
Systems Reference Library

IBM System/360 Operating System:

Programmer's Guide to Debugging

This publication describes the major debugging
facilities provided with the System/360
Operating System for the assembler language
programmer:

• Abnormal termination and snapshot dumps.
• Indicative dumps.
• Storage image dumps.
• Stand-alone hexadecimal dumps.

The text explains those aspects of system
control pertinent to denugging, tells what
information each debugging facility offers, and
outlines procedures for invoking and
interpreting dumps issued at the three operating
system levels: PCP, MFT, and MVT.

Debugging facilities inherent in higher
languages and additional aids open to the
assembler language programmer are discussed in
other SRL publications.

Information in this publication for T80
is for planning purposes until that item is
available.

File No. 8360-20
Order No. GC28-6670-4 OS

Page of GC28-6670-·4, Revised March 1, 1971, by TNL: GN28-2457

This is a major revision of. and obsoletes C28-6670-3. For a
description of the major changes see page 7. All changes to
t.he text, and smaLL changes to illustrations, are indicated
by a vertical line to the left of the change. New figures
have been added. Changed and added illustrations are denoted
by the symbol • to the left of the caption.

I 1'his edition, with Technical Newsletter GN28-2457, applies
to release 20.1 of IBM System/360 ~)erating System and to all
subsequent releases until otherwise indicated in new editions
or Technical Newsletters. Changes are continually made to
the information herein; before using this publication in
connection with the operation of IBM systems, consult the
latest IBM System/360 Newsletter, Order No. GN20-0360, for
the editions that are applicable and current.

Requests for copies of IBlVl publications should be made to
your IBM representative or to the IBM branch office serving
your locality.

A form for readers' comments is provided at the back of
the publication. If the form has been removed, comments may
be addressed -to IBM Corporation, Programming Systems
Publications, Department D58, P.o. Box 390, Poughkeepsie,
N. Y. 12602

I (0 Copyright International Business Machines Corporation 1967,1968,1969,1970,1971

-

Page of GC28-6670-4, Revised March 1, 1971, by TNL: GN28-2457

This publication is intended to help you
use the debugging facilities provided with
the IBM System/360 Operating System. To
fulfill this purpose, the publication is
divided into two sections: "Section 1:
Operating System Concepts," and "Section 2:
Interpreting Dumps." You should read the
introduction to familiarize yourself with
the debugging facilities before proceeding
to Section 1.

Section 1 deals with internal aspects of
the operating system that you should know
to use the debugging facilities
efficiently.. A working knowledge of this
information will provide you with the means
of determining the status of the system at
the time of the failure, and the course of
events which led up to that failure. It
includes information from other System
Reference Library publications, Program
Logic Manuals, and Installation Guides.
You should be familiar with the information
covered in Section 1 before attempting to
use Section 2.

Section 2 includes instructions for
invoking, reading, and interpreting dumps
issued by systems with PCP, MFT, and MVT.
It presents an after-the-fact look at a
dump. You've put in a run, it failed, and
you now have a dump before you. Where do
you start; what do you look at; what does
it all mean? The section begins with a
general debugging procedure, followed by
topics dealing with each type of dump.
Each topic tells how to invoke a particular
dump., what information the dump contains,
and how to use this information in
following the debugging procedure. The
material in Section 2 is intended to aid
you in interpreting dumps and isolating
errors.

Before reading this publication, you
should have a general knowledge of
operating system features and concepts as
presented in the prerequisite publications.
Occasionally, the text refers you to other
publications for detailed discussions
beyond the scope of this book.

Preface

For information on debugging facilities
provided within higher languages, consult
the programmers' guides associated with the
respective languages. Other Systern/360
Operating System publications, such as
TESTRAN and Messages and codes, descrine
additional debugging aids provided for the
assembler language programmer.

Prerequisite Publications

IBM systern/360: Principles of
Operation, GA22-6821

IBM System/360 Operating System:

Concepts and Facilities, GC28-6535

Supervisor and Data Management Services,
GC28-6646

Reference Publications

IBM System/360 Operating System:

system Control Blocks, GC28-6628

Messages and Codes, GC28-6631

Supervisor and Data Management Macro
Instructions, GC28-6647

System Programmer's Guide, GC28-6550

Service Aids, GC28-7619

TCAM Programmer's Guide and Reference,
GC30-2024.

TCAM serviceability Aids, GY30-2027.

~CAM, GY30-2029.

-

-

Page of GC28-6670-4, RE~vised March 1, 1971, by TNL: GN28-2457

SUMMARY OF MAJOR CHANGES - RELEASE 20.1 6

SU~~ARY OF MAJOR CHANGES - RELEASE 20

INTRODUCrTION • •

SECTION 1: OPERATING SYSTEM CONCEPTS
Task Management

Task Control Block
Request Blocks • •
Active RB Queue • • • • • •
Load List

7

9

• 11
• • 11

11
• • 11
• • 14
• • 14

Job Pack Area Queue (MFT with
Subtasking only) • • • • • • • • • • 15
Effects of LINK, ATTACH, XCTL, and
LOAD • • • • '. • • • • • • • • • • • 16
System Task Control Differences • • 17

• • 20
With PCP 20
with MFT

Main Storage supervision • • •
Storage Control in Systems
Storage Control in Systems
(Without subtasking) • • •
storage Control in Systems with
MFT (With Subtasking)
Storage Control for a Region in
Systems with MVT • • • • • • • •
Storage Control for a Subpool in
Systems with MVT • • • • •
Storage Control for a Load Module

• • 21

• • 21

• • 22

• • 23

in systems with MV'l' • • • • • • • • 24
System Control Blocks and Tables • • • • 26

Communications Vector Table (CV'l') • 26
Task Input/Output Table (TIOT) ,. • • 26
Unit Control Block (UCB) • • • • 26
Event Control Block (ECB) 26
Input/Output Block (lOB) • • . • 26
Data Control Block (DCB) • • 26
Data Extent Block (DEB) • • 26
Summary of Control Block
Relationships • • • •

Traces • • • • • • • •
Save Area Chain
Trace Table

SECTION 2: INTERPRETING DUMPS.
General Debugging Procedure
Debugging Procedure Summary

ABEND/SNAP Dump (Systems with PCP and

• • 26
• • 28
• • 28
• • 29

• • 31
• • 31
• • 33

MFT) • • • • • • • • • • • • • 34
Invoking an ABEND/SNAP Dump
(PCP,MFT) ••••••• • • 34
Contents of an ABEND/SNAP Dump
(PCP,MFT) ••••••••• • • 37

Contents

Guide to Using an ABEND/SNAP Dump
(PCP, MF'T) • • • • • • • • • • • •

ABEND/SNAP Dump (Systems with MVT) • •
Invoking an ABEND/SNAP Dump (MVT)
Contents of an ABEND/SNAP Dump
(MVT) ••••••• '. • • •

Guide to Using an ABEND/SNAP Dump

· 48
50

• 50

• 50

(MVT) ••••••••••••••• 67
Indicative Dump • • • •• • • • • 69

Contents of an Indicative Dump ••• '69
Guide to Using an Indicative Dump • 71

Stol~age Image Dump • • • .. • • • •• 72
Damage Assessment Routine (DAR) ••• 72
System Failure • • • • • • ••• • 72
The SYS1. DUMP Data Set • • • 72

Tape • • • • • • • • • • 72
Direct Access . • 72

The Print Dump Service Aid
(IMDPRDMP) for MFT, MVT and M65MP 73
The Print Dump Program (IEAPRINT) 73

Input to the Print Dump Program .• 75
Output From the Print Dump Program • 75

Contents of a Storage Image Dump • • • 75
Low Storage and Registers 75
Main St.orage • • • • 75

Guide to Using a Storage Image or a
Stand-Alone Dump • • • • •

Determining the Cause of the Dump
Task Structure • • • • • _
Task Status - Active RB Queue
Main Storage Contents ••• •

• • 77
78
78

• • • 81
• • • 82

83 Main Storage supervision •
I/O Control Blocks • • • • • 83
TSO Control Blocks
Trace Table

• • • • 85
• • • • 86

APPENDIX A: SVCs · · · · 88

APPENDIX B: COMPLETION CODES . · · · · 93

APPENDIX C: SYSTEM MODULE NAME
PREE'IXES · 97

APPENDIX D: LIST OF ABBREVIATIONS · 98

APPENDIX E: ECB COMPLETION CODES 99

APPENDIX F: UCB SENSE BYTES · .100

APPENDIX G: SERVICE AIDS · .101

APPENDIX H: TCAM DEBUGGING AIDS · · · .102

APPENDIX J: CONTROL BLOCK POINTERS · .102

Contents 5

Illustrations

Figures

Figure 1. Cont:r-ol Information
Available Through the TCB • . 11

• • 13
14

Figure 2. RB Formats ••••
Figure 3. Active RB Queue
Figure 4. Load List (PCP, MFT)
Figure 5. Job Pack Area queue
Figure 6. Main storage Snapshot

• . • 14
· • 16

(PCP) • • • . ~ • • • . • • • • · • 17
Figure 7. Main storage Snapshot (MFT
Without Subtasking) • . • • . • . . 18
Figure 8. Main storage Snapshot (MFT
With Subtasking) . • . • . • . • . • . . 19
Figure 9. Main Storage Snapshot
(MVT) • • • • • • • • • • • • 19
Figure 10. storage Control (PCP)
Figure 11. storage Control for a

20

Partition (IVIFT Without Subtasking) •• 21
Figurc~ 12. storage Control for Subtask
Storage (MFT with subtasking) . . 21
Figure 13. storage Control for a
Region (r.-lV'I') ••••••••••••• 23
Figure 14. storage Control for a
Subpool (MV'I') ••..••.•••••. 24
Figure 15. storage Control for a Load
Module (MVT) •••••••• • • 25
Figure 16. Control Block
Relationships ••••••
Figure 17. Save Area Trace ••••
Figure 18. Trace Table Entries (PCP)
Figur'~ 19. Trace Table Entries (MFT)
f'igurE~ 20. Tracc~ Table Entries (MVT)

Tables

Table 1. PermanE~ntly Assigned
Hardware Control Words • • • • •

Diagram

· • 27
• • 28

• 29
· 29
· 29

· . 78

Diagram 1. Finding the TCB • • • • . 80

Figure 21. Trace Table Entries (MVT
with Model 65 multiprocessing)
Figure 22A. sample of an ABEND Dump
(PCP, MFT) •••••••• '. • • •
Figure 22B. Sample of an ABEND Dump

• • 30

35

(PCP, MFT) • • • • . • . • • '. • • • • • 36
Figure 23. SYSABEND DD statements •• 37
Figure 24A. Sample of Complete ABEND
Dump (MVT) •••••••• '. • • 51
Figure 24B. sample of Complete ABEND
Dump (MVT) •.•• • 52
Figure 25. Contents of an Indicative
Dump • . • • . • • • • •• • • 69
Figure 26. Sample JCL Statement
Required for IMDPRDMP • • •. •
Figure 27. sample JCL Statements
Required for IEAPRINT • • • '. • •
Figure 28. Sample of a Storage Image

• • 73

· 74

Dump • • • • • • • • • .. • • • .. • 76
Figure 29. Finding the Partition TCBs
in MFT ••••••••••... '. • ~ • 79
Figure 30. IMDPRDMP TCB Summary 81
Figure 31. Determining Module From
CDE in MVT .•••••••..•
Figure 32. Sub pool Descriptions in
MVT - IMDPRDMP Storage Print
Figure 33. I/O Control Blocks

.. • 82

84
.. • 85

Figure 34. Sample Trace Table Entries
(PCP and MFT) • 86
Figure 35. Sample Trace Table Entries
(MVT) • • • • • . • .. • 87

Control Block Flow .. .105 Figure 36.
Figure 37. MVT Storage Control Flow .107

6 Programmer's Guide to Debugging (Release 20.1)

Page of GC28-6670-4, Revised March 1, 1971, by TNL: GN28-2457

Summary of Major Changes--Release 20.1

r------------------T------------------------------------~------------------------------,
I Item I Description I Areas Affected I
~------------------+-----------------------------,--------+------------------------------~
I TCAM I A brief descrip,tion of TCAM debugging I SECTION 2: ABEND/SNAP Dump I
I laids and a new SVC. I (PCP and MFT) I
I I I ABEND/SNAP Dump I
I 1 I (MVT) I
I 1 IAPPENDIX A I
I I IAPPENDIX H I
~------------------+-------------------------------------+------------------------------~
I TSO IThe addition of new SVCs and a ISECTION 2: TSO Control Blocks I
I lsummary of the control blocks IAPPENDIX A I
I lformatted by IMDPRDMP. I I L __________________ i _____________________________________ i ______________________________ J

-
Summary of Major Changes - Release 20.1 6.1

Summary of Major Changes--Release 20

--
r---------------------T--T----------------------,
I Item I Description I Areas Affected I
~---------------------+--t----------------------~
I IMDPRDMP I IMDPRDMP is used instead of IEAPRINT to I "Guide to Using a I
I I print MFT and MVT dumps. I storage Image Dump" I
~---------------------+------------,------------------------------t----------------------~
I TSO I New SVCs in Appendix A. This informationl Appendix A. I
I I is for planning purposes only. I I
l _____________________ ~ ____________ , ____________________________ ~-~----------------------J

summary of Major Changes - Release 20 7

-

-'

Debugging is possibly the most important
aspect of programming. Few programmers,
especially those involved in control
program modification, ever produce a
perfect solution in one run; abnormal
termination is inevitable and must be
prepared for.

Program debugging in an operating system
environment is made more difficult by the
large volume of control information, the
presence of contr,ol program routines, and
the changing contents of main storage.
Frequently, a large part of debugging lies
in determining what state the system was in
when the error occurred and which essential
information was obscured.

To debug problem programs efficiently,
you should be familiar with the system
control information reflected in dumps.
This control information, in the form of
control blocks and traces, tells you what
has happened up to the point of error and
where key information related to the
program is located.

This book is therefore designed to:

• Help you prepare proper dump data set
definitions.

• Provide an insight into the IBM
System/360 Operating System and its
complex aspects of task management,
storage supervisor, control blocks, and
debugging aids.

• Give you a starting point, an approach,
and a method of debugging.

The IBM System/360 Operating System
provides extensive degugging facilities to
aid you in locating errors and determining
the system state quickly. Some debugging
aids, such as console messages, provide
limited information that may not always
help you identify the error. This manual
discusses those debugging facilities that
provide you with the most extensive
information:

Introduction

a. Abnormal termination (ABEND) and
snapshot (SNAP) dumps.

b. Indicative dumps.
c. storage image dumps.
d. Stand-alone hexadecimal dumps.

ABEND and SNAP Dumps are invoked by ABEND
and SNAP macro instructions, respectively.
They are grouped in a single category
because they provide identical information.
In addition to a hexadecimal dump of main
storage, they can contain conveniently
edited control information and displays of
the operating system nucleus and trace
table.

Indicative dumps contain control
information useful in isolating the
instruction that caused an abnormal end of
task situation. The information is similar
to that given in an ABEND/SNAP dump, but
does not include a dump of main storage.

Storage image dumps are taken by the system
dump facility at the time of a system
failure. The dump is written to the
SYS1.DUMP data set. For a PCP dump, use
the IEAPRINT print dump program to print
the SYS1.DUMP data set. The dump consists
of a first page, containing edited control
information, followed by a dump of the
printable contents of main-storage,
beginning at location 00. Each line
contains the hexadecimal address of the
first byte in the line, eight main-storage
words in hexadecimal, and the same eight
words in EBCDIC.

For MFT, MVT, and M65z...1P dumps, use the
IMDPRDMP print dump program to print the
SYS1.DUMP data set. The output of IMDPRDMP
is described in the publication, IBM
System/360 Operating systew: service Aids,
GC28-6719.

Stand-alone dumps, invoked by the dump
program you have produced from the IMDSADMP

I macro instruction (see Appendix G), offer a
complete picture of main storage at a given
time. They are, for the most part,
unedited. Each line contains the
hexadecimal address of the first byte in
the line, eight main-storage words in
hexadecimal, and the same eight word~ in
EBCDIC.

Introduction 9

Genera.l Notes:

• Displacements and addresses shown in
the text and illustrations of this
publication are given in decimal
numbers, followed by the corresponding
hexadecimal number in parentheses,
e.g., ~CB+14(E); location 28(lC); SVC
42(2A). All other numbers in the text
are decimal, e.g., the seventeenth word
of the TeE; a 4-word control block; 15
job steps. .- -

10 Programmer's Guide to Debugging (Release 20)

• Control block field names referred to
are those used in the IBM Syst.em/360
Operatina System: _System Control
Blocks manual, GC28-6628.

• Wherever possible, diagrams, and
reproductions of dumps have been
included to aid you during the
debugging process.

Page of GC28-6670-4, Revised March 1" 1971, by TNL: GN28-2457

Section 1: Operating System Concepts

'1'0 effectively use the debugging aids
provided by the IBM System/360 Operating
system, you should be familiar with those
control blocks, traces, and other control
information that can lead you quickly to
the source of error. This section of the
manual introduces you to the control
information that you must know to interpret
dumps. It is divided into four topics:

• TASK MANAGEMENT
• MAIN STORAGE SUPERVISION
• SY STEIvl CON'I'ROL BLOCKS AND TABLES
• TRACES

The first two topics deal with those
aspects of task management and main storage
management, respectively, that are
represented in dumps. The third topic
describes the remaining system control
blocks and tables helpful in pinpointing
errors. The last topic covers tracing
features that are useful in re-creating the
events that led to an error condition.

Note: The descriptions of system control
blocks and tables in this section emphasize
function rather than byte-by-byte contents.
Appendix J summarizes the contents of those
control blocks most useful in debugging.

For a more detailed description of
system control blocks and tables, please
see the system Control Blocks publication,
GC28-6628.

Task Management

The ,task management control information
most useful in debugging with a dump
includes the task control block and its
associated request blocks and elements.
These items have the same basic functions
at each of the three control program
levels. Their functions, interactions, and
relationships to other system features are
discussed in this topic. A summary of how
task supervision differs at each system
level concludes the topic.

Task Control Block

The operating system keeps pOinters to all
information related to a task in a task
control block (TCB>. For the most part"
the TCB contains pointers to other system
control blocks. By using these pointers,

you can learn such facts as what I/O
devices were allocated to the task, which
data sets were open, and which load modules
were requested.

Figure 1 shows some of the control
information that can be located by using
the pointers in the TCB. Later, in the
discussion of system control blocks and
tables, Figure 1 is expanded to show the
actual block names and pointer addresses.

c=~
(-=--=--=--=,71
I I I
I Devices I I
I I I
L ___ ')

Figure 1. Control Information Available
Through the TCB

Request Blocks

Frequently, the routines that comprise a
task are not all brought into main storage
with the first load module. Instead, they
are requested by the task as it requires
them. This dynamic loading capability.
necessitates another type of control block
to describe each load module associated
with a task -- a request block (RB). An RB
is created by the control program when it
receives a request from the system or from
a problem program to fetch a load module
for execution, and at other times, such as
when a type II supervisor call (SVC) is

Task Supervision 11

issued. By looking at ~Bs, you can
determine which load modules have been
executed, why each lost control, and, in
most cases, which one wa s "tJle !30UrCe of an
error condition.

'rhere are seven types of RBs created by
the control proSlram:

• Program request block (PRE)
• Supervisor request block (SVRB)
• Interrupt request block (IRB)
• Supervisor interrupt request block

(SIRB)
• Loaded prog:ram reque st block (LPRB)
• Loaded reques"t block (LRB)
• Finch request block (FRB)

Of these, you will most often encounter
the PRE and SVRB in dumps. 'Ihe type of RB
created depends on the routine or load
module with which it is associated.

PRB (Systems with PCP and M¥-~~: A PRB is
created whenever an XCTL, LINK, or ATTACH
macro instruction is issued. It is located
immediately before the load module with
which it is associated.

PRB (~ystems with MVT): A PRB is created
whenever an XCTL or LINK macro instruction
is issued. It is located in a fixed area
of the operating system.

SVRB: An SVRB is created each time a type
II, III, or IV supervisor call is issued.
(Type I SVC routines are resident, but run
disabled; they do not require a request
block.) This block is used to store
information if an interruption occurs
during execution of these SVC routines. A
list of SVCs, including their numbers and
types, appears in Appendix A.

IRB: An IRB is created each time an
asynchronous exit _"!:..outin~ is executed. It
is associated with an event that can occur
at an unpredictable time during program
execution, such as a timing routine
initiated by an S'I'IMER macro instruction.
The IRB is filled at the time the event
occurs, just; before control is given to the
exit routine.

SIRB: An SIRB is similar to an IRB, except
that it is associated only with
IBM-supplied input/output error routines.
Its associated error routine is fetched
from the SYS1.SVCLIB data set.

LPRB: (PCP and NFT only): An LPRB is
created when a LOAD macro instruction is
issued unless the LOAD macro instruction
specifies:

• A routine that has already been loaded.

• A routine that is being loaded in
response to a LOAD macro instruction
previously issued by a task in the
partition (NFT with subtaskinq).

• A routine that is "only loadable" (see
LRB).

An LPRB is located i~nediately before the
load module with which it is associated.
Houtines for which an LPRB is created can
also be invoked by XCTL, LINK, and ATTACH
macro instructions.

LRB: (PCP and NFT only): The LRB is a
shortened fonn of an I~PRB. Routines
associated with LRBs can be invoked only by
a LOAD macro instruction. This attribute
is assigned to a routine through the OL
(only loadable) subparameter in the PARM
parameter of the EXEC statement that
executes the linkage editor. The most
common reason for assigning this attribute
is that linkage conventions for XCTL, LINK,
and ATTACH are not followed. This request
block is located immediately before the
load module with which it is associated.

FORB (MFT with sUbtaskinq only): An FRE is
created and attached t:o the job pack area
queue, during LOAD macro instruction
processing, if the requested module is not
already in the job pack area. The FRB
describes a module being loaded in response
to a LOAD macro instruction. Any
Su.bsequent requests for the same module,
received while it is still being loaded,
are deferred by means of wait list elements
(WLEs) queued to the F'RB. When the module
is fully loaded, an LRB or an LPRB is
created, the FRE is removed from the job
pack area queue, and any requests,
represented by wait list elements, are
reinitiated.

Figure 2 shows the relative size of the
seven types of RBs and the significant
fields in each.

In Figure 2, the "size" field tells the
number of doublewords in both the RB and
its associated load module. The PSW
contained in the "resume PSW" field
reflects the reason that the associated
load module lost control. Other fields are
discussed in succeeding topics.

12 Programmer's Guide to Debugging (Release 20.1)

LPRB
-12 Major RB address - (MFT with subtasking)

-8 Load list pointers
(PCP, MFT)

-4 Absent (MVT)

0 Module name
(PCP, MFT)
Last ha I f of user's
PSW (MVT)

8

1
Size Flags

12(C) I' Entry point (PCP,

Use Ct • MFT)i CDE (MVT)

16 (10)

Resume PSW

28(IC)j t
WaitCt

Next RB

SVRB
0 Module name

(PCP, MFT)
Last half of user's
PSW (MVT)

8
Size I Flags

12 (C) 1+ Entry point (PCP,

Use Ct • MFT)i CDE (MVT)

16 (10)

Resume PSW

28 (1C) It
Wait Ct Next RB

32 (20)

Register
Save Area

96 (60)

Extended
Save Area

.Figure 2. RB Formats

LRB

-8

-4

o

Load list pointers
(PCP, MFT)

Absent (MVT)

Module name
(PCP, MFT)
Last half of user's
PSW (MVT)

Program Extent List
r;:-0 - Leng-;h of:x~t i~ --,
I hiearchy 0 I
1.---------/
I + 4 Length of extent in I

hiearchy 1
r----------i
I + 8 Address of extent in I

hiearchy 0
r--------i
1+ 12(C) Address of extent in I
L _ hiearchy 1 ___ -1

IRB
o

8

12(C)
Use Ct

28(lC
Wait

Module name
(PCP, MFT)
Last ha I f of user's
PSW (MVT)

Flags

Resume PSW

t Next RB

32 (20)

Register
Save Area

PRB

o

8

12(C)

Use Ct

16 (10)

Module name
(PCP, MFT)
Last half of user's
PSW (MVT)

Flags

Resume PSW

28 (1C) i
WaitCt Next RB

FRB

Module name

8
Size Flags

12 (C)
Address of WLE

16 (10)
Address of TCB

20 (14)
Address of LPRB

Note: Program extent list is added to LPRB, LRB, or PRB if the
program described was hiearchy block loaded.

SIRB
o

8

12(C)

Use Ct

16 (10)

28 (Ie)

WaitCt

32 (20)

Module name
(PCP, MFT)
Last half of user's
PSW (MVT)

Resume PSW

t Next RB

Register
Save Area

Task supervision 13

Thus far, the characteristics of the TCB
and its associated RBs have been discussed.
With the possibility of many RBs
subordinate to one task, it is necessary
that queues of RBs be maintained. In
systems with PCP and MFT without
subtasking,two queues are maintained by
the system -- the active RB queue and the
load list. In MFT systems with subtasking,
a job pack area queue, containing FRBs, and
LRBs and LPRBs that represent reenterable
modules is also maintained. MVT systems
maintain an active RB queue and a contents
directory. The contents directory is made
up of three separate queues: the link pack
area control queue (LPAQ); the job pack
area control queue (JPAQ); and the load
list.

Activ~ RB Queue

The active RB queue is a chain of request
blocks associated with active load modules
and SVC routines. This queue can contain
PRBs, SVRBs, IRBs, SIRBs, and under certain
circumstances, LPRBs. Figure 3 illustrates
how the active RB queue links together the
TCB and its associated RBs.

,..---------

ABC

f== I L~d 1- I- -- "ad ~ 1 l-==-= mad"le._ - - - . SVC ,""Hoe. ~ _

Figure 3. .Acti ve RB Queue

The request blocks in the active RB
queue in Figure 3 represent three load
modules. Load module A invokes load module
B, and B, in turn, invokes C. When
execution of A began, only one RB existed.
When the first invoking request was
encountered, a second RB was created, the
TCB field that pOints to the most recent RB
was changed, and A's status information was

stored in RB-A. A similar set of actions
occurred when the second invoking request
was encountered. As each load module is
executed and control is returned to the
next higher level load module, its RB is
removed from the chain and pointers are
updated accordingly.

Load List

The load list is a chain of request blocks
or elements associated with load modules
invoked by a LOAD macro instruction. The
load list differs from the active RB queue
in that RBs and associated load modules are
not deleted automatically. They remain
intact until they are deleted with a DELETE
macro instruction or job step termination
occurs. By looking at the load list, you
can determine which system and problem
program routines were loaded before the
dump was taken. The format of the load
list differs with cont:['ol program levels.

Systems with PCP and MfT <without
'subtasking) : At these control program
levels, the load list associated with a TCE
contains LRBs and LPRBs. RBs on the load
list are linked together some\<l,hat
differently from those on the active RB
queue because of the characteristics of the
LOAD macro instruction. Because RBs may be
deleted from a load list in a different
order than they were created (depending on
the order of DELETE macro instructions),
they must have both forward and backward
pointers. Figure 4 illustrates how a load
list links together a TCB and three RBs.

Figure

A

~
~

[==> ······1'C8· /1.-1_---'

[- C

4. Load List (PCP, MFT)

14 Programmer's Guide to Debugging (Release 20)

--

Here, each RB contains a pointer both to
the previous RB and the next most recent RB
in the list. If there is no previous or
more recent RB, these fields contain zeros
and a pointer to the TCB, respectively.

Another field of a load list RB that
merits consideration is the use count.
Whenever a LOAD macro instruction is
issued, the load list is searched to see if
the routine is already loaded. If it is
loaded, the system increments the use count
by one and passes the entry point address
to the requesting routine.

Each time a DELETE macro instruction is
issued for the routine, the use COlmt is
decremented by one. When it reachE!s zero,
the RB is removed from the load list and
storage occupied by the associated routine
is freed.

systems with MFT (with subtasking): At
this control program level, the load list
is used as described for PCP and MFT
without subtasking, with the following
exceptions:

1. The LRBs and LPRBs queued on the load
list represent modules that are not
reenterable. LRBs and LPRBs
representing reenterable modules are
queued on the job pack area queue.

2. When a LOAD macro instruction is
issued, the system searches the job
pack area queue before searching the
load list.

Systems with MVT: Instead of LRBs and
LPRBs created as a result of LOAD macro
instructions, the load list maintained by a
system with MVT contains elements
representing load modules. Load list
elements (LLEs) are associated with load
modules through another control medium
called the contents directory.

The contents directory is made up of
three separate queues: the link pack area
control gueue (LPAQ), the job pack area
control gueue (JPAQ), and the load list.

The LPAQ is a record of every prog-ram in
the system link pack area. This area
contains reenterable routines specified by
the control program or by the user. The
routines in the system link pack area can
be used repeatedly to perform any task of
any job step in the system. The entries in
the LPAQ are contents directory entries
(CDEs) •

There is a JPAQ for each job step in the
system that uses a program not in the link
pack area. The JPAQ, like the LPAQ, is
made up of CDEs. It describes routines in
a job step region. The routines in the job
pack area can be either reenterable or not

reenterable. These routines however,
cannot be used to perform a task that is
not part of the job step.

The load list represents routines that
are brought into a job pack area or found
in the link pack area by the routines that
perform the Load function. The entries in
the load list are load list elements, not
CDEs. Each load list element is associated
with a CDE in the JPAQ or the LPAQ; the
programs represented in the load list are
thus also represented in one of the other
contents directory queues.

Load list elements also contain a count
field that corresponds to the use count in
a I,PRB or LRB. Each time a LOAD macro
instruction is issued for a load module
already represented on the load list, the
count is incremented by one. As
corresponding DELETE macro instructions are
issued, the count is decremented until it
reaches zero. An LLE has the following
format:

o

Byt:e 0: Re se,rved (RES).

Byt:es 1-3: Pointer to the next more recent
LLE on the load list.

Byte 4: Count.

Bytes 5-7: Pointer to the corresponding
CDE.

More will be said about CDEs in the next
topic of section 1, titled "Main Storage
supervision."

Job Pack Area Queue (MFT with subtasking
only)

In an MFT system with subtasking, the job
pack area queue is a chain of request
blocks associated with load modules invoked
by a LOAD macro instruction. The queue
contains FRBs, and those LRBs and LPRBs
that represent reenterable modules. FRBs
are queued on the job pack area queue until
the requested module is completely loaded.
When the module is completely loaded into
mai.n storage, the FRB is removed from the
job pack area queue and replaced with an
LBR or an LPR queue on the job pack area
queue if the loaded module is reenterable,
and on the load list if it is not.

In the MFT with subtasking
configuration, the load list represents
non-reenterable modules, while the job pack

Task supervision 15

area queue represents only reenterable
modules within the partition. These RBs on
the job pack area queue are not deleted
dutomatically, but remain intact until they
are deleted by a DELETE macro instruction,
or until job step termination occurs.
Reenterable load modules are therefore
retained in the partition for use by the
job step task or any subtasks which may be
created.

Whenever a LOAD macro instruction is
issued, the job pack area queue is
searched. If the routine is already fully
loaded and represented by an LRB or an LPRB
on the JPAQ (the routine is reenterable),
the system increments the use count by one
and passes the module entry point address
to the requesting routine. If an FRB for
the requested module is found, a wait list
element (WLE) representing the deferred
request is queued to the FRB, and the
request is placed in a wait. When the
requested routine is fully loaded, the
system releases the request from the wait
condition, and the request is re-initiated.
If no RB for the requested routine is
found, an FRB is created and queued on the
JPAQ. The system then searches the load
list of the :requesting task for an RB for
the requested routine. If an RB for that
routine is found on the load list (the
routine is not reenterable), the use count
is incremented by one, the entry point
address of the module is passed to the
requesting routine, and the FRB is dequeued
from the JPAQ. If no RB is found on the
load list, the FRB remains on the JPAQ and
the system begins loading the requested
module.

Each time a DELETE macro instruction is
issued for the routine, the use count is
decremented by one (the DELETE routine
ignores FRBs). When the use count reaches
zero, the RB is removed from the queue.

Figure 5 illustrates how the job pack area
queue is chained to a TCB.

In Figure 5, each HB contains a pointer to
the previous RB and a pointer to the next
RB on the queue. If there is no previous
RB on the queue, that pointer will contain
zero; if there is no next RB on the queue
(this RB is the most recent on the JPAQ),
the next RB pointer will pOint back to the
job pack area queue pointer in the PIB.

Two wait list elements (WLEs) are queued
to FRB-C representing deferred requests
waiting until the· initial loading of the
module is completed. The last WLE contains
zero in its forward. pointer, indi cating
that it is the las·t element on the WLE
queue.

LPRB-A

<=====:­

g -8
HI$ ~

bcm
A 7

~- ~~ -- ----
--- ----
--- ---
--- ---

- - ----
-- ----

Figure 5. Job Pack A:rea queue

Effects of LINK, ATTAC~, XCTL, and LOAD

In the previous paragraphs we have
mentioned the LINK, AT~rACH, XCTL, and LOAD
macro instructions. A brief description of
each will be helpful at this point:. LINK,
ATTACH, XCTL, and LOAD.r though similar,
have some distinguishing characteristics
and system dependencies worth'mentioning.
By knowing what happens when these macro
instructions are issued, you can make more
effective use of the active RB qUE~ue and
the load list.

LINK: A LINK results in the creation of a
PRB chained to the active RB queue. Upon
completion of the invoked routine, control
is returned to the invoking routine. In
systems with PCP and MFT, the RB is removed
from the queue. The storage occupied by
the invoked routine is freed unless the
routine is also represented on the load
list, or on the job pack area queue in MFT
systems with subtasking. In systems with
MVT, the use count in 1:he RB is decremented
by one; if it is then :!:ero, the RB and the
storage occupied by thE:! routine are marked
for deletion. A LINK macro instruction
generates an SVC 6.

ATTACH: An ATTACH is similar to the other
three macro instructions in systems with
PCP or with MFT withou1: subtasking. In
systems with MFT (with subtasking) or MVT,

16 Programmer's Guide to Debugging (Release 20)

-"

ATTACH is the means for dynamically
creating a separate but related task a
subtask. At the PCP and MFT (without
subtasking) levels, tasks cannot create
subtasks. ATTACH effectively performs the
same functions as LINK at these control
program levels, with two notable additions:

1. You can request an exit routine to be
given control upon normal completion
of the attached routine.

2. You can request the posting of an
event control block upon the routine's
completion.

Exit routines are represented by additional
RBs on the active RB queue. The ATTACH
macro instruction generates an SVC 42(2A).

XCTL: An XCTL also results in the creation
of a PRB and immediate transfer of control
to the invoked routine. However, XCTL
differs from the other macro instructions
in that, upon completion of the invoked
routine, control is passed to a routine
other than the invoking routine. In fact,
an XCTL does not result in the creation of
a lower level RB. Instead, the invoking
routine and its associated RBs"are deleted
when the XCTL is issued. In effect, the RB
for the invoked routine replaces the
invoking routine's RB. The XCTL macro
instruction generates an SVC 7.

LOAD: The LOAD macro instruction was
treated previously in the discussion of the
load list. To summarize: the system
responds to a LOAD by fetching the routine
into main storage and passing the entry
point address to the requesting routine in
register o. Because the system does not
have an indication of when the rout:ine is
no longer needed, a LOAD must be
accompanied by a corresponding DELETE macro
instruction. If not, the routine and its
RB remain intact until the job step is
terminated. The LOAD macro instruction
generates an SVC 8.

system Task Control Differences

Thus far, this topic has dealt with the
aspects of task supervision that are
similar at the three control program
levels. There are, however, some major
areas of difference, namely:

1. The number of tasks that can be known
to the system concurrently.

2. The layout of main storage.

3. The additibnal main storage control
information in systems with MVT.

The first two subjects are discussed
here, by system. The third subject,
because of its volume, is discussed in the
next topic of Section 1.

systems with PCP: The distinguishing
characteristic of an operating system with
the primary control program is that it
handles a single task. It has one TCB at
any given time, which resides in the system
nucleus. Jobs are processed sequentially,
one step at a time. ATTACH macro
instructions are treated similarly to
LINKs; that is, they do not create
subtasks.

Figure 6 is a snapshot of main storage
in a system with PCP. The fixed area
contains those routines, control blocks,
and tables that are brought into main
storage at IPL, and never overlaid. It
also may contain optional access method and
SVC routines which are normally
nonresident, and an optional list of
absolute addresses for routines which
reside on direct access devices. These
opt:ions can be selected during system
generation.

DYNAMIC
AREA

FIXED
AREA

Figure 6. Main storage Snapshot (PCP)

The dynamic area contains, in lower main
storage adjacent to the fixed area, the
processing program and routines invoked by

Task Supervision 17

LINK, XCTL, and AT'TACH macro instructions.
At some points in ·the job processing flow,
the processing pro9ram may be a job
management routine. Upper main storage
contains the user save area, user parameter
area, task input/output table, routines
requested by LOAD macro instructions, and
non-resident routines, such as access
method routines.

Systems with MFT (Without subtasking):
Operating Systems that provide
multip.rogramming with a fixed number of
tasks without the subtasking option (MFT
without subtasking), resemble systems with
PCP except that the dynamic area may be
divided into as many as 52 partitions.
Partitions sizes and attributes are defined
during system generation. 'I'hese sizes and
attributes remain fixed unless redefined by
the operator during or after system
initialization. Each partition contains
one task. Three additional tasks, the
transient area loading task, the
communication task, and the master
scheduler task, reside in the fixed area.
One TCB exists for each task. All TCBs are
linked by dispatching priority in a TCB
queue, beginning with the TCBs for the
three resident tasks.

The dynamic ar~,! may contain as many as
3 reading tasks, as many as 36 writing
tasks, and as many as 15 job step tasks, so
long as the total number of tasks does not
exceed 52. ~Jobs are processed sequentially
in a partition, one job step at a time. An
ATTACH macro instruction, as in systems
with PCP, is treated similarly to a LINK.

Because more than one task exists at any
given time, systems with MFT introduce the
concept of task switching. The relative
dispatching priority of tasks is determined
by the TCB queue. Control of the CPU must
often be relinquished by one task and given
to another of higher priority. MFT dumps
contain task switching information often
important in reconstructing the environment
at the time of task failure.

Figure 7 is a snapshot of main storage
in a system with MFT (without subtasking),
having n partitions. The fixed area
contains the nucleus (including the TCB
queue, transient area loading task,
communications task., and master scheduler
task), and the system queue area. The
fixed area may also contain the same system
generation options discussed under the
heading "Sys1:ems with PCP," and a
reenterable load module area, which is
optional in MFT. Each partition in the
dynamic area is similar to the entire
dynamic area of PCP.

DYNAMIC
AREAS

(PARTITIONS

FIXED
AREA

Figure 7. Main Storage Snapshot (MFT
Without Subtasking)

systems with MFT (With _Subtaskin.9l.:
Operating Systems that provide
multiprogramming with a fixed number of
tasks with the subtasking option (MFT with
subtasking) more closely resemble systems
with MVT, and differ fl::"om MFT syst.ems
wi thout subtasking in 1:he following major
areas:

1. MFT with sUbtasking has an ATTACH
facility similar to the ATTACH
facility in MVT.While the number of
job step TCBs still may not exceed 15,
the number of tasks in any partition,
and therefore the total number of
tasks in the system, is now variable.
Job step task TCBs reside in the
nucleus. They arE~ queued, following
the system task TeBs, in the same
manner as in MFT \ldthoutsubtasking.
When subtasks are created, however,
the subtask TCBs are placed in the
system queue area and queued to the
job step TCBs according to dispatchina
priority (TCBTCB field), and according
to subtask relationships (TCBNTC,
TCBOTC, TCBLTC fields>.

18 ProgrammE~r' s Guide to Debugging (Release 20)

2. MFT with subtasking provides the
ability to change the dispatching
priority of any task within a
partition through the use of the CHAP
macro instruction. For information
regarding the use of the CHAP macro
instruction, refer to the publication
IBM System/360 Operating system:
supervisor and Data Management;
Services, GC28-6646.

Figure 8 is a snapshot of main storage in
an MFT system with subtasking having n
partitions. Note here that the TCBs in the
nucleus are all job step TCBs, while those
residing in the sytem queue area are the
subtask TCBs.

DYNAMIC
AREAS

PARTITIO

FIXED
AREA

L.ow

EACH PARTIT ION DOES NOT LOOK LIKE
Pcp's DYNAMIC AREA

Figure 8. Main Storage Snapshot (MFT With
Subtasking)

systems with MVT: In Operating Systems
that provide multiprogramming with a
variable number of tasks (MVT), as many as
15 job steps can be executed concurrently.

Each job step requests an area of main
storage called a region and is executed as
a job step task. In addition, system tasks
request regions and can be executed
concurrently with job step tasks.

Regions are assigned automatically from
the dynamic area when tasks are initiated.
Regions are constantly redefined according
to the main storage requirements of each
new task.

With the facility of attaching subtasks
available to each task through the ATTACH
macro instruction, the number of TeBs in
the system is variable. Tasks gain control
of the CPU by priority. To keep track of
the priority and status of each task in the
system, TCBs are linked together in a TCB
queue.

Figure 9 is a snapshot of main storage
in a system with MVT. The fixed area is
occupied by the resident portion of the
control program loaded at IPL. The system
queue space is reserved for control blocks
and tables built by the control program.
The dynamic area is divided into
variable-sized regions, each of which is
allocated to a job step task or a system
task. Finally, the link pack area contains
selected reenterable routines, loaded at
IPL. If an IBM 2361 Core-Storage device
and Main Storage Hierarchy Support are
included in the system, a secondary link
pack area may be created in hierarchy 1 to
contain other reenterable routines.

LINK PACK
AREA

DYNAMIC
AREA

(REGIONS)

SYSTEM
QUEUE

AREA

FIXED
AREA

Fiqure 9. Main Storage Snapshot (MVT)

Task Supervision 19

Main Storage Supervision

Because main storage is allocated
dynamically in an operating system, current
storage cont:col information must be kept •.
Such information is contained in a series
of control blocks called queue elements.
In systems with PCP and MFT without
subtasking, queue elements reflect areas of
main storage that are unassigned. In MFT
systems with subtasking, a gotten subtask
area queue element (GQE) is introduced to
record storage obtained for a subtask by a
supervisor issued GETMAIN macro
instruction. In systems with MVT, more
elaborate storage control is maintained; at
any given time, queue elements reflect the
distribution of main storage in regions,
subpools, and load modules. A familiarity
with storage control information is
necessary to understand the main storage
picture provided in dumps.

The dynamic area may be significantly
expanded by including IBM 2361 Core Storage
in the system. Main Storage Hierarchy
Support for IBM 2361 Models 1 and 2 permits
selective access to either processor
storage (hierarchy 0) or 2361 Core Storage
(hierarchy 1). If IBM 2361 Core Storage is
not included, requests for storage from
hierarchy 1 are obtained from hierarchy O.
If 2361 Core Storage is not present in an
MVT system and a region is defined to exist
in two hierarchies u a two-part region is
established within processor storage. The
two parts are not necessarily contiguous.

Storage Control in Systems With PCP

The chain of storage control information in
a system with PCP begins at a table called
the main storage supervisor (MSS) boundary
box, located in the system nucleus. This
table, pointE!d to by the TCBMSS field of
the TCB, cont~ains three words. The first
word points t~o a free queue element (FQE)
associated with the highest free area in
processor storage. The second word points
to the first doubleword outside the
nucleus. ThE! third word contains the
highest address in processor storage plus
one.

If Main Storage Hierarchy Support for
IBM 2361 Models 1 and 2 is included in the
system, the boundary box is expanded to six
words. The first byte of the expanded
boundary box contains a "1" in bit 7 to
indicate that hierarchy support is
included. The second set of three words
describes storage in hierarchy 1. The
first word of this second set points to an
FQE associated with the highest free area
in hierarchy 1. The second word points to
the first doubleword in hierarchy 1. The

third word points to the highest position
in hierarchy 1 plus one. If 2361 Core
Storage is not included in the system, the
hierarchy 1 pointers are set to zero.

FQE: Each free area in main storage is
described by an FQE. FQEs are chained,
beginning with the FQE associated with the
free area having the highest address. If
Main Storage Hierarchy Support is present,
one FQE chain exists for each hierarchy
specified. Each FQE occupies the first 8
bytes of the area it describes. It has the
following format:

Bytes 0-3: Pointer to FQE associated with
next lower free area or, if
this is the last FQE, zeros.

Bytes 4-7: Number of bytes in the free
area.

Storage control in systems with PCP is
summarized in Figure 10.

DYNAMIC
AREA

FIXED
AREA

Figure 10. Storage Control (PCP)

20 Programmer's Guide to Debugging (Release 20)

Storage Control in systems with MFT
(Without Subtaskinq)

storage control information in systems with
MFT without subtask~ng is similar to that
in systems with PCP, except that one MSS
boundary box is maintained for each
partition. The TCB associated with the
partition contains a pointer (TCBMSS) to
the boundary box.

If Main Storage Hierarchy Support is
included, the first half of each expanded
boundary box describes the processor
storage (hierarchy 0) partition segment,
and the second half describes the 2361 Core
storage (hierarchy 1) partition segment.
Any partition segment not currently
assigned storage in the system has the
applicable boundary box pointers set to
zero. If the partition is established
entirely within hierarchy 0, or if 2361
Core storage is not included in the system,
the hierarchy 1 pointers in the second half
of the expanded boundary box are set to
zero. If a partition is established
entirely within hierarchy 1, the hierarchy
o pointers in the first half of the
expanded boundary box are set to zero.

The boundary box format for MFT is
identical to the format for PCP. The
pointers, however, point to the boundaries
of the partition and to the partition FQEs
rather than to the boundaries of storage.
Figure 11 summarizes storage control in

~ systems with MFT.

DYNAMIC
AREA

FIXED
AREA

Figure 11. Storage Control for a Partition
(MFT Without Subtasking)

storage Control in Systems with MFT (with
Subtaskinq)

Storage control information for the jOb
step or partition TCB in MFT systems with
subtasking is handled in the same way as in
MFT systems without sUbtasking. However,
when subtasks are created, the supervisor
builds another control block, the gotten
suntask area queue element (GQE). The GQEs
associated with each subtask originate from
a one word pointer addressed by the TCBMSS
field of the subtask TCE.

~!: Each area in main storage belonging
to a subtask, and obtained by a supervisor
issued GETMAIN macro instruction, is
described by a qotten subtask area gueue
element (GQE). GQEs are chained in the
order they are created. The TCBMSS field
of the subtask TCE contains the address of
a word which points to the most recently
created GQE.

ONE
PARTITION

FIXED
AREA

Figure 12. storage Control for SuttasK
storage (MET with subtasking)

Main storaae supervision 21

Bytes 1-3: Pointer to the FQE associated
with the first free area.

Bytes 5-7: Pointer to the next DQE or, if
this is the last DQE, zeros.

Bytes 9-11(B): Pointer to first 2K block
described by this DQE.

Bytes 13-15(D-F): Length in bytes of area
described by this DQE.

DYNAMIC
AREAS

Figure 14. storage Control for a subpool
(MVT)

FQE: The FQE describes a free area within
a set of 2K blocks described by a DQE. It
occupies the first eight bytes of that free
area. Since the FQE is within the subpool,
it has the same protect key as the task
active within that subpool. Extreme care
should be exercised to see that FQEs are
not destroyed by the problem program. If
an FQE is destroyed, the free space that it
describes is lost to the system and cannot
be assigned through a GETMAIN. As area
distribution within the set of blocks
changes, FQEs are added to and deleted from
the free queue. .An FQE has the following
format:

o 4 5

Bytes 1-3: Pointer to the next lower FQE
or, if this is the last FQE,
zeros.

Bytes 5-7: Number of bytes in the free
area.

A subpool is summa:rized in Figure 14.

Storage Control for a_Load Module in
systems with MVT

Each load module in main storage is
described by a contents directory entry
(CDE) and an ext~nt list (XL) that tells
how much space it occupies.

CDE: The contents di:rectory is a group of
queues, each of which is associated with an
area of main storage. The CDEs in each
queue represent the load modules residing
in the associated area. There is a CDE
queue for the link pack area and one for
each region, or job pack area. The Tca for
the job step task that requested the region
points to the first CDE for that region.
Contents directory queues reside in the
system queue space. A CDE has the
following format:

o 4 5

8

16(10) 17(11) 20(14) 21 (15)

Byte 0: Flag bits, when set to one,
indicate:

Bit 0 - Module was loaded by NIP.
Bit 1 - Module ic~ .:;) in process of being

loaded.
Bit 2 - Module is reenterable.
Bit 3 - Module is serially reusable.
Bit 4 - Module may not be reused.
Bit 5 - This CDE reflects an alias

name (a minor CDE).
Bit 6 - Module is in job pack area.
Bit 7 - Module is not only-loadable.

Bytes 1-3: Pointer to next CDE.

Bytes 5-7: Pointer to the RB.

Bytes 8-15(F): EBCDIC name of load module.

Byte 16(10): Use count.

24 Programmer's Guide to Debugging (Release 20)

...

",.....

Bytes 17-19(11-13): Entry point address of
load module.

Byte 20 :

Bit 0
Bit 1
Bit 2

Bit 3

Flag bits, when set to one.,
indicate:

- Reserved.
- Module is inactive.
- An extent list has been built

for the module.
- This CDE contains a relocated

alias entry point address.
Bit 4 - The module is refreshable.
Bits 5, 6, 7 - Reserved.

Bytes 21-23(15-17): Pointer to the XL for
this module or, if this is a
minor CDE, pointer to the
major CDE.

XL: The total amount of main storage
occupied by a load module is reflected in
an extent list (XL). XLs are located in
the system queue space. An XL has the
following format:

12(C)

Bytes 0-3: Length of XL in bytes.

Bytes 4-7: Number of scattered control
sections. If the control
sections are block-loaded, 1.

Remaining
bytes:

Length in bytes of each
control section in the module
(4 bytes for each control
section) and starting location
of each control section (4
bytes for each control
section).

Storage control elements and queues for
load modules are summarized in Figure 15.

DYNAMIC
AREAS

SYSTEM
QUEUE
SPACE

Fi9ure 15. Storage Control for a Load
tJlodule (MVT)

Main Storage supervision 25

Page of GC28-6670-"4, Revised March 1, 1971, by TNL: GN28-2457

System Control Blocks and Tables

.In addition to the key task management
control blocks (TeB and RB), several other
control blocks containing essential
debugging informat.ion are built and
maintained by data management and job
management I"outines. Although some of
these blocks are not readily identifiable
on a storage dump, they can be located by
following chains of pointers that begin at
the TeB.

The control blocks discussed here have
the same basic functions at each control
program level. The precise byte-by-byte
contents of the blocks can be found in the
publication System Control Blocks. Block
contents useful in debugging are listed in
Appendix J.

The CVT provides a means of co~nunication
between nonresident routines and the
control program nucleus. Its most
important role in debugging is its pOinter
to two words of TeB addresses. These words
enable you to locate the TCB of the active
task, and from there to find other
essential control information. Storage
location 16 (10) contains a pointer to the
CVT.

A TIO'I' is constructed by job management for
each task in the system. It contains
primarily pointers to control blocks used
by I/O support routines. It is usually
located in the highest part of the main
storage area occupied by the associated
task (in systems with MVT, TIOTs are in the
system queue space.) Through the TIOT, you
can Qbtain addresses of unit control blocks
allocated to the task, the job and step
name, the ddnames associated with the step,
and the status of each device and volume
used by the data sets.

The ueB describes the characteristics of an
I/O device. One UCB is associated with
each I/O device cOnfigured into a system.
The UCB's most useful debugging aid is the
sense information returned by the last
sense command issued to the associated
device.

Event Control Block (ECB)

The ECB is a 1-word control block created
when a READ or WRITE macro instruction is
issued, initiating an asynchronous I/O
operation. At the completion of the I/O
operation, the access method routine posts
the BCB. By checking this ECB, the
completion status of an I/O operation can
be determined. In all access methods but
QTAM, the ECB is the first word of a larger
block, the data event control block.

The lOB is the source of information
required by the I/O supervisor. It is
filled in with information taken from an
I/O operation request. In debugging, it is
useful as a source of pOinters to the DCB
associated with the I/O operation and the
channel commands associated with a.
particular device.

Data Control Block (DC.~~

The DCB is the place where the operating
system and the problem program store all
pertinent information about a data set. It
may be completely fil14ed by operands in the
DCB macro instruction, or partially filled
in and completed when the data set is
opened, with subparameters in a DD
statement and/or information from the data
set label. The format of DCBs differs
slightly for each of the various access
methods and device types. The DCB' s
primary debugging aids are its pointers to
the DEB and current lOB associated with its
data set, and the offset value of the
ddname in the TIOT.

Data Extent Block (DEB)

A DEB describes a data set's auxiliary
storage assignments and contains pOinters
to some other control blocks. The DEB is
created and queued to the TCB at the time a
data set is opened. Each TCB cont~ains a
pointer to the first DJEB on its chain.
Through this pointer you can find out which
data sets are opened for the task at a
given time, what extents are occupied by
open data sets, and where the DCB and UCB
are located.

Summary of Control Block Relationships

Figure 16, an expansion of Figure 1, shows
the relationships amonq the principal
control blocks and tables in the system/360
Operating System.

26 Programmer's Guide to Debugging (Release 20.1)

Location +0 TCB Words

~~::) :0= 8= e=r--=-o
D+4

+1 +13(D)

Z7r;::::==========:::J

~
+25(19) +33 (21)

U~
M+45 (2D)

~
+68 n 0
(44) \7 U +21 (15)

~
B

I B
+4

10

. ..

F B i

+17 (11)

~
Figure 16. Control Block Relationships

System Control Blocks and Tables 27

Traces

Two features that assist you in tracing the
flow of your program are the save area
chain and the trace table (the trace table
is optional at system generation.) Both
these features are edited and clearly
identified on ABEND/SNAP dumps, and can be
located easily on storage image and
stand-alone dumps.

Save ~rea Chain

When control is passed from one load module
to another, -the requested module is
responsible for storing the contents of
general registers. This necessitates the
use of separate save areas for each level
of load module in a task. With the
different types of linkages that can occur,
save areas must be chained so that each one
points to both its predecessor and
successor.

A save area is a block of 72 bytes
containing chain pointers and register
contents. I-t has the following format:

E_~ tNexth igher save areo

o 4

12(C)

Bytes 4-7: Pointer to the next higher
level save area or, if this is
the highest level save area,
zeros.

Bytes 8-11(B): Pointer to the next lower
level save area or, if this is
the lowest level save area,
unused.

Bytes 12-15(C-F): Contents of register 14
(optional)

Bytes 16-19(10-13): Contents of register
15 (optional)

Bytes 20-71(14-3F): Contents of registers
o to 12

ThE~ save area for the first or highest
level load module in a task (save area 1)

is provided by the control program. The
address of this area is contained in
register 13 when the load module is first
entered. It is the responsibility of the
highest level module to:

1. Save registers 0-12 in bytes
20-71(14-3F) of save area 1 when it is
entered.

2. Establish a new save area (save area
2),

3. Place the contents of register 13 into
bytes 4-7 of save area 2.

4. Place the address of save area 2 into
register 13.

5. Place the address of save area 2 into
bytes 8-11(B) of save area 1.

At this point, the save areas appear as
shown in Figure 17.

Save area 1 Savle area 2

+4 0000 +4

t8 1 Save area 2

+20(14) Content$ of
registers 0-12

--- -
f68(44) c:=J
Figure 17. Save Area 'I'race

If a module requests a lower level
module, it must perform actions 1 through 4
to ensure proper restoration of registers
when it regains control. (Act:ion 5 is not
required, but must be performed if the dump
printout of the field is desired.) A
module that does not request a lower level
module need only perform the first action.

ABEND and SNAP dumps include edited
information from all save areas associated
with the dumped task under the heading
"SAVE AREA TRACE". In a stand-alone dump,
the highest level save area can be located
through a field of the TCB. subsequent
save areas can be located through the save
area chain.

28 Programmer's Guide to Debugging (Release 20)

....

-

Trace Table

The tracing routine is an optional feature
specified during system generation. This
routine places entries, each of which is
associated with a certain type of event,
into a trace table. The size of the table
is also a system generation option; when
the table is filled, the routine overlays
old entries with new entries, beginning at
the top of the table (the entry having the
lowest storage address). The contents and
size of a trace table are highly
system-dependent.

systems with PCP: Trace table entries for
systems with PCP are 4 words long and
represent occurrences of SIO, I/O, and SVC
interruptions. Figure 18 shows the word
contents of each type of entry.

510
I CC/Dev I CAW CSW

0 1 2

VO 1/9 OLD PSW CSW ~
0 2

SVC SVC OLD PSW Reg 0 Reg 1

2 3 o

Figure 18. Trace Table Entries (PCP)

Systems with MFT: Systems with MFT have
the same type of trace table entries as
PCP, plus an additional type representing
task switches, as shown in Figure 19.

Systems with MVT: The trace table in a
system with MVT is expanded to include more
entries and more information in each entry.
Trace table printouts occur only on SNAP
dumps and stand-alone dumps. Entries are
eight words long and represent occurences
of SIO, external, SVC, program, and I/O
interruptions, and dispatcher loaded PSWS.

Figure 20 shows the word contents of trace
table entries for SNAP dumps and
stand-alone dumps. Figure 21 shows the
contents of trace table entries as filled
by MVT with Model 65 multiprocessing. (SSM
-- set system mask entries are
optional.)

SlO I CC/Dev CAW CSW

o 2

vo I/o OLD PSW CSW]
0 2

SVC I SVC OLD PSW Reg 0 Reg 1

ri

Task I
Switch

PSW I t New TCB I fOld TCB I
0 2 3

Figure 19. Trace Table Entries (MFT)

svc

1 External PSW Reg 15 Reg 0
Program
Dispatcher 0 2 3

SIO CSW ~
L-________ ~ ________ ~ __________ ___

CC/Dev CAW

o 2

I/o PSW CSW

o 2

Figure 20. Trace Table Entries (MVT)

'Traces 29

SIIe OOde Old ps~---J R. 15 ~ Di'P"'oh.,I
New PSW E'5 Reg 0 ~ Program g

~'! ------
0 2 3 0 2 3

Old TCB ~JT Reg 1 t~:::PU A) t Old TCB . ~~ (CPU B) Timer ID

4 5 6 7 4 5 6 7

~ I ~
510

~~
External

I CSW Old PSW Reg 15 Reg 0

0 2 0 2 3

~

Tim~' 1,0 I STMASK I TQ-E--I Tim"

1m!
TCB Old TCB tOld TCB t (RQE) t~pu A) (CPU B) of other CPU .

4 5 6 7 4 5 6 7

I/O

e OldPSW I ~
SSM

I R'9
0 ~ CSW Old PSW Reg 15

0 2 0 2 3

~JE'dTeB Reg 1 ~:PU A)
tOld TCB

(CPU B) I
Tim., H

4 "'5 6 7 4 5 6 7

Figure 21. Trace Table Entries (MVT with Model 65 multiprocessing)

30 Programmer's Guide to Debugging (Release 20)

NOTES

-

-

How are ABEND dumps invoked? What does
information in a SNAP dump mean? What
useful facts can be gleaned from an
indicative dump? Where are key tables and
control blocks in a stand-alone dump?

These and similar debugging ques"tions
are answered in this section of the manual.
Topics comprising Section 2 describe each
of the debugging facilities introduced
earlier -- what information they provide,
where to find this information , and how to
apply it.

The introduction to this section
describes a general procedure for debugging
with a dump. SUbsequent topics deal with

• ABEND/SNAP dumps issued by systems with
PCP and MFT.

• ABEND/SNAP dumps issued by systems with
MVT.

• Indicative dumps.

• Storage Image dumps .•

• Stand-alone dumps.

Each topic includes instructions for
invoking the dump, a detailed description
of the dump's contents, and a guide to
using the dump, with specific instructions
for following the general debugging
procedure.

General Debugging Procedure

The first facts you must determine in
debugging with an operating system dump are
the cause of the abnormal termination and
whether it occurred in a system routine or
a problem program. To aid you in making
these determinations, ABEND, SNAP, and
indicative dumps provide two vital pieces
of information -- the completion code and
the active RB queue. Similar information
can be obtained from a storage image dump
or a stand-alone dump by analyzing PSWs and
re-creating an active RB queue.

A completion code is printed at the top
of ABEND, SNAP, and indicative dumps. It
consists of a system code and a user code.
The system code is supplied by the control
program and is printed as a 3-digit
hexadecimal number. The user code is the
code you supplied when you issued your own
ABEND macro instruction; it is printed as a
4-digit decimal number. If the dump shows

Section 2: Interpreting Dumps

a user code, the error is in your program,
and the completion code should lead you
directly to the source of error. Normally,
however, a system code will be listed; this
indicates that the operating system issued
the ABEND. Often the system completion
code gives enough information for you to
determine the cause of the error. The
explanations of system completion codes,
along with a short explanation of the
action to be taken by the programmer to
correct the error, are contained in the
publication IBM system/360 Operating
System: Messages and Codes, GC28-6631.

To locate the load module that had
control at the time the dump was issued,
find the RB associated with the module. If
the dump resulted from an ABEND or SNAP
macro instruction, the third most recent RB
on the queue represents the load module
that had control. The most recent and
second most recent RBs represent the ABDUMP
and ABEND routines, respectively. storaae
image dumps and stand-alone dumps contain
PSW information that can be used to
identify the load module in control.

Once you have located the RE or load
module, look at its name. If it does not
have a name, it is probably an SVRB for an
SVC routine, such as one resulting from a
LINK, ATTACH, XCTL or LOAD macro
instruction. To find the SVC number, look
at the last three digits of the resume PSW
in the previous RB on the queue. If a
previous RB does not exist, the RB in
question is an SVRB for a routine invoked
by an XCTL macro instruction. Register 15
in the extended save area of the RB gives a
pOinter to a parameter list containing the
name of the routine that issued the XCTL.

If the RB does not bear the name of one
of your load modules, either an RB was
overlaid or termination occurred during
execution of a system routine. The first
three characters of the name identify the
syst.em component; Appendix C contains a
list of component names to aid you in
determining which load module was being
executed.

If the RB bears the name of one of your
load modules, you can be reasonably certain
that the source of the abnormal termination
lies in your object code. However, an
access method routine may be at fault.
This possibility arises because your
program branches to access method routines

section 2: Interpreting Dumps 31

through a supervisor-assisted linkage,
instead of invoking them. Thus, an access
method routine is not represented on the
active RB queue. To ascertain whether an
acces~:; method rout~ine was the source of the
abnormal te:r'mination, you must examine the
resume PSW field in the RB. If the last 3
bytes in this field point to a main storage
address outside your program, check the
load list to see if an access method
routine is loaded at that address. If it
is, you can assume that it, and not your
program, was the source of abnormal
termination.

Abnormal Ter:mination in System RoutiI!es:
By analyzinc:r the RB's name field or the SVC
number in the previous RB, you can
determine which system load module
requested the termination. If the RB has a
system module name, the first three
characters t:ell you the name of the system
component. The remaining characters in the
name identify the load module in error.

Remember, although a system routine had
control when the dump was taken, a problem
program error may indirectly have been at
fault. Such a situation might result from
an incorrect:ly specified macro
instruction,an FQE modified inadvertently,
a request for too much storage space, a
branch to an invalid storage address, etc.
TO determine the function of the load
module that had control, consult Appendix
C. With its function in mind, the
completion code together with an
examination of the trace table may help you
to uncover which instruction in the problem
program incorrectly requested a system
function.

Program Check Interruptions in Problem
Program~: If you have determined from the
completion code or PSWs and evaluation of
the RB queue that the dump resulted from a
program check in your problem program,
examine the status of your program in main
storage. Clf you have received only an
indicative dump, you must obtain either an
ABEND/SNAP dump or a stand-alone dump at
this point.) Locate your program using
pointers in the RB. If its entry point
does not coincide with the lower boundary
of the program, you can find the lower
boundary by adding 32(20) to the address of
the HB (systems with PCP and MFT). The
RB's size field gives the number of
doublewords occupied by the RB, the
program, and associated supervisor work
areas. ABEND/SNAP dumps with PCP and MFT
have the storage boundaries of the problem
program calculated and printed.

Next, locate the area within your
program that was executed immediately prior
to the dump. To do this, you must examine

the program check old PSW. Pertinent
information in this psw includes:

Bits 12-15: AMWP bits

Bits 32,33: Instruction length in
halfwordso

Bits 40-63: Instruction address

A useful item of information in the PSW
is the P bit of the AMWP bits (bits 12-15).
If the P bit is on, the PSW was stored
while the CPU was operating in the pronlem
program state. If it is off, the CPU was
operating in the supe:rvisor s"tate.

Find the last instruction executed
before the dump was taken by subtracting
the instruction length frorr, the instruction
address. This gives you the address of the
instruction that causE~d the termination.
If the source program was written in a
higher level language, you rr,ust evaluate
the instructions that precede and follow
the instruction at fault to determine their
function. You can then relate the function
to a statement in the' source program.

Other Interruptions in Problem Programs:
If the completion code or PSWs and the
active RB queue indicate a machine check
interruption, a hardware error has
occurred. Call your IBM Field Engineering
representative and show him the dump.

If an external interruption is
indicated, with no other type of
interruption, the dump probably was taken
by the operator. Check with him to find
out why the dump was t~aken at this point.
The most likely reasons are an unexpected
wait or a program loop. If a trace table
exists, examine i t fOl~ the events preceding
the trouble or, if thE! trace table was made
ineffectual by a progl~am loop, resubmit the
job and take a dump at: an earlier point in
the program. You may want to consider
using the TESTRAN facility to find where
the program loop occul~red.

The remaining caUSE~S of a dump are an
error during either execution of an SVC or
an I/O interruption. In either case,
examine the trace table. Entries in the
table tell you what events occurred leading
up to termination. F]~om the sequence of
events, you should be able to determine
what caused a dump to be taken. From here,
you can turn to system control blocks and
save areas to get specific information.
For example, you can find the sense
information issued as a result of a unit
check in the UCB, a list of the open data
sets from the DEB chain, the CCW list from
the lOB, the reason for an I/O interrupt in
the status portion of the csw, etc.

32 Programmer's Guide to Debugging (Release 20)

Debugging Procedure Summary

1. Look at the completion code or PSW
printouts to find out what type of
error occurred. Common completion
codes and causes are explained in
Appendix B.

2. Check the name of the load module that
had control at the time the dump was
taken by looking at the active RBis.

3. If the name identifies a system
routine, proceed to step 4. If the
name identifies a problem program and
the completion code or PSW indicates a
program check, proceed to step 6. If
the name identifies a problem program,
and the completion code or PSW
indicates other than a program check,
proceed to step 10.

4. Find thE~ function of the system
routine using Appendix C.

5. If the dump contains a trace table,
begin at: the most recent entry and
proceed backward to locate the most
recent SVC entry indicating the
problem state. From this entry,
proceed forward in the table,
examining each entry for an error that
could have caused the system routine
to be terminated.

6. If the name identifies one of your
load modules, check the instruction
address and the load list to see if an
access method routine last had
control. If so, return to step 4.

7. Locate your program in the dump.

8. Locate the last instruction executed
before the dump.

9. Examine the instruction and, if the
program was written in a high-level
language, the instructions around it
for a possible error in object code.

10. If a machine check interruption is
indicated, call your IBM Field
Engineering representative.

11. If only an external interruption is
indicated, ask the operator why he
took the dump. Resubmit the job and
take a dump at the point where trouble
first occurred.

12. Examine the trace table, if one is
present, for events leading up to the
termination. Use trace table entries
and/or information in system control
blocks and save areas to isolate the
cause of the error.

Section 2: Interpreting Dumps 33

Page of GC28-6670-4 6 Revised March 1, 1971, by TNL: GN28-2457

ABEND/SNAP Dump
(Systems With PCP and MFT)

ABEND/SNAP dumps for systems with PCP and
MFT are discussed together because they are
nearly identical in format. System
differences in the contents of the dumps
are shaded for easy recognition. Debugging
instructions for the dumps are discussed
later, in the guide to using the dump.

ABEND/SNAP storage dumps are issued
whenever the control program or problem
program issues an ABEND or SNAP macro
instruction, or the operator issues a
CANCEL command requesting a dump, and
proper dump data sets have been defined.
However, in the event of a system failure,
if a SYS1.DUMP data set has been defined
and is available, a full storage image dump
will be provided, as explained in the
section headed "Storage Image Dump."

Since, in an 111FT with subtasking system,
subtasks may be created, you may receive
one or more partial dumps in addition to
the complete dump of the task that caused
the abnormal termination. A complete dump
includes a printout of all control
information related to the terminating
task, and the nucleus and all allocated
storage within the partition in which the
abending task resided. A partial dump of a
task related to the terminating task
includes only cont.rol information. The
partial dump is identified by either ID=001
or 1D=002 printed in the first line of the
dump. Figure 22 i.s a copy of the first few
pages of a complet.e ABEND dump of an MFT
system with subtasking. It illustrates
some of the key a:r-eas on an ABEND dump, as
issued by systems with PCP and MFT. Those
portions of the dump that would only appear
on a dump of a subtasking system are noted
in the later discussions as appearing only
in a dump of an MF'T with subtasking system.

For a discussion of a formatted AB£ND
dump using the telecommunications access
method (TeAM) in an lVlFT environment, see
IBM System/360 Operating System: TCAM
Progr~m Logic Manua~, GY30-2029a
References to other TCAM debugging aids are
found in Appendix H.

Invok~ng an ABEND/SNAP Dump (PCP,MFT1.

ABEND.dumps are produced as a result of an
ABEND macro instruction, issued either by a
processing program or an operating system
routine. The macro instruction requires a

DD statement in the input stream for each
job step that is subje~ct to abnormal
termination. This DD statement must be
identified by one of t.he special ddnames
SYSABEND or SYSUDUMP. SYSABEND results in
edited control information, the system
nucleus, the trace table, and a dump of
main storage; SYSUDUMP excludes the nucleus
and the trace table. In the event of a
system failure, the Damage Assessment
routine (DAR) attempts. to write a storage
image dump to the SYS1.DUMP data set. A
full explanation of st.orage image dumps may
be found in the section headed "Storage
Image Dump."

SNAP Dumps result from a problem program
issuing a SNAP macro instruction. The
contents of a SNAP dump vary according to
the operands specified in the SNAP macro
instruction. SNAP dumps also require a DD
statement in the input stream. This DD
statement has no special characteristics
except that its ddname must ~ot be SYSABEND
or SYSUDUMP. The processing program must
define a DCB for the snapshot data set.
The DCB macro instruction must contain, in
addition to the usual DCB requirements, the
operands DSORG=PS, RECFM=VBA, MACRF=(W),
BLKSIZE=882 or 1632, and LRECL=125. In
addition, the DCB must be opened before the
first SNAP macro instruction is issued.

Reference: The SNAP and DCB macro
instructions are discussed in the
publication supervisor_ and Data Management
Macro Instructions.

Device and Space Consi~eratio~s: DD
statements for ABEND/SNAP dumvs, must
contain parameters appropriate for a basic
sequential (BSAM) data set. Data sets can
be allocated to any device supported by the
basic sequential access method. There are
several ways to code these DD statements
depending on what type of device you choose
and when you want the dump printed.

If you wish to have the dump printed
immediately, code a DD statement defining a
printer data set.

r·---,
!//SYSABEND DD UNIT=1443,DCB={... ! L. ___ J

If your installation operates under a
system with PCP or MFT, and a printer is
associated with the SYSOUT class, you can
also obtain immediate printing by routing
the data set through the output stream.

34 Programmer's Guide to Debugging (Release 20.1)

,---- -----,,-------_._-_

Page of GC28-6670-4" Revised March 1, 1971, by TNL: GN28-2457

r----------------·-------------------------,
I//SNAPDUMP DD SYSOUT=A,DCB=(... I L ___ J

This type of request is the easiest,
most economical way to provide for a dump.
All other DD statements result in the tying

up of an output unit or delayed printing of
the dump.

If you wish to retain the dump, you can
keep or catalog it on a direct access or
tape unit. The last step in the pertinent
job can serve several functions: to print
out key data sets in steps that have been

ABEND/SNAP Dump (Systems With PCP and MFT) 34.1

abnormally terminated, to print an ABEND or
SNAP dump stored in an earlier step, or to
release a tape volume or direct access
space acquired for dump data sets.
Conditional execution of the last step can
be established through proper use of the
COND parameter and its subparameters, EVEN
and ONLY, on the EXEC statement.

* ABOUMP REQUESTED *

Direct access space should be requested
in units of average block size rather than
in cylinders (CYL) or tracks (TRK). If
abnormal terrrination occurs and the data
set is retained, the tape volume or direct
access space should be released (DELETB in
the DISP paraweter) at the time the data
set is printed.

JOB ATHFOT24 STEP STEP TIME 000137 DATE 99366 PI\GE ')001

COMPLFTION CODE USER = 0123

INTE'RRUPT AT C6EF5A

PSW AT ENTRY TO ABEND 00150000 4006EF5A

TCB 01CIl20 RB 0007FC58 PIE 00000000 DEB 0007F78C TlOT 0007FDBO CMP 8001')00113 TRN 0000001)0
MS5 0001CC58 PK/FLG 101310408 FLG 000001FB LLS 00000001) JLB 001)7FF18 JST 00005508
F SA 1506EBF8 TCB 0001DOAO TME 0001C808 PIB EOO12420 NTC 00000000 OTC OOOICDEO
LTC 00000000 IOE 00000000 EeB 0006EElC XTC8 00000000 lP/FL FB050000 RESV 00000000
STAE 00000000 TCT 00000000 USER 00000000 DAR 00000000 RESV 000001')00 JSCB 00000000

ACTIVE RBS

PRB 06EE28 NM TATHBI0G SllSTAB 00302000 USE/EP 0106EE48 PSW 00150000 4006fF5A Q 000')00 WT/LNK OI)OtCB?1)

SVRB 07F020 NM SVC-601C SlIS TAB 00121)062
RG 0-7 000002AO 80000078
8-15-7 0006E E60 0007FF78

SVRB 07FC58 NM SVC-A05A SlIS TA8 000C0062
RG 0-7 0007F7E8 0001FD80
8-15-7 0001F7E8 0006F296

JOB PACK AReA QI,JEUE

LPRS 06ECA8 NM TATHAIOG SZI S1 AS002F20!}0

LI"RS 06EH8 NM TATHBlOG Sz/STAB 00302000

LPR8 06FOf8 NM TATHC10G Sz/STAB 00122090

LPRB 061"080 NM TATHOIOG Sl/STAB 00182000

lPR8 06H90 NM TATHElOG SlISTAB 00132000

pip STORAGE BOUNDARIES 0006E800 TO 00080000

FRf E AREAS

06E890
06EC50
06F5B8
o 7F66R
07F7D8
07FB40
01FB90
C7FEE8

GOTTEN CORE

071"210
061"310
07FC50
06F228
o 7F590
07F5FO
c7FOIB
07F7GO
07F 760
c1FA66
07FAca

SIZE

0000e060
00000050
0000FC58
C0000098
00000010
G0000228
OOOOOOCO
coooe01B

SIlE

000.00380
COO 0021\8
0000C068
000000E8
00000008
t0000008
00000098
00000060
00000078
eOO(10060
00000018

USEIfP 00007B78 PSW FF040033 50007020 Q 900390 WT ILNK OOOHf?8
00000000 00080000 0007FE4fl 0000009A 0001')5508 I')OO7FC30
0007FF80 0007FFF 8 4006EE4f 0006EE60 0001')984f1 01)01')0000

USElEP 00007878 P SW FF04000E 8001E7EC Q F803F8 WT IlNK 0OO7F020
4000781A 000097F 8 0001CB20 0001F020 0006F23!) 0')005508
0001CC56 0000225C 0001CB20 0006F231) Q')01')7CBC 01')01F1C8

OS£:/EI" 01.066CC8 PSW FF 15000E 600.6609C Q 000000 WT IlNK 0101C060

US616P 0106E648 PSW 00150000 4006FF5A 0 000000 WTIlNK OOOlCB20

USE/EP 01061"038 1'$14 00.0.40000 40006AE4 Q 000000 WT/LNK 1')001CC80

USE'lEP OlO6.FOOO PSW FFl50001 4006Fl6C Q 000000 WTlLNK 010100AO

USE/.EfI 01061"180 PSW FF 150001 4006F21£ Q 000000 WT I LNK OlOlCF40

Figure 22A. Sample of an ABEND Dump (PCP, MFT)

ABEND/SNAP Dump (Systems With PCP and MFT) 35

• * * A B DUM PRE QUE S TED * ~ *

*ccccccc •••

JOB cccccccc STEP cccccccc TIME dddddd DATE ddddd PAGE dddd

COMPLETION CODE SYSTEM - hhh (or USE~ - dddd)

cccccc •••

INTERRUPT AT hhhhhh

PSW AT ENTRY TO ABEND (SNAP) hhhhhhhh hhhhhhhh

* * * A B DUM PRE ~ U EST E D * * *
identities the dump as an ABEND or
SNAP dump.

*ccccccc •••••
is omitted or is one or more of the
following:

*CORE NOT AVAILABLE, LOC.
hhhhhhbhhhhh TAKEN •..

indicatE~s that the ABDUMP routine
confiscated storage locations
hhhhhh through hhhhhh because not
enough storage was available.
This area is printed under P/P
S,]~ORAGE., but can be ignored
because the problem program
originally in it was overlaid
during the dumping process.

*MODIFIED, /SIRB/DEB/LLS/ARB/MSS ••.
indicates that the one or more
queues listed were destroyed or
their elements dequeued during
abnormal termination:
• SIRB -- system interruption

request block queue. One or
more SIRB elements were found
in the active RB queue: these
elements are always dequeued
during dumping.

• DEB _ .. DEB queue. If the first
message also appeared, either a
DEB or an associated DCB was
overlaid.

• LLS -- load list. If the first
message also appeared, one or
more loaded RBs were overlaid.

• ARB -- active RB queue. If the
first message also appeared,
one or more RBs were overlaid.

• MSS boundary box queue. One
or more MSS elements were
dequeued, but an otherwise
valid control block was found

in the free area specified by
an tJ!SS elelrent.

*FOUND ERROR IN /DEB/LLS/ARB/MSS •••
indicates that one or more of the
following contained an error:

• DEB:
• LLS:
• ARB:
• MSS:

data extent block
load list
active RB
boundary box

This message appears with either
the first or second message
above. The error could be:
improper boundary aliqnment,
control block not within storage
assigned to the program teing
dumped, or a.n infinite loop (300
tiwes is the maximum for this
test). For an MSS block, 4 other
errors could also be found:
incorrect descending sequence
(ami tti ng loop count.),
overlapping free areas, free area
not entirely within the storage
assigned to the program being
dumped, or count in count field
not a multiple of 8.

JOB cccccccc
is the job name specified in the JOB
statement.

STEP cccccccc
is the step name specified in the EXEC
statement for the problem program
being dumped.

TIME dddddd
is the hour (first 2 digits), minute
(second 2 digits), and second (last 2
digits) when theABDUMP routine began
processing.

DATE ddddd
is the year (first 2 digits) and day
of the year (last 3 digits). For
example, 67352 would be December 18,
1967.

38 Programmer's Guide to Debugging (Release 20)

...

......... '

PAGE dddd
is the page number. Appears at the
top of each page.

COMPLETION CODE SYSTEM=hhh or COMPLETION
CODE USER=dddd

is the completion code supplied by the
control program (SYSTEM=hhh) o:r the
problem program (USER=dddd). Either
SYSTEM=hhh or USER=dddd is printed,
but not both. Common completion codes
are explained in Appendix B.

cccccc •••
explains the completion code or, if 'a
program interruption occurred:
PROGRAM INTERRUPTION ccccc ••• AT
LOCATION hhhhhh,

where ccccc is the program
interruption cause -- OPERATION,
PRIVILEGED OPERATION, EXECUTE,
PROTECTION, ADDRESSING, SPECIFICATION,
DATE, FIXED-POINT OVERFLOW,

FIXED-POINT DIVIDE, DECIMAL OVERFLOW,
DECIMAL DIVIDE, EXPONENT
OVERFLOW,EXPONENT UNDERFLOW,
SIGNIFICANCE, or FLOATING-POINT
DIVIDE; and hhhhhh is the starting
address of the instruction being
executed when the interruption
occurred.

INTE:RRUPT AT hhhhhh
is the address of next instruction to
be executed in the problem program.
It is obtained from the resume PSW of
the PRB or LPRB in the active RB queue
at the time abnormal termination was
requested.

PSW AT ENTRY TO ABEND hhhhhhhh hhhhhhhh or
PSW AT ENTRY TO SNAP hhhhhhhh hhhhhhhh

is the PSW for the problem or control
program that had control when abnormal
termination was requested or when the
SNAP macro instruction was executed.

TCB hhhhhh RB hhhhhhhh PIE hhhhhhhh DEB hhhhhhhh TIOT hhhhhhhh CMP hhhhhhhh TRN hhhhhhhh
MSS hhhhhhhh PK/FLG hhhhhhhh FLG hhhhhhhh LLS hhhhhhhh JLB hhhhhhhh JST hhhhhhhh
RG 0-7 hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh
RG 8-15 hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh
FSA hhhhhhhh TCB hhhhhhhh TME hhhhhhhh PIB hhhhhhhh NTC hhhhhhhh OTC hhhhhhhh
LTC hhhhhhhh IQE hhhhhhhh ECB hhhhhhhh XTCB hhhhhhhh LP/FL hhhhhhhh RESV hhhhhhhh
STAE hhhhhhhh TCT hhhhhhhh USER hhhhhhhh DAR hhhhhhhh RESV hhhhhhhh JSCB hhhhhhhh

TCB hhhhhh
is the s'tarting address of the TCB.

RB hhhhhhhh
is the TCBRBP field (bytes 0 through
3): starting address of the active RB
queue and, consequently, the most
recent RB on the queue (usually
ABEND's RB).

PIE hhhhhhhh
is the TCBPIE field (bytes 4 through
7): starting address of the program
interruption element (PIE) for the
task.

DEB hhhhhhhh
is the TCBDEB field (bytes 8 through
11): starting address of the DEB
queue.

TIOT hhhhhhhh
is the TCBTIO fi~ld (bytes 12 through
15): starting address of the TIOT.

CMP hhhhhhhh
is the TCBCMP field (bytes 16 through
19): task completion code in

hexadecimal. Systew codes are shown
in the third through fifth digits and
user codes in the sixth through
eighth.

TRN hhhhhhhh
is the TCBTRN field (bytes 20 through
23): starting address of control core
(table) for controlling testinq of the
task by TESTRAN.

MSS hhhhhhhh
is the TCBMSS field (bytes 24 through
27): starting address cf the main
storage supervisor's boundary box.

PK/FLG hhhhhhhh
contains, in the first 2 digits, the
TCBPKF field (byte 28): protection
key.

FLG hhhhhhhh
contains, in the first 4 digits, the
last 2 bytes of the TCBFLGS field
(bytes 32 and 33): last 2 flag bytes.

contains, in the next 2 digits, the
TCBLMP field (byte 34): in systems

ABEND/SNAP Duwp (Systems With PCP and MFT) 39

the timer is not being used, contains
no meaningful information; in SVRB for
a type 2 SVC routine, the first 4
bytes contain the TTR of the load
module in the SVC library, and the
last 4 bytes contain the SVC number in
signed, unpacked decimal.

SZ/STAB hhhhhhhh
contains in the first 4 digits, the
XRBSZ field (bytes 8 and 9): number
of con·tiguous doublewords in the RB,
the program (if applicable), and
associated supervisor work areas.

contains in the last 4 digits, the
XSTAB field (bytes 10 and 11): flag
bytes.

USE/EP hhhhhhhh
contains, in the first 2 digits, the
XRBUSE field (byte 12): use count.

contains, in the last 6 digitsi the
XRBEP field (bytes 13 through 15):
address of entry point in the
associated program.

PSW hhhhhhhh hhhhhhhh
is the XRBPSW field (bytes 16 through
23): resume PSW.

Q hhhhhh
is the last 3 bytes of the XRBQ field
(bytes 25 through 27): in PRS and
LPRB, starting address of an LPRB for
an entry identified by an IDENTIFY
macro instruction; in IRB, starting
address of a request element; in SVRB
for a type 3 or 4 SVC, size of the
program in bytes.

WT/LNK hhhhhhhh
contains, in the first 2 digits, the
XRBWT field (byte 28): wait. count.

contains, in the last 6 digits, the
XRBLNK field (by1:es 29 through 31):
primary queuing field. It is the
starting address of the previous KB
for the task or, in the first RB to be
placed on the queue, the starting
address of the TeB.

RG 0-7 and RG 8-15
is the XRBREB field (bytes 32 through
95 in IRBs and SVRBs): contents of
general registers 0 through 15 stored
in the RB. These' 2 lines do not
appear for PRBs, LPRBs, and LRBs.

I :::: ::::hh NM """" "I'TA' hhhhhhhh "'"lEe hhhhhhhh 'ow hhhhhhhh hhhhhhhh Q hhhhhh .T/LN. hhhhhhhh

LOAD LIST
identifies the next lines as the
conteni:s of the load list queued to
the TCE.

cccc hhhhhh
indicates the RB type and its starting
address.

The RB types are:

LRB
.LPRB
D-LPRB

NM cccccccc

Loaded request block
Loaded program request block
Dummy loaded program request
block. (Present if the
resident reenterable load
module option was selected in
MFT) •

is the XRBNM field (bytes 0 through
7): program name.

SZ/STAB hhhhhhhh
contains, in the first 4 digits, the

XRBSZ field (bytes 8 and 9):
nurClber of contiguous
doublewords for the RB, the
program (if applicable), and
associated supervisor work
areas.

contains, in the last 4 digits, the
XSTAB field (bytes 10 and 11):
f lag bytE~s.

USE/EP hhhhhhhh
contains, in the first 2 digits, the

XRBUSE field (byte 12): use
count.

contains, in the last 6 digits, the
XRBEP field (bytes 12 through
15): address of entry point
in the pl:-ogram.

42 Programmer's Guide to Debugging (Release 20)

-
PSW hhhhhhhh hhhhhhhh

is the XRBPSW field (bytes 16 through
23): resume PSW.

Q hhhhhh
is the last 3 bytes of the XRBQ field

(bytes 25 through 27): in
LPRB, starting address of an
LPRB for an entry identified
by an IDENTIFY macro
instruction; in LRB, unused.

WT/LNK hhhhhhhh
contains, in the first 2 digits, the

JOB PACK AREA QUEUE

XRBWT field (byte 28): wait
count.

contains, in the last 6 digits, the
XRBLNK field (bytes 29 through
31): primary queuing field
for LRBs and LPRBs also on the
active RB queue. It points to
the previous RB for the task
or, in the oldest RB in tne
queue, back to the TCB.

ecce hhhhhh NM ecce ecce
ecce hhhhhh . NM cccccccc
ecce hhhhhh NM cccccccc

SZ/STAB hhhhhhhh USE/EP hhhhhhhh psw hhhhhhhh hhhhhhhh Q hhhhhh WT/LNK hhhhhhhh
SZ/STAB hhhhhhhh WTL hhhhhhhh REQ hhhhhhhh TLPRB hhhhhhhh
SZ/STAB hhhhhhhh USE/EP hhhhhhhh psw hhhhhhhh hhhhhhhh Q hhhhhh WT/LNK hhhhhhhh

JOB PACK AREA QUEUE (MFT with subtasking
only)

identifies the next lines as the
contents of the job pack area queue
originating in the partition
information block (PIB).

cccc hhhhhh
indicates the RB type and its starting
address.

The RB types are:

FRB
LRB
LPRB

NM cccccccc

Finch request block
Loaded request block
Loaded program request block

is the XRBNM field (bytes 0 through
7): Program name.

SZ/STAB hhhhhhhh
contains, in the first 4 digits, the
XRBSZ field (bytes 8 and 9): number
of contiguous doublewords for the RB,
the program (if applicable), and
associated supervisor work areas.

contains, in the last 4 digits, the
XSTAB field (bytes 10 and 11): flag
bytes.

USE/EP hhhhhhhh (LPRB, LRB Only)
contains, in the first 2 digits, the
XRBUSE field (byte 12): use count.

contains" in the last 6 digits, the
XRBEP field (bytes 13 through 15):
address of entry point in the program.

WTL hhhhhhhh (FRB Only)
is the XRWTL field of the FRB (bytes

12 through 15): address of the most
recent wait list element (WLE) on the
WLE queue.

PSW hhhhhhhh hhhhhhhh (LPRB, LRB Only)
is the XRBPSW field (bytes 16 through
23): resume PSW.

REQ hhhhhhhh (FRB Only)
is the XRREQ field of the FRB (bytes
16 through 19): address of the TCB of
the requesting task.

TLPRB hhhhhhhh (FRB Only)
is the XRTLPRB field of the FRB (bytes
20 through 23): address of the LPRB
built by the Finch routine for the
requested program.

Q hhhhhh (LRB, LPRB Only)
is the last 3 bytes of the XRBQ field
(bytes 25 through 27):

• in an LPRB, the starting address of
an LPRB for an entry identified by
an IDENTIFY macro instruction.

• in an LRB, unused.

WT/LNK hhhhhhhh (LRB, LPRB Only)
contains, in the first 2 digits, the
XRBWT field (byte 28): wait count.

contains, in the last 6 digits (bytes
29 through 31): primary queuing field
for RBs. These RBs may be queued
either on the job pack area queue or
on the active RB queue. It points to
the previous RB for the task or, in
the oldest RB on the queue, back to
the TCB.

ABEND/SNAP Dump (systems With PCP and MFT) 43

PIP STORAGE BOUNDARIES hhhhhhhh TO hhhhhhhh

FREE AREAS SIZE

hhhhhh hhhhhhhh

GOTTEN CORE SIZE

hhhhhh hhhhhhhh

SAVE AREA TRACE

cccccccc WAS ENTERED VIA LINK (CALL) ddddd AT EP ccccc •••

SA hhhhhh WD1 hhhhhhhh
R1 hhhhhhhh
R7 hhhhhhhh

HSA hhhhhhhh
R2 hhhhhhhh
R8 hhhhhhhh

LSA hhhhhhhh
R3 hhhhhhhh
R9 hhhhhhhh

INCORRECT BACK CHAIN

PROCEEDING BACK VIA REG 13

P/P STORAGE BOUNDARIES hhhhhhhh TO hhhhhhhh
gives the addresses of the lower and
upper boundaries of a main storage
area assigned to the task. This
heading is repeated for every
noncontiguous block of storage owned
by the task.

FREE AREAS SIZE

hhhhhh hhhh11h

hhhhhh hhhhhh
are the starting addresses of free
areas and the size, in bytes, of each
area contained within the P/P STORAGE
BOUNDARIES field listed above.

GOTTEN CORE SIZE

hhhhhh hhhhhhhh

hhhhhh hhhh11hhh
(PrintE~d only in a dump of a system
with the MFT with subtasking option).
'rhese figures represent the starting
addresses of the gotten areas (those
areas obtained for a subtask through a
supervisor issued GETMAIN macro
instruction), and the size, in bytes,
of each area contained within the P/P
STORAGE BOUNDARIES field listed above.
If main storage hierarchy support is
included in the system, the values in
this field can address storage in
either hierarchy 0 or hierarchy 1, or
both.

SAVE AREA TRACE
identifies the next lines as a trace
of the save areas for the program.

RET hhhhhhhh
R4 hhhhhhhh
R10 hhhhhhhh

EPA hhhhhhhh
R5 hhhhhhhh
Rll hhhhhhhh

RO :~hhhhhhh

R6 hhhhhhhh
R12 nhhhhhhh

cccccccc WAS ENTERED
is the name of the program that stored
register contents in the save area.
This name is obta.ined from the RB.

VIA LINK (CALL) ddddd
indicates the macro inst:['uction (LINK
or CALL) used to give centrol to the
next lower level module, and is the ID
operand, if it wa.s specified, of the
LINK or CALL macro instruction.

AT EP ccccc •••
is the entry point identified, which
appears only if it was specified in
the SAVE macro instruction that filled
the save area.

SA hhhhhh
is the starting address of the save
area.

WDl hhhhhhhh
is the first'word of the save area:
use of this word is optional.

HSA hhhhhhhh
is the second word of the save area:
starting address of the save area in
the next higher level module. In the
first save area in a job step, this
word contains zeros. In all other
save areas, this word must be filled.

LSA hhhhhhhh
is the third word of the save area
(register 13): starting address of
the save area in the next lml'ler level
module.

HET hhhhhhhh
is the fourth word of the save area
(register 14): return address.
Optional.

44 Programmer's Guide to Debugging (Release 20)

-

EPA hhhhhhhh
is the fifth word of the save area
(register 15): entry pOint to the
invoked module. Optional.

RO hhhhhhhh Rl hhhhhhhh ••• R12 hhhhhhhh
are words 6 through 18 of the save
area (registers 0 through 12):
contents of registers 0 through 12
immediately after the linkage for the
module containing the save area.

INCORRECT BACK CHAIN
indicates that the following lines may
not be a save area because the second

DATA SETS

***** NOT FOR MAT TED *****

word in this area does not point back
to the previous save area in the
chain.

PROCEEDING BACK VIA REG 13
indicates that the next 2 save areas
are (1) the save area in the lowest
level module, followed by (2) the save
area in the next higher level module.
The lowest save area is assumed to be
the save area pointed to by register
13. These 2 save areas afpear only if
register 13 points to a full word
boundary and does not contain zeros.

cccccccc UCB ddd hhhhhh DEB ·hhhhhh DeB hhhhhh

0/5 FORMATTING TERMINATED

DATA SETS
indicates that the next lines present
information about the data sets for
the task. For unopened data sets,
only the ddname and UCB information
are printed.

NOT FOR MAT TED
indicates that the abnormal
termination dump routine confiscated
storage (indicated by *CORE NOT
AVAILABLE, LOC. hhhhhh-hhhhhh TAKEN);
because DCBs may have been overlaid,
data set information is not presented.

cccccccc
is the name field (ddname) of the DD
statement.

UCB ddd hhhhhh
is the unit to which the data set was

assigned, and the starting address of
the UCB for that unit. If the data
set was assigned to several units, the
additional units are identified on
following lines.

DEB hhhhhh
is the starting address of the DEa for
the data set. Appears only for open
data sets.

DCB hhhhhh
is the starting address of the DCB for
the data set. Appears only for open
data sets.

D/S FORMATTING TERMINATED
indicates that no more data set
information is presented because a DCB
is incorrect, possibly because a
program incorrectly modified it.

ABEND/SNAP Dump (Systems With PCP and MFT) 45

TRACE TABLE - STARTING WITH OLDEST ENTRY

dddd
dddd
dddd

I/O ddd
SIO ddd
SVC ddd

PSW 'hhhhhhhh hhhhhhhh
CC • d
PSW hhhhhhhh hhhhhhhh

CAW hhhhhhhh
RG 0 hhhhhhhh

TRACE TABLE -- STARTING WITH OLDEST ENTRY
identifies the next lines as the
contents of t.he trace table. Each
entry is presented on one line. The
types of entries are:

dddd

I/O Input/output interruption entry

810 Start input/output (SIO) entry

8VC supervisor call (SVC) interruption
entry

is the number assigned to each entry.
The oldest entry receives the number
0001.

I/O ddd
is the channel and unit that caused
the input/output interruption.

PSW hhhhhhhh hhhhhhhh
is the program status word that was
stored when the input/output
interruption occurred.

CSW hhhhhhhh hhhhhhhh
is the channel status word that was
stored when the input/output
interruption occurred.

SIO ddd
is the device specified in the SIO
instruction.

CSW hhhhhhhh hhhhhhhh
OLD CSW
RG 1

hhhhhhhh hhhhhhhh (or CSW STATUS hhhh)
hhhhhhhh

CC=d
is the condition code resulting from
execution of the SIO instruction.
Zero indicates a successful start.

CAW hhhhhhhh
is the channel address word used by
the SIO instruction.

OLD CSW hhhhhhhh hhhhhhhh
is the channel status word stored
during execution of an S10 operation.
It appears when CC is net equal to 1.

CSW STATUS hhhh
is the status portion of the channel
status word stored during execution of
an SIO instruction. Appears when CC
is equa 1 to 1.

SVC ddd
is the SVC instruction's operand.

PSW hhhhhhhh hhhhhhhh
is the PSW stored during the SVC
interruption. (After release 11, an F
in the fifth digit of the first word
identifies the entry as representing a
task switch.)

RG 0 hhhhhhhh
is the contents of register 0 as
passed to the SVC routine.

RG 1 hhhhhhhh
is the contents of register 1 as
passed to the SVC routine.

46 Programmer's Guide to Debugging (Release 20)

REGS AT ENTRY TO ABEND (SNAP)

FLTR 0-6

REGS 0-7
REGS 8-15

hhhhhhhhhhhhhhhh

hhhhhhhh
hhhhhhhh

hhhhhhhh
hhhhhhhh

hhhhhhhhhhhhhhhh

hhhhhhhh
hhhhhhhh

hhhhhhhh
hhhhhhhh

hhhhhhhhhhhhhhhh

hhhhhhhh
hhhhhhhh

hhhhhhhh
hhhhhhhh

hhhhhhhhhhhhhhhh

hhhhhhhh
hhhhhhhh

hhhhhhhh
hhhhhhhh

REGS AT ENTRY TO ABEND or REGS AT ENTRY TO
SNAP

FLTR 0-6
is the contents of floating point
registers 0, 2, 4, and 6. identifies the next 3 lines as the

contents of the floating point and
general registers when the abnormal
termination routine received control
in response to an ABEND macro
instruction or when the SNAP routine
received control in response to a SNAP
macro instruction.

REGS 0-7
is the contents of general registers 0
through 7.

REGS 8-15

NUCLEUS

hhhhhh hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh
hhhhhh hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh

LINE hhhhhh SAME AS ABOVE
hhhhhh hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh

LINES hhhhhh-hhhhhh SAME AS ABOVE
hhhhhh hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh
PIP STORAGE

hhhhhh hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh
hhhhhh hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh
hhhhhh hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh

LINES hhhhhh-hhhhhh SAME AS ABOVE
hhhhhh hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh

END OF DUMP

The content~ of main storage is given
under 2 headings: NUCLEUS and P/P STORAGE.
Under these headings, the lines have the
following format:

• First entry: the address of the
initial byte of main storage contents
presented on the line.

• Next 8 entries: 8 full words (32
bytes) of main storage in hexadecimal.

is the contents of general registers 8
through 15.

hhhhhhhh hhhhhhhh *CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC*
hhhhhhhh hhhhhhhh *cccccccccccccccccccccccccccccccc*

hhhhhhhh hhhhhhhh *cccccccccccccccccccccccccccccccc*

hhhhhhhh hhhhhhhh *cccccccccccccccccccccccccccccccc*

hhhhhhhh hhhhhhhh *cccccccccccccccccccccccccccccccc*
hhhhhhhh hhhhhhhh *cccccccccccccccccccccccccccccccc*
hhhhhhhh hhhhhhhh *cccccccccccccccccccccccccccccccc*

hhhhhhhh hhhhhhhh *cccccccccccccccccccccccccccccccc*

differs from the contents during
printing of the hexadecirr,al characters
because a portion of the work area is
used to write lines to the printer.
This exception should not create any
problems since the contents of the
ABDUMP work area is of little use in
debugging.

The following lines may alsc appear:

LINES hhhhhhhh-hhhhhhhh SAME AS ABOVE
• Last entry (surrounded by asterisks):

the same 8 full words of main storage
in EBCDIC. Only A through Z, 0 through
9, and blanks are printed; a period is
printed for anything else. An
exception occurs in the printed lines
representing the ABDUMP work area. The
contents of the ABDUMP work area during
the printing of EBCDIC characters

are the starting addresses of the
first and last line of a group of
lines that are identical to the line
immediately preceding.

LINE hhhhhh SAME AS ABOVE
is the starting address of a line that
is identical to the line immediately
preceding.

ABEND/SNAP Dump (Systems With PCP and MFT) 47

NUCLEUS
identifies the next lines as the
contents of the control program
nucleus.

P/P STORAGE
identifies the next lines as the
contents of the main storage area
assigned to the task (problem
program).

END OF DUMP
indica·tes that the dump or snapshot is
comple·ted.

Guide to Using an ABEND/SNAP Dump (PCP,
MFT)

Cause_ of Abnormal Termination: Evaluate
the user (USER Decimal code) or system
(SYSTEM=hex code) completion code using
Appendix B or the publication ~essages and
Codes.

Active RB Queue: The first RB shown on the
dump represents the oldest RB on the queue.
The RB representing the load module that
had control when the dump was taken is
third from the bottom. The last RB
represents the ABDUMP routine, and the
second. from last, the ABEND routine. The
names of load modules represented in the
active RB queue are given in thp- RB field
labeled NM in the dump. Names of load
modules in SVC routines are presented in
the format:

r---,
I NM SVC-mnnn I L __ J

where m is the load module number (minus 1)
in the routine and nnn is the signed
decimal SVC number. The last two RBs on an
ABEND/SNAP dump will always be SVRBs with
edited names SVC-105A (ABDUMP--SVC 51) and
SVC-491C (ABEND--SVC 13).

Resume PSW: The resume PSW field is the
fourth entry in the first line of each RB
printout. It is identified by the
subheading PSW. For debugging purposes,
the resume PSW of the third RB from the
bottom, on t.he dump, is most useful. The
last three characters of the first word
give the SVC number or the I/O device
address, depending on which type of
interruption caused the associated routine
to lose control. It also provides the CPU
state at the time of the interruption (bit
15), the length of the last instruction
executed in the p:["ogram (bits 32,33), and
the address of the next instruc·tion to be
executed (bytes 5-8).

Load List and Job Pack Area Queue: The
load module that had control at the time of
abnormal termination may not contain the
instruction address pointed to by the
resume PSW. In that case, look at the RBs
on the load list and on the job pack area
queue (MFT with subtasking). Compare the
instruction address with the entry points
of each load module (shown in the last 3
bytes of the field labeled USE/EP). The
module which contains the instruction
pointed to by the resume PSW is the one in
which abnormal termin.ation occurred. The
name of the load module is indicated in the
field labeled NM.

Trace Table: Entries in the trace table
reflect SIO, I/O, and SVC interruptions.
SIO entries can be used to locate the CCW
(through the CAW), wh:ich reflects the
operation initiated by an SIO instruction.
If the SIO operation 1"as not successful,
the CSW STATUS portion of the entry will
show you why it failed.

I/O entries reflect the I/O old PSW and
the CSW that was stored when the
interruption occurred.. From the PSW, you
can learn the address of the device on
which the interruption occurred (bytes 2
and 3), the CPU state at the time of
interruption (bit 15)., and the instruction
address where the interruption occurred
(bytes 5-8). The CSW provides you with the
unit status (byte 4), the channel status
(byte 5), and the address of the previous

CCW plus 8 (bytes 0-3).

SVC entries providE~ the SVC old PSW and
the contents of registers 0 and 1. The PSW
offers you the hexadecimal SVC number (bits
20-31), the CPU mode (bit 15), and the
address of the SVC instruction (bytes 5-8).
The contents of regist:ers 0 and 1 are
useful in that many system macro
instructions use these registers for
parameter information. Contents of
registers 0 and 1 for each SVC interruption
are given in Appendix A.

Note: If an ABEND macro instruction is
issued by the system ",hen a program check
interruption causes abnormal ·termination,
an SVC entry does not appear in the trace
table, but is reflecte~d in the PSW at entry
to ABEND.

Free Areas: ABEND/SNAP dumps do not print
out areas of main storage that are
available for allocation. Since the ABEND
routine uses some available main storage,
the only way you can determine the amount
of free storage available when abnormal
termination occurred is to re-create the
situation and take a stand-alone dump.

48 Programmer's Guide to Debugging (Release 20)

MFT Considerations: Dumps issued by
systems with MFT include an additional
trace table entry for task switches. This
entry looks similar to an SVC entry, except
that words 3 and 4 of the entry contain the
address of the TCBs for the "new" and "old"
tasks being performed, respectively. The
trace table entries for one particular task
are contained between sets of two task
switch entries. Word 3 of the beginning
task switch entry and word 4 of the ending
task switch entry point to the TCB for that
task. With release 11 and following

releases, task switch entries are
identified by a fifth digit of 'F'.

Note: To find all the entries for the
terminated task, on a dump issued prior to
release 11, obtain the TCB addresses under
the TCB heading of the dump and scan the
trace table under words 3 and 4 for these
addresses. Then enclose the areas that
begin with an entry having the TCB address
in word 3, and end with an entry having the
same TCB address in word 4. If words 3 and
4 contain the same address, disregard the
task switch entry.

ABEND/SNAP Dump (Systems With PCP and MFT) 49

Page of GC28-6670-4, Revised March 1, 1971, by TNL: GN28-2457

ABEND/SNAP Dump
(Systems With MVT)

MVT dumps differ from PCP and MFT dumps in
the addition of detailed main storage
control information, the omission of a
complete main storage dump, and the
omission of a trace table in ABEND dumps.
MVT dumps occur immediately after an
abnormal termination, provided an ABEND or
SNAP macro instruction was issued and
proper dump data sets were defined.
However, if a system failure has occurred
and a SYS1.DUMP data set has been defined
and is available, a full storage image dump
is provided, as explained in the section
headed "Storage Image Dump."

Wi th MV'!" s subtask creating capability,
you may receive one or more partial dumps
in addition to a complete dump of the task
that caused abnormal termination. A
complete dump includes all control
information associated with the terminating
task and a printout of the load modules and
subpools used by ·the task. A partial dump
of a ·task related to the terminating task
includes only control information. A
partial dump is identified by either ID=001
or 1D=002 printed in the first line of the
dump. Figure 24 shows the key areas of a
complete dump ..

In systems with MVT, you can effect
termination of a job step task upon
abnormal termination of a lower level task ..
To do this, you must either terminate each
task upon finding an abnormal t~ermination
completion code issued Dy its subtask or
pass the completion code on to the next
higher level task~

For a discussion of a formatted ABEND
dump using 1:he telecommunications access
method (TCAM) in an MVT environrnentm see
IBM Systern/360 O~?rating System: TCAM
Program Logic Manual, GY30-2029 ..
References to other TCAM debugging aids are
found in Appendix H.

1nvok?-ng an ,ABEND/SNAP Dump--.LMVT)

ABEND/SNAP dumps issued by systems with NVT
are invoked in the same manner as those
under systems with PCP and MFT.. They
result from an ABEND or SNAP macro
instruction in a system or user program,
accompanied by a properly defined data set ..
In the case of a system failure, the damage
assessment routine (DAR) attempts to write
a storage inage dump to the SYS1 .. DUMP data
set.. A full. explanation of storage image
dumps may De found in the section headed
"storage Image Dump." The instructions
tha t invoke an ABEND/SNAP dump in MV'l'

environment are the same as those given in
the preceding topic for systems with PCP
and MFT. However, some additional
considerations must be made in requesting
ma.in storage and direct access space.

MVT Considerations: In specifying a region
size for a job step subject t.O abnormal
termination, you must consider the space
requirements for opening a SYSABEND or
SYSUDUMP data set (if there is one), and
loading the ABDUMP routine and required
data management routines.. This space
requirement can run as high as 6000 bytes.

Direct access devices are used
frequently for intermediate s·torage of dump
data sets in systems lliith MVT.. TO use
direct access space efficiently, the space
for the dump data set should be varied,
depending on whether or not abnormal
termination is likely,. A small quantity
should be requested if normal termination
is expected. To prevE~nt termination of the
dump due to a lack of direct access space,
always specify an incl::-emental (secondary)
quantity when coding a SPACE parameter for
a dump data set.. You can obtain a
reasonable estimate of the direct access
space required for an ABEND/SNAP dump by
adding, (1) the numbel~ of bytes in the
nucleus, (2) the part of the system queue
space required by the task (9150 bytes is a
sufficient estimate), and (3) the: amount of
region space occupied by the task.
Multiply the sum by 4., and request this
amount of space in 1024-byte blocks.

This formula gives the space
requirements for one t;ask. Request
additional space if partial dumps of
suntasks and invoking tasks will be
included.

Contents of an ABEND/SNAP Dump (MVT)

This explanation of the contents of
ABEND/SNAP dumps issue:d by systems with MVT
is interspersed with sample sections from
an ABEND dump. Capital letters represen·t
the headings found in all dumps, and
lowercase letters, information that varies
with each dump. The lowercase letter used
indicates the mode of the information and
the number of letters indicates its length:

• h represents 1/2 byte of hexadecimal
information

• d represents 1 byte of decimal
information

• c represents a 1-byte character

You ma.y prefer to follow the explanation on
your own ABEND or SNAP dump.

50 Programmer's Guide to Debugq-ing (Release 20.1)

... _0_._. _______ 0 ____ ._ ... _ .. _______ ------ -------- ... _ __ .-_ _----------_._---, ... _-_. __ .. _----_ ,_ ,._-_ --- -- -- -------- -- ---- -----

"11° NJ0:>EC7f1
,,~') 01"'I17"fI
FC;~ nl"6!)?6'!
I rc 0(1 "()"I)') ()

'IISThF 000000(10

~CTIVF r,,\,)

Dlr 000()0000
OK -"l G I'OR "()4(1Q
Trp. ()()()I)()OOO

lor ()"O"O()OO
T~T 'lC'l'l07M'

OF" 0(),)?F'1,4
FlG OOnOOr'10
T"'E "O()O'1,)'lO
Fr.'! ()()(11()4114
(l<;FQ 00()()0'1')0

TIfl 0(1030:>F0
LLC; 0001()'lR()
J<:T ()()O;:>F,)7'1
<:Th ')oooooro
O~Q '1000()')(10

r.'-1 0 R()F\170()0
JLf' OOO()OOO()
NTC (1(1000('00
O-DOF (1('0'17('(''1
"FC;V OOOO()001)

DflGF 0001

TR~1 O()O()OOO()
JDO 000101F:fI
nrc (1""l"'iOR
<;0<; O()O?r 1\ !I 0
J <;r.R OOrn 14('C

rn()Orfl ~F<;V 00()00000 ~~<;W (1()'l00000 W:-S7-<;T~R '1()(1400'l? PC;W FFFo;()006 7001<;0;1F
,)/TTP (10(100()00 IH-lNK 0(,():>F07'1

rooOOOn') ~ p,> W o'1OOOf" 00 wr -S 7-<' T ~f' 0,)040'1()? FL-rOF O"O'l()F'lO

O?r()FO

Il<;T

r~'l-I'J 009PO/.00
O/TT" ('()nO'lf')F
DG 0-7 ,)('O"()F'1Q
Q:, 1'1-10; ,)0()'I9I'10
I'xr<;A F?FAF7F<;

~()(10:>(,~p

T"f1-l"l 0()RPO'lr.fl
1/TTP 0(1)0('10t")
D~ ()-7 R(1000000
Q~ q-I<; 00000817
FXT,)~ ()'l0(17on,F

("(11'01'1

T~I1-l'll (1'1r'lO'lrR
()/TTR (1(1'l06:>,)1
0;' 0-7
Q'; <\-1 <;
FXTS~

()nOOOI)()O
')"()?F(1:>R
006?1'1()(1
0()17C10:>

WT-l"'< O"l')"OClI\R
()(10~o~I'4 0'1()()()00'1
0()(11'1(, F4
I' 'I06r '140
00(1"00')1

~p~w F?FOrlr~

WT-I."IK ()()'17FOFO
'l()R17"00
OOOVl16C

(100(,""R8
CQr'iCl ?R

~PC;W FP-OF'ifl
WT -INK. "0()7F 1 7()

O()O(,')(,~ 0

000f,00r: 'l
O()o('l1rro

(100,Qf,F/,
flOOO?f,4R
?()OOFFFr
fIr :>C'iO <;

(100?Fln0 R"O'1I\O~R

400rJr''1'1>\ ()O,)?FO?R
0()0<)0'1'.0 O,)OA:)O)"
OOOOO()O() 0'1()"0()10

'IF (1')')1(H>I-q

"I' OOO'lI,)AO
''IF 0')')'111ro

~,r>-c,)F 0:>O'lnlFI1
q<:p-rOF ')]OV2f,()
P,D-f')I' C'10171C'l

''IF '100'11)')"(1
"II' Onr13]()cq
"JI' ()O~()~'()()

011 :>00
()1(IF<I()
(1301 rfl
()' :>1 0 0
01??q'l
O,:>:>f,()
01?1<10
rn:>700
01:>'If,)
()101ro

OV1~P.O

0371 flO
017:>'10

0'''0;0
rn71AO
0'121 1'0
0'121110
rnO"?!'!

HOI rR
ATPI rR
ATP 1 ~ 1
~TD I PR

~TRI RR
~ TP I Ril
ATPI RA
ATP 1 RA
ATP I '10

S7 0(1)(11)010
')1 0(01)004f

') 7 (1'l()o()rll 0
<7 0()(1()(1(110
<;7 ('')')(10')10
<,7 (1(10()(101 ()
<;7 0000(1010
<;7 0(10(1"01 ()
<;7 00')(1(1,)1()
<;7 00()(1()01()

"JrnF n0(10()('
"lr.')F '1"l1 ?"(1
'l(Or (1300, 1'(1
"Jr()F 111?'1fO
'IIC')F ()'I??r()

"C,)F OV?Qn
fIj('1F n171r ()
"rrw 017:>1(1
'IICOF 017"11'0
"r':lr 010l'A(1

Wl "O()()()()Ol
"lfl 0()00()(101

NO ()000()()01
Nn () '1000(1()1
I\Jfl ,)0()00"(11
I\Jrl 00000001
",n () 000000 1
"0 OO()OOOOI
"lfl 00(]0()()(11
\lr '10'1()(10'11

prC-R 11 0')"1 'll1r q

"r(-p" OQ010')P'l
prr-R'! O()OO'1OO(1
flrC-pn 'l'l')()OO()
PO(-PR ()')''''If)()OO
RO(-PR ,)'lO(]OOOO
prC-RI\ O()MIOOO(1
Pf'C-PR ,)'100()(1f)(1
PflC-Q'l (1')f)O(1(]()O

Rrr-Q" [)O()(10(1(1o

"(1000:>1''1
ROOI (,"'1'1
01 V'11"f)
(11 '1:>0 '100
A'lO()O('RO
ROOO')?10
11()00() 1 11'1
'I,)OO()O'i A
8()(10071()
A'10(1')100
~"0(100q')

• 'lfH10'115 0

0(1fl0'10()() PC;W rF11400()O 5(),)OC40B

"0'1()()0()('
:I'l:l1 ~ 1 5 R

11()()?rFr4
': 1r. 4<;'10/,

()'1()'10(173
OOf)'IAC"l
000:>FFr/,

()0"1RCOfl
()()()190;r()
nO()6flFRR

O()0161'AA
,"fJ7F414
()'10()OR17

0001r.C11
()f)()FCI0
fJO()1"1('(

T0"J 00 0(1')'1 1fl

40'10C1R?
'1000()(1()1
:I')()(,ORFO
r4()7!11Af,

nOOI,OOF()
O'1Of,nFFO
FF ()1 f'(l() 0

"(10 ?FFn4
()0()()?64R
()()O 7F I Fr.

()"():>FFf4
0(1r'100R6R
0()0?F1F4

OO()f,nFR'I
00010001
F2E'll'7CQ

TON f'f'O'l'lO()() o<;W FF040(1(11 4(1()7FAft4

'1 0(1 ()'1 RI, R

O"')(,OOI1A
1 R'l0?1,4R
"()"""()OO

OO()7FO?Q
oorQ()170
00()'1()04()

PSfl-r.or ()101?1'10
P<:D-C'1F ()l'1~?'1QO

P<:P-CflF 010V1RFO

"1'-1 r.Il
'-I" I "1(1\~(1f)
'-I'~ I r;COA ()5~
~J'" 1r.r;01 flro
111'-1 1r,r,OIQR~

,,'-1 1~r.()I')R'"

\' .., T G G() 1 '1r fl
"l!.1 Tr.GOI'lAJ
N'-1 I r.r,()1 QAR
III'" IEWC;7flVQ

1J5F 01
lIC;F 01
II,F ()?

USF Of­
Il<;r 0<;
\l<;F ()<;

1151' (16
JI,F 01
IJ<;F fl/,

II<;F 01

1 ~,

')"01"50'1
'l()')l'i'lf 11
'111 "010(1
11111\"1 ()O
,)'1()hr'lRfJ
1'117FA"()
""'17F4A0
0007FARO
"')"7FA00
O()" 7'"1\ ()
0'107Fr10
r'l()6f4RO

0()()'I'i"'r. R
011F()?fJO
014'<,(1600

0(1()2F17C
,)O(];>F 1 r 4
"0')'10041

000117110
4"'10fl<;94
()01)?R46()

00n()(1(100
11()0,)0000
00()()rlOl'I

IIII' 0003107R Q<;D-COE 01017?QO
\IF ()0011]70 RC;p-r'1E 010'17?()0

FPA 0'l5'i01\
FD" "16:>4()
FPII O~CQAO
F"II 071=1\110
1''' ~ 011'/,~()

FDA (17F'II'()
I'D" ()11'A()0
I'''A 071'H,()
[0" ()71'rl0
F"II (16C4"0

"DR

'10,)10R()O
01 ;>'lO'.()O
o l'.A040()

~ TP? 7()
/lTQ:> :>0
ATR:> 7'1
II. TI>? 7()
~ T P? 70
ATIl? 20
A TR?
"TO;> ?f)
"TO:> ;>n
t.TR:> ?()

11\1

010~04()(,

()1 ?FO'iOO
014n"5'10

XL/"J (1117110
l(L/!.1J 07F198
n/~J.' OlOABO
XL/"IJ OV'IRO
xL/"'J ()1?2'10
XL/"'J 0177"0
XL!!.1J 0171110
XL/!.1J ()171FO
Xl I'-IJ ()3?1R()

nl"'J 'nOR"'!

1\00

()10flO<;(10
01 -\'1(1<;()()

* •••••••••••••••••••••••••••••.•••
On~(]Dn5(1 0000()(10fJ O()()J'l?OA 0(10(1'R[('
AFOO()(10() 01 ()('O(l()" (]OOM1(100 FI'''f,nnf'P
()001fJ(10R ()0()10(1()1 r,?(7r?Cl flC4()(10('l

()F()0100" f)0()71'C7A !)I.'1?FF04 <)Afl()00'10 * 0 •••• " •••••
o/,(]?[nl(1 lA()0:>"4P nO')(10031 0(1(1100'1:> *•
O()OOJ'1()O (),)()OOO()O O()()OOO()O (1(40000

Figure 24A. Sample of Complete ABEND Dump (MVT)

ABEND/SNAP Dump (Systems with MVT) 51

DEB hhhhhhhh
is the TCBDEB field (bytes 8 through
11): starting address of the DEB
queue. Under the heading DEB in the
dump, ·the prefix section for the first
DEB in the queue is presented in the
first 8-digit entry on the first line.
The 6-digit entry at the left of each
line under DEB is the address of the
second column on the line w whether or
not the column is filled.

TIO hhhhhhhh
is the TCBTIO field (bytes 12 through
15): starting address of the TIOT.

CMP hhhhhhhh
is the TCBCMP field (bytes 16 through
19): task completion code or contents
of register 1 when the dump was
requested. system codes are given in
the third through fifth digits and
user codes in the sixth through eight
digits.

TRN hhhhhhhh
is the TCBTRN field (bytes 20 through
23): starting address of the control
core (table) for controlling testing
of the task by TESTRAN.

MSS hhhhhhhh
is the TCBMSS field (bytes 24 through
27): starting address of SPQE most
recently added to the SPQE queue.

PK-FLG hhhhhhhh
contains, in the first 2 digits, the
TCBPKF field (byte 28): protection
key.

contains, in the last 6 digits, the
first 3 bytes of the TCBFLGS field
(bytes 29 through 31): first 3 flag
bytes.

FLG hhhhhhhh
contains, in the first 4 digits, the
last 2 bytes of the TCBFLGS (bytes 32
and 33): last 2 flag bytes.

contains, in the next 2 digits, the

TCBLMP field (byte 34): limit
priority <converted to an internal
priority, 0 to 255).

contains, in the last 2 digits, the
TCBDSP field (byte 35): dispatching
priority (converted to an internal
priority, 0 to 255).

LLS hhhhhhhh
is the TCBLLS field (bytes 36 through
39): starting address of the load
list element most recently added to
the load list.

JLB hhhhhhhh
is the TCBJLB field (bytes 40 through
43): starting address of the DCB for
the JOBLIB data set.

JPQ hhhhhhhh
is the TCBJPQ fileld (bytes 41 through
47): when translated into binary
bits:

• Bit 0 is the purge flag.
• Bits 1 through 7 are reserved for

future use and are zeros.
• Bits 8 through 31 are the starting

address of the queue of CDEs for the
job pack area control queue, which
is for programs acquired by the job
step.

The TCBJPQ field is used only in the
first TCB in the job step; it is zeros
for all other TCBs.

RG 0-7 and RG 8-15
is the TCBGRS field (bytes L~8 through
111): contents of general registers 0
through 7 and a through 15, as stored
in the save area of the TCB when a
task switch occurred. These 2 lines
appear only in dumps of tasks other
than the task in control when the dump
was requested.

FSA hhhhhhhh
contains, in the first 2 digits, the
TCBQEL field (byte 112):: count of
enqueue elements.

contains, in the last 6 digits, the
TCBFSA field (bytes 113 through 115):
starting address of the first problem
program save area. This save area was
set up by -the control program when the
job step was initiated.

TCB hhhhhhhh
is the TCBTCB field (bytes 116 through
119) : sta:rting address of the next
lower priority TCB on the TeB queue
or, if this is the lowest priority
TCB, zeros.

TME hhhhhhhh
is the TCBTME field (bytes 120 through
123): starting address of the timer
element cr,eated when an STIMER macro
instruction is issued by the task.

54 Prograrr@er's Guide to Debugging (Release 20)

••

JST hhhhhhhh
is the TCBJSTCB field (bytes 124
through 127): starting address of the
TCB for the job step task. For tasks

~ with a protection key of zero, this
field contains the starting address of
the TCB.

NTC hhhhhhhh
is the TCBNTC field (bytes 128 through
131): the starting address of the TCB
for the previous subtask on this
subtask queue. This field is zero in
the job step task, and in the TCB for
the first subtask created by a parent
task.

OTC hhhhhhhh
is the TCBOTC field (bytes 132 through
135): starting address of TCB for the
parent task. In the TCB for the job
step task, this field contains the
address of the initiator.

LTC hhhhhhhh
is the TCBLTC field (bytes 136 through
139): starting address of the TCB for
the most recent subtask created by
this task. This field is zero in the
TCB for the last subtask of a job
step, or in a TCB for a task that does
not create subtasks.

IQE hhhhhhhh
is the TCBIQE field (bytes 140 through
143): starting address of the
interruption queue element (IQE) for
the ETXR exit routine. This routine
is specified by the ETXR operand of
the ATTACH macro instruction that
created the TCB being dumped. The
routine is to be entered when the task
terminates.

ECB hhhhhhhh
is the TCBECB field (bytes 144 through
147): starting address of the ECB to
be posted by the control program at
task termination. This field is zero
if the task was attached without an
ECB operand.

STA hhhhhhhh
contains zeros, reserved for future
use.

D-·PQE hhhhhhhh
is the TCBPQE field (bytes 152 through
155): starting address minus 8 bites
of the dummy PQE. This field is
passed by the ATTACH macro instruction
to each TCB in a job step.

SQS hhhhhhhh
is the TCBAQE field (bytes 156 through
159): starting address of the
allocation queue element (AQE).

NSTAE hhhhhhhh
contains, in the first 2 digits, STAE
flags (byte 160).

contains, in the last 6 digits, the
TCBNSTAE field (bytes 161 through
163): starting address of the current
STAE control block for the task. This
field is zero if STAE has not been
issued.

TCT hhhhhhhh
is the TCBTCT field (bytes 164 through
167): address of the Timing Control
Table (TCT).

USER hhhhhhhh
is the TCBUSER field (bytes 168
through 171): to be used as the user
chooses.

DAR hhhhhhhh
contains, in the first two digits,
Damage Assessment Routine (DAR) flags
(byte 172);

MFT only, contains, in the last 6
digits, the secondary
non-dispatchability bits (bytes 173
through 175).

RESV hhhhhhhh
reserved for future use.

JSCB hhhhhhhh
is the TCBJSCB field (bytes 180
through 183): the last three bytes
contain the address of the Job step
Control Block.

ABEND/SNAP Dump (systems with MVT) 55

ACTIVE RBS

ecce hhhhhh cccccc hhhhhhhh ,
Q/TTR hhhhhhhh
RG 0-7 hhhhhhhh
RG 8-15 hhhhhhhh

APSW hhhhhhhh
WT-LNK hhhhhhhh

hhhhhhhh

WC-SZ-STAB hhhhhhhh cccccc hhhhhhhh PSW hhhhhhhh hhhhhhhh

Ex~rSA

ACTIVE RBS

hhhhhhhh
hhhhhhhh

hhhhhhhh
hhhhhhhh
hhhhhhhh

hhhhhhhh
hhhhhhhh
hhhhhhhh
hhhhhhhh

identifies t:he next lines as the
contents of the active RBs queued to
the TeB, beginning with the oldest RB
first.

cccc hhhhhh
indicates the RB type (cccc) and
starting address (hhhhhh).

The RB types are:

PRB program request block
IRB interruption request block
SVRB supervisor request block

cccccc hhhhhhhh
indicates the RBis function (cccccc)
and bytes 0 through 3 of the RB
(hhhhhhhh):

• RESV hhhhhhhh indicates PRB or SVRB
for resident routines. Bytes 0
through 3 are reserved for later use
and contain zeros.

• TAB-LN hhhhhhhh indicates SVRB for
transient routines. The first 4
digits contain the RBTABNO field
(bytes 0 and 1): displacement from
the beginning of the transient area
control table (TACT) to the entry
for the module represented by the
RB. The last 4 digits contain the
RBRTLNTH field (bytes 2 and 3):
length of the SVC routine.

• FL-PSA hhhhhhhh indicates IRB. The
first 2 digits contain the RBTMFLD
field (byte 0): indicators for the
timer routines. This byte contains
zeros when the IRB does not
represent a timer routine. The last
6 digits contain the RBPSAV field
(bytes 1 through 3): starting
address of the problem program
register save area (PSA).

hhhhhhhh
hhhhhhhh
hhhhhhhh
hhhhhhhh

hhhhhhhh
hhhhhhhh
hhhhhhhh

hhhhhhhh
hhhhhhhh
hhhhhhhh

hhhhhhhh
hhhhhhhh
hhhhhhhh

hhhhhhhh
hhhhhhhh
hhhhhhhh

APSW hhhhhhhh
is the RBABOPSW field (bytes 4 through
7):

• In PRB, right half of the problem
program's PSW when the interruption
occurred.

• In IRB or SVRB for ty~e II SVC
routines, right half of routine's
PSW during execution of ABEND or
ABTERM, or zeros.

• In SVRB for type III or IV SVC
routines, right half of routine's
PSW during execution of ABEND or
ABTERM, or the last four characters
of the name of the requested
routine. (The last two characters
give the SVC number.)

WC-SZ-STAB hhhhhhhh
contains, in the first 2 digits, the
RBWCSA field (byte 8): wait count in
effect at time of abnorn:;al termination
of the program.

contains, in the second 2 digits, the
RBSIZE field (byte 9): size of the RB
in doublewords.

contains, in the last 4 digits, the
RBSTAB field (bytes 10 and 11):
status and attribute bits.

cccccc hhhhhhhh
indicates the RBis function (cccccc)
and bytes 12 through 15 of the RB
(hhhhhhhh) :

• FL-CDE hhhhhhhh indicates SVRB for
resident routines, or PRB.. The
first 2 digits contain the RBCDFLGS
fie ld (byte 12): cont.rol flags.

56 Programmer's Guide to Debugging (Release 20)

The last 6 digits contain the RBCDE
field (bytes 13 through 15):
starting address of the CDE for the
module associated with this RB.

• EPA hhhhhhhh is the RBEP field of
an IRB (bytes 12 through 15):
entry-point address of
asynchronously executed routine •

• TQN hhhhhhhh indicates SVRB for
transient routines. Is the RBSVTQN
field (bytes 12 through 15):
address of the next RB in the
transient control queue.

PSW hhhhhhhh hhhhhhhh
is the RBOPSW field (bytes 16 throug~
23): resume PSW.

Q/TTR hhhhhhhh
• In PRBs and SVRBs for resident

routines, contains zeros in the
first 2 digits. The last 6 digits
contain the RBPGMQ field (bytes 25
through 27): queue field for
serially reusable programs (also
called the secondary queue).

• In IRBs, contains the RBUSE field in
the first 2 digits (byte 24): count
of requests for the same exit
(ETXR). The RBIQE field in last 6
digits (bytes 25 through 27):
starting address of the queue of
interruption queue elements (IQE),
or zeros in the first 4 digits and
the RBIQE field in the last 4 digits
(bytes 26 and 27): starting address
of the request queue elements.

LOAD LIST

• In SVRBs for transient routines the
first 2 digits contain the RBTAWCSA
field (byte 24): number of requests
(used if transient routine is
overlaid) and the last 6 digits, the
RBSVTTR field (bytes 25 through 27):
relative track address for the SVC
routine.

WT-LNK hhhhhhhh
contains, in the first 2 digits, the
RBWCF field (byte 28): wait count.

contains, in the last 6 digits, the
RBLINK field (bytes 29 through 31):
starting address of the previous RB on
the active RB queue (primary queuing
field) or, if this is the first or
only RB, the starting address of the
TCB.

RG 0-7 and RG 8-15

EXTSA

is the RBGRSAVE field (bytes 32
through 95): in SVRBs and IRBs,
contents of registers 0 through 15.

• In IRBs, contains the RBNEXAV field
in the first 8 digits (bytes 96
through 99): address of next
available interruption queue element
(IQE), and in the remaining digits,
the interruption queue element work
space (up to 1948 bytes).

• In SVRBs, contains the RBEXSAVE
field (bytes 96 through 143):
extended save area for SVC routine.

NE hhhhhhhh RSP-CDE hhhhhhhh NE hhhhhhhh RSP-CDE hhhhhhhh NE hhhhhhhh RSP-CDE hhhhhhhh

LOAD LIST
identifies the next lines as the
contents of the load list elements
(LLEs) queued to the TCB by its TCBLLS
field. The contents of 3 load list
elements are presented per line until
all elements in the queue are shown.

NE hhhhhhhh
contains, in the first 2 digits, LLE
byte 0: zeros.

contains, in the last 6 digits, LLE
bytes 1 through 3: starting address
of the next element in the load list.

RSP-CDE hhhhhhhh
contains, in the first 2 digits, LLE
byte 4: the count of the number of
requests made by LOAD macro
instructions for the indicated load
module. This count is decremented by
DELETE macro instructions.

contains, in the last 6 digits, LLE
bytes 5 through 7: starting address
of the CDE for the load module.

ABEND/SNAP Dump (systems with MVT) 57

CDE

hhhhhhhh ATRl hh NCDE hhhhhh ROC-RB hhhhhhhh NM cccccccc USE hh EPA hhhhhh ATR2 hh XL/MJ hhhhhh

CDE
identi.fies t.he next lines as the
contents directory addressed by an LLE
or RB. One entry is presented per
line.

hhhhhhhh
is the starting address of the entry
given on the line.

ATR1 hh
is the attribute flags.

NCDE hhhhhh
is the starting address of the next
entry in thE~ contents directory.

ROC-RB hhhhhhhh

t=-

contains, in the first 2 digits,
zeros.

contains, in the last 6 digits, the
starting address of the RB for the
load module represented by this entry.

LN

L. hhhhhh SZ hhhhhhhh NO hhhhhhhh hhhhhhhh

XL
indicates the next lines are entries
in the extent list, which is queued to
the major contents directory entry.
Each extent list entry is given in one
or more lines. Only the first line
for an entry contains the left 3
columns; additional lines for an entry
contain information only in the right
6 columns.

hhhhhh
is the starting address of the entry.

sz hhhhhhhh
is the total length, in bytes, of the
entry.

NM cccccccc
is the name of the entry point to the
load module represented by this entry.

USE hh
is the count of the uses (through
ATTACH, LINK, and XCTL macro
instructions) of the load module, and
of the number of LOAD macro
instructions executed for the module.

EPA hhhhhh
is the entry point address associated
with the name in the NM field.

ATR2 hh
is the attribute flags.

XL/MJ hhhhhh

ADR

hhhhhhhh

is the starting address of the extent
list (XL) for a major CDE, or the
starting address of the major CDE for
a minor CDE. (Minor CDEs are for
aliases.)

LN

hhhhhhhh hhhhhhhh
An~ LN ADR

NO hhhhhhhh
is the number of scattered control
sections in the load rrodule described
by this entry. If this number is 1,
the load IT.odule was loaded as one
block.

LN hhhhhhhh
gives the length, in bytes, of the
control sections in the load module
described by thi.s entry. Bit 0 is set
to 1 in the last, or only, LN field to
signal the end of the list o~ lengths.

ADR hhhhhhhh
gives the starting addresses of the
control sections. Each ADR field is
paired with the LN field to its left.

58 Programmer's Guide to Debugging (Release 20)

DEB

hhhhhh
hhhhhh hhhhhhhh hhhhhhhh
hhhhhh hhhhhhhh hhhhhhhh
hhhhhh hhhhhhhh hhhhhhhh

TIOT JOB ecce ecce STEP cccccccc

hhhhhhhh hhhhhhhh
hhhhhhhh hhhhhhhh
hhhhhhhh hhhhhhhh

PROe cccccccc

hhhhhhhh
hhhhhhhh
hhhhhhhh

hhhhhhhh
hhhhhhhh
hhhhhhhh

hhhhhhhh
hhhhhhhh
hhhhhhhh

hhhhhhhh
hhhhhhhh
hhhhhhhh

DD hhhhhhhh cccccccc hhhhhhhh hhhhhhhh

DEB

TrOT

identifies the next lines as the
contents of the DEBs and their prefix
sections. The first 6 digits in each
line give the address of the DEB
contents shown on the line, beginning
with the second column. The first six
digits of the first line contains the
prefix section for the first DEB on
the queue.

identifies the next lines as the
contents of the TrOT.

JOB cccccccc
is the name of the job whose task is
being dumped.

STEP cccccccc
is the name of the step whose task is
being dumped.

PROC cccccccc

DD

is the name for the job step that
called the cataloged procedure. This
field appears if the job step whose
task is being duITt~ed was part of a
cataloged procedure.

identifies the line as the contents of
the DD entry in the TrOT.

MSS ******** •• ** SPQE ***.*.*.*.*. .***** •• ******'IIr DQE .******.******* FQE **.*****
FLGS NSPQE SPID DQE BLK FQE LN NDQE NPQE LN

hhhhhh hh hhhhhh ddd hhhhhh hhhhhh hhhhhh hhhhhh hhhhhh hhhhhhhh hhhhhhhh

D-PQE hhhhhh FIRST hhhhhhhh LAST hhhhhhhh

PQE hhhhhh FFB hhhhhhhh LFB hhhhhhhh NPO hhhhhhhh
TeB hhhhhhhh RSI hhhhhhhh RIID hhhhhhhh

FBQE hhhhhh NFB hhhhhhhh PFB hhhhhhhh SZ hhhhhhhh

PQE hhhhhh FFB hhhhhhhh LFB hhhhhhhh NP() hhhhhhhh
TeB hhhhhhhh RSI hhhhhhhh RAD hhhhhhhh

FBQE hhhhhh NFB hhhhhhhh PFB hhhhhhhh SZ hhhhhhhh

Iv'1SS
identifies the next lines as the
contents of the main storage
supervisor queue. This queue includes
subpool queue elements (SPQE),
descriptor queue elements (DQE), and
free queue elements (FQE).

hhhhhh
is the starting address of the first
element shown on the line.

PP0
FLr.

PPr)
FLr.

SPQE

hhhhhhhh
hhhhhhhh

hhhhhhhh
hhhhhhhh

identifies the 4 columns beneath it as
the contents of SPQEs.

FLGS hh
is the SPQE flag byte.

NSPQE hhhhhh
is the starting address of the next
SPQE in the queue.

ABEND/SNAP Dump (systems with MVT) 59

SPID ddd
is the subpool number.

DQE hhhhhh

DQE

for a subpool owned by the task being
dumped: the starting address of the
first DQE for the subpool.

for a subpool that is shared: the
starting address of the SPQE for the
task t.hat owns the subpool.

identifies the 4 columns beneath it as
the contents of DQEs.

BLK hhhhhh
is the starting address of the
allocated 2K block of main storage or
set of 2K blocks.

FQE hhhhhh
is the starting address of the first
FQE within the allocated blocks.

LN hhhhhh
is the length, in bytes, of the
allocated blocks.

NDQE hhhhhh

FQE

is the starting address of the next
DQE.

identifies the 2 columns beneath it as
the contents of FQEs.

NFQE hhhhhhhh
is the starting address of the next
FQE.

LN hhhhhhhh
ind~cates the number of bytes in the
free area.

D-PQE hhhhhh
is the TCBPQE field (bytes 152 through
155): starting address minus 8 bytes
of the duwny PQE shown on the line.

FIRST hhhhhhhh
is the starting address of the first
PQE.

LAST hhhhhhhh
is the starting address of the last
PQE.

PQE hhhhhh
is the starting address of the PQE
shown on the line.

FFB hhhhhhhh
is bytes 0 through 3 of the PQE:
starting address of the first FBQE.

If no FBQEs exist, this field is the
starting address of this PQE

LF B hhhhhhhh
is bytes 4 through 7 of the PQE:
starting address of the last FBQE. If
no FBQEs exist, this field is the
starting address of this PQE.

NPQ hhhhhhhh
is bytes 8 through 11 of the element:
starting address of the next PQE or,
if this is the last PQE6 zeros.

PPQ hhhhhhhh
is bytes 12 through 15 of the element:
starting address of the preceding PQE
or, if this is the first PQE, zeros.

TCB hhhhhhhh
is bytes 16 through 19 of the element:
starting address of the TCE for the
job step to which the space belongs
or, if the space was obtained from
unassigned free space, zeros.

RSI hhhhhhhh
is bytes 20 through 23 of the element:
size of the region described by thi~
PQE (a multiple of 2048).

RAD hhhhhhhh
is bytes 24 through 27 of the element:
starting address of the region
described by this PQE.

FLG hhhhhhhh
is byte 28 of th,e elerrent:

bit 0 when 0, indicates space
described by this PQE is owned;

when 1, indicates space is
borrowed.

bit 1 when 1, indicates region has
been rolled out (meaningful only
when bit 0 is 0).

bit 2 when 1, indicates region has
been borrow.ed.

bit 3-7, reserved for future use.

Note: PQE information is contained in two
lines on the dUwp. 'V-Jhen the rollout/rollin
feature or Main Storage Hierarchy Support
is included in the systew, PQE information
(with associated FBQEs) appears once in the
dump for each region segwent of the JOD
step. (Each PQE on the parti.tion queue
defines a region segment. A job step's
region contains more than one segment only
when the step has rolled out another step
or steps, or Main storage Hierarchy Support
is present.)

60 Programmer's Guide to Debugging (Release 20)

--

FBQE hhhhhh
is the starting address of the FBQE
shown on the line.

NFB hhhhhhhh
is bytes 0 through 3 of the element:
starting address of the next FBQE. In
the highest or only FBQE, this field
contains the address of the PQE.

QCB TRACE

PFB hhhhhhhh
is bytes 4 through 7 of the element:
starting address of the previous FBQE.
In the lowest or only FBQE, the field
contains the address of the PQE.

SZ hhhhhhhh
is bytes 8 through 11 of the element:
size, in bytes, of the free area.

MAJ hhhhhh NMAJ hhhhhhhh PMAJ hhhhhhhh FMIN hhhhhhhh NM cccccccc

MIN hhhhhh FQEL hhhhhhhh PMIN hhhhhhhh NMIN hhhhhhhh NM xx xxxxxxxx

NQEL hhhhhhhh PQEL hhhhhhhh TeB hhhhhhhh SVRB hhhhhhhh

QCB TRACE
identifies the next lines as a trace
of the queue control blocks (QCB)
associated with the job step. Lines
beginning with MAJ show major QCBs,
lines beginning with MIN show minor
QCBs, and lines beginning with NQEL
show queue elements (QEL).

MAJ hhhhhh
is the starting address of the major
QCB whose contents are given on the
line.

NMAJ hhhhhhhh
is the starting address of the next
major QCB for the job step.

PMAJ hhhhhhhh
is the starting address of the
previous major QCB for the job step.

FMIN hhhhhhhh
is the starting address of the first
minor QCB associated with the major
QCB given on the line.

NM cccccccc
is the name of the serially reusable
resource represented by the major QCB.

MIN hhhhhh
is the starting address of the minor
QCB whose contents are given on the
line.

FQEL hhhhhhhh
is the starting address of the first
queue element (QEL), which represents
a request to gain access to a serially
reusable resource or set of resources.

PMIN hhhhhhhh
is the starting address of the
previous minor QCB.

NMIN hhhhhhhh
is the starting address of the next
minor QCB.

NM xx xxxxxxxx
indicates, in the first 2 digits, the
scope of the name or address of the
minor QCB being dumped. If the scope
is hexadecimal FF, the name is known
to the entire operating system. If
the scope is hexadecimal 00 or 10
through FO, the name is known only to
the job step; in this case, the scope
is the protection key of the ~CB
enqueuing the minor QCB.

Also contains, in the last 8 digits,
the name or the starting address of
the minor QCB.

NQEL hhhhhhhh
indicates, by hexadecimal 10 in the
first 2 digits, that the queue element
on the line represents a request for
step-must-complete; by 00, ordinary
request; and by 20, a
set-must-complete request.

Also contains, in the last 6 digits,
the starting address of the next queue
element in the queue, or for the last
queue element in the queue, zeros.

PQEL hhhhhhhh
indicates, by hexadecimal 80 in the
first 2 digits, that the queue element
represents a shared request or, by
hexadecimal 00, that the element
represents an exclusive request. (If

ABEND/SNAP Dump <systems with MV~) 61

the shared DASD option was selected,
hexadecimal 40 in the first 2 digits
indicates an exclusive RESERVE request
and 00 indicates a shared RESERVE
request ..)

TCB hhhhhhhh
is the starting address of the TCB
under which the ENQ macro instruction
was issued ..

SAVE AREA TRACE

ecce ecce WAS ENTERED VIA LINK (CALL) ddddd AT EP ecccc •••

SVRB hhhhhhhh
is the starting address of the SVRB
under which the routine for the ENQ
macro instruction is executed, or,
after the requesting task receives
control of the l~esource, the UCB
address of a device being reserved
through a RESERVE macro instruction
(the latter value occurs only when the
shared DASD option was selected) ..

SA hhhhhh WDI hhhhhhhh
Rl hhhhhhhh
R7 hhhhhhhh

HSA hhhhhhhh
R2 hhhhhhhh
R8 hhhhhhhh

LSA hhhhhhhh RET hhhhhhhh EPA hhhhhhhh RO hhhhhhhh
R3 hhhhhhhh R4 hhhhhhhh R5 hhhhhhhh R6 hhhhhhhh
R9 hhhhhhhh RIO hhhhhhhh Rll hhhhhhhh R12 hhhhhhhh

INCORRECT BACK CHAIN

INTERRUPT AT hhhhhh

PROCEEDING BACK VIA REG 13

SAVE AREA TRACE
identifies ·the next lines as a trace
of the save areas for the program.
Each save a:rea is presented in 3 or 4
lines. The first line gives
information about the linkage that
last used the save area. This line
will not appear when the RB for the
linkage cannot be found. The second
line gives ·the contents of words 0
through 5 of the save area. The third
and fourth lines give the contents of
words 6 through 18 of the save area;
these words are the contents of
registers 0 through 12. Save areas
are p:r-esented in the following order:

1. The save area pointed to in the
TCBFSA field of the TCB. This
save area is the first one for the
p:roblem program; it was set up by
the control program when the job
step was initiated.

2. If the third word of the first
save area was filled by the
problem program, then the second
save area shown is that of the
next lower level module of the
task. However, if the third word
of the first area points to a
location whose second word does
not point back to the first area,
the message INCORRECT BACK CHAIN
appears, followed by possible
contents of the second save area.

3. The third, fourth, etc. save
areas are then shown, provided the
third word in each higher save
area was filled and the second
word of each lower save area
points back to the next higher
save area. This process is
continued until the end of the
chain is reached (the third word
in a save a]~ea contains zeros) or
INCORRECT BJ~CK CHAIN appears.

Following thE~ forward trace, the
message INTERRUPT AT hhhhhh ar;pears,
followed by the message PROCEEDING
BACK VIA REG 13. Then, the save area
in the lowest level module is
presented, followed by the save area
in the next higher level.. The lowest
save area is assumed to be the 76
bytes beginning with the byte
addressed by re9ister 13. These two
save areas appear only if r·egister 13
pOints to a full word beundary and
does not contain zeros.

cccccccc WAS ENTERED
is the name of i:he lT'odule t.hat stored
register conteni:s in the save area.
This name is obi:ained frolT' the RB.

VIA LINK ddddd or VI1~ CALL ddddd
indicates the macro instruction (LINK
or CALL) used to give centrol to the
next lower level module, and is the ID

62 Programmer's Guide to Debugging (Release 20)

--

operand, if it was specified, of the
LINK or CALL macro instruction.

AT EP ccccc •••
is the entry point identifier, which
appears only if it was specified in
the SAVE macro instruction that filled
the save area.

SA hhhhhh
is the starting address of the save
area.

WD1 hhhhhhhh
is the first word of the save area
(optional) •

HSA hhhhhhhh
is the second word of the save area:
starting address of the save area in
the next higher level module. In the
first save area in a job step, this
word contains zeros. In all other
save areas, this word must be filled.

LSA hhhhhhhh
is the third word of the save area
(register 13): starting address of
the save area in the next lower level
(called) module. If the module
containing this save area did not fill
the word, it contains zeros.

RET hhhhhhhh
is the fourth word of the save area
(register 14): return address
(optional); if the called module did
not fill the word, it contains zeros.

EPA hhhhhhhh
is the fifth word of the save area

(register 15): entry point to the
called roodule. Use of this word is
optional; if the called n:cdult:. diu not
fill the word, it contains zero~.

RO hhhhhhhh al hhhhhhhh ••. R12 hhhhhhhh
are words 6 through 18 of the save
area (registers 0 through 12):
contents of registers 0 through 12 for
the module containing the save area
immediately after the linkage. U0e of
these words is optional; if the called
module did not fill these -Nords, they
contain zeros.

INCORRECT BACK CHAIN
indicates that the following lines may
not be a save area because the second
word in this area does not point back
to the previous save area in the
trace.

INTERRUPT AT hhhhhh
is the address of the next instruction
to be executed in the' problem program.
It is obtained from the resume PSW
word of the last PRS or LPRB in the
active RB queue.

PROCEEDING BACK VIA REG 13
indicates that the next 2 save areas
are (1) the save area in the lowest
level module, followed by (2) the save
area in the next higher level module.
The lowest save area is the save area
pointed to by register 13. These 2
save areas appear only if register 13
points to a fullword boundary and does
not contain zero.

ABEND/SNAP Dump (systems with MVT) 63

CPUx PSA

hhhhhh hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh *cccccccccccccccccccccccccccccccc*
hhhhhh hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh *cccccccccccccccccccccccccccccccc*

NUCLEUS

hhhhhh hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh *cccccccccccccccccccccccccccccccc*
hhhhhh hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhhhhhhhhhhh hhhhhhhh *cccccccccccccccccccccccccccccccc*

NUCLEUS CONT.

hhhhhh hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh *CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC*
hhhhhh hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh *cccccccccccccccccccccccccccccccc*

REGS AT ENTRY

FLTR 0-6

REGS 0-7
REGS 8-15

TO ABEND (SNAP)

hhhhhhhhhhhhhhhh hhhhhhhhhhhhhhhh

hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh
hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh

LOAD MODULE cccccccc

hhhhhhhhhhhhhhhh hhhhhhhhhhhhhhhh

hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh
hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh

hhhhhh hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh *cccccccccccccccccccccccccccccccc*
hhhhhh hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh *cccccccccccccccccccccccccccccccc*

LINES , hhhhh,h-hhhhhh SAME AS ABOVE
hhhhhh hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh *cccccccccccccccccccccccccccccccc*
hhhhhh hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh *cccccccccccccccccccccccccccccccc*

LINE hhhhhh SAME AS ABOVE

CSECT dd OF cccccccc

hhhhhh hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh
hhhhhh hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh

hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh
hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh

cccccccccccccccccccccccccccccccc
cccccccccccccccccccccccccccccccc

The contents of main storage are given
under 6 headings: CPUx PSA, NUCLEUS,
NUCLEUS CONT., LOAD MODULE cccccccc, CSECT
dd OF cccccccc, and in the trace table, SP
ddd BLK hh. Under these headings, the
lines have the following format:

• }o'irst entry:: the address of the
initial bytes of the main storage
presented on the line.

• Next 8 entries: 8 full words (32
bytes) of main storage in hexadecimal.

• l~ast entry (surrounded by asterisks):
t:he same 8 full words of main storage
in EBCDIC. Only A through Z, 0 through
9, and blanks are printed; a period is
printed for anything else.

The following lines may also appear:

LINES hhhhhh-hhhhhh SAME AS ABOVE
are the starting addresses of the
first and last lines for a group of
lines that are identical to the line
immediately preceding_

LINE hhhhhh SAME AS ABOVE
is the starting address of a line that
is identical to the line immediately
preceding.

CPUx PSA {Model 65 Multiprocessinq dumps
only}

identifies the next lines as the
contents of the prefixed storage area
(PSA) -- 0 through 4095 (FFF). If the
system is operating in partitioned
mode (1 CPU). x is the CPU
identification. If the system is
operating in a 2 CPU mUltisystem mode,
both PSAs are printed, the first under
the heading CPUA PSA and the second
under CPUB PSA.

NUCLEUS
identifies the next lines as the
contents of the nucleus of the control
program.

NUCLEUS CONT.
identifies the next lines as the
contents of the part of the nucleus
that lies above the trace table.

REGS AT ENTRY TO ABEND or REGS AT ENTRY TO
SNAP

identifies the next 3 lines as the
contents of the floating point and
general registers when the abnormal
termination routine received control
in response to an ABEND macro
instruction or when the SNAP routine
received control in response to a SNAP

64 Programmer's Guide to Debugging (Release 20)

.111,

--

macro instruction. These are not the
registers for the problem program when
the error occurred .•

FLTR 0-6
indicates the contents of floating
point registers 0, 2, 4, and 6.

REGS 0-7
indicates the contents of general
registers 0 through 7.

REGS 8-15
indicates the contents of general
registers 8 through 15.

TRACE TABLE

DSP NEW PSW hhhhhhhh hhhhhhhh R15/RO hhhhhhhh hhhhhhhh
I/O OLD PSW hhhhhhhh hhhhhhhh R15/RO hhhhhhhh hhhhhhhh
SID CC/DEV/CAW hhhhhhhh hhhhhhhh CSW hhhhhhhh hhhhhhhh
SVC OLD PSW hhhhhhhh hhhhhhhh R15/RO hhhhhhhh hhhhhhhh
PGM OLD PSW hhhhhhhh hhhhhhhh R15/RO hhhhhhhh hhhhhhhh
EXT OLD PSW hhhhhhhh hhhhhhhh R15/RO hhhhhhhh hhhhhhhh

TRACE TABLE (SNAP dumps only)
identifies the next lines as the
contents of the trace table. Each
trace table entry is presented on one
line; the name at the beginning of
each line identifies the type of entry
on the line:

• DSP Dispatcher entry

• I/O Input/output interruption entry

• SIO start input-output (SIO) entry

• SVC Supervisor call (SVC)
interruption entry

• PGM Program interruption entry

• EXT External interruption entry

OLD PSW hhhhhhhh hhhhhhhh
is the PSW stored when the
interruption represented by the entry
occurred.

NEW PSW hhhhhhhh hhhhhhhh
is the new PSW stored in the entry.

CC/DEV/CAW hhhhhhhh hhhhhhhh
contains, in the first 2 digits:
completion code.

contains, in the next 6 digits:
device type.

LOAD MODULE cccccccc
identifies the next lines as the
contents of the main storage area
occupied by the load module cccccccc
addressed by an LLE or RB. All the
modules for the job step are dumped
under this type of heading. Partial
dumps do not contain this information.

CSECT hhhh OF cccccccc

Rl
Rl
RES
Rl
Rl
Rl

identifies the next lines as the
contents of the main storage area
occupied by the control section
(CSECT) indicated by hhhh. This
control section belongs to the
scatter-loaded load module cccccccc.

hhhhhhhh SW hhhhhhhh TCB hhhhhhhh THE hhhhhhhh
hhhhhhhh RES hhhhhhhh TCB hhhhhhhh THE hhhhhhhh
hhhhhhhh RES hhhhhhhh TCB hhhhhhhh THE hhhhhhhh
hhhhhhhh RES hhhhhhhh TCB hhhhhhhh THE hhhhhhhh
hhhhhhhh RES hhhhhhhh TCB hhhhhhhh THE hhhhhhhh
hhhhhhhh RES hhhhhhhh TCB hhhhhhhh TME hhhhhhhh

contains, in the last 8 digits:
address of the channel address word
(CAW) stored in the entry.

R1S/RO hhhhhhhh hhhhhhhh
contains, in the first 8 digits:
contents of register 15 stored in the
entry.

contains, in the last 8 digits:
contents of register 0 stored in the
entry.

CSW hhhhhhhh hhhhhhhh
is the channel status word <CSW)
stored in the entry.

Rl hhhhhhhh
is the contents of register 1 stored
in the entry.

RES hhhhhhhh
is reserved for future use; all diqits
are zeros.

SW hhhhhhhh
is reserved for future use; all digits
are zeros.

TCB hhhhhhhh
is the starting address of the 'ICd
associated with the entry.

TME hhhhhhhh
is a representation of the timer
element associated with the entry.

ABEND/SNAP Dump (Systems with MVT) 65

TRT

X DSP NEW PSW hhhhhhhh hhhhhhhh R15/RO hhhhhhhh hhhhhhhh R1 hhhhhhhh NUA hhhhhhhh NUB hhhhhhhh TME hhhhhh
X I/O OLD PSW hhhhhhhh hhhhhhhh CSW hhhhhhhh hhhhhhhh R1 hhhhhhhh aLA hhhhhhhh aLB hhhhhhhh TME hhhhhh
X SIO CC/DEV/CAW hhhhhhhh hhhhhhhh CSW hhhhhhhh hhhhhhhh TCB hhhhhhhh aLA hhhhhhhh aLB hhhhhhhh TME hhhhhh
X SVC OLD PSW hhhhhhhh hhhhhhhh R15/RO hhhhhhhh hhhhhhhh R1 hhhhhhhh aLA hhhhhhhh aLB hhhhhhhh TME hhhhhh
X PGM OLD PSW hhhhhhhh hhhhhhhh R15/RO hhhhhhhh hhhhhhhh RT hhhhhhhh aLA hhhhhhhh aLB hhhhhhhh TME hhhhhh
X EXT OLD PSW hhhhhhhh hhhhhhhh R15/RO hhhhhhhh hhhhhhhh R1 hhhhhhhh MSK hhhhhhhh TQE hhhhhhhh TME hhhhhh
X SSM OLD PSW hhhhhhhh hhhhhhhh R15/RO hhhhhhhh hhhhhhhh R1 hhhhhhhh AFF yyhhhhhh aLB hhhhhhhh TME hhhhhh

TRT (MVT with Model 65 multiprocessing
dumps only)

identifies the next lines as the
contents of the trace table. Each
trace table entry is presented on one
line; the letter and name at the
beginning of each line identify the
CPU and the type of entry,
respectively:

• DSP Dispatcher entry.

• I/O Input/output interruption
entry.

• SIO Start input/output entry.

• SVC Supervisor call interruption
entry.

• PGM Program interruption entry.

• EXT External interruption entry.

• SSM Set system mask entry.

OLD PSW hhhhhhhh hhhhhhhh
is the PSW stored when the
interruption represented by the entry
occurred.

NEW PSW hhhhhhhh hhhhhhhh
is the new PSW stored in the entry.

CC/DEV/CAW hhhhhhhh hhhhhhhh
contains, in the first 2 digits:
completion code; in the next 6 digits:
device type; in the last 8 digits:
address of the channel address word
stored in the entry.

R15/RO hhhhhhhh hhhhhhhh
contains, in the first 8 digits:
contents of register 15; in the last 8
digits: contents of register 0, both
as stored in the entry.

CSW hhhhhhhh hhhhhhhh
is the channel status word stored in
the entry.

Rl hhhhhhhh
is the contents of register 1 as
stored in the en-try.

TCB hhhhhhhh
is the starting address of the TCB
associated with -the entry ..

NUA hhhhhhhh
is the starting address of the new TCB
for CPU A, as stored in the entry.

OLA hhhhhhhh
is the starting address of the old TCB
for CPU A, a,s stored in the entry.

MSK hhhhhhhh
is the STMASK of the other CPU as
stored in the entry.

NUB hhhhhhhh
is the starting address of the new TCB
for CPU B, as stored in the entry.

OLB hhhhhhhh
is the starting address of the old TC3
for CPU B, as stored in the entry.

TQE hhhhhhhh
is the first word of the timer queue
element stored in the entry, provided
a timer interrupt occurred.

TME hhhhhhhh
is a representation of the timer
element associatE~d with the entry.

AFF yyhhhhhh
contains, in the first 2 digits: the
ID of the locking CPU at the time of
the interrupt; in the last 6 digits:
starting address of the old TCB for
CPU A, as stored in the entry.

66 Programmer's Guide to Debugging (Release 20)

-

SP ddd

hhhhhh hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh
hhhhhh hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh

hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh *cccccccccccccccccccccccccccccccc*
hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh *cc~ccccccccccccccccccccccccccccc*

END OF DUMP

SP ddd
identifies the next lines as the
contents of a block of main storage
obtained through a GETMAIN macro
instruction, and indicates the subpool
number (ddd). The part of subpool 252
that is the supervisor work area is
presented first, followed by the
entire contents of any problem program
subpools (0 through 127) in existence
during the dumping.

END OF DUMP
indicates that the dump or snapshot is
completed. If this line does not
appear, the ABDUMP routine was
abnormally terminated before the dump
was completed, possibly because enough
space was not allocated for the dump
data set.

Guide to Using an ABEND/SNAP Dump (MVT)

Cause of Abnormal Termination: Evaluate
the user (USER=decimal code) or system
(SYSTEM=hex code) completion code using
Appendix B or the publication Messages and
Codes.

Dumped Task: Check the ID field for an
indication of which task is being dumped in
relation to the task that was abnormally
terminated:

• 001 indicates a partial dump of a
subtask

• 002 indicates a partial dump of the
invoking task

If the ID field is absent, the dump
contains a full dump of the task that~ was
abnormally terminated.

Active RB Queue: The first RB shown on the
dump represents the oldest RB on the queue.
The RB representing the load module that
had control when the dump was taken is
third from the bottom. The last RB
represents the ABDUMP routine and the
second from last, the ABEND routine. The
load module name and entry point (for a
PRB) are given in a contents directory
entry, the address of which is shown in the
last 3 bytes of the FL/CDE field.

Program Check PSW: The program check old
PSW is the fifth entry in the first line of
each RB printout. It is identified by the
subheading APSW. For debugging purposes,
the APSW of the third RB from the bottom of
the dump is roost useful. It provides the
length of the last instruction executed in
the program (bits 32,33), and the address
of the next instruction to be executed
(bytes 5-8).

Load l:!ist: Does the resume PSw indicate an
instruction address outside the limits of
the load module that had control at the
time of abnormal termination? If so, look
at the LLEs on the load list. Each LL£
contains the CDE address' in the dump field
labeled RSP-CDE.

CDEs: The entries in the contents
directory for the region are listed under
the dump heading CDE. The printouts for
each CDE include the load module and its
entry point. If you have a complete dump,
each load module represented in a CDE is
printed in its' entirety following the
NUCLEUS section of the dump.

Trace Table (SNAP dumps only): Entries on
an MVT SNAP dump, if valid, represent
occurrences of SIO, external, SVC, program,
I/O, and dispatcher interruptions. §IO
entries can be used to locate the CCW
(through the CAW), which reflects the
operation initiated by an SIO instruction.
If the SIO operation was not successful,
the CSW STATUS portion of the entry will
show you why it failed. EXT and PGM
entries are useful for locating the
instruction where the interruption occurred
(bytes 5-8 of the PSW).

SVC t.race table entries provide the SVC old
PSW and the contents of registers 0, 1, and
15. The PSW offers you the hexadecimal SVC
number (bits 20-31), the CPU mode (bit 15),
and the address of the SVC instruction
(bytes 5-8). The contents of registers 0
and 1 are especially useful in that many
system macro instructions pass key
information in these registers. (See
Appendix A.)

I/O entries reflect the I/O old PSW and the
csw t~at was stored when the interruption
occurred. From the PSW, you can It4rn the

ABEND/SNAP Dump (Systems with MVT) 67

address of the device that caused the
interruption (bytes 2 and 3), the CPU state
at the time of interruption (bit 15), and
the instruction address where the
interruption occurred (bytes 5-8). The Csw
provides you with the unit status (byte 4),
the channel status (byte 5), and the
address of the previous CCW plus 8 (bytes
0-3).

You can use the DSP entry to delimit the
entries in the trace table. To find all
entries for the terminated task, scan word
7 of each trace table entry for the TCB
address in a DSP entry. The lines between
this and the next DSP entry represent
interruptions that occurred in the task.

Region Contents: Free areas for the region
occupied by the dumped task are identified
under headings PQE and FBQE. The field

labeled SZ gives the number of bytes in the
free area represented by the FBQE.

Subpool Contents: Free and requested areas
of the subpools used by the dumped task are
described under the dump heading MSS.
Subpool numbers are given under the SPID
column in the list of SPQEs~ If a GETMAIN
macro instruction was issued without a
subpool specification, space is assigned
from subpool O. Thus, two SPQEs may exist
for subpool O. The sizes of the reque3ted
areas and free areas are given under the LN
column in the lists of DQEs and FQEs,
re specti ve ly.

Load Module Contents: The contE~nts of each
load module used by the job step are given
under the heading XL. Each entry includes
the sizes (LN) and starting addresses (ADR)
of the control sections in the load module.

68 Programmer's Guide to Debugging (Release 20)

Indicative Dump

An indicative dump is issued when a task is
abnormally terminated by an ABEND macro
instruction, and a dump is requested, but a
dump data set is not defined, due either to
omission or incorrect specification of a
SYSABEND or SYSUDUMP DD statement. In
systems with PCP or MFT, an indicative dump
is issued automatically on the system
output (SYSOUT) device. Indicative dumps
issued by these two systems are identical
in format. Systems with MVT do not issue
indicative dumps.

Contents of an Indicative Dump

This explanation of indicative dumps
utilizes capital letters for the headings
found in all dumps, and lowercase letters
for information that varies with each dump.
The lowercase letter used indicates the
mode of the information, and the number of
letters indicates its length:

• h represents 1/2 byte of hexadecimal
information

• d represents 1 byte of decimal
information

• c represents a i-byte character

Figure 25 shows the contents of an
indicative dump. You may prefer to follow
the explanation on your own indicative
dump.

CONTROL BYTE=hh
describes the contents of the
indicative dump.

First digit:

Bit Setting Meaning
--0- 0 Instruction image not

present
1 Instruction image present

1

2

3

o

1

o

1

o
1

Last digit:

Floating-point registers
not present
Floating-point registers
pr'e$ent

One general register set
present
Two general register sets
present

All active RBs present
All active RBs not present

Digit in
Hexadecimal MeaniQq

o All loaded RBs present

8 All loaded REs not present

TCE FLAGS=hh
is the first byte of TCBFLGS field
(byte 29 in the TCB for the program
being dumped): task end flao byte:

Bit Setting Meaning
o 1 Abnormal termination in

process

1 1

2 1

Normal terrrination in
process

Abnormal termination was
initiated by the resident
ABTERM routine

TCB FIAGS=hh NO. ACTIVE RB=dd NC. LOAD RB=dd
- SYSTEM=hhh USER=dddd

cccccc •••
REGISTER SET 1
hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh
hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh
REGISTER SET 2
hhhhhhhh hhhhhhhh hhhhhhhh nhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh
hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhbh
INSTRUCTION IMAGE=hhhhhhhhhhhhhhhhhhhhhhhh
hhhhhhhhhhhhhhhh hhhhhhhhhhhhhhhh hhhhhhhhhhhhhhhh hhhhhhhhhhhhhhhh
PROGRAM ID=cccccccc RB TYPE=hh ENTRY POINT=hhhhhh
RESUME PSW SM=hh K=h AMWP=h IC=hhhh Il.CC=h PM=h !A=hhhhhh
PROGRAM ID=cccccccc RB TYPE=hh ENTRY POINT=hhhhhh

Figure 25. Contents of an Indicative Dump

Indicative Dump 69

3 1

4 1

5 1

6 1

7 1

ABTERM routine entered
because of program
interruption

Reserved for future use

Data set closing initiated
by the ABTERM routine

The ABTERM routine
overlaid some or all of
the problem program

The system prohibited
queuing of asynchronous
exit routines for this
task

NO. ACTIVE RB=dd
is the number of active RBs presented
in the dump.

NO. LOAD RB=dd
is the number of RBs in the load list
presented in the dump.

COMPLETION CODE SYSTEM=hhh USER=dddd
is the completion code supplied by the
control program (SYSTEM=hhh) or the
problem program (USER=dddd). Both
SYSTEM=hhh and USER=dddd are printed;
however, one of them is always zero.

cccccc •••
expla"ins the completion code or, if a
program interruption occurred:

PROGRAM INTERRUPTION ccccc ••• AT
LOCATION hhhhhh

where ccccc is the program
interruption cause: OPERA~ION,
PRIVILEGED OPERATION w EXECUTE,
PROTECTION, ADDRESSING,
SPECIFICATION, DATE, FIXED-POINT
OVERFLOW, FIXED-POINT DIVIDE,
DECIMAL OVERFLOW, DECI~illL DIVIDE,
EXPONENT OVERFLOW, DECIMAL
DIVIDE, EXPONENT OVERFLOW,
EXPONENT UNDERFLOW, SIGNIFICANCE,
or FLOATING-POINT DIVIDE; and
hhhhhh is the address of the
instruction being executed when
the interruption occurred.

REGISTER SET 1
indicates that the next 2 lines give
the contents of general registers 0
through 7 and 8 through 15 for a
program being executed under control
of an RB when it:

• Passed control to a type I SVC
routine through an SVC instruction
and the routine terminated
abnormally.

• Lost control to the input/output
interruption handler, which
subsequently terminated abnormally.

• Was abnormally terminated by the
control program because of a program
interruption.

• Issued an ABEND macro instruction to
request an abnormal termination.

If REGISTER SET 2 also appears in the
dump, the lines under REGISTER SET 1
give the general register contents for
a type II, III, or IV SVC routine
operating under an SVRB.

REGISTER SET 2
indicates that the next 2 lines give
the contents of general registers 0
through 7 and 8 through 15 for a
program being executed under control
of an RB other than an SVRB when the
program last passed control to a type
II, III, or IV SVC routine.

INSTRUCTION IMAGE=hhhhhhhhhhhhhhhhhhhhhhhh
is 12 bytes of main storage, with the
instruction that caused a program
interruption in the right part of the
printout. This field appears only if
a progra~ interru~tion occurred and is
also valid when -the instruction length
in the resume PSW is o.

hhhhhhhhhhhhhhhh hhhhhhhhhhhhhhhh
hhhhhhhhhhhhhhhh hhhhhhhhhhhhhhhh

are the contents of floating-point
registers 0, 2, 4, and 6 when the
abnormal termination occurred. 'Ihis
field appears only if the floating
point option is present. The first 2
digits of each register are the
characteristic of the floating point
number. The last 14 digits are the
mantissa.

PROGRAM ID=cccccccc
is the XRBNM field (bytes 0 through
7): in PRB, LRBs, and LPRBs, the
program name; in IRBs, the first
character contains flags for the timer
or, if the tirrer is not being used,
contains no meaningful information; in
SVRBs for a type II SVC routine,
contains no meaningful information; in
SVRBs for a type III or IV SVC
routine, the first 4 bytes contain the
relative track address (TTR) of the
load wodule in the SVC library and the
last 4 bytes coni:ain the SVC number in
signed, unpacked decimal; in SIRBs,
the name of the E~rror routine
currently occupying the 400-"byte
input/output supervisor transient
area.

70 Programmer's Guide to Debugging (Release 20)

RB TYPE=hh
indicates the type of active RB

hh Type of RB
00 PRB that does not contain entry

points identified by IDENTIFY
macro instructions

10 PRB that contains one or more
entry points identified by
IDENTIFY macro instructions

20 LPRB that does not contain entry
points identified by IDENTIFY
macro instructions

30 LPRB that contains one or more
entry points identified by
IDENTIFY macro instructions

40 IRB

80 SIRB

co SVRB for a type II SVC routine

DO SVRB for a type III or IV SVC
routine

EO LPRB for an entry point identified
by an IDENTIFY macro instruction

FO LRB

ENTRY POINT=hhhhhh
is the XRBEP field (bytes 13 through
15): address of entry point in the
program.

RESUME PSW

SM=hh

K=h

XRBPSW field (bytes 16 through 23):
is the contents of the resume PSW.

is bits 0 through 7 of PSW: system
mask.

is bits 8 through 11 of PSW:
protection key.

AMWP=h
is bits 12 through 15 of PSW:
indicators.

IC=hhhh
is bits 16 through 31 of PSW:
interruption code.

IL.CC=h
is bits 32 through 35 of PSW:
instruction length code (bits 32 and
33) and condition code (bits 34 and
35).

PM=h
is bits 36 through 39 of PSW: program
mask.

IA=hhhhhh
is bits 40 through 63 of PSW:
instruction address.

PROGRAM ID=cccccccc
is the XRBNM field (bytes 0 through
7): program name.

RB TYPE=hh
indicates the type of RB:

hh Type of RB
20 LPRB that does not contain entry

points identified by IDENTIFY
macro instructions.

30 LPRB that contains one or more
entry points identified by
IDENTIFY macro instructions.

EO LPRB for an entry point identified
by an IDENTIFY macro instruction.

FO LRB.

ENTRY POINT=hhhhhh
is the XRBEP field (bytes 13 through
15): address of entry point in the
program.

Guide to Using an Indicative Dump

Completion Code: Evaluate the user
(USER=deci'mal code) or system (SYSTEM=hex
code) completion code using either Appendix
B of this publication or the publication
Messages and Codes. The line under the
completion code gives a capsule explanation
of the code or the type of program
interruption that occurred.

Instruction Address: If a program
interruption occurred, get the address of
the erroneous instruction in the last 3
bytes of the field labeled INSTRUCTION
IMAGE.

Active RB Queue: RBs are shown in the
first group of two-line printouts labeled
PROGRAM ID and RESUME PSW, with the most
recent RB shown first. There are two lines
for as many RBs indicated by NO. ACTIVE
RB=dd.

Register Contents: General register
cont:ents at the time a program last had
control are given under,the heading
REGISTER SET 2 or, if this heading is not
present, under REGISTER SET 1. Register
contents, particularly those of register
14, may aid you in locating the last
ins"t:ruction executed in your program.

Indicative Dump 71

Storage Image Dump

A storage image dump writes to an external
data set all of main storage from location
00 through t.he end of printable storage.
The damage assesment routine (DAR) will
produce a storage image dump when a system
task fails if the SYS1.DUMP data set is
properly defined and available to accept
the dump. In MFT, MVT, and M65MP the print
dump service aid program (IMDPRDMP) is used
to print from the SYS1.DUMP data set; in
PCP the print dump program (IEAPRINT) is
used.

Note: IEAPRINT or IMDPRDMP is placed in
SYS1.LINKLIB at system generation,
depending on the system option. For PCP,
IEAPRINT is placed in SYS1.LINKLIB. For
MFT, MVT, and M65MP, the IMDPRDMP program
is placed in SYS1 .. LINKLIB. lEA.PRINT may be
invoked with the JCL statements shown in
Figure 27 and IMDPRDMP with those shown in
Figure 26.

DAMAGE ASSESSMENT ROUTINE (DAR)

The damage assessment routine (DAR) is
designed to provide increased system
availability in the event of a system
failure, and to provide more meaningful
diagnostic information by means of a
storage image dump taken at the time of the
system failure. This storage image dump is
written to the SYS1~DUMP data set, which
you may print by means of the IMDPRDMP
service aid program or, in the case of PCP,
the IEAPRIN'1' print dump program.

If a syst.em routine fails, DAR attempts
to reinitialize the failing task, thereby
permitting the system to continue operation
without interruption. DAR permits the
system to continue processing in a degraded
condition if it encounters a system failure
that does not permit total reinstatement of
the affected task or region. The operator
will be informed, via a WTO, that the
system is in an unpredictable state; he
then must decide whether or not
already-scheduled jobs should be allowed to
attempt completion.

SYSTEM FAILURE

If a system failure occurs, the damage
assessment routine immediately attempts to
write a storage image dump to the SYS1.DUMP
data set. A system failure may be caused
by a failure in any of the following system
tasks:

PCP and MFT:

Communications Task
Master Scheduler Task
Log Task (MFT only)

MVT:

System Error Task
Rollout/Rollin Task
Communications Task
Master Scheduler Task
Transient Area Fetch Task

A system failure is also caused by an
ABEND recursion in other than OPEN, CLOSE,
ABDUMP, or STAE; by a failure of a task in
'must complete' status; or. in MFT only, by
a failure in the scheduler if no SYSABEND
or SYSUDUMP DD card is provided.

THE SYS1. DUMP DATA SE'1'

Ope of the primary functions of the damage
assessment routine is to provide a storage
image dump at the time of a system failure.
Secondary storage space roust be available
to receive this dump. The SYS1.DUMP data
set provides this space.

The SYS1.DUMP data set may reside on
tape or on a direct access device.

Tape

If you wish to have the SYS1.DUMP data set
reside on tape, you may specify the tape
drive during IPL. If the drive has not
been made ready prior to IPL, a MOUNT
message is issued to the console,
specifying the selected device. The device
should be mounted with an unlabeled tape.

After writing a storage image dump, the
damage assessment routine writes a tape
mark and will position the tape to the next
file. The tape drive will remain in a
ready state to receive another storage
image dump.

Direct Access

If you wish to have the SYS1.DUMP data set
placed on a direct access device, you may
preallocate the data set at system
generation or prior to any IPL of the
system. The following restrictions apply:

• The data set name must be SYS1.DUMP.

• The data set must be cataloged on the
IPL volume.

• The data set may be preallocated on any
volume that will be online during
system operation.

72 Programmer's Guide to Debugging (Release 20)

• The data set must be sequential.

• sufficient space must be allocated to
receive a storage image dump for all of

~ main storage.

When a direct access device is used for
the SYS1.DUMP data set, the data set can
hold only one storage image dump. If
additional failures occur, and if the
SYS1.DUMP data set is occupied, DAR does
not attempt to write another storage image
dump.

You may execute the print dump service
aid program (IMDPRDMP) or, in the case of
PCP, the print dump program (IEAPRINT), to
produce hard copy of the dump.

THE PRINT DUMP SERVICE AID (IMDPRDMP) FOR
'MFT, MVT AND M65MP

For MFT, MVT, and M65MP you must use the
print dump service aid program to pri.nt out
the storage image dump contained on t;he
SYS1.DUMP data set. The print dump service
aid is placed in SYS1.LINKLIB at system
generation; it is invoked in the same
manner as any other problem program.

Figure 26 shows how to use the PRMP
catalogued procedure to process a SYS1.DUMP
data set that contains a storage image dump
from a 512K machine or less.

The following explanation is for the job
control language statements in Figure 26;
for information about the job control
language statements in the cataloged
procedure and the IMDPRDMP control
statements, see the service Aids SRL,
GC28-6719.

JOB STATEMENT: This statement marks the
beginning of the job.

EXEC STATEMENT: This execute statement
invokes the cataloged procedure called
PRDMP. The PRDMP procedure causes the
IMDPRDMP program to be executed. When the
cataloged procedure is invoked, the user's
job control language statements are merged

with the job control language statements in
the procedure. PARM.DMP=T causes the
IMDPRDMP program to request the title of
the dump fro~ the consele operator before
formatting and printing the dURp data set;
this permits the operator to assign a
distinct name to each dump.

DMP.SYSIN DD STATEMENT: This data
definition statement defines the data set
where the IMDPRDMP control statements are
located. In this case, the control
statements follow this DD statement in the
input job stream. If this statement is
omitted, IMDPRDMP requests centrol
statement information from the console
operator.

GO FUNCITON CONTROL STATEMENT: The GO
statement causes the IMDPRDMP program to
format and print the SYS1.DUMP data set
described in the cataloged procedure by the
TAPE data definition staterrent. 'Ihe
SYS1.DUMP data set is cataloged. 'Ihe
absence of the ONGO statement in this
procedure causes IMDPRDMP to format and
print this data set using the default GO
format parameters: QCBTRACE (Q), LPAMAP
(L), FORMAT (F), and PRINT ALL (PA).

END FUNCTION CONTROL STATEMENT: The END
statement terwinates IMDPRDMP processing.
Had this statement been omitted, IMDPRDMP
would issue a write to operator with reply
(WTOR) asking the console operator to enter
additional control staterrents; by using
this IMDPRDMP feature, an operator can
format and print several duro~s during the
same execution of IMDPRDMP.

For additional examples of the various uses
and output of IMDPRDMP, see the Service
Aids ~~, GC28-6719.

THE PRINT DUMP PROGRAM (IEAPRINT)

For PCP dumps, you must use the IEAPRINT
print dump program to ~rint the storage
image dump contained on the SYS1.DUMP data
set. The IEAPRINT print dum~ program is
placed in SYS1.LINKLIB at system generation
time ~nly if PCP is the chosen option; it
may be invoked in the same manner as any
other problem program.

r---...,.-----------------,
I//PROCDUMP JOB ,name, MSGLEVEL=(l, 1) 1
1// EXEC PROC=PRDMP,PARM.DMP=T 1
I//DMP.SYSIN DD * I
I GO I
\ END 1
\/* \ L ___ J

• Figure 26. Sample JCL Statement Required for IMDPRDMP

storage Image Dump 73

You must supply the job control
statements for the print dump program; the
following statements are required:

JOB

EXEC

This is a standard statement.

This statement specifies the
program name (PGM=IEAPRINT)
Qr, if the job control
statements reside on the
procedure library, the
procedure name.

SYSPRINr DD This sta.tement defines an
output data set. The data set
may be v~ri tten cnto a system
output device, a magnetic tape
volume, or a direct access
device.

SYSUTl DD This statement defines the
input data set. The DSNAME
SYS1. DUZ,1P must be used.

(see Figure 27 for the JCL statements
required- to execute t:he IEAPRINT print dump
program.)

Figure 27. Sample JCL Statements Required for IEAPRINT

74 Programmer's Guide to Debugging (Release 20)

Input to the Print Dump Program

Input to the IEAPRIN'I program is the
sequential data set SYS1.DUMP, which may
reside on either a direct access device or
on magnetic tape. The first Dyte of the
first record on the SYS1.DUMP data set will
be the contents of storage location 00, and
the data set will contain the full storage
image up to the last writable byte. The
input devices supported are:

IBM 2301 Drum storage Unit

IBM 2302 Disk storage Drive

IBM 2303 Drurp storage Unit

IBM 2311 Disk storage Drive

IBM 2314 storage Facility

IBM 2400 Magnetic Tape Drive

Output From the Print Dump Program

The output from the print dump program is a
formatted storage image dump of the
printable contents of main storage,
beginning at location 00. The dump may be
written onto a system output device, a
magnetic tape volume, or a direct access
device. You must define the device, upon
which the dump is to be written, on the
SYSPRINT DD card of the JCL statements that
invoke the print dump program. (See Figure
27.)

CONTENTS OF A STORAGE IMAGE DUMP

The storage image dump is formatted into
two distinct sections: low storage and
register contents are displayed on the
first page, and a printout of the contents
of main storage begins on the second page.
The main storage contents are unedited and
are displayed beginning from location 00
through the end of printable storage. (See
Figure 28.)

Low Storage and Registers

The initial section of a storage image dump
(the first page) consists of information of
immediate use to the programmer who must
determine the cause of the failure.

The first printed line displays the
control program option of the operating
system, i.e. PCP, MFT, MVT, or M65MP; the
timer contents at the time of the failure;
and the date of the failure.

'l'he remainder of the first r;age consists
of a printout of register contents and
hardware control words as they appeared at
the time of the failure. The contents of
floating pOint registers 0, 2, 4, and 6 are
displayed; if the floating point feature is
not present in the system, these register
printouts contain zeros. The two lines
beginning with REG 0-7 and REG 8-15 show
the contents of general registers 0 through
7 and 8 through 15, respectively.

storage below location 128(80 hex} is
permanently assigned and can be used to
determine the status of a program. The
line beginning 40-CSW (following the
register printout) gives, in unedited forw,
the CSW and CAW. The next five lines
contain the new and old PSWs for the five
types of interruptions.

~rhe last line in this portion of the
d~mp, beginning 4C-UNUSED-, gives the
contents of locations 76(4C hex) through 87
(57 hex), which include unused bytes and
the timer. This line contains pointers
useful in locating key debugging
information, such as the CVT and the trace
table. The use of these locations will be
explained under the sections headed "Guide
to Using ••• ".

Main storage

The main section of the durop is printed
starting with location zero and continuing
to ·the end of printable storage. Each line
contains, from left to right:

• The hexadecimal storage address of the
first byte on the line.

• Eight words of storage in hexadecimal.

• The same eight words in EBCDIC,
enclosed in asterisks (*).

If one or more consecutive lines contain
the same word throughout the line, the
first line will be printed, followed by the
message,

hhhhhh TO THE NEXT LINE ADDRESS - SAME AS
ABOVE

where:

hhhhhh
is the address of the first omitted
line.

Storage Image Dump 75

flOATING POINT REGISTERS 2 4 o
CII05CIIE3CIII:IE306 094070C 103037040 E6C 1 C9E 3C 1I05C 740

6
OOOOOOOOOOOOOCIOO

REG 0-"1
REG 8-15

C0020COO 8eeOOCOe 00021898 OOOOOOFO
0002lB8C 00FFFFF8 00000068 400586EE

00000010 400586EC 00020COO 00021148
6007EAB2 000587AP 00008'104 00000008

4C-CS~ 000C05COOCOOOOOO 48-CAW 00004408

EXTERNAL 1r.1ERRUPT PS\jS
SUPERIIJSCR CAll PSWS
PROGRA~ CHECK PSWS
MACHINE: CHECK PSWS
INFUT/OUTPUT PSWS

OOCOOO oecccccc OCCOOOOO
OGC02C FF040CCI 5000C8C4
OOC 04C OCCCD~CC CLCCCCCC
000060 OC0400C C OOllOPOBe
0000110 AH8ceFF F2F3<JFFF
aOOCAO 0000400C 4CO(00eo
Gcoee c 0000O~2<; oeeOOECC
JOOOEO Ff-6FFFFF CCOOOOOO
OCCIoe oceGOCCC 001001CA
00C12C oeccocec OCOOOOOO
aeC14C ccccccce coooocee
00016C OOOOCOCO occoooec
OCC 18C oeccoece oceoooeo

NEW= 0004 00000000762 8
NEW=0004 oooeoooc 8080
NEW=000400000000 78 5C
NEW= OCOOOOOOOOO 184CO
NEW=OC e4coCC000077 EO

OlO=O 10400AO 8003 8BF6
OLO=F F 040CO 1500008C4
OL C=OOO eoecce cocceoo
Ol 0=000 CF F 0000000000
OlO=F F 06C 2 S 1 ee OCOOOO

54-U t-<U SEO-OOOOH 70

00000000 00000E4~ COOOOOOO BOO38RF6
C0000000 OOOOFFOC ooooooeo 80000000
OCC044C e 084C8262 0000EE70 0000162A
oeC40CuO eooooooo 000184CC 000017EO
OF003FFF 00000000 coooooec OCC880ce
30008CC6 00LAC200 FFC40000 000001)00
CCOO0429 D207830C C3DAE 8e 1 D207C030
C02eF9f F 00000000 00000000 00021000
CCCCOCCC CC80E800 ccoeoooo 46(e82B<; cecccooo 5010CF03
00000000 02010000 OOCOOOOO ooocoeco 00000000 OOOOOOCO
ceccccee OCOOJOOO 00000000 OOOOOOCO 00000000 00000000
OCCOOOOO 8200017C OCCCCOOC 00038280 CCOOOOOO 00000001)
CCOOOOOO 00000000 00000000 00000000 00000000 00000000

CCCIAC TC THE NOT LINE ADORE 5 S - S~ME AS ~BOvE
OC0200 Ff060291 ~OJocoec oecoooo 1 0001D344 CCeCDI:4!1 000ODE48 OOC 10380 4000D5eA
oce'<20 00C2CCCO eCOO068C <;OC00832 00021508 0001[;310 F30rJ24F8 00020COO 000006(A
00e240 8eOOOl>44 000C24F4 CCCCCCOO oe000000 COOCOCOO 00000000 00000000 00000000
OCC260 aecooooc 001100000 OOC<)OOCC 00000000 oooeoooo OCOCCCCC coooecec 000001)00
OCC28C occeocec C 0000000 OCCOOOOO 00000000 000OA820 00000000 00000 E 3 8 000 19C(8
OC02AC OOCCO 10C 8200C~00 3~C0350C 3tOCOOO 1 00071'8CC CDCCCCCC C200COCO 00000000
OC02C0 00ce8340 00008340 00000000 0000001 F 112CIAE4 24F 8020A 02DA02DA 020A 7FFF
OCC2EC COOOOOOC C001~4CO CCG20CeC OCOOOA21 CCC4COCC 0000762 B 00040000 00000472
000300 00000000 00000000 OOOOOOCC 00000000 OOOOCOOO 00000000 00000000 00000000
OCC32C Te Tt-tE /\EXT lHE ACO~ESS S P" E ~S ~eOVE
000340 FFFfFfFF FFFFfFFf- FFfFFFFF FFFFFFFF FFf FFfFF FFFFFf Ff FFFFFFFF FFFFFFFF
OC0360 Te THE I\EXI 1I1\E ACO~ESS S ~ME AS ABOVE
OCC4CC e(CCOcec CCCOOOCC cceoocoo oeOCOO00 00000000 00000000 codococc OCOOOOOO
000420 IC THt: t-<EXT LINE ACCRtSS - SAME AS ABOVE
GeC460 CCGCoeOO oecocoee 00000000 00000000 OC0090EF C4DC5EEC C2B09120 00184710
OCC480 05109110 1:21lC471C 050(9121 E 2 BCi. 770 06209120 0<4714710 04AA4LFO 021'09101
CCC4AO 04714710 04eE58EO E21l(54EO C508477C C4BE91CF 001B417C C4BE4LFO 00180207
OCG<4CG 040!lFOOC 118EF0400 820004D8 00000000 00000000 oooeocoo oeoooooo oaoooooo
CCC4EC OOOCOOOO GCCCoeCG CCCCOOOC OCOOOOOG oe020CCO 400005(06 00020e(0 70000622
00e50c OC020F 10 00OOD5F2 CEFFFFFF 114EFF2Be 968002e('l18CE2CC 477ee53A 9120001B
oec 52C 478CQ56C 5EF002S(9300FOOI 47800542 C500FOOO 02BIl~770 C5424lFO 02E847FC
000 540 04B~D20e FOOO~2B8 [;207ECOO 02EO')BEO 06140700 07000700 46fC0558 848005FO
oe0560 94F702ec 58FOOb18 58E0061C 07000700 46EC057C 910802CC 47700594 seEC02BO
oe0580 912lE2Be 417(C62e 46F GO~68 4LF005FO 41F004BE 58F00608 'l102FOOL 4781)05A8
0005AO 91FFFOOC 478004BE C20704lJ8 00181)201 CC58C5EC e 20000 5 8 82C005E8 947F02CC
Oe05(0 06000408 001R0207 00 1 !l0408 940FOOIB 0207005E e2F841FO 02F8<47FO 04RF.0000
OCC5Ee CIC4CCCC e(CC05B8 eeC40CCO oeOO05BC OC02CCOO 00000A22 0104coeo 000006AO
000600 00040coe 000006064 00019<;48 00000000 OC8 (0000 0003512F CCCOIF40 000006(8
CeCt2C SCEFCitfO 58E002BO q120E2BC 4710C888 91010471 47BOC63E 0207C4CO C04091Cl
000640 E2BC4710 074091Cl 04714780 06540207 00400400 98EF04EO 918002[C 4781)0492
oeC(:60 471'00588 91C302AF 077E91Al 02B(078E 'lOEF04EB ~ SF C 061 C 5CFCCbOC 84L005FC
000680 9121028C 47eCe6C4 58F0060(5 8E002 80 91FFE032 471006B6 96200471 820005F8
OCetAC 82C00600 <;4GFe471 D6ceC470 00184780 06e6S602 C4714tFO 06780207 04C004E8
0006(0 47FG058C '18EF04E8 07H:9048 04F050EO 05045860 02B04170 06F25840 62(44580
OCCtEe (718I1t8e 028C<45EC (66491C2 64714780 06f84180 07305840 02(44570 07185840
00C700 62(04570 07185840 02C04570 07189848 04FC58EC 050407FE 12440788 48504020
oe0720 L2~5077E 585040CO 91FF501C 017801F7 070302(0 02(00703 62C062(0 47F007eE
OGC 74C C;00F0810 910302AF 47eG015C 58E002BO 94FEE2B(1180F0810 47F00646 58100864
000760 488C7000 417070e2 5480061C <47800760 55800870 4780074(5810086C lA184320
OCC 1Se IG(eee2e CC04542G C874442C 087(4780 07604320 10005420 08785920 02B44770
0007AO 07AA58[;0 C86845FO 00064320 08146920 00045720 C8704420 088447FO

Figure 28. sample of a Storage Image Dump

76 Programmer's Guide to Debugging (Release 20)

* .•••••••.•••••.•••••••••••••••• 6.
••••• &. QO •••••••••••••••••••••••••
••• N •••••••••••••• *
•............... * *
••••• 23 •••••• 2 ••••••••••••••••••• • •••••••• ••••••• B •• 0 •••••••••••
••••••••••••••••• K ••••• V ••••• K ••••
............. 9 ••••••••••••••••••••••
••••••••••••••• Y ••••••••••••• & ••••
* .. *
* '
* ..
* .. *
* l L .. .N.·
••••••• 0 ••• Q •••• 0. ,.L. 3 •• 8 •••••••••
••• 0 •••• 4 •••••••••••••••••••••••••
...................................
................................. t-t.
................... ,81 ••••• B •••••••• •.. f •••••••• <, .U.A
................... *
* ... *
.................................... "
.................................... "
+ , *
••••• 5 ••••••• s 0.0 •••
••••••••• S •••••••••••••••••• O •• K ••
·.00 •••••••• Q

*. III III III III III III III III III III III III III III III III .111. .N ••••••• 0 ••
••••••• N2 •••••• S S ••••••••••
•••• -.0 •••• 0 ••••• N .. O •••••••• O.v.c.
* •• K.O.S.K • 0.
.... 7 ••• 0 ••••••••••• " •••••••••••••••
••• 5 •••••• 0 ••• 0.0.0 ••• 0 •••• 0 ••••••
• •• O ••••• K •• O •• K v." •••
.0 ••••• K •••• 0 •••• K. " •• 8.0.8.0 •••••
••• II II. II II II II. II II •••• II .. II ••• II II •••• III III III ••

* ... III III III III III III •• III •• III III III (•• III III •• III III III III III III III ••

• III III III III III III III III III .S. III III III III III ... III III III III .K. III III III ...
• S •••• ••••••• • K •••
•• C ••••••• = v.o •• &0 ••••• 0.
•••••••• D.O ••••••••••••••••••••• 8.
••••••••• c 0 •• 1(•••• Y.
•• 0 ••••• Y ••••• 01: •••• - ••••• 2. .0 • ••
• III III III III III III III III III III III III III III III III III" Q III III III III • 0 ••••• •
• III III III III III III III ••••••••• 0 ••••••••••• I: ..
••••• • & ••• I: •••• 1P ••••• P •••••• 0 •••
••••••••••••••••••• ,5 ••• ••• 0 • ••••••
. III III III •• III III III III III III III III .-. III" III III III 111._ III .1:. III 111.

,.~

--.
'\

Guide to U sing a Storage Image
or a Stand-Alone Dump

The purpose of this section is to suggest
debugging procedures that you may use with
a s1:orage dump or a stand-alone dump. This
discussion applies to the output of the
following programs:

• IMDSADMP- The low speed version that
formats and qumps main storage.

• IEAPRINT- Formats and prints storage
dumps for PCP •

• IMDPRDMP- Reads, formats, and prints
storage dumps from MFT or Mvt systems
and the high speed version of IMDSADMP.

All of these programs produce hexadecimal
dumps of the contents of main storage from
location zero to the highest machine
address.

'rhe IMDPRDMP program provides formatting
capabilities which can be used to display
the important system control blocks for
easy examination. The IMDPRDMP program
does most of the procedures described in
this section automatically. The cases in
which the IMDPRDMP program does not provide
formatting are identified. A complete
description of the services provided by the
IMDPRDMP program is found in the
pUblication, IBM system/360 Operati!!!]
System: service Aids, GC28-6719.

Since the formatting for the IMDPRDMP
program depends on the contents of the
dump, it is not always possible to provide
complete forwatting. For examfle, if the
CVT of the system to be dump has been
overlaid, the IMDPRDMP program can provide
only a hexadecimal dump of main storage.

Guide to Using a storage or a stand-Alone Dump 77

DETERMINING THE CAUSE OF THE DUMP

Main storage dumps are invokes by system
routines and these routines can be
identified by module names appearing in the
most recent request block (RB) for the
failing task. (With PCP, there is only one
task at any given time and that task will
invoke the dump. This can be verified in
the system.) with MVT and MFT, the main
storage dump is invoked by SVC 51. This
SVC PSW appears as the resume PSW in the
second most recent RB of some task in the
system. The module name in the current RB
for that task must be 201C.

Main storage locations from zero to 128
(hexadecimal 80) are permanently assigned
and contain hardware control words. Table
1 shows these fields, their location, their
length, and their purpose.

• Table 1. Permanently Assigned Hardware
Control Words

r-------T--------T------------------------,
I Address I Length I I
IDec Hexlln Bytes I Purpose 1
~-------+--------+------------------------~
10 0 I 8 IIPL PSW 1
~-------+--------+------------------------~
18 8 I 8 IIPL CCWl I
~-------+--------+------------------------~
116 10 I 8 IIPL CCW2 I
~-------+--------+------------------------~
124 18 I 8 IExternal old PSW I
~-------+--------+------------------------~
132 20 I 8 ISupervisor call old PSW I
~-------+--------+------------------------~
140 28 I 8 IProgram old PSW 1
~-------+--------+------------------------~
148 30 I 8 IMachine check old PSW 1
~-------+--------+------------------------~
156 38 I 8 11/0 old psw 1
~-------+--------+------------------------~
164 40 I 8 IChannel Status Word 1
~-------+--------+------------------------~
172 48 I 4 IChannel Address Word I
~-----.--+---.-----+ -----------------------~
176 4C I 4 1 Unused I
~-------+--------+------------------------~
180 50 I 4 1 Timer 1
~-------+--------+------------------------~
184 54 I 4 1 Unused I
~-------+--------+------------------------i
188 58 I 8 I External new PSW 1
~-------+--------+------------------------i
196 60 I 8 ISupervisor call new PSW 1
~-------+--------+------------------------i
1104 68 I 8 IProgram new PSW I
~-------+--------+------------------------~
1112 70 I 8 IMachine check new PSW I
~-------+--------+------------------------i
1120 78 I 8 11/0 new PSW 1 l _______ ~ ________ ~ ________________________ J

I Cause of the Dump: Evaluate thE PSWs that
appear in the formatted section of the dump
(the first four lines) to find the cause of

the dump. (For PCP, t:he IEAPRINT program
places the PSWs in the dump header; they
are appropriately labeled.) The PSW has
the following format:

Program Status Word

I Sy'tem Ma,k Key ~,"PHon Code

~0--------------~7~8--~1~1 12 15 16

32 33 34 35 36

Program
Mask

Instruction Address

39 40

31

63

• Does the inqtruction address field of
the old machine check PSW show either
the value E2 or E02? If so, a hardware
error has occurred A

• Does the instruction address field of
the old program check PSW havle a value
other than zero? If so, a program
check at the instruction preceding that
address caused the interruption.

Ta sk Structure

PCP: Since there is only one task in the
system, there is only one TCB" This TCB is
always at location 384 (180 hexadecimal) in
the main storage dump.

MFT (Without subtaskingl: There is a TCB
associated with each partition of main
storage there are also TCBs for critical
system tasks such as the master scheduler
task and the transient area loading task.
Table 1 shows locati on 76 (4C) unused for
hardware control words. The control
program uses this word to contain a pointer
to the CVT. Use this CVT pointer to locate
the first byte of the CVT, then the
CVTIXAVL field (offset 124) in the CVT.
The address contained at CVTIXAVL is a
pointer to the lOS freelist. At offset 4
in the lOS free list is a pointer t:o the
first address in a list of TCB addresses.
You can look through this list of TCB
addresses, and, keepinq your systE~m options
in mind, find the TCBs for each partition.
The TCB addresses are listed in the
following order:

• Transient area loading task.
• System error task {MFT with

subtasking) •
• Multiple console support write-to-log

task (optional).
• I/O recovery management support task

(optiona 1) •
• communicati ons task.
• Master scheduler task.
• System management facilities task

(optiona 1) •

78 ProgrammE~r' s Guide to Debugging (Release 20)

--

• Partition 0 task.
• Partition 1 task.
• •
• •
• Partition n task.

Figure 29 shows how to locate the
partition TCBs in sample output from the
IMDPRDMP program.

MFT With Subtasking: For MFT subtasking
(and for MVT), a task may create a subtask.
The partition TCBs for MFT with subtasking
are referred to as job step TCBs. The task
structure for a job step may be
reconstructed in a main storage dump by
using the information in Diagram 1.

For MFT with subtasking, the job step
TCB may be found using the method described
for MF'I' without subtasking or by a more
direct method. CVT offset 245 (F5)
contains a pointer to the partition 0 job
step TCB address in this address table.

To recreate the task structure within
any partition, simply locate the job step
TCB, and follow the TCB pointers - as
explained in the previous section.

Location 4C

000040 00000000 00000000 00000000

MVT: To find the current TCB, look at
location 76 (4C) for a pointer to the CVT.
The first word of the CVT contains a
pointer to a doubleword of TCB addresses,
which contains pointers to the next TCB to
be dispatched (first word) and the current
TCB (second word). Beginning with the
current TCB, you can recreate the task
structure for the job step usinq the
methods in Diagram 1.

If the first word of the current Tea
points to itself, there are no ready tasks
to be dispatched, and the system has been
placed in an enabled wait state. This TeE,
now in control, is called the syste~~ait
TCE.

All TeEs in the system are maintained in
a queue called the CVT ready queue. These
TeBs are queued according to their
dispatching priority. The CVTHEAD field,
offset +160 (AO) in the CVT, contains the
address of the highest priority TeE in the
system. Offset +116 (74) in the TCB points
to the TCE with the next lowest priority.
Diagram 1 shows how to locate all of the
TeEs in the system.

0000C05C 00040000 00000288

- ---\--
CVT ,

-

• Figure 29.

00CB40
00CB60
00CB80
OOCBAO
OOCBCO -
004860

o lEC20
01EC40

008040
008060
008080
0080AO

00000000 00000000 00000000 00000000
00000000 0OO048BO OOOOCBOA 00012B80
hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh
hhhhhhhh hhhhhhhh hhhhhhhh hr_\I;_t;,2,lJJt~.
hhhhhhhh hhhhhhhh hhhhhhhh 0 - - Z·

~~

hhhhhhhh

hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh
00008B68 00008C48 OOOOi~#1Ai~i hhhhhhhh

PO TCB

00000000 00000000 0007D2D8hhhhhhhh
hhhhhhhh hhhhhhhh hhhhhhhh hhhhhh1111
hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh
hhhhhhhh

Finding the Partition TCBs in MFT

00000774 0000078C 0000AEE8 0001A288
hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh
hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh
hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh
hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh

hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh

List of TCB Addresses

00008778 00008858 00008~38 00008A18
hhhhhhhh hhOhhhhh hhhhhhhh hhhhhhhh

hhhhhhhh hhhhhhhh hhhhh11h11 hhhhhhhh
hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh
hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh

)

-..l

Guide to Using a Storage or a Stand-Alone Duw2 7Y

00
0

I'd
Ii
0

\Q
Ii
Pol

§
(!)
Ii -CIl

(j)
~
1-1'
0..
(!)

rt
0

0
(!)

tr c
\Q
\Q
~.

::::I
\Q

~
(!)
I-'
(!)
Pol
CIl
(!)

f\.)

0

•
0

0
1-1'
Pol

\Q
Ii

~ Pol

S ~ I TCB

r + 136(8(t~ 0
~.\ 0

Job Step TCB

: 0
I)l"'1~, Job Step TCB

III TCB I \
:/+ !8~38!6'M \
i("\VV I
1\ \ I

o
~ j\b St,p TCB

TCB \

+;36(8~0~1 \
, , \

!\~
(!)

fs\Subtask I
.,-V __ TC_B, I \ C0 ~~b;"k I

---, ,

~ Subtask \i, .. i \ ~btask \'.J TCB I ~ ~~B
-----, !! I t i

8
n
to

,

TCB I
I

-'- 132(84) 001- 128(80)

I
+ 132(84)

o is a job step TCB and 0 is thE

reB of the subtask created by 0
Offset + 136(88) in 0 points to its

subtask TCB (CD). Offset + 132(84)

in the subtask TCB (G)) points back

to the job step TCB (0).

TCB
TCB I yil ~xt\ _~._. \\1 TCB\ I TCB

\ I I L:J / I ,128(BO) CD B, \ 100
! I +132(84) 00 \ I I

\\(l +136(88) CD 8 ~
I tC;\ Subtask

VTCB

I /

\
\
\

fc";\Subtask V TCB
fc0 Subtask V TCB

In each reB:

o is the job step reB. @ is the reB for the first subtask created by 0 .~ is the reB

for the second and most recent subtcsk crected by 8 . Offset + 136(88) in 0 points to

the reB of its most recently created subtask. Offset + 132(84) in ® points to the reB of the

creating task. Offset -128 in @points to the next most recently created subtask reB.

Offset +132(84) in @pointsback to the job step TCB (0). Offset -.-136(88) in ®
points to the reB of its most recently created subtask (@).

Offset

+ 128(80)

+132(84)

points to the reB of the next most
recently created subtask. If none
exists, this field is zero.
points to the reB of the task that
created it. If none exists, this field
is zero.

+ 136(88) points to the reB of the most recent
subtask created by th i s task. If none
exists, this field is zero.

i .,

@ points to the reB of its creating task (®) and to the reB of the subtask most

recently created by @. ® contains pointers to the reB of the originating task (@)
and to the reB of the task most recently created by @. @contains only a pointer to

the TCB of the invoking task (@).

a
:J'

Keep in mind that all TCBs in the system
appear on this queue. Therefore, not only
does a particular job step TCB appear on
the ready queue, but all of its subtask
also appear.

You can find the job step TCB associated
with any TCB by using the TCBJSTCB field of
the TCB, offset +124 (7C). This field
contains the address of the job step TCB
for the TeB you are examining.

In response to the FORMAT control
statement, the IMDPRDMP program will do
most of this work for you. It will
recreate the task structure, format all
TeBs in the system, and provide a TCB
summary. The TeB summary shows the task
s~ucture. Figure 30 shows a portion of
the TCB summary information from an MVT
system. TeBs associated with a particular
job are grouped together under the job name
and step name. The TCB summary contains
the TCB address, the completion code, and,
when applicable, the address of the
originating TeB and the addresses of
created TeBs.

Task status - Active RB Queue

The first word of the TCB contains a
one-word pointer to the first word of the
most recent RB added to the queue. In its
eighth word" RB+28 (lC), each RB contains a
pointer to the next most recent RB. The
last RB points pack to the TeB.

You can determine the idenity of the
load module by looking either in the first
and/or second words of the RB for its

EBCDIC name or in the last 3 digits of the
resume PSW in the previous RB for its SVC
number. The entry point to the module is
in i:he last 3 bytes of the fourth word in
the RB, RB-13(D).

In MVT system, the name and entry point
of the associated load module are not
always contained in the RB associated with
the module. Instead, they are found in a
con1:ents directory entry.

The address of the contents directory
entry for a particular load module is given
in the fourth word of the RB, RB+12(C).
The CDE gives the address of the next entry
in the directory (bytes 1-3), the name of
the load module, bytes 8-15(F); the entry
pOints of the module, bytes 17-19(11-13).

Figure 31 shows the formatting that the
IMDPRDMP program does for a task in an MVT
system. Notice the connection between the
RB and the CDE. The IMDPRDMP program
extracts the CDE information and displays
this information with the RB.

The wait-count field of the RB is
particularly important when locating the
TCB by using the CVT ready queue (CVTHEAD).
The high-order byte of the RB link field,
RB-28(lC), of the most recent RB for a TCB
con"tains a count of the number of events
for which the task is waiting. Tasks that
have a zero wait count are ready to be
dispatched. such a task will be dispatched
or become the current task when all TCBs of
higher priority are waiting for the
completion of an event. To determine the
events for which a task is waiting, use the

* * * * T C B SUM M A R Y * * * *

JOB MASTER STEP SCHEDULER
LTChhhhhhhh PAGE hhhh

TCBhhhhhh CMPhhhhhhhh NTChhhhhhhh OTChhhhhhhh

JOB MASTER STEP SCHEDULER
LTChhhhhhhh PAGE hhhh

TCBhhhhhh CMPhhhhhhhh NTChhhhhhhh O']~Chhhhhhhh

JOB WTR STEP OOE
LTChhhhhhhh PAGE hhhh

TCBhhhhhh CMPhhhhhhhh NTChhhhhhhh OTChhhhhhhh

TCBhhhhhh CMPhhhhhhhh NTChhhhhhhh OTChhhhhhhh LTChhhhhhhh PAGE hhhh

JOB JOBll STEP GO
LTChhhhhhhh PAGE hhhh

TCBhhhhhh CMPhhhhhhhh NTChhhhhhhh o~rChhhhhhhh

TCBhhhhhh CMPhhhhhhhh NTChhhhhhhh o~rChhhhhhhh LTChhhhhhhh PAGE hhhh

TCBhhhhhh CMPhhhhhhhh NTChhhhhhhh o'rChhhhhhhh LTChhhhhhhh PAGE hhhh

JOB JOB12 STEP GO
LTChhhhhhhh PAGE hhhh

TCBhhhhhh CMPhhhhhhhh NTChhhhhhhh O'rChhhhhhhh

• Figure 30. IMDPRDMP TCB Summary

Guide to Using a Storage or a Stand-Alone DUffiP 81

instruction address field in the resume PSW
to locate the WAIT macro instruction in the
source program. This will point you to the
operation being executed at the time of the
dump.

Main storage Contents

Load List (PCP and MFT): The load list is
a chain of request blocks associated with
load modules invoked by a LOAD macro
instruction. By looking at the load list,
and at the job pack area queue described
below, you can determine which system and
problem program routines were loaded before
the dump was taken. To construct the load
list associated with the task in control,
look at the tenth word in the TCB,
TCB+36(24), for a pointer to the most
recent RB entry on the load list, minus 8
bytes (RS-8). This word, in turn, points
to the next most recent entry (minus 8),
and so on. If this is the last RB, RB-8
will contain zeroes. The word preceding
the most recent RB on the list (RB-4)
points back to the TCB's load list pointer.

Load List (LVIVT: To construct the load list
associated with the task in control, look
at the tenth word in the TCB, TCB+36(24),
for a pointer to the most recent load list
entry (LLE). Each LLE contains the address
of the next most recent entry (bytes 0-3),
the count (byte 4), and the address of the
CDE for the associated load module (bytes
5-7). If this is the last LLE in the list,
TCB+36(24) will contain zeroes.

Job Pack Are~~~: In systems with MFT
with subtasking and with MVT system, the
job pack area queue is used to maintain
reenterable modules within a partition or

region. The complete description of this
queue 1S found under the topic "Task
structure-Active RB Queue".

To reconstruct the job pack area queue
in an MFT system with subtaskinq, look at
TCB+125(7D) for a three byte pointer to the
partition information block (PIB). Ihe
twelfth word of the PIE, PIB+44(2C), points
to the most recent RB on the jeb pack area
queue minus 8 nytes (RE-8). This word in
turn points to the next roost recent RB
minus 8, and so on. The last kg will ndve
zero in this field. The word preceding the
most recent RE on the queue (RB-4) points
back to the job pack area queue pointer in
the PIB. You can determine the identity of
the load module by looking either in the
first and/or second word of the RE for its
EBCDIC name, or in the last three digits of
the resume PSW in tne previous HB for the
SVC nurrber. The entry point of the module
is given in the last three bytes of the
fourth word in the RB, RB+29(lD), unless it
is an FRS.

The first five words of an FRS
(beginning at offset minus 8) are identical
in content to those of other RBs. The
XRWTL field, offset 12(C), contains the
address of a wait list element. The first
word of the WLE points to the next WLE, or
contains zeros if the WLE is the last one.
The second word to the waiting SVRB. You
can determine the number of deferred
requests for the module by tracina the
chain of WLEs.

The XRREQ field of an FRB, offset
16(10), contains a pointer to the TCB of
the requesting task. 'l'he next word,
CRTLPRB, offset 20(14), points to an LPRB

----~.------------~
ACTIVE RBS ---

PRB 02DEBO REEV hhhhhhhh APSW hhhhhhhh
Q/TTR hhhhhhhh WT-LNK hhhhhhhh

.JOB

CDE 02DFDO NMIEFSD079 USE 01 RESP NA ATRI08 EPAOG'EQ3S

--f.Od"" :om, -------------l,o"y Polo' Add""
• Figure 31. Determining Module From CDE in MVT

82 Programmer's Guide to Debugging (Release 20)

-~

. -

built by the Finch routine for the
requested program. The FRB for the
requested program is removed from the job
pack area queue by the Finch routine when
the program is fully loaded.

In MVT, the job pack area queue is
maintained in the same manner as the load
list. The distinction between the two
queues is that the job pack area queue
contains reenterable programs. There are
no FRBs in MVT.

Main storage Supervision

Free Areas in Non-MVT Systems: Areas of
main storage that are available for
allocation at the time the dump was taken
are described by the MSS boundary box and a
series of free queue elements (FQEs). The
seventh word of the TCB for the task,
TCB+24(18), points to a six-word MSS
boundary box. The first word of the MSS
boundary box points to the FQE with the
highest processor storage address in the
partition (hierarchy 0), and the fourth
word, to the highest 2361 Core Storage
address in the partition (hierarchy 1).

-The first word of each FQE points to the
next lower FQE; the second word of the FQE
gives the length of the area it describes.
FQEs occupy the first 8 bytes of the area
they describe.

Gotten Subtask Areas: In MFT with
subtasking, areas of a partition allocated
by the system to a subtask within the
partition are described by gotten subtask
area queue elements (GQEs). The seventh
word of the subtask TCB, TCB+24(18), points
to a one word pointer to the most recently
created GQE on the GQE queue. Bytes 0
through 3 of the GQE contain a pointer to
the previous GQE or, if zero. indicate that
the GQE is the last one on the queue.
Bytes 4 through 7 of the GQE contain the
length of the gotten subtask area. Each
GQE occupies the first eight bytes of the
gotten subtask area it describes.

Region structure in MVT system: The region
associated with a particular task in an MVT
system is described by partition queue
elements (PQEs). The thirty-ninth word of
the TCB, offset +152 (98) contains a
pointer to the dummy PQE (D-PQE) for the
region. The first word of the dummy PQE
points to the first PQE and the second
word. to the last PQE. The first and
second words of each PQE point to the first
and last free block queue elements (FBQEs),
respectively" associated with the PQE.
Separate PQEs are used to describe parts of
a region in different storage hierarchies
or part of a region that was obtained by
another task which has been rolled out •

FBQEs describe free areas in the region
that have a a length which is a multiple of
2048 bytes. These free areas are available
for allocation to a specific subpool.

subpool Descriptions (SPQEs) The seventh
word of the TCB, TCB+24(18), points to the
SPQE representing the first subpool used by
the task. Each SPQE contains the address
of the next SPQE (bytes 1-3), the subpool
number (byte 4), and the address of the
first descriptor queue elerrent (DQE) for
the subpool (bytes 5-7) or, if the subpool
is owned by another task (bit 0 is 1), the
address of the SPQE that describes it
(bytes 5-7).

storage within a subpool is described by
a descriptor queue element. Each DQE
contains the number of bytes of main
storage in the sub pool. This count is
always a multiple of 2048 bytes. If a
request for space from a subpool cannot be
satisfied with the space described by an
exi.sting DQE the GETMAIN routine builds
another DQE and links the new DQE to the
chain of existing DQE's. Each DQE contains
a pointer to the FQE that represents the
free area with the highest main storage
address in the subpool (bytes 1-3), a
pointer to the next DQE (bytes 5-7), and
the length of the area described by the
DQE, bytes 13-15(D-F).

Figure 32 shows the control blocks used
to describe the subpools for a task in an
MVT system.

I/O Control Blocks

Queue of DEBs: To find the queue of DEBs
fOl~ the task, look at the third word in the
TCB (TCB+8). The address given here points
to the first word of the most recent entry
on the DEB queue. There is a DEB on this
queue for each data set opened to the task
at the time of the dump. DEBs are enqueued
in the same order as the data sets are
opened. The last three bytes of the second
word in each DEB (DEB+5) points to the next
most recent DEB on the queue. The queue
contains one DEB for each open data set.

UCBs: You can find unit information for
each device in your system in the unit
control block (UCB) for that device. The
address of the UCB is contained in the last
3 bytes of the ninth word of the DEB,
DEB+33 (21). If the DEB queue is empty,
scan the dump around location 4096(1000)
for words whose fifth and sixth digits are
FF. These are the first words of the UCBs
for the system; UCBs are arranged in
numerical order by device address. (You
may find it easier to locate UCBs by
looking for the device address in the
EBCDIC printout to the right of each page.)
The first two bytes of the second word of

Guide to Using a storage or a Stand-Alone Dump 83

hhhhhh
hhhhhh

~---------------------------'J
hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhl: hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh .
hhhhhhhh hhhhhhhh 0 l!02f>A:fo hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh

\ ---------------, 'Z, Address of SPOE

02DAOO
02DA20
02DA40

---- -lor Subpool 0
~

Address of SPOE for Subpool 251
o _

SPOE for

~g~:~~T:~:. SubpoolO

o 0 ():~tJ*,~nl

hhhhhhhh hhhhhhhh hhhhhhhh h~~hhh- 0002DEAO FB02D92{) 60000000
hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh COOOOOOO 0002DA18 00000000
hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh OOO~'~Olktl.]

------------- Add ress ()f

--------------------------------~--~--,

\
~,~

_---- eo" DQE---- - -----------~E
~------~-----, '-------------------O~O-0-19-0-0-0----hh-h-h-h-h-h-h--hh-h-h-h-h-h-h--hh-h-h-h-h-h-h--hh-h-h-h-h-h--h' ~

Last DOE ",,-
"'~~ ____ ,-------~ __ --~~------.. -------SP-O-E--fo-r-S-ub-p-oo-1 __ 25_2 __________ -------------------

~ =0 Fi:,OA68 hhhhhhh::::hhh hhhhhhh~h:h~hhh_h_hhhhhhhh hhhhhhhh J/

STORAGE KEY E
046000 00000000 00000768 hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhhJ

~'-------'--------'~--------~-----~.---FOE describing 1896 (768)
bytes of free storage

• Figure 32. Subpool Descriptions in MVT - IMDPRDMP storage Print

each UCB give the device address. The
device type and class are given in the
third and fourth bytes of the fifth word,
UCB+18(12), respectively. The sense bytes
are given in the last two bytes of the
sixth UCB word, UCB-22(16), and extend for
from 1 to 6 bytes, depending on the device
type. Sense bytes are explained in
Appendix F.

DCB and TIOT: The address of the DCB, a
control block that describes the attributes
of an open data set, is located in the last
3 bytes of the seventh DEB word,
DEB+25(19). The first two bytes of the
ninth word of the DCB, offset 40(28),
contains the offset in the task
input/output table (TIOT) of the DD name
entered for the data set. Therefore, the
address of the DD name for a particular
data set may be found by adding the TIOT
offset in the DCB to the TIOT address in
the TCB (TCB+12), plus 24(16) bytes for the
TIOT header.

lOB: If a data set is being accessed by a
sequential access method with normal
scheduling, the address of the input/output

block nOB) prefix (1013-8) is located in
the seventeenth word of the DCB,
DCB-68(44). The first word of the lOB
prefix points to the nE~xt lOB (if more than
one lOB exits for the data set). Each lOB
for an open data set contains a pointer to
the CCW list in the last three bytes of the
fifth word, IOB+17(11).

ECB: The completion code for an I/O
operation is posted in the first byte of
the event control block (ECB). ECB
completion codes are explained in Appendix
E. If the I/O event is not complete and an
SVC I (WAIT) has been issued, the
high-order bit of the ECB is on, and bytes
one through three contain the address of
the associated RB. For the sequential and
basic partition access methods the second
word of an lOB points to its associated
ECB.

Figure 33 shows the DEB, UCB, DCB, and
lOB for a BSAM data set~.

84 Programmer's Guide to Debugging (Release 20)

Page of GC28-6670-4, Revised March 1. 1971. by TNL: GN28-2457

0015EO
001600
001620

UCB------------__

hhhhhhhh hhhhhhhh
hhhhhhhh hhhhhhhh ~~!!~~
hhhhhhhh'hhhhhhhh~f

UCB ID Device Address

8e "24 014F0100
02 hhhhhhhh hhhhhhhh

Volume mounted on Device

DCB

oO'Jm1l1 30402001
hh11hrlhh.h hhhhhhhh

011780 hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh hhh~~
o II 7A0 hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh 0 01lIT'0 2 0 ---- TI OT Offset
01l7CO hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh 41011EOO hhhhhhhh
0117EO hhhhhhhh hhhhhhhh hhhhhhhh 7F~ hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh

Complete Low-Order / Address of Channel Program ~
CB Operation

,--~ lOB Prefix 7-bytes of last CSW I
OllEOO 4 hhhhhhhh hhhhhhhh 7FOIIIII 00 401;" .tS~ 00011794
011E20 ooon 000 00000000 00000000 02000210 310 OBOl1E30 00000000
011E40 IDOIIE68 AOOOOOOB hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh
011E60 hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh
011E80 hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh DEB
011EAO hhhhhhhh hhhhhhhh hhhhhhhh OF~ hhhhhhhh 181i ~k' hhhhhhhh hhhhhhhh
011ECO hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh~hhhhhhh hhhhhhhH hhhhhhhh hhhhhhhh

Address of UCB
Address of DCB

021280
0212AO
0212CO
0212EO
021300
021320
021340

Figure 33.

hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh
hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh
hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh
hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh
hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh
hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh
.1LIII.11IIIIII hhhhhhhh hhhhhhhh

i
DDNAME

I/O Control Blocks

TIOT

hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh
hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh
hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh
hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh
hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh
hhhhhhhh hhhhhhhh hhhhhhhh ~ .PJt~~1
hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh

TlOT (ci)

Offset
21298

A4

2133C

TSO Control Blocks

The time sharing (TSO) control blocks are
obtained from the IMDPRDMP service aid
program by specifying the TSO control
statement in the input stream. The first
part of the TSO dump is the same as the
normal MVT dump. The control blocks that
IMDPRDMP formats are divided into two
group: system and user.

time sharing region. The RCBs reside in
the time sharing controller's region, they
are contiguous. and they are created during
initialization of the time sharing
controller.

TSCVT: The time sharing communicat~ions
vector table (TSCVT) is a secondary CVT for
the MVT CVT. The time sharingCVT resides
in the time sharing region; therefore. it
exists only while the time sharing region
is active. When time sharing does not
exist in the system, the MVT CVT pointer to
the TSCVT (CVT+229) is zero.

RCB: A region control block (RCB) contains
information that is unique to a time
sharing region. There is one RCB for each

The TSCVT points to a region control
block table. The RCB table is an indexed
table containing one RCB address for each
possible time sharing region, therefore,
the table contains the maximum number of
RCBs that may be used by time sharing. The
first RCB is for region one. the second for
re~Jion two, etc. The time sharing job
block (TJB) of a job paints to the RCB
associated with that job.

UMSM: One user main storage map (UMSM)
exists for each possible time sharing user.
ThE~ UMSM contains a series of consecutive
one-word extent fields (ADDR-LN). Each
one-word extent contains a halfword address
field (ADDR) and a halfword length field

Guide to Using a Storage or a Stand-Alone Dump 85

Page of GC28-6670--4, Revised March 1, 1971, by TNL: GN28-2457

(LN) that describes the main storage
allocated to the time sharing user. The
UMSM contains the address and l,ength of a
storage block (a multiple of 2K bytes) that
has been allocated to the user; only this
allocated storage will be swapped out for
the user. The time sharing job block (TJB)
points to the UMSM.

SWAP DCB: 'l'he swap data control block
(SWAP DCB) is used whenever a time sharing
user's region is swapped into or out of
main storage. It describes a swap data set
that contains an IOB, area for channel
programs, and the track map queue. The TJB
points to the swap DCB.

TJB: The time sharing job block (TJB)
contains status information about a time
sharing user. The TJB is retained in main
storage while the user is swapped out. One
time sharing job block exists for each
possible simultaneous time sharing user.
The space for thE~ TJB is obtained from the
time sharing cont:rol task (TSC) region
during time sharing initialization. Status
information about the terminal related to
this TJB is contained in the terminal
status block (TSB). The address of the
terminal status block is the first word of
the TJB. The first word of the TSCVT
points to the TJB.

TSB: Each terminal status block (TSB)
contains sta·tus information about one
terminal. The terminal input/output
coordinator (TIOC) uses this information.
During system initialization, one TSB is
created for each possible user. The main
storage space is obtained in one contiguous
block for all of the TSBs in the region of
the time sharing control task (TSC); this
contiguous string of TSBs is called the TSB
table. The origin pOinter to the TSB table
is the TIOCTSB field of the TIOCRPT.

TJBX: The time sharing job block extension
(TJBX) contains user job information that
can be rolled out to the swap data set with
the user's job. The TJBX resides in the
local system queue space (LSQS) for the
region. The TJBX location is pointed to by
the third word of the time sharing job
block (TJB). The space for the TJBX is
obtained by the region control task (RCT)
during initialization.

PSCB: The protected step control block
(PSCB) contains accounting information
related to a single user. All t.iming
information is in software timer units. A
software timer unit is equal to 26.04166
micro seconds. The job step control block
(JSCB), offset 268 u pOints to the PSCB.

TAXE: The TSO terminal attention exit
element (TAXE) is a. physical addendum to a
regular 24 word interrupt request block

(IRB) • It is used to schedule an attention
exit resulting from a terminal attention
interruption. It is created, queued, and
dequeued by the specify terminal attention
exit (STAX) macro instruction. The main
storage space for the 'TAXE is obtained in
the local system queue space (LSQS) of the
terminal user's region.

For a more detailed description of the
TSO control blocks fonnatted by the
IMDPRDMP program, see ,the publication IBM
System/360 Operating System: Service Aids,
GC28-7619.

Trace Table

Find the Trace Table: Location 84(54) in
main storage contains t:he add:t:"ess of the
first word of the thref= word trace table
control block. The trace table control
block immediately preceeds the table. The
trace table control block describes the
bounds of the table and the most recent
entry at the time of the dump.

r---------------T-------------T-----------,
I Current Entry I Firs1: Entry I Last Entry I l _______________ .L ______________ .L ___________ J

048

You can locate the trace table by scanning
the contents of main s1:orage between
locations 16,384(4000) and 32,768(8000) for
trace table entries. Entries are four
words long and begin a1: addresses ending
with zero. To find thE:~ table boundaries
and current entry, scan the table in
reverse until you reach the trace table
control block.

Trace Table Entries in PCP and MFT': Trace
table entries for systems with PCP and MFT
are 4 words long and rE~present occurrences
of SIO, I/O, and SVC interruptions. Figure
34 gives some sample entries and their
contents.

SIO entries can be used to locate the CCW
(through the CAW), which reflects the
operation initiated by an SIO instruction.
If the SIO operation was not successful,
the CSW STATUS portion of the entry will
show you why it failed.

I/O entries reflect the I/O old PSW and the
CSW that was stored whE!n the interruption
occurred. From the PS{lif, you can learn the
address of the device em which the
interruption occurred (bytes 2 and 3), the
CPU state at the time of interruption (bit
15), and the instruction address where the
interruption occurred (bytes 5·-8). The csw
provides you with the unit status (byte 4),
the channel status (byte 5), and the
address of the previous CCW plus 8 (bytes
0-3).

86 Programmer's Guide to Debugging (Helease 20.1)

Page of GC28-6670-4. Revised March 1, 1971, by TNL: GN28-2457

SIO 00000000

Condition Device CAW CSW
code address

I/O 0OOO320A OOOlF708

I/o old PSW CSW

SVC number

SVC ,000"1"'>50, I

SVC old PSW Register 0 Register 1

Figure 34. Sample Trace Table Entries (PCP

SVC entries provide the SVC old PSW and the
contents of registers 0 and 1. The PSW
offers you the hexadecimal SVC number (bits
20-31), the CPU mode (nit 15), and the
address of the SVC instruction (bytes 5-8(.

~ The contents of registers 0 and 1 are
useful in that many system macro
instructions use these registers for
parameter information. Contents of
registers 0 and 1 for each SVC interruption
are given in Appendix A.

-

Trace 'l:able Entries in MVT and M65IV.lP:
Entries in an MVT trace table are 8 words
long and represent occurrences of SIO,
external, SVC, program, I/O, and dispatcher
interruptions. You can identify what type
of interruption caused an entry by looking
at the fifth digit:

0 SIO
1 External
2 SVC
3 Program
5 I/O
D Dispatcher

Figure 35 gives some sample entries and
their contents.

In dumps of Model 65 Multiprocessing
system, trace table entries differ as
follows:

and MFT)

SIO 5th word
6th word:

7th word:

8th word

I/O 3rd word:

4th word

8th word

SVC and 6th word:
Program

7th word:

8th word

Dispatcher 6th word:

7th word:

8th word:

External 6th word:
7th word:

8th word:

address of TCB.
address of old TCB
for CPU A.
address of old 'ICE
for CPU B.
CPU identif ication
(last byte).
contents of register
15.
contents of register
o.
CPU identif ication
(last byte).
address of old TCrl
for APU A.
address of old TCE
for CPU B.
CPU identification
(last byte).
address of new TCE
for CPU A.
address of new TCE
for CPU B.
CPU identification
(last byte).
STMASK of other CPU.
TQE if timer inter-
rupt occurred.
CPU identification
(last byte). If so, a
program check at the
instruction precedinq
that address caused
the interruption.

Guide to Using a Storage or a Stand-Alone Dump 86.1

....... SIO

I/O

SVC
External
Program
Dispatcher

SIO entry identifier

Condition Device CAW
code address l 00004800 00000000

I/O old PSW

Entry identifier
(SVC here) SVC number

SVC old PSW

00000000

Register 1

CSW

T T
TCB address Timer

CSW

00003660

Timer

Register 15 Register 0

TCB address Timer

• Figure 35. Sample Trace Table Entries (MVT)

-
Guide to Using a Storage or a Stand-Alone Dump 87

Appendix A: SVOs

Register contents at entry to an SVC routine are often helpful in finding pointers and
control information. The table below lists SVC numbers in decimal and hexadecimal, and
gives the type, associated macro instruction, and significant contents of registers 0 and
1 at entry -to each SVC routine.

Macro instructions followed by an asterisk (*) are documented in the System
Proq~ammers Guide. Expanded descriptions of remaining macro instructions listed here may
be found in the publication ~rvisor and Data Management Macro Instructions. Graphics
and telecommunications macro instructions are discussed in the Program Logic Manuals
associated with these access methods.

r--------T------,·--------T------------T------------------------.----------------------------,
I Decimal I Hex. I I I I I
I No. I No. I Type I Macl~o I Register 0 I Register 1 I
~--------+-----+-------+-------------+-----------------------+----------------------.-----~

o 0 I IEXCP * lOB address

o o

1 1

1 1

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 A

10 A

11 B

12 C

13 D

14 E

15 F

I

I

I

I

I

I

I

I

II

II

II

I, II

I

I

I
I XDAP *
I
I WAIT
I
I WAITR
I
I
IPRTOV

POST

GETMAIN

FREEMAIN

LINK

XCTL

LOAD

DELETE

GETMAIN or
FREEMAIN
(R Operand)

FREEPOOL
I

Event count

Event count

Completion code

Address of entry point
address

Address of program name

Subpool nwnber (byte 0)
Length (bytes 1-3)

ECB address

2's complement of
ECB address

ECB address

ParamE:!ter list address

Parameter list address

ParamE:!ter list address

ParamE:!ter list address

DCB address

Address of area to
be frE~ed

I, III ITIME ITime units code
I I

II ISYNCH * I
I I

IV I ABEND I ComplE~tion code
I I

II, IIIISPIE IPICA address
I I

I I IAddress of request queue
I I element ________ .L _____ .J.. _______ .L _______ . _____ .l. __________________ . ______ .L ______ •. ____________________ J

(Part 1 of 5)

88 Programmer's Guide to Debugging (Release 20)

'-l1li1.

r--------T-----T-------T------------T------------------------~--------------------------l
IDecimal I Hex. I" I I
I No. I No. , Type, Macro , Regis"ter 0 , Register 1 I
~--------+-----+-------+------------+-------------------------t--------------------------~

-.... - 16 10 III, PURGE * , , ,
17 11 III ,RESTORE * I IOB chain address ,
18 12 II BLDL Address of build list DCB address

18 12 II FIND

19 13 IV OPEN Address of parameter list
of DCB addresses

20 14 IV CLOSE Address of parameter list
of DCB addresses

21 15 III STOW Parameter list address DCB address

22 16 IV OPEN TYPE=J* Address of parameter list
of DCB addresses

23 17 IV CLOSE TYPE=T Address of parameter list
of DCB addresses

I
24 18 III ,DEVTYFE * ddname address ,
25 19 III , DCB address ,
26 1A IV ,CATALOG * Parameter list address ,
26 1A IV ,INDEX * Parameter list address

I
26 lA III ,LOCATE * Parameter list address ,

...... 27 lB III ,OBTAIN * Parameter list address ,
28 lC IV I ,
29 lD IV ,SCRATCH * UCB address Parameter list address ,
30 lE IV ,RENAME * UCB address Parameter list address

I
31 iF IV IFEOV DCB address ,
32 20 IV I Address of UCB list

I
33 21 III I IOHALT UCB address

I
34 22 IV IMGCR (MAST

CMD EXCP)

35 23 IV Wl'O Message address

35 23 IV WI'OR Message address

36 24 IV WI'L Address of message

37 25 II SEGLD Segment name address

37 25 II SEGWT Segment narre address

38 26 II

39 27 III,IV LABEL Parameter list address
l ________ ~ _____ ~ _______ ~ ___________ ._~ ________________ --------~--------------------------

(Part 2 of 5)

Appendix A: SVCs 89

r--------T-----T-------T------------T------------------------T--------------------------,
I Decimal I Hex. I I I I I
I No. I No. I 'rype I Macro I Register 0 I Register 1 I
~--------+-----+-------+------------+------------------------+--------------------------1

40 28 II, II, IEXTRACT I IParameter list address I

29

42 2A

43 2B

44 2C

45 2D

46 2E

47 2F

48 30

49 31

50 32

51 33

52 34

53 35

54 36

55 37

56 38

56 38

39

58 3A

58 3A

59 3B

60 3C

61 3D

62 3E

63 3F

64 40

65 41

III I I I I
I I I I

II, IIIIIDEN1IFY I Entry point name addresslEntry point address I
I I I

II, IIIIATTACH I I
I I I

II, IIIICIRB * I Entry pOint address Size of work area in I
I 1 doublewords I
1 1 I

I JCBAP 1+ Increase priority TCB address I
I 1- Decrease priority I

II I I I
I 1 I

I I TrIMER I 1: Cancel I
I I

II ISTIMER IExit address
I I

I, II I DEQ I
I I

III I TEST I
I I

IV I I
I I

IV I SNAP
I

IV I
I

III IRELEX

II

IV

I
I
I
1 EOV *
I

I, II I ENQ
I

I, II IRESERVE *
I

III IFREEDBUF
I

I IRELBUF
I

I IREQBUF
I

III I
I

Key address

EOB address

QEL address

DECB address

III ISTAE 0 create SCB
I 4 Cancel SCB
180

III I I
I I

II I DETACH I
I I

IV I CHKPT I
I I

III IRDJFCB * I
I I
I I

II I I
I I

Timer interval address

QCB address

Parameter list address

DCB address

DCB address

DCB address

QCB address

I
IDCB address
I
IDCB address
I
IDCB address
I
I
I
IParameter list address

Parameter list address

TCB address

DCB address

Address of parameter list
of DCB addresses

Parameter list address

66 42 I IV I I I L ________ ~ _____ ~ _______ ~ ____________ ~ ________________________ ~ __________________ . ________ J

(Part 3 of 5)

90 Programmer's Guide to Debugging (Release 20)

A.

r--------T-----T-------T------------T------------·-----------~--------------------------,
I Decimal IHex. I I I I I

........, I No. I No. I Type I Macro I Register 0 I Register 1 I

~

-

~--------f-----f-------f------------+------------------------f--------------------------~
67 I 43 II IENDREADY I QPOST

I I I
68 I 44 IV ISYNADAF Same as register 0 on ISame as register 1 on

I I entry to SYNAD lentry to SYNAD
I I

68 44 IV ISYNADRLS I
I I

69 45 III IBSP IDCB address
I I

70 46 II I GSERV IParameter list address
J I

71 47 III RLSEBFR IParameter list address
I

71 47 III ASGNBFR IParameter list address
I

71 47 III BUFINQ Parameter list address

72 48 IV

73 49 III SPAR

74 4A III DAR

75 4B III

76 4C IV

77 4D IV

78 4E III

79 4F I STATUS

80 50 III

81 51 IV SETPRT

82 52 IV

83 53 III SMFWTM *
84 54 I

85 55 IV

86 56 IV ATLAS

87 57 III DOM

88 58 III MOD88

89 59 III EMSRV

90 SA IV XQMNGR

UCB address and buffer
restart address

If zero
If negative

Routine code

Address of list of
ECB/IOB pointers
(optional)

Parameter list address

Parameter list address

Parameter list address

Parameter list address

Message address

Parameter list address

A DOM message I.D.
A pointer to a list of DOM
message I.Ds

DCB address

Parameter list address

QMPA address

91 5B III VOLSTAT DCB address zero: issued by CLOSE
Non-zero: issued by EOV ________ i _____ i-______ i ____________ L ____________ . ____________ i _________________________ _

(Part 4 of 5)

Appendix A: SVCs 91

Page of GC28-6670-4, Revised March 1, 1971, by TNL: GN28-2457

r--------T-----T-------T------------T------------------------T--------------------------,
I Decimal IHex. I I I I I
I No. I No. I Type I Macro I Register 0 I Register 1 I
~--------+-----+-------+------------+----------------~-------+--------------------------~
I 92 I 5C I I I I
I I I I I
I 93 I 5D I IV ITGET/TPUT ITJID & buffer Size Address of User's Buffer
I I I I I
I 94 I 5E I IV I STERMINAL I Entry code
I I I STATUS I
I I I I
I 95 I 5F I I TSEVENT ITJID/Entry Code or 0 Not Always Applicable
I I I
I 96 60 I III STAX I Parameter List Address
I I I
I 97 61 I III I
I I I
I 98 62 I IV PROTECT I Parameter List Address
I I I
I 99 63 I IV none I
I I I
I 100 64 I III IFIB I
I I I I
I 101 65 I I IQTIP I Entry code Parameter List Address
I I I I
I 102 I 66 I I IAQCTL I Parameter List Address
l ____ . ____ ...l. ______ ..L. ________ ..l. ____________ .L ________________________ ...l. __________________________ _

(Part 5 of 5)

92 Programmer's Guide to Debugging (Release 20.1)

Completion codes issued by operating system
routines are often caused by problem
program errors. This appendix includes -the
most common system completion codes, their
probable causes, and how to correct the
error or locate related information using a
dump. For a more comprehensive coverage of
completion codes, se~ the publication
Messages and Codes.

OCx A program check occurred without a
recovery routine. If bit 15 of the
old program PSW (PSW at entry to
ABEND) is on, the problem program had
control when the interruption
occurred; nxn reflects the type of
error that causes the interruption:

~ Cause
1 Operation
2 Privileged operation
3 Execute
4 Protection
5 Addressing
6 Specification
7 Data
8 Fixed-point overflow
9 Fixed-point divide
A Decimal overflow
B Decimal divide
C Exponent overflow
D Exponent underflow
E Significance
F Floating-point

The correct register contents are
reflected under the heading nREGS AT
ENTRY TO ABENDn in an ABEND/SNAP dump_
In a stand-alone dump, register
contents can be found in the register
save area for ABEND'S SVRB.

OFl A program check occurred in the
interruption handling part of the
input/output supervisor. The
applicable program check PSW can be
found at location 40(28). (In systems
with MFT, this PSW is valid only if
the first four digits are 0004).

The problem program can be responsible
for this code if:

1. An access method routine in the
problem program storage area has
been overlaid.

2. An lOB, DCB, or DEB has been
modified after an EXCP has been
issued, but prior to the
completion of an event.

Appendix B: Completion Codes

Ifa trace table exists (trace option
was specified at system generation),
the instruction address in the new
program check PSW, location 104(68},
contains the address of a field of
register contents. This field
includes registers 10 through 1 (BCP)
or 10 through 9 (MFT) on an ABEND/SNAP
dump, or 10 through 1 (both systems)
on a stand-alone dump.

If no trace table exists, the above
field contains registers 10 through 1
on both ABEND/SNAP (MFT only) and
stand-alone dumps.

OF2 Most frequently caused by incorrect
parameters passed to a type I SVC
routine.

100 A device has been taken off-line
without informing the 'system, or a
device is not operational.

If a trace table exists, the most
current entry is an SIO entry
beginning with 30. The last 3 digits
of the first word give the device
address.

If a trace table does not exist,
register 1 (in the SVRB for the ABEND
routine) contains a pointer to the lOB
associated with the device.

101 The wait count, contained in register
o when a WAIT macro instruction was
issued, is greater than the number of
ECBs being waited upon.

102 An invalid ECB address has been given
in a POST macro instruction.

If a POST macro instruction has been
issued by the problem program, the ECB
address is given in register 1 of
either the trace table entry or the
SVRB for the ABEND routine.

If the POST was issued by an I/O
interruption handler, the ECB address
can be found in the lOB associated
with the event.

106 During a transient area load or a
dynamic load resulting from a LINK,
LOAD, XCTL, or ATTACH macro
instruction, the fetch routine found
an error. A description of the error
is contained in register 15 of ABEND's
SVRB register save area:

Appendix B: Completion Codes 93

OD The control program found an
invalid record -type.

OE The control program found an
invalid address. The problem
program may contain a relocatable
expression that specifies a
location outside the partition
boundaries.

OF A permanent I/O error has
occurred. This error can probably
be found in the trace table prior
to the ABEND entry.

Register 6 of ABEND's SVRB register
save area points to the work area used
by the fetch routine. This area
contains the lOB, channel program, Rill
buffer, and the BLDL directory entry
associated with the program being
loaded.

122 The operator cancelled the job and
requested a dump.

155 An unauthorized user (a user other
than dynamic device reconfiguration)
has issued SVC 85. The user's task
has been abnormally terminated by
dynamic device recognition.

201 This completion code is identical to
102, but applies to the WAIT macro
in~truction instead of POST.

202 An invalid RB address was found in an
ECB. The RB address is placed in the
ECB when a WAIT macro instruction is
issued.

213 The error occurred during execution of
an OPEN macro instruction for a data
set on a direct-access device.
Either:

1. The data set control block (DSCB)
could not be found on the direct
access device.

2. An uncorrectable input/output
error occurred in reading or
writing the data set control
block.

Register 4 contains the address of a
combined work and control block area.
This address plus x'64' is the address
of the data set name in the JFCBDSNM
field of the job file control block
(JFCB) •

222 The operator cancelled the job without
requesting a dump. The cancellation
was probably the result of a wait
state or loop.

301 A WAIT macro ins1:ruction was issued,
specifying an ECB which has not been
posted complete from a previous event.
Either:

1. ~he ECB has been reinitialized by
the problem prograrr prior to a
second WAIT on the same ECB, or

2. The high order bit of the ECB has
been inadvextently turned on.

308 The problem program requested the
loading of a module using an entry
point given to the control program by
an IDENTIFY macro instruction.

Register 0 of LOAD's SVRB reaister
save area contains the address (or its
complement) of the narre of the module
being loaded.

400 The control prog:ram found an invalid
lOB, DCB, or DEB.. Check the following
blocks for the indicated information:

• lOB - a valid DCB address.

• DCB - a valid DEB address.

• DEB - ID of OF and a valid DCB
address.

• UCB - a valid identification of
FF.

Note: In systems with MVT, this code
may appear instead of a 200 code, for
the reasons given under 200.

406 A program has the "only loadable"
attribute or has an entry point given
to the control p.rogram by an IDENTIFY
macro instruction. In either case,
the program was invoked by a LINK,
XCTL, or ATTACH macro instruction.

Register 15 of the LINK, XCTL, or
ATTACH SVRB register save area
contains the address of the name of
the program being loaded.

506 The error occurred during execution of
a LINK, XCTL, AT'rACH, or LOAD macro
instruction in an overlay program or
in a program that was beina tested
using the TESTRAN interpreter.

The program name can be found as
follows:

1. If a LOAD macro instruction was
issued, register 0 in the trace
table SVC entry or in the SVRB
register save area contains the
address (or its complement) of
the program name.

94 Programmer's Guide to Debugging (Release 20)

2. If a LINK, XCTL, or ATTACH was
issued, register 15 of the
associated SVRB register save
area contains the address of a
pOinter to the program name.

Note: Programs written in an overlay
structure or using TESTRAN should not
reside in the SVC library.

604 During execution of a GETMAIN macro
instruction, the control program found
one of the following:

1. A free area exceeds the
boundaries of the main storage
assigned to the task. This can
result from a modified FQE.

2. The A-operand of the macro
instruction specified an address
outside the main storage
boundaries assigned to the task.

605 During execution of a FREEMAIN macro
instruction, the control program found
that part of the area to be freed is
outside the main storage boundaries
assigned to the task, possibly
resulting from a modified FQE.

Item 1 under the 604 completion code
is also applicable to 605.

606 During execution of a LINK, XCTL,
ATTACH, or LOAD macro instruction, a
conditional GETMAIN request was not
satisfied because of a lack of
available main storage for a fetch
routine work area. Consequently, the
request was not satisfied.

The name of the load module can be
found as described under completion
code 506.

60A Results from the same situations
described under 604 and 605 for R-form
GETMAIN and FREEMAIN macro
instructions.

613 The error occurred during execution of
an OPEN macro instruction for a data
set on magnetic tape. An
uncorrectable input/output error
occurred in tape positioning or in
label processing.

700 A unit check resulted from an SIO
issued to initiate a sense command.

The defective device can be determined
from the SIO trace table entry that
reflects a unit check in the CSW
status.

704 A GETMAIN macro instruction requested
a list of areas to be allocated. This
type of request is valid only for
systems with MVT.

The applicable SVC can be found in a
trace table entry or in the PSW at
entry to ABEND.

705 Results from the same situations
described under 704 for FREEMAIN macro
instructions.

706 During execution of a LINK, LOAD,
XCTL, or ATTACH macro instruction, the
requested load module was found to be
not executable.

The name of the module can be found as
described under the completion code
506.

804 The error occurred during execution of
a GETMAIN macro instruction with a
mode operand of EU or VUe More main
storage was requested than was
available.

806 The error occurred during execution of
a LINK, XCTL, ATTACH, or LOAD macro
instruction.

An error was detected by the control
program routing for the BLDL macro
instruction. This routine is executed
as a result of these macro
instructions if the problem program
names the requested program in an EP
or EPLOC operand. The contents of
register 15 indicate the nature of the
error:

X'04' The requested program was
not found in the indicated
source.

X'08' An uncorrectable
input/output error occurred
when the control program
attempted to search the
directory of the library
indicated as containing the
requested program.

Register 12 contains the address of
the BLDL list used by the routine.
This address plus 4 is the location of
the 8-byte name of the requested
program that could not be loaded.

80A The error occurred during execution of
an R-form GETMAIN macro instruction.
More main storage was requested than
was available.

Appendix B: Completion Codes 95

905 The address of the area to be freed
(given in a FREEMAIN macro
instruction) is not a multiple of
eight. The contents of register one
in either the trace table entry or
ABEND's SVRB register save area
reflect the invalid address.

90A Results from the same situations
described under 905 for R-·fonns of
GETMAIN and FREEMAIN macro
instructions.

AOS The error occurred during execution of
a FREEMAIN macro instruction. The
area to be freed overlaps an already
existing free area. This error can
occur if the address or the size of
the area to be freed were incorrect or
modified.

The contents of registers 0 and 1 in
either the svc trace table entry or
ABEND's SVRB register save area
reflect the size and address.

AOA Results from the same situations
described under A05 for R-fonn of
GETMAIN and FREEMAIN macro
instructions.

B04 This error occurred during execution
of a GETMAIN macro instruction. A
subpool number greater than 127 was
specified. The problem program is
restricted to using subpools 0-127.
This error can occur if the subpool
number was either incorrectly
specified or modified.

A displacement of nine bytes from the
list address passed to GETMAIN in

register 1 contains the subpool
nwnber. RegisteI~ 1 can be found in
either the svc trace table entry or
ABEND's SVRB register save area.

B05 Results from the same situation
described under B04 for a FREEMAIN
macro instruction.

BOA Results from the same situations
described under 1304 and B05 for R-form
of GE'I"MAIN and FHEEMAIN macro
instructions.

The subpool number can be found in the
high order bytes of register 0 in
either the svc trace table entry or
ABEND's SVRB register save area.

B37 The error occurrE~d at an end of
volume. The control program found
that all space on the currently
mounted volumes 1I17aS allocated, that
more space was required, and that no
volume was availa.ble for demounting.

Either allocate more devices or change
the program so that a device~ will be
free when a volume must be mounted.

Fnn An SVC instruction contained an
invalid operand; nn is the hexadecimal
value of the SVC ..

This error can occur if either an
invalid instruction was issued by the
problem program or an operand
referring to an optional function was
not included during system generation.

96 Programmer's Guide to Debugging (Release 20)

Appendix C: System Module Name Prefixes

All load modules associated with a specific operating system component have a common
prefix on their module names. This a.ppendix lists the module name prefixes and the
associated system component(s).

Prefix

IBC

lEA

Component

Independent utility programs

Supervisor, I/O supervisor, and
NIP

IEB Data set utility programs

IEC Input/output supervisor

lEE

IEF

lEG

IEH

lEI

Master scheduler

Job scheduler

TESTRAN

system utility programs

Assembler program during system
generation

IEJ FORTRAN IV E compiler

IEK FORTRAN IV H compiler

.1 EM PL/I F compiler

IEP COBOL E compiler

IEQ COBOL F compiler

IER Sort/Merge program

IES

lET·

lEU

lEW

lEX

lEY

Report program generator

Assembler E

Assembler F

Linkage editor/overlay
supervisor/program fetch

ALGOL compiler

FORTRAN IV G compiler

IFB Environment recording routines

IFC Environment recording and print
routines

Component

IFD On line test executive program

IFF Graphic programming support

IGC Transient SVC routines

IGE

IGF

IGG

IHA

IHB

I/O error routines

Machine check handler program

Close, open, and related routines

System control blocks

Assembler during expansion of
supervisor and data management
macro instructions

IHC FORTRAN library subroutines

IHD COBOL library subroutines

IHE PL/I library subroutines

IHF PL/I library subroutines

IHG Update analysis program

IHI

IHJ

IHK

lIN

IKA

IKD

Object progra~ originally coded in
ALGOL language

Checkpoint/restart

Remote job entry

7094 emulator program for the
Model 85

Graphic Job Processcr

Satellite graphic jcb processor
messages

IKF USAS COBOL compiler

ILB USAS COBOL subroutines

Appendix C: System Module Name Prefixes 97

Appendix D: List of Abbreviations

ABEND abnormal end-of-task

APR alternate path retry

CCW channel command word

CDE contents directory entry

CPU central processing unit

csw channel status word

CVT communications vector table

DAR damage assessment routine

DCB data control block

DD data definition

DDR dynamic device reconfiguration

DEB data extent block

DPQE dummy partition queue element

DQE descriptor queue element

ECB event control block

FBQE free block queue element

FQE free queue element

FRB finch request block

GQE gotten subtask area queue element

lOB input/output block

IPL initial program loading

IRB interrupt request block

LLE load list element

LPRB loaded program request block

LRB loaded request block

MFT

MVT

multiprogramming with a fixed
number of tasks

multiprogramming with a variable
number of tasks

NIP nucleus ini1:ialization program

PCP primary con1:rol program

PIB partition information block

PQE partition queue elerrent

PRB program request block

PSA prefixed storage area

PSW program stat.us word

QCB queue control block

QEL queue element

RB request block

SCB STAE control block

SIO start input/output

SIRB supervisor interrupt request block

SPQE subpool queue element

SVC supervisor call

SVRB supervisor request block

SYSOUT system output

TCB task control block

TIOT task input/output table

UCB unit control block

WLE wait list element

XCTL transfer control

XL extent list

98 Programmer's Guide to Debugging (Release 20)

Appendix E: ECB Completion Codes

r-------------T---,
I Hexadecimal I I
I Code I Meaning I
r-------------+---1

7FOOOOOO I Channel program has terminated without error. (CSW contents can be
I useful.)
I

41000000 I Channel program has terminated with permanent error. (CSW contents can
! be useful.)
I

42000000 I Channel prograro has terminated because a direct access extent address
I has been violated. (CSW contents do not apply.)
I

44000000 I Channel program has been intercepted because of permanent error
I associated with device end of previous request. You may reissue the
I intercepted request. (CSW contents do not apply.)
I

48000000 I Request element for channel program has been rrade available after it
I has been purged. (CSW contents do not apply.)
I

4FOOOOOO I Error recovery routines have been entered because of direct access
I error but are unable to read home address of record O. (CSW contents
I do not apply.) _____________ L __ _

AppeLdix E: ECB Corrpletion COdES 99

Appendix F: UCB Sense Bytes

~ DEVICE

I
I

2400

2311,
2841

2301, 2302,
2303, 2314,
2820

2250

2280

2282

1052,
2150

1285

1287

1288

2495

2540,
2021

1403,
1443

1442,
2501,
2520

2671,
2822

0

CMD
REJ

CMD
REJ

CMD
REJ

I

CMD
REJ

I CMD
REJ

I

CMD
REJ

I
CMD
REJ

CMD
REJ

CMD
REJ

CMD
REJ

CMD
REJ

CMD
REJ

I
CMD

I REJ

!CMD

REJ

ICMD
REJ

1

INT
REQ

INT
REQ

INT
REQ

I 2

BUS
OUT

BUS
OUT

BUS
OUT

I

SHOULDI
NOT
OCCUR

BUS
OUT

liNT
I REQ

I

BUS
OUT

BUS
OUT

BUS
OUT

BUS
OUT

BUS
OUT

BUS
OUT

BUS
OUT

BUS
OUT

I

BUS
OUT

i

I BUS

lOUT

BYTE 0

3

EQ
CHK

EQ
CHK

EQ
CHK

r
HOUW

NOT
OCCUR

EQ
CHK

EQ
CHK

i
I 4

DATA
CHK

DATA
CHK

DATA
CHK

I
5 I 6

OVER-I WRT

RUN '~~R~
OVER-

TRK

RUN
CCND
CHK

OVER-

.·::.;):,'t: RUN

DATA
CNVTT
CHK

SEEK
CHK

INVAL
ADDR

DATA)HOULlJ BU~~tK SHOULl)
CHK NOT RUN- NOT

OCCUR NING OCCUR

DATA ~H~ULD ~~TULD ILLGL

CHK OCCUR OCCUR SEG

DATA
SHOULD SHOULD

ILLGL
CHK

NOT NOT
SEGN

OCCUR OCCUR -EQ
CHK

EQ DATA O\!~R- NON KYBD
CHK CHK RUN RCVY CaRR

I KYBD
DATA OVER- NON CaRR
CHK RUN RCVY

EQ
CHK

DATA OVER- NON
SHOULD
NOT

CHK RUN RCVY
OCCUR

EQ
CHK

EQ
CHK

DATA SHOULD POSN SHOULD

CHK i NOT CHK NOT
loccUR OCCUR

,EO DATA:'<: UN-

I
USUAL

CHK CHK ': :',' CMD I;,

RUN

I EO I '/'h .;.\,t:'·i(. CH 9
I CHK ! /~YPE TYPE,
i V BAR BAR

I EQ t DATA OVER- .\ •.. L-_~-I
i CHK ! CHK

I

I BUS I EQ I DATA •...•
: OUT CHK I CHK

I-----+---~----r-,----i---- -flsHOU-LD1SHOULDi,SHOULD II SHOULD
INT I BUS EQ NOT ,NOT i NOT , NOT
REQ i OUT CHK jOCCUR !OCCUR IOCCUR lOCCUR

I
CMD ,

2260 ,

! REJ

2701,
I~~D

i
I 2702 I ,

I

!NT I BUS cQ ! DATA I OVfR-! lOST I TIME

REO lOUT CHK I CHK I RUN I DATA lOUT

14191 ICMD !
1275 I REJ

i
pcu I

I

l
1419'

CMD
I

1275
REJ

I SCU

INT BUS
REO OUT

NOT NOT I LATE AUTO OP
STKR

USED USED iSELECT SELECT ATT

NOT DATA I' OVER- AliTO INOT
USED CHK RUN SELECT I USED

INT I' BUS
REQ g~;

BYTE 3

rz:=:= BIT I I
DEVICE

SKEW
2400 LRCR SKEW CRC REQ

2311,
READY

ON READ WRITE
2841 LINE SAFETY SAFETY

2301, 2302,
LRC LRC

I
LRC LRC

2303,2314,
BIT 0 BIT 1 BIT 2 BIT 3

2820 I

BUFFER ADDRESS REGISTER
2250 I

I I i BIT 8 BIT 7
I

BIT 6 BIT 5 BIT 4 BIT 3

I
BUFFER ADDRESS REGISTER

2280 I I I
I BIT 8 BIT 7 I BIT 6 I BIT 5 I 81T 4 BI,3 BIT 2

BUFFER ADDRESS REGISTER
2282 I I

I BIT 8 BIT 7 i BIT 6 BIT 5 BIT 4 j BIT 3 BIT 2
j~-~~~.

NOISE

OO-NON-XST TU
01-NOT READY
1 O-RDY & NO RWD
11-fiDY & RWDNG

DATA
CHK
FLD

TRK
OVER­
RUN

END
OF
CYL

DATA TRK END
CHK IN OVER- OF
COUNT RUN CYL

liGHT \Ei'-lD
PEN ORDER
DETECT ,SEQ

READ I
COUNT FILM
CHK LOW

100 Programmer's Guide to Debugging (Release 20)

BYTE 1

7
AT

WRT
LOAD

TRK
POINT

STATUS

IN- NO '
VALID REC I FILE

SEQ FOUND! PROT

NO

BYTE 4

FI LE TAPE
PROTECT IND

MISSING OVER-
ADR FLOW

INL

OVER-
FLOW

BYTE 2

BITS 0-7 INDICATE A TRACK IS IN ERROR

UN­
SAFE

BYTE 5

COMlvlAGID I~J PROGRESS WHEN OVEQFLOW li'<COf'.:,PLETE OCCURS
OR

ZERO I

-

Appendix G: Service Aids

In addition to the debugging facilities discussed in this manual, IBM provides the
following service aid programs to aid you in debugging. A complete description of each
of these service aids and instructions for their use are found in the publication IBM
System/360 Operating system Service Aids, GC28-6719.

Program Name Functional Desc.ription

IMDSADMP A stand-alone program, assembled wi-th user-selected options, that dumps
the contents of main storage onto a tape or a printer. The program has
two versions:

IMDPRDMP

IMCJQDMP

IMBMDMAP

lMASPZAP

Ir.'1APTFLS

lMAPTFLE

• A high speed version that dumps the contents of main storage to a
tape •

• A low speed version that formats and dumps the contents of main
storage either to a tape or directly to a printer.

A problem program that reads, formats according to user supplied
parameters, and prints the tape produced by execution of the stand-alone
dump program assembled from the service aid IMDSADMP. The format of the
printed output is similar to that produced by ABEND.

A stand-alone program that reads, formats, and prints either the entire
operating system data set SYS1.SYSJOBQE, or selects and prints
information related to a specific job in that data set. Because it
operates independently of the operating system, IMCJQDMP can print the
contents of the job queue as it appeared at the time of abnormal
termination.

A problem that produces a map of the system nucleus, any load module, the
resident reenterable load module area of an MFT system, or the link pack
area of an MVT system. The listing produced by this program shows the
locations of CSECTS, external references, and entry points within a load
module.

A problem program that can inspect a.nd modify either data records or load
modules located on a direct access storage device.

A problem program that identifies program temporary fixes (PTFs) and
local fixes that have been applied to libraries.

A problem program that produces the job control language (JCL) statements
necessary to apply PTFs to a system; these JCL statements are tailored to
the user's individual system.

Appendix G: Service Aids 101

Page of GC28-6670--4, Revised March 1, 1971, by TNL: GN28-2457

Appendix H: TeAM Debugging Aids

In addition to thE~ debugging facilities described in this publication, the
telecommunications access method provides the following aids to debugging:

• I/O error recording procedures.
• I/O interrupt trace table (line trace) •
• A dispat:cher subtasK trace table (STCB trace).
• Sequential listings of buffers and message queue data sets.

Optional format:ted listing of the line and STCB traces are available with TCAM.
These denugging aids are described in the publications IBM System/360 Operating system:
TCAM Prograrruner's Guide and Reference Manual, GC30-2024, and IBM System/360~rating
System: TCAM Serviceability Aids Program Logic Manual, GY30-2027. A discussion of the
TCAM formatted ABEND dump is given in the publication IBM System/360_0perat~System:
TCAM Program Logic Manual, GY30-2029.

102 Programmer's Guide to Debu<gging (Release 20.i)

-

-'

TCB - Task Control Block (MVT)
+1
+9
+13(0)
+16(10)
+25(19)
+33(21)
+37(25)
+113(71)
+125 (70)
+129(81)

Address of most recent RB
Address of most recent DEB
TIOT address
Completion code
Address of most recent SPQE
Bit 7 -- Non-dispatchability bit
Address of most recent LLE
Address of first save area
Address of TCB for job step task
Address of TCB for next subtask
attached by same parent task

+133(85) Address of TCB for parent task
+137(89) Address of TCB for most recent

subtask
+145(91) Address of ECB to be posted at

task completion

+153 (99)

+161 (A1)
+181 (B5)

Address of dummy PQE minus 8
bytes
Address of STAE control block
Address of the job step control
block

UCB - Unit Control Block
-4 CPU ID (used only with Model 65

Multiprocessing systems)
+2 FF (UCB identification)
+4
+13 (D)
+18(12)
+19(13)
+22(16)
+40(28)

Device address
Unit name
Device class
Device type
Sense bytes
Number of outstanding RESERVE
requests (shared DASD only)

Appendix H: Control Block Pointers 103

Loc 16QIO) _ _ -,_

t CVT

8 I--------r'

f TIOT
12 (C) I-----------!'

f Load List
36 (24) I-----------r

/'---

/ ~---
/

Load Li st

8 i-----i"

ddname
28 (1 C) I------r-

for each 40
Repeated {

device (28) 1--'-----,

-81--------1'

16 (10)1--____ -1'

40 (28) I---.----'----r

44 (2D) I---'-----r

68 (44) i lOB Prefix

Active RB Queue
r------"------

----------~

8~----~
t TIOT

12 (C) 1--____ -1'

t Load List
36 (24) 1--___ --1'

/'
~ -------~-----------------------.----..,.....-------~

'~--

"
Active RB Queue

~ ___ ...A __ ~_ ... '. ___ ,

8t-____ -r

ddname

for each 40
Repeated {

device (28) t--'----__1' 16 (10) 1--___ --1'

41---'-----t"

28 (lC) jPrevious RB

24 (18) ~-...L------Y

16 (10)1-------1'"

32 (20) ~-L-__ ---!,

40 (28) ~--,-~---r

44 (2D)I--~ ____ __1'

68 (44) i lOB Prefix

-4

Sense
:1

0 bytes

CC
4

8
CSW

12 (C)

t CCW
16 (10)

t DCB
20 (14)

()

0 4 6

t ..

l·'jqure 36. Control Block Flow

Load List
,-~---~

O~..J..... ____ -r

25 (19) I-_~ ____ .y

37 (25) I---L-----.y

Subpo~ Queue
r--~~--~~~

Descriptor Queue

~~~~-------

-~' Free Queu e 
r---~---------- ~-----~ 

8 

12 (C)I----.-------Y 

16 (10)1-+~~~--Vr~----------
20 (14) L..---'-_____ v 

Figure 37. MVT storage Control Flow 

Active RB Queue 
,--------~_/-~----~ 

12 (C)I-....l...! ____ -¥ 

28 (lC) I-......L-----¥ 

MVT 
Storage Control 

Pointers 

Appendix H: Control Block Pointers 107 





'-

Indexes to systems reference library 
manuals are consolidated in the publication 
IBM System/360 Operating System: Systems 
Reference Library Master Index, GC28-6644. 
For additional information about any 
subject listed below, refer to other 
publications listed for the same subject in 
the Master Index. 

When more than one page reference is 
given, the major reference is first. 

Abbreviations, list of 98 
ABEND dumps 

contents of (MVT) 50-68 
contents of (PCP,MFT) 34-49 
guide to using (HVT) 67-68 
guide to using (PCP,MFT) 48-49 
how to invoke (MVT) 50 
how to invoke (PCP,MFT) 34-35 
introduction to 9 
samples of (MVT) 51-52 
samples of (PCP) 35-36 

ABEND macro instruction 34,50 
Abnormal termination, cause of 

in an ABEND/SNAP dump (MVT) 67 
in an ABEND/SNAP dump (PCP,MFT) 48 

Abnormal termination dumps (see ABEND 
dumps) 

Active RB queue 
description of 14 
instructions for using 31 
in a storage image dump 81,82 
in an ABEND/SNAP dump (MVT) 56,67 
in an ABEND/SNAP dump 

(PCP , Iv'lFT) 41, 48 
in an indicative dump 71 

AMWP bits 
in an indicative dump 71 
meaning of 32 

APSW field, in an ABEND/SNAP dump 
(MVT) 56,67 

ATTACH macro instruction, effects of 16,17 
Attaching subtasks 18,19 

Boundary 
problem program 32,44 

Catalog dump 34,35 
CDE 

as used with the load list 15 
format of 24,25 
in an ABEND/SNAP dump 58 
in a storage image dump 81 

CHAP macro instruction 19 
Communications vector table (see CVT) 
complete dump (MVT) 

description of 50 
sample of 51,52 

Completion codes 
description of common 93-96 
explanation of 31 
in an ABEND/SNAP dump (MVT) 53 

Index 

in an ABEND/SNAP dump (PCP,MFT) 39 
in an indicative dump 71 

COND parameter, 
to regulate job step execution 35 

Contents directory 
description of 15,24,25 
entries (see CDE) 

Control blocks 
descriptions of 26,27 
pointers in 102,103 
relationships between 26 
use in debugging 32 

Control information 11 
Control program nucleus 

ABEND/SNAP (MVT) 64 
ABEND/SNAP (PCP,MFT) 47-48 

CVT 
dE~scription of 26 
in a storage image dump 78-79 
pointers in 102 

Data control block (see DCB) 
Data event control block 25 
Data extent block (see DEB) 
Damage assessment routine (DAR) 72 
DCB 

description of 26 
in a storage image dump 84 
pointers in 102 

DD st.atements 
required with ABEND/SNAP dumps 34-35 
sample of SYSABEND 37 

DEB 
description of 26 
in a storage image dump 83 
in an ABEND/SNAP dump (MVT) 59 
in an ABEND/SNAP dump (PCP ,l-iFT) 45 
pointers in 102 

DEB queue 
in a storage image dump 84 
in an ABEND/SNAP dump (MVT) 54 
in an ABEND/SNAP dump (PCP ,tJ~FT) 39 

Debugging procedure 
description of 31-33 
summary 33 

DECB 26 
DELETE macro instruction 15 
DequE;ued elements 38 
Descriptor queue element (see DQE) 
Destroyed queues 37 
Device considerations, 

for ABEND/SNAP dumps 34-35 
Dispatcher trace table entry (~VT) 

format of 29 
in a SNAP dump 65,68 
in a storage image dump 86 

Dispatching priority 18-19 

Index 109 



Displacements, how shown 9 
DQE 

format of 23-24 
in a storage image dump 83 
in an ABEND/SNAP dump 60,68 

Dump (see individual type of dump, 
ABEND, indicative) 

Dump data set 
MVT 50 
PCP,MFT 34 

Dynamic area 

ECB 

in systems with lW1VT 19 
in systems with MFT 18 
in systems with PCP 17-18 

completion codes, list of 99 
description of 26 
in a storage image dump 84 
pointers in 102 
posting of, using AT'TACH 17 

Event control block (see ECB) 
Extent list (seE! XL) 

External interruption 32,33 
External trace table entry 

format of 29 
in a SNAP dump 65,67-68 
in a storage image dump 86 

FBQE 
format of 22-23 
in a storage image dump 86 
in an ABEND/SNAP dump 61,68 

FINCH request block 12 
Finding the part:i tion TCB 
FRE 12 
Fixed area 

in systems with MFT 18 
in systems with MVT 19 
in systems with PCP 17 

FQE 
format of (Ml''T, PCP) 20 
format of (MVT) 24 

Free areas 

81 

e.g., 

in an ABEND/SNAP dump (PCP,MFT) 48 
Free block queue element (see FBQE) 
Free queue element (see FQE) 

General debugging procedure 
description of 31-33 
surrunary 33 

GEl'MAIN macro instruction 21 
Gotten subtask area queue element 20,21 
GQE 20,21 
Guide to using storage image dump 77 

Hardware error 32 
Hierarchy, main storage 20-22 

lEAPRINT 
lMAPTFLE 
lMAPTFLS 
lMASPZAP 

73-75 
101 
101 
101 

IMBLV.lDl'.lAP 101 
IMCJQDMP 101 
IMDPRDMP 73,101 
IMDSADMP 77,101 
Indicative dumps 

contents of 69-71 
description of 69 
guide to using 71 
introduction 9 

Input/output block (sE~e 

Interrupt request block 
Interruptions 32 
Introduction 9 
lOB 

description of 26 

lOB) 
12 

in a storage image dump 84 
pointers in 102 

I/O interruption 32 
I/O trace table entry 

format of 29 
in a storage image dump (MFT and PCP) 

85-86 
in a storage image dump (MVT) 86 
in a SNAP dump (MVT) 65,67-68 
in an ABEND/SNAP dump (PCP,l'o'lFT) ll6,48 

IRB 12 

Jon pack area 14-15 
.Job pack area queue 14-15 
.Job step 17-19 
JOD step task (MVT) JL9,50 
JPAQ 14,15 

Keep dump 34,35 

LINK macro instruction, effects of 16 
Link pack area (MVT) 19 
LLE 

count field 15 
description of 15 
in an ABEND/SNAP dump (MVT) 54 

Load list 
description of 15 
instruction for using 31,33 
in a storage image dump 82 
in an ABEND/SNAP dump (MV'l') 
in an ABEND/SNAP dump (PCP, 
in an indicative dump 70 
in systems with MVT 15 
in systems with PCP or MFT 

Load list element (see LLE) 

57,61' 
MFT) 42,48 

14-15 

LOAD macro instruction, effects of 1.7 
Load module, storage control for 

in an ABEND/SNAP dump (NVT) 57- 58,68 
in systems with MV~r 24-25 

Loaded program reques1t block 12 
Loaded request block 12 
LPRB 12 
LRB 12 

Main storage hierarchy support 
inclusion of 20-22 
effects on MSS boundary box 
effects on partition queue 

20,21. 
20 

110 Prograrrunerus Guide to Debugging (Release 20.1) 



Page of GC28-6670-4, Revised March 1, 1971, by TNL: GN28-2457 

Main storage layout 
in systems with MFT with subtasking 

18-19 
in systems with MFT without subtasking 

18 
in the systems with MVT 19 
in system with PCP 17 

Main storage supervisor's boundary box 
(see JVISS) 

Machine check interruption 32-33 
MFT, systems with 

considerations in using an ABEND/SNAP 
dump of 48-49 

contents of an ABEND/SNAP dump of 38-49 
guide to using a storage image 

dump of 77 
how to invoke an ABEND/SNAP 

dump of 34-35 
main storage layout in 19 
storage control in 21-22 
task control characteristics of 18-19 
trace table entries in 28,85 

Model 65 Multiprocessing system 
trace table formats 29 
prefixed storage area, as shown in an 

ABEND/SNAP dump (MVT) 64 
trace table entries in a SNAP dump 66 

Module name prefixes, list of 97 
description of (MFT) 21 
description of (PCP) 20 
in an ABEND/SNAP dump (MVT) 59-60 
starting address (PCP,MFT) 39 

Multiprogramming with a fixed number of 
tasks (see MFT, systems with) 

Multiprogramming with a variable number of 
tasks (see MVT, system with) 

MVT, systems with 
complete ABEND/SNAP dump of 51-52 
contents of an ABEND/SNAP dump 50-68 
guide to using a storage image dump of 

77-86 
guide to using an ABEND/SNAP dump 
of 67-68 

how to invoke an ABEND/SNAP dump of 50 
load list 15 
main storage layout in 19 
storage control in 23-25 
task control characteristics in 19 
trace table entries in 29,86,87 

Nucleus 
contents of 17-19 
in an ABEND/SNAP dump (MVT) 64 
in an ABEND/SNAP dump (PCP,MFT) 48 

Only loadable (OL) 12 
Option 2 (see MFT, systems with) 
Option 4 (see MVT, systems with) 
Overlaid problem program 38 

Partition (MFT) 18-19 
Partition queue element (see PQE) 
Partition TCBs 78-81 

PCP, system with 
contents of an ABEND/SNAP dump of 37-49 
guide to using a storage image dump 
of 77 

guide to using an ABEND/SNAP 
dump of 48-49 

how to invoke an ABEND/SNAP dump 
of 34-35 

load list in 14-15 
main storage layout in 17 
storage control in 20 
task control characteristics of 17-18 
trace table entries in 29 

PIE 39,53 
Pointers, control block 102-103 
PQE 

format of 22 
in a storage image dump 83 
in an ABEND/SNAP dump 60-68 

PRB 12 
Prerequisite publications 3 
Primary control program (see PCP, systems 

with) 
Priority 18,19 
Problem program, how to locate in a 

dump 31-33 
Problem program storage boundaries, in an 

ABEND/SNAP dump (PCP, MFT) 44 
Program check interruption 32 
Program check old PSW 

in an ABEND/SNAP dump (MVT) 56,67 
information in 32 

Program check trace table entry 
format of 29 
in a SNAP dump 65-66 
in a storage image dump 85-86 

Program interruption element (see PIE) 
Program request block 12 
Protection key 39 
PSCB 86 
PSW at entry to ABEND 

in an ABEND/SNAP dump (MVT) 53 
in an ABEND/SNAP dump (PCP,MFT) 39 

PSW, program check old (see program check 
old PSW) 

PSW, resume (see resume PSW) 

QCB 61 
Queue elements (MVT) 20,,22-25 
Queues destroyed 38 

RB 
as affected by LINK, ATTACH, XCTL and 

LOAD 16-17 
formats of 11-14 
in an ABEND/SNAP dump (MVT) 56-57 
in an ABEND/SNAP dump 

(PCP,MFT) 41-42,48 
in an indicative dump 70 
most recent 39,,53 
name field, in a dump 31 
purpose of 11-13 
pOinters in 102 
pointers to, in a storage image dump 

81-82 
queue (see active RB queue) 

Index 111 



Page of GC28-6670-4, Revised March 1, 1971, by TNL: GN28-2457 

RB (continued) 
sizes of 12-14 
types of 12 
when created 11-15 
which ones appear in a dump 31 

RCB 85 
Re-creating the task structure 

MFT with suntasking 79 
MV'l' 79 

Reenterable load module area (MFT) 18 
Reference publications :3 
Region (MVT) 

contents of, in an ABEND/SNAP dump 68 
description of 19 
storage control for 22-23 

Register contents 
in a save area 28 
in an ABEND/SNAP dump (MVT) 64-65 
in an ABEND/SNAP dump (PCP, MFT) LI7 
in an indicative dump 70 

Request block (see RB) 
Resume psw 

in an ABEND/SNAP dump (MVT) 57,66 
in an ABEND/SNAP dump (PCP,l-Ui"I') 42,48 
in an indicative dump 71 

Retain dump 34-35 
Rollout/rollin 

effects on pa][tition queue 21 

Save areas 
format of 28 
in an ABEND/SNAP dump (MVT) 62 
in an ABEND/SNAP dump (PCP,MFT) 44 

Sense bytes, UCB 
table of 100 

sequential partitioned system (see MFT, 
systems with) 

Sequential scheduling system (see PCP, 
systems with) 

service aids 101 
Set system mask trace table entry 

format of 30 
in an ABEND/SNAP dump 66 

SIO trace table entry 
format of (MF':r) 29 
format of (MVr) 29-30 
format of (PCP) 29 
in a SNAP dump (MVT) 66-67 
in an ABEND-SNAP dump 

(PCP,MFT) 46,48-49 
SIRB 12 
SNAP dumps 

contents of (MVT) 50-67 
contents of (PCP,MFT) 37-48 
guide to using (MVT) 67-68 
guide to using (PCP,MFT) 48-49 
how to invoke (MVT) 50 
how to invoke (PCP,MFT) 34-35 
introduction to 9 

SNAP macro instruction 34 
Snapshot dumps (see SNAP dumps) 
Space considerations, for ABEND/SNAP 

dumps 34-35 
SPQE 

format of 23 
in a storage image dump 83 
in an ABEND/SNAP dump 59,68 

SQS (see system queue space) 
SSM (see set system mask trace table entry) 
Stand-alone dumps 

guide to using 77 
introduction to 9 

Storage control 
in systems with MFT with subtaskinq 

21-22 
in systems with MFT without subtasking 

20 
in systems with MVT 
in systems with PCP 

Storage image dumps 
guide to using 77 
introduction to 9 

subpool 
definition of 23 

22-24 
20 

in a storage image dump 83 
in an ABEND/SNAP dump 59,68 
queue elements (see SPQE) 

SUbtask, as created by ATTACH 16-17 
Supervisor calls, list of 88-92 
Supervisor interrupt request block 12 
Supervisor request block 12 
SVC interruption 32,33 
SVC trace table entries 

format of (MFT) 29 
format of (MVT) 29 
format of (PCP) 29 
in a SNAP dump (MVT) 65-66 
in an ABEND/SNAP dump (PCP,MFT) 46,48 

SVCs, list of 88-92 
SVRB 12 
SWAP DCB 
SYSABEND DD statement 

description of 34-35 
samples of 34 

SYSOUT, as a dump data set 34-35 
System control blocks (see control blocks) 
System differences in task control 17-19 
System failure 72 
System queue space (MVT) 19 
System tasks 17-19 
System wait TCB 79 
SYS1.DUMP data set 72 
SYSUDUMP DD statement 34-35 

Task completion code (see completion codes) 
Task control block (see TCB) 
Task control differences, by system 17-19 
Task dispatching priority 18-19 
Task input/output table (see TIOT) 
Task management 11-13 
Task supervision 11-13 
Task structure, recreating the, using a 
storage image dump (MVT) 79 

Task switch trace table entry (MFT) 
format of 29 
in an ABEND/SNAP dump 48 

I 
Task switching (MFT) 18-19 
TAXE 86 
TCAM Debugging Aids 102 
TCB 

description of 11 
in an ABEND/SNAP dump (MVT) 53-55 
in an ABEND/SNAP dump (PCP,MFT) 39-41 
information available through 11 

112 Programmer's Guide to Debugging (Release 20.1) 



-

Page of GC28-6670-4, Revised March 1, 1971, by TNL: GN28-2457 

'I'CB (continued) 
locating, in a storage image dump 78-81 
pointers in 102-103 
pointers to, in a storage image dump 

(MFT) 78-79 
queue (MFT) 18 
queue (MVT) 19 
relationships 18-20 

TCBLCT 18,102-103 
TCBNTC 18,102-103 
TCBOTC 18,102-103 
TCBTCB 18,102-103 
Telecommunications Access Method (see TCAM) 
Termination, abnormal (see abnormal 

termination) 
I Time sharing Option (see TSO) 

TIOT 
description of '26 
pointers in 102 

I 
TJB 86 
TJBX 86 
Traces 28-30 
Trace table 

control block 85-86 
delimiting entries, in an ABEND/SNAP 

dump (MFT) 48 
description of 28-30 
format of entries (MFT) 29 
format of entries (MVT) 29 
format of entries (PCP) 29 
format of entries 

(Mod 65 multiprocessing systems) 30 

Trace table (continued) 
in a SNAP dump (MVT) 65-66 
in a storage image dump 85-86 
in an ABEND/SNAP dump (PCP,~FT) 

samples of entires 85-86 
usefulness in debugging 32-33 

TSB 86 
TSCVT 85 
TSO Control Blocks 85-86 
TSO SVCs 92 

UCB 
description of 26 
in a storage image dump 83,84 
in an ABEND/SNAP dump (PCP ,l-~FT) 
pointers in 103 

UMSM 85-86 
Unit control block (see UCB) 
Use count 16-18 

Wait. list 16,21 
Wait; list element 16,21 
WLE 16,21 

46 

45 

XCTI, macro instruction, effects of 17 
XL 

description of 25 
in a ABEND/SNAP dumps 58,68 

Index 113 



GC28-6670-4 

International Business Machines Corporation 
Data Processing Division 
1133 Westchester Avenue, White Plains, New York 10604 
[U.S.A. only] 

IBM World Trade Corporation 
821 United Nations Plaza, New York, New York 10017 
[International] 

VI 

~ ~ 
CD 

~ 
~ 
0 

0 
VI 

0 
(1) 
0-
C 

co 
ceo 
:J 

co 
Q 
c 
0... 
(1) 

VI 
W 
0-
0 
I 

N 
.9 

~ 
:J 

CD 
c... 

:J 

C 
~ 

» 

Q 
() 
N 
00 
I 

0-
0-
....... 
0 
I 

.p. 



--
IBM System/360 Operating System 
Programmer's Guide to Debugging 

READER'S COMMENT FORM 

Order No. GC 28-6670-4 

Please use this form to e)5press your opinion of this publication. We are interested in your 
comments about its technical accuracy, organization, and completeness. All suggestions 
and comments become the property of IBM. 

Please do not use this form to request technical information or additional copies of publications. 
All such requests should be directed to your IBM representative or to the IBM Branch Office 
serving your locality. 

• Please indicate your occupation: 

• How did you use this publication? 

o Frequently for reference in my work. 

o As an introduction to the subject. 

o As a textbook in a course. 

o For specific information on one or two subjects. 

• Comments {Please include page numbers and give examples.}: 

• Thank you for your comments. No postage necessary if mai led in the U. S.A. 



GC28-6670-4 

YOUR COMMENTS, PLEASE ... 

This manual is part of a library that serves as a reference source for systems analysts, 
programmers and operators of IDM systems. Your answers to the questions on the back 
of this form, together with your comments, will help us produce better publications for 
your use. Each reply will be carefully reviewed by the persons responsible for writing 
and publishing this material. All comments and suggestions become the property of IDM. 

Note: Please direct any requests for copies of publications, or for assistance in using your 
IBM system, to your IBM representative or to the IBM branch office serving your locality. 

Fold Fold 

[

FIRST CLASS ] 
PERMIT NO. 81 
POUGHKEEPSIE, N. Y. 

G
-----·-· 

BUSINESS REPLY MAIL 
~O POSTAG-=-:~A~~NEC~~~~~~ IF MAILED IN THE UNITED STATES 

Attention: Progromming Systems Publications 
Department 058 

Fold 

POSTAGE WILL BE PAID BY ••. 

IBM Corporation 

P.O. Box 390 

Poughkeepsie, N.Y. 12602 

International Business Machines Corporation 
Data Processing Divisio1l\ 
112 East Post Road, White Plains, N.Y. 1060t 
!USA OnlyJ . 

IBM World Trade Corporation 
821 United Nations Plaz;a, New York, New York 10017 
(International] 

Fold 

() 
c 

I 

I 
I 
I 
I 
i 
I 
I 

Vl 

~ 
it 
~ ~..., 

~ 
0 

0 
Vl 

0 
CD 
0-
c 

<.C 
ceo 
:J 

<.C 

G) 
C 

0... 
CD 

VI 
W 
0-
0 
I 

N 
.8 

::,0 
5' 
it 
0... 

:J 

C 
~ 
):,. 

G) 
n 
N 
00 
I 

0-
0-

" 0 
1,. 

~: 



-~' 

IBM System/360 Operating System 
Programmer's Guide to Debugging 

READER'S COMMENT FORM 

Order No. GC28-6670-4 

Please use this form to e)5press your opinion of this publication. We are interested in your 
comments about its techni ca I accuracy, organizati on, and completeness. All suggE!stions 
and comments become the property of IBM. 

Please do not use this form to request technical information or additional copies of publications. 
All such requests should be directed to your IBM representative or to the IBM Branch Office 
serving your locality. 

• Please i ndi cote your occupati on: 

• How did you use this publication? 

D Frequent Iy for reference in my work. 

D As an introduction to the subject. 

D As a textbook in a course. 

D For specific information on one or two subjects. 

• Comments (Please include page numbers and give examples.): 

• Thank you for your comments. No postage necessary if mai led in the U. S.A. 



GC 28-6670-4 

YOUR COMMENTS, PLEASE ... 

This manual is part of a library that serves as a reference source for systems analysts, 
programmers and operators of IBM systems. Your answers to the questions on the back 
of this form, together with your comments, will help us produce better publications for 
your use. Each reply will be carefully reviewed by the persons responsible for writing 
and publishing this material. All comments and suggestions become the property of IBM. 

Note: Please direct any request& for copies of publications, or for assistance in using your 
IBM system, to your n~M representative or to the IBM branch office serving your locality. 

Fold Fold 

[

IRST CLASS 
PERMIT NO. 81 
POUGHKEEPSI E, N. Y • 

Attention: Programming Systems Publications 

Department 058 

Fold 

POSTAGE WILL BE PAID BY •.. 

IBM Corporation 

P.O. Box 390 

Poughkeepsie, N.Y. 12602 

International Business Machines Corporation 
Data Processing Division 
112 East Post Road, White Plains, N.Y.I060t 
[USA Only] 

IBM World Trade Corporation 
821 United Nations Plaza, New York, New York 10017 
[International] 

Fold 

] 

() 

So 

V) 

1 
~ ~ 
0 

0 
V) 

0 
ID 
0-
C 

(Q 
(Q :;. 
(Q 

Q 
c: 
a: 
ID 

'VI 
w 
0-
0 
I 

I'.) 

g 

~ 
::) 

it 
a.. 
::) 

C 

~ 
):. 

G) 
() 
I'.) 
ex:> 
I 

0-
0-
'I 
0 
I 
~ 



IBM System/360 Operating System 
Programmer1s Guide to Debugging 

READER'S COMMENT FORM 

Order No. GC28-6670-4 

Please use this form to e'5press your opinion of this publication. We are interested in your 
comments about its technical accuracy, organization, and completeness. All suggestions 
and comments become the property of IBM. 

Please do not use this form to request technical information or additional copies of publications. 
All such requests should be directed to your IBM representative or to the IBM Branch Office 
serving your locality. 

• Please indicate your occupation: 

• How did you use this publication? 

D Frequent Iy for reference in my work. 

D As an introduction to the subject. 

D As a textbook in a course. 

D For specific information on one or two subjects. 

• Comments {Please include page numbers and give examples.}: 

• Thank you for your comments. No postage necessary if mailed in the U.S.A. 



GC28-6670-4 

YOUR COMMEN'rS, PLEASE ... 

This manual is part of a library that serves as a reference source for systems analysts, 
programmers and operators of IBM systems, Your answers to the questions on the back 
of this form, together with your comments, will help us produce better publications for 
your use. Each reply will be carefully reviewed by the persons responsible for writing 
and publishing this material. All comments and suggestions become the property of ffiM. 

Note: Please direct any requestfi for copies of publications, or for assistance in using your 
IBM system, to your D3M representative or to the ffiM branch office serving your locality. 

Fold Fold 

CIRST CLASS ] 
PERMIT NO. 81 
POUGHKEEPSIE, N. Y. 

[
----.-------.- ;J 

BUSINESS REPLY MAIL 
~~OSTAG~~AM~~ECESS~RY IF MAilED IN THE UNITED STATES 

Attention: Programming Systems Publications 

Department 058 

Fold 

POSTAGE WILL BE PAID BY ••• 

IBM Corporation 

P.O. Box 390 

Poughkeepsie, N.Y. 12602 

International Business Machines Corporation 
Data Processing Division 
112 East Post Road, WhitiS Plains, N.Y.106ot 
[USA Only] 

IBM World Trade Corporation 
821 United Nations Plaza, New York, New York 10017 
[International] 

Fold 

Vl 

~ 
it 
Z ~ 
~ 
0 

0 
Vl 

0 
CD 
0-
C 

<C 

<e. 
::J 

<C 

G) 
~. 
a.. 
CD 

Vl 
W 
0-
0 
I 

"-> 
.s 

;~ 
::J 

CD 
0.. 

::J 

C 
~ 

l> 

G) 
n 
"-> 
(Xl 
I 

~ 
'I 
0 
I 

""" 



IBM System/360 Operating System 
Programmer's Guide to Debugging 

READER'S COMMENT FORM 

Order No. GC28-6670-4 

Please use this form to e>:.<press your opinion of this publication. We are interested in your 
comments about its technical accuracy, organization, and completeness. All suggestions 
and comments become the property of IBM. 

Please do not use this form to request technical information or additi6nal copies of p'Jblications. 
All such requests should be directed to your IBM representative or to the IBM Branch Office 
serv i ng your I oca Ii ty • 

• Please indicate your occupation: 

• How did you use this publication? 

o Frequently for reference in my work. 

o As an introducti on to the subject. 

o As a textbook in a course. 

o For specific information on one or two subjects. 

• Comments {Please include page numbers and give examples.}: 

• Thank you for your comments. No postage necessary if mailed in the U.S.A. 



GC28-6670-4 

YOUR COMMENTS, PLEASE . . , . 

This manual is part of a library that serves as a reference source for systems analysts, 
programmers and operators of ruM systems. Your answers to the questions on the back 
of this form, together with your comments, will help us produce better publications for 
your use. Each reply will be carefully reviewed by the persons responsible for writing 
and publishing this material. All comments and suggestions become the property of ruM. 

Note: Please direct any requests for copies of publications, or for assistance in using your 
IBM system, to your IDM representative or to the IDM branch office serving your locality. 

fold Fold 

[

FIRST CLASS ] 
PERMIT NO. 81 
POUGHKEEPSIE, N. Y. 

I--~~-~~-~;;-~--' REP L Y M A I L 

I NO POSTAGE STAMP NECESSARY IF MAILED IN THE UNITED STATES 
L ______ ._. ______ ... ____ .... __________________ _ 

Attention: Programming Systems Publications 
Department 058 

Fold 

POSTAGE Will BE PAID BY ••. 

IBM Corporation 

P.O. Box 390 

Poughkeepsie, N.Y. 12602 

International Business Machines Corporation 
Data Processing Division 
112 East Post Road, WhHe Plains, N.Y.106Ot 
[USA Only] 

IBM World Trade Corporation 
821 United Nations Plaza, New York, New York 10017 
[ International] 

Fold 

VI 

~ ro 
3 ....... "-
~ 
0 

0 
VI 

0 
ro 
CT 
c 
co 
~. 
:J 
co 
G) 
::. 
a.. 
ro 
Vl 
w 
()o. 
0 
I 

N 

.9 

~ 
:J 

r0-
o.. 

:J 

C 

in 
» 

G) 
n 
N 
00 
I 

()o. 
()o. 
...... 
0 
I 
~ 



.-
storage Control in systems with MFT 
(Without Subtasking) 

storage control information in systems with 
MFT without subtasktng is similar to that 
in systems with PCP, except that one MSS 
boundary box is maintained for each 
partition. The TCB associated with the 
partition contains a pointer (TCBMSS) to 
the boundary box. 

If Main Storage Hierarchy Support is 
included, the first half of each expanded 
boundary box describes the processor 
storage (hierarchy 0) partition segment, 
and the second half describes the 2361 Core 
Storage (hierarchy 1) partition segment. 
Any partition segment not currently 
assigned storage in the system has the 
applicable boundary box pointers set to 
zero. If the partition is established 
entirely within hierarchy 0, or if 2361 
Core storage is not included in the system, 
the hierarchy 1 pointers in the second half 
of the expanded boundary box are set to 
zero. If a partition is established 
entirely within hierarchy 1, the hierarchy 
o pointers in the first half of the 
expanded boundary box are set to zero. 

The boundary box format for MFT is 
identical to the format for PCP. The 
pointers, however, point to the boundaries 
of the partition and to the partition FQEs 
rather than to the boundaries of storage. 
Figure 11 summarizes storage control in 
systems with MFT. 

DYNAMIC 
AREA 

FIXED 
AREA 

Figure 11. Storage Control for a Partition 
(MFT Without Subtasking) 

Storage Control in Syster:1s with MFT (with 
Subtasking) 

Storage control information for the job 
step or partition TCB in MFT systems with 
subtasking is handled in the same way as in 
MFT systems without subtccsking. However, 
when subtasks are created, the supervisor 
builds another control block, the gotten 
suntask area queue element (GQE). The GQEs 
associated with each subt,ask originate from 
a one word pointer addressed by the TCBMSS 
field of the subtask TCB. 

§Q~: Each area in main storage belonging 
to a subtask, and obtained by a supervisor 
issued GETMAIN macro instruction, is 
described by a gotten subtask area gueue 
element (GQE). GQEs are chained in the 
order they are created. The TCBMSS field 
of the subtask TCB contains the address of 
a word which points to the most recently 
cr ea ted GQE. 

ONE 
PAIHlTION 

FIXED 
AREA 

Figure 12. storage Control for suctasK 
storage (MET with subtasking) 

Main stora(Je Supervision 21 



If Main storage Hierarchy Support is 
present in the system, the GQE chain can 
span from hierarchy 0 to hierarchy 1 and 
back in any order. Each GQE occupies the 
first eight bytes of the area it describes, 
and has the following format: 

o 4 

Bytes 0-3: PointE~r to the Previous GQE or, 
if zero, this is the last GQE 
on thE~ chain. 

Bytes 4-7: Number of bytes in the gotten 
subtask area. 

r'igure 12 summarizes the chaining of GQEs 
to a subtask TCB. 

§~ora~Control for a Region in syste~s 
with MVT 

Unassigned areas of main storage within 
each region of a system with MVT are 
reflected in a queue of partition queue 
elements (PQEs) and a series of free block 
queue elements (FBQEs). 

PQE: The partition queue associated with a 
region resides in the system queue space. 
It is connected to the TCBs for all tasks 
in the job step through a dummy PQE located 
in the system queue space. A dummy PQE has 
the following format: 

0 4 

Bytes 0-3: Pointer to the first PQE in the 
partition queue. 

Bytes 4-7: Pointer to the last PQE in the 
partition queue. 

In systems that do not include the 
rollout/rollin feature or Main storage 
Hierarchy Support for IBM 2361 Models 1 and 
2, there is one PQE for each job step. If 
the rollout feature is used, additional 
PQEs are added each time a job step borrows 
storage space from existing steps or 

ac-quires unassigned free space to satisfy 
an unconditional GETMAIN request. These 
additional PQEs are removed from the qu.eue 
as the rollin feature is used. If Main 
Storage Hierarchy Support is present, one 
PQE exists for each hierarchy used by the 
JOD step. A PQE has the following format: 

[ Res 

o 4 

8 9 12 (C) 

24 (18) 25 (19) 28 (1C) 29 (ID) 

Bytes 1-3: Pointer to the first FBQE or, 
if there are no FBQEs, a 
pointer to the PQE itself. 

Bytes 5-7: Pointer to the last FBQE or, if 
there are no FBQEs, a pointer 
to the PQE itself. 

Bytes 9-11(B): Pointer to the next PQE or, 
if this is the last PQE, zeros. 

Bytes 13-15(D-F): Pointer to the previous 
PQE or, if this is the first 
PQE, zeros. 

Bytes 17-19(11-13): Pointer to the TeB of 
the owning job step. 

Bytes 21-23(15-17): Size of the region, in 
2K (2048) bytes. 

Bytes 25-27(19-1B): Pointer to the first 
byte of the region. 

Byte 28(1C): Rollout flags. 

FBQE: The FBQEs chained to a PQE reflect 
the total amount of free space in a rE~gion. 
Each FBQE is associated with one or more 
contiguous 2K blocks of free storage area. 
FBQEs reside in the lowest part of their 
associated area. As area distr~bution 
within the region changes, FBQEs are added 
to and deleted from the free block qUE?Ue. 

22 Programmer's Guide to Debugging (Release 20) 

------------,-----------' ............ ,.1 ........ 1 



--

An FBQE has the following format: 

o 

8 9 

Bytes 1-3: 

Bytes 5-7: 

4 5 

Pointer to the next lower FBQE 
or, if this is the last FBQE, a 
pointer to the PQE. 

Pointer to the preceding FBQE, 
or, if this is the first FBQE, 
a pOinter to the PQE. 

Bytes 9-12(C): Number of bytes in the free 
block. 

The remaining main storage in a region 
is used by problem programs and system 
programs. For convenience in referring to 
storage areas, the total amount of space 
assigned to a task represents one or more 
numbered subpools. (Subpools can also be 
shared by tasks.) subpools are designated 
by a number assigned to the area through a 
GETMAIN macro instruction. subpool numbers 
available for problem program use range 
from 0 through 127. Subpool numbers 128 
through 255 are either unavailable or used 
by system programS. 

Storage control elements and queues for 
a region are summarized in Figure 13. 

DYNAMIC 
AREAS 

SYSTEM 
QUEUE 
SPACE 

Figure 13. Storage Control for a Region 
(MVT) 

storage Control for a Subpool in systems 
with MVT 

Main storage distribution within each 
subpool is reflected in a subpool queue 
element (SPQE) and queues of descriptor 
queue elements (DQEs) and free queue 
elements (FQEs). 

~: SPQEs are associated with the 
subpools created for a task. SPQFs reside 
in the system queue space and are chained 
to the TCB(s) that use the subpool. They 
serve as a link between the TCE and the 
descriptor queue, and may be part of a 
subpool queue if the task uses more than 
one subpool. If a subpool is used by more 
than one task, only one SJ?QE is created. 
An SPQE has the following format: 

o 4 

Byte 0: 
Bit 0 - Subpool is owned by this task 

if zero; shared, and owned by 
another task, if one. 

Bit 1 - Thi~ SPQE is the last on the 
queue, if one. 

Bit 2 - Subpool is shared and owned by 
this task, if one. 

Bits 3-7 - Reserved. 

Bytes 1-3: Pointer to next SPQE or, in 
last SPQE, zero. 

Byte 4: Subpool number. 

Bytes 5-7: Pointer to first DQE or, if the 
subpool is shared, a pointer to 
the "owning" Sl)QE. 

DQE: DQEs associated with each SPQE 
reflect the total amount of space assigned 
to a subpool. Each DQE is associated with 
one or more 2K blocks of main storage set 
aside as a result of a GET1~AIN macro 
inst:ruction. Each DQE is a.lso the startinq 
pOint for the free queue. A DQE has the 
following format: 

o 4 5 

8 9 12(C) 13«(») 

Main Storage Supervision 23 





abnormally terminated, to print an ABEND or 
SNAP dump stored in an earlier step, or to 
release a tape volume or direct access 
space acquired for dump data sets. 
Conditional execution of the last step can 
be established through proper use of the 
COND parameter and its subparameters, EVEN 
and ONLY, on the EXEC statement. 

* ABOlJMP RFQUESTED * 

Direct access space should be requested 
in units of average block size rather than 
in cylinders (CYL) or tracks (TRK). If 
abnormal terrrination occurs and the data 
set is retained, the tape volume or direct 
access space should be released (DELETE in 
the DISP parameter) at the time the data 
set: is printed. 

JOB ATHFOT24 STEP STEP TIME 000737 DATE 99366 P ... GE ')001 

COMPlFT!ON CODE USER = 0123 

INTERRUPT AT C6EF5A 

PSW AT ENTRY TO ABEND 00150000 4006EF5A 

TCB 01C£l20 RB 0007FC58 PIE 00000000 DEB 0007F78C TIOT 0007FOBO CMP 8,)00007B TRN 00000000 
MS5 0001CC58 PK IFlG 10BI0408 FlG 000001FB lL ~ 00000000 JLB 0007FF78 JST 00005508 
F SA 1506EBF8 TCB 000100AO TME 0001CB08 PIB EOO12420 NTC 00000000 OTC OOOlCoEO 
LTC 00000000 rQE 00000000 ECB 0006EElC XTCB 00000000 lP/Fl FB050000 RESV 00000000 
STAE 00000000 TCT 00000000 USER 00000000 OAR 00000000 RESV 00000000 JSCB 000000')0 

ACT! VE RBS 

PRB 06EE28 NM TATHBI0G SllSTAB 00302000 USE/EP 0106EE48 PSW 00150000 4006fF5A Q 000100 WT/LNK 0001CB70 

SVRB 07F020 NM SVC-601C SllSTAB 00120062 
RG 0-7 000002AO 80000078 
8-15-7 0006EE60 0007FF7B 

SVRB 07FC58 NM SVC-A05A SllSTAB 000C0062 
RG 0-7 0007F7E8 0007FD80 
8-15-7 0007F7E8 0006F296 

JOB PACk AREA QUEUE 

LPR8 06ECA8 NMTATHAlnG SU Sf AS ()02F20D:{) 

LPRB 06£'Ela NM TUMB10G SZlSTA.B 00302000 

LPR8 06Fal8 NM TATHe lOG SilStAil 00122090 

LPRB 061"080 NM TATH010G SlISrAS 00162000 

LPRB 06Fl90 NM TATHElO<; SlISrA8 00132000 

Pip STORAGE BOUNDARIES 0006E800 TO 00080000 

FRF E AREAS 

06EB90 
06EC 50 
06F5B8 
o 7F668 
07F 7D8 
07F840 
07F890 
C 7HE8 

GOTTeN CORE 

071"210 
06F310 
07FC50 
06F228 
07F590 
07F5FO 
07F018 
07F700 
07F160 
07fA68 
07FAt8 

SIZE 

00000060 
00000050 
0000FC5B 
C0000098 
00000010 
00000228 
OOOOOOCO 
coooeOlB 

SIlE 

000()03aD 
Coo002A8 
0000C066 
000000E8 
00000008 
(0000008 
0000009/J 
00000060 
00000018 
00000060 
0000007B 

USE/EP 00007B78 PSW FF040033 50007020 Q 900390 WT/LNK 0006EE7~ 
00000000 00080000 0007FE48 00000098 0')005508 0007FC3,) 
0007FFBO 0007FFF8 4006EE4E 0006EE60 0000984A 0')000000 

USE/EP 00007B78 PSW FF04000E BOOIE7EC Q FB03F8 WT/LNK 0007F020 
4000787A 000097F8 0001CB20 0007F020 0006F230 00005508 
0001CC56 0000225C 0001C820 0006F230 Q,)007CBC 0001F7CB 

OSHEP 0106£CC8 PSW FF15000E aOO6E09C Q 000000 WT/LNK Ot01COEO 

US!!:/EP 0106£'E48 PSWOO 150000 4006FF5A Q 000000 WT/LNK 0001C820 

USElE? OlO6F·038 PSW00040000 40006AE4 Q 000000 WT/lNt< 0001CC80 

USE/f1P 01061"000 PSw 1"F150001 4006F16C 000000 WTILNK 010100AO 

OSE1EP 01061"160 PSW·FF150001 4006F21E Q 000000 WT/lNt< 0101CF40 

Figure 22A. Sample of an ABEND Dump (PCP, MFT) 

ABEND/SNAP Dump (Systems With PCP and MFT) 35 



SAVE AREA TRACE 

TATHBI0G WAS ENTERED 

SA 06EBF8 WDI 0606EA(8 HSA 00000100 lSA 0006EE60 RET 00009848 EPA 4006EE48 RO nOOI)9'l':F 
Rl 0001CC80 R2 00000000 R3 00080000 R4 0007FE4'l R5 00000098 R6 OOOO'5'iOA 
R7 0007FC30 R8 0006ECEO R9 0007FF 76 RIC 0007FFBO Rll 0007FFF8 R12 4006ECCE 

SA 06EE60 WDI. 00000000 HSA 0006EflF8 lSA 00000000 RET 00000000 EPA 00000000 RO 000,)00',)0 
Rl 00000000 R2 00000000 R3 00000000 R4 00000000 R5 00000000 >1.6 OOOOOOO() 
R7 00000000 R8 00000000 R9 00000000 RIO 00000000 >1.11 00000000 R12 00000000 

PROCEED I NG BACK VIA REG 13 

SA 06EE60 WDI 00000000 HSA 0006EBF8 lSA 00000000 RET 00000000 EPA 00000000 1l.0 OOOOOOO() 
R1 00000000 R2 0000000:) R3 00001)000 >1.4 00000000 R5 00000000 R6 ()OOCOOOO 
R1 00000000 R8 00000000 R9 00000000 RIO 00000000 Rll 00000000 R12 00000000 

TATHB10G WAS ENTERED 

SA 06EBF 8 WDI 0606EAC8 HSA 00000100 lSA 0006EE60 RET 00009848 EPA 4006EE48 RO 000099(E 
Rl 0001CC80 R2 00000000 R3 000800()0 R4 0001Ff4fl R5 00000098 R6 00005508 
R1 0001FC30 R8 0006ECEO R9 C001FF 18 RI0 OOJ1FFBO Rll 0007FFF8 R12 4006ECCE 

DATA SETS 

SNAP2 UC8 192 00225C DE8 01F1AC DCB 06EFB4 

OUMDCB UCB 192 00225C DEB 01FAF4 DC8 06EFSC 

JOBLl B UCB 190 00218C 

SYSPRINT UCB 192 0022'5C 

SYSA8ENO UCB 192 0022'5C 

SNAPl UCB 190 0021 RC 

REGS AT ENTRY TO ABEND 

Fl.PT.REGS 0-6 00.000000 00000000 00.000000 00000000 00.000000 00000000 00.000000 00000000 

REGS 0-7 000002AO 8000007B 1)0000000 OOOROOOO 0007FE48 00000098 0000550R 0001FC30 
REGS 8-15 0006EE60 0007FF18 0001FFBO 0001FFFB 4006EE4E 0006EE60 00009848 00000000 

NUCLEUS 

000000 OOOCCOOO 0000051C FOFOF5Cl 00000000 000097FB 00013440 01040080 8003ACD4 * •••••••• 005A ••••••• 8 ••• .. ... .. ~. 
000020 0004000A 50006B46 00000000 00000000 OOOOFFOO 00000000 FF04000E AOO07E2A * ....•..•.•.••....•.........•.... * 
000040 1007F5E8 50000000 00001480 000091F8 60C85DCO 00000000 00040000 00000282 * •. 5Y ••••••••••• 8.H •••••••••••••• * 
00v060 00040000 0000033A 00040000 000002DE 00000000 00008278 00040000 0000022lo * .•••..••.••...••••.••..•••...•.. * 
000080 000153BO 00000000 00000000 00000000 00000000 00000000 00000000 00000000 * ...••.•... tI_ •••••••••••••••••••• * 
OOOOAO OOOOCOOO 00000000 00000000 000001)00 00000000 00000000 00000000 00000000 •••••••••••• > ••••••••••••••••••••• * 

LINES OCOOCO-000140 SAME AS A80VE 
000160 00000000 00000000 00000000 82000110 00040000 0003A 7AO 00000000 00000000 * .••••••••• 0 ••••••••••••••••••••• * 
000180 0001(B20 00007E91 0006F465 80007Dllo 00000080 0006F491 00000001 0006F4A8 * •.•...••. . l ............ • 4 ••••••• 4.* 
0001AO 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000 * .•..•.•.•. " .••.................• * 

LINE 0001CO SAME AS A80VE 
000 lEO 000079FC 0000lo888 0000A43A 00000001 40007720 0000A042 90001520 00000000 * ••• 0 •••••• " ••••• ...............• 
000200 0000846C 000083E4 0000lo180 00006942 00001000 00000F28 00009730 0001 H5C * ••••••• U •• " ••••••••••••••••••••• * 
000220 00013340 00234700 024C96FO 02279()29 01805830 06C45840 30004700 025C0201 * ... ••••••.• 0 ••••••••• 0. •••••• K. * 
000240 40100038 94FD4011 90A13030 5890021C 05895850 02105890 021407F9 90AI01 EO * ..... ••• ' ••••••••••••••••• 9 •••• * 
000260 02010440 003847FO 024C940F 022191'129 018091FO 02384780 044898A1 01E08200 *K •• ••• 0 ••. , •••••••• 0 •••••••••••• * 
000280 04409C29 018091FO 02384780 029C90Al 01E00207 04400018 4 7F002B 2 589006C4 *. ••••• 0 ••. , ••••••• K •• ••• 0 ••••• 0* 
0002AO 90A1903C 58990000 02079010 001894FD 90119140 001B4780 02C05820 02040522 * •••••••• K •••••••••• • •••••••• ~ •• * 
0002CO 91800018 478002CE 58200208 052241FO 026AOOOO 000153B8 0000870A OA0390A9 * •••••••••• ·.0 ••• 0 •••••••••••••••• * 
0002EO OlA098CO 00285880 02189101 00290188 58A006C4 '58AOA004 12AA07CB 18BA58AA * ..•..•.•.......•... 0 •••••••••••• * 
000300 000012AA 47(00332 90C28004 18185880 02189280 100098FO AOO08900 COOO1200 * ••••••••• £\ ••••••••••••• 0 •••••••• * 
000320 07BB50FO 002C41EO 02DC9BAO o lA08200 002£11 SlR 5880021 B 07FB900F 04005890 * ... 0 •••••••••••••••••••••••••••• * 

Figure 22B. Sample of an ABEND Dump (PCP, MFT) 

36 Programmer's Guide to Debugging (Release 20) 



--
Sample DD Statements: Figure 23 shows a 
set of job steps that include DD statements 
for ABEND dump dat~ sets. 

The SYSABEND DD statement in STEP2 takes 
advantage of the direct access space 
acquired in STEPl by indicating MOD in the 
DISP parameter. Note that the space 
request in STEPl is large so that the 
dumping operation is not inhibited due to 
insufficient space. The final SYSABEND DD 
statement in the job should indicate a 
disposition of DELETE to free the space 
acquired for dumping. 

Contents of an ABEND/SNAP Dump (PCP,MFT) 

This explanation of the contents of 
ABEND/SNAP dumps for systems with PCP and 

Figure 23. SYSABEND DD statements 

MFT is interspersed with sample sections 
taken from an ABEND dump. Capital letters 
represent the headings found in all dumps, 
and lowercase letters, inforrration that 
varies with each dump. The lowercase 
letter used indicates the wode of the 
information, and the number of letters 
indicates its length: 

• h represents 1/2 byte of hexadeciroal 
information 

o d represents 1 byte of decimal 
information 

• c represents a 1-byte character 

You may prefer to follow the explanation 
on your own ABEND or SNAP dump. 

ABEND/SNAP Dump (systems With PCP and MFT) 37 



* * * A B DUM PRE QUE S TED * • * 

*ccccccc ... 

JOB ecce ecce STEP ecce ecce TIME dddddd DATE ddddd PAGE dddd 

COMPLETION CODE SYSTEM - hhh (or USER - dddd) 

cccccc ..• 

INTERRUPT AT hhhhhh 

PSW AT ENTRY TO ABEND (SNAP) hhhhhhhh hhhhhhhh 

* * * A B DUM PRE ~ U EST E D * * * 
identifies t.he dump as an ABEND or 
SNAP dump. 

*ccccccc ••••• 
is omitted or is one or more of the 
following: 

*CORE NOT AVAILABLE, LOC. 
hhhhhhhhhhhh TAKEN •.• 

indicates that the ABDUMP routine 
confiscated storage locations 
hhhhhh through hhhhhh because not 
enough storage was available. 
This a:cea is printed under P/P 
STORAGE, but can be ignored 
because the problem program 
originally in it was overlaid 
during the dumping process. 

*MODIFIED, /SIRB/DEB/LLS/ARB/MSS .•• 
indicates that the one or more 
queues listed were destroyed or 
their elements dequeued during 
abnormal termination: 
• SIRB -- system interruption 

request block queue. One or 
more SIRB elements were found 
in the active RB queue: these 
elements are always dequeued 
during dumping. 

• DEB -- DEB queue. If the first 
message also appeared, either a 
DEB or an associated DCB was 
overlaid. 

• LLS -- load list. If the first 
message also appeared, one or 
more loaded RBs were overlaid. 

• ARB -- active RB queue. If the 
first message also appeared, 
one or more RBs were overlaid. 

• MSS boundary box queue. One 
or more MSS elements were 
dequeued, but an otherwise 
valid control block was found 

in the free area specified by 
an MSS elelrent. 

*FOUND ERROR IN /DEB/LLS/ARB/MSS ••. 
indicates that one or more of the 
following contained an error: 

• DEi3: 
• LLS: 
• ARB: 
• MSS: 

data extent block 
load list 
active RB 
boundary box 

This message appears with either 
the first or second message 
above. The error could be: 
improper boundary alignment, 
control block not within storage 
assigned to the program being 
dumped,or an infinite loop (300 
tiroes is the maximum for this 
test). For an MSS block, 4 other 
errors could also be found: 
incorrect descending sequence 
(omitting loop count), 
overlapping free areas, free area 
not entirely within the storage 
assigned to the program being 
dumped, or count in count field 
not a multiple of 8. 

JOB cccccccc 
is the job name specified in thE! JOB 
statement. 

STEP cccccccc 
is the step name specified in the EXEC 
statement for the problem program 
being dumped. 

TIME dddddd 
is the hour (first 2 digits), minute 
(second 2 digits), and second (last 2 
digits) when the ABDUMP routine began 
process ing . 

DATE ddddd 
is the year (first 2 digits) and day 
of the year (last 3 digits). For 
example, 67352 would be Decembe:[" 18, 
1967. 

38 Programmer's Guide to Debugging (Release 20) 



--

PAGE dddd 
is the page number. Appears at the 
top of each page. 

COMPLETION CODE SYSTEM=hhh or COMPLETION 
CODE USER=dddd 

is the completion code supplied by the 
control program (SYSTEM=hhh) or the 
problem program (USER=dddd). Either 
SYSTEM=hhh or USER=dddd is printed, 
but not both. Common completion codes 
are explained in Appendix B. 

cccccc ••• 
explains the completion code or, if 'a 
program interruption occurred: 
PROGRAM INTERRUPTION ccccc ••• AT 
LOCATION hhhhhh, 

where ccccc is the program 
interruption cause -- OPERATION, 
PRIVILEGED OPERATION, EXECUTE, 
PROTECTION, ADDRESSING, SPECIFICATION, 
DATE, FIXED-POINT OVERFLOW, 

FIXED-POINT DIVIDE, DECIMAL OVERFLOW, 
DECIMAL DIVIDE, EXPONENT 
OVERFLOW,EXPONENT UNDERFLOW, 
SIGNIFICANCE, or FLOATING-POINT 
DIVIDE; and hhhhhh is the starting 
address of the instruction being 
executed when the interruption 
occurred. 

INTERRUPT AT hhhhhh 
is the address of next instruction to 
be executed in the problem program. 
It is obtained from the resume PSW of 
the PRB or LPRB in the active RB queue 
at the time abnormal termination was 
requested. 

PSW AT ENTRY TO ABEND hhhhhhhh hhhhhhhh or 
PSW AT ENTRY TO SNAP hhhhhhhh hhhhhhhh 

is the PSW for the problem or control 
program that had control when abnormal 
termination was requested or when the 
SNAP macro instruction was executed. 

TCB hhhhhh RB hhhhhhhh PIE hhhhhhhh DEB hhhhhhhh TIOT hhhhhhhh CMP hhhhhhhh TRN hhhhhhhh 
MSS hhhhhhhh PK/FLG hhhhhhhh FLG hhhhhhhh LLS hhhhhhhh JLB hhhhhhhh JST hhhhhhhh 
RG 0-7 hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh 
RG 8-15 hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh 
FSA hhhhhhhh TCB hhhhhhhh TME hhhhhhhh PIB hhhhhhhh NTC hhhhhhhh OTC hhhhhhhh 
LTC hhhhhhhh IQE hhhhhhhh ECB hhhhhhhh XTCB hhhhhhhh LP/FL hhhhhhhh RESV hhhhhhhh 
STAE hhhhhhhh TCT hhhhhhhh USER hhhhhhhh DAR hhhhhhhh RESV hhhhhhhh JSCB hhhhhhhh 

TCB hhhhhh 
is the starting address of the TCB. 

RB hhhhhhhh 
is the TCBRBP field (bytes 0 through 
3): starting address of the active RB 
queue and, consequently, the most 
recent RB on the queue (usually 
ABEND's RB). 

PIE hhhhhhhh 
is the TCBPIE field (bytes 4 through 
7): starting address of the program 
interruption element (PIE) for the 
task. 

DEB hhhhhhhh 
is the TCBDEB field (bytes 8 through 
11): starting address of the DEB 
queue. 

TIOT hhhhhhhh 
is the TCBTIO field (bytes 12 through 
15): starting address of the TIOT. 

CMP hhhhhhhh 
is the TCBCMP field (bytes 16 through 
19): task completion code in 

hexadecimal. Systew codes are shown 
in the third through fifth digits and 
user codes in the sixth through 
eighth. 

TRN hhhhhhhh 
is the TCBTRN field (bytes 20 through 
23): starting address of control core 
(table) for controlling testing of the 
task by TESTRAN. 

MSS hhhhhhhh 
is the TCBMSS field (bytes 24 through 
27): starting address of the main 
storage supervisor's boundary box. 

PK/F:LG hhhhhhhh 
contains, in the first 2 digits, the 
TCBPKF field (byte 28): protection 
key. 

FLG hhhhhhhh 
contains, in the first 4 digits, the 
last 2 bytes of the TCBFLGS field 
(bytes 32 and 33): last 2 flag bytes. 

contains, in the next 2 digits, the 
TCBLMP field (byte 34): in systems 

ABEND/SNAP Dump (Systems With PCP and MFT) 39 



with PCP, both digits are zeros; in 
systems with MFT, number of resources 
on which the task is queued. 

contains, in the last 2 digits, the 
TCBDSP field (byte 35): 

• Reserved in PCP and MFT without 
subtaskingi both digits are zero • 

• In MF'r with subtasking, this field 
contains the dispatching priority of 
the TCB. 

LLS hhhhhhhh 
is the TCBLl.S field (bytes 36 through 

39): starting address of the RB 
most recently added to the load 
list. 

JLB hhhhhhhh 
is the TCBJLB field (bytes 40 through 

43): starting address of the DCB 
for the JOBLIB data set. 

JST hhhhhhh 
is the TCBJST field (bytes 44 through 
47). Not currently used in PCP or MFT 
without subtasking. In MFT with 
subtasking - the starting address of 
the TCB for the job step task. 

RG 0-7 and RG 8-15 
is the TCBGRS field (bytes 48 through 
111): contents of general registers 0 
through 7 and 8 through 15, as stored 
in the save area of the TCB when a 
task switch occurred. These 2 lines 
appear only in TCBs of tasks other 
than the task in control when the dump 
was requested. 

FSA hhhhhhhh 
contains, in the first 2 digits, the 
TCBIDF field (byte 112): TCB 
identifier field. 

contains, in the last 6 digits, the 
TCBFSA field (bytes 113 through 115): 
starting address of the first problem 
program save area. This save area was 
set up by the control program when the 
job step was initiated. 

TCB hhhhhhhh 
is the TCBTCB field (bytes 116 through 
119): in systems with PCP, all digits 
are zeros; in systems with MFT, 
starting address of the next TCB of 
lower priority or, if this is the last 
TCB, zeros .. 

TME hhhhhhhh 
is the TCBTME field (bytes 120 throuqh 
123): starting address of the timer 
element created when an STIMER macro 
instruction is issued by the task. 
This field is not printed if the 
computer does not contain the timer 
option • 

PIB hhhhhhhh 
is the TCBPIB field (bytes 124 ttrouqh 
127): starting address of the p:rogram 
information block (MFT) or zeros 
(PCP). 

NTC hhhhhhhh (printed only in MFT) 
is the TCBNTC field (bytes 128 through 
131): 

MFT without subtasking: zeros. 

MFT with subtasking: the starting 
address of the TCB for the previous 
subtask on this subtask TCB queu(~. 
This field is zero both in the jon 
step task, and in the TCB for the 
first subtask created by a parent 
task. 

OTC hhhhhhhh (printed only in MFT) 
is the TCBOTC field (bytes 132 t:hrough 
135): starting address of the TeE for 
the parent task. Both in the TCB for 
the job step task, and in MFT systems 
without subtasking this field is zero. 

LTC hhhhhhhh (printed only in MFT) 
is the TCBLTC field (bytes 136 through 
139): starting address of the TCB for 
the most recent subtask created by . 
this task. This field is zero in the 
TCB for the last subtask of a job 
step, or in the 'rCB for a task that 
does not create subtasks. This field 
is always zero in an MFT syst:eill---
without subtaskin~. 

IQE hhhhhhhh (printed only in MFT) 
is the TCBIQE field (bytes 140 through 
143). 

MFT without subtasking: zero. 

MFT with subtasking: starting address 
of the interruption queue element 
(IQE) for the ETXR exit routine. This 
routine is specified by the ETXFt 
operand of the ATTACH macro 
instruction that created the TCB being 
dumped. The routine is to be entered 
when the task terminates. 

40 Programmer's Guide to Debugging (Release 20) 

..... -.-----'-------, ,------1--... ---.. _1.11 ___ •••. 



--

ECB hhhhhhhh (printed only in MFT) 
is the TCBECB field (bytes 144 through 
147). 

MFT without subtasking: zero. 

MFT with subtasking: starting address 
of the ECB field to be posted by the 
control program at task termination. 
This field is zero if the task was 
attached without an ECB operand. 

XTCB hhhhhhhh (printed only in MFT) 
reserved for future use. 

LP/FL hhhhhhhh (printed only in MFT) 
MFT without subtasking: reserved. 

MFT with subtasking: contains in the 
first byte, the limit priority of the 
task (byte 152). contains, in the 
last three bytes the field TCBFTFLG 
(bytes 153 through 155) - flag bytes. 

RESV hhhhhhhh (printed only in MFT) 
reserved for future use. 

STAE hhhhhhhh 
contains, in the first 2 digits, STAE 
flags (byte 160). 

contains, in the last 6 digits, the 
TCBNSTAE field (bytes 161 through 
163): starting address of the current 
STAE control block for the task. This 
field is zero if STAE has not been 
issued. 

ACTIVE RBS 

TC'l' hhhhhhhh 
is the TCBTCT field (bytes 164 through 
167): 

PCP: Zeros. 

MFT: Address of the Timing Control 
Table (TCT) Zeros of the System 
Management Facilities option is 
not present in the system. 

USER hhhhhhhh 
is the TCBUSER field (bytes 168 
through 171): to be used as the user 
chooses. 

DAR hhhhhhhh 
contains, in the first 2 digits, 
Damage Assessment Routine (DAR) flags 
(byte 172); 

MFT only, contains, in the last 6 
digits, the secondary 
non-dispatchability bits (bytes 173 
through 175). 

RESV hhhhhhhh 
reserved for future use. 

JSCB hhhhhhhh 
is the TCBJSCB field (bytes 180 
through 183): the last three bytes 
contain the address of the Job Step 
Control Block. 

ecce hhhhhh NM cccccccc SZ/STAB hhhhhhhh USE/EP hhhhhhhh PSW hhhhhhhh hhhhhhhh Q hhhhhh WT/LNK hhhhhhhh 
RG 0-7 hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh 
RG 8-15 hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh 

ACTIVE RBS 
identifies the next lines as the 
contents of the active RBs queued to 
the TCB. 

eccc hhhhhh 
indicates the RB type and its starting 
address. 

The RB types are: 

PRB Program request block 

SIRB Supervisor interrupt request 
block 

LPRB Loaded prograw request block 

IRB Interruption request block 

SVRB Supervisor request block 

NM xxxxxxxx 
is the XRBNM field (bytes 0 through 
7): in PRB, LRB, and LPRB, the 
program name; in IRB, the first byte 
contains flags for the tiwer or, if 

ABEND/SNAP Durrp (systems ~.Ji th PCP and {111FT) 41 



the timer is not being used, contains 
no meaningful information; in SVRB for 
a type 2 SVC routine, the first 4 
bytes contain the TTR of the load 
module in the SVC library, and the 
last 4 bytes contain the SVC number in 
signed, unpacked decimal. 

SZ/STAB hhhhhhhh 
contains in the first 4 digits, the 
XRBSZ field (bytes 8 and 9): number 
of contiguous doublewords in the RB, 
the program (if applicable), and 
associated supervisor work areas. 

contains in the last 4 digits, the 
XSTAB field (bytes 10 and 11): flag 
bytes. 

USE/EP hhhhhhhh 
contains, in the first 2 digits, the 
XRBUSE field (byte 12): use count. 

contains, in the last 6 digitsi the 
XRBEP field (bytes 13 through 15): 
address of entry point in the 
associated program. 

PSW hhhhhhhh hhhhhhhh 
is the XRBPSW field (bytes 16 through 
23): resume PSW. 

LOAD LIST 

Q hhhhhh 
is the last 3 bytes of the XRBQ field 
(bytes 25 through 27): in PRS and 
LPRB, starting address of an LPR3 for 
an entry identified by an IDENTIFY 
macro instruction; in IRB, starting 
address of a request element; in SVRB 
for a type 3 or 4 SVC, size of the 
program in bytes. 

WT/LNK hhhhhhhh 
contains, in the first 2 digits, the 
XRBWT field (byte 28): wait count. 

contains, in the last 6 digits, the 
XRBLNK field (byt.es 29 through 31): 
primary queuing field. It is the 
starting address of the previous KB 
for the task or, in the first RB to be 
placed on the queue, the starting 
address of the TeB. 

RG 0-7 and RG 8-15 
is the XRBREB field (bytes 32 through 
95 in IREs and SVRBs): contents of 
general registers 0 through 15 stored 
in the RE. These' 2 lines do not 
appear for PRBs, LPRBs, and LRBs. 

hhhhhh NM cccccccc SZ/STAB hhhhhhhh USE/EP hhhhhhhh psw hhhhhhhh hhhhhhhh Q hhhhhh 'T/L" hhhhhhhh ~ 
LOAD LIST 

identifies the next lines as the 
contents of the load list queued to 
the TCB. 

cccc hhhhhh 
indicates the RB type and its starting 
address. 

The RB types are: 

LRB Loaded request block 
LPRB Loaded program request block 
D-LPRB Dummy loaded program request 

NM cccccccc 

block. (Present if the 
resident reenterable load 
module option was selected in 
MFT). 

is the XRBNM field (bytes 0 through 
7): program name. 

SZ/STAB hhhhhhhh 
contains, in the first 4 digits, the 

XRBSZ field (bytes 8 and 9): 
number of contiguous 
doublewords for the RB, the 
program (if applicable), and 
associated supervisor work 
areas. 

contains, in the last 4 digits, the 
XSTAB field (bytes 10 and 11): 
f lag bytE~s. 

USE/EP hhhhhhhh 
contains, in the first 2 digits, the 

XRBUSE field (byte 12): use 
count. 

contains, in the last 6 digits, the 
XRBEP field (bytes 12 through 
15): address of entry point 
in the program. 

42 Programmer's Guide to Debugging (Release 20) 



-

"IW r0"~fr7A 
,,<:<; nl"~17~fI 

FS~ 01"(1)76'1 
IT,. "'n"'n(1)')r) 
'15TH !)o!)onnnO 

prr nnn!)!)!)!'!) 
"K-f=t G F0fl<;04nQ 
rr R noor)oo"O 
IOF 0"n"00nO 
T~T f)C"~O?AR 

OF" 00'1?pn4 
FlG OOnOO(VH) 
TM!: ')ono"noo 
Fr.'l n00104R4 
U<; r:~ on()OonOO 

Tln O(l030?FO 
lLS 001) "H) 'l IV) 

Jq 0002r()?11 
~T" '100(01)('(l 
OM ()OnOOOnn 

r.'1" AOR1700(1 
JLR nOOOOo()n 
"JTC nOO(JnnnO 
[)- DOF nr01 ?A6 'I 
"F<:V nOOooon() 

r>IIGF 0001 

TR~I OflOOnooo 
JP() 0001nlFfl 
nTC n""1"<;OR 
<;0, OOO?F 111\" 
J,OI 0()O'14Ar 

n1nnFfI ~F<;V Oo()oooon ~PSW nonoo"oo W~-S7-ST~R nOn4nO'l? 

I T <;f 

'J/TTD nonoonoo WT-[ "JK oconO?fI 

roorooo') 
f)/ffP ()f)n"o""" WT-LNK f)O()~Ol"'FP 

T~'l-t 'J 00oPO/.00 
!)/TTP I"'0,)()3r()F 
pr. 0-7 ()nO"OFI)Q 
Qr; A-Ie; nOO~olno 

FX"-,A F?FflF?F<; 
~0nn?64p 

TM1-l'1 nORP01r:fl 
·'J/TT P 00n0610'1 
Qr; (1-7 A00000(10 
Qr; q-l<; Of'OOOfl17 
rXT<;~ Onon?Q'lF 

r"rI"OF I 

"'''P-t.''J rnr'lo~rA 

n/TTR On006?,}1 
0:' 0-7 
Q:-; '1-1 r; 
FXTSfI 

()"n'lO'lOO 
1)1)001=(J?p 
On6?,)V)n 
OOPC')O? 

WT-[ ~II( (),VPOQ'lA 
Onnlo6F4 onoonor~ 

on()'I'l(,F4 
FlnAr140 
onnM'OOI 

"p<;w F?Forlr1 
WT-I."JK o()n?FOFn 

f\()R17"'OO 
0(1(1101AC 
non6f'nfl8 
/::qr'irpfl 

WT-[ ~jK f)OO?F 170 

on060A~ I' 
OnOAnOrf) 
OOrAOFro 

nO(n oAF I. 
fll}or,.,641J 
?O()Ot= Fr F 
r 1 r ?r:<;(1 <; 

nnn?rlnn fl"OOqO':R 
4000R'l~ 1\ 
O()O'lrO',O 
O'}l)rnf)()1) 

OO()~FO ?fl 
O()OflnOJA 
0'lO"nn10 

"'F onn~,,"rR 

\iF OO'lll'lAO 
"JF 0'10111ro 

Q<;"-;,'lF n?()10IFR 
~<f'-rOF ,}I01??AO 
p,p-r'lF nln1?1!:n 

"Jf oon~'lncn 

1\IJ: 00(311)r.Q 

"'F O()1'l~10r 

03 I ~QO 
"'10F'10 
(nOl ic fj 

(n~lQO 

01;>;>Qn 
01??A(1 
01?V10 
n3??no 
()1:nr() 
f)301ro 

01f)"RO 
03:>1AO 
01?~ '10 
03nc;o 
n3?1 AO 
0121FO 
0121'10 
010'lPfl 

~ TQ 1 rfl 
4TP 1 f'fI 
1\ To 1 ' 1 
~ T[) 1 "R 

AT!>I RA 
HPI Rfl 
1\ fl11 RIl 
nTPI "A 
1\ TI1 1 ~q 

<;7 Onnnl101() 
<; 7 000l1004r 

<;7 nnnnnnln 
<7 nnonnOIO 
,7 nnOn(l1110 
~7 nnOno010 
,7 ()OnOf'Oln 
<;7 Onon"Oln 
<;7 000nnl110 
~7 Onnn()nl0 

",JrnF nnnnnn 
"Ie)F n~I?()n 

'lr.nr n '0\0 1'1 Fn 
",rOF 01?1rr 
\ir1r 01??ro 
'1['1F ov~q() 

"Jr.o!: 01?'1rO 
'1r'lF ()1??1n 
"'(OF 0121"1' 
",Jr'lr 010FAn 

W) "OOnl1n01 
"J1l OOOOO(l()1 

"JO 0 n()oono 1 
~In nOOOOnnl 
"Jr) I)00'10"nl 
"J1l OO()OOOOI 
"In On()OOOOI 
"In nOOOOO()l 
''In 0 O(J()r)nn I 
"Ir oonOOOf)t 

Rrr-RR ()'ln1I)nrQ 
Pf'lr-P'1 O()(11()OP'l 
"f'lC-PR oAonrlOOO 
f'f'lr.-PR '1'1'1)onOO 
Pf'lr.-PR n'ln'1nnoo 
Rf'lC-P'I ()'lOO()OOn 
Pf'lr.-RR ()nOrl()()nn 
P"C-PR ()10'lOn'ln 
Pf'lC-Ql1 nnO:Jnono 
Ilf'lr-Qq oon(Jl)nnf) 

AOO(lO?FR 
AMI1 "r1 '1 
01 I rn1f1'} 
nIV'}10() 
An0006fl() 
A000I171 0 
R110001f111 
R'l()onoc; .q 
80nO()?ln 
R()onl) 1()() 
~"OnOf'oO 

• flOf)l)n150 

FL -ror 0'-' 0 ~o F qO DSW FFF'iO'l11 c; ~n 7F(4 ~ 

Tn'l nf'f)onOf)O 

"n,.,on006 
an01~1'''' 
OOO?rFr4 
c 1r 4'inO /• 

n'l()l)on73 
OOI)~AU'1 

OO"?I=Fr4 

()O""IflCOf) 
()on~95r 0 
n()06nFRR 

nn016FRP 
<;?1)7F414 
OnnO()p17 

0()0~rC3l 

nl)07 r rl0 
O(lOlf)~Ar. 

T'l'" nnonOl)on 

4nnOrlR? 
nOOOOnf)l 
1f)n60RFO 
r '.n7111R6 

OO,}600!'0 
O()()6flI=FO 
FF n1n(Jf)(l 

flnn?FF04 
ooon?64A 
Of)O?FtFC 

O"O?[Fr4 
OOr'JonR('R 
OOO?FIF4 

OOO"r)F R R 
OO()'l()O()I 
F2r'l"?rq 

""o()no'}o D~W FF04(Jn01 4n07Fi1~4 

nOno'lRf. R 
rl"')f>onAR 
lA()0?f.4A 
"""'''''ono 

000?FO?9 
OO"10VO 
,,(lO()()O~ 0 

PSf'-rO F OIO'P1'lO 
R<;P-COF 01'11?"'1QO 
O~P-COF OlOV1RFO 

"J'1 Gn 
I\!" I" I(~~n() 
1\!'1 rr;rOflf)5f1 
~)'" IGr,OI'lro 
~1'1 IGI";O 1 QPII 
'IJ" 1r;r.OlQR" 
\' '1 T G r,() 1 or 0 
"J" YGG()I·o.U 
"J'1 yr.r."! oAR 
",JM IrW<;lnVp 

1)5F 01 
II,F 01 
!I<;F n? 
USF Of, 
1/<;, ,,<; 
U<;F f)<; 
IISF 06 
IISF 01 ",F 0/, 

"<;F 01 

I ~I 

'l"01"<;nR 
'l"O"lr;Qr R 
1)11 "010n 
r'!llf1"IOO 
'l"'()Ar'lRO 
1 n.17F~" n 
nf)()7F4An 
(\(\07FAAO 
"')"7FAno 
(Jn r., 7F~"0 

on07Frl0 
rn()6r41'1() 

non"l',Q,. R 

nllFo;>OO 
o 14'<,n<,00 

0002r 17C 
()n()?rt r 4 
f)nl100()41 

()0011?'IO 
4,.,oon'io4 
nO'l?R4h" 

OOOl)nOOO 
noo·,)OOOO 
nonl1()OI'l 

"JF n0031n1A Q<;r>-ror ()101??QO 
"'I' 110011110 Q<;r>-r'lf Ol()~??no 

FPA 015'inA 
FflA "1(,;>40 
E"A O"CoAO 
I=I>A 07r~f)O 

F"lI 01F4~O 
[""~ n7F'IAn 
FDA 07"1100 
F"A 07F'3110 
fOil n7"r10 
F"lI nAC4"0 

n0I11nR(l() 
01 ?,OO'.()0 
01'.A0400 

~T!>? ;>0 
~"-I)? ?O 
I\TIl.~ ?'1 
1\ TQ? ;>0 
"TR? ?O 
ATP? 20 
1\ Til? :>f) 
"T'>? 2n 
1\ TP? ?n 
IITR? ?O 

010Il04f1() 
01 ?FO'iOO 
Oll·nn<;f)n 

)(L/"J n11?AO 
XU ... J 0?F19a 
XLI .... ) 0101180 
XL/'1J OV1RO 
XL/ ... J n1??flO 
XLI"',) 03;>750 
Xl/M.1 01?'IAO 
Xl/"J nl?IFO 
Xl I"'J 01?lAO 
)'1/'1J O'ln'l"'1 

OIOnO'ino 
01 "~'ln5nO 

* •••••••••••.•••••.•••••••••••••• * 
OJOnnn5n ooononol) onn')(J?()A On~n'RFr 
RFOOOnrn ()lnOOOf)" ooonno~o FFn"nnAP 
f)OOI()()OA nnnll1nnl ~?r.?r?rl r.1r4no()o 

nFon~oo" onO?t=C?R n'.'l?FF04 '1AOn00l10 * ...................... 0 ........... . 
I1 l ,()?Fnln IAnn?"4A ~()On0011 onnIOO~;> * ................................• 
Of)()n1n()o Ol)noooOO ononoooo (1r40000 * ...•••.. l1~'lbrO •••••••••••••• cn ••• 

Figure 24A. Sample of Complete ABEND Dump (MVT) 

ABEND/SNAP Dump (Systems with MVT) 51 



01~~~~~0 nnr0nr0~ "0nnn?1r rnr,,~~r 
nr()nn0 n n 1~00~r00 n0n~00nn rFn'~~r~ 

~'n\n~~~ ,qn~?~~p nnnnr('lr nnno0n'f 
rn~~~nn\ 10nr?~4p nnnnnr40 0"0"004' 
r00~1~n~ ~q"n7h4n ~nn0nn4? nn~Qnn41 

n~r~~~"\ t~0n?~.~q ~nnnnn4~ r00on04~ 

nn0qnn0~ lQ0r'~4q ~nn~rn4A nnn00047 
0~0Qnnr' 'Rr~J~4n nnnnnn4~ n0nQ~n4Q 

nn01n~n~ lQnn7"p ~n0~0n4~ rnn00n4P 
n0nq')~0\ 'D0r?I'4~ ~nnn004r nnno004n 

* .. P ••••••••••••••••••••••••••••• * 
?o\()nlr"') n~f) 'f()?O t14f)f)(,nr") AJ=I('J("In0(H) * ...................•.• 0 ••••••••• * 
()401?r:F"nn lR'11':'I--I,A Oo()nf;()~q nnf)0()(\~r.: * ............... 4 •••••••••••••••• * 
"'non"l(\"I~ 1 R"'1"f,I,P '1110Q('\f),:\r 1('\('JQnn40 * ..........•..•...•••.••..•....•• 
IJnf'Rl'1'1h 1 '1'1"'(,4'1 IJIJnOnrl41 1J0f''1004? •••••••••••••••••••••••••••••••• * 
nn'1H1C1f\ lAnn?f,lt~ f)f)nf)(,()41 OnnC)()O/.lt * ......................•...•...••• 
nn"'Ql1)nA 1 Q"n?r4f\ Qn()!1()n4'i nflOQO()4fJ * ................................ * 
0f1011'1'1nA \ Qn1?',4A. 'll')nrnn41 0C"nQf'f)4Q * ...................•..........•. * 
'1na'1'l"'1h I "'1'1?,.t,q 'l'1'1Of'O','1 OOO<)f'(l',h 
nnIJ Q 11JIJh 1Q"'1?AG'I lJonn0n4~ n""Q004C 
nnn~10"~ onnlr)"nl rln'lr1f'1 rlrt,F!>(n 

* ....................•..........• * 
* ..............................•• * 
••••••••••••••••••••••••• "R4J(06.'" 

' ..... n T nr T 't 1 
1',"',"1 '11 
1 L.('\4" 1 ('I"' 

14n4n1Q.n 
1 I. ('I .. r 1 ('If') 

, 4 n ""'1n() 
1 4"1." 11)n 
1 / .. n ,.rq n l 

nr.~=*.f'\r) 

~Y~A"r,'" 

r Tn"rnn 1 
r TNt 1'" 
c:y <;n, It-I rlf 

(;', VC;OQ J ·'T 

c:; yc:;, P\I 

nf'71nFfll) 
OO?l.OQnn 
""74"'-"1'1 
n",,,,, 1 On 
no?~') qno 
"r,?4'1"O" 
f10? 'If) IV)" 

f\0nn7A'.f\ 
Q('.no ')f,I .. R 

Qf')nn'?A'.p 
'10nl)'<)~4 

nnlJn,]l)nr 
Q'''}'''1 ?~'.O 

Q r'\()n"~' .. p 

~"'~*'t**T.c:*"',(** c::,o'"")r **o:****#..cr~** It$************* 'lnr *'************** 
rl~~ ~c:;pnr ~Pt~ ~or 

"'] r» 1 740 ') ~ 1 

?'l? "114ro 

"I K Fn" L'I "n()F 

"r'1><;lnO nl)']~~'1f'O nOOO"ROO 00"11"rl) 
'l'111<;QIJ'1 "n'1"iAnO "n(11700n OnMl"""O 
'1on~nnon '1'1"~nOnn OO"Ooql)n 0"0'O~7q 
non~rnno n'1"~r')nO O"O"oqno "001"1nQ 
'1"nh rQ nn '''10"rpf'" nf'OOI)AO" 0f'f'71'1AA 
"1):1~flRnn '1nnh Q ROO OnOOOAO" 00f'n0'100 

~"n',)~~~ ~rOC:;T n~n114~O L~~T ~0n~14An 

fnlt,'_'] ""r4rpon 1 ro r'1n4r0'1n "P'1 nnnn'lnr)[' 
Tr~ f'r)'1~'1cro P~1 OOO'<)r)n" pan n"n1<;n'1l) 

'\.Irq f'I('\(l" 141-,("\ 

'1,,'lH,q ,,,,,, o"nr",]'1(1 H~~ (1'l1n n (1n'1 1 "A 0'1')'1[11(1" 
~ I (1'1"nnlJ"'l nr'l'1"onp '1I1I1'1'1']no 

onn(1nnrr Oon(1"nnn P,! nO'](1f'1na 

r:t."c;r'l '.Jr"11 O':;7("r:.1'lrr-

~1 o'(17r"" 
nh n f.I"'f.,f1Q 

.... ~ A 7 f'f)('4 1 Qrl 
n·"f1f-nt; 7(' 
nn')f-r'\7J:(f~ 

0n',-!P1 ;""'1 47'lr0()'10 ~1<:;1\ rr-f)(l0(),11" 

01 f'O'1n''')('" On'l"roO"r 
41rn0~rn "R r~000n0~ 

1 ~h <)<;7Q<)l on 
P1 nn'1'<)~"4 

0C'(I()f'rna 

1 ~A n"I)']"lf''' 
P", 47~n"rJnn 

n""lJrJl"O 

""Q r)On'lO"on 
"1 r, 0"0" 

OCT f'"'100nrlJ 
°4 cnn"I)"'10 
PIn f'Of'""nro 

on(1~'. 710 
Pt, nO"1<)hF4 
"1'1 "n"7"rln 

U'F-T 0rnrH)()nr 
1.1 I. ~ ~ rHV'HV' ('I 

"I" """O'ln"o 

I'D" OOOOO"'11J 
D'i 0000""0'1 
Ql1 nooooo"" 

""" Q'ipr.l~ll 
D<; 00"h[l<;70 
Ill! <;7"7"414 

"Ilil 47a"oo"" 
Q<; nOr"O"n" 
"11 4 7nof'00'1 

"n~0"~0n 01~~')n0n r0nn~()nr 

,;:rH ';'10()' 4n('7Fr,,:\r rr:J:-~("\('\nl (1?n~t..r~, 

nnn~~7~n f'~"n'l""ro n'107'~~'1 Of'ncnAh~ 

""'1"'l1A~ 1010nln0 ~Fn400q'l q"nlR7?4 

Figure 24B. Sample of Complet:e 

l1nn=rl1 "']"'1'1[,0" ""nhn,1~ 
nA~<,rqqr '1111)11AQr IJnn40"'1() 

ABEND Dump (MVT) 

52 Programmer's Guide to Debugging (Release 20) 

•••• **. FOF .*.**.** 
"IF"F L"I 

noononoo 
"0 noonoo 
00000000 
00000000 
ooooooon 
'1n oonooo 

nOOhOO"O 
0000"00') 

Q 0 00000000 
Q /) oonooooo 
I> 12 oooono"o 

<>0 'i201'11hF 
Ph 7FOM)<;rc 
<>P 00n7F(:10 

DO !"!"noOOOO 
Qh 00"00000 
D 12 FF"OOOOO 

00"0050'1 
00000IC~ 

000005QQ 
000004f10 
on0001M 
000001A" 

00n0007n 
00000'i18 

* ...............................• * 
* ........ 11 ••••• , •••••••••••••••• * 
* ... H •••••••••••••• v ••••••••••• 6 •• 

------------'--------------.. 0_ ............ 1_ 



JOB ecce ecce STEP cccccccc TIME dddddd DATE ddddd ID • ddd PAGE dddd 

COMPLETION CODE SYSTEM - hhh (or USER - dddd) 

PSW AT ENTRY TO ABEND (SNAP) hhhhhhhh hhhhhhhh 

JOB cccccccc 
is the job name specified in the JOB 
statement. 

STEP cccccccc 
is the step name specified in the EXEC 
statement for the problem program 
associated with the task being dumped. 

TIME dddddd 
is the hour (first 2 digits), minute 
(next 2 digits), and second (last 2 
digits) when the abnormal termination 
dump routine began processing. 

DATE ddddd 
is the year (first 2 digits) and day 
of the year (last 3 digits). For 
example, 67352 would be December 18, 
1967. 

ID=ddd 

TCB 

is an identification of the dump. For 
dumps requested by an ABEND macro 
instruction, this identification is: 

• Absent if the dump is of the task 
being abnormally terminated. 

• 001 if the dump is of a subtask of 
the task being abnormally 

hhhhhh RBP hhhhhhhh PIE hhhhhhhh DEB hhhhhhhh 
MSS hhhhhhhh PK-FLG hhhhhhhh FLG hhhhhhhh 

terminated. (Note that, when a task 
is abnormally terminated, its 
subtasks are also abnormally 
terminated.) 

• 002 if the dump is of a task that 
directly or indirectly created the 
task being abnormally terminated, up 
to and including the job step task. 

PAGE dddd 
is the page number. Appears at the 
top of each page. Page numbers begin 
at 0001 for each task or subtask 
dumped. 

COMPLETION CODE SYSTEM=hhh or COMPLETION 
CODE USER=dddd 

is the completion code sUfplied by the 
control program (SYSTEM=hhh) or the 
problem program (USER=dddd). 

PSW AT ENTRY TO ABEND hhhhhhhh hhhhhhhh or 
PSW AT ENTRY TO SNAP hhhhhhhh hhhhhhhh 

is the PSW for the problem program or 
control program routine that had 
control when abnormal termination was 
requested, or when the SNAP macro 
instruction was executed. It is not 
necessarily the PSW at the time the 
error condition occurred. 

TIO hhhhhhhh CMP hhhhhhhh TRN hhhhhhhh 
LLS hhhhhhhh JLB hhhhhhhh JPQ hhhhhhhh 

RG 0-7 hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh 
RG 8-15 hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh 
FSA hhhhhhhh TCB hhhhhhhh TME hhhhhhhh 
LTC hhhhhhhh IQE hhhhhhhh ECB hhhhhhhh 
NSTAE hhhhhhhh TCT hhhhhhhh USER hhhhhhhh 

TCB hhhhhh 
is the starting address of the TCD. 

RBP hhhhhhhh 
is the TCBRBP field (bytes 0 through 
3): starting address of the active RB 
queue and, consequently, the most 
recent RB on the queue. 

Js'r hhhhhhhh NTC hhhhhhhh OTC hhhhhhhh 
STA hhhhhhhh D-PQE hhhhhhhh SQS hhhhhhhh 
DAR hhhhhhhh RESV hhhhhhhh JSCB hhhhhhhh 

PIE hhhhhhhh 
is the TCBPIE field (bytes 4 through 
7): starting address of the program 
interruption element (PIE) for the 
task; however, in an abnormal 
termination dump for the task causing 
the abnormal termination, zeros. The 
field is zeroed by the ABEND routine 
to prevent interruptions during 
dumping. 

ABEND/SNAP Dump (Systems with MVT) 53 



DEB hhhhhhhh 
is the TCBDEB field (bytes 8 through 
11): starting address of the DEB 
queue. Under the heading DEB in the 
dump, the prefix section for the first 
DEB in the queue is presented in the 
first 8-digit entry on the first line. 
The 6-digit entry at the left of each 
line under DEB is the address of the 
second column on the line, whether or 
not the column is filled. 

TIO hhhhhhhh 
is the TCBTIO field (bytes 12 through 
15): starting address of the TIOT. 

CMP hhhhhhhh 
is the TCBCMP field (bytes 16 through 
19): task completion code or contents 
of register 1 when the dump was 
requested. System codes are given in 
the third through fifth digits and 
user codes in the sixth through eight 
digits. 

TRN hhhhhhhh 
is the TCBTRN field (bytes 20 through 
23): starting address of the control 
core (table) for controlling testing 
of the task by TESTRAN. 

MSS hhhhhhhh 
is the TCBMSS field (bytes 24 through 
27): starting address of SPQE most 
recently added to the SPQE queue. 

PK-FLG hhhhhhhh 
contains, in the first 2 digits, the 
TCBPKF field (byte 28): protection 
key. 

contains, in the last 6 digits, the 
first 3 bytes of the TCBFLGS field 
(bytes 29 through 31): first 3 flag 
bytes. 

FLG hhhhhhhh 
contains, in the first 4 digits, the 
last 2 bytes of the TCBFLGS (bytes 32 
and 33): last 2 flag bytes. 

contains, in the next 2 digits, the 

TCBLMP field (byte 34): limit 
priority <converted to an internal 
priority, 0 to 255). 

contains, in the last 2 digits, the 
TCBDSP field (byte 35): dispatching 
priority (converted to an internal 
priority, 0 to 255). 

LLS hhhhhhhh 
is the TCBLLS field (bytes 36 through 
39): starting address of the load 
list element most recently added to 
the load list. 

JLB hhhhhhhh 
is the TCBJLB field (bytes 40 through 
43): starting address of the DCB for 
the JOBLIB data set. 

JPQ hhhhhhhh 
is the TCBJPQ field (bytes 41 through 
47) : when translated into bina:ry 
bits: 

• Bit 0 is the purge flag. 
• Bits 1 through 7 are reserved for 

future use and are zeros. 
• Bits 8 through 31 are the sta:rting 

address of the queue of CDEs for the 
job pack area control queue, '>lhich 
is for programs acquir.ed by the job 
step. 

The TCBJPQ field is used only in the 
first TCB in the job step; it is zeros 
for all other TCBs. 

RG 0-7 and RG 8-15 
is the TCBGRS field (bytes 48 through 
111): contents of general registers 0 
through 7 and 8 through 15, as stored 
in the save area of the TCB when a 
task switch occurred. These 2 lines 
appear only in dumps of tasks other 
than the task in control when the dump 
was requested. 

FSA hhhhhhhh 
contains, in the first 2 digits, the 
TCBQEL field (byte 112): count of 
enqueue elements. 

contains, in the last 6 digits, the 
TCBFSA field (bytes 113 through 115): 
starting address of the first problem 
program save area. This save area was 
set up by the control program wben the 
job step was initiated. 

TCB hhhhhhhh 
is the TCBTCB fiE~ld (bytes 116 through 
119): starting address of the next 
lower priority TeB on the TCB queue 
or, if this is the lowest priority 
TCB, zeros. 

TME hhhhhhhh 
is the TCBTME field (bytes 120 through 
123): starting address of the timer 
element created lJ~hen an STIMER macro 
instruction is issued by the task. 

54 Programmer's Guide to Debugging <Release 20) 



-

Page of GC28-6670-4, Revised March 1, 1971, by TNL: GN28-2457 

Appendix J: Control Block Pointers 

This appendix summarizes the contents of the control blocks that are most useful in 
debugging. Control blocks are presented in alphabetical order, with displacements in 
decimal, followed by the hexadecimal counterpart in parentheses. Figure 38 illustrates 
control block relationships in the Systern/360 Operating System. Figure 39 shows 
relationships between storage control elements in a system with MVT. 

CVT - Communications Vector Table 
+0 Address of TCB control words 
+53(35) Address of entry point of ABTERM 
+193(C1) Address of secondary CVT (used 

only with Model 65 
Multiprocessing systems) 

DCB - Oata Control Block 
+40(28) ddname (before open); offset to 

(after open) 
+45(20) 
+69(45) 

ddname in TIOT 
DEB address 
IOB address 

DEB - Data Extent Block 
+1 
+5 
+25(19) 
+33(21) 
+38(26) 
+42 (2A) 

TCB address 
Address of next DEB 
DCB address 
UCB address 
Address of start of extent 
Address of end of extent 

ECB - Event Control Block 
+1 RB address or comDletion~ode 

RB - Request Block (MVT) 
+4 Last half of user's PSW 
+13(0) COE address 
+16(10) Resume PSW 
+29(10) Address of previous RB 

TIOT 
+0 

- Task Input/Output Table 

+8 
+24(18) 

+0 
+4 
+16(10) 

+20(14) 

Job name 
Step name 
DD entries begin (one variable­
length entry for each DD 
statement) 
Length of DD entry 
ddname 
Device entries begin (one 4-byte 
entry for each device) 
Next device entry (if there is 
one) 

(Next DD entry begins at 24(18) 
plus length of first DD entry) 

TCB - Task Control Block (PCP and NFT) 
+1 Address of most recent RB 
+9 Address of most recent DEB 
+~3(D) TIOT address 


