File No. S360-20
Order No. Gc28-6670-4 | 08§

IBM Systems Reference Library

IBM Systemn/360 Operating System:

Programmer’s Guide to Debugging

This publication describes the major debugging
facilities provided with the System/360
Operating System for the assembler language
programmer :

Abnormal termination and snapshot dumps.
Indicative dumps.

Storage image dumps.

Stand-alone hexadecimal dumps.

The text explains those aspects of system
control pertinent to debugging, tells what
information each debugging facility offers, and
outlines procedures for invoking and
interpreting dumps issued at the three operating
system levels: PCP, MFT, and MVT.

Debugging facilities inherent in higher
languages and additional aids cpen to the
assembler language programmer are discussed in
other SRL publications.

Information in this publication for TSO
is for planning purposes until that item is
available,

Page of GC28-6670-4, Revised March 1, 1971, by TNL: GN28-2u457

Fifth Edition (January, 1971)

This is a major revision of, and obsoletes C28-6670-3. For a
description of the major changes see page 7. All changes to
the text, and small changes to illustrations, are indicated
by a vertical line to the left of the change. New fiqures
have been added. Changed and added illustrations are denoted
by the symbol e to the left of the caption.

This edition, with Technical Newsletter GN28-2457, applies
to release 20.1 of IBM System/360 Operating System and to all
subsequent releases until otherwise indicated in new editions
or Technical Newsletters. Changes are continually made to
the information herein; before using this publication in
connection with the operation of IBM systems, consult the
latest IBM System/360 Newsletter, Order No. GN20-0360, for
the editions that are applicable and current.

Requests for copies of IBM publications should be made to
your IBM representative or to the IBM branch office serving
your locality.

A form for readers' comments is provided at the back of
the publication. If the form has been removed, comments may
be addressed to IBM Corporation, Programming Systems
Publications, Depaxrtment D58, P.O. Box 390, Poughkeepsie,
N. Y. 12602

| © Copyright International Business Machines Corporation 1967,1968,1969,1970,1971

E- =

Page of GC28-6670-4, Revised March 1, 1971, by TNL:

This publication is intended to help you
use the debugging facilities provided with
the IBM System/360 Operating System. To
fulfill this purpose, the publication is
divided into two sections: "“Section 1:
Operating System Concepts," and "Section 2:
Interpreting Dumps." You should read the
introduction to familiarize yourself with
the debugging facilities before proceeding
to Section 1.

Section 1 deals with internal aspects of
the operating system that you should know
to use the debugging facilities
efficiently. A wvworking knowledge of this
information will provide you with the means
of determining the status of the system at
the time of the failure, and the course of
events which led up to that failure. It
includes information from other System
Reference Library publications, Program
Logic Manuals, and Installation Guides.

You should be familiar with the information
covered in Section 1 before attempting to
use Section 2.

Section 2 includes instructions for
invoking, reading, and interpreting dumps
issued by systems with PCP, MFT, and MVT.
It presents an after-the-fact look at a
dump. You've put in a run, it failed, and
you now have a dump before you. Where do
you start; what do you look at; what does
it all mean? The section begins with a
general debugging procedure, followed by
topics dealing with each type of dump.
Each topic tells how to invoke a particular
dump, what information the dump contains,
and how to use this information in
following the debugging procedure. The
material in Section 2 is intended to aid
you in interpreting dumps and isolating
errors.

Before reading this publication,
should have a general knowledge of
operating system features and concepts as
presented in the prerequisite publications.
Occasionally, the text refers you to other
publications for detailed discussions
beyond the scope of this book.

you

GN28-2457

Preface

For information on debugging facilities
provided within higher languages, consult
the programmers' guides associated with the
respective languages. Other System/360
Operating System publications, such as
TESTRAN and Messages and Codes, describpe
additional debugging aids provided for the
assembler language programmer.

Prerequisite Publications

IBM System/360: Principles of
Operation, GA22-6821

IBM System/360 Operating System:

Concepts and Facilities, GC28-6535

Supervisor and Data Management Services,
GC28-66U6

Reference Publications

IBM System/360 Operating System:

System Control Blocks, GC28-6628

Messages and Codes, GC28-6631

Supervisor and Data Management Macro
Instructions, GC28-6647

System Programmer's Guide, GC28-6550

Service Aids, GC28-7619

TCAM Programmer's Guide and Reference,
GC30~-2024.

TCAM Serviceability Aids, GY30-2027.

TCAM, GY30-2029.

e

£ N

Page of GC28-6670-4, Revised March 1, 1971, by TNL: GN28-2457

Contents
| SUMMARY OF MAJOR CHANGES - RELEASE 20.1 [Guide to Using an ABEND/SNAP Dump
(PCP, MFT) . « « « « = - « o« o 48

SUMMARY OF MAJOR CHANGES - RELEASE 20 . 7 ABEND/SNAP Dump (Systems w1th MVT) - . - 50
Invoking an ABEND/SNAP Dump (MVT) . 50

INTRODUCTION . o o ¢ o o « « o« o =« « « « 9 Contents of an ABEND/SNAP Dump
(MVT) e« e e e a o s+ a o o = o o « « 50

SECTION 1: OPERATING SYSTEM CONCEPTS . 11 Guide to Using an ABEND/SNAP Dump

Task Management . . « « « « « « « « « « 11 (MUT) & @ @ o o o o o o o o o « o« « 67
Task Control Block 11 Indicative Dump . .« . ¢« « « « « « « - . 69
Request Blocks +« « o . o 11 Contents of an Indicative Dump . . . 69
Active RB QuUEUE . . . « « « « « « o 14 Guide to Using an Indicative Dump . 71
Load List < . <« o ¢ o o & o o « . o 14 Storage Image DUMD o o« o « o« o o = « « « 12
Job Pack Area Queue (MFT with Damage Assessment Routine (DAR) . . . 72
Subtasking only) . . « « « - <« « . . 15 System Failure . . . e e o o o o o o 12
Effects of LINK, ATTACH, XCTL, and The SYS1.DUMP Data Set e e e e o o o o 12
LOAD . . « e e e e s e e = « « « 16 TAPE + o o o o = o o o o o« « =« o« « « 12
System Task Control Differences . . 17 Direct ACCESS o o o o o o o « o« o« « 12

Main Storage Supervision . . . « .+ « « « 20 The Print Dump Service Aid
Storage Control in Systems With PCP 20 (IMDPRDMP) for MFT, MVT and M65MP . . 73
Storage Control in Systems with MFT The Print Dump Program (IFEAPRINT) . . 73
(Without Subtasking) 21 Input to the Print Dump Program . . 75
Storage Control in Systems with Output From the Print Dump Program . 75
MFT (With Subtasking) . . « 21 Contents of a Storage Image Dump . . . 75
Storage Control for a Region in Low Storage and Registers 75
Systems with MVT - . . 22 Main StOrage « « « « o« « o« o « « « « 15
Storage Control for a Subpool in Guide to Using a Storage Image or a
Systems with MVT « 23 Stand-Alone Dump o e e e e o 17
Storage Control for a Load Module Determining the Cause of the Dump . . 78
in Systems with MVT . . . « < . o 24 Task Structure « o « « . « . 18

System Control Blocks and Tables e « o o 26 Task Status - Active RB Queue . . . 81
Communications Vector Table (CVT) . 26 Main Storage Contents 82
Task Input/Output Table (TIOT) . . . 26 Main Storage Supervision 83
Unit Control Block (UCB) 26 I/0 Control Blocks « « « « « « . « . 83
Event Control Block (ECB) 26 TSO Control Blocks . « 85
Input/Output Block (IOB) 26 Trace Table 86

Data Control Block (DCB) . . - . . . 26

Data Extent Block (DEB) 26 APPENDIX A: SVCS . « « o « « « « « - . 88

Summary of Control Block

Relationships . « ¢ ¢« ¢ o o« o « « « 26 APPENDIX B: COMPLETION CODES 93
TraCesS o« o« o o o = = = « =« « =« o« a « « « 28

Save Area Chain . « « « « « « « « « 28 APPENDIX C: SYSTEM MODULE NAME

Trace Table .+ « +« &« ¢ ¢ o« « « « « « 29 PREFIXES v o 2 o o o o a =« = o « o « « « 97

SECTION 2: INTERPRETING DUMPS 31 APPENDIX D: LIST OF ABBREVIATIONS . . . 98
General Debugging Procedure 31
Debugging Procedure Summary . < « 33 APPENDIX E: ECB COMPLETION CODES . . . 99
ABEND/SNAP Dump (Systems with PCP and
MFT) @ o ¢ o o o o o o a « o o a =« « « = 34 APPENDIX F: UCB SENSE BYTES100
Invoking an ABEND/SNAP Dump
(PCP ,MFT) e @ % o o @ - e o « o 34 APPENDIX G: SERVICE AIDS101
Contents of an ABEND/SNAP Dump
(PCP ,MFT) e e e e e e« o e o o o « « 37 APPENDIX H: TCAM DEBUGGING AIDS102

APPENDIX J: CONTROL BLOCK POINTERS . .102

Contents 5

Illustrations

Figures

Figure 1. Control Information

Available Through the TCB
Figure 2. RB Formats « e e e .
Figure 3. Active RB Queue . . .
Figure 4. Load List (PCP, NFT)

Figure 5. Job Pack Area queue .
Figure 6. Main Storage Snapshot
(PCP) e o e o e s s s & s s s o @
Figure 7.
Without Subtasking)
Figure 8.
With Subtasking)
Figure 9. Main Storage Snapshot

(MVUT) « ¢« o o o o o« o o o « s o« =
Figure 10. Storage Control (PCP)
Figure 1l1. Storage Control for a

Partition (MFT Without Subtasking)
Figure 12.

Main Storage Snapshot (MFT

Main Storage Snapshot (MFT

P I §
« « o 13
. - . 14
- . . 14
- .« . 16
- . 17

. 18

P
< . . 19
. . . 20
. .21

Storage Control for Subtask

Storage (MFT with Subtasking) 21
Figure 13. Storage Control for a

Region (MVT) s
Figure 14. Storage Control for a

Subpool (MVT) « e o o o 24
Figure 15. Storage Control for a Load
Module (MVT) « . . e « o« « e o « <« 25
Figure 16. Control Block

Relationships .« ¢« ¢ « o o « o o « « o« o 27
Figure 17. Save Area Trace 28

Figure 18. Trace Table Entries (PCP) . 29

Figure 19. Trace Table Entries (MFT) . 29
Figure 20. Trace Table Entries (MVT) . 29
Tables

Table 1. Permanently Assigned

Hardware Control Words . . « « .« .
Diagram

Diagram 1. Finding the TCB .- .

6 Programmer's Guide to Debugging

- . . 178

Figure 21. Trace Table Entries (MVT
with Model 65 multiprocessing) “ o
Figure 22A. Sample of an ABEND Dump
(PCP, MFT) « e e o o
Figure 22B. Sample of an ABEND Dump
(PCPy MFT) v 4 v« o o o o o o o o o« o «
Figure 23. SYSABEND DD Statements .
Figure 24A. Sample of Complete ABEND
Dump (MVT) e o 4 e s o e o 4 a a a @
Figure 24B. sSample of Complete ABEND
Dump (MVT) « o e & e a4 s s e & o e @
Figure 25. Contents of an Indicative
Dump e o o o o s o o o & s 2 e e o
Figure 26. Sample JCL Statement
Required for IMDPRDMP « e e
Figure 27. Sample JCL Statements
Required for IEAPRINT . . « & « o « &
Figure 28. Sample of a Storage Image
Dump « e . « .
Figure 29. Finding the Partition TCBs
in MFT e o @ s s o = s e s & = = ° @
Figure 30. IMDPRDMP TCB Summary - .
Figure 31. Determining Module From
CDE in MVT @ e s e e e ® e s e e e o
Figure 32. Subpool Descriptions in
MVT - IMDPRDMP Storage Print [
Figure 33. I/0O Control Blocks . e s
Figure 34. Sample Trace Table Entries

* & 2 e e e o

(PCP and MFT) . « « « « &« « e e .
Figure 35. Sample Trace Table Entries
(MVT) . . . - . e o s

Control Block Flow . .
MVT Storage Control Flow

Figure 36.
Fiqgure 37.

(Release 20.1)

. 30

. 35

. 36
. 37

. 51

. 52

. 69

. 73

. 74

. 76

. 79
. 81

. 82

. 84
. 85

. 86
. 87

.105
.107

Page of GC28-6670-4, Revised March 1, 1971, by TNL: GN28-2457

Summary of Major Changes--Release 20.1

{ T T 1
| Item | Description | Areas Affected

1 1 I | |
r T 1] 1
| TCAM |A brief description of TCAM debugging|SECTION 2: ABEND/SNAP Dump |
| |]aids and a new SVC. | (PCP and MFT) |
| | | ABEND/SNAP Dump

		(MVT)
		APPENDIX A
		APPENDIX H
'r 1 1 4		
TSO	The addition of new SVCs and a	SECTION 2: TSO Control Blocks
	summary of the control blocks	APPENDIX A
	formatted by IMDPRDMP.	
L A R 3

Summary of Major Changes - Release 20.1 6.1

Summary of Major Changes--Release 20

r T T 1
| Item | Description | Areas Affected
[N 4 4 J
r T T i
| IMDPRDMP | IMDPRDMP is used instead of IEAPRINT to | "Guide to Using a |
! 1 print MFT and MVT dumps. J Storage Image Dump" 1
| 3 T T 1
| Tso | New SVCs in Appendix A. This information| Appendix A.
| | is for planning purposes only. | |
L L - L J
Summary of Major Changes - Release 20 7

.

Debugging is possibly the most important
aspect of programming. Few programmers,
especially those involved in control
program medification, ever produce a
perfect solution in one run; abnormal
termination is inevitable and must be
prepared for.

Program debugging in an operating system
environment is made more difficult by the
large volume of control information, the
presence of control program routines, and
the changing contents of main storage.
Frequently, a large part of debugging lies
in determining what state the system was in
when the error occurred and which essential
information was obscured.

To debug problem programs efficiently,
you should be familiar with the system
control information reflected in dumps.
This control information, in the form of
control blocks and traces, tells you what
has happened up to the point of error and
where key information related to the
program is located.

This book is therefore designed to:

e Help you prepare proper dump data set
definitions.

e Provide an insight into the IBM
System/ 360 Operating System and its
complex aspects of task management,
storage supervisor, control blocks, and
debugging aids.

e Give you a starting point, an approach,
and a method of debugging.

The IBM system/360 Operating System
provides extensive degugging facilities to
aid you in locating errors and determining
the system state quickly. Some debugging
aids, such as console messages, provide
limited information that may not always
help you identify the error. This manual
discusses those debugging facilities that
provide you with the most extensive
information:

Introduction

a. Abnormal termination (ABEND) and
snapshot (SNAP) dumps.

b. Indicative dumps.

C. Storage image dumps.

d. Stand-alone hexadecimal dumps.

ABEND and SNAP Dumps are invoked by ABEND
and SNAP macro instructions, respectively.
They are grouped in a single category
because they provide identical information.
In addition to a hexadecimal dump of main
storage, they can contain conveniently
edited control information and displays of
the operating system nucleus and trace
table.

Indicative dumps contain control
information useful in isolating the
instruction that caused an abnormal end of
task situation. The information is similar
to that given in an ABEND/SNAP dump, but
does not include a dump of main storage.

Storage image dumps are taken by the system
dump facility at the time of a system
failure. The dump is written to the
SYS1.DUMP data set. For a PCP dump, use
the IEAPRINT print dump program to print
the SYS1.DUMP data set. The dump consists
of a first page, containing edited control
information, followed by a dump of the
printable contents of main-storage,
beginning at location 00. Each line
contains the hexadecimal address of the
first byte in the line, eight main-storage
words in hexadecimal, and the same eight
words in EBCDIC.

For MFT, MVT, and M65MP dumps, use the
IMDPRDMP print dump program to print the
SYS1.DUMP data set. The output of IMDPRDMP
is described in the publication, IBM
System/360 Operating System: Serxrvice Aids,
GC28-6719.

Stand-alone dumps, invoked by the dump
program you have produced from the IMDSADMP
macro instruction (see Appendix G), offer a
complete picture of main storage at a given
time. They are, for the most part,
unedited. Each line contains the
hexadecimal address of the first byte in
the line, eight main-storage words in
hexadecimal, and the same eight words in
EBCDIC.

Introduction 9

General Notes:

10

e Displacements and addresses shown in

the text and illustrations of this
publication are given in decimal
numbers, followed by the corresponding
hexadecimal number in parentheses,
€.g., TCB+14(E); location 28(1C); SVC
42(27). All other numbers in the text
are decimal, e.g., the seventeenth word
of the TCB; a 4-word control block; 15
job steps.

Programmer's Guide to Debugging (Release 20)

e Control block field names referred to
are those used in the IBM System/360
Operatina System: System Control
Blocks manual, GC28-6628.

e Wherever possible, diagrams, and
reproductions of dumps have been
included to aid you during the
debugging process.

E—

Page of GC28-6670-4, Revised March 1, 1971, by TNL:

Section 1:

To effectively use the debugging aids
provided by the IBM System/360 Operating
System, you should be familiar with those
control blocks, traces, and other control
information that can lead you quickly to
the source of error. This section of the
manual introduces you to the control
information that you must know to interpret
dumps. It is divided into four topics:

e TASK MANAGEMENT

s MAIN STORAGE SUPERVISION

e SYSTEM CONTROL BLOCKS AND TABLES
e TRACES

The first two topics deal with those
aspects of task management and main storage
management, respectively, that are
represented in dumps. The third topic
describes the remaining system control
blocks and tables helpful in pinpointing
errors. The last topic covers tracing
features that are useful in re-creating the
events that led to an error condition.

Note: The descriptions of system control
blocks and tables in this section emphasize
function rather than byte-by-byte contents.
Appendix J summarizes the contents of those
control plocks most useful in debugging.

For a more detailed description of
system control blocks and tables, please
see the System Control Blocks publication,
GC28-6628.

Task Management

The ,task management control information
most useful in debugging with a dump
includes the task control block and its
associated request blocks and elements.
These items have the same basic functions
at each of the three control program
levels. Their functions, interactions, and
relationships to other system features are
discussed in this topic. A summary of how
task supervision differs at each system
level concludes the topic.

Task Control Block

The operating system keeps pointers to all
information related to a task in a task
control block (TCB). For the most part,
the TCB contains pointers to other system
control blocks. By using these pointers,

GN28-2457

Operating System Concepts

you can learn such facts as what I/0
devices were allocated to the task,
data sets wvwere open,
were requested.

which
and which load modules

Figure 1 shows some of the control
information that can be located by using
the pointers in the TCB. Later, in the
discussion of system control blocks and
tables, Figure 1 is expanded to show the
actual block names and pointer addresses.

! Device
{ attributes

Control Information Available
Through the TCB

Figure 1.

Request Blocks

Frequently, the routines that comprise a
task are not all brought into main storage
with the first load module. Instead, they
are requested by the task as it requires
them. This dynamic loading capability.
necessitates another type of control block
to describe each load module associated
with a task -- a request block (RB). An RB
is created by the control program when it
receives a request from the system or from
a problem program to fetch a load module
for execution, and at other times, such as
wvhen a type II supervisor call (SVC) is

Task Supervision 11

issued. By looking at rBs, you can
determine which load modules have been
executed, why each lost control, and, in
most cases, which one was the source of an
error condition.

There are seven types of RBs created by
the control program:

Frogram request block (PRB)
Supervisor request block (SVRB)
Interrupt request block (IRB)
Supervisor interrupt request block
(SIRB)

Loaded program request block (LPRB)
Loaded request block (LRB)

» Finch request block (FRB)

Of these, you will most often encounter
the PRB and SVREB in dumps. The type of RB
created depends on the routine or load
module with which it is associated.

PRB (Systems with PCP and MFT): A PRB is
created whenever an XCTL, LINK, or ATTACH
macro instruction is issued. It is located
immediately before the load module with
which it is associated.

PRB (Systems with MVT): A PRB is created

whenever an XCTL or LINK macro instruction
is issued. It is located in a fixed area

of the operating system.

SVRB: An SVRB is created each time a type
IT¥, III, or IV supervisor call is issued.
(Type I SVC routines are resident, but run
disabled; they do not require a request
block.) This block is used to store
information if an interruption occurs
during execution of these SVC routines. A
list of SVCs, including their numbers and
types, appears in Appendix A.

IRB: An IRB is created each time an
asynchronous exit routine is executed. It
is associated with an event that can occur
at an unpredictable time during program
execution, such as a timing routine
initiated by an STIMER macro instruction.
The IRB is filled at the time the event
occurs, just before control is given to the
exit routine.

SIRB: An SIRB is similar to an IRB, except
that it is associated only with
IBM-supplied input/output error routines.
Its associated error routine is fetched
from the SYS1.SVCLIB data set.

LPRB: (PCP and MFT only): An LPRB is
created when a LOAD macro instruction is
issued unless the LOAD macro instruction
specifies:

e A routine that has already been loaded.

e A routine that is being loaded in
response to a LOAD macro instruction
previously issued by a task in the
partition (MFT with subtasking).

e A routine that is "only loadable" (see

LRB).

An LPRB is located immediately before the
load module with which it is associated.
Routines for which an LPRB is created can
also be invoked by XCTL, LINK, and ATTACH
macro instructions.

LRB: (PCP and MFT only): The LRB is a
shortened form of an LPRB. Routines
associated with LRBs can be invoked only by
a LOAD macro instruction. This attribute
is assigned to a routine through the OL
(only loadable) subparameter in the PARM
parameter of the EXEC statement that
executes the linkage editor. The most
common reason for assigning this attribute
is that linkage conventions for XCTL, LINK,
and ATTACH are not followed. This request
block is located immediately before the
load module with which it is associated.

FRB (MFT with subtasking only): An FRB is
created and attached to the job pack area
queue, during LOAD macro instruction
processing, if the requested module is not
already in the job pack area. The FRB
describes a module being loaded in response
to a LOAD macro instruction. Any
subsequent requests for the same module,
received while it is still being loaded,
are deferred by means of wait list elements
(WLEs) queued to the FRB. When the module
is fully locaded, an LRB or an LPRB is
created, the FRB is removed from the job
pack area queue, and any requests,
represented by wait list elements, are
reinitiated.

Figure 2 shows the relative size of the
seven types of RBs and the significant
fields in each.

In Figure 2, the "size" field tells the
number of doublewords in both the RB and
its associated load module. The PSW
contained in the "resume PSW" field
reflects the reason that the associated
load module lost control. Other fields are
discussed in succeeding topics.

12 Programmer's Guide to Debugging (Release 20.1)

LPRB

LRB

PRB

FRB

-12 Major RB address
(MFT with subtasking)
-8 Load list pointers -8 Load list pointers
(PCP, MFT) (PCP, MFT) Load list
-4 pointers
-4 Absent (MVT) -4 Absent (MVT)
0 Module name 0 Module name 0 Module name 0
(PCP, MFT) (PCP, MFT) (PCP, MFT)
Last half of user's Last half of user's Last half of user's Module name
PSW (MVT) PSW (MVT) PSW (MVT)
8 8 8 -]
Size Flags Size Flags Size Flags Size Flags
12(C) |4 Entry point (PCP, 12(C) |4 Entry point (PCP, 12(C) | 4 Entry point (PCP, 12 (C)
Use Ct | A MFT); CDE (MVT) Use Ct A MFT); CDE (MVT) Use Ct | A MFT); CDE (MVT) Address of WLE
16 (10) 16 (10) 16 (10)
Address of TCB
Resume PSW Resume PSW 20 (14)
Address of LPRB
28(1C) 28 (1C)
waircy| | Next B Program Extent List wairer|] Nextre
'TO Length of extent in
| hiearchy 0 | ,
= == - = —-I Note: Program extent list is added to LPRB, LRB, or PRB if the
+4 Length of extent in I program described was hiearchy block loaded,
|'__ hiearchy 1 -
i +8 Address of extent in |
hiearchy 0
F e —
 * 12(C) Address of extent in |
L ey
SVRB IRB SIRB
0 Module name 0 Module name 0 Module name
(PCP, MFT) (PCP, MFT) (PCP, MFT).
Last half of user's Last half of user's Last half of user's
PSW (MVT) PSW (MVT) PSW (MVT)
8 8 .
Size Flags Size Flags Size Flags
12 (C) A Entry point (PCP, 12 (C) A Entry point (PCP, 12(C) |A Entry point (PCP
Use Ct A MFT); CDE (MVT) Use Ct | 4 MFT); CDE (MVT) Use Ct |A MFT); CDE (MVT)
16 (10) 16 (10) 16 (10)
Resume PSW Resume PSW Resume PSW
28(1C) T 28(1C) 28 (1C)
Wait Cr Next RB waircr| | Nextre aiver |1 Next BB
32 (20) 32 (20) 32 (20)
Register Register Register
Save Area Save Area Save Area
96 (60)
Extended
Save Area

Figure 2.

RB Formats

Task Supervision

13

Thus far, the characteristics of the TCB
and its associated RBs have been discussed.
With the possibility of many RBs
subordinate to one task, it is necessary
that queues of RBs be maintained. In
systems with PCP and MFT without
subtasking, two cueues are maintained by
the system -- the active RB queue and the
load 1list. In MFT systems with subtasking,
a job pack area queue, containing FRBs, and
LRBs and LPRBs that represent reenterable
modules is also maintained. MVT systems
maintain an active RB queue and a contents
directory. The contents directory is made
up of three separate queues: the link pack
area control queue (LPAQ); the job pack
area control queue (JPAQ); and the locad
list.

Active RB Queue

The active RB queue is a chain of request
blocks associated with active load modules
and SVC routines. This queue can contain
PRBs, SVRBs, IRBs, SIRBs, and under certain
circumstances, LPRBs. Figure 3 illustrates
how the active RB queue links together the
TCB and its associated RBs.

> tre-c

RB-A RB-B RB-C
ta C ts fc S
= tra-a tre-8
A B C
e T e I e
— | modules... | ™ | SVC routines| T

Figure 3. Active RB Queue

The request blocks in the active RB
queue in Figure 3 represent three load
modules. Load module A invokes load module
B, and B, in turn, invokes C. When
execution of A began, only one RB existed.
When the first invoking request was
encountered, a second RB was created, the
TCB field that points to the most recent RB
was changed, and A's status information was

stored in RB-A. A similar set of actions
occurred when the second invcking request
was encountered. As each load module is
executed and control is returned to the
next higher level load module, its RB is
removed from the chain and pointers are
updated accordingly.

Load List

The load list is a chain of request blocks
or elements associated with load modules
invoked by a LOAD macro instruction. The
load list differs from the active RB queue
in that RBs and associated load modules are
not deleted automatically. They remain
intact until they are deleted with a DELETE
macro instruction or job step termination
occurs. By loocking at the load list, you
can determine which system and problem
program routines were loaded before the
dump was taken. The format of the load
list differs with control program levels.

Systems with PCP _and MFT (without
subtasking): At these contrcl program
levels, the load list associated with a TC3B
contains LRBs and LPRBs. RBs on the load
list are linked together somewhat
differently from those on the active RB
queue because of the characteristics of the
LOAD macro instruction. Because RBs may be
deleted from a load list in a different
order than they were created (depending on
the order of DELETE macro instructions),
they must have both forward and backward
pointers. Figure 4 illustrates how a load
list links together a TCB and three RBs.

RB-A

} R8-8

[N

=T [

i

|

Figure 4. Load List (PCP, MFT)

14 Programmer's Guide to Debugging (Release 20)

Here, each RB contains a pointer both to
the previous RB and the next most recent RB
in the list. If there is no previous or
more recent RB, these fields contain zeros
and a pointer to the TCB, respectively.

Another field of a load list RB that
merits consideration is the use count.
Whenever a LOAD macro instruction is
issued, the load list is searched to see if
the routine is already loaded. If it is
loaded, the system increments the use count
by one and passes the entry point address
to the requesting routine.

Each time a DELETE macro instruction is
issued for the routine, the use count is
decremented by one. When it reaches zero,
the RB is removed from the load list and
storage occupied by the associated routine
is freed.

Systems with MFT (with subtasking): At
this control program level, the load list
is used as described for PCP and MFT
without subtasking, with the following
exceptions:

1. The LRBs and LPRBs queued on the load
list represent modules that are not
reenterable. LRBs and LPRBs
representing reenterable modules are
gueued on the job pack area queue.

2. When a LOAD macro instruction is
issued, the system searches the job
pack area queue before searching the
load list.

Systems with MVT: Instead of LRBs and
LPRBs created as a result of LOAD macro
instructions, the load list maintained by a
system with MVT contains elements
representing load modules. Load list
elements (LLEs) are associated with load
modules through another control medium
called the contents directory.

The contents directory is made up of
three separate queues: the link pack area

reenterable. These routines however,
cannot be used to perform a task that is
not part of the job step.

The load list represents routines that
are brought into a job pack area or found
in the link pack area by the routines that
perform the Load function. The entries in
the load list are load list elements, not
CDEs. Each load list element is associated
with a CDE in the JPAQ or the LPAQ; the
programs represented in the load list are
thus also represented in one of the other
contents directory queues.

Load list elements also contain a count
field that corresponds to the use count in
a LPRB or ILRB. Each time a LOAD macro
instruction is issued for a load module
already represented on the load list, the
count is incremented by one. As
corresponding DELETE macro instructions are
issued, the count is decremented until it
reaches zero. An LLE has the following
format:

0 1 5

Byte O: Reserved (RES).

Bytes 1-3: Pointer to the next more recent
LLE on the load list.

Byte U4: Count.

Bytes 5-7: Pointer to the corresponding

CDE.

More will be said about CDEs in the next
topic of Section 1, titled "Main Storage
Supervision."

Job Pack Area Queue (MFT with Subtasking
only)

control queue (LPAQ), the job pack area

control queue (JPAQ), and the load list.

The LPAQ is a record of every program in
the system link pack area. This area
contains reenterable routines specified by
the control program or by the user. The
routines in the system link pack area can
be used repeatedly to perform any task of
any job step in the system. The entries in
the LPAQ are contents directory entries
(CDEs).

There is a JPAQ for each job step in the
system that uses a program not in the link
pack area. The JPAQ, like the LPAQ, is
made up of CDEs. It describes routines in
a job step region. The routines in the job
pack area can be either reenterable or not

In an MPFT system with subtasking, the job
pack area queue is a chain of request
blocks associated with load modules invoked
by a LOAD macro instruction. The queue
contains FRBs, and those LRBs and LPRBs
that represent reenterable modules. FRBs
are queued on the job pack area queue until
the requested module is completely loaded.
When the module is completely loaded into
main storage, the FRB is removed from the
job pack area queue and replaced with an
LBR or an LPR queue on the jcb pack area
queue if the loaded module is reenterable,
and on the load 1list if it is not.

In the MFT with subtasking

configuration, the load list represents
non-reenterable modules, while the job pack

Task Supervision 15

area queue represents only reenterable
modules within the partition. These RBs on
the job pack area queue are not deleted
automatically, but remain intact until they
are deleted by a DELETE macro instruction,
or until job step termination occurs.
Reenterable load modules are therefore
retained in the partition for use by the
job step task or any subtasks which may be
created.

Whenever a LOAD macro instruction is
issued, the job pack area queue is
searched. If the routine is alrxeady fully
loaded and represented by an LRB or an LPRB
on the JPAQ (the routine is reenterable),
the system increments the use count by one
and passes the module entry point address
to the requesting routine. If an FRB for
the requested module is found, a wait list
element (WLE) representing the deferred
request is queued to the FRB, and the
request is placed in a wait. When the
requested routine is fully loaded, the
system releases the request from the wait
condition, and the request is re-initiated.
If no RB for the requested routine is
found, an FRB is created and queued on the
JPAQ. The system then searches the load
list of the requesting task for an RB for
the requested routine. If an RB for that
routine is found on the load list (the
routine is not reenterable), the use count
is incremented by one, the entry point
address of the module is passed to the
requesting routine, and the FRB is dequeued
from the JPAQ. If no RB is found on the
load list, the FRB remains on the JPAQ and
the system begins loading the requested
module.

Each time a DELETE macro instruction is
issued for the routine, the use count is
decremented by one (the DELETE routine
ignores FRBs). When the use count reaches
zero, the RB is removed from the queue.

Figure 5 illustrates how the job pack area
queue is chained to a TCB.

In Figure 5, each RB contains a pointer to
the previous RB and a pointer to the next

RB on the queue. If there is no previous

RB on the queue, that pointer will contain
zero; if there is no next RB on the queue

(this RB is the most recent on the JPAQ),

the next RB pointer will point back to the
job pack area queue pointer in the PIB.

Two wait list elements (WLEs) are queued
to FRB-C representing deferred requests
waiting until the initial loading of the
module is completed. The last WLE contains
zero in its forward pointer, indicating
that it is the last element on the WLE
queue.

-
|
i
|-

Figure 5. Job Pack Area queue

Effects of LINK, ATTACH, XCTL, and LOAD

In the previous paragraphs we have
mentioned the LINK, ATTACH, XCTL, and LOAD
macro instructions. A brief description of
each will be helpful at this point. LINK,
ATTACH, XCTL, and LOAD, though similar,
have some distinguishing characteristics
and system dependencies worth mentioning.
By knowing what happens when these macro
instructions are issued, you can make more
effective use of the active RB queue and
the load list.

LINK: A LINK results in the creation of a
PRB chained to the active RB queue. Upon
completion of the invoked routine, control
is returned to the invoking routine. 1In
systems with PCP and MFT, the RB is removed
from the queue. The storage occupied by
the invoked routine is freed unless the
routine is also represented on the load
list, or on the job pack area queue in MFT
systems with subtasking. In systems with -
MVT, the use count in the RB is decremented
by one; if it is then zero, the RB and the
storage occupied by the routine are marked
for deletion. A LINK macro instruction
generates an SVC 6.

ATTACH: An ATTACH is similar to the other

three macro instructions in systems with

PCP or with MFT without subtasking. In _—
systems with MFT (with subtasking) or MVT,

16 Programmer's Guide to Debugging (Release 20)

ATTACH is the means for dynamically
creating a separate but related task -- a
subtask. At the PCP and MFT (without
subtasking) levels, tasks cannot create
subtasks. ATTACH effectively performs the
same functions as LINK at these control
program levels, with two notable additions:

1. You can request an exit routine to be
given control upon normal completion
of the attached routine.

2. You can request the posting of an
event control block upon the routine's
completion.

Exit routines are represented by additional
RBs on the active RB queue. The ATTACH
macro instruction generates an SVC 42(23).

XCTL: An XCTL also results in the creation
of a PRB and immediate transfer of control
to the invoked routine. However, XCTL
differs from the other macro instructions
in that, upon completion of the invoked
routine, control is passed to a routine
other than the invoking routine. In fact,
an XCTL does not result in the creation of
a lower level RB. Instead, the invoking
routine and its associated RBs are deleted
when the XCTL is issued. 1In effect, the RB
for the invoked routine replaces the
invoking routine's RB. The XCTL macro
instruction generates an SVC 7.

LOAD: The LOAD macro instruction was
treated previously in the discussion of the
load list. To summarize: the system
responds to a LOAD by fetching the routine
into main storage and passing the entry
point address to the requesting routine in
register 0. Because the system does not
have an indication of when the routine is
no longer needed, a LOAD must be
accompanied by a corresponding DELETE macro
instruction. If not, the routine and its
RB remain intact until the job step is
terminated. The LOAD macro instruction
generates an SVC 8.

System Task Control Differences

Thus far, this topic has dealt with the
aspects of task supervision that are
similar at the three control program
levels. There are, however, some major
areas of difference, namely:

1. The number of tasks that can be known
to the system concurrently.

2. The layout of main storage.

3. The additional main séorage control
information in systems with MVT.

The first two subjects are discussed
here, by system. The third subject,
because of its volume, is discussed in the
next topic of Section 1.

Systems with PCP: The distinguishing
characteristic of an operating system with
the primary control program is that it
handles a single task. It has one TCB at
any given time, which resides in the system
nucleus. Jobs are processed sequentially,
one step at a time. ATTACH macro
instructions are treated similarly to
LINKs; that is, they do not create
subtasks.

Figure 6 is a snapshot of main storage
in a system with PCP. The fixed area
contains those routines, control blocks,
and tables that are brought into main
storage at IPL, and never overlaid. It
also may contain optional access method and
SVC routines which are normally
nonresident, and an optional list of
absolute addresses for routines which
reside on direct access devices. These
options can be selected during system
generation.

DYNAMIC
AREA

FIXED
AREA

Figure 6.

Main Storage Snapshot (PCP)

The dynamic area contains, in lower main
storage adjacent to the fixed area, the
processing program and routines invoked by

Task Supervision 17

LINK, XCTL, and ATTACH macro instructions.
At some points in the job processing flow,
the processing program may be a job
management routine. Upper main storage
contains the user save area, user parameter
area, task inputs/output table, routines
requested by LOAD macro instructions, and
non-resident routines, such as access
method routines.

Systems with MFT (Without Subtasking):
Operating Systems that provide
multiprogramming with a fixed number of
tasks without the subtasking option (MFT
without subtasking), resemble systems with
PCP except that the dynamic area may be
divided into as many as 52 partitions.
Partitions sizes and attributes are defined
during system generation. These sizes and
attributes remain fixed unless redefined by
the operator during or after system
initialization. Each partition contains
one task. Three additional tasks, the
transient area loading task, the
communication task, and the master
scheduler task, reside in the fixed area.
One TCB exists for each task. All TCBs are
linked by dispatching priority in a TCB
queue, beginning with the TCBs for the
three resident tasks.

The dynamic area may contain as many as
3 reading tasks, as many as 36 writing
tasks, and as many as 15 job step tasks, so
long as the total number of tasks does not
exceed 52. Jobs are processed sequentially
in a partition, one job step at a time. An
ATTACH macro instruction, as in systems
with PCP, is treated similarly to a LINK.

Because more than one task exists at any
given time, systems with MFT introduce the
concept of task switching. The relative
dispatching priority of tasks is determined
by the TCB queue. Control of the CPU must
often be relinquished by one task and given
to another of higher priority. MFT dumps
contain task switching information often
important in reconstructing the environment
at the time of task failure.

Figure 7 is a snapshot of main storage
in a system with MPFT (without subtasking),
having n partitions. The fixed area
contains the nucleus (including the TCB
queue, transient area loading task,
communications task, and master scheduler
task), and the system queue area. The
fixed area may also contain the same system
generation options discussed under the
heading "Systems with PCP," and a
reenterable load module area, which is
optional in MFT. Each partition in the
dynamic area is similar to the entire
dynamic area of PCP.

18 Programmer's Guide to Debugging (Release

DYNAMIC
AREAS <
(PARTITIONS

FIXED
AREA

EACH PARTITION LOOKS
LIKE PCP's DYNAMIC AREA

Figure 7. Main Storage Snapshot (MFT

Without Subtasking)

Systems with MPFT (With Subtasking):
Operating Systems that provide
multiprogramming with a fixed number of
tasks with the subtasking option (MFT with
subtasking) more closely resemble systems
with MVT, and differ from MPT systems
without subtasking in the following major
areas:

1. MFT with subtasking has an ATTACH
facility similar to the ATTACH
facility in MVT. While the number of
job step TCBs still may not exceed 15,
the number of tasks in any partition,
and therefore the total number of
tasks in the system, is now variable.
Job step task TCBs reside in the
nucleus. They are queued, following
the system task TCBs, in the same
manner as in MFT without subtasking.
When subtasks are created, however,
the subtask TCBs are placed in the
system queue area and queued to the
job step TCBs according to dispatchina
priority (TCBTCB field), and according
to subtask relationships (TCBNTC,
TCBOTC, TCBLTC fields).

20)

ST

2. MFT with subtasking provides the
ability to change the dispatching
priority of any task within a
partition through the use of the CHAP
macro instruction. For information
regarding the use of the CHAP macro
instruction, refer to the publication
IBM System/360 Operating System:
-Supervisor and Data Management
Services, GC28-6646.

Figure 8 is a snapshot of main storage in
an MFT system with subtasking having n
partitions. Note here that the TCBs in the
nucleus are all job step TCBs, while those
residing in the sytem queue area are the
subtask TCBs.

DYNAMIC
AREAS
PARTITIONS)

FIXED
AREA

EACH PARTITION DOES NOT LOOK LIKE
PCP's DYNAMIC AREA

Figure 8. Main Storage Snapshot (MFT With

Subtasking)

Systems with MVT: In Operating Systems
that provide multiprogramming with a
variable number of tasks (MVT), as many as
15 job steps can be executed concurrently.

Each job step requests an area of main
storage called a region and is executed as
a job step_task. In addition, system tasks
request regions and can be executed
concurrently with job step tasks.

Regions are assigned automatically from
the dynamic area when tasks are initiated.
Regions are constantly redefined according
to the main storage requirements of each
new task.

With the facility of attaching subtasks
available to each task through the ATTACH
macro instruction, the number of TCBs in
the system is variable. Tasks gain control
of the CPU by priority. To keep track of
the priority and status of each task in the
system, TCBs are linked together in a TCB
queue.

Figure 9 is a snapshot of main storage
in a system with MVT. The fixed area is
occupied by the resident portion of the
control program loaded at IPL. The system
queue space is reserved for control blocks
and tables built by the control program.
The dynamic area is divided into
variable-sized regions, each of which is
allocated to a job step task or a system
task. Finally, the link pack area contains
selected reenterable routines, loaded at
IPL. If an IBM 2361 Core Storage device
and Main Storage Hierarchy Support are
included in the system, a secondary link
pack area may be created in hierarchy 1 to
contain other reenterable routines.

LINK PACK
AREA

DYNAMIC
AREA ﬁ
(REGIONS)

SYSTEM
QUEUE
AREA

FIXED NucLEV®
AREA Loy

Figure 9. Main Storage Snapshot (MVT)

Task Supervision 19

Main Storage Supervision

Because main storage is allocated
dynamically in an operating system, current
storage control information must be kept.
Such information is contained in a series
of control blocks called gueue elements.

In systems with PCP and MFT without
subtasking, queue elements reflect areas of
main storage that are unassigned. In MFT
systems with subtasking, a gotten subtask
area queue element (GQE) is introduced to
record storage obtained for a subtask by a
supervisor issued GETMAIN macro
instruction. In systems with MVT, more
elaborate storage control is maintained; at
any given time, queue elements reflect the
distribution of main storage in regions,
subpools, and load modules. A familiarity
with storage control information is
necessary to understand the main storage
picture provided in dumps.

The dynamic area may be significantly
expanded by including IBM 2361 Core Storage
in the system. Main Storage Hierarchy
Support for IBM 2361 Models 1 and 2 permits
selective access to either processor
storage (hierarchy 0) or 2361 Core Storage
(hierarchy 1). If IBM 2361 Core Storage is
not included, requests for storage from
hierarchy 1 are obtained from hierarchy 0.
If 2361 Core Storage is not present in an
MVT system and a region is defined to exist
in two hierarchies, a two-part region is
established within processor storage. The
two parts are not necessarily contiguous.

Storage Control in Systems With PCP

The chain of storage control information in
a system with PCP begins at a table called
the main storage supervisor (MSS) boundary
box, located in the system nucleus. This
table, pointed to by the TCBMSS field of
the TCB, contains three words. The first
word points to a free queue element (FQE)
associated with the highest free area in
processor storage. The second word points
to the first doubleword outside the
nucleus. The third word contains the
highest address in processor storage plus
one.

If Main Storage Hierarchy Support for
IBM 2361 Models 1 and 2 is included in the
system, the boundary box is expanded to six
words. The first byte of the expanded
boundary box contains a "1" in bit 7 to
indicate that hierarchy support is
included. The second set of three words
describes storage in hierarchy 1. The
first word of this second set points to an
FQE associated with the highest free area
in hierarchy 1. The second word points to
the first doubleword in hierarchy 1. The

third word points to the highest position
in hierarchy 1 plus one. If 2361 Core
Storage is not included in the system, the
hierarchy 1 pointers are set to zero.

FQE: Each free area in main storage is
described by an FQE. FQEs are chained,

beginning with the FQE associated with the
free area having the highest address. If
Main Storage Hierarchy Support is present,
one FQE chain exists for each hierarchy
specified.
bytes of the area it describes.
following format:

Each FQE occupies the first 8
It has the

Bytes 0-3: Pointer to FQE associated with
next lower free area or, if
this is the last FQE, zeros.
Bytes 4-7: Number of bytes in the free
area.

Storage control in systems with PCP is
summarized in Figure 10.

DYNAMIC
AREA

FIXED
AREA

49

Storage Control (PCP)

Figure 10.

20 Programmer's Guide to Debugging (Release 20)

Storage Control in Systems with MFT
(Without Subtasking)

Storage control information in systems with
MFT without subtasking is similar to that
in systems with PCP, except that one MSS
boundary box is maintained for each
partition. The TCB associated with the
partition contains a pointer (TCBMSS) to
the boundary box.

If Main Storage Hierarchy Support is
included, the first half of each expanded
boundary box describes the processor
storage (hierarchy 0) partition seagment,
and the second half describes the 2361 Core
Storage (hierarchy 1) partition segment.
Any partition segment not currently
assigned storage in the system has the
applicable boundary box pointers set to
zero. If the partition is established
entirely within hierarchy 0, or if 2361
Core Storage is not included in the system,
the hierarchy 1 pointers in the second half
of the expanded boundary box are set to
zero. If a partition is established
entirely within hierarchy 1, the hierarchy
0 pointers in the first half of the
expanded boundary box are set to zero.

The boundary box format for MFT is
identical to the format for PCP. The
pointers, however, point to the boundaries
of the partition and to the partition FQEs
rather than to the boundaries of storage.
Figure 11 summarizes storage control in
systems with MFT.

DYNAMIC
AREA

FIXED
AREA

Figure 11. Storage Control for a Partition

(MFT Without Subtasking)

Storage Control in Systems with MFT (With
Subtasking)

Storage control information for the job
step or partition TCB in MFT systems with
subtasking is handled in the same way as in
MFT systems without subtasking. However,
when subtasks are created, the supervisor
builds another control block, the gotten
suptask area queue element (GQE). The GQEs
associated with each subtask originate from
a one word pointer addressed by the TCBMSS
field of the subtask TCB.

GQE: Each area in main storage belonging
to a subtask, and obtained by a supervisor
issued GETMAIN macro instruction, is
described by a gotten subtask area queue
element (GQE). GQEs are chained in the
order they are created. The TCBMSS field
of the subtask TCB contains the address of
a word which points to the most recently
created GQE.

ONE
PARﬂTwNj

FIXED
AREA

Storage Control for Sucrtask
Storage (MET with Subtasking)

Figure 12.

Main Storage Supervision 21

Bytes 1-3: Pointer to the FQE associated
with the first free area.
Bytes 5-7: Pointer to the next DQE or, if

this is the last DQE, zeros.

Bytes 9-11(B): Pointer to first 2K block
described by this DQE.

Bytes 13-15(D-F): Length in bytes of area

described by this DQE.

DYNAMIC
AREAS

SYSTEM
QUEUE
SPACE

Figure 14. Storage Control for a Subpool

(MVT)

FQE: The FQE describes a free area within
a set of 2K blocks described by a DQE. It
occupies the first eight bytes of that free
area. Since the FQE is within the subpool,
it has the same protect key as the task
active within that subpool. Extreme care
should be exercised to see that FQEs are
not destroyed by the problem program. If
an FQE is destroyed, the free space that it
describes is lost to the system and cannot
be assigned through a GETMAIN. As area
distribution within the set of blocks
changes, FQEs are added to and deleted from
the free queue. An FQE has the following
format:

Bytes 1-3: Pointer to the next lower FQE
or, if this is the last FQE,
Zeros.

Bytes 5-7: Number of bytes in the free

darea.

A subpool is summarized in Figure 14.

Storage Control for a Load Module in
Systems with MVT

Each load module in main storage is
described by a contents directory entry
(CDE) and an extent list (XL) that tells
how much space it occupies.

CDE: The contents directory is a group of
queues, each of which is associated with an
area of main storage. The CDEs in each
queue represent the load modules residing
in the associated area. There is a CDE
queue for the link pack area and one for
each region, or job pack area. The TCB for

the job step task that requested the region
points to the first CDE for that region.
Contents directory queues reside in the
system queue space.
following format:

A CDE has the

17f1f)

MU@MV

20(14) 21(15)
Byte 0: Flag bits, when set to one,
indicate:
Bit 0 - Module was loaded by NIP.
Bit 1 - Module is in process of being
loaded.
Bit 2 - Module is reenterable.
Bit 3 - Module is serially reusable.
Bit 4 - Module may not be reused.
Bit 5 - This CDE reflects an alias
name (a minor CDE).
Bit 6 - Module is in job pack area.
Bit 7 - Module is not only-loadable.
Bytes 1-3: Pointer to next CDE.
Bytes 5-7: Pointer to the RB.

Bytes 8-15(F): EBCDIC name of load module.

Byte 16(10): Use count.

24 Programmer's Guide to Debugging (Release 20)

-n

Bytes 17-19(11-13):
load module.

Byte 20: Flag bits, when set to one,

indicate:

Bit 0 - Reserved.

Bit 1 - Module is inactive.

Bit 2 - An extent list has been built
for the module.

Bit 3 - This CDE contains a relocated

' alias entry point address.
Bit 4 - The module is refreshable.

Bits 5, 6, 7 - Reserved.

Bytes 21-23(15-17): Pointer to the XL for
this module or, if this is a
minor CDE, pointer to the
ma jor CDE.

XL: The total amount of main storage
occupied by a load module is reflected in
XLs are located in
An XL has the

an extent list (XL).
the system queue space.
following format:

Bytes 0-3:

Length of XL in bytes.

Number of scattered control
sections. If the control
sections are block-loaded, 1.

Bytes 4-7:

Entry point address of

Length in bytes of each
control section in the module
(4 bytes for each control
section) and starting location
of each control section (4
bytes for each control
section).

Remaining
bytes:

Storage control elements and queues for
load modules are summarized in Figure 15.

DYNAMIC
AREAS

SYSTEM
QUEUVE
SPACE

Figure 15.

Storage Control for a Load
Module (MVT)

Main Storage Supervision 25

Page of GC28-6670-4, Revised March 1, 1971, by TNL:

System Control Blocks and Tables

In addition to the key task management
control blocks (TCB and RB), several other
control blocks containing essential
debugging information are built and
maintained by data management and job
management routines. Although some of
these blocks are not readily identifiable
on a storage dump, they can be located by
following chains of pointers that begin at
the TCB.

The control blocks discussed here have
the same basic functions at each control
program level. The precise byte-by-byte
contents of the blocks can be found in the
publication System Control Blocks. Block
contents useful in debugging are listed in
Appendix J.

Communications Vector Table (CVT)

The CVT provides a means of communication
between nonresident routines and the
control program nucleus. Its most
important role in debugging is its pointer
to two words of TCB addresses. These words
enable you to locate the TCB of the active
task, and from there to find other
essential control information. Storage
location 16(10) contains a pointer to the
CVT.

Task Input/Output Table (TIOT)

A TIOT is constructed by job management for
each task in the system. It contains
primarily pointers to control blocks used
by I/0 support routines. It is usually
located in the highest part of the main
storage area occupied by the associated
task (in systems with MVT, TIOTs are in the
system queue space.) Through the TIOT, you
can ¢btain addresses of unit control blocks
allocated to the task, the job and step
name, the ddnames associated with the step,
and the status of each device and volume
used by the data sets.

Unit Control Block (UCB)

The UCB describes the characteristics of an
I/0 device. One UCB is associated with
each I/0 device configured into a system.
The UCB's most useful debugging aid is the
sense information returned by the last
sense command issued to the associated
device.

GN28-2457

Event Control Block (ECB)

The ECB is a 1-word control block created
when a READ or WRITE macro instruction is
issued, initiating an asynchronous I/0
operation. At the completion of the I/0
operation, the access method routine posts
the ECB. By checking this ECB, the
completion status of an 1I/0 operation can
be determined. 1In all access methods but
QUTAM, the ECB is the first word of a larger
block, the data event control block.

Input/OQutput Block (IOB)

The ICB is the source of information
required by the I/0O supervisor. It is
filled in with information taken from an
1/0 operation request. In debugging, it is
useful as a source of pointers to the DCB
associated with the I/0 operation and the
channel commands associated with a
particular device.

Data Control Block (DCB)

The DCB is the place where the operating
system and the problem program store all
pertinent information about a data set. It
may be completely filled by operands in the
DCB macro instruction, or partially filled
in and completed when the data set is
opened, with subparameters in a DD
statement and/or information from the data
set label. The format of DCBs differs
slightly for each of the various access
methods and device types. The DCB's
primary debugging aids are its pointers to
the DEB and current IOB associated with its
data set, and the offset value of the
ddname in the TIOT.

Data Extent Block (DEB)

A DEB describes a data set's auxiliary
storage assignments and contains pointers
to some other control blocks. The DEB is
created and queued to the TCB at the time a
data set is opened. Each TCB contains a
pointer to the first DEB on its chain.
Through this pointer you can f£ind out which
data sets are opened for the task at a
given time, what extents are occupied by
open data sets, and where the DCB and UCB
are located.

Summary of Control Block Relationships

Figure 16, an expansion of Figure 1, shows
the relationships among the principal
control blocks and tables in the System/360
Operating System.

26 Programmer's Guide to Debugging (Release 20.1)

Location +0 TCB Words
) [—

16(10)

+13(D)
T
Or
+25(19) ,—1DEp +33(21)
{F: D:
|
w45 @) °
D
CB '
+68 S
(44) [} 1} +21(15)
Og
log .
4 I H7(11)
F: OB
E
Cp

Figure 16. Control Block Relationships

System Control Blocks and Tables 27

Traces

Two features that assist you in tracing the
flow of your program are the save area
chain and the trace table (the trace table
is optional at system generation.) Both
these features are edited and clearly
identified on ABEND/SNAP dumps, and can be
located easily on storage image and
stand-alone dumps.

Save Area Chain

When control is passed from one load module
to another, the requested module is
responsible for storing the contents of
general registers. This necessitates the
use of separate save areas for each level
of load module in a task. With the
different types of linkages that can occur,
save areas must be chained so that each one
points to both its predecessor and
successor.

A save area is a block of 72 bytes
containing chain pointers and register
contents. It has the following format:

5 Séﬁ higher sava areci./ h : E

20(14)

Bytes U4-7:

Pointer to the next higher
level save area or, if this is
the highest level save area,
Zeros.

Bytes 8-11(B): Pointer to the next lower
level save area or, if this is
the lowest level save area,
unused.

Bytes 12-15(C-F): Contents of register 14
(optional)

Bytes 16-192(10-13): Contents of register
15 (optional)

Bytes 20-71(14-3F):
0 to 12

Contents of registers

The save area for the first or highest
level load module in a task (save area 1)

28 Programmer's Guide to Debugging

Contents of 1{ } km‘gf&}’étjﬁ@‘%?? o

is provided by the control program. The
address of this area is contained in
register 13 when the load wodule is first
entered. It is the responsibility of the
highest level module to:

1. Save registers 0-12 in bytes
20-71(14-3F) of save area 1 when it is
entered.

2. Establish a new save area (save area
2).

3. Place the contents of register 13 into
bytes U4-7 of save area 2.

4. Place the address of save area 2 into
register 13.

5. Place the address of save area 2 into
bytes 8-11(B) of save area 1.

At this point, the save areas appear as
shown in Fiqure 17.

Save area 1 Save area 2
+4 0000
+8 ‘Save area 2 Register 13
+20(14) Contents of
registers 0-12
e e
i
+68(44)

Figure 17. Save Area 'Trace

If a module requests a lower level
module, it must perform actions 1 through 4
to ensure proper restoration of registers
when it regains control. (Action 5 is not
required, but must be performed if the dump
printout of the field is desired.) A
module that does not request a lower level
module need only perform the first action.

ABEND and SNAP dumps include edited
information from all save areas associated
with the dumped task under the heading
"SAVE AREA TRACE". In a stand-alone dump,
the highest level save area can be located
through a field of the TCB. Subsequent
save areas can be located through the save
area chain.

(Release 20)

Trace Table

The tracing routine is an optional feature
specified during system generation. This
routine places entries, each of which is
associated with a certain type of event,
into a trace table. The size of the table
is also a system generation option; when
the table is filled, the routine overlays
old entries with new entries, beginning at
the top of the table (the entry having the
lowest storage address). The contents and
size of a trace table are highly
system-dependent.

Systems with PCP: Trace table entries for
systems with PCP are 4 words long and
represent occurrences of sSIO, I/0, and SVC
interruptions. Figure 18 shows the word
contents of each type of entry.

SIO CC/Dev CAW Csw
0 1 2

10 /O OLD PSW Csw
0 2

svC SVC OLD PSW Reg 0 Reg 1
0 ' 2 3

Figure 18. Trace Table Entries (PCP)
Systems with MFT: Systems with MFT have
the same type of trace table entries as
PCP, plus an additional type representing
task switches, as shown in Figure 19.

Systems _with MVT: The trace table in a
system with MVT is expanded to include more
entries and more information in each entry.
Trace table printouts occur only on SNAP
dumps and stand-alone dumps. Entries are
eight words long and represent occurences
of SI0, external, SVC, program, and I1I/0
interruptions, and dispatcher loaded PSWs.

Figure 20 shows the word contents of trace
table entries for SNAP dumps and
Figure 21 shows the

contents of trace table entries as filled

stand-alone dumps.

by MVT with Model 65 multiprocessing. (SSM
-- set system mask -- entries are
optional.)
sIo CC/Dev CAW csw
0 1 2
1/0 1/0 OLD PSW csw
0 2
sVC SVC OLD PSW Reg O Reg 1
[2 3
Task
Soth PSW t New TCB | f OId TCB

0 2 3
Figure 19. Trace Table Entries (MFT)

svC
External PSW Reg 15 Reg O
Program
Dispatcher 0 2 3
tTCB Timer
7
SIO CC/Dev CAW CSW {
0 1 2
TTCB Timer
7
/O PSW Ccsw {

Figure 20.

Trace Table

Traces

Entries (MVT)

29

Y d Dispatcher
oo Old Psw Reg 15 Reg 0 é New PSW Reg 15 Reg 0
-

0 2 3 0 2 3
Old TC8 Qid 1C8 . New TCB New TCB .
; vat (@R | T s | Tmer o ? Reg 1 Pcrum cpug) | Timer |I®
4 5 6 7 4 5 6 7 '
SIO External
CC/Dev cAW csw Old PSW Reg 15 Reg 0
0 1 2 2 3
TCB Old TCB Old TCB . STMASK)
E (RQE; (CPU A) (CPU B) Timer I© g Reg 1 of other CPU TQE Timer ID
4 5 6 7 4 5 6 7
1/O SSM
Old PSW Csw Old PSW Reg 15 Reg O
0 2 0 2 3
Old TCB old TCB . Req 1 |Locking|pOId TCB old TCB - D
§ Reg 1 (CPU A) T (CPU 8) Timer 1D g 9 CPU ID |1 (CPU A) (CPU 8) fmer
3 <5) 7 4 5 6 7

Figure 21. Trace Table Entries (MVT with Model 65 multiprocessing)

30 Programmer's Guide to Debugging (Release 20)

NOTES

R i

e

How are ABEND dumps invoked? What does
information in a SNAP dump mean? What
useful facts can be gleaned from an
indicative dump? Where are key tables and
control blocks in a stand-alone dump?

These and similar debugging questions
are answered in this section of the manual.
Topics comprising Section 2 describe each
of the debugging facilities introduced
earlier -- what information they provide,
where to find this information , and how to

apply it.

The introduction to this section
describes a general procedure for debugging
with a dump. Subsequent topics deal with

e ABEND/SNAP dumps issued by systems with
PCP and MFT.

e ABEND/SNAP dumps issued by systems with
MVT.

e Indicative dumps.

e Storage Image dumps.

e Stand-alone dumps.
Each topic includes instructions for
invoking the dump, a detailed description
of the dump's contents, and a guide to
using the dump, with specific instructions

for following the general debugging
procedure.

General Debuqging Procedure

The first facts you must determine in
debugging with an operating system dump are
the cause of the abnormal termination and
whether it occurred in a system routine or
a problem program. To aid you in making
these determinations, ABEND, SNAP, and
indicative dumps provide two vital pieces
of information -- the completion code and
the active RB queue. Similar information
can be obtained from a storage image dump
or a stand-alone dump by analyzing PSWs and
re-creating an active RB queue.

A completion code is printed at the top
of ABEND, SNAP, and indicative dumps. It
consists of a system code and a user code.
The system code is supplied by the control
program and is printed as a 3-digit
hexadecimal number. The user code is the
code you supplied when you issued your own
ABEND macro instruction; it is printed as a
4-digit decimal number. If the dump shows

Section 2: Interpreting Dumps

a user code, the error is in your program,
and the completion code should lead you
directly to the source of error. Normally,
however, a system code will be listed; this
indicates that the operating system issued
the ABEND. Often the system completion
code gives enough information for you to
determine the cause of the error. The
explanations of system completion codes,
along with a short explanation of the
action to be taken by the programmer to
correct the error, are contained in the
publication IBM System/360 Operating
System: Messages and Codes, GC28-6631.

To locate the load module that had
control at the time the dump was issued,
find the RB associated with the module. If
the dump resulted from an ABEND or SNAP
macxo instruction, the third most recent RB
on the queue represents the load module
that had control. The most recent and
second most recent RBs represent the ABDUMP
and ABEND routines, respectively. Storaae
image dumps and stand-alone dumps contain
PSW information that can be used to
identify the load module in control.

Once you have located the RB or load
module, look at its name. If it does not
have a name, it is probably an SVRB for an
SVC routine, such as one resulting from a
LINK, ATTACH, XCTL or LOAD macro
instruction. To find the SVC number, look
at the last three digits of the resume PSW
in the previous RB on the queue. If a
previous RB does not exist, the RB in
question is an SVRB for a routine invoked
by an XCTL macro instruction. Reaister 15
in the extended save area of the RB gives a
pointer to a parameter list containing the
name of the routine that issued the XCTL.

If the RB does not bear the name of one
of your load modules, either an RB was
overlaid or termination occurred during
execution of a system routine. The first
three characters of the name identify the
system component; Appendix C contains a
list of component names to aid you in
determining which load module was being
executed.

If the RB bears the name of one of your
load modules, you can be reasonably certain
that the source of the abnormal termination
lies in your object code. However, an
access method routine may be at fault.

This possibility arises because your
program branches to access method routines

Section 2: Interpreting Dumps 31

through a supervisor-assisted linkage,
instead of invoking them. Thus, an access
method routine is not represented on the
active RB gueue. To ascertain whether an
access method routine was the source of the
abnormal termination, you must examine the
resume PSW field in the RB. If the last 3
bytes in this field point to a main storage
address outside your program, check the
load list to see if an access method
routine is loaded at that address. If it
is, you can assume that it, and not your
program, was the source of abnormal
termination.

Abnormal Termination in System Routines:

By analyzing the RB's name field or the SVC
number in the previous RB, you can
determine which system load module
requested the termination. If the RB has a
system module name, the first three
characters tell you the name of the system
component. The remaining characters in the
name identify the load module in error.

Remember, although a system routine had
control when the dump was taken, a problem
program error may indirectly have been at
fault. Such a situation might result from
an incorrectly specified macro
instruction,an FQE modified inadvertently,
a request for too much storage space, a
branch to an invalid storage address, etc.
To determine the function of the load
module that had control, consult Appendix
C. With its function in mind, the
completion code together with an
examination of the trace table may help you
to uncover which instruction in the problem
program incorrectly requested a system
function.

Program Check Interruptions in Problem
Programs: If you have determined from the
completion code or PSWs and evaluation of
the RB queue that the dump resulted from a
program check in your problem program,
examine the status of your program in main
storage. (If you have received only an
indicative dump, you must obtain either an
ABEND/SNAP dump or a stand-alone dump at
this point.) Locate your program using
pointers in the RB. If its entry point
does not coincide with the lower boundary
of the program, you can find the lower
boundary by adding 32(20) to the address of
the RB (systems with PCP and MFT). The
RB's size field gives the number of
doublewords occupied by the RB, the
program, and associated supervisor work
areas. ABEND/SNAP dumps with PCP and MFT
have the storage boundaries of the problem
program calculated and printed.

Next, locate the area within your
program that was executed immediately prior
to the dump. To do this, you must examine

the program check old PSW. Pertinent
information in this PSW includes:
Bits 12-15: AMWP bits

Instruction length in
halfwords.

Bits 32,33:

Bits 40-63: Instruction address

A useful item of information in the PSW
is the P bit of the AMWP bits (bits 12-15).
If the P bit is on, the PSW was stored
while the CPU was operating in the problem
program state. If it is off, the CPU was -
operating in the supervisor state.

Find the last instruction executed
before the dump was taken by subtracting
the instruction length from the instruction
address. This gives you the address of the
instruction that caused the termination.

If the source program was written in a
higher level language, you must evaluate
the instructions that precede and follow
the instruction at fault to determine their
function. You can then relate the function
to a statement in the source program.

Other Interruptions in Problem Programs:
If the completion code or PSWs and the
active RB queue indicate a machine check
interruption, a hardware error has
occurred. Call your IBM Field Engineering
representative and show him the dump.

AWy,

If an external interruption is
indicated, with no other type of
interruption, the dump probably was taken
by the operator. Check with him to find
out why the dump was taken at this point.
The most likely reasons are an unexpected
wait or a program loop. If a trace table
exists, examine it for the events preceding
the trouble or, if the trace table was made
ineffectual by a program loop, resubmit the
job and take a dump at an earlier point in
the program. You may want to consider
using the TESTRAN facility to find where
the program loop occurred.

The remaining causes of a dump are an
error during either execution of an SVC or
an I/0 interruption. In either case,
examine the trace table. Entries in the
table tell you what events occurred leading
up to termination. From the sequence of
events, you should be able to determine
what caused a dump to be taken. From here,
you can turn to system control blocks and
save areas to get specific information.

For example, you can find the sense
information issued as a result of a unit
check in the UCB, a list of the open data
sets from the DEB chain, the CCW list from
the I0B, the reason for an I/0 interrupt in .
the status portion of the CSW, etc.

32 Programmer's Guide to Debugging (Release 20)

Debugging Procedure Summary

Look at the completion code or PSW
printouts to find out what type of
Common completion
codes and causes are explained in

Check the name of the load module that
had control at the time the dump was
taken by looking at the active RB's.

If the

name identifies a problem program and
the completion code or PSW indicates a
program check, proceed to step 6. If
the name identifies a problem program,

indicates other than a program check,

1.
error occurred.
Appendix B.

2.

3. If the name identifies a system
routine, proceed to step 4.
and the completion code or PSW
proceed to step 10.

4. PFind the function of the system
routine using Appendix C.

5.

If the dump contains a trace table,
begin at the most recent entry and
proceed backward to locate the most
recent SVC entry indicating the
problem state. ¥From this entry,
proceed forward in the table,
examining each entry for an error that
could have caused the system routine
to be terminated.

If the name identifies one of your
load modules, check the instruction
address and the load list to see if an

return to step 4.

Locate your program in the dump.

Locate the last instruction executed

if the
program was written in a high-level
language, the instructions around it
for a possible error in object code.

If a machine check interruption is

If only an external interruption is
indicated, ask the operator why he
Resubmit the job and
take a dump at the point where trouble

6.
access method routine last had
control. If so,
7.
8.
before the dump.
9. Examine the instruction and,
10.
indicated, call your IBM Field
Engineering representative.
11.
took the dump.
first occurred.
12. Examine the trace table,

if one is
present, for events leading up to the
termination. Use trace table entries
and/or information in system control
blocks and save areas to isolate the
cause of the error.

Section 2: Interpreting Dumps 33

Page of GC28-6670-4, Revised March 1,

ABEND/SNAP Dump
(Systems With PCP and MF'T)

ABEND/SNAP dumps for systems with PCP and
MFT are discussed together because they are
nearly identical in format. System
differences in the contents of the dumps
are shaded for easy recognition. Debugging
instructions for the dumps are discussed
later, in the guide to using the dump.

ABEND/SNAP storage dumps are issued
whenever the control program or problem
program issues an ABEND or SNAP macro
instruction, or the operator issues a
CANCEL command requesting a dump, and
proper dump data sets have been defined.
However, in the event of a system failure,
if a S5YS1.DUMP data set has been defined
and is available, a full storage image dump
will be provided, as explained in the
section headed "Storage Image Dump."”

Since, in an MFT with subtasking system,
subtasks may be created, you may receive
one or more partial dumps in addition to
the complete dump of the task that caused
the abnormal termination. A complete dump
includes a printout of all control
information related to the terminating
task, and the nucleus and all allocated
storage within the partition in which the
abending task resided. A partial dump of a
task related to the terminating task
includes only control information. The
partial dump is identified by either ID=001
or ID=002 printed in the first line of the
dump. Figure 22 is a copy of the first few
pages of a complete ABEND dump of an MFT
system with subtasking. It illustrates
some of tne key areas on an ABEND dump, as
issued by systems with PCP and MFT. Those
portions of the dump that would only appear
on a dump of a subtasking system are noted
in the later discussions as appearing only
in a dump of an MFT with subtasking system.

For a discussion of a formatted ABEND
dump using the telecommunications access
method (TCAM) in an MFT environment, see
IBM System/360 Operating System: TCAM
Program Logic Manual, GY30-2029.

References to other TCAM debugging aids are
found in Appendix H.

Invoking an ABEND/SNAP Dump (PCP,MFT)

ABEND dumps are produced as a result of an
ABEND macro instruction, issued either by a
processing program Or an operating system

routine. The macro instruction requires a

1971, by TNL:

GN28-2457

DD statement in the input stream for each
job step that is subject to abnormal
termination. This DD statement must be
identified by one of the special ddnames
SYSABEND or SYSUDUMP. SYSABEND results in
edited control information, the system
nucleus, the trace table, and a dump of
main storage; SYSUDUMFP excludes the nucleus
and the trace table. In the event of a
system failure, the Damage Assessment
routine (DAR) attempts to write a storage
image dump to the SYS1.DUMP data set. A
full explanation of storage image dumps may
be found in the section headed "Storage
Image Dump."

SNAP Dumps result from a problem program
issuing a SNAP macro instruction. The
contents of a SNAP dump vary according to
the operands specified in the SNAP macro
instruction. SNAP dumps also require a DD
statement in the input stream. This DD
statement has no special characteristics
except that its ddname must not be SYSABEND
or SYSUDUMP. The processing program must
define a DCB for the snapshot data set.

The DCB macro instruction must contain, in
addition to the usual DCB requirements, the
operands DSORG=PS, RECFM=VBA, MACRF=(W),
BLKSIZE=882 or 1632, and LRECL=125. 1In
addition, the DCB must be opened before the
first SNAP macro instruction is issued.

Reference: The SNAP and DCB macro
instructions are discussed in the
publication Supervisor and Data Management
Macro Instructions.

Device and Space Considerations: DD
statements for ABEND/SNAP dumps, must
contain parameters appropriate for a kasic
sequential (BSAM) data set. Data sets can
be allocated to any device supported by the
basic sequential access method. There are
several ways to code these DD statements
depending on what type of device you choose
and when you want the dump printed.

If you wish to have the dump printed
immediately, code a DD statement defining a
printer data set.

r
|#/SYSABEND DD UNIT=1443,DCB=(...
L

e o

If your installation operates under a
system with PCP or MFT, and a printer is
associated with the SYSOUT class, you can
also obtain immediate printing by routing
the data set through the output stream.

34 Programmer's Guide to Debugging (Release 20.1)

Page of GC28-6670-4, Revised March 1, 1971, by TNL: GN28-2457

up of an output unit or delayed printing of
the dump.

e

r
| 7/SNAPDUMP DD SYSOUT=A,DCB=(...
L

If you wish to retain the dump, you can

keep or catalog it on a direct access or
This type of request is the easiest, tape unit. The last step in the pertinent
most economical way to provide for a dump. job can serve several functions: to print
All other DD statements result in the tying out key data sets in steps that have been

ABEND/SNAP Dump (Systems With PCP and MFT) 34.1

abnormally terminated, to print an ABEND or
SNAP dump stored in an earlier step, or to
release a tape volume or direct access
space acquired for dump data sets.
Conditional execution of the last step can
be established through proper use of the
COND parameter and its subparameters, EVEN
and ONLY, on the EXEC statement.

* ABDUMP REQUESTED *

JOB ATHEOQT24 STEP STEP TIME 000737

COMPLFTION CODE USER = 0123

INTERRUPT AY C6EFSA

PSW AT ENTRY TO ABEND 00150000 4006EF5A

TCB 01CB20 RB 000TFC58 P1E 00000000
MSS 0001CC58 PK/FLG 10B10408
FSA 1506EBF8 TCB 0001DOAO
LTC - 00000000 1Q€ 0000000 ;
STAE 00000000 TCT 00000000

ACTIVE RBS

PRB O6EE28 NM TATHBLOG SZ/STAB 00302000

SVRB 07FD20 NM SVC-601C SZ/STAB 0012n062

RG 0-7 00000240 80000078
8-15-7 0006EE6D OQO7FFT78

00000000
0007FFBO

O7TFC58 NM SVC—-AOQ5A SZ/STAB 000CDO62
RG 0-7 0007F7ESB 0007FDBO
8-15-7 0007F7ES 0006F296

40007874
0001CCS56

JOB PACK AREA QUEVE™
LPRB0GECAS . NH TATHALDG

 s7/5TAB 00282000

LPRS 06EEZS . NM TETHELOG - $2/STAR 00302000

LPRS 0BFOLS " NN TATHCLOG S2/STAB 001

LPRB 06F0BO NM*TATHDIQG'; SZZSYAR OﬁlBZWQE

LPRB 06FL90 NN TATHELDG ~ S2/STAB 00132000 >

P/P STORAGE BOUNDARIES 0006E800 TO 00080000
FREE AREAS SIZE

06EB90
06ECS0
06F5B8
07F668
Q7F7D8
07F840
07FB90
CTFEES8

0000C060
00000050
0000FC58
€0000098
00000010
60000228
0000C0CO
cooocols
GOTTEN CORE. " S1ZE:
SOD000 380
COO002A8".
00000068
000GO00ES
000600068
6000008
00000098
0000C060
00000078
£0000060
00000078

OTE210
06F3 L0
CTECH0
06F228
077590
CTFSFO
CTFDLB
QTFT00
07E 760
OTFAS8
QTFACS

Figure 22A.

DATE 99366

0007F78C
00000LFB
0001CBO8
VOOGEELL
00000000

USE/EP 0O106EE4S

USE/ZEP 00007B78
00080000
0007FFF8

USE/EP 00007878
000097F 8
0000225C

Direct access space should be requested
in units of average block siZe rather than
in cylinders (CYL) or tracks (TRK). 1If
abnormal termination occurs and the data
set is retained, the tape volume or direct
access space should be released (DELETE in
the DISP paramreter) at the time the data
set is printed.

PAGE 1001

80000078 TRN 00C0D000
00000000 JL8 0007FF78 JST 00005508
E0012420 _NTC Q0000000 0TC 0O00ICOED
Q0000000 LP/FL FROS000D RESV 00DOCO00
00000000 RESV 00000000 JSCB 00000000

0007FDBO (14

PSW 00150000 4006EFS5SA Q 000700 WT/LNK 0001C820
WT/LNK O0DO6EE28
NOOTFC3N
0No0nocon

PSW FF040033 50007020 Q 900390
0007TFE4R 00000098 00N05508
4006EE4E 00C06EE6D 00009848

WT/LNK O0QTFD20
00005508
0N01ETC8

PSW FFO4000E BOO1E7EC Q FBO3F8
0001CB29 0007FD20 0006F230
0001C820 0006F 230 917007CBC

-PSH FF15000€ “RONLEDSC | G-000000 . WT/LNK OLOICDED

APSkaGi5000544006ﬁF5A Q7000000 WI/ZLNK 0D01CB20

PSW 00040000 400D5AES Q 000000 WT/LNK -ADOLCCBO

SNjFEliOOOl‘@GﬁbﬁlﬁG', Q000000 WT/LNK 01L0100A0

PSW FEL50001 4006F21E . Q 000000 . WT/LNK DLOLCF40

Sample of an ABEND Dump (PCP, MFT)

ABEND/SNAP Dump (Systems With PCP and MFT) 35

* ¥ * A BDUMP

JOB cccccecce

COMPLETION CODE

REQUETSTETD* * *

*CCCCCCC, .

STEP ccccccce TIME dddddd

SYSTEM = hhh (oxr USER = dddd)

CCCCEECCLa,
INTERRUPT AT hhhhhh

PSW AT ENTRY TO ABEND (SNAP) hhhhhhhh hhhhhhhh

DATE ddddd

PAGE ddadd

* ¥ ¥ ABDUMP

REQUESTED * ¥ ¥
identifies the dump as an ABEND or
SNAP dump.

¥CCCCCCCavoas

38

is omitted or is one or more of the

following:

*CORE NOT AVAILABLE, LOC.

hhhhhhhhhhhh TAKEN...
indicates that the ABDUMP routine
confiscated storage locations
hhhhhh through hhhhhh because not
enough storage was available.
This area is printed under P/P
STORAGE, but can be ignored
because the problem program
originally in it was overlaid
during the dumping process.

«*MODIFIXED, /SIRB/DEB/LLS/ARB/MSS...
indicates that the one or more
queues listed were destroyed or
their elements dequeued during
abnormal termination:

e SIRB -- system interruption
request block queue. One or
more SIRB elements were found
in the active RB queue: these
elements are always dequeued
during dumping.

e DEB -- DEB queue. If the first
messaqge also appeared, either a
DEB or an associated DCB was
overlaid.

e LLS -- load list. If the first
message also appeared, one or
more loaded RBs were overlaid.

e ARB -- active RB queue. If the
first message also appeared,
one or more RBs were overlaid.

e MSS -- boundary box queue. One

or more MSS elements were

dequeued, but an otherwise
valid control block was found

in the free area specified by
an MSS elerent.

*FOUND ERROR IN /DEB/LLS/ARB/MSS...
indicates that one or more of the
following ccntained an error:

e DEB: data extent block
e LLS: load list

e ARB: active RB

e MSS: boundary bcx

This message appears with either
the first or second message
above. The error could ke:
improper boundary alignment,
control block not within storage
assigned to the program keing
dumped, or an infinite loop (300
times is the maximumr for this
test). For an MSS block, 4 other
errors could also be found:
incorrect descending sequence
(omitting loop count),
overlapping free areas, free area
not entirely within the storage
assigned to the program being
dumped, or count in count field
not a multiple of 8.

JOB cccccccece

STEP

TIME

DATE

Programmer's Guide to Debugging (Release 20)

is the job name specified in the JOB
statement.

cceccececec
is the step name specified in the EXEC
statement for the problem program
being dumped.

dddddd

is the hour (first 2 digits), minute
(second 2 digits), and second (last 2
digits) when the ABDUMP routine began
processing.

dddda

is the year (first 2 digits) and day
of the year (last 3 digits). For
example, 67352 would be Decemker 18,
1967.

AN

PAGE dddd
is the page number.
top of each page.

Appears at the

COMPLETION CODE SYSTEM=hhh or COMPLETION

CODE USER=dddd
is the completion code supplied by the
control program (SYSTEM=hhh) or the
problem program (USER=dddd). Either
SYSTEM=hhh or USER=dddd is printed,
but not both. Common completion codes
are explained in Appendix B.

CCCCCCuae s
explains the completion code or, if a
program interruption occurred:
PROGRAM INTERRUPTION ccccc... AT
LOCATION hhhhhh,

where ccccc is the program
interruption cause -- OPERATION,
PRIVILEGED OPERATION, EXECUTE,
PROTECTION, ADDRESSING, SPECIFICATION,
DATE, FIXED-POINT OVERFLOW,

FIXED-POINT DIVIDE, DECIMAL OVERFLOW,
DECIMAL DIVIDE, EXPONENT

OVERFLOW, EXPONENT UNDERFLOW,
SIGNIFICANCE, or FLOATING-POINT
DIVIDE; and hhhhhh is the starting
address of the instruction being
executed when the interruption
occurred.

INTERRUPT AT hhhhhh
is the address of next instruction to
be executed in the problem program.
It is obtained from the resume PSW of
the PRB or LPRB in the active RB queue
at the time abnormal termination was
requested.

PSW AT ENTRY TO ABEND hhhhhhhh hhhhhhhh or
PSW AT ENTRY TO SNAP hhhhhhhh hhhhhhhh
is the PSW for the problem or control
program that had control when abnormal
termination was requested or when the
SNAP macro instruction was executed.

TCB hhhhhh RB hhhhhhhh PIE hhhhhhhh
MSS hhhhhhhh PK/FLG hhhhhhhh
hhhhhhhh hhhhhhhh
hhhhhhhh hhhhhhhh
hhhhhhhh
hhhhhhhh
hhhhhhhh

hhhhhhhh
hhhhhhhh

RG 0-7

RG 8-15
FSA hhhhhhhh TCB
LTC hhhhhhhh IQE
STAE hhhhhhhh TCT

DEB hhhhhhhh
FLG hhhhhhhh

TME hhhhhhhh
ECB hhhhhhhh
USER hhhhhhhh

TRN hhhhhhhh

JST hhhhhhhh
hhhhhhhh hhhhhhhh
hhhhhhhh hhhhhhhh

OTC hhhhhhhh

RESV hhhhhhhh

JSCB hhhhhhhh

TIOT hhhhhhhh
LLS hhhhhhhh JLB
hhhhhhhh
hhhhhhhh hhhhhhhh

PIB hhhhhhhh NTC hhhhhhhh
XTCB hhhhhhhh LP/FL hhhhhhhh
DAR hhhhhhhh RESV hhhhhhhh

CMP hhhhhhhh
hhhhhhhh
hhhhhhhh hhhhhhhh

hhhhhhhh

TCB hhhhhh
is the starting address of the TCB.

RB hhhhhhhh
is the TCBRBP field (bytes 0 through
3): starting address of the active RB
queue and, consequently, the most
recent RB on the queue (usually
ABEND's RB).

PIE hhhhhhhh
is the TCBPIE field (bytes 4 through
7): starting address of the program
interruption element (PIE) for the
task.

DEB hhhhhhhh
is the TCBDEB field (bytes 8 through
11): starting address of the DEB
queue.

TIOT hhhhhhhh
is the TCBTIO field (bytes 12 thrqugh
15): starting address of the TIOT.

CMP hhhhhhhh
is the TCBCMP field (bytes 16 through
19): task completion code in

hexadecimal. System codes are shown
in the third through fifth digits and
user codes in the sixth through
eighth.

TRN hhhhhhhh :
is the TCBTRN field (bytes 20 through
23): starting address of control core
(table) for controlling testing of the
task by TESTRAN.

MSS hhhhhhhh
is the TCBMSS field (bytes 24 through
27): starting address cf the main
storage supervisor's boundary box.

PK/FLG hhhhhhhh
contains, in the first 2 digits, the
TCBPKF field (byte 28): grotection
key.

FLG hhhhhhhh
contains, in the first 4 digits,
last 2 bytes of the TCBFLGS field
(bytes 32 and 33): 1last 2 flag bytes.

the

contains, in the next 2 digits, the
TCBLMP field (byte 34): in systems

ABEND/SNAP Dump (Systems With PCP and MFT) 39

the timer is not being used, contains
nc meaningful information; in SVRB for
a type 2 SVC routine, the first 4
bytes contain the TTR of the load
module in the SVC library, and the
last U4 bytes contain the SVC number in
signed, unpacked decimal.

SZ/STAB hhhhhhhh
contains in the first 4 digits, the
XRBSZ field (bytes 8 and 9): number
of contiguous doublewords in the RB,
the program (if applicable), and
associated supervisor work areas.

the
flag

contains in the last 4 digits,
XSTAB field (bytes 10 and 11):
bytes.

USE/EP hhhhhhhh
contains,
XRBUSE field

in the first 2 digits, the
(byte 12): wuse count.

contains, in the last 6 digits, the
XRBEP field (bytes 13 through 15):
address of entry point in the
associated program.

PSW hhhhhhhh hhhhhhhh
is the XRBPSW field (bytes 16 through
23): resume PSW.

Q hhhhhh

is the last 3 bytes of the XRBO field
(bytes 25 through 27): in PRB and
LPRB, starting address of an LPRB for
an entry identified by an IDENTIFY
macro instruction; in IRB, starting
address of a request element; in SVRB
for a type 3 or 4 SvC, size of the
program in bytes.

WT/LNK hhhhhhhh
contains, in the first 2 digits, the
XRBWT field (byte 28): wait count.

contains, in the last 6 digits, the
XRBLNK field (bytes 29 through 31):
primary queuing field. It is the
starting address of the previous RrB
for the task or, in the first RB to be
placed on the queue, the starting
address of the TCB.

RG 0-7 and RG 8-15
is the XRBREB field (bytes 32 through
95 in IRBs and SVRBs): contents of
general reagisters 0 through 15 stored
in the RB. These 2 lines do not
appear for PRBs, LPRBs, and LRBs.

LOAD LIST

cccc hhhhhh NM cccccccc S%/sTAB hhhhhhhh

USE/EP hhhhhhhh

PSW hhhhhhhh hhhhhhhh © hhhhhh WT/LNK hhhhhhhh

LOAD LIST
identifies the next lines as the
contents of the load list queued to
the TCB.

hhhhhh
indicates the RB type and its starting
address.

cccc

The RB types are:

LRB Loaded request block
LPRB Loaded program request block
D-LPRB Dummy loaded program request

block. (Present if the
resident reenterable load
module option was selected in
MFT).

NM ccccccec
is the XRBNM field (bytes 0 through
7): program name.

42 Programmer's Guide to Debugging (Release

SZ/STAB hhhhhhhh

contains, in the first 4 digits, the
XRBsSZ field (bytes 8 and 9):
nurber of contiguous
doublewords for the RB, the
program (if applicable), and
associated supervisor work
areas.

contains, in the last 4 digits, the
XSTAB field (bytes 10 and 11):
flag bytes.

USE/EP hhhhhhhh
contains, in the first 2 digits, the
XRBUSE field (byte 12): use
count.

contains, in the last 6 digits, the
XRBEP field (bytes 12 through
15): address of entry point
in the program.

20)

PSW hhhhhhhh hhhhhhhh
is the XRBPSW field (bytes 16 through
23): resume PSW.

Q hhhhhh
is the last 3 bytes of the XRBQ field
(bytes 25 through 27): in
LPRB, starting address of an
LPRB for an entry identified
by an IDENTIFY macro
instruction; in LRB, unused.

WT/LNK hhhhhhhh
contains, in the first 2 digits, the

XRBWT field (byte 28): wait

count.

contains, in the last 6 digits, the
XRBLNK field (bytes 29 through
31): primary queuing field
for LRBs and LPRBs also on the
active RB queue. It points to
the previous RB for the task
or, in the oldest RB in the
queue, back to the TCB.

JOB PACK AREA QUEUE

cccc hhhhhh NM ccccccee
cccc hhhhhh NM ccccecce
cccce hhhhhh NM cccceccce

5Z/STAB hhhhhhhh WTL

S%/STAB hhhhhhhh USE/EP hhhhhhhh
hhhhhhhh REQ hhhhhhhh TLPRB hhhhhhhh
$2/STAB hhhhhhhh USE/EP hhhhhhhh PSW hhhhhhhh hhhhhhhh Q hhhhhh WT/LNK hhhhhhhh

PSW hhhhhhhh hhhhhhhh @ hhhhhh WT/LNK hhhhhhhh

JOB PACK AREA QUEUE (MFT with subtasking
only)
identifies the next lines as the
contents of the job pack area gqueue
originating in the partition
information block (PIB).

cccce hhhhhh
indicates the RB type and its starting
address.

The RB types are:

FRB Finch request block
LRB Loaded request block
LPRB Loaded program request block

NM ccccccecee
is the XRBNM field (bytes 0 through
7): Program name.

SZ/STAB hhhhhhhh
contains, in the first 4 digits, the
XRBSZ field (bytes 8 and 9): number
of contiguous doublewords for the RB,
the program (if applicable), and
associated supervisor work areas.

contains, in the last 4 digits, the
XSTAB field (bytes 10 and 11): flag
bytes.

USE/EP hhhhhhhh (LPRB, LRB Only)
contains, in the first 2 digits, the
XRBUSE field (byte 12): wuse count.

contains, in the last 6 digits, the
XRBEP field (bytes 13 through 15):
address of entry point in the program.

WTL hhhhhhhh (FRB Only)
is the XRWTL field of the FRB (bytes

12 through 15): address of the most
recent wait list element (WLE) on the
WLE queue.

PSW hhhhhhhh hhhhhhhh (LPRB, LRB Only)
is the XRBPSW field (bytes 16 through
23): resume PSW.

REQ hhhhhhhh (FRB Only)
is the XRREQ field of the FRB (bytes
16 through 19): address of the TCB of
the requesting task.

TLPRB hhhhhhhh (FRB Only)
is the XRTLPRB field of the FRB (bytes
20 through 23): address of the LPRB
built by the Finch routine for the
requested program.

Q hhhhhh (LRB, LPRB Only)
is the last 3 bytes of the XRBQ field
(bytes 25 through 27):

e in an LPRB, the starting address of
an LPRB for an entry identified by
an IDENTIFY macro instruction.

e in an LRB, unused.

WT/LNK hhhhhhhh (LRB, LPRB Only)
contains, in the first 2 digits, the
XRBWT field (byte 28): wait count.

contains, in the last 6 digits (bytes
29 through 31): primary queuing field
for RBs. These RBs may be queued
either on the job pack area queue or
on the active RB queue. It points to
the previous RB for the task or, in
the oldest RB on the queue, back to
the TCB.

ABEND/SNAP Dump (Systems With PCP and MFT) 43

P/P STORAGE BOUNDARIES hhhhhhhh TO hhhhhhhh

FREE AREAS SIZE
hhhhhh hhhhhhhh

GOTTEN CORE SIZE
hhhhhh hhhhhhhh

SAVE AREA TRACE

ccccecccec WAS ENTERED VIA LINK (CALL) ddddd AT EP c€cccC...

SA hhhhhh WDl hhhhhhhh HSA hhhhhhhh LSA hhhhhhhh
R1 hhhhhhhh R2 hhhhhhhh R3 hhhhhhhh
R7 hhhhhhhh R8 hhhhhhhh R9 hhhhhhhh

INCORRECT BACK CHAIN

PROCEEDING BACK VIA REG 13

RET hhhhhhhh

R10 hhhhhhhh

EPA hhhhhhhh RO ahhhhhhh
hhhhhhhh R5 hhhhbhhh R6 hhhhhhhh
R1ll hhhhhhhh R12 ahhhhhhh

P/P STORAGE BOUNDARIES hhhhhhhh TO hhhhhhhh
gives the addresses of the lower and
upper boundaries of a main storage
area assigned to the task. This
heading is repeated for every
noncontiguous block of storage owned
by the task.

FREE AREAS SIZE

hhhhhh hhhhhh

- o

- a

hhhhhh hhhhhh
are the starting addresses of free
areas and the size, in bytes, of each
area contained within the P/P STORAGE
BOUNDARIES field listed above.

GOTTEN CORE SIZE

hhhhhh hhhhhhhh

hhhhhh hhhhhhhh
(Printed only in a dump of a system
with the MFT with subtasking option).
These figures represent the starting
addresses of the gotten areas (those
areas obtained for a subtask through a
supervisor issued GETMAIN macro
instruction), and the size, in bytes,
of each area contained within the P/P
STORAGE BOUNDARIES field listed above.
If main storage hierarchy support is
included in the system, the values in
this field can address storage in
either hierarchy 0 or hierarchy 1, or
both.

SAVE AREA TRACE
identifies the next lines as a trace
of the save areas for the program.

ccccccecc WAS ENTERED
is the name of the program that stored
register contents in the save area.
This name is obtained from the RB.

VIA LINK (CALL) ddddd
indicates the macro instruction (LINK
or CALL) used to give ccntrol to the
next lower level module, and is the ID
operand, if it was specified, of the
LINK or CALL macro instruction.

AT EP ccccce...
is the entry point identified, which
appears only if it was specified in
the SAVE macro instruction that filled
the save area.

SA hhhhhh
is the starting address of the save
area.

WD1 hhhhhhhh
is the first*word of the save area:
use of this word is optional.

HSA hhhhhhhh
is the second word of the save area:
starting address of the save area in
the next higher level module. 1In the
first save area in a job step, this
word contains zeros. In all other
save areas, this word must be filled.

LSA hhhhhhhh
is the third word of the save area
(register 13): starting address of
the save area in the next lower level
module.

RET hhhhhhhh
is the fourth woxd of the save area
(register 14): return address.
Optional.

44 Programmer's Guide to Debugging (Release 20)

A

EPA hhhhhhhh

is the fifth word of the save area
(register 15): entry point to the
invoked module. Optional.

- RO hhhhhhhh R1 hhhhhhhh R12 hhhhhhhh
are words 6 through 18 of the save
area (registers 0 through 12):
contents of registers 0 through 12
immediately after the linkage for the
module containing the save area.

INCORRECT BACK CHAIN
indicates that the following lines may
not be a save area because the second

word in this area does not point Lkack
to the previous save area in the
chain.

PROCEEDING BACK VIA REG 13
indicates that the next 2 save areas
are (1) the save area in the lowest
level module, followed by (2) the save
area in the next higher level module.
The lowest save area is assumed to be
the save area pointed to by register
13. These 2 save areas agppear only if
register 13 points to a full word
boundary and does not contain zeros.

DATA SETS

D WKkkAR

#*k*¥** N OT FORMATTE

cececccee ucB ddd hhhhhh DEB "hhhhhh

D/S FORMATTING TERMINATED

DCB hhhhhh

DATA SETS
indicates that the next lines present
information about the data sets for
the task. For unopened data sets,
only the ddname and UCB information
are printed.

NOT FORMATTED
indicates that the abnormal
termination dump routine confiscated
storage (indicated by *CORE NOT
AVAILABLE, LOC. hhhhhh-hhhhhh TAKEN);
because DCBs may have been overlaid,
data set information is not presented.

ccececcece
is the name field (ddname) of the DD
statement.

UCB ddd hhhhhh
is the unit to which the data set was

assigned, and the starting address of
the UCB for that unit. If the data
set was assigned to several units, the
additional units are identified on
following lines.

DEB hhhhhh
is the starting address of the DE3 for
the data set. Appears only for open
data sets.

DCB hhhhhh
is the starting address of the DCB for
the data set. Appears only for open
data sets.

D/S FORMATTING TERMINATED
indicates that no more data set
information is presented because a DCB
is incorrect, possibly because a
program incorrectly modified it.

ABEND/SNAP Dump (Systems With PCP and MFT) 45

TRACE TABLE - STARTING WITH OLDEST ENTRY

dddd I/0 ddd PSW hhhhhhhh hhhhhhhh csw hhhhhhhh hhhhhhhh
dddd SI0 dad CC = d CAW hhhhhhhh OLD CsSW hhhhhhhh hhhhhhhh (or CSW STATUS hhhh) %
dddd svVC ddd FPSW hhhhhhhh hhhhhhhh RG 0 hhhhhhhh RG 1 hhhhhhhh
TRACE TABLE -- STARTING WITH OLDEST ENTRY CC=
identifies the next lines as the is the condition code resulting from
contents of the trace table. Each execution of the SIO instruction.
entry is presented on one line. The Zero indicates a successful start.
types of entries are:
CAW hhhhhhhh .
is the channel address word used by
170 Input/output interruption entry the SIO instruction.
OLD CSW hhhhhhhh hhhhhhhh
$I0 sStart input/output (SIO) entry is the channel status word stored
during execution of an SIO operation.
SVC supervisor call (SVC) interruption It appears when CC is nct equal to 1.
entry
CSW STATUS hhhh
dddd is the status portion of the channel
is the number assigned to each entry. status word stored during execution of
The oldest entry receives the number an SIO instruction. Appears when CC
0001. is equal to 1.
I/0 ddd svC ddd
is the channel and unit that caused is the SVC instruction's operand.
the input/output interruption.
A
PSW hhhhhhhh hhhhhhhh
PSW hhhhhhhh hhhhhhhh is the PSW stored during the sSVC
is the program status word that was interruption. (After release 11, an F
stored when the input/output in the fifth digit of the first word
interruption occurred. identifies the entry as representing a
task switch.)
CSW hhhhhhhh hhhhhhhh
is the channel status word that was RG hhhhhhhh
stored when the input/output is the contents of register 0 as
interruption occurred. passed to the SVC routine.
SIO ddd RG hhhhhhhh
is the device specified in the SIO is the contents of register 1 as
instruction. passed to the SVC routine.
s

46 Programmer's Guide to Debugging (Release 20)

REGS AT ENTRY TO ABEND (SNAP)
FLTR 0=-6 hhhhhhhhhhhhhhhh hhhhhhhhhhhhhhhh hhhhhhhhhhhhhhhh hhhhhhhhhhhhhhhh
REGS 0~7 hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh
REGS 8-15 hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh
REGS AT ENTRY TO ABEND or REGS AT ENTRY TO FLTR 0-6
SNAP is the contents of floating point
identifies the next 3 lines as the registers 0, 2, 4, and 6.
contents of the floating point and
general registers when the abnormal REGS 0-7
termination routine received control is the contents of general registers 0
in response to an ABEND macro through 7.
instruction or when the SNAP routine
received control in response to a SNAP REGS 8-15
macro instruction. is the contents of general registers 8
through 15.
NUCLEUS
hhhhhh hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh *CCCCCCCCCCCCCCCECEECCCCCCCCeCCee?
hhhhhh hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh *ccccgceccccececeecgcccccececccccee™
LINE hhhhhh SAME AS ABOVE
hhhhhh hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh *ccccececccccceceecacecececcecececcecceccec®
LINES hhhhhh-hhhhhh SAME AS ABOVE
hhhhhh hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh *CCCCCCECCCCCCCCECECCCCCCCCCCCCECa™

P/P STORAGE

hhhhhh hhhhhhhh hhhhhhhh hhhhhhbhh hhhhhhhh
hhhhhh hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh
hhhhhh hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh
LINES hhhhhh~hhhhhh SAME AS ABOVE
hhhhhh hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh

END OF DUMP

hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh
hhhhhhhh hhhhbhhhh hhhhhhhh hhhhhhhh
hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh

hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh

*ccccccccececcececccececcceccceccccec®
*CCCCCCCCCCCCCCECCCCCccceccccccce®
*cccccceccececcceccccecccceccccecececk

*ccccccccccccccccceccceccecccccccccee

The content of main storage is given
under 2 headings: NUCLEUS and P/P STORAGE.
Under these headings, the lines have the
following format:

e First entry: the address of the
initial byte of main storage contents
presented on the line.

e Next 8 entries: 8 full words (32
bytes) of main storage in hexadecimal.

e Last entry (surrounded by asterisks):
the same 8 full words of main storage
in EBCDIC. Only A through Z, 0 through
9, and blanks are printed; a period is
printed for anything else. An
exception occurs in the printed lines
representing the ABDUMP work area. The
contents of the ABDUMP work area during
the printing of EBCDIC characters

differs from the contents during
printing of the hexadecimral characters
because a portion of the work area is
used to write lines to the printer.
This exception should not create any
problems since the contents of the
ABDUMP work area is of little use in
debugging.

The following lines may alsc arpear:

LINES hhhhhhhh-hhhhhhhh SAME AS ABOVE
are the starting addresses of the
first and last line of a group of
lines that are identical to the line
immediately preceding.

LINE hhhhhh SAME AS ABOVE

is the starting address of a line that

is identical to the line immediately

preceding.

ABEND/SNAP Dump (Systems With PCP and MFT) 47

NUCLEUS
identifies the next lines as the
contents of the control program
nucleus.

P/P STORAGE
identifies the next lines as the
contents of the main storage area
assigned to the task (problem
program) .

END OF DUMP
indicates that the dump or snapshot is
completed.

Guide to Using an ABEND/SNAP Dump (PCP,
MFT)

Cause_of Abnormal Termination: Evaluate
the user (USER Decimal code) or system
(SYSTEM=hex code) completion code using
Appendix B or the publication Messages and
Codes .

Active RB Queue: The first RB shown on the
dump represents the oldest RB on the queue.
The RB representing the load module that
had control when the dump was taken is
third from the bottom. The last RB
represents the ABDUMP routine, and the
second. from last, the ABEND routine. The
names of load modules represented in the
active RB queue are given in the RB field
labeled NM in the dump. Names of load
modules in SVC routines are presented in
the format:

SVC-mnnn |

]
| NM
L -

where m is the load module number (minus 1)
in the routine and nnn is the signed
decimal SVC number. The last two RBs on an
ABEND/SNAP dump will always be SVRBs with
edited names SVC-105A (ABDUMP--SVC 51) and
SVC-401C (ABEND--SVC 13).

Resume PSW: The resume PSW field is the
fourth entry in the first line of each RB
printout. It is identified by the
subheading PSW. For debugging purposes,
the resume PSW of the third RB from the
bottom, on the dump, is most useful. The
last three characters of the first word
give the SVC number or the I/0 device
address, depending on which type of
interruption caused the associated routine
to lose control. It also provides the CPU
state at the time of the interruption (bit
15), the length of the last instruction
executed in the program (bits 32,33), and
the address of the next instruction to be
executed (bytes 5-8).

Load List and Job Pack Area Queue: The
load module that had control at the time of

abnormal termination may not contain the
instruction address pointed to by the
resume PSW. In that case, look at the RBs
on the load list and on the job pack area
queue (MFT with subtasking). Compare the
instruction address with the entry points
of each load module (shown in the last 3
bytes of the field labeled USE/EP). The
module which contains the instruction
pointed to by the resume PSW is the one in
which abnormal termination occurred. The
name of the load module is indicated in the
field labeled NM.

_~

Trace Table: Entries in the trace table
reflect SIO, 1I/0, and SVC interruptions.
SIO entries can be used to lcocate the CCW
(through the CAW), which reflects the
operation initiated by an SIO instruction.
If the SIO operation was not successful,
the CSW STATUS portion of the entry will
show you why it failed.

I1/0 entries reflect the I/0 o0ld PSW and
the CSW that was stored when the
interruption occurred. From the PSW, you
can learn the address of the device on
which the interruption occurred (bytes 2
and 3), the CPU state at the time of
interruption (bit 15), and the instruction
address where the interruption occurred
(bytes 5-8). The CSW provides you with the
unit status (byte 4), the channel status
(byte 5), and the address of the previous
CCW plus 8 (bytes 0-3).

",

SVC entries provide the SVC old PSW and
the contents of registers 0 and 1. The PSW
offers you the hexadecimal SVC number (bits
20-31), the CPU mode (bit 15), and the
address of the SVC instruction (bytes 5-8).
The contents of registers 0 and 1 are
useful in that many system macro
instructions use these registers for
parameter information. Contents of
registers 0 and 1 for each SVC interruption
are given in Appendix A.

Note: If an ABEND macro instruction is
issued by the system when a program check
interruption causes abnormal termination,
an SVC entry does not appear in the trace
table, but is reflected in the PSW at entry
to ABEND.

Free Areas: ABEND/SNAP dumps do not print
out areas of main storage that are
available for allocation. Since the ABEND
routine uses some available main storage,
the only way you can determine the amount
of free storage available when abnormal
termination occurred is to re-create the
situation and take a stand-alone dump.

48 Programmer's Guide to Debugging (Release 20)

MFT Considerations: Dumps issued by
systems with MFT include an additional
trace table entry for task switches. This
entry looks similar to an SVC entry, except
that words 3 and 4 of the entry contain the
address of the TCBs for the "new" and "old"
tasks being performed, respectively. The
trace table entries for one particular task
are contained between sets of two task
switch entries. Word 3 of the beginning
task switch entry and word 4 of the ending
task switch entry point to the TCB for that
task. With release 11 and following

releases, task switch entries are
identified by a fifth digit of ‘F'.

Note: To find all the entries for the
terminated task, on a dump issued prior to
release 11, obtain the TCB addresses under
the TCB heading of the dump and scan the
trace table under words 3 and 4 for these
addresses. Then enclose the areas that
begin with an entry having the TCB address
in vord 3, and end with an entry having the
same TCB address in word 4. If words 3 and
4 contain the same address, disregard the
task switch entry.

ABEND/SNAP Dump (Systems With PCP and MFT) 49

Page of GC28-6670-4, Revised March 1, 1971, by TNL:

ABEND/SNAP Dump
(Systems With MVT)

MVT dumps differ from PCP and MFT dumps in
the addition of detailed main storage
control information, the omission of a
complete main storage dump, and the
omission of a trace table in ABEND dumps.
MVT dumps occur immediately after an
abnormal termination, provided an ABEND or
SNAP macro instruction was issued and
proper dump data sets were defined.
However, if a system failure has occurred
and a SYS1.DUMP data set has been defined
and is available, a full storage image dump
is provided, as explained in the section
headed "Storage Image Dump."

With MVT's subtask creating capability,
you may receive one or more partial dumps
in addition to a complete dump of the task
that caused abnormal termination. A
complete dump includes all control
information associated with the terminating
task and a printout of the load modules and
subpools used by the task. A partial dump
of a task related to the terminating task
includes only control information. A
partial dump is identified by eithexr ID=001
or ID=002 printed in the first line of the
dump. Figure 24 shows the key areas of a
complete dump.

In systems with MVT, you can effect
termination of a job step task upon
abnormal termination of a lower level task.
To do this, you must either terminate each
task upon finding an abnormal termination
completion code issued py its subtask or
pass the completion code on to the next
higher level task.

For a discussion of a formatted ABEND
dump using the telecommunications access
method (TCAM) in an MVT environment, see
IoM System/360 Operating System: TCAM
Program Logic Manual, GY30-2029.

References to other TCAM debugging aids are
found in Appendix H.

Invoking an ABEND/SNAP Dump (MVT)

ABEND/SNAP dumps issued by systems with MVT
are invoked in the same manner as those
under systems with PCP and MFT. They
result from an ABEND or SNAP macro
instruction in a system or user program,
accompanied by a properly defined data set.
In the case of a system failure, the damage
assessment routine (DAR) attempts to write
a storage image dump to the SYS1.DUMP data
set. A full explanation of storage image
dumps may be found in the section headed
"Storage Image Dump." The instructions
that invoke an ABEND/SNAP dump in MVT

GN28-2457

environment are the same as those given in
the preceding topic for systems with PCP
and MFT. However, some additional
considerations must be made in requesting
main storage and direct access space.

AR,

MVT Considerations: In specifying a region
size for a job step subject to abnormal
termination, you must consider the space
requirements for opening a SYSABEND or
SYSUDUMP data set (if there is one), and
loading the ABDUMP routine and required
data management routines. This space
requirement can run as high as 6000 bytes.

Direct access devices are used
frequently for intermediate storage of dump
data sets in systems with MVT. To use
direct access space efficiently, the space
for the dump data set should be varied,
depending on whether or not abnormal
termination is likely. A small quantity
should be requested if normal termination
is expected. To prevent termination of the
dump due to a lack of direct access space,
always specify an incremental (secondary)
quantity when coding a SPACE parameter for
a dump data set. You can obtain a
reasonable estimate of the direct access
space required for an ABEND/SNAP dump by
adding, (1) the number of bytes in the
nucleus, (2) the part of the system queue
space required by the task (9150 bytes is a
sufficient estimate), and (3) the amount of
region space occupied by the task.

Multiply the sum by 4, and request this
amount of space in 1024-byte blocks.

This formula gives the space
requirements for one task. Request
additional space if partial dumps of
subtasks and invoking tasks will be
included.

Contents of an ABEND/SNAP Dump (MVT)

This explanation of the contents of
ABEND/SNAP dumps issued by systems with MVT
is interspersed with sample sections from
an ABEND dump. Capital letters represent
the headings found in all dumps, and
lowercase letters, information that varies
with each dump. The lowercase letter used
indicates the mode of the information and
the number of letters indicates its length:

e h represents 1/2 byte of hexadecimal
information

e d represents 1 byte of decimal
information

e c represents a l-byte character

You may prefer to follow the explanation on
your own ABEND or SNAP dump.

50 Programmer's Guide to Debugging (Release 20.1)

JNB IPCT4L

CAMPLETION CNNE

DPSW AT FNTRY TN ARFMN

Trs A2FA2q

ACTIVF RS

PRR 03NNFR

0309RA

02FNFO

0?2F170

N2FCT8

STEP EXST

SYSTFM =

nno
RANN

ANPPECTR
NN 728
FSA D1N&NTAA
11 naannNnnn
NSTAF 00000000

RESV
RTARE:

o0nN0o0no
00000000

oFSy
ArTTR

conen0nn
annoonnn

TAB-IN
VAR L]
a6 0-7
25 A-15
FXTSA

00920400

00a03CNF
NNONNENQ
00039100
F2FAE2FS
ANON2A 4R

TAR-LM ONRAO3MNS
A/TTR . 00N0DK100
e on-7 Aa0Q000N0
R5 a-15 NONNNB3T
FXTSA nnon2ang
CRC1FORY

TAR-LN 0ONC803ACA
n/TTR 00N0HK2D1L
pRo0-7 onaonnNng

FP TIME

A37

FENAD000N 50007 40R

PIF
oK -FLG
TCR
e
T

onnnnnnn
FNRR"0409
oanonnoro
nnengneo
nenNIN2ERN

APSW
WY~ NK

0nnNanNon
0OCN2F028

APSW
WT—-LNK

nnnooacoo
nNONAONFR

APSW FRFESFOF?
WT=LNK 0NN200RA
ALLECTNIA
000306F4
FANAC 140
00000091

APSW FP2FOFIC3
WT-LNK 00N2FOF0
8NR3ITNO0
00N3N3AC
000ANNRE
COr&aC12R

APSW FIFOF5C1
WT=-LNK 0002F170
ane2e 100

00?240a

0072
0000
1000
0003
nann

W2 -S7-STAR NNN4NOR?2

WE=-S7-STAR 0NN&Gnan?

WC=S7-STAR 101200N2

ononnnn
0006670
Q00NADNEN
00QADFFQ

Wr-S7-STAR 00120002

00039AF 4
AO0ON?648
2000FFFF
C1020508

WE-S7-STAR NOYI2DO02

ANONRNT R

N4
onan
nnno
0484
0nno

ANAAN00A
WGLETSEY
NON2FEF 4

NATE Qa3gg

000302F0
Q00309RN
N002FN?8
neooneeco
noeonneo

)
JLR
NTC
D-20
nESY

FL-CNE 0n01)

FL-CNE 0n020

TON onnnn
nonnNoeT3 0
0NN3ACFY
DOO?PFET 4

T3045N04

4nn0C1R2
annonony
ANNANDREN

TN

NANANNFON
0006DFFO
FF 030000

rf407R386

ANQONRAR

TON

00N2FO29

anopnnna

neonNnoNo

AORITNNON
000nonnNn
aenannno
F OPO32AAR
00000000

290 PSy

F30 PSW

ann PSW

an3ncon

nnNnN3gsco
ON06NFRA

pSW

NONPEEN4
noNNY 64
00N2FLFC

osSW

00N2E1T0

PAGE 0001

0nonnooon
CON3NIEAR
ONNRNSOR
0NO2FAAD
00031460

FFESONNE6 TNO3S553F

FFFESO03T 520TFC4A

FENGNOOON SNNOC408

NNO36FRA

52076434
09000837

anniccsa
nINTEC10
NaN3IN3IAC

00NANO3R SANACOCE

NNNDEFRCA

0ONONRER
CNO2F1F4

0NNANFRA
00070001
F2E8F2C9

FF04NO01 40NTFBA4

onp31290 a0090000

"% A-15 NNOPFN2 8
FXTSA 00629200
0012¢19?

4000RN2A
annannan
onocannn

NON2FO28
NN0800JA
[sDhIslalalab]

DNNANNAR
18002648
nnAnnno

00030320
nonNoannao

I002F1F 4
nnnNaANna |

4NNONS94
n0N2R4AGN

nnnno000
nonanont1 8

risy

NE 0092A0RFR
~ NF 00031980

RSP-CNF N20301FA
RCP-CNF N10322A0

NE 0002aDF0
NE N0n310Ce

PSP-CDF 01032390
RSP~CNE 01N32390

NF 00031078
NF n0031170

RSO-NE 01032290
RSP-NE A1032200

- NF 07031110 RSP~CHFE 01032300 NF NONNOAING RPSP-CNF 01037RFO
0317200 noonon RCPC~RA ONN3INNF] M 6N 035508 031280
N3INFan nrt2on RNC-PA ONO3IN9RA TEKAADD nN36240 0?2F398
0301F8 0308F0 RNC-R{ 0NOONOND NM TIGCO0ANSA NACI80 030480
n323a0 032300 PAC~RAR 2030000 16601900 07FANO 032380
032290 03720 RNC-PR NYNINDO0O NY I6G019RA QTF4AN n32280
032260 0322a0 ROC-R3 N20NNO00 NM I56019RR OTFRAQ 032750
032390 0323r.0 RPC=-RR ONANOOON ANM TGGNTIACN 0N7€A00 032380
nN12200 n32230 RNAC-RA NANNOCHO NM T6GGOT9AY 07F3A0 N3121F0
n323cn 0323F0 ROAC-2R ONOANNND NM IN6GNY AR 0NTeC10 N323R0
AELEERY N30F 80 ROC-RN DONDNONO NM TEWS70VR 0AC4RD N30RAq
(A1 ApR LN N Ano
031280 0ea0n010 nonNnNnNnNo1 RONOO2FA NNN3R&NA
0N2F398 0ononnnar 0nnoonoony ANN1AF3A ANN3ASIC A 0NNAKACR nNONIORON 010A04N00 01000500
011m.0300 nr1InN0300 N11EN0200 01290400 N012F0500 01390500
13202300 N13ANINO 01450600 014R0O40N0 014DNENO
030AR0 anaenn1o nonnnont RDONDDARD 1N0ACa8N
0372380 annnnnto noennon ROOON210 1NYTEANN
N327280 annenn1o nonnonnl RNO00N1ARN NONTELAN
0322650 annnnnl1n 20000001 80000058 nonTrFaan
n32380 0nooentro nonooent 8N000N210 ADNTEACQ
0321F0 o00oan0IN anno00nl RO00NIN0 NONTFIAQ
032380 oonooni1n 0no00nonny 000NN 0N0TFCID
nN3I0RAY anoenntn Y nonnonny <800NN7350 0aNKCLRO
n0NONADKND NNNNDNKNH NNNNANKE 00NNNNEN

N3IDONN50 000HNOO0 DNN)D20A OONOIPREC OFDQAN00N ONNIFCIR NA4N2FFNE 9RNNONNND

RFONANCO N100000N NNONONNN FEOANNARRA 0ANPENTL 1R8AN2A4R HONN0ON3T 0ON100732 ersese . oo

NONINOOR NOOTADNT N2C2C201 CRC4NNO0 naendINNnG an0Nneno onnnodnn C2Ca40000 cMABACD s seaevseneselNes

Figure 24A. Sample of Complete ABEND Dump (MVT)
——

ABEND/SNAP Dump (Systems with MVT) 51

DEB hhhhhhhh
is the TCBDEB field (bytes 8 through
11): starting address of the DEB
queue. Under the heading DEB in the
dump, the prefix section for the first
DEB in the queue is presented in the
first 8-digit entry on the first line.
The 6-digit entry at the left of each
line under DEB is the address of the
second column on the line, whether or
not the column is filled.

TIO hhhhhhhh
is the TCBTIO field (bytes 12 through
15): starting address of the TIOT.

CMP hhhhhhhh
is the TCBCMP field (bytes 16 through
19): task completion code or contents
of register 1 when the dump was
requested. System codes are given in
the third through fifth digits and
user codes in the sixth through eight
digits.

TRN hhhhhhhh
is the TCBTRN field (bytes 20 through
23): starting address of the control
core (table) for controlling testing
of the task by TESTRAN.

MSS hhhhhhhh
is the TCBMSS field (bytes 24 through
27): starting address of SPQE most
recently added to the SPQE queue.

PK-FLG hhhhhhhh

contains, in the first 2 digits, the
TCBPKF field (byte 28): protection
key.

contains, in the last 6 digits, the
first 3 bytes of the TCBFLGS field
(bytes 29 through 31): first 3 flag
bytes.

FLG hhhhhhhh
contains, in the first 4 digits, the
last 2 bytes of the TCBFLGS (bytes 32
and 33): last 2 flag bytes.

contains, in the next 2 digits, the

TCBLMP field (byte 34): limit
priority (converted to an internal
priority, 0 to 255).

contains, in the last 2 digits, the
TCBDSP field (byte 35): dispatching
priority (converted to an internal
priority, 0 to 255).

54 Programmer's Guide to Debugging (Release 20)

LLS hhhhhhhh

is the TCBLLS field (bytes 36 through
39): starting address of the load
list element most recently added to
the load list.

JLB hhhhhhhh

is the TCBJLB field (bytes 40 through
43): starting address cf the DCB for
the JOBLIB data set.

JPQ hhhhhhhh

is the TCBJPQ field (bytes 41 through
47): when translated into binary
bits:

e Bit 0 is the purge flag.

e Bits 1 through 7 are reserved for
future use and are zeros.

e Bits 8 through 31 are the starting
address of the queue of CDEs for the
job pack area control queue, which
is for programs acquired by the job
step.

The TCBJPQ field is used only in the
first TCB in the job step; it is zeros
for all other TCBs.

RG 0-7 and RG 8-15

is the TCBGRS field (bytes 48 through
111): contents of general registers 0
through 7 and 8 through 15, as stored
in the save area of the TCB when a
task switch occurred. These 2 lines
appear only in dumps of tasks other
than the task in controcl when the dump
was requested.

FSA hhhhhhhh

contains, in the first 2 digits, the
TCBQEL field (byte 112): count of
enqueue elements.

contains, in the last 6 digits, the
TCBFSA field (bytes 113 through 115):
starting address of the first problem
program save area. This save area was
set up by the control program when the
job step was initiated.

TCB hhhhhhhh

is the TCBTCB field (bytes 116 throuagh
119): starting address of the next
lower priority TCB on the TCB queue
or, if this is the lowest priority
TCB, zexos.

TME hhhhhhhh

is the TCBTME field (bytes 120 through
123): starting address of the timer
element created when an STIMER macro
instruction is issued by the task.

A

Pl

JST hhhhhhhh
is the TCBJISTCB field (bytes 124
through 127): starting address of the
TCB for the job step task. For tasks
with a protection key of zero, this
field contains the starting address of
the TCB.

NTC hhhhhhhh
is the TCBNTC field (bytes 128 through
131): the starting address of the TCB
for the previous subtask on this
subtask queue. This field is zero in
the job step task, and in the TCB for
the first subtask created by a parent
task.

OTC hhhhhhhh
is the TCBOTC field (bytes 132 through
135): starting address of TCB for the
parent task. 1In the TCB for the job
step task, this field contains the
address of the initiator.

LTC hhhhhhhh

is the TCBLTC field (bytes 136 through
139): starting address of the TCB for
the most recent subtask created by
this task. This field is zero in the
TCB for the last subtask of a job
step, or in a TCB for a task that does
not create subtasks.

IQE hhhhhhhh
is the TCBIQE field (bytes 140 through
143): starting address of the
interruption queue element (IQE) for
the ETXR exit routine. This routine
is specified by the ETXR operand of
the ATTACH macro instruction that
created the TCB being dumped. The
routine is to be entered when the task
terminates.

ECB hhhhhhhh
is the TCBECB field (bytes 144 through
147): starting address of the ECB to
be posted by the control program at
task termination. This field is zero
if the task was attached without an
ECB operand.

STA hhhhhhhh
contains zeros, reserved for future
use.

D-PQE hhhhhhhh

is the TCBPQE field (bytes 152 through
155): starting address minus 8 bytes
of the dummy PQE. This field is
passed by the ATTACH macro instruction
to each TCB in a job step.

SQS hhhhhhhh

is the TCBAQE field (bytes 156 through
159): starting address of the
allocation queue element (AQE).

NSTAE hhhhhhhh

contains, in the first 2 digits, STAE
flags (byte 160).

contains, in the last 6 digits, the
TCBNSTAE field (bytes 161 through
163): starting address of the current
STAE control block for the task. This
field is zero if STAE has not been
issued.

TCT hhhhhhhh

USER

is the TCBTCT field (bytes 164 through
167): address of the Timing Control
Table (TCT).

hhhhhhhh

is the TCBUSER field (bytes 168
through 171): to be used as the user
chooses.

DAR hhhhhhhh

RESV

JSCB

contains, in the first two digits,
Damage Assessment Routine (DAR) flags
(byte 172);

MFT only, contains, in the last 6
digits, the secondary
non-dispatchability bits (bytes 173
through 175).

hhhhhhhh
reserved for future use.

hhhhhhhh

is the TCBJSCB field (bytes 180
through 183): the last three bytes
contain the address of the Job Step
Control Block.

ABEND/SNAP Dump (Systems with MVT) 55

ACTIVE RBS
cccec hhhhhh cceccc hhhhhhhh . APSW hhhhhhhh WC=SZ-STAB hhhhhhhh cecccecc hhhhhhhh PSW hhhhhhhh hhhhhhhh r.. N
Q/TTR hhhhhhhh WT=LNK hhhhhhhh
RG 0=7 hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh
RG 8=15 hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh
EXTSA hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh
hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh
ACTIVE RBS APSW hhhhhhhh
identifies the next lines as the is the RBABOPSW field (bytes 4 through
contents of the active RBs queued to 7):
the TCB, beginning with the oldest RB
first.
e In PRB, right half of the problem
cccce hhhhhh program's PSW when the interruption
indicates the RB type (cccc) and occurred.
starting address (hhhhhh).
e In IRB or SVRB for type II SVC
The RB types are: routines, right half of routine's
PSW during execution of ABEND or
PRB program request block ABTERM, or zeros.
IRB interruption request block
SVRB supervisor request block e In SVRB for type III or IV SVC
routines, right half cf routine's
ccccecc hhhhhhhh PSW during execution of ABEND or
indicates the RB's function (cccccc) ABTERM, or the last four characters
and bytes 0 through 3 of the RB of the name of the requested
(hhhhhhhh) : routine. (The last two characters
give the SVC number.) g

e RESV hhhhhhhh indicates PRB or SVRB
for resident routines. Bytes 0

through 3 are reserved for later use WC-SZ-STAB hhhhhhhh

and contain zeros.

e TAB-LN hhhhhhhh indicates SVRB for
transient routines. The first 4
digits contain the RBTABNO field
(bytes 0 and 1): displacement from
the beginning of the transient area
control table (TACT) to the entry
for the module represented by the
RB. The last 4 digits contain the
RBRTLNTH field (bytes 2 and 3):
length of the SVC routine.

e FL-PSA hhhhhhhh indicates IRB. The
first 2 digits contain the RBTMFLD
field (byte 0): indicators for the
timer routines. This byte contains
zeros when the IRB does not
represent a timer routine. The last
6 digits contain the RBPSAV field
(bytes 1 through 3): starting
address of the problem program
register save area (PSA).

Programmer's Guide to Debugging (Release 20)

contains, in the first 2 digits, the
RBWCSA field (byte 8): wait count in
effect at time of abnormal termination
of the program.

contains, in the second 2 digits, the
RBSIZE field (byte 9): size of the RB
in doublewords.

contains, in the last 4 digits, the
RBSTAB field (bytes 10 and 11):
status and attribute bits.

cccccc hhhhhhhh

indicates the RB's function (cccccce)
and bytes 12 through 15 of the RB
(hhhhhhhh) :

e FL-CDE hhhhhhhh indicates SVRB for
resident routines, or PRB. The
first 2 digits contain the RBCDFLGS
field (byte 12): control flags.

The last 6 digits contain the RBCDE
field (bytes 13 through 15):
starting address of the CDE for the
module associated with this RB.

e EPA hhhhhhhh is the RBEP field of
an IRB (bytes 12 through 15):
entry-point address of
asynchronously executed routine.

» TQN hhhhhhhh indicates SVRB for
transient routines. Is the RBSVTQN
field (bytes 12 through 15):
address of the next RB in the
transient control queue.

PSW hhhhhhhh hhhhhhhh

is the RBOPSW field (bytes 16 through
23): resume PSW. '

Q/TTR hhhhhhhh

e In PRBs and SVRBs for resident
routines, contains zeros in the
first 2 digits. The last 6 digits
contain the RBPGMQ field (bytes 25
through 27): queue field for
serially reusable programs (also
called the secondary queue).

e In IRBs, contains the RBUSE field in
the first 2 digits (byte 24): count
of requests for the same exit
(ETXR). The RBIQE field in last 6
digits (bytes 25 through 27):
starting address of the queue of
interruption queue elements (IQE),
or zeros in the first 4 digits and
the RBIQE field in the last 4 digits
(bytes 26 and 27): starting address
of the request queue elements.

e In SVRBs for transient routines the
first 2 digits contain the RBTAWCSA
field (byte 24): number of requests
(used if transient routine is
overlaid) and the last 6 digits, the
RBSVITR field (bytes 25 through 27):
relative track address for the SVC
routine.

WT-LNK hhhhhhhh

contains, in the first 2 digits, the
RBWCF field (byte 28): wait count.

contains, in the last 6 digits, the
RBLINK field (bytes 29 through 31):
starting address of the previous RB on
the active RB queue (primary queuing
field) or, if this is the first or
only RB, the starting address of the
TCB.

RG 0-7 and RG 8-15

is the RBGRSAVE field (bytes 32
through 95): 4in SVRBs and IRBs,
contents of registers 0 through 15.

EXTSA

e In IRBs, contains the RBNEXAV field
in the first 8 digits (bytes 96
through 99): address of next
available interruption queue element
(IQE), and in the remaining digits,
the interruption queue element work
space (up to 1948 bytes).

e In SVRBs, contains the RBEXSAVE
field (bytes 96 through 143):
extended save area for SVC routine.

LOAD LIST

NE hhhhhhhh RSP=CDE hhhhhhhh NE hhhhhhhh RSP=CDE hhhhhhhh NE hhhhhhhh RSP=CDE hhhhhhhh

LOAD LIST RSP-CDE hhhhhhhh

identifies the next lines as the
contents of the load list elements
(LLEs) queued to the TCB by its TCBLLS
field. The contents of 3 load list
elements are presented per line until
all elements in the gqueue are shown.

NE hhhhhhhh

contains, in the first 2 digits, LLE
byte 0: =zeros.

contains, in the last 6 digits, LLE
bytes 1 through 3: starting address
of the next element in the load list.

contains, in the first 2 digits, LLE
byte 4: the count of the number of
requests made by LOAD macro
instructions for the indicated load
module. This count is decremented by
DELETE macro instructions.

contains, in the last 6 digits, LLE
bytes 5 through 7: starting address
of the CDE for the load module.

ABEND/SNAP Dump (Systems with MvT) 57

CDE

hhhhhhhh ATR1 hh NCDE hhhhhh ROC=~RB hhhhhhhh

NM cccccccce

USE hh EPA hhhhhh ATR2 hh XL/MJ hhhhhh

CDE
identifies the next lines as the
contents directory addressed by an LLE
or RB. One entry is presented per
line.

hhhhhhhh
is the starting address of the entry
given on the line.

ATR1 hh

is the attribute flags.

NCDE hhhhhh
is the starting address of the next
entry in the contents directory.

ROC-RB hhhhhhhh
contains, in the first 2 digits,
ZEeros.

contains, in the last 6 digits, the
starting address of the RB for the
load module represented by this entry.

NM cccccecceccce
is the name of the entry point to the
load module represented by this entry.

USE hh
is the count of the uses (through
ATTACH, LINK, and XCTL macro
instructions) of the load module, and
of the number of LOAD macro
instructions executed for the module.

EPA hhhhhh
is the entry point address associated
with the name in the NM field.

ATR2 hh
is the attribute flags.

XL/MJ hhhhhh
is the starting address of the extent
list (XL) for a major CDE, or the
starting address of the major CDE for
a minor CDE. (Minor CDEs are for
aliases.)

XL LN

hhhhhh S$2 hhhhhhhh NO hhhhhhhh hhhhhhhh

hhhhhhhh

ADR LN ADR LN ADR

hhhhhhhh hhhhhhhh

XL
indicates the next lines are entries
in the extent list, which is queued to
the major contents directory entry.
Fach extent list entry is given in one
or more lines. Only the first line
for an entry contains the left 3
columns; additional lines for an entry
contain information only in the right
6 columns.

hhhhhh
is the starting address of the entry.

SZ hhhhhhhh
is the total length,
entry.

in bytes, of the

NO hhhhhhhh
is the number of scattered control
sections in the load mrodule described
by this entry. If this number is 1,
the load module was loaded as one
block.

LN hhhhhhhh
gives the length, in bytes, of the
control sections in the load module
described by this entry. Bit 0 is set
to 1 in the last, or only, LN field to
signal the end of the list of lengths.

ADR hhhhhhhh
gives the starting addresses of the
control sections. Each ADR field is
paired with the LN field to its left.

58 Programmer's Guide to Debugging (Release 20)

B2

-

DEB

hhhhhh
hhhhhh
hhhhhh
hhhhhh

TIOT JOB
DD

cceccceccce

hhhhhhhh
hhhhhhhh
hhhhhhhh

c STEP
hhhhhhhh

hhhhhhhh hhhhhhhh
hhhhhhhh hhhhhhhh hhhhhhhh
hhhhhhhh hhhhhhhh hhhhhhhh
hhhhhhhh
cccececece PROC cccceccce
cccccecee hhhhhhhh hhhhhhhh

hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh
hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh
hhhhhhhh hhhbhhhh hhhhhhhh hbhhhhhh

DEB STEP ccccceccecce
identifies the next lines as the is the name of the step whose task is
contents of the DEBs and their prefix being dumped.
sections. The first 6 digits in each
line give the address of the DEB
contents shown on the line, beginning PROC cccceccece
with the second column. The first six is the namwe for the job step that
digits of the first line contains the called the cataloged procedure. This
prefix section for the first DEB on field appears if the job step whose
the queue. task is being dumped was part of a
TIOT cataloged procedure.
identifies the next lines as the
contents of the TIOT.
DD
JOB cccccccec identifies the line as the contents of
is the name of the job whose task is the DD entry in the TIOT.
being dumped.
MSS RAKAHKARKAKE SPOE KKKKKANAA RN HAARKAKNK KA RN KK DOE KA M AN ARk Ik Ak h HEXXNAK POF AN KA AR
FLGS NSPQE SPID DQE BLK FQE LN NDQE NFQE LN
hhhhhh hh hhhhhh add hhhhhh hhhhhh hhhhhh hhhhhh hhhhhh hhhhhhhh hhhhhhhh
D-PQE hhhhhh FIRST hhhhhhhh LAST hhhhhhhh
PQE hhhhhh FFB hhhhhhhh LFB hhhhhhhh NPO bhhhhhhhh PPO hhhhhhhh
TCB hhhhhhhh RSI hhhhhhhh RAD hhhhhhhh FLG hhhhhhhh
FBQE hhhhhh NFB hhhhhhhh PFB hhhhhhhh S2 hhhhhhhh
PéE hhhhhh F;B hhhhhhhh L;B hhhhhhhh N;O hhhhhhhh PPO hhhhhhhh
TCB hhhhhhhh RSI hhhhhhhh RAD hhhhhhhh FLG hhhhhhhh
FBOE hhhhhh NFB hhhhhhhh PFB hhhhhhhh Sz hhhhhhhh
MSS SPQE
identifies the next lines as the jidentifies the # columrns beneath it as
contents of the main storage the contents of SPQEs.
supervisor queue. This queue includes
subpool gueue elements (SPQE),
descriptor queue elements (DQE), and FLGS hh
free queue elements (FQE). is the SPQE flag byte.
hhhhhh NSPQE hhhhhh

is the starting address of the first
element shown on the line.

is the starting address of the next
SPQE in the queue.

ABEND/SNAP Dump (Systems with MVT) 59

SPID ddd
is the subpool number.

DQE hhhhhh
for a subpool owned by the task being
dumped: the starting address of the
first DQE for the subpool.

for a subpool that is shared: the
starting address of the SPQE for the
task that owns the subpool.

DQE
identifies the 4 columns beneath it as
the contents of DQEs.

BLK hhhhhh
is the starting address of the
allocated 2K block of main storage or
set of 2K blocks.

FQE hhhhhh
is the starting address of the first
FQE within the allocated blocks.

LN hhhhhh
is the length, in bytes, of the
allocated blocks.

NDQE hhhhhh
is the starting address of the next
DQE.

FQE
jdentifies the 2 columns beneath it as
the contents of FQEs.

NFQE hhhhhhhh
is the starting address of the next
FQE.

LN hhhhhhhh
indicates the number of bytes in the
free area.

D-PQE hhhhhh
is the TCBPQE field (bytes 152 through
155): starting address minus 8 bytes
of the dummy PQE shown on the line.

FIRST hhhhhhhh
is the starting address of the first
PQE.

LAST hhhhhhhh
is the starting address of the last
PQE.

PQE hhhhhh
is the starting address of the PQE
shown on the line.

FFB hhhhhhhh
is bytes 0 through 3 of the PQE:
starting address of the first FBQE.

I1f no FBQEs exist, this field is the
starting address of this PQE

LFB hhhhhhhh
is bytes 4 through 7 of the PQE:
starting address of the last FBQE. If
no FBQEs exist, this field is the
starting address of this PQE.

NPQ hhhhhhhh
is bytes 8 through 11 of the element:
starting address of the next PQE or,
if this is the last PQE, zeros.

PPQ hhhhhhhh
is bytes 12 through 15 of the element:
starting address of the preceding PQE
or, if this is the first PQE, zeros.

TCB hhhhhhhh
is bytes 16 through 19 of the element:
starting address cf the TCB for the
job step to which the space belongs
or, if the space was obtained from
unassianed free space, zeros.

RSI hhhhhhhh
is bytes 20 through 23 of the element:
size of the region described by this
PQE (a multiple of 20u48).

RAD hhhhhhhh
is bytes 24 through 27 of the element:
starting address of the reagion
described by this PQE.

FLG hhhhhhhh
is byte 28 of the element:
bit 0 when 0, indicates space
described by this PQr is owned;

when 1, indicates space is
borrowed.
bit 1 when 1, indicates region has
been rolled out (meaningful only
when bit 0 is 0).
when 1, indicates region has
been borrowed.
bit 3-7, resexrved for future use.

bit 2

Note: PQF information is contained in two
lines on the dump. When the rollout/rollin
feature or Main Storage Hierarchy Support
is included in the system, PQE information
(with associated FBQEs) appears once in the
dump for each region segment of the joo
step. (Each PQE on the partition queue
defines a region segment. A job step's
region contains more than one segment only
when the step has rolled out another step
or steps, or Main Storage Hierarchy Support
is present.)

60 Programmer's Guide to Debugging (Release 20)

FBQE hhhhhh
is the starting address of the FBQE
shown on the line.

NFB hhhhhhhh
is bytes 0 through 3 of the element:
starting address of the next FBQE. 1In
the highest or only FBQE, this field
contains the address of the PQE.

PFB hhhhhhhh
is bytes 4 through 7 of the element:
starting address of the previous FBQE.
In the lowest or only FBQE, the field
contains the address of the PQE.

SZ hhhhhhhh
is bytes 8 through 11 of the element:
size, in bytes, of the free area.

QCB TRACE
MAJ hhhhhh NMAJ hhhhhhhh PMAJ hhhhhhhh FMIN hhhhhhhh NM cccccecc
MIN hhhhhh FQEL hhhhhhhh PMIN hhhhhhhh NMIN hhhhhhhh NM %X XXXXXXXX
NQEL hhhhhhhh PQEL hhhhhhhh TCB hhhhhhhh SVRB hhhhhhhh
QCB TRACE PMIN hhhhhhhh

identifies the next lines as a trace
of the queue control blocks (QCB)
associated with the job step. Lines
beginning with MAJ show major QCBs,
lines beginning with MIN show minor
QCBs, and lines beginning with NQEL
show queue elements (QEL).

MAJ hhhhhh
is the starting address of the major
QCB whose contents are given on the
line.

NMAJ hhhhhhhh
is the starting address of the next
major QCB for the job step.

PMAJ hhhhhhhh
is the starting address of the
previous major QCB for the job step.

FMIN hhhhhhhh
is the starting address of the first
minor QCB associated with the major
QCB given on the line.

NM cccccccc
is the name of the serially reusable
resource represented by the major QCB.

MIN hhhhhh
is the starting address of the minor
QCB whose contents are given on the
line.

FQEL hhhhhhhh
is the starting address of the first
queue element (QEL), which represents
a request to gain access to a serially
reusable resource or set of resources.

is the starting address of the
previous minor QCB.

NMIN hhhhhhhh
is the starting address of the next
minor QCB.

NM XX XXXXXXXX
indicates, in the first 2 digits, the
scope of the name or address of the
minor QCB being dumped. If the scope
is hexadecimal FF, the name is known
to the entire operating system. If
the scope is hexadecimal 00 or 10
through FO, the name is known only to
the job step; in this case, the scope
is the protection key of the TCB
enqueuing the minor QCB.

Also contains, in the last 8 digits,
the name or the starting address of
the minor QCB.

NQEL hhhhhhhh
indicates, by hexadecimal 10 in the
first 2 digits, that the queue element
on the line represents a request for
step-must-complete; by 00, ordinary
request; and by 20, a
set-must-complete request.

Also contains, in the last 6 digits,
the starting address of the next queue
element in the queue, or for the last
queue element in the queue, zeros.

PQEL hhhhhhhh
indicates, by hexadecimal 80 in the
first 2 digits, that the queue element
represents a shared request or, by
hexadecimal 00, that the element
represents an exclusive request. (If

ABEND/SNAP Dump (Systems with MVT) 61

the shared DASD option was selected,
hexadecimal 40 in the first 2 digits
indicates an exclusive RESERVE request

SVRB hhhhhhhh
is the starting address of the SVRB
under which the routine for the ENQ

and 00 indicates a shared RESERVE macro instruction is executed, or, A
request.) after the requesting task receives
control of the resource, the UCB
address of a device being reserved
TCB hhhhhhhh through a RESERVE macro instruction
is the starting address of the TCB (the latter value occurs only when the
under which the ENQ macro instruction shared DASD option was selected).
was issued.
SAVE AREA TRACE @
cccccece WAS ENTERED VIA LINK (CALL) ddddd AT EP ccccCC...
SA hhhhhh WDl hhhhhhhh HSA hhhhhhhh LSA hhhhhhhh RET hhhhbhhh EPA hhhhhhhh RO hhhhhhhh
Rl hhhhhhhh R2 hhhhhhhh R3 nhhhhhhhh R4 hhhhhhhh R5 hhhhhhhh R6é hhhhhhhh
R7 hhhhhhhh R8 hhhhhhhh R9 hhhhhhhh R10 hhhhhhhh R11 hhhhhhhh R12 hhhhhhhh
INCORRECT BACK CHAIN
INTERRUPT AT hhhhhh
PROCEEDING BACK VIA REG 13
SAVE AREA TRACE 3. The third, fourth, etc. save
identifies the next lines as a trace areas are then shown, provided the
of the save areas for the program. third word in each higher save

Each save area is presented in 3 or 4
lines. The first line gives
information about the linkage that
last used the save area. This line
will not appear when the RB for the
linkage cannot be found. The second
line gives the contents of words 0
through 5 of the save area. The third
and fourth lines give the contents of
words 6 through 18 of the save area;
these words are the contents of
registers 0 through 12. Save areas
are presented in the following order:

1. The save area pointed to in the
TCBFSA field of the TCB. This
save area is the first one for the
problem program; it was set up by
the control program when the job
step was initiated.

2. 1If the third word of the first
save area was filled by the
problem program, then the second
save area shown is that of the
next lower level module of the
task. However, if the third word
of the first area points to a
location whose second word does
not point back to the first area,
the message INCORRECT BACK CHAIN
appears, followed by possible
contents of the second save area.

i
¥

area was filled and the second ’
word of each lower save area

points back to the next higher

save area. This process is

continued until the end of the

chain is reached (the third word

in a save area contains zeros) or
INCORRECT BACK CHAIN appears.

Following the forward trace, the
message INTERRUPT AT hhhhhh agpears,
followed by the message PROCEEDING
BACK VIA REG 13. Then, the save area
in the lowest level module is
presented, followed by the save area
in the next higher level. The lowest
save area is assumed to be the 76
bytes beginning with the byte
addressed by register 13. These two
save areas appear only if register 13
points to a full word bcundary and
does not contain zeros.

ccccecce WAS ENTERED
is the name of the module that stored
register contents in the save area.
This name is obtained from the RB.

VIA LINK ddddd or VIA CALL ddddd
indicates the macro instruction (LINK
or CALL) used to give ccntrol to the -
next lower level module, and is the ID T

62 Programmer's Guide to Debugging (Release 20)

operand, if it was specified, of the
LINK or CALL macro instruction.

(register 15): entry pocint to the
called wmodule. Use of this word is
optional; if the called mcdule dia not
£ill the word, it contains zeros.
AT EP cccccC...

is the entry point identifier, which

appears only if it was specified in

the SAVE macro instruction that filled RO hhhhhhhh R1 hhhhhhhh ... R12 hhhhhhhh

the save area. are words 6 through 18 cf the save
area (registers 0 through 12):

SA hhhhhh contents of registers 0 through 12 for
is the starting address of the save the module containing the save area
area. immediately after the linkage. Use of

these words is optional; if the called
module did not fill these words, they
contain zeros.

WD1 hhhhhhhh
is the first word of the save area
(optional).

HSA hhhhhhhh

is the second word of the save area: INCORRECT BACK CHAIN

starting address of the save area in
the next higher level module. 1In the
first save area in a job step, this
word contains zeros. In all other
save areas, this word must be filled.

LSA hhhhhhhh

is the third word of the save area
(register 13): starting address of
the save area in the next lower level
(called) module. If the module
containing this save area did not fill

indicates that the follcwing lines may
not be a save area because the second
word in this area does not point back
to the previous save area in the
trace.

INTERRUPT AT hhhhhh

is the address of the next instruction
to be executed in the problem program.
It is obtained from the resume PSW
word of the last PRB or LPRB in the
active RB queue. ’

the word, it contains zeros.

PROCEEDING BACK VIA REG 13
indicates that the next 2 save areas
are (1) the save area in the lowest
level module, followed by (2) the save
area in the next higher level module.
The lowest save area is the save area
pointed to by register 13. These 2
save areas appear only if register 13
points to a fullword boundary and does
not contain zero.

RET hhhhhhhh
is the fourth word of the save area
(register 14): return address
(optional); if the called module did
not f£ill the word, it contains zeros.

EPA hhhhhhhh
is the fifth word of the save area

ABEND/SNAP Dump (Systems with MVT) 63

CPUx PSA
hhhhhh hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh *ccecccecccoccecccoccecocceccceccceec*
hhhhhh hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh *ccccocceceeceeccececccecceccecceec* A
NUCLEUS
hhhhhh hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh *cccceccoceoeccececceecceceecececeecceec®
hhhhhh hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhhhhhhhhhhh hhhhhhhh *ccecceceececccecccccceccccececccccc*
NUCLEUS CONT.
hhhhhh hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh *cceccocceccoccccceccccacceccccecceeck
hhhhhh hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh *ccceeocecccccocccccocecccccccecceccccceck
REGS AT ENTRY TO ABEND (SNAP)
FLTR 0-6 hhhhhhhhhhhhhhhh hhhhhhhhhhhhhhhh hhhhhhhhhhhhhhhh hhhhhhhhhhhhhhhh
REGS 0-7 hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh ~ hhhhhhhh hhhhhhhh hhhhhhhh
REGS 8-15 hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh
LOAD MODULE ccccceccce
hhhhhh hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh *ccoeccooccecceocccaceccecccoceccceccece*
hhhhhh hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh *ccceceoccccocecceceecccccecceeccecec*
LINES , hhhhhh-hhhhhh SAME AS ABOVE
hhhhhh hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh *cccecceccoccoccccccceocccceccccoccece*®
hhhhhh hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh *cceccoceccocccoeecccoccccccceccecck
LINE hhhhhh SAME AS ABOVE
CSECT dd OF cccccccece
hhhhhh hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh *ccceceoccccocceccoccceccceaccecaccccceec*
hhhhhh hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh *cccccceccceccecccececceececcceeck
The contents of main storage are given CPUx PSA (Model 65 Multiprocessing dumps
under 6 headings: CPUx PSA, NUCLEUS, only)
NUCLEUS CONT., LCAD MODULE cccccccc, CSECT jdentifies the next lines as the
dd OF cccccccc, and in the trace table, SP contents of the prefixed storage area
ddd BLK hh. Under these headings, the (PSA) -- 0 through 4095 (FFF). If the
lines have the following format: system is operating in partitioned
mode (1 CPU), x is the CPU
e First entry: the address of the identification. If the system is
initial bytes of the main storage operating in a 2 CPU multisystem mode,
presented on the line. both PSAs are printed, the first under
the heading CPUA PSA and the second
e Next 8 entries: 8 full words (32 under CPUB PSA.
bytes) of main storage in hexadecimal.
NUCLEUS
e Last entry (surrounded by asterisks): identifies the next lines as the
the same 8 full words of main storage contents of the nucleus of the control
in EBCDIC. Only A through Z, 0 through program.
9, and blanks are printed; a period is
printed for anything else. NUCLEUS CONT.
identifies the next lines as the
The following lines may also appear: contents of the part of the nucleus
that lies above the trace table.
LINES hhhhhh-hhhhhh SAME AS ABOVE
are the starting addresses of the REGS AT ENTRY TO ABEND or REGS AT ENTRY TO
first and last lines for a group of SNAP
lines that are identical to the line jdentifies the next 3 lines as the
immediately preceding. contents of the floating point and
general registers when the abnormal
LINE hhhhhh SAME AS ABOVE termination routine received control
is the starting address of a line that in response to an ABEND macro
is identical to the line immediately instruction or when the SNAP routine
preceding. received control in response to a SNAP -
64 Programmer's Guide to Debugging (Release 20)

k. _d

FLTR

macro instruction.

These are not the

registers for the problem program when

the error occurred.

0-6

indicates the contents of floating
and 6.

point registers 0, 2,

4,

LOAD MODULE cccccccce
identifies the next lines as the

contents of the
occupied by the

main storage area
load module cccccccc

addressed by an LLE or RB. All the
modules for the job step are dumped
under this type of heading. Partial

dumps do not contain this information.

REGS 0-7 CSECT hhhh OF cccccccce
indicates the contents of general identifies the next lines as the
registers 0 through 7. contents of the main storage area
occupied by the control section
REGS 8-15 (CSECT) indicated by hhhh. This
indicates the contents of general control section belongs to the
registers 8 through 15. scatter-loaded locad module cccccccc.
TRACE TABLE
DSP NEW PSW hhhhhhhh hhhhhhhh R15/R0 hhhhhhhh hhhhhhhh R1 hhhhhhhh SW hhhhhhhh TCB hhhhhhhh TME hhhhhhhh
I/0 OLD PSW hhhhhhhh hhhhhhhh R15/R0 hhhhhhhh hhhhhhhh Rl hhhhhhhh RES hhhhhhhh TCB hhhhhhhh TME hhhhhhhh
SIO CC/DEV/CAW hhhhhhhh hhhhhhhh csw hhhhhhhh hhhhhhhh RES hhhhhhhh RES hhhhhhhh TCB hhhhhhhh TME hhhhhhhh
SVC OLD PSW hhhhhhhh hhhhhhhh R15/R0 hhhhhhhh hhhhhhhh Rl hhhhhhhh RES hhhhhhhh TCB hhhhhhhh TME hhhhhhhh
PGM OLD PSW hhhhhhhh hhhhhhhh R15/R0 hhhhhhhh hhhhhhhh R1 hhhhhhhh RES hhhhhhhh TCB hhhhhhhh TME hhhhhhhh
EXT OLD PSW hhhhhhhh hhhhhhhh R15/R0 hhhhhhhh hhhhhhhh R1 hhhhhhhh RES hhhhhhhh TCB hhhhhhhh TME hhhhhhhh

TRACE TABLE (SNAP dumps only)
identifies the next lines as the

contents of the trace table.

Each

contains, in the last 8 digits:

address of the channel address word
(CAW) stored in the entry.

trace table entry is presented on one
line; the name at the beginning of
each line identifies the type of entry
on the line:

e DSP Dispatcher entry

s I/0 Input/output interruption entry

e STO Start input-output (SIO) entry

e SVC §uperviso; call (sVC)
interruption entry

e PGM Program interruption entry

e EXT External interruption entry

OLD PSW hhhhhhhh hhhhhhhh

is the PSW stored when the
interruption represented by the entry
occurred.

NEW PSW hhhhhhhh hhhhhhhh

is the new PSW stored in the entry.

CC/DEV/CAW hhhhhhhh hhhhhhhh

contains, in the first 2 digits:
completion code.

contains, in the next 6 digits:
device type.

R15/RO hhhhhhhh hhhhhhhh
contains, in the first 8 digits:

contents of register 15 stored in the

entry.

contains, in the last 8 digits:

contents of register 0 stored in the

entrye.

CSW hhhhhhhh hhhhhhhh
is the channel status word
stored in the entry.

(CswW)

R1 hhhhhhhh
is the contents
in the entry.

of register

RES hhhhhhhh
is reserved for
are zeros.

future use;

SW hhhhhhhh
is resexrved for
are zeros.

future use;

TCB hhhhhhhh
is the starting
associated with

address of the 7TC3s
the entry.

TME hhhhhhhh

is a representation of the timer
element associated with the entry.

ABEND/SNAP Dump (Systems with MVT)

1 stored

all digits

all digits

65

A,

TRT

X DSP NEW PSW hhhhhhhh hhhhhhhh R15/R0 hhhhhhhh hhhhhhhh R1
X I/0 OLD PSW hhhhhhhh hhhhhhhh CswW hhhhhhhh hhhhhhhh R1
X SI0 CC/DEV/CAW hhhhhhhh hhhhhhhh Csw hhhhhhhh hhhhhhhh TC
X SVC OLD PSW hhhhhhhh hhhhhhhh R15/R0 hhhhhhhh hhhhhhhh R1
X PGM OLD PSW hhhhhhhh hhhhhhhh R15/R0 hhhhhhhh hhhhhhhh RT
X EXT OLD PSW hhhhhhhh hhhhhhhh R15/R0 hhhhhhhh hhhhhhhh R1
X S8SM OLD PSW hhhhhhhh hhhhhhhh R15/R0 hhhhhhhh hhhhhhhh R1

hhhhhhhh NUA hhhhhhhh NUB hhhhhhhh TME hhhhhh
hhhhhhhh OLA hhhhhhhh OLB hhhhhhhh TME hhhhhh
B hhhhhhhh OLA hhhhhhhh OLB hhhhhhhh TME hhhhhh
hhhhhhhh OLA hhhhhhhh OLB hhhhhhhh TME hhhhhh
hhhhhhhh OLA hhhhhhhh OLB hhhhhhhh TME hhhhhh
hhhhhhhh MSK hhhhhhhh TQE hhhhhhhh TME hhhhhh
hhhhhhhh AFF yyhhhhhh OLB hhhhhhhh TME hhhhhh

TRT (MVT with Model 65 multiprocessing

dumps only)
jdentifies the next lines as the
contents of the trace table. Each
trace table entry is presented on one
line; the letter and name at the
beginning of each line identify the
CPU and the type of entry,

respectively:

e DSP Dispatcher entry.

e I/0 Input/output interruption
entry.

e SIO Start input/output entry.

e SVC Supervisor call interruption
entry.

e PGM Program interruption entry.

e EXT External interruption entry.

e SSM Set system mask entry.

OLD PSW hhhhhhhh hhhhhhhh
is the PSW stored when the
interruption represented by the entry
occurred.

NEW PSW hhhhhhhh hhhhhhhh
is the new PSW stored in the entry.

CC/DEV/CAW hhhhhhhh hhhhhhhh
contains, in the first 2 digits:
completion code; in the next 6 digits:
device type; in the last 8 digits:
address of the channel address word
stored in the entry.

R15/R0 hhhhhhhh hhhhhhhh
contains, in the first 8 digits:
contents of register 15; in the last 8
digits: contents of register 0, both
as stored in the entry.

CSW

hhhhhhhh hhhhhhhh
is the channel status
the entry.

word stored in *

R1 hhhhhhhh

TCB

OLA

MSK

OLB

TQE

TME

66 Programmer's Guide to Debugging (Release 20)

is the contents of register 1 as N
stored in the entry.

hhhhhhhh
is the starting address of the TCB
associated with the entry.
hhhhhhhh
is the starting address of the new TCB
for CPU A, as stored in the entry.
hhhhhhhh
is the starting address of the old TCB
for CPU A, as stored in the entry.
hhhhhhhh -
is the STMASK of the other CPU as
stored in the entry.
hhhhhhhh
is the starting address of the new TCB
for CPU B, as stored in the entry.
hhhhhhhh
is the starting address of the old TC3
for CPU B, as stored in the entry.
hhhhhhhh
is the first word of the timer queue
element stored in the entry, provided
a timer interrupt occurred.
hhhhhhhh
is a representation of the timer
element associated with the entry.
yyhhhhhh
contains, in the first 2 digits: the
ID of the locking CPU at the time of
the interrupt; in the last 6 digits:
starting address of the old TCB for
CPU A, as stored in the entry.

SP ddd

hhhhhh
hhhhhh

hhhhhhhh hhhhhhkh hhhhhhhh hhhhhhhh
hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh

END OF DUMP

hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh
hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh

*gceococcccccgeececccgcceccececceccece®
*CCCCCCCcCeCceccecceCeecccecccccccect

SP ddd
identifies the next lines as the
contents of a block of main storage
obtained through a GETMAIN macro
instruction, and indicates the subpool
number (ddd). The part of subpool 252
that is the supervisor work area is
presented first, followed by the
entire contents of any problem program
subpools (0 through 127) in existence
during the dumping.

END OF DUMP
indicates that the dump or snapshot is
completed. If this line does not
appear, the ABDUMP routine was
abnormally terminated before the dump
was completed, possibly because enough
space was not allocated for the dump
data set.

Guide to Using an ABEND/SNAP Dump (MVT)

Cause of Abnormal Termination: Evaluate
the user (USER=decimal code) or system
(SYSTEM=hex code) completion code using
Appendix B or the publication Messages_and
Codes.

Dumped Task: Check the ID field for an
indication of which task is being dumped in
relation to the task that was abnormally
terminated:

e 001 indicates a partial dump of a
subtask '

e 002 indicates a partial dump of the
invoking task

If the ID field is absent, the dump
contains a full dump of the task that was
abnormally terminated.

Active RB Queue: The first RB shown on the
dump represents the oldest RB on the queue.
The RB representing the load module that
had control when the dump was taken is
third from the bottom. The last RB
represents the ABDUMP routine and the
second from last, the ABEND routine. The
load module name and entry point (for a
PRB) are given in a contents directory
entry, the address of which is shown in the
last 3 bytes of the FL/CDE field.

Program Check PSW: The program check old
PSW is the fifth entry in the first line of
each RB printout. It is identified Ly the
subheading APSW. For debugging purpcoses,
the APSW of the third RB from the bottom of
the dump is most useful. It provides the
length of the last instruction executed in
the program (bits 32,33), and the address
of the next instruction to be executed
(bytes 5-8).

Load List: Does the resume PSW indicate an
instruction address outside the limits of
the load module that had control at the
time of abnormal termination? If so, 1look
at the LLEs on the load list. Fach LLE
contains the CDE address' in the dump field
labeled RSP-CDE.

CDEs: The entries in the contents
directory for the region are listed under
the dump heading CDE. The printouts for
each CDE include the load module and its
entry point. If you have a complete dump,
each load module represented in a CDE is
printed in its entirety following the
NUCLEUS section of the dump.

Trace Table (SNAP dumps only): Entries on
an MVT SNAP dump, if valid, represent
occurrences of SIO, external, SVC, program,
I/0, and dispatcher interruptions. SIO
entries can be used to locate the CCW
(through the CAW), which reflects the
operation initiated by an SIO instruction.
If the SIO operation was not successful,
the CSW STATUS portion of the entry will
show you why it failed. EXT and PGM
entries are useful for locating the
instruction where the interruption occurred
(bytes 5-8 of the PSW).

SVC trace table entries provide the SVC old
PSW and the contents of registers 0, 1, and
15. The PsW offers you the hexadecimal SVC
number (bits 20-31), the CPU mode (bit 15),
and the address of the SVC instruction
(bytes 5-8). The contents of registers 0
and 1 are especially useful in that many
system macro instructions pass key
information in these registers. (See
Appendix A.)

I1/0 entries reflect the 1I/0 old PSW and the

CSW that was stored when the interxrruption
occurred. From the PSW, you can learn the

ABEND/SNAP Dump (Systems with MVT) 67

address of the device that caused the
interruption (bytes 2 and 3), the CPU state
at the time of interruption (bit 15), and
the instruction address where the
interruption occurred (bytes 5-8). The CSW
provides you with the unit status (byte 4),
the channel status (byte 5), and the
address of the previous CCW plus 8 (bytes
0-3).

You can use the DSP entry to delimit the
entries in the trace table. To find all
entries for the terminated task, scan word
7 of each trace table entry for the TCB
address in a DSP entry. The lines between
this and the next DSP entry represent
interruptions that occurred in the task.

Region Contents: Free areas for the region
occupied by the dumped task are identified
under headings PQE and FBQE. The field

A

labeled SZ gives the numbexr of bytes in the
free area represented by the FBQE.

Subpool Contents: Free and requested areas
of the subpools used by the dumped task are
described under the dump heading MSS.
Subpool numbers are given under the SPID
column in the list of SPQEs. If a GETMAIN
macro instruction was issued without a
subpool specification, space is assigned
from subpool 0. Thus, two SPQEs may exist
for subpool 0. The sizes of the requested
areas and free areas are given under the LN
column in the 1lists of DQEs and FQEs,
respectively.

Load Module Contents: The contents of each
load module used by the job step are given
under the heading XL. Each entry includes
the sizes (LN) and starting addresses (ADR)
of the control sections in the load module.

68 Programmer's Guide to Debugging (Release 20)

A

i

Indicative Dump

An indicative dump is issued when a task is
abnormally terminated by an ABEND macro
instruction, and a dump is requested, but a
dump data set is not defined, due either to
omission or incorrect specification of a
SYSABEND or SYSUDUMP DD statement. In
systems with PCP or MFT, an indicative dump
is issued automatically on the system
output (SYSOUT) device. Indicative dumps
issued by these two systems are identical
in format. Systems with MVT do not issue
indicative dumps.

Contents of an Indicative Dump

This explanation of indicative dumps
utilizes capital letters for the headings
found in all dumps, and lowercase letters
for information that varies with each dump.
The lowercase letter used indicates the
mode of the information, and the number of
letters indicates its length:

e h represents 1/2 byte of hexadecimal
information

e d represents 1 byte of decimal
information

e c represents a l-byte character

Figure 25 shows the contents of an
indicative dump. You may prefer to follow
the explanation on your own indicative
dump.

CONTROL BYTE=hh
describes the contents of the
indicative dump.

’

First digit:

Bit Setting Meaning

0 0 Instruction image not
present
1 Instruction image present
1 0 Floating-point registers
not present
1 Floating-point registers
present
2 0 One general register set
present
1 Two general register sets
present
3 0 All active RBs present
1 All active RBs not present

Last digit:

Digit in
Hexadecimal Meaning
0 All loaded RBs present
8 All loaded RBs not present

TCB FLAGS=hh
is the first byte of TCBFLGS field
(byte 29 in the TCB for the program
being dumped): task end flac byte:

Bit Setting Meaning

0 1 Abnormal termination in
process

1 1 Normal terrination in
process

2 1 Abnormal termination was

initiated by the resident
ABTERM routine

CONTROL BYTE=hh TCB FLAGS=hh NO. ACTIVE RB=dd NC. LOAD RB=dd
COMPLETION CODE - SYSTEM=hhh USER=3ddd

CCCCCCauw

REGISTER SET 1
hhbhbhhhh hhhhhhhh
hhhhhhhh hhhhhhhh
REGISTER SET 2
hbhhhhhhh bhhhhhhh
hhhhhhhh hhhhhhhh

hhhhhhhh
hhhhhhhh

hhhhhhhh
hhhhhhhh

hhhhhhbh
hhhhhhhh

hhhhhhhh
hhhhhhhh

hhhhhhbh
hhhbhhbhh

hhhhhhhh
hhhhhhhh

hhhhhhhh
bhhhhhhh

hhhhhhhh
hbhhhbbh

hhhhhhhh
hhhhhhhh

hhhhhhhh
hhhhhhhh

hhhhhbhhh
hhhhhhhh

hhhhhhhh
hhhhhhhh

INSTRUCTION IMAGE=hhhhbhhhhhhhhhhhhhhhbhhh

hhhhhbhhhhhhhhhbh hhbhhhhhhhhhhhhhh
PROGRAM ID=cccccececce
RESUME PSW SM=hh K=h AMWP=h

PROGRAM ID=cccccccce

Figure 25.

hhhhbhbhbhbhbhhbhh hhhhhhbhbhhhhhbh

RB TYPE=hh ENTRY POINT=hhhhbh
Ic=hhhh IL.CC=h
RB TYPE=hh ENTRY POINT=hhhhhh

PM=h IA=hhhhhh

Contents of an Indicative Dump

Indicative Dump 69

ABTERM routine entered
because of program

e Lost control to the input/output
interruption handler, which

interruption subsequently terminated abnormally. P
4 1 Reserved for future use e Was abnormally terminated by the
control program because of a program
5 1 Data set closing initiated interruption.
by the ABTERM routine
e Issued an ABEND macro instruction to
6 1 The ABTERM routine request an abnormal termination.
overlaid some or all of
the problem program I1f REGISTER SET 2 also appears in the
dump, the lines under REGISTER SET 1
7 1 The system prohibited give the general register contents for
queuing of asynchronous a type II, III, or IV SVC routine
exit routines for this operating under an SVRB.
task
REGISTER SET 2
NO. ACTIVE RB=dd indicates that the next 2 lines give
is the number of active RBs presented the contents of general registers 0
in the dump. through 7 and 8 through 15 for a
program being executed under control
NO. LOAD RB=dd of an RB other than an SVRB when the
is the number of RBs in the load list program last passed control to a type
presented in the dump. 11, III, or IV SVC routine.
INSTRUCTION IMAGE=hhhhhhhhhhhhhhhhhhhhhhhh
COMPLETION CODE SYSTEM=hhh USER=dddd is 12 bytes of main storage, with the
is the completion code supplied by the instruction that caused a program
control program (SYSTEM=hhh) or the interruption in the right part of the
problem program (USER=dddd). Both printout. This field appears only if
SYSTEM=hhh and USER=dddd are printed; a program interrurtion occurred and is
however, one of them is always zero. also valid when the instruction length
in the resume PSW is O.
CCCCCC. -« .
explains the completion code or, if a hhhhhhhhhhhhhhhh hhhhhhhhhhhhhhhh
program interruption occurred: hhhhhhhhhhhhhhhh hhhhhhhhhhhhhhhh
. are the contents of floating-point
PROGRAM INTERRUPTION ccccc... AT registers 0, 2, 4, and 6 when the
LOCATION hhhhhh abnormal termination occurred. This
where ccccc is the program field appears only if the floating
interruption cause: OPERATION, point option is present. The first 2
PRIVILEGED OPERATION, EXECUTE, digits of each register are the
PROTECTION, ADDRESSING, characteristic of the floating point
SPECIFICATION, DATE, FIXED-POINT number. The last 14 digits are the
OVERFLOW, FIXED-POINT DIVIDE, mantissa.
DECIMAL OVERFLOW, DECIMAL DIVIDE,
EXPONENT OVERFLOW, DECIMAL
DIVIDE, EXPONENT OVERFLOW, PROGRAM ID=cccccccce
EXPONENT UNDERFLOW, SIGNIFICANCE, is the XRBNM field (bytes 0 through
or FLOATING-POINT DIVIDE; and 7): in PRB, LRBs, and LPRBs, the
hhhhhh is the address of the program name; in IRBs, the first
instruction being executed when character contains flags for the timer
the interruption occurred. or, if the timrer is not being used,
contains no meaningful information; in
SVRBs for a type II SVC routine,
REGISTER SET 1 contains no meaningful information; in
indicates that the next 2 lines give SVRBs for a type III or IV SVC
the contents of general registers 0 routine, the first 4 bytes contain the
through 7 and 8 through 15 for a relative track address (TTR) of the
program being executed under control load module in the SVC library and the
of an RB when it: last U4 bytes contain the SVC numker in
signed, unpacked decimal; in SIRBs,
e Passed control to a type I SVC the name of the error routine
routine through an SVC instruction currently occupying the 400-Lkyte
and the routine terminated input/output supervisor transient .

70

abnormally.

Programmer's Guide to Debugging (Release 20)

aAread.

RB TYPE=hh
indicates the type of active RB

hh Type of RB
00 PRB that does not contain entry

points identified by IDENTIFY
macro instructions

10 PRB that contains one or more
entry points identified by
IDENTIFY macro instructions

20 LPRB that does not contain entry
points identified by IDENTIFY
macro instructions

30 LPRB that contains one or more
entry points identified by
IDENTIFY macro instructions

40 1IRB
80 SIRB
CO0 SVRB for a type II SVC routine

DO SVRB for a type III or IV SVC
routine

E0 LPRB for an entry point identified
by an IDENTIFY macro instruction

FO LRB

ENTRY POINT=hhhhhh
is the XRBEP field (bytes 13 through
15): address of entry point in the
program.

RESUME PSW
XRBPSW field (bytes 16 through 23):
is the contents of the resume PSW.

SM=hh
is bits 0 through 7 of PSW:
mask.

system

K=h
is bits 8 through 11 of PSW:
protection key.

AMWP=h
is bits 12 through 15 of PSW:
indicators.

IC=hhhh
is bits 16 through 31 of PSW:
interruption code.

IL.CC=h
is bits 32 through 35 of PSW:
instruction length code (bits 32 and
33) and condition code (bits 34 and
35).

PM=h
is bits 36 through 39 of PSW:
mask.

program

IA=hhhhhh
is bits 40 through 63 of PSW:
instruction address.

PROGRAM ID=cccccccc
is the XRBNM field (bytes 0 through
7): program name.

RB TYPE=hh
indicates the type of RB:

hh Type of RB
20 LPRB that does not contain entry

points identified by IDENTIFY
macro instructions.

30 LPRB that contains one or more
entry points identified by
IDENTIFY macro instructions.

EO0 LPRB for an entry point identified
by an IDENTIFY macro instruction.

FO LRB.

ENTRY POINT=hhhhhh
is the XRBEP field (bytes 13 through
15): address of entry point in the
program.

Guide to Using an Indicative Dump

Completion Code: Evaluate the user
(UsER=decimal code) or system (SYSTEM=hex
code) completion code using either Appendix
B of this publication or the publication
Messages and Codes. The line under the
completion code gives a capsule explanation
of the code or the type of program
interruption that occurred.

Instruction Address: If a program
interruption occurred, get the address of
the erroneous instruction in the last 3
bytes of the field labeled INSTRUCTION
IMAGE.

Active RB Queue: RBs are shown in the

first group of two-line printouts labeled
PROGRAM ID and RESUME PSW, with the most
recent RB shown first. There are two lines
for as many RBs indicated by NO. ACTIVE
RB=d4d.

Register Contents: General register
contents at the time a program last had
control are given under.the heading
REGISTER SET 2 or, if this heading is not
present, under REGISTER SET 1. Register
contents, particularly those of register
14, may aid you in locating the last
instruction executed in your program.

Indicative Dump 71

Storage Image Dump

A storage image dump writes to an external
data set all of main storage from location
00 through the end of printable storage.
The damage assesment routine (DAR) will
produce a storage image dump when a system
task fails if the SYS1.DUMP data set is
properly defined and available to accept
the dump. In MFT, MVT, and M65MP the print
dump service aid program (IMDPRDMP) is used
to print from the SYS1.DUMP data set; in
PCP the print dump program (IEAPRINT) is
used.

Note: IEAPRINT oxr IMDPRDMP is placed in
SYS1.LINKLIB at system generation,
depending on the system option. For PCP,
IEAPRINT is placed in SYS1.LINKLIB. For
MFT, MVT, and M65MP, the IMDPRDMP program
is placed in SYS1.LINKLIB. IEAPRINT may be
invoked with the JCL statements shown in
Figure 27 and IMDPRDMP with those shown in
Figure 26.

DAMAGE ASSESSMENT ROUTINE (DAR)

The damage assessment routine (DAR) is
designed to provide increased system
availability in the event of a system
failure, and to provide more meaningful
diagnostic information by means of a
storage image dump taken at the time of the
system failure. This storage image dump is
written to the SYS1.DUMP data set, which
you may print by means of the IMDPRDMP
service aid program or, in the case of PCP,
the IEAPRINT print dump program.

If a system routine fails, DAR attempts
to reinitialize the failing task, thereby
permitting the system to continue operation
without interruption. DAR permits the
system to continue processing in a degraded
condition if it encounters a system failure
that does not permit total reinstatement of
the affected task or region. The operator
will be informed, via a Wro, that the
system is in an unpredictable state; he
then must decide whether or not
already-scheduled jobs should be allowed to
attempt completion.

SYSTEM FAILURE

If a system failure occurs, the damage
assessment routine immediately attempts to
write a storage image dump to the SYS1.DUMP
data set. A system failure may be caused
by a failure in any of the following system
tasks:

PCP and MFT:
Communications Task L i

Master Schedulexr Task

Log Task (MFT only)

MVT:

System Error Task
Rollout/Rollin Task
Communications Task
Master Scheduler Task
Transient Area Fetch Task

A system failure is also caused by an
ABEND recursion in other than OPEN, CLOSE,
ABDUMP, or STAE; by a failure of a task in
'must complete' status; or, in MFT only, by
a failure in the scheduler if no SYSABEND
or SYSUDUMP DD card is provided.

THE SYS1.DUMP DATA SET

One of the primary functions of the damage
assessment routine is to provide a storage
image dump at the time of a system failure.
Secondary storage space must be available
to receive this dump. The SYS1.DUMP data
set provides this space.

The SYS1.DUMP data set may reside on
tape or on a direct access device.

Tape

If you wish to have the SYS1.DUMP data set
reside on tape, you may specify the tape
drive during IPL. If the drive has not
been made ready prior to IPL, a MOUNT
message is issued to the console,
specifying the selected device. The device
should be mounted with an unlakeled tape.

After writing a storage image dump, the
damage assessment routine writes a tape
mark and will position the tape to the next
file. The tape drive will remain in a
ready state to receive another storage
image dump.

Direct Access -

If you wish to have the SYS1.DUMP data set
placed on a direct access device, you may
preallocate the data set at system
generation or prior to any IPL of the
system. The following restrictions apply:

e The data set name must be SYS1.DUMP.

e The data set must be cataloged on the
IPL volume.

e The data set may be preallocated on any
volume that will be online during
system operation.

72 Programmer's Guide to Debugging (Release 20)

'MFT,

e The data set must be sequential.

e sufficient space must be allocated to
receive a storage image dump for all of
main storage.

When a direct access device is used for
the SYS1.DUMP data set, the data set can
hold only one storage image dump. If
additional failures occur, and if the
SYS1.DUMP data set is occupied, DAR does
not attempt to write another storage image
dump.

You may execute the print dump service
aid program (IMDPRDMP) or, in the case of
PCP, the print dump program (IEAPRINT), to
produce hard copy of the dump.

THE PRINT DUMP SERVICE AID (IMDPRDMP)
MVT AND M65MP

FOR

For MFT, MVT, and M65MP you must use the
print dump service aid program to print out
the storage image dump contained on the
SYS1.DUMP data set. The print dump service
aid is placed in SYS1.LINKLIB at system
generation; it 1is invoked in the same
manner as any other problem program.

Figure 26 shows how to use the PRMP
catalogued procedure to process a SYS1.DUNMP
data set that contains a storage image dump
from a 512K machine or less.

The following explanation is for the job
control language statements in Figure 26;
for information about the job control
language statements in the cataloged
procedure and the IMDPRDMP control
statements, see the Service Aids SRL,
GC28-6719.

JOB _STATEMENT: This statement marks the
beginning of the job.

EXEC STATEMENT: This execute statement
invokes the cataloged procedure called
PRDMP. The PRDMP procedure causes the
IMDPRDMP program to be executed. When the
cataloged procedure is invoked, the user's
job control language statements are merged

with the job control language statements in
the procedure. PARM.LCMP=T causes the
IMDPRDMP program to request the title of
the dump from the conscle operator before
formatting and printing the dump data set;
this permits the operator to assion a
distinct name to each dump.

DMP.SYSIN DD STATEMENT: This data
definition statement defines the data set
where the IMDPRDMP control statements are
located. 1In this case, the control
statements follow this DD statement in the
input job stream. If this statement is
omitted, IMDPRDMP requests control
statement information from the console
operator.

GO _FUNCITON CONTROL STATEMENT: The GO
statement causes the IMDPRDMP proaram to
format and print the SYS1.DUMP data set
described in the c¢ataloged procedure Ly the
TAPE data definition statement. The
SYS1.DUMP data set is cataloged. The
absence of the ONGO statement in this
procedure causes IMDPRDMP to format and
print this data set using the aefault GO
format parameters: QCBTRACE (Q), LPAMAP
(L), FORMAT (F), and PRINT ALL (P3d).

END FUNCTION CONTROL STATEMENT: The END
statement terminates IMDPRDMP processing.
Had this statement been omitted, IMDPRDMP
would issue a write to operator with reply
(WTOR) asking the console operator to enter
additional control statements; by using
this IMDPRDMP feature, an operator can
format and print several dumps during the
same execution of IMLCPRDMP.

For additional examples of the various uses
and output of IMDPRDMP, see the Service
Aids SRL, GC28-6719.

THE PRINT DUMP PROGRAM (IEAPRINT)

For PCP dumps, you must use the IEAPRINT
print dump program to print the storage
image dump contained on the SYS1.DUMP data
set. The IEAPRINT print dump program is
placed in SYS1.LINKLIB at system generation
time dnly if PCP is the chosen option; it
may be invoked in the same manner as any
other problem program.

S

r

| //PROCDUMP JOB ,hame, MSGLEVEL=(1,1)

|77 EXEC PROC=PRDMP, PARM. DMP=T

| #//DMP.SYSIN DD *

| Go

| END

|7+

L

Figure 26. Sample JCL Statement Required for IMDPRDMP

Storage Image Dump 73

sta
fol

JOB

EXE

You must supply the job control
tements for the print dump program; the SYSPRINT DD
lowing statements are required:

This is a standard statement.

C This statement specifies the SYSUT1 DD
program name (PGM=IEAPRINT)
or, if the job control
statements reside on the
procedure library, the

This statement defines an
output data set. The data set
may be written cnto a system
output device, a magnetic tape
volume, or a direct access
device.

This statement defines the
input data set. The CSNAME
SYS1.DUMP must be used.

procedure name. (See Figure 27 for the JCL statements
required to execute the IEAPRINT print dump

program.)

//URJOB [NOB ||, URNAME,MSIGLEVEIL=(1,]1)
// EXEC | PGM=IEAPRINT

//SYSPRIMNT DD | |SYSOU[T=A, SIPACE=/(CYL,|(20,5)))

//SYSUT| bD DSNA*FFSYSl.DUME,UNIT-z“OO,LABEL'(,NL),DISP=(OLD;KEEP), L

// Ll ||VOLUM

E=SER[=123%

Figure 27. Sample JCL Statements Required for IEAPRINT

74

Programmer's Guide to Debugging (Release 20)

Input to the Print Dump Program

Input to the IEAPRINT program is the
sequential data set SYS1.DUMP, which may
reside on either a direct access device or
on magnetic tape. The first oyte of the
first record on the SYS1.DUMP data set will
be the contents of storage loccation 00, and
the data set will contain the full storage
image up to the last writable byte. The
input devices supported are:

IBM 2301 Drum Storage Unit
IBM 2302 Disk Storage Drive
IBM 2303 Drum Storage Unit
IBM 2311 Disk Storage Drive
IBM 2314 sStorage Facility

IBM 2400 Magnetic Tape Drive

Output From the Print Dump Program

The output from the print dump program is a
formatted storage image dump of the
printable contents of main storage,
beginning at location 00. The dump may be
written onto a system output device, a
magnetic tape volume, or a direct access
device. You must define the device, upon
which the dump is to be written, on the
SYSPRINT DD card of the JCL statements that
invoke the print dump program. (See Figure
27.)

CONTENTS OF A STORAGE IMAGE DUMP

The storage image dump is formatted into
two distinct sections: low storage and
register contents are displayed on the
first page, and a printout of the contents
of main storage begins on the second page.
The main storage contents are unedited and
are displayed beginning from location 00
through the end of printable storage. (See
Figure 28.)

Low Storage and Registers

The initial section of a storage image dump
(the first page) consists of information of
immediate use to the programmer who must
determine the cause of the failure.

The first printed line displays the
control program option of the operating
system, i.e. PCP, MFT, MVT, or M65MP; the
timer contents at the time of the failure;
and the date of the failure.

The remainder of the first rage consists
of a printout of register contents and
hardware control words as they appeared at
the time of the failure. The contents of
floating point registers 0, 2, 4, and 6 are
displayed; if the floating point feature is
not present in the system, these register
printouts contain zeros. The two lines
beginning with REG 0-7 and REG 8-15 show
the contents of general registers 0 through
7 and 8 through 15, respectively.

Storage below location 128(80 hex) is
permanently assigned and can be used to
determine the status of a program. The
line beginning 40-CSW (following the
register printout) gives, in unedited form,
the CSW and CAW. The next five lines
contain the new and old PSWs for the five
types of interruptions.

The last line in this portion of the
dump, beginning U4C-UNUSED-, gives the
contents of locations 76 (4C hex) through 87
(57 hex), which include unused bytes and
the timer. This line contains pointers
useful in locating key debugging
information, such as the CVT and the trace
table. The use of these locations will be
explained under the sections headed "Guide
to Using...".

Main Storage

The main section of the dump is printed
starting with location zero and continuing
to the end of printable storage. Each line
contains, from left to right:

e The hexadecimal storage address of the
first byte on the line.

e Eight words of storage in hexadecimal.

¢ The same eight words in EBCDIC,
enclosed in asterisks (*).

If one or more consecutive lines contain
the same word throughout the line, the
first line will be printed, followed by the
message,

hhhhhh TO THE NEXT LINE ADDRESS - SAME AS
ABOVE

where:
hhhhhh

is the address of the first omitted
line.

Storage Image Dump 75

CORE IMAGE DUMP OF MvT

FLOATING POINT REGISTERS

REG C-1
REG 8-15

40-CSw 000CD5C00C000000

EXTERNAL INTERRUFT PSKS
SUPERVISCR CALL PSWS
PROGRAM CHECK PSWS
MACHINE CHECK PSWS
INPUT/OUTPUT PSHS

€0020C00
00021B8C

SYSTEM

C9D5C9E3CIC1EIDG

8CCO0COR
OOFFFFF8

00021898
00000068

NEW=0004000000007628
NEW=000400CC000C8080
NEW=000400000000785C
NEW=0CC0000000C184C0
NEW=0({C4COCCO00077EQ

2
D9407DC1D3D37D040

TIMER= 084082

00000QF0
400586EE

00000010
6007EAB2

“8~CAW

CLD=010400B0800388F6
OLD=FFC40C0L1500008C4
0t C=0C0CCCCCCCOCCCO0
0LD0=000CFF0000000000
OLD=FFC6C2518C0C0C00

4
E6C1C9E3CIDSCT40

400586EC
00058740

DATE = 00099366

6
0000000000000G00

00020C00
00008904

00021748
00000008

00004408

4C~UNUSED-Q000DE4S 5C~TIMER-CB8408262 54~UNUSED-0000EETO

00C00C
06C02¢
00C04C
00C060
000080
000CAO
seoccc
J0COED
0CC1leC
oocliac
GCC14C
0G016C
occrec
CCClAC
4€0200
0CCec20
000240
0CC26C
0cC28¢C
0Cg24C
0c02Cu
0CC2EC
000300
0ccazc
000340
0CC36C
0ccacce
00C42¢C
GCC460Q
0CC480
CCC4AQ
0CC4ce
CCC4EC
00C50C
0cce2¢
006540
0CC560
0ccs580
0005A0
0C05Cy
0CCSEC
000600
ccceac
000640
0CCe60
000680
0CCEAL
00C6CC
QCCEEC
00c700
0G6C720
0GC74C
000760
0CC1eC
aGo7A0

0cCcceCce 0CCcCo00 000000C0 0000000C
FFGC40C0Cl 5000C8C4 C002000C 00Q0N000
0CCCDECC CCCCCCCC 0CCC44CE OCCODE4S
0CY400CC CCOOLOBC 0CC40CLO 0000785C
ATABRCCFF F2F3SFFF OFOO3FFF F23F9FFF
0000400C 4C0CO0CC 30008CCB 00S5FBFB1
00000425 OCCOOECC CCO00429 03831600
FFOFFFFF CCO00000 CO2CFSFF 00038304
0CCGOCCC 001001CA CCCCOLCC CCBCEBQO
0CCCOCCC 0CQ00000 00000000 02010000
CCCCCCLe €0000CCC CLCCceee 0C000000

0000DE4R
0000FFQC
084CR262
€0000000
0000c00Q
00LAC200
0207830C
00000000
CC0C0000

C0C00000 C1040C8C B0038BF6
000000C0 FF060291 80000009
0C00EET0 0004NC00 00007628
000184CC CCC40000 000077€Q
CQ0000CC FFFFFFFF 0CCBB8OCC
FFC40000 02010000 00C009700
C3DAESCL CO70CFEA D207C03C
00000000 00000000 00021000
46CC828S CCCCCOGO SO10CFO3
00C00000 000COCCOC 00C00000 000000C0O
000C00C0O CO0000CO 00000000 00000000
0000CCCO 0CCO0UCC CCCO0000 82000176 0CCCCCOC 00038280 CCO0GOOC 00000000
0CCCOCCC 0CCO00CO €CO00000 00000000 00000000 00000000 00000000 00C00000
TG THE NEXT LINE ADDRESS =~ SAME AS ABOVE
FF060291 80000C0CC 0CCO0001 0001D344 CCCCDE48
00C2CCCO €CO0D4EC SOCCDB32 00021508 0001C310
BCCOC644 000C24F4 CCCCCCOO 0COO0V000 ccocococ
0G6CCO00C €C0JC000G C0CIOCCC 00000006 000C0000
0CCCOCCC €000C000 CCCO0000 00009000 000CA820
00CCO10C 8200€200 34CC350C 3€CCO001 CCOTFBCC
00CC8340 06008340 00000000 000000LF 112C1BE4
C000000C COOLE4CO CCC20CCC 0CO00A2L ccescocce
Q00CQ0CO 00000000 00Q0OCCC 00000000 0000000
TC THE NEXT LINE ACORESS - SAME AS ABOVE
FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF
TC THE MNEXT LINE ACDRESS - SAME AS ABOVE
CCCCOCCC CCCOOCCC CGCCOGCoa ococnooe 00009000
TC THE NEXT LINE ACCRESS - SAME AS ABOVE
CCGCOCCC ©CCOCCCC 00000000 00000000 QCO090EF
05109110 £28C471C 050C3121 E2BC4770 06209120 04714710
04714770 04EE58EC E2BCS54ED C508477C C4BEIICF COLB477C C4BE4LFC 0018D207
04DBFCOC 9BEFQ04D0 B20004D8 00000000 0C0C0000 000COC0O0 0CCO000C 00000000
000G0000 GLCCOCCC CCCLCO0C GCO0000C 0C020CCC 4700D5CA 00020CCO 70000622
OCU20F10 0000DSF2 CEFFFFFF 94EFF2BC 968002CC 918CE2CC 477CC53A 91200018
478CC56C S5EFC02SC 9300F0CI 47800542 C500F000 02B84770 C54241F0 02EB4TFC
04BED20C FOO0E28B8 C207ECOC 02E058EC 0614070C 07000700 46EC0558 848005F0
94F702CC 58F00618 S8EQ061C 07000700 46ECO57C $10802CC 47700594 SEECC2BO
9121E2BC 477CC62C 46FCO568 41F005F0 4TF004BE 58F00608 9102F001 478005A8
91FFFO0C 478004BE C20704D8 001802017 CC58CS5EC 82000058 B82CCO5E8 947F02CC
D600C4DE 001RD207 00180408 94DFNOLE D207005¢ C2F841F0 O2F847F0 048F0000
C1C4CCCC CCCCO5B8 CCC40CCC 0C00058BC 0C02CCCO 00000A22 0104C0CO 00000640
00040C0C 000006A4 00019548 00000000 0C8C00C0 C003512F CCCOLF40 000006CH
SCEFC4EO0 58EC02B0 9120E28C 4710CBBB 91010471 4780C63E 0207C4C0 C04091C1
E2BC4710 074091C1 04714780 06540207 00400400 SBEFO4EO0 918002CC 47800492
47F00588 91C302AF Q77E9LAl 028CO78E GCEFQ4EE SEFCO6LC SCFCCOCC 841005FC
912102BC 47€CC6C4 S58F0060C 5BE002BO 91FFE032 47100686 96200471 820005F8
82C00600 S4CFC471 D6CCC470 001B4780 QEB6S602 C4T14EFC 06780207 04CO04ES
47FGCG58C 9BEF04E8 O7FE9048 04F0S0EQ 05045860 02B04170 C6F25840 62C445€80
C7189€8C 0zBC4SEC (66491C2 64714780 06€84180 07305840 02C44570 07185840
62C04570 07185840 02C0457C 07189848 04FC58EC 050407FF 12440788 48504020
1255Q077€ 585040C0 9LFFS501C 077807F7 D70302C0 02C0L703 62C062C0 47FC07CE
$00F0810 910302AF 478C075C S€E0028B0 S4FEE2BC 980F0810 47F00646 58700864
488C7000 417070C2 5480087C 47800760 558C0870 4780074C 5810086C 14184320
1CCCE882C CCC4E542C CE74442C 0B7C4T780 07604320 10065420 C8785920 02844770
07AA58C0 CB6845F0 00064320 02B8542C 08748920 Q0045720 C8704420 088447F0

i idatettarostosrenstosnsaacescsaab®

Q000DE48
F30024F8

00C1D380 400005CA
0C020C00 000006CA
00000000 00000000 00000000
QCOCCCCC CO000CCCC 00000900
00000000 O000CDE38 00019CC8
ccececce €200C0CC 00000000
24FB802NA 02NDA02DA O2DATFFF
00007628 0C€040000 00000472
00000C00 00009000 00000000

ceees

FFFFFFFF FFFFFFFF FRFFFFFF

Heroeessecesanvesassesrsessscanaak

00000000 €0G0OCOCC 0CO000CO

R R R S LR R R RS

C4DCSEEC €2B09120 00184710

04BA41F0 02F09107

Heveoooseasansanccaney

eenaYe0aab0,

seeDa0esccanetvansenace

OueKosaoVt
ee2a oDuo#

¥eonoeee0osnncana

Figure 28. Sample of a Storage Image Dump

76 Programmer's Guide to Debugging (Release 20)

Guide to Using a Storage Image
or a Stand-Alone Dump

The purpose of this section is to suggest
debugging procedures that you may use with
a storage dump or a stand-alone dump. This
discussion applies to the output of the
following programs:

e IMDSADMP- The low speed version that
formats and dumps main storage.

e IEAPRINT- Formats and prints storage
dumps for PCP.

¢ IMDPRDMP- Reads, formats, and prints
storage dumps from MPFT or Mvt systems
and the high speed version of IMDSADMP.

All of these programs produce hexadecimal
dumps of the contents of main storage from
location zero to the highest machine
address.

The IMDPRDMP program provides formatting
capabilities which can be used to display
the important system control blocks for
easy examination. The IMDPRDMP program
does most of the procedures described in
this section automatically. The cases in
which the IMDPRDMP program does not provide
formatting are identified. A complete
description of the services provided by the
IMDPRDMP program is found in the
publication, IBM System/360 Operating
System: Service Aids, GC28-6719.

Since the formatting for the IMDPRDMP
program depends on the contents of the
dump, it is not always possible to provide
complete formatting. For example, if the
CVT of the system to be dump has been
overlaid, the IMDPRDMP program can provide
only a hexadecimal dump of main storage.

Guide to Using a Storage or a Stand-Alone Dump 77

DETERMINING THE CAUSE OF THE DUMP

Main storage dumps are invokes by system
routines and these routines can be
identified by module names appearing in the
most recent request block (RB) for the
failing task. (With PCP, there is only one
task at any given time and that task will
invoke the dump. This can be verified in
the system.) With MVT and MFT, the main
storage dump is invoked by SVC 51. This
SVC PSW appears as the resume PSW in the
second most recent RB of some task in the
system. The module name in the current RB
for that task must be 201C.

Main storage locations from zero to 128
(hexadecimal 80) are permanently assigned
and contain hardware control words. Table
1 shows these fields, their location, their
length, and their purpose.

eTable 1. Permanently Assigned Hardware
Control Words

r T - T 1
| Address| Length | |
lDec HexlIn Bytesj Purpose }
r T 1 - 1
|0 0 | 8 | IPL PSW |
[R | 4 J
r T T 1
|8 8 | 8 | IPL CCWl |
k 1 +-—- 1
|16 10 | 8 | IPL CCW2 |
% + fommmm e -]
|24 18 | 8 |External old PSW |
b + == ———e—{
|32 20 | 8 | Supervisor call old PSW |
o ¥ e
ju0 28 | 8 |Program old PSW |
F + + S - -1
|48 30 | 8 |Machine check old PSW |
L 4 4 ——— .|
r T T

|56 38 | 8 |I/0 old PSW |
t + T —— 1
|64 4O | 8 |Channel Status Word |
Ea— - -- - 1
|72 48 | 4 | Channel Address Word |
[N 4 4 4
r T B B 1
|76 u4cC | 4 | bnused |
e 1 ~—i
|80 50 | 4 | Timer |
L 4 e e e ‘|
] T T

|84 54 | 4 | Unused |
b { t ———=i
|88 58 | 8 | External new PSW |
F 1 TR ——— 1
|96 60 | 8 | Supervisor call new PSW |
e mmmm - - -
|104 68 | 8 | Program new PSW |
L — 4 4 _ - —_
) T T

{112 70 | 8 |Machine check new PSW |
F 1 . e — 1
{120 78 | 8 |I/O new PSW |
[| i —d

Cause of the Dump: Evaluate the PSWs that
appear in the formatted section of the dump
(the first four lines) to find the cause of

the dump. (For PCP, the IEAPRINT program
places the PSWs in the dump header; they
are appropriately labeled.) The PSW has
the following format:

Program Status Word

System Mask Key AMWP Interruption Code
0 78 1112 15 16 31
ILC | CC P;\:gzzm Instruction Address

32 3334 3536 39 40 63

e Does the instruction address field of
the 0ld machine check PSW show either
the value E2 or E02? If so, a hardware
error has occurred.

e Does the instruction address field of
the o0ld program check PSW have a value
other than zero? If so, a program
check at the instruction preceding that
address caused the interruption.

Task Structure

PCP: Since there is only one task in the
system, there is only one TCB. This TCB is
always at location 384 (180 hexadecimal) in
the main storage dump.

MFT (Without Subtasking): There is a TCB
associated with each partition of main
storage there are also TCBs for critical
system tasks such as the master scheduler
task and the transient area loading task.
Table 1 shows location 76 (4C) unused for
hardware control words. The control
program uses this word to contain a pointer
to the CVT. Use this CVT pointer to locate
the first byte of the CVT, then the
CVTIXAVL field (offset 124) in the CVT.

The address contained at CVTIXAVL is a
pointer to the I0S freelist. At offset 4
in the IOS freelist is a pointer to the
first address in a list of TCB addresses.
You can look through this list of TCB
addresses, and, keeping your system options
in mind, find the TCBs for each partition.
The TCB addresses are listed in the
following order:

e Transient area loading task.

e System error task (MFT with
subtasking).

e Multiple console support write-to-log
task (optional).

e I1/0 recovery management support task
(optional).

e Communications task.

e Master scheduler task.

e System management facilities task
(optional).

78 Programmer's Guide to Debugging (Release 20)

A

Figure 29 shows how to locate the
partition TCBs in sample output from the
IMDPRDMP program.

MFT With Subtasking:

Partition 0 task.
Partition 1 task.

Partition n task.

For MFT subtasking

(and for MVT),

For MFT with subtasking, the job step
TCB may be found using the method described
for MFT without subtasking or by a more
CVT offset 245 (F5)
contains a pointer to the partition 0 job
step TCB address in this address table.

direct method.

To recreate the task structure within
simply locate the job step
and follow the TCB pointers - as
explained in the previous section.

any partition,
TCB,

a task may create a subtask.
The partition TCBs for MFT with sSubtasking
are referred to as job step TCBs.
structure for a job step may be
reconstructed in a main storage dump by
using the information in Diagram 1.

The task

Location 4C

MVT: To find the current TCB, look at
location 76 (4C) for a pointer to the CVT.
The first word of the CVT contains a
pointer to a doubleword of TCB addresses,
which contains pointers to the next TCB to
be dispatched (first word) and the current
TCB (second word). Beginning with the
current TCB, you can recreate the task
structure for the job step using the
methods in Diagram 1.

If the first word of the current TC3
points to itself, there are no ready tasks
to be dispatched, and the system has been
placed in an enabled wait state. This TCB,
now in control, is called the system wait
TCB.

All TCBs in the system are maintained in
a queue called the CVT ready queue. These
TCBs are queued according to their
dispatching priority. The CVTHEAD field,
offset +160 (A0) in the CVT, contains the
address of the highest priority TCB in the
system. Offset +116 (74) in the TCB points
to the TCB with the next lowest priority.
Diagram 1 shows how to locate all of the
TCBs in the system.

000040

00CB40
00CB60
00CB80O
00CBAO
00CBCO

e T

00000000 00000000 00000000

0L7F8EO00 0000CD5C 00040000 00000288

CvT

60000000 00000000 00000000 00000000
00000000 00004880 "0000CBOA 00012880

Khhhhfihh hhBhlhhh hhhKhbhh hhhhhhih =
hhhhhhhh bhhhhhhh hhbhhbhh hbhhhhhbh
_hhhhhhihh bhhhhhhh' hhhhhhhh 00

Y e ™

00000774 0000078C 0000DAEES 0001A288
hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh
hbhhhhhhh hhhhhhhh' hhhhhhhh hhhhhhhh
Hhhhiihhbh hhhhhhhh hhhhhhhh hhhhhhhh
hhhhhhhh -hhhkhhhh Khhhhhhh hhhhhhhh

———— e

1OS Freelist

004860

01EC20
01EC40

008D40
008D60
008D80
008DAO

Figure 29.

e R I N

hhhhhhhh 2F90FFF! hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh
List of TCB Addresses)
e
\ .
hhhhhhhh hhhhhhhh hhhh hhhhhhhh 00008778 9000885§L00008938 00008218
00008B68 00008C48 00008048 hhhhhihhh hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh

LJLLML

00000000 00000000 HO7B2DS hhhkhhhh -
hhhhhhhh Bihhhhhh hhhhbihh -hhhhhhh
hhlihhibh -hhhlikhhh Bhhhlbhh hhhhhhihh
hhbhhhbh

__hhbhhhbh hhhhhbhh' hhhhhhhh hhhhhhhh
hhhhhlihh hhhhhbhh hhhhhhhh hhhhhbhh
hhhhhhhh hhhhhhhh hhhhhhbh bhhhhhhh

Finding the Partition TCBs in MFT

Guide to Using a Storage or a Stand-Alone Dump 79

08

(0Z oseaTdy) burbbngag o3 aptno s, asumexboid

wezbetqg e

*T

904 9y3x butputd

Job Step TCB

+13668) | N @

TCB

O®

+132(84)

@ isa job step TCB and is the

TCB of the subtask created by @

Offset +136(88) in @ poinis to its

subtask TCB ((B)). Offset +132(84)

in the subtask TCB () points back

to the job step TCB (@).

Subtask
TCB

+136

- 128(80)

+132(84)

®

in

(88)

O

A" Job Step TCB

TCB

\

L ®

CB

100

Subtask
TCB

1
i

TCB

£80l0

is a job step TCB, is the TCB for the first

subtask created by @ . is the TCB for the

second and most recent subtask created by .
Offset +136(88) in @ points to the TCB of its
most recently created subtask, Offset +136(84)

points back to the creating task (@).

Offset +128(80) in poin’rs to the next

most recently created subtask TCB, Offset
+132(84) in points back to the originating

e (()).

In each TCB:

Offset

+128(80) points to the TCB of the nexi most
recently created subtask, [f none
exists, this field is zero,

points to the TCB of the task that
created it. If none exists, this field
is zero,

points to the TCB of the most recent
subtask created by this task. [f none
exists, this field is zero,

+132(84)

+136(88)

|
Subtask |
TCB |

Job Step TCR

+136(88)

»
@
~
—

+128(80)

OlO] .

+132(84)

+136(88)

@ Subtask @ Subtask 1
C8B TCB i
i

A

TCB

0.0, OO =} (DE)
'@ +132(84) F

@ is the job step TCB. is the TCB for the first subtask created by ® , is the TCB

for the second and most recent subtask created by . Offset +136(88) in @ points to
the TCB of its most recently created subtask. Offset +132(84) in points to the TCB of the
creating task, Offset ~128 in points to the next most recently created subtask TCB.
Offset +132(84) in poinfs back to the job step TCB (@). Offset +136(88) in
points to the TCB of its most recently created subtask ().

points to the TCB of its creating task () and to the TCB of the subtask most
contains pointers to the TCB of the originating task ()
and to the TCB of the task most recently created by . @ contains only a pointer to

the TCB of the invoking task ()

@ Subtask
TCB

TCB

~128(80) +128(80)

+132(84)

recently created by

4

Keep in mind that all TCBs in the system

appear on this queue. Therefore, not only
does a particular job step TCB appear on
the ready queue, but all of its subtask
also appear.

You can find the job step TCB associated
with any TCB by using the TCBJSTCB field of
the TCB, offset +124 (7C). This field
contains the address of the job step TCB
for the TCB you are examining.

In response to the FORMAT control
statement, the IMDPRDMP program will do
most of this work for you. It will
recreate the task structure, format all
TCBs in the system, and provide a TCB
summary. The TCB summary shows the task
structure. Figure 30 shows a portion of
the TCB summary information from an MVT
system. TCBs associated with a particular
job are grouped together under the job name
and step name. The TCB summary contains
the TCB address, the completion code, and,
when applicable, the address of the
originating TCB and the addresses of
created TCBs.

Task Status - Active RB Queue

The first word of the TCB contains a
one-word pointer to the first word of the
most recent RB added to the queue. 1In its
eighth word, RB+28(1C), each RB contains a
pointer to the next most recent RB. The
last RB points pack to the TCB.

You can determine the idenity of the
load module by looking either in the first
and/or second words of the RB for its

EBCDIC name or in the last 3 digits of the
resume PSW in the previous RB for its SVC

numbexr. The entry point to the module is

in the last 3 bytes of the fourth word in

the RB, RB-13(D).

In MVT system, the name and entry point
of the associated load module are not
always contained in the RB associated with
the module. Instead, they are found in a
contents directory entry.

The address of the contents directory
entry for a particular load module is given
in the fourth word of the RB, RB+12(C).

The CDE gives the address of the next entry
in the directory (bytes 1-3), the name of
the load module, bytes 8-15(F); the entry
points of the module, bytes 17-19(11-13).

Figure 31 shows the formatting that the
IMDPRDMP program does for a task in an MVT
system. Notice the connection between the
RB and the CDE. The IMDPRDMP program
extracts the CDE information and displays
this information with the RB.

The wait-count field of the RB is
particularly important when locating the
TCB by using the CVT ready queue (CVTHEAD).
The high-order byte of the RB link field,
RB-28(1C), of the most recent RB for a TCB
contains a count of the number of events
for which the task is waiting. Tasks that
have a zero wait count are ready to be
dispatched. Such a task will be dispatched
or become the current task when all TCBs of
higher priority are waiting for the
completion of an event. To determine the
events for which a task is waiting, use the

* %k % * T C B

JOB MASTER STEP SCHEDULER

S UMM

ARY****

e Figure 30.

L~

IMDPRDMP TCB Summary

TCBhhhhhh CMPhhhhhhhh NTChhhhhhhh
JOB MASTER STEP SCHEDULER

TCBhhhhhh CMPhhhhhhhh NTChhhhhhhh
JoB WTR STEP 00E

TCBhhhhhh CMPhhhhhhhh NTChhhhhhhh

TCBhhhhhh CMPhhhhhhhh NTChhhhhhhh
JOB JOBL1 STEP GO

TCBhhhhhh CMPhhhhhhhh NTChhhhhhhh

TCBhhhhhh CMPhhhhhhhh NTChhhhhhhh

TCBhhhhhh CMPhhhhhhhh NTChhhhhhhh
JOB JOB12 STEP GO

TCBhhhhhh CMPhhhhhhhh NTChhhhhhhh

OTChhhhhhhh LTChhhhhhhh PAGE hhhh
OTChhhhhhhh LTChhhhhhhh PAGE hhhh
OTChhhhhhhh LTChhhhhhhh PAGE hhhh
OTChhhhhhhh LTChhhhhhhh PAGE hhhh
OTChhhhhhhh LTChhhhhhhh PAGE hhhh
OTChhhhhhhh LTChhhhhhhh PAGE hhhh
OTChhhhhhhh LTChhhhhhhh PAGE hhhh
OTChhhhhhhh LTChhhhhhhh

Guide to Using a Storage or a Stand-Alone Dump

81

instruction address field in the resume PSW
to locate the WAIT macro instruction in the
source program. This will point you to the
operation being executed at the time of the
dump.

Main Storage Contents

Load List (PCP and MFT): The load list is
a chain of request blocks associated with
load modules invoked by a LOAD macro
instruction. By looking at the load 1list,
and at the job pack area queue described
below, you can determine which system and
problem program routines were locaded before
the dump was taken. To construct the load
list associated with the task in control,
look at the tenth word in the TCB,
TCB+36(24), for a pointer to the most
recent RB entry on the load 1list, minus 8
bytes (RB-8). This word, in turn, points
to the next most recent entry (minus 8),
and so on. If this is the last RB, RB-8
will contain zerces. The word preceding
the most recent RB on the list (RB-4)
points back to the TCB's load list pointer.

Load List (MVT: To construct the load list
associated with the task in control, look
at the tenth word in the TCB, TCB+36(24),
for a pointer to the most recent load list
entry (LLE). Each LLE contains the address
of the next most recent entry (bytes 0-3),
the count (byte 4), and the address of the
CDE for the associated load module (bytes
5-7). If this is the last LLE in the list,
TCB+36 (24) will contain zeroes.

Job Pack Area Queue: In systems with MFT
with subtasking and with MVT system, the
job pack area queue is used to maintain

reenterable modules within a partition or

T —————

region. The complete description of this
queue is found under the topic "Task
Structure-Active RB Queue".

To reconstruct the job pack area queue
in an MFT system with subtaskina, look at
TCB+125(7D) for a three byte pointer to the
partition information block (PIB). The
twelfth word of the PIB, PIB+44(2C), points
to the most recent RB on the jcb pack area
queue minus 8 bytes (RB-8). This word in
turn points to the next most recent RB
minus 8, and so on. The last kB will nave
zero in this field. The word preceding the
most recent RB on the queue (RB-4) points
back to the job pack area queue pointer in
the PIB. You can determine the identity of
the load module by lccking either in the
first and/or second wocrd of the RB for its
EBCDIC name, or in the last three digits of
the resume PSW in the previous RB for the
SVC number. The entry point of the module
is given in the last three bytes of the
fourth word in the RB, RB+29(1D), unless it
is an FRB.

The first five words of an FRB
(beginning at offset minus 8) are identical
in content to those of other RBs. The
XRWTL field, offset 12(C), contains the
address of a wait list element. The first
word of the WLE points to the next WLE, or
contains zeros if the WLE is the last one.
The second word to the waiting SVRB. You
can determine the number of deferred
requests for the module by tracino the
chain of WLEs.

.

The XRREQ field of an FRB, offset
16 (10), contains a pointer to the TCB of
the requesting task. The next word,
CRTLPRB, offset 20(14), points to an LPRB

ACTIVE RBS

PRB 02DEBO RESV hhhhhhhh APSW
Q/TTR hhhhhhhh WT-LNK hhhhhhhh

hhhhhhhh WC-SZ-STAB hhhhhhhh FL-CDE 0
NM TEPSH0TS

EPA GAEGSE sTA

JOB PACK|QUEUE

NM CIEFEHGTY

odule Name

CDE 02DFDO USE 0Ol RESP NA

® Figure 31.

ATR1 98 EPA

Determining Module From CDE in MVT

Entry Point Address e

82 Programmer's Guide to Debugging (Release 20)

built by the Finch routine for the
requested program. The FRB for the
requested program is removed from the job
pack area queue by the Finch routine when
the program is fully loaded.

In MVT, the job pack area queue is
maintained in the same manner as the load
list. The distinction between the two
queues is that the job pack area queue
contains reenterable programs. There are
no FRBs in MVT.

Main Storage Supervision

Free Areas in Non-MVT Systems: Areas of
main storage that are available for
allocation at the time the dump was taken
are described by the MSS boundary box and a
series of free queue elements (FQEs). The
seventh word of the TCB for the task,
TCB+24(18), points to a six-word MsS
boundary box. The first word of the MsSS
boundary box points to the FQE with the
highest processor storage address in the
partition (hierarchy 0), and the fourth
word, to the highest 2361 Core Storage
address in the partition (hierarchy 1).
‘The first word of each FQE points to the
next lower FQE; the second word of the FQE
gives the length of the area it describes.
FQEs occupy the first 8 bytes of the area
they describe.

Gotten Subtask Areas: In MFT with
subtasking, areas of a partition allocated
by the system to a subtask within the
partition are described by gotten subtask
area queue elements (GQEs). The seventh
word of the subtask TCB, TCB+24(18), points
to a one word pointer to the most recently
created GQE on the GQE queue. Bytes 0
through 3 of the GQE contain a pointer to
the previous GQE or, if zero, indicate that
the GQE is the last one on the queue.

Bytes 4 through 7 of the GQE contain the
length of the gotten subtask area. Each
GQE occupies the first eight bytes of the
gotten subtask area it describes.

Region Structure in MVT System: The region
associated with a particular task in an MVT
system is described by partition queue
elements (PQEs). The thirty-ninth word of
the TCB, offset +152 (98) contains a
pointer to the dummy PQE (D-PQE) for the
region. The first word of the dummy PQE
points to the first PQE and the second
word, to the last PQE. The first and
second words of each PQE point to the first
and last free block queue elements (FBQEs),
respectively, associated with the PQE.
Separate PQEs are used to describe parts of
a region in different storage hierarchies
or part of a region that was obtained by
another task which has been rolled out.

FBQEs describe free areas in the region
that have a a length which is a multiple of
2048 bytes. These free areas are available
for allocation to a specific subpool.

Subpool Descriptions (SPQEs) The seventh
word of the TCB, TCB+24(18), points to the
SPQE representing the first subpool used by
the task. Each SPQE contains the address
of the next SPQE (bytes 1-3), the subrool
number (byte 4), and the address of the
first descriptor queue element (DQE) for
the subpool (bytes 5-7) or, if the subpool
is owned by another task (bit 0 is 1), the
address of the SPQE that describes it
(bytes 5-7).

Storage within a subpool is described by
a descriptor queue element. Each DQE
contains the number of bytes of main
storage in the subpool. This count is
always a multiple of 2048 bytes. If a
request for space from a subpool cannot be
satisfied with the space described by an
existing DQE the GETMAIN routine kuilds
another DQE and links the new DQE to the
chain of existing DQE's. Each DQE contains
a pointer to the FQE that represents the
free area with the highest main storage
address in the subpool (bytes 1-3), a
pointer to the next DQE (bytes 5-7), and
the length of the area described by the
DQE, bytes 13-15(D-F).

Figure 32 shows the control blocks used
to describe the subpools for a task in an
MVT system.

I/0 Control Blocks

Queue of DEBs: To find the queue of DEBs
for the task, look at the third word in the
TCB (TCB+8). The address given here points
to the first word of the most recent entry
on the DEB queue. There is a DEB on this
queue for each data set opened to the task
at the time of the dump. DEBs are enqueued
in the same order as the data sets are
opened. The last three bytes of the second
word in each DEB (DEB+5) points to the next
most recent DEB on the queue. The queue
contains one DEB for each open data set.

UCBs: You can find unit information for
each device in your system in the unit
control block (UCB) for that device. The
address of the UCB is contained in the last
3 bytes of the ninth word of the DEB,
DEB+33(21). If the DEB queue is empty,
scan the dump around location 4096(1000)
for words whose fifth and sixth digits are
FF. These are the first words of the UCBs
for the system; UCBs are arranged in
numerical order by device address.
may find it easier to locate UCBs Ly
looking for the device address in the
EBCDIC printout to the right of each page.)
The first two bytes of the second word of

(You

Guide to Using a Storage or a Stand-Alone Dump 83

WA-/TC;\/
N

hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh
hhhhhhhh hhhhhbhh hbhhkhhhhh' hhhBhhhi

hhhhhh hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh
hhhhhh hithhhbhh hhhhhlihh 0L020K%0 hhhhhhhh
L o -
Address of SPQE
T T e ~~— . for Subpool 0
T T ™~

Address of SPQE for Subpool 251
—_— Address of

e B SPQE for
02DA00 hhhhhhhli hhhhhhhh hhhhhhhh hhhhhhhh 0002DEAO j 60000000 0082 vapoo|0
02DA20 hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh Cc0000000 0002DA18 OOOOOOOO 00
02DA40 hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh {
———Tast DQE e - '
02D280 Q0060000 00000000 00053800 00019000
~

Last DQE

02DEAO 0002DA30 FCO2DA68 hhhhhhhh hhhhhhhh

hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh

00 i hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh ‘_::3
- . .———SPQE for Subpool 252
/ e ——

B e — _1___',—

ree—

STORAGE KEY E

046000 00000000 00000768 hhhhhhhh hhhhhhhh

W\
FQE describing 1896 (768)
bytes of free storage

® Figure 32.

each UCB give the device address. The
device type and class are given in the
third and fourth bytes of the fifth word,
UCB+18(12), respectively. The sense bytes
are given in the last two bytes of the
sixth UCB word, UCB-22(16), and extend for
from 1 to 6 bytes, depending on the device
type. Sense bytes are explained in
Appendix F.

DCB and TIOT: The address of the DCB, a
control block that describes the attributes
of an open data set, is located in the last
3 bytes of the seventh DEB word,
DEB+25(19). The first two bytes of the
ninth word of the DCB, offset 40(28),
contains the offset in the task
input/output table (TIOT) of the DD name
entered for the data set. Therefore, the
address of the DD name for a particular
data set may be found by adding the TIOT
offset in the DCB to the TIOT address in
the TCB (TCB+12), plus 24(16) bytes for the
TIOT header.

IOB: If a data set is being accessed by a
sequential access method with normal
scheduling, the address of the input/output

"

hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh

Subpool Descriptions in MVT - IMDPRDMP Storage Print

block (IOB) prefix (IOB-8) is located in
the seventeenth word of the DCB,
DCB-68(44). The first word cf the IOB
prefix points to the next IOB (if more than
one I0B exits for the data set). Each IOB
for an open data set contains a pointer to
the CCW list in the last three bytes of the
fifth word, IOB+17(11).

ECB: The completion code for an I/0
operation is posted in the first byte of
the event control block (ECB). ECB
completion codes are explained in Appendix
E. If the I/0 event is not complete and an
SVC I (WAIT) has been issued, the
high-order bit of the ECB is on, and bytes
one through three contain the address of
the associated RB. For the sequential and
basic partition access methods the second
word of an IOB points to its associated
ECB.

Figure 33 shows the DEB, UCB, DCB, and Y
I0B for a BSAM data set.

84 Programmer's Guide to Debugging (Release 20)

Page of GC28-6670-4, Revised March 1, 1971, by TNL: GN28-2457
UCB ID i
UCB——-——\- Device Address \
0015E0 : N 0024 01470160 0O 30402001
001600 - hhhhhhhh ‘hhhhhhhh hhhhhhhh hhhhhhhh
001620
Volume mounted on Device
DCB
011780 hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh hhiihhhhh hhhhhhhh hhhhhhhh
0117A0 hhhhhhhh hhhhhhhh hhhhhhbh _‘hhhhhhhh hhhbhhbh hbhhhhhbh 00K§0020 T10T Offset
0117C0 ~hhhllbhh hhhhhiibh hhhhbhhh hhhhhhhh hhhhhhhh 41011E00 hhhhhhhh
0117E0 hhhhhhhh‘hhhhhhhhihhhhhhhhu hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh
ECB Operation Address of Channel Program
. Complete Low=Order
'/H 1OB Prefix 7-bytes of last CSW /
e, ! A
011E00 -4 hhhhh shhhﬁhhhh T B { 00011794
011E20 - 000 0 00.00000000. 02000210 31011E2B 406000005 0B011E30.00000000
011E40 ~IDQilH§3?AGOOQGOS hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh
011E60 hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh
011E80 hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh -hhhhhhhh hhhhhhhh hhhhhhhh DEB
011EAO0 ‘hhhhhhhh hhhihhhh hhhhhhhh OFg] ¢ hhhhhbhh 1 hhhhhhhh hhhhhhhh
011ECO hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh h hhhhhhhh hhhhhhhh
Address of UCB
Address of DCB
TIOT
021280 hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh
0212A0 ~hhhhhhhh- Bhhhbhhhh- hbhhhhhh hiihhhhbh hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh
0212C0 hhbhhhbh bhhhhhbh hhhbhhhh hhhhhhhh | Bhhbhbhhh hhbhhhhlih hhhhhhhh hhhhhhhh
0212E0 -k ahh hh hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh
021300 . hhhhhhhh . hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh
021320 ‘hhhhhhhh™ = hhhhhhhh hhhhhhhh hhhhhhhh
021340 hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh
TIOT@ 21298
DDNAME Offset A4
2133C
Figure 33. 1I/0 Control Blocks

TSO Control Blocks

The time sharing (TSO) control blocks are
obtained from the IMDPRDMP service aid
program by specifying the TSO control
statement in the input stream. The first
part of the TSO dump is the same as the
normal MVT dump. The control blocks that
IMDPRDMP formats are divided into two
group: system and user.

TSCVT: The time sharing communications
vector table (TSCVT) is a secondary CVT for
the MVT CVT. The time sharing CVT resides
in the time sharing region; therefore, it
exists only while the time sharing region
is active. When time sharing does not
exist in the system, the MVT CVT pointer to
the TSCVT (CVT+229) is zero.

RCB: A region control block (RCB) contains
information that is unique to a time
sharing region. There is one RCB for each

time sharing region. The RCBs reside in
the time sharing controller's region, they
are contiguous, and they are created during
initialization of the time sharing
controller.

The TSCVT points to a region control
block table. The RCB table is an indexed
table containing one RCB address for each
possible time sharing region, therefore,
the table contains the maximum number of
RCBs that may be used by time sharing. The
first RCB is for region one, the second for
region two, etc. The time sharing job
block (TJB) of a job points to the RCB
associated with that job.

UMSM: One user main storage map (UMSM)
exists for each possible time sharing user.
The UMSM contains a series of consecutive
one-word extent fields (ADDR-LN). Each
one-word extent contains a halfword address

field (ADDR) and a halfword length field

Guide to Using a Storage or a Stand-Alone Dump 85

Page of GC28-6670-4, Revised March 1, 1971, by TNL:

(LN) that describes the main storage
allocated to the time sharing user. The
UMSM contains the address and length of a
storage block (a multiple of 2K bytes) that
has been allocated to the user; only this
allocated storage will be swapped out for
the user. The time sharing job block (TJB)
points to the UMSM.

SWAP DCB: The swap data control block
(SWAP DCB) is used whenever a time sharing
user's region is swapped into or out of
main storage. It describes a swap data set
that contains an IOB, area for channel
programs, and the track map queue. The TJB
points to the swap DCB.

TJB: The time sharing job block (TJB)
contains status information about a time
sharing user. The TJB is retained in main
storage while the user is swapped out. One
time sharing job block exists for each
possible simultaneous time sharing user.
The space for the TJB is obtained from the
time sharing control task (TSC) region
during time sharing initialization. Status
information about the terminal related to
this TJB is contained in the terminal
status block (TSB). The address of the
terminal status block is the first word of
the TIJB. The first word of the TSCVT
points to the TJB.

TSB: Each terminal status block (TSB)
contains status information about one
terminal. The terminal input/output
coordinator (TIOC) uses this information.
During system initialization, one TSB is
created for each possible user. The main
storage space is obtained in one contiguous
block for all of the TSBs in the region of
the time sharing control task (TSC); this
contiguous string of TSBs is called the TSB
table. The origin pointer to the TSB table
is the TIOCTSB field of the TIOCRPT.

TJBX: The time sharing job block extension
(TJBX) contains user job information that
can be rolled out to the swap data set with
the user's job. The TJIJBX resides in the
local system queue space (LS@gS) for the
region. The TJIBX location is pointed to by
the third word of the time sharing job
block (TJdB). The space for the TJIBX is
obtained by the region control task (RCT)
during initialization.

PSCB: The protected step control block
(PSCB) contains accounting information
related to a single user. All timing
information is in software timer units. A
software timer unit is equal to 26.04166
micro seconds. The job step control block
(JSCB), offset 268, points to the PSCB.

TAXE: The TSO terminal attention exit
element (TAXE) is a physical addendum to a
regular 24 word interrupt request block

GN28-2457

(IRB). It is used to schedule an attention
exit resulting from a terminal attention
interruption. It is created, queued, and
dequeued by the specify terminal attention
exit (STAX) macro instruction. The main
storage space for the TAXE is obtained in
the local system queue space (LSQS) of the
terminal user's region.

For a more detailed description of the
TSO control blocks formatted by the
IMDPRDMP program, see the publication IBM
System/360 Operating System: Service Aids,
GC28-7619.

Trace Table

Find the Trace Table: Location 84(54) in
main storage contains the address of the
first word of the three word trace table
control block. The trace table control
block immediately preceeds the table. The
trace table control block describes the
bounds of the table and the most recent
entry at the time of the dump.

1
Last Entry|
]

T
Current Entry | First Entry
1
4y

O p—n
0 -

You can locate the trace table by scanning
the contents of main storage between
locations 16,384(4000) and 32,768(8000) for
trace table entries. Entries are four
words long and begin at addresses ending
with zero. To find the table boundaries
and current entry, scan the table in
reverse until you reach the trace table
control block.

Trace Table Entries in PCP_and MFT: Trace
table entries for systems with PCP and MFT
are 4 words long and represent occurrences
of s10, I/0, and SVC interruptions. Figure
34 gives some sample entries and their
contents.

SIO entries can be used to locate the CCW
(through the CAW), which reflects the
operation initiated by an SIO instruction.
If the SIO operation was not successful,
the CSW STATUS portion of the entry will
show you why it failed.

1/0 entries reflect the I/0 old PSW and the
CSW that was stored when the interruption
occurred. From the PSW, you can learn the
address of the device on which the
interruption occurred (bytes 2 and 3), the
CPU state at the time of interruption (bit
15), and the instruction address where the
interruption occurred (bytes 5-8). The CSW
provides you with the unit status (byte 4),
the channel status (byte 5), and the
address of the previous CCW plus 8 (bytes
0-3).

-,

86 Programmer's Guide to Debugging (Release 20.1)

Page of GC28-6670-4, Revised March 1, 1971, by TNL:

SIO 0000090,

[

Condition Device
code address

(O0000F 98, 00000000 04000000 ,

CAW Csw

s

FF060190 0000320A , | Q001F708 0€000000

/0

1/O old PSW CSwW

SVC number

}___

svC FF0510

3

5001442A, (0003F3BC, 00000050,

SVC old PSW Register 0 Register 1

Figure 34.

SVC entries provide the SVC old PSW and the
contents of registers 0 and 1. The PSW
offers you the hexadecimal SVC number (bits
20-31), the CPU mode (bit 15), and the
address of the SVC instruction (bytes 5-8(.
The contents of registers 0 and 1 are
useful in that many system macro
instructions use these registers for
parameter information. Contents of
registers 0 and 1 for each SVC interruption
are given in Appendix A.

Trace Table Entries in MVT and M65MP:
Entries in an MVT trace table are 8 words
long and represent occurrences of SIO,
external, SVC, program, I/0, and dispatcher
interruptions. You can identify what type
of interruption caused an entry by looking
at the fifth digit:

SIO0
External
SvC
Program
170
Dispatcher

[T T T

guwNhE o

Figure 35 gives some sample entries and
their contents.

In dumps of Model 65 Multiprocessing
system, trace table entries differ as
follows:

Guide to Using a Storage or a Stand-Alone Dump

Sample Trace Table Entries (PCP and MFT)

SIO

170

SVC and

Program

Dispatcher

External

5th
6th

7th

8th

3xd

4th

8th

6th

7th

8th

6th

7th

8th

6th
7th

8th

word
word:

word:

word

word:

word

word

word:

word:

word

word:

word:

word:

word:
word:

word:

GN28-2457

TCB.
old TCB

address of
address of
for CPU A.
address of
for CPU B.
CPU identification
(last byte).

contents of register
15.

contents of register
0.

CPU identification
(last byte).

address of old TC3
for APU A.

address of old TCB
for CPU B.

CPU identification
(last byte).

address of new TCB
for CPU A.

address of new TCB
for CPU B.

CPU identification
(last byte).

STMASK of other CPU.
TQE if timer inter-
rupt occurred.

CPU identification
(Last byte). If so, a
program check at the
instruction preceding
that address caused
the interruption.

old TCB

86.1

SIO entry identifier

SIO - 000047¢8 0CH00000, S
]
Condition Device CAW CSw
code address o
) 00004800 - 00000000 195
TCB address Timer
I/O entry
identifier
|_I Device address
/0 FrogTeT {
1/O old PSW Csw
3 00004300 00000000 GLI9BESE, :t]
Timer
Entry identifier
(SVC here) SVC number
sve , e TR ‘ Vi
External 03 - X LB D00046C0; QQQ%QQ__(\W)
Program A AN :
Dispatcher I] [
SVC old PSW Register 15 Register O
; 00000 00000000~ DOOIZCES, - OBIEDECD,
Register 1 : TCB address Timer

e Figure 35.

Sample Trace Table Entries (MVT)

Guide to Using a Storage or a Stand-Alone Dump

87

Appendix A: SVCs

Register contents at entry to an SVC routine are often helpful in finding pointers and
control information. The table below lists SVC numbers in decimal and hexadecimal, and
gives the type, associated macro instruction, and significant contents of registers 0 and
1 at entry to each SVC routine.

Macro instructions followed by an asterisk (*) are documented in the System
Programmers Guide. Expanded descriptions of remaining macro instructions listed here may
be found in the publication Supervisor and Data Management Macro Instructions. Graphics
and telecommunications macro instructions are discussed in the Program Logic Manuals
associated with these access methods.

r T 1 T T R 1
| Decimal |Hex. | | | |]
| No. | No. | Type | Macro | Register 0 | Register 1

I I 4 t 1 — 1 {
| 0 | 0 | I | EXCP * | | I0B address |
| | I | I | |
I 0 | 0 | I | XDAP * I | [
| | I | | I |
| 1 | 1 | I | WAIT | Event count |ECB address |
I [| | I | |
| 1 | 1 | I | WAITR | Event count |2*s complement of

! ! | | | |ECB address |
I		I			
1	1	I	PRTOV		
2 I 2	I	POST	Completion code	ECB address	
		I I			
[3 I 3	1 I I				
	I			_	
)	4	I	GETMAIN		parameter list address
I I I		I			
5	5	I	FREEMAIN		Parameter list address
I		I I I			
6	6	1II	LINK		Parameter list address
					I
7	7	II	XCTL		Parameter list address
	I				
8	8	II	LOAD	Address of entry point	DCB address
		I	address [
I I					
9	9	I, II	DELETE	Address of program name	
I					
10	A	I	GETMAIN or	Subpool number (byte 0)	Address of area to
			FREEMAIN	Length (bytes 1-3) [be freed	
			(R Operand)		
	I	I	I		
10	a	1	FREEPOOL i	[
I I I	I I				
11	B	I, III	TIME		Time units code
I				I I	
12	€	II	SYNCH #*		
I [I	I I				
13	D	IV	ABEND		Completion code
I				I	
14	E	II, III	SPIE		PICA address

I | | | | I |
| 15 | F | I | | |Address of request queue |
| | | | | |element |
L L L 1 4 i J

(Part 1 of 5)

88 Programmer's Guide to Debugging (Release 20)

o

r T T T T T 1
| Decimal |Hex. | | | | |
| No. | No. | Type | Macro | Register 0 | Register 1
b i ' + 'r !
| 16 | 10 | III |PURGE * | |
I | | I | I |
17	11	III	RESTORE *		I0B chain address
	[
18	12	II	BLDL	Address of build list	DCB address
[[I		
18	12	II	FIND		
	I	I I I			
19	13	IV	OPEN		Address of parameter list
					of DCB addresses
i			I I		
20	14	IV	CLOSE		Address of parameter list
					of DCB addresses
I I			[
21	15	III	STOW	Parameter list address	DCB address
				I	
22	16	IV	OPEN TYPE=J*		Address of parameter 1list]
					of DCB addresses
	I			I	
23	17	1Iv	CLOSE TYPE=T		Address of parameter list
			’		of DCB addresses
I I		I			
24	18	III	DEVTYPE *		ddname address
I				I	
25	19	III			DCB address
I				I I	
26	1A	IV	CATALOG *		Parameter list address
I					!
26	1A -	IV	INDEX *		Parameter list address
				I I	
26	1A	III	LOCATE *		Parameter list address
					!
27	1B	III	OBTAIN *		Parameter list address
I			I I [
e B					
29	1D	IV	SCRATCH *	UCB address	Parameter list address
I					
30 .	1E	IV	RENAME *	UCB address	Parameter list address
I I			I I		
31	1F	IV	FEOV		DCB address
			I I I		
32	20	IV			Address of UCE list
					I
33	212	III	IOHALT		UCB address
			I	I	
34	22	IV	MGCR (MAST		
			CMD EXCP)		
I I		I I			
35	23	IV	WO		Message address
I		I I I			
35	23	IV	WIOR		Message address]
I I I I I					
36	24	IV	WI'L		Address of message
		I	I I		
37	25	II	SEGLD		Segment name address
I	I	I ! I			
37	25	II	SEGWT		Segment name address
I I			I		
TN R N					
39	27	I1II,IV	LABEL		Parameter list address
L 4 L 1 4 4 3
')

(Paxrt 2 of 5

Appendix A: 5

VCs 89

r) T T T - -TTT T
| Decimal |Hex. | | | |
| No. | No. | ‘Type | Macro | Register 0 ! Register 1
i 4 } —— { - _I,.____._ —— -
) T T T T
| 40 | 28 |I, II, |EXTRACT | |pParameter 1list address
I | | IIT | | }
I | I | [
| &1 | 29 |II, III|IDENIIFY |Entry point name address|Entry point address
I | | I | |
| 42 | 2a |II, III|{ATTACH [|
| I | | |
| 43 | 2B |1II, III|CIRB * |Entry point address |Size of work area in
| | , { f :doublewords
I I
| 44 | 2 | I | CHAP |+ Increase priority |TCB address
| | i | |- Decrease priority]
| u5 | 2b |} 1II | i |
I I | | | I
| ué | 26 | I | TTIMER | |1: Cancel
| | | | | I
| 47 | 2F | II | STIMER |Exit address |Timer interval address
I | | I | I
| 48 | 30 |1, II |DEQ | |OCB address
| | I | | |
| 49 | 313 | III |TEST | [
| I | | I I
| 50 |32 | 1v | | |
| | | | | | .
| 51 | 33 { 1Iv | SNAP | | Parameter list address
I | I | | I
| 52 | 34 | 1Iv | | |DCB address
I I | | I |
| 53 | 35 | III |RELEX | Key address | DCB address
I I i | | |
| 5u | 36 | 1II | | |
I I I | | |
| 55 | 37 | 1Iv | EOV * |ECB address | DCB address
| I | | I |
| 56 | 38 |I, II |JENQ | QEL address |OCB address
I I I | | I
| 56 | 38 1XI, II |RESERVE * | |
| | I | | I
| 57 | 39 | III |FREEDBUF | DECB address |DCB address
| | I | I |
| 58 | 38 | T | RELBUF | |DCB address
| | | | I I
| 58 | 3 | I | REQBUF | |DCB address
| s g | o | | |
11
| | | [| | ,
| 60 | 3¢ | III |STAE |0 Create SCB | Parameter list address
| | | | |4 Cancel SCB |
| | | | |8 0 |
| 61 | 3D | III | | | Parameter 1list address
: 62 } 3E : 11 :DETACH } :TCB address
I I I | | |
| 63 | 3F | IV |CHKPT | |DCB address
I | | | | I
| 64 | 40 | III |RDJFCB * | |Address of parameter list
| | | | | |of DCB addresses
| | | | | |
| 65 | 41 | 1T | | | Parameter list address
| | | | I |
| 66 | 42 | 1V | |
L 1 4 A BN —_ 1

90 Programmer's Guide to Debugging

(Release 20)

(Part 3 of S

.
I
|

..,
|
|
l
|
|
I
I
|
I
!
|
I
|
!
|
|
[
|
|
|
|
I
|
|
I
I
|
I
|
I
|
I
I
|
I
|
I
I
|
|
I
|
|
|
I
I
[
I
|
|
I
|
I
I
|
|
I
I
|
|
I
1
)

]

r - T T T T T 1
|Decimal |Hex. | | | | |
| No. | No. | Type | Macro | Register 0 | Register 1 |
F f-————1 + t + {
| 67 | 43 | II | ENDREADY | | QPOST |
| I | | | | I
| 68 | 44 | IV | SYNADAF | Same as register 0 on |Same as register 1 on |
| | | | |entry to SYNAD |entry to SYNAD |
I | | | | I |
68	44	IV	SYNADRLS	i	
69	45	III	[BSP		DCB address
70	46	II	GSERV		Parameter list address
]					I
71	47	III	RLSEBFR		Parameter list address
!					
71	47	III	ASGNBFR		Parameter list address
71	47	TIII	BUFINQ		Parameter list address
72	48	IV			Parameter list address
					!
73	49	III	SPAR		Parameter list address
					!
74	A	TIII	DAR		Parameter list address
75	4B	IIT			Parameter list address
					I
76	sc	v			
				I	
I	40	1V			
				I	
78	48	III			
I					
79	47	I	sTATUS		
	I	I	!		
80	50	IIT			I
I I I			I		
81	51	IV	SETPRT		
82 I 52	1v				
]		[
83	53	III	SMFWTM *		Message address
			I		
84	54	I		UCB address and buffer	
				restart address	
85 I 55	v				
			[I _		
86	56	IV	ATLAS		Parameter list address
			I	I	
87	57	III	DOM	If zero	A DOM message I.D.
1			If negative	A pointer to a list of DOM	
					message I.Ds
	[[, [
88	58	III	MODS88	Routine code	DCB address
			I	I	
89	59	IITI	EMSRV		Parameter list address
I			I		
90	5	1V	XQMNGR	Address of list of	OMPA address
				ECB/IOB pointers	
				(optional)	
I					I
91	5B	III	VOLSTAT	DCB address	zero: issued by CLOSE
					Non-zexo: issued by EOV
L 1 L L L XL J
)

(Part 4 of 5

Appendix A: SVCs 91

Page of GC28-6670-4, Revised March 1, 1971, by TNL: GN28-2457
r T T T T T 1
|Decimal |Hex. | | | | |
| No. | No. | Type | Macro | Register 0 | Register 1
L 4 4 + ___+ : 4]
] T) L] L] T 1
| 92 I 5¢ | 1 | | I |
I | | | | |
| 93 | 5D | IV | TGET/TPUT | TJID & buffer Size |address of User's Buffer |
| | | | | | I
| 94 | 5E | IV | STERMINAL | Entry code] |
I | [| STATUS I | |
| I [I [_ [
| 95 | S5F | I | TSEVENT | TOID/Entry Code or O |Not Always Applicable |
I | | | I | |
| 96 | 60 | III |STAX | |Parameter List Address
| | I | | | I
| 97 | 62 | III | | |
| | | | | I |
| 98 | 62 | IV | PROTECT | |Parameter List Address
I | | | I | I
| 99 | 63 | IV |none | |
I | | | | | |
| 100 | 64 | III |FIB | | [
| | I I | | , |
| 101 | 65 |} I | OTIP | Entry code |Parameter List Address |
I | | | I | I
| 102 | 66 | I | AQCTL | |Parameter List Address
L 4 L L L 1 J
)

92 Programmer's Guide to Debugging (Release 20.1)

(Part 5 of 5

P

Completion codes issued by operating system
routines are often caused by problem

program errors.
most common system completion codes,

This appendix includes the
their

probable causes, and how to correct the
error or locate related information using a

dump.
completion codes,

For a more comprehensive coverage of
see the publication

Messages and Codes.

0Cx

OF1

A program check occurred without a
recovery routine. If bit 15 of the
old program PSW (PSW at entry to
ABEND) is on, the problem program had
control when the interruption
occurred; "x" reflects the type of
error that causes the interruption:

Cause

Operation

Privileged operation
Execute

Protection
Addressing
Specification

Data

Fixed-point overflow
Fixed-point divide
Decimal overflow
Decimal divide
Exponent overflow
Exponent underflow
Significance
Floating-point

HEOQWM OWONOAWUMEWN RPIX

The correct register contents are
reflected under the heading "REGS AT
ENTRY TO ABEND" in an ABEND/SNAP dump.
In a stand-alone dump, register
contents can be found in the register
save area for ABEND'S SVRB.

A program check occurred in the
interruption handling part of the
input/output supervisor. The
applicable program check PSW can be
found at location 40(28). (In systems
with MFT, this PSW is valid only if
the first four digits are 0004).

The problem program can be responsible
for this code if:

1. An access method routine in the
problem program storage area has
been overlaid.

2. An IOB, DCB, or DEB has been
modified after an EXCP has been
issued, but prior to the
completion of an event.

Appendix B: Completion Codes

OF2

100

101

102

106

If a trace table exists (trace option
was specified at system generation),
the instruction address in the new
program check PSW, location 104(68),
contains the address of a field of
register contents. This field
includes registers 10 through 1 (PCP)
or 10 through 9 (MFT) on an ABEND/SNAP
dump, or 10 through 1 (both systems)
on a stand-alone dunp.

If no trace table exists, the above
field contains registers 10 through 1
on both ABEND/SNAP (MFT only) and
stand-alone dumps.

Most frequently caused by incorrect
parameters passed to a type I SVC
routine.

A device has been taken off-line
without informing the 'system, or a
device is not operaticnal.

If a trace table exists, the most
current entry is an SIO entry
beginning with 30. The last 3 digits
of the first word give the device
address.

If a trace table does not exist,
register 1 (in the SVRB for the ABEND
routine) contains a pointer to the IOB
associated with the device.

The wait count, contained in register
0 when a WAIT macro instruction was
issued, is greater than the number of
ECBs being waited upon.

An invalid ECB address has been given
in a POST macro instruction.

If a POST macro instruction has been
issued by the problem program, the ECB
address is given in register 1 of
either the trace table entry or the
SVRB for the ABEND routine.

If the POST was issued by an I1/0
interruption handler, the ECB address
can be found in the IOB associated
with the event.

During a transient area load or a
dynamic load resulting from a LINK,
LOAD, XCTL, or ATTACH macro
instruction, the fetch routine found
an error. A description of the error
is contained in register 15 of ABEND's
SVRB register save area:

Appendix B: Completion Codes 93

122

155

201

202

213

222

94

0D The control program found an 301

invalid record type.

OE The control program found an
invalid address. The problem
program may contain a relocatable
expression that specifies a
location outside the partition

boundaries.

OF A permanent I/0 error has 308
occurred. This error can probably
be found in the trace table prior

to the ABEND entry.

Register 6 of ABEND's SVRB register
save area points to the work area used
by the fetch routine. This area
contains the IOB, channel program, RID
buffer, and the BLDL directory entry
associated with the program being
loaded.

400

The operator cancelled the job and
requested a dump.

An unauthorized user (a user other
than dynamic device reconfiguration)
has issued SVC 85. The user's task
has been abnormally terminated by
dynamic device recognition.

This completion code is identical to
102, but applies to the WAIT macro
indtruction instead of POST.

An invalid RB address was found in an
ECB. The RB address is placed in the
ECB when a WAIT macro instruction is
issued. 406
The error occurred during execution of

an OPEN macro instruction for a data

set on a direct-access device.

Either:

1. The data set control block (DSCB)
could not be found on the direct
access device.

2. An uncorrectable input/output
error occurred in reading or
writing the data set control
block.

506

Register 4 contains the address of a
combined work and control block area.
This address plus x'64' is the address
of the data set name in the JFCBDSNM
field of the job file control block
(JFCB) .

The operator cancelled the job without
requesting a dump. The cancellation
was probably the result of a wait
state or loop.

Programmer's Guide to Debugging (Release 20)

A WAIT macro instruction was issued,
specifying an ECB which has not been
posted complete from a previous event.
Either:
1. The ECB has been reinitialized by
the problem program prior to a
second WAIT on the same ECB, or

2. The high order bit of the ECB has

been inadvertently turned on.

The problem program requested the
loading of a module using an entry
point given to the control program
an IDENTIFY macro instruction.

by

Register 0 of LOAD's SVRB register
save area contains the address (or its
complement) of the name of the wmodule
being loaded.

The control program found an invalid
I10B, DCB, or DEB. Check the following
blocks for the indicated information:

e JOB - a valid DCB address.

e DCB - a valid DEB address.

e DEB - ID of OF and a valid UCB

address.

e UCB - a valid identification of
FF.
A,

Note:
may appear instead of a 200 code,
the reasons given under 200.

In systems with MVT, this code
for

A program has the "only loadakle"
attribute or has an entry point given
to the control program by an IDENTIFY
macro instruction. In either case,
the program was invoked by a LINK,
XCTL, or ATTACH macro instruction.

Register 15 of the LINK, XCTL,
ATTACH SVRB register save area
contains the address of the name of
the program being loaded.

or

The error occurred during execution of
a LINK, XCTL, ATTACH, or LOAD macro
instruction in an overlay program or
in a program that was beinag tested
using the TESTRAN interpreter.

The program name can be found as
follows:

1. If a LOAD macro instruction was
issued, register 0 in the trace
table SVC entry or in the SVRB
register save area contains the
address (or its complement) of

the program name. Fid

604

605

606

60A

613

700

2. If a LINK, XCTL, or ATTACH was
issued, register 15 of the
associated SVRB register save
area contains the address of a
pointer to the program name.

Note: Programs written in an overlay
structure or using TESTRAN should not
reside in the SVC library.

During execution of a GETMAIN macro
instruction, the control program found
one of the following:

1. A free area exceeds the
boundaries of the main storage
assigned to the task. This can
result from a modified FQE.

2. The A-operand of the macro
instruction specified an address
outside the main storage
boundaries assigned to the task.

During execution of a FREEMAIN macro
instruction, the control program found
that part of the area to be freed is
outside the main storage boundaries
assigned to the task, possibly
resulting from a modified FQE.

Item 1 under the 604 completion code
is also applicable to 605.

During execution of a LINK, XCTL,
ATTACH, or LOAD macro instruction, a
conditional GETMAIN request was not
satisfied because of a lack of
available main storage for a fetch
routine work area. Consequently, the
request was not satisfied.

The name of the load module can be
found as described under completion
code 506.

Results from the same situations
described under 604 and 605 for R-form
GETMAIN and FREEMAIN macro
instructions.

The error occurred during execution of
an OPEN macro instruction for a data
set on magnetic tape. An
uncorrectable input/output error
occurred in tape positioning orxr in
label processing.

A unit check resulted from an SIO
issued to initiate a sense command.

The defective device can be determined
from the SIO trace table entry that
reflects a unit check in the CSW
status.

704

705

706

804

806

80A

A GETMAIN macro instruction requested
a list of areas to be allocated. This
type of request is valid only for
systems with MVT.

The applicable SVC can be found in a
trace table entry or in the PSW at
entry to ABEND.

Results from the same situations
described under 704 for FREEMAIN macro
instructions.

During execution of a LINK, LOAD,
XCTL, or ATTACH macro instruction, the
requested load module was found to be
not executable.

The name of the module can be found as
described under the completion code
506.

The error occurred during execution of
a GETMAIN macro instruction with a
mode operand of EU or VU. More main
storage was requested than was
available.

The error occurred during execution of
a LINK, XCTL, ATTACH, or LOAD macro
instruction.

An error was detected by the control
program routing for the BLDL macro
instruction. This routine is executed
as a result of these macro
instructions if the problem program
names the requested program in an EP
or EPLOC operand. The contents of
register 15 indicate the nature of the
error:

X'04*' The requested program was
not found in the indicated
source.

X'08' An uncorrectable

input/cutput error occurred
when the control program
attempted to search the
directory of the library
indicated as containing the
requested program.

Register 12 contains the address of
the BLDL list used by the routine.
This address plus 4 is the location of
the 8-byte name of the requested
program that could not be loaded.

The error occurred during execution of
an R-form GETMAIN macro instruction.
More main storage was requested than
was available.

Appendix B: Completion Codes 95

905

90A

A0S

AOA

BO4

926

The address of the area to be freed
(given in a FREEMAIN macro
instruction) is not a multiple of
eight. The contents of register one
in either the trace table entry or
ABEND's SVRB register save area

reflect the invalid address. BOS
Results from the same situations
described under 905 for R-forms of
GETMAIN and FREEMAIN macro
instructions.
BOA
The error occurred during execution of
a FREEMAIN macro instruction. The
area to be freed overlaps an already
existing free area. This error can
occur if the address or the size of
the area to be freed were incorrect or
modified.
The contents of registers 0 and 1 in
either the SVC trace table entry or B37
ABEND's SVRB register save area
reflect the size and address.
Results from the same situations
described under AO05 for R-form of
GETMAIN and FREEMAIN macro
instructions.
This error occurred during execution
of a GETMAIN macro instruction. A
subpool number greater than 127 was Fnn

specified. The problem program is
restricted to using subpools 0-127.
This error can occur if the subpool
number was either incorrectly
specified or modified.

A displacement of nine bytes from the
list address passed to GETMAIN in

Programmer's Guide to Debugging (Release 20)

register 1 contains the subpool
number. Register 1 can be found in
either the SVC trace table entry or
ABEND's SVRB register save area.

Results from the same situation
described under BO4 for a FREEMAIN
macro instruction.

Results from the same situations
described under BO4 and BO05 for R-form
of GETMAIN and FREEMAIN macro
instructions.

The subpool number can be found in the
hich order bytes of register 0 in
either the SVC trace table entry or
ABEND's SVRB register save area.

The error occurred at an end of
volume. The control program found
that all space on the currently
mounted volumes was allocated, that
more space was required, and that no
volume was available for demounting.

Either allocate more devices or change
the program so that a device will be
free when a volume must be mounted.

An SVC instruction contained an
invalid operand; nn is the hexadecimal
value of the svcC.

This error can occur if either an
invalid instruction was issued by the
problem program or an coperand
referring to an optional function was
not included during system generation.

el

Appendix C: System Module Name Prefixes

All load modules associated with a specific operating system component have a common
prefix on their module names. This appendix lists the module name prefixes and the
associated system component(s).

Prefix Component Prefix Component
IBC Independent utility programs IFD On line test executive program
IEA Supervisor, I/0 supervisor, and
NIP IFF Graphic programming support
1EB Data set utility programs
IGC Transient SVC routines
IEC Input/output supervisor
IEE Master scheduler IGE I/0 error routines
IEF Job scheduler IGF Machine check handler program
IEG TESTRAN 1GG Close, open, and related routines
IEH System utility programs IHA System control blocks
IEI Assembler program during system IHB Assembler during expansion of
generation supervisor and data management
macro instructions
IEJ FORTRAN IV E compiler
IHC FORTRAN library subroutines
IEK FORTRAN IV H compiler
IHD COBOL library subroutines
IEM PL/I F compiler
IHE PL/1 library subroutines
IEP COBOL E compiler
IHF PL/I library subroutines
IEQ COBOL F compiler
IHG Update analysis program
IER Sort/Merge program
IHI Object program originally coded in
IES Report program generator ALGOL language
IET . Assembler E Idg Checkpoint/restart
1EU Assembler F IHK Remote job entry
IEW Linkage editor/overlay IIN 7094 emulator program for the
supervisoxr/program fetch Model 85
IEX ALGOL compiler IKA Graphic Job Processcr
IEY FORTRAN IV G compiler IKD Satellite graphic jcb processor
messages
IFB Environment recording routines
IKF USAS COBOL compiler
IFC Environment recording and print
routines ILB USAS COBOL subroutines

Appendix C: System Module Name Prefixes 97

Appendix D: List of Abbreviations

ABEND abnormal end-of-task MFT multiprogramming with a fixed
number of tasks
APR alternate path retry
MVT multiprogramming with a variable
CCW channel command worad number of tasks
NIP nucleus initialization program
CDE contents directory entry
PCP primary contrcl program
CPU central processing unit
PIB partition information block
CSW channel status word
PQE partition queue elerent
CVT communications vectox table
PRB program request block
DAR damage assessment routine
PSA prefixed storage area
DCB data control block
PSW program status word
DD data definition
QCB queue control block
DDR dynamic device reconfiguration
QEL queue element
DEB data extent block
RB request block
DPQE dummy partition queue element
sCB STAE control block
DQE descriptor queue element
SIO start input/output
ECB event control block
SIRB supervisor interrupt request block
FBQE free block queue element
SPQE subpool queue element
FQE free queue element
svcC supervisor call
FRB finch request block
SVRB supervisor request block
GQE gotten subtask area queue element
SYsSouT system output
I0B input/ocutput block
TCB task control block
IPL initial program loading
TIOT task input/output table
IRB interrupt request block
ucB unit control block
LLE load list element
l WLE wait list element
LPRB loaded program request block
XCTL transfer control
LRB loaded request block XL extent list

98 Programmer's Guide to Debugging (Release 20)

Appendix E: ECB Completion Codes

r R T 1
| Hexadecimal | |
| Code | Meaning |
F t 1
| 7F000000 | Channel program has terminated without error. (CSW contents can be]
| | usefil.) |
| I ' |
| 41000000 | Channel program has terminated with permanent error. (CSW ccntents can |
| | be useful.) i
] I |
| 42000000 | Channel program has terminated because a direct access extent address |
| { has been violated. (CSW contents do not apply.) |
! i]
| 44000000 | Channel program has been intercepted because of permanent error |
| | associated with device end of previous request. You may reissue the]
| | intercepted request. (CSW contents do not apply.) |
| | I
| 48000000 | Request element for channel program has been wrade avallable after it]
	has been purged. (CSW contents do not apply.)
4¥000000	Error recovery routines have been entered because of direct access
	error but are unable to read home address of record 0. (CSW contents
	do not apply.)
1 L J

Apperdix E: ECB Completion Coces 99

Appendix F: UCB Sense Bytes

BYTE 0 BYTE 1 BYTE 2
BT i
DEVICE 0 1 2 3 4 5 6 7 0 | 2 3 4 5 6 7 0 1 2 3 4 5 6 7
00-NON-XST TU
cMp | INT | BUS | EQ | DATA | over-| WRT | DATA QI-NOT READY 7 AT lwer |Fie | Taee BITS 0-7 INDICATE A TRACK IS IN ERROR 6 & 7 INDICATE
2400 | gey REQ | oUT | CHK | cHk | Run | CNT | CNVIT I NOBE jp-povanorwn | qpe | LOAD | crarislororect| 1D NO ERROR OR
ZERO | CHK 11-HDY & RWDNG POINT| > MULTI-ERROR
2311, | CMD | INT | BUS | EQ | DATA | OVER-| (oK% I sEEK DA R e | NP b NO e [Msse AN I (VNS SERIAL-| TAC | AU | UNSEL |
2841 | REJ REQ | out | chk | cHk | Run | SENP e - PROT (AR SAFE CHK | STATUS
CHK FLD {RUN | CYL [SEQ |FOUND wrkR | INL CHK | CHK
DATA |TRK END NO SERVICE | OVER-
2301, 2302, e | Nt | BUS | EQ | DATA | OVER- VAL | lenk il overe | oF | INVAL| a2 | FiLe 1ol cE) e UN- skew | cTR
2303, 2314, | gp) REQ | OUT | CHK | CHK | RUN ADDR SEQ PROT sare [REGJRAlL | che
2820 COUNT|RUN CYL UND RUN INL CHK
SHOULD SHOULD SHOULD| BUFFER|SHOULD| | LIGHT |END SUFFER A
MD DATA BUFFEK Al
2250 ;:EJ NOT BOUST NOT CQL NOT RUN- [NOT PEN ORDER ;?[?E I
OCCUR OCCUR OCCUR | NING |OCCUR DETECT |SEQ BIT 15 }BIT 14 'BIT 13 ‘BIT 12 lBIT 1" | BIT 10 1 BIT 9
oMb | Nt | sus | ea | para [HOULD[SHOULD! o READ .. |RECRDK|SHOULDSHOULD[2840 12840 | oo SUFFER ADDRESS REG ISTER
2280 | S Req | bur | ek | okl NOT INOT f (S COUNT| W [FORCED|NOT |NOT louTPUT|INPUT | F2TE |
OCCUR |OCCUR CHK GAP |OCCUR |OCCUR |CHK |CHK BIT14 | BITI3 [BITI2 | BT 11 | BITIO | BT
cvo | mr | ss | ea | oara PHOULD[SHOUD L READ | |RECRR [ruw (SHOULD[2840 (2840 | oo BUFFER ADDRESS REGISTER
22 | e | oor | ene | eae ot ot st COUNT|TI |FoRCED|Moton INOT outPuT|inpuT | SRET
OCCLR [OCCUR CHK GAP |umm |OCCULR [CHK |CHK BIT14 [BIT13 | BITI12 lsnn)BIT]O BIT 9
1052, |cMD | INT | BUs | EQ v
2150 | REJ REQ | OUT | CHK
cMD | INT | BUS | EQ | DATA | OVER-| NON | KYED
1285 gy REQ | OUT | CHK | CHK | RUN | RCVY |CORR
KYED
gy |CMD | INT | BUS | EQ | DATA | OVER-| NON | clen SHOULD SHOULD
REJ REQ | OUT | CHK | CHK |RUN |RCVY Secur looeur
g |CMD | INT | sUs | EQ | DATA | OVER-| NON [SECUIP| [SHOULDIEND SHOULD SHOULD
REJ REQ | OUT | CHK | CHK RUN RCVY foccur | loccur (PAGE OCCUR {OCCUR
sios MO | INT [aus [EQ | DATA i.HgTULD POSN EH(%ULD
HK HK K
REJ REQ | OUT | C c ST | CrK T
2540, |CMD | INT | BUS | EQ | DATA
2021 | REJ REQ | OUT | cHk | CHK
1403, |cmp | INT | Bus | Eq
1443 REJ REQ | ouT | cHK STvee
BAR
gg' cMp | INT | BUs | EQ@ | DATA)
oy’ IREJ REG | OUT | CHK | CHK
2671, cMp | INT | BUS | EQ | DATA
2822 | REJ REQ | ouT | cHK | cHK |
~ISHOULDISHOULDJSHOULD
2260 CMD INT] BUS | EQ Inor |NOT INOT |NOT
REJ REQ | OUT | CHK occur JOCCUR |OCCUR OCCUR
2701, CMD INT BUS EQ DATA QOVER-| LOST TIME
2702" | Res REQ | out | cHk | cHKk | RUN | DATA |ouT ‘
——— Vi ¥ - - -
:;‘;Z’ cMD | INT | 8US | NOT | DATA | OVEr-| AUTO |NOT NOT | NOT | incen | ol mﬁﬁiss ?lcEf; ;IREANS'T iIEER,EgL#
REJ Re@ | out | used | crk | RuN [SELECT |usED READ FlELo b
PCU USED | USED 1 uess IyALD | vaud |VALID |VALD |VALD
:;lg CMD | INT BOUST NOT | NOT ';;I; AuTC | OP it S T R
7 £
25 Reg REQ | Ot | usep | usep | STKEIseLecT | ATT
BYTE 3 BYTE 4 BYTE 5
BIT
DEVICE 0 1 2 3 4 5 s 7 0 | 2 3 4 5 6 7 0 1l 2 3 5 6 7
SKEW RES |READ IWRITE |DELAY | SEQ | SEQ | SEQ COMMAND IN PROGRESS WHEN OVERFLOW [NCOMPLETE OCCURS
0-1600| BKWD | COM- :
2400 A LRCR | SKEW| CRC | REQ _ 5 SCHO |1pe | CLOCK |CLOCK |CNTR | IND | IND IND OR
VRC 1-800 | STATUS| PARE ey F
VRC UNIT | ERR ERR ERR c_ e ZERO
2311, ON | READ END COMMAND IN PROGRESS WHEN OVERFLOW INCONPLETE OCCURS
oon | rempy | BN OF WRITE = X"05' OR
cyL ZERO
ggg;' gg?i LRC IRC | LRC
2820 BITO BIT | BIT 2
BUFFER ADDRESS REGISTER
2250 | | | s
BIT 8 t sn7} sns) BITS | BIT4] BITS | BiT2 LBH’]
BUFFER ADDRESS REGISTER ,
2280 | | | | | |
BITS | BIT7 | BTG | BITS | BIT4 | BIT3 | 8112 | BIT 1
1 1 S 1 i i
BUFFER ADDRESS REGISTER
2282 | ! | I | | |
B8 | BT | BT | BTs am4 | em3 [mm2 |em)
100 Programmer's Guide to Debugging (Release 20)

Appendix G: Service Aids

In addition to the debugging facilities discussed in this manual, IBM provides the
following service aid programs to aid you in debugging. A complete description of each
of these service aids and instructions for their use are found in the publication 1IBM
System/360 Operating System Service Aids, GC28-6719.

Program Name

IMDSADMP

IMDPRDMP

IMCJQDMP

IMBMDMAP

IMASPZAP

IMAPTFLS

IMAPTFLE

Functional Description

A stand-alone program, assembled with user-selected options, that dumps
the contents of main storage onto a tape or a printer. The program has
two versions:

e A high speed version that dumps the contents of main storage to a
tape.

e A low speed version that formats and dumps the contents of main
storage either to a tape or directly to a printer.

A problem program that reads, formats according to user supplied
parameters, and prints the tape produced by execution of the stand-alone
dump program assembled from the service aid IMDSADMP. The format of the
printed output is similar to that produced by ABEND.

A stand-alone program that reads, formats, and prints either the entire
operating system data set SYS1.SYSJOBQE, or selects and prints
information related to a specific job in that data set. Because it
operates independently of the operating system, IMCJODMP can print the
contents of the job queue as it appeared at the time of abnormal
termination.

A problem that produces a map of the system nucleus, any load module, the
resident reenterable load module area of an MFT system, or the link pack
area of an MVT system. The listing produced by this program shows the
locations of CSECTS, external references, and entry points within a load
module.

A problem program that can inspect and modify either data records or load
modules located on a direct access storage device.

A problem program that identifies program temporary fixes (PTFs) and
local fixes that have been applied to libraries.

A problem program that produces the job control language (JCL) statements
necessary to apply PTFs to a system; these JCL statements are tailored to
the user's individual system.

Appendix G: Service Aids 101

Page of GC28-6670-4, Revised March 1, 1971, by TNL: GN28-2457

Appendix H: TCAM Debugging Aids

In addition to the debugging facilities described in this publication, the
telecommunications access method provides the following aids to debugging:

I/0 error recording procedures.

I/0 interrupt trace table (line trace).

A dispatcher subtask trace table (STCB trace).

Sequential listings of buffers and message queue data sets.

Optional formatted listing of the line and STCB traces are available with TCAM.
These depugging aids are described in the publications IBM Systemn/360 Operating System:
TCAM Programmer's Guide and Reference Manual, GC30-2024, and IBM System/360 Operating
System: TCAM Serviceability Aids Program Logic Manual, GY30-2027. A discussion of the
TCAM formatted ABEND dump is given in the publication IBM System/360 Operating System:
TCAM Program Logic Manual, GY30-2029.

102 Programmer's Guide to Debugging (Release 20.1)

N

i,

TCB - Task Control Block (MVT)

+1 Address of most recent RB
+9 Address of most recent DEB
+13(D) TIOT address

+16(10) Completion code
+25(19) Address of most recent SPQE
+33(21) Bit 7 -- Non-dispatchability bit
+37(25) Address of most recent LLE
+113(71) Address of first save area
+125(7D) Address of TCB for job step task
+129(81) Address of TCB for next subtask
attached by same parent task
+133(85) Address of TCB for parent task
+137(89) Address of TCB for most recent
subtask
+145(91) Address of ECB to be posted at
task completion

+153(99)

+161 (A1)
+181 (BS)

Address of dummy PQE minus 8
bytes

Address of STAE control klock
Address of the job step control
block

UCB - Unit Control Block

-4

+2

+4
+13(D)
+18(12)
+19(13)
+22(16)
+40(28)

CPU ID (used only with Model 65
Multiprocessing systems)

FF (UCB identification)

Device address

Unit name

Device class

Device type

Sense bytes

Number of outstanding RESERVE
requests (shared DASD only)

Appendix H: Control Block Pointers 103

Toc 16 (10)
1 [a%)

cvr
T TCB Words
0
7CB Words
J\ Current
V| TNew TCB T o
0 4
TCB T
TNewesT RB
0
s T DEB Queuve
TIOT
12 (C) 1
Load List
36 (24) } ood Lis
~
VLoad List (DEB Queue
[— AN
RE 7/I0T DEB
T Next RB jobname
0
A Next
_______ // 3 stepname DEB
DEB
RE
7Nexr RB
ddname Repeat Next
?Previous RB | -~ / 28 (1C) for each DEB /
- — = ——— ddname
S \/\ DER /
5 Repeated{ 40 T
for each (S]] TCB
T device (28) 0 T /
TCB T Next
Prefix « . 4 DEB /
[T Previous RB e /
LN e —————— erm————
&j}r
T DCB
24 (18)
Resume PSW
16 (10)
ucCB
32 (20) T
oce
uch
0
Direct
U pccess
8 address /
Unit
12(C) Name 12 (C)
TIOT
40 (28) |Offset
 Des
44 (2D)
£
68 (44) TIOB Prefix

ANANAN

(<l
108 iB
;’—r *pr IOR -

N

/108

Active RB Queuve
—_—

A\ e e

™

RB

——T

&

RB

Module
of Name
Resume PSW ke
16 (10)
28 (1C) TPrewous RB

N

—/

7Cc8B Words
Current
T New TCB T s
0 4
7CcB
TNewest RB
0
8 f DEB Queue
$ ot
12 (C
Load List
3 (24) T oad Lis
7
e
Load List (g DEB Queue Active R‘B/\Queue
— M_._—/\—ﬁ o —
RB T/oT DEB
b Next v iobname
0
________ /// 8 stepname / o
RB s -
Friom 10 . P \V = _,\}
E ddname Repeat Module \
1Previous RB /// 28 (1C) for each DEB / o| Name
F-————— ddname
. \J\ DEB /
P Repeated{ 40 ? R
for each UcCB TCB R PSW 8
Rk device \ (28) o It d 16 10y
TCB T Next
PH#EXJ 8 4 DEB ,/// E,///
| T Previous RB s /
&5 _________ L e / 28 (1C) ?Previous RB
e i :
Focs
24 (18)
Resume PSW
16 (10)
T ucs
32 (20)
0CB
uce
0
4 Direct
access
8 address /
Unit
12(C) Name 12 (C)
TIOT
40 (28) Offset
T DEB
44 (2D)
Prefi
68 (44) TlOB refix
108
108 :/: Ii
T Next OB
Prefix -8
ECB e
Al ____
Sense
0 bytes
CcC
4
8 csw
12 (C)
Y cow
16 (10)
} bce ccw
20 (14)
Code TDcta Flags Count
0 4 6

Figure 36

. Control Block Flow

7cEe

0 JRB Queue

h Subpool Queue

AAJiLocd List

25 (19)

37 (25)

Active RB Queue

Load List Subpool Queue r
™ ld |
SPOE 1
LLE SPQE
\)/ LLE SPQE RB
5 4 Next LLE 4 Next SPQE
4 }coe 4 4 paE 12 (C) [# cot
28 (1C) I* Previous RB
Descriptor Queue

DQRE

DQRE

DRE
4 rae
A Next DQE

Free Queve

RB

RB

FOQE
f Next FQE
4 Length

Contents Directory

C‘DE_ ;
COE ;

CDE
ANext CDE
4 ARB
8 Program
12 © Name
16 (10) AEntry point
20 ol

Figure 37.

MVT Storage Control Flow

Appendix H:

XL

Length

4 Number CSECTs
8 Length CSECT-1

e S A

Length CSECT-N
Location CSECT-1 i

Location CSECT-N

Storage Control

MVT

Pointers

Control Block Pointers

R,

i

Indexes to systems reference library
manuals are consolidated in the publication
IBM System/360 Operating System: Systems
Reference Library Master Index, GC28-66U44.
For additional information about any
subject listed below, refer to other
publications listed for the same subject in
the Master Index.

When more than one page reference is
given, the major reference is first.

Abbreviations, list of 98
ABEND dumps
contents of (MVT)
contents of (PCP,MFT)
guide to using (MVT)
guide to using (PCP,MFT)
how to invoke (MVT) 50
how to invoke (PCP,MFT)
introduction to 9
samples of (MVT) 51-52
samples of (PCP) 35-36
ABEND macro instruction 34,50
Abnormal termination, cause of
in an ABEND/SNAP dump (MVT) 67
in an ABEND/SNAP dump (PCP,MFT) 48
Abnormal termination dumps (see ABEND
dumps)
Active RB queue
description of 14
instructions for using 31
in a storage image dump 81,82
in an ABEND/SNAP dump (MVT) 56,67
in an ABEND/SNAP dump

50-68

34-49
67-68
48-49

34-35

(PCP,MFT) 41,48
in an indicative dump 71
AMWP bits

in an indicative dump 71
meaning of 32
APSW field, in an ABEND/SNAP dump

(MVT) 56,67
ATTACH macro instruction, effects of 16,17
Attaching subtasks 18,19
Boundary
problem program 32,44

Catalog dump 34,35
CDE

as used with the load list 15

format of 24,25

in an ABEND/SNAP dump 58

in a storage image dump 81
CHAP macro instruction 19
Communications vector table (see CVT)
Complete dump (MVT)

description of 50

sample of 51,52

Ind

Completion codes

description of common 93-96
explanation of 31
in an ABEND/SNAP dump (MVT) 53

in an ABEND/SNAP dump (PCP,MFT) 39

in an indicative dump 71
COND parameter,

to regulate job step execution 35
Contents directory

description of 15,24,25

entries (see CDE)
Control blocks

descriptions of 26,27

pointers in 102,103

relationships between 26

use in debugaging 32
Control information 11
Control program nucleus

ABEND/SNAP (MVT) 64

ABEND/SNAP (PCP,MFT)
CcvT

description of 26

in a storage image dump 78-79

pointers in 102

47-48

Data control block (see DCB)
Data event control block 25
Data extent block (see DEB)
Damage assessment routine (DAR) 72
DCB
description of 26
in a storage image dump 84
pointers in 102
statements
required with ABEND/SNAP dumps
sample of SYSABEND 37
DEB
description of 26
in a storage image dump 83
in an ABEND/SNAP dump (MVT) 59
in an ABEND/SNAP dump (PCP,NFT) 45
pointers in 102
DEB queue
in a storage image dump 84
in an ABEND/SNAP dump (MVT) 54
in an ABEND/SNAP dump (PCP,MFT) 39
Debugging procedure
description of
summary 33
DECB 26
DELETE macro instruction 15
Dequeued elements 38
Descriptor queue element
Destroyed queues 37
Device considerations,
for ABEND/SNAP dumps 34-35
Dispatcher trace table entry (MVT)
format of 29
in a SNAP dump 65,68
in a storage image dump 86
Dispatching priority 18-19

DD
34-35

31-33

(see DQE)

Index

ex

109

Displacements, how shown 9
DQE

format of 23-24

in a storage image dump 83

in an ABEND/SNAP dump 60,68
Dump (see individual type of dump,
ABEND, indicative)
Dump data set

MVT 50

PCP,MFT 34
Dynamic area

in systems with MVT 19

in systems with MFT 18

in systems with PCP 17-18

ECB
completion codes, list of 99
description of 26
in a storage image dump 84
pointers in 102
posting of, using ATTACH 17
Event control block (see ECB)
Extent list (see XL)
External interruption 32,33
External trace table entry
format of 29
in a SNAP dump 65,67-68
in a storage image dump 86

FBOE

format of 22-23

in a storage image dump 86

in an ABEND/SNAP dump 61,68
FINCH request block 12
Finding the partition TCB 81
FRB 12
Fixed area

in systems with MFT 18

in systems with MVT 19

in systems with PCP 17
FQE

format of (MFT, PCP) 20

format of (MVT) 24
Free areas

in an ABEND/SNAP dump (PCP,MFT)
Free block queue element (see FBQE)
Free queue element (see FQE)

General debugging procedure
description of 31-33
summary 33
GETMAIN macro instruction 21
Gotten subtask area queue element
GQE 20,21
Guide to using storage image dump

Hardware error 32

Hierarchy, main storage 20-22

IEAPRINT 73-75
IMAPTFLE 101
IMAPTFLS 101
IMASPZAP 101

e.g.,

48

20,21

77

IMBMDMAP 101
IMCJQDMP 101
IMDPRDMP 73,101
IMDSADMP 77,101
Indicative dumps
contents of 69-71
description of 69
guide to using 71
introduction 9
Input/output block (see IOB)
Interrupt request block 12
Interruptions 32
Introduction 9
IOB
description of 26
in a storage image dump 84
pointers in 102
I/0 interruption 32
I/0 trace table entry
format of 29
in a storage image dump (MFT and PCP)
85-86
in a storage image dump (MVT) 86
in a SNAP dump (MVT) 65,67-68
in an ABEND/SNAP dump (PCP,MFT)
IRB 12

46,48

Job pack area 14-15

Job pack area queue 14-15
Job step 17-19
Jop step task (MVT) 19,50

JPAQ 14,15
Keep dump 34,35

LINK macro instruction, effects of 16
Link pack area (MVT) 19
LLE

count field 15

description of 15

in an ABEND/SNAP dump (MVT) 54
Load list

description of 15

instruction for using 31,33

in a storage image dump 82

in an ABEND/SNAP dump (MVT) 57,67

in an ABEND/SNAP dump (PCP, MFT)

in an indicative dump 70

in systems with MVT 15

in systems with PCP or MFT 14-15
Load list element (see LLE)

LOAD macro instruction, effects of 17
Load module, storage control for
in an ABEND/SNAP dump (MVT)
in systems with MVT 24-25
Loaded program request block 12
loaded request block 12

LPRB 12
LRB 12

42,48

57-58, 68

Main storage hierarchy support
inclusion of 20-22
effects on MSS boundary box 20,21
effects on partition queue 20

110 Programmer‘'s Guide to Debugging (Release 20.1)

Page of GC28-6670-4, Revised March 1, 1971, by TNL: GN28-2457

Main storage layout PCP, system with
in systems with MFT with subtasking contents of an ABEND/SNAP dump of 37-49
18-19 guide to using a storage image dump
in systems with MFT without subtasking of 77
18 guide to using an ABEND/SNAP
in the systems with MVT 19 dump of 48-49
in system with PCP 17 how to invoke an ABEND/SNAP dump
Main storage supervisor's bhoundary box of 34-35
(see MSS) load list in 14-15
Machine check interruption 32-33 main storage layout in 17
MFT, systems with storage control in 20
considerations in using an ABEND/SNAP task control characteristics of 17-18
dump of u48-49 trace table entries in 29
contents of an ABEND/SNAP dump of 38-49 PIE 39,53
guide to using a storage image Pointers, control block 102-103
dump of 77 PQE
how to invoke an ABEND/SNAP format of 22
dump of 34-35 in a storage image dump 83
main storage layout in 19 in an ABEND/SNAP dump 60-68
storage control in 21-22 PRB 12
task control characteristics of 18-19 Prerequisite publications 3
trace table entries in 28,85 Primary control program (see PCP, systems
Model 65 Multiprocessing system with)
trace table formats 29 Priority 18,19
prefixed storage area, as shown in an Problem program, how to locate in a
ABEND/SNAP dump (MVT) 64 dump 31-33
trace table entries in a SNAP dump 66 Problem program storage boundaries, in an
Module name prefixes, list of 97 ABEND/SNAP dump (PCP, MFT) 44
description of (MFT) 21 Program check interruption 32
description of (PCP) 20 Program check old PSW
in an ABEND/SNAP dump (MVT) 59-60 in an ABEND/SNAP dump (MVT) 56,67
starting address (PCP,MFT) 39 information in 32
Multiprogramming with a fixed number of Program check trace table entry
tasks (see MFT, systems with) format of 29
Multiprogramming with a variable number of in a SNAP dump 65-66
tasks (see MVT, system with) in a storage image dump 85-86
MVT, systems with Program interruption element (see PIE)
complete ABEND/SNAP dump of 51-52 Program request block 12
contents of an ABEND/SNAP dump 50-68 Protection key 39
guide to using a storage image dump of | PSCB 86
77-86 PSW at entry to ABEND
guide to using an ABEND/SNAP dump in an ABEND/SNAP dump (MVT) 53
of 67-68 in an ABEND/SNAP dump (PCP,MFT) 39
how to invoke an ABEND/SNAP dump of 50 PSW, program check old (see proaram check
load 1list 15 old PsSW)
main storage layout in 19 PSW, resume (see resume PSW)

storage control in 23-25

task control characteristics in 19

trace table entries in 29,86,87 QCB 61
Queue elements (MVT) 20,22-25
Queues destroyed 38

Nucleus
contents of 17-19 RB
in an ABEND/SNAP dump (MVT) 64 as affected by LINK, ATTACH, XCTL and
in an ABEND/SNAP dump (PCP,MFT) 48 LOAD 16-17
formats of 11-14
in an ABEND/SNAP dump (MVT) 56-57
Only loadable (OL) 12 in an ABEND/SNAP dump
Option 2 (see MFT, systems with) (PCP,MFT) U41-42,48
Option 4 (see MVT, systems with) in an indicative dump 70
Overlaid problem program 38 most recent 39,53
name field, in a dump 31
purpose of 11-13
pointers in 102
Partition (MFT) 18-19 pointers to, in a storage image dump
Partition queue element (see PQE) 81-82
Partition TCBs 78-81 queue (see active RB queue)

Index 111

Page of GC28-6670-4, Revised March 1, 1971, by TNL: GN28-2457

RB (continued)
sizes of 12-14
types of 12
when created 11-15
which ones appear in a dump 31
RCB 85
Re-creating the task structure
MFT with suptasking 79
MvT 79
Reenterable load module area (MFT) 18
Reference publications 3
Region (MVT)
contents of, in an ABEND/SNAP dump 68
description of 19
storage control for 22-23
Register contents
in a save area 28
in an ABEND/SNAP dump (MVT) 64-65
in an ABEND/SNAP dump (PCP,MFT) u7
in an indicative dump 70
Request block (see RB)
Resume PSW
in an ABEND/SNAP dump (MVT) 57,66
in an ABEND/SNAP dump (PCP,MFT) L2,u48
in an indicative dump 71
Retain dump 34-35
Rollout/rollin
effects on partition queue 21

Save areas
format of 28
in an ABEND/SNAP dump (MVT) 62
in an ABEND/SNAP dump (PCP,MFT) uy
Sense bytes, UCB
table of 100
Sequential partitioned system (see MFT,
systems with)
Sequential scheduling system (see PCP,
systems with)
Service aids 101
Set system mask trace table entry
format of 30
in an ABEND/SNAP dump 66
SIO trace table entry
format of (MFT) 29
format of (MVT) 29-30
format of (PCP) 29
in a SNAP dump (MVT) 66-67
in an ABEND~-SNAP dump
(PCP,MFT) U46,48-49
SIRB 12
SNAP dumps
contents of (MVT) 50-67
contents of (PCP,MFT) 37-48
guide to using (MVT) 67-68
guide to using (PCP,MFT) 48-49
how to invoke (MVT) 50
how to invoke (PCP,MFT) 34-35
introduction to 9
SNAP macro instruction 34
Snapshot dumps (see SNAP dumps)
Space considerations, for ABEND/SNAP
dumps 34-35
SPQE
format of 23
in a storage image dump 83
in an ABEND/SNAP dump 59,68

SQS (see system queue space)
SSM (see set system mask trace table entry)
Stand-alone dumps
guide toc using 77
introduction to 9
Storage control
in systems with MFT with subtasking
21-22
in systems with MFT without subtasking
20
in systems with MVT 22-24
in systems with PCP 20
Storage image dumps
guide to using 77
introduction to 9
Subpool
definition of 23
in a storage image dump 83
in an ABEND/SNAP dump 59,68
queue elements (see SPQE)
Subtask, as created by ATTACH 16-17
Supervisor calls, list of 88-92
Supervisor interrupt request block 12
Supervisor request block 12
SVC interruption 32,33
SVC trace table entries
format of (MFT) 29
format of (MVT) 29
format of (PCP) 29
in a SNAP dump (MVT) 65-66
in an ABEND/SNAP dump (PCP,MFT) 45,48
SVCs, list of 88-92
SVRB 12
SWAP DCB
SYSABEND DD statement
description of 34-35
samples of 34
SYSOUT, as a dump data set 34-35
System control blocks (see control blocks)
System differences in task control 17-19
System failure 72
System queue space (MVT) 19
System tasks 17-19
System wait TCB 79
SYS1.DUMP data set 72
SYSUDUMP DD statement 34-35

Task completion code (see completion codes)
Task control block (see TCB)
Task control differences, by system 17-19
Task dispatching priority 18-19
Task input/output table (see TIOT)
Task management 11-13
Task supervision 11-13
Task structure, recreating the, using a
storage image dump (MVT) 79
Task switch trace table entry (MFT)
format of 29
in an ABEND/SNAP dump 48
Task switching (MFT) 18-19

TAXE 86
TCAM Debugging Aids 102
TCB

description of 11

in an ABEND/SNAP dump (MVT) 53-55

in an ABEND/SNAP dump (PCP,MFT) 39-41
information available through 11

112 Programmer's Guide to Debugging (Release 20.1)

Page of GC28-6670-4, Revised March 1, 1971, by TNL:

TCB (continued)

locating, in a storage image dump 78-81

pointers in 102-103
pointers to, in a storage image dump
(MFT) 78-79
queue (MFT) 18
queue (MVT) 19
relationships
TCBLCT 18,102-103
TCBNTC 18,102-103
TCBOTC 18,102-103
TCBTCB 18,102-103

18-20

| Telecommunications Access Method (see TCAM)

Termination, abnormal (see abnormal
termination)
Time sharing Option (see TSO)
TIOT
description of ‘26

pointers in 102
TJdB 86
TJBX 86
Traces 28-30

Trace table
control block 85-86
delimiting entries, in an ABEND/SNAP
dump (MFT) 48
description of 28-30
format of entries (MFT) 29
format of entries (MVT) 29
format of entries (PCP) 29
format of entries

(Mod 65 multiprocessing systems) 30

Trace table (continued)
in a SNAP dump (MVT) 65-66
in a storage image dump 85-86
in an ABEND/SNAP dump (PCP,MFT)
samples of entires 85-86

usefulness in debugging 32-33
TSB 86
TSCVT 85
TSO Control Blocks 85-86
TSO SVCs 92
ucB
description of 26
in a storage image dump 83,84

in an ABEND/SNAP dump (PCP,MFT)
pointers in 103

UMSM 85-86

Unit control block (see UCB)

Use count 16-18

Wait list 16,21
Wait list element 16,21
WLE 16,21
XCTI, macro instruction, effects of
XL

description of 25

in a ABEND/SNAP dumps 58,68

GN28-2457

46

45

17

Index

113

GC28-6670-4

B

International Business Machines Corporation

Data Processing Division

1133 Westchester Avenue, White Plains, New York 10604
[U.S.A. only]

IBM World Trade Corporation
821 United Nations Plaza, New York, New York 10017
[International]

(0z-09¢S) 8ping BuiBbnqaq SO 09/ walshg

TVISTN Ul paduiyd

¥y-0£99-8229

READER’S COMMENT FORM

IBM System/360 Operating System

Programmer's Guide to Debugging Order No. GC28-6670-4

Please use this form to express your opinion of this publication. We are interested in your
comments about its technical accuracy, organization, and completeness. All suggestions
and comments become the property of IBM.

Please do not use this form to request technical information or additional copies of publications.
All such requests should be directed to your IBM representative or to the IBM Branch Office

serving your locality.

® Please indicate your occupation:

® How did you use this publication?
[J Frequently for reference in my work.
[0 As an introduction to the subject.
[As a textbook in a course.

(] For specific information on one or two subjects.

e Comments (Please include page numbers and give examples.):

¢ Thank you for your comments. No postage necessary if mailed in the U.S.A.

GC28-6670-4

YOUR COMMENTS, PLEASE . . .

This manual is part of a library that serves as a reference source for systems analysts,
programmers and operators of IBM systems. Your answers to the questions on the back
of this form, together with your comments, will help us produce better publications for
your use. Each reply will be carefully reviewed by the persons responsible for writing
and publishing this material. All comments and suggestions become the property of IBM,

Note: Please direct any requests for copies of publications, or for assistance in using your

IBM system, to your IBM representative or to the IBM branch office serving your locality.

FIRST CLASS
PERMIT NO, 81

POUGHKEEPSIE, N.Y.

BUSINESS REPLY MAIL
NO POSTAGE STAMP NECESSARY IF MAILED IN THE UNITED STATES

POSTAGE WILL BE PAID BY ...

IBM Corporation
P.O. Box 390
Poughkeepsie, N.Y. 12602

Attention: Programming Systems Publications
Department D58

—— e e — — e —— —— e — — — — o —— s s — — ——— i, o i e, o, s e e e e e s i, o ittt st

SBIVE

®

International Business Machines Corporation
Data Processing Division

112 East Post Road, White Plains, N.Y. 10601
[USA Only] '

IBM World Trade Corporation
821 United Nations Plaza, New York, New York 10017
[International]

e — — — D Sttt e i i St e e it s o . st ety s e e

aur Buopy 40D

(0z-09¢5) #pino BuiBbngaq SO 09g/waisks

VTSN Ul pajuny

y-0£99-8229

o

READER’S COMMENT FORM

IBM System/360 Operating System

Programmer's Guide to Debugging Order No. GC28-6670-4

Please use this form to express your opinion of this publication. We are interested in your
comments about its technical accuracy, organization, and completeness. All suggestions
and comments become the property of IBM.

Please do not use this form to request technical information or additional copies of publications.
All such requests should be directed to your IBM representative or to the IBM Branch Office

serving your locality.

e Please indicate your occupation:

® How did you use this publication?
[J Frequently for reference in my work.
[J As an introduction to the subject.
1 As a textbook in a course.

[For specific information on one or two subjects.

e Comments (Please include page numbers and give examples.):

® Thank you for your comments. No postage necessary if mailed in the U.S.A.

GC28-6670-4

YOUR COMMENTS, PLEASE . . .

This manual is part of a library that serves as a reference source for systems analysts,
programmers and operators of IBM systems. Your answers to the questions on the back
of this form, together with your comments, will help us produce better publications for
your use. Each reply will be carefully reviewed by the persons responsible for writing
and publishing this material. All comments and suggestions become the property of IBM.

Note: Please direct any requests for copies of publications, or for assistance in using your

IBM system, to your IBM representative or to the IBM branch office serving your locality.

FIRST CLASS
PERMIT NO. 81

POUGHKEEPSIE, N.Y.

BUSINESS REPLY MAIL
NO POSTAGE STAMP NECESSARY IF MAILED IN THE UNITED STATES

POSTAGE WILL BE PAID BY ...

IBM Corporation
P.O. Box 390
Poughkeepsie, N.Y. 12602

Attention: Programming Systems Publications
Department D58

e —— e s . — e et ortte i g e i i s s s e it iy o S o o . e it it

B

International Business Machines Corporation
Data Processing Division

112 East Post Road, White Plains, N.Y. 10601
[USA Only]

IBM World Trade Corparation
821 United Nations Plaza, New York, New York 10017
[International]

surq Buojy 4nd

(0z-09€S) 2pinD BuiBBnqaq SO 095 udishS

‘VSTN Ul pajuly

7-0£99-8229

)

READER’S COMMENT FORM

IBM System/360 Operating System

Programmer's Guide to Debugging Order No. GC28-6670-4

Please use this form to express your opinion of this publication. We are interested in your
comments about its technical accuracy, organization, and completeness. All suggestions
and comments become the property of IBM.

Please do not use this form to request technical information or additional copies of publications.
All such requests should be directed to your IBM representative or to the IBM Branch Office

serving your locality.

® Please indicate your occupation:

® How did you use this publication?
[0 Frequently for reference in my work.
0 As an introduction to the subject.
0 As a textbook in a course.

[0 For specific information on one or two subjects.

e Comments (Please include page numbers and give examples.):

® Thank you for your comments. No postage necessary if mailed in the U.S.A.

GC28-6670-4

YOUR COMMENTS, PLEASE . . .

This manual is part of a library that serves as a reference source for systems analysts,
programmers and operators of IBM systems. Your answers to the questions on the back
of this form, together with your comments, will help us produce better publications for
your use. Each reply will be carefully reviewed by the persons responsible for writing
and publishing this material. All comments and suggestions become the property of IBM.

Note: Please direct any requests for copies of publications, or for assistance in using your

IBM system, to your IBM representative or to the IBM branch office serving your locality.

FIRST CLASS
PERMIT NO. 81

POUGHKEEPSIE, N.Y.

BUSINESS REPLY MAIL
NO POSTAGE STAMP NECESSARY IF MAILED IN THE UNITED STATES

POSTAGE WILL BE PAID BY ...

IBM Corporation
P.O. Box 390
Poughkeepsie, N.Y. 12602

Attention: Programming Systems Publications
Department D58

ot i —— o — — o — s o g . e e s, . o e, e e o e ot it it e e e e

BV

®

International Business Machines Corporation
Data Pracessing Division

112 East Post Road, White Plains, N.Y. 10601
[USA Dnly]

IBM World Trade Corporation
821 United Nations Plaza, New York, New York 10017
[International]

sul] Buopy 4no

(0z2-09¢€5) 8pino BuiBBngeq SO 09g/waisAs

'
d

VSN Ul pajul

¥-0£99-8209

READER’S COMMENT FORM

IBM System/360 Operating System

Programmer's Guide to Debugging Order No. G(C28-6670-4

Please use this form to express your opinion of this publication. We are interested in your
comments about its technical accuracy, organization, and completeness. All suggestions
and comments become the property of IBM.

Please do not use this form to request technical information or additiénal copies of publications.
All such requests should be directed to your IBM representative or to the IBM Branch Office

serving your locality.

® Please indicate your occupation:

® How did you use this publication?
[J Frequently for reference in my work.
[0 As an introduction to the subject.
[0 As a textbook in a course.

(] For specific information on one or two subjects.

e Comments (Please include page numbers and give examples.):

e Thank you for your comments. No postage necessary if mailed in the U.S.A,

GC28-6670-4

YOUR COMMENTS, PLEASE . . .

This manual is part of a library that serves as a reference source for systems analysts,
programmers and operators of IBM systems. Your answers to the questions on the back
of this form, together with your comments, will help us produce better publications for
your use. Each reply will be carefully reviewed by the persons responsible for writing
and publishing this material. All comments and suggestions become the property of IBM.

Note: Please direct any requests for copies of publications, or for assistance in using your
IBM system, to your IBM representative or to the IBM branch office serving your locality.

FIRST CLASS
PERMIT NO. 81
POUGHKEEPSIE, N.Y.

|
BUSINESS REPLY MAIL

]
NO POSTAGE STAMP NECESSARY IF MAILED IN THE UNITED STATES ——
|
POSTAGE WILL BE PAID BY ... T——
]
.|
IBM Corporation EE——
P.O. Box 390 E—

Poughkeepsie, N.Y. 12602

Attention: Programming Systems Publications
Department D58

Fold Fold

BBV

®

International Business Machines Corporation
Data Processing Division

112 East Post Road, White Plains, N.Y. 10601
{USA Only]

IBM World Trade Corporation
821 United Nations Plaza, New York, New York 10017
[International]

suj] Buojy 403 — e e

‘VISTN Ul patulyd

¥-0£99-8229

(02-09¢5) 8pino BubBngaq SO 09g /waishs

]

Storage Control in Systems with MFT
(Without Subtasking)

Storage control information in systems with
MFT without subtasking is similar to that
in systems with PCP, except that one MSS
boundary box is maintained for each
partition. The TCB associated with the
partition contains a pointer (TCBMSS) to
the boundary box.

If Main Storage Hierarchy Support is
included, the first half of each expanded
boundary box describes the processor
storage (hierarchy 0) partition segment,
and the second half describes the 2361 Core
Storage (hierarchy 1) partition segment.
Any partition segment not currently
assigned storage in the system has the
applicable boundary box pointers set to
zero. If the partition is established
entirely within hierarchy 0, or if 2361
Core Storage is not included in the system,
the hierarchy 1 pointers in the second half
of the expanded boundary box are set to
zero. If a partition is established
entirely within hierarchy 1, the hierarchy
0 pointers in the first half of the
expanded boundary box are set to zero.

The boundary box format for MFT is
identical to the format for PCP. The
pointers, however, point to the boundaries
of the partition and to the partition FQEs
rather than to the boundaries of storage.
Figure 11 summarizes storage control in
systems with MFT.

DYNAMIC
AREA

FIXED
AREA

Storage Control for a Partition
(MFT Without Subtasking)

Figure 11.

Storage Control in Systems with MFT (With
Subtasking)

Storage control information for the job
step or partition TCB in MFT systems with
subtasking is handled in the same way as in
MFT systems without subteasking. However,
when subtasks are created, the supervisor
builds another control block, the gotten
subtask area queue element (GQE). The GQEs
associated with each subtask originate from
a one word pointer addressed by the TCBMSS
field of the subtask TCB.

GQE: Each area in main storage belonging
to a subtask, and obtained by a supervisor
issued GETMAIN macro instruction, is
described by a gotten_subtask area gqueue
element (GQE). GQEs are chained in the
order they are created. The TCBMSS field
of the subtask TCB contains the address of
a word which points to the most recently
created GQE.

ONE
PARTITION

FIXED
AREAY

Storage Control for Sutctask

Figure 12.

Storage (MET with Subtasking)

Main Storagce Supervision 21

If Main Storage Hierarchy Support is
present in the system, the GQE chain can
span from hierarchy 0 to hierarchy 1 and
back in any order. Each GQE occupies the
first eight bytes of the area it describes,
and has the following format:

acquires unassigned free space to satisfy
an unconditional GETMAIN reéquest. These

additional PQEs are removed from the queue
as the rollin feature is used. If Main

Storage Hierarchy Support is present, one
PQE exists for each hierarchy used by the
job step. A PQE has the following format:

f’_};,:;,}@g@_-g .

0 4

Bytes 0-3: Pointer to the Previous GQE or,
if zero, this is the last GQE
on the chain.

Bytes 4-7: Number of bytes in the gotten
subtask area.

Figure 12 summarizes the chaining of GQEs
to a subtask TCB.

Storage Control for a Region in Systems
with MVT

Unassigned areas of main storage within
each region of a system with MVT are
reflected in a queue of partition queue
elements (PQEs) and a series of free block
queue elements (FBQEs).

PQE: The partition queue associated with a
region resides in the system queue space.
It is connected to the TCBs for all tasks
in the job step through a dummy PQE located
in the system queue space. A dummy PQE has
the following format:

0 4

Bytes 0-3: Pointer to the first PQE in the

partition queue.
Bytes 4-7: Pointer to the last PQE in the
partition queue.

In systems that do not include the
rollout/rollin feature or Main Storage
Hierarchy Support for IBM 2361 Models 1 and
2, there is one PQE for each job step. If
the rollout feature is used, additional
PQEs are added each time a job step borrows
storage space from existing steps or

9" 12 (C) 13 (D)

a3 | 4 Owing
16 (10) 7an

2ouh> 21 (15)

54(13) » 25(195“ B 28 (1C) 29 (1D)

Pointer to the first FBQE or,
if there are no FBQEs, a
pointer to the PQE itself.

Bytes 1-3:

Bytes 5-7: Pointer to the last FBQE or, if
there are no FBQEs, a pointer
to the PQE itself.

Bytes 9-11(B): Pointer to the next PQE or,
if this is the last PQE, zeros.

Bytes 13-15(D-F): Pointer to the previous
PQE or, if this is the first
PQE, zexos.

Bytes 17-19(11-13): Pointer to the TCB of
the owning job steg.

Bytes 21-23(15-17): Size of the regicn, in
2K (2048) bytes.

Bytes 25-27(19-1B): Pointer to the first
byte of the region.

Byte 28(1C): Rollout flags.

FBQE: The FBQEs chained to a PQE reflect
the total amount of free space in a region.
Each FBQE is associated with one or more
contiguous 2K blocks of free storage area.
FBQEs reside in the lowest part of their
associated area. As area distribution
within the region changes, FBQEs are added
to and deleted from the free block queue.

22 Programmer's Guide to Debugging (Release 20)

e

An FBQE has the following format:

8 9

Bytes 1-3: Pointer to the next lower FBQE
or, if this is the last FBQE, a
pointer to the PQE.

Bytes 5-7: Pointer to the preceding FBQE,

or, if this is the first FBQE,
a pointer to the PQE.
Bytes 9-12(C): Number of bytes in the free
block.

The remaining main storage in a region
is used by problem programs and system
programs. For convenience in referring to
storage areas, the total amount of space
assigned to a task represents one or more
numbered subpools. (Subpools can also be
shared by tasks.) Subpools are designated
by a number assigned to the area through a
GETMAIN macro instruction. Subpool numbers
available for problem program use range
from 0 through 127. Subpool numbers 128
through 255 are either unavailable or used
by system programs.

Storage control elements and queues for
a region are summarized in Figure 13.

DYNAMIC -
AREAS

SYSTEM
QUEUE
SPACE

Figure 13.

Storage Control for a Region
(MVT)

Storage Control for a Subkpool in Systems
with MVT

Main storage distribution within each
subpool is reflected in a subpool queue
element (SPQE) and queues of descriptor
queue elements (DQEs) and free queue
elements (FQEs).

SPQE: SPQEs are associated with the
subpools created for a task. SPQEs reside
in the system queue space and are chained
to the TCB(s) that use the subpool. They
sexrve as a link between the TCB and the
descriptor queue, and may be part of a
subpool queue if the task uses more than
one subpool. If a subpool is used by more
than one task, only one SPQE is created.

An SPQE has the following format:

Bit 0 - Subpool is owned by this task
if zero; shared, and owned by
another task, if one.

Bit 1 - This SPQE is the last on the

queue, if one.
Bit 2 - Subpcol is shared and owned by

this task, if one.
Bits 3-7 - Reserved.

Bytes 1-3: Pointer to next SPQE or, in
last SPQE, zero.

Byte U4: Subpool number.

Bytes 5-7: Pointer to first DQE ox, if the
subpoocl is shared, a pointer to
the "owning" SPQE.

DQE: DQEs associated with each SPQE

reflect the total amount of space assigned
to a subpool. Each DQE is associated with

one or more 2K blocks ¢f main storage set
aside as a result of a GETMAIN macro
instruction.
point for the free queue.
following format:

Each DQF is also the starting
A DQE has the

9 ' ' 12(C) 130)

Main Storage Supervision 23

Bytes 1-3: Pointer to the FQE associated

with the first free area.
Bytes 5-7: Pointer to the next DQE or, if
this is the last DQE, zeros.

Bytes 9-11(B): Pointer to first 2K block
described by this DQE.

Bytes 13-15(D-F): Length in bytes of area

described by this DQE.

DYNAMIC
AREAS |

SYSTEM
QUEUE
SPACE

Figure 14. Storage Control for a Subpool
(MVT)
FQE: The FQE describes a free area within

a set of 2K blocks described by a DQE. It
occupies the first eight bytes of that free
area. Since the FQE is within the subpool,
it has the same protect key as the task
active within that subpool. Extreme care
should be exercised to see that FQEs are
not destroyed by the problem program. If
an FQE is destroyed, the free space that it
describes is lost to the system and cannot
be assigned through a GETMAIN. As area
distribution within the set of blocks
changes, FQEs are added to and deleted from
the free queue. An FQE has the following
format:

Bytes 1-3: Pointer to the next lower FQE
or, if this is the last FQE,
Zeros.

Bytes 5-7: Number of bytes in the free

area.

A subpool is summarized in Figure 14.

storage Control for a Load Module in
systems with MVT

Each load module in main storage is
described by a contents directory entry
(CDE) and an extent list (XL) that tells
how much space it occupies.

CDE: The contents directory is a group of
queues, each of which is associated with an
area of main storage. The CDEs in each
queue represent the load modules residing
in the associated area. There is a CDE
queue for the link pack area and one for
each region, or job pack area. The TCB for

the job step task that requested the region
points to the first CDE for that region.
Contents directory queues reside in the
system queue space.
following format:

A CDE has the

1701) 21(15)

16(10) 20(14)
Byte 0: Flag bits, when set to one,
indicate:
Bit 0 - Module was loaded by NIP.
Bit 1 - Module is in process of being
loaded.
Bit 2 - Module is reenterable.
Bit 3 - Module is serially reusable.
Bit 4 - Module may not be reused.
Bit 5 - This CDE reflects an alias
name (a minor CDE).
Bit 6 - Module is in job pack area.
Bit 7 - Module is not only-loadable.
Bytes 1-3: Pointer to next CDE.
Bytes 5-7: Pointer to the RB.

Bytes 8-15(F): EBCDIC name of load module.

Byte 16(10): Use count.

24 Programmer's Guide to Debugging (Release 20)

-

abnormally terminated, to print an ABEND or
SNAP dump stored in an earlier step, or to
release a tape volume or direct access
space acquired for dump data sets.
Conditional execution of the last step can
be established through proper use of the
COND parameter and its subparameters, EVEN
and ONLY, on the EXEC statement.

* ABDUMP REQUESTED *

JOB ATHEOT24 STEP STEP TIME 000737

COMPLETION CODE USER = 0123

INTERRUPT AT C6EFSA
PSW AT ENTRY TO ABEND 0O0LS000D 4006EF5A

TC8 01CB20 RB 000TFCS8 PIE 00000000
MSS 0001CC58 PK/FLG 10B10408
FSA 1506EBF8 TCcs8 00J01DOAO
LTC 200000000 108 QO000000
STAE 00000000 TCcT 00000000

ACTIVE RBS
PRB C6EE28 NM TATHBL0G SZ/STAB 00302000
SVRB 07FN20 NM SVC-601C SZ/STAB 00120062

RG 0-7 000002A0 80000078
8-15-7 0006EE60 ODOTFFT8

00000000
Q007FFBO

OTFC58 NM SVC-AQSA SZ/STAB 000CDO62
RG 0-7 0007FT7EB 0007FD8O
8—15-7 OCO07F7€8 0006F296

4000787A
0001CC56
[908° PACK AREA QUEVE T
LRRD O6ECAD . NM TATH) : FAB 00262000
LPRB O6EEZE" NW TATHBLEG

“SZ/STAR 60302000

LPRS D6FOLE " NM TATHCIDS

LPRB D6FOBO - NM TATADIOG . SZ/STAB 00182000

LPRA 0SFI90 NN TATHEIOG- -SZ/STAB 5OL32000°

P/P STORAGE BOUNDARIES 0006E800 TO 00080000
FREE AREAS SIZE

06EB90
06£CS0
06F5B8
07F668
O7F708
07F840
07FB90
CTFEESB

60C0C060
00000050
0000FC58
€0000098
00000010
¢0000228
000000CO
€000C018

GOTTEN CORE . SIzE

00000380
COG00ZAS
€000T068
000CGOES
00000008
€0000008 -
00006098
00000060° <

. 00000078
€0000060 -
00000078

OTF210:
067310
CTFC50
06F228
07F590°
CTFSED
OTFDLE
QTF 700
0TET60
GTEALS
QTFACE .

Figure 22A.

DATE 99366

0007F78C
000001F8B
0001CBO8
DOOBEELC
00000000

USE/EP 0106EE48

USE/EP 00007B78
00080000
00Q7FFF8

USE/EP 00007878
000097F 8
0000225C

Direct access space should be requested
in units of average block siZe rather than
in cylinders (CYL) or tracks (TRK). If
abnormal termination occurs and the data
set is retained, the tape volume or direct
access space should be released (DELETE in
the DISP parameter) at the time the data
set is printed.

PAGE 7001

000 7FDRO CMP 80000078 TRN 00C00000
00000000 JLB 0007FF78 JST 00005508
E0012420 NTCT 00000000 07€C ."DO0LICDED
Q0000000 LPZFL- FROS0000 RESV- 00000000
00000000 RESV 00000000 JSCB 00000090

PSW 00150000 4006FF5A Q 000900 WT/LNK 0001C820
PSW FF040033 50007D20 Q 900390
0O0OTFE48 00000098 00005508

4006EE4E OQO6EE6D 00009848

WT/LNK O006EE?28
N007FC3M
D Isblshaala)

PSW FFO4000E BOOLET7EC Q FBO3FS8
0001CB292 0037FD20 0006F230
0001CB20 0006F230 97007CBC

WT/LNK 000Q7FD20
00005508
QN01F7C8

$H FFI5000€ BOOGEDIC - @ 000000 - WI/LNK 0191CDEQ

PSH 00150000 4006EFSA. Q000000 . WI/LNK 0001CB20
PEW 00040000 40006AE4. Q 000000 WT/LNK 000LCCBO
SW FF150001 4006F16C . Q000000 WT/LNK 0101D0A0

“PSW.FEL50001 4006F21E - Q 000000 WT/LNK OLO1CF40

Sample of an ABEND Dump (PCP, MFT)

ABEND/SNAP Dump (Systems With PCP and MFT) 35

SAVE AREA TRACE

TATHBLOG WAS ENTERED

SA O6EBFB WDl 0606EACS HSA 000001900 LSA OO0OQ6EES6D RET 00009848 EP
R1 ©001CC80 R2 00000000 R3 00080000 R4 0OO0TFE4S RS
R7T O0007FC30 R8 0DO006ECEN R9 O0O0O0TFFT78 R1C OQ0TFF8H0O R1

SA 06EE60 WOLl 00000000 HSA 0006ERFA LSA 00000000 RET 00000000 EP,
R1 €0000000 R2 00000000 R3 00000000 R4 006000000 RS
R7 €0000000 R8 00000000 R9 00000000 R10 00000000 R1

PROCEEDING BACK VIA REG 13

SA 06EE60 WDL 00000000 HSA OQOQ6EBFS8 LSA 00000000 RET 00000000 EP.
Rl 00000000 R2 00000007 R3 00009000 R4 00000000 RS
R7 00000000 R8 00000000 R9 00000000 R10 0000C000 R1

TATHB10G WAS ENTERED

SA O6EBFB8 WD1l C606EACS HSA 00000100 LSA COO6EE6D RET 00009848 EP.
R1 0oOiccC80 R2 00000000 R3 00080000 R4 0QOO7FE48 RS
R7 COOTFC30 R8 0O006ECEC R9 COO7TFFT8 R10 00J7FFBO R1

DATA SETS

SNAP2 ucs 192 00225C DEB OTFT78C DCB 06EFBA

DUMDCB ucs 192 00225C DEB OTFAF4 0CB 06EFSC

JOBLIB uce 190 00218C

SYSPRINT ucB 192 00225¢C

SYSABEND uce 192 00225¢C

SNAPL ucs 190 00218C

REGS AT ENTRY TOQ ABEND

FL.PT.REGS 0-6

00.000000 00000000

00.000000 70000000

00.000000 00000000

REGS 0-7 000002A0 80000078 20000000 00080000 0007
REGS 8-15 0006EE6Q Q007FF78 Q00TFFBO Q007FFF8 4006
NUCLEUS

000000 000CC000 0000051C FOFOFSC1l 00000000 000097F8 00013440 01040080
000020 0004000A 50006846 00000000 00000000 0000FF0O0 00000000 FF04000E
00C040 1007F5E8 50000000 00001480 000097F8 60C85DC0O 00000000 00040000
000060 0C040000 0000033A 00040000 000002DE 00000000 00008278 00040000
000080 0001538C 00000000 00000000 00003000 00000002 00000000 00000000
0000A0 0000C000 00000000 00000000 00000900 00000200 00000000 00000000

LINES 0C00C0~-000140 SAME AS ABOVE
600160 00000000 00000000 00000000 82000170 00040000 0C03AT7AO 00000000
000180 0001CB20 OOQOTEPL 0006F465 80007016 00000080 0006F491 00000001
0001A0 00000000 00000000 00000000 00000000 00000000 00000000 00000000
LINE 0001C0O SAME AS ABOVE

0001E0 000C79FC 000068B8 0000A43A 00000001 40007720 0000AD42 90001520
000200 0000846C 000083E4 00006780 00006942 00001007 00000F28 00009730
000220 00013340 00234700 024C96F0 02279029 01805830 06C45840 30004700
000240 40100038 94FD4011 90A13030 5890021C 05895850 02105890 021407F9
000260 02070440 Q03847F0 024C940F 022793829 018091F0 023B4780 044898A1
000280 04409C29 018091F0 02384780 029C90Al 01E0D207 04400018 47F002B2
0002A0 90A1903C 58990000 D2079010 001894FD 90119140 00184780 02C05820
0002C0 91800018 478002CE 58200208 052247F0 026A0000 00015388 000087DA
0002E0 01A098CD 00285880 02189101 00290788 58A006C4 S8A0A004 12AA07CSH
000300 000012AA 47C00332 90C2B00%4 181B5880 02189280 100098F0 A0008900
000320 078850F0 002C41EQ0 02DC98AD 01408200 00281818 58800218 O7FB90OOF

Figure 22B.

36

Sample of an ABEND Dump (PCP,

MFT)

Programmer's Guide to Debugging (Release 20)

A 4006EE48
00000098
1 O00Q7FFF8

A 00000000
00000000
1 00000000

A 00000000
C0000000
1 00000000

A 4006EE48B
00000098
1 OOO07FFF8

FE48
EE4E

8003ACD4
AOOOTE2A
00000282
00000226
00000000
00000000

00000000
0006F4A8
00000000

00000000
0001335C
025CD207
90A101E0
01€08200
589006(4
02D40522
0A0390A9
18BAS8AA
C0001200
04005890

00000098
Q006EE6O

PAGF 0002

RO NOONOAICE
R6 000055D8
R12 4006ECCE

RO 00020070
R6 00000000
R12 0009C0J0

RO 00000000
R6 N0000000
R12 00000000

RO 000098CE
R6 00005508
R12 4006ECCE

00.000000 00000000

00005508
00009848

0007FC30
00000000

*eosseeea005A00s00ecBass

svecsrseansen®

seeesaaMX

ssases

*

‘ooo....uo.hc.---oo-o--o-l-.o.o--

¥oeossoeostussesssarsscnnssssscns

eessesssctton

¥eesessoncsncacesnssscsscnnssennse

*¥e0000convcnee

ssecece

eDe covenoKeX

eselosnas

see0csnne

*eeeOooaooossescessscnssssarssacen?

Sample DD Statements: Figure 23 shows a
set of job steps that include DD statements
for ABEND dump data sets.

The SYSABEND DD statement in STEP2 takes
advantage of the direct access space
acquired in STEP1 by indicating MOD in the
DISP parameter. Note that the space
request in STEP1 is large so that the
dumping operation is not inhibited due to
insufficient space. The final SYSABEND DD
statement in the job should indicate a
disposition of DELETE to free the space
acquired for dumping.

Contents of an ABEND/SNAP Dump (PCP,MFT)

This explanation of the contents of
ABEND/SNAP dumps for systems with PCP and

MFT is interspersed with sample sections
taken from an ABEND dump. Capital letters
represent the headings found in all dumps,
and lowercase letters, inforwation that
varies with each dump. The lowercase
letter used indicates the mode of the
information, and the number of letters
indicates its length:

» h represents 1/2 byte of hexadecimal
information

e d represents 1 byte of decimal
information

¢ Cc represents a l-byte character

You may prefer to follow the explanation
on your own ABEND or SNAP dump.

— f—
L e
JJSTEPI | [EXEC | [PGN=PROGRAMI I i
//SYSABEND DD | [DSNAME=DUMP,UNI[T=231il1,D1S|P=(,KEEP,KEEP), X
/7 VOLUME=SER|=1234],SPACE= (TRK, (11l0, 10
othlelr DD skate!{cnts

//STEP2 | [EXEC | [PGM=PROGRAM2
/SYSABEND DD | [DSNAME=%.STEP | .[SYSABIEND, DI SP=(MOD,DELETE|, KEEP), X
// VOL=RIEF=%.STEP/|. SYSABEND

Figure 23. SYSABEND DD Statements

ABEND/SNAP Dump (Systems With PCP and MFT) 37

* * * A BDUMTP

JOB cccccceccece

COMPLETION CODE

REQUETSTETD * * ¥

*ccccccCa.

STEP ccccccce TIME dddddd

SYSTEM = hhh (ox USER = dddd)

CCCCCCuaa
INTERRUPT AT hhhhhh

PSW AT ENTRY TO ABEND (SNAP) hhhhhhhh hhhhhhhh

DATE ddddd

PAGE dddad

* * ¥ A BDUMP REWUEGSTED ¥ * %

identifies the dump as an ABEND or
SNAP dump.

¥CCCCCCCuaewowe

38

is omitted or is one or more of the
following:

*CORE NOT AVAILABLE,

hhhhhhhhhhhh TAKEN...
indicates that the ABDUMP routine
confiscated storage locations
hhhhhh through hhhhhh because not
enough storage was available.
This area is printed under P/P
STORAGE, but can be ignored
because the problem program
originally in it was overlaid
during the dumping process.

LOC.

*MODIFIED, /SIRB/DEB/LLS/ARB/MSS...
indicates that the one or more
queues listed were destroyed or
their elements dequeued during
abnormal termination:

e SIRB -- system interruption
request block queue. One or
more SIRB elements were found
in the active RB queue: these
elements are always dequeued
during dumping.

e DEB -- DEB queue. If the first
message also appeared, either a
DEB or an associated DCB was
overlaid.

e LLS -- load list. If the first
message also appeared, one or
more loaded RBs were overlaid.

s ARB -- active RB queue. If the
first message also appeared,
one or more RBs were overlaid.

® MSS -- boundary box queue. One

or more MSS elements were
dequeued, but an otherwise
valid control block was found

in the free area specified by
an MSS elemrent.

*FOUND ERROR IN /DEB/LLS/ARB/MSS...
indicates that one or more of the
following contained an error:

e DEB: data extent block
e ILILS: 1load list

e ARB: active RB

e MSS: Dboundary box

This message appears with either
the first or second message
above. The error could ke:
improper boundary alignment,
control block not within storage
assigned to the program keing
dumped, or an infinite loop (300
tires is the maximur for this
test). For an MSS block, 4 other
errors could also be found:
incorrect descending sequence
(omitting loop count),
overlapping free areas, free area
not entirely within the storage
assigned to the program being
dumped, or count in count field
not a multiple of 8.

JOB cccccecce

STEP

TIME

DATE

Programmer's Guide to Debugging (Release 20)

is the job name specified in the JOB
statement.

cccececeec
is the step name specified in the EXEC
statement for the problem program
being dumped.

dddddd

is the hour (first 2 digits), minute

(second 2 digits), and second (last 2
digits) when the ABDUMP routine began
processing.

ddddad

is the year (first 2 digits) and day
of the year (last 3 digits). For
example, 67352 would be December 18,
1967.

M

PAGE dddd
is the page number.
top of each page.

Appears at the

COMPLETION CODE SYSTEM=hhh or COMPLETION

CODE USER=dddd
is the completion code supplied by the
control program (SYSTEM=hhh) or the
problem program (USER=dddd). Either
SYSTEM=hhh or USER=dddd is printed,
but not both. Common completion codes
are explained in Appendix B.

ccececcC. . -
explains the completion code or, if a
program interruption occurred:
PROGRAM INTERRUPTION ccccC... AT
LOCATION hhhhhh,

where ccccc is the program
interruption cause -- OPERATION,
PRIVILEGED OPERATION, EXECUTE,
PROTECTION, ADDRESSING, SPECIFICATION,
DATE, FIXED-POINT OVERFLOW,

FIXED-POINT DIVIDE, DECIMAL OVERFLOW,
DECIMAL DIVIDE, EXPONENT
OVERFLOW , EXPONENT UNDERFLOW,
SIGNIFICANCE, or FLOATING-POINT
DIVIDE; and hhhhhh is the starting
address of the instruction being
executed when the interruption
occurred.

INTERRUPT AT hhhhhh
is the address of next instruction to
be executed in the problem program.
It is obtained from the resume PSW of
the PRB or LPRB in the active RB queue
at the time abnormal termination was
requested.

PSW AT ENTRY TO ABEND hhhhhhhh hhhhhhhh or
PSW AT ENTRY TO SNAP hhhhhhhh hhhhhhhh
is the PSW for the problem or control
program that had control when abnormal
termination was requested or when the
SNAP macro instruction was executed.

TCB hhhhhh RB hhhhhhhh PIE
MSss hhhhhhhh PK/FLG hhhhhhhh

hhhhhhhh

LTC hhhhhhhh IQE
STAE hhhhhhhh TCT

hhhhhhhh
hhhhhhhh

DEB hhhhhhhh
FLG hhhhhhhh LLS hhhhhhhh JLB

RG 0-7 hhhhhhhh hhhhhhhh hhhhhhhh
RG 8-15 hhhhhhhh hhhhhhhh hhhhhhhh
FSA hhhhhhhh TCB hhhhhhhh TME hhhhhhhh

ECB hhhhhhhh
USER hhhhhhhh

hhhhhhhh
hhhhhhhh
hhhhhhhh

TRN hhhhhhhh

JST hhhhhhhh
hhhhhhhh hhhhhhhh
hhhhhhhh hhhhhhhh

OTC hhhhhhhh

RESV hhhhhhhh

JSCB hhhhhhhh

TIOT hhhhhhhh CMP

hhhhhhhh hhhhhhhh
hhhhhhhh hhhhhhhh hhhhhhhh

PIB hhhhhhhh NTC hhhhhhhh
XTCB hhhhhhhh LP/FL hhhhhhhh
DAR hhhhhhhh RESV hhhhhhhh

TCB hhhhhh
is the starting address of the TCB.

RB hhhhhhhh
is the TCBRBP field (bytes 0 through
3): starting address of the active RB
queue and, consequently, the most
recent RB on the queue (usually
ABEND's RB).

PIE hhhhhhhh
is the TCBPIE field (bytes 4 through
7): starting address of the program
interruption element (PIE) for the
task.

DEB hhhhhhhh
is the TCBDEB field (bytes 8 through
11): starting address of the DEB
queue.

TIOT hhhhhhhh
is the TCBTIO field (bytes 12 thrqugh
15): starting address of the TIOT.

CMP hhhhhhhh
is the TCBCMP field (bytes 16 through
19): task completion cocde in

hexadecimal. System codes are shown
in the third through fifth digits and
user codes in the sixth through
eighth.

TRN hhhhhhhh :
is the TCBTRN field (bytes 20 through
23): starting address of control core
(table) for controlling testing of the
task by TESTRAN.

MSS hhhhhhhh
is the TCBMSS field (bytes 24 through
27): starting address cf the main
storage supervisor's boundary box.

PK/FLG hhhhhhhh
contains, in the first 2 digits, the
TCBPKF field (byte 28): rprotection
key.

FLG hhhhhhhh
contains, in the first 4 digits, the
last 2 bytes of the TCBFLGS field
(bytes 32 and 33): 1last 2 flag bytes.

contains, in the next 2 digits, the
TCBLMP field (byte 34): in systems

ABEND/SNAP Dump (Systems With PCP and MFT) 39

with PCP, both digits are zeros; in TME

systems with MFT, number of resources
on which the task is queued.

contains, in the last 2 digits, the
TCBDSP field (byte 35):

¢ Reserved in PCP and MFT without
subtasking; both digits are zero.

e In MFT with subtasking, this field

hhhhhhhh

is the TCBTME field (bytes 120 throuch
123): starting address of the timer
element created when an STIMER macro
instruction is issued by the task.
This field is not printed if the
computer does not contain the timer
option.

contains the dispatching priority of PIB hhhhhhhh

the TCB.

LLS hhhhhhhh
is the TCBLLS field (bytes 36 through
39): starting address of the RB
most recently added to the load

is the TCBPIB field (bytes 124 through
127): starting address of the program
information block (MFT) or zeros
(BCP) .

list. NTC hhhhhhhh (printed only in MFT)

JLB hhhhhhhh
is the TCBJLB field (bytes 40 through
43): starting address of the DCB
for the JOBLIB data set.

JST hhhhhhh
is the TCBJST field (bytes 44 through
47). Not currently used in PCP or MFT
without subtasking. In MFT with
subtasking - the starting address of
the TCB for the job step task.

is the TCBNTC field (bytes 128 through
131):

MFT without subtasking: zeros.

MFT with subtasking: the starting
address of the TCB for the previous
subtask on this subtask TCB queue.
This field is zero both in the job
step task, and in the TCB for the
first subtask created by a parent
task.

OTC hhhhhhhh (printed only in MFT)

RG 0-7 and RG 8-15
is the TCBGRS field (bytes 48 through
111): contents of general registers 0
through 7 and 8 through 15, as stored
in the save area of the TCB when a
task switch occurred. These 2 lines

is the TCBOTC field (bytes 132 through
135): starting address of the TCB for
the parent task. Both in the TCB for
the job step task, and in MFT systems
without subtasking this field is zero.

appear only in TCBs of tasks other LTC hhhhhhhh (printed only in MFT)

than the task in control when the dump
was requested.

FSA hhhhhhhh
contains, in the first 2 digits, the
TCBIDF field (byte 112): TCB
identifier field.

contains, in the last 6 digits, the

is the TCBLTC field (bytes 136 through
139): starting address of the TCB for
the most recent subtask created by
this task. This field is zero in the
TCB for the last subtask of a job
step, or in the TCB for a task that
does not create subtasks. This field
is always zero in an MFT system
without subtasking.

TCBFSA field (bytes 113 through 115): IQE hhhhhhhh (printed only in MFT)

starting address of the first problem
program save area. This save area was
set up by the control program when the
job step was initiated.

TCB hhhhhhhh
is the TCBTCB field (bytes 116 through
119): in systems with PCP, all digits
are zeros; in systems with MFT,
starting address of the next TCB of
lower priority or, if this is the last
TCB, zeros.

40 Programmer's Guide to Debugging (Release 20)

is the TCBIQE field (bytes 140 through
143).

MFT without subtasking: zero.

MFT with subtasking: starting address
of the interruption gueue element
(IQE) for the ETXR exit routine. This
routine is specified by the ETXR
operand of the ATTACH macro
instruction that created the TCB being
dumped. The routine is to be entered
when the task terminates.

-

ECB hhhhhhhh (printed only in MFT)

is the TCBECB field (bytes 144 through

147).

MFT without subtasking: zero.
MFT with subtasking: starting address
of the ECB field to be posted by the
control program at task termination.
This field is zero if the task was
attached without an ECB operand.

XTCB hhhhhhhh (printed only in MFT)
reserved for future use.

LP/FL hhhhhhhh (printed only in MFT)
MFT without subtasking: reserved.

MFT with subtasking: contains in the
first byte, the limit priority of the
task (byte 152). contains, in the
last three bytes the field TCBFTFLG
(bytes 153 through 155) - flag bytes.

RESV hhhhhhhh (printed only in MFT)
reserved for future use.

STAE hhhhhhhh
contains, in the first 2 digits, STAE
flags (byte 160).

contains, in the last 6 digits, the
TCBNSTAE field (bytes 161 through
163): starting address of the current
STAE control block for the task. This
field is zero if STAE has not been
issued.

TCT hhhhhhhh

USER

is the TCBTCT field (bytes 164 through
167):

PCP: Zeros.

MFT: Address of the Timing Control
Table (TCT) Zeros of the System
Management Facilities option is
not present in the system.

hhhhhhhh

is the TCBUSER field (bytes 168
through 171): to be used as the user
chooses.

DAR hhhhhhhh

RESV

JSCB

contains, in the first 2 digits,
Damage Assessment Routine (DAR) flags
(byte 172);

MFT only, contains, in the last 6
digits, the secondary
non-dispatchability bits (bytes 173
through 175).

hhhhhhhh
reserved for future use.

hhhhhhhh

is the TCBJSCB field (bytes 180
through 183): the last three bytes
contain the address of the Job Step
Control Block.

ACTIVE RBS
cccec hhhhhh NM cccccccce SZ/sSTAB hhhhhhhh
RG 0=~7 hhhhhhhh hhhhhhhh
RG 8-15 hhhhhhhh hhhhhhhh

hhhhhhhh
hhhhhhhh

USE/EP hhhhhhhh
hhhhhhhh
hhhhhhhh

PSW hhhhhhhh hhhhhhhh

© hhhhhh
hhhhhhhh hhhhhhhh
hhhhhhhh hhhhhhhh

WT/LNK hhhhhhhh
hhhhhhhh
hhhhhhhh

hhhhhhhh
hhhhhhhh

ACTIVE RBS
identifies the next lines as the
contents of the active RBs queued to
the TCB.

cccce hhhhhh
indicates the RB type and its starting
address.

The RB types are:

PRB Program request block

SIRB Supervisor interruprt reguest
block

LPRB Loaded program request block

IRB Interruption request block

SVRB Supervisor request block

NM XXXXXXXX

is the XRBNM field (bytes 0 through
7): in PRB, LRB, and LPRB, the
program name; in IRB, the first byte
contains flags for the timer or, if

ABEND/SNAP Dunmp (Systems With PCP and MFT) 41

the timer is not being used, contains
nc meaningful information; in SVRB for
a type 2 SVC routine, the first U4
bytes contain the TTR of the load
module in the SVC library, and the
last 4 bytes contain the SVC number in
signed, unpacked decimal.

SZ/STAB hhhhhhhh
contains in the first 4 digits, the
XRBSZ field (bytes 8 and 9): number
of contiguous doublewords in the RB,
the program (if applicable), and
associated supervisor work areas.

contains in the last 4 digits, the
XSTAB field (bytes 10 and 11): flag
bytes.

USE/EP hhhhhhhh
contains, in the first 2 digits, the
XRBUSE field (byte 12): use count.

contains, in the last 6 digits, the
XRBEP field (bytes 13 through 15):
address of entry point in the
associated program.

PSW hhhhhhhh hhhhhhhh
is the XRBPSW field (bytes 16 through
23): resume PSW.

Q hhhhhh
is the last 3 bytes of the XRBQ field
(bytes 25 through 27): in PRB and
LPRB, starting address of an LPR3 for
an entry identified by an IDENTIFY
macro instruction; in IRB, starting
address of a request element; in SVRB
for a type 3 or 4 sSvC, size of the
program in bytes.

WT/LNK hhhhhhhh
contains, in the first 2 digits, the
XRBWT field (byte 28): wait count.

contains, in the last 6 digits, the
XRBLNK field (bytes 29 through 31):
primary queuing field. It is the
starting address of the previous rB
for the task or, in the first RB to be
placed on the queue, the starting
address of the TCB.

RG 0-7 and RG 8-15
is the XRBREB field (bytes 32 through
95 in IRBs and SVRBs): contents of
general registers 0 through 15 stored
in the RB. These 2 lines do not
appear for PRBs, LPRBs, and LRBs.

LOAD LIST

cccc hhhhhh NM ccceccecc SZ/STAB hhhhhhhh

USE/EP hhhhhhhh

PSW hhhhhhhh hhhhhhhh Q hhhhhh WT/LNK hhhhhhhh

LOAD LIST
identifies the next lines as the
contents of the load list queued to
the TCB.

ccce hhhhhh
indicates the RB type and its starting
address.

The RB types are:

LRB Loaded request block
LPRB Loaded program request block
D-LPRB Dummy loaded program request

block. (Present if the
resident reenterable load
module option was selected in
MFT) .

NM ccccccecce
is the XRBNM field (bytes 0 through
7): program name.

42 Programmer's Guide to Debugging (Release

SZ/STAB hhhhhhhh

contains, in the first 4 digits, the
XRBSZ field (bytes 8 and 9):
nuwber of contiguous
doublewords for the RB, the
program (if applicable), and
associated supervisor work
areas.

contains, in the last 4 digits, the
XSTAB field (bytes 10 and 11):
flag bytes.

USE/EP hhhhhhhh
contains, in the first 2 digits, the
XRBUSE field (byte 12): use
count.

contains, in the last 6 digits, the
XRBEP field (bytes 12 through
15): address of entry point
in the program.

20)

A

JOB IPCT4L STFP EXSTFP TIMF 002409 NATF Qa3ske PAGE 0001
CNAMPLETION CNNE SYSTFM = A37
PSW AY FNTRY TN ARFMA FFEN4AQ000N 50007 4nn

Tr8 NPFN23 nA0 0ON2ECTR PIF nononNonNn nnNn2EN3s 000302F0 RORITNON TRN - 000NN000
Mes 01n21738 OPK-FLG FORSN4NS l 00000010 0003NIRN 00000000 Jen o 00N3NIEAR
FSA D1N6NTER TR anoannono annonnng 0NO2EN?A N [aleYsIsTalskale] arc onNANSOR
Lye nonnnnnn 10F anennneo noN304R4G 00000000 OrN3IZAAR SQS 0NO2FAAD
NSTAF 00000000 T nNeN3N2ER 0nnnonno noonnnnn 00000000 JSCR 0001460

ACTIVF 285

PRR 03NNFR RFSV 0nnnooon APSW annoonoo WS =-S7=-STAR NN04N08? FL-CNE 000317290 PSW FFFSONNG TNO3S53F
AMTTR A0000N00 WT-LNK 0CN2FQ28

0309R8 QFSV £onenoon APSW nnnoonrno WE=-S7~STAR 0N0GONN2 FL-CDF 0C0R0ER]0 OSW FFFS0N37 S2NTFLA4AA
A/TTR . 00ANONNAN WT-LLNK N0ON3ONFA

02FNEO TAB—tN 009RO4AON APSW FRFSFOF? WC=S7-STAR 10120002 TON [alaZalslaToLaks] PSW FFN4GOONN S0N0C408
Q/TTR 0NNNACHF WT-LNK 0YN200RR
RG 0-7 0NONNFENg nNN3akF4 anonann ANNNNNNeA 000N0073 D0N3RCON NNO36FRA nonoarc3sl
25 f-1% 00039100 onn3asra 0NORNET O ANN3ALIRAR onn3ace) nnnN29s5cn 5207F434 0NNTFENL0
FXTSA F2FAE2FS F3INAT 40 0006KNNED NON2FEF & QONDFFr 4 nN006NFAR nnnnoR3? 00N03N3AC
ANOND A LR anennng1 0N0ANFLQ T3048N04

N2F1T70 TAR-LM ONRPOIL] APSW F2FOFICY WA-S2-STAR A0IPDON? TN 0000NNIN PSW 0NNGN0RT SANOCOCF
A/TTR 0anna109 WY-{ NK ONNDPFEOFQ
5 0=7 B0O0000NO 80R37000 NCO19AF4 4000C1R2 000ANDFO NON2EFNG 0NO2EFC4 0NNANERR
R5 @=15 NNONO83T 0003n34C RONN 2648 ANNDOONT 0N0KNFFO neNN264R 00NDNRER 00090001
FXTSA nnnoanF 000ANNRY 2NONFFFF ANNANRFO FF 030000 0NNPFLFC ONN2FIF4 F2F8F2Ca
CRCIFOFY torsci12a C1020505 f4nTRARG

N2FCT78 TAR-LN 0ONCRO2CR APSW F1FOF5C1 WCE=S7-STAR ON12D002 TON noannenNo PSW FFN4D001 40NTF3A4
N/TTR 0NN0EK2N1L WT-LNK 00N2F170
Pr 0-7 annonnao 0002100 ANOOANT R ANNNNRAR 00N2F029 0onN2r1Te 00021290 000N0000
NNO2FN2 R 4000RNTA nna2FN28 NONADNRA 00Nn30320 NoN2EIF 4 4NNNN&E9Y onnnnooo
Q0620200 annann4an ON0ARDNIA 18902648 naonnnao nnn9onet 0NN2RGEN nonanonl g
0012Cc702 annheannn 00000n9Nn nnnanonn

1187

NE 0NNANRFR RSP-TOAF N2N201FR 0003INDF0 PSP-CDF N10N32390 NF 00031078 RSP-CNE 01032290
NF 000317R0 RCP-CNF N10322A0 - 0Nn310Ce RSP-CNF 01Nn32390 NFE 00031170 RSP-CNE A10327200
NF 09031100 RSP-CNF N103230N - 0ND00aNe R<P-CNF 01039RFQ

0312an noannn RPC~RRB 0NN3INNFY NM 60 035508 031280
N30F an nrp2an RPAC-PR QQN309P Y N TEKAAON nN36240) 0?2F398
0301F8 030RF0 fNC=-RAB ONOONONO N I6,COANSA E NACI80 0304B0
n2230Q n323rn POC-RR AIDINNON NM OIGGOTArD 07FANO A i 032380
0327290 032200 RNC-PR 0ONNINONO NM I6GOTAPRA 0TF4AN n3z2280
032260 032290 ROC-PR 090NNO0O NM I6R019RR i “PA O7TFRRO 2 0327250
032390 03230 RNC-RR NNONOOQNO NM TIGHRNT1ANn NTEAOQ k 032380
n32200 032230 RNC—RAR NHON0OOHO NM IGGNT9AY 07F3A0 20 NI21F0
n323cn 0323F0 RNC-A/R ANNIONNO NM 1160 9AR N7FC10 N323R0
N30AF0 N30F8N ROC-RT DONHANOO NM Tfws7nye NAC4HRD DEBLEL]

LA ADR LN ADR LN

031280 [slsalelalo R No} anonnNnng RONON? FR ANN3RKNR

n2fF39a ononNNacr nNnoonool ANN1AF3A NNN3ISC 8 0ON3ASACR nN0N3INRO0D 010A04N0 010n0500
n11nn3Ing N INO300 011FEN200 01290400 012F0500 01330500
n13233nn a13A0100 01440500 01480400 014NNEA0

03NARD anaeno1n aonNnnony ANDNNARD 1NN6RCARND

032380 ononnnto noenneo) /RNOON210 INDTIFANN

0327280 0Nnonn1o nonoonal ANO0N1ARN ANNTF4AN

032250 0QonNnoINn 0 00000001 0N0N05 98 NNOTFRBN

n32380 nnooeora nonoooot 8npan21n NONTEAND

0321F0 000000 N aan0000 ROONNL00 AONTEIAN

032380 oonoonin n0nnnnny anpnnngn aNOTECT1 0

030RAY onoenntn nonNnonng .8NANN35N eAnN6Cann

neNONDSN NNNNONSH NONNNNSE 0NNNNDNEN
03200050 00000000 ONOXN20A NONOIREC NENNNONN ONO2FEC2R NAN2FEN4 9RNOONND
ARFONNOOO N1ANOONN 00ONNNN0 FENANNAR N4N2EDLN 1AONDA4R JONO00O3Y ONOI0032 teosssesessase
NOO1INNOR NOOINONT £2C2C 201 CRC4NON0 0neadnno 0000N0eNn 0NNN00NO C3C40000 «aMRBACD, ..

Figure 24A. Sample of Complete ABEND Dump (MVT)

ABEND/SNAP Dump (Systems with MVT) 51

nfa PAGE 0002

A2EFAN ANANINGEN ANANNANSA NNOONDSN OCNOCNSN e uPieeennosssserossssnasanssanan
APETe NAYAAINEN ANCANCNN ANNABGND2AT PONTTAFC 2A0070T) NINIEAIE N4AGNCAND RRNNNONN
NIEFFA ATARANNAA 1 ORNANNN ANNAGAAN FENINAT 4 N4N2TFRN 1RNIE 4R NONNNNTY NONGNHN3E
N2€EFN AANINNTY (RANADEAP ANDANCTIF NNNANAIF ANORNNNA JRAYIL 4R NNNODNNAE INOGN040D
n2Er2n fANDANAA IANNIALA NANNONCLD NNOANN4LT NOOANINNA 18772648 NNOONNLL NOCINOLD
nNaEcHN ANNANINA TANNT ALY ANNNANLT (NANNA™T ANNRICIA TRANILALR NANNNNELT OD0GC044
APFFEN ANLRNINA 1TANNAZE4Q AOONNN4A CONONNAE ANARINNA]RANIL LA NNONONES NONDINNLA
ASEFRN NONRNNOA 1RNCIAAR ANONRNLE OONINN4LT ANNARIANA 18ND2F4R INACNNLT NAOAND4]
APEEAN ONNANNNA 1RMNDALO NNONNNLR NANAANLA NNNANNNA 1ANN2448 NONCON4LT Q0NANO4LA
nreEcn ANNRNANA TARNDELR NANANINNLA ANNOANLP NANRINNA 1ANI2R4R NONNADNLR NONQO04C
APFEFN ANNRINOA VONCIALA ANDANNLC ONNANO4LD aNNANNNA ONNIANNT CINQCLIRL FICAFECNH

PR B

LT

LI S
« v
. e .
I EE NN ERER NN

1R TPrTal SYED FYSTFP
14NA01NT NOMz K, PO AO2ANENN AANN2 640
teranipn Sy<ARran no240ann CRLGEIYA
1404n] Q0 CTAATNNY [alab XS [alaTa) ANONPRAD
racac1on TTNL TN nnN2s1100 annNnang
ranneAnn cySmipmryg NO281AanQ0 annanNer
14naninn DA ARES Rihg nO24NFON annnlALa
1ananyiny SYSIN nN2snann ANNNIALP

Ho gk bRk RdkckAx GNP wkddok Rtk Rk ok HEEREEAIHXAEANRE NOF AR Edt bt ke i Fahkakk FOF kkkkkdk
LGS ~vepor aprn nor ALK FoF LN NPOF NENE N
LEREAT na NI 740 KA | N1 2en AON2SI00 ANHIASNNO NONONRNN OONIINFN nnoonnNon a0nnosos
ANN3IKANN ANNRGARNON NNATTONO0 ONNANNODN noonnnno 0n0n001CAa
LEAR 2% nn n114RS 262 a314c0 NONANANN NNNARENG 00NNNRNN ONOI0ARTS 00000000 00000538
AONACAND ONNACANH NOONAROBH HOOAN3ING 00000000 00000480
AONAKFANO AAOACAON NOOONARNN ONO2FARAR 00000000 an0001an
ANJARRNN NNOARANN 0NN00ANN NOCONNOO nO00nN00o0 o0NNo1AN
nr1ape aneang N314n0
nitann annAnn GERRS -1} ANNANNNN NNNANTAY NONNARNN OND0NNNN 0006N0NN 00000020
00000009 00000518
AN A FIORT arN3 440 LAST Nnnr14A0
LERETN] EEANOA4CRON 1me aonar ana MPA AANNINNN 00 nonnanNan
TrR pananeeca LA BDGLEL AT R AN ANNIRNNA FLO 000N

fANE N4rrnn NET ANN L AN Pra NNN3AT46D <7 1001FNNQ

ToArE

nIICR NMA L ARNIATNR nnnICcALD FMIN AND3INRA NM - SYSDSH

r3ynaa CAFL ANCAT AR orn3pIcs NMIN NNANAINN NM OFF SYST.MACLITR
MATL nnponcne Rnrainge T8 Anp3nsNR SVRR NOOAOLNN

REL T MUMA) nacnALAN ANNZ A nNIINTAD A sysiram

nAATAN FAFE nnnanian ann3INnInNn naannnnn NaFED A

MaFL AnpAnnnn nENINT AN BLEPLREL SVYRR NNOIFAara

SAVE AZFR TOACE

SA NaNTAS] WY onncannan nnannnnn nNNHNEIlINn onnennen nooonnnn RO NOOONONO
"1 nnnnnnnn aecnnonn nnnnnann cannNannn 00connon R6 NONOONON
"7 AnNANnAnce onnannnn aNIANINg oanenanno [Ale[sTelelelala] "R12 000DONOOD

INTERRIDT AT N7rr4A

PRACEENING RACK VIA 27 17

SA nanerA WAl ORTRASFE TNO0L 7N asr7g0]an RAOALTLY QsAriAll 20 5203934F
ny QrNTEAN nANEN&TO NNN3AARE4 nON3aRfFy nenaNsTo RH TFOADSAC
EEAEGLUVLTAE nanenTac nennoFna nANTECTO 5207€434 @12 NONTECIO

SA nnaran WY1 47200000 Fenoonnn nnrnNYoN [elalaloTalala) 47400000 Q0 FFENOOOON
81 anananen AL I AT Tals) LrTan000n EENOANNND agenonan R& 00000000
°7 arrnnace Tennnnan a0nNN200 nnRannnaQ 471N0000N P12 FENOD0NO

N FLIS
AnnBnn NARIANAS ANAARAAN A9NIANAD CANNANLE ONNONJAR A0NNNDNN FFRA0NRN ANNIRT 4

nonNN>N CENRANNATL 4NOTFC3C FREEENAN] OPNAACED ANONZFAN AIANACON EFNAN3ITA RNNOONNA
AON(LN NANNATSQ ACANNAAD NNQTISAN ONOCNARAR NRIATRAC AANLIRAC NONLOONN DNIOFATR

Figure 24B. Sample of Complete ABEND Dump (MVT)

52 Programmer's Guide to Debugging (Release 20)

JOB cccceccce

COMPLETION CODE

STEP cccccccce TIME dddddd

SYSTEM = hhh (or USER = dddd)

PSW AT ENTRY TO ABEND (SNAP) hhhhhhhh bhhhhhhhh

DATE ddddd

ID = ddd PAGE dddad

JOB ccccceccecce

STEP

TIME

DATE

is the job name specified in the JOB
statement.

cccceccec
is the step name specified in the EXEC
statement for the problem program

associated with the task being dumped.

ddddad

is the hour (first 2 digits), minute
(next 2 digits), and second (last 2
digits) when the abnormal termination
dump routine began processing.

ddddd

is the year (first 2 digits) and day
of the year (last 3 digits). For
example, 67352 would be December 18,
1967.

ID=ddd

is an identification of the dump. For
dumps requested by an ABEND macro
instruction, this identification is:

e Absent if the dump is of the task
being abnormally terminated.

e 001 if the dump is of a subtask of
the task being abnormally

terminated.. (Note that, when a task
is abnormally terminated, its
subtasks are also abnormally
terminated.)

e 002 if the dump is of a task that
directly or indirectly created the
task being abnormally terminated, up
to and including the job step task.

PAGE dddd

is the page number. Appears at the
top of each page. Page numbers Lbegin
at 0001 for each task or subtask
dumped .

COMPLETION CODE SYSTEM=hhh or COMPLETION
CODE USER=dddd

is the completion code supplied by the
control program (SYSTEM=hhh) or the
problem program (USER=dddd).

PSW AT ENTRY TO ABEND hhhhhhhh hhhhhhhh or
PSW AT ENTRY TO SNAP hhhhhhhh hhhhhhhh

is the PSW for the problem program or
control program routine that had
control when abnormal termination was
requested, or when the SNAP macro
instruction was executed. It is not
necessarily the PSW at the time the
error condition occurred.

TCB

hhhhhh RBP hhhhhhhh PIE
MSSs hhhhhhhh
RG 0=7 hhhhhhhh
RG 8=-15 hhhhhhhh
FSA hhhhhhhh TCB
LTC hhhhhhhh IQE
NSTAE hhhhhhhh TCT

hhhhhhhh
hhhhhhhh

hhhhhhhh
hhhhhhhh

hhhhhhhh

hhhhhhhh DEB hhhhhhhh
PK~FLG hhhhhhhh FLG hhhhhhhh

TIO hhhhhhhh CMP
LLS hhhhhhhh JLB

hhhhhhhh TME hhhhhhhh
hhhhhhhh ECB hhhhhhhh
USER hhhhhhhh

JST hhhhhhhh NTC
STA hhhhhhhh
DAR hhhhhhhh RESV hhhhhhhh

hhhhhhhh TRN hhhhhhhh
hhhhhhhh JPQ hhhhhhhh
hhhhhhhh hhhhhhhh
hhhhhhhh hhhhhhhh
hhhhhhhh OTC hhhhhhhh
D-PQE hhhhhhhh S$0S hhhhhhhh
JSCB hhhhhhhh

hhhhhhhh
hhhhhhhh

hhhhhhhh
hhhhhhhh

TCB hhhhhh

is the starting address of the TCB.

RBP hhhhhhhh

is the TCBRBP field (bytes 0 through
3): starting address of the active RB
queue and, consequently, the most
recent RB on the queue.

PIE hhhhhhhh

is the TCBPIE field (bytes 4 through
7): starting address of the program
interruption element (PIE) for the
task; however, in an abnormal
termination dump for the task causing
the abnormal termination, zerxos. The
field is zeroed by the ABEND routine
to prevent interruptions during
dumping.

ABEND/SNAP Dump (Systems with MVT) 53

DEB hhhhhhhh
is the TCBDEB field (bytes 8 through
11): starting address of the DEB
queue. Under the heading DEB in the
dump, the prefix section for the first
DEB in the queue is presented in the
first 8-digit entry on the first line.
The 6-digit entry at the left of each
line under DEB is the address of the
second column on the line, whether or
not the column is filled.

TIO hhhhhhhh
is the TCBTIO field (bytes 12 through
15): starting address of the TIOT.

CMP hhhhhhhh
is the TCBCMP field (bytes 16 through
19): task completion code or contents
of register 1 when the dump was
requested. System codes are given in
the third through fifth digits and
user codes in the sixth through eight
digits.

TRN hhhhhhhh
is the TCBTRN field (bytes 20 through
23): starting address of the control
core (table) for controlling testing
of the task by TESTRAN.

MSS hhhhhhhh
is the TCBMSS field (bytes 24 through
27): starting address of SPQE most
recently added to the SPQE queue.

PK-FLG hhhhhhhh

contains, in the first 2 digits, the
TCBPKF field (byte 28): protection
key.

contains, in the last 6 digits, the
first 3 bytes of the TCBFLGS field
(bytes 29 through 31): first 3 flag
bytes.

FLG hhhhhhhh
contains, in the first 4 digits, the
last 2 bytes of the TCBFLGS (bytes 32
and 33): last 2 flag bytes.

contains, in the next 2 digits, the

TCBLMP field (byte 34): 1limit
priority (converted to an internal
priority, 0 to 255).

contains, in the last 2 digits, the
TCBDSP field (byte 35): dispatching
priority (converted to an internal
priority, 0 to 255).

54 Programmer's Guide to Debugging (Release 20)

LLS hhhhhhhh

is the TCBLLS field (bytes 36 through
39): starting address of the load
list element most recently added to
the load 1list.

JLB hhhhhhhh

is the TCBJLB field (bytes 40 through
43): starting address of the DCB for
the JOBLIB data set.

JPQ hhhhhhhh

is the TCBJPQ field (bytes 41 through
47): when translated into binary
bits:

e Bit 0 is the purge flag.

e Bits 1 through 7 are reserved for
future use and are zeros.

e Bits 8 through 31 are the starting
address of the queue of CDEs for the
job pack area control queue, which
is for programs acquired by the job
step.

The TCBJPQ field is used only in the
first TCB in the job step; it is zeros
for all other TCBs.

RG 0-7 and RG 8-15

is the TCBGRS field (bytes 48 through
111): contents of general registers 0
through 7 and 8 through 15, as stored
in the save area of the TCB when a
task switch occurred. These 2 lines
appear only in dumps of tasks other
than the task in control when the dump
was requested.

FSA hhhhhhhh

contains, in the first 2 digits, the
TCBQEL field (byte 112): count of
enqueue elements.

contains, in the last 6 digits, the
TCBFSA field (bytes 113 through 115):
starting address of the first problem
program save area. This save area was
set up by the control program when the
job step was initiated.

TCB hhhhhhhh

is the TCBTCB field (bytes 116 throuah
119): starting address of the next
lower priority TCB on the TCB queue
or, if this is the lowest priority
TCB, zeros.

TME hhhhhhhh

is the TCBTME field (bytes 120 through
123): starting address of the timer
element created when an STIMER macro
instruction is issued by the task.

R

Page of GC28-6670-4, Revised March 1, 1971, by TNL: GN28-2457

Appendix J: Control Block Pointers

This appendix summarizes the contents of the control blocks that are most useful in
debugging. Control blocks are presented in alphabetical order, with displacements in
decimal, followed by the hexadecimal counterpart in parentheses. Figure 38 illustrates
control block relationships in the System/360 Operating System. Figure 39 showvs
relationships between storage control elements in a system with MVT.

CVT - Communications Vector Table

+0 Address of TCB control words
Address of entry point of ABTERM
+193(C1) Address of secondary CVT (used

+53(35)

only with Model 65
Multiprocessing systems)

DCB - Data Control Block

+40(28) ddname (before open); offset to
ddname in TIOT (after open)

+45(2D) DEB address

+69(45) IOB address

DEB - Data Extent Block

+1 TCB address
+5 Address of next DEB
+25(19) DCB address

+33(21) UCB address
+38(26) Address of start of extent
+42(22) Address of end of extent

ECB - Event Control Block

RB - Request Block (MVT)

+14
+13(D)
+16(10)
+29(1D)

Last half of user's PSW
CDE address

Resume PSW

Address of previous RB

TIOT - Task Input/Output Table

+0
+8
+24(18)

+0
+4
+16(10)

+20(14)

Job name

Step name

DD entries begin (one variable-
length entry for each DD
statement)

Length of DD entry

ddname

Device entries begin (one U4-pyte
entry for each device)

Next device entry (if there is
one)

(Next DD entry begins at 24(18)
plus length of first DD entry)

TCB - Task Control Block (PCP and MFT)

+1
+9
+13 (D)

Address of most recent RB
Address of most recent DEB
TIOT address

+1 RB address or completion code
——]

