrupt, and Text-Tirreout Suppression
features are recommended for use with the
IBM 1050. 1050 multidrop is not sUpported.
These features are described in the
publication IBM 1050 System summary. Note
that some of these features 9re not
available through the IBM 2701 Data Adapter
Unit. 2

Transmission Control Unit

TSO requires at least one of the following
transmission control units to handle
terminal communications:

2Terminals which are equivalent to those
explicitly supported may also function
satisfactorily. The customer is
responsible for establishing equivalency.
IBM assumes no responsibility for the
impact that any changes to the
IBM-supplied products or programs may have
on such terminals.

• IBM 2701 Data Adapter Unit .•
• IBM 2702 Transmission Control.
• IBM 2703 Transmission Control.

The Terminal Interruption Features are
recommended for use with the 2702 and 2703
transmission control units and must be
present if the terminals are to use the
features. These units are described in the
following publications:

• IBM 2701 Data Adapter Unit, Component
Description.

• IBM system/360 Component Description,
IBM 2702 Transmission Control.

• IBM 2703 Transmission Control,
Component Description.

swap Data Set Devices

The process of copying images back and
forth between main and auxiliary storage is
called swapping. Writing an image to
auxiliary storage is a swap out; reading
one into main storage is a swap in. The
pre-formatted data sets into which jobs are
written are called swap data sets. A swap
data set is divided into swap allocation
units, each of which consists of a
device-dependent number of 2048-byte
records. An integral number of swap
allocation units, not necessarily
contiguous, are assigned to each job to
contain the swapped out image of the job.

If there is more than one foreground
region, they share the availabl€ swap data
sets, but the cycle of swapping for each
region is essentially independent of other
regions. However, the system avoids
queuing on swap data sets if possible.

TSO requires sufficient storage capacity
on one or more of the following for swap
data sets:

• IBM 2301 Drum Storagee
o IBM 2303 Drum Storage.
• IBM 2305 Fixed Head storage,

Modell or 2.
• IBM 2314 Direct Access Storage

Facility .•
• IBM 3330 Disk Storage Facility.

See the storage Estimates section of
this publication for information on swap
data set sizes.

The record overflow feature is required
for the devices used to store the swap data
sets. One or more data sets on any of the
above devices can be used for swap data
sets.

The direct access storage space required
for the swapped data may be divided among
the devices listed above in either of two
ways. The user may specify that swapped

data be distributed serially among a
hierarchy of data sets, or he may specify
parallel distribution of data onto two
devices. With serial distribution, the
first data set in the hierarchy is filled
with swapped data, and then the next data
set in the hierarchy is used. For example,
a drum, because of its higher access speed,
could be assigned as the first unit in the
hierarchy, with a 2314 assigned to receive
any overflow of swapped data.

With the parallel distribution scheme, two
devices are used concurrently to receive
swap data sets. The exact order in which
data sets are written on either of the
devices is determined by the system, based
on the I/O activity taking place in the
channel at the time of a swap out. For
example, if the two data sets are on
devices on separate channels, swap
performance improves substantially.

Before a terminal job can be swapped out
of main storage, activity associated with
the job must be brought to an orderly halt.
The halt must be performed in such a way
that the job is not aware of it, and
information must be saved to restart the
job when its next time slice is scheduled.
The orderly suspension of a job's activity
before a swap out is called guiescing the
job. Quiescing includes the removal of the
majority of the control blocks associated
with the job from the system queues so they
can be written to the swap data set along
with the contents of the main storage
region assigned to the job.

The Relationship of TSO to the
Operating System

For the data processing center, TSO is
compatible with operating system standard
formats and services, while providing the
flexibility needed for various time sharing
and terminal-based applications.

TSO is not necessarily intended to be
used as a dedicated tirre-sharing system,
that is, a system on which only
time-sharing operations take place. TSO
augments the facilities already available
with the operating system: batch
processing, teleprocessing, and other data
processing activities can take place
concurrently on the same system.

Once an installation has generated a
system that includes TSO, time sharing
operations can be started and stopped at
any time by the system console operator.
The operator can specify how many regions

Introduction 13

Page of GC28-6698-3, Revised July 1, 1971, By TNL: GN28-2497

of main storage are to be assigned to time
sharing users. Each region can serve many
users, whose programs are swapped back and
forth between main and auxiliary storage.
Time sharing, or foreground operations, can
take place concurrently with batch or
background operations. (Background jobs
are not swapped.) If the user choos es, he
can dedicate his system to time sharing and
run only foreground jobs. If there are
periods when TSO is not needed in the
system, time sharing operations can be
stopped, and the system will then process
background jobs in the usual way with MVT
and TCAM.

Terminal communications are handled by
the Telecommunications Access Method (TCAM)
through an interface that allows the use of
standard sequential access method I/O
statements and macro instructions.

All of the MVT facil i ties are a va ilable
to a background job. Foreground jobs ca.n
use most of the operating system access
methods for data set access (e.g., BS~l,
QSAM, BDAM etc.). All devices available to
these access methods are usable by
foreground jobs. A detailed list of
restrictions is in the "Restrictions and
Limitations" section of this manual.

Execution of Background Jobs from the
Terminal

In addition to the foreground execution of
programs, TSO allows jobs to be submitted
for execution in the background, or batch,
portion of the system. If his installation
authorizes it, a user can submit a
background job at his terminal, be notified
of the job's status, and then receive
results of the job at the terminal. If he
chooses, he can specify that the output of
his job be produced at the computing
center, rather than at the terminal.

Foreground-Background Compatibility

Because time sharing is carried out within
the framework of MVT job and task
management, the foreground and background
environments are compatible. TSO uses the
same data formats, programming conventions,
and access methods as the rest of the
operating system. The programming
languages and service programs available
with TSO are compatible with their
background counterparts.

The TSO command language is also
generally compatible with the
Conversational Remote Job Entry (CRJE)
command language. Programs can be
developed in the foreground and stored in
background libraries. These programs are
compatible with other operating system

14 Time Sharing Option Guide (Release 20.1)

programs. Most problem programs can be
executed in either the background or the
foreground without revision or
recompilation.

Restrictions and Limitations

Certain facilities are unavailable to
foreground jobs, although they remain
available to background jobs. These
include:

• The BTAM and QTAM telecommunications
access methods.

• The Graphics Access Method (GAM).

• The EXCP equivalents of the BTAM, QTAM,
and GAM access methods.

• Main storage requests for hierarchy 1
(all foreground requests for main
storage are allocated to hierarchy 0).

• Use of Job Control Language in the
foreground for other than single-step
jobs (the TSO command language is used
to provide the equivalent of multi-step
jobs).

• Checkpoint/Restart Facility (foreground
requests for checkpcint are ignored).

• Rollout/Rollin Opticn.

• TESTRAN Facility.

• Multi volume or tape data sets are not
supported by most Command Processors
and cannot be allocated dynamically.

SVC numbers 92 through 102 (decimal) are
added to the system for TSO. The following
SVCs can be issued by problem programs in
the foreground region:

• SVC 93--TGET/TPUT (execute terminal
I/O).

• SVC 94--STCC (specify terminal control
characteristics).

• SVC 95--TSEVENT (notify the supervisor
of an event).

• SVC 96--STAX (specify a terminal
attention exit).

• SVC 97--Breakpoint (used by TEST
command) •

• SVC 98--PROTECT (protect a data set
with a password).

• SVC 99--Dynamic Allocaticn (of a data
set) •

Page of GC28-6698-3, Revised July 1, 1971, By 'I'NL: GN28-2497

One input line from the terminal
normally becomes one record in the data
set. Because of this equivalency between
records and lines at the terminal, data
sets created by EDIT are called line data
sets. On request, EDIT appends a line
number to each record of the data set as it
is entered.

Entry Modes for EDIT

Depending on the type of work the user is
doing with his data set, he uses one of two
entry modes provided by EDIT (some other
modes specifically for particular
programming languages are discussed later).
The input mode allows rapid entry of
successive lines of input for the data set.
The edit mode allows subcommands to be
entered to modify, insert, or delete lines.

Input Mode

In input mode, the user enters successive
lines of input. The lines are normally
appended at the end of the data set,
although the user can request they be
inserted at some other point. The only
subcommand recognized in the input mode is
the null line (hitting the return key with
no preceding characters), which requests
transfer to the edit mode.

Services available in the input mode
include translation of lowercase letters to
uppercase, t~anslation of tab characters to
a series of blanks, and interpretation of
the character-delete and line-delete
characters. If line numbers are being
assigned to each line, the user may request
each new number be typed out by the system
at the beginning of each input line. If
line numbers are not being assigned, the
user can request prompting for each new
line by an underscore. If no prompting is
requested, lines are entered one after
another, with no intervening response from
the system. Programming language syntax
checkers can be requested to process input
lines as they are entered.

Edit Mode

In edit mode, the user enters subcommands
to point to particular records of the data
set, to modify or renumber records, to add
and delete records, to control editing of
input, or to compile and execute a program.

Whenever the terminal is in edit mode,
the user is considered to be positioned at
a particular record, or line, of the data
set. The EDIT command processor maintains
a current line pointer to keep track of the
user's position. In general, the current
line pointer, which can be referred to in
subcommands by an asterisk (*>, is
positioned at the last line referred to,

entered, changed, or printed. Using the
subcoIT.rrands provided, the us er can move the
current line pointer to any record in the
data set.

For line-numbered data sets, specifying
a line number as an operand of a subcommand
moves the pointer to that record before the
action requested by the subcommand is
carried out. This method of operation is
called line number editing.

Another method of repositioning the
current line pointer is called context
editihg. A set of subcc~mands is provided
to reposition the current line pointer
without reference to line numbers. The
user can move the pointer up or down a
specified number of lines, or request the
system to find a line with a particular
series of characters in it, and move the
pointer to it.

Modifying Data Sets

The most common use of the EeIT command for
existing data sets is the addition,
deletion, or modification of records. The
INSERT and DELETE subccmrr:ands handle single
or multiple record insertions and
deletions. The CHANGE subcommand allows
the user to replace one character string
with another, not necessarily of the same
length.

Data Set Management Commands

To allow the user to rranage his data stored
on auxiliary storage devices, a set of data
set utility commands is included in the TSO
command language. All user data is kept in
standard operating systero data sets, and as
a default, data sets used by foreground
programs are entered in the system catalog,
reducing the amount of information the user
must supply about the data set from the
terminal when he refers to it.

The LISTCAT and LISTDS commands retrieve
information from the system catalog for the
user. He can find out what data sets are
currently allocated to him, and what the
attributes of the data sets are. The
RENAME command can assign a new data set
name to an existing data set, or add an
alias name to a partitioned data set
member. The DELETE cOITITand removes a data
set from the catalog, and frees the
auxiliary storage space it occupies.

The PROTECT comrrand is the facility to
assign password protection to data sets.
Protection can be assigned for read access

I or for write and delete access. Multiple
passwords can be assigned to a single data
set.

Command Language Facilities 23

The ALLOCATE and FREE commands invoke
the dynamic data set allocation routines
from the terminal. A user who wants to run
a program that requires one or more data
sets not currently allocated to his
foreground job enters ALLOCATE commands to
have the data sets assigned,. The FREE
command is used to release the data sets
assigned by ALLOCATE. The ALLOCATE command
can also be used to find data sets not in
the system catalog, and to control the size
of new data sets and the volumes to which
they are assignedo

TSO Data Utilities

The TSO Data Utilities Program Product is
available to augment the data entry and
data set management commands by providing a
text-formatting capability and data set
utilities for terminal users. The product
provides four commands:

• FORMAT, to format textual information
into pages.

• LIST, to display all or part of a data
set at the terminal.

• COPY, to copy a data set.

• MERGE, to merge all or part of one data
set into another.

The FORMAT and MERGE commands Gan also
be used as subcommands of EDIT (EDIT
incorporates a less powerful listing
capability). The COpy and MERGE commands
can be used for access to ASCII tape data
sets. See the publication IBM System/360:
Planning for the Use of Information
Interchange Standards, GC28-6756, for
details.

Text-Handling

The EDIT, FORMAT, and LIST commands provide
a facility for the entry, editing, storage,
and output of text. With the EDIT command,
the terminal user creates a data set with
the type qualifier TEXT, and enters the
material line-by-line. If his terminal has
both uppercase and lowercase letters, the
material will not be translated to
uppercase letters, but will be saved just
as entered. The user can specify what tab
settings he wants to use, and the system
will convert tabs in the material into
strings of blanks of the proper length.
The use of line numbers is optional.

The user formats the data set by
inserting format control records into it.
A format control record is entered as a

24 Time Sharing Option Guide (Release 20.1)

separate line in the data set, starting
with a period in the first pOSition,
followed by a control word (or a
two-character abbreviation). The EDIT
processor does not interpret the· controls;
they are retained in the data set for
interpretation later by the FORMAT
processor. The controls allow the user to:

• Print a heading on each page.

• Center lines of text between margins.

• Control the amount of space for all
four margins on the page.

• Control line spacing.

• Justify left and right margins of the
text.

• Number pages of output consecutively.

• Halt printing when desired.

o Print multiple copies of selected
pages.

The FORMAT processor scans the data set
for the format controls and inserts blanks,
carrier return characters, headings, and
page numbers as needed. At the user's
option, the output can be formatted for a
terminal or saved in a data set for
deferred printing, either on the terminal
(with the LIST command) or on a high-speed
printer. Either an all-capitals or an
uppercase and lowercase print chain can be
used on the printer.

Data Set Manipulation

The COpy, LIST, and MERGE commands allow
the terminal user to move information
between data sets and to display data sets
at the terminal.

The COpy command will duplicate
sequential or partitioned data sets or a
member of a partitioned data setu While
doing so, it can resequence or change the
record length, blocksize, or record format
as requested. The MERGE command will copy
all or part of one data set or member into
another data set and will resequence the
record numbers in the target data set if
requested. Both these commands will
process tape data sets in ASCII format.
Tape devices must be allocated to a user in
his LOGON procedure.

The LIST command displays all or part of
a data set at the terrrinal. The user can
request that fields within records be
rearranged for output, and line numbers can
be suppressed or includedD

r---,
122 link query load(commands(query» coblib 1
I READY 1
I I
123 query I
1 3288540 1
1 3288540 PAWL SPRING (4-INCH) 13 DOZ ON HAND 7 ORDER POINT 1
1 READY 1 L ___ J

Figure 9. A Terminal Session Creating a COBOL Program (Part 2 of 2)

Programming at the Tel:minal 33

Page of GC28-6698-3, Revised July 1, 1971, By TNL: GN28-2497

FORTRAN

Two versions of FORTRAN IV with special
support for the foreground environment are
available as Program Products to TSO users:

• Code and Go FORTRAN.
• FORTRAN IV (Gl).·

Both processors can also be used in the
background environment. Two additional
Program Products are available to
complement the processors:

• FORTRAN IV Library (Mod I), for use
with either processor to provide
list-directed input/output support,
ASCII data set handling, and PAUSE and
STOP output to the terminal.

• TSO FORTRAN Prompter, which allows the
terminal user to invoke the FORTRAN IV
(Gl) processor with the FORT or RUN
commands.

A FORTRAN programmer can also invoke the
FORTRAN (E), (G), or (H) processors with
the CALL command, but not with the RUN or
FORT commands. The user is responsible for
allocating the dat:a sets needed by these
compilers, and for specifying the compiler
options. The prompter perf orms thes e
services for the FORTRAN IV (Gl) compiler,
which also has output specially formatted
for the terminal.

Code and Go FORl'RAN is optimized for a
fast compile-and-execute sequence, carried
out entirely within main storage for small­
to medium-sized programs. This makes it a
useful tool for problem-solvers. It
accepts free-form source statements, and
has simplified I/O statements for
addressing the terminal. However. no
permanent object program is produced. and
some execution speed is sacrificed for fast
compilati':)n.. Whenever the programmer needs
to link separately compiled programs and
subroutines, when he is working with very
large programs, or when he wants to produce
an object program he can save, he will use
the FORTR1\N (Gl) compiler. He may develop
and test his program with Code and Go
FORTRAN. and then compile it a last time
with the l?ORT command. The TSO CONVERT
command will change free form source
statements to fixed form or vice versa.
Code and ~;o FORTRAN is discussed in greater
detail in the chapter "Problem Solving."

Entering t~he Source Program

The programmer uses the EDIT command to
create a Siource program. An operand of the
EDIT command informs the syntax checker
what FORTRAN compiler is going to be used.

I As the program source statements are
entered, the FORTRAN syntax checker
processes each line, interrupting the input
sequence if it detects an error. Figure 10
shows a sY_'1tax checker diagnostic response
and the user action to correct the error.
The first CHANGE subcommand inserts a left
parenthesis, the second, a right
parenthesi:'> •

Compiling a FORTRAN Program

When the programmer finishes entering the
source program, he saves his data set with
the SAVE subcommand, and switches to
command mode to enter the FORT command, or
stays in edit mode and uses the RUN
subcommand. Operands of FORT allow him to
specify various compiler oFtions: whether
or not a listing is to be produced, the
contents of the listing, where it is to be
printed or stored, whether or not an object
program is to be produced, and whether
diagnostics are to be sent to the terminal.
All operands except the input data set name
can default to standard values.

r---,
1
1
100030 30 format (flO.3)
100040 12 read (2,30) a(i),i=1,5
I> REQUIRED FOR IMPLIED DO
1 EDIT
1 change / a/ (a/
Ichange /5/5) /
Ilist *
1 00040 12 read (2,30) (A (I) ,1=1,5)
I
I
I INPUT
1 do 50 i=1,5
1
I L-__ J

Figure 10. FORTRAN Syntax Checker
Diagnostic

As the compiler processes the program,
it may find program organization errors
that were not detected by the syntax
checker on a statement-by-statement basis.
Compiler diagnostic messages are sent to
the terminal, along with the statement in
error, and a pointer tc the field in error,
if possible. Figure 11 is an example of
compiler output to the terminal during a
single compilation. The number preceding
the source statement is the line number
assigned by EDIT when the source program
was entered. The line number allows the
programmer to use the edit mode subcommands
to correct the statement quickly, without
listing the entire source program.

34- Time sharing Option Guide (Release 20.1)

Page of GC28-6698-3. Revised July 1, 1971, By TNL: GN28-2497

r--.
IGl COMPILER ENTERED I
1000170 30 FORMAT (16) I
I $ I
101) IGI006I DUPLICATE LABEL I
ISOURCE ANALYZED I
IPROGRAM NAME=MAIN I
1*001 DIAGNOSTICS GENERATED, I

I HIGHEST SEVERITY CODE IS 8 I
READY I L ___ J

Figure 11. sample of FORTRAN compiler
Output

When the program compiles successfully,
the programmer can print an error-free
listing, and use the LOADGO command to load
his program for execution.

Testing FORTRAN Programs

The FORTRAN programmer has two testing
facilities: The debug facility of the
FORTRAN language, and the TSO test mode.

The debug facility of FORTRAN (Gl)
allows the programmer to monitor program
execution from his terminal. output from
the debug statements such as TRACE and
DISPLAY is sent to the terminal, unless
directed elsewhere with the UNIT option of
the DEBUG statement. DUMP and PDU¥~ output
also goes to the terminal. Execution of
the program can be synchronized with the
terminal by inserting READ statements in
the debug packets, forcing the program to
wait for the user to allow it to continue.
Since FORTRAN debug statements are grouped
together in the source program, they can be
easily deleted with EDIT subcommands when
testing is completed.

The test mode is also availanle for
FORTRAN programmers. Using an object
program listing and storage map produced by
the compiler, the prograrrmer can ir~ert
breakpoints to interrupt execution of his
program, list and modify variable values in
main storage, and control program flow.
Some knowledge of System/360 instruction
formats and hexadecimal notation is helpful
in using test mode.

PL/I
The PL/I programmer can use the following
language processors from the terminal:

• ITF: PL/I.
• PL/I Optimizing Compiler.
• PL/I (F) Compiler.
• PL/I Checkout Compiler.

The ITF: PL/I Program Product is a subset
of PL/I designed for solving problems at
the terminal. It is provided by a compiler

that offers two types of processing: a
rapid compile-and-execute sequence for
small- to medium-sized programs, or
line-by-line interpretation and execution
of PL/I statements as they are entered.
ITF: PL/I does not produce a permanent
object program. ITF: PL/I is described in
the chapter, "Problem Solving."

The PL/I Optimizing Compiler, an IBM
Program Product, is a language processor
for use in either the background or the
foreground environment. For the foreground
environment, the compiler incorporates a
prompter, which allows the user to invoke
it with the PLI or RUN commands. Compiler
options allow the user to request
diagnostics and listings formatted for the
terminal, or to request termination of
compilation if syntax errors are found.

The PL/I programmer can also use the
PL/I (F) compiler froIT the terminal, but no
special prompting or output format is
available. The F-level syntax checker can
be used to scan source statements as they
are entered or to scan complete programs.
The PL/I (F) compiler cannot be invoked

I with the PLI or PLIC cOITmands, but an
example of a command procedure that uses
the CALL command for the PL/I (F) processor

I
is given in the last section of this
chapter.

The PL/I Optimizing Compiler implements
a more comprehensive subset of PL/I than
previous compilers and offers a choice of
fast compilation, optirrization for speed of
object program execution, or optimization
for rrinimum object prcgram size. A
sunroutine library is required during
linkage editing of a corrpiler output
module. A second library is required for
execution of the object program. Each
library is available as an IEM Program
Product:

• OS PL/I Resident Library •
• OS PL/I Transient Library.

The PL/I Checkout Compiler is a
two-stage processing prcgram which
translates and interprets (executes) PL/I
prograrr,s. It can be used in either the
batch or TSO environments of the IBM
System/360 Operating System.

Using the checkout compiler in a TSC
environment will often enable you to check
out a PL/I program in one session at the
terminal. Its conversational checkout
features allow you to communicate with the
compiler during processing. The compiler
prints messages and listings at the
terminal (as requested by the TERMINAL
option) and you can respond with PL/I
subcomrands, or PL/I staterr.ents for

Prograrrming at the Terminal 35

Page :of GC28-6698-3, Revised July'-l, 1971, By TNL: 'GN28-2497

immediate executionG The subcommands allow
you to change compiler options, request
more information, copy output files at the
terminal, make temporary modifications to
the PL/I program (during interpretation
only), and either continue or terminate
processing.

You can also communicate with the PL/I
program when it is being interpreted, by
using the conversational I/O feature of
PL/I.

Entering a PL/I Program

The programmer uses the EDIT command to
create his source program and save it as a
data set. He can request EDIT to assign a
line number to each line of his source
program as he enters it. If line numbers
are assigned, he can request the PLII
Optimizing Compiler to use them in
diagnostic messages, instead of statement
numbers. The programmer can use the line
number to retrieve the erroneous source
statement, correct the error, and invoke
another compilation, all without having the
complete listing displayed at the terminal.

Compiling a PL/I Program

To invoke the compiler, the prograrrmer uses
I either the RUN, the PLIC, or the PLI

command. RUN can be used as a subcommand
of EDIT, allowing the user to correct
errors without entering the EDIT command
again. RUN causes a complete
compile-Ioad-go sequence but does not
produce a permanent object program. RUN is
normally used during the initial
compilations to check for source language
errors. When a program is debugged, the
PLI command can be used to produce an
object program and a full listing. The
object module can be loaded for execution
or linkage eaited into a program library
for use as a load module. Whether invoked
by RUN or PLI, the PL/I Optimizing Compiler
directs diagnostic messages to the
terminal, in either a full or an
abbreviated format. During testing" the
programmer can have traces and other output
generated by PL/I program checkout
facilities displayed at the terminal.

Program Execution

Programs produced by the compiler can be
executed in either the background or the
foreground. In the foreground I/O can be
directed to the terminal by allocating a
PL/I file, such as SYSIN or SYSPRINT, to
the terminal with the ALLOCATE command. In
the background these same files can be
directed to data sets or unit record
devices.

36 Time Sharing Option Guide (Release 20.1)

Assembler Language

Like programmers who use the higher level
languages, the assembler language user
enters his source program statements with
the EDIT command. Assembler (F) accepts
free form input, but the tab setting
facilities of EDIT allow the user to create
a forrratted listing. On request, EDIT
assigns line numbers to the source
staterr€nts, which are later referred to by
diagnostic messages preduced during
assembly. Line number or context editing
is always available te cerrect errors,
modify source statements, or add comments.

Asse~bling the Program

When tpe programmer completes his source
program and saves it, he invokes Assembler
(F) with the RUN or ASM commands. The use
of these commands requires the TSO
Assembler Prompter Program Product.
Operands of ASM give hirr centrol over the
listing format, disposition of output, and
diagnostic messages.

Assembler diagnostic messages sent to
the terminal include the statement in
error, if possible; both the EDIT-assigned
line number and the assembler-assigned
statement number; and an explanation of the
error. Usually, the user will not need to
have the complete listing displayed in
order to obtain an error-free assembly.
Using the line nurrbers in the diagnostic
messages, the programmer can quickly locate
and fix source staterrent errors with the
edit mode subcommands.

Test Mode

When assembly completes without error, the
programmer creates a lead module with the
LINK command, and uses the TEST command to
bring it into storage. The TEST command
processor uses the symbol table produced by
the assembler and linkage editor, which
gives the address and attributes of each
symbolic name used in the source program.
Before passing control to the program, TES'I
allows the user to establish initial values
to be passed to the program as test data,
and to set up breakpoints where execution
is to be interrupted for displays, dumps,
and other debugging activity. The user can
refer to points in the program by symbolic
names, absolute relative or indirect
addresses.

To display storage and register
contents, the programmer uses the LIST
subcommand, specifying a register range or

Page of GC2S-669S-3, Revised July. 1, 1971, By TNL: GN28...,2497

r-------------------~---------------------, 11 PROC 1, NAMl 1
12 FREE FILECSYSUT1,SYSUT3,SYSIN,SYSPRINT)1
13 ALLOCATE DATASETC*) FILECSYSIN) 1
14 ALLOCATE DATASET(*) FILECSYSPRINT) 1
15 LOADGO &NAM1 •• 0BJ PL1LIB 1
16 END 1 L_~ _____________________________________ -J

Figure 15. A Command Procedure to Invoke a
User Program

It would be possible to call this
procedure from the PLIF procedure by
inserting a record containing:

EXEC LDGO '&NAME'

However, it would be preferable to call it
only when the return code from the compiler
indicates successful execution is likely,
that is, no serious errors were detected
during compilatione To test the compiler
return code, the user inserts a WHEN
statement:

WHEN SYSRCCLE 4) EXEC LDGO '&NA~ili'

The WHEN statement imrrediately follows the
CALL command invoking the compiler Crecord
7 in Figure 12). If the compiler return
code is less than or equal to four C" LE
4"), indicating that no errors, or only
minor errors, were detected, the EXEC
command is executed. If the return code is
greater than four, the EXEC command will be
ignored, the FREE cOITITand is executed, and
the procedure ends. The terminal returns
to comnand mode, and the user will pro.cably
use the LIST command to display the
compiler listing, deterrrine the errQrs in
the source program, correct them with the
EDIT command, and reinvcke the procedure
for another compilation. Figure 16 shows
the modified PLIF corrrrand procedure. A
DELETE command has been added for the
object module, since it is not executable.
Figure 17 shows a use of the procedure for
a successful compilation. The LIST operand
is specified to display each command as it
is executed.

r---,
IPROC 1,NAME I
IALLOCATE DATASETC&NAME •• PLI) FILE(SYSIN) I
IALLOCATE DATASET(&NAME •• LIST) FILECSYSPRINT) BLOCK(125) SPACEC300,100) I
IALLOCATE DATASET(&NAME •• OEJ) FILE(SYSLIN) BLOCK(SO) SPACE(250,100) I
IALLOCATE FILECSYSUT1) BLOCK(1024) SPACE(60,60) I
IALLOCATE FILECSYSUT3) BLOCKCSO) SPACE(250,100) I
ICALL 'SYS1.LINKLIB(IEMAA)' 'LIST,ATR,XREF,STMT,MACRO' I
IWHEN SYSRCCLE 4) EXEC LDGO '&NAME.' I
IFREE FILECSYSUT1,SYSUT3) I
IDELETE &NAME •• OBJ I
lEND I L ___ J

Figure 16. A Command procedure for a Compile-Load-Go Sequence

r---,
lexec plif 'derv' list
IALLOCATE DATASETCDERV.PLI) FILECSYSIN)
IALLOCATE DATASETCDERV.LIST) FILE(SYSPRINT) BLOCK(80) SPACEC300,100)
IALLOCATE DATASET(DERV.OBJ) FILECSYSLIN) BLOCK(80) SPACE (250,100)
IALLOCATE FILECSYSUT1) BLOCK(1024) SPACEC60,60)
IALLOCATE FILECSYSUT3) BLOCK(80) SPACEC250,100)
ICALL 'SYS1.LINKLIBCIEMAA)' 'LIST,ATR,XREF,STMT'
IWHEN SYSRCCLE 4) EXEC LDGO 'DERV'
IFREE FILECSYSUT1,SYSUT3,SYSIN,SYSPRINT)
IALLOCATE DATASETC*) FILECSYSIN)
IALLOCATE DATASET(*) FILECSYSPRINT)
1 LOADGO DERV.OBJ PL1LIB L ___ J

Figure 17. Using a Compile-Load-Go Command Procedure

Prograrrming at the Terrr.inal 39

Problem Solving

To meet the needs of users who may not be
professional programmers, three
problem-solving languages are available as
IBM Program Products with TSO: Interactive
Terminal Facility (ITF); BASIC ITF: PL/I,
and Code and Go FORTRAN. These languages
are available as separate program products.
ITF: BASIC is a simple, algebra-like
language that can be quickly learned, yet
it has the power to perform complex
mathematical calculations. ITF: PL/I is a
subset of the full PL/I language. It is a
more powerful language than BASIC for
subroutine handling, but is simpler than
the full PL/I language, making it a good
teaching tool. ITF: PL/I can be used in
two ways: statements can be interpreted
and executed as they are entered (desk
calculator mode): or they can be collected
into procedures for compilation and
execution as programs or subroutines. Code
and Go FORTRAN provides the full FORTRAN IV
language for terminal users. It has a very
fast compile-and-execute sequence, carried
out entirely in main storage. Code and Go
FORTRAN accepts free-form source
statements, and has simplified I/O
statements for terminals.

All three languages have
statement-by-statement syntax checking as
the programs are keyed in, and additional
diagnostics are sent to the terminal for
errors detected during compilation and
execution phases. For the ITF: BASIC and
PL/I languages, the test mode allows the
user to monitor program execution with
breakpoints and traces, to inspect and
reset the values of variables and to modify
main storage during execution. The debug
facilities of FORTRAN (G) are included in
Code and Go FORTRAN.

Programs in any of the three languages
are created, and can be run, in edit mode.
Whenever necessary, the user can use EDIT
to replace or modify source statements.
For small to medium-sized programs
performance is better in edit mode than in
corr~and mode, since the source statements
and, in the case of Code and Go FORTRAN,
the object program, can be kept in main
storage and do not have to be read in from
auxiliary storage.

ITF: BASIC
The ITF: BASIC Program Product is
based on the original BASIC language
created for time sharing use at Dartmouth

40 Time Sharing Option Guide (Release 20.1)

College. With TSO, the BASIC user logs on
to the system, then enters the EDIT
command. In the input mode he enters
successive statements to define his
problem. If the system detects a syntax
error, he is notified immediately so that
he can correct the faulty statement before
continuing. The user can defer syntax
checking until compilation. When all his
statements have been entered and syntax
checked, the user issues the RUN subcommand
to compile and execute the program. An
operand of the RUN subcommand specifies
whether he wants to execute with short
precision (6 significant decimal digits) or
long precision (15 digits). Programs and
data can be saved from one session to the
next, or deleted after use.

BASIC statements are entered one to an
input line, and can refer to other
statements by the line number assigned by
EDIT. Variables always have one- or
two-character names. Arithmetic operators
used in BASIC statements are +, -, /, *,
and ** (exponentiation).

BASIC includes statements for defining
and handling one- and two-dimensional
arrays. Array references have the form
A(i,j) where "An is the array name, and "i"
and "j" are variables or constants
referririg to the row and column of an
element. Elements can contain arithmetic
or character values.

A special set of statements is included
to handle matrices. A BASIC matrix is
always a two-dimensional array, and can
contain only arithmetic values. Two
matrices with the same dimensions can be
multiplied, added, or subtracted, and a
matrix can be inverted or transposed with
built-in matrix functions.

Figure 18 shows a terminal session
creating a BASIC program to calculate the
infinite sum 00

~ X-n
n = 1

to the limit of machine precision.
Statements 010 and 020 write messages to
the terminal, describing the input
requested by ~~atement 030. After
ini tiali zing the variables, the user states
the sum as in BASIC format: S =
S+l/(X**N). statement 070 increments N,
and 080 is a check to see if the precision
limit has been reached. If it has, control
branches to statement 100, to print the
results at the terminal. Note that

Page of GC28-6698-3, Revised July 1, 1971, By TNL: GN28-2497

statement 110 uses an "image" statement to
format output, while statement 130 uses the
default format.

During the execution of the program, the
"?" requests the user to enter the input.
When the results are printed and the
program terminates, the user is returned to
edit mode where he saves the program for
use in later sessions.

r---,
edit rsumx basic
INPUT
010 print 'summing l/(x**n)'
020 print 'what x'
030 input x
040 let n=O
050 s=O
060 s=s+l/(x**n)
070 n=n+l
080 if s=s+l/(x**n) then 100
090 goto 60
100 print 'number of terms:' I (n-l)
110 print using 120, s
120 'sum='##.#############
130 print 'last term=', l/(x**(n-l»
140 end
150
EDIT

I run
I SUMMING l/(X**N)
I WHAT X
I? 1.065
I NUMBER OF TERMS: 176
I SUM= 16.3836700000000
I LAST TERM= 1.53643E-05
Isave
I SAVED
lend
I READY L __ _

Figure 18. ITF: BASIC Sample Session

ITF: PL/I

The ITF: PL/I Program Product is a subset
of the full PL/I language, suited to
problem-solving because of its simplicity
and eas e of us e. For exampl €, there are no
arithmetic conversion rules to remember:
all arithmetic data is kept in decimal
floating-point format. The language is
compatible with PL/I as provided by the
PL/I (F) compiler, except that Interactive
PL/I does not require semicolons to
terminate statements, source language
programs are stored with variable-length
records, and some arithmetic data formats
that would default to fixed-point binary in
full PL/I are floating-point decimal in
ITF: PL/I. A utility command, CONVERT, is
provided to format ITF: PL/I source
programs for submission to a batch PL/I
compiler, if the user wants to create an
object program.

ITF: PL/I can be used under either the
EDIT or the CALC comrrands. Under EDIT,
statements are collected into a program.
When the program is cCIq:lete, the RUN
subcommand is used to compile and execute
it. Under the CALC corrrrand, statements are
interpreted and executed as they are
entered. Statements are discarded as soon
as they have been executed. Variables,
however, are all defined as "static
externals" and kept in a table in main
storage, where they can be referred to by
subsequent ITF: PLII statements, or
displayed at the terminal. The table of
variables created during a session using
the CALC command can be saved in a data set
for use in later sessicns.

Variables included in ITF: PL/I are
scalars of either single or double
precision, arrays of up to three
dimensions, character and bit strings,
labels, externals, and entry and return
parameters. Execution control statements
include DO loops, GOTO branch statements,
and IF THEN ELSE conditionals. Procedures
collected under the EDIT command can be
saved and invoked with the CALL statement,
either from another prccedure or under the
CALC command. Only list-directed and
edit-directed stream I/O is provided,
either to a file or the terminal. An
appropriate set of the PL/I built-in
functions is included in ITF: PL/I.

Test Facility: When a user invokes an ITF:
PL/I or BASIC procedure for execution, as
an option he can specify that the program
is to be tested. In this case, the system
allows the user to set breakpoints in the
program before it is started, and to set up
program traces and displays of variables.
All output from the testing routines is
displayed at the terminal. ~hen the
program is interrupted by a breakpoint, or
when the user hits the attention key, he
can display and modify variab~e values,
modify test procedures, and then restart
the program at the point of interruption.
The ITF testing subcomrnands are a subset of
the TEST subcommands available for the
programming languages.

Syntax errors in an ITF: PLII source
statement are detected as soon as the
statement is entered, and the user is
notified to correct the statement. The
user can request deferral of syntax
checking to compile time. When operating
under EDIT, some errors will only be
detected at compile-execute time. In this
case, a message is sent to the terminal,
and the user is returned to the edit mode
to correct the error in the source program.

Problem Solving 41

r---,
edit div ipli

div: procedure(x,y);
INPUT
00010
00020
00030
00040
00050
00060
00070
00080
00090
00100
00110
00120
00130
00140
00150
00160
00170
00180

/* this procedure is a subroutine that finds the */
/* greatest common divisor of any positive x and */
/* Y of six digits or less */
xl = max(x,y);
yl = min(x,y);
if (xl <= 0)1 (yl <= 0) then do;

put list ('invalid values');
return;

lab: rem = xl -
if rem = a
xl = yl;
yl = rem;
go to lab;

end;
(floor(xl/yl)*yl);
then go to out;

out: put list ('the
end

common divisor is:'.yl);

EDIT
save
SAVED
end
READY

calc
CALC
call div (9,24)
THE COMMON DIVISOR IS:
end

I READY

3.00000E+00

L __ ~J

Figure 19. ITF: PL/I Sample session ~

Sample Session: Figure 19 shows a sample
terminal session using ITF: PL/I to create
a procedure finding the largest common
divisor of two positive numbers. "Max" and
"min" in statements 50 and 60, and "floor"
in statement 110 are built-in functions.
Note that since no file is specified in the
PUT statements, the output is sent to the
terminal. At statement 180, the user
entered a null line, indicating a switch
from the input mode to edit mode. The SAVE
subcommand stores the procedure on
auxiliary storage. The user then enters
CALC to go to the desk calculator terminal
mode, and uses a CALL statement to invoke
the procedure.

Code and Go FORTRAN

For the many problem-solvers who are
familiar with the FORTRAN programming
language, the Code and Go FORTRAN Program
Product is available for use from the
terminal. The user creates his program,
and optionally has it syntax-checked, with
the EDIT command. He uses the RUN
subcommand to invoke the Code and Go
FORTRAN compiler. The source program is
converted to an object program in main

42 Time Sharing Option Guide (Release 20.1)

storage. As soon as~)th'e object program is
complete, control is Fas~sed to it. The
compiler used for Code and Go FORTRAN
bypasses certain object code optimization
processing for greater compilation sp,eed.

The language includes all the features
of FORTRAN IV as deflned in the publication
IBM System/360: FORTRAN IV Language. Two
extensions to the language are included for
ease of use from the terminal: free-form
source statements and list-directed I/O
statements similar to those provided by
PL/I.

Free-Form Statements: Code and Go FORTRAN
does not require statements to begin in
column 7. If a statement has a label, the
statement can immediately follow the label.
If it has no label, it can start in column
1.

A utility command (CONVERT) is available
to change free-form source statements to
fixed form, if a user wants to submit them
to one of the batch FORTRAN compilers after
developing and testing them in free form.
Code and GO FORTRAN will also accept the
conventional fixed format.

Page of GC28-6698-3 .. Revised July 1" 1971, By TNLz GN28-2497

control characters, and whether an output
transmission is to break in on any input
transmission in progress. A program using
TGET and TPUT does not have to perform OPEN
or CLOSE processing, and need not provide a
DCB for the terminal. However, these macro
instructions are available only to programs
executing in the foreground.

Programs designed to be command
processors can call on the Getline,
Put line, and putget service routines used
by the IBM-supplied command processors for
I/O. As noted earlier, these service
routines have the capability to switch the
input source from the terminal to a b~fer
in main storage, and to 'suppress certa1n
types of output if the terminal is not the
current input source,.

The sequential access methods, BS~
(READ, WRITE, CHECK) and QSAM (GET, PUT),
have been extended to issue TGET, TPUT
when called from foreground programs for
terminal I/O. This is the normal route
for terminal I/O from programs that must
be executable in the background as well
as the foreground, or which are coded in
a higher leve~ language, such as FORTRAN
or COBOL.

Programs using BSAM or QSAM to reach the
terminal use the standard macro
instructions or I/O statements. When the
program is executed, the DD statement or
ALLOCATE command defines whether the I/O is
for a data set or the terminal. No
recompilation is necessary to switch from
one to the other" only a change in the DD
statement.

Getline, putline, Putget and the
sequential access methods all issue TGET or
TPUT for the caller when the I/O is for a
terminal. Figure 29 shows this SVC routine

handling calls from a TSO user region and
passing the requests to the TCAM Message
Control Program.

Multi-Terminal Message Processors

Independent of TSO, the Telecommunications
Access Method includes facilities for
routine messages received from remote
terminals to queues for an application
program, and transmitting replies generated
by the applications program to queues for a
terminal. In a·system without TSO, such a
message processing program must reside in
main storage in one of the problem program
regions, when it is to be available if one
of the terminals in the telecommunication
network sends a message that requires
processing. With the addition of TSO, a
terminal user logged on to TSO can execute
a TCAM message processing program in a
foreground region. He can do this by
invoking it through the TSO command
language, or by specifying it instead of
the TSO Terminal Moniter Program on his
LOGON procedure. The DD statements which
define the process queues must be contained
in the LOGON procedure. The program will
be swapped in whenever needed, but will not
occupy main storage space when it has no
messages to process. Unlike standard
foreground jobs., which are associate'd with
a single terminal, these message processing
programs can handle GET/READ, PUT/WRITE
TCAM oriented input/output from any
terminal defined to the TCAM processing
queues, through the QNAME operand of the
statements on the LOGON procedure. In
addition, the standard TSO terminal
interfaces, can be used to interact with
the terminal executing the Message
Processing Program. Forfurther
information on message processing programs,
see IBM system/360, TCAM Programmer's Guide
and Reference Manual.

System Summary 53

Terminal I/o
Requests
From TSO
Routines
Or
User Programs

TSO Control

TPUT­
TGET
SVC

MVT Control Program

Operator
Start
Command

Mes~age

Control
Program

(MCP)

Figure 29. TCAM ~lessage Con trol Program

54 Time Sbaring Option Guide (Release 20.1>

I/o

'1

To/From
Terminals

reduced before the calculation by any
guaranteed background percentage.

The first minor time slice is assigned
to the foreground job at the top of the
group of time-sharing TCBs on the queue.
When the minor slice expires, the TCBs
associated with that job are moved to the
bottom of the time-sharing group, and the
next foreground job receives a minor time
slice.

weighted Dispatching: The third way the
minor time slice calculation can be
performed is on a weighted basis. This
method allows the system to compensate for
jobs that are likely to spend much of their
minor time slice in the wait state, usually
because of pending I/O requests. (But not
for pending terminal I/O, since a job
waiting for terminal I/O is not swapped in,
and never becomes eligible for a minor time
slice.> Under weighted dispatching, the
system keeps an estimated wait time
percentage for terminal job, based on
averages of time spent waiting by each job
during previous major time slices. Jobs
with a high estimated wait time percentage
tend to be I/O-bound, and will donate much
of their time slices to jobs with TCBs on
the queue below them. Jobs with low
estimated wait time percentages tend to be
compute-bound, and will use most of their
minor time slice themselves. It is often
desirable to assign the I/O-bound job a
weighted, or longer, minor time slice to
compensate for its "donation" of execution
time to other jobsa

To weight the minor time slices, the
system forms a sum of the estimated wait
time percentages of the jobs to be assigned
minor slices in the current cycle. Each
job is then given a fraction of the
available execution time equal to its
fraction of the total estimated wait time
percentages.

The algorithm is:

This job's EWT%
MS x (AT)

Sum of EWT%s

where ~s is the minor slice to be assigned
to a terminal job, EWT% is the estimated
wait time percentage, and AT is the
available execution time for this minor
slice cycle, again adjusted for any
guaranteed background percentage.

As an example, consider a minor time
slice calculation for two foreground
regions, one containing Job A, which is
expected to wait 40 percent of its minor
time slice; the other ccntaining Job B,
which is expected to wait only 10 percent.
The SUIT of the estimated wait time
percentages is 50 percent. Job A gets
40/50, or 4/5, of the available execution
time as its minor time slice. Job B is
assigned 10/50, or 1/5, of the available
execution time. However, Job B will
probably be able to execute for about 40
percent of Job A's minor time slice too
(while Job A is waiting for I/O), and so
will end up with just under half the
available execution time -- about what it
would have been assigned on an equal
division. Job A, however, will be able to
get its I/O started, wait for it to
complete, and still have some processing
time left to handle the data or issue
another I/O request. On an equal division
of available time, its minor time slice
might have expired before its first I/O
request completed.

The estimation of wait time percentage
is made by updating a running average of a
job's wait tirr,e percentages at the end of
every major time slice. In making the
average, a weighting factor is used to
emphasize recent usage over earlier usage.
The weighting factor is called the wait
time decay constant. Its ~urpose and
function is similar to the region activity
decay constant, and it can also be
specified by the installation. Values
appropriate for general job mixes are
included in SYS1.PARMLIB.

System Summary 61
, : :"- ' ~ : ~ ;. ~'

Page of GC28-6698-3, Revised July 1, 1971, By TNL: GN28-2497

System Implementation

This chapter is intended for the
programmers and system analysts responsible
for generating and maintaining a system
with TSO. (The discussions assume that the
reader is familiar with the system summary
chapter of this publication.) The
discussions contains specific
implementation information. For example,
the discussion "Tailoring a Message Control
Program" does not discuss the role a
message control program plays in a TSO
configuration, but rather provides the
syntax and meaning of the macro instruction
used to generate a message control program.
Included are discussions of how to:

• Generate (or tailor) a Message Control
Program.

• Write the cataloged procedures used by
TSO.

• specify TSO starting parameters,.

• Tune the Time Sharing Driver and use
TSO Trace.

• Write an installation exit from the
SUBMIT command processor.

• Write an installation exit from the
STATUS, OUTPUT, and CANCEL command
processors.

• write a LOGON Pre-prompt exit.

Tailoring a Message Control Program

TSO includes a standard Message Control
Program (MCP) to handle terminal I/O for
those installations that use TSO for all
their TCAM applications. The installation
must tailor the MCP to match its needs in
three steps. First, it assembles three
macro instructions: LINEGRP, LISTTA, and
TSOMCP. The output of this assembly is a
series of TCAM (Telecommunications Access
Method) macro instructions which must, in
turn be assembled,. The output of this
second assembly forms on MCP that must then
be link edited into SYS1.LINKLIB.

Mixed Environment MCPs

If your installation requires a mixed
environment Message Control Program,
because you have TCAM applications
programs, (message processing programs),
you must generate your MCP using TCAM macro

62 Time Sharing Option Guide (Release 20.1)

instructions instead of the special TSO MCP
generating macro instructions. You use the
TCAM roacro instructions to generate an MCP
containing the TSO Message Handler and any
other message handlers for your particular
terminal applications, and the necessary
terminal I/O control blocks. The
communications lines which are to be used
with TSO must be dedicated to the TSO
message Handler through the terminal I/O
control blocks and the communications lines
for TCAM applications dedicated to their
message handlers. For further information,
see IBM System/360 Operating System: TCAM
Programmer's Guide and Reference Manual.

In addition to the standard TCAM macro
instructions, there is a specialized macro
instruction, the TSOMH macro instruction
which expands to form a TSO Message
Handler.

I The TSOMH macro instruction has one
operand CUTOFF which specifies a maximum
input message length. The syntax of the
TSOMH macro instruction is:

TSOMH [CUTOFF=in;~rrJ

CUTOFF=
specifies the maximum number of bytes
before the remainder of the message is
lost to the system. The value must be
an integer between 150 and 65,535, the
defaul t is 300.

TSo-Only MCP

The following is an explanation of each
step of the generation of the MCP supplied
with TSO:

Step 1 - Assemble the one or more LINEGRP
macro instructions each followed
optionally by one or more LISTTA
macro instructions, all followed
by the TSOMCP macro instruction.
Place the resultant output in a
temporary data set that will be
used as input to step 2. The
output of this assembly language
source statements -- TCAM macro
instructions which constitute a
Message Contrel Program.

step 2 - Assemble the TCAM MCP macro
instructions that are generated
within step 1. The output of Step

2 is the MCP object module and is
placed into a temporary data setG

Step 3 - Linkage Edit the object modules
from Step 2 into SYS1.LINKLIB to
create an executable MCP load
module.

Figure 34 shows the Job Control Language
necessary to run these steps.

LINEGRP Macro instruction

The LINEGRP macro is used to define a line
group, a group of terminals with similar-­
characteristics, for example, a group of
IBlvl 2741 terminals. The operands specify:

• The types of terminals in the line
group. (TERM)

U The ddnarne of the DD statements that
define the communications lines as data
sets. (DDNMm)

• The number of lines, that is, physical
device addresses in the line group.

(LINENO)
• The number of TCAM basic units, per

terminal buffer. (UNITNO)
• What translation tables are to be used

to translate from the terminal code to
EBCDIC. (TRANTAB)

• What character string will identify the
transmission code being used when
dynamic translation is required.
(CODE)

• Whether the terminals in this line
group are on switched or nonswitched
lines. (DIAL)

• How often polled terminals are to be
polled for input. (INTVL)

• What special features the terminals in
this line group have -- that is,
transmit or receive interruption; and
for 1050, Text Tirrecut suppression.
(FEATURE)

• The polling and addressing character of
terminals in this line group, for 1050
and 2260/2265. (ADDR)

• For IBM 2260 and 2265 Display Stations
the screen sizes.

r---~---,
I//MCPGEN JOB Job card parameters I
I I
1/ISTEPl EXEC ASMFC 1

I I
I//ASM.SYSPUNCH
1//
I
I//ASM.SYSIN
I
I
I
I
I
I
1/*
I
1//STEP2

//ASM.SYSPUNCH
//

/ /ASM. SYSI N
//

//STEP3

//SYSLMOD

//SYSPRINT

/ISYSUT1

/ISYSLIB

DD

DD ~"I'.
LINEGRP
LISTTA
LINEGRP
TSOMCP
END

EXEC

DD

DD

EXEC

DD

DD

DD

DD

DSN=&&TCM,DISP=(,PASS),
UNIT=SYSDA,SPACE=(CYL,(l,l»

*

ASMFC,COND=(4,LT,STEP1.ASM)

DSN=&&OBJ,DISP=(,PASS),
UNIT=SYSDA,SPACE=(CYL, (1,1»

LSN=*. STEP1"ASM. SYSPUNCH,
DISP=(OLD,PASS)

PGM=LINKEDIT,COND=(4,LT,STEP2.ASM)

DSN=SYS1.LINKLIB(IEDQTCAM),DISP=SHR

SYSOUT=A

UNIT=SYSDA,SPACE=(1024,(SO,20»

DSN=SYS1.TELCMLIB,DISP=SHR

IISYSLIN DD DSN=*.STEP2.ASM.SYSPUNCH,
III LISP=(OLD,PASS) L ___ J

Figure 34. Job stream to Tailor MCP

System Implementation 63

Page of GC28-6698-3, Revised July 1, 1971, By TNL: GN28-2497

LINEGRP MACRO INSTRUcrION FORMAT

r---, I Name Operation Operand I
.---i

(name)LINEGRP TERM=type
DDNAME=ddname
LINENO=number
[UNITNO=number]

[TRANTAB=(table ,table •••)]
[CODE=(string ,string •• o)]

[DIAL={~~S}J
[INTVL=number]

rFEATURE=(BREAK,) (ATTN,) (TOSUPPR)]
L NOBREAK, NOATTN,
[ADDR=character string]
[SCREEN=(integer, integer)]
[TERMNO=(integer, integer)] L __ _

TERM=
specifies the type of terminal making
up this line group. select only one
of the following:

1050 -- defines a line group
consisting of IBM 1050
printer-Keyboards on either
switched (dial) or
non-switched (direct) lineso

2741 -- defines aline group
consisting of IBM 2741
Communications-Terminals on
either switched or
non-switched lines.

5041 -- defines a line group
consisting of both IBM 2741s
and IBM 1050s. The terminals
in this line group must be on
switched (dial) lines.

3335 -- defines a line group
consisting of Teletype Model
33 or Model 35 or bothe The
terminals in this line group
must be on switched (dial)
lines.

226L -- defines a I ine group
consisting of IBM 2260 Dis~lay
stations connected on a local
line.

226R -- defines aline group
consisting of IBM 2260 Display
stations, connected on a
remote line, and optionally
IBM 2265 Display Stations.

2265 -- defines a line group
consisting of IBM 2265 Display
Stations.

DDNAME=
Specifies the ddnames of the DO
statement that define the terminal
lines in the line group as a data set.
These DD statements are found in the
cataloged procedure that is used to
start the MCP.

64 Time Sharing Option Guide (Release 20.1)

LINENO=
Specifies the number of lines in this
line group. The value is an integer
between 1 and 51.

UNITNO=
Specifies the number of basic units
per buffer for terwinals in this line
groupo A basic unit is used by TCAM
to construct I/O buffers. The default
value is 1.

TRANI'AB= J,

Specifies the 'translation tables to be
used for this line' group. If this
parameter is omitted, all of the
supplied translaticn tables that are
valid for the terminal type specified
by TERM= will be included exce~t those
marked with an asterisk.

TERM= TRANTAB= Comments

1050

2741

5041

3335

226L

226R

2265

1050

CR41
EB41
BC41*

1050
BC41*
EB41
CR41

TTYB
T'IYC*

EBCD

2260

2265

Ccrres~ondence
EBCDIC
BCD

BCD
BCD
EBCDIC
Correspondence

TTY r:arity
TTY non-parity

*Not used as a default translaticn
table.

Page of GC28-6698-3, Revised July 1, 1971, By TNL: GN28-2497

CODE=

DIAL=

Note: If more than one table is
specified explicitly or implied by
default, the MCP will determine the
proper translation table dynamically
using the CODE parameter.

Specifies the character string used to
determine the terminal character setG
Each time a terminal is connected, the
MCP translates the input line from
that terminal, using each of the
translation tables specified in the
TRANTAB operand. The MCP compares the
translated result with the character
string specified in the CODE= operand.
When the MCP finds a match, it uses
the appropriate translation table with
that terminal from then on.

The default is CODE=LOGON unless the
TRANTAB operand specified both BC41
and EB41 (2741 BCD and 2741 EBCDIC).
If both EBCDIC and BCD character sets
are present in the line group, the
default is CODE=nLOGON.

An installation can specify a maximum
of four character strings other than
LOGON, but they must be eight or less
characters.

specifies whether the line group is a
dial (switched) line group. If this
parameter is omitted, YES is assumed.
DIAL=NO is required for TERM=226L,
226R, 226S.

INTVL=
Specifies the poll delay intervals in
seconds for polled lines. The value
is an integer between 1 and 2SS. If
this parameter is omitted, a value of
two is assumed for polled lines.

FEATURE=
specifies the special features that
define this line group:

BREAK specifies that terminals in
this line group have the
Transmit Interruption
feature.

NOBREAK Specifies that terminals in
this line group do not have
the Transmit Interruption
feature. This operand should
be specified when any of the
terminals in the line group
do not have the feature.

ATTN Specifies that terminals/in
this line group have the
Attention feature (Receive
Interruption.)

NOATTN specifies that terminals in
this line group do not have
the Attention Feature.

TCSUFPR For 10S0 terminals, this
operand specifies that the
optional 'Iext Time- out
Suppression feature is
present. This operand
applies only to 10S0
terminals and should be
specified only if all 10S0
terminals in a 10S0 or S041
group have the feature. When
specified read inhibit rather
than read commands will be
used.

The following table describes the
features which rr.ay be specified for
the 10S0, 2741, S041, 2260 and the
333S (TWX); where

D Default.
A Assumed.
I Invalid.
o Optional.

Feature 10S0 2741 S041 333S 2260

BREAK
NOBREAK

ATTN
NOATTN
TCSUPPR

o
D
D
o
o

D
o
D
C
A

o
]:;

L
o
0*

A
I
A
I
A

I
A
I
A
I

*TOSUPPR is optional for the 10S0
terminals in a S041 line group. It is
assumed for the 2741 terminals in the
same S041 line grcup"

ADDR=
specifies.the station identification
character (10S0) or the two byte
control unit, device address
(226R,226S) of the terminals in the
line groupG The character string
should be the hexadecimal equivalent
of the appropriate transmission code.
Hexadecimal characters should be
specified without framing characters.
For example if the station
identification character is "A", the
correct specification is ADDR=E2, the
hexadecimal equivalent of the 10S0
transmission code for the character
"A", not ADDR=Cl, the hexadecimal
equivalent of the EBCDIC character
"An. To find the hexadecimal
equivalent of a given character in a
specific transmission code, consult
the component description
publications. For the 10S0, only the
station identification character value
need be specified: the component
selection character values will
default to the common polling and
addressing values for input and

Systerr Implementation 6S

Page of GC28-6698- 3, Revised July 1, 1911, By TNL: GN28-2491

output, respectively.. 1050 multidrop
is not supported,.

This parameter is not valid for
TERM=2741 or TERM=3335. This
parameter is required for TERM=1050 or
5041. For configurations in which the
addressing characters vary among the
different terminals in the line group
as in 2260, the addressing characters
should be specified using LISTTA macro
instructions (see below) rather than
in the LI~EGRP macro instruction.

SCREEN
Specifies the screen dimensions of the
display. station(s) on the line. The
first, --integer specifies the number of
rows on the screen.. The second
integer specifies the number of
characters per row. Standard IBM
screen size are 12x80, 12x40, 6x40,
and 15x64 non-standard sizes will be
accepted but a warning will be given.
The default for this parameter is
(12x80).

TERMNO=
Specifies the number of terminals
attached to each non-switched line,
used with TERM=226R, and 2265.

Each subparameter specifies the number
for the corresponding relative line
number. The relative line number
within a group refers to the order in
which lines are defined in the MCP
start cataloged procedure.

LISTTA Macro

The LISTTA macro instruction specifies
variations in device address (ADDR) within
a line group. One or more LISTTA macro
instructions can appear after each LlNEGRP
macro instruction. Each LISTTA macro
instruction modifies one line (RLN) within
a line group.

LISTTA MACRO INSTRUCTION FORMAT

r----.----------.-------------------------,
I Name I operationlOperand I
.----+----------+-------------------------~
I name I LISTTA IRLN=integer I
I I I [.ADDR= (chars , chars)] I
I I I [,SCREEN] I L-___ ~ __________ ~ _________________________ J

RLN
specifies the relative line number
within a line group to which the
attributes specified in this macro
instruction call apply. The relative
line number within a group refers to
the order in which lines are defined
in the MCP start cataloged procedure.
For example, RLN=1 refers to the line

66 Time Sharing Option Guide (Release 20.1)

ADDR=

in the line group defined by the first
DD statement.

Specifies the alphabetic station
identification character (1050) or two
byte control unit and device address
(2260 and 2225) of the terminal(s) on
this line. One character string must
be specified for each terminal on the
line. Subparameters must be specified
in the order in which polling is to
take place. Each character string
should be the hexadecimal equivalent
of the appropriate transmission code
representation for the terminal
involved. Hexadecimal characters
should be specified without framing
characters.

Example: ADDR= (A OA1, AOA2). For a
2848 Model 2, with two 2260 Display
stations.

For a 1050, only the station
identification character value need be
specified. 1050 nultidrop is not
supported.

SCREEN
Specifies the screen dimensions of the
display station(s) on the line. The
first integer specifies the number of
rows on the screen. The second
integer specifies the number of
characters per row. Standard IBM
screen size are 12x80, 12x40, 6x40 r
and 15x64 non standard sizes will be
accepted but a warning will be given.
The default for this parameter is
<12x80) •

TSOMCP MACRO INSTRUCTION FORMAT

TSOMCP Macro

The TSOMCP macro instruction:

• Names the MCP. (provides the CSECT
narre) •

• Defines the size of the TCAM basic
units used to construct terminal I/O
buffers.

• Specifies which TCAM trace tables will
be provided.

• Specifies whether a cross-reference
table will be included in the MCP~

• Specifies whether the operator can
specify parameters when he starts the
MCP.

Page of GC28-6698-3, Revised July 1, 1971, By TNL: GN28-2497

r----j----------j------------------------.
I Name I Operationioperand I
~----+----------+-------------------------~
I I I I
I name I TSOMCP '!UNITSIz=numberJ I
I I I TRACE=number J ,
I I I DTRACE=numberg I
I I I LNU ITS=number I
I I I OLTEST=number I

~---1----------lh2~!~2~~i~~~~~~~OM~::~-~
INote: All operands are optional. I L __ -J

name
Names the start of the MCP and
provides a CSEcr label for the
generated program. This field is
required.

UNITSIZ=
specifies the size of a TCAM basic
unit and must be a value between 38
and 255 inclusive. If omitted, the
MCP uses a default size of 44.
UNITSIZ should be a multiple of 8,
plus 4 for efficient core usage.

TRACE=
Specifies the number of TCAM I/O trace
table entries in the Message Control
Program. The default value is zero.
Maximum value is 65535. See IBM
system/360 TCAM Programmers GUIde and
Reference. r

DTRACE=
specifies the number of TCAM subtask
trace table entries in the Message
Control Program. The default value is
zero. Maximum value is 65535. See
IBM System/360 TCAM Programmers Guide
and Reference.

LNUNITS=
specifies the number of TCAM basic
units (See IBM system/360 TCAM
Programmers Guide and Reference) to be
provided in the buffer pool for
creating line buffers for this MCP. A
maximum of 65,535 may be specified.
If this operand is omitted, the system
will calculate a default value using
the following algorithm:

LNUNITS=
2 x (number of terminals> x (UNITNC
value> or
2.5 x (number of terminals> x UNIT NO
for 2265/65

where.,

UNITNO (as specified in each LINEGRP
macro) represents the number of units
per buffer for terminals defined in

the associated line group. If UNITNO
is omitted in the LINEGRP macro, the
default value (1) is used. This means
that each buffer will consist of one
basic unit.

If both the LNUNITS and UNITNO
keywords are defaulted, the buffer
pool created will consist of 2 buffers
per terminal with each buffer being
one basic unit in length. (PCI
buffering is used for both input and
output.)

OLTEST=
Specifies the number of On-line Test
procedures which can execute
simultaneously_ The value must be
between 0 and 255. The default is 0,
meaning On-line Test not supported.

OPTIONS
XREF
A cross-reference table
including control blocks
for each line will be
included in the MCP. If
this option is omitted, the
cross-reference table will
be excluded.

PROMPT

If PROMPT is specified, the
system operator will te
asked tc enter parameters
when TCAM is started. At
that time he may enter and
override some of the
parameters specified when
the MCP was assembled. The
following TCAM parameters
are ones which an
installation may want to
specify when it starts TCAM
for TSC. The last
parameter entered must be a
nUn to end the prompting
process. See IBM
system/360 TCAH
Programmer's Guide and
Reference f0r a description
of the IN~RO macro
instruction and the
parameters which can be
overridden.

KEYLEN = integer
K = integer

specifies the size of the
basic units, with which the
terminal I/O buffers are
constructed. This
corresponds to UNITSIZ=
parameter.

System Implementation 67

LNUNITS = integer
B = integer

Specifies the number of
basic units which are used
to build buffers"
corresponds to LNUNITS.
The value must be between 0
and 65,535

STARTUP
= C

S

Specifies that a "cold"
start is to be performed
following a shutdown of the
Message Control Program or
a system failure. It is
required if OPTIONS=PROMPT
was specified on the TSOMCP
macro instruction.

CROSSRF=integer
F = integer

Specifies the number of
entries in the cross
reference table, a
debugging aid. If
OPTIONS=XREF is specified
in the TSO MCP" one entry
will be generated for each
line. If the operator
specifies fewer entries
than there are
simultaneously open lines,
lines opened after the
table is full will have no
entries

TRACE = integer
T = integer

specifies the number of
TCAM I/O trace entries to
be allocated, corresponds
to TRACE= in the TSOMCP
macro instruction.

Dl'RACE = integer
A = integer

Specifies the number of
entries in the TCAM
Dispatcher Trace Table,
corresponds to DTRACE= in
the TSOMCP macro. The
Dispatcher Trace Table is a
debugging aid that keeps a
sequential record of TC~l
subtasks activated by the
TCAM dispatcher. One four
word entry is created for
each subtask activated;
when the end of the table
is reached, the table is
wrapped around; new entries

68 Time Sharing Option Guide (Release 20,.1)

overlay the oldest entries.
Maximum to be specified is
65,535: 'If 0 is specified,
the table is not generated.

OLTEST=number
0= number

Specifies the number of
On-line Test procedures
that can execute
simul taneously.. This
parameter corresponds to
the OLTEST parameter of the
TSOMCP macro instruction.
The default is 0., which
indicates that On-line Test
is not sUpported.

CIB = integer
C = integer

Specifies the maximum
number of Command Input
Blocks (CIB's) that can be
used at anyone time in the
TCAM subsystem, CIB's are
the buffers used to contain
operator control messages
entered at the system
console. Maximum that can
be specified is 255; if the
operand is omitted, "CIB=2"
is assumed. At least two
~~B~s should be specified,
singe START uses one. If
an attempt is made to enter
an operator control message
from the system console,
and the number of CIBfs
specified is already in
use, the message is
rej ected by TCAM .•

Figure 35 and 36 show the MCP macro
specifications for two sample systems.

The first system has:

1. 10 lines for leased, (non-switched),
2741's; all are BCD terminals and use
EBCDIC character set only. All
terminals in this line group have both
Receive and Transmit Interrupt
features.

2. 5 lines of teletype (which could be
either 33 or 35).

3. The system operator will be prompted
to enter TCAM parameters when he
starts TCAM. At that time he can
override any of the parameters
specified on the TSOMCP macro, as well
as other TCAM parameters. See the
description of the TSOMCP macro
instruction, for parameters pertinent
to TSO. (The operator will always

Page of GC28-6698-3, Revised July 1, 1971, By TNL: GN28-2497

have to reply "s=c,u": STARTUP=COLD
and a "un to terminate prompting.} A
Dispatcher Subtask Trace Table, useful
for debugging purposes, is to be
included in the MCP. It will contain
100 4 byte entries. (DTRACE=100)

The sample system shown in Figure 36 has 10
dial lines, to be used by both 1050·s and
2741's. The station identification
character for the 1050's is "A". Notice
that it is specified in terminal
transmission code, (E2) not EBCDIC (Cl).

Assume there are four types of terminals in
the line group.

A. Three 1050's, with Text Timeout
Suppression feature, Receive and
Transmit Interrupt features.

B. One 1050, with Text Timeout
Suppression feature.

C. Five 2741's, Correspondence Code,
Receive and Transmit Interrupt
features.

D. TWo 2741's, EBCDIC code.

The defaul t is ATTN and NOBREAK.

Users at terminals in groups A and C would
use the TERMINAL comreand to request
Transmit Interrupt handling, (BREAK), the
installlation could provide a special LOGON
cataloged procedure for these users
containing a suitable TERMINAL command as
the PARM value. Users at terminals in
groups Band D would not be able to cause
an attention interruption during output, or
while the keyboard is locked. They would
use the TERMINAl: command to set up
simulated attention breaks by time interval
when the keyboard is locked, or after a
number of consecutive lines of output, when
output is being sent. This also could be
specified in a LOGON procedure.

r---,
ILINEGRP TERM=2741,DDNAME=LNGP2741,LINENO=10, X I
I TRANTAB=EB41,DIAL=NO I
I LINEGRP TERM=3335, DDNAME=LNGPTWX,LINENO=5 I
I TSOMCP OPTIONS=PROMPT,DTRACE=100 I L-__ J

Figure 35,. Sample MCP

r-----------------------~~---,
ILINEGRP TERM=5041,DDNAME=DIAL5041,LINENO=10,ADDR=E2, X I
I FEATURE=TOSUPPR I
I TSOMCP rf I L-__ J

Figure 36. Sample MCP

System Implementation 69

Page of GC28-6698-3, Revised July 1, 1971, By TNL: GN28-2497

Writing Cataloged Procedures for TSO

Two categories of cataloged procedures are
used by TSO. The first includes procedures
invoked by the system operator when he
starts any of these four TSO tasks:

1. The Message Control Program (MCP).
2. The Time Sharing Control Task (TSC).
3. The Background Reader for the SUBMIT

coromand (BRDR).
4. The TSO Trace Writer.

The second category consists of those
procedures invoked each time a LOGON
command is entered at a terminal. The PROC
operand of the LOGON command specifies the
name of the cataloged procedure which:

1. Contains the JCL statements that
define the data sets available to the
terminal us er •

2. Specifies the name of the Terminal
Monitor Program (TMP) supplied with
TSO or the user-written substitute for
the TMP.

Both categories of cataloged procedures
must be members of SYS1.PROCLIB or members
of partitioned data sets concatenated to
SYS1. PROCLIB.

Message Control Program

The cataloged procedure used to start the
Message Control Program specifies through
the PGM= operand of the EXEC statement the
MCP to be started. The MCP should be named
IEDQTCAM. This name allows the MCP to run
in a region smaller than MINPART and ensure
that the MCP can not be canceled, that is
the operator must halt it~ specify
TIME=1440 to eliminate timing. Specify
ROLL=(NO,NO) to preclude an attempt to
Rollout the MCP. Specify DPRTY=(15,15) to
insure high priority. The MCP must run at
a higher priority than the TSC.

The cataloged procedure used to start
the MCP also must define any terminals
attached to the systerr as data sets. This
is done through the ddnames specified in
the LINEGRP macro instructions used in
generating the MCP. Figure 37 shows two
procedures that can be used to start the

I two sample MCPs generated in Figure 35 and
36.

Time Sharing Control Task

The cataloged procedure used to start the
Time Sharinq Control Task contains the Job
Control statements defining all the system
resources the TSC requires. The procedure
consists of an EXEC statement and several
Data Definition .staterrents.

r---,
1//MCP1 EXEC PGM=IEDQTCAM,ROLL=(NO,NC},TI~E=1440,DPRTY=(15,15),REGION=70K

1//LNGP2741 DD UNIT=021 FIRST LINE GROUP DATA SET 2741
1// DD UNIT=022
1// DD UNIT=023
1// DD UNIT=024
1// DD UNIT=025
1// DD UNIT=026
1// DD UNIT=027
1// DD UNIT=028
1// DD UNIT=029
1// DD UNIT=02A
I//LNGPTWX DD UNIT=02B SECOND LINE GROUP DATA SET TWX
1// DD UNIT=02C
1// DD UNIT=02D
1// DD UNIT=02E
1// DD UNIT=02F
1
1//MCP2 EXEC PGM=IEDQTCAM,ROLL=(NO,NO),TIME=1440,DPRTY=(15,15),REGION=66K
1//DIAL5041 DD UNIT=021 LINE GROUP DATA SE~
1// DD UNI'I=022
1// DD UNIT=023
1// DD UNIT=024
1// DD UNIT=025
1// DD UNIT=026
1// DD UNIT=027
1// DD UNIT=028
1// DD UNIT=029
1// DD UNIT=02A
L ___ ----------------------------------

Figure 37. Sample MCP start Procedures

70 Time Sharing Option Guide (Release 20.1)

Page of GC28-6698-3, Revised July 1, 1971, By TNL: GN28-2497

The EXEC statement of the cataloged
procedure that starts the Time Sharing
Control Task, specifies:

• The TSC program name, which is
IKJEATOO.

u The TSC region size. If the TSC needs
a different sized region, it will
obtain one.

• ROLL=(NO,NO) to preclude an attempt to
Rollout the TSC region, if
OPTICNS=ROLLOUT has been specified
during system generation.

o DPRTY=to set a priority for the TSO.
It must be lower than the MCP.

six data sets must be defined.

• SYSPARM -- The library containing TSC
initiation parameters. These
parameters are discussed under "Writing
TSO system Parameters".

• SYSUADS -- The User Attributes Data
Set, this data set cannot be
concatenated.

o SYSLBC -- The broadcast data set which
contains messages from the SEND command
and a list of valid us'ers should not be
password protected.

• SYSWAPOO -- 'The -swap data sets.

o IEFPDSI -- The partitioned data set
containing LOGON cataloged procedures.
This data set may be either
SYS1.PRCCLIB or a partitioned data set
dedicated to LOGON procedures. A
dedicated data set will speed up LOGCN
processing.

o SYSTSDP the TSO dump usua.lly a tape
volume.

For each of these data set definitions,
DISP=SHR should be specified.

Figure 38 shows a sample cataloged
procedure to start the TSC.

The data definition ddname on the DD
statement defining the SWAP data set
specifies whether serial or parallel
swapping- is to be used. The ddname is of
the form

SYSWAPln

Where 1 indicates the level of the data
set, i.e., 0 for prime, 1 for first
overflow; and n is the data set number at
this level.

For example, if an installation has two
data sets and wants to use parallel
swapping it would use SYSWAPOO and SYSWAP01
as the ddnames.

If an installation wanted to use a IBM
2301 drum for a prime swap data set and a
IBM 2314 as overflow, the ddnames would be
SYSWAPOO for the 2301 the prime data set,
and SYSWAP10 for the 2314, the first
overflow data set. If a system or TSO
failure causes TSO to be restarted, you can
use IMDPRDMP program to save the swap data
sets before attempting to restart TSO.
When invoking IMDPRDMP, the DD statements
for the swap data sets should be the same
as those in the TSO cataloged procedure;
the //PRINTER DD statement writes to tape
with chained scheduling and a large
blocking factor so that the data sets are
dumped quickly. The publication IBM
Systerr/360 Operating System: Service Aids
GC28-6719 shows the procedures for
analyzing system failures and how to use
the IMDPRDMP program to save the swap data
sets.

STARTING AND STOPPING TSO

When the operator starts TSO for the day,
he must:

1. Issue a START corrrrand to start the
Message Control Program. The operand
of the START command is the name of
the cataloged procedure that provides
the Job Control statements necessary
to execute the MCP. For example if
the cataloged procedure used to start
the MCP is named TCAM, the operator
will issue a START TCAM command.

2. Issue a START command to start the
Time Sharing Control Task (TSC). The
operand of this command names a
cataloged procedure used to start the
TSC. For example if the cataloged
procedure used to start the TSC is
named TS, the operator would issue a
START TS command.

When the operator stops TSO for the day,
he must:

1. Issue a STOP corrrrand to stop the Time
Sharing Control Task. The operand of
the STOP command rrust be the same as
the operand that was used to start the
'I'SC.

2. Issue a HALT corrrrand to stop the
Message Control Program. If the PGM=
operand of the EXEC statement in the
cataloged procedure used to start the
MCP is IEDQTCAM, then the MCP cannot
be cancelled with a CANCEL corrmand.
If the operator cancels the MCP, the
TSO must be stopped before the MCP is

System Implementation 71

Page of GC28-6698-3, Revised July I, 1971, By TNL: GN28-2497

.--,
I//IEFPROC EXEC PGM=IKJEATOO,ROLL= (NO,NO),DPRTY=(13, 13) 1

I//SYSPARM DD DSN=SYS1.PARMLIB,DISP=SHR 1
I//SYSUADS DD DSN=SYSl.UALS,DISP=SHR 1
I//SYSLBC DD DSN=SYS1.BRODCAST DISP=SHR 1
I//SYSWAPOO DD DSN=SYS1.SwAP1,DISP=SHR I
1//SYSWAP01 DD DSN=SYS1.SWAP2,DISP=SHR 1
I//IEFPDSI DD DSN=SYS1.PROCLIB,DISP=SHR 1 L ___ J

Figure 38. Sample Cataloged Procedure to Start Time Sharing Control Task

restarted. The MCP cannot be halted
with a HALT command unless the TSO is
stopped.

DEFINING A UADS USING THE TSC PROCEDURE

When a TSO system is first started after
system generation, it is necessary to
construct a UADS using the ACCOUNT command.
The distributed DADS contains one valid
user:IBMUSER and this user is authorized to
use one procedure: IKJACCNT. He should
use the ALLOCATE command to define a new
UADS with a file name of SYSUADS and a data
set name other than SYS1cUADS, specifying
its volume serial number, and define his
UADS structure with a series of ACCOUNT
command ADD subcornrnands. He should then
log off, stop the system, and change the
SYSUADS DD statement in the TSC start
procedure, to point to the new UADSo If
the cataloged procedure defines SYSUADS

J
though a DSN= operand, then he need only
rename the data set.

Background Reader (BRDR)

The cataloged procedure used to start the
Background Reader (BRDR) contains Job
Control statements that

• Specify the prograrr name of the
Background Reader.

• Pass the Background Reader standard
Reader-Interpreter parameters.

• Define required data sets.

The Background Reader, (BRDR), runs as a
system task. It is started by the
operator. It interprets Job Control
Language passed by a terminal user with the
SUBMIT command. If there is no input for
the BRDR, it will relinquish its region and
wait for input. Output from the BRDR is
placed on SYS1.SYSJOBQE and is queued for
execution by a standard initi~tor. The
cataloged procedure that provides the Job
Control Language to start the Background
Reader is similar to cther reader
procedures. The BRDR program name is
IKJEFF40. Figure 39 shews an example of a
BRDR procedure. For fUrther information on
writing system reader/interpreter cataloged
procedures, see IBM Systern/360 Operating
System: System Programmers Guide,
GC28- 6550.

An installation exit can gain access to and
modify or delete any JCL passed by the
SUBMIT command processor. The section,
"Writing Installation Exits for the SUBMIT
Command" describes how to write this exit.

r---,
I//BRDR EXEC PGM=IKJEFF40, 1

1// REGION=70K, 1
1// PAR1-1='READERPARM' 1
I//IEFPDSI DD DSN=SYS1.PROCLIB, 1
1// DISP=SHR 1
I//IEFDATA DD UNIT=SYSDA 1
1// SPACE= (80, (SOO,SO),RLSE,CONTIG) , 1
1// DCB=(BUFN0=2,LRECL=80,BLKSIZE=80,DSORG=PS, 1
1// RECFM=F,BUFL=80) 1
I//IEFRDER DD DUMMY 1 L ___ J

Figure 39. Sample Background Reader (BRDR) Procedure

72 Time Sharing Option Guide (Release 20.1)

PARAMETER
OWNER

TS

DRIVER

Page of GC28-6698-3, Revised July 1, 1971, By TNL: GN28-2497

KEYWORD

TERMAX=nnnn

USERS=nnnn

REGNMAX=nn

MAP=nn

SMF=[g~~=11 [,EXT=JYES}ll
OPT=iJ hill U

DSPCH=cccccc

LPA=(module list)

REGSIZE(nn)=(mmK,
iiik)

SUBMIT=nnnn

DUMP= fDUMP]
LNODUMP

WAIT
NOWAIT

ACTIVITY
NOAcrIVITY

OCCUPANCY
NOOCCUPANCY

SWAPLOAD
NOSWAPLOAD

AVGSERVICE
NOAVGSERVICE

PRIORITY
NOPRIORITY

PREEMPT/
NOPREEMPT

BACKGROUND=nn/
NOBACKGROUND

DECAYWAIT=nnnn

MEANING

Specifies maximum number of users.

Specifies initial maximum number of users, defaults to
TERMAX, can be changed by MODIFY command.

Specifies number of TSO user regions.

Specifies the number of MAP entries, used to reduce
swapping of unused storage.

standard SMF parameters, see MVT Job Management.

Specifies first six characters of Time Sharing
Defaults to IKJEAD, driver supplied with TSO.
parameter defines the names of all four Driver
modules. That is the driver supplied with TSO
four modules, IKJEADOO to IKJEAD03.

Driver.
This

has

List of modules to be included in Time Sharing Link
Pack Extension.

Specifies region size (mmk) and LSQS size (iiik)
for region nne Defaults to zero.

Specifies the maximum number of tracks in the SUBMIT
command job queue. Defaults to limit set at System
Generation.

Specifies whether the SYSTSDP DD statement is in the
START TSO procedure and the TSO dump facility will be
used.

Specifies use of wait estimate option.

specifies whether Region activity estimate is to be
used in assigning a user to a region. NOACTIVITY
required for single region system.

Specifies whether core occupancy estimates are to be
used in queue selection.

specifies whether swapload is to be used in queue
placement.

specifies average queue service time to be used.

specifies whether priority scheduling is to be used.

specifies whether preemptive scheduling is to be used

specifies a percentage of CPU time guaranteed to
the background or no guaranteed time.

Specifies in 100ths the decay constant for the wait
estimate. Assumes WAIT specified.

Figure 42. TSO System Parameter Syntax (Part 1 of 2)

System Implementation 77

PARAMETER
OWNER

TIOC

KEYWORD

DECAYACT=nnnn

SUBQUEUESCn)=mmm

CYCLESCn,m)=iii

MAXSWAP=Cn,m)=iii

MAXOCCUPANCY Cn,
m)=iii

SERVICE (n,ro)=iii

MINSLICECn,m)=iiii

BUFSIZE=nn

BUFFERS=nn

OWAITHI=nn

INLOCKHI=nn

OWAITLO=nn

INLOCKLO=nn

US ERCHG=nn

RESVBUF=nn

SLACK=nn

MEANING

Specifies in 100ths the decay constant for the
activity estimate. Assumes ACTIVITY specified.

Specifies the number of queues for region n.

Specifies the number of service cycles to be given to
the roth queue of the nth region.

Specifies the maximum number of 1024 byte blocks which
may be allowed to a user on queue m, in region n.
Assumes SWAPLOAD specified.

Specifies the maximum amount of time in 100th of a
second a user on queue m in region n can reside in
core.

Specifies the average service time in 100ths of a
second for a user on queue m in region n.

Specifies the minimum time slice in 100th of a second
to be given to a user on queue m in region n.

specifies size of terminal buffer. Default 44.

Total number of buffers.

Specifies maximum number of allocated output terminal
buffers per user in order to put a user program into
output wait.

Specifies the maximum number of allocated input
terminal buffers per user in order to lock a users
keyboard.

Specifies the number of allocated output buffers to
bring a user out of output wait state. In other words
if OWAITLO=4, when 4 or less buffers remain allocated,
the user is brought out of output wait.

Specifies the number of currently allocated input
buffers to unlock the terminal keyboard for input. In
other words, when the number of allocated input
buffers falls to or below the INLOCKLO value, the
user's keyboard is unlockeda

Specifies percentage of change in logged on users
needed to redistribute buffers and recalculate the
OWAITHI and INLOCKHI numbers during slack time.

Specifies the total number of terminal buffers that
must be free to avoid locking all terminals to prevent
input.

Specifies number of logged on users that constitute
slack time.

Figure 42. TSO System Parameter Syntax (Part 2 of 2)

78 Time Sharing Option Guide CRelease 20.1)

r-----T---------------------------------T---,
I Entry I When Produced I Description of Contents I
IType \ I I
r-----+---------------------------------+---~
I 'A' I When the trace writer is started. I Word 1 X'FFFFFFFD' I
I I \Word 2 # of 3-word entries per record I
I I \Word 3 Time of Day in ti~er units I
r-----+---------------------------------+---~
I 'B' IWhen the trace writer is stopped.\Word 1 X'FFFFFFFE' I
I I \Word 2 Date in packed decirr.al OOYYDDDS I
I \ I Word 3 Time of Day in timer units I
r-----+-----·----------------------------+---~
I 'c' \When information was lost (volume\Word 1 X'FFFFFFFF' I
I I switching, low sampling rate, IWord 2 Number of entries lost I
I letc. IWord 3 Tirre of Day in tirrer units of the firstl
I I I lost entry I
r-----+---------------------------------+---~
I'D' INormal entry <contains words 1-3 \Word 1 Bytes 1-2 TJID or 0 I
I lof the DPA). I Byte 3 Reserved (X'OO') I
I I I Byte 4 Entry code I
I I IWord 2 Contents of register 1 on entry to TSIPI
I I IWord 3 Tirre of Day in timer units I
r----+---------------------------------+---~
I 'E' IFollowing a normal entry with IWords 1-2 Command name I
I I entry code 0 (TMP entry). IWord 3 Unpredictable I
r-----+---------------------------------+---~
I 'F' IFollowing a normal entry with \Bytes 1-7 USERID I
I lentry code 25 (LOGON establishes I Bytes 8-12 Unpredictable I
I I PSCB) • I I
~-----+---------------------------------+---~
I 'G' IFollowing a normal entry with I Diagnostic data (There will be2 +1 3-word I
I lentry code 44 (FE serviceability»)groups of data available. The value of n is I
I I I contained in bits 5-7 of word 2 of the normal I
I I I entry. I L _____ ~ _________________________________ ~ ___ J

Figure 45. Format of the TS Trace Data set

CODES
specifies which class of entry codes
are to be included in the listing.
The sUbparameters, S,T and D represent
'System' codes, 'Terminal I/O' codes,
and II Qispatcher" codes, respect ively.
The listing, therefore, will contain
only those entry codes belonging to
the class, or classes, specified.
Appendix C lists the Entry Code
classes. These subparameters may be
written in any order, but must not
contain delimiters nor embedded
blanks. If the CODES parameter is
omitted, all non-dispatcher entries
will be listed, i.e., CODES=ST is the
default option.

TJID=XXX[- yYYJ
specifies that only entries associated
with the TJID specified by the number
XXX are to be listed. If YYY is also

given, all entries associated with
TJID's in the range XXX to YYY,
inclusive, are listed. If the value
given for XXX is zero, all entries
will be listed. (This is also the
default if the 'TJID' parameter is not
specified.) Both numbers XXX and YYY
must be specified as decimal digits.
The maximum length of each number is
three digits.

CLOCK=XXXXXXX[- yyyyyyYJ
indicates that nc entry before time
XXXXXXX (relative to the starting time
of the first entry) is to be included
in the listing. If -YYYYYYY is
specified no entry after that time is
listed. Both numbers must be
specified as decimal digits and given
the time in seconds. The maximum
length of each nurrber is seven digits.

System Implementation 81

Page of GC28-6698-3, Revised July 1, 1971, By TNL: GN28-2497

Writing Installation Exits for the
Submit Command

A user exit from the SUBMIT command allows
an installation to:

• Verify a jobname.

• Verify a userid.

• Send a message to the terminal and
optionally request a reply.

• Cancel a SUBMIT request .•

The TSO SUBMIT command allows a terminal
user to initiate a background job. A
description of the syntax and use of the
SUBMIT command is found in IBM System/360
Operating System; Time Sharing Option,
Command Language.

The SUBMIT command processor writes the
contents of a user specified data set
consisting of Job Control Language
statements, (JCL), and input data, onto a
logical extension of SYS1.SYSJOBQE. The
size of this extension is limited at system
generation time by the SUBMITQ operand of
the TSO OPTION macro. Size can be further
limited by the SUBMIT parameter which the
Time Sharing Control Task reads from
SYS1.PARMLIB when the operator issues a
START TS command.

Any authorized terminal user can submit
a background job, but no jobs will be
scheduled if the operator has not issued a
START BRDR command.

An installation can control foreground
initiated background jobs through an
installation written SUBMIT exit routine .•
Through the routine an installation can:

• Delete, modify, or insert statements.
• Request that a message be displayed at

the terminal and optionally request a
reply.

The routine must be linkage edited as an
independent module, given the name
IKJEFF10, and cataloged in SYS1.LINKLIB.
The SUBMIT command processor invokes the
user written exit when the first JOB
statement is read. Return codes in
register 15 control subsequent calls. The
return codes are:

o - continue -- that is process the
current statement and read the
next.

4 - reinvoke the exit for another
statement -- that is process the
current statement and invoke the
exit for the next statement.

82 Time Sharing Option Guide (Release 20.1)

8 - display a message at the terminal
and invoke the exit.

12 - display a message at the
terminal, obtain a response, and
invoke the exit. (If the user has
specified NOPROMPT, this will
cause the SUBMIT processor to
abort.)

16 - abort.

Upon entry to the user written exit
routine, register 1 contains the address of
a list of six fullwords.

1st word - address of the current
statement.

If zero, entry is to g~t a statement
(return code from prev10us call was
4). To delete the current statement,
zero out the first word.

2nd word - address of a message to be
displayed on terminal.

If non-zero, return code from previous
call was 8 or 12. The exit may free
the buffer. If zero, no message, the
return code was 0, 4, or this is the
first call.

3rd word - address of response.

If the exit return code from the
previous call was 12, SUBMIT will free
the buffer. The format of both the
message and the response is LLtext
where LL is a two byte length field
containing one length of the text,
maximum length 82 bytes.

4th word - address of USERID.

The USERID is 8 characters left
justified padded with blanks.

5th word - address of control
switches.

Byte 0 specifies under what conditions
SUBMIT will call the exit.

Byte Bit Meaning

0 0 Call for JOB card
1 Exec
2 DO
3 Command
4 Null
5 Reserved
6 Reserved
7 Reserved

Byte 1 if non-zero contains the card
column where the operand field begins.
For example, if the operand field

The estimates included in this chapter are
intended for planning purposes only.. None
of these estimates have been verified, and
they are subject to change. Verified
estimates will appear iQ the publication
IBM System/360 Operating system: storage
Estimates, GC28-6551, when they are
available.

This chapter contains three sections:
main storage requirements, sample
configurations, and auxiliary storage
considerations. All figures in this
chapter are decimal, and "K" represents a
factor of 1024.

Main Storage Requirements

The main storage requirement for TSO is
divided into four major parts:

• An addition to the MVT basic fixed
requirement.

• The TCAM Message Control Program
requirement.

• The Time Sharing Control region
requirement.

• The foreground regions in which users'
programs are executed.

Only the first of these requirements has
any effect on the batch environment if time
sharing is not active. storage for the
TCAM, Time Sharing Control, and froeground
regions is obtained from the dynamic area
when the operator starts time-sharing
operations. This storage is returned to
the dynamic area when time sharing is
stopped, apd is again available for batch
process ing .•

MVT BASIC FIXED REQUIREMENT

The main storage basic fixed requirement
for an MVT system is for:

• The nucleus.
• The Master SCheduler Region.
• The Link Pack Area (LPA).
• The System Queue Area (SQA).

Storage for the basic fixed requirement is
allocated by the Nucleus Initialization
Program (NIP) when the system is started
and does not normally vary while the system
is running.

Storage Estimates

Nucleus

Including TSO at system generation adds
approximately 3K to the size of the
resident MVT nucleus, for a total
requirement of about 45K. In addition,
communication lines, like other I/O
devices, require 40 bytes each in the
nucleus for control blccks.

Master Scheduler Regicn

The master scheduler region is increased by
approximately 4K to handle new or extended
operator commands for the time-haring
environment, and for extended error
recovery. The total requirement is about
16K.

Link Pack Area

One small TSO module is added to the
required MVT link pack area list of
resident modules. The minimum link pack
area size remains 10K. If the standard MVT
resident reenterable load module and
resident SVC lists are used at system
generation, the LPA requirement is about
54K. If space is available, an additional
16K of SVC modules for time sharing are
appropriate for the resident list, for a
total LPA size of 70K.

Additional resident reenterable load
modules for time sharing are placed in an
extension to the link pack area allocated
in the Time Sharing Control region, and are
resident only when time sharing is active.
The size of this extension, called the Time
Sharing Link Pack Area (TSLPA), is
discussed with the Time Sharing Control
Region requirement.

System Queue Area

During time-sharing operations, use of the
system queue area is kept to a minimum by
placing as many control blocks as possible
into a local system queue area (LSQA)
defined in each foreground region.. Control
blocks in the local SQA are swapped in and
out of main storage along with the
foreground job they apply to.

Some control blocks associated with
foreground jobs, such as queue elements for
named data sets and operator reply queue
elements, must remain in main storage while
the job is swapped out. Space for these
control blocks, and for all control blocks
associated with the tasks supervising the
time-sharing operation must be allocated

storage Estimates 87

Page of GC28-6698-3, Revised July 1, 1971, By TNL: GN28-2497

from the system queue area. These
requiren,ents must be considered when
setting SQA size at system generation or at
nucleus initialization.

MESSAGE CONTROL PROGRAM REQUIREMENT

The size of the TCAM Message Control
Program region depends largely on what
options are selected and what hardware is
present on the teleprocessing network. In
addition to the minimum requirement for the
Nessage Control Program routines, there are
requirements for each defined line grcup,
each additional terminal type, and for each
permitted user. If teleprocessing
applications other than TSO are present,
additional routines to handle different
buffering and queuing techniques will be
needed.

In a system with TSO as the only
teleprocessing application, with three
terminal types and two line groups, the
Message Control Program requirement is
expected to be about 52K plus 800 bytes for
each possible concurrent user. Although
the Message Control Program executes in a
problem program region, the region may be
smaller than the normal minimum problem
program region size (MINPART).

TIME SHARING CONTROL REGION REQUIREMENT

The Time Sharing Control region must
provide space for programs for the Time
Sharing Control Task, Region Control Tasks,
several resident SVC routines, the time
sharing extension to the link pack area,
and various control blocks. Some of the
control blocks are repeated for each
foreground region, for each swap data set,
or for each time sharing user. An .
initialization routine brought in when the
operator starts time sharing analyzes the
time-sharing parameters supplied by the
installation, calculates the region size
requirement, and obtains the region from
the dynamic area.

Using a buffer length of 40 bytes, and
assuming eight buffers per time-sharing
user, a TSO configuration with two IBM 2314
swap data sets, one foreground region, and
20 users would require a time sharing
control region of about 87K. A larger
configuration, with two 2301 swap data sets
and two 2314 swap data sets, four
foreground regions, and 100 users would
require about 117K for the time sharing
control region.

88 Time Sharing Option Guide (Release 20.1)

DYNAMIC AREA REQUIREMENTS

The SEND operator command, like several
others already in the MVT configuration,
obtains and uses an 12K operator command
region from the dynarric area when the
operator enters it. This area is freed
when processing of the command is
completed.

When it is active, the time sharing
trace facility requires a 20K region from
the dynamic area.

FOREGROUND REGION REQUIREMENT

The foreground region contains the programs
invoked by the terminal user. Space must
be provided in the foreground region for
the local system queue area (LSQA) and for
four rrain storage subpccls used for control
blocks for the command system.

The subpools defined are:

• Subpool 0--4K.
• Subpool 1--4 K.
• Subpool 78--2K.
• Subpool 251--2K.

The r'f.1.mmulIi foreground region size is 72K,
and all IBM-supplied command processors
except some of the language processors can
execute in this region.

Auxiliary Storage Requirements

The major additions to the system auxiliary
storage requirements for TSO are for the
swap data sets and new or larger system
libraries and data sets. The installation
must also consider the direct access
storage needs of the individual terminal
users, and make allowances for these in the
size of the system catalog and password
data sets.

SWAP DATA SETS

A swap data set is divided into swap
allocation units, each cf which consists of
a device-dependent number of 2K recordsu
To avoid space fragrrentation, space in the
swap data set is always assigntd in
integral swap allocaticn units. Figure 47
shows the sizes of allocation units for
various swap devices.

Page of GC28-6698-3, Revised July 1" 1971, By TNL: GN28-2497

r----------------------T------------T-----'
I I Allocation I I
I Device Type 1 Unit 1 Sizel
t----------------------+------------t-----~
12301 Drum storage 11 track I 18K 1
12303 Drum Storage 14 tracks 1 18K 1
12305-1 Fixed Head I 1 1
1 Storage 14 tracks 1 44K 1
12305- 2 Fixed Head 1 1 1
I Storage 14 tracks 1 52K 1
1 2314 Direct Access I I 1
1 storage 11/2 cylinder 1 64K 1
13330 Disk Storage 13 tracks 1 32K 1 L ______________________ L ____________ L _____ J

Figure 47. Swap Allocation Unit sizes

For a system with one foreground region,
the maximum necessary swap space can be
calculated by the algorithm:

Swap Space = (R/A)o(U+2)

where:

R is the size of the region.

A is the size of an allocation unit, as
shown in Figure 47, (RIA is rounded up
to an integer).

U is the number of concurrent foreground
jobs.

For instance, a system with one
foreground region of 120K, an IBM 2314 swap
device, and 3-0 possible users would have a
maximum swap data set space requirement of:

(120/64)0(30+2) 2.32 = 64 allocation unit
or 32 cylinders

In this case, the number of allocation
units required to hold a complete

foreground region is twc, and the numter of
users plus two is 32.

If TSO runs out of swap space, no
message is issued, and the system way loop,
so allow sufficient space.

SYSTEM LIBRARIES AND DATA SETS

The additions to system libraries for ~SO
are expected to be (with the increwents
expressed in 2311 tracks):

• SYS1.LINKLIB--30 tracks.
• SYS1.SVCLIa--20 tracks.
• SYS1.MACLIB--60 tracks.

Two new libraries, SYS1.CMDLIB (command
library) and SYS1.HELPLIE (HELP data set),
are expected to be smaller than 220 IBM
2311 tracks each.

The size of the User Attribute Data Set,
a partitioned data set with a member for
each user identificaticn, depends on the
number of password-identification-acccunt
number-procedure name combinations defined
for each user. A simple identification
structure for a single user with a single
value at each level requires about 200
bytes of storage space.

Typical time-sharing usage also requires
more space for the system catalog and
password data sets than batch usage. All
user data sets are cataloged as a default,
and read-only password frotection is
recommended at least for system data sets.
This type of protecticn does not cause any
performance degradation when the data sets
are accessed for reading.

Storage Estimates 89

Appendix A: TSO Commands

The commands available to terminal users of
the Time Sharing Option are listed below,
grouped according to function.
Installations may give other names to these
commands by assigning aliases to the
respective members in the system command
library. No IBM-supplied command names
include numerals, allowing installations to
ensure uniqueness in locally named
commands.

Data Management

ALLOCATE
define and allocate a new or old data
set.

CONVERT

COpy

convert source programs written in
Code and Go FORTRAN or Interactive
PL/I to standard format FORTRAN or
PL/I.

duplicate a sequential or partitioned
data set, or a member of a partitioned
data set, optionally modifying such
characteristics as blocking factor. 1

DELETE

EDIT

delete and uncatalog one or more data
sets or members.

invoke the edit mode or input mode to
modify or create a data set; provide
an interface to the language syntax
checkers and processors.

FORMAT

FREE

LIST

format a data set for printing
according to embedded controlsa 1

release a data set.

display at the terminal all or part of
one or more data sets, optionally
re-arranging information in the
records. 1

LISTALC
display at the terminal the names and
characteristics of currently active
(allocated) data sets.

1IBM Program Products. See Appendix B.

90 TimeSharing Option Guide (Release 20.1)

LISTBC
display at their terminal any system
notices or messages from other users.

LISTCAT
display at the terminal the names and
characteristics of a group of data
sets indexed together in the system
catalog.

LISTDS

MERGE

display at the terminal the
characteristics of one or more
specified data sets.

copy all or part of one data set or
member into another.1

PROTECT
assign or modify password protection
to a data set.

RENAME
change the name of a data set or
rrember, or assign an alias to a
member.

Language Processors

ASM

CALC

COBOL

FORT

invoke the prompter for 1 the Assembler
(F).

invoke the Interactive PL/I processor
for desk calculator mode. 1

invoke the American National Standard
COBOL compiler. 1

invoke the FORTRAN (G1) compiler. 1

RUN BASIC
invoke the ITF: BASIC compiler and
execution control routines. 1

RUN GOFORT
invoke the Code and Go FORTRAN
compiler and execution control
routines. 1

RUN IPLI

PLI

PLIC

invoke the ITF: PL/I compiler and
execution control routines. 1

invoke the PL/I Optimizing compiler. 1

invoke the PL/I Checkout Compiler. 1

Program Control

CALL

LINK

invoke a specified program which
exists in load roodule form.

invoke the Linkage Editor to create a
load module from one or more object
and load modules.

LOADGO

RUN

TEST

invoke the Loader to process a
specified object module, bring it into
storage, and give it control.

invoke a user program in source
program form, first compiling it, then
calling the Loader to bring it into
storage and give it control.

control the execution of a program,
interrupting it at pre-specified
points for debugging activity.

Remote Job Entry

Note: Use of these commands requires
authorization in the user profile.

CANCEL
cancel a job previously submitted for
background execution.

OUTPUT
direct SYSOUT data sets and system
messages from submitted jobs to the
terminal or a specified data set.

STATUS
display information at the terminal on
the status of a job previously
submitted for background execution.

SUBMIT
submit a data set containing job
control language for one or more jobs
for interpretation and execution in
the background.

SysteIli Control

Note: Use of these commands requires
authorization in the user profile.

ACCOUNT
add or modify user profiles in the
User Attribute Data Set.

OPERATOR
invoke the operator mode, allowing the
user to enter system coromands from his
terminal.

Session Control

EXEC

HELP

invoke a command procedure.

display at the ter~inal inforrration on
command function and syntax.

lOGON
start a terminal session.

LOGOFF
end a terminal session.

PROFILE

SEND

specify special characters for line
editing; lock out and accept messages
from other users.

direct a mevsage to the system
operator or to another user.

TERMINAL

TIME

specify the conditions under which an
attention interruption is to be
simulated, for ter~inals without
attention keys; and define other
terminal-dependent characteristics.

display at the terIPinal the amount of
time expended during the current
session or the current program.

Appendix A: TSO Commands 91

'Page-cofi"'GC28-6698-3, Revised'July-1:,-1971,' By TNL:' "GN28-2497

Appendix B: Program Products

The following is a list of the IBM Program
Products available for use with TSO.
Program Products are available from IBM for
a license fee. Program Product Design
objectives for each of the Program Products
are available from your local IBM
representative.

o Interactive Terminal Facility (ITF):
PL/I and BASIC.
A problem-solving language processor.
See the following publications: IB~
System/360 Operating System Time
Sharing Option:
Interactive Terminal Facility: PL/I
and BASIC Design Objectives, GC28-6822.
ITF: PL/I General Information,
GC28-6827.
ITF: BASIC General Information,
GC28-6828.

• Code and Go FORl'RAN.
A FORTRAN compiler designed for a fast
coropile-execute sequence. See the
publications:
Code and Go FORTRAN Design Objectives,
GC28- 6823.
FORTRAN Program Products for OS and OS
with TSO, General Information,
GC28-6824.

• FORTRAN IV (G1).
A version of FORTRAN IV. providing
specific support for the terminal
environment. See the publications:
FORTRAN IV (G1) Processor Design
Objectives, GC 28 -6845.
FORTRAN Program Products for OS and OS
with TSO, General Information,
GC28-6824.

o TSO FOR'IRAN Prompter.
An initialization routine to prompt the
user for options, and invoke the
FORTRAN IV (G1) Processor. See the
publications:
TSO FORTRAN Prompter Design Objectives,
GC28-6843.
FORTRAN Program Products for OS and Os
with TSO, General Information,
GC28-6824.

o FORTRAN IV Library (Mod 1).
Execution-time routines for
list-directed I/O, PAUSE, and STOP
capability, for use with either Code
and Go FORTRAN or FORTRAN IV (G1). See
the publications:
FORTRAN IV Library (Mod 1) Design
Objectives, GC28-6844.
FORTRAN Program Products for OS and OS
with TSO, General Information,
GC28-6824.

92 Time Sharing Option Guide' (Release 20.1)

• Arrerican National Standard Full CCBCL
Version 30
A version of the American National
Standard COBOL corrfiler modified for
the terminal environment. See the
publication:
American National Standard (ANS) Full
COBOL Compiler Version 3 Design
Objectives, GC28-6406.

• TSO COBOL Prompter.
An initialization routine to prcmft the
user for options, and invoke the
American National Standard Full COBOL
Version 3 Compiler. see the
publ ication :
TSO COBOL Prompter Design Objectives,
GC 28- 6404.

• PL/I OptilT'izing Corrfiler •
A PL/I compiler designed for
compilation of efficient object
programs, incorporating a prompter
routine allowing invocation from the
terminal. See the publications:
PL/I Optimizing CCITEiler Design
Objectives, GC33-0013.
PL/I Optimizing ComEiler, General
Information, GC33-0001 •

• PL/I Checkout Compiler
A PL/I compiler designed to simplify
the task of testing and debugging
programs, incorporating a prompter
routine allowing invocation from the
terminal. See the fublications:
PL/I Checkout Compiler Design
Objectives, GC33-0028.
PL/I Checkout Compiler, General
Information, GC33-0003.

• OS PL/I Resident Library.
A subroutine library for use during the
linkage editing of frograms produced by
the PL/I Optimizing Compiler. See the
publication:
OS PL/I Resident Library Design
Objectives, GC33-0014.

• OS PL/I Transient Library.
A subroutine library for use during the
execution of programs froduced by the
PL/I Optimizing Compiler. See the
publicati on:
OS PL/I Transient Library Design
Objectives, GC33-0015.

• TSO Assembler Prompter.
An initialization routine to prcmft the
user for options and invoke the
Assembler (F). See the publication:

Page of GC28-6698-3, Revised'July 1, 1971, By TNL: GN28-2497

TSO Assembler Prompter Design
Objectives, GC26-3734.

• TSO Data Utilities: COPY, FORMAT,
LIST, MERGE.

A set of commands and EDIT subcoffirrands
to manipulate data sets and format
text. See the publication: TSO Data
Utilities: COPY, FOru1AT, LIST, MERGE
Design Objectives, GC28-6750.

Apfendix B: Prcgram Products 92.1

Entry Code Table (Part 3 of 4)
r-------------T------------------------T-------------------7----------------------------,
I Event Name I I I Inf:ut I
I (Entry Code) ICalling Routine (CLASS) IReason for Entry IRegister 0 Register 1 I
r-------------+------------------------t-------------------+-----------T----------------~
SPRGNSZ (27) ITimer Sharing Control Specify size region 0 Region number I

Task, Region Control for specific region I
Task (S) Required I

region si ze I
I

(28) Reserved I

LOGOFF (29) End of Task (S) TJID is to
be released.

Region .can
be released.

LOGON (30)

I
LOGON (S) Book UStr into

selec ted reg i cn
I
I REQRGNID (31) Time Shar ing Control

ITask, Logon (S)
Obtain region ID
appropriate to sizel

I I
I RCT and

SWINERR (32) ITime Sharing swap in failed
I
I
I IControl Task (S~AP) (S)

I
I
I
I
I
I

I
I
I
I
I
I

SWOTERR (33) I Time Shar ing Control Swap out fai ledu No J
ITask (SWAP) (S)

I
I

room on SWAP data I
set I

TGETPUT (34) ITGET, TPUT (T)
I

TGET was satisfied; I

ATTN (35)

I
I
I
I
I
I
I

TPUT was satisfied I
I
I
l
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

ITerminal Handler (T) Attention (not linel
I Attention delete) I
I I
I I I
I I I
I I I

IIOERROR (36) ITerminal Handler IPermanent I/O Error I
I I HANG UP (T) I Termi na I I
I I I dis connected I

TJID

'lJID

TJID

TJID

TJID

TJID

TJID

Region ID

Region size

Bit 0

0: LOGON
image

1: Not LOGON
image

Bit 0:

o - TGET

1 - TPUT

For TGET ,

Bit 1:

I
I
I
I
I
I
I

o - all data I
transfered

1 - partial
transfer

Bytes 3 and 4:
Characters
transferred

Sign bit:

o - No exit

1 - Exit

L _____________ ~ _______________________ L ___________________ ~ __________ _i ________________ J

Appendix C: Driver Entry Codes 95

Page of GC28-6698-3, Revised July 1, 1971, By TNL: GN28-2497

Entry Code Table (Part 4 of 4)
r-------------T------------------------T-------------------T----------------------------,
I Event Name , I 'Input ,
,(Entry Code) ICalling Routine (CLASS) 'Reason for Entry IRegister 0 Register 1 ,
r-------------+------------------------+-------------------+-----------T----------------~
ITERMDSCN (37) ,Terminal Handler Disconnect terminal TJID
I 'LOGOFF (T) logically from TSO
I ,
I I
I (38) I Reserved
I (39) I Reserved
I ,
IRGNFAIL (40) 'Time sharing Control
I I Task Region Control
, ITask (S)
, I
IDONTSWAP (41)ITransient Area
I ,Handler (S)
, I
OKSWAP (42) ,Transient Area

,Handler (S) ,
UPDATACC (43) 'LOGOFF (S) ,

I ,
FEDIAG (44) Iserviceability (S) , ,

I ,
I I
I ,
I' I
I I I
I I I
I' I

" ,
" I 'I I

Region failed

Do not swap out
user

Allow swap out of
user

Update accounting
informa tion for
user logging off

FE diagnostics
recorded in TSO
TRACE data set

IENQWAIT (45) 'Enqueue (S) IUser in enqueue

TJID

TJID

TJID

o

'I I WAIT. Swap him out. I

Region ID

Bit 0:
o

Bi ts 1-4:
Diagnostic
Identifier
Bits 5-7: n
when 2 (n+1)
equals number
of entries
Bits 8-31:
address of
data to be
recorded.

L _____________ ~ ________________________ L ___________________ ~ __________ i _______________ _

Note: On entry to the Time Sharing Driver, Register 0 contains either:

1) 0 - shown in one table as O.
2) A specific TJID - shown in one table as TJID.
3) The TJID of the current tasks - shown in the table as blank.

CLASS refers to the TSO Trace Data Set Processor CODES pararr.eter.

96 Time Sharing Option Guide (Release 20.1)

READER'S COMMENT FORM

IBM System/360 0 perati ng System:
TSO Guide Order No. GC28-6698-3.

Please use this form to express your opinion of this publication. We are interested in your
comments about its technica I accuracy, organization, and completeness. All suggestions
and comments become the property of IBM.

Please do not use this form to request technical information or additional copies of publications.
All such requests should be directed to your IBM representative or to the IBM Branch Office
serving your locality.

• Please indicate your occupation:

• How did you use this publication?

o Frequently for reference in my work.

o As an i ntroducti on to the sub ject •

o As a textbook ina course.

01 For specific information on one or two subjects.

• Comments {Please include page numbers and give examples.}:

• Thank you for your comments. No postage necessary if mailed in the U.S.A.

GC28-6698-3

YOUR COMMENTS, PLEASE ...

This manual is part of a library that serves as a reference source for systems analysts,
programmers and operators of mM systems. Your answers to the questions on the back
of this form, together with your comments, will help us produce better publications for
your use. Each reply will be carefully reviewed by the persons responsible for writing
and publishing this material. All comments and suggestions become the property of mM.

Note: Please direct any requests for copies of publications, or for assistance in using your
IBM system, to your IBM representative or to the IBM branch office serving your locality.

Fold

BUSINESS REPLY MAIL
NO POSTAGE STAMP NECESSARY IF MAILED IN THE UNITED STATES

Attention: Programming Systems Publications

Department 058

Fold

POSTAGE WILL BE PAID BY •••

IBM Corporation

P.O. Box 390

Poughkeepsie, N.Y. 12602

International BusineEs Machines Corporation
Data Processing Division
112 East Post Road, White Plains, N.Y. 10601
[USA Only]

IBM World Trade Corporation
821 United Nations Plaza, New York, New York 10017
[International]

Fold

FIRST CLASS
PERMIT NO. 81
POUGHKEEPSIE, N. Y.

Fold

()

s.
:>
0"
::I
co
c:
::I
(D

._------_. _.-•. _._ ...•. _ ..

Technical Newsletter File No. 8360-20 (08 Release 20.6)

Base Publ. No. GC28-6698-3

This Newsletter No. GN28-2502

Date: september 16 1971

Previous Newsletter Nos.

IBM 8ystem/360 Operating System:
Time Sharing Option Guide

© IBM Corp. 1969,1970,1971

This Technical Newsletter, applies to release 20.6 of IBM
System/360 Operating System, provides replacement pages for the
subject publication. These replacement pages remain in effect for
subsequent releases unless specifically altered. Pages to be
inserted and/or removed are:

Cover,2
Summary of Amendments
15,16,16.1
47,48,48.1
71,72
75-78,78.1
87,88

A change to the text or a change to an illustration is indicated
by a vertical line to the left of the change.

Summary of Amendments

The TSC start parameters and the operator START command have been
changed. The specifications for the swap data set definitions
have changed.

Note: Please filoe this cover letter at the back of the manual to
provide a record of changes.

'EM Corporation, Programming Systems Publications, P.O. Box 390, Poughkeepsie, N.Y. 12602

GN28-2497

PRINTED IN U.S.A.

File No. 8360-20
Order No. GC28-6698-3 OS

Dm~ Systems Reference Library

IBM System/360 Operating System:

Time Sharing Option Guide

Page of GC28-6698-3, Revised September 1, 1971, By TNL:

Fourth Edition (June, 1971)

This is a major revision of, and obsoletes, GC28-6698-2.
Changes or additions to the text and illustrations are
indicated by a vertical line to the left of the change.

I This edition with Technical Newsletters GN28-2497 and
GN28-2502 applies to release 20.6. of IBM System/360
Operating system, and to all subsequen't releases until
otherwise indicated in new editions or Technical Newsletters.
Changes are continually made to the information herein;
before using this publication in connection with the
operation of IBM systems. refer to the latest IBM system/360
SRL Newsletter, Order No. GN20-0360. for the editions that
are applicable and current.

Requests for copies of IBM publications should be made to
your IBM representative or to the IBM branch office serving
your locality.

A form for reader's comments in provided at the back of
this publication. If the form has been removed, comments may
be addressed to IBM Corporation, Programming systems
Publications, Department D58, PO Box 390, poughkeepsie, N. Y.
12602. Comments become the property of,IBM.

GN28-2502

© Copyright International Business Machines Corporation 1969,1970,1971

Page of GC28-6698-3, Revised september 1, 1971, By TNL: GN28-2502

TSC START PARAMETERS

Programming Change
Two new parameters; TSCREGSZ and DUMP
have been added. TSCREGSZ allows an
installation to specify a size for the
TSC region. DUMP reserves the swap
data sets so they are not initialized
during a restart.

START COMMAND

Programming Change
Most of the TSC start parameters can
be altered by the operator using the
START command~

MISCELLANEOUS CHANGES

Swap Data Sets

SUMMARY OF AMENDMENTS
FOR GC28-6698-3
OS RELEASE 20.6

Swap data sets must begin on a cylinder
boundary. Parallel data sets must
reside on the same device types.

Summary of Amendments 6.1

Page of GC28-6698-3, Revised september 1, 1971, By TNL: GN28-2502

• SVC 100--Submit a job to the
background.

• SVC 102--AQCTL -- used by TCAM to
communicate with problem programs.

Of these, only SVC 98--PROTECT--can be
issued by programs executing in the
background. SVCs 92 (TCB EXCP) and 101
(TCAM-TSO Communication) are used only by
supervisor programs.

Including TSO in a system adds no
restrictions to programs executed in the
background. For example, other
teleprocessing applications can be run
simultaneously.

system Control

The management of an installation can shift
most of the responsibility for controlling
the time sharing system from the operator
at the system console to users at remote
terminals, called control terminals. A
control terminal user can alter the system
configuration to meet changing work loads.
FOr instance, he can assign an extra region
of main storage to time sharing operations
during peak periods, and then release it to
be used for batch operations during slack
periods. Such changes require no shutdown
of TSO and are not noticed by the users of
other regions. EVen the starting and
stopping of TSO operations is accomplished
without shutting down the system or
affecting background operations.

Job Definition and scheduling

To the operating system, each terminal
session from LOGON to LOGOFF is one
terminal job, corresponding to a single
step batch job. The job control statements
that define a terminal job are stored in
the LOGON procedure used to begin the
session. The "EXEC" JCL statement in the
LOGON procedure identifies the program the
user wants loaded into his region for
execution. The program may be the
TSO-provided command language handler or an
installation provided application program.

An important feature of TSO is the
dynamic allocation of data sets for time
sharing users. A user may defer definition
of his data sets until he requires them.
During LOGON processing, any data sets
named on Data Definition (DD) statements in
the procedure are allocated to the terminal
job. Any data sets requiring volume
mounting by the operator, must be defined
here. The procedure also includes dynamic
DD statements (similar to a DD DU~~Y),
which reserve control block space for data

sets the user may allocate during the
session. The dynamic allocation facility
allows data sets to be created, deleted,
concatenated, or separated without previous
allocation at the beginning of the job
step.

Tuning the Time Sharing System

In a time sharing system, execution time is
divided among the active foreground jobs
and background jobs in brief time slices.
A time slice must be long enough to perform
a meaningful amount of processing, but not
so long that the time between successive
slices prevents quick response to
conversational users. At the same time,
time slices cannot be so short and frequent
that system overhead for swapping and task
switching becomes excessive. Balancing
these factors depends on the number and
type of jobs the system is processing. A
solution for one job mix is not necessarily
suitable for another job mix. The TS.O time
sharing algorithms -- the formulas used to
calculate the division of time among jobs
-- are based on several Variables, most of
which can be specified by the installation
to tune the system for their particular
workload. Most of the tuning variables
such as the number of foreground regions
and the maximum nurober of users, can be set
or modified by the system operator or a
user at a control terminal whenever the
system is running. Others are specified as
parameters in SYS1.PARMLIB. These
parameters are used when the operator
starts the time sharing operations.

The time sharing algorithms are
described in detail in the "system Summary"
section of this manual. They are
implemented by a subroutine called Time
Sharing Driver. The Driver makes decisions
about system functions such as swapping and
task switching. An installation may
experiment with other time sharing
algorithms by modifying or replacing the
driver, and specifying use of the new
Driver in the SYS1.PARMLIB parameters used
when the operator starts time sharing
operations.

Execution time may also be affected by
the choice of modules to be included in the
Link Pack Area (LPA) extension in the Time
Sharing Control task (TSC) region. The
size of the LPA extension and the amount of
main storage dynamically allocated by the
driver are major factors in determining the
size of the TSC region. The installation
may let the TSC calculate its own region
size or may specify a TSC region size,
either in the SYS1.PARMLIB or on the START
command, to compensate for additional main
storage requirements created during tuning.

Introduction 15

Monitoring System Use and
Performance
By extending the services of the system to
many concurrent users, TSO makes the
operating system more useful to more
people. However, installation management's
job of monitoring system use and
performance becomes more complex. Three
tools are provided to help management
maintain a clear picture of what the system
is doing.

system Management Facilities (SMF): The
SMF Option can be used with TSO. Both the
data collection and dynamic control
facilities are extended to the foreground
environment.

With the data collection facility,
records describing both the system
environment and individual user activity
ar.e written to the SMF data sets in a
format similar to that used for background
records. The system environment data
includes:

• Machine configuration.

• Resource status.

• Library management information.

This information is recorded whenever
time-sharing operations are started,
modified, or stopped by an operator. The
user data includes:

• I/O device use.

• Data set use.

• Main storage used.

• Time resident in main storage.

• Time actually spent executing.

The user data is recorded at LOGON and
LOGOFF and during a terminal session
whenever a user changes the status of his
data sets with the dynamic allocation
facility. The information on the use of
data sets is particularly useful to the
installation for controlling the use of
secondary storage in the time-sharing
environment.

The SMF dynamic control exits give the
installation access control program
information at key points during the
processing of jobs, including foreground
jobs. The step initiation and termination
exits are taken, if present, when a user
begins or ends a terminal session. These
routines can record information and control

16 Time Sharing Option Guide (Release 20.6)

processing for foreground jobs just as they
do for background jobs. SMF is discussed
in detail in the publication IBM System/360
Operating system: system Management
Facilities, GC28-6712.

An additional installation exit,
separate from the SMF dynamic control
exits, is provided from the routine
handling user LOGON. This exit allows the
installation to establish its own user
verification and control procedures,
independent of those supplied with the
system. The section of this publication
Writing a Logon Pre-prompt Installation
Exits describes the parameters passed and
what actions the exit may take.

MONITOR Command: The MONITOR command
allows the operator to watch the changing
workload on the system over a period of
time. In addition to the job initiation,
data set, and volurre information formerly
available with the DISPLAY command, he can
request notification of time-sharing users
logging on and off the system. The DISPLAY
command now gives the system workload at a
particular point in ti~e, and has been
extended to include information relative to
the time-sharing environment, such as the
number of foreground regions and the number
of active terminals. Both MONITOR and
DISPLAY, like other operator commands
concerned with the time-sharing operation,
are available to a control user at a remote
terminal as well as the system operator at
the console.

TSO Trace Program: The TSO Trace Writer
Program provides a detailed history of what
the system does over a period of time. The
Trace Program records a stream of
information that all ccmponents of the
system are continuously passing to the Time
Sharing Driver. The Driver uses this
information in its calculations of resource
allocation. When the operator starts the
Trace Program, it intercepts these event
signals and records them with a time stamp
in a data set. Typical events recorded are
"job requesting terminal input" and "swap
completed." The TSO Trace Data Set
Processor can be used at a later time to
format and print out the information
recorded by the Trace Program. The Trace
Data Set Processor can be requested to list
only those events associated with a
particular component of the system, such as
the dispatcher, or to list only those
events associated with a particular
terminal or set of terminals. Using this
information, system rranagement can
determine how well the system is responding
to the workload and make adjustments to the
tuning variables if necessary.

System Security

The need for adequate data and program
protection is increased in the time-sharing
environment, where many persons are
simultaneously using the system. The
system itself must be protected against
unauthorized users. Each user's programs
and data must be protected against

accidental destruction by other users.
Confidential data must be safeguarded
against unauthorized access.

User Verification

Any user starting a terminal session is
required to supply a user identification
recognized by the system; that is, one that

Introduction 16.1

Page of GC28-6698-3, Revised September 1, 1971, By TNL: GN28-2502

~he Time sharing Control Task

rhe Time Sharing control task, as shown in
~igure 23, handles all functions affecting
the entire time sharing portion of the
5ystem. This includes responding to the
START, MODIFY, and STOP operator commands,
and handling the swapping of foreground
jobs into and out of main storage.

When the operator enters the START
command for TSO, an initialization module
of the Time Sharing Control task is given
control. The initialization module
calculates the size of the Time Sharing
Control region that will be needed and
obtains it from the main storage management
routine of MVT. In this region, the Time
Sharing Control task builds the control
blocks and buffers the system will need,
and invokes a Region Control task for each
foreground region.

The installation may override the
calculated TSC region size by specifying
the size it wants in SYS1.PARMLIB or on the
START command. This may be necessary if an
installation written driver has greater
main storage requirements than the driver

I supplied w~th TSO.

MVT Control Program

Time
Sharing
Control
Task

Command

(TSC)

Figure 23. The Time Sharing Control Task

While the time sharing system is
operating, the major function of the Time
Sharing Control task is the swapping of
foreground jobs into and out of main
storage. Swapping is handled at this level
so it can be optimized on a system~wide
basis when multiple foreground regions are
active. Whenever possible, an active job
is not quiesced for swapping out until a
channel will be free for the swap output.
But in many cases when there is nothing to
be gained by delaying, such as when a

foreground job is waiting for input from
the terminal, a swap out is scheduled
whether a channel is free or not.

The Time Sharing Control task maintains
an input queue and an output queue for swap
requests (one of each set if parallel
swapping is being used). It builds a
channel program for each swap request. A
program-controlled interruption (PCI) will
occur near the end of each channel program.
When the interruption occurs, an exit
routine selects the next channel program to
execute. The exit routine inserts a
transfer to the next channel program at the
end of the current channel program. Thus
as the number of requests increases, the
swap process is carried out by a
never-ending channel program. Seek time is
minimized by attempting to swap jobs out to
the direct access area from which the last
job was swapped in, or if this is not
possible, by using the free. space closest
to the current arm position.

In determining what portion of a
foreground region to swap out, the Time
Sharing Control task uses a map of the
foreground job created by the Region
Control task. Each entry in the map
identifies the starting address and length
of a section of the region that the job is
using. The number of entries in this map
is the same for every job and is specified
by the installation in the system parameter
library. If there are too few entries,
inactive main storage must be included (and
swapped). A large number of entries cuts
down on the amount of inactive storage that
has to be swapped, but adds to processing
overhead.

When the operator enters a STOP command
to shut down the time sharing operation,
the Time Sharing Control task initiates a
logoff for each active user. When all
users are disconnected, the Time Sharing
Control task ensures that all the system
resources that had been assigned to it are
returned; the Time Sharing Control task
then terminates, returning its main storage
region to the system.

If any users cannot be logged off, the
Time Sharing Control task cannot terminate.
The operator is given the facility to

. "force" TSO to terminate even if it appears
that normal STOP processing cannot be
completed. For further information on
"forced STOP" see Messages and Codes,
message IKJ024D.

System Summary 47

The Region Control Task

A major function of the Region Control task
is quiescing and restoring foreground job
activity before and after swapping. There
is one Region Control task for each active
foreground region, invoked by the Time
Sharing Control task with an ATTACH macro
instruction. Figure 24 shows a single
Region Control task under the Time Sharing
Control task.

Before a foreground job can be swapped
out of main storage, any activity
associated with it must be brought to an
orderly halt, or set up to be handled by
some supervisor routine that will be
remaining in main storage. This includes
removing control blocks associated with the
job fLom system queues, or flagging them as
inactive.

Region
Control
Task

Figure 24. The Region Control Task

Quiescing of I/O activity is initiated
by the Region Control task (at the request
of the Driver), which issues the Purge
supervisor Call for each task associated
with the foreground job. The Purge routine
removes I/O requests from the I/O
Supervisor's queues of pending requests if

48 Time Sharing Option Guide (Release 20.6)

they have not yet been initiated. If a
request has been started, that is, if data
transfer is already taking place, it is
allowed to complete before the job is
marked ready for swapping. The control
blocks associated with unstarted requests
are stored in the foreground region where
they will be swapped out of main storage
along with the job.

I/O requests that address the terminal
are an exception to the quiescing procedure
because of their long completion time.
These requests are handled through the TSO
interface with TCAM and are buffered in
supervisor main storage, not in the
foreground region. Data can be written or
read to these buffers whether the job is
present in its main storage region or not.

Many control blocks, like the I/O
requests mentioned above, reside in the
foreground region. For background jobs,
these control blocks would be created and
maintained in the System Queue Area, a
section of main storage set aside for this
purpose during nucleus initialization.
Foreground regions, however, each contain a
Local system Queue Area to hold control
blocks. As part of quiescing, the Region
Control task removes pointers to these
control blocks from system queues. The
blocks can then be swapped out of main
storage along with the foreground job. The
only control blocks for foreground jobs
that are assigned in the system Queue Area
(and remain in main storage) are requests
for timer interruptions, operator replies,
and assignment of resources through ENQ.

When a job is swapped into main storage
by the Time Sharing Control task, the
Region Control task receives control to
restore the I/O requests it intercepted at
swap out time, and to return the control
blocks associated with the job to the
appropriate system queues.

LOGON/LOGOFF

The LOGON/LOGOFF Scheduler routine performs
the same functions for foreground jobs that
the reader/interpreter and initiator do for
background jobs. When defining a
foreground job, LOGON uses many of the same
programs as subroutines.

When LOGON is invoked by the Region
Control task, as shown in Figure 25, it is
swapped into the foreground region. A copy
of the LOGON/LOGOFF Scheduler for each
foreground region is kept in the swap data
set, reducing the amount of initialization
time needed. LOGON, and all routines below
it in the control flow diagram, execute
from the foreground region, and are swapped
in and out of main storage. LOGON first
validates the user's identification and
pa$sword in the User Attribute Data Set,
and reads in the rest of the user profile.
From the profile and any operands entered
with the LOGON command, LOGON builds, in
main storage, a JOB and an EXEC statement
that define the foreground job. The EXEC
statement names the LOGON Procedure
specified by the user, and the procedure in
turn specifies the name of the program to
be invoked. The procedure also contains DD

statements for data sets the user always
wants allocated to him, and some special DO
statements that save control block space
for data sets he may allocate later,
dynamically.

One Per
User

Swapped Into Foreground
Region And Attached

Logon!
Logoff
Scheduler

Figure 25. The LOGON/LOGOFF Scheduler

The JOB and EXEC statements built by the
LOGON routine are passed to the
reader/interpreter to define the resources
required by the job, and then to the

System Summary 48.1

Page of GC28-6698-3, Revised september 1, 1971, By TNL: GN28-2502

The EXEC statement of the cataloged
)rocedure that starts the Time Sharing
:ontrol Task, specifies:

• The TSC program name, which is
IKJEATOO.

• The TSC region size. If the TSC needs
a different sized region, it will
obtain one.

• ROLL=(NO,NO) to preclude an attempt to
Rollout the TSC region, if
OPTIONS=ROLLOUT has been specified
during system generation.

• DPRTY=to set a priority for the TSO.
It must be lower than the MCP.

?ive data sets must be defined.

• SYSPARM -- The library containing TSC
initiation parameters. These
parameters are discussed under nwriting
TSO system Parametersn•

• SYSUADS -- The User Attributes Data
set, this data set cannot be
concatenated.

• SYSLBC -- The broadcast data set which
contains messages from the SEND command
and a list of valid users should not be
password protected.

• SYSWAPOO -- The swap data sets.

• IEFPDSI -- The partitioned data set
containing LOGON cataloged procedures.
This data set may be either
SYS1.PROCLIB or a partitioned data set
dedicated to LOGON procedures. A
dedicated data set will speed up LOGON
processing.

If an installation uses the TSO dump,
SYSTSDP, the TSO dump data set,usually a
tape volume, should also be defined.

For each of these data set definitions,
DISP=SHR should be specified.

Figure 38 shows a sample cataloged
procedure to start the TSC.

The data definition ddname on the DO
statement defining the SWAP data set
specifies whether serial or parallel
swapping is to be used. The ddname is of
the form

SYSWAPln

Where 1 indicates the level of the data
set, i.e., 0 for prime, 1 for first
overflow; and n is the data set number at
this level.

For example, if an installation has two
data sets and wants to use parallel
swapping it would use SYSWAPOO and SYSWAP01
as the ddnames.

If an installation wanted to use an IBM
2301 drum for a prime swap data set and an
IBM 2314 as overflow, the ddnames would be
SYSWAPOO for the 2301 the prime data set,
and SYSWAP10 for the 2314, the first
overflow data set. Parallel units must be
of the same device type. A swap data set
must begin on a cylinder boundary.

If a system or TSO failure causes TSO to
be restarted, you can use IMDPRDMP program
to save the swap data sets before
attempting to restart TSO. When invoking
IMDPRDMP, the DO statements for the swap
data sets should be the same as those in
the TSO cataloged procedure; the //PRINTER
DO statement writes to tape with chained
scheduling and a large blocking facto+ so
that the data sets are dumped quickly. The
publication IBM System/360 Operating
System: service Aids GC28-6719 shows the
procedures for analyzing system failures
and how to use the IMDPRDMP program to save
the swap data sets.

STARTING AND STOPPING TSO

When the operator starts TSO for the day,
he must:

1. Issue a START command to start the
Message Control Program. The operand
of the START command is the name of
the cataloged procedure that provides
the Job Control statements necessary
to execute the MCP. For example if
the cataloged procedure used to start
the MCP is named TCAM, the operator
will issue a START TCAM command.

2. Issue a START command to start the
Time Sharing Control Task (TSC). The
operand of this command names a
cataloged procedure used to start the
TSC. For example if the cataloged
procedure used to start the TSC is
named TS, the operator would issue a
START TS command.

When the operator stops TSO for the day,
he must:

1. Issue a STOP command to stop the Time
Sharing control Task. The operand of
the S'IOP command must be the same as
the operand that was used to start the
TSC.

2. Issue a HALT command to stop the
Message Control Program. If the PGM=
operand of the EXEC statement in the
cataloged procedure used to start the
MCP is IEDQTCAM, then the MCP cannot

system Implementation 71

Page of GC28-669S-3, Revised september 1, 1971, By TNL: GN2S-2502

r---,
I//IEFPROC EXEC PGM=IKJEATOO,ROLL=(NO,NO),DPRTY=(13,13) 1
I//SYSPARM DD DSN=SYS1.PARMLIB,DISP=SHR 1
I//SYSUADS DD DSN=SYS1.UA~S,DISP=SHR I
I//SYSLBC DD DSN=SYS1.BRODCAST DISP=SHR 1
I//SYSWAPOO DD DSN=SYS1.SWAP1,DISP=SHR I
1//SYSWAP01 DD DSN=SYS1.SWAP2,DISP=SHR I
I//IEFPDSI DD DSN=SYS1.PROCLIB,DISP=SHR I
I//SYSTSDP DD UNIT=2400,VOL=SER=TSODUMP,DISP=(,KEEP) I L ___ J

Figure 3S. Sample Cataloged Procedure to start Time Sharing Control Task

be cancelled with a CANCEL command.
If the operator cancels the MCP, the
TSO must be stopped before the MCP is
restarted. The MCP cannot be halted
with a HALT command unless the TSO is
stopped.

DEFINING A UADS USING THE TSC PROCEDURE

When a TSO system is first started after
system generation, it is necessary to
construct a UADS using the ACCOUNT command.
The distributed UADS contains one valid
user:IBMUSER and this user is authorized to
use one procedure: IKJACCNT. He should
use the ALLOCATE command to define a new
UADS with a file name of SYSUADS and a data
set name other than SYS1.UADS, specifying
its volume serial number, and define his
UADS structure with a series of ACCOUNT
command ADD subcommands. He should then
log off, stop the system, and change the
SYSUADS DD statement in the TSC start
procedure, to point to the new UADS. If
the cataloged procedure defines SYSUADS
though a DSN= operand, then he need only
rename the data set.

Background Reader (BRDR)

The cataloged procedure used to start the
Background Reader (BRDR) contains Job
Control statements that:

• Specify the program name of the
Background Reader.

• Pass the Background Reader standard
Reader-Interpreter parameters.

• Define required data sets.

The Background Reader, (BRDR), runs as a
system task. It is started by the
operator. It interprets Job Control
Language passed by a terminal user with the
SUBMIT command. If there is no input for
the BRDR, it will relinquish its region and
wait for input. Output from the BRDR is
placed on SYS1.SYSJOBQE and is queued for
execution by a standard initiator. The
cataloged procedure that provides the Job
Control Language to start the Background
Reader is similar to other reader
procedures. The BRDR program name is
IKJEFF40. Figure 39 shows an example of a
BRDR procedure. For further information on
writing system reader/interpreter cataloged
procedures, see IBM System/360 Operating
System: system Programmers Guide,
GC28-6550.

An installation exit can gain access to
and modify or delete any JCL passed by the
SUBMIT command processor. The section,
"Writing Installation Exits for the SUBMIT
Command" describes how to write this exit.

r---,
I//BRDR EXEC PGM=IKJEFF40, 1
1// REGION=70K, 1
1// PARM='READERPARM' 1
I//IEFPDSI DD DSN=SYS1.PROCLIB, I
1// DISP=SHR 1
I//IEFDATA DD UNIT=SYSDA 1
1// SPACE= (SO,(500,50),RLSE,CONTIG), I
1// DCB=(BUFNO=2,LRECL=80,BLKSIZE=80,DSORG=PS, 1
1// RECFM=F,EUFL=80) 1
I//IEFRDER DD DUMMY 1 L ___ J

Figure 39. sample Background Reader (BRDR) Procedure

72 Time Sharing Option Guide (Release 20.6)

Page of GC28-6698-3, Revised september 1, 1971, By TNL: GN28-2502

• Specify the number of users.

• Specify whether SMF is to be used.

1. What type of queueing service to use
in a region.

2. What the cutoff points for each queue
• Specify which DRIVER to use. are.

• Limit the number of tracks the SUBMIT
command can use to queue jobs.

• Defines the module contents of the Time
Sharing Link Pack Extension.

Notes:

• All parameters except LPA and
DUMP/NODUMP may be overridden on the
START command.

• USERS, SMF, REGSIZE(n), and SUBMIT may
be changed by a MODIFY command.

• TERMAX, REGNMAX, and MAP must be
specified either in the SYS1.PARMLIB or
on the START command to start TSO.

The contents of the Time Sharing Link
Pack Area, that part of the TSC region
containing reenterable modules common to
different TSO applications has a direct
effect on system response and overhead.
The following routines are used by
different users many times during an
average session and should reduce loading
time if included.

• The I/O service routines -- that is
GETLINE, PUTLlNE, PUTGET, and STACK.

• The TMP mainline routines.

• Command Scan a service routine used
to check the syntax of commands.

• TIME -- a routine used to get the time
of day.

• PARSE -- a routine that analyzes the
syntax of commands.

In addition if EDIT is being used
extensively, portions of the EDIT command
processor should be included.

• The Edit Mainline routines.

• INPUT subcommand processor.

• LIST subcommand processor.

• CHANGE subcommand processor.

• Implicit change processor, that is, the
update function for portions of
individual lines.

Driver Parameters

The DRIVER parameters specify:

For example, the SWAPLOAD/NOSWAPLOAD
parameter specifies whether or not swap
load will be used as a criterion for
determining which queue a user will be put
in. If SWAPLOAD has been specified, the
MAXSWAP parameter defines the maximum swap
load for each queue.

In a single region system, NOWAIT and
NOACTIVITY should be specified.

The decay constant for the wait estimate
(DECAYWAIT) and the activity estimate
(DECAYACT) if set to 100, (that is, a decay
constant of one since the value is in
hundredths), will mean that the current
value has a weight equal to the total prior
value. This will nsmoothn out the effects
of excessive variations.

MINSLICE, the minimum amount of time
given to a terminal user, should be set to
allow a useful amount of execution time.

If PREEMPT is specified, CYCLES should be
set to zero, since a higher priority queue
will preempt a lower Friority queue.

Buffer Control Parameters

TSO controls the allocation of terminal
buffers in the TSC region. Buffers
allocations are based on initial parameters
specified in SYS1.PARMLIB.

The BUFSIZE= parameter specifies the
size in bytes of each TSO terminal buffer.

The BUFFERS= parameter specifies the
total number of TSO buffers. The remaining
parameters deal with allocating the number
of buffers per user when a given number of
users is logged on.

TSO maintains a count of the number of
allocated buffers per user, both for input
and output. When the number of buffers
either for input or output rises to a given
level, the user is prevented from
continuing until more buffers are
available. If the specified maximum number
of input buffers are allocated, the
keyboard is locked up. If the maximum
number of output buffers are allocated, the
user's program is put into a wait. This
level is determined by the OWAITHI value
for output and the INLOCKHI value for
input.

When the number of logged on users
changes by the percentage specified in the

System Implementation 75

USERCHGE parameter, and when the number of
users falls below SLACK value, the number of
buffers per user is readjusted. The number
of buffers for input and output are
distributed in the same ratio as specified
by INLOCKHI and OWAITHI.

System Parameter Format

The format of the parameter records is:

parameter-owner keyword=value •••

The possible parameter-owners are:

• TS -- parameters for the Time sharing
Control Task.

76 Time Sharing Option Guide (Release 20.6)

e DRIVER -- parameters for the Time
Sharing Driver.

• TIOC -- parameters controlling terminal
buffer allocation.

Keywords cannot be continued but may be
repeated. This has the effect of
continuation, as repeated keyword values
are added on to those already specified.
When two parameters conflict, the last
value is used. Figure 42 shows an example
of system parameters for a single region
model 50 and for a double region model 65.
Figure 43 shows the syntax and meaning of
the start parameters.

PARAMETER
OWNER

TS

Page of GC28-6698-3, Revised September 1, 1971, By TNL: GN28-2502

KEYWORD

TERMAX=nnnn

REGNMAX=nn

MAP=nnnn

USERS=nnnn

DSPCH=cccccc

LPA=(module list)

REGSIZE(n)=
(nnnnnK, xxxxxK)

SUBMIT=nnn

TSCREGSZ=nnnnnK

DUMP=[DUMP J
NODUMP

MEANING

Specifies the maximum number of terminals the
installation wants to support. Must be less than
10000.

specifies the maximum number of TSO user regions.
Must be between 1 and 14 inclusive.

Specifies the number of entries in the User Main
storage Map for each user. Entry describes area to be
swapped. Used to reduce swapping of unused storage.

specifies the initial maximum number of users the
system will allow to log on. Must be between 0 and
the value specified on TERMAX. If nnnn greater than
TERMAX, TERMAX value will be used. Defaults to
TERMAX.

Standard SMF foreground parameters, See system
Management Facilities, GC28-6712.

Specifies first six characters of Time Sharing Driver.
Defines names of all four driver modules. Last two
characters must be 00 to 03. Defaults to IKJEAD, the
driver supplied with TSO.

List of modules to be included in Time Sharing Link
Pack Extension.

Specifies the time sharing region number and size of
that region. n is the region number and nnnnnK its
size. xxxxxK is size of Local system Queue Area
(LSQA). LSQA must be smaller than region size but
greater than zero. n must be between 1 and REGNMAX.
nnnnn and xxxxx are number of contiguous 1024 byte
areas wanted, should be even, and their sum may range
from 0 to 16382. Odd numbers specified will be
rounded up to next higher even number,.

Specifies maximum number of tracks in SUBMIT command
job queue. Defaults to limit set at system
generation.

specifies amount of main storage ,to be allocated to
Time Sharing Control Task region. nnnnn is number of
contiguous 1024 byte areas desired, must be even, and
may not be mOre than 16382. An odd number will be
rounded up to next higher even number. If not
specified in either SYS1.PARMLIB or in START command,
Time Sharing Control Task will calculate its own
region size.

DUMP indicates that swap units are to be marked
reserved. Necessary if a SWAP dump to betaken.

Figure 42. TSO system Parameter Syntax (Part 1 of 3)

System Implementation 77

PARAMETER
OWNER

DRIVER

KEYWORD

WAIT
NOWAIT

ACTIVITY
NOACTIVITY

OCCUPANCY
NOOCCUPANCY

SWAPLOAD
NOSWAPLOAD

AVGSERVICE
NOAVGSERVICE

PRIORITY
NOPRIORITY

PREEMPT
NOPREEMPT

BACKGROUND=nn
NOBACKGROUND

DECAYWAIT=nnnn

DECAYACT=nnnn

SUBQUEUES(n)=rnmm

CYCLES (n,m)=iii

MAXSWAP=(nrm)=iii

MAXOCCUPANCY(n,
m)=iii

SERVICE (n,m)=iii

MINSLICE(nrm)=iiii

MEANING

Specifies use of wait estimate option.

Specifies whether Region activity estimate is to be
used in assigning a user to a region. NOACTIVITY
required for single region system.

Specifies whether core occupancy estimates are to be
used in queue selection.

Specifies whether swapload is to be used in queue
placement.

Specifies average queue service time to be ~sed.

Specifies whether priority scheduling is to be used.

Specifies whether preemptive scheduling is to be used.

Specifies a percentage of CPU time guaranteed to
the background or no guaranteed time.

specifies in 100ths the decay constant for the wait
estimate. Assumes WAIT specified.

Specifies in 100ths the decay constant fo~ the
activity estimate. Assumes ACTIVITY specified.

specifies the number of queues for region n.

Specifies the number of service cycles to be given to
the mth queue of the nth region.

Specifies the maximum number of 1024 byte blocks which
may be allowed to a user on queue m, in region n.
Assumes SWAPLOAD specified.

Specifies the maximum amount of time in 100th of a
second a user on queue m in region n can reside in
core.

Specifies the average service time in 100ths of a
second for a user on queue m in region n.

Specifies the minimum time slice in 100th of a second
to be given to a user on queue m in region n.

Figure 42. TSO System Parameter Syntax (Part 2 of 3)

78 Time Sharing Option Guide (Release 20.6)

PARAMETER
OWNER

TIOC

KEYWORD

BUFSIZE=nn

BUFFERS=nn

OWAITHI=nn

INLOCKHI=nn

OWAIT LO=nn

INLOCKLO=nn

US ERCHG=nn

RESVBUF=nn

SLACK=nn

MEANING

Specifies size of terminal buffer. Default 44.

Total number of buffers.

Specifies maximum number of allocated output terminal
buffers per user in order to put a user program into
output wait.

Specifies the maximum number of allocated input
terminal buffers per user in order to lock a users
keyboard.

Specifies the number of allocated output buffers to
bring a user out of output wait state. In other words
if OWAITLO=4, when 4 or less buffers remain allocated,
the user is brought out of output wait.

specifies the number of currently allocated input
buffers to unlock the terminal keyboard for input. In
other words, when the number of allocated input
buffers falls to or below the INLOCKLO value, the
user1s keyboard is unlocked.

Specifies percentage of change in logged on users
needed to redistribute buffers and recalculate the
OWAITHI and INLOCKHI numbers during slack time.

Specifies the total number of terminal buffers that
must be free to avoid locking all terminals to prevent
input.

specifies number of logged on users that constitute
slack time.

System Implementation 78.1

?he estimates included in this chapter are
Lntended for planning purposes only. None
)f these estimates have been verified, and
:hey are subject to change. Verified
=stimates will appear in the publication
[BM System/360 Operating system: storage
Estimates, GC28-6551, when they are
3.vailable.

This chapter contains three sections:
main storage requirements, sample
configurations, and auxiliary storage
considerations. All figures in this
chapter are decimal, and nKn represents a
factor of 1024.

Main Storage Requirements

The main storage requirement for TSO is
divided into four major parts:

• An addition to the MVT basic fixed
requirement.

• The TCAM Message Control Program
requirement.

• The Time Sharing Control region
requirement.

• The foreground regions in which users'
programs are executed.

Only the first of these requirements has
any effect on the batch environment if time
sharing is not active. storage for the
TCAM, Time sharing Control, and froeground
reyions is obtained from the dynamic area
when the operator starts time-sharing
operations. This storage is returned to
the dynamic area when time sharing is
stopped, and is again available for batch
processing.

MVT BASIC FIXED REQUIREMENT

The main storage basic fixed re~irement
for an MVT system is for:

• The nucleus.
• The Master Scheduler Region.
• The Link Pack Area (LPA).
• The System Queue Area (SQA).

Storage for the basic fixed requirement is
allocated by the Nucleus Initialization
Program (NIP) when the system is started
and does not normally vary while the system
is running.

Storage Estimates

Nucleus

Including TSO at system generation adds
approximately 3K to the size of the
resident MVT nucleus, for a total
requirement of about 45K. In addition,
communication lines, like other I/O
devices, require 40 bytes each in the
nucleus for control blocks.

Master Scheduler Region

The master scheduler region is increased by
approxinately 4K to handle new or extended
operator commands for the time-haring
environment, and for extended error
recovery. The total requirement is about
16K.

Link Pack Area

One small TSO module is added to the
required MVT link pack area list of
resident modules. The minimum link pack
area size remains 10K. If the standard MVT
resident reenterable load module. and
resident SVC lists are used at system
generation, the LPA requirement is about
54K. If space is available, an additional
16K of SVC modules for time sharing are
appropriate for the resident list" for a
total LPA size of 70K.

Additional resident reenterable load
modules for time sharing are placed in an
extension to the link pack area allocated
in the Time Sharing Control region, and are
resident only when time sharing is active.
The size of this extension, called the Time
Sharing Link Pack Area (TSLPA), is
discussed with the Time Sharing Control
Region requirement.

System Queue Area

During time-sharing operations, use of the
system queue area is kept to a minimum by
~lacing as many control blocks as possible
1nto a local system queue area (LSQA)
defined in each foreground region. Control
blocks in the local SQA are swapped in and
out of main storage along with the
foreground job they apply to.

Some control blocks associated with
foreground jobs, such as queue elements for
named data sets and operator reply queue
elements, must remain in main storage while
the job is swapped out. Space for these
control blocks, and for all control blocks
associated with the tasks supervising the
time-sharing operation must be allocated

storage Estimates 87

Page of GC28-6698-3, Revised September 1, 1971, By TNL: GN28-2502

from the system queue area •. These
requirements must be considered when
setting SQA size at system generation or at
nucleus initialization.

MESSAGE CONTROL PROGRAM REQUIREMENT

The size of the TCAM Message Control
Program region depends largely on what
options are selected and what hardware is
present on the teleprocessing network. In
addition to the minimum requirement for the
Message Control Program routines, there are
requirements for each defined line group,
each additional terminal type, and for each
permitted user. If teleprocessing
applications other than TSO are present,
additional routines to handle different
buffering and queuing techniques will be
needed.

In a system with TSO as the only
teleprocessing application, with three
terminal types and two line groups, the
Message Control Program requirement is
expected to be about 52K plus 800 bytes for
each possible concurrent user. Although
the Message Control Program executes in a
problem program region, the region may be
smaller than the normal minimum problem
program region size (MINPART).

TIME SHARING CONTROL REGION REQUIREMENT

The Time Sharing Control region must
provide space for programs for the Time
Sharing Control Task, Region Control Tasks,

I several resident SVC routines, the Time
Sharing Driver, the time sharing extension
to the link pack area, and various control
blocks. Some of the control blocks are
repeated for each foreground region, for
each swap data set, or for each time
sharing user. An initialization routine
brought in when the operator starts time
sharing analyzes the time-sharing
parameters supplied by the installation,
calculates the region size requirement', and
obtains the region from the dynamic area.

The installation may override the
calculated TSC region size either in
SYS1.PARMLIB or on the START command. This
may be necessary if an installation written
driver has greater main storage
requirements than the driver supplied with
TSO.

Using a buffer length of 40 bytes, and
assuming eight buffers per time-sharing
user, a TSO configuration with two IBM 2314
swap data sets, one foreground region, and
20 users would require a time sharing
control region of about 87K. A larger
configuration, with two 2301 swap data sets

88 Time Sharing Option Guide (Release 20.6)

and two 2314 swap data sets, four
foreground regions, and 100 users would
require about 117K for the time sharing
control region.

DYNAMIC AREA REQUIREMENTS

The SEND operator command, like several
others already in the MVT configuration,
obtains and uses an 12K operator command
region from the dynamic area when the
operator enters it. This area is freed
when processing of the command is
completed.

When it is active, the time sharing
trace facility requires a 20R region from
the dynamic area.

FOREGROUND REGION REQUIREMENT

The foreground region contains the programs
invoked by the terminal user. Space must
be provided in the foreground region for
the local system queue area (LSQA) and for
four main storage subpools used for control
blocks for the command system.

The subpools defined are:

• Subpool 0-- 4K.
• Subpool 1--4K.
• Subpool 78--2K.
• Subpool 251--2K.

The m1n1mum foreground region size is 72K,
and all IBM-supplied command processors
except some of the language processors can
execute in this region.

AUXILIARY STORAGE REQUIREMENTS

The major additions to the system auxiliary
storage requirements for TSO are for the
swap data sets and new or larger system
libraries and data sets. The installation
must also consider the direct access
storage needs of the individual terminal
users, and make allowances for these in the
size of the system catalog and password
data sets.

SWAP DATA SETS

A swap data set is divided into swap
allocation units, each of which consists of
a device-dependent number of 2K records.
To avoid space fragmentation, space in the
swap data set is always assigned in
integral swap allocation units. Figure 47
shows the sizes of allocation units for
various swap devices.

