
Systems Reference Library

IBM System/360 Operating System:

System Programmer's Guide

~his publication consists of self-contained
chapters, each of which provides information on
how to modify, extend, or implement capabilities
of the IBE system/360 operating System control
program. It is designed primarily for system
programmers responsible for maintaining,
updating, and extending the operating system
features.

Topics:

Catalog and VTOC Maintenance
Adding SVC Routines
Message Routing Exit Routines
Adding Accounting Routines
IECDSECT, IEFJFCBN. and IEFUCBOB Macro

Instructions
The Must Complete Function of ENQ/DEQ
The EXCP ~acro Instruction
The XDAP Macro Instruction
The Tracing Routine
Implementing Data Set Protection
PRESRES Volume Characteristic List
Residency Options and Link Pack Area
Job Queue Format
System Macro Instructions
Adding System Output Writer Routines
Output separation
System Reader, Initiator, and Writer

Cataloged Procedures
Writing Rollout/Rollin Appendages
Adding a UCS Image to the System Library
The Shared Direct Access Device Option
The ~irne Slicing Facility
Graphic Job Processor Procedures
Satellite Graphic Job Processor Procedures

File No. 5360-20
Order No. GC28-6550-9 OS

Preface

This publication consists of self-contained
chapters, each of which provides
information on how to modify, extend, or
implement capabilities of the IBM
System/360 Operating System control
program. Although the information in one
chapter is sometimes related to information
in another, all chapters have been written
as separate and complete units. It is
assumed that users of this publication are
thoroughly familiar with the design of the
operating system and its features. Each
chapter contains its own introductory
section and list of prerequisite
publications. This organization has been
used to reduce cross-referencing and to
facilitate the addition of new chapters.

Ninth Edition (June, 1971)

This is a major revision of, and obsoletes, GC28-6550-8 and
Technical Newsletter GN28-2437, GN28-2452, and GN28-2456.
Changes to the text and changes to illustrations are
indicated by a vertical line to the left of the change.

This edition applies to release 20.1 of IBM System/360 Operating
system, and to all subsequent releases until otherwise
indicated in new editions or Technical Newsletters. Changes
are continually made to the information herein; before using
this publication in connection with the operation of IBM
systems, consult the latest IBM System/360 SRL Newsletter,
Order No. GN20-0360, for the editions that are current and
applicable.

Requests for copies of IBM publications should be made to
your IBM representative or to the branch office serving your
locality.

A form for readers' comments is provided at the back of
this publication. If the form has been removed, comments may
be addressed to IBM Corporation, Programming Systems
Publications, Department D58, PO Box 390, Poughkeepsie, N. Y.
12602

I © Copyright International Business Machines Corporation 1966,1967,1968,1969,1970 , 1971

SUMMARY OF MAJOR CHANGES
I Release 20.1 (GC28-6550-9)

Release 20 (GC28-6550-8)

MAINTAINING THE CATALOG AND THE VOLUME TABLE OF
How to Read a Block From the Catalog • • ••

Contents

• 11
• 11

12

CONTENTS • • • • • • 15
• 16

-By Specifying the Name of an Index Level or Data set • • • 16
-By Specifying the Name of a Generation Data Set
-By Specifying a Name Using an Alias
-By specifying by TTR • • • • • •

How to Build an Index • •

• • • • • 17
• • • • • 18

. . • . . • • . . 18
• • • • • • • 19

• • • • • • • • • 20 How to Build a Generation Index •
How to Delete an Index • • • • • • 20
How to Assign an Alias •• • • •
How to Delete an Alias •• • • •

Connect Control Volumes
Disconnect Control Volumes •
Catalog a Data Set • • • • •
Remove Data Set References From the Catalog

• • • • • 21
• • • • • 21
• • • • • 21
• • 0 • • 22
• • • • • 23

• 23

How to
How to
How to
How to
How to
How to

Recatalog a Data Set • • • • • •• • • • • • • • • • 24
Read a Data Set Control Block From the Volume Table of

Contents • • • • • • •
How to Delete a Data Set • • • • • • •• • • • •
How to Rename a Data Set • • • • • • • • ••••

How to Share Space on a Volume Initialized Under DOS
Catalog and VTOC Macro Instructions • • • • • • • • • •

Return Codes of Catalog and VTOC Macro Instructions •
Appendix A: Catalog Block Entries • • • • • •

Control Entries • • • • • • • • •
Pointer Entries • • • • • • • • • • '. • • • • • • •
The Volume Control Block Contents • • • • •

Appendix B: Device Code Designations

• • • • • 25
• • • • • 25
• • • • • 27

• • 28
• • • • • 29
• • • • • 30
• • • • • 31

• 31
• • • • • 32
• • • • • 34

• • 35

ADDING SVC ROUTINES TO THE CONTROL PROGRAM • • • • • 37
Wri ting SVC Routines 0 • • • • • • • • • • • • • • • 38

Characteristics of SVC Routines • • • • • • • • • • • • • 38
Programming Conventions for SVC Routines • 38

Inserting SVC Routines Into the Control Program • • . • • • • 43
Specifying SVC Routines • • • •••• • • • • • • 43
Inserting SVC Routines During the System Generation Process • • • 43

MESSAGE ROUTING EXIT ROUTINES • • • •• • •
Characteristics of MCS • • • • • • • •
Writing a WTO/wTOR Exit Routine • • • • •

Programming Conventions for SVC Routines ••••
Messages That Don't Use Routing Codes •

Adding a WTO/wTOR Exit Routine to the Control Program •
Inserting the WTO/WTOR Exit Routine •

HANDLING ACCOUNTING INFORMATION • .
Accounting Routines • • • • • •

Prerequisite Actions • • • •
Accounting Routine Conventions

CSECT Name and Entry Point
Register Saving and Restoring • •

Input Available to Accounting Routines • • • •
Output From Accounting Routines • • • • •
Inserting an Accounting Routine Into the Control Program
Appendix: Accounting Data set Writer • • • • • • • • • • •

· · · · · 45

· · · · · 46

· · · · · 46

· · · · · 47

· · · · · 49

· · · · · 49

· · · · · 49

• • • • • 51
52

• 52
• 52
• 52

• • 52
• 53

• • • • • 55
• 56

• • • • • 58

Contents 3

IECDSECT. IEFJFCBN.. AND IEFUCBOB MACRO INSTRUCTIONS • •
IECDSECT Macro Instruction

IECDSECT Macro Definition • •
IEFUCBOB Macro Instruction

IEFUCBOB Macro Definition • •
IEFJFCBN Macro Instruction •

IEFJFCBN Macro Definition • • • • • •

THE MUST COMPLETE FUNCTION
Requesting the Must Complete Function
Operating Characteristics '. • • • • •
Programming Notes • • • • • • • • • • •
Terminating the Must Complete Function

EXECUTE CHANNEL PROGRAM (EXCP) MACRO INSTRUCTION
Use of EXCP in System and Problem Programs
EXCP Requirements • • • • •

Channel Program • • •• • '.
Control Blocks • • • •

Channel Program Execution • • • • •
Interruption Handling and Error Recovery Procedures •

Appendages •••••• ~ • • • • • ~ • • ~ •
Start Input/Output (SIO) Appendage • • • • • •
Program Controlled Interruption (PCI) Appendage
End-of-Extent Appendage • • • • • • • • • • •
Channel End Appendage. • • • • • • •
Abnormal End Appendage • • '. •

EXCP Programming Specifications • • • • •
Macro Instructions • • '. • • • • • .• .• .•

DCB -- Define Data Control Block for EXCP
OPEN -- Initialize Data Control Block.
EXCP -- Execute Channel Program • • ••
EOV -- End of Volume •••• • • • •
CLOSE -- Restore Data Control Block •

Control Block Fields • • • • •
Input/Output Block Fields • • • • • •
Event Control Block Fields
Data Extent Block Fields

Appendix: RESTORE and PURGE Macro Instruction
RESTORE Macro Instruction • • • • • • • • • • • •
PURGE Macro Instruction • • • '. • • • • •

• 61
• 62
• 62
• 67
• 67
• 70
• 70

• 73
• 74
• 75
• 75
• 76

• 77
• 78

• • • • • 79
• • • • • 79
• • • • • 80

• 81
• • • • • 82

• 83
• • • • • 86

• 86
• • • • • 86

• 87
• 87

• • • • • 89
• • .• • • 89
• • • • • 89
• • • • • 96

• 96
• 97
• 98
• 98
• 98
.100
.101

•• 102
.102

• • ' ••• 103
ATLAS -- Assign an Alternate Track and Copy Data From the Defective
Track • • • • • • • • • • •

ATLAS Macro Instruction • • • •
Use of ATLAS '. •• • • '. • • .•
Operation of the ATLAS program
Return Codes ,. • • •

EXECUTE DIRECT ACCESS PROGRAM (XDAP) MACRO INSTRUCTION
Requirements for Execution of Direct Access Program
XDAP Programming specifications • • '. ,. •

.108

.108

.109

.110

.110

.115
• •••• 116

,.117
The XDAP Control Block • • • • • • •• • • • • .119

Input/Output Block (lOB)
XDAP Options • • • • • • • • . I. .
Appendix: CVT Macro Instruction •• '. .. • .. .• ..

HOW TO USE THE TRACING ROUTINE • III • •

DATA SET PROTECTION • '. •• • • •
DATA SET PROTECTION • • • • • • '. • • • •
Password Data set Characteristics and Record Format
Creating Protected Data Sets • • • • • • • • •
Protection Feature Operating Characteristics

4 System Programmer's Guide (Release 20.1)

• • • • .120
••• 121

• .. .• .. • .124

.125

.129

.130
••• 130

• • • '. .131
.132

Using the PROTECT Macro Instruction to Maintain the Password Data
Set133

Password Data set Characteristics and Record Format When You Use
the PROTECT Macro • • • • • • • • • • • • • •
Programming Conventions for the PROTECT Macro Instruction •

.133

.134

THE PRESRES VOLUME CHARACTERISTICS LIST •
PRESRES Entry Format • • • • •

Operational Characteristics • •

RESIDENT ROUTINES OPTIONS • • •

.139

.140

.141

• • • • .143
Section 1: Nucleus Resident Library Routines (PCP and MFT)
The Resident BLDL Table Option • • • • •

• .146
• • '. • .147

Selecting Entries for the Resident BLDL Table •
Table Size •• . • • • • •
Frequency of Use • • • •

List IEABLDO 0 • • • • •• • • •
Suggested Starter List for MVT

I Suggested Starter List f or Time Sharing
Resident Reenterable Modules Options

The Resident Access Method Modules Option
Considerations for Use • • • • • •

List IEAIGGOO • • • • • • • • • • • • • •

.147
• •••• 147
• •••• 147

.148
• ••• 148

• •••• 148
.149
.149

• •••••• 149
• • • • .151

Resident Link Library Modules Option (MFT)
How to Include the Resident Link Library Option

The Resident SVC Routines Option

.152
in Your System .152

Storage Requirements •••••••••••
List IEARSVO 0 • • • • • • • • • • • • • • • •

The Resident Error Recovery Procedure Option
storage Requirements •••••

Creating Parameter Library Lists
Example • • • • • • • • • • • • • • • • •
Example of the ERP option list • • • •

Section 2: Using the Link Pack Area (MVT)
Procedure for Using the Link Pack Area

List Specification • • • • •
Operational Characteristics • •
Programming Notes • • • • • • •

Example of Link Pack Area Specification •
Section 3: The Link Library List • • • • •

JOB QUEUE FORMAT • • • • • • • • • • • • •
The Resident Job Queue Option (PCP Only)

Operational Characteristics • • • • •
Determining Resident Job Queue Size

MVT Job Queue Formatting • • • • •
Logical Track Size -- JOBQFMT • • • •
Reserving Initiator Queue Records -- JOBQLMT ••••

Number of Generation Data Groups
Number of Passed Data Sets ••• • •
Number of I/O Devices for Passed Data Sets • • • •
Number of Volumes • • • • • • • • •
Number of System Messages • • • • •
Use of Automatic Restart ••• • • • • •

Reserving Write-to-Programmer Queue Records - JOBQWTP
Reserving Queue Records for Cancellation -- JOBQTMT •

Number of Devices • • • • •
Number of Jobs • • • • •

SYSTEM MACRO INSTRUCTIONS
System Macro Instructions in This Publication • •

• • • • • • .153
.153
.154
.154

• •••• 155
.155
.156

• •• 156
.157
.157

• •••• 158
.159
.160
.160
.162

.163

.164
• • • • .164

.164

.166

.167
• .167

.168
• • • • • • .168

.168
• •• 168

.168
• •• 169

• • • • .170
• .171
• .171

.171

• • .173
.174

Locate Device Characteristics (DEVTYPE) Macro Instruction •
Device Characteristics Information

• .175
.175
.177
.178

Output for Each Device Type • • • • •
Exceptional Returns • • • • • • • •

Contents 5

How to Read a Job Fi Ie Control Block • • '. • • • • • • • • • • • 179
OPEN -- Prepare the Data Control Block for Processing (S) ••••• 179
RDJFCB -- Read a Job File Control Block (S) • • • •• • • .180

Programming Notes •••••••••••••••••••••••• 181
CIRE -- Create IRB for Asynchronous Exit Processing ••••• 182
SYNCH -- Synchronous Exits to Processing Program .183

SYNCH Macro Definition • • • • .183
STAE -- specify Task Asynchronous Exit • • • • • • • • • .184

Programming Notes • '.. • • • • • '. • • •• • • • ,.186
Scheduling of STAE and STAI Exit and Retry Routines ••••• 187

ATTACH -- Create a New Task • • • • '. • • '. • • •• '. '. '. .190

I ~~~iB _=- ~p~n. o~ ~1~S,~ :Y:1: I~~E:I~ • • • • • • • • : ,: i~~

WRITING SYSTEM OUTPUT WRITER ROUTINES • • • • •
Output Writer Functions •• • • • • • • •
Conventions to be Followed • • •• • •
General Processing Performed by Standard Output
Appendix: Control Character Transformations

Card Punch Uni t ••••••••••••
Printer Unit • • • •

OUTPUT SEPARATION • • • • •
Functions of the IBM Output Separator •

Punch-Destined Output • • • • • • • • • • •

Writer

Printer-Destined output • • • • • • • • • •
Creating an Output Separator Program • • • • •

Programming Considerations • • • • •
output From the separator Program • • • •• ,.
Using the Block Character Routine •

output Separators -- PCP • • • • • • • • • • • • • • •
Modifying or Adding Output separators •

•• 193
.194
.194

• • • • .196
.200

• • • • .200
• 200

.203

.204

.204

.205

.205

.206

.207

.207

.208

.209

SYSTEM READER, INITIATOR, AND WRITER CATALOGED PROCEDURES • • '. • 211
Reader/Interpreter Procedures. • • • • • • • • • • • • .213

The EXEC Sta tement • • • • • • • • • • • • • • 216
The PARM Field in the EXEC Statement of the Reader/Initiator •• 216
DD Statement for the Input Stream. • • • •••••••• 220
DD Statement for the Procedure Library ••••• 221
DD Statement for the CPP Data Set. • • .221

Reader/Interpreter Procedure Used by Restart ••••• 223
The EXEC Statement • • • • • • • • • • • •••••••• 223
DD Statement for the Input Stream • • • '. .225
DD Statement for the Procedure Library • • • • • • .225
DD Statement for the CPP Data set • • .225

Initiator Procedures • • • • • • • •• __ ~ _ ••••• 226
The EXEC Statement • • • • • • • •• • •••• 226

Additional Initiator Facilities • .227
Mounting Control Volumes in MVT • • •••••••• 227
Initiator Action •• • • '. • • .. .227
DD Statement Formats .228

Dedicated Data Sets (MVT) • '. • • • • • • • • • ,. • .228
How to Dedicate a Data Set .229
How to Get to Use a Dedicated Data Set .230

Procedure INITD • • • • • • • • • • • • •••• 231
The EXEC Statement • '. • • • • • '. • • • 232
DD Statements for the Dedicated Utility Data Sets • • •••• 233
DD Statement for the Loadset Data set • • • • •• • • • '. '. .233

Use of Dedicated Data Sets By Processor Programs for Utility Data
sets •• .234

.234
•• 235

.236

System Library Data Sets as Dedicated Data Sets •
Disposition of Temporary Dedicated Data Sets

Output Writer Procedures • • • • • •
System Output Writer • • • • •

The EXEC Statement • • • •

6 System Programmer's Guide (Release 20.1)

• •••• 236
• •••• 236

DD statement for the OUTPUT Data Set • • • • • • • • • • • • •
Direct SYSOUT Wri ter -- The Synchronous system output vlri ter Job

.237
• 239
.239
.241

The EXEC Statement • • • • •
The DD statement

Optional SYSABEND Data Set
Cataloging the Procedure • • • • •

• .243
.244

Example of the Use of Symbolic Parameters in Cataloged Reader,
Writer and Initiator Procedures • .246

.247

.247
Automatic SYSIN Batching (ASB) ••••

The PROC Statement • • •• • • • •
The EXEC Statement • • • • •

SYSIN and SYSOUT Data Blocking
Blocking the Procedure Library • • • • •

WRITING ROLLOUT/ROLLIN INSTALLATION APPENDAGES
Linkage To User Appendages • • • • •
Appendage I: lEAQAPGl • • • • • • • • •
Appendage II: lEAQAPG2 ••
Appendage III: IEAQAPG3
Appendage IV: lEAQAPG4. • •
Sample Coding of Appendages • •
General Flow of Rollout Processing

••• 248
• •••• 250

• .252

.253

.254

.255

.255

.255

.256

.256

.256

ADDING A UNIVERSAL CHARACTER SET IMAGE OR FORMS CONTROL BUFFER
LMAGE TO THE IMAGE LIBRARY • • • • • • • .259

HOW TO ADD A FORM CONTROL BUFFER LMAGE TO THE IMAGE LIBRARY. .263

THE SHARED DIRECT ACCESS STORAGE DEVICE OPTION
system Configuration • • • •
Devices That Can Be Shared • • • •
Volume/Device Status • • • • •
Volume Handling • • • • • • • • • •
Sharing Application Data Sets • • • • • •
Reserving Devices • • ••• • •

The SMC Parameter of the ENQ Macro Instruction
RESERVE Macro Instruction • • • • • •
The EXTRACT Macro Instruction •

Releasing Devices • • • • • • •
Preventing Interlocks • • • • •
Volume Assignment • •
Program Libraries • • • • • • • • • • •

Appendix • • • • • • •
Providing the Unit Control Block Address to RESERVE •
RES and DEQ Subroutines •

THE TIME SLICING FACILITY •
Prerequisite Actions

System Initialization Time
How to Invoke the Time Slice Facility

Using the Time Slice Facility • • • • • •
Operating Characteristics • • • • . • •
Effect of system Tasks on Time-Slice Groups •

GRAPHIC JOB PROCESSOR PROCEDURES • • • • • • •
Initialization of the Operating System for GJP ••••

The GFX Procedure • • • • • • • • •
The GJP Procedure • • • • • • • • • • • • • • • • • •

• •••• 265
.266
.266

• •••• 268
.268

• •••• 268
.269
.269

• .270
.271
.271
.271
.271
.272

• • • • .273
.273
.275

.277

.278

.279

.279

.280

.281

.281

Cataloging GFX and GJP Procedures • • • • • • • • • •
Cataloging and Allocating Space for Data Sets Used by GJP •

.283

.284

.284

.285

.286

.286
Writing Cataloged Procedures to be Invoked Through the Graphic Job
Processor •
Preparation of User-Written Accounting Routines • • • • • • •
Buffer storage Considerations for 2250 Display Unit, Model 3

.287

.288

.291

Contents 7

SATELLITE GRAPHIC JOB PROCESSOR PROCEDURES ••••••
Writing Cataloged Procedures to be Invoked Through SGJP

Preparation of User-Written Accounting Routines • • '.

• .293
••••• 294

Initialization Requirements for the System/360 Operating System
.295
.297
.298
.299
.300

The GFX Procedure • • • • • • • '. •
The SGJP Procedures • • • • • • • • • • • '. •
The GJP Procedures •• '. • •

Cataloging the Procedures • • • • • • • .• • 302
Cataloging and Allocating Space for Data Sets Used by SGJP .303

INDEX • • • • • • • • • .305

8 System Programmer's Guide (Release 20.1)

Illustrations

Figures

Figure CVl. Catalog and VTOC Macro Instructions •••••••••• 29
Figure CV2. Return Codes of Catalog and VTOC Macro Instructions • • 30
Figure ACT 1. Accounting Information Available to User • 54
Figure 1. Data Control Block Format for EXCP (After OPEN) • 91
Figure 2. Input/Output Block Format ••••••••••••••• 99
Figure 3. Event Control Block After Posting of Completion Code •• 101
Figure ATLAS 1. Error Locations and Return Codes if CCHH is in the
Count Area Field • • • • • • • • • • • • • • • • • • • .112
Figure ATLAS 2. Error Locations and Return Codes if CCHHRKDD is in
the Count Area Field • • • • • • • • • ••••••••• 113
Figure 4. Event Control Block After Posting of Completion Code •• 119
Figure 5. The XDAP Channel Programs •••• • •••• 121
Figure PSWD1. Password Record • • • • • • • • •••• 131
Figure PSWD2. Parameter List for Add Function ••••• 135
Figure PSWD3. Parameter List for Replace Function .136
Figure PSWD4. Parameter List for Delete Function .137
Figure PSWD5. Parameter List for List Function ••••• 138
Figure RRO 1. Resident Routines Options - PCP .145
Figure RRO 2. Resident Routines options - MFT •••••••••• 145
Figure RRO 3. Resident Routines Options - MVT ••••• 145
Figure 6. General Logic of Standard Output Writer ••••• 197
Figure 7. Symbolic Representation of Record Formats .201
Figure 8. Data Blocking Accepted by Processors Under MVT and MFT .251
Figure 9. General Flow of Rollout/Rollin Processing .257
Figure 10. General Shared DASD Environment ••••• .267
Figure 11. Statements in the GFX Cataloged Procedure ••••• 298
Figure 12. Statements in the SGJP Cataloged Procedures .299
Figure 13. Statement in the Cataloged Procedure Used for Each
Telecommunications Line Used With SGJP (Part 1 of 2) •••••• 300

Tables

1. Programming Conventions for SVC Routines • • • • • • • 39
2. Programming Conventions for WTO/wTOR Exit Routine • 47

Table
Table
Table
Table
Table
Table
Table

PASS1. Return Codes from The PROTECT Macro • • • • • • • .138
3. Parameter List Referred to by Register 1 • • • • • • .195
4. Control Character Translation for Punch Unit Output .200
5. Control Character Translation for Printer Unit Output •• 202
6. Operator Conunand Groups • • • • • • • • • • • • • • • • .219

Illustrations 9

Summary of Major Changes

Release 20.1 (GC28-6550-9)

.------------,,------------ ---------------------------------.-------------------------------,
Item

TSO

Description

The PURGE parameter list has a
fourth word that can be used to
purge a list of TCBs.

START command The START command can now be used
to start a problem program.

Chapter Affected

Execute Channel Program

System Reader, Initiator, and Writer
Cataloged Procedures

+--------f------------------------------1--------------------------1

7094 Emulator Change to the ASB procedure for
7094 Emulator

System Reader, Initiator, and Writer
Cataloged Procedures

------------- ---------------------------+-------------------------1
FORTRAN G Change to data blocking for System Reader, Initiator, and Writer

FORTRAN G Cataloged Procedures -1
t-------------r.--- -- - - --------------------------+----------------- ----------

Change to STAE retry routine System Macro Instructions STAE
procedure

~----------1'---------------------- ----- -- ---------------------------4
PROTECT Additional return code for PROTECT Data Set Protection

instruction
~--_+--------------------------4

3211 Printer New device dependent information
for the 3211 Printer

3330 and 2305 New device dependent information
Direct Access for the 3330 and 2305 Direct

Access Devices

IECDSECT, IEFJFCBN, and IEFUCBOB
Macro Instructions

Execute Direct Access Program (XDAP)
Macro Instructions

System Macro Instructions

Writing System Output Writers Routines

Output Separation

System Reader, Initiator, and writer
Cataloged Procedures

Adding a Universal Character Set Image
to the System Library

Maintaining the Catalog and the
Volume Table of Contents

Execute Direct Access Program (XDAP)
Macro Instructions

The Shared Direct Access Storage
Device Option

Summary of Major Changes 11

Release 20 (GC28-6550-8)

r---------------------T--T------------------,
lItem I Description IChapter Affected I
~---------------------+--+------------------1
IPROTECT Macro IA new macro instruction that can be used to IData Set I
I Instruction I maintain the password data set has been added. I Protection. I
~---------------------+--+------------------~
ISTAE Macro ITwO new parameters have been added. I System Macro I
I Instruction I I Instructions. I
~---------------------+--+------------------~
IASCII I The macro definitions for the UCB and JFCB I IECDSECT,IEFJFCBN, I
I Ihave been modified to include ASCII. In land IEFUCBOB Macro I
I laddition, restrictions against using ASCII I Instructions. I
I Idata sets in the reader input stream have beenl I
I I added. I System Reader, I
I I I Initiator, and I
I I IWriter Cataloged I
I I I Procedures. I
~---------------------t--+------------------~
IModels 155/165 INew devices have been added to the device type I System Macro I
I I characteristics description. I Instructions. I
~--------------------+--~---+------------------~
IDedicated Data Sets IAdditional information on the disposition I System Reader, 1
I lof dedicated data sets, by IInitiator, and I
I lallocation/termination, has been added. IWriter Cataloged I
1 I I Procedures. I
~---------------------+--+-----------------~
IDirect System IThe description of the direct system output I System Reader, I
loutput Writer Iwriter procedure has been changed to omit the IInitiator, and I
I Iseparator function. IWriter Cataloged 1
1 I I Procedures. I
~---------------------+--+------------------~
12150 Console IThe 2150 console has been removed from the I System Macro I
I Idevice type characteristics description. I Instructions. I
~---------------------+--+------------------~
ISYS1&MANX and IAddition of SYS1.MANX and SYS1.MANY to list IThe Shared I
ISYS1.MANY lof data sets that cannot be shared. I Direct-Access I
I I IDevice Option. I
~---------------------+--+------------------~
IGSP Routines IAddition of reenterable GSP routines to group IResident Routines I
I lof modules that can be put in the MFT link I Option. I
I I pack area. I I
~---------------------+--+------------------~
ISystem Management IModifications to the MDL= and OPI= I System Management I
IFacilities I parameters. IFacilities. I
~---------------------+--+------------------i
IProcedure INITD IRemoval of ABEND DD statement from INITD ISystem Reader, I
I I procedure. IInitiator, and 1
1 I I Writer Routines. I L _____________________ L __ L __________________ J

12 System Programmer's Guide (Release 20.1)

Maintaining the Catalog and the _
~~

Volume Table of Contents

Adding SVC Routines to the Contro4.
Program

Message Routing Exit Routines---~~.

Handling Accounting InfOrmatiOn--~~.

IECDSECT, IEFJFCBN, and •
IEFUCBOB Macro Instructions ---~~ •

The Must Complete Function ------~~.

Execute Channel Program (EXCP) ~.
Macro Instruction

Execute Direct Access program ____ ~~.. ..
(XDAP) Macro Instruction

How to Use the Tracing Routine---~~.

Implementing Data Set protection--~~.

The PRESRES Volume •
--~~ ..

Characteristics List

Resident Routines Options -----~~.

Job Queue Format-----------~~_

System Macro Instructions -----~~_

Writing System Output Writer _
-~~ .

Routines

Output Separation ---------.. ~~_

System Reader, Initiator, and Write~_
.----------"..- ...

Cataloged Procedures

Writing Rollout/Rollin Installation __ ~~
Appendages

Adding a Universal Character set~_
Image to the System Library

The Shared Direct Access Device __ ~~_.
Option

The Time Slicing Facility ------~~_

Graphic Job Processor procedures~_

Satellite Graphic Job processor ___ ~~.
Procedures

Index --------------.. ~~_

Maintaining the Catalog and the
Volume Table of Contents

This chapter provides detailed information
on how to maintain and modify the catalog
and volume table of contents.

Before reading this chapter, you should
be familiar with the information contained
in the prerequisite publications listed
below.

Documentation of the internal logic of
the routines used to maintain and modify
the catalog and volume table of contents
can be obtained through your IBM Branch
Office.

PREREQUISITE PUBLICATIONS

The IBM system/360 Operating System:
Assembler Language publication (GC28-6514)
contains the information necessary to code
programs in the assembler language.

'I'he IBM System/360 Operating System:
supervisor and Data Management Services
publication (GC28-6646) contains a general
description of the structure of catalog
indexes, as well as a brief discussion of
the volume table of contents (VTOC).

The IBM System/360 Operating System:
system Control Blocks publication
(GC28-6628) contains format and field
descriptions of the system control blocks
referred to in this chapter.

RECOMMENDED PUBLICATIONS

The IBM System/360 Operating System:
Utilities publication (GC28-6586) describes
how to maintain and modify the catalog and
the volume table of contents through the
use of utility programs.

Maintaining the Catalog and the Volume Table of Contents 15

eig

Maintaining the Catalog and the Volume Table of Contents

This chapter describes how to maintain and modify the catalog and the
volume table of contents through the use of macro instruction~ Most of
the maintenance and modification functions can ~ be performed using
utility statements. The utility statements are described in the
publication IBM systern/360 Operating system: utilities.

The functions you can perform using the macro instructions are
described in text, and the formats of the macro instructions are
tabulated on a fold-out sheet (Figure CV1) at the back of this chapter.
The chart on the fold-out sheet associates the function described in
text with the macro instructions needed to perform the function. You
should keep the fold-out sheet open when reading the text.

The functions that are described in text are as follows:

• How to read a block from the catalog.
• How to build an index.
• How to build a generation index.
• How to delete an index.
• How to assign an alias.
• How to delete an alias.
• How to connect control volumes.
• How to disconnect control volumes.
• How to catalog a data set.
• How to remove data set references from the catalog.
• How to recatalog a data set.
• How to read a data set control block from the volume table of

contents.
• How to delete a data set.
• How to rename a data set.

Accompanying the function descriptions in text are coding examples
and programming notes; exceptional-return condition codes for the macro
instructions are tabulated on the back of the fold-out sheet (Figure
CV2).

HOW TO READ A BLOCK FROM THE CATALOG

To read either an index block or a block indicating the volumes on which
a data set is stored (volume-list block), you use the LOCATE and CAMLST
macro instructions. There are two ways to specify the block that you
want read into main storage~ by using the name of the index level or
data set, or by using the block's location relative to the beginning of
the catalog (TTR).

-By specifying the Name of an Index Level or Data set

If you specify an index level name, the first block of the named index
is read into main storage, and an exceptional return code is set. Index
block formats are contained in Appendix A of this chapter.

If you specify a data set name, a 256-byte volume-list block is read
into main storage. The block contains up to 20 volume pointers, each of
which points to a volume on which pa~t of the data set is stored. The
first two bytes of the block contain the number of ,volume pointers., for
the data set. Each ~lume pointer is a 12-byte fi~ld that conta1ns a
4-byte device code, a 6-byte volume serial number, and a 2-byte data set
sequence number. (Device codes are contained in Appendix B of this
chapter.)

16 System Programmer's Guide (Release 20.1)

If the named data set is stored on more than 20 volumes, bytes
253-255 of the block contain the relative track address of the next
block of volume pointers. Byte 255 contains a binary zero.

Example: In the following example, the list of volumes that contain
data set A.B is read into main storage. The search for the volume-list
block starts on the system residence volume.

r---------T----------T---,
I Name I Operation I operand I
~---------+----------+---i
I I LOCATE 1 INDAB READ VOLUME-LIST BLOCK FOR I
I Check Exceptional Returns CATALOGED DATA SET A.B INTOl
1 INDAB I CAMLST I NAME,AB, ,LOCAREA MAIN STORAGE AREA NAMED 1
I AB I DC 1 CL44'A.B· LOCAREA. LOCAREA ALSO I
I LOCAREA I DS I OD CONTAINS 3-BYTE TTR AND I
I I DS I 265C 6-BYTE SERIAL NUMBER I L _________ ~ __________ ~ ___ J

The LOCATE macro instruction points to the CAMLST macro instruction.
NAME, the first operand of CAMLST, specifies that the system is to
search the catalog for a volume-list block by using the name of a data
set. AB, the second operand, specifies the main storage location of a
44-byte area into which you have placed the fully qualified name of a
data set. LOCAREA, the fourth operand, specifies a 265-byte area you
have reserved in main storage.

After execution of these macro instructions, the 265-byte area
contains: the 2.56-~e volume-list block for data set A.B, the 3-brte
relative track-~ess (TTR) of the block following the one read 1n 0

main storage, and the ~;byte serial number of the volume on which the
block was found. -~

If a code of 4 is returned in register 15 indicating that the
required control volume was not mounted, bytes 260-265 of the work area
will contain the volume serial number of this required volume. If
LOCATE finds an old CVOL pointer entry, and the CVOL is not mounted,
binary zeros will be returned in bytes 253-256 of the work area.
However, if a new CVOL pointer entry is found, the four-byte device code
of the CVOL will be returned in those bytes.

-By specifying the Name of a Generation Data Set

You specify the name of a generation data set by using the fully
qualified generation index name and the relative generation number of
the data set. The value of a relative generation number reflects the
position of a data set in a generation data group. The following values
can be used:

• Zero - specifies the latest data set cataloged in a generation data
group.

• Negative number - specifies a data set cataloged before the latest
data set.

• positive number - specifies a data set not yet cataloged in the
generation data group.

When you use zero or a negative number as the relative generation
number, a volume-list block is read into main storage and the relative
generation number is replaced by the absolute generation name.

Maintaining the Catalog and the Volume Table of Contents 17

When you use a positive number as the relative generation number, an
absolute generation name is created and replaces the relative generation
number. A volume-list block is not read, since none exists for these
data sets.

Example: In the following example, the list of volumes that contain
generation data set A.PAY(-3) is read into main storage. The search for
the volume-list block starts on the system residence volume.

r---------T----------T---,
I Name I Operation I Operand I
~--------+----------+---~
I I LOCATE I INDGX READ VOLUME- LIST BLOCK FOR I
I Check Exceptional Returns DATA SET A.PAY(-3) INTO I
I INDGX I CAMLST I NAME, APAY, , LOCAREA MAIN STORAGE AREA NAMED I
I APAY I DC I CL44'A.PAY(-3)' LOCAREA. LOCAREA ALSO CON- I
I LOCAREA I DS I OD TAINS 3-BYTE TTR AND I
I I DS I 26SC 6-BYTE SERIAL NUMBER I L _________ ~ __________ i-__ J

The LOCATE macro instruction points to the CAMLST macro instruction.
NAME, the first operand of CAMLST, specifies that the system is to
search the catalog for a volume-list block by using the name of a data
set. APAY, the second operand, specifies the main storage location of a
44-byte area into which you have placed the name of the generation index
and the relative generation number of a data set in the generation data
group. LOCAREA, the fourth operand, specifies a 26S-byte area you have
reserved in main storage.

After execution of these macro instructions, the 26S-byte area
contains: the 256~byte volume-list block for generation data set A.PAY
(-3), the 3-byte relative track address (TTR) of the block following the
one read into main storage, and the 6-byte serial number of the volume
on which the block was found. In addition, the system will hav~
replaced the relative generation number that you specified in your
44-byte area with the data set's absolute generation name.

-By specifying a Name Using an Alias

For each of the preceding functions, you can specify an alias as the
first name in the qualified name of an index level, data set, or
generation data set. Each function is performed exactly as previously
described, with one exception: the alias name specified is replaced by
the true name.

-By specifying by TTR

You can read any block in the catalog by specifying, in the form TTR,
the identification of the block and its location relative to the
beginning of the catalog. TT is the number of tracks from the beginning
of the catalog" R is the record number of the desired block on the
track. (Formats of each type of catalog block are contained in Appendix
A of this chapter.)

Example: In the following example, the block at the location indicated
by TTR is read into main storage. The specified block is in the catalog
on the system residence volume.

18 System Programmer's Guide (Release 20.1)

r---------T----------T---,
I Name I Operation I Operand I
r---------+----------+---~
I I LOCATE I BLK READ A BLOCK INTO MAIN I
I Check Exceptional Returns STORAGE AREA NAMED LOCAREA I
I BLK I CAMLST I BLOCK, TTR, , LOCAREA I
I TTR I DC I H' 5' RELATIVE TRACK 5 I
I I DC I X' 03' BLOCK 3 ON TRACK I
I LOCAREA I OS I 00 LOCAREA ALSO CONTAINS 3-BYTEI
I I OS I 26SC TTR AND 6-BYTE SERIAL NO. I L _________ i __________ i ___ J

The LOCATE macro instruction points to the CAMLST macro instruction.
BLOCK, the first operand of CAMLST, specifies that the system is to
search the catalog for the block indicated by TTR, the second operand.
LOCAREA, the fourth operand, specifies a 265-byte area you have reserved
in main storage.

After execution of these macro instructions, the 265-byte area
contains: the ~~6-byte index blockL the 3-byte relative track address
(TTR) of the block following the one read into main storage, and the
_6~byte serial number of the volume on which the block was found.

HOW TO BUILD AN INDEX

To build a new index structure and add it to the catalog, you must
create each level of the index separately. You create each level of the
index by using the INDEX and CAMLST macro instructions.

These two macro instructions can also be used to add index levels to
existing index structures.

Example: In the following example, index structure A.B.C is built on
the control volume whose serial number is 000045.

r---------T----------T---,
I Name I Operation I Operand I
~---------+----------+---i

I INDEX I INDEXA BUILD INDEX A I
Check Exceptional RetUrns I

I INDEX I INDEXB BUILD INDEX STRUCTURE A.B I
Check Exceptional Returns I

I INDEX I INDEXC BUILD INDEX STRUCTURE A.B.CI
Check Exceptional Returns I

INDEXA I CAMLST I BLDX, ALEVEL, VOLNUM I
INDEXB I CAMLST I BLDX, BLEVEL, VOLNUM I
INDEXC I CAMLST I BLDX,CLEVEL,VOLNUM I
VOLNUM I DC I CL6'00004S' VOLUME SERIAL NUMBER I
ALEVEL I DC I CL2' A' INDEX STRUCTURE NAMES I
BLEVEL I DC I CL4' A. B ' FOLLOWED BY BLANKS I
CLEVEL I DC I CL6'A.B.C' WHICH DELIMIT FIELDS I L _________ i __________ i ___ J

Each INDEX macro instruction points to an associated CAMLST macro
instruction. BLDX, the first operand of CAMLST, specifies that an index
level be built. The second operand specifies the main storage location
of an area into which you have placed the fully qualified name of an
index level. The third operand specifies the main storage location of
an area into which you have placed the 6-byte serial number of the
volume on which the index level is to be built.

Maintaining the Catalog and the Volume Table of Contents 19

HOW TO BUILD A GENERATION INDEX

You build a generation index by using the INDEX and CAMLST macro
instructions. ' All higher levels of the index must exist. If the higher
levels of the index are not in the catalog. you must build them. How to
build an index has been explained previously. In the following example,
the generation index D is built on the control volume whose serial
number is 00004S. The higher level indexes A.B.C already exist. When
the number of generation data sets in the generation index D exceeds
four, the oldest data set in the group is uncataloged and scratched.

r---------T----------T---,
'Name ,Operation, Operand ,
~---------+----------+---1
, 'INDEX J GENINDX BUILD GENERATION INDEX I
I Check Exceptional Returns I
I GENINDX ,CAMLST ,BLDG,DLEVEL.VOLNUM"DELETE,,4 I
'DLEVEL 'DC , CLS'A.B.C.D' BLANK DELIMITER I
'VOLNUM I DC I CL6'00004S' I L _________ ~ __________ ~ ___ J

The INDEX macro instruction points to the CAMLST macro instruction.
BLDG, the first operand of CAMLST. specifies that a generation index be
built. DLEVEL, the second operand. specifies the main storage location
of an area into which you have placed the fully qualified name of a
generation index. VOLNUM, the third operand, specifies the wain storage
location of an area into which you have placed the 6-byte serial number
of the volume on which the generation index is to be built. DELETE, the
fifth operand, specifies that all data sets dropped from the generation
data group are to be deleted. The final operand, 4, specifies the
number of data sets that are to be maintained in the generation data
group.

HOW TO DELETE AN INDEX

You can delete any number of index levels from an existing index
structure. Each level of the index is deleted separately. You delete
each level of the index by using the INDEX and CAMLST macro
instructions.

If an index level either has an alias" or has other index levels or
data sets cataloged under it, it cannot be deleted.

Example: In the following example, index level C is deleted from index
structure A.B.Ce The search for the index level starts on the system
residence volume.

r---------T----------T---,
I Name I operationJ Operand I
~---------+----------t---~
I I INDEX 'DELETE DELETE INDEX LEVEL C FROM I
I Check Exceptional Returns INDEX STRUCTURE A.B.C I
'DELETE I CAMLST ,DLTX,LEVELC ,
I LEVELC I DC I CL6'A.B.C' ONE BLANK FOR DELIMITER I L _________ ~ __________ ~ ___ J

The INDEX macro instruction points to the CAMLST macro instruction.
DLTX, the first operand of CAMLST, specifies that an index level be
deleted. LEVELC, the second operand, specifies the main storage
location of an area into which you have placed the fully qualified name
of the index structure whose lowest level is to be deleted.

20 system Programmer's Guide (Release 20.1)

HOW TO ASSIGN AN ALIAS

You assign an alias to an index level by using the INDEX and CAMLST
macro instructions. An alias can be assigned only to a high level
index; e.g., index A of index structure A.B.C can have an alias, but
index B cannot. Assigning an alias to a high level index effectively
provides aliases for all data sets cataloged under that index.

Example: In the following example, index level A is assigned an alias
of X. The search for the index level starts on the system residence
volume •

• --------T----------T---,
I Name I Operation I Operand I
~---------+----------+---~
I 'INDEX' ALIAS BUILD AN ALIAS FOR A HIGH,
I Check Exceptional Returns LEVEL INDEX I
I ALIAS I CAMLST ,BLDA,DSNAME, , DSALIAS ,
'DSNAME 'DC , CLS'A' MUST BE S-BYTE FIELDS I
I DSALIAS I DC I CLS IX' , L _________ ~ __________ ~ __ J

The INDEX macro instruction points to the CAMLST macro instruction.
BLDA, the first operand of CAMLST, specifies that an alias be built,.
DSNAME. the second operand, specifies the main storage location of an
S-byte area into which you have placed the name of the high level index
to be assigned an alias. DSALIAS, the fourth operand" specifies the
main storage location of an 8-byte area into which you have placed the
alias to be assigned.

HOW TO DELETE AN ALIAS

You delete an alias previously assigned to a high level index by using
the INDEX and CAMLST macro instructions.

Example: In the following example, alias X, previously assigned as an
alias for index level A, is deleted. The search for the alias starts on
the system residence volume •

• --------T----------T---,
I Name 'Operation' Operand I
~---------+----------+---~
, 'INDEX I DELALIAS DELETE AN ALIAS FOR A I
, Check Exceptional Returns HIGH LEVEL INDEX I
, DELALIAS' CAMLST I DLTA, ALIAS I
I ALIAS I DC , CLS'X' MUST BE S-BYTE FIELD I L _________ ~ __________ i ___ J

The INDEX macro instruction points to the CAMLST macro instruction.
DLTA. the first operand of CAMLST, specifies that an alias be deleted.
ALIAS, the second operand, specifies the main storage location of an
S-byte area into which you have placed the alias to be deleted.

HOW TO CONNECT CONTROL VOLUMES

You connect two control volumes by using the INDEX and CAMLST macro
instructions. If a control volume is to be connected to the system
residence volume. you need supply only the serial number of the volume
to be connected and the name of a high level index associated with the
volume to be connected.

Maintaining the Catalog and the Volume Table of Contents 21

-

If a control volume is to be connected to a control volume other than
the system residence volume, you must supply the serial numbers of both
volumes and the name of a high level index associated with the volume to
be connected.

The result of connecting control volumes is that the volume serial
number of the control volume connected and the name of a high level
index are entered into the volume index of the volume to which it was
connected. This entry is called a control volume pointer. A control
volume pointed to by a control volume cannot, in turn, point to another
control volume.

Example: In the following example, the control volume whose serial
number is 001555 is connected to the control volume numbered 000155.
The name of the high level index is HIGHINDX.

r---------T----------T---,
I Name I Operation I Operand I
~---------+----------t---~
I I INDEX I CONNECT CONNECT TWO CON- 1
I Check Exceptional Returns TROL VOLUMES WHOSE I
I CONNECT I CAMLST I LNKX,INDXNAME,OLDCVOL,NEWCVOL SERIAL NUMBERS ARE 1
1 INDXNAMEI DC 1 CL8'HIGHINDX' 000155 AND 001555.1
I OLDCVOL I DC I CL6'000155' 1
1 NEWCVOL 1 DC 1 X'30002001' 2311 DISK STORAGE 1
I I DC I CL6'001555' I l _________ i __________ i ___ J

The INDEX macro instruction points to the CAMLST macro instruction.
LNKX, the first operand of CAMLST, specifies that control volumes be
connected. INDXNAME, the second operand, specifies the main storage
location of an 8-byte area into which you have placed the name of the
high level index of the volume to be connected. OLDCVOL, the third
operand, specifies the main storage location of a 6-byte area into which
you have placed the serial number of the volume to which you are
connecting. NEWCVOL, the fourth operand, specifies the main storage
location of a 10-byte area into which you have placed the 4-byte binary
device code of the volume to be connected followed by the 6-byte area to
contain the volume serial number of the volume to be connected.

HOW TO DISCONNECT CONTROL VOLUMES

You disconnect two control volumes by using the INDEX and CAMLST macro
instructions. If a control volume is to be disconnected from the system
residence volume, you need supply only the name of the high level index
associated with the volume to be disconnected.

If a control volume is to be disconnected from a control volume other
than the system residence volume, you must supply, in addition to the
name of the high level index, the serial number of the control volume
from which you want to disconnect.

The result of disconnecting control volumes is that the control
volume pointer is removed from the volume index of the volume from which
you are disconnecting.

Example: In the following example, the control volume that contains the
high level index HIGHINDX is disconnected from the system residence
volume.

22 System Programmer's Guide (Release 20.1)

r---------T----------T---,
\ Name \ Operationl Operand 1
~---------+----------t---~
1 \ INDEX 1 DISCNECT DISCONNECT TWO CONTROL VOLUMES I
I Check Exceptional Returns I
I DISCNECTI CAMLST I DRPX,INDXNAME I
\ IN DXNAME\ DC \ CL8 'HIGHINDX' MUST BE 8-BYTE FIELD I L _________ ~ __________ i ___ J

The INDEX macro instruction points to the CAMLST macro instruction.
DRPX, the first operand of CAMLST, specifies that control volumes be
disconnected. INDEXNAME, the second operand, specifies the main storage
location of an 8-byte area into which you have placed the name of the
high level index of the control volume to be disconnected.

HOW TO CATALOG A DATA SET

You catalog a data set by using the CATALOG and CAMLST macro
instructions. All index levels required to catalog the data set must
exist in the catalog, or an exceptional return code is set.

You must build a complete volume list in main storage. This volume
list consists of volume pointers for all volumes on which the data set
is stored. The first two bytes of the list indicate the number of
volume pointers that follow. Each 12-byte volume pointer consists of a
4-byte device code, a 6-byte volume serial number, and a 2-byte data set
sequence number. The sequence number is always zero for direct access
volumes. (Device codes are contained in Appendix B of this chapter.)

Example: In the following example, the data set named A.B.C is
cataloged under an existing index structure A.B. The data set is stored
on two volumes.

r---------T----------T---,
\ Name 1 Operation 1 Operand \
~--------+----------t---~
\ 1 CATALOG 1 ADDABC CATALOG DATA SET A.B.C. THE 1
I Check Exceptional Returns INDEX STRUCTURE A.B. EXISTS I
I ADDABC I CAMLST 1 CAT,DSNAME"VOLUMES I
I DSNAME I DC \ CL6' A • B. C' ONE BLANK FOR DELIMITER 1
I VOLUMES I DC 1 H' 2' TWO VOLUMES I
I \ DC I X'30002001' 2311 DISK STORAGE I
I I DC I CL6 '000014' VOLUME SERIAL NUMBER I
I I DC I H' 0 ' DATA SET SEQUENCE NUMBER I
1 I DC I X'30002001' 2311 DISK STORAGE I
1 1 DC 1 CL6'0000lS' VOLUME SERIAL NUMBER I
1 I DC 1 H' 0' SEQUENCE NUMBER 1 L _________ ~ __________ i-__ J

The CATALOG macro instruction points to the CAMLST macro instruction.
CAT, the first operand of CAMLST, specifies that a data set be
cataloged. DSNAME" the second operand, specifies the main storage
location of an area into which you have placed the fully qualified name
of the data set to be cataloged. VOLUMES, the fourth operand, specifies
the main storage location of the volume list you have built.

HCM TO REMOVE DATA SF!' REFERENCES FROM THE CATALOG

You remove data se~ references from the catalog by using the CATALOG and
CAMLST macro instructions.

Example: In the following example, references to data set A.B.C are
removed from the catalog.

Maintaining the Catalog and the Volume Table of Contents 23

r---------T----------~--,
I Narne I Operation I Operand I
~--------+----------+----------~--------------------------------------~
I I CATALOG I REMOVE I REMOVE REFERENCES TO DATA I
I Check Exceptional Returns SET A.B.C FROM THE CATALOG I
I REMOVE I CAMLST I UNCAT, DSNAME I
I DSNAME I DC I CL6'A.B.C' ONE BLANK FOR DELIMITER I L _________ ~ __________ ~ ___ J

The CATALOG macro instruction points to the CAMLST macro instruction.
UNCAT, the first operand of CAMLST, specifies that references to a data
set be removed from the catalog. DSNAME, the second operand, specifies
the main storage location of an area into which you have placed the
fully qualified name of the data set whose references are to be removed.

HOW TO RECATALOG A DATA SET

You recatalog a cataloged data set by using the CATALOG and CAMLST macro
instructions. Recataloging is usually performed when new volume
pointers must be added to the volume list of a data set.

You must build a complete volume list in main storage. This volume
list consists of volume pointers for all volumes on which the data set
is stored. The first two bytes of the list indicate the number of
volume pointers that follow. Each 12-byte volume pointer consists of a
4-byte device code, a 6-byte volume serial number, and a 2-byte data set
sequence number. The sequence number is always zero for direct access
volumes. (Device codes are contained in Appendix B of this chapter.)

Example: In the following example, the data set named A.B.C is
recataloged. A new volume pointer is added to the volume list, which
previously contained only two volume pointers.

r---------T----------T---,
I N arne I Operation I Opera nd I
~--------+----------+---~ I CATALOG I RECATLG RECATALOG DATA SET A.B.C,

Check Exceptional Returns ADDING A NEW VOLUME

RECATLG
DSNAME
VOLUMES

POINTER TO THE VOLUME
CAMLST RECAT,DSNAME"VOLUMES LIST.
DC CL6'A.B.C' ONE BLANK FOR DELIMITER
DC H ' 3 I THREE VOLUMES
DC X'30002001' 2311 DISK STORAGE
DC CL6'000014' VOLUME SERIAL NUMBER
DC H I 0 ' SEQUENCE NUMBER
DC X'30002001' 2311 DISK STORAGE
DC CL6'OOOOlS' VOLUME SERIAL NUMBER
DC H'O' SEQUENCE NUMBER
DC X' 30002001 ' 2311 DISK STORAGE
DC CL6'000016' VOLUME SERIAL NUMBER
DC H' 0' SEQUENCE NUMBER

---------~----------~---

The CATALOG macro instruction points to the CAMLST macro instruction.
RECAT, the first operand of CAMLST" specifies that a data set be
recataloged. DSNAME, the second operand, specifies the main storage
location of an area into which you have placed the fully qualified name
of the data set to be recataloged. VOLUMES, the fourth operand,
specifies the main storage location of the volume list you have built.

24 system Programmer's Guide (Release 20.1)

HOW TO READ A DATA SET CONTROL BLOCK FROM THE VOLUME TABLE OF CONTENTS
---".'._ ... '.- -

You can read a data set control block (DSCB) into main storage by using
the OBTAIN and CAMLST macro instructions. There are two ways to specify
the DSCB. that you want read: by using the name of the data set
associated with the DSCB, or by using the absolute track address of the
DSCB.

When you specify the name of the data set, a format 1 DSCB is read
into main storage. To read a DSCB other than a format 1 DSCB, you must
specify an absolute track address. (OSCB formats and field descriptions
are contained in the system Control Block publication).

When a data set name is specified, the 96-byte data porticn of the
format 1 OSCB, and the absolute track address of the OSCB are read into
main storage. When the absolute track address of a DSCB is specified,
the 44-byte key portion and the 96-byte data portion of the DSCB are
read into main storage.

Example: In the following example, the format 1 OSCB for data set A.B.C
is read into main storage. The serial number of the volume containing
the OSCB is 770655.

r--------T----------T---,
'Name 'Operation' Operand ,
~---------+----------+---~
, ,OBTAIN, DSCBABC READ DSCB FOR DATA ,
I Check Exceptional Returns SET A.B.C INTO MAIN,
I DSCBABC I CAMLST ,SEARCH,OSABC,VOLNUM,WORKAREA STORAGE AREA NAMED!
! DSABC 'DC I CL44'A.B.C I WORKAREA. 96-BYTE I
'VOLNUM I DC I CL6'770655' DATA PORTION IS I
I WORKAREA' DS ! OD READ.. THE REST OF I
! , DS , 148C THE AREA IS USED BY!
, " THE OBTAIN ROUTINE I L _________ ~ __________ ~ __ J

The OBTAIN macro instruction points to the CAMLST macro instruction.
SEARCH, the, first operand of CAMLST, specifies that a DSCB be read into
main storage. DSABC, the second operand, specifies the main storage
location of a 44-byte area into which you have placed the fully
qualified name of the data set whose associated DSCB is to be read.
VOLNUM, the third operand, specifies the main storage location of a
6-byte area into which you have placed the serial number of the volume
containing the required DSCB. WORKAREA, the fourth operand, s~ecifies
the main storage location of a 148-byte work area that is to contain the
DSCB.

After execution of these macro instructions, the first 96 bytes of
the work area contain the data portion of the format 1 OSCB; the next
five bytes contain the absolute track address of the DSCB.

HOW TO DELETE A DATA SET

You del~e a data set stored on direct access volumes by using the
SCRATCH and CAMLST macro instructions. This causes all data set control
blocks (OSCB) for the data set to be deleted, and all space occupied by
the data set to be made available for reallocation. If the data set to
be deleted is sharing a split cylinder, the space will not be made
available for reallocation until all data sets on the split cylinder are
deleted.

Maintaining the Catalog and the Volume Table of Contents 25

A data set cannot be deleted if the expiration date in the format 1
DSCB has not passed, unless you choose to ignore the expiration date.
You can ignore the expiration date by using the OVRD option in the
CAMLST macro instruction.

If a data set to be deleted is stored on more than one volume, either
a device must be available on which to mount the volumes, or at least
one volume must be mounted. In addition, all other required volumes
must be serially mountable. Certain volumes, such as the system
residence volume, must always be mounted.

When deleting a data set, you must build a complete volume list in
main storage. This volume list consists of volume pointers for all
volumes on which the data set is stored. The first two bytes of the
list indicate the number of volume pointers that follow. Each 12-byte
volume pointer consists of a 4-byte device code, a 6-byte volume serial
number, and a 2-byte data set sequence number. The sequence number is
always zero for direct access volumes. (Device codes are contained in
Appendix B of this chapter.)

Volumes are processed in the order that they appear in the volume
list. Those volumes that are pointed to at the beginning of the list
are processed first. If a volume is not mounted, a message is issued to
the operator requesting him to mount the volume. You can indicate the
I/O device on which unmounted volumes are to be mounted by loading
register 0 with the address of the UCB associated with the device to be
used. When the volume is mounted, processing continues. If you do not
load register 0 with a UCB address, its contents must be zero.

If the operator cannot mount the requested volume, he issues a reply
indicating that he cannot fulfill the request. A condition code is then
set in the last byte of the volume pointer for the unavailable volume,
and the next volume indicated in the volume list is processed or
requested.

Example: In the following example, data set A.B.C is deleted from two
volumes. The expiration date in the format 1 DSCB is ignored.

r---------T----------T---, I Name I Operation I Operand ,
t---------+----------+---~

, SR I 0,0 SET REG 0 TO ZERO'
I SCRATCH I DEIABC DELETE DATA SET ,

Check Exceptional RetUrns A.B.C. FROM TWO I
DELABC I CAMLST J SCRATCH,DSABC" VOLIST, ,OVRD VOLUMES, IGNORING I
DSABC I DC I CL44'A.B.C' THE EXPIRATION I
VOLIST I DC I H'2' DATE IN THE DSCB.I

I DC I X'30002001' 2311 DISK STORAGE I
I DC I CL6'000017' VOLUME SERIAL NO.'
I DC I H' 0 ' SEQUENCE NUMBER I
I DC I X'30002001' 2311 DISK STORAGE I
I DC I CL6'000018' VOLUME SERIAL NO.1
, DC I H' 0 ' SEQUENCE NUMBER , L _________ ~ __________ ~ __ J

The SCRATCH macro instruction points to the CAMLST macro instruction.
SCRATCH, the first operand of CAMLST, specifies that a data set be
deleted. DSABC, the second operand, specifies the main storage location
of a 44-byte area into which you have placed the fully qualified name of
the data set to be deleted. VOLIST, the fourth operand, specifies the
main storage location of the volume list you have built. OVRD, the
sixth operand, specifies that the expiration date be ignored in the DSCB
of the data set to be deleted.

26 System Programmer's Guide (Release 20.1)

'\
/

HOW TO RENAME A DATA SET

you rename a data set stored on direct access volumes by using the
RENAME and CAMLST macro instructions. This causes the data set name in
all format 1 data set control blocks (OSCB) for the data set to be
replaced by the new name that you supply.

If a data set to be renamed is stored on more than one volume, either
a device must be available on which to mount the volumes, or at least
one volume must be mounted. In addition, all other required volumes
must be serially mountable. certain volumes, such as the system
residence volume, must always be mounted.

When renaming a data set, you must build a complete volume list in
main storage. This volume list consists of volume pointers for all
volumes on which the data set is stored. The first two bytes of the
list indicate the number of volume pointers that follow. Each 12-byte
volume pointer consists of a 4-byte device code, a 6-byte volume serial
number, and a 2-byte data set sequence number. The sequence number is
always zero for direct access volumes. (Device codes are contained in
Appendix B of this chapter.)

Volumes are processed in the order they appear in the volume list.
Those volumes that are pointed to at the beginning of the list are
processed first. If a volume is not mounted, a message is issued to the
operator requesting him to mount the volume. You can indicate the I/O
device on which unmounted volumes are to be mounted by loading register
o with the address of the UCB associated with the device to be used.
When the volume is mounted, processing continues. If you do not load
register 0 with a UCB address, its contents must be zero.

If the operator cannot mount the requested volume, he issues a reply
indicating that he cannot fulfill the request. A condition code is then
set in the last byte of the volume pointer for the unavailable volume,
and the next volume indicated in the volume list is processed or
requested.

Example: In the following example, data set A.B.C is renamed C.E.F.
The data set extends across two volumes.
r----~----T----------T---,
1 Name I Operationl Operand I
~---------+----------+---~

1 SR I 0,0 SET REG 0 TO ZEROl
I RENAME I DSABC CHANGE DATA SET I

Check Exceptional Returns NAME A.B.C. TO 1
DSABC 1 CAMLST I RENAME,OLDNAME,NEWNAME,VOLIST D.E.F I
OLDNAME I DC I CL44 I A.B.C ' I
NEW NAME I DC I CL 4 4 I D. E. F I I
VOLIST 1 DC I H' 2' TWO VOLUMES I

I DC I X'30002001' 2311 DISK STORAGEl
1 DC I CL6'000017' VOLUME SERIAL NO.1
I DC I H'O' SEQUENCE NUMBER I
I DC 1 X'30002001' 2311 DISK STORAGEl
I DC I CL6'000018' VOLUME SERIAL NO.1
I DC 1 H'O' SEQUENCE NUMBER 1 L _________ ~ __________ ~ __ J

The RENAME macro instruction points to the CAMLST macro instruction.
RENAME, the first operand of CAMLST, specifies that a data set be
renamed. OLDNAME, the second operand, specifies the main storage
location of a 44-byte area into which you have placed the fully
qualified name of the data set to be renamed. NEWNAME, the third
operand, specifies the main storage location of a 44-byte area into
which you have placed the new name of the data set. VOLIST, the fourth
operand, specifies the main storage location of the volume list you have
built.

Maintaining the Catalog and the Volume Table of Contents 27

-

How to Share Space on a Volume Initialized Under DOS

With the addition to the OS DADSM Allocation program of a routine to
convert a DOS format VTOC to an OS format VTOC, it is now possible to
share the space on such a volume (one initialized under DOS) between
data sets written by users using DOS and users using as. The degree and
limits of sharing are:

• The OS user may now request space in any standard as form of space
allocation, that is: TRK, CYL, average block size, and ABSTR •

• The OS stand-alone utility program IBCRCVRP does not accept
alternate track assignment made under DOS. If the volume has any
alternate tracks assigned under DOS, and additional alternate tracks
must be assigned, the DOS program Assign Alternate Track must be
used to perform that function.

The net effect is that OS and DOS may share a volume, but the data sets
written under each system can only be read under the system under which
they were written.

28 System Programmer's Guide (Release 20.1)

Macro Instructions Required to Maintain and Modify the Catalog and VTOC

Function

Read a block from the
cata log - by name

Read a block from the
catalog - by location

Build an index

Name

[symbol]
[list-name]

[symbol]
[list-name]

[symbol]
[list-name]

Operation

LOCATE
CAMLST

LOCATE
CAMLST

INDEX
CAMLST

Macro-Instructions Re<:ju ired to Perform Function

Operands

list-addrx 1 []
NAME,dsname-relexp6, cvol-rel exp7 ,area-rel exp9

list-addr) []
BLOCK, ttr-rel exp3, cvol-relexr:l ,area-re lexp9

list-addrx
1

[]
BLDX,name-relexp2, cvol-relexp7

Catalog and VTOC Macro Instructions

list-addrx
points to the parameter list (labeled
list-name) set up by the CAMLST macro­
instruction.

name-relexp

10 alias name-relexp
specifies the main storage location of the
name that is to be used as an alias for a
high level index. The area that contains
the name must be eight bytes long. The
name must be defined by a C-type Define
Constant (DC) instruction.

11 new name-relexp

Bui Id a generation
index

[symbol]
[list-name]

INDEX
CAMLST

list-addrx 1 [] [J
BLDG,name-rel exp 2, cvol-relexp7 " DELETE15 , [EMPTy16] , number-absexp17

specifies the main storage location of the
fu lIy qua lified name of a data set or index
leve I. The name cannot exceed 44 char­
acters. If the name is less than 44 char­
acters, it must be followed by a blank.
The name must be defined by a C-type
Define Constant (DC) instruction.

specifies the main storage location of a
fully qualified data set name that is to be
used to rename a data set. The area that
canto ins the name must be 44 bytes long.
The name must be defined by a C-type
Define Constant (DC) instruction.

Assign an a lias

Delete an index

Delete an olios

Connect control
volumes

Disconnect contra I
volumes

Cata log a data set

Remove data set refer­
ences from the co to log

Recatalog a data set

Read a DSCB from the
VTOC - by name

Reod a DSCB from the
VTOC - by location

Delete a dato set

Change the data set
name in a DSCB

[symbol]
[list-nome]

[symbol]
[list-name]

[symbol]
[list-name]

[symbol]
[list-name]

[symbol]
[list-name]

[symbol]
[list-name J

[symbol]
[list-name]

[symbol]
[list-name]

[symbol]
[list-name]

[symbol]
[list-name]

[symbol]
[Ii st-name]

[symbol]
[list-name]

INDEX
CAMLST

INDEX
CAMLST

INDEX
CAMLST

INDEX
CAMLST

INDEX
CAMLST

CATALOG
CAMLST

CATALOG
CAMLST

CATALOG
CAMLST

OBTAIN
CAMLST

OBTAIN
CAMLST

SCRATCH
CAMLST

RENAME
CAMLST

list-addrx' []
BLDA, index nome-relexp5, cvol-relexp7 ,olios name-relexp'0

list-addrx' []
DLTX,name-relexp2, cvol-relexp7 .,
list-addrx [J
DLTA, index name-relexp5, cvol-relexp7

list-addrx' []
LNKX, index nome-rel exp 5, cvol-relexp7 ,new cvol-relexp'2

list-addrx' [J
DRPX, index nome-re lexp 5, cvol-addr/

list-addrx' [J
CAT,name-relexp2, cvol-rclexp7 ,vollist-relexp13

list-addrx' [~
UNCAT, name-re lexp2, cvol-re lexp 7J
list-addrx

1
[]

RECAT,name-rel exp2, cvol-relexp7 ,vollist-relexp13

list-addrx 1

SEARCH,dsname-relexp 6, vol-relexp B, wk area-relexp14

Ii st-addrx '
SEEK, cchhr-relexp 4 , vol-re lexp B ,wk area-re lexp'4

Ii st-addrx
1

[]
SCRATCH,dsname-rel exp6, ,vol list-rel exp13" OVRD'S

list-addrx'
RENAME,dsname-rel exp6,new name-relexp" ,vol list-relexp13

Figure CVl.

ttr-relexp
specifies the main storage location of a
3-byte relative track address (TTR). This
address indicates the position, relative to
the beginning of the catalog data set, of
the track containing the block (TT), and
the block identification on that track (R).

cchhr-relexp
specifies the main storage location of the
5-byte absolute track address (CCHH R) of
a DSCB.

index name-relexp
specifies the main storage location of the
name of a high level index. The area
that contains the name must be eight
bytes long. The name must be defi ned by
a C-type Define Constant (DC) instruction.

dsname-re lexp
specifies the main storage location of a
fully qualified data set name. The area
that contains the name must be 44 bytes
long. The name must be defined by a
C-type Define Constant (DC) instruction.

cvol-relexp
specifies the main storage location of a
6-byte volume serio I number for the
volume to be processed. If this parameter
is not specified, the system residence
va lume is processed.

vol-relexp
specifies the main storage location of the
6-byte serial number of the volume on
which the required DSCB is stored.

area-relexp
specifies the main storage location of a
265-byte work area that you must define.
The work area must begin on a double­
word boundary. The first 256 bytes of the
work area will contain the block that is
read from the cata log, and the last nine
bytes of the work area will contain the
relative track address and block identifi­
cation (in the form TTR) of the block
following the one read into main storage
and the serial number of the volume on
which the b lock was found.

Catalog and VTOC Macro Instructions

12 new .cvol-re lexp
specifies the main storage location of the
6-byte volume serial number of the control
volume that is to be connected to another
control volume.

13 vol list-relexp
specifies the main storage location of an
area that contains a volume list. The area
must begin on a half-word boundary.

14 wk area-relexp

15

specifies the main storage location of a
148 byte work area that you must define.
The work orca must begin on a double­
word boundary.

If a data set name was specified, the first
96 bytes contain the data portion of a
format 1 DSCB, and the next five bytes
contain the absolute track address of the
DSCB.

If on absolute track address was specified,
the first 140 bytes contain the key portion
and data portion of the DSCB.

DELETE
specifies that all data sets dropped from a
generation data group are to be deleted,
i.e. f the space allocated to the data sets
is to made available for reallocation.

16 EMPTY
specifies that references to all data sets in
a generation data group cataloged in the
generation index are to be removed from
the index when the number of entries
specified is exceeded.

17 number-absexp .
specifies the number of dolo sets to be in­
cluded in a generation data group. This
number must be specified, and cannot
exceed 255.

18 OVRD

specifies that the expiration date in the
DSCB shou Id be ignored.

Maintaining the Catalog and the Volume Table of Contents 29

RETURN CODES OF CATALOG AND VTOC MACRO INSTRUCTIONS
EXCEPTIONAL RETURN CONDITION CODES

Control is always returned to the instruction that follows the LOCATE, INDEX, CATALOG, OBTAIN, SCRATCH, or RENAME macro instruction. If the function has
been performed successfully, register 15 contains zeros. Otherwise, register 15 contains a condition code that indicates the reason for the failure. The condition
codes for the macro instruction are as follows:

Code

4

8

12

16

20

24

28

32

LOCATE Macro Instruction

Interpretation

Either the required control volume was not mounted
or the specified volume does not contain a catalog
data set (SYSCTLG). The volume serial number of
the required volume is contained in bytes 260-265
of the work area. *

One of the names of the qualified name was not
found. Register 0 contains the number of the last
valid name in the qualified name. For example,
if the qualified name A.B.C. D were specified, but
name C did not exist at the level specified, register
o wou Id contain the binary cade 2. The work area
contains the first index block of the last valid index
name, the serial number of the volume containing
the index (in bytes 260-265), and the relative
track address (in bytes 257-259) of the next index
block. *

Either an index, an alias, or a control volume
pointer was found when the list of qualified names
was exhausted. *

A data set resides at some level of index other than
the lowest index level spec ifi ed. (Register 0 con­
tains the number of simple names referred to before
the data set was found. For example, if the
qualified name A. B. C. D were specified, and a
data set were found cataloged at A.B.C, register
o would contain the binary code 3.)

A syntax error exists in the name (e.g., nine
characters, a double delimiter, blank nan.e field,
etc.). *

A permanent I/O error was found when processing
the cata log. *

Relative track address (TTR) supplied to LOCATE
is out of the SYSCTL<? data set extents. *

Invalid work area pointer

* If the LOCATE macro instruction fai Is to perform its function
for any of the reasons indicated above, register 0 contains
the number of indexes searched before the fai lure was
encountered.

Code

4

8

12

16

20

OB TAl N Macro Instruction

In terpretat i an

The required volume was not mounted.

The DSCB was not found in the VTOC of the
specified volume.

A permanent I/O error was found when
processing the specified volume.

Invalid workarea pointer.

CCHH not within baundaries of VTOC extent
(Seek mode).

Code

4

8

12

16

20

24

28

Code

4

8

12

16

20

24

28

CATALOG Macro Instruction

Interpretation

Either the required control volume was not mounted,
or the specified volume does not contain a catalog
data set (SYSCTLG).

The existing catalog structure is inconsistent with
the operation performed. (Because the IN DEX
macro instruction uses the search routine af the
LOCATE macro instruction, register 1 contains the
condition code that would be given by the LOCATE
macro instruction, and register 0 contains the number
of the index levels referred to during the search.)

Not used with the CATALOG macro instruction.

The index structure necessary to catalog the data
set does not exist.

Space is not avai lable on the specified control
volume.

An attempt was made to catalog an improperly
named generation data set.

A permanent I/O error was found when processing
the catalog.

I NDEX Macro Instruction

Interpretation

Either the required control volume was nat mounted,
or the specified volum~ does not contain a catalog
data set (SYSCTLG).

The existing catalog structure is inconsistent with
the operation performed. (Because the IN DEX macro
instruction uses the search routine of the LOCATE
macro instruction, register 1 contains the condition
code that wou Id be given by the LOCATE macro
instruction, and register 0 contains the number of
index levels referred to during the search.)

An attempt was made to delete an index or
generation index that has an alias or has indexes
or data sets cataloged under it. The index is
unchanged.

The qualified name specified when building an
index or generation index implies an index
structure that does not exist; the high level
index, specified when connecting control
volumes, does not exist.

Space is not available on the specified control
volume.

Not used with the INDEX macro instruction.

A permanent I/O error was found when processing
the cata log.

Figure CV2. Return Codes of catalog and VTOC Macro Instructions

30 System Programmer's Guide (Release 20.1)

RENAME Macro Instruction

Code Interpretation

4 No volumes containing any part of the data set
were mounted, nor was a UCB address contained
in register O.

8 An unusual condition was encountered on one or
more volumes.

1---------- - - ------ --

After the RENAME macro instruction is executed, the last byte
of each 12-byte volume pointer in the volume list indicates
the following conditions in binary code:

Code Interpretation

o

3

4

5

6

Code

4

8

The DSCB for the data set has been renamed in
the VToe on the volume pointed to.

The VTee of this volume does not contain the
DSCB to be renamed.

A DSCB contoining the new name already
exists in the VTOe of th is volume.

A permanent I/O error was found when
processing this volume.

A device for mounting this volume was
unavailable.

The operator was unable to mount this
volume.

SCRA TCH Macro Instruction

Interpretation

No volumes containing any part of the data set
were mounted, nor was a UCB address contoined
inregisterO.

An unusua I condition was encountered on one or
more volumes.

r------------------

After the SCRATCH macro instruction is executed, the last byte
of each 12-byte volume pointer in the volume list indicates the
following conditions in binary code:

Code

o

3

4

5

Interpretation

The DSCB for the data set has been deleted from
the VTOC on the volume pointed to.

The VTOC of this volume does not contain the
DSCB to be deleted.

The DSCB was not deleted because either the
OVRD option was not specified or the retention
cycle has not expi red.

A permanent I/o error was found when
processing this volume.

A device for mounting this volume was
unavailable.

6 The operator was unable to mount this
volume.

Appendix A: Catalog Block Entries

This section describes the contents of all catalog entries.

Control Entries

A volume index control entry is always the first entry in a volume
index. The volume index control entry is 22 bytes long and contains
eight fields.

Field 1: Name Field (8 bytes) -- contains only a binary one to ensure
that this entry is the first entry in the first block of the index.

Field 2: Last Block Address (3 bytes) -- contains the relative track
address of the last block in the volume index. The address is in the
form TTR.

Field 3: Halfword Count (1 byte) -- contains a binary five to indicate
that five half words follow.

Field 4: Catalog Upper Limit (3 bytes) -- contains the relative track
address of the last block in the catalog data set. The address is in
the form TTR.

Field 5: Zero Field (1 byte) -- contains binary zeros.

Field 6: First Available Block Address (3 bytes) -- contains the
relative track address of the unused block in the catalog that is
closest to the beginning of the catalog data set.

Field 7: Zero Field (1 byte) -- contains binary zeros.

Field 8: Unused Bytes in Last Block (2 bytes) -- contains the binary
count of the number of unused bytes in the last block of the volume
index.

An index control entry is the first entry in all indexes except
volume indexes. The index control entry is 18 bytes long and contains
six fields.

Field 1: Name Field (8 bytes) -- contains only a binary one to ensure
that this entry, because it has the lowest binary name value, is the
first entry in the first block of the index.

Field 2: Last Block Address (3 bytes) -- contains the relative track
address of the last block assigned to the index. The address is in the
form TTR.·

Field 3: Halfword Count (1 byte) -- contains a binary three to indicate
that three half words follow.

Field 4: Index Lower Limit (3 bytes) -- contains the relative track
address of the block in which this entry appears. The address is in the
form TTR.

Field 5: Number of Aliases (1 byte) -- contains the binary count of the
number of aliases assigned to the index. If the index is not a high
level index, this field is zero.

Field 6: Unused Bytes in Last Block (2 bytes) -- contains the binary
count of the number of unused bytes remaining in the last block of the
index.

Maintaining the Catalog and the Volume Table of Contents 31

-

An index link entry is the last entry in all index blocks. The entry
is 12 bytes long and contains three fields.

Field 1: Name Field (8 bytes) -- contains only the hexadecimal number
FF to ensure that this entry, because it has the highest binary name
value, will appear as the last entry in any index block.

Field 2: Link Address (3 bytes) -- contains the relative track address
of the next block of the same index, if there is a next block in the
index. otherwise, the field contains binary zeros.

Field 3: Halfword Count (1 byte) -- contains a binary zero to indicate
that no additional fields follow.

Pointer Entries

An index pointer entry can appear in all indexes except generation
indexes. The entry is 12 bytes long and contains three fields.

Field 1: Name Field (8 bytes) -- contains the name of the index being
pointed to by field 2.

Field 2: Index Address (3 bytes) -- contains the relative track address
of the first block of the index named in field 1. The address is in the
form TTR.

Field 3: Halfword Count (1 byte) -- contains a binary zero to indicate
that no additional fields follow.

A data set pointer entry can appear in any index. It contains the
simple name of a data set and from one to five 12-byte fields that each
identify a volume on which the named data set resides. If the data set
resides on more than five volumes, a volume control block must be used
to point to the volumes. The volume control block is identified by a
volume control block pointer entry, not a data set pointer entry.

The data set pointer entry varies in length. The length is
determined by the formula (14+12m), where m is the number of volumes
containing the data set. The variable m can be from 1 through'S. The
data set pointer entry can appear in any index, and it contains five
fields.

Field 1: Name Field (8 bytes) -- contains the simple name of the data
set whose volumes are identified in field S.

Field 2: Address Field (3 bytes) contains a binary zero.

Field 3: Halfword Count (1 byte) contains the binary count of the
number of half words that follow. The number is found by the formula
(6m+1), where m is the number of volumes on which the data set resides.
The variable m can be from 1 through S.

Field 4: Volume Count (2 bytes) -- contains the binary count of the
number of volumes identified in field S of this entry.

Field 5: Volume Entries (12 to 60 bytes) -- contains
12-byte entries, each of which identifies a volume on
resides. Each entry contains a 4-byte device code, a
serial number., and a 2-byte data set sequence numb~r.
sequence number is zero for direct access volumes.

32 System Programmer" s Guide (Release 20.1)

from one to five
which the data set
6-byte volume
The data set

A volume control block pointer entry can appear in any index. It can
identify up to 20 volumes. The entry is 14 bytes long and contains four
fields.

Field 1: Name Field (8 bytes) -- contains the last name of the
qualified name of the data set identified by this entry. The data set
resides on the volumes whose serial numbers are given in the volume
control block pointed to by field 2.

Field 2: Address Field (3 bytes) -- contains the relative track address
of the volume control block identifying the volumes containing the data
set named in field 1. The address is in the form TTR.

Field 3: Halfword Count (1 byte)
that one half word follows.

contains a binary one to indicate

Field 4: Zero Field (2 bytes) -- contains binary zeros.

A control volume pOinter entry can appear only in volume indexes,. It
is 18 bytes long and contains four fields.

Field 1: Name Field (8 bytes) -- contains a high level index name that
appears in the volume index of the control volume identified in field 4.

Field 2: Address Field (3 bytes)

Field 3: Halfword Count (1 byte)
that three half words follow.

contains binary zeros.

contains a binary three to indicate

Field 4: Control Volume Serial Number (6 bytes) -- contains the serial
number of the control volume whose volume index contains an entry
identifying the high level index name in field 1.

A new control volume pointer entry can appear only in volume indexes.
It is 22 bytes long and contains 5 fields.

Field 1: Name field (8 bytes) contains a high level index name that
appears in the volume index of the control volume identified in fields 4
and 5.

Field 2: Address field (3 bytes) contains binary zeros.

Field 3: Halfword Count (1 byte) contains a binary 5 to indicate that
five halfwords follow.

Field 4: Control Volume Device Code (4 bytes) contains the 4-byte
binary device code of the control volume whose index contains an entry
identifying the high level index name in field 1.

Field 5: Control Volume Serial Number (6 bytes) contains the serial
number of the control volume whose index contains an eritry identifying
the high level index name in field 1.

An alias entry can appear in volume indexes only. An alias entry is
20 bytes long and contains' four fields.

Field 1: Name Field (8 bytes) -- contains the alias of the high level
index identified in field 2.

Field 2: Address Field (3 bytes) -- contains the relative track address
of the first block of the index named in field 4. The address is in the
form TTR.

Maintaining the Catalog and the Volume Table of Contents 33

Field 3: Halfword count (1 byte) -- contains a binary four to indicate
that four half words follow.

Field 4: True Name Field (8 bytes) -- contains the name of the index
whose alias appears in field 1. The address of the index is in field 2.

A generation index pointer entry can appear in all indexes except
generation indexes. The entry is 16 bytes long and contains six fields.

Field 1: Name Field (8 bytes) -- contains the name of the generation
index whose address is contained in field 2.

Field 2: Address Field (3 bytes) -- contains the relative track address
of the generation index named in field 1. The address is in the form
TTR.

Field 3: Halfword count (1 byte) -- contains a binary two to indicate
that two half words follow.

Field 4: Flags (1 byte) -- contains flags that govern the uncataloging
of data sets as specified by the DELETE and EMPTY options of the INDEX
macro instruction. The options and their hexadecimal codes are as
follows:

EMPTY=Ol DELETE=02 EMPTY and DELETE=03

Field 5: Maximum Generations Allowed (1 byte) -- contains the binary
count of the maximum number of generations allowed in the index at one
time as specified in the INDEX macro instruction.

Field 6: Current Generation Count (2 bytes) contains the binary
count of the number of generations cataloged in the index.

The Volume Control Block Contents

A volume control block is composed of one or more volume-list blocks.
Each volume-list block contains an 8-byte key and a 256-byte data
portion. The data portion of the volume-list block can ,identify up to
20 volumes on which a data set is recorded. The format of the volume
list block is as follows:

Field 1: Number of volumes (2 bytes) -- the first volume-list block
contains the binary count of volumes on which the data set is stored;
the value of this field is reduced by 20 for each subsequent volume-list
block. If a data set is on 61 volumes, for example, it has four
volume-list blocks. The first field of each block contains 61,41,21,
and 1, respectively.

Field 2: Volume Identification (12 to 240 bytes) -- contains from 1 to
20 12-byte entries, each of which identifies a volume on which the data
set resides. Each entry contains a 4-byte device code, a 6-byte volume
serial number, and a 2-byte data set sequence number. The data set
sequence number is zero for direct access volumes.

Field 3: Zero Field (10 bytes) -- contains binary zeros.

Field 4: Chain Address (3 bytes) -- contains the relative track address
of the next block of this volume control block, if additional blocks
exist. The address is in the form TTR. If this is the last block of
the volume control block, the field contains a binary zero. If this
field is not zero, this block must contain twenty 12-byte fields
identifying volumes of the data set.

Field 5: Zero Field (1 byte) -- contains binary zeros.

34 System Programmer's Guide (Release 20.1)

\
/

Appendix B: Device Code Designations

Device

IBM 2400 Series Magnetic
Tape Units

IBM 2400 series Magnetic
Tape units

IBM 2400 Series Magnetic
Tape Units

IBM 2400 Series Magnetic
Tape Units

IBM 2400 Series Magnetic
Tape Units

IBM 2311 Disk Storage

IBM 2301 Drum Storage

IBM 2302 Disk Storage

IBM 2303 Drum Storage

IBM 2314 Direct Access
Storage Faci lity

IBM 2321 Data Cell

IBM 2305 Fixed Head
storage Mode I 1

IBM 2305 Fixed Head
storage Model 2

IBM 3330 Disk Storage

Drive

Features

1-track Compatibility

1-track Compatibility
Data Conversion

Phase Encoding

Phase Encoding
with Dual Density

Device Code
Designation
(In Hexadecimal)

30008001

30808001

30C08001

34008001

34208001

30002001

30402002

30002004

30002003

30C02008

30002005

30002006

30002001

30002009

Note: These and other device codes are also enumerated under the
DEVTYPE macro instruction in the chapter: "System Macro Instructions."

Maintaining the Catalog and the Volume Table of Contents 35

-

36 system Programmer's Guide (Release 20.1)

Adding SVC Routines
to the Control Program

This chapter provides detailed information
on how to write an SVC routine and insert
it into the control program portion of the
System/360 Operating System.

Before reading this chapter, you should
be familiar with the information contained
in the prerequisite publications listed
below.

Documentation of the internal logic of
the supervisor and its relationship to the
remainder of the control program can be
obtained through your IBM Branch Office.

PREREQUISITE PUBLICATIONS

The IBM System/360 Operating System:
Assembler Language publication (GC28-6514)
contains the information necessary to code
programs in the assembler language.

The IBM System/360 Operating system:
supervisor and Data Management Macro
Instructions publication (GC28-6647)
describes the system macro instructions
that can be used in programs coded in the
assembler language.

Adding SVC Routines to the Control Program 37

Writing SVC Routines

Because your SVC routine will be a part of the control program, you must
follow the same programming conventions used in SVC routines supplied
with System/360 Operating System.

Four types of SVC routines are supplied with System/360 Operating
system, and the programming conventions for each type differ. The
general characteristics of the four types are described in the following
text, and the programming conventions for all types are shown in tabular
form.

Characteristics of SVC Routines

All SVC routines operate in the supervisor state. You should keep the
following characteristics in mind when deciding what type of SVC routine
to write:

• Location of the routine - Your SVC routine can be either in main
storage at all times as part of the resident control program, or on
a direct access device as part of the SVC library. Type 1 and 2 SVC
routines are part of the resident control program, and types 3 and 4
are in the SVC library.

• Size of the routine - Types 1, 2, and 4 SVC routines are not limited
in size. However, you must divide a type 4 SVC routine into load
modules of 1024 bytes or less. The size of a type 3 SVC routine
must not exceed 1024 bytes.

• Design of the routine - Type 1 SVC routines must be reenterable or
serially reusable; all other types must be reenterable. If you wish
to aid system facilities in recovering from machine malfunctions,
your svc routines should be refreshable.

• Interruption of the routine - When your SVC routine receives
control, the CPU is masked for all maskable interruptions but the
machine check interruption. All type 1 SVC routines must execute in
this masked state. If you want to allow interruptions tc occur
during the execution of a type 2, 3, or 4 SVC routine, you must
change the appropriate masks. If you expect that a type 2, 3, or 4
SVC routine will run for an extended period of time, it is
recommended that you allow interruptions to be processed where
possible.

programming Conventions for SVC Routines

The programming conventions for the four types of SVC routines are
summarized in Table 1. Details about many of the conventions are in the
reference notes that follow the table. The notes are referred to by the
numbers in the last column of the table. If a reference note for a
convention does not pertain to all types of SVC routines, an asterisk
indicates the types to which the note refers. ==:~~'~~u;;:.:;~~

38 System Programmer's Guide (Release 20.1)

Table 1. Programming Conventions for SVC Routines
r--------------------T----------~------T---------T--------T----------,
I I I I I IReference I
I Conventions I Type 1 IType 21 Type 3 IType 4 I Code I
I I I I I I I
~-----------~---------+-----------+_-----t---------+--------t----------i
IPart of resident I Yes I Yes I No I No I I
I control program I I I I I I
~---------------------+----------_+------t---------t--------t----------i
ISize of routine I Any I Any I ~ 1024 lEach I I
I I I I bytes I load I I -I I I I I module I I
I I I I I ~ 1024 I I
I I I I I bytes I I
~---------------------t-----------+------+---------t--------t----------~
IReenterable routine IOptional, I Yes I Yes I Yes I 1 I
I I but must I I I I I
I Ibe seriallyl I I I I
I I reusable I I I I I
~---------------------+-----------+------t---------t--------t----------~
IMay allow inter- I No I Yes I Yes I Yes I 2 I
I ruptions I I I I I I
~--------------------t-----------~------~---------~-------t----------~
IEntry point IMust be the first byte of the routine I I
I lor load module, and must be on a I I
I Idoubleword boundary I I
~---------------------+-------------------------------------t----------i
INumber of routine INumbers assigned to your SVC routines I I
I I should be in descending order from I I
I 1255 through 200 I I
~--------------------t----------~------T---------T--------t----------i
IName of routine IIGCnnn IIGCnnnlIGCOOnnn IIGCssnnnl 3 I
~--------------------_+----------~------~---------~-------t----------i
IRegister contents at IRegisters 3, 4, 5" and 14 contain I 4 I
lentry time I communication pointers; registers 0, I I
I 11, and 15 are parameter registers I I
~---------------------t-----------T------T---------T--------t----------~
IMay contain reloca- I Yes I Yes I No* I No* I 5 I
Itable data I I I I I I
~---------------------+----------_+------t---------t--------t----------i
ICan supervisor re- I Not I Yes* I Yes* I Yes* I 6 I
Iquest block (SVRB) bel applicable I I I I I
I extended I I I I I I
~--------------------+-----------+------+---------+--------t----------~
IMay issue WAIT macro I No I Yes* I Yes* I Yes* I 7 I
I instruction I I I I I I
~--------------------t-----------+------t---------t--------t----------f
IMay issue XCTL macro I No'1 No I No I Yes* I 8 I
I instruction I I I I I I
~--------------------+-----------t------+---------+--------t----------i
I May pass control to I None I Any I Any I Any I I
Iwhat other types of I I I I I I
ISVC routines I I I I I I
t---------------------+-----------+------~---------~--------t----------i
IType of linkage with I Not I Issue supervisor call I I
lother SVC routines lapplicable I (SVC) instruction I I
~---------------------+----------~-------------------------t----------i
IExit from SVC Routine I Branch using return register 14 I I
~--------------------t----------~-------------------------t----------~
IMethod of abnormal IUse resi- IUse ABEND I 9 I
I termination Ident abnor-lmacro instruction or I I
I I rna 1 t ermi - I res ident abnormal I I
I Ination rou-Itermination routine I I
I Itine I I I L _____________________ ~ __________ ~ _________________________ ~ __________ J

Adding SVC Routines to the Control Program 39

Reference SVC Routine
Code Types Reference Notes

1 all If your SVC routine is to be reenterable, you
cannot use macro instructions whose ex~ansions
store information into an inline parameter list.

2 all You should write SVC routines so that program
interruptions cannot occur. If a program
interruption does occur during execution of an
SVC routine, the routine loses control and the
task that called the routine terminates.

3 all

4 all

If a program interruption occurs and you are
modifying a serially reusable SVC routine, a
system queue, control blocks, etc., the
modification will never complete; the next time
the partially modified code is used, the results
will be unpredictable.

You must use the following conventions when
naming SVC routines:

• Types 1 and 2 must be named IGCnnn; nnn is
the decimal number of the SVC routine. You
must specify this name in an ENTRY, CSECT, or
START instruction.

• Type 3 must be named IGCOOnnn; nnn is the
signed decimal number of the SVC routine.
This name must be the name of a member of a
partitioned data set.

• Type 4 must be narned IGCssnnn; nnn is the
signed decimal number of the SVC routine, ahd
ss is the number of the load module minus
one, e.g., ss is 01 for the second load
module of the routine. This name must be the
name of a member of a partitioned data set.

Before your SVC routine receives control, the
contents of all registers are saved. For type 4
routines, this applies only to the first load
module of the routine.

In general, the location of the register save
area is unknown to the routine that is called.
When your SVC routine receives control, the
status of the registers is as follows:

• Register 0 and 1 contain the same information
as when the SVC routine was called.

• Register 2 contains unpredictable
information.

• Register 3 contains the starting address of
the communication vector table.

• Register 4 contains the address of the task
control block (TCB) of the task that called
the SVC routine.

40 System Programmer's Guide (Release 20.1)

Reference
Code

5

6

7

8

SVC Routine
Types

3,,4

2,3,4

2,3,4

4

Reference Notes

• Register 5 contains the address of the
supervisor request block (SVRB>, if a type 2,
3, or 4 SVC routine is in control. If a type
1 SVC routine is in control" register 5
contains the address of the last active
request block.

• Register 6 through 12 contain unpredictable
information.

• Register 13 contains the same information as
when the SVC routine was called.

• Register 14 contains the return address.

• Register 15 contains the same information as
when the SVC routine was called;.

You must use registers 0, 1, and 15 if you want
to pass information to the calling program. The
contents of registers 2 through 14 are restored
when control is returned to the calling program.

Because relocatable address constants are not
relocated when a type 3 or 4 SVC routine is
loaded into main storage, you cannot use them in
coding these routines; nor can you use macro
instructions whose expansions contain relocatable
address constants. Types 1 and 2 are not
affected by this restriction since they are part
of the resident control program.

You can extend the SVRB, in 8-byte increments,
from 96 bytes up to 144 bytes. The extended area
is available as a work area during execution of
your routine only if you specify the extension
during the system generation process. When your
SVC routine receives control, register 5 contains
the address of the SVRB to which the extended
save area is appended.

You cannot issue the WAIT macro instruction
unless you have changed the system mask to allow
I/O and external interruptions. If you have
allowed these interruptions, you can issue WAIT
macro instructions that await either single or
multiple events. The event control block (ECB>
for single-event waits or the ECB list and BCEs
for multiple-event waits must be in dynamic main
storage.

When you issue an XCTL macro instruction in a
routine under control of a type 4 SVRB, the new
load module is brought into a transient area.

The contents of registers 2 through 13 are
unchanged when control is passed to the load
module; register 15 contains the entry point of
the called load module.

Adding SVC Routines to the Control Program 41

•

Reference
Code

9

SVC Routine
Types Reference Notes

all Type 1 SVC routines must use the resident
abnormal termination routine to terminate any
task. The entry point to the abnormal
termination routine is in the communication
vector table (CVT). The symbolic naroe of the
entry point isCVTBTERM.

Type 2, 3, and 4 SVC routines must u£e the ABEND
macro instruction to terminate the current task,
and must use the resident abnormal termination
routine to terminate a task other than the
current task.

Before the resident abnormal termination routine
is entered, the CPU must be masked for all
maskable interruptions but the machine check
interruption, and registers 0, 1, and 14 must
contain the following:

• Register 0 contains the address of the TCB of
the task to be terminated.

• Register 1 contains the following
information:

Bit 0 is a 1 if you want a dump taken.

Bit 1 is a 1 if you want to terreinate a job
step.

Bits 2-7 are zero.

Bits 8-19 contain the error code.

Bits 20-31 are zero.

• Register 14 contains the return address. The
resident abnormal termination routine exits
by branching to the address contained in
register 14.

The contents of register 15 are destroyed by the
abnormal termination routine.

42 System Programmer's Guide (Release 20.1)

Inserting SVC Routines Into the Control Program

You insert SVC routines into the control program during the system
generation process.

Before your SVC routine can be inserted into the control program, the
routine must be a member of a cataloged partitioned data set. You must
name this data set SYS1.name.

The following text gives a description of the information you must
supply during the system generation process. You will find a
description of the macro instructions required during the system
generation process in the publication IBM system/360 operating System:
system Generation, GC28-6554.

specifying SVC Routines

You use the SVCTABLE macro instruction to specify the SVC number, the
type of SVC routine, and, for type 2, 3, or 4 routines, the number of
double words in the extended save area.

Inserting SVC Routines During the System Generation Process

To insert a type 1 or 2 SVC routine into the resident control program,
you use the RESMODS macro instruction. You must specify the name of the
partitioned data set and the names of the members to be inserted into
the control program. Each member can contain more than one SVC routine.

To insert a type 3 or 4 SVC routine into the SVC library, you use the
SVCLIB macro instruction. You must specify the name of the partitioned
data set and the names of members to be incll; jed in the SVC library.
The member names must conform to the conventions for naming type 3 and 4
routines, i.e., IGCOOnnn and IGCssnnn.

Adding SVC Routines to the Control Program 43

-

44 System Programmer's Guide (Release 20.1)

Message Routing Exit Routines

This chapter provides detailed information
on how to write user exit routines that
modify the routing and descriptor codes of
WTO or WTOR messages for any MVT or MFl'
operating system that has the Multiple
Console support Option (MCS). Information
is provided on inserting this exit routine
into the resident portion of the control
program. In addition" a description of the
characteristics and configuration of MCS is
supplied.

Documentation of the internal logic of
the supervisor and its relationship to the
remainder of the control program can be
obtained through your IBM Branch Office.

PREREQUISITE PUBLICATIONS

The publication IBM System/360 Operating
System: Assembler Language, (GC28-6514)
contains the information necessary to code
programs in the assembler language.

The publications IBM system/360
Operating System: supervisor and Data
Management Macro Instructions, (GC28-6647)
describe the WTO and WTOR macro
instructions, including the routing codes
and the descriptor codes used for message
routing, presentation, and deletion.

The publication IBM System/360 Operating
System: System Generation" (GC28-6554)
provides information on how to generate an
operating system with the MCS option.

The publication IBM System/360 Operating
System: supervisor and Data Management
Services, (GC28-6646) provides information
on writing to the operator and to the hard
copy log.

The publication IBM System/360 Operating
System: Messages and COdes., (GC28-6631)
provides the'standard routing and
descriptor codes for all OS/360 messages.

Message Routing Exit Routines 45

-

Characteristics of MCS
Multiple Console Support (MCS) is an option of the IBM System/360
Operating System that routes messages to different functional areas
according to the type of information that the message contains. In MCS,
a functional area is defined as one or more operator's consoles that are
doing the same type of work. (Some examples of functional areas are:
(1) the tape pool area, (2) the disk pool area, and (3) the unit record
pool area.) Each WTO and WTOR macro instruction is assigned one or more
routing codes which are used to determine the destination of the
message. There are sixteen routing codes that can be used. When the
message is ready to be routed, the routing codes assigned to the message
are compared to the routing codes assigned to each console. If any of
the routing codes match, the message is sent to that console. (For
descriptions and definitions of the routing codes, see IBM system/360
Operating System: supervisor and Data Management Macro Instructions,
GC28-6647.)

If the standard routing codes provided on application and system
messages do not cover special situations at your installation, the
routing codes used on the message can be modified by coding a user exit
routine. The exit routine receives control prior to the routing of
messages so that you can examine the message text and modify the
message's routing and descriptor codes. The system will use your
modified routing codes to route the message. Descriptor codes provide a
mechanism for message presentation and deletion and are explained later
in this chapter.

Automatic console switching occurs when permanent hardware errors are
detected. Command initiated console switching is provided to permit
restructuring of the system console configuration and the hard copy log
by system operators. Consoles can be moved into or out of functional
areas at any time during system operation.

A hard copy log option is provided to record messages, operator and
system commands, and operator and system responses to commands. The
hard copy log may be a console device or it may be the system log
(SYSLOG). The number and type of messages recorded on the log is also
optional. Your installation may wish to record a selected group of
messages, or it may wish to record all messages. If commands are
recorded, the system automatically records command responses.

Writing a WTO/WTOR Exit Routine

You write a WTO/WTOR Exit Routine to modify the standard routing codes
and descriptor codes. This routine will be part of the control program.
If a message's routing code field is used by the operating system to
route the message, your routine. will receive control prior to the
routing of the message. When your routine receives control, register 1
contains a pointer to the first word of the message text. The message
text field is 128 bytes long; followed by a four-byte routing code field
and a four-byte descriptor code field. Your exit routine may examine
but not modify the message text.

A message will be sent to only those locations specified in the
modified routing codes. All messages with modified routing codes are
sent to the bard copy log when the log is included in the operating
system. When the log is not included, the exit routine rrust not
suppress messages that contain a routing code of 1, 2, 3, 4, 7, 8, or 10
since messages with these codes are necessary for system maintenance.
Message suppression is turning off all routing codes of a message,
causing the message to be discarded. WTO messages can be su~~ressed.
If a WTOR message is suppressed, it will be sent to the master console
by the operating system.

46 System Programmer's Guide (Release 20.1)

PROGRAMMING CONVENTIONS FOR SVC ROUTINES

The programming conventions for the WTO/WTOR exit routine are summarized
in Table 2. Details about many of the conventions are in the reference
notes that follow that table. The notes are referred to by the numbers
in the last column of the table.

Table 2. Programming Conventions for WTO/WTOR Exit Routine
r--------------------T---------------------------------------T---------,
I I I Referencel
I Conventions I Requirements I Code I
~--------------------+---------------------------------------t---------i
IPart of. resident IYes I I
I control program I I I
~--------------------+_--------------------------------------t---------i
I siz e of routine I Any si ze I I
r--------------------+---------------------------------------+---------~
IReenterable routine I Optional., but must be serially reusable I 1 I
~--------------------+---------------------------------------t---------i
IMay allow interrup- IYes I 2 I
Itions I I I
~--------------------+---------------------------------------t---------i
I Name of routine I Must be IEECVXIT I I
r--------------------+---------------------------------------+----------~
IDisposition of IRegisters must be saved at entry I I
Igeneral registers land restored prior to returning I I
r--------------------+---------------------------------------+---------~
IFormat of text IProvided through the DSECT IEECUCM I 3 I

~~~-~~~::----------_+_--------------------------------------t---------~ 
IMay issue WAIT, INO I I 
I XCTL, WTO or WTOR I I I 
Imacro instructions I I I 
~--------------------+---------------------------------------t---------i 
IMethod of abnormal I None I 4 I 
I termination I 1 I 
~--------------------+---------------------------------------t---------i 
IExit from routine lRETURN macro instruction I I L ____________________ ~ ______________________________________ ~ _________ J 

Message Routing Exit Routines 47 

• 



Reference 
Code 

1 

2 

3 

Reference Notes 

If your exit routine is to be reenterable, you cannot use 
macro instructions whose expansions store information into 
an inline parameter list. 

You should write your exit routine so that program 
interruptions cannot occur. If a program interruption 
occurs during execution of the exit routine, the routine 
loses control and the communications Task is terminated. 

DSECT IEECUCM provides the format of the message text, 
routing codes and descriptor codes. The pointer in 
register 1 points to the first word of the message text, 
UCMMSTXT. The format is: 

r--------------------------------------------------------, 
IUCMMS~XT Message Text (128 Characters- I 
I padded with blanks) I 
t--------------------------------------------------------~ 
IUCMROUTC I 
I Routing codes (4 bytes) I 
t--------------------------------------------------------~ 
IUCMDESCD I 
I Descriptor codes (4 bytes) I l ________________________________________________________ J 

DSECT IEECUCM is contained in SYS1.MODGEN 

System messages have a message code as the first seven 
characters of the message text. This code may be examined 
to aid in identifying system messages, but it must not be 
modified. 

The UCMROUTC field contains the routing codes. A bit 
setting of "1" indicates that the WTO or WTOR was assigned 
that particular routing code. Bit assignments and their 
meanings are: 

Assignment Meaning 

Byte 0 
Bit 0 Routing code 1 Master Console 
Bit 1 Routing code 2 Master Console Informational 
Bit 2 Routing code 3 Tape Pool 
Bit 3 Routing code 4 Direct Access Pool 
Bit 4 Routing code 5 Tape Library 
Bit 5 Routing code 6 Disk Library 
Bit 6 Routing code 7 Unit Record Pool 
Bit 7 Routing code 8 Teleprocessing Control 

Byte 1 
Bit 0 Routing code 9 system Security 
Bit 1 routing code 10 system Error/Maintenance 
Bit 2 Routing code 11 Programmer Information 
Bit 3 Routing code 12 Emulator Program (under OS) 
Bit 4 Routing code 13 Available for Customer Usage 
Bit 5 Routing code 14 Available for CUstomer Usage 
Bit 6 Routing code 15 Available for Customer Usage 
Bit 7 Routing code 16 Reserved 

Byte 2 Reserved 

Byte 3 Reserved 

48 system Programmer's Guide (Release 20.1) 



'\ 
/ 

Reference 
Code 

3 
(Cont' d) 

4 

Reference Notes 

The UCMDESCD field contains the descriptor codes. A bit 
setting of "1" indicates that the WTO or WTOR was assigned 
that particular descriptor code. Bit assignments and 
their meanings are: 

Bit Assignment Meaning 
Byte 0 
Bit 0 Descriptor code 1 System Failure 
Bit 1 Descriptor code 2 Immediate Action Required 
Bit 2 Descriptor code 3 Eventual Action Required 
Bit 3 Descriptor code 4 System Status 
Bit 4 Descriptor code 5 Immediate Command Response 
Bit 5 Descriptor code 6 Job Status 
Bit 6 Descriptor code 7 Application Program/Processor 
Bit 7 Descriptor code 8 OUt-of-line Message 

Byte 1 Descriptor codes Reserved 
9 through 16 

Byte 2 Reserved 

Byte 3 Reserved 

The exit routine is part of the Communications Task. 
Abnormal termination of the exit routine causes the 
operating system to terminate abnormally (code of F03). 

Messages That Don't Use Routing Codes 

There are certain messages that the exit routine does not see. These 
are messages that have the MSGTYP operand in the WTO or WTOR macro 
instruction coded with the JOBNAMES, STATUS, or Y parameter, and 
messages that are being returned to the requesting console., i. e., a 
response to a DISPLAY A command. Routing of these messages is on 
criteria other than the routing codes, therefore, the system bypasses 
the exit routine. 

Adding a WTO/WTOR Exit Routine to the Control Program 

A system generation option is available to enable you to include a 
resident, user-written exit routine into the communications task. 

The CONOPTS operand of the SCHEDULR system generation macro 
instruction controls the inclusion of the exit routine. A description 
of SCHEDULR is found in the publication IBM system/360 Operating system: 
System Generation, GC28-6554. 

Task supervision must be performed for the exit routine when the 
routine is requested at system generation. This supervision is 
performed every time a message is routed by its routing codes, even if 
the exit routine is not present. To maintain optimum throughput, the 
exit routine should not be specified at system generation unless it will 
be used. 

Inserting the WTO/WTOR Exit Routine 

To enter your exit routine into the control program before system 
generation., use the Linkage Editor to replace the dummy WTO/WTOR exit 
routine IEECVCTE in SYSl.CI505 with your WTO/wTOR exit routine. 

To enter your exit routine into the control program after system 
generation, use ~he Linkage Editor to replace the dummy WTO/WTOR exit 
routine IEECVCTE in the SYS1.NUCLEUS with your WTO/WTOR exit routine. 

Message Routing Exit Routines 49 

• 



50 System Programmer's Guide (Release 20.1) 



/ 

Handling Accounting Information 

You may add accounting facilities to PCP" 
MFT. and MVT configurations of the 
operating system. This chapter describes 
the input available to an accounting 
routine; the characteristics and 
requirements of an IBM-supplied data set 
writer that may be used to log accounting 
information generated by an accounting 
routine; and how to insert an accounting 
routine into the control program. 
conventions to be followed in preparing an 
accounting routine are also noted. 

REFERENCE PUBLICATIONS 

The IBM system/360 Operating System: 
Operator's Guide publication (GC28-6540) 
describes the procedure used to update 
'system data sets (used when inserting your 
accounting routine into the control program 
in MFT and MVT configurations). 

The IBM System/360 Operating system: 
Job Management program logic manuals" 
GY28-6613 and GY28-6660~ discuss the 
control program component in which your 
accounting routines are inserted. 

~IBM documents with Y prefix order numbers 
are restricted in distribution and must be 
obtained with the approval of local IBM 
management. 

Handling Accounting Information 51 

fill 



Accounting Routines 

Your installation may prepare accounting routines for insertion in PCP, 
MFT, or MVT configurations of the operating system. These routines are 
inserted in the control program during, or after, system generation. 
There are differences, between configurations" in the accounting routine 
attributes, the time(s) at which an accounting routine is entered, and 
the information and facilities available to an accounting routine. 
These differences are noted in the text. 

PREREQUISITE ACTIONS 

At system generation you must specify that an accounting routine is to 
be supplied. This is done through the ACCTRTN;parameter of the system 
generation SCHEDULR macro instruction. The system generation 
specification must be made for PCP, MFr, and MVT configurations of the 
operating system. 

This specification causes the linkage to your accounting routine to 
be installed in the scheduler component of the system being generated, 
and makes usable the accountingidata set writer routine. If you are not 
going to install your accounting routine until after the system is 
generated, a dummy accounting routine (named IEFACTRT) is also placed in 
the system at this time. Insertion of accounting routines in the 
control program is discussed later 'in this chapter. 

Add the size of the IEFACTRT routine to your estimate of the minimum 
amount of storage required to initiate a job; for MFT and MVT, this 
storage requirement should be specified in the MINPART parameter of the 
system generation SCHEDULR macro instruction. 

Accounting Routine Conventions 

Format 

Your accounting routine may consist of one or more control sections. 

ATTRIBUTES 

An accounting routine written for insertion in PCP or MFT configurations 
of the operating system must be serially reusable. 

An accounting routine written for insertion in an MVT configuration 
of the operating system must be reenterable. 

CSECT NAME AND ENTRY POINT 

The control section containing the entry point of your accounting 
routine, and the entry point, must be named IEFACTRT. 

REGISTER SAVING AND RESTORING 

The content of registers 0 through 14 must be saved upon entry to your 
accounting routine and restored prior to exiting. 

52 system Progranuner's Guide (Release 20.1) 

\ 



\ 
I 

ENTRANCES 

Control is given to your accounting routine at the following times: 

PCP, MFT, MVT Configurations 
step initiation 
step termination 
Job termination 

EXIT 

You can use the RETURN macro instruction to restore the contents of the 
general registers and return control to the operating system.. 

Input Available to Accounting Routines 
The information available to an accounting routine varies slightly 
between PCP, MFT and MVT configurations of the operating system. These 
differences are noted in the following diagram. 

Register 0 contains an entrance code, indicating at what time the 
accounting routine is being given control. 

Register 0 = 8: 
= 12: 
= 16: 

step initiation 
step termination 
Job termination 

Register 1 contains the starting address of a list of pointers to 
items of accounting information. Each pointer is on a full word 
boundary. The sequence of pointers in the list and the items of 
information provided are described in the following diagram. 

User accounting routines should only use pointers that are in the list 
addressed by register 1. other pointers are subject to change in 
subsequent releases. 

Handling Accounting Information 53 

• 



Byte 

1

0 

I Job Nome Po;,,", lrl_J-ob-N-am-e-a-By-t-e-s-' 

Step Name 
Pointer 

Step Name a Bytes 

The step name pointer is zero at job termi­
nation. 

Byte 

Programmer 
Name Pointer 

Programmer 
Name 20 Bytes 

Job Running 
Time Poi nter 

Pointer + 3 

Job Running Time 
3 Bytes (MVT, MFT) 

Entry Count 1 Byte 

A right justified binary number represents 
job running time in hundredths (O.Ol) of a 
second. 

If a programmer deferred restart occurs, the 
time used during the original execution is 
omitted from the job time passed to a user 
routine. 

The entry count byte contains the number of 
job accounting entries picked up from the 
JOB statement. Commas used to denote 
omitted entries are counted. 

1 16 1 Job Accounting 
Data Fields Pointer 

Byte 

or ~ 

Step Running 
Time Pointer 

Pointer + 3 

00 I A byte of zeros indicates that the JOB statement 
did not contain accounting information. 

I i I Byte I Byte Byte 
I Data I Data I Datan 00 

Count Count I 
... Count n 

I I ! 
These data fields contain the accounting information that was specified in the JOB statement. The first byte of each 
field contains the number of bytes of data that follow. The last data field is followed by a byte of zeros. 

A data field - consisting only of the first, or count byte, is developed for an omitted accounting entry. The byte 
contains zeros, indicating that no data is present for that field. In this case: 

When (a, b" d) appears in the JOB statement 

Byte I Byte i Byte I 
I Data I Dat% 00 I Datad 00 

Count a Countb I Countd I a 
I I I 

Note: Use the entry-count byte (job running time pointer + 3) to determine if you have processed all the accounting 
data fields. 

Step Running Time 
3 Bytes (MVT, MFT) 

Entry Count 1 Byte 

The step running time pointer is zero at job termination. 

The step running time is not on a full word boundary. A binary numer, right justified, 
represents step running time in hundredths (0.01) of a second. 

If an automatic restart occurs, the system gives control to a user routine prior to restarting; step 
time passed is the time used by the step. Upon successfu I completion of a step that was 
automatically restarted, the step time possed to a user routine does not include the time used 
by the step during its original execution. If a programmer deferred restart occurs, the time 
used during the original execution is not included in the step time passed to a user routine. 

Number of step accounting entries picked up from the EXEC statement. Commas used to denote 
omitted entries are counted. 

Byte 

24 Step Accounting 
Data Fields Pointer 

This pointer is zero 
at job termination 

"Flags" and Step 
Number Pointer 

The step accounting data 
fie Ids conform to the same 
specifications as the job 
accounting data fields. 

Pointer + 1 

"Flags" Byte 

Step Number Byte 

Setting bit 7 of this byte to 1 effects job 
cance Ilation. 

This byte contains the number of the job 
step currently being processed. The first 
step in the job is 1. 

Note: You can use the flag byte to cancel the execution of a E whose accounting information does not conform to your installation's 
standards. You can equate step initiation for the first step in a job to job initiation, i.e., the step number byte contains 1. 

Figure ACT 1. Accounting Information Available to User 

54 System Programmer's Guide (Release 20.1) 



Output From Accounting Routines 

You can write output in three ways: by issuing console messages; by 
using the standard system output; by using an IBM-supplied accounting 
data set writer. 

1. Console messages -- You can use Write to Operator (WTO) or Write to 
Operator with Reply (WTOR) macro instructions. 

2. System output -- You must assemble the following calling sequence 
into your routine. The contents of register 12 must be the same as 
when your accounting routine was entered, and register 13 must 
contain the address of an area of 32 fullwords. 

When writing an accounting routine for inclusion in the job 
scheduler, you must be aware that register saving conventions 
within the control program are different from those for problem 
programs. In the job scheduler, registers are saved in the 
sequence 0-14 in a 15-word save area. There is no place provided 
to save register 13. You must provide some other means of saving 
register 13; you may either save it in another register or provide 
additional save area that is not known to the control program. 
This can be dope by adding a word to the end of the save area that 
is provided and is addressed as SAVE + 60. 

r---------T----------T-------------------------------------------------, I Name I Operation I Operand I 
~--------+---~------+-------------------------------------------------~ 
I I MVC I 36 (4,12) ,MSGADDR MOVE MESSAGE ADDRESS AND I 
I I MVC 1 42(2.,12),MSGLEN LENGTH TO SYSTEM TABLE I 
I I L I REG15, VCONYS BRANCH AND LINK TO MESSAGE I 
I I BALR I REG14,REG15 ROUTINE I 
I I I I 
I I I I 
I MSGADDR I DC I A(MSG) I 
I MSG I DC I C' text of message I I 
I MSGLEN I DC I H'two character length of message' I 
I VCONYS I DC I V(IEFYS) I L ________ -'--________ .L ________________________________________________ .-

3. Accounting Data Set Writer -- This writer places accounting records 
you have constructed in your accounting routine in a data set named 
SYS1.ACCT. The data set must reside on a permanently resident 
direct access device. You must provide, in your accounting 
routine, linkage to the writer, and pass the beginning address of 
the record to be written, to it. 

Appendix A of this chapter discusses the use of the data set 
writer. 

Sample Accounting Routine 

A sample accounting routine, showing use of the data set writer. output 
to system output, and issuance of console messages, is stored under the 
member name SAMACTRT in the SYS1.SAMPLIB data set furnished with the 
starter operating system. 

Handling Accounting Information 55 

-



Inserting an Accounting Routine Into the Control Program 

Your accounting routine can be inserted in the control program in two 
ways; by placing the routine on the SYS1.CI505 data set used in system 
generation or by placing the routine in the appropriate load module of 
the control program after system generation. The effect of either 
action is to replace a dummy accounting routine with your accounting 
routine. 

Insertion at system Generation 

To insert your accounting routine into the control program during system 
generation., you must" prior to the start of the system generation 
process, place your routine in the SYS1.CI505 data set, using the 
linkage editor. The SYS1.CI505 data set (furnished with the starter 
operating system) contains load modules which are combined during the 
system generation process to form the load modules composing the control 
program. In response to the specification made in the system generation 
SCHEDULR macro instruction, your accounting routine is incorporated in 
the appropriate load modules for the system being generated. 

You must place your accounting routine in the SYS1.CISOS data set 
under the name IEFACTRT. You will be replacing the dummy accounting 
routine -- also named IEFACTRT. 

Insertion After System Generation 

To insert your accounting routine into the control program after system 
generation you place the routine in load modules of the scheduler 
component of the generated control program, using the linkage editor. 
The scheduler load modules are in the linkage library (SYS1.LINKLIB data 
set) of the generated system. The affected load modules of the three 
PCP schedulers (18K, 44K, lOOK), the MFT schedulers (30R., 44K). and the 
MVT scheduler are as followsi 

PCP configurations 

18K Scheduler 

load module IEFSELCT 
load module IEFSTERM 
load module IEFJTRM1 

44K Scheduler 

load module IEFSTERM 
load module IEFJTERM 

lOOK Scheduler 

step initiation 
step termination 
job termination 

step initiation/termination 
job termination 

load module GO -- step initiation/termination and job termination 

MFT Configurations 

30K Scheduler 

load module IEFSD520 
load module IEFSD515 

44K Scheduler 

step initiation 
step/job termination 

load module IEFW21SD -- step initiation 
load module IEFSDS15 -- step/job termination 

56 System Programmer's Guide (Release 20.1) 



MVT Configuration 

MVT scheduler 

load module IEFSD061 
load module IEFW21SD 

step and job termination 
step initiation 

An example of the input for a linkage editor run to insert your 
accounting routine into any of the job schedulers follows: 

//jobname 
//stepname 
//SYSPRINT 
//SYSUTl 
//SYSLMOD 
//SYSLIN 

JOB 
EXEC 
DO 
DO 
DO 
DD 

(object code) 

INCLUDE 
ALIAS 
ENTRY 
NAME 

(parameters) 
PGM=IEWL, (parameters) 
SYSOUT=A 
UNIT=SYSDA,SPACE=(parameters) 
OSNAME=SYS1.LINKLIB,DISP=OLD 

* 

SYSLMOD(load module name) 
alias names 
entry point name 
load module name(R) 

This sequence must be 
repeated for each 
scheduler load module 
into which you wish 
to insert accounting 
routines. 

In this example "load module name" represents the appropriate 
scheduler load module as identified in the preceding text. To ensure 
accuracy in identifying the correct alias names and entry point names 
for the load modules, obtain these names from the system generation 
listing produced during generation of the system you are working with. 
These names are specified in the system generation Stage II linkage 
editor output for the linkage editor execution that produced the load 
module. 

Handling Accounting Information 51 

-



Appe;ndix: Accounting Data Set Writer 

The accounting data set writer (module IEFWAD) is inserted in the 
appropriate scheduler load modules during system generation when 
accounting routine inclusion is specified in the SCHEDULR macro 
instruction. These are the same modules in which your accounting 
routine is inserted. Scheduler storage requirements are increased by 
the amount of storage needed by your accounting routine plus 2600 bytes. 
The writer places accounting records developed by your routine in a data 
set named SYS1.ACCT. 

Linkage 

Your accounting routine links to the writer via the following mechanism: 

VCON 

Input 

L 
BALR 

DC 

R15,VCON 
14,15 

V (IEFWAD) 

Your accounting routine passes in register 1 the address of the 
accounting record to be written. 

The record format is: 

DS 3H 
DC H' 

DC 

space used by the data set writer 
contains the number of bytes of data being passed. 
This number cannot exceed the capacity of 1 track on 
the direct access volume being written on. 
the data to be written in SYS1.ACCT. 

Registers 13, 14, and 15 are used as specified by operating system 
conventions (14 and 15 are used f or linkage or as above; 13 must point to 
an 18-word save area). 

specifying the SYS1.ACCT Data set 

The SYS1.ACCT data set must be pre-allocated on a direct access volume 
that will be permanently resident. The data set must be named 
SYS1.ACCT, have no secondary extents, and be allocated contiguous space. 
Do not catalog the data set. 

If your installation has two permanently resident volumes available 
for accounting routine use, you may create two SYS1.ACCT data sets and 
utilize the console messages and replies or the SET command (PCP only) 
to notify the system as to which data set is to be written to. 

58 System Programmer's Guide (Release 20.1) 



output 

If the IEFWAD routine successfully writes your record in the SYS1.ACCT 
data set, the routine returns control to your accounting routine 
immediately. If the routine fails to write your record, it uses message 
IEF507D to bring the error condition to the attention of the operator. 
(See the publication Messages and Codes, (GC28-6631) for the text of, 
and answers to the message.) Depending upon his answer, the routine may 
try again to write your record in the SYS1.ACCT data set. 

In any case a code is returned to your routine indicating either that 
the record was written successfully., or, if it was not written 
successfully, the cause of the failure. The return codes are described 
in the following table. 

r--------T----T------------------------------------------------~-------, 
I Contents I Typel Meaning I 
~--------~----~--------------------------------------------------------1 
I Register 15 I 
~--------T----T--------------------------------------------------------~ 
I 0 I D IThe record was written to the data set. I 
~-------+----+-7------------------------------------------------------1 
I 4 I D IThe record was not written to the data set because the I 
I I Irecord exceeds the length of one track. I 
~--------+----+--------------------------------------------------------1 
I 8 I D IThe record was not written to the data set because there I 
I I lis no more space in the data set. I 
~-------+----+--------------------------------------------------------1 
I 12 I D IThe record was not written to the data set because no I 
I I I space had been allocated to the data set. I 
~--------+----+--------------------------------------------------------1 
I 16 I D IThe record was not written to the data set because a I 
I I Ipermanent I/O error was encountered while trying to I 
I I Iwrite it. I 
~--------+----+--------------------------------------------------------~ 
I 20 I D IThe record was not written to the data set because the I 
I I Ipreviously last record could not be found. I 
~--------+----+--------------------------------------------------------~ 
I 24 I D 10perator gave invalid device address. I 
~--------~----~----------------------~---------------------------------1 
I Register 0 I 
~--------T----T-----------------------------------·---------------------~ I niB INumber of tracks still available in the data set. I 
I I I (Valid only if register 15 is zero.) I 
~--------~----~--------------------------------------------------------i 
IType - Type of number: D - Decimal, B - Binary I L ______________________________________________________________________ J 

Use of ENQ/DEQ 

IEFWAD enqueues on the major Q name SYSIEFAR and the minor Q name WD. 

Specifying the Device on Which SYS1.ACCT Resides 

The parameter [,ACCT=([unitname] [,N])] has been added as an option to 
the SET command (PCP only). In this parameter: 

unit name 

N 

Device on which SYS1.ACCT resides; if this parameter is omitted the 
system residence volume is assumed. 

Specifies that the lowest extent of SYS1.ACCT may be used; if this 
parameter is omitted writing will be attempted from the last record 
written .. 

Handling Accounting Information 59 

• 



60 System Programmer's Guide (Release 20.1) 



,/ 

IECDSECT, IEFcJFCBN, and 
IEFUCBOB Macro Instruction 

If you want to use the IECDSECT, IEFJFCBN, 
and IEFUCBOB macro instructions, you must 
either add these macro definitions to the 
macro library (SYS1.MACLIB) or place them 
in a separate partitioned data set and 
concatenate this data set to the macro 
library. 

This chapter contains the following: 

• The format of the macro instructions. 

• The job control and utility statements 
needed to add the macro instructions to 
the library. 

• The macro definition to be added to the 
library. 

The information previously contained in 
this chapter on label handling routines may 
be found in the publication IBM System/360 
Operating System: Tape Labels, GC28-6680. 

IECDSECT, IEFJFCBN, and IEFUCBOB Macro Instructions 61 

• 



IECDSECT Macro Instruction 
This macro instruction defines the symbolic names of all fields in the 
work area used by the OPEN, CLOSE, TCLOSE, and EOV routines. Code this 
macro instruction with blank name and operand fields, and precede it 
with a DSECT statement. Note: The IEFJFCBN macro instructicn is used 
in the assembly of IECDSECT. The macro definition for IEFJFCBN must be 
present in the macro-library (SYS1.MACLIB) for successful definition of 
all fields in the work area. 

r------T-----------T---------------------------------------------------, 
I Name I Operation I Operand I 
~-----+-----------+---------------------------------------------------~ 
I I IECDSECT I I L ______ ~ __________ ~ ___________________________________________________ J 

Control statements Required 

r------~---------------------------------------------------------------, 
I //jobname JOB {parameters} 
I / /stepname EXEC PGM=IEBUPDTE,PARM=NEW 

//SYSPRINT DD SYSOUT=A 
//SYSUT2 DD DSNAME=SYS1.MACLIB,DISP=OLD 
//SYSIN DD DATA 
./ ADD NAME=IECDSECT,LIST=ALL 

IECDSECT Macro Definition 

./ ENDUP 
/* 

IECDSECT Macro Definition 

* 
* 
* 

* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 

MACRO 
IECDSECT 
SPACE 1 

SPACE 1 

SPACE 1 

THIS MACRO IS USED TO DEFINE THE WORK AREA 
FOR ALL MODULES OF OPEN,CLOSE,TCLOSE 
AND END OF VOLUME FOR O/S 360 

THIS MACRO DEFINES A WORK AREA WITH THE 
FOLLOWING FORMAT 

1.LABELS AND DSCB 
LABELS 

DSCB 

VOLUME LABEL 
FILE LABEL 1 
FILE LABEL 2 

FORMAT 1 
FORMAT 3 KEY 
FORMAT 3 DATA 
CORE ADDRESS OF NEXT DSCB 

* MESSAGE AREA •••••••••••••••• 100 BYTES 
* 2 .JFCB. • •• • • • • • • • • • •• • ••.• • • • .•• • •• 176 BYTES 
* 3. ECB ••••••••••••••••• '. • • • • • • • • • • •• 4 BYTES 
* 4. lOB •••••••••••••••••••.•••••••••• 40 BYTES 

62 System Programmer's Guide (Release 20.1) 



* 
* 
* 

* 
* *** 
* *** 
* .. ** 
* *** 

* 
DXLBL 
VOLLABI 
VOLNO 
VOLSERNO 
VOLSEC 

VOLVTOC 

VOLOWNER 

* 

FL1LABI 
FL1NO 
FL1ID 
FL1FILSR 
FL1VOLSQ 
FL1FILSQ 
FL1GNO 
FL1VNG 
FL1CREDT 
FL1EXPDT 
FL1FSEC 
FL1BLKCT 
FL1SYSCD 
FL1RES 

FL1RESl 

* 

FL2RECFM 
FL2BLKL 
FL2LRECL 
FL2DEN 
FL2FILP 
FL2JSID 
FL2JOBD 
FL2JSSP 
FL2STEPD 
FL2TRTCH 
FL2CNTRL 

FL2BLKA 
FL2RES 

SPACE 1 

SPACE 2 

SPACE 1 

SPACE 
DS 
OS 
DS 
DS 
DS 
DS 
OS 
DS 
OS 
DS 
DS 
DS 
SPACE 

SPACE 
ORG 
DS 
OS 
DS 
DS 
DS 
DS 
DS 
DS 
OS 
DS 
DC 
DS 
DS 
OS 
DS 
DS 
SPACE 

SPACE 
ORG 
DS 
DS 
DS 
DS 
DS 
DS 
DS 
DC 
DS 
DS 
DS 
DS 
DS 
OS 
SPACE 

1 
OCL80 
CL3 
CLl 
CL6 
CLl 
OCL10 
CL5 
CL5 
CLiO 
CL10 
CL10 
CL29 
1 

1 
DXLBL 
CL3 
CLl 
CLl? 
CL6 
CL4 
CL4 
CL4 
CL2 
CL6 
CL6 
ClOt 

CL6 
CL13 
OCL? 
CLl 
CL6 
1 

1 
FL1ID 
CLl 
CL5 
CL5 
CLl 
CLl 
OCL1? 
CL8 
C'/' 
CL8 
CL2 
CLl 
CLl 
CLl 
CL4l 
1 

5.DEB ••••••••••••••••••••••••••••• 44 BYTES 
6.DCB •••••••••••••••••••••••••••••• 4 BYTES 
7.CCW S ••••••••••••••••••••••••••• 96 BYTES 

TOTAL *** 464 BYTES 

VOLUME LABEL 

LABEL IDENTIFIER 
VOLUME LABEL NUMBER 

RESERVED 
RESERVED 

RESERVED 

OWNER NAME AND ADDRESS CODE 
RESERVED 

FILE LABEL 1 

LABEL IDENTIFIER 
FILE LABEL NUMBER 
FILE IDENTIFIER 
FILE SERIAL NUMBER 
VOLUME SEQUENCE NUMBER 
FILE SEQUENCE NUMBER 
GENERATION NUMBER 
VERSION NUMBER OF GENERATION 
CREATION DATE 
EXPIRATION DATE 
FILE SECURITY INDICATOR 
BLOCK COUNI' 
SYSTEM CODE 
RESERVED FOR FUTURE USE 

FILE LABEL 2 

RECORD FORMAT 
BLOCK LENGTH 
BLOCKING FACTOR/RECORD LENGTH 
DENSITY 
FILE POSITION 
JOB/STEP IDENTIFICATION 
JOB IDENTIFICATION 
SLASH 
STEP IDENTIFICATION 
TAPE RECORDING TECHNIQUE 
CARRIAGE CONTROL CHARACTER 
RESERVED FOR FUTURE USE 
BLOCK ATTRIBUTE 
RESERVED FOR FUTURE USE 

IECCSECT, IEFJFCBN, and IEFUCBOB Macro Instructions 63 

-



* 

DXDSCB 
DSCFMTID 
DSCFILSR 
DSCVOLSR 
DSCCREDT 
DSCEXPDT 
DSCNOEXT 
DSCBLDBL 

DSCSYSCD 

DSCFILTY 
DSCRECFM 
DSCOPTCD 
DSCBLKL 
DSCLRECL 
DSCKEYL 
DSCRKP 
DSCDSIND 
DSCSCALO 
DSCLSTAR 
DSCTRBAL 
DSCEXTYP 
DSCEXTSQ 
DSCLOWLM 
DSCUPPLM 
DSCEXTl 
DSCEXT2 
DSCNEXT 
DSCCORE 
DSCBEND 

* 

DXDSCB3K 
DSCBF3C 
DSCBEXSK 
DSCBEXTY 
DSCBEXSQ 
DSCBLLMT 
DSCBULMT 
DSCBEX2 
DSCBEX3 
DSCBEX4 

* 

DSCBFMID 
DSCBEXSD 
DSCBEXS 
DSCBEX6 
DSCBEX7 
DSCBEX8 
DSCBEX9 
DSCBEXA 
DSCBEXB 
DSCBEXC 
DSCBEXD 
DSCBNEXT 

SPACE 
ORG 
OS 
DC 
OS 
OS 
OS 
OS 
OS 
OS 
OS 
OS 
DS 
OS 
OS 
DS 
DS 
DS 
OS 
OS 
DS 
OS 
DS 
OS 
OS 
DS 
OS 
DS 
OS 
DS 
OS 
DS 

1 
DXLBL 
OCL96 
C'l' 
CL6 
CL2 
CL3 
CL3 
CLl 
CLl 
CLl 
CL13 
CL7 
CL2 
CLl 
CLl 
CL2 
CL2 
CLl 
CL2 
CLl 
CL4 
CLS 
CL2 
CLl 
CLl 
CL4 
CL4 
CLiO 
CLiO 
CLS 
CL4 

DATA SET CONTROL BLOCK 

FILE SERIAL NUMBER 

CREATION DATE IN DISCONTINUOUS BIN 
EXPIRATION DATE IN DISCONTINUOUS BIN 

SYSTEM CODE 

FILE TYPE 
RECORD FORMAT 
OPTION CODE 
BLOCK LENGTH 
RECORD LENGTH 
KEY LENGTH 
KEY LOCATION 

EXTENT TYPE INDICATOR 
EXTENT SEQUENCE NUMBER 

POINTER TO NEXT RECORD 
CORE ADDRESS OF NEXT DSCB RECORD 

* EQU 
SPACE 1 

SPACE 
ORG 
OS 
DC 
DS 
DS 
DS 
DS 
OS 
OS 
OS 
OS 
SPACE 

DATA SET CONTROL BLOCK -FORMAT 3- KEY PORTION 
1 
DXDSCB 
OCL40 
X'03030303' 
OCL40 
CLl 
CLl 
CL4 
CL4 
CLiO 
CLiO 
CLl0 
1 

EXTENT TYPE INDICATOR 
EXTENT SEQUENCE NUMBER 
CCHH LOWER LIMIT 
CCHH UPPER LIMIT 
ADDITIONAL EXTENT 
ADDITIONAL EXTENT 
ADDITIONAL EXTENT 

DATA SET CONTROL BLOCK -FORMAT 3- RECORD PORTION 
SPACE 1 
ORG 
DC 
DS 
OS 
DS 
OS 
DS 
OS 
DS 
OS 
DS 
DS 
OS 
SPACE 

DXDSCB 
C'3' 
OCL90 
CLiO 
CL10 
CLl0 
CL10 
CLl0 
CLiO 
CLl0 
CLiO 
CLiO 
CLS 
1 

FORMAT ID 
ADDITIONAL EXTENTS 
ADDITIONAL EXTENT 
ADDITIONAL EXTENT 
ADDITIONAL EXTENT 
ADDITIONAL EXTENT 
ADDITIONAL EXTENT 
ADDITIONAL EXTENT 
ADDITIONAL EXTENT 
ADDITIONAL EXTENT 
ADDITIONAL EXTENT 
CCHHR OF NEXT FORMAT 3 DSCB 

64 System Programmer's Guide (Release 20.1) 



* 

REPLYLTH 
REPLYADR 
REPLYECB 
MSGLSTSZ 
MCSFLAGS 
MESSAGEA 
DESCODE 
ROUTCODE 
REPLY 

* 
* 
* MSERL 
MINSTL 
MUNL 
MVOLL 
* MTXTL 
* MSGLTH 

* MSGIOSUP 
MSGSER 

MSGSERLO 

MSGINSTR 

MSGACTN 

MSGUN 

MSGVOLSR 

I MSGTEXT 

* 

DXJBF 

* 
DXECB 

* 
DXIOB 
IOBFLAGl 
IOBFLAG2 
IOBSENSE 
IOBSENSO 
IOBSENSl 
IOBECBPT 

IOBCSW 
IOBCOMAD 
I OBSTAT 0 
IOBSTATl 
IOBCNT 
IOBSIOCC 

SPACE 
ORG 
DS 
OS 
DS 
OS 
OS 
OS 
DS 
OS 
DS 

1 
DXDSCB 
CLl 
CL3 
CL4 
CL2 
CL2 
CL68 
CL2 
CL2 
CL12 

MESSAGE AREA 

MSG LE.NGTH 
FLAG FIELD FOR MCS 
MESSAGE AREA 
DESCRIPTOR CODE FOR MCS 
ROUTING CODE FOR MCS 
REPLY AREA 

ORG MESSAGEA 

EQU 
EQU 
EQU 
EQU 

DC 
DS 
ORG 
DS 
ORG 
DC 
ORG 
DS 
DC 
DC 
DC 
DC 
DC 
DS 
SPACE 

DEFINITION OF LENGTH OF MESSAGE COMPONENTS 
3 MESSAGE SERIAL NUMBER LENGTH 
6 MSG INSTRUCTION LTH INC MSG SER 
3 MESSAGE UNIT NAME LENGTH 
6 MESSAGE VOLUME SERIAL LENGTH 
LENGTH MAY BE DEFINED BY EACH MODULE TO FIT REQUIREMENT 
LENGTH OF FULL MSG DEFINED BY EACH MODULE 
MESSAGE FORMAT IS 'IECOOOA M 000,00000 (TEXT) 
CL3'IEC' I/O SUPPORT MESSAGE IDENTITY 
OCL3 V£SSAGE SERIAL NUMBER 
MSGS ER+ MS ERL-l 
CLl VOLUME SERIAL LO ORDER BYTE 
MSGSER 
CL6'OOOA M' MESSAGE INSTRUCTION INCL MSGSER 
MSGINSTR+MINSTL-l 
CLl MESSAGE ACTION REQD BY OPERATOR 
C' • 
CL3'000' 
C' , , 
CL6'000000' 
C' , • 
OCL38 
1 

UNIT NAME THAT MSG REFERS TO 

VOLUME SERIAL THAT MSG REFERS TO 

JOB FILE CONTROL BLOCK 
SPACE 1 
ORG DSCBEND 
OS OCL176 
IEFJFCBN 
SPACE 1 

EVENT CONTROL BLOCK 
SPACE 1 
DS OCL4 
DC X'OOOOOOOO' 
SPACE 1 

INPUT/OUTPUT BLOCK 
SPACE 
DS 
DC 
DC 
DS 
OS 
OS 
OS 
DC 
OS 
DC 
DC 
DC 
DC 
DS 

1 
OCL32 
X'OO' 
X'OO' 
OH 
CLl 
CLl 
XLl 
AL3 (DXECB) 
OD 
X'OOOOOOOO' 
X'OO' 
X'OO' 
X'OOOO' 
XLi 

SENSE BYTE 1 

KEY,OOOO,COMMAND ADDRESS 
STATUS BYTE 0 
STATUS BYTE 1 
COUNT 

IECDSECT, IEFJFCBN, and IEFUCBOB Macro Instructions 65 



IOBSTART DC AL3(DXCCW) 
IOBWGHT OS XLi 
IOBDCBPT DC AL3(DXDCB) 

OS XL1 
DS XL3 

IOBINCAN DC X'OOOO' 
IOBERRCT DS XL2 
DXDAADDR OS D DIRECT ACCESS ADDRESS (MBBCCHHR) 

SPACE 1 

* DATA EXTENT BLOCK 
SPACE 1 

DYYYY OS OCL44 
DXDEB EQU DYYYY-4 
DXDEBDEB DC X'OOOOOOOO' 
DXDEBOFL DS OCL1 
DXDEBIRB DC X'OOOOOOOO' 
DXDEBSYS DC X'OOOOOOOO' 
DXDEBUSR DC X'OOOOOOOO' 
DXDEBECB DC X'OOOOOOOO' 
DXDEBID OS OCL1 
DXDEBDCB DC AL4(DXDCB) 
DXDCBAD EQU DXDEBDCB 
DXDEBAPP DS CL4 
DXDEBMOD OS OCL1 
DXDEBUCB DS F 
DXDEBBIN DS H 
DXDEBSCC DS H 
DXDEBSHH DS H 
DXDEBECC DS H 
DXDEBEHH OS H 
DXDEBNTR DS H 

SPACE 1 

* DATA CONTROL BLOCK 
SPACE 1 

DXXXX DS OF . 
DXDCB EQU DXXXX-44 POINTER TO RELATIVE BEGINNING OF DCB 
DXDCBDEB DC A (DXDEB) 

SPACE 1 
~ CHANNEL CONTROL WORDS 

SPACE 1 
CNOP 0,8 

DXCCW OS OCL96 
DXCCW1 DS D 
DXCCW2 OS D 
DXCCW3 DS D 
DXCCW4 OS D 
DXCCW5 DS D 
DXCCW6 OS D 
DXCCW7 DS D 
DXCCW8 OS D 
DXCCW9 DS D 
DXCCW10 OS D 
DXCCW11 DS D 
DXCCW12 OS D 

SPACE 1 
DSECTSIZ EQU 464 CORE AREA REQUIRED FOR THIS MACRO 

MEND 

66 System Programmer's Guide (Release 20.1) 



IEFUCBOB Macro Instruction 

This macro instruction defines the symbolic names of all fields in the 
unit control block (UCB). Code this macro instruction with blank. name 
and operand fields, and precede it with a OSECT statement. 

r------T-----------T---------------------------------------------------, 
I Name I operation I Operand . 'I 
~------+-----------+---------------------------------------------------~ 
I I IEFUCBOB I I L ______ ~ ___________ ~ ___________________________________________________ J 

Control Statements Required 

r----------------------------------------------------------------------, 
//jobname JOB {parameters} 
//stepname EXEC PGM=IEBUPDTE,PARM=NEW 
//SYSPRINT 00 SYSOUT=A 
//SYSUT2 OD DSNAME=SYS1.MACLIB,DISP=OLD 
//SYSIN DD DATA 
./ ADD NAME=IEFUCBOB,LIST=ALL 

IEFUCBOB Macro Definition 

I 
I 

./ ENDUP I 
/* I ______________________________________________________________________ J 

IEFUCBOB Macro Definition 

MACRO 
IEFUCBOB 

UCBOB EQU * UNIT CONTROL BLOCKS 
DS OF I SRTEJBNR DS XLi JOB INTERNAL NUMBER 

UCBFLS DS XLi EXPANDED SENSE INFORMATION 
UCBID DS XLi UCB IDENTIFICATION 
SRTESTAT DS XLl STATUS BITS 
SRTEONLI EQU 128 ONLINE 
SRTECHGS EQU 64 CHANGE ONLINE/OFFLINE 
SRTERESV EQU 32 RESERVED DEVICE 
SRTEUNLD EQU 16 UNLOAD THIS DEVICE 
SRTEALOC EQU 8 BIT 4 ALLOCATED 
SRTEPRES EQU 4 BIT 5 PERMANENTLY RESIDENT 
SRTESYSR EQU 2 BIT 6 SYSRES, OR 

* PRIMARY CONSOLE 
SRTEDADI EQU 1 BIT 7 DADSM INTERLOCK, OR 

* TAPE CONTAINS STANDARD LABELS, OR 

* ALTERNATE CONSOLE 
UCBCHA DS XLi FLAGl AND CHANNEL ADDRESS 
UCBUA DS XLi UNIT ADDRESS 
UCBFL2 DS XLi FLAG2 
UCBDTI DS XLl DEVICE TABLE 
UCBETI OS XLl ERROR TABLE 
UCBSTI DS XLi STATUS TABLE 
UCBLCI OS XLi LOGICAL CHANNEL TABLE 
UCBATI DS XLi ATTENTION TABLE 
UCBWGT OS XLl WEIGHT 

I ECDSECT, IEFJFCBN, and IEFUCBOB Macro Instructions 67 

• 



UCBNAME 
UCBTYP 
UCBTBYTl 
UCB1FEAO 
UCB1FEAl 
UCB1FEA2 
UCB1FEA3 
UCB1FEA4 
UCB1FEA5 
UCB1FEA6 
UCB1FEA7 
UCBTBYT2 
UCBTBYT3 
UCB3TAPE 
UCB3COMM 
UCB3DACC 
UCB3DISP 
UCB3UREC 
UCB3CHAR 
UCBTBYT4 
UCBLTS 
UCBSNS 

UCBNBRSN 
UCBSNADR 
SRTEVOLI 
UCBXTADR 

UCBUCSOl 
UCBUCS02 
SRTESTAB 
SRTEBSVL 
SRTEBVSC 
SRTEBALB 
SRTEBPRV 
SRTEBPUB 
SRTEBVQS 

* STREASCI 

SRTEBJLB 
SRTEBNUL 
SRTEDMCT 
SRTEFSCT 
SRTEFSEQ 
UCBSQC 
UCBSKA 
SRTEUSER 
SRTEECBA 

DS 
DS 
EQU 
EQU 
EQU 
EQU 
EQU 
EQU 
EQU 
EQU 
EQU 
EQU 
EQU 
EQU 
EQU 
EQU 
EQU 
EQU 
EQU 
EQU 
DS 
DS 
DS 
DS 
DS 
DS 
DS 
DS 
EQU 
EQU 
DS 
EQU 
EQU 
EQU 
EQU 
EQU 
EQU 

EQU 

EQU 
EQU 
DS 
DS 
DS 
DS 
DS 
DS 
DS 

CL3 
XL4 
UCBTYP 
128 
64 
32 
16 
8 
4 
2 
1 
UCBTYP+l 
UCBTYP+2 
128 
64 
32 
16 
8 
4 
UCBTYP+3 
XL2 
OXL6 
XL2 
XLi 
XL3 
OXL6 
XL4 
XL2 
128 
64 
XLi 
128 
64 
32 
16 
8 
4 

SRTEVBQS 

2 
1 
XLi 
XL2 
XL2 
2F 
2F 
XLi 
XL3 

UN IT NAME IN 3 EBCDIC CHARACTERS 
DEVICE 'TYPE 

BYTE 1 OF UCBTYPE-MODEL 
BIT 0 OF OPTION FIELD 
BIT 1 OF OPTION FIELD 
BIT 2 OF OPTION FIELD 
BIT 3 OF OPTION FIELD 
BIT 4 OF OPTION FIELD 
BIT 5 OF OPTION FIELD 
BIT 6 OF OPTION FIELD 
BIT 7 OF OPTION FIELD 

BYTE 2 OF UCBTYPE-OPTIONS 
BYTE 3 OF UCBTYPE-CLASS 

BIT 0 OF CLASS - TAPE 
BIT 1 OF CLASS - COMMUNIC. 
BIT 2 OF CLASS - DIRECT AC 
BIT 3 OF CLASS - DISPLAY 
BIT 4 OF CLASS - UNIT RECe 
BIT 5 OF CLASS - CHAR.READ 

BYTE 4 OF UCBTYPE-DEVICE 
LAST 12* 
SENSE INFORMATION 

NUMBER OF SENSE BYTES 
ADDRESS OF SENSE INFORMATION 
VOLUME SERIAL 
ADDRESS OF UCB-UCS EXTENSION 

DEFAULT CHARACTER SET 
BUFFER LOADED in FOLD MODE 
STATUS B 

BIT 0 SHARED VOLUME 
BIT 1 NOT USED 
BIT 2 ADDIT.VOL.LABEL PROC 
BIT 3 PRIVATE 
BIT 4 PUBLIC 
BIT 5 STORAGE FOR DIRECT 

ACCESS 
BIT 5 AMERICAN NATIONAL STANDARD LABEL 

FOR TAPE DATA SETS 
BIT 6 JOBLIB VOLUME 
BIT 7 CONTROL VOLUME 

DATA MANAGEMENT COUNT 
FILE SEQ. COUNT 
FILE SEQ. NUMBER 
SEEK QUEUE CONTROL WORD 
MBBCCHHR FOR LAST SEEK 
CURRENT NUMBER OF USERS 
DA ECB ADDRESS 

*THE FOLLOWING DESCRIBES ONE OF THE 10 SUB-UCBS FOR THE 2321--

ORG 
DATACELL DS 
DCELBBNR DS 
DCELSTAB DS 
DCELSTAT DS 
DCELVOLI DS 
DCELJBNR DS 
DCELDMCT DS 
DCELVTOC DS 
DCELUSER DS 

* 

SRTEUSER 
OCL16 
XL2 
X 
X 
CL6 
X 
X 
XL3 
X 

* PRINTER EXTENSION 

* 

10 OF THESE ARE PRESENT FOR 2321 
BIN NUMBER 
STATUS B 
STATUS A 
VOLUME SERIAL NUMBER 
INTERNAL JOB NUMBER 
DATA MANAGEMENT COUNT 
TTR OF VTOC START 
CURRENT NUMBER OF USERS 

68 System Programmer's Guide (Release 20.1) 



ORG UCBOB 
UCBUCSID DS CL4 UCS IMAGE ID 
UCBUCSOP DS CLl ues OPTIONS 
UCBFCBOP DS CLl FCB IMAGE OPTIONS 

DS CL2 RESERVED BITS 
UCBFCBID DS CL4 FCB IMAGE ID 
UCBERADR DS CL4 ADDRESS ERP LOGOUT AREA 

* 
* 3211 SENSE INFORMATION 

* ORG UCBOB 
UCBSNSXT DS CL6 3211 SENSE BYTES 

DS CL2 RESERVED 
MEND 

IECDSECT, IEFJFCBN, and IEFUCBOB Macro Instructions 69 



IEFJFCBN Macro Instruction 

This macro instruction defines the symbolic names of all fields in the 
job file control block (JFCB). Code this macro instruction with blank 
name and operand fields, and precede it with a DSECT statement. 

r------T-----------T---------------------------------------------------, I Name I Operation I Operand I 
~-----+-----------+---------------------------------------------------~ 
I I IEFJFCBN I I L ______ ~ __________ ~ ___________________________________________________ J 

Control statements Required 

r----------------------------------------------------------------------, 
//jobname JOB (parameters) 
//stepname EXEC PGM=IEBUPDTE,PARM=NEW 
//SYSPRINT DD SYSOUT=A 
//SYSUT2 DD DSNAME=SYS1.MACLIB,DISP=OLD 
//SYSIN DD DATA 
./ ADD NAME=IEFJ.FCBN,LIST=ALL 

IEFJFCBN macro definition 

./ ENDUP 
L ______________________________________________________________________ J 

IEFJFCBN Macro Definition 

MACRO 
IEFJFCBN 

INFMJFCB EQU * 
JFCBDSNM DS CL44 
JFCBELNM DS CL8 
JFCBTSDM DS CLl 
* 
JFCBSYSC OS 
JFCBDSCB DS 
JFCFCBID OS 
JFCAMPTR DS 
JFCRDBPT OS 
JFCBLTYP DS 
* 
JFCBUFOF DS 
JFCBFLSQ DS 
JFCBVLSQ DS 
JFCBMASK DS 
JFCBCRDT DS 
JFCBXPDT DS 
JFCBINDl DS 
JFCBRLSE EQU 

* 

OCL13 
CL3 
CL4 
CL3 
CL3 
CLl 

CLl 
CL2 
CL2 
CL8 
CL3 
CL3 
CLl 
64 

JFCBLOCT EQU 16 
* 
JFCBNEWV EQU 4 
* 
JFCBPMEM EQU 1 
* 
JFCBIND2 OS CLl 
JFCBSTAT EQU 64 

DATA SET NAME 
ELEMENT NAME OR VERSION 
TASK SCHEDULER - DATA 
MANAGElI.!ENT INTERFACE BYTE 
SYSTEM CODE 

FCB IMAGE ID 

LABEL TYPE AND USER'S-LABEL 
INDICATOR 
BUFFER OFFSET FOR TAPE DATA SETS 
FILE SEQUENCE NUMBER 
VOLUME SEQUENCE NUMBER 
DATA MANAGEMENT MASK 
DATA SET CREATION DATE 
DATA SET EXPIRATION DATE 
INDICATOR BYTE 1 

BITS 0 AND 1 - EXTERNAL 
STORAGE RELEASE INDICATOR 
BITS 2 AND 3 - DATA SET 
HAS BEEN LOCATED 
BITS 4 AND 5 - NEW VOLUME 
ADDED TO DATA SET 
BITS 6 AND 7 - DATA SET IS 
A MEMBER OF A PODS OR GDG 

INDICATOR BYTE 2 
BITS 0 AND 1 - DATA SET 

70 System Programmer's Guide (Release 20.1) 



* 
JFCBScry EQU 

* JFCBUFNO DS 
JFCBUFRQ DS 
JFCBFTEK DS 
JFCBFALN DS 
JFCBUFL DS 
JFCEROPl' DS 
JFCTRTCH DS 
JFCKEYLE os 
JFCMODE DS 
JFCCODE os 
JFCSTACK DS 
JFCPRTSP os 
JFCDEN DS 
JFCLIMcr os 
JFCDSORG DS 
JFCRECFM DS 
JFCOPTCD DS 
JFCBLKSI os 
JFCLRECL DS 
JFCNCP DS 

I JFCNTM DS 
JFCUCSID DS 
JFCRKP DS 
JFCCYLOF DS 

I JFCDBUFN DS 
JFCUCSOP DS 
JFCINTVL DS 
JFCCPRI DS 
JFCSOWA DS 
JFCBNTCS DS 
JFCBNVOL DS 
JFCBVOLS DS 
JFCBEXTL DS 
* 
* 

16 

o ALl 
ALl 
o ELl 
BL1 
AL2 
BL1 
OBL1 
OAL1 
OBL1 
OBL1 
OBL1 
ELl 
BL1 
AL3 
BL2 
BL1 
BLl 
AL2 
AL2 
ALl 
ALl 
OCL4 
AL2 
ALl 
ALl 
OCL1 
ALl 
ELl 
AL2 
CL1 
CLl 
CL30 
CLl 

JFCBEXAD DS CL3 

* JFCBPQTY DS CL3 
JFCBCTRI DS CL1 

* JFCBSQTY OS CL3 
JFCBIND3 DS CL1 
JFCBCNTG EQU 64 
JFCBMXIG EQU 16 

* JFCBALXI EQU 4 
JFCBRNDC EQU 1 
JFCBDQTY DS CL3 

* JFCBSPNM OS CL3 
* 
JFCBABST DS CL2 
* 
JFCBSBNM DS CL3 
* 
JFCBDRLH DS CL3 
JFCBVLCT DS CLl 
JFCBSPTN DS CL1 

* JFCBLGTH EQU 176 
JFCBEND EQU * 

MEND 

STATUS (NEW, OLD, OR MOD) 
BITS 2 AND 3 - DATA SET 
SECURITY INDICATOR 

ues ID 

ues OPTIONS 

NUMBER OF OVERFLOW TRACKS 
NUMBER OF VOLUME SERIAL NUMBERS 
VOLUME SERIAL NUMBERS (THE FIRST FIVE) 
LENGTH OF BLOCK OF EXTRA 
VOLUME SERIAL NUMBERS 
(BEYOND FIVE) 
TRACK ADDRESS OF BLOCK OF 
EXTRA VOLUME SERIAL NUMBERS 
PRIMARY QUANTITY OF D.A. STORAGE REQUIRED 
INDICATES WHETHER CYLINDERS, TRACKS, OR RECORDS 
ARE SPECIFIED IN JFCBPQTY AND JFCBSQTY 
SECONDARY QUANTITY OF D.A. STORAGE REQUIRED 
INDICATOR BYTE 3 
BITS 0 AND 1 - CONTIGUOUS STORAGE INDICATOR 
BIT S 2 AND 3 - MAXIMUM 
AVAILABLE EXTENT INDICATOR 
BITS 4 AND 5 - ALL EXTENTS INDICATOR 
BITS 6 AND 7 - ROUND CYLINDER INDICATOR 
QUANTITY OF D.A. STORAGE 
REQUIRED FOR A DIRECTORY 
CORE ADDRESS OF THE JFCB 
WITH WHICH CYLINDERS ARE SPLIT 
RELATIVE ADDRESS OF FIRST 
TRACK TO BE ALLOCATED 
CORE ADDRESS OF THE JFCB 
FROM WHICH SPACE IS TO BE SUBALLOCATED 
AVERAGE DATA RECORD LENGTH 
VOLUME COUNT 
NUMBER OF TRACKS PER CYLINDER TO BE USED BY 
THIS DATA SET WHEN SPLIT CYLINDERS IS INDICATED 

LENGTH OF JFCB 

IECDSEcr, IEFJFCBN, and IEFUCBOB Macro Instructions 71 



72 System Programmer's Guide (Release 20.1) 



The Must Complete Function 

This chapter provides inforreation 
concerning system routine use of the must 
complete function. This function is 
available to system routines operating in 
MFT and MVT environments as an extension of 
the ENQ/DEQ facilities. 

REFERENCE PUBLICATIONS 

The IBM System/360 Operating System: 
supervisor and Data Management Services 
publication (GC28-6646) describes ENQ and 
DEQ macro instruction use except for 
applications of the must complete function. 

The IBM System/360: Supervisor and Data 
Management Macro Instructions publication 
(GC28-6647) describes the ENQ and DEQ macro 
instructions except for the SMC and RMC 
operands. 

The Must Complete Function 73 

-



The Must Complete Function 

system routines (routines operating under a storage protection key of 
zero) often engage in updating and/or manipulation of systew resources 
(system data sets, control blocks" queues, etc.) that contain 
information critical to continued operation of the system. These 
routines must complete their operations on the resource. Otherwise, the 

-resource may be left in an imcomplete state or contain erroneous 
information --_either condition leads to unpredictable results. 

The must complete function is provided in the ENQ service routine to 
ensure that a routine queued on a critical resource(s) can complete 
processing of the resource(s) without interruptions leading to 
termination. The effect of the must complete function is to f:lace other 
routines (tasks) in a wait state until the requesting task -- the task 
(routine) issuing a ENQ macro instruction with the set-must-complete 
(SMC> operand -- has completed its ;operations on the resource. The 

-requesting task releases the resource and terminates the must complete 
_c.ondition through issuance of a DEQ macro instruction with the 
reset-must-complete (RMC) operand. 

Realize that, for the time it is in effect, the must comf:lete 
£unction serializes operations to some extent in your computing system. 
Therefore, its use should be minimized -- use the function only in a 
routine that processes system data whose validity must be ensured. 

As an example, in multitask environments, the integrity of the volume 
table of contents (VTOC) must be preserved during an updating f:rocess so 
that all future users may 'have access to the latest, correct, version of 
the VTOC. Thus, in this case, you should enqueue on the VTOC and use 
the must complete function (to suspend processing of other tasks) when 
updating a VTOC. 

Just as the ENQ function serializes use of a resource requested by 
many different tasks, the must complete function serializes execution of 
tasks. 

SCOPE 

The must complete function can be applied at two levels: 

THE SYSTEM LEVEL: Only the requesting task, and system tasks 
included during system generation, are allowed to execute. All' other 
tasks in the system are placed in a wait state. 

THE STEP LEVEL: In a partition or region, only the requesting task 
is allowed to execute. All other tasks in the partition or region, 
including the initiator task, are placed in a wait state. 

CAUTION: Use of the must complete function at the system level should 
not be attempted until all alternatives have been exhausted. Except for 
extremely unusual conditions the system level of must complete should 
never be used. 

REQUESTING THE MUST COMPLETE FUNCTION 

You request the must complete function by coding the set-must-complete 
(SM(GC) operand in an ENQ macro instruction. The format is: 

r-------T--------T--------------------, 
I name I ENQ I ... , SMC={ SYSTEM} I 
I I I STEP I L _______ ~ ________ i ____________________ J 

74 System Programmer's Guide (Release 20.1) 



You may specify SYSTEM or STEP. The paraneters SYSTEM and STEP 
indicate the level to which the must complete function is to apply. The 
other operands of ENQ are described in the supervisor and Data 
Management Macro Instructions publication. 

Because of the properties of the TEST and USE parameters of the RET 
operand of the ENQ macro instruction. the SMc'operand should he used 
only if the RET operand is to use the parameters HAVE, or NONE (in the, 
E-form of ENQ), or if the RET operand is not used at all. 

You may request the must complete function only in routines operating 
under a protection key of zero. If the protect key is not zero, the 
task using the routine requesting "must complete" is abnormally ended. 

OPERATING CHARACTERISTICS 

When the must complete function is. requested the requesting task is 
marked as being in th~ must complete mode and all async~ronous exits 
from the requesting task are deferred. other tasks in the system 
(except the allowed tasks at the system level) or associated with the 
requesting task in a job step (step level) are placed in a wait state. 
Thus tasks external to the requesting task are prevented from'initiating 
procedures that will cause termination of the requesting task. Other 
external events, such as a CANCEL command issued by an operator, or a 
job step timer expiration are also prevented from terminating the 
requesting task. 

The must complete mode of operation is not entered until the 
resource(s) queued upon are available. 

, , 

At the system or step level. the requesting task can cause 'its own 
abnormal termination. If the requesting task does come to an abnormal 
termination before a reset condition has been effected. the operating 
system is stopped at the point of error to permit investigation of the 
trouble. It is then necessary to restart the system with the 
initial-program-Ioad (IPL) procedure. 

PROGRAMMING NOTES 

1. All data used by a routine that is to operate in the must complete 
mode should be checked for validity to ensure against a 
program-check interruption~ 

2,. A routine that is already in the must complete mode should avoid 
calling another routine which also operates in the must complete 
mode.' However. one level of nesting is permitted. when n,ecessary, 
with the following cautions: 

a. A task may set the must complete mode for both the system and 
the step. If multiple settings are made for either the system 
or the step. only the first setting of each is effective -- the 
others are treated as no operation. 

b. The same is true for reset-must-complete. The first RMC for 
the system will reset the status of the system, the first RMC 
for the step will reset the status of the step, and all others 
will be treated as no operation. 

The Must Complete Function 75 

-



3. Interlock conditions that can arise with the use of the ENQ 
function are discussed in the supervisor and Data Management 
Services publication. 

Additionally, an interlock may occur if your routine issues an ENQ 
macro instruction while in the must complete mode. The resource 
you want to queue on may already be queued on by a task placed in 
the wait state due to the must complete request you have made. 
Since the resource cannot be released, all tasks wait. 

4. The macro instructions ATTACH, LINK, LOAD, and XCTL should not be 
used, unless extreme care is taken, by a routine operating in the 
must complete mode. An interlock condition will result if a 
serially-reusable routine requested by one of these macro 
instructions has been requested by one of the tasks made 
non-dispatchable by the use of the SMC operand or was requested by 
another task and has been only partially fetched. 

For example, su~pose routine "b" in task B has requested and is 
using subroutine "c". Subsequently routine "a" in task A (of a 
higher priority than task B) receives control of the processing 
before routine "b" finishes with subroutine "c". If routine "a" 
issues an ENQ macro instruction with the SMC operand and puts task 
B (and, thus, routine "b") in a non-dispatchable condition, 
subroutine "c" remains assigned to routine "b". Now, if routine 
"a" issues a request (via a LINK, LOAD, etc. macro instruction) for 
subroutine "c", an interlock will occur between tasks A and B: 
task A cannot continue since subroutine "c" is still assigned to 
task B, and task B cannot continue (and thus release subroutine 
~c") because task A in the must complete mode has made task B 
nondispatchable. 

5. The time your routine is in the must complete mode should be kept 
as short as possible -- enter at the last moment and leave as soon 
as possible. One suggested way is to: 

a. ENQ (on desired resource(s» 
b. ENQ (on same resource (s»,RET=HAVE,SMC= SYSTEM 

STEP 
Item a gets the resource(s) without putting the routine into the 
must complete mode. 

Later, when appropriate, issue the ENQ with the must complete 
request (Item b). Issue a DEQ macro instruction to terminate the 
must complete mode as soon as processing is finished. 

TERMINATING THE MUST COMPLETE FUNCTION 

You terminate the must complete function and release the resource queued 
upon by coding the reset-must-complete (RMC) operand in a DEQ macro 
instruction. The format is: 

r-------T-------T---------------------, 
I name I DEQ I ... ,RMC={SYSTEM} I 
I I I STEP I L _______ ~ _______ ~ _____________________ J 

The parameter (SYSTEM or STEP) must agree with the parameter 
specified in the SMC operand of the corresponding ENQ macro instruction. 

Tasks placed in the wait state by the corresponding ENQ macro 
instruction are made dispatchable and asynchronous exits from the 
requesting task are enabled. 

76 System Programmer's Guide (Release 20.1) 



Execute Channel Program 
(EXCP) Macro Instruction 

This chapter contains a general description 
of the function and application of the 
Execute Channel Program (EXCP) macro 
instruction, accompanied by descriptions of 
specific control blocks and macro 
instructions used with EXCP. Factors that 
affect the operation of EXCP, such as 
device variations and program modification. 
are also discussed. 

The EXCP macro instruction provides you 
with a device-dependent means of performing 
the I/O operations. Before reading this 
chapter, you should be familiar with system 
functions and with the structure of control 
blocks, as well as with the operational 
characteristics of the I/O devices required 
by your channel programs. Operational 
characteristics of specific I/O devices are 
contained in IBM System Reference Library 
publications for each device. 

Documentation of the internal logic of 
the input/output supervisor can be obtained 
through your IBM Branch Office. 

PREREQUISITE PUBLICATIONS 

The IBM system/360 Operating System: 
Supervisor and Data Management Services 
publication (GC28-6646) explains the 
standard procedures for I/O processing 
under the operating system. 

The IBM system/360 Operating System: 
Assembler Language publication (GC28-6514) 
contains the information necessary to code 
programs in the assembler language. 

The IBM System/360 Operating System: 
supervisor and Data Management Macro 
Instructions publication (GC28-6647) 
describes the system macro instructions 
that can be used in programs coded in the 
assembler language. 

The IBM System/360 Operating System: 
System Control Block publication 
(GC28-6628) contains format and field 
descriptions of the system control blocks 
referred to in this chapter. 

Execute Channel Program (EXCP) Macro Instruction 77 

• 



Execute Channel Program (EXCP) Macro Instruction 

Execute Channel Program (EXCP) is a macro instruction of System/360 
Operating system that causes a supervisor-call interruption to pass 
control to the input/output supervisor. EXCP also provides the 
input/output supervisor with control information regarding a channel 
program to be executed. When the IBM standard data access roethods are 
being used" the access method routines are responsible for issuing EXCP. 
If you are not using the standard access methods., you may issue EXCP 
directly. Direct use of EXCP provides you with device dependence in 
organizing data and controlling I/O devices. 

You issue EXCP primarily for I/O programming situations to which the 
standard access methods do not apply. When you are writing your own 
data access methods, you must include EXCP for I/O operations. EXCP 
must also be used for processing of nonstandard labels, including the 
reading and writing of labels and the positioning of magnetic tape 
volumes. 

To issue EXCP, you must provide a channel program (a list of channel 
command words) and several control blocks in your program area. The 
input/output supervisor then schedules I/O requests for the device you 
have specified, executes the specified I/O commands, handles I/O 
interruptions., directs error recovery procedures, and posts the results 
of the I/O requests. 

When planning EXCP operations and appendages for use on central 
processing units with parallel processing, special precautions must be 
observed. Examples of such central processing units are the IBM 
system/360 Models 91 and 195 that can execute instructions in a sequence 
other than the physical sequence in which they appear in a listing. 
such a central processing unit maintains logical consistency in its own 
operations, including the beginning and ending of I/O operations. 
However, it is impossible for such a central processing unit to maintain 
consistency with operations performed by asynchronous units. This type 
of central processing unit recognizes a special "no operation" to force 
sequential operations in the environments where it might be required. 
The appropriate hardware manual should be carefully studied before 
coding EXCP and appendage routines for this type of central frocessing 
unit. 

Use of EXCP in System and Problem Programs 
This section briefly explains the procedures performed by the system and 
the programmer when the EXCP macro instruction is issued by the routines 
of the standard data access methodsa The additional procedures that you 
must perform when issuing the EXCP macro instruction yourself are then 
described by direct comparison. 

SYSTEM USE OF EXCP 

When using a standard data access method to perform I/O operations, the 
programmer is relieved of coding channel programs, and of constructing 
the control blocks necessary for the execution of channel programs. To 
permit I/O operations to be handled by an access method, the programmer 
need only issue the following macro instructions: 

• A DCB macro instruction that produces a data control block (DCB) for 
the data set to be retrieved or stored. If appendages are not being 
used, a short DCB is constructed. Such a DCB does not support 
reduced error recovery. 

• An OPEN macro instruction that initializes the data control block 
and produces a data extent block (DEB) for the data set. 

• A macro instruction (e.g., GET, WRITE) that requests I/O operations. 

78 system Programmer's Guide (Release 20.1) 



Access method routines will then: 

1. Create a channel program that contains channel commands for the I/O 
operations on the appropriate device. 

2. Construct an input/output block (lOB) that contains information 
about the channel program. 

3. Construct an event control block (ECB) that is later su~plied with 
a completion code each time the channel program terminates. 

4. Issue an EXCP macro instruction to pass the address of the lOB to 
the routines that initiate and supervise the I/O operations. 

The input/output supervisor will then: 

5. Schedule the I/O request. 
6. Issue a start input/output (SIO) instruction to activate the I/O 

device. 
7. Process I/O interruptions and schedule error recovery procedures, 

when necessary. 
8. Place a completion code in the event control block after the 

channel program has been executed. 

The programmer is not concerned with these procedures and does not 
know the status of I/O operations until they are completed. 
Device-dependent operations are limited to those provided by the macro 
instructions of the particular access method selected. 

PROGRAMMER USE OF EXCP 

If you wish to issue the EXCP macro instruction directly, you must 
perform the procedures that the access methods perform, as summarized in 
items 1 through 4 of the preceding discussion. You must, in addition to 
constructing and opening the data control block with the DCB and OPEN 
macro instructions, construct a channel program, an input/out~ut block, 
and an event control block before you can issue the EXCP macro 
instruction. The input/output supervisor always handles items 5 through 
8. 

After issuing the EXCP macro instruction, you should issue a WAIT 
macro instruction specifying the event control block to determine 
whether the channel program has terminated. If volume switching is 
necessary" you must issue an EOV macro instruction. When processing of 
the data set has been completed, you must issue a CLOSE macro 
instruction to restore the data control block. 

EXCP Requirements 
This section describes' the channel program that you must provide in 
order to issue the EXCP macro instruction. The control blocks that you 
must either construct directly., or cause to be constructed by use of 
macro instructions, are also described. 

CHANNEL PROGRAM 

The channel program supplied by you and executed through EXCP is 
composed of channel command words (CCWs) on doubleword boundaries. Each 
channel command word specifies a command to be executed and, for 
commands initiating data transfer, the area to or from which the data is 
to be transferred. Channel command word formats used with specific I/O 
devices can be found in IBM systems Reference Library publications for 
each device. All channel command words described in these publications 
can be used, with the exception of REWIND and UNLOAD (RUN). 

Execute Channel Program (EXCP) Macro Instruction 79 



Data and Command Chaining 

Chaining is the successive loading of channel command words into a 
channel from contiguous doubleword locations in main storage. Data 
chaining occurs when a new channel command word loaded into the channel 
defines a new storage area for the original I/O operation. Command 
chaining occurs when the new channel command word specifies a new I/O 
operation. For detailed information about chaining, refer to the IBM 
System/360: Principles of Operation publication (GA22-6821). 

To specify either data chaining or command chaining, you must set 
appropriate bits in the channel command word, and indicate the type of 
chaining in the input/output block. Both data and corrmand chaining 
should not be specified in the same channel command word; if they are, 
data chaining takes precedence. 

When a channel program includes a list of channel command words that 
chain data for reading operations, no channel command word may alter the 
contents of another channel command word in the same list. (If such 
alteration were allowed, specifications could be placed into a channel 
command word without being checked for validity. If the specifications 
were incorrect, the error could not be detected until the chain was 
completed. Data could be r.ead into incorrect locations and the system 
could not correct the error.) 

CONTROL BLOCKS 

When using the EXCP macro instruction, you must be familiar with the 
function and structure of an input/output block (lOB), an event control 
block (ECB), a data control block (DCB), and a data extent block (DEB). 
Brief descriptions of these control blocks follow. Their fields are 
illustrated in the section "EXCP Programming Specifications." 

Input/Output Block (lOB) 

The input/output block is used for communication between the problem 
program and the system. It provides the addresses of other control 
blocks, and maintains information about the channel program w such as the 
type of chaining and the progress of I/O operations. You must define 
the input/output block and specify its address as the only parameter of 
the EXCP macro instruction. 

Event Control Block (ECB) 

The event control block provides you with a completion code that 
describes whether the channel program was completed with or without 
error. A WAIT macro instruction for synchronizing I/O operations with 
the problem program must be directed to the event control block. You 
must define the event control block and specify its address in the 
input/output block. 

Data Control Block (nCB) 

The data control block provides the system with information about the 
characteristics and processing requirements of a data set to be read or 
written by the channel program. A data control block must be produced 
by a DCB maCro instruction that includes parameters for EXCP. If 
appendages are not being used, a short DCB is constructed. Such a DCB 
does not support reduced error recovery. You specify the address of the 
data control block in the input/output block. 

80 System Programmer1s Guide (Release 20.1) 



'\ 

Data Extent Block (DEB) 

The data extent block contains one or more extent entries for the 
associated data set, as well as other control information. An extent 
defines all or part of the physical boundaries on an I/O device occupied 
by, or reserved for, a particular data set. Each extent entry contains 
the address of a unit control block (UCB), which provides information 
about the type and location of an I/O device. More than one extent 
entry can contain the same UCB address. (Unit control blocks are set up 
at system generation time and need not concern you.) For all I/O 
devices supported by the operating system, the data extent block is 
produced during execution of the OPEN macro instruction for the data 
control block. The system places the address of the data extent block 
into the data control block. 

Channel Program Execution 
This section explains how the system uses your channel program and 
control blocks after the EXCP macro instruction has been issued. 

INITIATION OF CHANNEL PROGRAM 

By issuing the EXCP macro instruction, you request the execution of the 
channel program specified in the input/output block. The input/output 
supervisor checks the request for validity by ensuring that the required 
control blocks contain the correct information. If they do not, 
abnormal termination procedures are initiated. A program check occurs 
if the control blocks are not on correct boundaries. 

The input/output supervisor obtains the address of the data control 
block from the input/output block and the address of the data extent 
block from the data control block. From the data extent block, the 
system obtains the address of the unit control block (UCB) for the 
desired I/O device. To protect and facilitate reference to the 
addresses of the lOB, DEB, and UCB. the input/output supervisor places 
these addresses. along with other information about the channel program, 
into an area called a request element. The request element is used by 
the input/output supervisor for forming queues to keep track of I/O 
requests. A channel program's request element is "available" if the 
information it contains is no longer to be used by the input/output 
supervisor and if it is ready to receive information about another 
request. When a request element is "made available". it is removed from 
all request queues and placed on a queue of available request elements. 
You are not concerned with the contents of the request element unless 
you have provided appendage routines, as explained in the section 
"Appendages. " 

After completing the request element for the channel program, the 
input/output supervisor determines whether a channel and the requested 
I/O device are ready for the channel program. If they are not ready., 
the request element is placed into the appropriate queue, and control is 
returned to the problem program. The channel program is subsequently 
executed when the channel and device are ready. 

To initiate execution of the channel program, the system obtains its 
address from the input/output block, places this address into the 
channel address word (CAW)" and issues a start input/output (SIO) 
instruction. 

Before issuing the SIO instruction for direct access devices, the 
system issues the initial seek. which is overlapped with other 
operations. You specify the seek address in the input/output block. 
When the seek has completed. the system constructs a command chain to 
reissue the seek. set the file mask specified in the data extent block., 

Execute Channel Program (EXCP) Macro Instruction 81 



and pass control to your channel program. (When using the operating 
system, you cannot issue the initial seek or set the file mask yourself. 
The file mask is set to prohibit Seek Cylinder commands, or, if space is 
allocated by tracks, Seek Track commands. If the data set is opened for 
INPUT or ROBACK, Write commands are also prohibited.) 

Before issuing SIO for magnetic tape devices, the system constructs a 
command chain to set the mode specified in the data extent block and 
pass control to your channel program. (When using the operating system, 
you cannot set the mode yourself.) 

COMPLETION OF CHANNEL PROGRAM 

The system considers the channel program completed when it receives an 
indication of a channel end condition. When channel end occurs, the 
request element for the channel program is made available, and a 
completion code is placed into the event control block. The completion 
code indicates whether errors are associated with channel end. If 
device end occurs simultaneously with channel end, errors associated 
with device end (i.e., uni£ exception or unit check) are alsc accounted 
for. 

Device End Errors 

If device end occurs after channel end and an error is associated with 
device end, the completion code in the event control block dces not 
indicate the error. However, the status of the unit and channel is 
saved in the unit control block (UCB) for the device, and the UCB is 
marked as intercepted. The input/output block for the next request 
directed to the I/O device is also marked as intercepted. The error is 
assumed to be permanent, and the completion code in the event control 
block for the intercepted request indicates interception. The IFLGS 
field of the data control block is also flagged to indicate a permanent 
error. It should be noted that when a Write Tape Mark or Erase Long Gap 
CCW is the last (or only) CCW in your channel program, the I/O 
supervisor will not attempt recovery procedures for Device End errors. 
In these circumstances, command chaining a NOPCCW to your Write Tape 
Mark or Erase Long Gap CCW ensures initiation of device end error 
recovery procedures. 

To be prepared for device end errors, you should be familiar with 
device characteristics that can cause such errors. After one of your 
channel programs has terminated, you should not release buffer space 
until you have determined that your next request for the device has not 
been intercepted. You may reissue an intercepted request. 

INTERRUPTION HANDLING AND ERROR RECOVERY PROCEDURES 

An I/O interruption allows the CPU to respond to signals from an I/O 
device which indicate either termination of a phase of I/O operations or 
external action on the device. A complete explanation of I/O 
interruptions is contained in the IBM System/360: Principles of 
Operation publication. For descriptions of interruptions by specific 
devices, refer to IBM Systems Reference Library publications for each 
device. 

If error conditions are associated with an interruption, the 
input/output supervisor schedules the appropriate device-dependent error 
routine. The channel is then restarted with another request that is not 
related1 to the channel program in error. If the error recovery 

1Related channel programs are discussed in the next section. 

82 System Programmer's Guide (Release 20.1) 



procedures fail to correct the error, the system places ones in the 
first two bit positions of the IFLGS field of the data control block. 
You are informed of the error by an error code that the system places 
into the event control block. 

Error Recovery Procedures for Related Channel Programs1 

Related channel programs are requests that are associated with a 
particular data control block and data extent block in the same job 
step. They must be executed in a definite order, i.e., the order in 
which the requests are received by the input/output supervisor. A 
channel program is not started until all previous requests for related 
channel programs have been completed. You specify, in the input/output 
block, whether the channel program is related to others. 

If a permanent error occurs in a channel program that is related to 
other requests, the request elements for all the related channel 
programs are removed from their queue and made available. This process 
is called purging. The addresses of the input/output blocks for the 
related channel programs are chained together, with the address of the 
first input/output block in the chain placed into the "User Purge lOB 
Address n field of the data extent block. The address of the second 
input/output block is placed into the nRestart Address" field of the 
first input/output block, and so on. The last input/output block in the 
chain is indicated by all ones in its Restart Address field. The chain 
defines the order in which the request elements for the related channel 
programs are removed from the request queue. 

For all requests that are related to the channel program in error, 
the system places completion codes into the event control blocks. The 
IFLGS field of the data control block is also flagged. Any requests for 
a data control block with error flags are posted complete without 
execution. If you wish to reissue requests that are related to the 
channel program in error. you must reset the first two bits of the IFLGS 
field of the data control block to zeros. You then issue a RESTORE 
macro instruction, specifying, as the only parameter, the address of the 
nUser Purge lOB Address" field of the data extent block. This causes 
execution of all the related channel programs. (The RESTORE macro 
definition and how to add it to the macro-library are in the Appendix of 
this chapter.) Alternatively, if you wish to restart only particular 
channel programs rather than all of them, you may reissue the EXCP macro 
instruction for each channel program desired. 

Appendages 

This section discusses the appendages that you may optionally code when 
using the EXCP macro instruction. Before a programmer-written appendage 
can be executed, it must be included in the SVC library_ These 
procedures are explained first; descriptions of the routines themselves 
and of their coding specifications follow. 

DEFINING APPENDAGES 

An appendage must be defined in a DD statement as a member of a SYS1 
partitioned data set. The full member name of an appendage is eight 
bytes in length, but the first six bytes are required by IBM standards 
to be the characters IGG019. The last two characters must be provided 
by you as an identification; they may range in collating sequence from 
WA to Z9. 

Execute Channel Program (EXCP) Macro Instruction 83 



ENTERING APPENDAGES INTO SVC LIBRARY 

The SVC library is a partitioned data set named SYS1.SVCLIB. You can 
insert an appendage into the SVC library during the system generation 
process or by link-editing it into the SYS1.SVCLIB. The routine must be 
a member of a cataloged partitioned data set whose name begins with 
SYS1. 

To enter a routine into the SVC library during system generation, you 
use the SVCLIB macro instruction. The format of this macro instruction 
is given in the publication IBM system/360 Operating System: system 
Generation, GC28-6554. 

CHARACTERISTICS OF APPENDAGES 

An appendage is a programmer-written routine that provides additional 
control over I/O operations during channel program execution. By 
providing appendages, you can examine the status of I/O operations and 
determine the actions to be taken for various conditions. An appendage 
may receive control when one of the following occurs: 

• Start I/O is issued. 
• Program controlled interruption. 
• End of extent. 
• Channel end. 
• Abnormal end. 

Appendages are executed in supervisor state. You must not issue, in 
an appendage, any SVC instructions or instructions that change the 
status of the computing or operating system (e.g., WTO, LPSW. SVC, or 
any privileged instruction). Since appendages are disabled for all 
types of interruptions except machine checks, you also must not enter 
loops that test for completion of I/O operations. An appendage must not 
alter storage used by either the supervisor or the input/output 
supervisor. 

~he identification of an appendage, which consists of the last two 
characters of its 8-character name, must be specified in the DCB macro 
instruction, as described in the section "EXCP Programming 
specifications." When the OPEN macro instruction for the data control 
block is issued, any appendages specified in the DCB roacro instruction 
are loaded into main storage. The appendages are linked to the 
input/output supervisor when their addresses are placed into a table of 
addresses called an appendage vector table. This table is always 
constructed by the system when OPEN is issued; if an appendage is not 
provided, the table contains the address of a return branch instruction 
to the input/output supervisor. Using the appendage vector table, the 
input/output supervisor branches and links to an appendage at the 
appropriate time. The address of the starting location of the appendage 
is placed into register 15. 

Parameters are passed to appendages by the input/output supervisor. 
These parameters are contained in registers, and are as follows: 

• Register 1: Address of the request queue element (RQE) for the 
channel program. 

The request queue element contains the following information: 

Bytes 1. and 2 -
Link field when the RQE is an I/O queue. 

Bytes 3 and 4 -
Address of the unit control block (UCB) for the I/O device. 

84 System Programmer's Guide (Release 20.1) 



Byte 5 -
Identification of the task control block (TCB) for the task. 
(In a multitasking environment, this field is not used. It 
contains all zeros if the request element is not available and 
all ones when the request element is available.) 

Bytes 6, 7, and 8 -
Address of the input/output block. 

Byte 9 -
Priority of the request, if the priority option has been 
selected for the system. 

Bytes 10, 11, and 12 -
Address of the data extent block. 

The request queue element is normally 12 bytes in length; for a 
multitasking environment, it includes 4 more bytes that contain the 
address of the TCB. 

• Register 2: 
• Register 3: 
• Register 4: 
• Register 7: 
• Register 14: 

• Register 15: 

Address of the input/output block (lOB). 
Address of the data extent block (DEB). 
Address of the data control block (DCB). 
Address of the unit control block (UCB). 

Address of the location in the input/output supervisor 
to which control is to be returned after execution of 
the appendage. When passing control from an a~pendage 
to the system, you may use displacements to the return 
address in register 14 for optional return procedures. 
Some of these procedures differ in their treatment of 
the request element associated with the channel 
program. 
Address of the entry point to the appendage. 

You may not change register 1 in an appendage; this is reserved in 
case an abnormal condition occurs while the appendage is in control. 
Register 9, if used, must be set to binary zero before control is 
returned to the system. All other registers, except those indicated in 
the descriptions of each appendage, must be saved and restored if they 
are used. The following table summarizes register conventions. 

r----------T-----------T------------------------T----------------------, 
I Appendages I Entry Point I Returns I Available Work Reg. I 
~----------+-----------+-----------T------------+----------------------~ 
I I I I Extent Error I I 
I EOE I Reg 15 IReg 14 + 0 IReturn I I 
I I IReg 14 + 4 ISkip I Reg. 10, 11, 12 & 13 I 
I I IReg 14 + 8 ITry Again I I 
~----------+-----------+-----------+------------~----------------------~ 
I SIO I Reg 15 IReg 14 + 0 INormal I Reg. 10, 11 & 13 I 
I I IReg 14 + 4 ISkip I I 
~----------t-----------+-----------t------------+----------------------~ 
I PCI I Reg 15 IReg 14 + 0 INormal I Reg. 10, 11, 12 & 13 I 
r----------+-----------+-----------+------------+----------------------~ 
I CE I Reg 15 IReg 14 + 0 INormal I I 
I I IReg 14 + 4 ISkip I Reg. 10, 11, 12 & 13 I 
I I IReg 14 + 8 IRe-EXCP I I 
I I IReg 14 + 12lBy-Pass I I 
r----------+-----------+-----------+------------+----------------------~ 
I XCE I Reg 15 IReg 14 + 0 INormal I I 
I I IReg 14 + 4 ISkip I Reg. 10, 11, 12 & 13 I 
I I IReg 14 + 8 IRe-EXCP I I 
I I IReg 14 + 12lBy-Pass I I L __________ ~ ___________ i ___________ i ____________ ~ ______________________ J 

The types of appendages are listed in the following paragra~hs, with 
explanations of when they are entered, how they return control to the 
system, and which registers they may use without saving and restoring. 

Execute Channel Program (EXCP) Macro Instruction 85 

• 



Start Input/Output (SIO) Appendage 

This appendage is entered before the input/output supervisor issues a 
start input/output (SIO) instruction for an I/O operation, unless an 
error recovery procedure is in control. If SIO is not initiated because 
of a busy condition, the appendage will be reentered before SIO is 
reissued. 

If the return address in register 14 is used to return centrol to the 
input/output supervisor, the I/O operation is executed normally. You 
may optionally bypass the SIO instruction and prevent execution of the 
channel program by using the contents of register 14 plus 4 as the 
return address. In this case" the channel program is not posted 
complete, but its request element is made available. You may do the 
posting by taking the following steps: 

1. Save necessary registers. 
2. Place pointer to post entry address from the CVT in Reg 15. 
3. Place current TCB address from the CVT in Reg 12. 
4. Place ECB address from the lOB in Reg 11. 
5. Set the completion code in the high order byte in Reg 10. 
6. Go to Post using BALR 14, 15. 

you may use registers 10, 11, and 13 in a start input/output 
appendage without saving and restoring their contents. 

Program Controlled Interruption (PCI) Appendage 

This appendage is entered when a program controlled interruption occurs. 
At the time of the interruption, the contents of the channel status word 
will not have been placed in the nchannel status word n field of the 
input/output block. The channel status word can be obtained from 
location 64. You must use the return address in register 14 to allow 
the system to proceed with normal interruption processing. 

You may use registers 10 through 13 in a program controlled 
interruption appendage without saving and restoring their contents. 
This appendage may be reentered for the same channel program if the 
error recovery procedure is in the process of retrying a Ccw with the 
program controlled bit set on. The IOBERR flag is set when the error 
recovery procedure is in control (IOBFL1 = X'20'). 

End-ot-Extent Appendage 

This appendage is entered when the seek address specified in the 
input/output block is outside the allocated extent limits indicated in 
the data extent block. 

If you use the return address in register 14 to return control to the 
system, the abnormal end appendage is entered. An end-of-extent error 
code (X'42') is placed in the "ECB code" field of the input/output block 
for subsequent posting in the event control block. 

You may use the following optional return addresses: 

• Contents of register 14 plus 4 - The channel program is ~osted 
complete, and its request element is returned to the available 
queue. 

• Contents of register 14 plus 8 - The request is tried again. 

You may use registers 10 through 13 in an end-of-extent appendage 
without saving and restoring their contents. 

86 system Programmer's Guide (Release 20.1) 



/ 

Note: If an end-of-cylinder or file-protect condition occurs, the 
input/output supervisor updates the seek address to the next higher 
cylinder or track address, and re-executes the request. If the new seek 
address is within the data set's extent, the request is executed; if the 
new seek address is not within the data set's extent, the end-of-extent 
appendage is entered. If you wish to try the request in the next 
extent, you must move the new seek address into the UCB at UCB+48. 

If a file protect condition occurs and was caused by a full seek 
(command code=07) embedded within a channel program, the request is 
flagged as a permanent error, and the abnormal end appendage is entered. 

Channel End Appendage 

This appendage is entered when a channel end, unit exception with or 
without channel end, or channel end with wrong length record occurs 
without any other abnormal end conditions. 

If you use the return address in register 14 to return control to the 
system, the channel program is posted complete, and its request element 
is made available. In the case of unit exception or wrong length 
record, the error recovery procedure is performed before the channel 
program is posted complete, and the IOBEX flag (X'04') in IOBFL1 is set 
on. The condition code may be directly tested by using a BC 
instruction. A CC=O means no UEX or WLR accompanied this interruption. 
The CSW status may be obtained from the IOBCSW. 

If the appendage takes care of the wrong length record and/or unit 
exception it may turn off the IOBEX (X'04') flag in IOBFL1 and return 
normally. The event will then be posted complete (completion code 7F 
under normal conditions, taken from the high-order byte of the IOBECB 
field). If the appendage returns normally without resetting the IOBEX 
flag to zero. the request will be routed to the associated device error 
routine. and then the abnormal end appendage will be immediately 
entered. This abnormal end appendage will be entered with IOBECB 
completion code = '41'. 

You may use the following optional return addresses: 

• Contents of register 14 plus 4 - The channel program is not posted 
complete, but its request element is made available. You may post 
the event by using the calling sequence described under the Start 
I/O Appendage. This is especially useful if you wish to ~ost an ECB 
other than the IOBECB. 

• Contents of register 14 plus 8 - The channel program is not posted 
complete, and its request element is placed back on the request 
queue so that the I/O operation can be retried. For correct 
re-execution of the channel program, you must re-initialize the 
nFlags In, "Flags 2", and nFlags 3" fields of the input/output block 
and set the "Error Counts n field to zero. As an added ~recaution, 
the IOBSNS and IOBCSW fields should be cleared. 

• Contents of register 14 plus 12 - The channel program is not posted 
complete, and its request element is not made available. (The 
request element is assumed to be used in a subsequent asynchronous 
exit routine.) 

You may use registers 10 through 13 in a channel end appendage 
without saving and restoring their contents. 

Abnormal End Appendage 

'Ihis appendage may be entered on abnorma I c ondi ti ons , such as : unit 
check, unit exception, wrong length indication, program check, 

Execute Channel Program (EXCP) Macro Instruction 87 

-



protection check, channel data check, channel control check, interface 
control check, chaining check, out-of-extent error, and intercept 
condition (i.e., device end error). It may also be entered when an EXCP 
is issued for a DCB that has already been purged. 

1. When this appendage is entered due to a unit exception and/or wrong 
length record indication, the IOBECB code is set to X'41'. For 
further information on these conditions see "Channel End 
Appendage." 

2. When the appendage is entered due to an out-of-extent error, the 
IOBECB code is set to X' 42' • 

3. When the appendage is first entered due to an intercept condition, 
the IOBECB code is set to X'7E'. If it is then determined that the 
error condition is permanent, the appendage will be entered a 
second time with the IOBECB code set to X'44'. The intercept 
condition signals that an error was detected at device end after 
channel end on the previous request. 

4. When the appendage is entered due to an EXCP being issued to an 
already purged DCB, this request will enter the abnormal end 
appendage with the IOBECB code set to X'48'. This applies only to 
related requests. 

5. When the appendage is entered with the IOBECB code set to 7F, it 
may be due to a unit check, program check, protection check, 
channel data check, channel control check, interface control check 
or chaining check~ When the IOBECB code is 7F, it rr.ay be the first 
detection of an error in the associated channel program, or it 
could occur after an error routine has attempted to correct the 
error but was unsuccessful in its retry. Under these two 
conditions, the IOBERR flag is set; it indicates that the error 
routine is in control but has not yet declared the error to be 
permanent. 

To determine if an error is permanent, you should check the "ECB 
code" field of the input/output block. To determine the type of error, 
check the channel status word and the sense information in the lOB. 
However, when the ECB code is X'42' or X'48', these fields are not 
applicable. For X'44' the CSW is applicable, but the sense is valid 
only if the unit check bit is set. If you use the return address in 
register 14 to return control to the system, the channel program is 
posted complete, and its request element is made available. (The 
SYNADAF macro instruction described in the Supervisor and Data 
Management Macro Instructions publication may be used in an error 
analysis routine to analyze permanent I/O errors.) You may use the 
following optional return addresses: 

• Contents of register 14 plus 4 - The channel program is not posted 
complete, but its request element is made available. 

• Contents of register 14 plus 8 - The channel program is not posted 
complete, and its request element is placed back on the request 
queue so that the request can be retried. For correct re-execution 
of the channel program, you must re-initialize the "Flags 1", "Flags 
2"., and "Flags 3" fields of the input/output block and set the 
"Error Counts" field to zero. As an added precaution, the IOBSNS 
and IOBCSW fields should be cleared. 

• Contents of register 14 plus 12 - The channel program is not posted 
complete" and its request element is not made available. (The 
request element is assumed to be used in a subsequent asynchronous 
exit. ) 

88 system Programmer's Guide (Release 20.1) 



You may use registers 10 through 13 in an abnormal end a~~endage 
without saving and restoring their contents. 

EXCP Programming Specifications 

This section describes the parameters of the macro instructions that you 
must use with EXCP, and the fields of the required control blocks. 

MACRO INSTRUCTIONS 

If you are using the EXCP macro instruction you must also use DCB, OPEN, 
CLOSE, and, in some cases, the EOV macro instruction. The parameters of 
these macro instructions, and of the EXCP macro instruction itself, are 
listed and explained here. A diagram of the data control block is 
included with the description of the DCB macro instruction. 

DCB -- Define Data Control Block for EXCP 

The EXCP form of the DCB macro instruction pr .... ~~ce<' ..a _daLa _control block 
that can be used with the EXCP macro instruction. You must issue a ~~ 
macro instruction for each data set to be processed by your channel 
programs. Notation conventions and format illustrations of the DCB 
macro instruction are given in the supervisor and Data Management Macro 
Instructions publication. DCB parameters that apply to EXCP may be 
divided into four categories, depending on the following portions of the 
data control block that are generated when they are specified: 

• Foundation block. This portion is required and is always 12 bytes 
in length. You must specify two of the parameters in this category. 

• EXCP interface. This portion is optional. If you specify any 
parameter in this category, 20 bytes are generated. 

• Foundation block extension and common interface. This ~ortion is 
optional and is always 20 bytes in length. If this portion is 
generated, the device dependent portion is also generated. 

• Device dependent. This portion is optional and is generated only if 
the foundation block extension and common interface portion is 
generated. Its size ranges from 4 to 20 bytes, depending on 
specifications in the DEVD parameter of this category. However, if 
you do not specify the DEVD parameter (and the foundation extension 
and cornmon interface portion is generated), the maxinum 20 bytes for 
this portion are generated. 

Some of the procedures performed by the system when the data control 
block is opened and closed (such as writing file marks for output data 
sets on direct access volumes) require information from optional data 
control block fields. You should make sure that the data control block 
is large enough to provide all information necessary for the procedures 
you want the system to handle. 

Figure 1 shows the relative position of each portion of an opened 
data control block. The fields corresponding to each parameter of the 
DCB macro instruction are also designated, with the exception of DDNAME, 
which is not included in a data control block that has been opened. The 
fields identified in parentheses represent system information that is 
not associated with parameters of the DCB macro instruction. 

Sources of information for data control block fields other than the 
DCB macro instruction are data definition (DD) statements, data set 

Execute Channel Program (EXCP) Macro Instruction 89 

-



labels, and data ·control block modification routines. You may use any 
of these sources to specify DCB parameters. However, if a portion of 
the data control block is not generated by the DCB macro instruction, 
the system does not accept information intended for that portion from 
any alternative source. 

FOUNDATION BLOCK PARAMETERS: 

DDNAME=symbol 
The name of the data definition (DD) statement that describes the 
data set to be processed. This parameter must be given. 

MACRF=(E) 
The EXCP macro instruction is to be used in processing the data 
set. This parameter must be given. 

REPOS= Y 
N 

Magnetic tape volumes: 
If your system generation statements include the Dynamic Device 
Reconfiguration entry, then this parameter controls whether the DDR 
routine will attempt to reposition the volume after swa~~ing 
devices. (TO have the DDR routine attempt to reposition your tape 
volume, you must maintain the block count in the DCBBLKCT field.) 

Y - Yes, attempt to reposition. 

N - No, do not attempt to reposition. 

If the entry is omitted, N is assumed. 

EXCP INTERFACE PARAMETERS: 

EOEA=symbol 
2-byte identification of an end-of-extent appendage that you have 
entered into the SVC library. (See Note A.) 

PCIA=symbol 
2-byte identification of a program controlled interruption (PCI) 
appendage that you have entered into the SVC library. 
(See Note A.) 

SIOA=symbol 
2-byte identification of a start I/O (SIO) appendage that you have 
entered into the SVC library. (See Note A.) 

CENDA=symbol 
2-byte identification of a channel end appendage that you have 
entered into the SVC library. (See Note A.) 

XENDA=symbol 
2-byte identification of an abnormal end a~pendage that you have 
entered into the SVc library. (See Note A.) 

OPTCD=code 
A code of Z indicates that for magnetic tape (input only) a reduced 
error recovery procedure (5 reads only) will occur when a data 
check is encountered. It should be specified only when the tape is 
known to contain errors and the application does not require that 
all records be processed. Its proper use would include error 
frequency analysis in the SYNAD routine. Specification of this 
parameter will also cause generation of a foundation block 
extension. This parameter is ignored unless it was selected at 
system generation. 

90 System Programmer's Guide (Release 20.1) 



Note A: The full name of an appendage is eight bytes in length, but the 
first six bytes are required by IBM standards to be the characters 
IGG019. You provide the last two characters as the 2-byte 
identification; they may range in collating sequence from WA to Z9. 

DCB 
Address 

+ 4 

+ 8 

+12 

+16 

+20 

+24 

+28 

+32 

+36 

+40 

+44 

+48 

+52 

+56 

+60 

+64 

+68 

r-------------------------------------------, 
The device dependent portion of 
the data control block varies 
in length and format according 
to specifications in the DSORG 
and DEVD parameters. Illustra­
tions of this portion for each 
device type are included in 
the description of the DEVD 
parameter. 

~----------T--------------------------------~ 
I I I 
I B UFNO I BUFCB I 
~----------~----------T---------------------~ 
I I I 
I BUFL I DSORG I 
~---------------------~---------------------~ 
I I 
I lOBAD I 
~----------T--------------------------------~ 
I BFl'EK, I I 
I BFALN I EODAD I 
I HIARCHY I I 
~----------t--------------------------------~ 
I I I 
I RECFM I EXLST I 
~----------~---------T---------------------~ 
I I I 
I (TIOT) I MACRF I 
~----------T----------~--------------~------~ 
I I I 
I (IFLGS) I (DEB Address) I 
~----------+----~----------------------------~ 
I I I 
I (OFLGS) I Reserved I 
~----------+--------------------------------~ 
I I I 
I OPl'CD I Res erved I 
~----------~--------------------------------~ I ' I 
I Reserved I 
~---------------------T---------------------~ 
I I I 
I EOEA I PCIA I 
~---------------------+---------------------~ 
I I I 
I SIOA I CENDA I 
~---------------------+----~----------------~ 
I I I 
I XENDA I Reserved I L-____________________ ~ _____________________ J 

Device 
Dependent 

Common 
Interface 

Foundation Block 
Extension 

. 
Foundation Block 

EXCP Interface 

Figure 1. Data Control Block Format for EXCP (After OPEN) 

Execute Channel Program (EXCP) Macro Instruction 91 



FOUNDATION BLOCK EXTENSION AND COMMON INTERFACE PARAMETERS: 

EXLST=relexp 
specifies the address of an exit list that you have written for 
exceptional conditions. The format of this exit list is given in 
the supervisor and Data Management Services publication. 

EODAD=relexp 
specifies the address of your end-of-data set routine. If this 
routine is not available when it is required, the task is 
abnormally terminated. 

DSORG=code 
specifies the data set organization as one of the following codes. 
Each code indicates that the format of the device dependent portion 
of the data control block is to be similar to that generated for a 
particular access method: 

Code 
PS 
PO 
DA 
IS 

DCB Format for 
QSAM or BSAM 
BPAM 
BDAM 
QISAM or BISAM 

Note: For direct access devices, if you specify either PS or PO, you 
must maintain the following fields of the device dependent portion of 
the data control block so that the system can write a file mark for 
output data sets: 

= The track balance (TRBAL) field, which contains a 2-byte binary 
number that indicates the remaining number of bytes on the current 
track • 

• The full disk address (FDAD-MEBCCHHR) field, which indicates the 
location of the current record. 

IOBAD=relexp 
specifies the address of an input/output block (lOB). If a pointer 
to the current lOB is not required, you may use this field for any 
purpose. 

The following parameters are not used by the EXCP routines but 
provide cataloging information about the data set. This information can 
be used later by access method routines that read or update the data 
set. 

RECFM=code 
specifies the record format of the data set. Record format codes 
are given in the supervisor and Data Management Macro Instructions 
publication. 

BFTEK={SIE} 
specifies the buffer technique as either simple or exchange. BFTEK 
bits 0 and 5 specify whether hierarchy 0 or hierarchy 1 is used to 
form the buffer pool. If HIARCHY={Oll} is omitted from the DCB, 
the buffer pool is formed in hierarchy o. 

92 System Programmer's Guide (Release 20.1) 



BFALN={F\D} 
specifies the word boundary alignment of each buffer as either 
fullword or doubleword. 

BUFL=absexp 
specifies the length in bytes of each buffer; the maximum length is 
32,767. 

BUFNO=absexp 
specifies the number of buffers assigned to the associated data 
set; the maximum number is 255. 

BUFCB=relexp 
specifies the address of a buffer pool control block, i.e., the 
8-byte field preceding the buffers in a buffer pool. 

DEVICE DEPENDENT PARAMETERS: 

DEVD=code 
specifies the device on which the data set may reside as one of the 
following codes. The codes are listed in order of descending space 
requirements for the data control block: 

Code 
DA 
TA 
PT 
PR 
PC 
RD 

Device 
Direct access 
Magnetic tape 
Paper tape 
Printer 
Card punch 
Card reader 

Note: If you do not wish to select a specific device until job set up 
time, you should specify the device type requiring the largest area. 

The following diagrams illustrate the device dependent portion of the 
data control block for each device type specified in the DEVD parameter, 
and for each data set organization specified in the DSORG parameter. 
Fields that correspond to device dependent parameters in addition to 
DEVD are indicated by the parameter name. For special services~ you may 
have to maintain the fields shown in parentheses. The special services 
are explained in the note that follows the diagram. 

Device dependent portion of data control block when DEVD=DA and 
DSORG=PS or po: 

DCB r-------T---------------------, 
Address + 4 \ Reservd\ I 

r-------J I 
\ I 

+ 8 I (FDAD - MBBCCHHR) I 
I I \ r-------T------------~ 

+12 I I DVTBL I Reserved I 
r-------+-------+-------------~ 

+16 \KEYLEN I DEVT I (TRBAL) I L _______ i _______ ~ _____________ J 

Note: For output data sets, the system uses the contents of the full 
disk address (FDAD-MBBCCHHR) field plus one to write a file mark when 
the data control block is closed, provided the track balance (TRBAL) 
field indicates that space is available. You must maintain the contents 
of these two fields yourself if the system is to write a file mark. 
OPEN will initialize DVTBL and DEVT. 

Execute Channel Program (EXCP) Macro Instruction 93 

• 



Device dependent portion of data control block when DEVD=DA and 
DSORG=IS or DA: 

DCB r-------T---------------------, 
Address +16 IKEYLEN I Reserved I L _______ ~ _____________________ J 

Device dependent portion of data control block when DEVD=TA and 
DSORG=PS: 

DCB r-----------------------------, 
Address +12 I BLKCT I 

~------T-------T-------T------~ 
+16 ITRTCH IReservdlDEN JResrvdl L ______ ~ _______ ~ _______ ~ ______ J 

Note: For output data sets, the system uses the contents of the block 
count (BLKCT) field to write the block count in trailer labels when the 
data control block is closed, or when the EOV macro instruction is 
issued. You must maintain the contents of this field yourself if the 
system is to write the correct block count. 

When using EXCP to process a tape data set open at a checkpoint, you 
must be careful to maintain the correct count; otherwise the system may 
position the data set incorrectly when restart occurs. 

If your system generation statements include the Dynamic Device 
Reconfiguration entry., this field must be maintained by you for 
repositioning. Also, your DCB macro instruction must include the 
REPOS=Y entry. 

Device dependent portion of data control block when DEVD=PT and 
DSORG=PS: 

DCB r------T----------------------, 
Address +16 leODE I Rese1~ed I l ______ ~ ______________________ J 

Device dependent portion of data control block when DEVD=PR and 
DSORG=PS: 

DCB r------T----------------------, 
Address +16 IPRTSP I Reserved I L ______ ~ ______________________ J 

Device dependent portion of data control block when DEVD=PC or RD and 
DSORG=PS: 

DCB r-----------T-----------------, 
Address +16 IMODE,STACK I Reserved I L ___________ ~ _________________ J 

The following parameters pertain to specific devices and may be 
specified only when the DEVD parameter is specified. 

KEYLEN=value 
specifies, for direct access devices, the length in bytes of the 
key of a physical record, with a maximum value of 255. When a 
block is read or written; the number of bytes transmitted is the 
key length plus the record length. 

94 system Programmer's Guide (Release 20.1) 



CODE=value 
specifies, for paper tape, the code in which records are punched as 
follows: 

Value 
I 
F 
B 
C 
A 
T 
N 

Code 
IBM BCD 
Friden 
Burroughs 
National Cash Register 
ASCII 
Teletype 
no conversion (format F records only) 

If this parameter is omitted, N is assumed. 

DEN=value 
specifies, for magnetic tape, the tape recording density in bits 
per inch as follows: 

r----------------------------------T-----------------------------------, 
I I Density I 
I V~lue t-----------------T-----------------i 
I I Model I Model I 
I I 2400 I 2400 I 
I I 7-track I 9-track I 
~----------------------------------+-----------------+-----------------~ 
I 0 I 200 I I 
I 1 I 556 I I 
I 2 I 800 I 800 I 
I 3 I I 1600 I L __________________________________ ~ _________________ ~ _________________ J 

If this parameter is omitted, the lowest density is assumed. 

TRTCH=value 
specifies, for 7-track magnetic tape, the tape recording technique 
as follows: 

Value 
C 

E 

T 

MODE=value 

Tape Recording Technigue 
Data conversion feature is available. 

Even parity is used. (If omitted, odd parity is 
assumed. ) 

BCDIC to EBCDIC translation is required. 

specifies, for a card reader or punch, the mode of operation. 
Either C (column binary mode) or E (EBCDIC code) may be specified. 

STACK=value 
specifies, for a card punch or card reader, the stacker bin to 
receive cards as either 1 or 2. 

PRTSP=value 
specifies, for a printer, the line spacing as either 0, 1, 2, or 3. 

Execute Channel Program (EXCP) Macro Instruction 95 

-



OPEN -- Initialize Data Control Block 

The OPEN macro instruction initializes one or more data control blocks 
so that their associated data sets can be processed. You must issue 
OPEN for all data control blocks that are to be used by your channel 
programs. (A dummy data set may not be opened for EXCP.) Some of the 
procedures performed when OPEN is executed are: 

• Construction of data extent block (DEB) '. 
• Transfer of information from DD statements and data set labels to 

data control block. 
• Verification or creation of standard labels. 
• Tape positioning. 
• Loading of programmer-written appendage routines. 

The three parameters of the OPEN macro instruction are: 

dcb-addr 

optj. 

specifies the address of the data control block to be initialized. 
(More than one data control block may be specified.) 

specifies the intended method of I/O processing of the data set. 
You may specify this parameter as either INPUT, RDBACK, or OUTPUT. 
For each of these, label processing when OPEN is executed is as 
follows: 

INPUT - Header labels are verified. 
RDBACK - Trailer labels are verified. 
OUTPUT - Header labels are created. 

If this parameter is omitted, INPUT is assumed. 

specifies the volume disposition that is to be provided when volume 
switching occurs. The operand values and meanings are as follows: 

REREAD 

LEAVE 

DISP 

Reposition the volume to process the data set again. 

No additional positioning is performed at end-of-volume 
processing. 

The disposition indicated on the DD statement is tested 
and appropriate positioning provided. This service is 
assumed if this operand is omitted and volume 
positioning is applicable. If there is no disposi·tion 
specified in the DD statement when this operand is 
specified, LEAVE is assumed. 

EXCP -- Execute Channel Program 

The EXCP macro instruction requests the initiation of the I/O operations 
of a channel program. You must issue EXCP whenever you want to execute 
one of your channel programs. The only parameter of the EXCP macro 
instruction is: 

iob-addrx 
specifies the address, or a register that contains the address of 
the input/output block of the channel program to be executed. 

96 system Programmer's Guide (Release 20.1) 



/ 

EOV -- End of Volume 

The EOV macro instruction identifies end-of-volume and end-of-data set 
conditions. For an end-of-volume condition, EOV causes switching of 
volumes and verification or creation of standard labels. For an 
end-of-data set condition, EOV causes your end-of-data set routine to be 
entered. Before processing trailer labels on a tape input data set, you 
must decrement the DCBBLKCT field. You issue EOV if switching of 
magnetic tape or direct access volumes is necessary, or if secondary 
allocation is to be performed for a direct access data set o~ened for 
output. 

For magnetic tape, you must issue EOV when either a tapemark is read 
or a reflective spot is written over. In these cases, bit settings in 
the 1-byte OFLGS field of the data contrql block determine the action to 
be taken when EOV is executed. Before issuing EOV for magnetic tape, 
you must make sure that appropriate bits are set in OFLGS. Bit 
positions 2,3,6, and 7 of OFLGS are used only by the system; you are 
concerned with bit positions 0,1,4, and 5. The use of these OFLGS bit 
positions is as follows: 

Bit 0 
indicates that a tape mark is to be written. 

Bit 1 
indicates that a backwards read was the last I/O operation. 

Bit 4 

Bit 5 

indicates that data sets of unlike attributes are to be 
concatenated. 

indicates that a tape mark has been read. 

If Bits 0 and 5 of OFLGS are both off when EOV is executed, the tape 
is spaced past a tapemark, and standard labels, if present, are verified 
on both the old and new volumes. The direction of spacing depends on 
Bit 1. If Bit 1 is off, the tape is spaced forward; if Bit 1 is on, the 
tape is backspaced. 

If Bit 0 is on when EOV is executed, a tapemark is written 
immediately'following the last data record of the data set, standard 
labels, if specified, are created on the old and the new volume. 

When issuing EOV for sequentially organized output data sets on 
direct access volumes, you can determine whether additional space has 
been obtained on the same or a different volume. You do this by 
checking the volume serial number in the unit control block (UCB) both 
before and after issuing EOV. 

The only parameter of the EOV macro instruction is: 

dcb-addrx 
specifies the address of the data control block that is opened for 
the data set. If ~his parameter is specified as (1), register 1 
must contain this address. 

Execute Channel Program (EXCP) Macro Instruction 97 

-



CLOSE -- Restore Data Control Block 

The CLOSE macro instruction restores one or more data control blocks so 
that processing of their associated data sets can be terminated. You 
must issue CLOSE for all data control blocks that were used by your 
channel programs. Some of the procedures performed when CLOSE is 
executed are: 

• Release of data extent block (DEB). 
• Removal of information transferred to data control block fields when 

OPEN was executed. 
• Verification or creation of standard labels. 
• Volume disposition. 
• Release of programmer-written appendage routines. 

The two parameters of the CLOSE macro instruction are: 

dcb-addr 

opt 

specifies the address of the data control block to be restored. 
More than one data control block may be specified. 

specifies the type of volume disposition intended for the data set. 
You may specify this parameter as either LEAVE or REREAD. The 
corresponding volume disposition when CLOSE is executed is as 
follows: 

LEAVE - Volume is positioned at logical end of data set. 
REREAD - Volume is positioned at logical beginning of data set. 
DISP - The disposition indicated on the DD statement is tested, 

and appropriate positioning is provided. This service is 
assumed if this operand is omitted and volume ~ositioning 
is applicable. If there is no disposition specified in 
the DD statement when this operand is specified, LEAVE is 
assumed. 

This parameter is ignored if specified for volumes other than 
magnetic tape or direct access. 

Note: When CLOSE is issued for data sets on magnetic tape volumes, 
labels are processed according to bit settings in the OFLGS field of the 
data control block. Before issuing CLOSE for magnetic tape, you must 
set the appropriate bits in OFLGS. The OFLGS bit positions that you are 
concerned with are listed in the EOV macro instruction description. 

CONTROL BLOCK FIELDS 

The fields of the input/output block, event control block, and data 
extent block are illustrated and explained here; the data control block 
fields have been described with the parameters of the DCB macro 
instruction in the section nEXCP Programming Specifications. n 

Input/Output Block Fields 

The input/output block is not automatically constructed by a macro 
instruction; it must be defined as a series of constants and must be on 
a fullword boundary. For unit record and tape devices, the input/output 
block is 32 bytes in length. For direct access, teleprocessing, and 
graphic devices, 8 additional bytes must be provided. 

In Figure 2, the shaded areas indicate fields in which you must 
specify information. The other fields are used by the system and must 
be defined as all zeros. You may not place information into these 
fields, but you may examine them. 

98 System Programmer's Guide (Release 20.1) 



....------- lOB Address 

0(0) 

4(4) ECB Code 

8(8) Flags 3 

12(C) 
All 
Devices 

16(10) 510 Code 

20( 14) Reserved 

24(18) 

28(1C) Error Counts 

32(20) Direct Access, Teleprocessing, and Graphic Devices 

Figure 2. Input/Output Block Format 

Flags 1 (1 byte) 
specifies the type of channel program. You must set bit positions 
0, 1, and 6. One bits in positions 0 and 1 indicate data chaining 
and command chaining, respectively. (If both data chaining and 
command chaining are specified, the system does not use error 
recovery routines except for the 2311, 2671, 1052, and 2150.) A 
one bit in position 6 indicates that the channel program is not 
related to any other channel program. Bit positions 2, 3, 4, 5, 
and 7 are used only by the system. 

Flags 2 (1 byte) 
is used only by the system. 

First Two sense Bytes (2 bytes) 
are placed into the input/output block by the systerr: when a unit 
check occurs. 

ECB Code (1 byte) 
indicates the first byte of the completion code for the channel 
program. The system places this code in the high order byte of the 
event control block when the channel program is posted complete. 
The completion codes and their meanings are listed under "Event 
Control Block Fields." 

ECB Address (3 bytes) 
specifies the address of the 4-byte event control block that you 
have provided. 

Flags 3 (1 byte) 
is used only by the system. 

Channel Status Word (7 bytes) 
indicates the low order seven bytes of the channel status word, 
which are placed into this field each time a channel end occurs. 

Execute Channel Program (EXCP) Macro Instruction 99 



SIO Code (1 byte) 
indicates, in the high-order four bits, the instruction length, and 
in the low-order four bits, the condition code for the SIO 
instruction that the system issues to start the channel program. 

Channel Program Address (3 bytes) 
specifies the starting address of the channel program to be 
executed. 

Reserved (1 byte) 
is used only by the system. 

DCB Address (3 bytes) 
specifies the address of the data control block of the data set to 
be read or written by the channel program. 

Reposition Modifier (1 byte) 
is used by the system for volume repositioning in error recovery 
procedures. 

Restart Address (3 bytes) 
is used by the system to indicate the starting address of a channel 
program that performs special functions for error recovery 
procedures. The system also uses this field in procedures for 
making request elements available, as explained under nError 
Recovery Procedures for Related Channel Programs. n 

Block Count Increment (2 bytes) 
specifies, for magnetic tape, the amount by which the block count 
(BLKCT) field in the device dependent portion of the data control 
block is to be incremented. You may alter these bytes at any time. 
For forward operations, these bytes should contain a binary 
positive integer (usually + 1); for backward operations, they 
should contain a binary negative integer. When these bytes are not 
used, all zeros must be specified. 

Error Counts (2 bytes) 
indicates the number of retries attempted during error recovery 
procedures. 

M (1 byte) 
Direct access devices: 
Extent entry in the data extent block that is associated with the 
channel program. (0 indicates the first extent; 1 indicates the 
second, etc.) 
Teleprocessing and graphic devices: 
The UCB index. 

BBCCHHR (7 bytes) 
specifies, for direct access devices, the seek address for the 
programmer's channel program. 

Event Control Block Fields 

You must define an event control block as a 4-byte area on a full word 
boundary. When the channel program has been completed, the input/output 
supervisor places a completion code containing status information into 
the event control block (Figure 3). Before examining this information, 
you must test for the setting of the nComplete Bit." If the complete 
bit is not on, and the problem program cannot perform other useful 
operations, you should issue a WAIT macro instruction that specifies the 
event control block. Under no circumstances may you construct a program 
loop that tests for the complete bit. 

100 System Programmer's Guide (Release 20.1) 



/ 

r----------.----------T------------------------------------------------, 
I WAIT I Complete I Remainder of Completion Code I 
I Bit=O I I I 
I I Bit=l I I L __________ ~ __________ ~ ________________________________________________ J 

o 1 2 31 

Figure 3. Event Control Block After posting of Completion Code 

WAIT Bit 
A one bit in this position indicates that the WAIT macro 
instruction has been issued, but that the channel program has not 
been completed. 

Complete Bit 
A one bit in this position indicates that the channel Frogram has 
been completed; if it has not been completed, a zero bit is in this 
position. 

~~Pletion Code 
-- This code, which includes the WAIT and Complete bits, may be one of 

the following 4-byte hexadecimal expressions: 

Code 
7FOOOOOO 

41000000 

42000000 

44000000 

48000000 

4FOOOOOO 

Data Extent Block Fields 

Interpretation 
Channel program has terminated without error. 

Channel program has terminated with permanent 
error. 

Channel program has terminated because a direct 
access extent address has been violated • 

Channel program has been intercepted because of 
permanent error associated with device end for 
previous request. You may reissue the 
intercepted request. 

Request element for channel program has been 
made available after it has been purged. 

Error recovery routines have been entered 
because of direct access error but are unable 
to read home address or record O. 

The data extent block is constructed by the system when an OPEN macro 
instruction is issued for the data control block. You may not modify 
the fields of the data extent block, but you may examine them. The Data_ 
Extent Block format and field description is contained in the System 
Control Block publication. 

Execute Channel Program (EXCP) Macro Instruction 101 

• 



Appendix: Restore and Purge Macro Instructions 

If you want to use the RESTORE or PURGE macro instruction, you must 
either add the macro definitions to the macrc-library (SYS1.MACLIB) or 
place them in a separate partitioned data set and concatenate this data 
set to the macro-library. This section contains the following: 

• The format of the macro instruction. 

• The Job Control and utility statements needed to add the macro 
definition to the library. 

• The macro definition to be added to the library. 

RESTORE MACRO INSTRUCTION 

This macro instruction is used to return purged request elements to the 
request queues. The format of this macro instruction is as follows: 

r------T-----------T---------------------------------------------------, 
I Name I Operation I Operand I 
~-----+-----------+---------------------------------------------------~ I I RESTORE I User Purge lOB Address I L ______ ~ __________ ~ ___________________________________________________ J 

The user purge lOB address is the address of a pointer to the first lOB 
address in a previously purged lOB list. It could be the DEEUSRPG field 
in the data extent block (see "SVC Purge Routine"). 

RESTORE Macro Definition 

tNAME 

& NAME 

.El 

MACRO 
RESTORE 
AIF 
IHBINNRA 
SVC 
MEXIT 
IHBERMAC 
MEND 

Control Statements Required 

tLIST 
('&LIST' EQ ").El 
tLIST 
17 

01,150 

LOAD REG 1 
ISSUE SVC FOR RESTORE 

LIST ADDR MISSING 

r----------------------------------------------------------------------, 
//johname JOB {parameters} 
//stepname EXEC PGM=IEBUPDTE,PARM=NEW 
//SYSPRINT DD SYSOUT=A 
//SYSUT2 DD DSNAME=SYS1.MACLIB,DISP=OLD 
//SYSIN DD DATA 
./ ADD NAME=RESTORE,LIST=ALL 

RESTORE Macro Definition 

./ ENDUP 
/* ______________________________________________________________________ J 

102 System Programmer's Guide (Release 20.1) 



PURGE MACRO INSTRUCTION 

The PURGE macro instruction is used to return request elements to the 
I/O supervisor inactive queue (next available). 

PURGE Macro Definition 

& NAME 

& NAME 

.El 

MACRO 
PURGE 
AIF 
IHBINNRA 
SVC 
MEXIT 
IHBERMAC 
MEND 

Control Statements Required 

&LIST 
('&LIST'EQ").E1 
&LIST 
16 

01,147 

LOAD REG 1 

LIST ADDR MISSING 

r----------------------------------------------------------------------, 
//jobname JOB {parameter} 
//stepname EXEC PGM=IEBUPDTE,PARM=NEW 
//SYSPRINT DD SYSOUT=A 
//SYSUT2 DD DSNAME=SYS1.MACLIB,DISP=OLD 
//SYSIN DD * 
./ ADD NAME=PURGE,LIST=ALL 

PURGE Macro Definition 

./ ENDUP 
/* ______________________________________________________________________ J 

r-------.------------T-------------------------------------------------, I Name I Operation I Operand , 
~-------+------------+-------------------------------------------------1 
I symbol' PURGE I User purge Parameter List , L _______ ~ ____________ ~ _________________________________________________ J 

The purge parameter list is constructed in the user's program area. 
Depending on the options specified in the PURGE parameter list, elements 
can be purged from 

1. The asynchronous exit queue of the task supervisor. 

2. The request blocks chained to the TCB. 

3. The I/O supervisor logical channel queues. 

Execute Channel Program (EXCP) Macro Instruction 103 

• 



You can bypass the purge of the RBs chained to the TeB by setting bit 
5 of the option byte. The parameter list is constructed prier to 
issuing the PURGE macro instruction; this list must fall on a full word 

I boundary. It is either a three-word list or, if bit 4 of the options 
byte in Word 1 equals one (1), a four-word list. It is constructed as 
follows: 

Word 1 

Byte 1 
(options byte) 

r---------------------------------------------------------------------, 
IBit 0 - Specified DEB or DEB chain , 
I =0 - Purge request elements associated with complete DEB chain, 
, starting at the DEB specified in bytes 2, 3, and 4 of , 
I word 1. , 
I =1 - Purge only the request elements associated with the DEB , 
I specified by bytes 2, 3, and 4 of word 1. , 
~----------------------------------------------------------------------~ 
IBit 1 - POST request purged or ignore posting. I 
I =0 - Do not POST the purged requests. I 
I =1 - POST the purge requests, code = X'48'. , 
~---------------------------------------------------------------------~ 
,Bit 2 - HALT I/O or quiesce active requests. I 
I =0 - Allow the active requests to quiesce. , 
I =1 - HALT the I/O operations. (The HALT I/O is simulated if , 
I the operation is a SEEK. I 
~---------------------------------------------------------------------~ 
IBit 3 - Purge all or only related requests. I 
I =0 - Purge all requests. , 
I =1 - Purge only related requests. I 
~----------------------------------------------------------------------~ 
IBit 4 - Normal purge or list purge. , 
I =0 - Normal purge. I 
I =1 - Purge TeB list. , 
~----------------------------------------------------------------------i 
IBit 5 - Purge all queues or bypass RB purge. I 
I =0 - Purge AEQ, RB, and I/O Supervisor logical channel queues. I 
I =1 - Purge only the I/O supervisor logical channel queue(s) I 
I and AEQ. I 
~---------------------------------------------------------------------~ 
IBit 6 - Purge by TeB or DEB I 
I =0 - Purge by DEB I 
I =1 - Purge by TeB , 
I I 
I Note: This bit must be zero in order to honor bit o. , 
I If this bit is one, all requests associated with the TeB , 
, are purged, and bit 0 is ignored. , 
~----------------------------------------------------------------------~ 
IBit 7 - <Spare) , L ______________________________________________________________________ J 

Bytes 2, 3, and 4 
DEB address - not required if purging by TeB. 

Word 2 

Byte 1 
completion code 

Bytes 2, 3, and 4 
TeE address - if none, the current TeB is used. 

104 System Programmer's Guide (Release 20.1) 



Word 3 

Byte 1 
Quiesce indicator field. It will indicate X'Ol' if one or 
more requests are quiescing. 

Bytes 2, 3, and 4 
Address of the initial link field for chaining lOBs that are 
purged. The initial link field can be the user purge field in 
the DEE (DEBUSRPG) or any area you select. The initial link 
field points to the first lOB in the chain. At the completion 
of purge, the contents of word 3 are unpredictable. No 
chaining is done when TCB with HALT I/O option is specified. 

If the lOB restart field (IOBRESTR) is used as a link field, 
the last one will contain X'FFFFFF' in its three low-order 
bytes. 

The following figure below shows the lOB chain. 

Chaining lOBs 

r----T-----------, r----------------, 
I I I I DEBUSRPG of DEB, I 
I I 1-1 - ..... ~I or other initial 
I I I I link field I L ____ .L _________ -J L ______________ --I 

Word 3 

lOB 
r----------------, 

I I 
IIOBRESTR I I _________ -J I 
L ________________ J 

lOB 
r----------------, 
I I I 
IOBRESTR I I 

I FFFFFF I I 
~ __________ J I 
L ________________ J 

lOB Chain for PURGE 

Execute Channel Program (EXCP) Macro Instruction 105 

• 



Word 4 

Byte 1 
(flag byte) 

r----------------------------------------------------------------------, 
IBit 1 - Purge or wait flag. I 
I =0 - Purge entry. I 
I =1 - Wait entry. I 
~----------------------------------------------------------------------~ 
IBit 2 - Wait flag. I 
I =0 - Return to caller before waiting. I 
I =1 - Perform purge and wait operations, and do not return to I 
I caller. I 
~---------------------------------------------------------------------~ 
IBits 3-8 - Reserved. I L ______________________________________________________________________ ~ 

Bytes 2,3, and 4 
Address of the QUIESCE I/O parameter list (QPL)Q This field 
points to a list of TCBs that are to be purged. The format of 
the list is shown below. 

r-----T---------------, r-----T---------------, 
I I I 11 12 I 
I II I-----II~~I count I Reserved I 
I I I I Fieldl I L-____ ~ _______________ J • _____ + _______________ ~ 

Word 4 15 16 I 
I 0 I Chain Field I 
J I I 
t-----f---------------~ 
19 110 I 

QPL I Address of TCEI 
I Flagsl I L _____ ~ _____ ~ _________ J 

r-----T---------------, 
5+n 16+n I 

j 0 I Chain Field I 
I I I 
~-----t---------------~ 
j9+n 110+n I 
IQPL I Address of TCBI 
jFlagsl I L _____ ~ _______________ ~ 

n = 8x(# of TCBs to be purged -1) 

1 Count field. 

A temporary count field used to keep track of the number of TCBs 
that have been purged. 

6 Chain Field. 

Address of the initial link field for chaining lOBs that are 
purged. See the illustration for chaining lOBs in this section. 

106 System Programmer's Guide (Release 20.1) 



7 QPL Flags - Last entry or current entry. 

Bit 0 - Last entry flag. 
=0 - More entries follow. 
=1 - Last entry. 

Bit 1 - CUrrent entry flag. 
=0 - Not currentn 
=1 - CUrrent. 

Bits 2-8 - Reserved. 

8 TCB Address. 

Address of the TCB to be purged. 

Execute Channel Program (EXCP) Macro Instruction 107 

• 



A TLAS--Assign an Alternate Track and Copy Data From the 
Alternate Track 

A program that uses the EXCP macro instruction for input and output may 
use the ATLAS macro instruction, during the execution of the program, to 
obtain an alternate track and to copy a defective track onto the 
alternate track. With the use of ATLAS, the program can recover from 
permanent (hard) errors encountered in the execution of the following 
types of I/O commands: 

• Search ID. 

• Write. 
(The error condition must be confirmed during the execution of the 
channel program by a CCW that checks the data written.) 

• Read Count. 

Errors in the CCHHR part of the count area can be recovered from 
unless the record is the Home Address or Record Zero. 

Errors in the KDD part of the count area cannot be recovered from 
unless the user has identified the defective record. 

Your DCB must include the DCBRECFM field and the field must show 
whether the data set is in the track overflow format. If it is, 
recovery from errors in last records on tracks depends on your 
identifying the track overflow record segments. 

Recovery takes the form of obtaining an alternate good 
copying the defective track onto the good alternate one. 
re-execution of the channel program by ATLAS can correct 
user should examine, and if necessary replace, defective 
subsequent job if the data set is to be processed again. 

track and 
Unless a 

the defect, the 
records in a 

ATLAS MACRO INSTRUCTION 

The format of the macro instruction is: 

r--------T---------T---------------------------------------------------, 
I Name I Operation I Operands I 
r--------+---------+---------------------------------------------------1 
I I I I address g I 
I (symbol) I ATLAS I PARMADR= ,CHANPRG= I 
I I I (register) NR I 
I I I R! YES! I I I I "CNTPTR=, WRITS = I 
I I I F NO I L ________ ~ _________ ~ ___________________________________________________ J 

PARMA DR 
Address of a parameter address list of the following format: 

r--------------------------------------------------------------, 

C 
Address of the parameter address list I L-______________________________________________________________ J 

r---------------------------------------------------------------, 
+0 Address of the lOB for the channel program that I 

I encountered the error I 
~------------------------~--------------------------------------; I +4 Main storage address of the count area field ! L-______________________________________________________________ J 

108 System Programmer's Guide (Release 20.1) 



The count area field contains the CCHHRKDD of a defective 
record or the CCHH of a track that is to be copied. 

address - Address is given as the symbolic label of the address 
list. 

(register) - Address is given as the number of a general register 
(1-12) that contains the address of the list. 

CHANPRG 
Condition of the channel program that encountered the error. 

R - Channel program may be re-executed by ATLAS. Before permitting 
re-execution of the channel program by ATLAS, you must reset 
the error indications of the previous execution fields in the 
DCBIFLGS. (see the example of the use of ATLAS below.) 

NR - Channel program may not be re-executed. 

If this parameter is omitted, R is assumed. 

,CNTPTR 
Contents of the count area field. 

P - Part of the count area - the CCHH address of the track to be 
copied. 

F - Full count area - CCHHRKDD count of the record found defective .• 

If this parameter is omitted, P is assumed. 

,WRITS 
Track OVerflow segment Identification. 

If your data set is in the track overflow format, this 
identification determines recovery from errors in last records on 
tracks. 

YES - If this is the last record on the track, it is a segment 
other than the last of a track overflow record. 

NO - If this is the last record on the track. it is the last or 
only segment of a track overflow record. 

If this parameter is omitted, it is assumed that it cannot be 
established whether a last record is a segment of an overflow 
record. 

USE OF ATLAS 

If a channel program encounters a unit check condition (shown in the 
CSW) in its execution. the I/O supervisor program will place the Sense 
bytes in the lOB. ATLAS can be used to recover from Sense conditions 
shown by the following bit settings: 

IOBSENSO X'OS' 

lOBS ENS 1 X'SO' 

IOBSENS1 X· 02' 

Data Check (Except in the Count Area) 

Data Check in the Count Area 

Missing Address Marker 
(But see the following for combinations of this 
bit setting for which ATLAS is powerless.) 

However, defects in the Horne Address record or the Record Zero record 
cannot be recovered from through the use of ATLAS. These conditions are 
shown by: 

Execute Channel Program (EXCP) Macro Instruction 109 

• 



IOBSENSl X'02' and IOBSENSO X'Ol' - Horne Address Defect. 

IOBSENSl X· OA' - Record Zero Defect, or, 
Horne Address Cannot Be Located. 

Also, before using ATLAS, you must reset error indications as follows: 

NI DCBIFLGS,X • 3 F' Reset the DCBIFLGS error indications. 

The ATLAS program will attempt to find a good alternate track and 
will attempt to copy the defective track onto the good track, including 
all error conditions in either key or data areas. The error conditions 
may be rectified by re-executing the channel program or through the use 
of the IEHATLAS utility program in a subsequent step. 

The following illustrates the use of the ATLAS macro instruction. 

EXCP 
WAIT 
TM 
BO 

TM 
BL 
TM 
BO 
TM 
BO 
TM 
BO 

MYIOB 
MYECB 
MYECB,X'20' 
NEXT 

IOBCSw+3, X, 02' 
OTHER 
IOBSENSO" X' 08' 
ATLAS GO 
IOBSENS1,X'80' 
ATLAS GO 
IOBSENS1,X'OA' 
OTHER 

* 

TEST FOR I/O ERROR 
NO, SUCCESSFUL, GO TO ANOTHER 
ROUTINE 
UNIT CHECK 
NO, DO OTHER ERROR PROCESSING 
DATA CHECK 
YES, VALID ERROR 
DATA CHECK IN COUNT 
YES, VALID ERROR 
~SSING ADDRESS MARKER 
YES, ATLAS CANNOT HANDLE ERROR 
DO OTHER ERROR PROCESSING 

ATLASGO EQU 
NI 
ATLAS 

DCB1FLGS,X'3F' RESET ERROR INDICATORS 
PARMADR=THERE,CHANPRG=R 

OPERATION OF THE ATLAS PROGRAM 

The ATLAS program (SVC 86): 

• Establishes the availability and address of the next alternate track 
from the format 4 OSCB of the VTOC. 

e Brings all COW!t fields from the defective track into main storage 
to establish the description of the track. 

• Initializes the alternate track. (Write Home Address, Write Record 
Zero. ) 

• Brings the key and data areas of each record into main storage, one 
at a time, and combines them with their new count area to write the 
complete record onto the alternate track • 

• When the copying is finished, chains the alternate to the defective 
track and updates the VTOC. 

RETURN CODES 

When control returns to the user, he will find one of the following 
decimal return codes in register 15: (Note that for return codes 0, 36, 
40, and 44 the contents of register 0 may be significant.) 

110 System Programmer's Guide (Release 20.1) 



Decimal 
Return 
Code 

o - Successful completion. 

Meaning 

Key and Data areas have been copied from the defective track onto 
a good alternate one. The only error encountered was in the 
record identified by the user's CCHHRKDD value. 

If the channel program is re-executable, it has been successfully 
re-executed. 

4 - This device type (2301 drum, 2303 drum) does not have alternate 
tracks that can be assigned by programming,. 

8 - All alternate tracks for the device have been assigned. 

12 - A request for storage (GETMAIN macro instruction) could not be 
satisfied. 

16 - All attempts to initialize and transfer data to an alternate 
track fai'led. The number of attempts made is equal to 10% of the 
assigned alternates for the device. 

20 - The type of error shown by the Sense byte cannot be handled 
through the use of the ATLAS macro instruction. The condition is 
other than a data check (in the count or data areas) or a missing 
address marker. 

24 - The Format 4 OSCE of the VTOC cannot be read, therefore alternate 
track information is not available to ATLAS. 

28 - The record specified by the user was the format 4 DseE and it 
could not be read. 

32 - An error found in count area of last record on the track cannot 
be handled because Last-record-on-track identification is not 
supplied. 

36 - An error was encountered reading or writing the Home Address 
record or Record Zero. No error recovery has taken place. 
If register 0 contains X'Ol 00 00 00', the defect is in record 
zero. 

40 - Successful completion. 
Key and data areas have been copied from the defective track onto 
a good alternate one. However" the alternate track may have 
records with defective key or data areas. Register 0 identifies 
the first three found defective as follows: 

r--------, 
In R R R I L ________ -J 

n - Number of record numbers that follow (0, 1, 2, or 3). 

R - The number of the record found defective but copied anyhow. 

If the channel program is re-executable., it has been successfully 
re-executed. 

44 - Error/Errors encountered and no alternate track has been 
assigned. The return parameter register (RO) will contain the R 
of a maximum of three error records. 

Execute Channel Program (EXCP) Macro Instruction 111 



Error Conditions that return this code are: 

1. ATLAS received an error indication for a record with a data 
length in the count field of zero. Recovery was not possible 
because a distinction cannot be made between an EOF record 
and an invalid data length. 

2.. An error occurred while reading the count field of a record 
and the KDD (key length-data length) was found to be 
defective. 

3. More than three records on the specified track contained 
errors in their count fields .• 

48 - No errors found on the track, no alternate assigned. ATLAS will 
not assign an alternate unless a track has at least one defective 
record. 

52 - I/O error in re-executing user's channel program. 
A good alternate is chained to the defective track and data has 
been transferred. The user's control blocks will give indication 
of the error condition causing failure in re-execution of his 
channel program. 

56- The DCB reflects a track overflow data set but the UCB device 
type shows that the device does not support track overflow. 

60 - The CCHH of the user specified count area is not within the 
extents of his data set. 

Figures ATLAS 1 and ATLAS 2 summarize the return codes that reflect 
track error conditions by error location. 

Area in Error 

Record in Error Count Area 
Key Area Data Area 

CCHHR KDD 

Record r (r;' 0) 

Not Last on Track 0 44 40 

WRITS=YES 0 44 40 
Last 
on WRITS=NO 0 44 40 
Track 

Omitted* 32 44 40 

Record Zero 

36 36 36 

Home Address 

36 

* Omitted and the Data Set is in the Track Overflow Format. 

Figure ATLAS 1. Error Locations and Return Codes if CCHH is in the 
count Area Field 

112 system Programmer's Guide (Release 20.1) 

40 

40 

40 

40 

36 



Area in Error 

Record in Error Count Area 
Key Area Data Area 

CCHHR KDD 

Record n (n=R in CCHHRKDD) 

Not Last on Track 0 0 0 0 

WRfTS=YES 0 0 0 0 
Last 
on WRfTS=NO 0 0 0 0 
Track 

Omitted * 32 32 0 0 

Record m (m,," R in CCHHB.KDD) 

Not Last on Track 0 44 40 40 

WRITS=YES 0 44 40 40 
Last 
on WRfTS=NO 0 44 40 40 
Track 

Omitted * 32 44 40 40 

Record Zero 

36 36 36 36 

Home Address 

36 

* Omitted and the Data Set is in the Track Overflow Format. 

Figure ATLAS 2. Error Locations and Return Codes if CCHHRKDD is in the 
Count Area Field 

Execute Channel Program (EXCP) Macro Instruction 113 



114 System Programmer's Guide (Release 20.1) 



Execute Direct Access Program 
(XDAP) Macro Instruction 

This chapter explains what the Execute 
Direct Access Program (XDAP) macro 
instruction does and how you can use it. 
The control block generated when XDAP is 
issued and the macro instructions used with 
XDAP are also discussed. 

The XDAP macro instruction provides you 
with a means of reading. verifying, or 
updating blocks on direct access volumes 
without using an access method and without 
writing your own channel program. since 
most of the specifications for XDAP are 
similar to those for the Execute Channel 
program (EXCP) macro instruction. it is 
recommended that you be familiar with the 
"EXCP Macro l'nstructi on" chapter of this 
publication, as well as with the 
information contained in the required 
publication. 

PREREQUISITE PUBLICATION 

The IBM System/360 Operating System: 
supervisor and Data Management Services 
publication (GC28-6646) explains the 
standard procedures for I/O processing 
under the operating system. 

Execute Direct Access Program (XDAP) Macro Instruction 115 

• 



Execute Direct Access Program (XDAP) Macro Instruction 

Execute Direct Access Program (XDAP) is a roacro instruction of 
System/360 Operating System that you may use to read, verify, or update 
a block on a direct access volume. If you are not using the standard 
IBM data access methods, you can, by issuing XDAP, generate the control 
information and channel program necessary for reading or updating the 
records of a data set. 

You cannot use XDAP to add blocks to a data set, but you can use it 
to change the keys of existing blocks. Any block configuration and any 
data set organization can be read or updated. 

Although the use of XDAP requires much less main storage s~ace than 
do the standard access methods, it does not provide many of the control 
program services that are included in the access methods. For example, 
when XDAP is issued, the system does not block or deblock records and 
does not verify block length. 

To issue XDAP, you must provide the actual device address of the 
track containing the block to be processed. You must also provide 
either the block identification or the key of the block, and specify 
which of these is to be used to locate the block. If a block is located 
by identification, both the key and data portions of the block may be 
read or updated. If a block is located by key, only the data portion 
can be processed. 

Requirements for Execution of Direct-Access Program 

Before issuing the XDAP macro instruction, you must issue a DCB macro 
instruction, which produces a data control block (DCB) for the data set 
to be read or updated. You must also issue an OPEN macro instruction, 
which initializes the data control block and produces a data extent 
block (DEB). 

When the XDAP macro instruction is issued, another control block, 
containing both control information and executable code, is generated. 
This control block may be logically divided into three sections: 

• An event control block (ECB), which is supplied with a completion 
code each time the direct access channel program is terrrinated. 

• An input/output block (lOB), which contains information about the 
direct access channel program. 

• A direct access channel program, which consists of three channel 
command words <CCWs). The type of channel program generated depends 
on specifications in the parameters of the XDAP macro instruction. 

After this XDAP control block is constructed, the direct access channel 
program is executed. A block is located by either its actual address or 
its key, and is either read or updated. 

When the channel program has terminated, a completion code is placed 
into the event control block. After issuing XDAP, you should therefore 
issue a WAIT macro instruction specifying the event control block to 
determine whether the direct access program has terminated. If volume 
switching is necessary, you must issue an EOV macro instruction. When 
processing of the data set has been completed, you must issue a CLOSE 
macrO instruction to restore the data control block. 

116 system Programmer's Guide (Release- 20.1) 



XDAP Programming Specifications 

MACRO INSTRUCTIONS 

When you are using the XDAP macro instruction, you must also issue DCB, 
OPEN, CLOSE, and, in some cases, the EOV macro instruction. The 
parameters of the XDAP macro instruction are listed and described here. 
For the other required macro instructions, special requirements or 
options are explained, but you should refer to the nEXCP Macro 
Instructionn section of this publication for listings of their 
parameters. 

DCB -- Define Data Control Block 

The EXCP form of the DCB macro instruction produces a data control block 
that can be used with the XDAP macro instruction. You must issue a DCB 
macro instruction for each data set to be read or updated by the direct 
access channel program. The nEXCP Macro Instructionn section of this 
publication contains a diagram of the data control block, as well as a 
listing of the parameters of the DCB macro instruction. 

OPEN -- Initialize Data Control Block 

The OPEN macro instruction initializes one or more data control blocks 
so that their associated data sets can be processed. You must issue 
OPEN for all data control blocks that are to be used by the direct 
access program. Some of the procedures performed when OPEN is executed 
are: 

• Construction of data extent block (DEB). 

• Transfer of information from DD statements and data set labels to 
data control block. 

• Verification or creation of standard labels. 

• Loading of programmer-written appendage routines. 

The two parameters of the OPEN macro instruction are the addressees) 
of the data control block(s) to be initialized, and the intended method 
of I/O processing of the data set. The method of processing may be 
specified as either INPUT or OUTPUT; however, if neither is specified, 
INPUT is assumed. 

XDAP -- Execute Direct Access Program 

The XDAP macro instruction produces the XDAP control block (i.e., the 
ECB, lOB, and channel program) and executes the direct access channel 
program. The format of the XDAP macro instruction is: 

r----------T----------------------------------------------------------, 
I Operation I Operand I 
r-----------t----------------------------------------------------------~ 
I XDAP I ecb-symbol,type-{RIWIV}{IIK},dcb-addr,area-addr I 
I I ,length-value,[(key-addr,keylength-value)],blkref-addr I 

I I I I sector-addr I L ___________ ~ __________________________________________________________ J 

ecb-symbol 
specifies the symbolic name to be assigned to the XDAP control 
block. 

Execute Direct Access Program (XDAP) Macro Instruction 117 

.. 



type-{RIWIV}{IIK} 
specifies the type of I/O operation intended for the data set and 
the method by which blocks of the data set are to be located. 

The codes and their meanings are as follows: 

dcb-addr 

R - Read a block. 
W - Write a block. 
V - Verify contents of a block but do not transfer data. 
I - Locate a block by identification. (The key portion, if 

present, and the data portion of the block are read or 
written. ) 

K - Locate a block by key. (Only the data portion of the 
block is read or written.) 

specifies the address of the data control block of the data set. 

area-addr 
specifies the address of an input or output area for a block of the 
data set. 

length -va lue 
specifies the number of bytes to be transferred to or from the 
input or output area. If blocks are to be located by 
identification and the data set contains keys, the value must 
include the length of the key. The maximum number of bytes 
transferred is 32767. 

key-addr 
specifies, when blocks are to be located by key, the address of a 
main storage field that contains the key of a block to be read or 
overwritten. 

keylength-value 
specifies, when blocks are to be located by key, the length of the 
key. The maximum length is 255 bytes. 

blkref-addr 
specifies the address of a main storage field containing the actual 
device address of the track containing the block to be located. 
When blocks are to be located by key, this field is seven bytes in 
length; when blocks are to be located by identification i an eighth 
byte indicating block identification must be included in this 
field. (The actual address of a block is in the form MBBCCHHR, 
where M indicates which extent entry in the data extent block is 
associated with the direct access program; BB indicates the bin 
number of direct access volume; CC indicates the cylinder address; 
HH indicates the actual track address; and R indicates the block 
identification.) 

sector-addr 
specifies the address of a one-byte field containing a sector 
value. The sector-address parameter is used for rotational 
position sensing (RPS> devices only. When the parameter is coded, 
a set-sector CCW (using the sector value indicated by the data 
address field) precedes the Search-ID-Equal command in the channel 
program. The sector-address parameter is ignored if the type 
parameter is coded as RK, WK, or VK. or is omitted in the execute 
form of the XDAP macro instruction. 
Note: No validity check is made on either the address or the 
sector value when the XDAP macro is issued. However, a unit 
exception interrupt will occur during the channel program execution 
if the sector value is larger than the maximum for the device or if 
the macro is issued against a device without RPS. 

118 system Programmer's Guide (Release 20.1) 



EOV -- End of Volume 

The EOV macro instruction identifies end-of-volume and end-of-data set 
conditions. For an end-of-volume condition, EOV causes switching of 
volumes and verification or creation of standard labels. For an 
end-of-data set condition, EOV causes your end-of-data set routine to be 
entered. When using XDAP, you issue EOV if switching of direct access 
volumes is necessary, or if secondary allocation is to be performed for 
a direct access data set opened for output. 

The only parameter of the EOV macro instruction is the address of the 
data control block of the data set. 

CLOSEo-- Restore Data Control Block 

The CLOSE macro instruction restores one or more data control blocks so 
that processing of their associated data sets can be terminated. You 
must issue CLOSE for all data sets that were used by the direct access 
channel program. Some of the procedures performed when CLOSE is 
executed are: 

• Release of data extent block (DEB). 
• Removal of information transferred to data control block fields when 

OPEN was executed. 
• Verification or creation of standard labels. 
• Release of programmer-written appendage routines. 

The only parameter of the CLOSE macro instruction is the address of 
the data control block to be restored. (More than one data control 
block may be specified.) 

THE XDAP CONTROL BLOCK 

The three portions of the control block generated during execution of 
the XDAP macro instruction are described here. 

Event Control Block (ECB) 

The event control block begins on a full word boundary and occupies the 
first 4 bytes of the XDAP control block. Each time the direct access 
channel program terminates, the input/output supervisor places a 
completion code containing status information into the event control 
block (Figure 4). Before examining this information, you must test for 
the setting of the "Complete Bit" by issuing a WAIT macro instruction 
specifying the event control block. 

r-------'-------T------------------T------------------------------------, 
I WAIT Bit=O I Complete Bit=l I Remainder of Completion Code I L ______________ ~ __________________ ~ ___________________________________ J 

o 1 2 31 

Figure 4. Event Control Block After Posting of Completion Code 

WAIT Bit 
A one bit in this position indicates that the WAIT macro 
instruction has been issued, but that the direct access channel 
program has not been completed. 

Complete Bit 
A one bit in this position indicates that the channel program has 
been completed; if it has not been completed, a zero bit is in this 
position. 

Execute Direct Access Program (XDAP) Macro Instruction 119 

• 



completion Code 
This code, which includes the WAIT and Complete bits, may be one of 
the following 4-byte hexadecimal expressions: 

Code 
7FOOOOOO 

41000000 

42000000 

44000000 

48000000 

4FOOOOOO 

Input/Output Block (lOB) 

Interpretation 
Direct access program has terminated without 
error. 

Direct access program has terminated with 
permanent error. 

Direct access program has terminated because a 
direct access extent address has been violated. 

Channel program has been intercepted because of 
permanent error associated with device end for 
previous request. You may reissue the 
intercepted request. 

Req,uest element for channel program has been 
made available after it has been purged. 

Error recovery routines have been entered 
because of direct access error but are unable 
to read home address or record Ou 

The input/output block is 40 bytes in length and immediately follows the 
event control block. The section "EXCP Macro Instruction" of this. 
publication contains a diagram of the input/output block. The only 
fields with which the user of XDAP is concerned are the "First Two Sense 
Bytes" and "Channel Status Word" fields. You may wish to examine these 
fields when a unit check condition or an I/O interruption occurs. 

Direct Access Channel Program 

The direct access channel program is 24 bytes in length and immediately 
follows the input/output block. Depending on the type of I/O operation 
specified in the XDAP macro instruction, one of four channel programs 
may be generated. The three channel command words for each of the four 
possible channel programs are shown in Figure 5. 

120 System Programmer's Guide (Release 20.1) 



r--------------------------T-----~------------------------------------, 
I Type of I/O Operation I CCW I Command Code \ 
r--------------------------+-----+-------------------------------------~ 
I Read by Identification \ 1 I Search ID Equal I 
I \ 2 I Transfer in Channel \ 
I Verify by Identification1 \ 3 \ Read Key and Data \ 
t--------------------------+-----+-------------------------------------~ 
\ Read by Key I 1 I Search Key Equal \ 
I \ 2 I Transfer in Channel I 
I Verify by Key1 I 3 I Read Data I 
r--------------------------+-----+-------------------------------------~ 
I \ 1 I Search ID Equal I 
I Write by Identification I 2 I Transfer in Channel I 
I I 3 I Write Key and Data I 
t--------------------------+-----+-------------------------------------~ 
I I 1 I Search Key Equal I 
I write by Key I 2 I Transfer in Channel I 
I I 3 I Write Data I 
r--------------------------~-----~------------------------------------~ I 1For verifying operations, the third CCW is flagged to suppress the I 
I transfer of information to main storage. \ L ______________________________________________________________________ J 

Figure 5. The XDAP Channel Programs 

XDAP Options 

CONVERSION OF RELATIVE TRACK ADDRESS TO ACTUAL ADDRESS 

I To issue XDAP for device without the rotational position sensing feature 
(RPS>, you must provide the actual device address of the track 
containing the block to be processed. If you know only the relative 
track address, you can convert it to the actual address by using a 
resident system routine. The entry point to this conversion routine is 
labeled IECPCNVT. The address of the entry point is in the 
communication vector table (CVT). The address of the CVT is in location 
16. (The CVT macro instruction defines the symbolic names of all fields 
in the CVT. The macro definition and how to add it to the macro-library 
are in the Appendix of this chapter.) 

I For devices without RPS, the conversion routine does all its work in 
general registers. You must load registers 0, 1, 2, 14, and 15 with 
input to the routine. Register usage is as follows: 

Register 
o 

1 

2 

Use 
Must be loaded with a 4-byte value Of the form 
TTRN, where TT is the number of the track 
relative to the beginning of the data set, R is 
the identification of the block on that track, 
and N is the concatenation number of the data 
set. (0 indicates the first or only data set 
in the concatenation, 1 indicates the second, 
etc. ) 

Must be loaded with the address of the data 
extent block (DEB) of the data set. 

Must be loaded with the address of an 8-byte 
area that is to receive the actual address of 
the block to be processed. The converted 
address is of the form MBBCCHHR, where M 
indicates which extent entry in the data extent 
block is associated with the direct access 

Execute Direct Access Program (XDAP) Macro Instruction 121 

• 



3-8 

9-13 

14 

15 

program (0 indicates the first extent, 1 
indicates the second, etc.); BB indicates the 
bin number of the direct access volume; CC 
indicates the cylinder address; HH indicates 
the actual track address; and R indicates the 
block identi ficat ion .• 

Are not used by the conversion routine. 

Are used by the conversion routine and are not 
restored. 

Must be loaded with the address to which 
control is to be returned after execution of 
the conversion routine. 

Is used by the conversion routine as a base 
register and must be loaded with the address at 
which the conversion routine is to receive 
control. 

CONVERSION OF RELATIVE SECTOR ADDRESS TO ACTUAL ADDRESS 

To issue XDAP for RPS devices, you must provide the actual device 
address of the sector containing the block to be processed. If you know 
only the relative sector address, you can convert it to the actual 
address by using a resident system routine. For RPS devices, the entry 
point to the conversion routine is labeled IECSCR01. The address of the 
entry point is in the CVT, and the address of the CVT is in location 16. 

For RPS devices, the conversion routine does all its work in general 
registers. You must load registers 0, 1, 2, 14, and 15 with input to 
the routine. Register usage is as follows: 

122 system Programmer's Guide (Release 20.1) 



/ 

Register 

o 

1 

2 

3- 8, 12, 13 

9-11 

14 

15 

APPENDAGES 

For fixed length records, register 0 must be 
loaded with a 4-byte value of the form DDKR, 
where DD is a 2-byte field containing the 
physical block size, K is a 1-byte field 
containing the key length, and R is the record 
number with an unknown sector value. For 
variable length records, register 0 must be 
loaded with a 4-byte value in the form of BBIR, 
where BB is a 2-byte field containing the total 
number of key and data bytes up to, but not 
including the target record, I is a 1-byte 
field containing the record number with an 
unknown sector value. The high order bit of 
register 0 must be turned on to indicate 
variable length records. 

Not used by the sector convert routine. 

Must be loaded with a 4-byte field in which the 
first byte is the UCB device type code for the 
device (obtainable from UCB+19), and the 
remaining three bytes are the address of a 
1-byte area that is to receive the sector 
value. 

Not used. 

Used by the convert routine and are not saved 
or restored. 

Must be loaded with the address to which 
control is to be returned after execution of 
the sector conversion routine. 

Used by the conversion routine as a base 
register and must be loaded with the address of 
the entry point to the conversion routine. 

For additional control over 1/0 operations, you may write appendages, 
which must be entered into the SVC library. Descriptions of these 
routines and their coding specifications are contained in the "EXCP 
Macro Instruction" section of this publication. 

L- AND E-FORMS OF XDAP MACRO INSTRUCTION 

You may use the L-form of the XDAP macro instruction for a macro 
expansion consisting of only a parameter list, or the E-form for a macro 
expansion consisting of only executable instructions. The L- and 
E-forms are described in the IBM System/360 Operating system: 
supervisor and Data Management Services publication, GC28-6646 and the 
IBM System/360 Operating System: supervisor and Data Management Macro 
Instructions publication, GC28-6647. 

Note: The BLKREF parameter is ignored by the ilL" form of the XDAP macro 
instruction. The field may be supplied in the E-form of the macro 
instruction or moved into the lOB by you. 

Execute Direct Access Program (XDAP) Macro Instruction 123 

• 



Appendix: CVT Macro Instruction 

If you want to use the CVT macro instruction, you must add the macro 
definition to the macro-library (SYS1.MACLIB). This section contains 
the following: 

• The format of the CVT macro instruction • 

• The Job Control and Utility statements needed to add the macro 
definition to the library. 

Format of the CVT Macro Instruction 

This macro instruction defines the symbolic names of all fields in 
the communication vector table (CVT). When coding this macro 
instruction, you must precede it with a DSECT statement. The format of 
the macro instruction is as follows: 

r------T-----------T---------------------------------------------------, 
I Name I Operation I Operand I 
~------+-----------+---------------------------------------------------~ 
II CVT I I L ______ L ___________ ~ ___________________________________________________ J 

Control statements Required 

r----------------------------------------------------------------------, 
//jobname JOB {parameters} 
//stepname EXEC PGM=IEBUPDTE,PARM=NEW 
//SYSPRINT DD SYSOUT=A 
//SYSUT2 DD DSNAME=SYS1.MACLIB,DISP=OLD 
//SYSIN DD * 
./ ADD NAME=CVT,LIST=ALL 

CVT Macro Definition 

./ ENDUP 
/* -----------___________________________________________________________ J 

124 system Programmer's Guide (Release 20.1) 



'\ 

/ 

How to Use the Tracing Routine 

This chapter describes the function of the 
tracing routine .• and provides a detailed 
description of the information made 
available by the tracing routine. 

Before reading this chapter, you should 
be familiar with the information contained 
in the prerequisite publication. 

PREREQUISITE PUBLICATION 

The IBM system/360: Principles of 
Operation publication (GA22-6821) contains 
information about the SIO instruction and 
the I/O and SVC interruptions. 

How to Use the Tracing Routine 125 

• 



How to Use the Tracing Routine 

The tracing routine is an operating 8ystem/360 optional feature which 
you can use as a debugging and maintenance aid. The tracing routine 
stores, in a table, information pertaining to the following conditions: 

• 810 instruction execution • 
• SVC interruption • 
• I/O interruption. 

You can include the tracing routine and its table in the control 
program during the system generation process. This is done using the 
TRACE option in the SUPRVSOR macro instruction. The format of this 
option requires you to supply the number of entries in the table. Each 
table entry can contain information relating to one of the traced 
conditions. When the last entry in the table is filled, the next entry 
will overlay the first. 

Table Entry Formats 

Table entry formats are as follows: 

SIO Instruction 

0 2 3 13 21 310 31 0 3110 31 

,j 
Device 

Channel Address Word 
Channel Status Word 

0 
Address (Meaningful only Then bits 2-3 = 01) 

'-.SIO Condition Code 

I/O Interruption 

0 13 16 19 31 0 31 0 3110 31 

I 
0 0000 Channel Status Word 

I 
~~----------------------------------------__ r-----------------------------------) y 

I/o Old PSW 

SVC Interruption 

0 13 16 19 31 0 31 0 31 0 31 

1 0001 Contents of Register 0 Contents of Register 1 

~~-------------------------- ----------------------------} y 
SVC Old PSW 

126 system Programmer's Guide (Release 20.1) 



Location of the Table 

The addresses of the last entry made in the table, the beginning of the 
table, and the end of the table are contained in a 12-byte field. The 
address of this field is contained in the fullword starting at location 
20. The format of the field is as follows: 

10 311 0 3110 31 1 
~----------------------+-----------------------+----------------------~ 
1 Address of the 1 Address of the I Address of the 1 
I Last Entry I Table Beginning I Table End I L _______________________ ~ _______________________ ~ ______________________ J 

The tracing routine is bypassed during abnormal termination 
procedures, except when incorporated in MFT or MVT configurations of the 
operating system. 

The abnormal termination dump lists the SIO, SVC, and I/O 
interruptions table entries, starting with the oldest. A number is 
assigned to each entry and the oldest entry is 0001. 

How to Use the Tracing Routine 127 

• 



128 System Programmer's Guide (Release 20.1) 



Data Set Protection 

To use the data set protection feature of 
the operating system, you must create and 
maintain a password data set consisting of 
records that associate the names of the 
protected data sets with the password 
assigned to each data set. There are two 
ways to maintain the password data set: 
you can write your own routines to maintain 
it or you can use the facilities of the 
PROTECT macro instruction to maintain it. 

This chapter is divided into two 
sections. The first section describes the 
general features of data set protection, 
including the use of your own routines to 
maintain the password data set. It 
provides the information you need to create 
the data set and it describes the record 
format and characteristics of the data set. 
The second section discusses the PROTECT 
macro, it provides the programming 
information you need to use the macro and 
it discusses the difference between using 
the PROTEC'1' macro and using your own 
routines to maintain the password data set. 

RECOMMENDED PUBLICA'l'IONS 

The IBM System/360 Operating System: Data 
Management Services publication (GC28-3746) 
contains a general description of the data 
set protection feature. 

The IBM System/360 Operating System: 
Messages and Codes publication (GC28-6631) 
contains a description of the operator 
messages and replies associated with the 
data set protection feature. 

The IBM System/360 Operating System: 
Job Control Language Reference publication 
(GC28-6704) contains a description of the 
data definition (DD) statement parameter 
used to indicate that a data set is to be 
placed under protection. 

Documentation of the operating system 
routines supporting data set protection can 
be obtained through your IBM Branch Office. 

Data Set Protection 129 

-



Data Set Protection 

TO prepare for use of the data set protection feature of the operating 
system, you place a sequential data set, named PASSWORD, on the system 
residence volume (containing SYS1.NUCLEUS and SYS1.SVCLIB). Note: If 
the routines that you write to maintain the password data set use the 
basic direct access method (BDAM), you must place a BDAM data set named 
PASSWORD on the system residence volume. This data set must contain one 
record for each data set placed under protection. In turn, each record 
contains a data set name, the password for that data set, a counter 
field, a protection mode indicator, and a field for recording any 
information you desire to log. On the system residence volume, these 
records are formatted as a "key area" (data set name and password) and a 
"data area" (counter field, protection mode indicator, and logging 
field). The data set is searched on the "key area." 

You can write routines to create and maintain the PASSWORD data set. 
(If you use the PROTECT macro instruction to maintain the password data 
set, see the section in this chapter called USING THE PROTECT MACRO 
INSTRUCTION TO MAINTAIN THE PASSWORD DATA SET.) These routines may be 
placed in your own library or the system's linkage editor library 
(SYS1.LINKLIB). You may use a data management access method or EXCP 
programming to handle the PASSWORD data set. 

If a data set is to be placed under protection, it must have a 
protection indicator set in its label (DSCB or header 1 tape label). 
This is done by the operating system when the data set is created. The 
protection indicator is set in response to an entry in the LABEL= 
parameter of the DD statement associated with the data set being placed 
under protection. The Job Control Language Reference publication 
describes the entry. Note: Data sets on magnetic tape are protected 
only when standard labels are used. 

Users who wish to have the password supplied by some method other 
than operator key-in may replace the password reading module with their 
own routine. The READPSWD source module may be used as a base for 
writing a new module. In this case, the new object module replaces 
module READPSWD on the SVCLIB. 

The balance of this chapter discusses the PASSWORD data set 
characteristics and record format, the creation of protected data sets, 
and operating characteristics of the data set protection feature. 

Password Data Set Characteristics and Record Format 

The PASSWORD data set must reside on the same volume as your operating 
system. The space you allocate to the PASSWORD data set must be 
contiguous, i.e., its DSCB must indicate only one extent. The amount of 
space you allocate is dependent on the number of data sets your 
installation desires to place under protection. The organization of the 
PASSWORD data set is physical sequential, the record format is 
unblocked, fixed length records (RECFM=F). These records are 80 bytes 
long (LRECL=80) and form the data area of the PASSWORD data set records 
on direct access storage. In these direct access storage records, the 
data area is preceded by a key area of 52 bytes (KEYLEN=52). In main 
storage, the 52 byte key field (which contains the data set name and the 
password) and the 80 byte data field (whose first three bytes contain a 
counter and a protection indicator) together form a 132 byte buffer. 
Figure PSWD1 shows the password records as you would build them in a 132 
byte work area. Explanation of the fields follows the illustration. 

130 System Programmer's Guide (Release 20.1) 



The name of the protected data set being opened and the password 
entered by the operator are matched against the 52-byte "key area." The 
data set name and the password must be left-justified in their areas and 
any unused bytes filled with blanks (X'40'). The password assigned may 
be from one to eight alphameric characters. 

1------ 52 byte "key" ------1--------- 30 byte "data area" ---------1 

1-----44 bytes-----I-a by'''- 113_.-by-te-s--------n bytes __________ .... 1 

fully qualified 
password 

logging field 
data set name (optional information) 

[ L p,o'ocHoo mod, ;od;oo'o, - 1 by" 

bi nary counter - 2 bytes 

Figure PSWD1. Password Record 

The operating system increments the binary counter by one each time 
the data set is successfully opened (except for performance of SCRATCH 
or RENAME functions on the data set). When you originate the password 
record, the value in the counter may be set at zero (X'OOOO') or any 
starting value your installation desires. 

The protection mode indicator is set to indicate that the data set is 
to be read-only, or that it may be read or written. Read only and 
read/write protection for a data set can be attained by including the 
same data set name in the password data set twice and giving it 
different passwords. You set the indicator as follows: 

• To zero (x'OO') if the data set is to be read-only • 
• To one (X'Ol') if the data set may be read or written. 

You may use the 77-byte logging field to record any information about 
the data set under protection that your installation may desire, e.g., 
date of counter reset, previous password used with this data set, etc. 

Protecting the Password Data Set 

You protect the PASSWORD data set itself by creating a password record 
for it when your program initially builds the data set. Thereafter, the 
PASSWORD data set cannot be opened (except by the operating system 
routines that scan the data set) unless the operator enters the 
password. 

Creating Protected Data Sets 

A data definition (DD) statement parameter (LABEL=) is used to indicate 
that a data set is to be placed under protection. You may create a data 
set, and set the protection indicator in its label, without entering a 
password record for it in the PASSWORD data set. However, once the data 
set is closed, any subsequent opening results in termination of the 
program attempting to open the data set, unless the password record is 
available and the operator can honor the request for the password. 
Operating procedures at your installation must ensure that password 
records for all data sets currently under protection are entered in the 
PASSWORD data set. 

Data set Protection 131 

• 



Protection Feature Operating Characteristics 

This section provides information concerning actions of the protection 
feature in relation to termination of processing, volume switching, data 
set concatenation, SCRATCH and RENAME functions, and counter 
maintenance. 

Termination of Processing 

Processing is terminated when: 

1. The operator cannot supply the correct password for the protected 
data set being opened. 

2. A password record does not exist in the PASSWORD data set for the 
protected data set being opened. 

3. The protection mode indicator setting in the password record, and 
the method of I/O processing specified in the open routine do not 
agree, e.g., OUTPUT specified against a read-only protection mode 
indicator setting. 

4. There is a mismatch in data set names for a data set involved in a 
volume switching operation. This is discussed in the next section. 

Volume switching 

The operating system end-of-volume routine does not request a password 
for a data set involved in a volume switch. Continuity of protection is 
handled in the following ways: 

Input Data Sets - Tape and Direct Access Devices 
Processing continues if there is an equal comparison between the 
data set name in the tape label or DSCB on the volume switched to, 
and the name of the data set opened with the password. An unequal 
comparison terminates processing. 

Output Data Sets - Tape Devices 
The protection indicator in the tape label on the volume switched to 
is tested: 

1. If the protection indicator is set ON, an equal comparison 
between the data set name in the label and the name of the data 
set opened with the password allows processing to continue. An 
unequal comparison results in a call for another volume. 

2. If the protection indicator is OFF, processing continues, and a 
new label is written with the protection indicator set ON. 

3. If only a volume label exists on the volume switched to, 
processing continues, and a new label is written with the 
protection indicator set on. 

Output Data Sets - Direct Access Devices 
For existing data sets, an equal comparison between the data set 
name in a DSCB on the volume switched to, and the name of the data 
set opened with the password allows processing to continue. For new 
output data sets, the mechanism used to effect volume switching 
ensures continuity of protection and the DSCB created on the new 
volume will indicate protection. 

Data Set Concatenation 

A password is requested for every protected data set that is involved in 
a concatenation of data sets, regardless of whether the other data sets 
involved are protected or not. 

132 system Programmer's Guide (Release 20.1) 



SCRATCH and RENAME Functions 

An attempt to perform the SCRATCH or RENAME functions on a protected 
data set results in a request for the password. The protection feature 
issues an operator's message (IEC30LA) when a protected data set is the 
object of these functions. The Messages and Codes publication discusses 
the message. 

Counter Maintenance 

The operating system does not maintain the counter in the password 
record and no overflow indication will be given (overflow after 65,535 
openings). You must provide a counter maintenance routine to check and, 
if necessary, reset this counter. 

Using the Protect Macro Instruction to Maintain the Password 
Data Set 

To use the PROTECT macro instruction, your password data set should be 
on the system residence volume. The PROTECT macro can be used to: 

• Add an entry to the password data set. 

• Replace an entry in the password data set. 

• Delete an entry from the password data set. 

• Provide a list of information about an entry in the password data 
set; this list will contain the security counter, access type, and 
the 77 bytes of security information in the "data area" of the 
entry. 

In addition, the PROTECT macro, will update the DSCB of the protected 
data set, for a direct access device, to reflect its protected status; 
this feature eliminates the need for you to use job control language 
whenever you place a data set under protection. 

PASSWORD DATA SET CHARACTERISTICS AND RECORD FORMAT WHEN YOU USE THE 
PROTECT MACRO 

When you use the PROTECT macro, the record format and characteristics of 
the password data set should be the same as the record format and 
characteristics when you use your own routines to maintain it, with two 
exceptions: the number of records that you establish for each protected 
data set and the values of the protection mode indicator. 

Number of Records for Each Protected Data Set: When you use the PROTECT 
macro, the password data set must contain at least one record for each 
protected data set. The password (the last 8 bytes of the "key area") 
that you assign when you place the data set under protection for the 
first time is called the control password, in addition, you may create 
as many secondary records for the same protected data set as you need. 
The passwords assigned to these additional records are called secondary 
passwords. This feature is helpful if you want several users to have 
access to the same protected data set, but you also want to control the 
manner in which they can use it. For example: one user could be 
assigned a password that allowed the data set to be read and written, 
and another user could be assigned a password that allowed the data set 
to be read only. 

Note: The PROTECT macro will update the DSCB of the protected data set 
only when you issue it for adding, replacing or deleting a control 
password. 

Data Set Protection 133 

• 



Protection Mode Indicator: You can set the protection mode indicator in 
the password record to four different values: 

• X'OO' to indicate that the password is a secondary password and the 
protected data set is to be read only. 

• X'SO' to indicate that the password is the control password and the 
protected data set is to be read only. 

• X'Ol' to indicate that the password is a secondary password and the 
protected data set is to be read and written. 

• X'Sl' to indicate the password is the control password and the 
protected data set is to be read and written. 

Since the DSCB of the protected data set is updated only when the 
control password is changed, it is possible to request protection 
attributes for secondary passwords which conflict with the protection 
attributes of the control password. 

If the control password has read only protection, its secondary 
passwords may have read only or read write protection. A request for a 
secondary password with read without password protection will result in 
a secondary password with read write protection. A read only control 
password may be changed to a read write control password without 
affecting any secondary passwords, but if a read only control password 
is changed to a read without password control password all secondary 
passwords will automatically become read without password secondary 
passwords. 

If the control password has read write protection, its secondary 
passwords may have read only or read write protection. A request for a 
secondary password with read without password protection will result in 
a secondary password with read write protection. A read write control 
password may be changed to a read only control password without 
affecting any secondary passwords, but if a read write control password 
is changed to a read without password control password all secondary 
passwords will automatically become read without password secondary 
passwords. 

If the control password has read without password protection, its 
secondary passwords must also have read without password protection. A 
request for a read only or for a read write secondary password will 
result in a read without password secondary password. If a read without 
password control password is changed to either a read only or read write 
control password all its secondary passwords will automatically become 
read write secondary passwords. 

PROGRAMMING CONVENTIONS FOR THE PROTECT MACRO INSTRUCTION 

The format of the PROTECT macro is: 

PROTECT 
(1) 
(REG) 
list addr 

register 1 with the address of a parameter list 
a register with the address of a parameter list 
address of location containing the parameter list 

When you issue the PROTECT macro., you should have already established 
the parameter list. Its size and contents depend on the function that 
you want the macro to perform. In any case, the first byte of the 
parameter list is an entry code that indicates the function: 

134 system Programmer's Guide (Release 20.1) 



• X'Ol' for adding an entry to the parameter list. 

• X'02' for replacing an entry in the parameter list. 

• X'03' for deleting an entry from the parameter list. 

• X'04' for listing the information in a password data set entry. For 
a complete discussion of the contents of the parameter lists, see 
figures PSWD2 to PSWD5 and the notes explaining each of these 
figures. 

PROTECT Macro Parameter Lists 

The parameter lists, their formats and contents are: 

PARAMETER LIST FOR ACD FUNCTION 

~ X'Ol' 
1 

00 00 00 

4 5 
Data Set Length Poi nter to Data Set Name 

8 9 
00 000000 

12 tJ Pointer to Control Password 00 

~ Number of Volumes tJ Pointer to Volume List 

~ Protection Code ~ Pointer to New Password 

~ String Length ~ Pointer to String 

F1gure PSWD2. Parameter L1st for Add Funct10n 

Explanatory Notes for Figure PSWD2. 

a X'Ol' 
Entry code indicating add function. 

13 Pointer to control password. 
The control password is the password assigned when the data set was 
placed under protection for the first time. This can be a string of 
zeros if the new password is the control password. 

16 Number of volumes. 
If the data set is not cataloged and you want to have it flagged as 
protected, you have to specify the number of volumes in this field. 
A zero indicates that the catalog information should be used. 

17 Pointer to volume list. 
If the data set is not cataloged and you want to have it flagged as 
protected, you provide the address of a list of volume serial 
numbers in this field. Zeros indicate that the catalog information 
should be used. 

20 Protection code. 
A one-byte number indicating the type of protection: X' 00' 
indicates default protection (for the add function, the default 
protection is the type of protection specified in the control 
password record of the data set), X' 01' indicates that the data set 
is to be read and written, X'02' indicates that the data set is to 
be read only and X'03' indicates that the data set can be read 
without a password, but a password is needed to write into it. 

Data Set Protection 135 

• 



The PROTECT macro will use the protection code value, specified in the 
parameter list, to set the protection mode indicator in the password 
record. 

21 Pointer to new password. 
If the data set is being placed under protection for the first time, 
the new password is the same as the control password. If you are 
adding a secondary entry, the new password is different from the 
control password. 

24 String length. 
The length of the character string (maximum 77 bytes) that you want 
to place in the optional information field of the password record. 
If you don't want to add information, set this field to zero. 

25 Pointer to string. 
The address of the character string that is going to be put in the 
optional information field. If you don't want to add additional 
information, set this field to zero. 

Parameter List for Replace Function 

~ 1 
X '02' 000000 

4 5 
Data Set Length Pointer to Data Set Name 

8 ~ 00 Current Password 

12 
00 ~ Pointer to Control Password 

~ Number of Volumes .EJ Pointer to Volume List 

~ Protection Code ~ Pointer to New Password 

~ String Length 2:J Pointer to String 

Figure P.SWD3. Parameter List for Replace Function 

Explanatory Notes for Figure PSWD3. 

o X'021 
Entry code indicating REPLACE function 

9 Pointer to current password. 
The address of the password that is going to be r~placed. 

13 Pointer to control password. 
The address of the password assigned to the data set when it was 
first placed under protection. This can be zero if the current 
password is the control password. 

16 Number of volumes. 
If the data set is not cataloged and you want to have it flagged as 
protected" you have to specify the number of volumes in this field. 
A zero indicates that the catalog information should be used. 

17 Pointer to volume list. 
If the data set is not cataloged and you want to have it flagged as 
protected, you have to provide .the address of a list of volume 
serial numbers in this field. If this field is zero" the catalog 
information will be used. 

20 Protection code. 
A one-byte number indicating the type of protection: X'OO' 
indicates that the protection is default protection (for the replace 

136 System Programmer's Guide (Release 20.1) 



/ 

function the default protection is the protection specified in the 
current password record of the data set), x'Ol' indicates that the 
data set is to be read and written, X'02' indicates that the data 
set is to be read only, and X'03' indicates that the data set can be 
read without a password, but a password is needed to write into the 
data set. 

21 Pointer to new password. 
The address of the password that you want to replace the current 
password. 

24 string length. 
The length of the character string (maximum 77 bytes) that you want 
to place in the optional information field of the password record. 
set this field to zero if you don't want to add additional 
information. 

25 Pointer to string. 
The address of the character string that is going to be put in the 
optional information field of the password record. set the address 
to zero if you don't want to add additional information. 

Parameter List for Delete Function 

~ 1 
X '03' 000000 

4 5 
Data Set Length Pointer to Data Set Name 

8 
00 ~ Pointer to Current Password 

12 ~ 00 Pointer to Control Password 

~ Number of Volumes ~ Pointer to Volume List 

Figure PSWD4. Parameter List for Delete Function 

Explanatory Notes for Figure PSWD4. 

o X'03'. 
Entry code indicating delete function. 

9 Pointer to current password. 
The address of the password that you want to delete. You can delete 
either a control entry or a secondary entry. 

13 Pointer to control password. 
The address of the password assigned to the data set when it was 
placed under protection for the first time. This can be zeros if 
the current password is also the control password. 

16 Number of volumes. 
If the data set is not cataloged and you want to have it flagged as 
protected, you have to specify the number of volumes in this field. 
A zero indicates that the catalog information should be used. 

17 Pointer to volume list. 
If the data set is not cataloged and you want to have it flagged as 
protected, you have to provide the address of a list of volume 
serial numbers in this field. If this field is zero, the catalog 
information will be used. 

Data Set Protection 137 



Parameter List for List Function 

~ X '04' ~ Address of 80 Byte Buffer 

4 5 
Data Set Length Address of Data Set Name 

8 
00 ~ Pointer to Current Password Name 

Figure PSWD5. Parameter List for List Function 

Explanatory notes for using Figure PSWD5. 

OX' 04' • 
Entry code indicating list function. 

1 Address of 80-byte buffer. 
The address of a buffer where the list of information can be 
returned to your program by the macro instruction. 

9 Pointer to current password name. 
The address of the password of the record that you want listed. 

Return Codes from the PROTECT Macro 

When the PROTECT macro finished processing, register 15 will contain a 
return code that indicates what happened during the processing. Table 
PASS1 contains the return codes and their explanations. 

Table PASS1. Return Codes from The PROTECT Macro 
r-----------T----------------------------------------------------------, 
I Register 151 Explanation I 
t-----------+----------------------------------------------------------~ 
I 0 The updating of the password data set was successfully 
I completed. 
I 4 The password of the data set name was already in the 
I password data set. 
I 8 The password of the data set name was not in the password 
I data set. 
I 12 A control password is required or the one supplied is 
I incorrect. 
I 16 The supplied parameter list was incomplete or incorrect. 
I 20 There was an I/O error in the password data set. 
I **24 The password data set was full. 
I 28 The validity check of the buffer address failed. 
I *32 The LOCATE macro failed. LOCATE's return code is in 
I register 1 and the number of indexes searched is in 
I register o. 
I *36 The OBTAIN macro failed. OBTAIN's return code is in 
I register 1. 
I *40 The DSCB could not be updated. 
I 44 The password data set does not exist. 
I *48 Tape data set can not be protected. 
I *52 Data set in use. 
~-----------L-----------------------------------------_________________ ~ 
I*For these return codes, the password data set has been updated, but I 
I the DSCB has not been flagged to indicate the protected status of the I 
I data set. I 
1**For this return code, a message is written to the console indicating I 
I that the password data set is full. I L ______________________________________________________________________ J 

138 System Programmer's Guide (Release 20.1) 



The PRESRES 
Volume Characteristics List 

This chapter describes the creation and use 
of a direct access volume characteristics 
list that is placed in the system parameter 
library under the member name PRESRES. 

PREREQUISITE PUBLICATIONS 

The IBM system/360 Operating system: 
Job Control Language Reference publication 
(GC28-6704) discusses volume 
characteristics and states. 

The IBM System/360 Operating System: 
Messages and Codes publication (GC28-6631) 
describes the operator messages and 
responses associated with system use of the 
volume characteristics list. 

The PRESRES Volume Characteristics List 139 



The PRESRES Volume Characteristics List 

You may use the PRESRES volume characteristics list to define the mount 
and allocation characteristics of direct access device volumes used by 
your installation. Use of the list enables you to predefine the mount 
characteristics (permanently resident, reserved) and allocation 
characteristics (storage, public, private) for any, or all, direct 
access device volumes used by your installation. The Job Control 
Language publication provides a full discussion of the volume 
characteristics and the operating system's response to the various 
designations. The information presented here describes the creation of 
the characteristics list, the format and content of entries in the list, 
and how the operating system uses the list. 

Creating the List 

You use the IEBUPDTE utility program to place the list (under the member 
name PRESRES) in the system parameter library, SYS1.PARMLIB. This 
utility is also used to maintain the list. 

PRESRES Entry Format 

Each PRESRES entry is an 80-byte record, consisting of a 6-byte volume 
serial number field, a 1-byte mount characteristic field, a 1-byte 
allocation characteristic field, a 4-byte device type field, a 1-byte 
mount-priority field, and an optional information field. Commas are 
used to delimit the fields, except the optional information field is 
always preceded by a blank. All character representation is EBCDIC. 
This format is shown below. 

r------------------T-T-T-T-T-T------------T-T-T-T-----------, 
I Volume Serial 1,1 1,1 1,IDevice Type 1,1 I IOptional I 
I Number 6 Bytes I I I I I I 4 Bytes I I 1 I Information I 

l------------------i-iOi-i[~-~------------~-~~---------::ank--l Byte 
Mount Priority--1 Byte 

Allocation Characteristic--1 Byte 
Mount Characteristic--1 Byte 

The volume serial number consists of up to six characters, left 
justified. 

Mount characteristics are defined by: 

o to denote permanently resident 
1 to denote reserved 

The default characteristic is "permanently resident" and is assigned if 
any character other than 0 or 1 is present in the field. 

Allocation characteristics are defined by: 

o to denote storage 
1 to denote public 
2 to denote private 

The default characteristic is "publicn and is assigned if any character 
other than 0, 1, or 2 is present in the field. 

140 System Programmer's Guide (Release 20.1) 



The device type is defined by: 

A four digit number designating the type of direct access device on 
which the volume resides, e.g., the IBM 2311 Disk Storage Drive is 
indicated by the notation 2311. Note that this field only indicates 
the basic device type for the associated volume. You must advise the 
operator if the device requires special features (such as track 
overflow) to process the data on the designated volume. 

The mount priority field is used to suppress mount messages at IPL time 
for a volumei the alphabetic character N should be inserted in this 
field to suppress the mount message. This field allows the user to 
list seldom used volumes in the PRESRES list without having a mount 
message issued at each IPL. When these volumes are required, they may 
be mounted and attributes will be set from the PRESRES list entry. If 
the user does not wish to have the mount message suppressed, he may 
omit the mount priority field and the preceding comma. 

The optional information field contains: 

Any descriptive information about the volume that you may wish to 
enter. This information is not used by the system, but will be 
available to you on a printout of the list. If necessary, comments may 
start in the second byte after the mount priority field or if the mount 
priority field is omitted, in the second byte following the comma after 
the device type field. 

Embedded blanks are not permitted in the volume serial, mount, 
allocation, or device type fields. 

Operational Characteristics 

Upon receiving control from the nucleus initialization program (NIP), 
the scheduler compares the volume serial numbers in the PRESRES 
characteristics list with those of currently mounted direct access 
volumes. Each equal comparison results in the assignment to the mounted 
volume of the characteristics noted in the PRESRES entry. (Fields in 
the unit control block for the device on which the volume is mounted are 
set to reflect the desired characteristics.) If the volume is: the IPL 
volumei the volume containing the data sets SYS1.LINKLIB, SYS1.PROCLIB, 
SYS1.SYSJOBQEi or a physically nondemountable volume (such as a 2301 
drum storage unit), the mount characteristic (permanently resident) has 
already been assigned and only the allocation characteristic is set. 

A mounting list is issued for the volumes in the PRESRES 
characteristics list that are not currently mounted (except those for 
which mounting messages have been suppressed) and the operator is given 
the option of mounting none, some, or all of the volumes listed. The 
mount and allocation characteristics for the volumes mounted by the 
operator are set according to the PRESRES list entry for the volume. 
The operator selects the unit on which the volume is to be mounted. 

The Messages and Codes publication describes the operator messages 
and responses associated with the use of the PRESRES volume 
characteristics list. 

After the scheduler has finished PRESRES processing reading of the 
job input stream begins, and the PRESRES list is not referred to again 
until the next IPL. 

Volume characteristics assigned by a PRESRES list entry are 
inviolate. They cannot be altered by subsequent references to the 
volume in the input stream. 

The PRESRES Volume Characteristics List 141 



Note: 

1. A PRESRES entry identifying a physically nondemountable volume will 
appear in the mount list issued to the operator if the volume 
(device) is OFFLINE or is not present in the system. 

2. Use of the PRESRES list can only be suppressed by deleting the 
member from the parameter library (SYS1.PARMLIB). 

3. Only the first 102 volumes on the PRESRES list can be placed on the 
mount list. 

Programming Considerations 

The only way to assign an allocation characteristic other than "public" 
to volumes whose mount characteristic is "permanently resident" is 
through a PRESRES characteristic list entry. 

Selection of the volumes for which PRESRES entries are to be created 
should be done so that critical volumes are protected. Since the 
combination of mount and allocation characteristics assigned to a 
specific volume determine the types of data sets that can be placed on 
the volume and its usage, you can exercise effective control over the 
volume through a PRESRES list entry. 

142 System Programmer's Guide (Release 20.1) 



/ 

Resident Routines Options 

The resident routines options are the BLDL 
feature, the resident reenterable modules 
feature, and the RSVC and RERP features. 
These features permit preloading into main 
storage routines (or at least their 
addresses) that otherwise would be 
repeatedly loaded each time the routines 
are requested. The Link list feature, also 
described in this chapter, permits 
references to the Link library to be 
extended to other data sets. Figures RRO 
1, 2, and 3 describe all these features. 

There are three sections to this 
chapter.. section 1 discusses the PCP and 
MFT use of the features, section 2 the MVT 
use, and section 3 the Link list feature. 

section 1 of this chapter discusses the 
BLDL Table, reenterable modules, and RSVC 
and RERP and provides guidelines for their 
use. The purpose of these options is to 
improve performance by reducing or 
eliminating the access time required to 
obtain the routines with which these 
options are concerned. you may incorporate 
these options in the PCP or MFT 
configurations of the operating system. 

Section 2 of this chapter discusses the 
inclusion of SVC routines, reenterable load 
modules, and linkage library directory 
entries in the Link Pack Area of the MVT 
configuration of the operating system. 

section 3 of this chapter discusses the 
link library list and provides guidelines 
for its use. The purpose of the link 
library list is to allow concatenation of 
data sets for SYS1.LINKLIBo The link 
library list must be included in the 
system. 

PREREQUISITE PUBLICATIONS 

The IBM System/360 Operating System: 
System Generation publication (GC28-6554) 
describes how to specify the options and 
content of the link pack area at system 
generation time. 

The IBM System/360 Operating System: 
supervisor Services publication (GC28-6646) 
contains a general description of the BLDL 
function. 

Resident Routines Options 143 



The IBM System/360 Operating System: 
Utilities publication (GC28-6586) contains 
a description of the IEBUPDTE utility which 
you use to construct lists of load module 
names in the parameter library 
(SYS1.PARMLIB). 

The IBM System/360 Operating System: 
Storage Estimates publication (GC28-6551) 
provides storage requirement information 
for the options and link pack area. 

The IBM System/360 Operating System: 
Messages and Codes publication (GC28-6631) 
contains the operator message and replies 
associated with the options and link pack 
area. 

144 System Programmer's Guide (Release 20.1) 



Feature: BLDL Link List RSVC RAM RERP 

RESIDNT= (0) BLDLTAB TRSVC RENTCODE ERP 

IPL (b) BLDL= RSVC= RAM= RERP= 

Nome of List IEABLD •• LNKLSTOO IEARSV •• IEAIGG •. IEAIGE .• 
----_. -------. --~~--- -

Contents of List Names of Routines Names of Data Sets Nar7'es of Routines Names of Routines 
Names of 
Routines 

-

Subject Routines Li nk Li brary 
Type 3 and 4 Access Method and Error Rcvy 
SVC Routines Li nk Li brary Procedure 

Library 
SYS1.LlNKLlB Any volume SYS I.SVCLlB SYS I.SVCLlB, SYSI. 

Residence SYS1.LlNKLlB SVCLlB 

Operation of Builds a table of 
Concatenates other Loads 
datasets with the Loads Named Routines Loads Named Routines Named 

Feature addresses Li nk Li brary Routines 

(0) - Entry for the SUPRVSOR macro instruction in the system generation procedure. 
(b) - Entry for the operator reply to the IPL time message SPECIFY SYSTEM PARAM?!~:) 

Figure RRO 1. Resident Routines Options ~ 

Reenterable Routines 
Option BLDL Link List RSVC 

Access Methods Link Library 
RERP 

RESIDNT= (0) BLDTAB TRSVC ACSMETH RENTCODE ERP 

IPL (b) BLDL= RSVC= RAM= RAM= RERP 

Nome of List IEABLD •• LNKLSTOO IEARSV •• IEAIGG •• (c) 
IEAIGG •• (c) 

IEAIGE .• User - Written 

SVC or 
Reenterable Link Library 

Names of Names on Link Library Data Sets Type 3 and 4 Access Method Routines 
Routines, Reenterable 

Routines the List SVC Routines GS P routines, and the 
Routines as Loader 

SYS I.SVCLlB 
Any Volume SYS 1. SVCLlB SYS1.SVCLlB SYS1.LlNKLlB 

SYSI. 
Residence SYS1.LlNKLlB SVCLlB 

To Build a Table To Concatenate To Load Named To Load Named To Load Named Loads 
Use of Option of Addresses other datasets Routines Routines Routines Named 

with Link Routines 

(0) - Entry for the SUPRVSOR macro instruction in the system generation statements. 
(b) - Entry for the operator reply to the IPL time message SPECIFY SYSTEM PARAMETERS. 
(c) - Though similarly named, each IEAIGG .• list can have names of only one of the}fio--kin~s of routines. Each list must have a unique nome. 

Figure RRO 2. Resident Routines Options ~MFT~ 

Feature: BLDL Link List RSVC RAM RERP 

RESIDNT= (0) BLDTAB TRSVC ACSMETH ERP 

IPL (b) BLDL= RSVC= RAM= RERP= 

Nam€ of List IEABLD .. LNKLSTOO IEARSV •• IEAIGG .. IEAIGE .. 

Contents of 
List Names of Routines 

-

Names of 
Names of Data Sets Names of Routi nes Names of Routines Routines 

I Subject Routines 
SVC or Type 3 and 4 Access Method Error Rcvy 
Link Library SVC Routines Procedure 

Library SYS1.SVCLlB 
Any volume 

SYSI. 
Residence SYSl.LlNKLlB SYS1.SVCLlB SYS1.SVCLlB SVCLlB 

Operation of Bui Ids a table of 
Concatenates other Loads 

Feature addresses 
datasets with the Loads Named Routines Loads Named Routines Named 
Link Library Routines 

(0) - Entry for the SUPRVSOR macro instruction in the system generation procedure. 
(b) - Entry for the operator reply to the IPL time message SPECIFY SYSTEM PARAMETER,S.--_. 

Figure RRO 3. Resident Routines Options .~ 

Resident Routines Options 145 



Section 1: Nucleus Resident Library Routines (PCP and MFT) 
-------------------

The BLDL, reenterable modules, RSVC and RERP options, when included in a 
PCP or MFT configuration of the operating system, enable you to place in 
the nucleus area of main stqrage (make resident): 

1. All, or a selection of, Link or SVC library directory entries. 

2. A selected group of access method routines. 

3. A selected group of type 3 and 4 SVC routines. 

4. A selected group of error recovery procedures. 

5. For MFT, user-written reenterable routines from the Link library, 
the os Loader, and reenterable GSP routines. 

Placement occurs during the initial program load (IPL) process. The 
main storage area that these resident routines occupy becomes part of 
the "fixed storage" area of the system. In effect, the nucleus is 
expanded. 

These options are included in the system when it is generated. The 
System Generation publication describes the procedure. The resident SVC 
routine option requires that the Transient SVC Table option also be 
included in the system. If you wish to exercise control over the other 
options at IPL time, you must also specify the operator communication 
facility for these options when the system is generated. 

You specify the Link library (SYS1.LINKLIB) and SVC library 
(SYS1.SVCLIB) routines and directory entries, the access method 
routines, the type 3 and 4 SVC routines, and the error recovery 
procedures to be made resident through lists of linkage library, access 
method, SVC routine, and the error recovery procedures load module names 
placed in the parameter library (SYS1.PARMLIB). 

A standard list and alternative lists of load module names may exist 
for the options. The standard list (so called because its member name 
in the parameter library is predefined) is automatically referred to 
during the IPL process when the operator communication facility is not 
included in the system with the options. When the operator 
communication facility is included, the operator must designate which 
list is to be used. IBM provides suggested standard lists for the 
resident access method modules and resident SVc routine options. These 
lists are in the starter system parameter library. You must specify 
operator communication at system generation if you intend to use both 
SVC and Link library BLDL lists. 

Inclusion of the operator communication facility enables full control 
over all the options at IPL time, i.e., selection of alternative or 
standard lists, and suppression of the options until the next IPL. 
Otherwise, the options are in effect at every IPL, using the standard 
lists. The operator communication facility is required for the resident 
Link library modules option of MFT. Unless the operator refers to load 
list (or lists) for this option in his RAM= reply, none of the modules 
named on a load list is made resident. 

The balance of this chapter discusses the function of each option, 
the creation of the parameter library lists, and, lists the content of 
the resident access method modules and resident type 3 and 4 SVC 
routines standard lists. The Messages and Codes publication describes 
the message (message number IEA101A) and replies associated with the 
options. 

146 System Programmer's Guide (Release 20.1) 



The Resident BLDL Table Option 

System issued ATTACH, LINK, LOAD, or XCTL macro instructions requesting 
load modules from partitioned data sets cause a search of the data set 
directory for the location of the requested module (the BLDL table 
operation) and a fetch of the module. The resident BLDL table option 
eliminates the directory search required during execution of these macro 
instructions when a load module (whose directory entry is resident) is 
requested from the linkage or SVC libraries. 

This option builds lists of directory entries for use by ATTACH, 
LINK, LOAD, or XCTL macro instructions requesting linkage or SVC library 
load modules. During execution of the BLDL operation in the macro 
instruction routines, the library directory is searched only when the 
directory entry for the requested load module is not present in the 
resident BLDL table. 

You list, in a member of SYS1.PARMLIB, the names of those linkage or 
SVC library load modules whose directory entries are to be made 
resident. The member name for the standard list is IEABLDOO. The load 
module names must be listed in the same order as they appear in the 
directory; that is, they must be in ascending collating sequence. 
Creation of parameter library lists is discussed later in this chapter. 
The next section provides guidelines for choosing the content of the 
list. 

Note: Directory entries in the resident table are not updated as a 
result of updating the load module in the library. The old version of 
the load module is used until an IPL operation takes place and the new 
directory entry for the module is made resident. 

SELECTING ENTRIES FOR THE RESIDENT BLDL TABLE 

Any load module in the linkage or SVC library may have its directory 
entry placed in the resident BLDL table. Other items you should 
consider are: 

1. Table Size. 
Linkage library (PCP., MFT, MVT) - Each entry requires 56 bytes in 
MVT and 40 bytes in PCP and MFT. 
SVC library (MFT and MVT only) - Each entry requires 32 bytes. 

2. Frequency of use of the load module. 

Table Size 

'The resident BLDL table is incorporated in the system nucleus (MFT, 
PCP), or in the link pack area (MVT). The additional storage required 
is governed by the number of table entries and is acquired by reducing 
~he amount of dynamic storage area available, i.e., the system nucleus 
expands. Each installation using the resident BLDL table option must 
determine the amount of storage it can afford for the resident BLDL 
table. 

Frequency of Use 

since resident routines reduce the amount of main storage available to 
problem programs, you should select modules used frequently. Your 
installation's workload should be considered. 

For Link Library Lists: The scheduler, linkage editor, and language 
processor(s) are possible selections for Link library lists. 

Resident Routines Options 141 



For SVC Library Lists: In general, use any module from the SVC library 
you would consider for residence (RAM option). You should not create 
libraries for the following since they are not necessary: 

• Load 1 of type III and IV SVCs (i.e. IGCOOXXX) • 
• Modules selected for RAM, RERP, RSVC usage. 

Recommanded modules should be chosen from access methods and ERPs. 
You should always avoid placing the following modules in the BLDL list 
because the have internal BLDL tables and internal directory entries: 
OPEN, CLOSE, TCLOSE, EOV, FEOV, SCRATCH, ALLOCATE, IEHATLAS, SETPRT, 
STOW, machine-check handler modules. 

You can put the SVC library list in SYS1.PARMLIB using the member 
name lEABLDnn. This nn will be picked up when the operator specifies 
the system parameters with the response BLDL=xx,nn. 

LIST lEABLDOO 

The IBM supplied standard list IEABLDOO is: 

SYS1.LINKLIB IEBCOMPR,IEBGENER,IEBPTPCH,IEBUPDTE,IEHLIST,IEHMOVE, 
IEHPROGM,LINKEDIT,SORT 

x 

Suggested starter List for MVT 

The following SVC library list includes selected modules for BDAM, BPAM, 
RLSE, CATALOG, and OPEN. 

SYS1.SVCLIB IGGOCLC1,IGGOCLC2,IGGOCLC3,IGGOCLC4,IGGOCLCS,IGGOCLC6, X 
IGGOCLC7, X 
IGG019AV, X 
IGG019BH,IGG019BI,IGG019BK,IGG019BM, X 
IGG019CG,IGG019C3, X 
IGG019KA,IGG019KE,IGG019KK,IGG019KQ,IGG019KU,IGG019LI, X 
IGG020Dl,IGG020Pl,IGG020P2,IGG020P3 

Suggested starter List for Time Sharing 

The following list is recommended for improved system accesses to SVCLIB 
with the time sharing option. It includes the starter list for MVT plus 
modules of SVC 99. 

SYS1.SVCLIB IGC0109I,IGC0209I,IGC0309I,IGC0409I,IGCOS09I,IGC0609I, X 
IGC0709I,IGC0809I,IGC0909I,IGC1009I,IGC1109I,IGC1209I, X 
IGC1309I, X 
IGC1409I,IGC1S09I,IGC1609I,IGC1709I,IGC1809I,IGC1909I, X 
IGC2009I,IGC2109I,IGC2309I,IGC2S09I,IGC2609I, X 
IGC2709I,IGC2809I,IGC2909I.IGC3S09I, X 
IGGOCLC1,IGGOCLC2,IGGOCLC3,IGGOCLC4,IGGOCLCS,IGGOCLC6, X 
IGGOCLC7, X 
IGG019AV, X 
IGG019BH,IGG019BI,IGG019BK,IGG019BM, X 
IGG019CG,IGG019C3, X 
IGG019KA,IGG019KE,IGG019KK,IGG019KQ,IGG019KU,IGG019LI, X 
IGG019TX,IGG019T4,IGG019T8, X 
IGG020D1,IGG020P1,IGG020P2,IGG020P3 

148 System Programmer's Guide (Release 20.1) 



Resident Reenterable Modules Option 

The resident reenterable modules options make it possible to pre-load 
reenterable access method modules (in PCP and MFT) and user-written 
reenterable Link library modules. the OS Loader (in MFT only) and 
reenterable GSP routines. These two otherwise independent options -­
the resident access method modules option and the resident Link library 
modules option -- use similarly named load lists (IEAIGG •• ) and share 
an operator reply (RAM= ) at IPL time to refer to their separate lists. 

The resident access methods modules option uses a list or lists 
(named IEAIGG •• ) to name the modules to be preloaded and the 
RESIDNT=ACSMETH entry (in the system generation statements) to cause use 
of the pre-loaded modules when a DCB is being completed. The sytem 
comes with a standard list (IEAIGGOO) which is used, unless you have 
changed it or ask for the use of· another list in the operator reply. 

The resident Link library modules option uses a list or lists (also 
named IEAIGG •• , but ending in a pair of characters other than the ones 
used to name the resident access methods modules option lists) to name 
the modules to be pre-loaded. The RESIDNT=RENTCODE entry (in the system 
generation statements) causes the pre-loaded modules to be used when a 
LINK. ATTACH, or XCTL macro instruction refers to the name of a resident 
module. Because there is no standard list, no modules are loaded unless 
you provide such a list. 

To use both access method modules and Link library modules options, 
the system generation statement entry is: RESIDNT=ACSMETH,RENTCODE and 
the operator reply is RAM=kk,ll,mm,nn. Each pair of letters is a pair 
of numbers (like 01) that identify a list of either access method or 
user-written Link library modules and the OS Loader. 

THE RESIDENT ACCESS METHOD MODULES OPTION 

This option places access method load modules in the system nucleus and 
creates a resident list of these modules. (In MVT, these load modules 
are placed in the link pack area. If the system includes IBM 2361 Core 
storage and Main Storage Hierarchy Support. modules may also be placed 
in the secondary link pack area in Hierarchy 1 using the "HRAM=" reply 
to "Specify System parameters.") A LOAD macro instruction requesting any 
access method module first scans the resident list. If the module is 
listed. no fetch operation is required. 

You list, in a member of SYS1.PARMLIB, the load module names of 
access method load modules to be made resident. The member name for the 
standard list is IEAIGGOO. A standard list of most frequently used 
access method modules is supplied by IBM, and is in SYS1.PARMLIB of the 
starter system under the standard member name. The content of the list 
is tabulated at the end of this description. 

The creation of parameter library lists is discussed later in this 
chapter. The next section discusses some considerations pertaining to 
the use of the access method option. 

Considerations for Use 

The storage spa.ce required for each access method module consists of the 
byte requirements of the module and its associated load request block 
(LRB). The Storage Estimates publication provides the byte requirements 
for access method modules eligible to be made resident. The byte 
requirement of the code supporting the option is also provided. 

Resident Routines Options 149 

• 



All access method modules placed in the system nucleus are "only 
loadable". ATTACH, LINK, and XCTL macro instructions cannot refer to 
the resident modules. 

You may alter the standard access method list (or create alternative 
lists) to include access method modules supporting program controlled 
interrupt scheduling (PCI), exchange buffering, track overflow, and the 
UPDAT function of the OPEN macro instruction. 

For example, if Checkpoint/Restart is used, the following access 
method routines must be main storage resident, whether the checkpoint 
data set is on tape or on DASD: 

IGG019BA, IGG019BB, IGG019CC 

If the checkpoint data set is on DASD (direct access storage device) 
these additional modules must be resident: 

IGG019CD, IGG019CH, IGG019BC 

If chained scheduling is used to write the checkpoint data set, 

IGG019CU and IGG019CW 

also must be resident. If the data set is onDASD and chained 
scheduling is used 

IGG019CV and IGG019CZ 

must be resident together with the earlier two routines. If track 
overfiow is used to write the data set, 

IGG019C1, IGG019C2, and IGG019C3 

must be resident. 

When a composite console is used, an alternative list should include 
BSAM modules for card readers and printers. 

To be eligible for use with the resident access method option, access 
method load modules must be reenterable. The module name must be of the 
form IGG019xx, where xx can be any two alphanumeric characters. 

150 System Programmer's Guide (Release 20.1) 



LIST lEAIGGOO 

The content of the IBM supplied standard list IEAIGGOO is: 

Module Name 
IGG019AV 
IGG019AN 
IGG019AM 
IGG019BE 
IGG019AG 

IGG019CB 
IGG019CA 
IGG019AK 
IGG019AJ 
IGG019AI 
IGG019AC 
IGG019AB 
IGG019AA 
IGG019AR 
IGG019AQ 
IGG019AL 
IGG019AD 
IGG019BD 
IGG019BC 
IGG019BB 
IGG019BA 
IGG019CK 
IGG019CJ 

IGG019CI 
IGG019CH 

IGG019CL 
IGG019CF 

IGG019CE 
IGG019CD 
IGG019CC 

IGG019CO 
IGG019C4 

IGG019FN 

IGG019FP 

Access Method 
QSAM (SB) 
QSAM (SB) 
QSAM (SB) 
BSAM 
QSAM (SB) 

SAM 
SAM 
QSAM (SB) 
QSAM (SB) 
QSAM (SB) 
QSAM (SB) 
QSAM (SB) 
QSAM (SB) 
QSAM (SB) 
QSAM (SB) 
QSAM (SB) 
QSAM (SB) 
BSAM 
BSAM 
BSAM 
BSAM 
SAM 
SAM 

SAM 
SAM 

SAM 
SAM 

SAM 
SAM 
SAM 

SAM 
SAM 

SAM 

SAM 

Function 
PUT Locate for Dummy Data Set 
Backward Move - Format F, FB, U Records 
Backward Locate - Format F, FB, U Records 
Magnetic Tape Forward Space or Backspace 
GET Move with CNTL - Format V Records (Card 
Reader) 
Space or Skip Printer 
Stacker Select (Card Reader) 
PUT Move, Format F, FB, U Records 
PUT Locate. Format V, VB Records 
PUT Locate, Format F, FB, U Records 
GET Move, Format F, FB, U Records 
GET Locate, Format V, VB Records 
GET Locate, Format F, FB, U Records 
PUT Synchronization Routine 
GET synchronization Routine 
PUT Move, Format V, VB Records 
GET Move, Format V, VB Records 
NOTE/POINT Tape 
NOTE/POINT Disk 
CHECK (all devices) 
READ/wRITE (all devices) 
SYSIN Delimiter Check (Appendage) 
Read Length Check" Format V Records 
(Appendage) 
Length Check, Format FB Records (Appendage) 
End-of-Extent Check (Data Extent Block) 
(Appendage) 
Printer Test Channels 9,12 (Appendage) 
ASA Character to Command Code 
(Printer-punch) 
End-of-Block (Printer-Punch) 
Schedules I/O for Direct Access Output 
Schedules I/O for Tape, Direct Access 
Input, Card Reader, Paper Tape Reader 
Channel end (Format U). 
Search Direct (SD) or Rotational Position 
Sensing. (RPS) Fixed Standard 
End-of-Extent Appendage. 
Checks RPS values (PO). Start I/O for 
Search Direct (SD). 
Channel end appendage for Search Direct 
(SD) • 

SB=simple buffering 
SAM=cornrnon sequential access method routines 

Note: If the system generation statements specify the use of both MCS 
and of an IBM 2740 communications terminal as an operator's console, the 
RAM option list (module IEAIGGOO) is effectively extended by the 
following character constants in the nucleus initiation program module 
lEAANIP: 

DC C'IGG019MA' 
DC C'IGG019MB' 
DC C'IGG019MO' 

BTAM Read/Write module 
BTAM Appendage 
BTAM 2740 module 

Resident Routines Options 151 

• 



The effect of these DCs is that the named modules are loaded whether or 
not the RAM option is specified in the system generation statements. In 
MVT, the modules are always loaded into the link pack area. In MFT, if 
RAM is not specified, the modules are link-edited into the nucleus area. 
If RAM is specified, they are loaded into the RAM area (even if the 
operator cancels use of the RAM option). 

RESIDENT LINK LIBRARY MODULES OPTION (MFT) 

This option permits, in MFT, preloading user-written reenterable Link 
library modules, the IBM-supplied OS/360 Loader" and reenterable GSP 
routines. If you chose to implement this option, the use of a LINK, 
ATTACH, LOAD, or XCTL macro instruction causes the contents supervision 
routines to find out whether the module is main storage resident 
already. If it is, the module already resident is used for that 
partition in which the macro instruction was used. If it is not, the 
module is loaded from the Link library into the requesting partition. 

IBM supplied modules, except those of the OS/360 Loader, and GSP 
routines cannot be used with this option. Any user written routine that 
is reenterable may be used, for example, a user-written reader routine 
that is reenterable. 

How to Include the Resident Link Library Option in Your System 

To include the option in your system: 

• Code RESIDNT=RENTOODE in your system generation statements to have 
the contents supervision routines find out whether the load module 
is main storage resident already. 

• Code OPTION=COMM in your system generation statements to allow the 
operator to have the modules preloaded at IPLtime. 

• Add to the Parameter library, a list or lists of names of 
reenter able modules to be preloaded. Each module name must be 
followed by its alias names (separated by commas). 

• Have the operator specify your list or lists in his RAM= reply at 
IPL time. 

You code RESIDNT=RENTCODE and OPTION=COMM to include certain IBM 
supplied coding in your system. 

You name the list of reenterable Link library modules IEAIGGxx. The 
final two characters (xx) of the name may be any EBCDIC character but 
should be different from any pair used to name a list of modules for the 
resident access method modules option. (The lists for the latter option 
are also named IEAIGG.. ). You add the list, or lists, to the 
Parameter library as described later in this chapter. 

The modules are finally and actually preloaded if your o~erator 
includes the last two characters of the list name in his answer RAM= at 
IPL time. (say, for example" you named your list of names of 
reenterable Link library modules tba t you want preloaded, IEAIGGAA. The 
operator's reply must be of the form: RAM= •• , •• ,AA,.. ) Since there is 
no standard list for this option, no modules are loaded unless you have 
constructed a list of names, added it to the Parameter library, and the 
operator refers to it (as described) in his RAM= response. 

152 System Programmer's Guide (Release 20.1) 



The Resident SVC Routines Option 

This option places any of the type 3 and 4 SVC routine load modules in 
main storage. (In MVT, these load modules are placed in the link pack 
area. If the system includes IBM 2361 Core Storage and Main Storage 
Hierarchy Support, modules may also be placed in the secondary link pack 
area in Hierarchy 1 using the "HSVC=" replay to "Specify System 
Parameters.") Some, or all, of the modules associated with a SVC service 
routine may be made resident. Placing the most frequently used SVC load 
modules of a system service routine, such as OPEN, in main storage 
improves system performance. For type 3 sve load modules and initial 
type 4 SVC load modules, the sve table entries associated with these 
modules are adjusted to reflect an entry point address rather than a 
relative track address. A resident sve load list is used by the XCTL 
macro instruction for transfer of control between resident type 4 SVC 
load modules. 

You list, in a member of SYS1.PARMLIB, the type 3 and 4 SVC load 
modules to be made resident. The member name for the standard list is 
IEARSVOO. Such a standard list (shown below) is provided by IBM in 
SYS1.PARMLIB of the starter system. The creation of parameter library 
lists is discussed later in this chapter. 

If your system includes the Multiple Console Support (MCS) function, 
to improve Mes performance you should add to the standard list (or 
include in a list of your own) IGC0007B, the name of the first load 
module of the SVC 72 routine. 

Storage Requirements 

The storaqe Estimates publication provides the byte requirements of type 
3 and 4 SVC routines eligible to be made resident. The byte requirement 
of the code supporting the option is also provided. 

,--
j 

Resident Routines Options 153 

• 



LIST IEARSVOO 

The content of the IBM supplied standard list IEARSVOO is: 

Module Name 
IGC0001F 
IGC00011 
IGC0199X 
IGC0005E 
IGC0002 (b.?)* 
IGG0190L 
IGG0190M 
IGG0190N 
IGG0190S 
IGG0191A 
IGG0196A 
IGG0191B 
IGG0196B 
IGG0191D 
IGG0191G 
IGG01910 
IGG01910 
IGG01917 
IGG01911 
IGG0199M 
IGG0200A 
IGG0200F 
IGG0200G 
IGG0200H 
IGG0200Y 
IGG0200Z 
IGG0201Y 
IGG0201Z 

Function 
Purge Routine 
Open - Initial Load - Part 1 
Open - Initial Load - Part 2 
EOV - Initial Load 
Close - Initial Load 
Open - Merge and Access Method Determination 
Open - Merge and DCB Exit Routine 
Open - Final Load 
Open - Rewrite JFCB 
Open - DEB Construction (First Load) 
Open - DEB Construction (Second Load) 
open - Main Executor (First Load) 
Open - Main Executor (Second Load) 
Open - Direct Access Executor 
Open - Tape and Unit Record Executor 
Open - Tape/Unit Record Executor 
Open - Load Executor 
Open - Second Load of Load Executor 
Open - lOB and Buffer Construction 
Open - JFCB Merge 
Close - Read JFCB and DSCB 
Close - Direct Access Routine 
Close - Delete Routine 
Close - Second Load of Delete Routine 
Close - Direct Access Processing 
Close - Second Load 
Close - Release Work Areas and Buffers 
Close - SAM Executor 

(SAM - Common sequential access methods modules) 
IGG0209Z Close - XCTL 
*The last (eighth) character is a 12 and 0 punch. In EBCDIC this is b 

(the blank character), in BCD? (the question mark). 

THE RESIDENT ERROR RECOVERY PROCEDURE OPTION 

This option places error recovery procedures in main storage. Some, or 
all, of the modules associated with the handling of an I/O error may be 
made resident. If an I/O device frequently requires ERP processing, 
system performance improves if the error recovery procedures are made 
resident. The list of those error recovery procedures that may be made 
resident in main storage is contained in the Storage Estimates 
publication. An I/O supervisor request for an error recovery procedure 
will result in a search of the resident error recovery procedure list. 
If the error recovery procedure is resident, no fetch operation is 
required. 

You list. in a member of SYS1.PARMLIB. the module names of error 
recovery procedures to be made resident. The member name for the 
standard list is lEAIGEOO. After system generation, you will have the 
option of indicating which error recovery procedures are to be made 
resident. The error recovery procedures should be listed by expected 
frequency of use; the least used module is first in the list. Note: 
The format of the IBM-supplied IEAIGEOO list contains the required 
library name. SYS1.SVCLIB. and no error recovery procedure names. After 
system generation, lEAIGEOO can~e updated to indicate which error 
recovery procedures are to be made resident or an alternate list can be 
created. Until this update is performed. no error recovery procedures 
will be made resident during the IPL process. The creation of parameter 
library lists is discussed later in this chapter. 

154 System Programmer's Guide (Release 20.1) 



Storage Reguirements 

The storage Estimates publication provides the byte requirements of 
error recovery procedures that may be made resident. The byte 
requirement of the code supporting the option is also provided. 

Creating Parameter Library Lists 

You use the IEBUPDTE utility program to construct the required lists of 
load module names in the parameter library. Standard member names for 
these lists are: 

lEABLDOO for the BLDL t able option 
lEAIGGOO for the access method option 
lEARSVOO for the SVC routine option 
lEAIGEOO for the error recovery procedure option 
LNKLSTOO for the link library list option 

These are the member names that the nucleus initialization program 
recognizes at IPL time in the absence of any other specification, i.e., 
when the operator communication facility is not incorporated. 

Note: The nucleus initialization program (NIP) will search the system 
catalog to locate the SYS1.PARMLIB data set. If it is not found in the 
catalog, SYS1.PARMLIB is assumed to reside on the IPL volume. If no 
VTOC entry can be found, the operator will receive message IEA2111 
"OBTAIN FAILED FOR SYS1.PARMLIB DATA SET". Message lEA2081 "fff 
FUNCTION INOPERATIVE" will follow either of these messages. The fff 
parameter - RAM, BLDL, RSVC, or RERP - shows which of the functions 
cannot be implemented. Processing will continue; however, any resident 
functions dependent on parameter lists contained in the parameter 
library will be omitted from the system nucleus. 

Except for LNKLSTOO, your input format (to IEBUPDTE) for the lists is 
the same for all three options, consisting of library identification 
followed by the load module names. You use eighty character records 
with the initial or only record containing the library identification. 
Continuation is indicated by placing a comma after the last name in a 
record and a nonblank character in column 72. Subsequent records must 
start in column 16. 

The initial record format (with continuation) is: 

1 72 

[b ••• ] 
SYS1.LINKLIB 
SYS1.SVCLIB b ••• namel,name2,name3, ••• X 

Subsequent records do not contain the library name. 
SYS1.LINKLIB indicates that linkage library load module names follow. 
SYS1.SVCLIB indicates that SVC library module names follow. 

You may construct alternative lists for all but the LNKLSTOO option 
and place them in the parameter library. Member names for these 
alternative lists are of the form: 

lEABLDxx for the BLDL option 
lEAIGGxx for the resident access method option 
lEARSVxx for the resident SVC routine option 
lEAIGExx for the resident error recovery procedure option 
LNKLSTOO for the link library list option 

where xx can be any two alphameric characters. 

Resident Routines 0Ftions 155 



Use of the alternative lists is indicated by the operator at IPL time 
and requires that the communication facility be present. When the 
communication facility is present, the operator must indicate that the 
standard list is to be used; that alternative lists are to be used; or 
that, for this IPL, the option(s) will not be used. In the latter case, 
no resident BLDL table, access method routines, SVC routines or error 
recovery procedures are placed in the nucleus. 

EXAMPLE 

The following coding illustrates the format and content of a BLDL option 
list that might be used to support the resident BLDL table option. The 
operator, at IPL time, would have to indicate the member name, lEABLDAE 
to the system. The load module names listed are from the Assembler (E), 
Linkage Editor, and scheduler components of the operating system. Note 
that the module names are listed in ascending collating sequence as 
required for the resident BLDL option. Resident access method or SVC 
modules should be listed in order of anticipated frequency of use. 

//BLDLIST EXEC PGM=IEBUPDTE,PARM=NEW 
//SYSPRINT DD SYSOUT=A 
//SYSUT2 DD DSNAME=SYS1.PARMLIB,DISP=OLD 
//SYSIN DO * 
./ ADD NAME=IEABLOAE,LIST=ALL 
./ NUMBER NEW1=Ol,INCR=02 
SYS1.LINKLIB GO,IEEGESTO,IEEGK1GM,IEEICIPE,IEEIC2NQ,IEEIC3JF, X 

IEEQOTOO,IEFINTQS,IEFK1,IEFSD008,IEFW21SD,IEFXA, X 
IETASM, IETDI, IETE1, IETE2, IETE2A, IETE3, IETE3A, IETE4M, X 
IETE4P,IETE4S,IETES,IETE5A,IETESE,IETE5P,IETINP,IETMAC, X 
IETPP,IETRTA,IETRTB,IET07,IET071,IET08,IET09,IET09I, X 
IET10,IET10B,IET21A,IET21B,IET21C,IET21D,IEWL,IEWSZOVR 

./ ENDUP 
/* 

Note: During IPL the operator reply "L" may be used in conjunction with 
a list specification and causes the content of the list to be printed. 
You should use this feature initially (especially with extensive lists> 
to easily identify format errors, e.g., a 9 character name, or incorrect 
name specifications. 

EXAMPLE OF THE ERP OPTION LIST 

The following coding illustrates the format and content of an ERP option 
list that may be used to support the resident ERP option. The operator, 
at IPL time, would have to indicate the member name, IEAIGE01, to the 
system. The load module names listed are the optical reader ERPs, 
Write-to-Operator, statistics Update, I/O Purge~ OBR and SDR/CCR 
modules. Note that the standard resident ERP list (IEAIGEOO) contains 
no error routine member names and that IEAIGEOl is an alternate list. 

//ERPLIST EXEC PGM=IEBUPDTE,PARM=NEW 
//SYSPRINT DD SYSOUT=A 
//SYSUT2 DO OSNAME=SYS1.PARMLIB,OISP=OLD 
//SYSIN DO * 
./ ADD 
./ NUMBER 

SYS1.SVCLIB 

./ ENDUP 
/* 

NAME=IEAIGE01,LIST=AL 
NEW1=Ol,INCR=02 
IGE~Ol1B,IGE0011C,IGE0011D, 
IGE002SC,IGE012SC,IGE0225C, 
IGE0025D,IGE0025E,IGE0025F, 
IGE0125F,IGE0525F 

156 System Programmer's Guide (Release 20.1) 

X 
X 
X 



Section 2: Using the Link Pack Area (MVT) 
~ --

In MVT configurations of the operating system the link pack area is 
always present in main storage, and, as a minimum, always contains a 
group of system-specified load modules concerned with job management 
processing. you may extend the link pack area to contain: 

• Load modules of nonresident SVC routines. 
• Load modules of nonresident error recovery procedures. 
• Other reenterable load modules from the system linkage library 

(SYS1.LINKLIB) and SVC library (SYS1.SVCLIB). 
• A table (the BLDL table) containing directory entries of load 

modules in the linkage library (SYS1.LINKLIB) and SVC library 
(SYS1.SVCLIB). 

Essentially, the link pack area in MVT configurations is the 
counterpart of the PCP and MFT configuration residency options discussed 
in section 1 of this chapter. If the system includes IBM 2361 Core 
storage and Main Storage Hierarchy Support, you may create a secondary 
link pack area in Hierarchy 1 that will contain nonresident SVC load 
modules and/or other reenter able load modules from the SVC library. 

You select the load modules to be made resident and the linkage 
library load modules whose directory entries are to appear in the BLDL 
table. You indicate your choices to the system through lists of the 
load module names placed in the system parameter library (SYS1.PARMLIB). 
standard (default) and alternative lists may be made up for each 
category. 

During the initial program loading (IPL) process the nucleus 
initialization program places the specified load modules in the link 
pack area and constructs the BLDL table. The load modules and BLDL 
table remain, unchanged, in the link pack area until the next IPL 
procedure is performed. The resident access method routines, the 
resident SVC routines, and the resident BLDL table entries can be used 
by all tasks; the resident error recovery procedures are used by the I/O 
supervisor. 

PROCEDURE FOR USING THE LINK PACK AREA 

The following material, under the headings "Initialization," "Creating 
Parameter Library Lists," "List Specification," and "Operational 
Characteristics," provides guidelines for use of the link pack area. 

Initialization 

When your MVT operating system is generated you must indicate whether 
you wish to extend the link pack area to include nonresident SVC 
routines, nonresident error recovery procedures, other reenterable load 
modules, the BLDL table, or any combination of these. The system 
Generation publication describes the procedure (the SUPRVSOR macro 
instruction). 

To exercise full control over the content of the link pack area 
(except for the mandatory modules which are always loaded) you must 
specify, at system generation, that the operator communication facility 
be included. The system Generation publication describes the procedure 
(the SUPRVSOR macro instruction). The operator communication facility 
enables you to respecify the content of the link pack area at each IPL. 

Resident Routines Options 157 



Creating Parameter Library Lists 

As discussed under the same heading in section 1 of this chapter you use 
the IEBUPDTE utility program to place your load module name lists in the 
parameter library (see Section 1). The format of your input to the 
utility program is the same. To avoid the duplicate loading into either 
the Link Pack Area or dynamic main storage of modules already resident 
in the Link Pack Area, the ADD utility control statement must show all 
the ALIAS names of the load module being placed in the Link Pack Area. 

Note: In an MVT configuration of the operating system, updating of the 
system data set SYS1.PARMLIB should not be attempted while other jobs 
are operative. The recommended procedure is described in the Operator's 
Reference publication. 

List specification 

The names and content of the parameter library lists are: 

List Name 
IEARSVOO 
IEARSVxx1 

IEAIGEOO 
IEAIGExx1 

IEAIGGOO 
IEAIGGxx1 

IEABLDOO 
IEABLDxx1 

LNKLSTOO 

standard list 
alternative list(s) 

standard list 
alternate list 

standard list 
alternative list(s) 

standard list 
alternative list(s) 

-- standard list 

List Content 
Names of type 3 and 4 SVC 
routine load modules. 

Names of error recovery procedure 
load modules specified after 
system generation via IEBUPDTE 

Names of reenterable load modules 
in the SVC and Link libraries. 

Names of Link library load 
modules whose directory entries 
are to be entered in the BLDL 
table. 

SYS1.LINKLIB -- Additional data sets 
may be concatenated after system 
generation via IEBUPDTE. 

1XX can be any two alphameric characters. 

SVC LOAD MODULE LISTS: Only one standard SVC load module list -­
IEARSVOO -- may be present in the parameter library. You may create as 
many alternative lists as your needs require. To use alternative lists, 
you must have specified the operator communication facility at system 
generation. The standard list is the only list referred to by the 
nucleus initialization program at IPL time if the operator communication 
facility is not installed in the system. A suggested standard list, 
supplied by IBM, is shown under the resident SVC routines option 
description in section 1 of this chapter. The storaqe Estimates 
publication provides a list (with storage requirements) of IBM 
originated type 3 and 4 SVC load modules that are eligible for inclusion 
in the link pack area. 

ERROR RECOVERY PROCEDURE LOAD MODULE LISTS: Only one standard list of 
error recovery procedures -- IEAIGEOO -- may be pres,ent in the parameter 
library. 

You may create as many alternative lists as you need. The standard 
and/or alternative lists is used as discussed under SVC LOAD MODULE 
LISTS. The standard list supplied by IBM has no error recovery 
procedure entries; so you must supply these via IEBUPDTE after system 
generation. The Storage Estimates publication provides a list (with 
storage requirements) of IBM error recovery procedures that are eligible 
for inclusion in the link pack area. 

158 System Programmer's Guide (Release 20.1) 



REENTERABLE LOAD MODULE LISTS: Only one standard list of reenterable 
load modules -- IEAIGGOO -- may be present in the parameter library. 
You may create as many alternative lists as your needs require. You 
cannot incorporate load modules from the SVC library and the linkage 
library in one list. Use of the standard and/or alternative lists is as 
discussed under SVC LOAD MODULE LISTS. A suggested standard list, 
supplied by IBM, is shown under the resident access method modules 
option description in section 1 of this chapter. The Storage Estimates 
publication provides a list (with storage requirements) of IBM 
originated reenterable load modules (other than SVC modules) that are 
eligible for inclusion in the link pack area. 

BLDL TABLE LISTS: Only one standard list of SVC library or linkage 
library modules --IEABLDOO-- may be present in the parameter library. 
You may create as many alternate lists as your needs require. Use of 
the standard and/or alternate lists is as discussed under the topic SVC 
LOAD MODULE LISTS. An initial list for the linkage library is shown 
under the BLDL table description in section 1 of this chapter. For the 
linkage library, 56 bytes per entry are required. For the SVC library, 
32 bytes per entry are reguired. To determine the storage reguirements 
for a list, multiply the number of modules in the list by the length of 
an entry. 

Note: You must arrange the library load module names in your list(s) in 
the same order as they appear in the library directory. All load 

Imodules in the linkage or SVC libraries are eligible to have their 
directory entrie s placed in the BLDL table,. 

Operational Characteristics 

Your specifications at system generation time determine the types of 
load modules that are placed in the link pack area and whether a BLDL 
table is constructed in the link pack area. In response to your 
specifications, the nucleus initialization program (at IPL time) refers 
to the parameter library lists to determine the specific load modules to 
be placed in the link pack area and/or the specific library directory 
entries to be placed in the BLDL tables. In the absence of the overator 
communication facility only the standard lists are referred to. If the 
operator communication facility is present the operator must specify the 
list or lists to be used. The operator may: 

• Specify use of the standard list for each category, i.e., SVc load 
modules, other reenterable load modules, the BLDL table content. 

• Specify alternative lists for each category, or a combination of the 
standard list and alternative lists. Up to four lists may be 
specified for each load module category. 

Only one list may be specified for the BLDL table in PCP. In MFT 
and MVT, two lists may be specified; one for SYS1.SVCLIB and one for 
SYS1.LINKLIB. 

• Specify that (for the current IPL) the loading of modules and/or 
construction of a BLDL table be suppressed. Each category is 
treated independently. 

With operator communication you can specify, at each IPL, the content 
of the link pack area extension. The number and type of load modules 
selected for inclusion in the link pack area, and the content of the 
BLDL table, can thus be altered to reflect the type of workload to be 
presented to the system after the IPL. If the system includes 2361 Core 
storage and Main Storage Hierarchy Support, a secondary link pack area 
for Hierarchy 1 may be created and its contents specified at this time. 

Resident Routines Options 159 

• 



The Messages and Codes publication describes the operator message and 
responses associated with use of the link pack area. 

Programming Notes 

A list of the load modules always placed in the link pack area by the 
system is contained in the Storage Estimates publication. The main 
storage space requirements of these modules determines the basic 
(minimum) size of the link pack area. The area is extended by the 
number of storage bytes needed to accommodate the load modules and BLDL 
table content specified at IPL time. 

Placing the initiator/terminator load module IEFSD061 in the link 
pack area enables the system to make more efficient use of the dynamic 
area of storage. The operating system allocates to each job a part of a 
region not less than the size required to accommodate the 
initiator-terminator. This allocation is from processor storage 
(hierarchy 0) and occurs even when the REGION parameter requests less 
than the required space or no space. After initiation, the part of the 
region in hierarchy 0 is reduced by as much as 40,000 bytes when the job 
terminator is resident in the link pack area. 

EXAMPLE OF LINK PACK AREA SPECIFICATION 

The following example illustrates the extension of the link pack area to 
contain SVC load modules, other reenterable load modules, and a BLDL 
table. The RESIDNT field of your system generation SUPRVSOR macro 
instruction would look like: 

SUPRVSOR RESIDNT=TRSVC,RENTCODE,BLDLTAB ••• 

If you intend to alter the content of your link pack area, you would 
also specify: OPTIONS=COMM, ••• in the SUPRVSOR macro instruction. 

Assume that you wish to place five lists on SYS1.PARMLIB. These 
lists are: 

1. IEARSVOO, which contains names of modules of the Open SVC routine 
used for direct access devices. 

2. IEARSV20, which contains names of modules of the Close SVC routine. 

3. IEAIGG01, which contains names of modules of the basic sequential 
access method (BSAM) • 

4. IEABLDOO, which contains names of modules of the initiator portion 
of the job scheduler. 

5. IEABLDFO, which contains names of modules of both the FORTRAN 
compiler and the initiator. 

Note that there is no standard list for reenterable modules from the 
linkage or SVC library (IEAIGGOO). This implies that you don't want 
modules of this type loaded unless a list is explicitly specified. 

160 System Programmer's Guide (Release 20.1) 



'\ 

./ 

To place these lists in SYS1.PARMLIB. you could use the IEBUPDTE 
utility program as shown: 

//ADDLISTS 
//STEP 
//SYSPRINT 
//SYSUT2 
//SYSIN 
./ 
./ 
SYS1.SVCLIB 

./ 

./ 
SYS1.SVCLIB 

./ 

./ 
SYS1.SVCLIB 

./ 

./ 
SYS1.LINKLIB 

./ 

./ 
SYS1.LINKLIB 

./ 

/* 

JOB 61938.R.L.WILSON 
EXEC PGM=IEBUPDTE,PARM=NEW 
DD SYSOUT=A 
DD DSNAME=SYS1.PARMLIB,DISP=OLD 
DD DATA 
ADD NAME=IEARSVOO,LIST=ALL 
NUMBER NEW1=Ol,INCR=02 
IGG0190I.IGG0190L,IGG0190M, 

IGG0190S,IGG0190Z 
ADD NAME=IEARSV20,LIST=ALL 
NUMBER NEW1=Ol,INCR=02 
IGC00020,IGG0200A,IGG0200B,IGG0200C,IGG0200F, 

IGG0200G,IGG0200Y 
ADD NAME=IEAIGG01,LIST=ALL 
NUMBER NEW1=Ol,INCR=02 
IGG019BA.IGG019BB,IGG019BC,IGG019BD, 

IGG019BE,IGG019BF,IGG019BG, 
IGG019BH,IGG019BI,IGG019BK,IGG019BL 

ADD NAME=IEABLDOO,LIST=ALL 
NUMBER NEW1=Ol,INCR=02 
IEFSD061, IEFSDO 62, IEFSD065" IEFSD104, 

IEFUM1,IEFWCOOO,IEFWDOOO, 
IEFW21SD,IEFW41SD,IEFW42SD,IEFXJOOO 

ADD NAME=IEABLDFO,LIST=ALL 
NUMBER NEW1=Ol,INCR=02 
IEFSD061,IEFSD062,IEFSD065,IEFSD104, 

ENDUP 

IEFUM1,IEFWCOOO,IEFWDOOO,IEFW21SD, 
IEFW41SD,IEFW42SD,IEFX4JOOO,IEJAAAO, 
IEJEAAO,IEJFAAO,IEJGAAO,IEJJAAO, 
IEJLAAO.IEJNAAO,IEJPAAO,IEJRAAO, 
IEJVAAO,IEJXAAO 
IEFWDOOO,IEFW41SD 

without operator communication only the standard lists IEARSVOO and 
IEABLDOO would be referred to at IPL time. With operator communication 
use of all the lists or any combination could be specified at IPL time. 

C 

C 

C 
C 

C 
C 

C 
C 
C 
C 
C 

If after a given IPL you intend to extensively use the FORTRAN 
compiler, and BSAM with direct access devices, you would probably want 
to use all of these lists -- except IEABLDOO -- to specify the content 
of your extended link pack area. To do this your operator would specify 
the following in response to the SPECIFY SYSTEM PARAMETERS operator's 
message: 

REPLY id, nRSVC=OO,20,RAM=Ol,BLDL=FO n 

If, after an IPL you intended to perform general processing without 

extensive use of any particular compiler or access method, you might 
want to put just the linkage library directory entries of initiator 
modules in a BLDL table. In this case, your operator's reply at IPL 
would be: 

REPLY id, nRSVC=,RAM=," 

Since the list of initiator modules is the standard list, it need not 
be specified. "RSVC=." must be specified to prevent the use of the 
standard list of SVC modules. Although you have no standard list of 
reenterable modules "RAM=," should be specified to prevent NIP from 
performing unnecessary processing. 

Resident Routines Options 161 

• 



Section 3: The Link Library List 

The link library list (LNKLSTOO) enables you to concatenate up to 16 
data sets, on multiple volumes, to form SYS1.LINKLIB. LNKLSTOO is 
included in the system when it is generated as a required member of 
SYS1.PARMLIB. If SYS1.PARMLIB does not include the member LNKLSTOO, 
SYS1.LINKLIB will be used as the system link library and a warning 
message will be provided. 

Note: The amount of space required for SYS1.PARMLIB is discussed in IBM 
system/360 Operating System: Storage Estimates, GC28-6551. 

LNKLSTOO contains one member, SYS1.LINKLIB. After system generation 
you will have the option of adding members via the IEBUPDTE utility 
program. Each member may have up to 16 extents. After making additions 
to SYS1.SVCLIB, SYS1.LINKLIB, or data sets concatenated to LINKLIB via 
LNKLSTOO, and before using the additions, IPL should be performed to 
update the description of the link and/or SVC library in main storage. 

Your input format (to IEBUPDTE) consists of eighty character records. 
Continuation is indicated by placing a comma after the last name in a 
record and a nonblank character in column 72. Subsequent records must 
start in column 16. The initial format is: 

[b ••• ] SYS1.LINKLIB 

To add member names to LNKLSTOO, replace the initial record with: 

[b ••• ] SYS1.LINKLIB,name1,name2,name3, ••• 

IBM System/360 Operating system: Messages and Codes, GC28-6631, 
describes the NIP messages associated with LNKLSTOO. 

162 System Programmer's Guide (Release 20.1) 



Job Queue Format 

The job queue format is specified when the 
system is generated and may be altered 
during subsequent system start procedures. 
In MFT and MVT, formatting consists of 
specifying the number of queue records in a 
job queue logical track, reserving queue 
records for initiators, the write-to­
programmer routine, and reader/ 
interpreters, and reserving queue records 
for job cancellation. 

This chapter provides guidelines for 
estimating: 

For PCP: 

• The number of records to be made 
resident. 

For MFT and MVT: 

• The number of queue records in a job 
queue logical track. 

• The number of queue records to be 
reserved for use by an initiator and 
reader/interpreter. 

• The number of queue records to be 
reserved for cancellation of job 
initiation and running when the number 
of queue records reserved for initiator 
use is insufficient. 

• The number of records to be reserved 
for the write-to-programmer routine. 

REFERENCE PUBLICATIONS 

The IBM System/360 Operating System: 
System Generation publication (GC28-6554) 
describes the SCHEDULR macro instruction 
parameters used to initially specify job 
queue format. 

The IBM System/360 Operating System: 
Operator's Reference publication 
(GC28-6692) describes the procedure used to 
alter job queue format. 

The IBM System/360 Operating System: 
Service Aids publication describes the 
service aids program IMCSQDMP. 

Job Queue Format 163 

-



The Resident Job Queue Option (PCP only) 
c;, 

This option places a specified number of system job queue records in 
main storage rather than in external storage (the SYS1.SYSJOBQE data 
set). The records are taken sequentially from the beginning of the 
queue. There is one break in the sequence which is noted in the next 
section "Operational Characteristics." 

Operational Characteristics 

The job queue is formatted as a series of 176 byte records. The first 
42 records form a "fixed group" of job queue records used by the 
scheduler. These 42 records are always present in the job queue. Of 
this group, 26 records are used by the interpreter routines of the 
scheduler as a work area. These 26 records are never made resident~y 
the option. The remaining 16 records in the "fixed group" may be made 
resident. After the "fixed group" of records, a series of records 
forming a "variable group" of job queue records is developed. The 
number of records in the "variable group" fluctuates from job to job 
reflecting the make-up of the input job stream for the job being read 
in. All records in the "variable group" may be made resident. 

starting with the first (in sequence) of the 16 eligible "fixed 
group" records, the option places the specified number of records in 
main storage. For example, a specification of 5 resident records will 
place the first 5 of the 16 "fixed group" records in main storage; a 
specification of 20 resident records will place all 16 of the "fixed 
group" records in main storage plus the first 4 records from the 
"variable group." 

Reference to a specific job queue record causes a test to be made -­
in resident queue or in external storage -- and the record is referred 
to accordingly. 

In an MFl' configuration of the operating system only the "variable 
group" job queue records developed from the input job stream for the 
lowest priority partition may be made resident. 

Determining Resident Job Queue Size 

The storage occupied by the resident job queue cannot be allocated to 
any other use, therefore you must determine the amount of storage your 
installation can afford to devote to a resident job queue. Since the 
size of the queue can be varied from IPL to IPL you may want to estimate 
several sizes -- each estimate reflecting a feasible job queue size in 
view of the work to be performed after the IPL. 

The following formula can be used to estimate the number of resident 
job queue records developed for a given job. The constant (16) 
represents the 16 "fixed group" records that are always developed and 
are eligible for inclusion in the resident job queue. 

164 System Programmer's Guide (Release 20.1) 



Number of Records= 16 + B + 2C + E + F + 3G + H-5 + J 
"3 28 176 15 22 

Where: 

B = the number of data sets passed between job steps. 

C = the number of steps in the job. 

E = the number of volume serial numbers specified in the DD statements 
for each job step. (Evaluate each job step separately and sum the 
results to obtain the total value.) 

F = the number of characters in data set names, including qualifiers, 
appearing in DD statements in the parameter VOL=REF=dsname. 
(Evaluate each job step separately and sum the results to obtain the 
total value.) 

G = the number of DD statements in the job. 

H = the number of volume serial numbers specified in each DD statement 
(if H~5, H-5=O). (Evaluate each DD statement separately and sum the 
results to obtain the total value.) 

J = the total number of job control language statements used to describe 
the job, when all messages are to be written on the system output 
device, otherwise J=l. 

Multiplying the number of records by 176 provides the resident job queue 
size in terms of bytes. 

If possible, the entire set of eligible job queue records should be 
made resident. It is recommended that at least the 16 eligible records 
from the "fixed group" of job queue records be made resident. 

Job Queue Format 165 

-



MVT Job Queue Formatting 

In MVT and MFT operating system configurations, the basic element of the 
system job queue (the data set SYS1.SYSJOBQE) is a 176-byte record -­
the queue record. The total number of queue records available is fixed 
by the space allocated to the SYS1.SYSJOBQE data set. Queue records 
contain the tables, control blocks, and system messages developed by the 
reader/interpreter, wri te-to-programmer, and initiator control program 
routines -- the information used to run a job. 

Lack of queue records to work with is not critical for a 
reader/interpreter routine. In MVT processing of the input job stream 
assigned to a reader/interpreter is suspended until queue records become 
available, at which time processing is resumed. In MFT the operator 
will receive a message if there is insufficient space for a 
reader/interpreter. He may wait for space or cancel the reader. An 
initiator, however, must have sufficient queue records available to­
complete the initiation and running of a job or the job is canceled. 
Because, in an MVT configuration, one or more reader/interpreters and 
one or more initiators may be concurrently active, steps must be taken 
to ensure that queue records are available to each initiator started, so 
that it may complete its operations. In addition queue records must be 
reserved for use by initiators in the event job cancellation does take 
place. The main function of job queue formatting is to reserve queue 
records for initiator use. 

To format the job queue you must: 

1. Designate the number of queue records to be contained in a job 
queue logical track. A logical track consists of a header record 
(20 bytes) plus the designated number of queue records. 
Reader/interpreters and initiators are assigned queue records in 
terms of logical tracks. 

2. Designate the number of queue records to be reserved for use by an 
initiator. Each initiator is allocated this nurrber of records. If 
the allocation is insufficient for the job currently being 
processed by the initiator, the job is canceled in MVT. 

3. Designate the number of queue records to be reserved for use in 
case of job cancellation. All initiators that cancel use these 
queue records. If the allocation is insufficient, the initiator is 
placed in a WAIT state and a message issued. 

4. Designate the number of queue records to be reserved for 
write-to-programmer routine use for each job that may be started by 
an initiator. 

The balance of the queue (total queue records less the reservations 
in items 2, 3, and 4) is available for use by the reader/interpreters. 

you specify initial values for logical track size, queue record 
reservation for initiators, and queue record reservation for job 
cancellation, in the SCHEDULR macro instruction parameters JOBQFMT, 
JOBQLMT, JOBQTMT, AND JOBQWTP respectively. The System Generation 
publication describes the procedure. 

The service aids program IMCJQDMP provides a formatted dump of the 
entire job queue, or selected portions of it. The formatted dump 
includes the master queue control record (QCR) which contains the 
physical parameters of the job queue. For a complete description of 
IMCJQDMP, see the publication IBM System/360 Operating System: service 
Aids. 

166 System Programmer's Guide (Release 20.1) 



There are no comprehensive, foolproof formulas for calculating values 
of JOBQFMT, JOBQLMT, JOBQTMT, and JOBQWTP. The values to be estimated 
are dependent upon the requirements and structure of the jobs to be 
presented to the system, the number of job steps, the number of I/O 
devices required, the number and type of data sets, the number of 
volumes, and most unpredictable, the number of system messages issued 
during the initiation and running of a job. The rest of this chapter 
provides some basic guidelines for your use in determining these values. 

LOGICAL TRACK SIZE JOBQFMT 

Logical track size the number of queue records in a logical track 
affects the efficient use of queue records. Reader/Interpreters and 
initiators are allocated queue records in terms of logical tracks. 
Unused queue records in a logical track are not available for use by 
other reader/interpreters or initiators. Therefore, an over generous 
logical track size specification results in wasted queue records and 
reduction of job queue capacity, i.e., the unused queue records, if 
available, could contain the required information for another job. 

Logical track size affects performance to some extent. Specification 
of a logical track size of 10 queue records or less can result in 
excessive execution of the track assignment routines, etc., i.e., the 
noverheadn required to use very small logical track sizes impairs 
performance. 

You may, as a starting point, wish to use the default value for 
JOBQFMT (12 queue records). 

You may make your logical track size (or multiples of it) correspond 
to the physical track capacity of the device on which the job queue is 
resident. For example. if the IBM 2301 Drum Storage unit is to be used, 
66 queue records may be contained in one physical track. You might 
specify, in this case, a logical track size of 22 queue records, thereby 
allocating 3 logical tracks to one physical track (3 x 22 = 66 queue 
records). The 3 logical track header records. (20 bytes each) use up the 
remaining record. 

You may wish to make your logical tracks contain the same number of 
queue records as are reserved for initiator use. 

RESERVING INITIATOR QUEUE RECORDS -- JOBQLMT 

The value you specify for JOBQLMT must be large enough for the queue 
entries of any job that enters the system. The following list shows the 
factors that affect the value of JOBQLMT: 

• Number of entire generation data groups in a job. 

• Number of passed data sets in a job. 

• Number of devices required for passed data sets. 

• Number of volumes containing ilie data sets in a step. 

• Number of system messages issued during initiation of a step. 

• Use of automatic restart. 

The sum of the queue records required for each of these items 
provides you with a JOBQLMT value. 

Job Queue Format 167 



When a start initiator command is issued, a check is made to see if 
enough free logical tracks are available to provide the required number 
of queue records for the initiator. If not, the command is rejected. 

Each time an initiator is started, the number of records reserved for 
an initiator is added to the total number of records reserved for active 
initiators. For example, if the number of records reserved for each 
initiator is 60, the number of records reserved for termination is 40, 
and 4 initiators have been started, then the number of records reserved 
is 340. This total includes 60 records reserved for each initiator, 40 
records reserved for termination, and 60 records reserved as a basic 
threshold. 

Number of Generation Data Groups 

Each entire generation data group (GDG) used during a job increases the 
number of queue records needed by an initiator. Two queue records 
should be reserved for every generation in excess of the first in a GDG. 
One queue record should be reserved for every four GDGs used in a job. 

Thus, if a job uses two entire GDGs, one having 5 data sets 
(generations), and the other baving 24 data sets, 55 queue records must 
be reserved -- (4+23}x2+1. 

Number of Passed Data Sets 

Two queue records are needed by an initiator for every three data sets 
passed during a job. If the number of data sets passed is not a 
multiple of three, queue records must be allocated as if the number of 
data sets passed was a multiple of three. Thus if one, two, or three 
data sets are passed, two queue records are allocated; if four, five, or 
six data sets are passed, 4 queue records are allocated, and so on. 

Number of I/O Devices for Passed Data Sets 

When a data set being passed requires more than ten I/O devices, one 
queue record is required by an initiator. This queue record 
accommodates 43 devices. If the number of required devices exceeds 53, 
a second queue record is needed. Separate calculations must be made for 
each data set. 

Number of Volumes 

An initiator requires queue records for each data set that occupies more 
than five volumes, and is located by a search of the catalog. (If a 
data set's location is specified in a DD statement, the reader routines 
acquire the necessary records.) One queue record is needed if the data 
set occupies between 6 and 20 volumes; two queue records if 21 to 35 
volumes; three if 36 to 50 volumes; and so on. Separate calculations 
must be made for each data set. 

Number of System Messages 

An initiator requires queue records for system messages it issues. If 
you assume that each message is 80-characters in length, each queue 
record holds two messages. Messages from initiators are primarily 
device allocation, allocation recovery, and data set disposition 
messages. 

168 System Programmer's Guide (Release 20.1) 



To cover most device allocation and data set disposition situations, 
allocate two queue records for every three DD statements in a job step. 

Allocation recovery messages apply to devices that are offline. You 
will cover most situations if you allocate queue records as follows: 

• Determine the largest number of devices of a given class that will 
be offline at any given time. 

• Divide by two. 
• Add one. 

since you will probably make this calculation for a job step, you 
should multiply your result by the number of steps in a large job. 

system messages are the least predictable of all the variables used 
in calculating initiator queue record needs. The number of messages 
depends on the number of devices offline, the number not available, and 
the number required at any given time. 

Use of Automatic Restart 

If you intend to use automatic restart in your system, the number of 
records specified for the JOBQLMT parameter must be substantially 
increased. In general, this is due to the fact that, while the first 
job is going through the restart process, a second job is initiated, and 
that before the system can restart the first job, it must reread and 
reinterpret the job deck and then reinitiate the job. More 
specifica lly: 

• The initiator needs its normal set of queue records (described by 
the JOBQLMT parameter) to initiate the job for the first time; it 
needs an additional set of records to start a second job while the 
first job is going through the restart process. 

• Since the restart process involves rereading, reinterpreting, and 
reinitiating the first job, an additional set of reader/interpreter 
records is needed, together with a third set of initiator records. 

Finally, when checkpoint restart is being performed, a set or two of 
restart housekeeping records are needed. Altogether, the number of 
records to be specified for JOBQLMT when automatic restart is being 
used, is: 

JOBQLMT = (3 x L) + R + (a x 12) 

L 

R 

a=1 

a=2 

12 

Number of records normally specified for JOBQLMT (that is, when 
automatic restart is not being used). 

Number of records normally needed by the reader/interpreter. (see 
the Storage Estimates publication for guidance on how this number 
is established.) 

If jobs may be automatically restarted only once. 

If jobs may be automatically restarted more than once. 

Number of records needed for restart housekeeping. 

Job Queue Format 169 

-



If jobs with automatic restart may be held for operator restart, the 
initiator queue record requirement is further increased, because the 
system must keep both the queue records for the held jobs and their 
associated housekeeping records until the job is restarted. The formula 
then becomes: 

JOBQLMT = (3 x L) + R + (a x 12) + H (L + (a x 12» 

H 
Number of jobs that may be held. 

other terms 
As explained previously. 

RESERVING WRITE-TO-PROGRAMMER QUEUE RECORDS - JOBQWTP 

Unless specified otherwise, the system allocates two job queue records 
to the write-to-programmer (WTP) function. OUt of the 176 bytes in each 
of these records, 161 are available for WTP messages. A record can hold 
as many messages as will fit into the available space, each message 
occupying 1 byte per character plus 1 byte per message for an initiator 
assigned serial number. 

If you wish to change the number of records available for this 
function, you specify the number either with the JOBQWTP operand of the 
SCHEDULR macro instruction in your system generation statements or 
during initialization in reply to message IEAl01A (but only if you used 
Q-F with your set command). However, since both system and application 
tasks contend for the space available to an initiator in the system job 
queue, and since WTP message may be created faster than the writer may 
be writing them out, caution should be exercised in raising the JOBQWTP 
va I ue above 2. 

170 System Programmer's Guide (Release 20.1) 



RESERVING QUEUE RECORDS FOR CANCELLATION -- JOBQTMT 

If an initiator's queue record requirements exceed the number of queue 
records reserved for it, the job associated with that initiator is 
canceled. Queue records must be reserved for this purpose. Enough 
queue records must be reserved to accommodate two (or more) initiators 
that may be cancelling concurrently. The JOBQTMT value (like the value 
JOBQLMT) is unpredictable because of factors such as the installation's 
configuration, the size of the job being canceled, and the number of 
jobs that can be multiprogrammed. 

The following guidelines should be used in calculating JOBQTMT: 

• Number of devices used during a job. 

• Number of jobs that might be concurrently canceled because of 
insufficient initiator queue records. 

• For any system task to be started, combined JCL from its associated 
catalogued procedure and the START command must first be 
interpreted. This requires queue records. and the system allows 
assignment of records for this purpose whenever any logical tracks 
are available. During normal use of the queues, this space is 
always available. However, in order to insure availability of queue 
records for system tasks when the reserves approach the critical 
state, the value of JOBQTMT should be increased over the above 
amount by the number of records necessary to get tasks started. 
(This is especially true for writer and initiator tasks, since they 
return queue records to the system.) This amount may be estimated 
in a manner similar to calculating JOBQLMT, taking into 
consideration that each valid START command generates one input and 
one output queue entry. FormQlas for estimating queue entry sizes 
are given in the Storage Estimates publication. 

Number of Devices 

The devices currently assigned to a job are released when the job is 
canceled. Since messages are issued when devices are released, you 
should reserve a number of queue records equal to the largest number of 
devices assigned at anyone time to a job. multiplied by two. Thus if 
your largest job (in terms of devices) has three steps requiring 4, 11, 
and 8 devices respectively, 22 queue records should be reserved. 

Number of Jobs 

The number of queue records reserved for cancellation must be large 
enough to fill the requirements of all jobs being canceled at anyone 
time because of insufficient initiator queue records. If your estimate 
of initiator queue records was accurate, it is unlikely that you will 
have more than one job (if any) cancelling at anyone time. 

An initiator that runs out of queue records for cancellation is 
placed in the wait state and an operator message -- IEF4261 QUEUE 
CRITICAL -- is issued. This can result in the interlocking of all 
reader/ interpreters, -initiators. and sysout writers functioning at the 
moment. 

Job Queue Format 171 



172 System Programmer's Guide (Release 20.1) 



System Macro Instructions 

This chapter contains the description and 
formats of macro instructions that allow 
you either to modify control blocks or to 
obtain information from control blocks and 
system tables. Before reading this 
chapter, you should be familiar with the 
information contained in the prerequisite 
publications listed below. 

PREREQUISITE PUBLICATIONS 

The IBM System/360 Operating system: 
Assembler Language publication (GC28-6514) 
contains the information necessary to code 
programs in the assembler language. 

The IBM System/360 Operating System: 
System Control Block publication GC28-6628) 
contains format and field descriptions of 
the system control blocks referred to in 
this chapter. 

System Macro Instructions 173 

-



SYSTEM MACRO INSTRUCTIONS IN THIS PUBLICATION 

The following system macro instructions are described in the chapters of this publica 
that deal with the subjects shown. 

Macro 
Instruction 

ATLAS 

ATTACH 

CAMLIST 

CATALOG 

CIRB 

CLOSE 

DCB 

DEQ 

••• ,RMC= 

DEVT 

ENQ 

••• , SMC= 

EOV 

EXCP 

EXTRACT 

IECDSECT, 
IEFJFCBN, 
IEFUCBOB 

I lMAGELIB 

INDEX 

Chapter Subject 

EXCP Macro Instruction 

System Macro Instructions 

VTOC Maintenance 

Catalog Maintenance 

System Macro Instructions 

EXCP Macro Instructions 

EXCP Macro Instructions 

Accounting Routines, 
Shared DASD 

System Must Complete 

System Macro Instructions 

Accounting Routines 

System Must Complete 

EXCP Macro Instructions 

EXCP Macro Instructions 

Shared DASD 

IECDSECT, IEFJFCBN, 
IEFUCBOB Macro 
Instructions 

System Macro Instructions 

Catalog Maintenance 

174 System Programmer's Guide (Release 20.1) 

Macro 
Instruction 

LOCATE 

OBTAIN 

OPEN 

••• ,TYPE=J 

Chapter Subject 

Catalog Maintenance 

Catalog Maintenance 

EXCP Macro Instruction 

System Macro Instructic 
(Read a JFCB) 

POST, WAIT (ECB) EXCP Macro Instruction, 
XDAP Macro Instruction 

PURGE 

RDJFCB 

RENAME 

RESERVE 

RESTORE 

SCRATCH 

SMFWTM 

STAE 

SVC 

SYNCH 

XDAP 

EXCP Macro Instruction 
(Appendix) 

System Macro Instructio 

VTOC Maintenance, 
Password Protection 

Shared DASD 

EXCP Macro Instruction 
(Appendix) 

VTOC Maintenance, 
Password Protection 

System Management 
Facili ties 

System Macro Instructio] 

SVC Routines 

System Macro InstructioI 

XDAP Macro Instruction 



Locate Device Characteristics (DEVTYPE) Macro Instruction 

The DEVTYPE macro instruction is used to request information relating to 
the characteristics of an I/O device, and to cause this information to 
be placed into a specified area. (The results of a DEVTYPE macro 
instruction executed before a checkpoint is taken should not be 
considered valid after a checkpoint restart occurs.) 

r----------T-----------T-----------------------------------------------, 
I Name I Operation I Operand I 
r----------+-----------+-----------------------------------------------1 II [symbol] I DEVTYPE I ddloc-addrx,area-addrx[,DEVTABl [,RPS] I L __________ ~ ___________ ~ _______________________________________________ J 

ddloc-addrx 
specifies the address of a doubleword that contains the symbolic 
name of the DO statement to which the device is assigned. The name 
must be left justified in the doubleword, and must be followed by 
blanks if the name is less than eight characters. The doubleword 
need not be on a doubleword boundary. 

area-addrx 
specifies the address of an area into which the device information 
is to be placed. The area can be two, five, or six full words, 
depending on whether or not the DEVTAB and RPS operands are 
specified. The area must be on a fullword boundary. 

DEVTAB 

RPS 

If DEVTAB is specified, and the device is a direct access device, 
five full words of information are placed into your area. If 
DEVTAB is specified, and the device is not a direct access device, 
two full words of information are placed into your area. If DEVTAB 
is not specified, two fullwords of information are placed into your 
area. 

If RPS is specified, DEVTAB must also be specified. The RPS 
parameter causes one additional full word of RPS information to be 
included with the DEVTAB information. 

Note: Any reference to a dummy DO statement in the DEVTYPE macro 
instruction will cause zeroes to be placed in the output area. 

Device Characteristics Information 

The following information is placed into your area: 

Word 1 Device Code from the UCB in which: 

Byte 1 

Byte 2 

Byte 3 

Byte 4 

bit 0 Unassigned 
bit 1 Overrunable Device 
bit 2 Burst/Byte Mode 
bit 3 Data Chaining 
bit 4-7 Model Code 

Optional Features 

Device Classes 

Unit Type 

1 = yes 
1 = burst 
1 = yes 

Note: Bit settings for Byte 2 -- Optional Features are noted in the UCB 
format and field description in the System Control Blocks publication. 

System Macro Instructions 175 

• 



Word 2 Maximum block size. For direct access devices, this 
value is the maximum size of an unkeyed block; for 
magnetic or paper tape, this value is the maximum 
block size allowed by the operating system. For all 
other devices, this value is the maxirr.um block size 
accepted by the device. 

If DEVTAB is specified, the next three full words contain the 
following information: 

Word 3 

Word 4 

Word 5 

Bytes 1-2 The number of physical cylinders on the 
device. 

Bytes 3-4 The number of tracks per cylinder. 

Bytes 1-2 Maximum track length. Note that for the 
2305 and 3330 direct access devices this 
value is not equal to the value in word 
two (maximum block size) as it is for 
other IBM direct access devices. 

Byte 3 

Byte 4 

Byte 1 

Byte 2 

Block Overhead - the number of bytes 
required for gaps and check bits for each 
keyed block other than the last block on a 
track. 

Block Overhead - the number of bytes 
required for gaps and check bits for a 
keyed block that is the last block on a 
track. 

Block Overhead - the number of bytes to be 
subtracted if a block is not keyed. 

bits 0-6 

bit 7 

Reserved (except for the 2321 on 
which a 1 in bit 6 indicates the 
device has byte addressing). 
If 1, a tolerance factor must be 
applied to all blocks except the 
last block on the track. 

Bytes 3-4 Tolerance Factor - this factor is used to 
calculate the effective length of a block. 
The calculation should be performed as 
follows: 

step 1 - add the block's key length to the 
block's data length. 
step 2 - test bit 7 of byte 2 of word 5. 
If bit 7 is 0, perform step 3. If bit 7 
is 1~ multiply the sum computed in step 1 
by the tolerance factor. Shift the result 
of the multiplication nine bits to the 
right. 
step 3 - add the appropriate block 
overhead to the value obtained above. 

If DEVTAB and RPS are specified, the next full word contains the 
following information: 

Word 6 Bytes 1-2 RO overhead for sector calculations 

Byte 3 

Byte 4 

Number of sectors for the device. 

Zero. 

176 System Programmer's Guide (Release 20.1) 



output for Each Device Type 

Maximum 
UCB Type Field Record size DEVTAB RPS 
(Word 1, (Word 2, (Words 3, 4, and 5, (Word 6 
In Hexadecimal) In Decimal) In Hexadecimal> In Hexadecimal) 

2540 Reader 10 00 08 01 80 Not Applicable Not Applicable 
2540 Reader w/CI 10 01 08 01 80 Not Applicable Not Applicable III 
2540 Punch 10 00 08 02 80 Not Applicable Not Applicable 
2540 Punch w/cr 10 01 08 02 80 Not Applicable Not Applicable 

1442 Reader-punch 50 00 08 03 80 Not Applicable Not Applicable 
1442 Reader-punch w/CI 50 01 08 03 80 Not Applicable Not Applicable 
1442 Serial Punch 51 80 08 03 80 Not Applicable Not Applicable 
1442 Serial Punch w/CI 51 01 08 03 80 Not Applicable Not Applicable 

2501 Reader 50 00 08 04 80 Not Applicable Not Applicable 
2501 Reader w/CI 50 01 08 04 80 Not Applicable Not Applicable 

2520 Reader Punch 50 00 08 05 80 Not Applicable Not Applicable 
2520 Reader Punch w/CI 50 01 08 05 80 Not Applicable Not Applicable 
2520 B2-B3 11 00 08 05 80 Not Applicable Not Applicable 
2520 B2-B3 w/CI 11 01 08 05 80 Not Applicable Not Applicable 

1403 10 00 08 08 120* Not Applicable Not Applicable 
1403 w/UCS 10 80 08 08 120* Not Applicable Not Applicable 

1404 10 00 08 08 120* Not Applicable Not Applicable 

1443 10 00 08 OA 120* Not Applicable Not Applicable 

3211 10 80 08 09 132* Not Applicable Not Applicable 

2671 10 00 08 10 32767 Not Applicable Not Applicable 

1052 10 00 08 20 130 Not Applicable Not Applicable 

2400 (9-track) 30 00 80 01 32767 Not Applicable Not Applicable 
2400 (9-track, pooeoo ) 34 00 80 01 32767 Not Applicable Not Applicable 
2400 (9-track, d .. d .. ) 34 20 80 01 32767 Not Applicable Not Applicable 
2400 <7-track) 30 80 80 01 32767 Not Applicable Not Applicable 
2400 (7-track, d .. c .. ) 30 CO 80 01 32767 Not Applicable Not Applicable 

2301 30 40 20 02 20483 000100C85003BA3535000200 Not Applicable 

2302 30 00 20 04 4984 00FA002E1378511414010219 Not Applicable 

2303 30 00 20 03 4892 0050000A131C922626000200 Not Applicable 

2311 30 00 20 01 3625 00CBOOOAOE29511414010219 Not Applicable 

2314 30 CO 20 08 7294 00CBOO141C7E922D2D010216 Not Applicable 

2321 30 00 20 05 2000 140A051407D0641010030219 Not Applicable 

3210 Printer Keyboard 10 00 08 22 130 Not Applicable Not Applicable 
3215 Printer Keyword 10 00 08 23 130 Not Applicable Not Applicabl e 

2305-1 30 50 20 06 14,136 003000083728027ACA080200 02A25AOO 

2305-2 30 50 20 07 14,660 00600008394401215B080200 0144B400 

3330 30 50 20 09 13,030 019BOO1332E6C1C136000200 00DD8000 

/ 

System Macro Instructions 177 



UCB Type Field 
(Word 1, 

GraEhics Devices In Hexadecimal) 
1053 14 00 10 04 

2250 (Mod 1) 31 xx 10 02 
2250 (Mod 2) 32 xx 10 02 
2250 (Mod 3) 33 xx 10 02 

2280 30 00 10 05 

2282 30 00 10 06 

3066 (Model 165 
System Console) 10 00 10 08 

5450 (Model 85 
Operators 
Console) 

Legend 

10 00 10 07 

Maximum 
Record Size DEVTAB 
(Word 2, (Words 3, 4, and 5, 
In Decimal) In Hexadecimal) 

Not Applicable 

Not Applicable 
Not Applicable 
Not Applicable 

Not Applicable 

Not Applicable 

Not Applicable 

Not Applicable 

CI-Card Image Feature, d.c.-data conversion, d.d.-dual density, 
p.e.-phase encoding, UCS-Universal Character Set, w/-with 

*Although certain models can have a larger line size, the minimum 
line size is assumed. 

xx = special Feature (byte 2) configurations may be obtained from 
the System Control Blocks publication. 

Communication Equipment UCB Type Field Record Size 

1030,1050,83B3, TWX, 2250, S360 
1060,115A,l130 

51xx40YZ 
52xx40YZ 
53xx40YZ 
54xx40YZ 

2780 
2740 

Y=Adapter Type (Bits 0-3) 
Hex Value Meaning 

1 IBM Terminal Adapter, Type I 
2 IBM Terminal Adapter, Type II 
3 IBM Telegraph Adapter 
4 Telegraph Adapter, Type I 
5 Telegraph Adapter, Type II 
6 World Trade Telegraph Adapter 
7 Synchronous Adapter, Type I 
8 IBM Terminal Adapter, Type III 
9 Synchronous Adapter, Type II 

Exceptional Returns 

Not Applicable 
Not Applicable 
Not Applicable 
Not Applicable 

Z=Control Unit (Bits 4-7) 
Hex value Meaning 

1 2702 
2 2701 
3 2703 

The following return codes are placed in register 15: 

00 - Request completed satisfactorily. 
04 - Ddname not found. 
08 - Invalid area address. The address of the output area either 

violates protection, or it is out of the range of main storage. 

178 System Programmer's Guide (Release 20.1) 



How to Read a Job File Control Block 

To accomplish the functions that are performed as a result of an OPEN 
macro instruction, the OPEN routine requires access to information that 
you have supplied in a data definition (DO) statement. This information 
is stored by the system in a job file control block (JFCB). 

Usually, the programmer is not concerned with the JFCB itself. In 
special applications, however, you may find it necessary to modify the 
contents of a JFCB before issuing an OPEN macro instruction. To assist 
you, the system provides the RDJFCB macro instruction. This macro 
instruction causes a specified JFCB to be read into main storage from 
the job, queue in which it has been stored. Format and field description 
of the JFCB is contained in the system Control Blocks publication. 

When subsequently issuing the OPEN macro instruction, you must 
indicate, by specifying the TYPE=J option, that you have supplied a 
modified JFCB to be used during the initialization process. 

The JFCB is returned to the job queue by the OPEN routine or the 
OPENJ routine, if any of the modifications in the following list occur. 
These modifications can occur only if the information is not originally 
in the JFCB. 

• Expiration date field and creation date field merged into the JFCB 
from the DSCB. 

• Secondary quantity field merged into the JFCB from the DSCB. 

• DCB fields merged into the JFCB from the DSCB. 

• DCB fields merged into the JFCB from the DCB. 

• Volume serial number fields added to the JFCB. 

• Data set sequence number field added to the JFCB. 

• Number of volumes field added to the JFCB. 

If you make these, or any other modifications, and you want the JFCB 
returned to the job queue, you must set the high-order bit of field 
JFCBMASK+4 to one. This field is in the JFCB. Setting the high-order 
bit of field JFCBMASK+4 to zero does not necessarily suppress the return 
of the JFCB to the job queue. If the OPEN or OPENJ routines have made 
any of the above modifications, the JFCB is returned to the job queue. 
To inhibit writing the JFCB back to the job queue during an OPENJ, the 
field JFCBTSDM should be set to x'OS' prior to issuing the OPEN macro. 

OPEN -- PREPARE THE DATA CONTROL BLOCK FOR PROCESSING (S) 

The OPEN macro instruction initializes one or more data control blocks 
so that their associated data sets can be processed. 

A full explanation of the operands of the OPEN macro instruction, 
except for the TYPE=J option, is contained in the supervisor and Data 
Management Macro Instructions publication. The TYPE=J option, because 
it is used in conjunction with modifying a JFCB, should be used only by 
the system programmer or only under his supervision. 

System Macro Instructions 179 

-



r----------T----------T------------------------------------------------, 
I Name I Operation I Operand I 
~----------+----------+------------------------------------------------~ 
I [symbol] I OPEN I ({dcb-addr,[(opt1.-code[,opt2-code])],} ••• ) I 
I I I [,TYPE=J] I L __________ ~ __________ ~ ________________________________________________ J 

TYPE=J 
specifies that, for each data control block referred to, the 
programmer has supplied a job file control block (JFCB) to be used 
during initialization. A JFCB is an internal representation of 
information in a DD control statement. 

During initialization of a data control block, its associated JFCB 
may be modified with information from the data control block or an 
existing data set label or with system control information. 

The system always creates a job file control block for each DD 
control statement. The job file control block is placed in a job 
queue on direct access storage. Its position, in relation to other 
JFCBs created for the same job step, is noted in a main storage 
table. 

When this operand is specified, the user must also supply a DD 
control statement. However, the amount of information given in the 
DD statement is at the programmer's discretion, because he can 
ignore the system-created job file control block. (See the 
examples of the RDJFCB macro instruction for a technique for 
modification of a system-created JFCB.) 

Caution: In MVT configurations of the operating system, data set 
integrity provided by the job scheduler functions is lost if you change, 
or do not use, the DSNAME=parameter in the DD statement. 

Note: The DD statement must specify at least: 

• Device allocation (refer to the Job Control Language publication for 
methods of preventing share status) • 

• A ddname corresponding to the associated data control block DCBDDNAM 
field. 

RDJFCB -- READ A JOB FILE CONTROL BLOCK (S) 

The RDJFCB macro instruction causes a job file control block (JFCB) to 
be read from the job queue into main storage for each data control block 
specified. 

r----------T----------T----------------------------===~----------------, 
I Name I Operation I Operand I 
r----------+----------+------------------------------------------------~ I [symbol] I RDJFCB I ({dcb-addr,[(opt1.-code[,opt2-code])],} ••• ) I L __________ ~ __________ ~ ________________________________________________ J 

dcb,(opt1.,opt2> 
(same as dcb, opt1., and opt2 operands in OPEN macro instruction) 

Although the opt1. and Opt2 operands are not meaningful during the 
execution of the RDJFCB macro instruction, these operands can 
appear in the L-form of either the RDJFCB or OPEN macro 
instructionto generate identical parameter lists, which can be 
referred to with the E-form of either macro instruction. 

180 System Programmer's Guide (Release 20.1) 



Examples: The macro instruction in EX1 creates a parameter list for two 
data control blocks: INVEN and MASTER. In creating the list, both data 
control blocks are assumed to be opened for input; opt2 for both blocks 
is assumed to be DISP. The macro instruction in .EX2 reads the system­
created JFCBs for INVEN and MASTER from the job queue into main storage, 
thus making the JFCBs available to the problem program for modification. 
The macro instruction in EX3 modifies the parameter list entry for the 
data control block named INVEN and indicates, through the TYPE=J 
operand. that the problem program is supplying the JFCBs for system use • 

EXl RDJFCB (INVEN.,MASTER),MF=L 

EX2 RDJFCB MF=(E,EX1) 

EX3 OPEN (,(RDBACK,LEAVE».TYPE=J,MF=(E,EX1) 

Programming Notes 

Any number of data control block addresses and associated options may be 
specified in the RDJFCB macro instruction. This facility makes it 
possible to read job file control blocks in parallel. 

An exit list address must be provided in each data control block 
specified by an RDJFCB macro instruction. Each exit list must contain 
an active entry that specifies the main storage address of the area into 
which a JFCB is to be placed. A full discussion of the exit list and 
its use is contained in the supervisor and Data Management Services 
publication. The format of the job file control block exit list entry 
is as follows: 

r--------------T------------------T------------------------------------, 
I Type of Exit J Hexadecimal Code I Contents of Exit List Entry I 
I List Entry I (high-order byte) I (three low-order bytes) I 
r--------------+------------------+------------------------------------~ 
I Job file I 07 I Address of a 176-byte area to be I 
I control blockl I provided if the RDJFCB or OPEN I 
I I I (TYPE=J) macro instruction is used. I 
I I I This area must begin on a fullword I 
I I I boundary and must be located I 
I I I within the user's region. I L ______________ ~ __________________ ~ ____________________________________ J 

The main storage area into which the JFCB is read must be at least 
176 bytes long. 

The data control block may be open or closed when this macro 
instruction is executed. 

Cautions: The following errors cause the results indicated: 

Error 
A DD control statement has not been 
provided. 

A main storage address has not been 
provided. 

Result 
No action 

Abnormal termination of task 

L- and E-Form Use: The Land E forms of this macro instruction are 
written as described in the Supervisor services and supervisor and Data 
Management Macro Instructions publications. 

system Macro Instructions 181 

• 



CIRB - Create IRB for Asynchronous Exit Processing 

The CIRE macro instruction is included in SYS.1.MACLIB and must be 
included in your system at system generation time if you intend to use 
it. The issuing of this macro instruction causes a supervisor routine 

I (called the exit effector routine) to create an interruption request 
block (IRE). In addition, other operands of this macro instruction may 
specify the building of a register save area and/or a work area to 
contain interruption queue elements, which are used by supervisor 
routines in the scheduling of the execution of user exit routines. 

r--------T---------T---------------------------------------------------, 
I Name I Operation I Operand I 
~--------+---------+---------------------------------------------------~ 
I [symbol] ICIRB I {EP=addrx}, KEY={~}, MODE={~}, [STAB=code,l I 
I I I SUPR SUPR I 
I I I I 
I I I {SVAREA= NO }' [WKAREA=value] I 
I I I YES' I L ________ ~ _________ ~ ___________________________________________________ J 

EP 

KEY 

MODE 

STAB 

specifies the entry point address of the user's asynchronous exit 
routine. 

specifies whether the user's asynchronous routine will operate with 
a CPU protection key established by the supervisory program (SUPR) 
or with a protection key obtained from the task control block of 
the task for which the macro instruction is issued (pP). 

specifies whether the user asynchronous routine will be executed in 
the problem program (PP) state or in a supervisory (SUPR) state. 

indicates the status condition of the interruption request block. 
The 'code' parameter may be either of the following: 

(RE) to indicate that the IRE is reusable in its current form. 

(DYN) to indicate that the storage area assigned to the IRB is to 
be made available (i.e., freed) for other uses when the 
asynchronous exit routine is completed. 

SVAREA 
specifies whether a register save area (of 72 bytes) is to be 
obtained from the main storage assigned to the problem program. If 
it is, the address of this save area is placed in the IRE. The 
asynchronous exit routine then follows the system register saving 
convention of using the SAVE and RETURN macro instructions. In 
this manner, a generalized subroutine can be used as an 
asynchronous exit routine. 

WKAREA 
specifies the number of doublewords (given as a decimal value) 
required for an area in which the routine issuing the macro 
instruction can construct interruption queue elerrents. 

182 system Programmer's Guide (Release 20.1) 



SYNCH - Synchronous Exits to Processing Program 

The SYNCH macro instruction is a system macro instruction that permits 
control program supervisor call (SVC) routines to make synchronous exits 
to a processing program. 

r--------T---------T---------------------------------------------------, 
IName I Operation I Operand I 
~-------+---------+---------------------------------------------------~ 
I [symbol] ISYNCH I {entry-point} I 
I I I (15) I L ________ ~ _________ ~ ___________________________________________________ J 

entry-point 
specifies the address of the entry point for the processing program 
that is to be given control. 

If (15) is specified, the entry-point address of the processing 
program must have been pre-loaded into parameter register 15 before 
execution of this macro instruction. 

SYNCH Macro Definition 

MACRO 
&NAME SYNCH 

AIF 
AIF 

& NAME LA 
AGO 

• REG AIF 
&NAME LR 
.SVC SVC 

MEXIT 
.NAMEIT ANOP 
&NAME SVC 

MEXIT 
• El IHBERMAC 

MEND 

&EP 
( I & EP , EQ "). El 
('&EP'(l,l) EQ ·(').REG 
15, &EP 
.SVC 
('&EP' EQ '(15)').NAMEIT 
15,&EP(1) 
12 

12 

27,405 

LOAD ENTRY POINT ADDRESS. 

LOAD ENTRY POINT ADDRESS. 
ISSUE SYNCH SVC 

ISSUE SYNCH SVC 

Programming Notes: In general, you use the SYNCH macro instruction when 
a control program in the supervisor state is to give temporary control 
to a processing program routine, and you expect the processing program 
to return control to the supervisor state. The program to which control 
is given must be in main storage when the macro instruction is issued. 
The use of this macro instruction is similar to that of the BALR 
instruction in that register 15 is used for the entry point address. 
When the processing program returns control, the supervisor state bit, 
the storage protection key bits, the system mask bits and the program 
mask bits of the program status word are restored to the settings they 
had before execution of the SYNCH macro instruction. 

Example: As a result of an OPEN macro instruction, label processing may 
be carried out to a point at which a user's processing program indicates 
that private processing is desired (or necessary). The control 
program's open routine then will issue a SYNCH macro instruction giving 
the entry point of the subroutine required for the user's private label 
processing. 

System Macro Instructions 183 

• 



STAE - Specify Task Asynchronous Exit 

The STAE macro instruction permits control to be returned to a user exit 
routine when a task is scheduled for ABEND. When you issue the STAE 
macro instruction, a STAE control block (SCB) is created and initialized 
with the address of your user exit routine. If you issue multiple STAE 
requests within the same program, the SCB associated with the last 
issued STAE request becomes the active SCB: it will be the first to 
gain control when an ABEND is scheduled. If the active SCB is 
cancelled, the preceding SCB, if there is one, will become the active 
SCB. 

Notes: 

• You cannot cancel or overlay an SCB not created by your program. 

• The execution of a LINK macro instruction does not cancel the active 
SCB for the program in control. 

r--------T-----T-------------------------------------------------------, 
I lOper-I I 
I Name lationlOperand I 
~--------+-----+-------------------------------------------------------~ 

I I I {O } 1 ov I [ ] [ 1 YES ] I I (symbollISTAE I exit address, ,PARAM=list address ,XCTL= I 

I I i CT [ ] NO I 
I I I .,PURGE=! QUIESCE I [,ASYNCH={NO}] I 
I I I HALT YES I 
I I I NONE I L ________ i _____ i _______________________________________________________ J 

exit address 

OV 

CT 

specifies the address of a STAE exit routine to be entered if the 
task issuing this macro instruction terminates abnormally. If 0 is 
specified, the last SCB created is canceled and the previously 
created SCB becomes current. The address may be loaded into one of 
the general registers (r1) 2 through 12. 

Note: If you use the Execute form of the macro and specify a zero, 
the exit address in the parameter list will be zeroed. . 

indicates that the parameters passed in this S~E macro instruction 
are to overlay the data currently in the SCB. 

indicates the creation of a new active SCB. 

PARAM= 
specifies the address of a parameter list containing data to be 
used by the STAE exit routine when it is scheduled for execution. 
The address may be loaded into one of the general registers (r2) 2 
through 12. 

XCTL=YFS 
indicates that the STAE macro instruction will not be canceled if 
an XCTL macro instruction is issued. 

XCTL=NO 
indicates that the STAE macro instruction will be canceled if an 
XCTL is issued. 

184 System Programmer's Guide (Release 20.1) 



PURGE=QUIESCE 
indicates that all active input/output operations will be purged 
with the quiesce option. If this fails, active input/output 
operations will be purged with the halt option. 

Note: If you use the execute form of the STAE macro instruction 
and omit the PURGE parameter, QUIESCE will not be the default; the 
option specified for the preceding use of STAE will be used. 

PURGE=HALT 
indicates that all active input/output operations will be purged 
with the halt option. 

PURGE=NONE 
indicates that all active input/output operations will not be 
purged 

ASYNCH=NO 
indicates that asynchronous exit processing will be prohibited 
while STAE exit processing is being done. 

ASYNCH=YES 
indicates that asynchronous exit processing will be allowed while 
STAE exit processing is being done. 

Note: If you use the Execute form of the STAE macro instruction 
and omit the ASYNCH parameter, the option specified for the 
preceding use of STAE will be used. 

There are several conditions that you should be aware of when you use 
the PURGE and ASYNCH parameters of the STAE macro instruction. 

• If your user exit routine requests a supervisor service that 
requires asynchronous interruptions to complete its normal 
processing, you must specify ASYNCH=YES. 

• You must specify ASYNCH=YES if you use an access method that 
requires asynchronous interruptions to complete its normal 
processing and you have specified PURGE=QUIESCE. 

• If you are using the Indexed Sequential Access Method (ISAM) and 
specify PURGE=HALT, only the I/O event for which the PURGE is done 
will be posted. Subsequent ECBs will not be posted; this causes the 
ISAM CHECK routine to treat purged input/output operations as 
waiting input/output operations and you will never get past the 
CHECK in your program. 

• You must specify ASYNCH=YES when you have the following combination 
of conditions: an access method that requires asynchronous 
interruptions to complete its normal processing, a specifications of 
PURGE=NONE, and a request of CHECK in your user exit routine. 

• If you specify PURGE=HALT and an ISAM data set is being updated when 
a failure occurs, part of the data set may be destroyed. 

• If quiesced input/output operations are not restored and you are 
using ISAM, the ISAM CHECK routine will treat purged input/output 
operations as waiting input/output operations and part of the ISAM 
data set may be destroyed if it is being updated when a failure 
occurs. 

System Macro Instructions 185 



• If input/output operations are allowed to complete while your exit 
routine is in progress and there is a failure in the I/O processing, 
you will encounte~ an ABEND recursion when the I/O interrupt occurs. 
This can be misleading because it will appear that your exit routine 
failed while the actual cause of the failure was in the I/O 
processing. 

Programming Notes 

When control is returned to the user after the STAE macro instruction 
has been issued, register 15 contains one of the following return codes: 

Code 
00 

04 

08 

OC 

10 

Meaning 
An SCB is successfully created, overlaid, or cancelled. 

storage for an SCB is not available. 

The user is attempting to cancel or overlay a non-existent SCB, 
or is issuing a STAE in his STAE exit routine. 

The exit routine or parameter list address is invalid. 

The user is attempting to cancel or overlay an SCB not 
associated with his level of control. 

When a program with an active STAE environment encounters an ABEND 
situation, control is returned to the user through the ABEND/STAE 
interface routine at the STAE exit routine address. The register 
contents are as follows: 

• Register 0: 

Code Indication 
o Active I/O at time of ABEND was quiesced and is restorable. 
4 Active I/O at time of ABEND was halted and is not restorable. 
8 No I/O was active at the time of the ABEND. 

• Register 1: Address of a 104-byte work area: 
r-------------------------------T-------------------------------, 

o I STAE exit routine parameter I I 
I list addr or 0 I ABEND completion code I 
r-------------------------------~-------------------------------~ 

8 I I 
I PSW at time of ABEND I 
r---------------------------------------------------------------~ 

16 I I 
I Last P/P PSW before ABEND I 
~---------------------------------------------------------------~ 

24 I I 
I Registers 0-15 at time of ABEND (64 bytes) I L _______________________________________________________________ J 

If problem program issued STAE: 
r--------------------------------------------------------------, 

88 I I 
I Name of ABENDing program or 0 I 
r-------------------------------T-------------------------------~ 

96 I Entry point addr of I I 
I ABENDing program I 0 I L _______________________________ ~ _______________________________ J 

186 System Programmer" s Guide (Release 20.1) 



If supervisor program issued STAE: 
r-------------------------------T-------------------------------, 

88 I Request Block addr of I I 
I ABENDing program I 0 I 
~-------------------------------~-------------------------------~ 

96 I I 
I 0 I L ______________________________________________________________ J 

• Registers 2-12: Unpredictable. 
• Register 13: Address of a supervisor save area. 
• Register 14: Address of an SVC 3 instruction. 
• Register 15: Address of the STAE exit routine. 

Registers 13 and 14, if used by the STAE exit routine, must be saved and 
restored prior to returning to the calling program. Standard subroutine 
linkage conventions are employed. 

If storage was not available for the work area., the register contents 
upon entry to the STAE exit routine are as follows: 

• Register 0: 
• Register 1: 
• Register 2: 

12. 
ABEND completion code, as in the TCBCMP field. 
Address of STAE exit parameter list. 

The STAE exit routine may contain an ABEND, but must not contain 
either a STAE or an ATTACH macro instruction. At the time the ABEND is 
scheduled, the STAE exit routine must be resident as part of the program 
issuing STAE, or brought into storage via the LOAD macro instruction. 

Scheduling of STAE and STAI Exit and Retry Routines 

Each STAE exit routine is represented by one or more STAE control blocks 
(SCBs). Each STAE control block is queued in a last-in, first-out order 
to the TCB (TCBNSTAE field) of the task within which they were created. 
STAI control blocks also represent exit routines, but are created when 
the STAI operand is specified in an ATTACH macro instruction. STAI 
control blocks are always placed at the top of the queue (ahead of the 
STAE control blocks) in a last-in, first-out order and are propogated (a 
duplicate STAI control block is created and queued) to all lower-level 
subtasks of the subtask created with the STAI operand. Thus, if task A 
attached subtask B specifying the STAI operand, and subtask B attached 
subtask C which, in turn, attached subtask D, a STAI control block would 
be created and queued to the TCB for subtask B, and would be propogated 
to the queues originating at the TCBs for subtask C and subtask D. If a 
STAI control block were created for subtask C (the ATTACH macro 
instruction issued by subtask B specified the STAI operand), this STAI 
control block would be placed at the top of subtask CiS SCB queue ahead 
of the STAI control block created for subtask B. In this case, both 
STAI control blocks would be propogated to the TCB for subtask D. All 
STAI control blocks precede all STAE control blocks on the SCE queue. 

If a task is scheduled for abnormal termination, the exit routine 
specified by the most recently issued STAE macro instruction 
(represented by the highest STAE control block on the queue) is given 
control and executes under a program request block created by the SYNCH 
service routine. The STAE exit routine must specify, by a return code 
in register 15, whether a retry routine is to be scheduled. If no retry 
routine is to be scheduled (return code=O) and this is a subtask with a 
STAI control block on the SCB queue, the exit routine specified in the 
STAI control block is given control. If there is no STAI control block 
on the queue, abnormal termination continues. 

System Macro Instructions 187 

• 



If the STAE exit routine indicates that a retry routine has been 
provided (return code=4). register 0 must contain the address of the 
retry routine and register 1 must contain the address of the same work 
area passed to the exit routine. (The first word of the work area may 
be modified by the exit routine to point to another parameter list in 
his region.) The STAE control block is freed and the request block 
queue is purged of all RBs from the RB of the program that is being 
terminated up to. but not including, the RB of the program that issued 
the STAE macro instruction. This is done by placing an SVC 3 
instruction in the old PSW field of each RB to be purged. In addition, 
open DCBs which can be associated with the purged RBs are closed and 
queued I/O requests associated with these DCBs being closed are deleted 
from the I/O restore chain. 

The RB purge is an attempt to cancel the effects of partially 
executed programs that are at a lower level in the program hierarchy 
than the program under which the retry will occur. However, certain 
effects on the system will not be canceled by this RB purge. Examples 
of these effects are as follows: 

• Subtasks created by a program to be purged. 
• Resources allocated by the ENQ macro instructions. 
• DCBs that exist in dynamically acquired main storage. 

When your STAE exit routine gains control, it can examine the code in 
register 0 to determine if there were active input/output operations at 
the time of the ABEND and if the input/output operations are restorable. 
If there are quiesced restorable input/output operations, you can 
restore them, in the STAE retry routine, by using word 26 in the work 
area. Word 26 contains the link field passed as a parameter to SVC 
Restore. SVC Restore is used to have the system restore all I/O 
requests on the I/O restore chain. For further information, see the 
section in this publication on the Restore macro instruction. 

You can selectively restore specific I/O requests on the I/O restore 
chain by using word 2 in the work area. Word 2 contains the address the 
first I/O block on the I/O restore chain. You can use this address as a 
starting pOinb for issuing EXCP for the I/O requests that you want to 
restore. 

In supervisor mode, you may want the failing task to remain in its 
present status and not be reestablished. A retry routine may be 
scheduled without a purge of the RB chain by returning to the ABEND/STAE 
interface routine with an 8 in register 15, and registers 0 and 1 
initialized as described above. If the STAE retry routine is scheduled, 
the system automatically cancels the active SCB and the preceding SCB, 
if there is one, will become the active SCB. If you want to maintain 
STAE protection against ABEND, you must re-establish an active SCB 
within the retry routine, or you must issue multiple STAE requests prior 
to the time that the retry routine gains control. Also, if a STAI had 
been issued for this task, it must be reissued by the retry routine to 
be made effective again. 

A STAI exit routine, if specified in a previous ATTACH macro 
instruction, will receive control if a STAE exit routine is not 
specified, if a STAE exit routine is specified but indicates that a 
retry routine is not provided, if a STAE exit routine terminates 
abnormally, or if a STAE or a STAI retry routine abnormally terminates. 
The STAI exit routine must specify by a return code in register 15 one 
of the following: 

Return Code Action to be Taken 
o No retry provided. The next STAI exit routine is to be 

given control or, if there is not another STAI exit routine, 
abnormal termination is to continue. 

188 System Programmer's Guide (Release 20.1) 



16 

4 or 12 

8 

No further STAI processing is to occur. Abnormal 
termination processing is to continue. 

A retry routine is to be scheduled and the request block 
queue is to be purged. 

A retry routine is to be scheduled but the request block 
queue is not to be purged (if the user is not in supervisor 
mode. this return code will be ignored and abnormal 
termination processing continues>. 

When the RB queue is not to be purged. a new PRB is created for the 
retry routine and placed on the RB queue immediately after the SVRB for 
the ABEND routine. so that when the ABEND routine returns via an AVC 3 
instruction the retry routine will receive control. 

If the RB queue is to be purged, the STAI retry routine is executed 
under the PRB for the last STAE or STAI exit routine or, if no PRB for 
an exit routine exists on the queue, under the most recently created PRB 
that is pointed to by the oldest (first created> non-PRB on the queue 
(the oldest non-PRB will be the last RB purged). 

Like the STAE/STAI exit routine, the STAE/STAI retry routine must be 
in storage when the exit routine determines that retry is to be 
attempted. If not already resident within your program, the retry 
routine may be brought into storage via the LOAD macro instruction by . 
either the user's program or exit routine. 

I Upon entry to the STAE/STAI retry routine. register contents are as 
follows: 

• Register 0: 

• Register 1: 

o 

Address of the work area, as previously described, 
except that word 2 now contains the address of the 
first I/O Block and word 26 now contains the address 
of the I/O restore chain. 

• Registers 2-13: Unpredictable. 

• Register 14: Address of an SVC 3 instruction. 

• Register 15: Address of the STAE/STAI retry routine. 

The retry routine should use the FREEMAIN macro instruction to free the 
104 bytes of storage occupied by the work area when the storage is no 
longer needed. This storage should be freed from subpool 0 which is the 
default subpool for the FREEMAIN macro instruction. 

Again, if the ABEND/STAE interface routine was not able to obtain 
storage for the work area, register 0 contains a 12; register 1, the 
ABEND completion code.upon entry to the STAE retry routine; and register 
2, the address of the first I/O Block on the restore chain, or 0 if I/O 
is not restorable. 

Note: If the program using the STAE macro instruction terminates via 
the EXIT macro instruction, the EXIT routine cancels all SCBs related to 
the terminating programa If the program terminates via the XCTL macro 
instruction, the EXIT routine cancels all SCBs related to the 
terminating program except those SCBs that were created with the 
XCTL=YES option. If the program terminates by any other means. the 
terminating program must reinstate the previous SCB by canceling all 
SCBs related to the terminati"ng program. 

system Macro Instructions 189 

-



ATTACH--Create a New Task 

This explicit form of ATTACH permits greater flexibility in both the use 
and the result of use of the ATTACH macro instruction. This form of the 
macro instruction differs from the implicit form by the addition of six 
keyword parameters to those described for the implicit form in the 
Supervisor and Data Management Macro Instructions publication" 
CGC28-6647). Only the added six parameters are shown and explained in 
this description. 

These six parameters can be used only with tasks whose protection key 
is zero. If they are used with other tasks, the default values are 
used. 

r-------T---------T---------------------------------------------------, 
, Name 'Operation' Operands' , 
~--------+---------+---------------------------------------------------~ 
,[symbol], ATTACH , ••• ,JSTCB={YES} ,SM={SUPV} ,SVAREA={YES} , 
I , , NO PROB NO , 
I , , , 
, , , fKEY={ZERO} IGIVEJPQ={YES} , 
, , , . PROB NO I JSCB=j scbaddr , L ________ ~ _________ ~ _______ ~ _____________ ~ _________________________ J 

Ordinary ATTACH macro instruction parameters. See the description 
in the Supervisor and Data Management Macro Instruction publication 
( GC 28- 6 647) • 

JSTCB 

"SM 

Address to be placed in the TCBJSTCB field of the TCB of the newly 
created task. The address determines whether the attached task is 
a new job step or a task in the present job step. A new job step 
is required if the ownership of programs is to pass from the 
attaching to the attached task, that is, if you are coding 
GIVEJPQ=YES in the macro instruction. (Also, see note below.) 

YES - Address of the TCB of the newly created task, that is, this 
TCB points to itself, thus creating a new job step. A new 
job step is required if ownership of programs is being 
transferred from the attaching to the attached task, that is, 
if you are coding GIVEJPQ=YES in the macro instruction. 

NO - Address of the TCB of the task using the ATTACH, that is, the 
attached task is to be a task in the present job step. 

Operating state of the machine when executing the attached task. 

SUPV -supervisor mode. 

PROB -Problem program mode. 

,SVAREA 
Need for save area. 

YES - A save area is needed for the attaching task. The ATTACH 
routine will obtain a 72 byte save area. If both attaching 
and attached task share subpool zero, the save area is 
obtained there, otherwise it is obtained from a new 2K byte 
block. 

NO - No save area is needed. 

190 System Programmer's Guide (Release 20.1) 



,KEY 
Protection/Key of the newly created (attached) task. 

ZERO - Zero. 

PROB - Copy the key from the TCBPKF field of the TCB for the task 
using the ATTACH. 

,GIVEJPQ 

,JSCB 

Ownership of programs used by the attaching task. If ownership is 
to pass to the attached task, the attached task must be a new job 
step, that is, you must use JSTCB=YES. (Also see note below.) 

YES - Pass ownership to the newly created task. On completion of 
the new task all programs, both those passed to the new task 
by the old and those acquired by it, are freed. 

NO - Ownership of programs used by the attaching task remain with 
that task; programs acquired by 'the attached task remain with 
it. The attached task shares use of the programs of the 
attaching task during their common existence. At the 
conclusion of the attached task, the programs it acquired are 
freed; when the attaching task terminates, its programs are 
freed. 

Job step control block address. 

If specified, that job step control block is used for the new task. 
If not specified, the job step control block of the attaching task 
is also used for the new task. 

Note: If the task to be attached is to be a separate step (JSTCB=YES), 
ownership of programs may be passed (GIVEJPQ=YES) or retained 
(GIVEJPQ=NO). If the newly attached task is not to be a separate step 
(JSTCB=NO), ownership of programs cannot be passed but must be retained 
(GIVEJPQ=NO). The following table summarizes these combinations. 

r---------------------------T------------------------------------------, 
I I JSTCB= I 
I ~-------T----------------T-----------------~ 
I I I YES I NO I 
~---------------------------+-------+----------------+-----------------~ 
I GIVEPJQ= I YES I Valid \ Invalid \ 
I ~-------+----------------+-----------------~ 
I \ NO \ Valid I Valid \ L ___________________________ ~ _______ ~ ________________ ~ _________________ J 

IMGLIB -- OPEN OR CLOSE SYS1.IMAGELIB 

The IMGLIB macro instruction is used to open or close SYS1.IMAGELIB. 
When issue to open the Image Library, it is usually followed by a BLDL 
macro instruction and a LOAD macro instruction which, respectively, 
search the library for the image and load it into storage. 

r--------T---------T---------------------------------------------------, 
\ Name \ operation \ Operand \ 
~-------+---------+---------------------------------------------------~ 
\ [symbol] \IMGLIB IOPEN,dcb addr I 
\ I \ CLOSE \ L ________ ~ _________ ~ ___________________________________________________ J 

OPEN 
specifies that SYS1.IMAGELIB is to be opened and the address of the 
DCB returned in register one. 

System Macro Instructions 191 

-



CLOSE 
specifies that IMAGELIB is to be closed. 

dcb addr 
is either the address of the IMAGELIB DCB or is a register 
containing the IMAGELIB DCB address. 

QEDIT --

The QEDIT macro instruction generates the required entry parameters and 
the linkage to SVC 34 for the following uses: 

• Dechaining and freeing of a CIB from the CIB chain for a task. 

• setting a limit for the number of CIBs that may be 
simultaneously chained for a task. 

The format of the QEDIT macro instruction and an explanation of the 
operands are as follows: 

r--------T---------T---------------------------------------------------, 
I Name I Operation I Operand I 
r--------+---------+---------------------------------------------------1 
I [symbolllQEDIT IORIGIN=address [,BLOCK=addressl I 
I I I [., CIBCTR=numberl I L ________ ~ ______ ~_~ ___________________________________________________ J 

ORIGIN 
The address of the pointer to the first CIB on the CIB chain for 
the task. This address is obtained using the EXTRACT macro 
instruction. If ORIGIN is the only parameter specified, the entire 
CIB chain will be freed. 

,BLOCK 
The address of the CIB that is to be freed from the CIB chain for a 
task. 

,CIBCTR 
An integer (from 0 to 255) to be used as a limit for the number of 
CIBs to be chained at anyone time for a task. 

address 
Any address valid in an RX instruction or one of the general 
registers (2-12) previously loaded with the indicated address. 
register must be designated by a number or symbol added within 
parentheses. 

192 System Programmer's Guide (Release 20.1) 

The 
the 



Writing System Output Writer 
Routines 

This chapter provides guidelines for 
writing your own output writer routines for 
use in an MVT or MFT configuration of the 
operating system. 

REFERENCE PUBLICATIONS 

IBM System/360 Operating system: 
supervisor and Data Management Macro 
Instructions, GC28-6647 

IBM System/360 Operating System: 
supervisor and Data Management Services, 
GC28-6646 

Writing System Output Writer Routines 193 



Writing System Output Writer Routines 

When a job is executing, system messages and data sets specifying the 
SYSOUT parameter (e.g., in the DD statement) are recorded on direct 
access devices, unless the job falls into a job class assigned to a 
direct SYSOUT writer. In that case, both messages and data addressed to 
a SYSOUT data set are written directly to the device for the direct 
SYSOUT writer for that job class. (Messages for jobs canceled on the 
input queue and jobs failed by the reader/interpreter, and data produced 
by system tasks cannot be processed by direct system output writers.) 

When the job completes (assuming it doesn't use a direct SYSOUT 
writer), entries are made in system output class queues that represent 
the data sets and messages directed to the output classes. Later system 
output writers remove these entries from the queues and process the data 
they represent. Processing consists of transcribing system messages to 
the output device and calling a data set writer routine for each data 
set encountered. The data set writer routine used for a data set may be 
specified by name in a DD statement, otherwise, a standard IBM-supplied 
writer routine is used. The standard routine transcribes the data set 
to the specified output device, making only those data format and 
control character transformations required to conform to the attributes 
specified for the output data set. 

The following material describes how you may write a nonstandard data 
set writer routine. 

Output Writer Functions 

Before writing or modifying an output writer routine, you should be 
familiar with the functions performed by the standard data set writer 
for Operating System/360. (For the remainder of this chapter, the 
Operating System/360 data set writer is referred to as the standard 
writer.) In general, these functions include opening the data set 
(referred to as an input data set) that contains the processed 
information, obtaining the records of the data set, making any necessary 
transformations in record format or control character attributes, and 
placing these (possibly transformed) records in the output data set, 
which appears on a specified output device. The standard writer also 
must close the input data set and restore system conditions to the state 
they were in before the writer routine was invoked. 

Conventions to be Followed 

To use your own output writer routine, you must specify the name of your 
routine as a parameter in the SYSOUT operand of a DD statement (see the 
Job Control Language publication). (This parameter is ignored if the 
job falls into a jobclass assigned to a direct SYSOUT writer.) Your 
routine must be in the system library (SYS1.LINKLIB). A writer routine 
is not limited in size except that size may influence the region 
requirements of the system output writer (see the Storage Estimates 
publication). 

In MVT your routine is attached (via the ATTACH macro instruction> 
when a data set requiring the routine is to be processed. The standard 
linkage conventions for attaching are used. Any storage required for 
work areas and tables should be obtained by the GETMAIN macro 
instruction and released by the FREEMAIN macro instruction. Your output 
writer routines must be reenterable. 

In MFT and MVT when your routine is finished, it must return control 
to the standard writer by using the RETURN macro instruction. 

194 System Programmer's Guide (Release 20.1) 



After job management routines perform initialization requirements and 
open the output data set into which your writer routine will put 
records, control is given to your routine via the ATTACH macro 
instruction. At this time, general registers 1 and 13 contain 
information that your program must use. Register 1 contains the storage 
address of a 12-byte list. Table 3 describes the information in this 
parameter list. 

Table 3. Parameter List Referred to by Register 1 
r------------T---------------------------------------------------------, 
I Byte a Output Device Indicator. 
I Bit a (High-order bit): If this bit is on (set 
I to 1), the output unit is a 1442 punch. 
I Bit 1 If this bit is on, the output unit is 
I either a punch or a tape with a punch as 

the ultimate destination. 
Bit 2 If this bit is on, the output unit is 

either a printer or a punch. 
Bits 3 - 7 No significant information. 

Bytes 1-3 Not used (i.e., do not contain information significant 
to data set writers, but must be left intact.) 

Byte 4-7 This word contains the address of the data control 
block (DCB) for the opened output data set to be 
referred to by the writer. 

Bytes 8-11 This word contains the DCB address for the input data 
set from which your writer will obtain logical records. 
(At the time this 12-byte parameter list is given to 
your writer, the input data set is not open.) I ____________ L _________________________________________________________ J 

The switches indicated by the three high-order bit settings in byte a 
should be used to translate control character information from the input 
data set records to the form required by the output data set records. 
Based on the indications given in Table 2, the high-order three bits of 
byte a signify the type of output device as follows: 

111 ••••• 
all ••••• 
001 .•••• 

010 ••••• 
000 ••••• 

1442 punch unit 
2520 punch unit or 2540 punch unit 
1403 printer, 1404 printer, 1443 printer, or 3211 
printer unit 
tape unit with ultimate punch destination 
tape unit with ultimate printer destination 

When your writer gets control, it must preserve the contents of 
register a through 12, and 14. Register 13 contains the address of a 
standard register save area where you are to save the contents of these 
registers. You can save the contents of register 13 by using the SAVE 
macro instruction. 

An output writer routine must issue an OPEN macro instruc~1on to open 
the desired input data set residing on a direct access device as a 
result of the previous execution of a processing program. (Note: The 
output data set used by a writer is opened by a job management routine 
before control is given to the writer. This output data set must be 
given records by a PUT macro instruction operating in the 'locate' mode. 
The supervisor and Data Management Macro Instructions publication 
describes this macro instruction.> 

If the processing program that produces a given data set (to· be used 
as an input data set by a writer) did not open the data set., the data 
set contains no records, and the DCBBLKSI and DCBBUFL fields of the 
input DCB contains zero. The DCBBLKSI field may also be zero even if 
the data set does contain records -- if the processing program did not 
put the block size value for the input data set in the DCB. If both 

Writing System Output Writer Routines 195 



these DCB fields are zero., a value (the standard writer uses the decimal 
value 18) is inserted in the DCBBLKSI field to permit the open routine 
to continue. The standard writer does this via a routine pointed to by 
an entry in the EXLIST parameter of the DCB. Since there is no data 
set, nothing is put on the output device. Your data set writer must 
provide a SYNAD routine to process errors associated with the output as 
well as the input data set. 

Before the OPEN macro instruction is issued, the DCBD macro 
instruction can be used to symbolically define the fields of the DCB, 
and the EXLIST and/or SYNAD routine addresses can be inserted. Other 
than SYNAD" no modifications can be made to the output DCB. 

After your routine finishes writing the output data set, it must 
close the input data set and return using the RETURN macro instruction. 
A return code must be placed in register 15. This code should indicate 
that an unrecoverable output error either has occurred (code of 8) or 
has not occurred (code of 0). 

General Processing Performed by Standard Output Writer 

This section provides a general description of the procedures followed 
by the standard writer. (see Figure 6.) If you write your own writer 
routine, you may wish to delete, modify, or add to some of these 
procedures, depending on the characteristics of your data set(s). 
However, your procedures must be consistent with operating system 
convent ions. 

SAVING REGISTER CONTENTS: Upon entering the writer program, your 
program must save the contents of the general registers, as previously 
discussed. 

OBTAINING MAIN STORAGE FOR WORK AREAS: In this work area, switches are 
established, record lengths and control characters are saved, and space 
is reserved for other uses. You should obtain storage by a GETMAIN 
macro instruction. 

PROCESSING INPUT DATA SE1'(S): To process a data set, the writer must 
get each record individually from the input data set, transform (if 
necessary) the record format and the control characters associated with 
the record in accordance with the output data set requirements, and put 
the record in the output data set. Data set processing by the standard 
writer can be considered in three aspects. 

1. The first consideration is what must be done before actually 
obtaining records from an input data set. If the output device is 
a printer., provision must be made to handle the two forms of record 
control character that may accompany a record in an output data 
set. The printer is designed so that if the output data set 
records contain machine control characters, a record (line) is 
printed before the effect of its control character is considered. 
However, if USASI control characters are used in the output data 
set records, the control character effect is considered before the 
printer prints a record. See Appendix A. 

Thus:, if all the input data sets do not have the same type of 
control characters, it may be desirable to avoid overprinting of 
the last line of one data set with the first line of the following 
data set. If the records of the input data set have machine 
control characters (mcc) and the output data set records are to 
have USASI control characters (acc), the standard writer produces a 
control character that indicates one line should be skipped before 
printing the first line of output data .• 

196 System Programmer"s Guide (Release 20.1) 



.. / 

If the input data set records have acc and the output data set 
records are to be written with mcc, the standard writer prints a 
line of blanks before printing the first actual output data set 
record. Following this line of blanks., a one-line space is 
generated before the first output record is printed. 
The preceding 'printer initialization' procedure (or a similar one 
based on the characteristics of your data sets) is recommended. 

Entry From 
Control Program 
Module IEFSD070 

Get Input Record 

Modify Input Record 
Length For Control 

Character 

Translate Control 
Character For Output 

If Required 

No GenerateControl 

Set Message If Invalid 
Control Char 

No 

If Printer, Adjust 
Control Character 

Attachment 

Put Record In 
Output Data Set 

Buffering For End Of 
Input Data Set (Put 
Out Last Record) 

Return To 
Module IEFSD070 

Figure o. General Logic of Standard Output Writer 

Writing System output Writer Routines 197 

-



2. After an input data set is properly opened and any necessary 
printer initialization completed. the writer obtains records from 
the input data set. The locate mode of the GET macro instruction 
is used. As each record is obtained, its format and control 
character must be adjusted, if necessary, to agree with that 
required for output. 

Note: Check the MACREF field of the input data set DCB to see if 
GET in locate mode can be used. If not the MACREF field must be 
overridden. 

Since th~ output data set is previously opened by another routine 
(job management). a writer routine must adhere to the established 
conventions. The data set is opened to receive records from the 
PUT macro instruction operating in the locate mode. For 
fixed-length record output. the length of the records in the output 
data set is obtained from the DCBLRECL field of the DCB. If an 
input record length is greater than the length specified for the 
records of the output data set, the standard writer truncates the 
necessary right-hand bytes of the input record. If the input 
record length is smaller than the output record length, the 
standard writer left-justifies the input record and adds blanks on 
the right end to give the correct length. 

When the output record length is variable and the input record 
length is fixed. the standard writer constructs each output record 
by adding control character information (if necessary) and variable 
record control information to the output record. The record 
control information is four bytes long and the control character 
information is one byte long. Both additions are made to the left 
end of the record. If the output record is not at least 18 bytes 
long, it is further modified by padding bytes (blanks) added to the 
right end of the record. If the output record length does not 
agree with the length of the output buffer, the standard writer 
makes the proper adjustment. 

3. The third aspect to consider is an end-of-input data set routine. 
The standard writer handles output to either a card punch unit or a 
printer unit, as required. output to an intermediate device such 
as a tape unit is considered in light of the ultimate destination 
(e.g., punch or printer). If proper consideration is not given, 
all records from a given data set may not be available on the 
output device until the output of records from the next data set is 
started or until the output data set is closed. When the output 
data set is closed, the standard writer automatically puts out the 
last record of its last input data set. 

Punch Output: Normally, when the standard writer is using a card punch 
as the output device, the last three output records are not in the 
collection pockets of the punch when the input data set is closede To 
put out these three records with the rest of the data set and with no 
intervening pauses, the writer provides for three blank records 
following the actual data set records. 

Printer Output: When the standard writer uses a printer as an output 
device, the last record of the input data set is not normally put in the 
output data set when the input data set is closed. To force out this 
last record, the writer generates a blank record that follows the last 
record of the actual data set. 

The problem of overprinting the last line of one data set by the 
first line of the following data set must also be considered. Depending 
on the combination of input record control character and required output 
record control character, a line of blanks and a spacing control 

198 System Programmer's Guide (Release 20.1) 



character may be used either individually or in combination to preclude 
overprinting. (Note: If overprinting is desired for some reason, 
control characters in the data set records themselves may be used to 
override the effect (but not the action) of the previously described 
solutions to overprinting.) 

CLOSING INPUT DATA SET(s): After the standard writer finishes putting 
out the records of an input data set, it closes the data set before 
returning control to the system output writer. You must close all input 
data sets. 

RELEASING MAIN STORAGE: The storage and buffer areas obtained for the 
writer must be released to the system before the writer relinquishes 
control. The FREEMAIN macro instruction should be used for this. 

RESTORING REGISTER CONTENTS: The original contents of general registers 
o through 12, and 14 must be restored. The RETURN macro instruction is 
used for this. To inform the operating system of the results of the 
processing done by the writer, a return code is placed in general 
register 15 before control is returned. If the writer routine 
terminates because of an unrecoverable error on the output data set, the 
return code is 8; otherwise, the return code is o. Unrecoverable input 
errors must be handled by the data set writer. 

Writing System Output Writer Routines 199 

-



Appendix: Control Character Transformations 

To help determine what you can do with a writer routine, the control 
character transformation features of the standard writer are described. 

Effectively there are nine control character combinations that can 
occur between input data set records and output data set records. Both 
data sets may have records whose control characters are either USASI 
type (acc) or machine type (mcc) " or the records may not contain any 
control characters. However, within any given data set, the records all 
must contain the same form of control character. The standard writer 
has procedures to handle control character transformations for both an 
output to a card punch unit and an output to a printer unit. 

Card Punch Unit 

If an input data set record does not have a control character, the 
standard writer produces one that indicates output into pocket 1 of the 
punch. If the output unit is a tape unit and the ultimate destination 
is a punch unit, the standard writer assumes that the punch unit is 
either a 2540 or a 2520 unit and sets a control character accordingly. 
The standard writer translation of punch-type control characters is 
given in Table 4. In this table, the first three columns of figures are 
machine control character codes, and the right hand column of figures 
represent USASI control character codes. Each record that requires a 
control character has one of these a-bit codes attached to it. Input 
records whose control characters are mcc and are shown in horizontal 
rows 1, 2, 5, and 6 are given the acc code of 'V' if they are placed in 
an output data set that has acc. An mcc given in rows 3 or 4 is changed 
to an acc code of 'W'. However, if translation is from an acc input to 
an mcc output, the standard writer translates the control character into 
the appropriate mcc on the same horizontal row. 

Table 4. Control Character Translation for Punch Unit output 
r--------------T--------------------------------.----------------------, 
I I Machine Control Characters 1 1 
1 ~----------T----------T----------1 USASI 1 
1 stacker Unit 12540 Punchl2520 Punchl1442 Punch 1 Control Characters I 
~--------------t----------t----------+----------+----------------------1 
1. P1 I 00000001 00000001 10000001 11100101 (V) 

1 
2. P1 1 00100001 00100001 10100001 

Column Binaryl 
1 

3. P2 1 01000001 01000001 11000001 11100110 (W) 
I 

4. P2 I 01100001 01100001 11100001 
Column Binary 1 

I 
5. RP3 I 10000001 

1 
16. RP3 1 10100001 
I Column Binary I L ______________ L __________ L __________ L __________ ~ ______________________ J 

Printer Unit 

When the output unit is a printer, the standard writer prevents 
overprinting between data sets. If the successive data sets contain 
records with the same type of control character, there is no 
overprinting problem. If the control characters vary from one data set' 
to the next, the standard writer solutions are applications of the 
technique illustrated by Figure 7. In this figure, the possible forms 
of the input record control characters are given in the left hand 

200 system Programmer's Guide (Release 20.1) 



column. The three right hand columns (containing cases 1-9) represents 
the possible forms of the output record control characters. Within each 
of the 12 main sections of the figure is shown a symbolic representation 
of a data set whose records possess the indicated form of control 
character. Each record consists of a print line representation and a 
control character representation (where appropriate). For records with 
acc, the control character is shown preceding the print line, since the 
effect of the control character occurs before the line is printed. For 
records with mcc, the converse is shown. An input record with no 
control character is treated as if it had an acc. Because of this 
variance in the printer's mechanical action, whenever there is a control 
character transformation, the standard writer places a transformed 
control character with an output data set record other than the record 
to which the character was attached in the input data set. 

In Figure 7, case 1 and 5 represent s~tuations in which there is the 
same type of control character in the output as there is in the input. 
Thus, for records 1 through n, there is no change in the record format. 
However, there is a provision to allow for the possibility that two 
consecutive input data sets may have different control characters. In 
this case, a minimum separation between the data sets as they appear in 
the output data set is provided as indicated by the printing of blanks 
and suppressing the spacing of the printer to allow another control 
character to take effect. The "extra' record (S B or B S ) provides 
the more important function of forcing out the last record of the 
current data set before the writer's processing of that data set is 
done. 

INPUT DATA SET OUTPUT DATA SET RECORD FORNIATS 
RECORD FORNIA TS 

Machine 

Machine CD Ci) I I 

I P1C l ! P2C2! ! PnCnl I P1Cl I P2C21 I PnC n I BoSe I I SIPl I C1P21 

ASA 0 CD '1 I I I 

I C1Pl ! C2P21 I CnPnl I BoCll p] C2 1 I Pn-] Cn I PnSl ! BoSe I IC1P1IC2P21 

No Control Character* 0 CD / I I I I / / -;; I 

I S ]Pl I S1P21 I SIP n I I BoSn I PIS] I I Pn-] Sl I PnS] I BoSe I I SnPl ! S1P21 

= Writer generated. 
* = No control character on input causes the standard writer to generate an ASA 

control character as indicated. 
Bo = A print line of blanks. 

C]-~ = Control characters of records ]-N of a given data set. 

P ]-p n = Print lines of a given data set. 

S] = A control character causing a ]-line space. 

S c = A control character causing spacing to be suppressed. 

Sn = A control character causing a skip to channell. 

ASA 

I 

! Cn-l Pn I CnBo I 

I I 

I 
CnPn I ScBo I 

I / .; 

I 
S lP n I ScBo I 

Figure 7. Symbolic Representation of Record Formats 

Na Control Character 

CD 
I PI I P2 

! I 
Pn I 

(0 
I p] 

I 
P2 

I I 
P n 

I 

0 
I p] 

I 
P2 

I I P n 
! 

In cases 2 and 4 of Figure 7, the output data set records have 
different control characters than the input data set records. Case 2 
shows that the standard writer generates a i-line space control 
character to precede the first print line of the output. When the 
output is written, each control character of an input record is then 

I 

Bo 

I 
Bo 

I 
Bo 

I 

I 

! 

Writing system Output Writer Routines 201 

-



attached to the next record. The last input record control character 
(Cn ) is attached to a line of blanks (B). In case 4. the first input 
record control character is attached to a line of blanks, and each of 
the other control characters is attached to a preceding record. as 
indicated. The last input record (Pn ) has a writer-generated space 
1-line control character attached to it before the buffering and forcing 
record (B S ) generated by the writer is put out. 

Cases 7 and 8 show that the standard writer first generates a 'skip 
to channel l' control character and then generates 11 line space l and 
then generates 11 line space' control characters for all but the last 
control character. The last control character is the space suppression 
character shown as part of the buffering or forcing record generated. 

Cases 3, 6, and 9 show that if no control characters are required in 
the output data set, the records are printed consecutively and a line of 
blanks generated by the writer is printed after the final record in a 
data set. Any control character appearing in the input data set are 
dropped in the output data set. 

Notice that in all cases involving control characters in the output 
data set, the standard writer allows for (1) an output record to force 
the printing of the last record of an input data set and (2) a means of 
minimum buffering between data sets by using generated control 
characters and print lines in conjunction with the actual data set 
control characters. 

The standard writer translation of printer-type control characters is 
given in Table 5. In this table, the type of action indicated is given 
in the left-hand column. The middle column and the right-hand column 
show. respectively, the bit settings of the control character byte for 
machine type and USASI type control characters corresponding to the 
entries in the left-hand column. A control character transformation is 
effected by changing the bit-configuration of the control character byte 
as indicated in the table. 

Table 5. Control Character Translation for Printer Unit Output 
r-------------------------T---------------------------T----------------, 
I I Machine Type Control I I 
I 1(1403, 1404. 1443" 3211 I USASI I 
I Action Desired I Printers> I Type Control I 
r-------------------------t---------------------------+----------------~ 
IWrite space 0 00000001 01001110 
IWrite space 1 00001001 01000000 
IWrite space 2 00010001 11110000 
I Write space 3 00011001 01100000 
IWrite skip to channell 10001001 11110001 
IWrite skip to channel 2 10010001 11110010 
IWrite skip to channel 3 10011001 11110011 
IWrite skip to channel 4 10100001 11110100 
IWrite skip to channel 5 10101001 11110101 
I Write skip to channel 6 10110001 11110110 
IWrite skip to channel 7 10111001 11110111 
I Write skip to channel 8 11000001 11111000 
IWrite skip to channel 9 11001001 11111001 
IWrite skip to channel 10 11010001 11000001 
IWrite skip to channel 11 11011001 11000010 
I Write skip to channel 12 11100001 11000011 l _________________________ i ___________________________ i ________________ J 

When machine control characters are used which indicate spacing or 
skipping without writing (bit 6 set to 1, e.g., write and s~ace 
0-00000011) the standard writer gen~rates the indicated USASI control 
character and also generates a blank record of the proper ty~e and 
length. 

202 System Programmer's Guide (Release 20.1) 



Output Separation 

In the PCP, MFT, and MVT operating system 
configurations, the system output writer 
can use the output separator facility to 
write separation records prior to writing 
the output of each job. These separation 
records make it easy to identify and 
separate the various job outputs that are 
written contiguously on the same printer or 
card punch device. 

This chapter describes the output 
separator that is supplied by IBM, and 
tells how to write your own. A separate 
section describes the differences between 
separators for the MFT and MVT 
configurations and the PCP configuration. 
Before reading this chapter, you should be 
familiar with the information contained in 
the prerequisite publications listed below: 

PREREQUISITE PUBLICATIONS 

The IBM System/360 Operating System: 
Assembler Language publication (GC28-6514) 
contains the information necessary to code 
programs in the assembler language. 

The IBM System/360 Operating system: 
Data Management Services publication 
(GC28-3746) describes the queued sequential 
access method (QSAM) used by the system 
output writer, and discusses program 
linkage conventions. 

The IBM System/360 Operating System: 
supervisor and Data Management Macro 
Instructions publication (GC28-6647) 
describes the system macro instructions 
that can be used in programs coded in the 
assembler language. 

Output Separation 203 

-



OUtput separation - MFT, MVT 

In MFT and MVT, both the system output writer and the direct SYSOUT 
writer may be used by a problem program to channel its output eventually 
to a printer or punch. When this is done., however,. the system output 
stream goes uninterruptedly from one job to another., naking it difficult 
to separate the output of one job from that of another,. unless output 
separation is provided for. 

The output separator facility of the operating system provides a 
means of identifying and separating the output of various jobs processed 
by the same output unit. To do this., the separator writes separation 
records to the system output data set prior to the writing of each job's 
output. 

You can use the output separator that is supplied by IBM, or you can 
create and use your own output separator programs. 

Using an Output Separator 

The output separator function operates under control of both the system 
output writer and the direct SYSOUT writer. To use the function, the 
separator program must reside in the link library (SYS1.LINKLIB), and 
its name must be included as a parameter in either of the output writer 
procedures (the second part of the PARM field in the EXEC statement). 
Cataloged procedures for both writers are fully described in another 
chapter of this publication. 

Functions of the IBM Output Separator 

The IBM-supplied output separator resides in the link library 
(SYS1.LINKLIB). When its name, IEFSD094, is specified as a parameter in 
an output writer cataloged procedure, that output writer uses it to 
separate job output. The type of separation provided by the separator 
depends on whether the output is punch-destined or printer-destined. 

Punch-Destined Output 

For punch-destined output., the IBM-supplied separator provides three 
specially punched cards (deposited in stacker 1) prior to the punched 
card output of each job. Each of these separator cards is punched in 
the following format: 

Columns 
Columns 
Columns 
Column 
Columns 

1 to 35 
36 to 43 
44 to 45 
46 
47 to 80 

blanks 
jobname 
blanks 
output classname 
blanks 

204 System Programmer's Guide (Release 20.1) 



Printer-Destined Output 

For printer-destined output. the IBM-supplied separator provides three 
specially printed pages prior to printing the output of each job. Each 
of these three separator pages is printed in the following format: 

• Beginning at the channel 1 location (normally near the top of the 
page), the jobname is printed in block character forrrat over 12 
consecutive lines. The first block character of the 8-character 
jobname begins in column 11. Each block character is separated by 2 
blank columns. 

• The next 2 lines are blank. 

• The output classname is printed in block character format covering 
the next 12 lines. This is a l-character name, and the block 
character begins in column 55. 

• The remaining lines to the bottom of the page are blank. 4I11III 
In addition to the above, a full line of asterisks(*) is printed 

twice (overprinted) across the folds of the paper. These lines are 
printed on the fold preceding each of the three separator pages, and on 
the fold following the third page. This feature provides easy 
separation of job output in a stack of printed pages. 

For printer-destined output with the IBM-supplied separator, you must 
include a channel 9 punch in addition to the channell punch on the 
carriage control tape or in the forms control buffer (FCB). The channel 
9 punch controls the location of the line of asterisks and should 
correspond to the bottom of the page. To print the line of asterisks on 
the fold of the pages., you must also offset the printer registration. 

Creating an Output Separator Program 

You can write your own output separator program by using the information 
provided by either output writer and by conforming to the requirements 
explained below. Your separator program, when added to the link library 
(SYS1.LINKLIB), is invoked by specifying its name as a parameter in the 
EXEC statement of the output writer cataloged procedure. 

Parameter List 

Either output writer provides your separator program with a 4-word 
parameter list of needed information.. When your program receives 
control, register 1 contains the address of a 4-word parameter list, and 
the parameter list contains the following: 

r----------------------------------------------------------------------, 
Bytes 0-3 In this word, byte 0 contains switches that indicate 

Bytes 4-7 

Bytes 8-11 

the type of output unit., and bytes 1-3 are reserved 
for ·future use. 

This word is the address of the output DCB (data 
control block). 

This word is the address of an 8-character field 
containing the jobname. 

Bytes 12-15 -- This word is the address of a 1-character field 
containing the output classname. L--____________________________________________________________________ J 

output separation 205 



In the parameter list, the three high-order bits of byte 0 are 
switches that your separator program uses to determine the type of 
output unit. The first bit to the left is set to 1 if the output unit 
is a 1442 punch device. The second bit is set to 1 if the output unit 
is a punch device or a tape device with punch-destined output,. The 
third bit is set to 1 if the output unit is a printer or punch device. 
The resulting bit combinations indicate the following: 

111. 
011. 
001. 
010. 
000. 

1442 punch device 
2520 or 2540 punch device 
1403, 1404, 1443, or 3211 printer device 
tape device with punch-destined output 
tape device with printer-destined output 

The parameter list also points to the DCB for the output data set. 
This DCB is established for the queued sequential access method (QSAM), 
and is already open when your separator program receives control. 

The address of the jobname and the address of the output classname 
are provided in the parameter list so that this information may be used 
in the separation records written by your separator program. 

Programming Considerations 

If you are using the (asynchronous) system output writer, your separator 
program, if specified in ,the output writer cataloged procedure, is 
brought in by a LINK macro instruction issued from module IEFSD078 of 
the output writer. Your separator program can be any size, but a 
program over 8K may affect the region requirement of the output writer. 
If your job falls into a job class using the (synchronous) direct SYSOUT 
writer, your separator program (if specified in the procedure) is 
brought into main storage by use of a LOAD macro instruction. After 
performing separation on all devices required for the SYSOUT data sets 
in that step the program is released by means of a DELETE macro 
instruction .. 

CAUTION: Since the separator program operates with the supervisor 
protection key, but in the program mode, your separator program must 
insure data protection during its execution. 

When writing a separator program, you must observe the following 
programming requirements: 

• Your program must conform to the standard linkage conventions. This 
includes saving and restoring the contents of registers 0 through 
12, and 14. These registers can be preserved with the SAVE and 
RETURN macro instructions. When your program receives control, the 
address of a standard save area is in register 13. 

• Your program must use the PUT macro instruction in the locate mode 
to write separation records on the output data set. (This method is 
required by the QSAM DCB that is open for the output data set.) 

• Your program must establish its own synchronous error exit routine, 
and the address of this routine must be placed into the DCBSYNAD 
field of the output DCB. This gives control to your error exit 
routine in case an uncorrectable I/O error occurs while writing your 
program's output. 

206 system Programmer's Guide (Release 20.1) 



• Your program should use the RETURN macro instruction to return 
control to the output writer. Before returning, your program must 
free any main storage it obtained during its operation, and your 
program must place a return code (binary) in register 15. The 
return codes signify: 

o Successful operation. 

8 Unrecoverable output error (should be set if your error exit 
routine is entered). 

Output From the separator Program 

Your separator program can write any kind of separation identification. 
The jobname and the output classname for each job are available through 
the parameter list for inclusion in your output, if desired. You can 
use an IBM-supplied routine that constructs block characters (explained 
later). You can punch as many separator cards or print as many 
separator pages as you deem necessary. 

The output from your separator program must conform to the attributes 
of the output data set. These attributes, which can be determined from 
the npen output DCB pointed to by the parameter list, are: 

• Record format (fixed, variable, or undefined length). 

• Record length. 

• Type of carriage control characters (machine, USASI, or none). 

For printer-destined output, you can begin your separation records on 
the same page as the previous job output, or skip to any subsequent 
page. However, your separator program should skip at least one line 
before writing any records, because in some cases the printer is still 
positioned on the line last printed. 

After completing the output of your separation records, your 
separator program should write sufficient blank records to force out the 
last separation record. This also allows your error exit routine to 
obtain control if an uncorrectable output error occurs while writing the 
last record. The requirements are: 

• One blank record for printer-destined output. 

• Three blank records for punch-destined output. 

Using the Block Character Routine 

For printer-destined output, your separator program can use an 
IBM-supplied routine to construct separation records in a block 
character format. This routine is a reenterable module named IEFSD09S, 
and resides in the module library (SYS1.CISOS). 

The block character routine constructs block letters (A to Z), block 
numbers (0 to 9), and a blank. Your program furnishes the desired 
character string and the construction area. The block characters are 
constructed one line position at a time. Each complete character is 
contained in 12 lines and 12 columns; therefore. a block character area 
consists of 144 print positions. For each position, the routine 
provides either a space or the character itself. 

output Separation 207 

• 



The routine spaces 2 columns between each block character in the 
string. However, the routine does not enter blanks between or within 
the block characters= Your program must prepare the construction area 
with blanks or other desired background before entering the block 
character routine. 

To use the IBM-supplied block character routine, your separator 
program executes the CALL macro instruction with the entry point name of 
IEFSD095. Since the block characters are constructed one line position 
at a time, complete construction of a block character string requires 12 
entries to the routine. Each time you enter the routine., you must 
provide the address of a 4-word parameter list in register 1. The 
parameter list must contain the following: 

r----------------------------------------------------------------------, 
Bytes 0 - 3 This word is the address of a field containing the 

desired character string in EBCDIC format. 
Bytes 4 - 7 -- This word is the address of a full word field 

containing the line count as a binary integer from 1 
to 12. This represents the line position to be 
constructed on this call. 

Bytes 8 -11 -- This word is the address of a construction area in 
main storage where the routine will construct a line 
of the block character string. The required length in 
bytes of this construction area is 14n-2, where n 
represents the number of characters in the string. 

Bytes 12-15 -- This word is the address of a fullword field 
containing, in binary, the number of characters in the 
string. L _____________________________________________________________________ _ 

Output Separators · PCP 
For PCP configurations of the operating system IBM will supply output 
separators for output classes A and B. Final destination for class A 
output is the printer, and final destination for class B is the punch. 
separators for either or both may be chosen at system generation, or 
both may be omitted. If you choose separator routines for classes A 
and/or B at system generation time. these routines will be entered 
automatically when one of these output classes is requested. The 
separation provided is the same as that for MVT configurations. The 
parameters passed to these routines are the same also; the switches in 
byte 0 indicate the type of output device. These switches are the three 
high-order bits only: 

Class A 001 Device is a printer 
000 Device is a tape 

Class B 111 Device is a 1442 punch 
011 Device is a punch 
010 Device is a tape 

Others 011 Device is a punch 
111 Device is a 1442 punch 
001 Device is a printer 
000* Device is a tape 

*1f the output device is a tape. this bit setting indicates to the IBM 
separator routines that final destination is the printer. To use IBM 
routines for punched output you must set bit 1 on to signify eventual 
destination as the punch. Therefore, the bit setting for punch 
separators at entrance to IBM routines would be 010. The class name is 
available to the user for determination of final destination. 

208 System Programmer" s Guide (Release 20.1) 



MODIFYING OR ADDING OUTPUT SEPARATORS 

If you choose the IBM separators for classes A and/or B, you may wish to 
employ a separator for classes other than A or B; in this case you must 
replace the module IEFSEPAR with your own routine or use the IBM 
supplied routines by setting the correct switch in the parameters for 
printer or punch final destination and branching to IEFSD094 or 
IEFSD095. These routines are entered by branch and link register 14. 
If you write your own routine, the procedure is the same as that 
described for MVT. 

If you do not choose IBM separator routines, control is passed to 
IEFSEPAR for all output requests, and if you wish output separation, you 
must replace this with your own routine. 

Output Separation 209 

• 



210 System Programmer's Guide (Release 20.1) 



System Reader, Initiator, and 
Writer Cataloged Procedures 

In the MVT and MFT operating system 
configurations, reader/interpreters, and 
output writers are controlled by cataloged 
procedures. In MVT configurations 
initiators are also controlled by a 
cataloged procedure. This chapter 
describes the reader, initiator, and writer 
cataloged procedures that are supplied by 
IBM, and tells how to write your own. 

Before reading this chapter, you should 
be familiar with the information contained 
in the prerequisite publications listed 
below. 

PREREQUISITE ,PUBLICATIONS 

The IBM Systeml360 Operating System: 
Job Control Language publication 
(GC28-6539) contains information about job 
control statements and cataloged 
procedures. 

The IBM system/360 Operating system: 
Operator's Guide publication (GC28-6540) 
describes the START command used to start 
reader/interpreters, initiators, and output 
writers. 

The IBM Systeml360 Operating System: 
Storage Estimates publication (GC28-6551) 
contains information for estimating storage 
requirements. 

The IBM System/360 Operating System: 
Utilities publication (GC28-6586) tells how 
to add a cataloged procedure to the 
procedure library. 

The IBM System/360 Operating System: 
supervisor and Data Management Services 
publication (GC28-6646) discusses the 
queued sequential access method (QSAM) that 
is used by reader/interpreters and output 
writers. 

System Reader, Initiator, and Writer Cataloged Procedures 211 

-



Reader/Interpreter, Initiator, and Output Writer 
Cataloged Procedures 

In the MVT and MFT operating system conf igurati ons., system 
reader/interpreters and output writers are controlled by cataloged 
procedures. Initiators are controlled by cataloged procedures in MVT 
configurations. These procedures reside in the procedure library 
(SYS1.PROCLIB) and provide the parameters required for operation of the 
readers and writers. 

IBM supplies cataloged procedures for reader/interpreters" 
initiators., and for output writers. You can: 

• Use the IBM-supplied procedures. 

• Use the IBM-supplied procedures" and override given parameters .• 

• Write and use your own cataloged procedures. 

• Write and use your own cataloged procedures., and override given 
parameters. 

The START command starts a reader/interpreter, an initiator, or an 
output writer, and designates the procedure to be used. If you use the 
START command to start a problem program, there will be no SMF 
recording, or Checkpoint/Restart done for that job. You can override 
given parameters in the cataloged procedure by specifying the desired 
parameters in the START command. For a complete description of the 
START command, see the publication Operator's Reference. In addition, 
the publication Job Management with MFT, describes using the START 
command to start a problem program. 

Some of your installation's parameters may differ consistently from 
those in the IBM-supplied procedure. If so, you may wish to use your 
own cataloged procedure, rather than respecifying the parameters in 
every START command. You can use your own cataloged procedure by: 

1. Writing the procedure in the required format. 
2. Adding the procedure to the procedure library. 
3. Specifying the procedure name in the START command. 

To test your procedure by reference in another job but before adding 
it to the procedure library, format it as an in-stream procedure. See 
the System/360 Operating System: Job Control Language Reference 
publication for a description of in-stream procedures. (In-stream 
procedures can be used with any reader that uses the IEFIRC 
reader/interpreter program or the IEFVMA ASB reader program.) 

If the parameter values in a cataloged reader, initiator, or writer 
procedure change frequently., use symbolic parameters in place of 
ordinary parameters. You may then assign values to the symbolic 
parameters in the Start operator command. (For a description of 
symbolic parameters and their use, see Appendix A: Cataloged 
Procedures, in the Job Control Language Reference publication 
(GC28-6704). For a description of the Start operator command, see the 
Operator's Reference publication (GC28-6691).) An illustration of the 
use of symbolic parameters is given in this chapter under "Example of 
the Use of Symbolic Parameters." 

To obtain a SYSABEND dump when a reader, writer or initiator is 
abnormally terminated, you must add a DD statement describing the data 
set to be used to the corresponding procedure. The format of the DD 
statement is described in this chapter under the title: Optional 
SYSABEND Data Set. 

212 System Programmer's Guide (Release 20.1) 



Data Set Integrity for System Tasks (MVT) 

In MVT, access during a job to a named data set depends on the 
disposition assigned it in the DD statement. If a data set is named 
(DSNAME=anyname) and its status is either OLD or NEW (DISP=status), the 
operating system gives exclusive control of that data set ~ to that 
job for the life of the job. 

If you start several concurrent system tasks (such as several readers 
or several writers) using the same cataloged procedure, this data set 
integrity feature would nevertheless permit only one reader, or one 
writer, to execute at a time. To avoid this undesirable serialization 
of access (and hence, of the tasks) for readers. the SYS1.PROCLIB data 
set is assigned a status of SHR (in place of OLD). To avoid this for 
writers, the SYSOUT data set name is exempted from the protection of the 
data set integrity feature (since SHR cannot be assigned in place of 
NEW) • 

IEEVMPCR is the cataloged procedure called when you issue mount 
commands. This procedure resides in SYS1.PROCLIB. When not using an 
IBM-supplied cataloged procedure library, you should add IEEVMPCR to 
your own procedure library so that the mount commands can be properly 
executed. You can do this by using the IEBCOPY utility program. 

Reader/Interpreter Procedures 

A cataloged procedure for reader/interpreters requires four job control 
sta tements: an EXEC statement and three DD statements. The names and 
purposes of these statements are listed below: 

• An EXEC statement with the step name IEFPROC specifies the 
reader/interpreter program. 

• A DD statement named IEFRDER provides the reader/interpreter with a 
description of the input stream. 

• A DD statement named IEFPDSI describes the procedure library. 

• A DD statement named IEFDATA defines the CPP (concurrent peripheral 
processing) data set that is used for intermediate storage of input 
stream data. (In MVT, the attributes of the CPP data set must not 
be changed for a checkpoint restart if the data set was open and not 
completely read. The extents and number of extents do not have to 
remain the same.) 

system Reader, Initiator. and Writer Cataloged Procedures 213 

-



The standard reader/interpreter procedure supplied by IBM is named RDR. 
It specifies a block size of SO bytes for the CPP data set. The 
complete standard procedure is: 

r----------------------------------------------------------------------, 
I Procedure: RDR I 
~----------------------------------------------------------------------~ 
//IEFPROC EXEC PGM=IEFIRC,REGION=4SK, XI 

I 
// PARM='S0103005001024905010SYSDAbbbE00001A' I 

I 
/ /IEFRDER DD UNIT=2400, LABEL= (., NL) , VOLUME=SER=SYSIN, X I 

I 
/ / DISP=OLD, X I 

I 
// DCB=(BLKSIZE=SO,LRECL=SO,BUFL=SO, XI 

I 
// BUFNO=l,RECFM=F) I 

I 
/ /IEFPDSI DD DSNAME=SYS1. PROCLIB., DISP=SHR I 

I 
//IEFDATA DD UNIT=SYSDA, XI 

I 
// SPACE= (SO, (500,500) ,RLSE,CONTIG), XI 

I 
// DCB=(BLKSIZE=SO,LRECL=SO,BUFL=SO, XI 

I 
// BUFNO=2,RECFM=F,DSORG=PS) I L-_____________________________________________________________________ J 

214 System Programmer's Guide (Release 20.1) 



Two other cataloged procedures for reader/interpreters are supplied 
by IBM. These provide different block size specifications for the CPP 
data set. One of these procedures is narned RDR400, and provides a block 
size of 400 bytes for the CPP data set. The RDR400 procedure is: 

r----------------------------------------------------------------------, 
I Procedure: RDR400 I 
~----------------------------------------------------------------------~ 
//IEFPROC EXEC PGM=IEFIRC,REGION=50K, X 

// PARM='S0103005001024905010SYSDAbbbE00001A' 

//IEFRDER DD UNIT=2400,LABEL=(,NL),VOLUME=SER=SYSIN, X 

// DISP=OLD, X 

// DCB=(BLKSIZE=SO,LRECL=SO,BUFL=SO, x 

// BUFNO=l,RECFM=F) 

//IEFPDSI DD DSNAME=SYS1.PROCLIB,DISP=SHR 

//IEFDATA DD UNIT=SYSDA, X 

// SPACE=(SO, (500,100),RLSE,CONTIG), X 

// DCB=(BLKSIZE=400,LRECL=SO,BUFL=400, x 

1// BUFNO=2,RECFM=FB,DSORG=PS) L ______________________________________________________________________ J 

The third IBM-supplied procedure for reader/interpreters is named 
RDR3200. It provides a block size of 3200 bytes for the CPP data set. 
The RDR3200 procedure is: 

r----------------------------------------------------------------------, 
I Procedure: RDR3200 I 
~----------------------------------------------------------------------~ 
//IEFPROC EXEC PGM=IEFIRC,REGION=52K, XI 

I 
// PARM='S0103005001024905010SYSDAbbbE00001A' I 

I 
//IEFRDER DD UNIT=2400,LABEL=(,NL),VOLUME=SER=SYSIN, XI 

I 
// DISP=OLD, XI 

I 
// DCB=(BLKSIZE=SO.,LRECL=SO"BUFL=SO, XI 

I 
/ / BUFNO=l, RECFM=F) I 

I 
//IEFPDSI DD DSNAME=SYS1.PROCLIB,DISP=SHR I 

I 
//IEFDATA DD UNIT=SYSDA, XI 

I 
// SPACE=(SO,(500,12),RLSE,CONTIG), XI 

I 
// DCB=(BLKSIZE=3200,LRECL=SO,BUFL=3200., XI 

I 
// BUFNO=l"RECFM=FB, DSORG=PS) I L ______________________________________________________________________ J 

A fourth IBM-supplied procedure is the one used during restart. It is 
shown at the end of this reader/interpreter section. 

System Reader, Initiator, and Writer Cataloged Procedures 215 

• 



PROCEDURE REQUIREMENT 

When creating your own reader/interpreter procedure, you must conform to 
the procedure format and the statement requirements. Use the 
IBM-supplied procedures as examples. The statement requirements are 
explained individually in the following paragraphs. 

The EXEC statement 

The EXEC statement specifies the reader/interpreter program and for MVT 
configurations its region size. It also passes a set of parameters to 
the reader/interpreter program. The format for the EXEC statement is: 

r----------------------------------------------------------------------, 
I I 
I//IEFPROC EXEC PGM=IEFIRC,REGION=nnnnnK, XI 
I I 
1// PARM='bpptttooommmiiicccrlssssssssaaaaefh' I 
I I L ______________________________________________________________________ J 

The step name must be IEFPROC, as shown. The parameter requirements 
are as follows: 

PGM=IEFIRC 

specifies the reader/interpreter program. The name of the program 
must be IEFIRC, as shown. 

REGION=nnnnnK (valid for MVT configurations only) 

specifies the region size for the reader/interpreter. The value 
nnnnn represents a number from one to five digits that is 
multiplied by K (K=1024 bytes) to designate the region size. The 
region requirement depends on the size of the buffers and on the 
reader/interpreter modules (if any) in the link pack area. The 
complete algorithm for estimating the required region is contained 
in the "Estimating the Dynamic Main Storage Requirement" section of 
the Storage Estimates publication. An insufficient size 
specification will result in an abormal termination. 

If blocked procedure library has been specified, the region size will 
have to be increased by the block size rounded off to the next highest 
multiple of 2K. This is to allow for the increase in buffer size. 

In the event that double buffering is used, the region size must be 
increased by twice the block size, rounded off to the next highest 
multiple of 2K. 

The PARM Field in the EXEC Statement of the Reader/Initiator 

PARM='bpptttooommmiiicccrlssssssssaaaaefh ' 

is a set of parameters for the reader/interpreter program. This 
parameter field must consist of 35 characters, but the last seven 
have default values and need not be specified. Their meanings are 
explained in the following text. 

216 System Programmer's Guide (Release 20.1) 



b -- character from 0 through 9 or A through F that indicates 
whether the job step can be rolled out by another job step, 
whether it can cause rollout of another job step, whether an 
account number is required or not, and whether a programmer 
name is required. The following chart shows the meaning of 
each possible character .• 

r-----------------------------------------------------------------, 
I PARM field value b I 
r---------T-------------T----------------.------------T----------~ I I Can Step Be I Can Step Cause I Accn't Infol pgmr Name I 
ICharacter I Rolled Out? I Rollout? I Required? I Required? I 
~----------+-------------+----------------+------------+----------~ o no no no no 

1 no no no yes 
2 no no yes no 
3 no no yes yes 
4 no yes no no 
5 no yes no yes 
6 no yes yes no 
7 no yes yes yes 
8 yes no no no 
9 yes no no yes 
A yes no yes no 
B yes no yes yes 
C yes yes no no 
D yes yes no yes 
E yes yes yes no 
F yes yes yes yes L-_________ ~ ____________ i ________________ i ____________ i __________ J 

pp -- two numeric characters from 00 to 14 indicating the default 
priority for jobs read from this input stream. When no 
priority is specified in the JOB statement, this default 
priori~y is assigned to the job. 

ttt three numeric characters indicating the default for the 
maximum time (in minutes) that each job step may run. (This 
value is not used by MFT but must be present.) 

000 -- three numeric characters indicating the default for the 
pr~mary number of tracks assigned for SYSOUT data sets. This 
pr~ary allocation should be made sufficient for most of your 
needs, so that secondary allocation will not usually be 
needed. 

mmm -- three numeric characters indicating the default for the 
secondary number of tracks assigned for SYSOUT data sets. 

iii -- three numeric characters under 255 indicating the 
dispatching priority of this reader while it is processing JCL 
statements. (This value is not used by MFT but must be 
present. ) 

ccc -- three numeric characters indicating the default for the 
region size (specified as a number of 1024-byte blocks) 
assigned to job steps read from this input stream. (This 
value is not used by MFT but must be present.) 

system Reader,. Initiator" and Writer Cataloged Procedures 217 

-



r -- a numeric character from 0 to 3 that specifies the disposition 
of commands read from this input stream. The r parameter is 
used by the reader/interpreter whether or not the command is 
authorized to be entered into the input stream (see the aaaa 
parameter). The reader/interpreter, if r is: 

o -- passes the command to the Command Scheduling routine to 
be executed. 

1 -- displays the command (via a WTO macro instruction), and 
passes it to the Command Scheduling routine to be 
executed. 

2 -- displays the command (via a WTO macro instruction), asks 
the operator whether the command should be executed (via 
a WTOR macro instruction), and passes the command to the 
Command Scheduling routine if the operator replies in the 
affirmative. 

3 -- ignores the command (treated as a no operation). 

The WTO and WTOR macro instructions issued by the 
reader/interpreter are sent to the primary console in systems 
without the multiple console support (MCS) option and to the 
MCS master console in systems with the MCS option. 

I -- a numeric character 0 or 1 which specifies the bypass label 
processing options. 0 signifies that the BLP parameter in the 
label field of a DD sta tement is to be iunored. The label 
parameter is processed as NL. 1 signifies that BLP is not to 
be ignored. The label parameter is processed as it appears. 

ssssssss -- eight alphameric characters specifying the default 
device for SYSOUT. This becomes the UNIT subparameter in the 
DD statement that defines SYSOUT (if the UNIT field is omitted 
from the DD statement). If the designation is less than eight 
characters, the ssssssss field must be padded to the right 
with blanks. 

Note: This default device can be specified by its address, 
group, or type. However, the UNIT=type form may cause all 
units of that type to be used for system output, since the 
device allocation program spreads the data sets among all 
candidate devices. To preserve some devices for private 
volumes, you should define a UNIT group which is a subset of 
the available direct access devices. You may specify the name 
SYSOUT as the default unit name for the system output data 
sets if it was specified at system generation time; when this 
default is used, a unit count of 1 is implied. UNITNAME 
SYSOUT is fully d~scribed in the System Generation 
publication. 

aaaa -- four hexadecimal numbers from 0000 to EOOO indicating which 
operator command groups are to be executed if read from this 
input stream. This parameter is valid only for systems with 
the multiple console support option. In MFT and MVT systems 
without the multiple console support option, this parameter is 
set to X'EOOO', permitting all commands except DEFINE and HALT 
to be entered into the input stream. In systems with the 
multiple console support option, default is to X'EOOO' when 
the parameter is omitted. 

218 System Programmer's Guide (Release 20.1) 



Table 6 shows the operator commands that are affected by the 
aaaa parameter in an MCS environment. The commands are 
grouped by function. If the command is in a group authorized 
by the aaaa parameter, it is processed. If the command is not 
authorized by the aaaa parameter" it is ignored and an error 
message is sent to the master console. 

Note: Informational commands (Group 0) are always valid when 
entered into the input stream. 

Table 6. Operator Command Groups 
r---------T---------------T----------------------------------, 
I Command I I I 
I Group I Function I Commands I 
~---------+---------------+----------------------------------~ o Informational BRDCST LOG REPLY 

DISPLAY MSG SHOW 

1 System Control CANCEL MODIFY SET 
CENOUT QUIESCE START 
DEFINE RELEASE STOP 
HALT RESET USERID 
HOLD WRITELOG 

2 I/O Control MOUNT UNLOAD VARY * 
3 Console Control VARY * 

1,2,3 lMaster Console All commands are valid, plus 
VARY MSTCONS I 

1 
I 
I 

VARY HARDCPY 
VARY CPU 
VARY STOR 

1 VARY CH 
~---------~---------------~----------------------------------1 
INote: VARY (Group 2) is accepted only to VARY a non-console I 
I device online or offline. VARY (Group 3) provides only for I 
lconsole switching and console reconfiguration or secondary I 
I consoles. I L ____________________________________________________________ J 

Bit settings for the aaaa parameter are: 

Bit 
Bytes Bits settings Meaning 

0 0 1 Group 1 commands executed 
(aa) 1 1 Group 2 commands executed 

2 1 group 3 commands executed 
3-7 00000 Reserved 

1 
(aa) 0-7 00000000 Reserved 

Example: If you wish to authorize commands from command 
groups 2 and 3 to be executed when entered into the input 
stream, code the aaaa parameter: n6000 n 

System Reader, Initiator, and Writer Cataloged Procedures 219 

-



ef 

h 

MSGLEVEL value in absence of a value in the JOB statement. 

If there is no MSGLEVEL= parameter in the JOB statement, job 
control statements and allocation/termination messages are recorded 
in the system output data set according to the value of the ef 
parameter. The values and their effects are: 

e 

f 

Kinds of job control statements recorded. 
o - JOB statement only. 
1 - Input statements, cataloged procedure statements, and 

symbolic parameter substitution values. 
2 - Input statements only. 

A blank defaults to a value of O. 

Kinds of allocation/termination messages recorded. 
o - None" except in the case of an ABEND condition. 

(In that event, all messages are recorded.) 
1 - All. 

A blank defaults to a value of 1. 

MSGCLASS Default Value (A-Z, 0-9). 

If there is no MSGCLASS keyword parameter in the JOB statement, job 
control statements and allocation/termination messages are recorded 
according to the message class specified by this character. If the 
character is blank or absent, A is the default class. 

DD Statement for the Input Stream 

your procedure for the reader/interpreter must include a DD statement 
that describes the input stream. The format for this statement is: 

r----------------------------------------------------------------------, 
I//IEFRDER DD UNIT=device,LABEL=(,type), XI 
I I 
1// VOLUME=SER=SYSIN, XI 
I I 
1// DCB=(list of attributes) [,DSNAME=name,DISP=OLDl I L ______________________________________________________________________ J 

This statement must be named IEFRDER, as shown. The IEFRDER 
statement can be overridden with a STAB.T command. The parameter 
requirements are as follows: 

UNIT=device 
specifies the device from which the input stream is read. This can 
be any device supported by the queued sequential access method 
(QSAM). The device can be specified by its address, type, or 
group. 

LABEL= (,type) 
describes the data set label (needed only for tape data sets). If 
this parameter is omitted, a standard label is assumed. 

Note: Label types AL and AUL (American National Standard label 
types) should not be used. 

220 System Programmer's Guide (Release 20.1) 



VOLUME=SER=SYSIN 
specifies the volume containing the input stream. This parameter 
is required for magnetic tape or direct access volumes. The serial 
SYSIN is recommended for identification of this volume, but other 
serials can be used. 

Note: The volume serial numbers should not identify a volume that 
contains a data set written in ASCII. 

DCB=(list of attributes> 
specifies the characteristics of the input stream and the buffers. 
If the BLKSIZE, LRECL, and BUFL subparameters are not specified, an 
80-byte value is assigned to each. In MFT, if the procedure is 
going to be used for transient readers, the input must be unblocked 
80 byte records. Other subparameter fields may be specified as 
needed; otherwise, the QSAM default attributes are assigned, as 
follows: 

BUFNO -- two buffers. (In MFT if the procedure is to be used for 
transient readers, BUFNO=l must be specified.> 

RECFM U-format, with no control characters. 

TRTCH odd parity, no data conversion, and no translation. 

DEN lowest density. 

DSNAME=name,DISP=disposition 
specifies the name and disposition of the input stream data set to 
be read, this keyword should be used only with direct access input 
stream. 

DISP=OLD 
specifies that the input stream is an existing data set. 

Note: OPTCD = Q should not be coded. 

DD Statement for the Procedure Library 

Your procedure for the reader/interpreter must include a DD statement 
that defines the procedure library. This statement must follow the 
IEFRDER statement which describes the input stream. The format for this 
sta tement is: 

r----------------------------------------------------------------------, 
!//IEFPDSI DD DSNAME=SYS1.PROCLIB,DISP=SHR ! L ______________________________________________________________________ J 

This statement must be named IEFPDSI, as shown. The parameter 
requirements are as follows: 

DSNAME=SYS1.PROCLIB 
identifies the procedure library. To concatenate other data sets 
with the system library, you may follow the IEFPDSI DD statement 
with other unnamed DD statements thus expanding the system 
procedur~ library. 

DISP=SHR 
specifies that the procedure library is an existing data set and 
can be shared with other tasks. 

DD Statement for the CPP Data Set 

Your procedure for the reader/interpreter must include a DD statement 
that defines the CPP (concurrent peripheral processing) data set. Two 

System Reader, Initiator, and Writer Cataloged Procedures 221 

-



DCB parameters (BLKSIZE, and buffer number) may be overridden by 
parameters in the input stream on DD* and DD DATA statements. The CPP 
data set is used for intermediate storage of input stream data. The 
format for this statement is: 

r----------------------------------------------------------------------, 
I//IEFDATA DD UNIT=device, XI 
I I 
I I 
1// SPACE=(units,(quantities),RLSE,CONTIG), XI 
I I 
I I 
,1// VOLUME=SER=volser,DISP=(status.disp). XI 
I I 
I I 
1// DCB=(list of attributes) I L ______________________________________________________________________ J 

This statement must be named IEFDATA, as shown. The parameter 
requirements are as follows: 

UNLT=device 
specifies one or more direct access devices on which data sets from 
the input stream will be written. If more than one device is 
provided, the different data sets are not necessarily written in a 
continuous manner from device to device. Instead, the different 
data sets might be "spread" among the available devices in 
accordance with a reader/interpreter algorithm that is based on 
priorities and optimum access. If you want all the input stream 
data sets written on the same device, use the VOLUME parameter in 
this DD statement to identify the specific volume. The DEFER 
option must not be used. 

CAUTION: Do not use UNIT group names unless the request is for no 
more than one device. or the group is defined to have devices of 
only one type. 

SPACE=(units.(quantities).RLSE,CONTIG) 
specifies space allocation for the direct access volume. The RLSE 
subparameter releases all unused space to the system when the data 
set is closed. The CONTIG subparameter ensures that space is 
allocated in contiguous tracks or cylinders. 

Note: The first space allocation made by the system will be for 
the reader/interpreter program itself" which does not need or use 
the space. 

VOLUME=SER=volser 
identifies a specific direct access volume. This parameter is not 
required, but you can use it to cause all input stream data sets to 
be written on the same volume. You should also use this parameter 
if you specify the DISP parameter. 

DISP=(status,disp) 
specifies the status and disposition of the CPP data set. This 
parameter is not required. but can be used to bypass the first 
space allocation (as explained above). To do this, specify the 
parameter as DISP=OLD. The system then assumes that the data set 
exists, and does not allocate space for the reader/interpreter 
program. subsequently, the reader/interpreter forces a 
DISP=NEW,PASS status for the CPP data set so that space is 
allocated on it for recording the input stream data sets. 

222 System Programmer's Guide (Release 20.1) 



DCB=(list of attributes> 
specifies the characteristics of the CPP data set and the buffers. 
The subparameters may be specified as needed. The BLKSIZE, LRECL, 
and BUFL subparameters must be specified in all cases. The BLKSIZE 
and BUFNO parameters may be overridden by specifying them on a DD* 
or DD DATA statement in the reader input stream. However, the 
BLKSIZE and BUFNO values on the IEFDATA statement are always used 
as upper limits. Thus, if the overriding statements exceed these 
limits, the IEFDATA values are used. (An explanation of how to 
override these parameters is contained in the Job Control Language 
publication.> The BUFNO and RECFM subparameters, if not specified, 
assume the QSAM defau~t attributes which are: 

BUFNO two buffers. 

RECFM U-format, with no control characters. 

DSORG=PS 
Must be coded as shown. 

READER/INl'ERPRETER PROCEDURE USED BY RESTART 

The procedure, named IEFREINT, used to process job control statements 
for a job being restarted, is a skeleton of the normal 
reader/interpreter procedures. Its main functions are to define the 
restart reader/interpreter program, named IEFVRRC, and to make the 
procedure library accessib~e to that program. The procedure is: 

r----------------------------------------------------------------------, 
I Procedure: IEFREINT I 
~---------------------------------------------------------------------~ 
I//IEFPROC EXEC PGM=IEFVRRC , RESTART READER PROGRAM XI 
I I 
1// REGION=50K. RESTART READER REGION XI 
I I 
1// PARM=RESTART I 
I I 
I//IEFRDER DD DUMMY I 
I I 
I//IEFPDSI DD ·DSNAME=SYS1.PROCLIB,DISP=OLD PROCEDURE LIBRARY I 
I I 
I//IEFDATA DD DUMMY I L ______________________________________________________________________ J 

PROCEDURE REQUIREMENTS 

When creating your own restart reader/interpreter procedure, you must 
conform to the procedure format and the statement requirements. Use the 
IBM-supplied procedures as examples. The statement requirements are 
explained individually in the following paragraphs. 

The EXEC Statement 

The EXEC statement specifies the reader/interpreter program and for MVT 
configurations its region size. It also passes a parameter to, the 
reader/interpreter program. The format for the EXEC statement is: 

r----------------------------------------------------------------------, 
I//IEFPROC EXEC PGM=IEFVIIC,REGION=nnnnnK,PARM=RESTART I L ______________________________________________________________________ J 

System Reader, Ini tia tor" and Writer Cataloged Procedures 223 

-



The step name must be IEFPROC, as shown. The parameter requirements 
are as follows: 

PGM=IEFVRRC 
specifies the reader/interpreter program. The name of the program 
must be IEFVRRC, as shown. 

REGION=nnnnnK (valid for MVT configurations only) 
specifies the region size for the reader/interpretera The value 
nnnnn represents a number from one to five digits that is 
multiplied by K (K=1024 bytes) to designate the region size. The 
region requirement depends on the size of the buffers and on the 
reader/interpreter modules (if any) in the link pack area. The 
complete algorithm for estimating the required region is contained 
in the "Estimating the Dynamic Main Storage Requirement n section of 
the Storage Estimates publication. An insufficient size 
specification will result in an abnormal termination. If blocked 
procedure library has been specified, the region size will have to 
be increased by the block size rounded off to the next highest 
multiple of 2K. This is to allow for the increase in buffer size. 

PARM=RESTART 
must be coded as shown. 

224 System Programmer's Guide (Release 20.1) 



DD Statement for the Input Stream 

Your procedure for the restart reader/interpreter must include a DO 
statement that describes the input stream. The format for this 
statement is: 

r----------------------------------------------------------------------, 
I//IEFROER DD DUMMY I L ______________________________________________________________________ J 

This statement must be named IEFRDER" as shown. The parameter 
requirements are as follows: 

DUMMY 
must be coded as shown. System input is taken from the 
SYS1.SYSJOBQE data set which is open already. 

DD Statement for the Procedure Library 

Your procedure for the restart reader/interpreter must include a DD 
statement that defines the procedure library. This statement must 
follow the IEFRDER statement which describes the input stream. The 
format for this statement is: 

r----------------------------------------------------------------------, 
I//IEFPDSI DD DSNAME=SYS1.PROCLIB,DISP=OLD I L ______________________________________________________________________ J 

This statement must be named IEFPDSI, as shown. The parameter 
requirements are as follows: 

DSNAME=SYS1.PROCLIB 
identifies the procedure library. To concatenate other data sets 
with the system library, you may follow the IEFPDSI DD statement 
with other unnamed DO statements thus expanding the system 
procedure library. 

DISP=OLD 
specifies that the procedure library is an existing data set. In 
the MVT environment, the procedure library is assigned the share 
status (SHR) when referred to by the reader/interpreter. 

DD Statement for the CPP Data Set 

Your procedure for the restart reader/interpreter must include a DD 
statement that defines the CPP (concurrent peripheral processing) data 
set. Since the data is already in the checkpoint data set, DUMMY serves 
as operand. The format for this statement is: 

r----------------------------------------------------------------------, 
I//IEFDATA DD DUMMY I L-_____________________________________________________________________ J 

This statement must be named IEFDATA, as shown. The parameter 
requirement is as f'ollows: 

DUMMY 
must be coded as shown. 

System Reader, Initiator, and Writer Cataloged Procedures 225 

-



Initiator Procedures 

A cataloged procedure for an initiator requires only one job control 
statement: an EXEC statement,. Additional DD. statements may be 
optionally added so that specific control volumes will be allocated to 
the initiator task • 

• An EXEC statement with the step name IEFPROC specifies the initiator 
program and any job classes to be associated with the initiator if 
the START command does not specify job classes • 

• Optional DD statements specify control volumes to be allocated to 
the initiator task. 

IBM-SUPPLIED PROCEDURE 

The standard initiator procedure supplied by IBM is named INIT. The 
INIT procedure is: 

r----------------------------------------------------------------------, 
I Procedure: IN IT I 
~---------------------------------------------------------------------~ 
I//IEFPROC EXEC PGM=IEFIIC,PARM='A,LIMIT=13' I L ______________________________________________________________________ J 

PROCEDURE REQUIREMENTS 

When creating your own initiator procedures, you must conform to the 
procedure format and the statement requirements. The statement 
requirements are explained individually in the following paragraphs. 

The EXEC Statement 

The EXEC statement specifies the initiator program and passes a set of 
parameters to it. The format for the EXEC statement is: 

r----------------------------------------------------------------------, 
j//IEFPROC EXEC PGM=IEFIIC,PARM=·x[(n)][,x2[(n2)] ••• [,LIMIT=K]]' I L ___________________________________________________________________ ~ __ J 

The step name must be IEFPROC, as shown. The parameter requirements 
are as follows: 

PGM=IEFIIC 
specifies the initiator program. The name of the program must be 
IEFIIC, as shown. 

PARM=- x [ (n)] [,X1 [ (n1.)] ••• [,LIMIT=K]] • 

x - Job class. (Letter A - 0.) 
(One to eight job classes may be named.) 

n - (0 - 15), a force value priority at which all jobs from the 
preceding class will be run. 

K - (0 - 15) The priority above which no job will be run by this 
initiator. 

If the Start Operator command for an initiator includes any job 
class references, all definitions in the cataloged procedure are 
voided. 

226 System Programmer's Guide (Release 20.1) 



The LIMIT: entry in the cataloged procedure means that no job may 
be run at a priority higher than the value indicated by K. The 
force value (n above) is used for a job unless it is greater than 
the limit value (K above). You may not always specify a force 
value (n) priority. If you do not, priority is determined by the 
following order as long as the Limit value, K, is not exceeded: 

• The EXEC statement. 
• The JOB statement. 
• The cataloged Reader procedure. 

If a job class is assigned a force priority, it overrides the 
priority indicated in any of the above three sources. 

DD Statements 

DD statements for control volumes are optional.. The standard procedure 
INIT does not include a DD statement for a control volume. This 
optional facility is discussed in the next section "Mounting Control 
Volumes in MVT." 

ADDITIONAL INITIATOR FACILITIES 

Mounting Control Volumes in MVT 

A control volume that will be referenced during a catalog search can be 
mounted before the search begins to avoid the possibility of a job 
failure because the necessary control volume was not mounted. 

DD statements for control volumes may be included in initiator 
procedures cataloged in the procedure library (SYS1.PROCLIB). Such DD 
statements cause direct access volumes to be mounted and allocated for 
the life of the initiator. This facility is particularly useful when 
control volumes will be needed for departmental job batches. 

Initiation by an initiator with a DD statement for a control volume 
ensures that the control volume will be mounted prior to a catalog 
search from the catalog on the system residence volume to the catalog on 
the control volume for a specified data set. If such DD statements for 
control volumes are not included in initiator procedures, attempt will 
be made to mount a required control volume if a catalog search could not 
be completed during allocation for a step. However, when control 
volumes are mounted in this manner, they are available for demounting 
immediately after the catalog search has completed and will not 
necessarily remain mounted for the life of the job or job step requiring 
them. 

Initiator Action 

By starting an initiator that includes a DD statement for a control 
volume, mounting is requested before the initiator is allowed to start 
initiating jobs. If the volume is already mounted, the initiator 
proceeds with initiation. 

When a stop command is issued to the started initiator and the'volume 
is demountable and PRIVATE" it will be demounted providing no other job 
steps or other initiators are allocated to the volume. the volume then 
would stay mounted until the last job step using it terminated or the 
initiators using it are stopped, at which time the volume would be 
demounted. 

system Reader" Initiator" and Writer Cataloged Procedures 227 

-



DD statement Formats 

As many volumes may be defined by DD statements in the initiator 
procedure as the user finds useful. The format follows the 
specifications contained in the Job Control Language Reference 
publication. The following is an example of a DD statement that could 
be included in an initiator procedure for a control volume: 

r----------------------------------------------------------------------, 
I//ddname DD VOLUME=(PRIVATE,SER=ser#), XI 
I I 
I I address I I 
1// UNIT= type ,DISP=OLD I 
I group I L ______________________________________________________________________ J 

VOLUME=(PRIVATE,SER=ser#), 
specifies the volume serial of the control volume. PRIVATE 
ensuresthat this volume will not be used to satisfy job step data 
set requests unless requested by the specify volume serial number. 
Also, unless already mounted and permanently resident or reserved, 
the volume will be demounted when the initiator is stopped or upon 
its last use by job steps being processed by other initiators, or 
when other initiators allocated to the volume are stopped. 

UNIT=l~~~ess!, 
group 

specifies the unit address, unit type, or group on which the 
control volume is to be mounted. 

DISP=OLD 
specifies that a temporary data set will not be allocated to the 
volume. A dsname will be generated for this data set and when the 
initiator is stopped a message will be written out on the system 
output that this data set (generated name) has been kept. This 
message can be ignored as no action needs to be taken. 

DEDICATED DATA SETS (MVT) 

Dedicated data sets, in MVT, save the time taken repeatedly to allocate 
(and deallocate) space used only temporarily during a job step. A 
dedicated data set is allocated space when the initiator is started and 
belongs to the initiator. Every job step running under that initiator 
can use the dedicated data set as a temporary data set. If you use 
dedicated data sets for temporary data sets the checkpoint/restart 
facility is internally suppressed. To dedicate any data set quickly to 
successive jobs or job steps, you add a DD statement to the Initiator 
procedure. An initiator procedure (INITD) for use of dedicated data 
sets with processor programs has been added to the system. To save 
repeated catalog searches, you may also dedicate system library data 
sets. 

The dedicated data sets feature has been implemented by adding code 
to the allocation routine that, before allocating space for a temporary 
data set, attempts to relate a request for a temporary data set with a 
dedicated data set. If the space required for the temporary data set 
fits within the dedicated data set, the dedicated data set space is 
used. If not, normal allocation takes place. The same criterion will 
be used with presently coded requests for temporary data sets, that is, 
if the space requested is within the range of the dedicated data set, it 
will be used. 

228 system Programmer's Guide (Release 20.1) 



How to Dedicate a Data Set 

You dedicate a data set by adding a DD statement (for each data set to 
be dedicated) to the initiator procedure. The unit must be a DASD; the 
space may be for a sequential or partitioned data set. (See the 
publication storage Estimates, the chapter Job step Initiation 
Requirement, for details on the number of DD statements per initiator.) 
Each DD statement must be of the form: 

r----------------------------------------------------------------------, 
I//ddname DD UNIT=unitparms,VOL=volparms, I 
I SPACE=(kind,(amount,increment,dirblks»,DISP=(new,delete) I L ______________________________________________________________________ J 

ddname 
A user supplied ddname must be given to identify the DD statement. 
The ddname is used (in the form DSNAME=tddname) in the ~D statement 
of the problem program job step which is to make use of the 
dedicated data set. 

unitparms 
Parameters that describe the unit to be used for the dedicated data 
set. The unit must be a DASD. The AFF= and DEFER unit parameters 
may not be used. The unit parameters specified here override those 
of the job step DD statement for which the dedicated data set is 
used. 

volparms 
Volume parameters. 
A volume may be specified for each unit specified in the preceding 
unit parameter entry. The volume parameters specified here 
override those of the job step DD statement for which the dedicated 
data set is used. 

(kind, (amount, increment, dirblks) ) 
Type and size of space (in terms of CYL, TRK, avgbl, or ABSTR) to 
be allocated to the data set. If ,dirblks is omitted, the data set 
request implies sequential organization. If "dirblks is used, the 
data set request implies partitioned organization. If the 
dedicated data set is going to reside on an IBM 2301, or 2303 drum 
storage device, do not request space in cylinders. 

When a dedicated data set with partitioned organization reaches an 
EOV condition, the initiator must be restarted. The DD statement 
in the problem program job step that is to use a dedicated data set 
must describe a problem program data set of the same organization 
as the dedicated one. Increments, once allocated, remain allocated 
until the initiator stops. 

new,delete 
These disposition parameters may either be coded explicitly or may 
take effect by default, that is by omitting the DISP= entry. 

The effect of new is that the data set is freshly allocated from 
any available space on the volume, each time a start Initiator 
operator command is used or the system is restarted. 

The effect of delete is that the data set is not kept when the 
initiator is stopped and the space is available for'reallocation to 
other jobs. 

DSNAME 
The allocation procedure for an initiator pre-allocated data set is 
the same as for any temporary data set. This procedure is simplest 
with no dsname= entry in the DD statement. That results in a 

system Reader, Initiator" and Writer Cataloged Procedures 229 

-



system assigned data set name of the form: 
SYSnumber.Rnumber.procname.RVnumber. 

You may also code DSNAME=&name, DSNAME=&&name, or DSNAME=name. 
These names will override those used in the job step DD statement 
for which the dedicated data set is used. 

DCB parameters: 
DCB parameters specified here have no effect. 

How to Get to Use a Dedicated Data set 

If you want a dedicated data set to be used for a data set needed 
temporarily in a job step, define the temporary data set in a DD 
statement of the form: 

r----------------------------------------------------------------------, 
I//ddname DD DSNAME=&ddname, 1 
1 1 
1// SPACE=(avgbl, (amount,increment,dirblks», I 
1 1 
1// UNIT=unitparms,DISP=(new,delete),DCB=dcbparms 1 L ___________________________________________ ~ __________________________ J 

&ddname 
name of the DO statement for the dedicated data set, preceded by an 
& sign. 

(avgbl,(numbr,increment,dirblks» 
Space request, in terms of average block length only, needed for 
this temporary data set. 

An attempt to allocate the dedicated data set will be replaced by 
the normal allocation procedure if one of the following conditions 
is encountered: 

• If the total space (primary and increments) requested here 
exceeds the total space (primary and increments) available to the 
dedicated data set. 

• If the use of ,dirblks (presence or absence) differs from that in 
the DD statement of the dedicated data set, (or if ISAM is 
specified) • 

• If the space for ,dirblks requested here exceeds the space for 
,dirblks specified in the dedicated data set. 

• If the space request is shown in other than average block length. 

unitparms 
Unit parameters 
Parameters that describe the unit to be used 
set, if the dedicated data set is NOT used. 
a magnetic tape unit, as well as a DASD. 

(new, de lete) 

for the temporary data 
Here, the unit may be 

These disposition parameters must either be coded explicitly or may 
take effect through default. 

dcbparms 
DCB parameters required for your temporary data set. Unless 
specified, you may find that a previous user has left the dedicated 
data set with undesired DCB parameters. 

230 System Programmer's Guide (Release 20.1) 



PROCEDURE INITD 

Language processor programs (such as FORTRAN compilers) make much use of 
temporary data sets. To permit ready use of the dedicated data set 
feature with IBM-supplied processor procedures, IBM supplies the 
initiator procedure INITD. (It becomes part of the system by including 
it in the SYS1.PROCLIB at system generation time.) 

INITD is an initiator procedure that dedicates five utility data sets 
commonly used with IBM-supplied processor procedures. To use the 
dedicated data set facility with these procedures start the INITD 
initiator. 

Before including the INITD procedure in your system, review the space 
allocations, unit specifications, and ddnames used in the procedure 
against your requirements. If they are significantly different, you may 
wish to code your own. 

Presently existing procedures can be used under the INITD initiator 
without changes. Procedures designed fqr the dedicated data set feature 
remain operative without the presence of the dedicated data set feature. 
In short, the procedure will run under any initiator regardless of 
whether that initiator has dedicated data sets. 

The INITD procedure looks as follows: 

r----------------------------------------------------------------------, 
I Procedure: INITD I 
~---------------------------------------------------------------------~ 
//IEFPROC EXEC PGM=IEFIIC,PARM='A,LIMIT=13' I 

I 
//SYSUTl DD DSNAME=&UT1,SPACE=(1700, t200.100)"CONTIG),UNIT=SYSDA I 

I 
//SYSUT2 DO DSNAME=&UT2,SPACE=(1700, (200,100»,UNIT=(SYSDA,SEP=SYSUT1)I 

I 
//SYSUT3 DO DSNAME=&UT3,SPACE=(1700, (200,100», CI 

I 
// UNIT=(SYSDA,SEP=(SYSUT1,SYSUT2» I 

I 
//SYSUT4 DD DSNAME=&UT4,SPACE=(460,(700,100», XI 

I 
// UNIT=(SYSDA,SEP=(SYSUT1,SYSUT2 , SYSUT3» I 

I 
//LOADSEI' DO DSNAME=&LOADSET,UNIT=(SYSDA,SEP=SYSUT1), XI 

I 
// SPACE=(3600,(100,10» I L-_____________________________________________________________________ J 

INITD Procedure statements 

Each of the statements shown in the preceding illustration is explained 
in detail in the following. In addition to describing the reason for or 
effect of the use of a parameter. the description distinguishes between 
those parameters that must be coded as shown and those that you 'may 
override or substitute for. 

system Reader. Initiator, and Writer Cataloged Procedures 231 

-



The EXEC Statement 

The EXEC statement for the procedure is: 

r----------------------------------------------------------------------, 
I//IEFPROC EXEC PGM=IEFIIC, PARM='A, LIMIT=13 , I L ______________________________________________________________________ J 

IEFPROC 

EXEC 

The step name. Must be coded as shown. 

The job control statement name. Must be coded as shown. Defines 
the beginning of a job step. 

PGM=IEFIIC 
The program to be executed in this job step. IEFSD060 is the name 
of the initiator program. Must be coded as shown. Whether 
dedicated data sets are used depends on the DD statements that 
follow, not on the name of the program. 

PARM='A,LIMIT=13, 
Parameter list for the initiator program. A is the class of jobs 
to be processed, LIMIT=13 is the dispatch priority limit for this 
initiator. Both of these values can be overridden by values used 
with the start operator command for the initiator. 

232 System Programmer's Guide (Release 20.1) 



/ 

DD statements for the Dedicated Utility Data Sets 

There are four DD statements in the INITD procedure that allocate space 
to four commonly used utility (or scratch) data sets. The statements 
are: 

r----------------------------------------------------------------------, 
1//SYSUT1 DD DSNAME=~UT1.SPACE=(1700,(200,100)"CONTIG, 

1 
1// UNIT=SYSDA 
I 
1//SYSUT2 DD DSNAME=&UT2,SPACE=(1700,(200,100», 
I 
1// UNIT=(SYSDA.SEP=SYSUT1) 
1 
1//SYSUT3 DD DSNAME=&UT3,SPACE=(1700,(200,100», 
1 
1// UNIT= (SYSDA,SEP= (SYSUT1,SYSUT2» 
1 
1//SYSUT4 DD DSNAME=~UT4,SPACE=(460.(700.100». 

1 
1// UNIT=(SYSDA.SEP=(SYSUT1.SYSUT2,SYSUT3» L-____________________________________________________________________ _ 

DSNAME 
The leading & sign marks the name as that of a temporary data set. 

SPACE= 

UNIT= 

The first three data sets will be assigned space that can 
accommodate 200 blocks of 1700 bytes. When that space is 
exhausted, additional space will be allocated for 100 blocks at a 
time. Additionally, for the first data set, SYSUT1, all the 
primary space is to be contiguous when allocated. The fourth data 
set is to be allocated space for 700 blocks of 460 bytes initially. 
When exhausted space is to be allocated for 100 blocks at a time. 

Space is to be allocated from direct access storage devices. If 
possible each data set is to be on a separate device from every 
other data set to avoid contention for the device. 

DD Stateme~t for the Loadset Data set 

In the INITD procedure, the dedicated data set for the object module, 
the Loadset data set. is defined as follows: 

r----------------------------------------------------------------------, 
I//LOADSET DD DSNAME=&LOADSET"SPACE=(3600, (100,10», 1 
I I 
1 UNIT=(SYSDA,SEP=SYSUT1) I L ______________________________________________________________________ J 

LOADSET 
DDName of the dedicated data set. 

DD 
Data definition statement 

DSNAME=&LOADSET 
A temporary dataset 

SPACE=(3600. (100,,10» 

UNIT= 

space allocation commonly used in compilers. 

Space is to be allocated on a DASD but not the same one as the 
SYSUT1 data set. 

system Reader, Initiator. and Writer Cataloged Procedures 233 

-



USE OF DEDICATED DATA SETS BY PROCESSOR PROGRAMS FOR UTILITY DATA SETS 

Present~y, processor programs show the temporary nature of the utility 
data sets by omitting a DSNAME= entry. If these DD statements are 
revised with the addition of a DSNAME=&name entry, the system will 
attempt to use dedicated data sets of the INITD program for job steps 
processed under that initiator. To illustrate the necessary change, let 
us look at a present DD statement and the change requiredft The 
following is a DD statement from the COBECLG procedure for which a 
temporary data set will be allocated: 

r----------------------------------------------------------------------, 
1//SYSUTl DD UNIT=SYSDA,SPACE=(1024,(200,6S» I L ______________________________________________________________________ J 

The temporary character of this data set is shown by the absence of a 
DSNAME= entry. To force consideration of the dedicated dataset, 
assuming that the step is running under the INITD procedure, add a 
DSNAME=&name (or &&name) entry referring to the dedicated data set to be 
considered for use: 

r----------------------------------------------------------------------, 
1//SYSUTl DD UNIT=SYSDA,SPACE=(1024,(200,6S»,DSNAME=&SYSUTl I L ______________________________________________________________________ J 

With the addition of the dedicated data set feature, the allocation 
program now first searches the DD statements in the initiator procedure 
for an already existing data set with a DD name like that following the 
& sign (the symbolic name). If the allocation program finds such a data' 
set, it next determines whether the organization (sequential, 
partitioned) of the dedicated data set is the same as that of the 
temporary data set and whether the total space requirements (primary and 
increments) of the temporary data set fall within the total space 
allocation of the dedicated data set. If there is no dedicated data set 
with the symbolic name, the organizations are not the same, or the 
temporary space does not fit within the dedicated space, the initiator 
will attempt normal allocation. It is for the latter event that unit 
parameters should be present. 

SYSTEM LIBRARY DATA SETS AS DEDICATED DATA SETS 

system library data sets, such as the COBOL library, for example, may be 
referred to repeatedly in a batch of jobs. To save allocating the 
system data set in each job and step, the system data set can be 
dedicated in an initiator procedure. Caution must be exercised when 
dedicating system libraries or other non-temporary data sets. The DD 
statement in the initiator procedure must have the disposition specified 
as old or share and keep to prevent the deletion of the data set when 
the initiator is stopped. In the same manner the disposition on the job 
step DD statement referencing the dedicated library must also be old or 
share and keep or pass to allow the dedication to take place without a 
space comparison. The example data set references are as follows. 

The following is the DD statement in the COBECLG procedure that 
results in the allocation of the COBOL library to the job step calling 
the procedure: 

r----------------------------------------------------------------------, 
I//SYSLIB DD DSNAME=SYS1.COBLIB,DISP=(SHR,KEEP) I L ______________________________________________________________________ J 

234 System Programmer's Guide (Release 20.1) 



The explicit data set reference (DSNAME=SYS1.COBLIB) requires a search 
of the catalog in ea~h job step using the procedure. To save the 
repeated catalog search, move the DD statement to the initiator 
procedure and replace it in the COBECLG procedure with a DD statement in 
which the DSNAME=&name entry refers to the ddname of the dedicated data 
set. Allocation treats this as a dedication request, dedicated if so 
found. The new DD statement in the COBECLG procedure, after adding the 
present one to the initiator procedure, is: 

r----------------------------------------------------------------------, 
I//SYSLIB DD DSNAME=&SYSLIB,DISP=(SHR,KEEP) I L ______________________________________________________________________ J 

The result is one catalog search per initiator start instead of one 
catalog search every job step. However, keep in mind that this COBECLG 
procedure requires the initiator with the dedicated data set. Using 
this modified procedure with an unmodified initiator will result in 
failure to allocate. 

Disposition of Temporary Dedicated Data Sets 

Allocation/termination routines do not d~lete temporary dedicated data 
sets at the end of each job step, but, instead, keeps them until the 
initiator stops; this occurs even if there is a specification of 
DISP=(NEW,DELETE) or DISP=(MOD,DELETE) on the DD statement for the data 
set. Therefore, if you attempt to use such a data set a second time in 
the same job, it will contain data from the previous use. This can be a 
problem if you are using cataloged procedures and run the same procedure 
twice within the same job. For example: assume that you use the 
procedure PL1LFLCLG twice within the same job and it uses a dedicated 
data set with a disposition of (MOD, PASS> for the compile step and 
(OLD,DELETE) for the linkage edit step. When the procedure is entered 
for the second time, the object module produced by the second compile 
step will be placed in back of the object module produced by the first 
compile step. Since both object modules are assigned identical names by 
the compiler., only the first will be linkage edited. 

You can avoid this problem by not using dedicated data sets for jobs 
that run the same cataloged procedure twice. Alternatively, you could 
submit each cataloged procedure as separate jobs instead of submitting 
them as separate job steps within the same job. 

You can use the following chart to determine the disposition, by 
allocation/termination, of temporary dedicated data sets. 

r-------------T--------------------------------------------------------, 
I If you code I Allocation/termination treats it as: I 
I DISP= I I 
~-------------t---------------------------------~----------------------~ 
I NEW I OLD I 
I OLD/SHR I OLD I 
I MOD I OLD I 
I , DELETE I KEEP I 
I ,PASS I PASS I 
I ,KEEP I KEEP I L _____________ L ________________________________________________________ J 

system Rea'der. Initiator" and Writer Cataloged Procedures 235 

-



Output Writer Procedures 

A cataloged procedure for output writers requires two job control 
statements: an EXEC statement and a DD statement • 

• An EXEC statement with the step name IEFPROC specifies the output 
writer program • 

• A DD statement named IEFRDER defines the output data set. (In MVT. 
the attributes of the output data set must remain unchanged for a 
deferred checkpoint restart if the data set was opened but not 
completely wri tten. The extents and number of exte'nts do not have 
to be the same.) 

SYSTEM OUTPUT WRITER 

The standard output writer procedure supplied by IBM is named WTR. The 
standard procedure is: 

r----------------------------------------------------------------------, 
I Procedure: WTR I 
r----------------------------------------------------------------------~ 
I//IEFPROC EXEC PGM=IEFSD080,REGION=20K" XI 
I I 
1// PARM='PA' I 
I I 
I//IEFRDER DD UNIT=1403.VOLUME=(,.,3S), XI 
I I 
1// DSNAME=SYSOUT. DISP= (NEW, KEEP) , X I 
I I 
1// DCB=(BLKSIZE=133,LRECL=133.BUFL=133. XI 
I I 
1// BUFNO=2,.RECFM=FM) I L ___________________________________________ ~ _________________________ J 

PROCEDURE REQUIREMENTS 

When creating your own output writer procedure, you must conform to the 
procedure format and the statement requirements. Use the IBM-supplied 
procedure as an example. The statement requirements are explained 
individually in the following paragraphs. 

The EXEC Statement 

The EXEC statement specifies the output writer program and its region 
size. It also passes a set of parameters to the output writer program. 
The format for the EXEC statement is: 

r----------------------------------------------------------------------, 
I//IEFPROC EXEC PGM=IEFSD080,REGION=nnnnnK. XI 
1// PARM='cxxxxxxxx,seprname' I L ______________________________________________________________________ J 

The step name must be IEFPROC, as shown. The parameter requirements 
are as follows: 

PGM=IEFSD080 
specifies the output writer program. The name of the program must 
be IEFSD080. as shown. 

REGION=nnnnnK (MVT configurations only) 
specifies the region size for the output writer. The value nnnnn 
represents a number from one to five digits that is multiplied by K 
(K=1024 bytes) to designate the region size. The region 

236 System Programmer's Guide (Release 20.1) 



requirement depends on the size of the buffers, the data set writer 
used, and which modules of the output writer (if any) are in the 
link pack area. The complete algorithm for estimating the required 
region is contained in the "Estimating the Dynamic Main storage 
Requirement" section of the storage Estimates publication. An 
insufficient size specification will result in an abnormal 
termination. 

PARM='cxxxxxxxx,seprname' 
is a set of parameters for the output writer program. The first 
part of this parameter field can contain from two to nine 
characters. The second part of this parameter field, if specified, 
is separated from the first part by a comma, and contains a program 
name from one to eight characters. Both parts of this parameter 
field are explained below. 

c -- an alphabetic character, either P (for printer) or C (for 
punch), that specifies the type of control characters for the 
output of the writer. 

xxxxxxxx -- from one to eight (no padding required) 
single-character class names for system output. These specify 
the type of output that the writer can process, and also 
establish the priority of the output classes, with the highest 
priority on the left. If class name parameters are included 
in the START command, they override this entire set of class 
names in the cataloged procedure. 

seprname -- the name of the program (up to eight characters) that 
provides job separation in the output data set. The named 
program must reside in the link library (SYS1.LINKLIB). You 
can specify the name IEFSD094 to use the output separator 
supplied by IBM, or you can specify the name of your own 
program. This subparameter may be omitted, in which case no 
output separator is used. <Output separators are described in 
another chapter of this publication.) 

DO Statement for the OUTPUT Data set 

Your procedure for the output writer must include a DO statement that 
defines the output data set. The format for this statement is: 

r----------------------------------------------------------------------, 
I//IEFRDER DO UNIT=device,LABEL=(,type), XI 
I I 
1// VOLUME=(",volcount), XI 
1 I 
1// DSNAME=anyname,DISP=(NEW"KEEP) , XI 
1 I 
1// DCB=(list of attributes), XI 
I , 
1// UCS=(code[,FOLD][,VERIFY]), XI 
1 I 
1 {.ALIGN } I 
1// FCB=(image-id " VERIFY) I l ______________________________________________________________________ J 

This statement must be named IEFRDER, as shown. The parameter 
requirements are as follows: 

UNIT=device 
specifies the printer. magnetic tape, 
the output data set will be written. 
are: 1403, 1442. 1443, 2400, 2400-1, 
2540, or 3211. 

or card punch device on which 
The devices that can be used 
2400-2,2400-3,2400-4,2520, 

System Reader, Initiator, and Writer Cataloged Procedures 237 

-



LABEL= ( , type) 
describes the data set label (needed only for tape data sets). If 
this parameter is omitted, a standard label is assumed. 

VOLUME= (" , volcount) 
limits the number of tape volumes that can be used by this writer 
during its entire operation (from the time it is started to the 
time it is stopped). This parameter is not required for printer or 
card punch devices. 

DSNAME=anyname 
specifies a name for the output data set (tape only), so that it 
can be referred to by subsequent job steps. This name is also 
necessary for specification of the KEEP subparameter in the DISP 
field. 

DISP= (NEW, KEEP) 
specifies the KEEP subparameter to prevent deletion of the output 
data set (tape only) at the conclusion of the job step. 

DCB=(list·of attributes) 
specifies the characteristics of the output data set and the 
buffers. The BLKSIZE and LRECL subparameter fields must be 
specified in all cases. The BUFL subparameter field, if not 
specified, is.calculated on the basis of the BLKSIZE value. Other 
subparameter fields may be specified as needed; otherwise, they 
will assume the QSAM default attributes which are: 

BUFNO -- three buffers for the 2540 device, two buffers for all 
other devices. 

RECFM U-format, with no control characters. 

TRTCH odd parity" no data conversion, and no translation. 

DEN lowest density. 

UCS= (code [ i FOLD] [. VERIFY] ) 
specifies the code for a universal character set (UCS) image that 
will be loaded into the UCS buffer. FOLD causes bits zero and one 
to be ignored when comparing characters between the UCS buffer and 
the print line buffer. This option allows lowercase character 
codes to be printed in uppercase by an uppercase chain/train. 
VERIFY causes the UCS image specified to be output for the printer. 
The UCS parameter is optional and is valid only when the output 
device is a 3211 printer or a 1403 printer. 

[
,ALIGN J 

FCB=(image-id ~VERIFY ) 
causes a forms control buffer (FCB) image with the specified 
image-id to be loaded into the FCB. One of two optional 
parameters, ALIGN or VERIFY can be coded. ALIGN and VERIFY each 
allow the operator to align forms. VERIFY also causes the FeB 
image to be output for the printer. The FeB parameter is optional 
and is valid only when the output device is a 3211 printer. 

By using a certain kind of procedure, it is possible to reduce the 
amount of CPU time needed by the writer. This is done by having the 
SYSOUT writer intercept PUT instructions and execute an EXCP only when 
all of a chain of buffers are full. This command chaining is provided 
if the writer procedure specifies all of the following conditions: 

1. It uses more than 3 buffers. 

238 system Programmer's Guide (Release 20.1) 



2. It uses machine control characters in writing to the OUTPUT print 
or punch device. 

3. It does not use PCI. 

4. The OUTPUT device is a printer or punch. 

It should be noted that if a command chaining procedure is used to a 
punch., there is no automatic punch recovery even though there are more 
than 3 buffers. 

DIRECT SYSOUT WRITER -- THE SYNCHRONOUS SYSTEM OUTPUT WRITER JOB 

I The direct SYSOUT writer is an operator option in MFT and MVT that 
results in writing output directly from (synchronously with the 
execution of) the problem program. It requires two job control 
statements: an EXEC statement and a DD statement. 

• The EXEC statement is named IEFPROC. 

• The DD statement is named IEFRDER and describes the ultimate output 
data set. 

The procedure supplied by IBM is named DSO and is described in the 
following. If you wish to create your ovln procedure, follow its format. 

r----------------------------------------------------------------------, 
I Procedure: DSO I 
~---------------------------------------------------------------------~ 

II//IEFPROC EXEC PGM=IEFDSO,REGION=8K, PARM= (PA,A) I 
I I 
I//IEFRDER DD UNIT=2400.DSN=SYSOUT,DISP=(NEW,KEEP),LABEL=(,SL), I 
I I 
I VOL=(", 05) ,DCB=(BUFNO=3) I L ______________________________________________________________________ J 

The EXEC statement 

The EXEC statement specifies the direct SYSOUT writer and the space it 
requires to start in MVT. It is also used to give the writer program 
necessary operating information. 

r-------------------------------------------------------~--------------, I 1/ /IEFPROC EXEC PGM=IEFDSO, REGION= 8K. PARM= (ex, j j j j j j j j 1 I L ______________________________________________________________________ J 

IEFPROC 
Name of the EXEC statement. 
Required as shown. 

IEFDSO 
Name of the writer program. 

REGION=8K 
Space required by IEFDSO to start in MVT. 

System Reader, Initiator, and Writer Cataloged Procedures 239 

• 



PARM= 
Information for the IEFDSO program. 

c 

x 

A letter, P for printer or C for card punch, that describes 
the ultimate hard-copy medium. Must be given. 

The SYSOUT class to be processed. 
If stated here, and in the Start command, the latter rules. 
If not ·stated here" must be given in the Start command. 

,jjjjjjjj 
Jobclasses to be processed. 
From zero to eight letters (A - 0) showing the job classes to be 
processed. 
If any job classes are named in the Start command, they overrule 
all stated here. 
In MFT. if none are named here, then the job classes will be those 
assigned to the partition for which this writer is started. 
In MVT. if none are named here they must be given in the start 
command. 

240 System Programmer's Guide (Release 20.1) 



The DD statement 

This DD statement describes the kind of volume to be used and the format 
of the data set. 

r----------------------------------------------------------------------, 
I//IEFRDER DD UNIT=name,DSN=anyname,DISP=(NEW,KEEP),LABEL=(,SL), I 

II VOL=(" ,volcount) ,DCB=(list) ,UCS=(code[,FOLD] [,VERIFY]) I 
I [,ALIGN] I 
I FCB=(IMAGE-ID ,VERIFY) I L ______________________________________________________________________ J 

IEFRDER 

name 

Name of the DD statement. 
Required as shown for IEFDSO. 

Any form of unit identification may be used, for example, OOE, 
2400, or TAPE. 
Multiple parallel units (UNIT=2400,2) cannot be used. 

DSN=anyname 
Name of a non-temporary data set. 
A name must be given. 
If stated here and in the Start command also, the latter rules. 
The name is used in the disposition messages at step termination, 
and must be used to identify the data set if it is to be printed 
later from tape. 

DISP=(NEW,KEEP) 
Required disposition. 

LABEL= ( " SL) 
If DSO is being used to write to magnetic tape" standard label 
tapes are required. The label description may be stated explicitly 
or may be omitted, in which case SL is assumed. 

" ,volcount 
1 - 225. 

list 

The maximum number of volumes a data set to be processed by this 
writer will have. 
Determines the amount of job queue space allocated t,o each SYSOUT 
data set processed by this writer. After the first 5 volumes, each 
subsequent 15 require another job queue record. 
If omitted, 1 is assumed. 
If stated here and also in the Start command, the latter rules. 
This value cannot be given in a DD statement of a job to be 
processed. 

The following DCB parameters gain control only if they are not also 
given in the SYSOUT DD statement or in the DCB macro instruction 
(that is, default values can be stated in this procedure): 

BFALN, BFTEK, BUFL;, BUFNO, BLKSIZE, LRECL, RECFM, NCP, HIARCHY, 
UCS. 

The following DCB parameters, if stated here, override all except 
those given in a start command: 

CODE, DEN, MODE" OPTCD" PRTSP, STACK, TRTCH. 

System Reader, Initiator" and Writer Cataloged Procedures 241 



UCS= (code [.FOLD] [,VERIFY]) 
A UCS image can be specified if the device is a UCS printer. The 
specified code is a one to four character name that identifies the 
UCS image. 
FOLD and VERIFY are optional. If the UCS parameter is specified in 
the START command. that specification will be used instead of the 
specification in this procedure. 

[
.ALIGN ] 

FCB=(image-id ,VERIFY) 
An FCB image load can be specified if the output device is a 3211 
printer. The specified image-id is a one to four character name 
that identifies the FCB image. 
ALIGN or VERIFY is optional" but only one can be coded. If the FCB 
parameter is specified in the START command, that specification 
will be used instead of the specification in this procedure. 
Note: UCS and FeB images established in the DSO procedure or in 
the START command are maintained from job to job until one or both 
are overridden by a subsequent DD statement or SETPRT macro 
instruction. If this happens and the new image is a default image, 
it is maintained until another image is specified. If the current 
image is not a default, the original image established in the START 
command or the 050 procedure will be used. 

242 system Programmer's Guide (Release 20.1) 



/ 

OPTIONAL SYSABEND DATA SE.'T 

I If the user desires an ABEND dump in the event that the reader, direct 
sysout writer or initiator task is abnormally terminated, a //SYSABEND 
DD statement may be included in the respective procedures. It must be 
of the following form: 

r----------------------, 
I//SYSABEND DD SYSOUT=xl L ______________________ J 

This statement defines the system output class for printed output if the 
task whose procedure contains the //SYSABEND nn statement is abnormally 
terminated. The "x" must be the alphabetic or numeric character that 
represents an output class for printed output. Any printed output class 
can be specified. 

In addition to the SYSOUT parameter, the user may include a UNIT 
parameter to specify the intermediate direct access device and/or a 
SPACE parameter to specify the amount of intermediate direct access 
space required for the dump data set before it is printed. The default 
device type provided if the UNIT parameter is SYSDAi and the default 
allocation provided if the SPACE parameter is omitted is 5 tracks 
primary and 1 track secondary. (The default space allocation is only 
intended for a partial dump.) 

system Reader, Initiator. and Writer Cataloged Procedures 243 

• 



Cataloging the Procedure 

You use the IEBUPDTE utility program to add your reader" initiator. or 
writer procedures to the cataloged procedure library (SYS1.PROCLIB). 
Use of this program is fully explained in the Utilities publication.. 

The following example shows the control statements needed to add a 
reader/interpreter procedure and an output writer procedure to the 
procedure library. For this example, the reader/interpreter procedure 
is named RDPROC4. and the output writer procedure is named WTPROC2. 

The EXEC statement in this example specifies the IEBUPDTE program. 
The PARM=NEW parameter indicates that all input to the utility program 
is contained in the data set defined by the SYSIN statement. 

The ADD control statement furnishes the name of the member to be 
added to the procedure library. The three numbers following the member 
name indicate: 

• The level of modification (00 indicates first run). 

• The source of the modification (0 indicates user-supplied). 

• The printed output desired (ALL indicates print entire updated 
member and control statements). 

The NUMBER statement specifies the sequence numbers for records 
wi thin the new member,. With this statement, the number 00000010 is 
assigned to the first record of the new procedure, and subsequent 
records are incremented by 00000010. 

244 system Programmer's Guide (Release 20.1) 



r----------------------------------------------------------------------, 
I ,','~~r::~·:I'~CCS .JOE O~#770.; n_ 1'_ BROWN 

// EXEC PGM=IEBUPDTE,PARM=NEW 

//SYSPRINT DD SYSOUT=A 

//SYSUT2 DD DSNAME=SYS1.PROCLIB,DISP=OLD 

//SYSIN DD DATA 

./ ADD RDPROC4 ,LEVEL=OO" SOURCE=O ,LIST=ALL 

./ NUMBER NEW1=10, INCR=lO 

//IEFPROC EXEC PGM=IEFIRC,REGION=40K. XI 
I 

1// PARM='SOlOlOO150102490501SYSDA I 
1 I 
I//IEFRDER DD UNIT=2400-2,LABEL=(.NL). XI 
1 I 
1// VOLUME=SER=SYSIN, XI 
1 I -1// DCB=(BLKSIZE=SO,LRECL=SO,BUFL=SO, XI 
I I 
1// BUFNO=l,RECFM=F,TRTCH=C.DEN=O) I 

1 
//IEFPDSI DD DSNAME=SYS1.PROCLIB,DISP=SHR I 

I 
//IEFDATA DD UNIT=2311, XI 

I 
// SPACE=(SO, (500,500),RLSE.CONTIG), XI 

I 
// VOLUME=SER=222222,DISP=OLD, XI 

I 
// DCB= (BLKSIZE=SO "LRECL=S 0 ,BUFL=S 0, X 

// BUFNO= 2, RECFM=F) 

./ ADD WTPROC2,LEVEL=00 ,SOURCE=O ,LIST=ALL 

./ NUMBER NEW1=10, INCR=lO 

//IEFPROC EXEC PGM=IEFSDOSO,REGION=20K, X 

// PARM='PAC' 

//IEFRDER DD UNIT=2400-2,LABEL= <.,NL) , VOLUME=(" ,40), X I 
I 

/ / DSNAME=SYSOUT" DISP= (NEW ,KEEP) , X I 
I 

/ / DCB=(BLKSIZE=133" LRECL=133,RECFM=F. X I 
I 

1// TRTCH=C> I 
I I 
1/* I L ______________________________________________________________________ J 

System Reader, Initiator, and Writer Cataloged Procedures 245 



Example of the Use of Symbolic Parameters in Cataloged 
Reader, Writer, and Initiator Procedures 

Symbolic parameters in a cataloged procedure that is started via the 
Start operator command may be assigned values in the start command that 
starts the procedure. In this manner, any parameter in the EXEC or in 
any DD statement may be assigned a value at the time the procedure is 
started. 

A cataloged procedure that uses symbolic parameters may also have a 
PROC statement that shows the default values for the symbolic 
parameters. Keywords that may be used in a JOB, EXEC, or DD statement 
cannot be used as symbolic parameters. (For example, you cannot say 
that DISP is equal to &REGION.) However, subparameter keywords of the 
DD statement can be used as symbolic parameters. ,For example, you may 
code BUFNO=&BUFNO.) 

The following example shows a Reader/Interpreter procedure that 
contains symbolic parameters. 

r----------------------------------------------------------------------, 
//RDPRS PROC REG=48,STIME=030,MCS=EOOO,MSGL=01, 

// PDSI=' SYS1. PROCLIB'" BLK=SO, BUFNO=2 

//IEFPROC EXEC PGM=IEFIRC,REGION=&REG.K, 

// PARM='SOl&STIME.0500102490S010SYSDAbbb&MCS&MSGL' 

//IEFRDER DD UNIT=2400,LABEL= (, NL) .. VOLUME=SER=SYSIN, 

// DCB= (BLKSIZE=80, LRECL=SO, BUFL=8 0, 

// BUFNO=l,RECFM=F) 

//IEFPOOI DD DSNAME=&PDSI,DISP=SHR 

//IEFDATA DD UNIT=SYSDA, I 
I 

// SPACE=(SO, (SOO,SOO),RLSE,CONTIG), I 
I 

// DCB=(BLKSIZE=&BLK"LRECL=80"BUFL=&BLK, I 
I 

1// BUFNO=&BUFNO,RECFM=F,DSORG=PS) I L ______________________________________________________________________ J 

The PROC statement 

In the preceding illustration the PROC statement assigns default values 
to the symbolic parameters &REG" &STIME, &MCS" &MSGL, &PDSI, &BLK, &BUFNO. 

The START Command 

These same symbolic parameters are assigned values with the following 
START command: 

r----------------------------------------------------------------------, 
ISTART RDPRS,REG=SO,STIME=03S,MCS=EOOO,MSGL=11,PDSI='SYS1.USER' 1 
I ,BLK=400,BUFNO=1 1 L ______________________________________________________________________ J 

246 System Programmer's Guide (Release 20.1) 



Automatic SYSIN Batching (ASB) 

Reader/interpreters in MVT are usually resident and continuously active; 
they read and interpret job control language statements and place SYSIN 
data sets on direct access devices for later processing. since the 
interpreting of job control language statements often requires only a 
small proportion of the total time used by the reader/interpreter yet 
remains resident even when inactivel you may save space by separating 
the interpretation of job control statements from the storing of SYSIN 
data sets. If the two functions are separated" the interpreter portion 
of the reader/interpreter does not have to be resident at all times and 
will be called into storage only after a certain number of job control 
language statements have been collected. separating the two functions 
of the reader/interpreter is called automatic SYSIN batching (ASB). 

IBM supplies a cataloged procedure that provides automatic SYSIN 
batching; this procedure is named RDRA and is invoked by issuing a START 
command. The procedure is shown and described in the following text; by 
using it as a model, you may write your own procedure. coding the 
parameters suited to your installation. 

r---------------------------------------------------------------------, 
I Procedure: RDRA I 
~----------------------------------------------------------------------~ 

//DEFAULT PROC RDRH=O 

//IEFPROC EXEC PGM=IEFVMA,REGION=16K, 

// PARM=(I 80103005001024905030SYSDAbbbEOOOO1A, 

// 1101207004EOOOSYSDAbbbO&RDRH') 

//IEFRDER DD UNIT=2400,LABEL=(,NL)IVOLUME=SER=SYSIN, 

// DCB=(BLKSIZE=80,RECFM=F,BUFL=80.BUFNO=10) 

//IEFPIEI DD IENAME=SYS1.PROCLIB,DISP=SHR 

//IEFDATA DD UNIT=SYSDA, SPACE=( 3200" (15.,15) .RLSE,CONTIG) , 

/ / DCB= (BLKSIZE=3200" BUFNO=2, RECFM=FB, BUFL=3200) 

L ___________________ ----------------------------------_________________ J 

The PROC Statement 

The PROC statement gives the default values for symbolic parameters used 
in any of the job control statements that follow it in that procedure. 

r---------------------------------------------------------------------, 
I//DEFAULT PROC RDRH=O I L-_____________________________________________________________________ J 

RDRH=n 
Assigns a default value for the &RDRH symbolic parameter in the 
EXEC statement. 
n specifies the main storage hierarchy to be used in loading the 
interpreter subroutine of the ASB reader. 

n = 0 - Use hierarchy 0 main storage. 
n = 1 - Use hierarchy 1 main storage. 

System Reader, Initiator, and Writer Cataloged Procedures 247 

-



The EXEC statement 

The EXEC statement for the SYSIN batcher is similar to the EXEC 
statement for the standard reader/interpreter. It specifies the SYSIN 
batcher program, the MVT region size and passes a set of parameters to 
the program. The format is as follows: 

r----------------------------------------------------------------------, 
I//IEFPROC EXEC PGM=IEFVMA,REGION=nnnnnK. I 
1 I 
1// PARM=('bpptttooommmiiicccrlssssssssaaaaefh, I 
I I 
1// ejjaarratabaaaddddddddgk') I L __________ ~ ___________________________________________________________ J 

The step no~e must be IEFPROC. as showu. The paL~neters are as follows: 

PGM=~EFVMA 

specifies the automatic SYSIN batcher program. It must be IEFVMA 
as shown. 

REGION=nnnnnR 
specifies the region size for the ASB reader. The value nnnnn 
represents a number from one to five digits that is multiplied by R 
(K=1024 bytes) to designate the region size. The region 
requirement depends on the size and number of input buffers and ASB 
reader modules (if any) in the link pack area. The complete 
algorithm for estimating the required region is contained in the 
"Estimating the Dynamic Main storage Requirement" section of the 
storage Estimates publication. An insufficient size speciffcation 
will result in an abnormal termination. 

PARM=('bpptttooommmiiicccrlssssssssaaaaefh, 
these parameters are the same as those used in the ordinary 
(non-batching) procedure. See the preceding description of that 
procedure for an explanation of these parameters. 

,e a numeric character from 0 to 3 that ordinarily specifies the 
disposition of commands read from this input stream. The SYSIN 
batcher, if e is: 

0 executes the command. 
1 displays the command (via a WTO macro instruction), and 

executes it. 
2 displays the command (via a WTOR macro instruction), but does 

not execute it until advised by the operator. 
3 ignores the command <treated as no operation). 

jj two numeric characters which indicate the number of jobs to be 
read by the SYSIN batcher before control is to be passed to the 
reader/interpreter for interpreting the job control language and 
en9Ueueing the jobs onto the job input queue for execution. 

aa -- the number of logical tracks on the SYS1.SYSJOBQE which can be 
used by the SYSIN batcher for later interpretation. The Storage 
Estimates publication contains information on estimating 
SYS1.SYSJOBQE work space. 

rra -- three decimal numbers. Size of the region, in K bytes (1024 
bytes), the ASB reader routine is to obtain for the 
reader/interpreter" routine. The reader/interpreter routine uses 
the region to read in tracks of job control statements that the 
ASB reader has written in the SYS1.SYSJOBQE data set. The size 

248 System Programmer's Guide (Release 20.1) 



/ 

of the region should complement the number specified for the next 
param~t~.L, tlu::: Lei f1a.La.UI€t€~. Th~ Storage EstimateE pl1blit.:"~+1 on 
describes how large a region is required for the interpreter 
routine. 

ta -- two decimal numbers. Number of logical tracks of job control 
statements that are to be read in from the SYS1.SYSJOBQE data set 
into the region defined by the previous parameter, the rra 
parameter. The reader/interpreter routine one at a time, 
interprets the statements blocked by the ASB reader. The storage 
Estimates publication describes how to determine the number of 
tracks of SYS1.SYSJOBQE data set data to be kept ready in main 
storage. 

baaa -- This parameter is the same as the aaaa parameter in the 
non-batching procedure. 

dddddddd -- the unit type or name of the direct access device where the 
SYSIN batcher is to temporarily store all SYSIN data. This must 
be the same as that indicated in the IEFDATA UNIT parameter. 

Reserved for integrated 7094 emulators. Must be "in if 7094 binary 
data is to be entered via SYSIN as input to an integrated 7094 
emulator; otherwise, must be O. 

k -- Main storage hierarchy to be used in loading the interp~eter 
subroutine of the ASB reader. 
tRDRH -

o 
1 

A value may be assigned in the operator start command. If 
none is given there, the default value in the PROC 
statement of this procedure is used. The default value 
may be changed by supplying a FROC statement with another 
value. 
Use hierarchy 0 main storage. 
Use hierarchy 1 main storage. 

The DD statements are the same as those described for the standard 
reader/interpreter with the exceptions noted in the following text. 

IEFRDER (DD statement for the input stream) 
The parameter requirements are the same as those for the 
reader/interpreter except for the DCB parameter. This parameter 
specifies the characteristics of the input stream and the buffers. 
If the BLKSIZE and BUFL subparameters are not specified, an SO-byte 
value is assigned to each. LRECL need not be specified because 
fixed length SO-byte records are the only input accepted by the ASB 
reader. other subparameter fields may be specified as needed; 
otherwise, the QSAM default attributes are assigned as for the 
reader/interpreter. 

IEFDATA (DD statement for the CPP data set) 
If the BLKSIZE and BUFL subparameters are not specified, an SO-byte 
value is assigned to each. LRECL need not be specified because 
fixed length SO-byte records are _the only input accepted by the ASB 
reader. The ~LK5IZE and BUFNO parameters may be overridden by 
specifying them on a DD* or DD DATA statement in the reader input 
stream. However" the. BLKSIZE and BUFNO values on the IEFDATA 
statement are always used as upper limits. Thus, if the overriding 
statements exceed these limits, the IEFDATA values are used. In 
addition, the ASB reader always uses one buffer for IEFDATA. 
Therefore. the BUFNO value specified applies only as a default. 

System Reader, Initiator, and Writer cataloged Procedures 249 

-



SYSIN and SYSOUT Data Blocking 

significant performance advantages can be gained by blocking of SYSIN 
and SYSOUT data. Blocking reduces interference on the devices 
containing the intermediate data and improves direct access space use. 
The IBM-supplied reader procedures provide three levels of SYSIN 
blocking; you should review the blocking provided by the cataloged 
procedures of the various processors. Figure 8 shows the data blocking 
that is accepted by processors operating under MVT and MFT 
configurations. 

Blocking is obtained by including in the appropriate DD statement DCB 
information in the general form 

DCB=(RECFM=x,LRECL=x,BLKSIZE=x) 

The various programmer's guides should be consulted to determine 
options that need not be specified in individual cases. LRECL must be 
specified for the PL/I and FORTRAN H SYSLIN DD cards, and the COBOLF 
SYSPUNCH DD card, when these files are blocked. Assembler F, COBOL F, 
and FORTRAN G and H are effectively unlimited. Sort is limited by 
assembled-in values. The utilities and RPG are limited by assembled-in 
valu~s of LRECL but may have a blocking facto+ other than 1. SYSIN and 
SYSOUT for the FORTRAN E compiler cannot be blocked through the system 
input reader and output writer, although the SYSOUT DD cards must 
include DCB=BLKSIZE=121. 

When you institute data blocking, you must consider the following 
variables: 

SIZE option 
REGION values 
MINPART value 
Default REGION value provided by the reader procedure 

The FORTRAN H SIZE parameter is independent of blocking and buffering 
considerations " although the REGION value must be 8K larger than the 
SIZE value. 

Notes to Figure 8: 
(Data Blocking Accepted by Processors under MVT and MFT) 

For compile-load-go cases, only the compile step must include 
complete SYSIN (SYSGO) DCB specifications. 

F=Fixed, FA=Fixed, USASI control characters" FB=Fixed blocked, 

I FBA=Fixed blocked, USASI control characters, FBSA=Fixed blocked, 
standard blocks, USASI control characters, FBM=Fixed blocked, machine 
control characters, VBA=Variable blocked, USASI control characters, 
FT=Full track, U=Undefined. 

Region and partition sizes must be adequate to accommodate the 
specified blocking. The user should consult the individual programmer 
guides. 

250 System Programmer's Guide (Release 20.1) 



r-------------------------------------------------, 
! LRECL ! 
I M~~ i 
! BLKSIZE ! 

r-------------------t--------T--------T---------T----------------------1 
I ! I ISYSIN !SYSLIN I 
I Processor ISYSPRINT!SYSPUNCHI(IEFDATA)! (~3200) I 
~-------------------+--------+--------+---------t----------------------1 
IAssembler F 1121 180 180 180 I 
! ! FBM I FB I FB I FB I 
I I FT I FT I FT I FT I 
~-------------------+--------+--------+---------+----------------------~ 
ICOBOL F 1121 180 180 180 I 
I IFBA IFB IFB IFB I 
I I FT I FT I FT I FT I 
~-------------------+--------+-------~+---------t----------------------~ 
I FORTRAN E 1121 180 180 180 I 
I (with PRFRM option)! FM I F I FB I FB I 
I 1121 I 8 0 1FT I FT I 
~-------------------+--------+--------+---------+----------------------~ 

I 
I FORTRAN G 1120 I 80 I 80 I 80 I 
I IFBSA IFB IFB IFB I 
I I FT I FT I FT. I FT I 
~-------------------+--------+--------+---------+----------------------~ 
I FORTRAN H 1137 180 180 180 I -I I VBA I FB I FB I FB I 
I 1FT 1FT 1FT 1FT I 
~-------------------+--------+--------+---------+----------------------~ 
I PL/I F 1125 I 80 I 80 I 80 I 
I I VBA IFB IFB IFB I 
I I FT I FT I FT I FT I 
~-------------------+--------+--------+---------+---------------:--------~ 
ILinkage Editor 1121 I I 180 I 
I I FM I I IF. FS I 
IE15,E18 1121 I I 180 I 
~-------------------+--------+--------+---------+----------------------~ 
ILinkage Editor 1121 I I 180 I 
IF44 IFM,FBM I I IF,FS,FB,FBS I 
I 1605 I I 1400 I 
~-------------------+--------+--------+---------+----------------------~ 
ILinkage Editor 1121 I I 180 I 
IF88,F128 IFM,FBM I I IF.FS"FB,FBS I 
I I FT~4840 I I 13200 I 
~-------------------+--------+--------+---------+----------------------~ 
I Sort I I I 80 I I 
I IU I IFB I I 
I 1120 I I FT I I 
~-------------------+--------+--------+---------t----------------------~ 
IRPG 1121 180 180 180 I 
I I FA I F I FB I F I 
I 1121 180 1FT 180 I 
~------------------+--------+--------+---------t----------------------~ 
IUtilities 1121 I 180 I I 
I IFBA INA IFB I I 
I 1FT 11FT I I L ___________________ ~ ________ ~ ________ ~ _________ ~ _____________________ J 

Figure 8. Data Blocking Accepted by Processors Under MVT and MFT 

System Reader, Initiator, and Writer Cataloged Procedures 251 



Blocking the Procedure Library 

You mayw in some cases, improve the use of direct access space and gain 
performance advantages by blocking the procedure library. It may be 
blocked at system generation or subsequently by using the operating 
system utilities. Block size must be a multiple of 80. Increased 
buffer size necessary for a blocked procedure library must be provided 
for in the region parameter of the reader procedures for MFT and MVT. 
The region size must be increased by the block size rounded to the next 
higher multiple of 2K. The PCP scheduler correspondingly requires more 
storage at each of its design levels. 

In cases where the region size has been increased for blocked 
SYSIN/SYSOUT in excess of that actually required (due to rounding) and 
the excess is greater than the block size for the procedure library, a 
further increase in region size may not be necessary for processing 
blocked records from the procedure library. 

The following example shows the control statements needed to block 
the procedure library using the IEBCOPY and IEHPROGM utility programs. 
step C1 of job BLOCK copies the procedure library and blocks it to -400. 
It deletes the old copy and catalogs the new copy under the name of 
LIBCOPY. step Rl renames the procedure library to SYS1.PROCLIB and 
catalogs it under that name. 

r----------------------------------------------------------------------, 1/ /BLOCK JOB ACCT w D8 2, MSGLEVEL=l I 
1 1 
1//C1 EXEC PGM=IEBCOPY 1 
I 1 
1//SYSUT1 DD DSNAME=SYS1.PROCLIB,UNIT=2311,DISP=<OLD,DELETE r F.EEP) I 
1 1 
1/ /SYSUT 2 DD DSNAME=LIBCOPY, UNIT=2311w VOLUME=SER=llllll w X I 
1 1 
1// DISP=(NEW,CATLG,DELETE),DCB=(RECFM=FB wLRECL=80 w X 
1 
1// 
1 
I//SYSPRINT DD 
1 
I//SYSIN 
1 
1/* 
1 
1 

DD 

BLKSIZE=400),SPACE=(TRK r (SO,1,10» 

SYSOUT=A 

DUMMY 

1//R1 EXEC PGM=IEHPROGM 
1 
1//DD1 DD 
I 
I//SYSPRINT DD 
1 
I//SYSIN 
1 

DD 

UNIT=2311, VOLUME=SER=llllll, DISP=OLD 

SYSOUT=A 

* 
1 RENAME DSNAME=LIBCOPY,VOL=2311=111111,NEWNAME=SYS1.PROCLIB 
I 
I 
I 
1/* 

~ 

CATLG DSN~SYS1.PROCLIB,VOL=2311=111111 

L _____________________________________________________________________ _ 

252 System Programmer's Guide (Release 20.1) 



Writing Rollout/Rollin 
Installation Appendages 

This chapter explains how to write 
rollout/rollin appendages for MVT 
configurations of the operating system and 
how to insert them into the operating 
system before or after system generation. 
The four exits to user-written appendages 
and their functions are explained. The 
chapter also presents sample coding for an 
appendage. 

Additional information on insertion of 
these appendages at system generation is 
contained in the publication IBM System 360 
Operating System: System Generation, 
GC28-6554. 

The publication IBM system 360 Operating 
system: Job Control Language, GC25-6539 
explains how to indicate that a job step 
may be rolled out or may cause rollout of 
another job step. 

Writing Rollout/Rollin Installation Appendages 253 

• 



Writing Rollout/Rollin Installation Appendages 

The rollout/rollin feature of IBM System/360 Operating System is used 
with MVT configurations as an aid to main storage management. 
Rollout/rollin allows the temporary. dynamic expansion of your job step 
beyond its originally specified region. When your job step needs more 
space, rollout/rollin attempts to obtain unassigned storage for its use. 
If there is no such unassigned storage. another job step is rolled out 
-- transferred to auxiliary storage (IBM 2301, 2311, 2314 or 2321 -- so 
that its region may be used by your job step. When released by your job 
step, this additional storage is again available. either as unassigned 
storage, if that was its source" or to receive the job step to be 
transferred back into main storage (rolled in). (Note: Teleprocessing 
jobs which use the Autopoll option should not be marked eligible for 
rollout. A rolled-out job which is using the Autopoll option cannot be 
restarted properly.) 

During the course of normal rollout processing, exits are taken to 
installation-written routines, so that you can dynamically control 
various aspects of the rollout function. The routines you write must be 
serially reusable; they will reside as part of the resident nucleus and 
will be entered by a branch entry. IBM has supplied a dummy module 
which resolves the appendage exits during system generation. 

To replace the dummy module before system generation" the object 
module which results from the assembly of the updated appendage routine 
should be link edited into the SYS1.CI535 data set. To replace the 
assembled dummy appendage module after system generation, you should 
link edit your new appendage module as a CSECT replacement in lEANUC01. 

It may be necessary for the appendages to address the jobname; 
however, unless the job has issued an ATTACH, SYSINIT will appear in the 
jobname, and the actual jobname will appear in the stepname. Therefore, 
an appendage checking for a specific jobname should also check for 
SYSINIT; if it is encountered, the appendage should further check the 
stepname for the actual jobname. 

There are four installation exits; their functions and the linkage to 
them are discussed in the following paragraphs. 

LINKAGE TO USER APPENDAGES 

1. Register 15 contains the base address of' the routine. 

2. Register 14 contains the return address. 

3. Register 13 contains the address of an 18-word save area in which 
you must save any registers that you will use. You must restore 
registers before exiting. 

4. Register 1 contains the address of the TCB for the task that 
invoked rollout. (Exception: on entry to Appendage IV, register 1 
contains the address of the PQE for the region selected for 
rollout.) 

5. Register 0 contains the address of a three-fullword area. The 
first two bytes of the first word contain the number of rollouts 
now in effect. The third and fourth bytes of the first word 
contain the number of requestors now queued for rollout. The 
rollout queue is ordered according to dispatching priority. The 

254 system Programmer's Guide (Release 20.1) 



I 
/ 

second word contains the address of the queue origin for queued 
rollout r~qu~~L~ 'IEAROQUE}. The thir~ wcr~ i~ the ~dd~~~~ nT rhp 
parameter list for the task that invoked rollout. The first word 
of the two-word parameter list contains the address of the TCB for 
the task that invoked rollout, and the second word contains a 
hexadecimal number which represents the length, in bytes, of the 
originally requested main storage area. 

APP ENDAGE I: lEAQAPGl 

The exit to Appendage I is taken when the current request for additional 
storage has invoked rollout, and at least one other job ste~ has already 
invoked rollout.. You can determine" using your own criteria, whether to 
override the normal rollout procedure of allowing only one job step to 
invoke rollout at any given time. If you do allow multiple (successive) 
rollouts, you are responsible for preventing system interlocks such as 
occur if each of two job steps needed two-thirds of main storage at the 
same time. (Your obvious escape from this situation would be to 
arbitrarily cancel one of the steps.) If you do not elect to allow 
multiple rollouts, the requesting task is placed upon the queue of tasks 
that have requested and are waiting for rollout. From the linkage 
information passed in the registers, you must decide whether or not to 
make an immediate attempt at rollout for the requesting step. If you do 
not desire an immediate attempt at rollout, you should return the TCB 
address passed in register 1 without change. If you do desire an 
immediate attempt at rollout, you should return the address of the 
requesting task in complement form. If you use the IBM-supplied 
Appendage I, your request will be queued and no multiple rollout will 
occur. 

APPENDAGE II: IEAQAPG2 

The Appendage II exit is taken whenever neither enough free space nor a 
rolloutable job step of lower dispatching priority than the job step 
that invoked rollout exists. No attempt is made to find a higher 
dispatching priority step to rollout. You have the option of 
requesting that the rollout function attempt to find a job step of 
higher dispatching priority that can be rolled out. 

If you do not want to attempt to find a higher dispatching priority 
step to rollout, return the address of the requesting task without 
change. If you do desire the higher dispatching priority pass, return 
the address in complement form. 

APPENDAGE III: lEAQAPG3 

The exit to Appendage III is taken after the rollout function has 
determined, through the use of both its own and (optionally) your 
criteria, that a job step suitable for rollout does not exist. Through 
this appendage you can select either the step which requested the 
unavailable storage or any other job step in the system for abnormal 
termination (ABEND). If you do not select a job step for ABEND (or if 
you use the IBM-supplied Appendage III), the requestor is placed on the 
rollout queue. If a job step other than the requestor is selected by 
the appendage, ABEND of the selected job step is initialized, and the 
requestor is queued for rollout. 

If you do not desire to initiate an ABEND" you must set register 1 to 
zero before exiting. The requestor is then queued for rollout. If you 
do desire an ABEND, you must return in register 1 the address of the job 
step TCB for the task to be ABENDed. (The address you return will be 
checked to ensure that it is a job step TCB. If it is not,. it is 

Writing Rollout/Rollin Installation Appendages 255 

-



ignored and the requestor is queued for rollout.) If the address is 
valid and is not the address of the requesting step, ABEND is initiated 
and the requestor is queued for rollout. If it is the address of the 
requesting step, ABEND is initiated and the requestor's IQE is returned 
to the available queue. If you use the IBM-supplied Appendage III, no 
ABEND occurs. 

APPENDAGE IV: lEAQAPG4 

The Appendage IV exit is taken each time a job step has been selected as 
a candidate for rollout. This appendage gives you the opportunity to 
apply your criteria to each job step that the rollout function has found 
to be eligible for rollout. Job steps are considered for rollout 
eligibility beginning with the job step of lowest dispatching priority, 
and continuing upward until all eligible job steps with a lower 
dispatching priority (than that of the requesting job step) have been 
presented to your appendage. If you have supplied an appendage which 
permits job steps of higher dispatching priority to be eligible for 
rollout, these will also be presented to your appendage beginning with 
the job step of next highest dispatching priority (than that of the 
requesting step) of and continuing upward until all eligible job steps 
with a higher dispatching priority have been presented. 

The process of presenting job steps to your appendage for approval 
continues either until a job step is approved for rollout by the 
appendage, or until all eligible job steps have been examined and 
disapproved by the appendage. 

SAMPLE CODING OF APPENDAGES 

The following pages contain sample coding illustrating the linkage to 
the appendages. In the example given" an Appendage II which approves 
the rollout of job steps with a higher priority than the requesting job 
step is used to illustrate appendage coding. 

GENERAL FLOW OF ROLLOUT PROCESSING 

The flowchart in Figure 9 depicts the overall flow of control through 
the various user appendages and the Rollout module. 

256 System Programmer's Guide (Release 20.1) 



Set TCB Scan to Start 
at Top of TCB Queue 
and Stop at Requestor's 
JSTCB 

Figure 9. 

( ~ Req~e.'t f~' ,~ollo~t from ') 
IVtJ ...... II .. ;;; n ..... ' .... "" ..................... ..... 

IEAQAPG4 

Cri'erion Selection 
Appenrlage 

No 

Successful 
Rollout 
Performed 

L. ____ ---.L __ ~ 

General Flow of Rollout/Rollin Processing 

SVC 
Exit 

Exit ROjR 1 Module 
via Task Switch 

Writing Rollout/Rollin Installation Appendages 257 



SOURCE STATEMENT 

IEAQAPG2 CSECI' 
r---------------------------------------------------------------------, 
ITHIS ROUTINE WILL APPROVE THE ROLLOUT OF JOBSTEPS WITH A HIGHER I 
I PRIORITY THAN THE REQUESTING JOBSTEP. IT IS ENTERED FROM USER I 
IAPPENDAGE - IEAQAPG2 - WHICH IS RESIDENT IN THE NUCLEUS AS PART OF THEI 
IROLLOUT/ROLLIN CODE. I 
I I 
lIT WILL WRITE TO THE OPERATOR INDICATING THE FOLLOWING: I 
I • ROLLOUT STATUS (NUMBER OF ROLLOUTS IN EFFECI' AND THE NUMBER OF I 
I ROLLOUT REQUESTS QUEUED.) I 
I • THE NAME OF THE JOB REQUESTING ROLLOUT. I 
I • APPROVAL OF THE REQUEST. I L ______________________________________________________________________ J 

R1 EQU 
R2 EQU 
R3 EQU 
R4 EQU 
R5 EQU 
R8 EQU 
R12 EQU 
R13 EQU 
R14 EQU 

STM 
BALR 
USING 
LR 
ST 
LA 
ST 
LR 
LR 
USING 
L 
USING 
MVC 

WTLENTER WTO 
USING 
LH 
CVD 
UNPK 
LH 
CVD 
UNPK 
MVC 

WTLEXIT WTO 

SAVEAREA 
WORK 
YES 
ROSTATUS 
INEFFECT 
QUEUED 
TCB 

TIOTA 
TIOT 
JOB NAME 

L 
LM 
LCR 
BR 
DS 
DS 
DS 
DC 
DSECT 
DS 
DS 
DSECT 
ORG 
DS 
DSECT 
DS 
END 

1 
2 
3 
4 
5 
8 

12 
13 
14 
R 14" R 12, 12 (R13 ) 
R12,0 
*,R12 
R14,R13 
R13,SAVEAREA+4 
R13,SAVEREA 
R13, 8 (R14) 
R2,,0 
R3"Rl 
TCB,R3 
R4,TIOTA GET ADDRESS OF TASK I/O TABLE 
TIOT,R4 
WTLENTER+27(8),JOBNAME 
'IEAQAPG2 ENTERED REQUESTS ROLLOUT' 
ROSTATUS,R2 
R8,INEFFECI' GET NBR OF ROLLOUTS IN EFFECT 
RB, WORK 
WTLEXIT+29(2),WORK 
R8,QUEUED GET NBR OF ROLLOUT REQUESTS QUEUED 
RB,WORK 
WTLEXIT+51(2),WORK 
WTLEXIT+74(3),YES 
'ROLLOUTS IN EFFECT - ROLLOUTS QUEUED - REQUEST 
APPROVED -
R13,SAVEAREA+4 
R14,R12,12CR13) 
Rl,Rl 
R14 
OD 
18F 
FL8 
C' YES' 

H 
H 

*+12 
F 

FL8 

258 System Programmer's Guide (Release 20.1) 



Adding a Universal Character Set 
Image to the System Library 

This chapter provides a detailed 
description of how to add either an IBM UCS 
character set image or an IBM FCB forms 
control image to SYS1.IMAGELIB. 

Before reading this section, you should 
be familiar with the information contained 
in the publications listed below. 

REFERENCE PUBLICATIONS 

IBM 2821 Control Unit, GA24-3312, contains 
the information necessary to create a 
user-designed chain/train for the 1403 
printer unit. 

IBM System/360 Operati p ; 6ystem: Macro 
Instructions, GC28-6647, describes the 
SETPRT macro instruction that loads a UCS 
image and an FCB image into their 
respective buffers. 

IBM System/360 Operating System: 
Job Control Language, GC28-6647, describes 
the UCS and FCB parameters that can be 
specified in a DD statement to load the ues 
and FCB buffers when they are opened. 

IBM system/360 operating System: 
Job Control Language Reference, GC28-6704, 
describes the UCS and FCB parameters that 
can be specified in a DD statement to load 
the UCS and FCB buffers when they are 
opened. 

IBM 3211 Printer and 3811 Control Unit 
Component Description, GA24-3453, contains 
the information necessary to create a 
user-designed train for the 3211 printer. 

Adding a UCS Image or FCB Image to the Image Library 259 

• 



How to Add a Universal Character Set Image to the 
System Library 

The IBM standard character set images listed in the following table may 
be included in SYS1.IMAGELIB at system generation by using the UCS macro 
instruction. The member name for an image in the image library is 
developed by prefixing a character set code shown in the table with UCSl 
or UCS2. UCSl denotes a 1403 printer image and UCS2 denotes a 3211 
printer image (for example, UCSLAN or UCS2Al1). 

r----------------------------------------------------------------------, 
11403 AN, HN, PCAN, PCHN, PN, QNC, QN, RN, SN, TN, XN, YN I 
~---------------------------------------------------------------------i 
13211 All, Gll, H11, P11, T11 I L ______________________________________________________________________ J 

You may add a user-designed character image to the image library or 
make an existing image a default image by following these rules: 

1. The member name must be either the four characters UCSl for the 
1403 or UCS2 for the 3211 printer. The member name must be 
followed by a unique character set code that is one to four 
characters long. This character set code can be any valid 
combination of letters and numbers according to the rules for 
assembler language symbols. The single letters U or C should not 
be used as a character set code since they are symbols for special 
conditions recognized by the system. The assigned character set 
code must be specified on the 00 statement or SETPRT macro 
instruction to load the image into the UCS buffer. 

2. The first byte in the load module of a character set image 
specifies whether or not the image is a default. A default image 
is indicated by X'80', and is used when the UCS parameter is not 
coded in the 00 statement. X'OO' specifies that the image is not 
to be used as a default. 

3. The second byte of the load module indicates the number of lines 
(n) to be printed for image verification. 

4. Each byte if the next n bytes indicates the number of characters to 
be printed on each verification line. (Note: For the 3211 
printer, the maximum number of characters printed per line is 48; 
the associative bytes are not printed during verification.) 

5. A 240 byte 1403 UCS image or a 512 byte 3211 UCS image must follow 
the previously described fields. (A 3211 UCS image has 432 
characters, followed by 16 bytes to be left blank, and 64 bytes if 
associative bits.) Two apostrophes or two ampersands must be coded 
to represent a single apostrophe or a single ampersand, 
respectively, which is a part of a character set image. 

260 system Programmer's Guide (Release 20.1) 



I The following code is an example of adding a 1403 UCS image, YN, to 
Ithe 1mage library. 

r---------------------------------------------------------------------, I I//ADDYN JOB MSGLEVEL=1 I 

I 

//STEP EXEC PROC=ASMFCL,PARM.ASM='NODECK,LOAD', X 
// PARM.LKED='LIST,NCAL,NE,OL' 
//ASM.SYSIN DD * 
UCS1YN CSECT 

DC 
DC 
DC 
DC 
DC 
DC 
DC 
DC 
DC 
DC 
DC 
DC 
DC 
DC 
END 

X'80' (this is a default image) 
ALl(6) (number of lines to be printed) 
AL1(39) (39 characters printed on 1st line) 
AL1(42) (42 characters printed on 2nd line) 
AL1(39) (39 characters printed on 3rd line) 
ALl(39) (39 characters printed on 4th line) 
AL1(42) (42 characters printed on 5th line) 
ALl(39) (39 characters printed on 6th line) 
C'1234567890STABCDEFGHIJKLMNOPQRSTUVWXYZ*,.' 
C'1234567890STABCDEFGHIJKLMNOPQRSTUVWXYZ*,.#-$' 
C'1234567890STABCDEFGHIJKLMNOPQRSTUVWXYZ*,.' 
C'1234567890STABCDEFGHIJKLMNOPQRSTUVWXYZ*,.' 
C '1234567890STABCDEFGHIJKLMNOPQRSTUVWXYZ*,. #-$' 
C'1234567890STABCDEFGHIJKLMNOPQRSTUVWXYZ*,.' 

II~;LKED.SYSLMOD DD DSNAME=SYS1.lMAGELIB(UCSlYN),DISP=OLD L _____________________________________________________________________ _ 

Adding a UCS Image or FCB Image to the Image Library 261 

• 



The following example shows the code used to add a 3211 UCS image 
(All) to the image library. The first 432 bytes of the 3211 UCS image 
correspond to the 432 positions on the print train. The next 16 bytes 
are left blank, followed by 64 bytes of associative bits used to screen 
data checks. See the publication IBM 3211 Printer and 3811 Control Unit 
Component Description. GA24-3543, to determine how to code these bits 
for a particular train. 

r----------------------------------------------------------------------, 
1//ADDAll JOB MSGLEVEL=l 
I//STEP EXEC PROC=ASMFCL,PARM.ASM='NODECK,LOAD", x 
1// PARM.LKED='LIST,NCAL,NE,OL' 
I//ASM.SYSIN DD * 
IUSC2All CSECT 
1 DC X'80' (THIS IS A DEFAULT IMAGE) 
1 DC AL1(9) (NUMBER OF LINES TO BE PRINTED) 
1 DC ALl(48) (48 CHARACTERS PRINTED ON 1ST LINE) 
I DC AL1(48) (48 CHARACTERS PRINTED ON 2ND LINE) 
1 DC ALl(48) (48 CHARACTERS PRINTED ON 3RD LINE) 
1 DC ALl(48) (48 CHARACTERS PRINTED ON 4TH LINE) 
1 DC AL1(48) (48 CHARACTERS PRINTED ON 5TH LINE) 
1 DC ALl(48) (48 CHARACTERS PRINTED ON 6TH LINE) 
I DC AL1(48) (48 CHARACTERS PRINTED ON 7TH LINE) 
I DC ALl(48) (48 CHARACTERS PRINTED ON 8TH LINE) 
I DC AL1(48) (48 CHARACTERS PRINTED ON 9TH LINE) 
I DC C'1234567890#@/STUVWXYZ&&,%JKLNMOPQR-$*ABCDEFGHI=.' 
J DC C ' 1234567890# @/STUVWXYZ& & " %JKLNMOPQR- $ * ABCDEFGHI=. ' 
I DC C'1234567890#@/STUVWXYZ&&,%JKLNMOPQR-$*ABCDEFGHI=.' 
I DC C'1234567890#@/STUVWXYZ&&,%JKLNMOPQR-$*ABCDEFGHI=.' 
I DC C'1234567890#@/STUVWXYZ&&" %JKLNMOPQR-$*ABCDEFGHI=. ' 

DC C'1234567890#@/STUVWXYZ&&,%JKLNMOPQR-$*ABCDEFGHI=.' 
DC C'1234567890#@/STUVWXYZ&&,%JKLNMOPQR-$*ABCDEFGHI=.' 
DC C'1234567890#@/STUVWXYZ&&,%JKLNMOPQR-$*ABCDEFGHI=. i 

DC C' 1234567890#@/STUVWXYZ&&,%JKLNMOPQR-$*ABCDEFGHI=.' 
DC 16C" 

/* 

DC X'00000000000000000000000000000000001010101010101010' 
DC X'10004040004000401010101010101010100040400000004040' 
DC X'10101010101010100040400000001010101010101010101000' 
DC 
END 

X'4040000000' 

//LKED.SYSLMOD DD DSNAME=SYS1.TIMAGELIB(UCS2Al1),DISP=OLD L ______________________________________________________________________ J 

Note: Executing the assembler procedure does not actually generate 
executable code. The assembler/linkage editor is used as a vehicle to 

Iload the UCS image into the image library. 

262 System Programmer's Guide (Release 20.1) 



HOW TO ADD A FORM CONTROL BUFFER IMAGE TO THE IMAGE LIBRARY 

Two standard FCB images, STDl and STD2, can be included in SYS1.IV~GELIB 
during system generation for a 3211 printer. STDl prints six lines per 
inch on a 8 1/2 inch form. STD2 prints six lines per inch on an eleven 
inch form. Channels for both images are evenly spaced with channel one 
on the fourth line and channel nine on the last line. 

In addition to the IBM-supplied images, user images can be defined. 
Each user image is added to the image library as part of a load module. 
To add an FCB image to the image library, follow these rules: 

1. The member name cannot exceed eight bytes. The first four 
characters of this member name must be FCB2. The characters that 
follow FCB2 identify the FCB image and are referred to as the image 
identifier. Any combination of characters that are valid in 
assembly language can be used with the exception of a single nS" or 
a single nun as an image identifiere The image identifier must be 
specified on a DD statement or in the SETPRT macro instruction to 
load the image in the FCB buffer. 

2. The first byte of the load module of a forms control image 
specifies whether or not the image is a default. A default image 
is indicated by X'80' and is used for all jobs that do not have the 
FCB parameter coded on the DD statement; X'OO' indicates that the 
image is not to be used as a default. 

3. The second byte of the load module indicates the number of lines 
per form (FCB image length). The maximum image length is 180 
lines. The FCB image must be as long as the form. For example, if 
you are printing eight lines per inch on an eleven inch form, the 
FCB image must be 88 bytes long; if you are printing six lines per 
inch on the same form, the FCB image must be 66 bytes long. 

4. The first of the FCB image (the third byte of the load module) 
defines the number of lines per inch and a channel: 

• X'ln' means eight lines are printed per inch • 
• X'On' means six lines are printed per inch. 
All remaining bytes (lines) must contain x'On' except the last 
byte. The last byte must be X'ln'. The letter n can be a 
hexadecimal value from 1 to C representing a channel (one to 
twelve); or it can be zero (0) which means no channel is indicated. 

In the following example, an FCB load module is assembled and added 
to SYS1.IMAGELIB. The image defines a print density of eight lines per 
inch on an eleven inch form. 

How to Add a Forms Control Buffer Image to the Image Library 263 



r----------------------------------------------------------------------, 
I//ADDFCB JOB MSGLEVEL=l I 
I//STEP EXEC PROC=ASMFCB,PARM.ASM='NODECK.LOAD', X 
1// PARM.LKED='LIST,NCAL,NE,OL' 
I//ASM.SYSIN DD * 
1 FCB2IDl CSECT 
I*THIS EXAMPLE IS FOR A FORM LENGTH OF 11 INCHES 
*WITH 8 LINES OF PRINT PER INCH (88 LINES) 

1/* 

DC X'80' THIS IS A DEFAULT IMAGE 
DC ALl(88) LENGTH OF FCB IMAGE 
DC X'10' 8 LINES PER INCH-NO CHANNEL FOR POS.l 
DC XL4'O' 4 LINES NO CHANNEL 
DC X'Ol' CHANNEL 1 IN POSITION 6 
DC XL6 J 0 ' 6 LI NES NO CHANNEL 
DC X'02' CHANNEL 2 IN POSITION 13 
DC XL6'0' 
DC X'03' 
DC XL6'O' 
DC X'04' 
DC XL6'O' 
DC X'OS' 
DC XL6'O' 
DC X'06' 
DC XL6'O' 
DC X'07' 
DC XL6'O' 
DC X'08' 
DC XL6'0' 
DC X'09 1 

DC XL6'0' 
DC X'OA' 
DC XL6'O' 
DC X'OB' 
DC XL6'O' 
DC X' oct 
DC XL4 1 0' 
DC X'lO' 
END 

CHANNEL 12 IN POSITION 83 
4 LINES NO CHANNEL 
POSITION 88 - LAST LINE IN IMAGE 

I//LKED.SYSLMOD DO DSNAME=SYS1.IMAGELIB(FCB2ID1),DISP=OLD L _____________________________________________________________________ _ 

264 System Programmer's Guide (Release 20.1) 



The Shared Direct-Access 
Device Option 

This chapter describes the Shared Direct 
Access Storage Device option <Shared DASD) 
of the system/360 Operating System. It 
describes the functions of the option, its 
operating environment, and volume 
acceptability. sections also explain 
operating procedures and data set 
considerations that the systems programmer 
must be aware of in using the option. An 
appendix to the chapter describes a 
procedure for finding unit control block 
addresses necessary for using the RESERVE 
macro instruction: it also shows an 
assembler language subroutine that issues a 
RESERVE and can be called by a higher level 
language. 

The IBM System/360 Operating System: 
Operator's Guide, GC28-6540 provides 
information on operator responsibility when 
the Shared DASD facility is being used in a 
system; this should be read before using 
the Shared DASD option. 

The IBM System/360 Operating System: 
concepts and Facilities, GC28-6535 
discusses the purposes of the Shared DASD 
facility. 

The IBM System/360 Operating System: 
Storage Estimates, GC28-6551 provides 
information on the storage requirements for 
the option. 

IBM System/360 operating System: system 
Generation, GC28-6554 explains how the 
option is included in a system. supervisor 
and Data Management Macro Instructions, 
GC28-6647 provides information on the use 
of the DEQ macro instruction. 

The Shared Direct Access Storage Device Option 265 

• 



The Shared Direct-Access Device Option 

The Shared DASD option allows computing systems to share direct access 
storage devices. Systems can share common data and consolidate data 
when necessary; no change to existing records, data sets, or volumes is 
necessary to use the facility. However, reorganization of volumes may 
be desirable to achieve better performance. Briefly, the sharing is 
accomplished by a two-channel switch which allows a shared control unit 
to be switched between two channels from different systems. (With 
certain hardware configurations sharing between a maximum of four 
systems is possible.) The switching is controlled by program use of the 
RESERVE macro instruction which reserves a shared device or volume for 
the use of one system until it is freed by the program's issuing a DEQ 
macro instruction. If a RESERVE macro instruction is used before the 
system in which the macro instruction is used has access to the shared 
device, the macro instruction will take effect only after the system 
gains access to the device. 

The Shared DASD facility can only be included in a system at system 
generation time. This facility is shown diagrammatically in Figure 10. 

SYSTEM CONFIGURATION 

The Shared DASD option can be used with any combination of PCP, MFr, and 
MVT configurations of the operating system, excluding MVT with Model 65 
multiprocessing (M65MP). Identical operating system configurations are 
not necessary for systems to share devices unless they share the system 
data set SYS1.LINKLIB. The option requires no additional equipment 
except the two-channel switch or the IBM 2844 Auxiliary Storage Control 
unit, which does not require the two-channel switch. Any of your 
installation's applications data sets can be shared; SYSCTLG can be 
shared when it does not reside on a systems residence volume. The 
following system data sets cannot be shared: 

SYS1.SVCLIB 
SYS1.NUCLEUS 
SYS1.LOGREC 
SYS1.SYSVLOGX (MFT and MVT) 
SYS1.SYSVLOGY (MFT and MVT) 

SYS1.SYSJOBQE 
PASSWORD data set 
SYSCTLG (on system residence volume) 
SYS1.ROLLOUT 
SYS1.ACCT 
SYS1.MANX 
SYS1. MANY 

DEVICES THAT CAN BE SHARED 

The following control units and devices are supported by the Shared DASD 
option: 

1. 

2. 

3. 

4. 

266 

IBM 2841 Storage Control Unit equipped with two-channel switch -­
IBM 2311 Disk Storage Drive, 2303 Drum Storage" and 2321 Data Cell .. 
IBM 2314 Direct Access storage Facility equipped with the 
two-channel switch -- IBM 2314 Disk Storage Module. 
IBM 2314 Direct Access storage Facility combined with the IBM 2844 
Auxiliary Storage Control -- IBM Disk storage Module. Device 
reservation and release are supported by this combination with or 
without the presence of the two-channel switch. Two channels -­
one from System A and one from System B -- may be connected to the 
combination. In addition, the two-channel switch may be installed 
in either or both of the control units, thus permitting as many as 
four systems to share the devices. 
IBM 2820 Control Unit with two-channel switch -- IBM 2301 Drum 
storage. 
IBM 2835 storage Control Unit with two-channel switch -- IBM 2305 
Fixed Head Storage Facility. 

System Programmer's Guide (Release 20.1) 



/ 

6. IBM 3830 Storage Control Unit with two-channel switch -- IBM 3330 
Disk storage Drive. 

Alternate channels to a device from anyone system may only be specified 
for the IBM 2314 Direct Access Storage Facility. 

* In multiprogramming systems (MFT, MVT), the RESERVE macro instruction 
also serializes use of the same resource between tasks in the system. In a 
single task (PCP) system, RESERVE effects device reservation only. 

Figure 10. General Shared DASD Environment 

~,.".,..----- The two-channel switch handles 
concurrent accesses and device 
reservations on a first-come first­
serve bas is. 

The Shared Direct Access Storage Device Option 267 

• 



VOLUME/DEVICE STATUS 

The Shared DASD option requires that certain combinations of volume 
characteristics and device status be in effect for shared volumes or 
devices. One of the following combinations must be in effect for a 
volume or device: 

system A 
1. Permanently resident 
2. Reserved 
3. Removable 
4. Offline 

systems B,C,D 
Permanently resident 
Reserved 
Offline 
Removable or reserved 

If a volume/device is marked removable on anyone system, the device 
must be in offline status on all other systems. The mount 
characteristic of a volume and/or device status may be changed on one 
system as long as the resulting combination is valid for other systems 
sharing the device. No other combination of volume characteristics and 
device status is supported or detected if present. 

VOLUME HANDLING 

Volume handling on the Shared DASD option must be clearly defined since 
operator actions on the sharing systems must be performed in parallel. 
you should make sure that operators understand the following rules when 
the Shared DASD option is in effect: 

1. Operators should initiate all shared volume mounting and 
dismounting operations. The system will dynamically allocate 
devices unless they are in reserved or permanently resident status. 
Only the former of the two can be changed by the operator. 

2. Mounting and dismounting operations must be done in parallel on all 
sharing systems. A VARY OFFLINE must be effected on all systems 
before a device may be dismounted. 

3. Valid combinations of volume mount characteristics and device 
status for all sharing systems must be maintained. To IPL a 
system, a valid combination must be established before device 
allocation can proceed. This valid combination is established 
either by 

a. Specifying mount characteristics of shared devices in PRES RES 
(See the chapter "The PRES RES Volume Characteristics List.") 

b. Varying all sharable devices off line prior to issuing start 
commands and then following parallel mount procedures described 
in the chapter ~How to Use the Shared DASD Option" in the 
Operator's Guide publication. 

SHARING APPLICATION DATA SETS 

As indicated previously, all application data sets can be shared, but 
you must give special consideration to the classification of these data 
sets. It is recommended that you classify your shared data sets as read 
only or read/write. A read-only data set may be read by all sharing 
systems but is never updated by them. A read/write data set may be read 
or written -- updated by all sharing systews. Read-only data sets are 
not reserved for the duration of their use; read/write data sets must be 
reserved for data set protection. 

268 System Programmer's Guide (Release 20.1) 



If a data set is seldom updated, but is read often, it is wise to 
classify it as read only. Minimizing reservation of devices will 
minimize the interference between systems. 

A shared data set may be updated, effecting a device reservation for 
the write operation only, if the records being read are independent of 
each other. An example of such a data set with independent records is a 
private job library. Such a library may be reserved for the write 
operation only as long as members are not being deleted. 

A system update time should be defined for updates to read-only data 
sets. For system update time the operator must vary offline, on all but 
one system, the device upon which the data set resides. Then the system 
update may be performed on the system to which that device is dedicated 
without any need to reserve the deviceo Processing of data sets by the 
linkage editor and utility programs constitutes update runs -- the data 
sets they process are regarded as read/write data sets. You may want to 
prepare a routine that will issue a RESERVE macro instruction, invoke 
the program to be executed, and issue a DEQ macro instruction after 
program execution. 

There is no protection for shared data sets across job steps. That 
is, the RESERVE and DEQ for a data set must be done within each step 
(task); if devices are still reserved at the end of a task, device 
release is effected. Therefore, it is possible for one system to 
reserve a device and update a data set on that device between the 
execution of two steps in the other systems which are using that data 
set. There is no guarantee that a data set will remain unchanged 
between execution of steps. 

RESERVING DEVICES 

The RESERVE macro instruction is used to reserve a device for use by a 
particular system; it must be issued by each task needing device 
reservation. The RESERVE macro instruction protects the issuing task 
from interference by other tasks in the system. Each task issuing the 
RESERVE macro instruction must also use the DEQ macro instruction to 
release the device; two RESERVE instructions for the same resource 
without an intervening DEQ will result in an abnormal termination unless 
the second one specifies the keyword parameter RET=. (If a restart 
occurs when a RESERVE is in effect for devices" the system will not 
restore the RESERVE; the user's program must reissue the RESERVE.) Even 
if a DEQ is not issued for a particular device. termination routines in 
all operating system configurations will release devices reserved by a 
terminating task. The sample program described in the System Generation 
publication shows the use of the RESERVE and DEQ macro instructions. 
(In PCP configurations DEQ is treated as a Nap when used with ENQ; 
however, it is not a Nap when used with RESERVE.) 

The SMC Parameter of the ENQ Macro Instruction 

The Set-Must-Complete (SMC) parameter available with the ENQ macro 
instruction may also be used with RESERVE; this parameter is discussed 
in the chapter "The Must Complete Function of ENQ/DEQ." 

The Shared Direct Access storage Device Option 269 

• 



RESERVE Macro Instruction 

The use of the RESERVE macro instruction is explained below: 

r----------------------------------------------------------------------, 
I [E] I I [symbol] RESERVE (qname address,rname address, S , I 
I I 
I [ lTESTI] I I [rname length],SYSTEMS) ,RET= USE ,UCB=pointer address I 
I HAVE I L ______________________________________________________________________ J 

qname 
is the address in main storage of an eight-character name. Every 
task (within the system) issuing RESERVE against the same resource 
(data and device) must use the same qname-rname combination to 
represent the resource. The qname should not start with SYS. 

rname addr es s 

[:] 

is the address in main storage of a name used in conjunction with 
the qname to represent the resource. The rname can be qualified, 
and may be 1 to 255 bytes in length. 

specify either exclusive control of the resource (E)i or shared 
control with other tasks in the system (S). E is the default 
condition. 

rname length 
is the length, in bytes, of marne. If omitted, the assembled 
length of rname is used. If zero (0) is specified, the length of 
rname must be contained in the first byte of the field designated 
by the rname address. 

SYSTEMS 

RET= 

specifies that the resource represented by qname-rnarne is known 
across systems as well as within the system whose task is issuing 
RESERVE, i.e." the resource is shared between systems. 

specifies a conditional request for all of the resources named in 
the RESERVE macro instruction. If the operand is omitted, the 
request is unconditional. The types of conditional requests are as 
follows: 

TEST 

USE 

HAVE 

tests the availability status of the resources but does not 
request control of the resources. 

specifies that control of the resources be assigned to the 
active task only if the resources are immediately available. 
If any of the resources are not available, the active task is 
not placed in a wait condition. 

specifies that control of the resources is requested only if a 
request has not been made previously for the same task. 

Return codes are provided by the control program only if RET=TEST, 
RET=USE, or RET=HAVE is designated; otherwise" return of the task 
to the active condition indicates that control of the resource has 
been assigned to the task. Return codes are identical to those 
supplied by the ENQ macro instruction (see the Supervisor and Data 
Management Macro Instructions publication). 

270 System Programmer's Guide (Release 20.1) 



UCB=pointer address 
This keyword specifies either: 

1. The address of a fullword that contains the address of the Unit 
Control Block (UCB) for the device to be reserved. 

2. A general register (2-12) that points to a fullword containing 
the address of the unit control block for the device to be 
reserved. 

To use the Shared DASD option in higher level languages, you may wish 
to write an assembler language subroutine to issue the RESERVE macro 
instruction. You should pass to this subroutine the following 
information: ddname l qname address, marne address, rname length, and 
RET parameter. 

The EXTRACT Macro Instruction 

The EXTRACT macro instruction is used to obtain the address of the task 
input/output table (TIOT) from which the UCB address can be obtained. 
The Appendix to this chapter explains some procedures for finding the 
UCB address. 

RELEASING DEVICES 

The DEQ macro instruction is used in conjunction with RESERVE just as it 
is used with ENQ. It must describe the same resource and its scope must 
be stated as SYSTEMS; however, the UCB=pointer address parameter is not 
required. If the DEQ macro instruction is not issued by a task which 
has previously reserved a device, the system will free the device when 
the task is terminated. 

PREVENTING INTERLOCKS 

Certain precaution must be taken to avoid system interlocks when the 
RESERVE macro instruction is used. The more often device reservations 
occur in each sharing system l the greater the chance of interlocks 
occurring. Allowing each task to reserve only one device minimizes the 
exposure to interlock. The system cannot detect interlocks caused by 
program use of the RESERVE macro instruction and enabled wait states 
will occur on the system(s). 

VOLUME ASSIGNMENT 

Since exclusive control is by device, not by data set, you must consider 
which data sets reside on the same volume. In this environment it is 
quite possible for two tasks in two different systems -- processing four 
different data sets on two shared volumes -- to become interlocked. For 
example, data sets X~ and X2 reside on device X and data sets Y~ and Y2 
reside on device Y. Task A in system A reserves device X in order to 
use data set X~; task B in system B reserves device Y in order to use 
data set Y~. Now task A in system A tries to reserve device Y in order 
to use data set Y2 and task B in system B tries to reserve device X in 
order to use data set X2 • Neither can ever regain control and thus, 
will never complete normally. In a PCP or MFT environment, or in an MVT 
environment without job step timing, the job(s) should be canceled. In 
an MVT environment in which job step time limits are specified, the 
task(s) in the interlock would be abnormally terminated when the time 
limit expires. Moreover, an interlock could mushroom, encompassing new 
tasks as these tasks try to reserve the devices involved in the existing 
interlock. 

The Shared Direct Access storage Device Option 271 



PROGRAM LIBRARIES 

When assigning program libraries to shared volumes, precaution must be 
taken to avoid interlock. For example, SVCLIB for system A resides on 
volume XI while SVCLIB for system B resides on volume Y. Task A in 
system A invokes a direct access device space management function for 
volume Y, resulting in that device being reserved. Task B in system B 
invokes a similar function for volume X, reserving that device. 
However, since the DADSM functions are transient SVCs, each load module 
transfers to another load module via XCTL. Since the SVCLIB for each 
system resides on a volume reserved by the other system, the XCTL macro 
instruction cannot complete the operation, therefore an interlock 
occurs. In this particular case, since on access to SVCLIB is possible, 
both systems will eventually enter an enabled wait state. 

272 System Programmer's Guide (Release 20.1) 



Appendix 

This appendix provides some procedures for finding the UCB address for 
use with the RESERVE macro instruction; it also shows a sample assembler 
language subroutine which issues the RESERVE and DEQ macro instructions 
and can be called by higher level languages. 

PROVIDING THE UNIT CONTROL BLeCK ADDRESS TO RESERVE 

The EXTRACT macro instruction is used to obtain information from the 
Task Control Block (TCB). The address of the TIOT can be obtained from 
the TCB in response to an EXTRACT in all configurations of the operating 
system. Prior to issuing an EXTRACT macro instruction, the user sets up 
an answer area in main storage which is to receive the requested 
information. One full word is required for each item to be provided by 
the control program. If the user wishes to obtain the TIOT address he 
must issue the following form of the macro instruction: 

EXTRACT answer-area address, FIELDS=TIOT 

The address of the TIOT is then returned by the control program, 
right-adjusted. in the full word answer area. 

The TIOT is constructed by job management routines and resides in 
main storage during step execution. The TIOT consists of one or more DD 
entries, each of which represents a data set defined by a DD statement 
for the jobstep. Each entry includes the DD name. Associated with each 
DD entry is the UCB address of the associated device. In order to find 
the UCB address, the user must locate the DD entry in the TIOT 
corresponding to the DD name of the data set for which he intends to 
issue the RESERVE macro instruction. 

The UCB address may also be obtained via the DEB and DCB. The Data 
Control Block (DCB) is the block within which data pertinent to the 
current use of the data set is stored. The address of the Data Extent 
Block (DEB) is contained at offset 44 decimal after the DCB has been 
opened. The DEB contains an extension of the information in the DCB. 
Each DEB is associated with a DCB, and the two point to each other. 

The DEB contains information concerning the physical characteristics 
of the data set and other information that is used by the control 
program. A device dependent section for each extent is included as part 
of the DEB. Each such extent entry contains the UCB address of the 
device to which (that portion of) the data set has been allocated. In 
order to find the UCB address the user must locate the extent entry in 
the DEB for which he intends to issue the RESERVE macro instruction. 
(In disk addresses of the form MBBCCHHR" the M indicates the extent 
number starting with 0.) 

Following are suggested procedures for finding the UCB address of the 
device to be reserved. 

If the data set is a multivolume sequential data set, it must be 
assumed that all jobs will process that data set in a sequential manner 
starting with the first volume of the data set. In this case, by 
issuing a RESERVE for the first volume only, the user effectively 
reserves all the volumes of the data set. 

The Shared Direct Access Storage Device Option 273 

• 



For data sets using the queued access methods in the update mode or 
for unopened data sets: 

1. Extract the TIOT from the TCB. 

2. Search the TIOT for the DD name associated with the shared data 
set. 

3. Add 16 to the address of the DD entry found in step 2. This 
results in a pointer to the UCB address in the TIOT. 

4. Issue the RESERVE macro specifying the address obtained in step 3 
as the operand of the UCB keyword. 

For opened data sets: 

1. Load the DEB address from the DCB field labeled DCBDEBAD. 

2. Load the address of the field labeled DEBDVMOD in the DEB obtained 
in step 1. The result is a pointer to the UCB address in the DEB. 

3. Issue the RESERVE macro specifying the address obtained in step 2 
as the operand of the UCB keyword. 

E'or BDAM data sets the user may reserve the device at any point in his 
processing in the following manner: 

1. Open the data set successfully. 

2. convert the block address used in the READ/WRITE macro to an actual 
device address of the form MBBCCHHR. (A conversion method is 
discussed in the XDAP macro instruction section.) 

3. Load the DEB address from the DCB field labeled DCBDEBAC. 

4. Load the address of the field labeled DEBDVMOD in the DEB. 

5. Multiply the "M" of the direct access address by 16. 

6. The sum of steps 4 and 5 is the address of the correct extent entry 
in the DEB for the next READ/WRITE operation. The sum is also a 
pointer to the UCB address for this extent. 

7. Issue the RESERVE macro specifying the address obtained in step 6 
as the operand of the UCB keyword. 

If the data set is an ISAM data set, QISAM in the load mode should be 
used only at system update time. Further, if it is a multivolume ISAM 
data set., it must be assumed that all jobs will access the data set 
through the highest level index. The indexes should never reside in 
main storage when the data set is being shared. In th~s case, by 
issuing a RESERVE macro for the volume on which the highest level index 
resides, the user effectively reserves the volumes on which the prime 
data and independent overflow areas reside. The following procedures 
may be used to achieve this: 

1. Open the data set successfully. 

2. Locate the actual device address (MBBCCHH) of the highest level 
index. This address can be obtained from the DCB. 

3. Load the DEB address from the DCB field labeled DCBDEBAD. 

274 System Programmer's Guide (Release 20.1) 



4. Load the address of the field labeled DEBDVMOD in the DEB. 

5. Multiply the "M" of the actual device address located in step 2 by 
16. 

6. The sum of steps 4 and 5 is the address of the correct extent entry 
in the DEB for the highest level index not in core. This extent 
entry is also a pointer to the UCB address. 

7. Issue the RESERVE macro specifying the address obtained in step 6 
as the operand of the UCB keyword. 

RES AND DEQ SUBROUTINES 

The following assembler language subroutine may be used by FORTRAN, 
COBOL, or assembler language programs to issue the RESERVE and DEQ macro 
instructions. Parameters that must be passed to the RESDEQ routine, if 
the RESERVE macro instruction is to be issued, are: 

DDNAME 

QNAME 

The eight character name of the DDCARD for the device that you wish 
to reserve. 

An eight character name. 

RNAME LENGTH 
One byte (a binary integer) that contains the RNAME length value. 

RNAME 
A name from 1 to 255 characters in length. 

The DEQ macro instruction does not require the UCB=pointer address as a 
parameter. If the DEQ macro is to be issued, a fullword of binary zeros 
must be placed in the DDNAME field before control is passed. 

RESDEQ CSECT 
SAVE (14,12),T SAVE REGISTERS 
BALR 2,0 SET UP ADDRESSABILITY 
USING *,2 
ST 13,SAVE+4 
LA 11, SAVE ADDRESS OF MY SAVE AREA IS STORED 
ST 11,8(13) IN THIRD WORD OF CALLER'S SAVE AREA 
LR 13,11 ADDRESS OF MY SAVE AREA 
LR 9,1 ADDRESS OF PARAMETER LIST 
L 3, 0 ( 9) DDNAME PARAMETER OR WORD OF ZEROS 
CLC 0(4,3),=F'0' WORD OF ZEROS IF DEQ IS REQUESTED 
BE WANTDEQ 

*PROCESS FOR DETERMINING THE UCB ADDRESS USING THE TIOT 
XR 11,11 REGISTER USED FOR DD ENTRY 
EXTRACT ADDRTIOT,FIELDS=TIOT 
L 7,ADDRTIOT ADDRESS OF TASK I/O TABLE 
LA 7 , 24 (7) ADDRESS OF FIRST DD ENTRY 

NEXTDD CLC 0(8,3),4(7) COMPARE DDNAMES 
BE FINDUCB 
IC 11,0(7) LENGTH OF DD ENTRY 
LA 7,0 (7,11) ADDRESS OF NEXT DD ENTRY 
CLC 0(4,7),=F'0· CHECK FOR END OF TIOT 
BNE NEXTDD 
ABEND 200, DUMP DDNAME IS NOT IN TIOT., ERROR 

The Shared Direct Access Storage Device Option 275 

• 



FINDUCB LA 8,16(7) ADDRESS OF WORD IN TIOT THAT 
* CONTAINS ADDRESS OF UCB 
*PROCESS FOR DETERMINING THE QNAME REQUESTED 
WANTDEQ L 7,4(9) ADDRESS OF QNAME 

MVC QNAME(8),0(7) MOVE IN QNAME 
*PROCESS FOR DETERMINING THE RNAME AND THE LENGTH OF RNAME 

* 
* 

ISSUEDEQ 
RETURN 

MOVERNAM 
ADDRTIOT 
SAVE 
QNAME 
RNAME 
RNLEN 

L 7,8(9) ADDRESS OF RNAME LENGTH 
MVC RNLEN+3(1),O(7) MOVE BYTE CONTAINING LENGTH 
L 7,RNLEN 
STC 7,RNAME 

L 6,12 (9) 
BCTR 7,0 
EX 7,MOVERNAM 
CLC 0(4,3),=F'O' 
BE ISSUEDEQ 

STORE LENGTH OF RNAME IN THE 
FIRST BYTE OF RNAME PARAMETER 
FOR RES/DEQ MACROS 
ADDRESS OF RNAME REQUESTED 
SUBTRACT ONE FROM RNAME LENGTH 

MOVE IN RNAME 

RESERVE (QNAME., RNAME, E, 0, SYSTEMS) I UCB= ( 8) 
B RETURN 
DEQ (QNAME,RNAME,O,SYSTEMS) 
L 13, SAVE +4 RESTORE REGISTERS AND RETURN 
RETURN (14,12) "T 
BCR 15,,14 
MVC RNAME+l(0),0(6) 
DC F'O' 
DS 18F 
DS 2F 
DS CL256 
DC F'O' 
END 

276 System Programmer's Guide (Release 20.1) 



The Time Slicing Facility 

This chapter describes the time slicing 
facility, a system generation option 
available with the MFT and MVT control 
programs of "the IBM System/360 Operating 
System. Use of this facility allows the 
group1ng of tasks of equal priority or 
partitions into a time-slice group so that 
each task within the group is limited to a 
fixed interval of CPU time each time it is 
given control. The facility is included in 
the system mainly to provide a method of 
controlling response time of a task. 

Included in the chapter are a 
description of the facility, how it fits 
into the system, and the applications for 
which it is most effective. Other sections 
describe the prerequisite actions that must 
be taken, the use of the time slicing 
facili ty, and its operating 
characteristics. 

IBM System/360 Operating system: 
supervisor and Data Management Services, 
GC28-6646 discusses task priority 
information that the system programmer must 
be aware of for effective use of this 
facility; it also provides a formula to 
derive dispatching priority from the job 
priority. 

IBM System/360 Operating System: System 
Generation, GC28-6554 describes the 
procedures to follow to include the 
facility in your system. 

IBM system/360 Operating System: Job 
Control Language Reference, GC28-6704 
discusses the CLASS and PRTY parameters of 
the JOB statement, which are used to invoke 
the facility. 

IBM System/360 Operating System: 
Supervisor and Data Management Macro 
Instructions, GC28-6647 discusses the 
ATTACH and CHAP macro instructions which 
can be used in MVT to change from one 
time-slice priority group to another; or 
from a task which is not a member of a 
time-slice group to one that is. 

IBM System/360 Operating System: 
operator's Guide, GC28-6540 provides 
information on the messages and responses 
necessary to alter system generation 
specifications at system initialization 
time and, with MFT, at DEFINE time. 

The Time Slicing Facility 277 

• 



The Time Slicing Facility 

The time slicing facility allows the user to establish a group of tasks 
(called the time-slice group) or partitions that are to share the use of 
the CPU, each for the same, fixed interval of time. When a member of 
the time-slice group has been active for the fixed interval of time, it 
is interrupted and control is given to another member of the group, 
which will, in turn, have control of the CPU for the same length of 
time. In this way, all member tasks are given an equal slice of CPU 
time, and no task or partition within the group can monopolize the CPU. 
In MVT only tasks in the group are time sliced, and they are time sliced 
only when the priority level of the group is the highest priority level 
that has a ready task. Dispatching of tasks continues within the group 
until 

1. All tasks are in a waiting state, or 
2. A task of higher priority than the one assigned to the group 

becomes ready. 

In MFT, only partitions that are assigned to the time-slice group 
will be time-sliced, and they are time sliced only when the first 
partition in the group is the highest-priority ready task. Dispatching 
of the partitions continues within the group until all the partitions 
are in a waiting state, or until a partition with a higher priority is 
in a ready state. 

The group of tasks to be time sliced (selected by priority or 
partition range) and the length of the time slice are specified by the 
installation at system generation time. This can be modified in MVT at 
system initialization time and in MFT through the DEFINE command. Any 
task or partition in the system .that is not defined within the 
time-slice group is dispatched under the current priority structure; 
that is, the task or partition is dispatched only when it is the highest 
priority ready task or partition on the TCB queue. 

SYSTEM CONFIGURATION AND SYSTEM RELATIONSHIPS 

The time slicing facility can be used with any MFT or MVT configuration 
of the IBM System/360 Operating System. The time slicing facility is 
especially useful in a graphics environment or in any application of a 
conversational nature where concurrent tasks may involve conversation 
between the user and the problem program through a terminal. 
Establishing a time-slice group within this environment enables those 
tasks to be performed with a uniform response time. 

PREREQUISITE ACTIONS 

Time slicing is specified in the TMSLICE parameter of the CTRLPROG 
system generation macro instruction. The group(s) of tasks or 
partitions to be time sliced and the length of the time slice are 
specified in this parameter. 

In MVT, a job priority defines the tasks that are to be time sliced. 
That is, all tasks that are executed in the system at the specified 
priority are to be time sliced. For example, time slice groups for MVT 
might be specified during system generation, as follows: 

r----------------~-----------------------------------------------------, 
I CTRLPROG TYPE=type, •• • I 
I TMSLICE=(13,SLC-l00,7,SLC-500) I L ______________________________________________________________________ J 

type 
May be either MVT or M65MP. 

278 System Programmer's Guide (Release 20.1) 



/ 

In this example, two time-slice groups are defined. All jobs running at 
job priority 13 will be members of a time-slice group and will each have 
a slice of 100 millisecondsu All jobs running at job priority 7 will be 
members of a time-slice group and will each have a slice of 500 
milliseconds. (See the section "using the Time Slicing Facility" for a 
discussion of job and dispatching priority.) 

In MFT, a group of contiguous partitions defines the time-slice 
group. All tasks scheduled into those partitions are time sliced and 
are treated as though they had the same dispatching priority. In MFT, 
only one group of tasks can be specified to be time sliced. For 
example, a time-slice group for MFT might be specified during system 
generation, as follows: 

r----------------------------------------------------------------------, 
I CTRLPROG TYPE=MFT, I 
I TMSLICE=(P4-P6,SLC-256) I L ______________________________________________________________________ J 

In this example, partitions P4, PS, and P6 make up the time-slice group 
and are assigned a time slice of 256 milliseconds for each and every 
task executing in these partitions. 

System Initialization Time 

If time slicing has been selected during system generation, the group 
(or group~ in MVT) of tasks to be time sliced and the length of the time 
slice can be modified during system initialization. In MVT, the 
modifications are limited by the number of groups specified during 
system generation. The values specified at system initialization 
supersede all those specified during system generation. (NOTE: If the 
operator communication is desired during NIP, the parameter OPTIONS= 
COMM must be specified in the SUPRVSOR system generation macro 
instruction.) 

In MFT, modifications to the time-slicing specifications are made in 
much the same way as other partition modifications. At system 
initialization, changes can be indicated by replying 'YES' to the 
message: ,IEE801D CHANGE PARTITIONS?'. After system initialization, 
changes can be indicated through the DEFINE command. In both cases, 
changes are actually made by responding to the message: 'IEE002A ENTER 
DEFINITIONS' or 'IEE803A CONTINUE DEFINITION' with the new TMSL reply. 
With this reply, the operator can request a list of current time-slicing 
specifications, change the range of time-slicing partitions and the time 
interval, or cancel time-slicing specifications altogether. 

In MVT, the time-slicing specifications can be modified at system 
initialization time or they can be canceled altogether. The 
modification can be accomplished h¥ means of a new TMSL parameter in 
response to the system message 'SPECIFY SYSTEM PARAMETERS· • 

HOW TO INVOKE THE TIME SLICE FACILITY 

In MFT, time slicing is invoked through either the JOB statement or, in 
MFT systems with subtasking, through the use of the ATTACH and CHAP 
macro instructions. 

If, in MFT, a task is part of the time slice group because its 
jobclass is assigned to a time slice partition, the task gains control 
according to the position of the time slice partition with respect to 
other partitions. 

If, in MFT, a task becomes part of the time slice group t~ough the 
use of ATTACH or CHAP (in an MFT system with subtasking>, the task gains 

The Time Slicing Facility 279 

-



control according to the priority used with ATTACH or CHAP. The task 
gains control. as part of the time slice group. when the partition with 
the same priority gains control (even though the task resides in a 
partition that is not part of the time slice group). Equally, a task 
that is time sliced may use ATTACH or CHAP with a priority that does not 
fall within the range of priorities assigned to the time slice group. 
The attached or changed task is not part of the time slice group even 
though it resides in a time slice partition. 

In MVT" if the priority specified in the PRTY parameter of the JOB 
statement is the same as the priority specified at system generation 
and/or NIP time, that job (or the task representing that job) will be 
time sliced. 

Time Slicing's Effect on the ATTACH and CHAP Macro Instructions 

In MVT new tasks can be introduced into a time-slice group through the 
use of the ATTACH and CHAP macro instructions. when the attaching or new 
priority selected is equal to that of a time-slice group. These new 
tasks conform to all the rules for time slicing. 

The CHAP macro instruction may remove a task from a time-slice group. 
If it does. this terminates all that task's time-slice characteristics. 
The ATTACH macro instruction may create a task that is not a member of a 
time-slice group, even though the originating task was. 

Using the Time Slice Facility 
In MFT, the time slice group is composed of a group of contiguous 
partitions and all tasks scheduled into those partitions are time 
sliced. Also. each partition in the system is assigned to at least one 
job class. Since a job is scheduled into a partition according to the 
CLASS parameter on the JOB statement" careful consideration should be 
given to the job-class assignment in order to enable the user to control 
the use of time slicing at his installation. For exarr.ple, 

1. Partitions PO-P2 have been assigned as the time-slice partition 

2. The partitions have been assigned the following job classes: 

PO=G,Pl=G.P2=(G,D),P3=B,P4=(B,C,D) 

In this example, the user can ensure that a job will be time sliced by 
specifying CLASS=G on the JOB statement. This specification guarantees 
that the scheduler will initiate the job only into a partition assigned 
to CLASS G, i.e. I PO. Pl" or P2. Since PO-P2 have been designated as 
time-slice partitions, that job will be time sliced. 

CAUTION: Note that if the CLASS parameter of a job was D, the job 
mayor may not be time sliced. depending on whether it is initiated 
into partition P2 or P4. See the Messages and Codes publication 
(message IEE802A) for information on warning the operator about 
such situations. 

In MFT systems with subtasking, time slicing is assigned both by 
partition (as shown above) and ~ dispatch priority of the jobclasses 
assigned to the time slice partitions. If a program uses the ATTACH or 
CHAP macro instruction, the priority used with ATTACH or CHAP determines 
whether the attached or changed task is time sliced, not the partition 
in which it resides. (However, a program cannot exceed the limit 
priority assigned its jobclass.) See the Supervisor and Data Management 
Services publication for a discussion of dispatch and limit priority. 

280 System Programmer's Guide (Release 20.1) 



In MVT" there is a single time slice group which is defined by 
associating the time slice group with job dispatch priorities, either in 
the system generation statements or in an operator reply at IPL time. 
Any job that has a dispatch priority equal to one associated with the 
time slice group becomes a member of the time slice group perforce. 
However, if a step dispatch priority is stated in the EXEC statement of 
a step (the DPRTY=entry), then the value of that priority determines 
whether or not the step is a member of the time slice group. Membership 
in (and removal from) the time slice group of tasks can also be caused 
by the use of the CHAP and ATTACH macro instructions by processing 
programs. You should remember that where job priorities differ by 1, 
corresponding dispatching priorities differ by 16. Therefore, if a job 
step uses CHAP to change from one priority time-slicing group to another 
group, it must change the dispatching priority by 16, not just by 1. A 
full discussion of task priorities and the formula to derive a 
dispatching priority from a job priority is found in the supervisor and 
Data Management Services publication. 

OPERATING CHARACTERISTICS 

The time-slicing mechanism operates within the structure of the current 
dispatcher. A priority is assigned to a group of tasks that are to be 
time sliced. The time slicing occurs among the tasks in the group only 
when the priority level of the group is the highest priority level that 
has a ready task. Each task or partition in the group is dispatched for 
the specified time slice. The time slicing continues until either all 
tasks or partitions are waiting# or a task or partition of higher 
priority than that of the group becomes ready. 

In both MFT and MVT, the dispatcher will recognize that a priority 
level is one that is being time sliced; it will determine which task or 
partition within the group is to be dispatched and then dispatch that 
task or partition for the maximum time interval. If the time slice task 
loses control prior to the expiration of its interval (because an 
implicit or explicit wait is issued, or because a higher priority task 
or partition becomes ready>, the remainder of the time is not saved. 
That is, when control returns to the time-slice' group, the next ready 
task or partition in the group is given control, not the interrupted 
task or partition. 

EFFECT OF SYSTEM TASKS ON TIME-SLICE GROUPS 

The time slicing option is included in the system mainly to provide a 
method of controlling response time of a task. However, since it is 
being implemented in a priority dispatcher, any task of a higher 
priority than that of the time-slice group will be dispatched first, if 
it is ready. Note also that the time-slicing mechanism applies only to 
the problem program priorities, 0-13. Priorities 14 and 15 are reserved 
for the system and cannot be time sliced. Therefore, the response time 
of a time-slice task can be affected by the processing of system tasks, 
such as Readers" Writers, Master SCheduler, etc., which will always run 
at a higher priority than the time-slice group. Therefore, to guarantee 
response time, the time slice group should be defined, with MFT, in the 
high priority partitions, or" with MVT, at a high dispatching priority. 

In MFT configurations non-interactive jobs should not be run 
concurrently and time sliced since this may significantly decrease 
performance. 

The Time Slicing Facility 281 

-



282 System Programmer's Guide (Release 20.1) 



Graphic Job Processor Procedures 

The Graphic Job Processor is an 
IBM-provided program that enables users to 
define and initiate jobs directly from the 
IBM 2250 Graphic Display Units. If your 
system includes the Graphic Job Processor, 
you must write cataloged procedures which 
are used in starting major parts of the 
program. 

This chapter provides information on 
writing and cataloging GFX and GJP 
procedures; it also provides information on 
allocating space and cataloging data sets 
for GJP. A section explains how to write 
cataloged procedures to be invoked through 
the Graphic Job Processor. The preparation 
of accounting routines to be used with the 
Graphic Job Processor is explained. 

IBM system/360 Operating system: User's 
Guide for Job Control Form the IBM 2250 
Display Unit, GC27-6933 provides a 
description of the Graphic Job Processor. 

• 

Graphic Job Processor Procedures 283 

• 



Initialization of the Operating System for GJP 
To make the Graphic Job Processor available when requested by the system 
operator with a START GFX command, several initialization actions must 
be taken. These actions are: 

• Adding a cataloged procedure for the Graphics Interface Task (GFX) 
to the procedure library (SYS1.PROCLIB). 

• Adding a Graphic Job Processor cataloged procedure to the procedure 
library (SYS1.PROCLIB) for each 2250 display unit that is to be used 
with GJP. 

• Allocating space for data sets that are required for each 2250 
display unit to be used with GJP and cataloging these data sets on 
any convenient system volume. 

The GFX and GJP cataloged procedures may be added to the procedure 
library (SYS1.PROCLIB) either before or after system generation using 
the IEBUPDTE utility program. Before system generation, the procedures 
must be added to the procedure library (SYS1.PROCLIB) of the starter 
system. After system generation, the procedures are added directly to 
SYS1.PROCLIB on the new system. Similarly, the space allocations and 
cataloging of the data sets for each 2250 may be added to any convenient 
system volume either before or after system generation using the 
IEHPROGM utility program. It is usually more convenient to perform 
these initializations after system generation. 

THE GFX PROCEDURE 

The GFX cataloged procedure consists of an EXEC statement and several DD 
statements. The exact number of DD statements depends on the number of 
2250 display units that may use the Graphic Job Processor. The name of 
the procedure must be GFX. 

The following is the coding for the GFX cataloged procedure that you 
must provide on SYS1.PROCLIB: 

r----------------------------------------------------------------------, 
I Procedure: GFX I 
~----------------------------------------------------------------------~ 
I//GFXEXEC EXEC PGM=IKAGFX,REGION=12K,ROLL=(NO,YES) I 
1//GJPnnn DD DSNAME=SYS1.JCLnnn,UNIT=SYSDA,DISP=SHR I 
I I 
I I 
I (DD statement in the format above for each 2250 to be used) I 
I I 
I I 
I//SYSABEND DD SYSOUT=z.SPACE=(blk,(125.25» I L ______________________________________________________________________ J 

In this coding, nnn is the address of the display unit being defined, 
and z is the output class to which printed output is assigned for 
abnormal terminations. A separate DD statement is required for each 
2250 to identify the JCL data set for that device. In an MFT 
configuration the REGION parameter is ignored and the GFX Task is 
executed in a partition whose size is 12K or larger. 

Note: In the //SYSABEND DD statement, the user may include, in addition 
to the SYSOUT and SPACE parameters, a UNIT parameter to specify the 
intermediate direct access device required for the dump data set before 
it is printed. The default device type provided if the UNIT parameter 
is omitted is SYSDA. The SPACE parameter allocates enough direct access 
space for a full dump. The nblkn must be replaced with 882 for MFT or 
1632 for MVT. 

284 System Programmer's Guide (Release 20.1) 



THE GJP PROCEDURE 

The GJP cataloged procedure consists of an EXEC statement and 13 DD 
statements. A separate cataloged procedure is required for each 2250 
display unit that may use the Graphic Job Processor. The procedure name 
for each procedure must be in the form GJPnnn, where nnn is the address 
of a specific display unit. 

The following is the coding for each GJP cataloged procedure. (Three 
separate procedures would be required if three display units were 
desired. The address used in the procedure name must be the same as 
that specified on the DD statements for the GFX cataloged procedure.) 

r---------------------------------------------------------------------, 
I Procedure: GJPnnn I 
r----------------------------------------------------------------------~ 

1//GJPEXEC EXEC PGM=IKAGJP"REGION=60K,ROLL=(NO.YEs) 
//GJP2250 DD UNIT=nnn 
//GJPDIA DD DsNAME=sYs1.DIAnnn,UNIT=SYsDA,DIsP=(OLD,KEEP) 
//GJPEXT DD DsNAME=sYsl.EXTnnn.UNIT=SYsDA,DIsP=(OLD,KEEP) 
//GJPEXT1 DD DSNAME=sYS1. EXTnnnA,UNIT=sYsDA.DIsP= (OLD, KEEP) 
/ /GJPJCL DD DsNAME=SYSl. JCLnnn" UNIT=SYsDA" DIS p=s HR 
//GJPPROC DD DSNAME=SYS1.PROCLIB,UNIT=SYSDA.DISP=SHR 
/ /IEFPDSI DD DSNAME=SYS1. PROCLIB, UNIT=SYSDA. DISP=SHR 
//GJPOUT DD SYSOUT=z,SPACE=(120. (100,100» 
2//SYSABEND DD SYSOUT=z,SPACE=(blk. (225,25» 
3//SYSBFDMP DD SYSOUT=z 
//IEFRDER DD DUMMY 
//IEFDATA DD UNIT=SYSDA,SPACE=(80,(500.500)"CONTIG), x 
4// DCB=(BUFN0=2.LRECL=80,BLKSIZE=80,RECFM=F,BUFL=80) 
//GJPDISO DD DUMMY 
//GJPDISl DD UNIT=SYSDA,DISP=OLD.DSNAME=SYS1.DISnnn 

r----------------------------------------------------------------------~ 
I Note: Where nnn is the address of the specific display unit to be I 
used, and z is the output class to which printed output is assigned I 
for abnormal terminations. I 

I 
1The 60K value in the REGION parameter is the minimum size region or I 
partition that may be specified with a reader/interpreter region I 
requirement of 48K; larger values are permissible. (If the I 
reader/interpreter region requirement is greater than 48K, the I 
REGION parameter must be incremented accordingly.) In an MFT I 
configuration the REGION parameter is ignored and GJP is executed in 
a partition whose size is 60K or larger. 

2The use of this statement as described for the GFX procedure also 
applies to the GJP procedure. 

3This statement is optional and is required only if the 2250 user 
wishes to use the 2250 Buffer Dump facility during execution of his 
graphic job. 

4This statement is reqUired if the user wishes to enter SYSIN data 
from the ENTER DATA frame; the space requirements may be varied 
depending on the amount of SYSIN data that will be entered. If 
will not be entered, a dummy parameter may be used as follows: 

datal 
I 
I 

//IEFDATA DD DUMMY I L ______________________________________________________________________ J 

Graphic Job Processor Procedures 285 

• 



CATALOGING GFX AND GJP PROCEDURES 

The following sample coding could be used to catalog both the GFX and 
GJP cataloged procedures in the procedure library (SYS1.PROCLIB) after 
system generation using the IEBUPDTE utility program. The example 
assumes that two 2250 display units will use GJP. The use of the 
IEBUPDTE utility program is fully explained in IBM System/360 Operating 
System: Utilities, GC28-6586. 

r----------------------------------------------------------------------, 
I//UPDATE JOB 
1// EXEC 
I//SYSPRINT DD 
1//SYSUT2 DD 
//SYSIN DD 
./ ADD 
./ NUMBER 

PGM=IEBUPDTE" PARM=NEW 
SYSOUT=A 
DSNAME=SYS1.PROCLIB,DISP=OLD 
DATA 
LIST=ALL,NAME=GFX,LEVEL=OO,SOURCE=O 
NEWl =10 , I NCR=l 0 

(GFX cataloged procedure) 

./ 

./ 
ADD LIST=ALL,NAME=GJP1EO,LEVEL=00,SOURCE=0 
NUMBER NEW1=10,INCR=10 

(GJP cataloged procedure for first 2250> 

./ 

./ 
ADD LIST=ALL, NAME=GJP lD3, LEVEL=O 0, SOURCE=O 
NUMBER NEW1=10.INCR=10 

(GJP cataloged procedure for second 2250) 

./ ENDUP 
/* L ____________________________________________________________________ _ 

CATALOGING AND ALLOCATING SPACE FOR DATA SETS USED BY GJP 

Five data sets are required for each 2250 Display unit to be used with 
GJP. The narre of these data sets must be SYS1.DIAnnn, SYS1.EXTnnn, 
SYS1. EXTnnnA" SYS1.JCLnnn, and SYS1. DISnnn where nnn is the address of 
the specific display unit. The data sets may reside on any convenient 
system volume. The space allocations and cataloging may be accomplished 
using the IEHPROGM utility program. The actual space allocations 
required depends on the users problem program. However, the following 
allocations are suggested for most graphics programs. 

Da ta Set Name 

SYS1.DIAnnn 
SYS1.EXTnnn 
SYS1.EXTnnnA 
SYS1.JCLnnn 
SYS1.DISnnn 

Allocation 

SPACE=(TRK,(3,3» 
SPACE=(TRK,(5,5» 
SPACE= (TRK, (5,5» 
SPACE= (TRK, (5, 5) ) 
SPACE=(TRK.(50,10» 

286 System Programmer's Guide (Release 20.1) 



The following sample coding could be used to allocate space and 
catalog the data sets using IEHPROGM. The use of the IEHPROGM utility 
program is fully explained in IBM System/360 Operating System: 
Utilities, GC28-6586. 

r----------------------------------------------------------------------, 
I//jobstep JOB I 
I//STEP EXEC PGM=IEHPROGM,PARM=NEW I 
//SYSPRINT DD SYSOUT=A I 
//DIA1EO DD DSNAME=SYS1.DIA1EO,VOLUME=(,RETAIN,SER=111111), XI 
// UNIT=SYSDA,DISP= (,KEEP) ,SPACE= (TRK, (3,3» I 
/ /EXT1EO DD DSNAME=SYS1. EXT1EO, VOLUME= (, RETAIN, SER=111111) , X I 
/ / UNIT=SYSDA, DISP= (, KEEP), SPACE= (TRK, (5, 5» I 
//EXT1EOA DD DSNAME=SYS1.EXT1EOA,VOLUME=(,RETAIN,SER=111111), XI 
/ / UNIT=SYSDA, DISP= <., KEEP), SPACE= (TRK, (5,5) ) I 
//JCL1EO DD DSNAME=SYS1.JCL1EO,VOLUME=(,RETAIN,SER=111111), XI 
// UNIT=SYSDA,DISP=(,KEEP),SPACE=(TRK,(5,5» I 
/ /DIS1EO DD DSNAME=SYS1. DIS1EO, VOLUME= (,RETAIN, SER=111111) , X 
/ / UNIT=SYSDA, DISP= (, KEEP), SPACE= (TRK, (50,10) ) 

(DD statements for other 2250s in the above format) 

//SYSIN DD 
CATLG 
CATLG 
CATLG 
CATLG 
CATLG 

* CVOL=SYSDA=111111,VOL=SYSDA=111111,DSNAME=SYS1.DIA1EO 

1/* 

CVOL=SYSDA=111111,VOL=SYSDA=111111,DSNAME=SYS1.EXT1EO 
CVOL=SYSDA=111111,VOL=SYSDA=111111,DSNAME=SYS1.EXT1EOA 
CVOL=SYSDA=111111,VOL=SYSDA=111111,DSNAME=SYS1.JCLIEO 
CVOL=SYSDA=111111,VOL=SYSDA=111111,DSNAME=SYS1.DIS1EO 

(CATLG statements for other 2250s in the above format) 
L ______________________________________________________________________ J 

Writing Cataloged Procedures to be Invoked 
Through the Graphic Job Processor 

A problem program that refers to the display unit either contains a DCB 
macro instruction for the display unit, or the data control block is 
generated as a resul t of statements written in a higher-level language. 
In addition, the operating system requires that a DD statement for the 
display unit be included in the job control statements for each job step 
associated with the display unit. 

In writing cataloged procedures to be invoked through the Graphic Job 
Processor, the programmer should include DD statements for the display 
unit in the procedure as follows: 

For a Single-step Procedure: You should include a DD statement 
containing the parameter UNIT=unit name as the first DD statement 
following the EXEC statement, where "unit name n is either "2250-1n (for 
a 2250 Model 1 Display Unit) or n2250-3" (for a 2250 Model 3 Display 
Unit). The Graphic Job Processor replaces the "unit name" with the 
3-digit unit address of the actual display unit at which the user is 

\ sitting. However, if you specify the 3-digit address of a particular 
display unit in the first DD statement, the Graphic Job Processor will 
not override the address. 

Graphic Job Processor Procedures 287 

-



If you do not provide a DD statement for the display unit as the 
first DD statement in a single-step procedure, the Graphic Job Processor 
creates a DD statement for the unit and inserts the 3-digit address of 
the display unit at which the user is sitting. The name field of the DD 
statement will contain a name in the form stepname.ddname, where ddname 
is either the system generation default or the name has been entered as 
a DISPLAY UNIT REFERENCE parameter on the SPECIFY JOB STEP frame. 

For a Multi-step Procedure: You should include a DD statement for the 
display unit in each step of the procedure.. The DD statement in the 
first step should include the parameter UNIT=unit name, where "unit 
name" is either "2250-1" (for a 2250 Modell Display unit) or "2250-3" 
(for a 2250 Model 3 Display Unit). The DD statement for the display 
unit in each succeeding step of the procedure should refer back to the 
statement in the first step by means of the DSNAME=*.stepname.ddname 
parameter. 

To override the display unit DD statements in all steps of the 
procedure, you need only override the display unit DD statement in the 
first step of the procedure. However, to override the display unit DD 
statement in the second or a succeeding step of the procedure, you can 
employ the appropriate stepname.ddname combination in the name field of 
the statement. 

Note that failure to provide display unit DD statements in a 
multi-step procedure, means the Graphic Job Processor creates such a 
statement for the first step of the procedure only as described in the 
single-step procedure above. 

For additional information on overriding statements in cataloged 
procedures, see the publication IBM System/360 Operating System: Job 
Control Language, GC28-6539. 

Requesting Dumps: The Graphic Job Processor does not generate a 
SYSABEND DD statement for procedures invoked with GJP operations. Thus, 
if a dump is desired when the problem program is abnormally terminated, 
the programmer must include a SYSABEND DD statement in his procedure. 

Preparation of User-Written Accounting Routines 
An accounting routine receives control from the Graphic Job Processor 
when a user performs the LOG ON and LOG OFF operations. The accounting 
module in the distributed Graphic Job Processor is a dummy routine that 
performs no processing; the routine merely returns to the LOG ON and LOG 
OFF processors with a return code (4) that indicates a normal return. 
To perform accounting functions at LOG ON or LOG OFF, the user must 
write his own accounting routine following the conventions described 
below. 

Entry to the Accounting Routine: The entry point of the accounting 
routine must be named IKAACCTG. This name is specified in either a 
CSECT statement or an ENTRY statement. 

Input to the Accounting Routine: Bit 0 of register 1 is on (1) is entry 
to the accounting routine was from the LOG ON processor; bit 0 is off 
(0) if entry was from LOG OFF. Bits 8-31 of register 1 contain the 
address of a 28-byte parameter list, structured as follows: 

288 System Programmer's Guide (Release 20.1) 



,/ 

Byte 
o 

1 

4 

8 

12 

16 

20 

24 

r-----------------------------------------------------------------, 
lOne-byte condition code for IKAACCTG. I 
~----------------------------------------------------------------f 
IThree-character unit address. I 
~-----------------------------------------------------------------~ 
IAddress of a 20-byte area containing the user's name. I 
~----------------------------------------------------------------1 
IAddress of a 20-byte area containing the account number. 
~-----------------------------------------------------------------~ 
IAddress of a 20-byte area containing other accounting I 
I information. I 
~----------------------------------------------------------------~ 
IAddress of a 20-byte area where the accounting routine can place I 
Idata. I 
~-----------------------------------------------------------------~ 
IAddress of a 72-byte area where the accounting routine can place I 
la message to be displayed. I 
~-----------------------------------------------------------------~ 
IAddress of a 72-byte area which contains the text entered on the I 
ILOG OFF frame. I L _________________________________________________________________ J 

The condition code mentioned above contains one of the following 
codes to indicate the condition of entry to IKAACCTG: 

Hexadecimal 
Code 
00 

04 

08 

Meaning 
This is the initial entry (for LOG ON or LOG OFF frame) to 

IKAACCTG. 

The LOG OFF frame has been canceled. 

The LOG OFF frame has been completed. 

output From the Accounting Routine: Upon return from the user's 
accounting routine, register 15 must contain a return code to indicate 
the results of the accounting routine processing. The codes that may be 
returned are as follows: 

Hexadecimal 
Code 

o 

4 

8 

C 

10 

Meaning 
Normal return -- Text for a message to be displayed on 

the frame has been provided in the 72-byte area. The 
2250 user must perform the END function to acknowledge 
the message. 

Normal return -- No message is to be displayed. 

Error return -- Text for an error message to be displayed 
on the LOG ON frame has been provided in the 72-byte 
area. The 2250 user must correct the information and 
perform the END function again. The accounting routine 
will again receive control to perform a new check of 
the information. 

Invalid user's name -- The Graphic Job Processor is to 
display an appropriate error message. 

Invalid user's account number -- The Graphic Job 
Processor is to display an appropriate error message. 

The user's accounting routine can also use the Write To Operator (WTO) 
or a Write To Operator With Reply (WTOR) macro instruction to write a 
message to the system operator. 

Graphic Job Processor Procedures 289 

• 



Exit From the Accounting Routine: A RETURN macro instruction restores 
the contents of the registers and returns control to the Graphic Job 
Processor with the return code in register 15. 

Inserting an Accounting Routine: The accounting routine can be inserted 
into the Graphic Job Processor either before or after the system 
generation process. 

To insert an accounting routine before system generation, link edit 
it into the module library (SYS1.RC541), thereby replacing the existing 
module named IKAACCTG. 

To insert an accounting routine after system generation, link edit 
the accounting routine with the IKAPLONO and IKAPLOGO modules. The 
Graphic Job Processor modules are in the linkage library (SYS1.LINKLIB). 
The linkage editor control statements necessary to insert the accounting 
routine in the IKAPLONO and IKAPLOGO modules are as follows (card input 
is assumed): 

r----------------------------------------------------------------------, 
I//jobname JOB parameters 
I//stepname EXEC PGM=IEWL,parameters 
I//SYSPRINT DD SYSOUT=A 
1//SYSOUT1 DD UNIT=SYSDA,SPACE=parameters 
I//SYSLMOD DD DSNAME=SYS1.LINKLIB,DISP=OLD 
//SYSLIN DD * 

I 
I 
I 
1/* 

(accounting routine object deck) 

INCLUDE SYSLMOD (IKAPLONO) 
ENT RY IKAPLON 0 
NAME IKAPLONO(R) 

(accounting routine object deck; identical to deck above) 

INCLUDE SYSLMOD (IKAPLOGO) 
ENTRY IKAPLOGO 
NAME IKAPLOGO(R) 

L _____________________________________________________________________ J 

290 system Programmer's Guide (Release 20.1) 



/ 

Buffer Storage Considerations for 2280 Display Unit, Model 3 

When two or more 2250 Model 3 display units are operated from the same 
IBM 2840 Display Control Unit, buffer storage is shared among the 
associated 2250 display units. Buffer storage is assigned to a specific 
display unit when the executing program issues an ASGNBFR macro 
instruction. Assignments are made in 256-byte increments (called 
sections) on a first come, first served basis. When requests for buffer 
storage are made, the sections are assigned from contiguous storage; if 
the number of requested sections are not available, no storage is 
assigned and a return code is provided to the requesting program. 

Buffer sections may be reserved (guaranteed) for a particular display 
unit at system generation time with the NUMSECT operand of the IODEVICE 
macro instruction. Once assigned, guaranteed sections cannot be shared 
with other display units. 

The Graphic Job Processor requires that 16 buffer sections be 
available to the display ~nit. These sections are requested dynamically 
when GJP is initiated and are released before GJP transfers control. An 
installation may guarantee the availability of these buffer sections at 
system generation time with the IODEVICE macro instruction. However, 
this is not recommended unless an installation must ensure that GJP is 
started every time that it is requested. When 16 sections are not 
available, a message about this condition will be written to the system 
operator. 

Graphic Job Processor Procedures 291 

• 



292 system Programmer's Guide (Release 20.1) 



\ 

I 

Satelite Graphic Job Processor 
Procedures 

The Satellite Graphic Job Processor (SGJP) 
is a program that facilitates job control 
from a remote 1130/2250 subsystem. SGJP 
enables a user at an 1130/2250 subsystem 
(attached to a System/360 via a 
telecommunication line) to define and 
initiate jobs to be processed in the 
system/360. The jobs defined with SGJP can 
be run under the operating system 
independently or in conjunction with a 
related program in the 1130. 

This chapter explains how to initialize 
the system for SGJP, how to write cataloged 
procedures to be invoked through SGJP, and 
how to write accounting routines for use 
with SGJP. 

Satellite Graphic Job Processor Procedures 293 

-



Writing Cataloged Procedures to be Invoked Through SGJP 

The IBM System/360 Operating System treats an 1130/2250 subsystem as a 
data setu The operating system identifies the subsystem by the 
telecommunications line that links the subsystem to the System/360. A 
problem program that communicates with the subsystem contains either a 
DCB macro instruction for the telecommunications line" or the data 
control block is generated as a result of statements written in a 
higher-level language. In addition, the operating system requires that 
a DD statement for the subsystem be included in the job control 
statements for each job step that communicates with the subsystem. 

In writing cataloged procedures to be invoked through SGJP, you 
should include DD statements for the subsystem as indicated in the 
following sections. 

For a single-Step Procedure: Include a DD statement containing the 
parameter UNIT=1130. In producing the final job control statement, SGJP 
replaces the unit name 1130 with the 3-digit unit address of the 
subsystem at which the user is located. 

If the user fails to provide a DD statement for the subsystem or 
provides a DD statement containing the address of a particular 
telecommunications line (other than the line to the subsystem at which 
the user is located) " SGJP creates a new DD statement in the form: 

//stepname.lineref DD UNIT=address 

where 

stepname 
is the name of the job step in which the statement appears. 

lineref 
is the default parameter provided in the LINEREF operand of the 
GJOBCTL macro instruction at system generation. 

address 
is the 3-digit address of the telecommunications line to the 
subsystem at which the user is located. 

For a Multi-step Procedure: Include a DD statement for the subsystem in 
each step of the procedure that requires communication with the system. 
The DD statement in the first step should include the parameter 
UNIT=1130. The DD statement for the subsystem in each succeeding step 
should refer back to the statement in the first step by means of the 
DSNAME=*.stepname.ddname parameter. 

This makes it easier for the user to override the subsystem DD 
statement in the procedure. To override the subsystem DD statements in 
all steps of the procedure, the user need override only the subsystem DD 
statement in the first step. To override the subsystem DD statement in 
the second or a succeeding step of the procedure, you can employ the 
appropriate stepname.ddname combination in the name field of the 
statement. 

You should note that, if you fail to provide subsystem DD statements 
in a multi-step procedure, SGJP creates such a statement for the first 
step of the procedure only. The statement is in the form: 

//stepname.lineref DD UNIT=address 

as described above. 

294 System Programmer's Guide (Release 20.1) 



/ 

(For additional information on overriding statements in cataloged 
procedures, see the ptililication IBM System/360 Operating System: Job 
Control Language, GC28-6539.) 

PREPARATION OF USER-WRITTEN ACCOUNTING ROUTINES 

An accol.lnt.ing routine receives control from the Satellite Graphic Job 
Processor when a user performs the LOG ON or LOG OFF operation. The 
accounting module in the distributed Satellite Graphic Job Processor is 
a dummy routine that performs no significant processing; the routine 
merely returns to the LOG ON or LOG OFF processor with a return code 
(04) indicating a normal return. To perform accounting functions at LOG 
ON or LOG OFF, you must write your own accounting routine following the 
conventions described below. 

Ent~y to the Accounting Routine: The entry point of the accounting 
routine must be named lKAACCTG. This name is specified in either a 
CSECT statement or an ENTRY statement. 

Input to the Accounting Routine: Bit 0 of register 1 is on (1) if entry 
to the accounting routine was from the LOG ON processor; bit 0 is off 
(0) if entry was from LOG OFF. Bits 8-31 of register 1 contain the 
address of a 28-byte parameter list" structured as follows: 

Byte r----------------------------------------------------------------, 
o lOne-byte condition code for lKAACCTG. I 

r-----------------------------------------------------------------~ 
1 I Three-character unit address. I 

r----------------------------------------------------------------~ 
I I 

4 I Address of a 20-byte area containing the user's name. I 
~-----------------------------------------------------------------~ 
I I 

8 I Address of a 20-byte area containing the account number. I 
~-----------------------------------------------------------------~ 

12 I Address of a 20-byte area containing other accounting I 
I information. I 
r----------------------------------------------------------------~ 

16 I Address of a 20-byte area where the accounting routine can I 
I place data_ I 
r----------------------------------------------------------------~ 

20 I Address of a 72-byte area where the accounting routine can I 
I place a message to be displayed. I 
r----------------------------------------------------------------~ 

24 I Address of a 72-byte area which contains the text entered on I 
I the LOG OFF frame. I L ___________________________________________________ - _____________ J 

The condition code mentioned above contains one of the following 
codes to indicate the condition of entry to IKAACCTG: 

Hexadecimal 
Code 
00 

04 
08 

Meaning 
This is the initial entry (for LOG ON or LOG OFF frame) 

to lKAACCTG. 
The LOG OFF frame has been canceled. 
The LOG OFF frame has been completed. 

output From the Accounting Routine: Upon return from your accounting 
routine, register 15 must contain a return code indicating the results 
of the accounting routine processing. The acceptable codes are: 

Satellite Graphic Job Processor Procedures 295 

• 



Hexadecimal 
Code Meaning 
00 

04 
08 

OC 
10 

Normal return -- Text for a message to be displayed on 
the frame has been provided in the 72-byte area. The 
user must perform the END function to acknowledge the 
message. 

Normal return -- No message is to be displayed. 
Error return -- Text for a message to be displayed on the 

frame has been provided in the 72-byte area. 
Error return -- The name supplied by the user is invalid. 
Error return -- The account number supplied by the user 

is invalid. 

Your accounting routine can also use the Write To Operator (WTO) or 
the Write To Operator With Replay (WTOR) macro instruction to write a 
message to the system operator. 

Exit From the Accounting Routine: A RETURN macro instruction restores 
the contents of the registers and returns control to the LOG ON or LOG 
OFF processor with the return code in register 15. 

Inserting an Accounting Routine: The accounting routine can be inserted 
into the Satellite Graphic Job Processor either before or after system 
generation. 

To insert an accounting routine before system generation, link edit 
it into the module library (SYS1.RC541)1 thereby replacing the existing 
module named IKAACCTG. 

To insert an accounting routine after system generation, link edit 
the accounting routine into the IKAPLONO and IKDPLOFO modules. The 
satellite Graphic Job Processor modules are in the link library 
(SYS1.LINKLIB). The linkage editor control statements necessary to 
insert the accounting routine in the IKAPLONO and IKDPLOFO modules are 
as follows: 

r----------------------------------------------------------------------, 
//jobname JOB parameters 
//stepname EXEC PGM=IEWL,parameters 
//SYSPRINT DD SYSOUT=A 
//SYSUT1 DD UNIT=SYSDA,SPACE=parameters 
//SYSLMOD DD DSNAME=SYS1.LINKLIB,DISP=OLD 
//SYSLIN DD * 

/* 

(accounting routine object deck) 

INCLUDE SYSLMOD (IKAPLONO) 
ENTRY IKAPLONO 
NAME IKAPLONO(R) 

(accounting routine object deck) 

INCLUDE SYSLMOD (IKDPLOFO) 
ENTRY IKDPLOFO 
NAME IKDPLOFO(R) 

296 System Programmer's Guide (Release 20.1) 



\ 
I 

/ 

Initialization Requirements for the System/360 Operating System 

To prepare the operating system for SGJP operations, the following 
initialization actions must be performed: 

• A GFX cataloged procedure (which is used to start the GFX Task) must 
be added to the procedure library (SYS1.PROCLIB) unless the 
procedure has already been placed in the library for the Graphic Job 
Processor operations. 

• An SGJP cataloged procedure (which is used to start an Initial 
Processor) must be added to the procedure library for each 
telecommunication line address that was included in the GJOBCTL 
system generation macro instruction. (Use of Initial Processors is 
optional in an MFT system. If use of Initial Processors is not 
specified, no SGJP cataloged procedures are required.) 

• A GJP cataloged procedure (which is used to start the System/360 
SGJP routines) must be added to the procedure library for each 
telecommunication line address that was included in the GJOBCTL 
system generation macro instruction. 

• Space for four data sets must be allocated for each 
telecommunication line, and the data sets must be cataloged. 

The cataloged procedures can be added to the procedure library either 
before or after system generation by using the IEBUPDTE utility program. 
If the cataloged procedures are added beforehand., they can be 
transferred to the procedure library during system generation. The 
alternative is to add the procedures directly to the procedure library 
after system generation. 

Similarly, the space allocations and cataloging of data sets for each 
telecommunication line can be performed either before or after system 
generation by using the IEHPROGM utility program. It is usually more 
convenient to allocate space for and catalog the data sets after system 
generation. 

Satellite Graphic Job Processor Procedures 297 

• 



The GFX Procedure 

The GFX procedure is used to start the GFX Task when the system operator 
issues the START GFX command. The procedure consists of an EXEC 
statement. a series of DD statements,. and a SYSABEND DD statement. One 
GFX procedure must exist on the procedure library. 

The statements in the GFX procedure are shown and explained in Figure 
11. 

r---------------------------------------------------------------------, 
I Procedure: GFX I 
~----------------------------------------------------------------------~ 
I I 
I 1//GFXEXEC EXEC PGM=IKAGFX, REGION=12K. ROLL= (NO, YES) I 
I I 
I 2//GJPnnn DD DSNAME=SYS1.JCLnnn,. UNIT=SYSDA,DISP=SHR I 
I I 
I (Additional DD statements. One DD statement in I 
I the format shown above must be provided for each I 
I telecommunication line used for SGJP operations.) I 

I 
I I 
I 3//SYSABEND DD SYSOUT=W.SPACE=(blk,(125,25» I 
I I 
~----------------------------------------------------------------------~ 

Note: The procedure must be named GFX. 

1When the procedure is executed in an MFT system, the REGION 
parameter is ignored and the GFX Task is executed in a small 
partition. 

20ne DD statement in this format must be included for each 
telecommunication line that was specified for SGJP operations in the 
GJOBCTL system generation macro instruction. (For a description of 
the GJOBCTL macro instruction, see the publication IBM system/360 
Operating System: System Generation, GC28-6554.) 

Each statement defines a data set (called the JCL data set) that 
will be used by GFX to pass system messages to the appropriate SGJP 
routines. The "nnn" in the ddname and in the data set name must be 
the 3-digit address of the telecommunication line for which the data 
set is being defined. 

3This statement defines the system output class for printed output if 
the GFX Task is abnormally terminated. The "w" must be the 
alphabetic or numeric character that represents an output class for 
printed output. Any printed output class can be specified. The 
SPACE parameter allocates enough direct access space for a full 
dump. The nblk" must be replaced with 882 for MFT or 1632 for MVT. 

In addition to the SYSOUT and SPACE parameters. the user may include 
a UNIT parameter to specify the intermediate direct access device 
required for the dump data set before it is printed. The default 
device type provided if the UNIT parameter is omitted is SYSDA. 

L-____________________________________________________________________ _ 

Figure 11. Statements in the GFX Cataloged Procedure 

298 System Programmer's Guide (Release 20.1) 



The SGJP Procedure 

Upon receipt of a VARY ONGFX command containing the address of a 
telecommunication line, the operating system starts an Initial Processor 
(if specified) that will handle the first message received on that line. 

An SGJP cataloged procedure to be used in starting the Initial Processor 
(for that line) must be provided for each telecommunication line address 
included in the GJOBCTL system generation macro instruction. 

The statements that must be included in each SGJP cataloged procedure 
are shown and explained in Figure 12. (These SGJP ca'taloged procedures 
are always required in an MVT system. They are only required in an MFT 
system if use of Initial Processors has been specified in the GJOBCTL 
system generation or in the START GE'X command. For further information 
on use of Initial Processors, see the publication IBM system/360 
operating System and 1130 Disk Monitor System: User's Guide for Job 
Control From an IBM 2250 Display Unit Attached to an IBM 1130 System, 
GC27-6938.) 

r----------------------------------------------------------------------, 
I Procedure: SGJPnnn I 
~----------------------------------------------------------------------~ I 1//SGJPEXEC EXEC PGM=IKDINPRO.REGION=14K,ROLL=(NO,YES) I 
I I 
I 2//SUBSYS DD UNIT=nnn I 
I I I I 3//SYSABEND DD SYSOUT=x,SPACE=(blk, (125.25» I 
~----------------------------------------------------------------------~ 
I Note: Each procedure must be named SGJPnnn where "nnn" is the 
I 3-digit address of the telecommunication line for which the 
I procedure is being provided. 
t 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

1In an MVT system, the REGION size may be decreased by the size of 
BTAM modules IGG019MA and IGG019MB (rounded to the next higher 2K 
bytes) if these modules are made resident. In an MFT system, the 
REGION parameter is ignored and the Initial Processor is executed 
in a small partition (10K or larger). 

2The statement defines the telecommunication line for which the 
procedure is being provided. The "nnn" is the 3-digit address of 
the line. 

3This statement defines the print output class for printed output if 
the Initial Processor is abnormally terminated. The "x" must be an 
alphabetic or numeric character that represents an output class for 
printed output. This class may be the same or different from the 
abnormal termination output class specified in the GFX procedure. 
The SPACE parameter allocates enough direct access space for a full 
dump. The "blk" must be replaced with 882 for MFT or 1632 for MVT. 

In addition to the SYSOUT and SPACE parameters, the user may 
include a UNIT parameter to specify the intermediate direct access 
device required for the dump data set before it is printed. The 

I default type provided if the UNIT parameter is omitted is SYSDA. I L ______________________________________________________________________ J 

Figure 12. Statements in the SGJP Cataloged Procedures 

Satellite Graphic Job Processor Procedures 299 

• 



The GJP Procecure 

A GJP procedure is required to start the System/360 SGJP routines for 
each telecommunication line. These routines are started after a message 
is received from the subsystem indicating that the 2250 user has 
completed the LOG ON frame. One GJP procedure must be provided for each 
telecommunication line address included in the GJOBCTL system generation 
macro instruction. 

Each GJP procedure consists of an EXEC statement and 11 DD 
statements. The statements that must be included in each GJP cataloged 
procedure are shown and explained in Figure 13. 

r----------------------------------------------------------------------, 
I Procedure: GJPnnn I 
r---------------------------------------------------------------------~ 
I ~//GJPEXEC EXEC PGM=IKDSGJP, REGION=60K,ROLL= (NO, YES) X 
I 
t 2//FT99F001 DO UNIT=nnn 

3//GJPOIA DO OSNAME=SYS1.0IAnnn.UNIT=SYSDA,DISP=(OLD,KEEP) 

4//GJPEXT DO DSNAME=SYS1.EXTnnn .• UNIT=SYSDA. DISP= (OLD,KEEP) 

5//GJPEXT1 00 DSNAME=SYS1.EXTnnnA.UNIT=SYSOA,DISP=(OLI:,KEEP) 

6//GJPJCL DO DSNAME=SYS1. JCLnnn. UNIT=SYSDA, DISP= (OLD, KEEP) 

7//IEFPDSI DO DSNAME=SYS1.PROCLIB,UNIT=SYSDA,DISP=SHR 

B//GJPPROC DD DSNAME=SYS1. PROCL,IB. UNIT=SYSDA .• DISP=SHR 

9//GJPOUT DO SYSOUT=y,SPACE=(120,(100,100» 

~o//SYSABENO DO SYSOUT=z,SPACE=(blk,(225,25» 

~~//IEFRDER 00 DUMMY 

~2//IEFDATA DD UNIT=SYSDA,SPACE=(SO,(500,500)"CONTIG), X 
DCB= (BUFNO=2,LRECL=SO.,BLKSIZE=SO,RECMF=F ,BUFL=SO) 

r---------------------------------------------------------------------~ 
Note: Each 'procedure must be named GJPnnn where "nnn" is the 
3-digit address of the telecommunication line for which the 
procedure is being provided. 

~The 60K value in the REGION parameter is the m~n~urn size region or 
partition that may be specified with a reader/interpreter region 
requirement of 4SK; larger values are permissible. (If the 
reader/interpreter region requirement is greater than 4SK, the 
region parameter must be incremented accordingly.) When the 
procedure is executed in an MFT system, the REGION parameter is 
ignored and the SGJP routines are started in a problem program 
partition greater than 60K in size. 

(Notes continued) L--____________________________________________________________________ J 

Figure 13. Statement in the Cataloged Procedure Used for Each 
Telecommunications Line Used With SGJP (Part 1 of 2) 

300 system Programmer's Guide (Release 20.1) 



r---------------------------------------------------------------------, 
(Notes continued) 

2This statement defines the telecommunication line as a data set and 
associates the line with the partition or region in which the SGJP 
routines are being executed. The "nnn" in this statement and in 
succeeding statements must be tiie same as the 3-digit address in 
the name of the procedure. 

3This statement defines a data set (called the Diary data set) used 
by the SGJP routines. 

qThis statement defines a data set (called the Extract data set) 
used by the SGJP routines. 

5This statement defines a data set (called the Alternate Extract 
data set) used by the SGJP routines. 

6This statement defines a data set (called the JCL data set) used by 
the SGJP routines. 

7This statement defines the procedure library for use by the 
reader/interpreter (a component of the operating system). 

8This statement defines the procedure library for use by the SGJP 
routines. 

9This statement defines the system output class to which PRINTED 
RECORD output is to be assigned for jobs defined over this 
telecommunication line. The "y" must be an alphabetic or numeric 
character that represents an output class for printed output. The 
SPACE parameter allocates direct access space for the PRINTED 
RECORD output. 

10This statement defines the system output class to which printed 
output is to be assigned if the SGJP routines for this 
telecommunication line are abnormally terminated. The "z" must be 
an alphabetic or numeric character that represents an output class 
for printed output. The outpu,t class can be the same or different 
from the one assigned in statement 9. The SPACE parameter 
allocates enough direct access space for a full durrp. The "blk" 
must be replaced with 882 for MFT or 1632 for MVT. 

In addition to the SYSOUT and SPACE parameters, the user may 
include a UNIT parameter to specify the intermediate direct access 
device required for the dump data set before it is printed. The 
default device type provided if the UNIT parameter is omitted is 
SYSDA. , 

11This statement is required by the operating system. , , 
112This statement is required if the user wishes to enter SYSIN data I 
I from the ENTER DATA frame; the space requirements may be varied I 
I depending on the amount of SYSIN data that will be entered. If I 
I data will not be entered, a dummy parameter may be used as follows: I 
I //IEFDATA DD DUMMY I L ______________________________________________________________________ J 

Figure 13. Statements in the Cataloged Procedure Used for Each 
Telecommunications Line Used With SGJP (Part 2 of 2) 

Satellite Graphic Job Processor Procedures 301 

• 



~OGING THE PR~ 
The following sample coding could be used to catalog the GFX, GJP and 
SGJP cataloged procedures in the procedure library (SYS1.PROCLIB) after 
system generation, using the IEBUPDTE utility program. The example 
assumes that two telecommunication lines (with the addresses 024 and 
025) will be used for SGJP operations. The use of the IEBUPDTE utility 
program is fully explained in the publication IBM System/360 Operating 
System: Utilities, GC28-6586. 

r---------------------------------------------------------------------, 
//UPDATE JOB 

// EXEC PGM=IEBUPDTE,PARM=NEW 

//SYSPRINT DD SYSOUT=A 

//SYSUT2 DD DSNAME=SYS1. PROCLIB, DISP=OLD 

//SYSIN DD DATA 

./ ADD LIST=ALL,NAME=GFX,LEVEL=OO,SQURCE=O 

./ NUMBER NEW1=10,INCR=10 
(GFX cataloged procedure) 

• / ADD LIST=ALL, NAME=SGJP024, LEVEL=OO "SQURCE=O 
NUMBER NEW1=10 " INCR=10 

./ 

./ 

./ 

./ 

(SGJP cataloged procedure for first telecommunica­
tion line) 

ADD LIST=ALL,NAME=SGJP025"LEVEL=00 ,SOURCE=O 
NUMBER NEW1=10,INCR=10 

(SGJP cataloged procedure for second telecommuni­
cation line) 

ADD LIST=ALL,NAME=GJP024,LEVEL=00,SQURCE=0 
NUMBER NEW1=10,INCR=10 

(GJP cataloged procedure for first telecommunica­
line) 

ADD LIST=ALL,NAME=GJP025,LEVEL=OO,SQURCE=O 
NUMBER NEW1=10,INCR=10 

(GJP cataloged procedure for second telecommunica-I 
tion line) I 

1 
./ END UP I 

1 
1/* I L ______________________________________________________________________ J 

302 System Programmer's Guide (Release 20.1) 



" I 

CATALOGING AND ALLOCATING SPACE FOR DATA SETS USED BY SGJP 

Four data sets are required for each telecommunication line to be used 
with SGJP. The names of the se da ta sets must be SYS1.DIAnnn" 
SYS1.EXTnnn. SYS1.EXTnnnA, and SYS1.JCLnnn, where nnnnn is the address 
of the specific display unit. The data sets may reside on any 
convenient system volume. The space allocations and cataloging may be 
accomplished by using the IEHPROGM utility program. The amount of space 
to be allocated depends on user job definition requirements. However, 
the following allocations are suggested for most graphics programs. 

Data Set Name 
SYS1.DIAnnn 
SYS1.EXTnnn 
SYS1.EXTnnnA 
SYS1.JCLnnn 

Allocation 
SPACE=(TRK, (5,5» 
SPACE= (TRK, (5,5» 
SPACE=(TRK. (5,,5» 
SPACE= (TRK. (5,,5» 

The following sample coding could be used to allocate space and 
catalog the data sets using IEHPROGM. The use of the IEHPROGM utility 
program is fully explained in the publication IBM System/360 Operating 
system: utilities, GC28-6586. 

r----------------------------------------------------------------------, 
Illjobstep JOB 
II/STEP EXEC 
I/SYSPRINT DO 
//DIA024 DO 

I/EXT024 DD 

/IEXT024A DO 

//JCL024 DO 

IISYSIN DD 

1/* 

PGM=IEHPROGM" PARM=NEW 
SYSOUT=A 
DSNAME=SYS1.DIA024, VOLUME=(, RETAIN"SER=111111), 
UNIT=SYSDA,DISP= (, KEEP) " SPACE= (TRK, (10,,5» 
DSNAME=SYS1. EXT024. VOLUME= (, RETAIN. SER=llllll). 
UNIT=SYSDA,DISP= (, KEEP) • SPACE=(TRK, (20,5» 
DSNAME=SYS1.EXT024A, VOLUME= (" RETAIN,SER=llllll), 
UNIT=SYSDA,DISP=(" KEEP), SPACE=(TRK, (20,5» 
DSNAME=SYS1. JCL024. VOLUME= (" RETAIN" SER=111111), 
UNIT=SYSDA, DISP=(" KEEP), SPACE=(TRK" (5,5» 
(DD statements in the above formats to allocate 
space for the same data sets for each telecommuni­
cation line to be used for SGJP operations.) 

* CATLG CVOL=SYSDA=111111,VOL=SYSDA=111111. 
DSNAME=SYS1.DIA024 
CATLG CVOL=SYSDA=111111,VOL=SYSDA=111111, 
DSNAME=SYS1.EXT024 
CATLG CVOL=SYSDA=111111,VOL=SYSDA=111111, 
DSNAME=SYS1.EXT024A 
CATLG CVOL=SYSDA=111111.VOL=SYSDA=111111, 
DSNAME=SYS1.JCL024 
(CATLG statements in the above formats to catalog 
the data sets for the other telecommunication 
lines. ) 

x 

x 

x 

x 

L _____________________________________________________________________ _ 

satellite Graphic Job Processor Procedures 303 



304 System Programmer's Guide (Release 20.1) 



,/ 

Indexes to systems reference library 
manuals are consolidated in the publication 
IBM System/360 Operating System: systems 
Reference Library Master Index., Order 
GC28-6644. For additional information 
about any subject listed below, refer to 
other publications listed for the same 
subject in the Master Index. 

& 
see: symbolic parameters 

ABEND 
asynchronous exit from (STAE) 185 

Accounting information 
available to user 53 
how to process 51-58 
under GJP 288-290 
under SGJP 295-296 

Alias name 
used to read a block from the 
catalog 18 

used with an index level 21 
Allocation characteristic 

in PRESRES list 140 
with shared DASD 268 

Appendages 
in EXCP 83-87 
Rollout/Rollin 254-257 

ASB (Automatic SYSIN Batching) 
additional parameter field 
entry 247, 248 

data blocking for processors 250 
emulator support parameter 247 
IEFVMA ASB reader program 247 
in processor programs 250 
job control statements 249 
MCS commands control 

(baaa parameter) 249 
SYSIN procedure for 248 

Asynchronous exit processing 
CIRB system macro instruction 182 
STAE system macro instruction 184 

ATLAS 
macro instruction 108 
error locations processed 109-110 
processing 109.,110 
return codes 110-112 

ATTACH macro instruction 
optional parameters 190-191 
use in time slicing 279,280 

BLDL 
feature of resident routines option 
(nucleus resident Link library and SVC 
library directory entries) 141,148 

list IEABLDOO 148 
Block characters 

as output separators 201-208 

Blocking 
of data for processors 250-251 
of Procedure library 252 

bpptttooommmiiicccrlssssssssaaaaef 

Index 

PARM field in the EXEC statement of the 
cataloged reader procedure 216-221 

CAMLIST macro instruction 
used in cataloging, VTOC 

maintenance 15-30 
Catalog (SYSCTLG) 

entries and blocks 31-34 
index 

how to build 19 
how to delete 20 

index name used to read a block from 16 
reading, maintaining 15-24 
sharing 266 

CATALOG macro instruction 
use in cataloging 15-24,29,30 

Cataloging a data set 23 
Channel program 

use in EXCP 79,81-83 
CHAP macro instruction 

use in time slicing 219,280 
Characteristics of volurnes 

PRESRES list 140-142 
shared DASD 268 

Checkpoint/restart 
consideration for initiator queue 
records (JOBQLMT) 167,170 

consideration for RAM list 150 
CIRB system macro instruction 182 
CLOSE macro instruction 

in EXCP 98 
Composite console 

consideration for RAM list 150 
Control characters 

printer 197,202 
punch 197,200 

Control vol urnes., how to 
connect 21 
disconnect 22 
mount., include in initiator 221 

CPP (Concurrent periphereal processing) 
IEFDATA DO statement 213,221 

Data blocking 
in SYSIN and SYSOUT for processors 250 
(see also: ASB) 

Data set 
delete from catalog 23 ~. 
delete from VTOC 24 ~ 
enter in catalog 23 
label 

in IECDSECT 63 
protection 130-138 
recatalog 24 
rename in V'l'OC 27 
writer 
see: SYSOUT 

Index 305 



DCB (Data Control Block) 
in IECDSECT 63 
macro instruction, macro expansion in 

EXCP 89-96 
use in EXCP 80 

DDR 
dynamic device repositioning, 

use in EXCP 90,94 
DEB (Data Extent Block) 

in IECDSECT 63 
use in EXCP 81,101 

Dedicated data sets 
see: Pre-allocated data sets 

Defective track recovery 
see: ATLAS 

DEQ macro instruction 
see: ENQ, DEQ macro instructions 

Device Codes 
control characters 200,202 
used by DEVTYPE macro 
instruction 175-178 

used by SYSOUT writer 195 
used in catalog volume list pointers 35 
used in PRESRES volume characteristics 
list 140 

DEVTYPE system macro instruction 175-178 
Direct SYSOUT writer 

see: DSO 
DOS initialized volume 

use in OS 28 
DSCB (Data Set Control Block) 

in IECDSECT 64 

000 
reading from VTOC 25 

effect on separator 205,207 
effect on writer 291 
procedure 242,246 

ECB (Event control block) 
in IECDSECT 62 
use in EXCP 81,100,101 
use in XDAP 119,120 

Emulation 
of 7094 on model 85 

ASB reader parameter 249 
Emulator support 

character in ASB procedure parameter 
field 248,249 

ENQ, DEQ macro instructions 
must complete function 

(SMC, RMC) 74-75 
use by IEFWAD accounting data set 
writer 59 

use to share DASD 269-276 
EOV macro instruction 

in EXCP 97 
in XDAP 119 

EXCP processing 
appendages 83-89 

(see also: Rollout) 
channel program 79,81-83 
control blocks 80,81 
description 78-103 
entries in trace table 125-126 
EXCP macro instruction 96 
macro instructions 89,98 

306 System Programmer's Guide (Release 20.1) 

EXCP processing (continued) 
RESTORE, PURGE macro 

instructions 102-107 
rollout appendages 254-259 
standard access methods data 

management 79 
EXTRACT macro instruction 

use to share DASD 272 

FCB (see Forms Control Buffer) 
File label 

in IECDSECT 62 
Forms Control Buffer 263 

Generation data set 
consideration in initiator queue 
records 168,169 

name used to read a block from the 
catalog 17 

Generation index 
how to build 20 

GFX (Graphics Interface Task) 
see: GJP 

GFXEXEC EXEC statement 
in GFX, GJP procedure 284,285 
in SGJP procedure 299 

GJP (Graphic Job Processor) 
(see also: SGJP) 
accounting facility 288-290 
description 284-291 
GFX cataloged procedure 284 
GJP cataloged procedure 285 
GJP invoked procedure 289 
procedure under SGJP 299,300 

GJPEXEC EXEC statement 
in GJP procedure 285 
in SGJP procedure 299 

IEABLDOO 
resident BLDL list 148 

IEAIGGOO 
RAM list 151 
RERP list 154-156 

lEAQAPG 
rollout appendages 254-257 

IEARSVC 
RSVC list 154 

IECDSECT system macro instruction 62-66 
IECPCNVT 

TTR address conversion routine 121 
IEECUCM 

message routing DSECT 47,48 
IEECVCTE 

message routing exit routine 49 
IEECVXIT 

WTO, WTOR message routing exit 
routine ·47 

IEFACTRT 
accounting routine 52 

IEFDATA DD statement 
ASB procedure 247,249 
GJP, SGJP procedure 285,299 
restart CPP data set 225 
SYSIN output (CPP) data set 225 

IEFIRC 
SYSIN reader program 216 



IEFJFCBN macro instruction 70,71 
IEFPDSI DD statement 

ASB procedure 246 
GJP, SGJP procedure 285,299 
restart procedure library 225 
SYSIN procedure library 225 

IEFPROC EXEC statement 
ASB procedure 246 
initiator procedure 226 
restart procedure 223 
SYSIN procedure 216 

IEFRDER DD statement 
ASB procedure 245 
GJP, SGJP procedure 285,299 
restart procedure 225 
SYSIN procedure 221 
SYSOUT procedure 236 

IEFREINT 
restart reader procedure 223 

IEFSD060 
initiator program 226 

IEFSD070 
use with SYSOUT writer 199 

IEFSD080 
SYSOUT writer program 239 

IEFSD095 
Block character output separator 
routine 207,208 

IEFUCBOB macro instruction 67-69 
IEFVMA 

ASB reader program 247 
IEFVRRC 

restart reader program 223 
IEFWAD 

accounting data set writer 56-58 
(see also: lKAACCTG - GJP accounting 
routine) 

IEFYS 
message routine, use with accounting 

information 55 
IGCnnn 

SVC routines 39 
lKAGFX 

GFX (Graphics Interface Task) 
routine 298 

lKAGJP 
GJP (Graphic Job Processor) routine 300 

lKAACCTG 
GJP accounting routine 288-290 
SGJP accounting routine 295,296 

IKDINPRO 
SGJP routine 299 

I Image Library 263 
Index level 

name used to read a block from the 
catalog 16 

INDEX macro instruction 
used in cataloging 15-23,,29,30 

INIT 
initiator procedure 226 

INITD 
pre-allocation (dedication) initiator 
procedure 231 

Initiator 
cataloged procedure 226 
control volumes DD statement 228 
INIT procedure 226 
INITD procedure 231 

Initiator (continued) 
job force priority 226 

(see also: SYSIN job default 
priority) 

job priority limit 226 
job queue records 167-170 
pre-allocation (dedication) of data 
sets 229 

terminator job queue records 171 
use of symbolic parameters 246 

In-stream procedures 
testing of procedures before 
cataloging 212 

lOB (Input/Output Block) 
in IECDSECT 62 
use in EXCP 80,98-100 
use in XDAP 120 

I/O interruption 
entry in trace table 126 
processing in EXCP 82 

I/O supervisor 
appendages 83-89 
processing in EXCP 78-83 

IRB 
CIRB system macro instruction 182 

JFCB (Job Fi Ie ContI:'ol Block) 
in IECDSECT 62 
in IEFJFCBN 70,71 
reading, modifying before OPEN 181 

Job queue 
WTP records 170 

Job queue format 
initiator queue records 

(JOBQLMVT) 167-169 
logical track size (JOBQFMT) 167 
MFT, MVT 164-167 
PCP 164,165 
resident job queue (PCP) 164,165 
SYS1.SYSJOBQE data set 164-167 
terminator queue records (JOBQTMT) 164 

Job queue logiGal track 
see: job queue format 

LNKLSTOO 
Link library list 162 

Link library 
concatenation with other data sets 

(LNKLST) 162 
directory entries in nucleus (BLDL 

feature) 147,148 
list of concatenated data sets 

(LNKLSTOO) 162 
nucleus resident directory entries (BLDL 

feature) 148 
nucleus resident modules (MFT) 152 

Link pack area 
use in MVT 157-161 

LOCATE macro instruction 
use in cataloging 1~-24,28,29 

Logical track 
see: Job queue formatting 

M65MP 
time slicing 
shared DASD 

280 
266 

• 
Index 307 



Macro instructions 
described in this publication 174 

MCS (Multiple Console support) 
ASB reader program control of commands 

(baaa entry in PARM field of ASB 
EXEC statement) 249 

characteristics 46 
consideration for RAM list 149 
consideration for RSVC list 153 
message routing exit routines 45-49 
SYSIN control of commands 

(aaaa entry in PARM field of reader 
EXEC statement) 219 

Message 
in IECDSECT 62 

Message routing 

MFT 

MCS exit user routines 
How to write, how to add 45,49 

job queue format 164,165 
resident routines options 146,154 
system output writer 

user routines 194 
Model 195 

use of EXCP 78 
MSGCLASS 

default value 220 
MVT 

job queue format 166-171 
resident routines option (Link pack 
area) 157-162 

system output writer 
user routines 194 

Mount characteristic 
in PRESERES list 140 

Must complete 
function of ENQ, DEQ macro 
instructions 74-76 

RMC operand of DEQ 76 
SMC operand of ENQ 74 

OBTAIN macro instruction 
use with VTOC 25-30 

OPEN macro instruction 
after modifying a JFCB 180 
in EXCP 96 
in XDAP 117 

Output, output writer, output separator 
see: SYSOUT 

Parameter field of SYSIN reader procedure 
see: SYSIN 

Password data set (PASSWORD) 

PCP 

key area, data area of password 
record 130 

READPSWD module of the SVC library 130 
SCRATCH, RENAME 131,133 
use of 130-134 

job queue format 164,165 
resident routines options 146,154 

Pre-allocated data sets (Dedicated data 
sets) 

How to pre-allocate (dedicate) a data 
set in the initiator procedure 229 

how to use a pre-allocated (dedicated) 
data set in your job step 230 

308 System Programmer's Guide (Release 20.1) 

Pre-allocated data sets (dedicated data 
sets) (continued) 

disposition by allocation/termination 
235 

pre-allocation (dedication) of library 
data sets 234 

pre-formatted (cataloged) procedure 
INITD used with processors 231 

processor use of pre-allocated 
(dedicated) data sets 234 

PRESRES 
allocation characteristic 140 
default value 140 
effect of OFFLINE 142 
member of SYS1.PARMLIB 142 
mount characteristic 142 
volume characteristic 140-142 

Priority 
dispatch priority of SYSIN reader 217 
force value in initiator procedure 
in time slicing 280,281 
job default (pp parameter) 217 
limit in initiator procedure 227 

Procedures (Cataloged procedures) 
see: SYSIN, SYSOUT, Initiator, 

pre-allocated (dedicated) data sets 
Processors 

data blocking for 252 
Protected data set 

see: Password data set 
PROTECT macro instruction 

maintaining the password data set 
133-138 

number of records for each protected 
data set 133 

programming conventions 134-135 
protection mode indicator 134 
return codes 138 

PURGE macro instruction 
use in EXCP 104-106 

PURGE parameter 
in STAE macro instruction 185 

Queue records 
see: Job queue format 

QUIESCE parameter 
in STAE macro instruction 185 

RAM list 
see: Resident routines 

RDJFCB 180 
RDR, RDR400, RDR3200 

SYSIN procedures 213-225 
Reader 

see: SYSIN 
Reader/Interpreter cataloged procedure 

see: SYSIN 
Reading a JFCB 

use of system macro instructions 180 
Reenterable modules 

residency options 
PCP, MFT 149-152 
MVT 157-161 

Relative track address 
see: TTR 



'1 
J 

RENAME macro instruction 
use in VTOC maintenance 25-30 
use with password data set 131,133 

RERP 
PCP, MFT 146 
MVT 154,155 
example of list 156 
IEAIGEOO 158 

RESDEQ 
illustrative subroutine 275,276 

RESERVE macro instruction 
use to share DASD 270,271 

Reserving queue records 
see: Job queue format 

Reset-must-complete (RMC) 
see: Must complete 

Resident .access method (RAM) modules 
resident routines option 149-153 

I Res ident BLDL tabl e 
resident routines option 147,148 

Resident job queue (PCP) 164,165 
Resident Link library modules 

resident routines option (MFT) 152 
Resident reenterable modules 

access method modules 149-152 
Link library modules (MFT) 152 

Resident routines 
access method modules 

PCP. MFT 149-153 
MVT 157-161 

all options tabluation (PCP, MFT, 
MVT) 146 

error processing routines 154,156 
Link library modules 

MFT 153 
MVT 157 

Link list option (LNKLSTOO) 162 
MVT options 157-161 
nucleus resident Link library directory 
entries (BLDL feature) 148,149 

nucleus resident options (PCP, 
MFT) 146-154 

options tables (PCP, MFT, MVT options) 
146-154 

PCP. MFT options (nucleus resident 
options) 146-154 

checkpoint/restart consideration 
composite console consideration 
IEAIGGOO 151 
MCS consideration 151 
use of 

PCP, MFT 149-151 
MVT 157-161 

resident access method (RAM) modules 
option 

PCP. MFT 149-151 
MVT 157-161 

resident BLDL table option 
PCP. MFT 147,148 
MVT 157-161 

resident Link library modules 
MFT 152 
MVT 157-161 

resident SVC routines 
PCP, MFT 153,154 
MVT 157-161 

RSVC list 
IEARSVOO 154 

150 
150 

RSVC list (continued) 
use of 

PCP, MFT 153,154 
MVT 157-161 

SVC library modules 
see: RSVC list 

Resident SVC routines 
see: Resident routines 

RESTORE macro i nstructi on 
use in EXCP 103 

Rollout 
appendages 254-259 
flag (b parameter) in PARM field of 

SYSIN reader procedure 221 
RSVC list 

resident routines option 
PCP, MFT 154 
MVT 157-159 

SCRATCH macro instruction 
use in VTOC maintenance 25-30 
use with password data set 131,133 

set-must-complete (SMC) 
see: Must complete 

SGJP (Sattelite Graphic Job Processor) 
accounting facility 295,296 
cataloged procedure 294 
description 295-302 
invoked procedure 294 
system initialization for SGJP 297 

Shared DASD (Direct Access Storage Device) 
description 266-272 
non-sharable data sets 266 
use of DEQ, ENQ, RESERVE, SMC 269 
volume characteristics 268 

SIO instruction 
entry in trace table 126 

SMC 
see: Must complete 

Spooling 
see: CPP 

STAE system macro instruction 184 
I STAI 187 

SVC interruptions 
entry in trace table 126 
in SVC routines 38 

SVC routines 
characteristics 38 
how to write. how to add 37-43 
programndng conventions 38-42 

symbolic parameters 
use in cataloged procedures 246 

SYNCH macro instructions 183 
Synchronous exit processing 

SYNCH macro instruction 183 
SYSIEFAR 

Enqueued on by IEFWAD 59 
SYSIN • 

ASB reader procedure 248 • 
blocking of data for processors 248 
BLP option processing 

(1 parameter) 218 
bpptttooommmiiicccrlssssssssaaaaef 
parameters 

of the EXEC statement 216-220 
cataloged procedures 215-227 
command processing (r parameter) 218 
data set integrity 215 

Index 309 



SYSIN (continued) 
dispatch priority of reader program 

(iii parameter) 217 
EXEC statement 216 
job default priority 

(pp parameter) 217 
job step default region size (ccc 

parameter) 217 
job step default time (ttt 
minutes) 217 

MCS commands control (aaaa 
parameter) 218 

MSGLEVEL default value 
(ef parameter) 220 

PARM field in the EXEC statement 
ordinary reader 216 
ASB reader 248 

RDR, RDR400, RDR3200 
procedures 214-225 

restart procedure IEFREINT 223 
rollout flag (b parameter) 217 
SYSOUT default device (ssssssss 
parameter) 218 

SYSOUT tracks default allocation 
primary (000 parameter) 217 
secondary (mmm parameter) 217 

Use of symbolic parameters 247 
SYSJOBQE 

see: SYS1.SYSJOBQE 
SYSOUT 

blocking of data for processors 252 
control characters 

printer 202,206.208 
punch 200,206,208 

data set integrity 
lack of 213 

output separator 
block characters (IEFSD095) 204 
MFT, MVT 205-208 
PCP 208 

record format translation 202 
translation control 201-203 
use of symbolic parameters 247 
user writer routines 194-199 

system initiator 
see: Initiator 

system reader 
see: SYSIN 

system writer 
s·ee: SYSOUT 

SYS1.ACCT 
accounting data set 55,58 

SYS1.GJP 
GJP data sets 300 

SYS1.IMAGELIB 263 
SYS1.LINKLIB 

see: Link library 
SYS1.PROCLIB 

Blocking 252 
SYS1.SAMPLIB 

sample accounting routines 55 
SYS1.SYSJOBQE 

job queue data set (MFr, MVT) 167-171 

310 System Programmer's Guide (Release 20.1) 

TCB, TIOT, UCB 
reference thru use of the EXTRACT macro 
instruction 273-276 

Time slicing 
description 278-281 
effect of ATTACH and CHAP in 

MFT 280 
job, step priority 280,281 
M65MP 278 
use of ATTACH and CHAP 280,281 

Tracing routine 126,128 
Track errors 

see: ATLAS 
TTR (Relative track address) 

conversion to and from absolute 
address 122 

used to read a block from the 
catalog 18 

TYPE=J 
operand of OPEN 180 

UCB (Unit Control Block) 
in DEVTYPE macro instruction 175 
in IEFUCBOB macro instruction 67-69 
in RESERVE macro instruction 270 
reference in TIOT with EXTRACT macro 
instruction 271,272 

IUCS (Universal Character Set) 
image on SYS1.IMAGELIB 260-262 

USASCII 
in JFCB macro definition 70 
in UCB macro definition 67-69 
restrictions against use in SYSIN data 
sets 216 

Volume characteristic 
in PRESRES list 140-142 
shared DASD 268 

Volume label 
in IECDSECT 62 

VTOC (Volume Table of Contents) 
maintenance 25-30 

Writer 
see: SYSOUT 

WTO, WTOR macro instructions 
use in processing accounting 

information 55 
user exit routine in message 
routing 46-49 

WTP (Write to programmer) 
record requirements in job queue 170 

XDAP processing 
channel program 120 
control blocks 119,120 
description 116-124 
macro instructions 116-118 
TTR conversion 117,118 



-



GC28-6550-9 

International Business Machines Corporation 
Data Processing Division 
1133 Westchester Avenue, White Plains, New York 10604 
[U.S.A. only] 

IBM World Trade Corporation 
821 United Nations Plaza, New York, New York 10017 
[International] 

<;) 
c 
c.: 
III 

VI 
W 
0-o 
I 

I'.) 

.9 

~ 
a 
III 
c... 
:s 
C 
in 
> 
G'> 
() 

~ 
I 
0-
01 
01 
o 
I 
-0 



IBM System/360 Operating System 
System Programmer1s Guide 

READER'S COMMENT FORM 

Order No. GC28-6550-9 

Please use this form to express your opinion of this publication. We are interested in your 
comments about its technical accuracy, organization, and completeness. All suggestions 
and comments become the property of IBM. 

Please do not use this form to request technical information or additional copies of publications. 
All such requests should be directed to your IBM representative or to the IBM Branch Office 
serving your locality. 

• Please indicate your occupation: 

• How did you use this publication? 

D Frequent Iy for reference in my work. 

D As an i ntroducti on to the sub ject • 

D As a textbook in a course. 

D For specific information on one or two subjects. 

• Comments (Please include page numbers and give examples.): 

• Thank you for your comments. No postage necessary if mailed in the U.S.A. 



GC 28-6550-9 

YOUR COMMENTS, PLEASE ... 

This manual is part of a library that serves as a reference source for systems analysts, 
programmers and operators of IDM systems. Your answers to the questions on the back 
of this form, together with your comments, will help us produce better publications for 
your use. Each reply will be carefully reviewed by the persons responsible for writing 
and publishing this material. All comments and suggestions become the property of mM. 

Note: Please direct any requests for copies of publications, or for assistance in using your 
IBM system, to your IBM representative or to the mM branch office serving your locality. 

Fold 

BUSINESS REPLY MAIL 

NO POSTAGE STAMP NECESSARY IF MAILED IN THE UNITED STATES 

Attention: Programming Systems Publications 

Department 058 

Fold 

POSTAGE WILL BE PAID BY ••• 

IBM Corporation 

P.O. Box 390 

Poughkeepsie, N.Y. 12602 

International Business Machines Corporation 
Data Processing DiVision 
1133 Westchester Avenue, White Plains, New York 10604 
[U.S.A. only] 

IBM World Trade Corporation 
821 United Nations Plaza, New York, New York 10017 
[International] 

Fold 

FIRST CLASS 
PERMIT NO. 81 
POUGHKEEPSIE, N. Y. 

Fold 

» 
0' 
::J 

co 

c: 
::J 
It 

Vl 

~ 
(!) 

~ 
o 
o 
Vl 

Vl 
'j; 
en 
3 

" o 
co a 
3 

~ 
",-

G) 
() 
"-> 
CD 

&-
<.n 
<.n 
o 
I 
-0 


