Systems Reference Library

IBM System/360 Operating System:

System Programmer’'s Guide

This publication consists of self-contained
chapters, each of which provides information on
how to modify, extend, or implement capabilities
of the IBM System/360 Operating System control
program. It is designed primarily for system
programmers responsible for maintaining,
updating, and extending the operating system
features.

Topics:

Catalog and VTOC Maintenance

Adding SVC Routines

Message Routing Exit Routines

Adding Accounting Routines

IECDSECT, IEFJFCBN, and IEFUCBOB Macro
Instructions

The Must Complete Function of ENQ/DEQ

The EXCP Macro Instruction

The XDAP Macro Instruction

The Tracing Routine

Implementing Data Set Protection

PRESRES Volume Characteristic List

Residency Options and Link Pack Area

Job CQueue Format

System Macro Instructions

Adding System Output Writer Routines

Output Separation

System Reader, Initiator, and Writer
Cataloged Procedures

Writing Rollout/Rollin Appendages

Adding a UCS Image to the System Library

The Shared Direct Access Device Option

The Time Slicing Facility

Graphic Job Processor Procedures

Satellite Graphic Job Processor Procedures

File No.
Order No.

S360-20
GC28-6550-9

0S

Preface

This publication consists of self-contained
chapters, each of which provides
information on how to modify, extend, or
implement capabilities of the IBM
System/360 Operating System control
program. Although the information in one
chapter is sometimes related to information
in another, all chapters have been written
as separate and complete units. It is
assumed that users of this publication are
thoroughly familiar with the design of the
operating system and its features. Each
chapter contains its own introductory
section and list of prerequisite
publications. This organization has been
used to reduce cross-referencing and to
facilitate the addition of new chapters.

Ninth Edition (June, 1971)

This is a major revision of, and obsoletes, GC28-6550-8 and
Technical Newsletter GN28-2437, GN28-2452, and GN28-2456.
Changes to the text and changes to illustrations are
indicated by a vertical line to the left of the change.

This edition applies to release 20.1 of IBM System/360 Operating
System, and to all subsequent releases until otherwise

indicated in new editions or Technical Newsletters. Changes

are continually made to the information herein; before using
this publication in connection with the operation of IBM
systems, consult the latest IBM System/360 SRL Newsletter,

Order No. GN20-0360, for the editions that are current and
applicable.

Requests for copies of IBM publications should be made to
your IBM representative or to the branch office serving your
locality.

A form for readers' comments is provided at the back of
this publication. If the form has been removed, comments may
be addressed to IBM Corporation, Programming Systems
Publications, Department D58, PO Box 390, Poughkeepsie, N. Y.
12602

| © Copyright International Business Machines Corporation 1966,1967,1968,1969,1970,1971

Contents

SUMMARY OF MAJOR CHANGES . <« « « ¢ o o o o s o s s s s o « o« o o« » « 11
| Release 20.1 (GC28-6550-9) « = & o o = o o = o o o o = o« = a = « « . 11
Release 20 (GC28-6550-8) 2 ¢ « o o o o o s = s s s = « a s » o« « o« « 12
MAINTAINING THE CATALOG AND THE VOLUME TABLE OF CONTENTS . « 15
How to Read a Block From the Catalog <« ¢ & &« « « o« « « - « 16
-By Specifying the Name of an Index Level or Data Set 16
-By Specifying the Name of a Generation Data Set « . . 17
-By Specifying a Name Using an Alias .« « ¢ « o« « « o« o o« « « « « 18
-By Specifying DY TTR . ¢ o o o o« o o o o « a o « o« o o o« o« o » o 18
How to Build an IndeX « « ¢ o o o o o o o o = o =« o « « « =« « « « « 19
How to Build a Generation IndeX « . « ¢ o o o« o o o o o o« =« « a o« « 20
How to Delete an INdEX =« o « o o o o o o o« o = a o« s s =« a o« = a « 20
How tO AsSsign an AliasS .« « o o o o o @ o 2 « o a =« 2 o o« = « o« = & 21
How to Delete an AliasS « ¢ o o ¢ o o o o o o o a 2 s @« « = o« « » o 21
How to Connect Control Volumes . ¢« o o o o o o o« « « =« =« = « = o « 21
How to Disconnect COntrOl VOlUMES « « o o o o o s o s = o s « o o o 22
How to Catalog a Data S€t ¢« « e o o« o o « o « = « « « =« « « a « =« « 23
How to Remove Data Set References From the Catalog « . . 23
How to Recatalog a Data Set « o e e - « - o 24
How to Read a Data Set Control Block From the Volume Table of
Contents e e o e o e = @ @ 8 = e o o o @ o o = o a 25
How to Delete a Data Set @ e s o s & » e s = e e e s e s e o o « o 25
How to Rename a Data Set e o e e s o o o o 27
How to Share Space on a Volume In1t1al1zed Under DOS e = « e o s - o 28
Catalog and VTOC MacrO Instructions .« . « 2 o ¢ o o« o« o o 2 = « « = « 29
Return Codes of Catalog and VTOC Macro Instructions 30
Appendix A: Catalog Block Entries . « o« o o ¢ o o o o « o o « & « « 31
Control ENtries o v o o o o o o o o o o« o o o o o o « « =« « « o« = 31
Pointer Entries . . . - e o o e @ o e o e o = e s o o o = o 32
The Volume Control Block Contents e o o e o e s s e e = e e e o o 34
Appendix B: Device Code Designations . « « « ¢« ¢« ¢« o« o o « « « « « « 35
ADDING SVC ROUTINES TO THE CONTROL PROGRAM . . . 4 @« o = « « o o« « « 37
Writing SVC Routines . . . e @ a @ @ s o s s o e a2 e e s« s e o o = 38
Characteristics of sSvC Routlnes @ @ e o e o o e o = o e o e« o« o o 38
Programming Conventions for SVC Routines . . . ¢ « &« « « « « « . 38
Inserting SVC Routines Into the Control Program . . . « « « « « « « . U43
Specifying SVC ROULINES 4 o o o o 2 o o o « o o o « o = o « = « o« U3
Inserting SVC Routines During the System Generation Process . . . 43
MESSAGE ROUTING EXIT ROUTINES . « o« « o « o o « « o o s o« = o « o « o« U5
Characteristics Of MCS . ¢ ¢ 4 & ¢ ¢ ¢ o o o o o = = o o =« « =« =« « « U6
Writing a WITO/WTOR ExXit ROULINE « & o & & o o ¢« o o« o« o o o o« « o« « « U6
Programming Conventions for SVC Routines . . . ¢« ¢ o« o « o o« « « - U7
Messages That Don't Use Routing Codes . « o« o o o « o « « « « « . U9
Adding a WTO/WTOR Exit Routine to the Control Program 49
Inserting the WTO/WTOR Exit Routine . . . ¢ . . ¢ o o « « o« & « o U9
HANDLING ACCOUNTING INFORMATION o o ¢ ¢ o « o« « o = 2 o e« o« o =« « = « 51
Accounting ROULINES < o o « o o o o o o o o e« « o« « a o o« o« = « o » « 52
Prerequisite Actions . ¢ 4 ¢ ¢ ¢ ¢ 4 4 4 4 4 4 4 e e o e o « a o - 52
Accounting Routine CONVeNtiONS =« « o « o « o « o = « o = « =« o « o &« 52
CSECT Name and Entry POInt .« « o o o o o o o o « o o« s o« =« « « « « 52
Register Saving and ResStOring . . ¢ v ¢ ¢ o ¢ 2 o o« = « =« s o o « « 52
Input Available to Accounting Routines . « « « « « « o o « « « « o« « 53
Output From Accounting Routines . « . . . e« e o o e s o o o o « 55
Inserting an Accounting Routine Into the Control Program . . « « « « 56
Appendix: Accounting Data Set Writer &« ¢ ¢ ¢« « « &« « - . 58

Contents 3

IECDSECT, IEFJFCBN, AND IEFUCBOB MACRO INSTRUCTIONS
IECDSECT Macro Instruction . .
IECDSECT Macro Definition .
IEFUCBOB Macro Instruction . .
IEFUCBOB Macro Definition .

e & ®© o e e o o

IEFJFCBN Macro Instruction .
IEFJFCBN Macro Definition

-
-
.
-
o

THE MUST COMPLETE FUNCTION . « ¢ o o o o o
Requesting the Must Complete Function . .
Operating Characteristics . « « o« « o « =«
Programming NOteS « o e o o o o o o o o =
Terminating the Must Complete Function .

o 8 s & »
.
. p
s & s & o
e & 8 & @

EXECUTE CHANNEL PROGRAM (EXCP) MACRO INSTRUCTION
Use of EXCP in System and Problem Programs . .
EXCP Requirements « « o o« « o o o« o« o o &«
Channel Program « « o« « o« « o « o o =
Control BLOCKS « o o o o o « « o« o o &«
Channel Program EXecUtiOn « « o « o« « < o « o e o
Interruption Handllng and Error Recovery Procedures
Appendages . o« . o o . « o @ @ = @
Start Input/Output (SIO) Appendage . . .
Program Controlled Interruption (PCI) Appendage
End-of-Extent Appendage « « ¢« o ¢ « 2 o o « «
Channel End Appendage « « « «

EOV -- End of Volume . « « « « o .
CLOSE =-- Restore Data Control Block .
Contrel Block Fields . &« « « -
Inputs/Output Block Fields . . .
Event Control Block Fields . .
Data Extent Block Fields . . .« o

o

Abnormal End Appendage .« « « o o o« ¢ o o o o

EXCP Programming SPecifications e e o o s o o o =
Macro Instructions . . - « e & & = -
DCB -- Define Data Control Block for EXCP . . .
OPEN -- Initialize Data Control Block

EXCP -- Execute Channel Program . . - .« .

Appendix: RESTORE and PURGE Macro Instructi
RESTORE Macro Instruction . « « « « « o &«
PURGE Macro Imstruction . . . o . .« . -

ATLAS -- Assign an Alternate Track and Copy Data From

TracCKk « o o o » 2 « o o« o s = o s o s o o &«
ATLAS Macro Instruction . . « « « « o « =«
Use Of ATLAS &« « o « o = o o = o o« o o =
Operation of the ATLAS program -«
RetUrn COGES « « o « o = s o s » a s o s a s o o =

e s o s o
e o s & 8 o s o

s @ % & & 0 0

‘+
=3
(1]

EXECUTE DIRECT ACCESS PROGRAM (XDAP) MACRO INSTRUCTION

Requirements for Execution of Direct Access Program .
XDAP Programming Specifications . .
The XDAP Control Block
Input/Output Block (IOB) . . .

e @ e @ e @ e
-

XDAP Options .« « o o o o o « o «
Appendix: CVT Macro Instruction

HOW TO USE THE TRACING ROUTINE .

DATA SET PROTECTION ¢ « o o o « o o o « o o o « = =
DATA SET PROTECTION ¢« 2 o o « « o o o © s o o « = @
Password Data Set Characteristics and Record Format
Creating Protected Data S€tS .« o« « o o o « o o o =
Protection Feature Operating Characteristics . . .

4 System Programmer's Guide (Release 20.1)

[] s 8 & & & o

& & & & & & @

L]
é
e & 8 [.
a8 & o 8
[

@ & @ » g o
s o & 8 5 o
o« & o v & o
s 8 & 0 3
" & 8 s s 8

¢ & 8 5 o 5 8 8 &+ » @
LI Y I I N I I I
" s e 8 8 s 8 8 3 s s

e & 8 8 & @ 8 4 0 » s 0 & s s s 0 o
e o 8 o ¢ s o

Defective

s & & 0 a2 & ,

8 8 o 3 8 o

¥ o 8 8 b s 9
a b o 8 @
N

¢ s 8 8 o
s o s o &
s s s & o
s & o o &
e & s s &

a5 & o s s 8
[=))
~

s s o s 8 @
~
O

s s .
W mw
ANAWN

s & s 8 & o2 0 a2 s s
(o]
=}

Using the PROTECT Macro Instruction to Maintain the Password Data

St v 4 i 4 e e e e e e e e e e e e e e . e e e o e e o o = e o 133
Password Data Set Characteristics and Record Format When You Use
the PROTECT MACTO « o o o « o o o o o o s o o s s « o o o o » o o« 2133
Programming Conventions for the PROTECT Macro Instruction134

THE PRESRES VOLUME CHARACTERISTICS LIST . « ¢ o « « o « o o o « « o 139
PRESRES Entry FOXmat . « o « o o o o o @« o o o s = o o a o o« o« o« o« 2140
Operational CharacteristicCsS . . « ¢ 4o o 2 o o o o« o o o « =« « o« <1841

RESIDENT ROUTINES OPTIONS . . .« « « & « o o o . e o o o 2143
Section 1: Nucleus Resident Library Routlnes (PCP and MFT) e - o o <146
The Resident BLDL Table Option . o« ¢ o o ¢ o o o o o o o o o o « « 147
Selecting Entries for the Resident BLDL Table « . . « « « .147
Table SiZ€ o ¢ & ¢ o o 4 o o o o o a s s o o o o o o« o o o « « 147

Frequency Of US€ < o o o ¢ o o o o o o s o o s = o o o« o = o « 2147

List IEABLDOO . o o« o o ¢ o o e o o o « o s » o a o« o o« o« = =« = « 2148
Suggested Starter List for MVT . . & o 2 ¢ o o o « « = « o o « 1U8

| Suggested Starter List for Time Sharing . « « . . « « « « « . . .148
Resident Reenterable Modules OptiOnsS . . « ¢ o o o « o o « o« « o« « 149
The Resident Access Method Modules Option . « « ¢« « « « « « « « o o149

Consjiderations for Use . . ¢ ¢« o o« o « o« = e e o o o o o o1U9
List IEAIGGOO . v o o o o o o o o o o e o o o o o o e o e e o o151
Resident Link Library Modules Option (MFT) . e e « o o s o o 4152

How to Include the Resident Link Library Optlon in Your System .152

The Resident SVC Routines OptiON .« « o o o « « o o o o o o s « o o« +153

Storage Requirements . ¢ v « o« o « o o o « o « e o o« s o 153

List IEARSVOO v o e o o o« o o o o o o o o « = o o .154

The Resident Error Recovery Procedure Option . . . e o o - o 2154
Storage Requirements . « ¢ o ¢ o o o o o o o o o e o o o o 2155
Creating Parameter Library Lists . . o « o« o ¢ o « o & .155
EXample o ¢ v ¢ o o ¢ o o ¢ o o o o o o o o o o o o e o o o « <156
Example of the ERP option list . . e o s e o o o e « o« = « <156
Section 2: Using the Link Pack Area (MVT) e o e e o e o = o s o - 4157
Procedure for Using the Link Pack Brea . .« « « « « « « « « « « o <157

e o o
.
L]
.
L]
.

List Specification . ¢ ¢ ¢ ¢ ¢ & o ¢ ¢ « o o o o o o o o » « « 158
Operational CharacteristiCsS « « o« 2 o o o o« « « o o « « « o « « 2159
Programming NOLES « « o o o o o o o s o o« s o o« o o o o« o« o« « =« 2160
Example of Link Pack Area Specification . « « « ¢« ¢« ¢ ¢« ¢« « « ¢« o« .160
Section 3: The Link Library List « « o o o o o « o o o s o s s » « 2162
JOB QUEUE FORMAT . . « « « o & - e o o e s o s o 2 s s s = » 163
The Resident Job Queue Option (PCP Only) e o s s s s o e e s s = o o16U
Operational CharacteristicCs « o« o o« o o o ¢ o « o« o « « « « « « .l64
Determining Resident Job Queue Size . . .« &« o« « « o = « « = « « 164

MVT Job Queue FOrmatting .« o o o o o o o o ¢ o o o » o o o o o o« o 2166

Logical Track Size -- JOBQFMT e o e s o e e o s e o s o <167
Reserving Initiator Queue Records -- JOBQLMT e o o o s o o o o o 2167
Number of Generation Data GXOUPS .+ « « « o o o o o o o « « « « 168

Number of Passed Data Sets« . e« o o = » = = « s o = -2168
Number of I/0 Devices for Passed Data Sets e o e e o o s s« s o« 2168
Number Of VOlUNES o o o « o o « o o « o« s o o o« » s « « a o o « 2168
Number Of System MeSSagesS « « ¢ o « o o« « o o « o o o« o o o « o 168
Use of Automatic Restart . ¢ ¢« o o« « o 2 « o « o o o a a « = = 2169
Reserving Write-to-Programmer Queue Records - JOBOWTP170
Reserving Queue Records for Cancellation -- JOBOQTMT . « . . « « . 171
Number Of DEVICES 2 2 ¢ 2 « o o « o o o « s s a s « o o a o o o 2171
Number Of JODS <« o & o e o o o o o o = a s o o« o o o« o s« « « « 2171

SYSTEM MACRO INSTRUCTIONS &« « « ¢ « o @« « = s o @« o« o o o o« » o s @« 2173
System Macro Instructions in This Publication174
Locate Device Characteristics (DEVTYPE) Macro Instruction175
Device Characteristics Information . . . « ¢ ¢ ¢ « « & « « « « 175
Ooutput for Each DeViCe TYPE « « « « o o « o« o o o = = = o o « « <177
Exceptional RELUINS « « « o « o o o o o « = o « =« o « =« « =« =« = 2178

Contents 5

How to Read a Job File Control Block .

OPEN -- Prepare the Data Control Block for Process1ng
RDJFCB -- Read a Job File Control Block (S)

Programming NOteS « « « « o ¢ « «

CIRB -- Create IRB for Asynchronous Exit Processing

.

SYNCH -- Synchronous Exits to Processing Program

SYNCH Macro Definition
STAE -- Specify Task Asynchronous Exit
Programming NOte€sS .« o« « « « & -

Scheduling of STAE and STAI Ex1t and Retry Routines

ATTACH -- Create a New Task . « « . -
IMGLIB -- Open or Close SYSl. IMAGELIB -
QEDIT == @« « o o« ®« o = s« ® @« s » « = =

WRITING SYSTEM OUTPUT WRITER ROUTINES .
Output Writer Functions . « « « « « « &
Conventions to be Followed . . « « « =«

General Processing Performed by Standard Output

Appendi x:
Card Punch Unit . « « « o o o o « =«
Printer Unit . & o 4 o & @« o « = «

OUTPUT SEPBRATION o « o o o o o o o o o
Functions of the IBM Output Separator .
Punch-Destined Output
Printer-Destined Output
Creating an Output Separator Program .
Programming Considerations
Output From the Separator Program .
Using the Block Character Routine .
Output Separators -- PCP . . .« « .
Modifying or Adding Output Separators

Ccontrol Character Transformations

s & 8 & s &

e 8 8 5 a2 0 & 0

SYSTEM READER, INITIATOR, AND WRITER CATALOGED PROCEDURES

Reader/Interpreter Procedures . . « . =«
The EXEC Statement . . « « o« « o .

The PARM Field in the EXEC Statement of the

DD Statement for the Input Stream .

DD statement for the Procedure Library

DD statement for the CPP Data Set .

Reader/Interpreter Procedure Used by Restart

The EXEC Statement
DD statement for the Input Stream .

DD Statement for the Procedure Library

DD sStatement for the CPP Data Set .
Initiator Procedures . « o« o « « » o o«
The EXEC Statement . . « « o« « o =
Additional Initiator Facilities . . .
Mounting Control Volumes in MVT . .
Initiator Action . « o« o« o & o o

DD Statement Formats . - « « « « o
Dedicated Data Sets (MVT) ¢« « « o« «
How to Dedicate a Data Set

How to Get to Use a Dedicated Data Set

Procedure INITD « « 2 « « « o o o o @
The EXEC Statement -

DD Statements for the Dedlcated Utlllty
DD statement for the Loadset Data Set

Reader/Initiator

s & & & 3 &

Data Sets

-

s & o s o

® & ¢ 8 & 8 s W

@ & o o o o

. & o & @

o s 8 4 &

s s 8 e

Use of Dedicated Data Sets By Processor Programs for Ut111ty Data

Sets . . . - o - - . o

System lerary Data Sets as Dedlcated Data Sets

Disposition of Temporary Dedicated Data Sets

Output Writer Procedures . « « « « « o
System Output Writer « . . .
The EXEC Statement

6 System Programmer's Guide (Release 20.1)

.179
.179
.180
.181
.182
.183
.183
.184
«186
.187
.190
191
«192

193
.194
-194
-196
.200
. 200
.200

.203
. 204
.204
. 205
. 205
.206
.207
.207
.208
. 209

. 211
.213
.216
.216
.220
.221
.221
.223
223
. 225
.225
« 225
226
.226
.227
. 227
227
.228
.228
.229
.230
.231
232
233
. 233

. 234
.234
. 235
.236
. 236
.236

DD Statement for the OUTPUT Data Set . « « o ¢ o o « =« = o« o « 237
Direct SYSOUT Writer -- The Synchronous System Output Writer Job .239
The EXEC Stateément . . ¢ o o o o o o o o o o = o o« = « o« « » = 2239
The DD state€ment . .« o o o « o o o o o o o s« s s o o o o = o « 2241
Optional SYSABEND Data St « ¢ o o o o o o o o o o o o o o « o « o 2243
Cataloging the Procedure . . . @ e o o o e @ o o o o e o = = e o 2044
Example of the Use of Symbolic Parameters in Cataloged Reader,
Writer and Initiator ProceduUres . .« « « o o o o o s o o o o o o « « <246
Automatic SYSIN Batching (ASB) . . ¢ o 4 o o o« 2 o 2 o « o « « o« o 2247
The PROC Statement .« . o ¢ o o o o o o o o o o o o o o o « o « <247
The EXEC Statement . . .« o o o o o o « o o o« o a o s s « o« o o« 22u8
SYSIN and SYSOUT Data Blocking . <« « o & o o ¢ o o o o o « o o « & 4250
Blocking the Procedure Library . . . ¢ ¢ o ¢ ¢ o o o o o o « « « o« 2252

WRITING ROLLOUT/ROLLIN INSTALLATION APPENDAGES . « . « « « « « « » 253
Linkage To User AppendageS =« « o« « = o o = o« = « = e e« o = « o =254

Appendage I: TERQAPGL . ¢ o & o o « o o o o = =« s o o o« « o« o « 2255
Appendage II: IEAQAPG2 . & + o o 30 = o » o = =« « o = o « o « = <255
Appendage III: IEAQAPG3 . v & o e o o o o = o = « o o o « « o« « 255
Appendage IV: TEAQAPGU . . o v v « o o o o o o o o o o o o « o« « 256
Sample Coding Of Appendages « o« « o« o o o o o o « a « « = o o « = 256

General Flow of Rollout Processing =« « o « o o o o o = = « = « « 2256

ADDING A UNIVERSAL CHARACTER SET IMAGE OR FORMS CONTROL BUFFER
IMAGE TO THE IMAGE LIBRARY ¢ & o o o « o o o o 2 o o o a o o o o « 2259

HOW TO ADD A FORM CONTROL BUFFER IMAGE TO THE IMAGE LIBRARY263

THE SHARED DIRECT ACCESS STORAGE DEVICE OPTION . ¢ o o « o o « « o« <265
System Configuration o+ o o« « o o o o o o a o = = « o o s o a s « <266
Devices That Can Be Shared . . . o o ¢ ¢ o o o o o = o o o o o« « <266
Volume/Device StatlUS . o o o o o o o o « o o « o = = o« o « « « = 268
Volume Handling . o« v w o o o o o o« o @ o o o a o « =« o« o« o« « « « 268
Sharing Application Data Sets . . . « 4 &« o o ¢ o & o« ¢ « « « « « .268
Reserving Devices . . . - . - e e o o = o o o = 269

The SMC Parameter of the ENQ Macro Instructlon e e s o a « o« « <269
RESERVE Macro INStruction . « « o o o 2 o o « = 2 a o« » « o« « « 2270
The EXTRACT Macro INStruction .« « « « o o o o o « o o « « =« « « <271
Releasing DEeVICES v v ¢ o o o o o o = 2 e o o o = o o o« « « o « « 2271
Preventing Interlocks . . o« o« o o o o ¢ o o o o o = e e e s e e 271

Volume ASSignment « « « o o « o o o o o« « « s a s o o o s o« o o « 271
Program Libraries .« . ¢ o o o o o o o o s o =« o o o s s o « o« a o« 2272
Appendix e o = o o o e o o o #4273
Providing the Unlt Control Block Address to RESERVE e s + o o« s = 2273
RES and DEQ SUDroutines .« ¢ « o« o« o o o o s o o o s o o « o« o « « 275

THE TIME SLICING FACILITY o ¢ ¢ « « o o o o o o o o s s o s« o = o o 277
Prerequisite ACtions . . . ¢ 4 ¢ 4 o o 4 4 o o o o 2 o = = & « o 2278
System Initialization Time . ¢ o ¢ o o o o 2 o o o o o o o« « « 2279

How to Invoke the Time Slice Facility .« « ¢« « ¢ o o« o o ¢ « o o« « 279
Using the Time Slice FAcility « o« ¢ o ¢ e o o v o o o« o o = o « o « 2280
Operating CharacteristicCs . ¢ ¢« o o o o o ¢ o o o o o o o « o« « « 2281
Effect of System Tasks on Time-Slice Groups . . « « « « « « « « . 281

GRAPHIC JOB PROCESSOR PROCEDURES e o o o e o o e o o 283
Initialization of the Operating System for GJP e e e s e o o e« = o 284
The GFX ProCeduUre . o« o« o o o o « o s o o o o a = =« o o o =« o o o« 2804
The GIJP PXOCEAULE o o o o o o o o o o o o s o o »a s a s o =« « o« « 2285
Cataloging GFX and GJP Procedures « « - « « o« o« 2286
Cataloging and Allocating Space for Data Sets Used by bJP e « o <286
Writing Cataloged Procedures to be Invoked Through the Graphlc Job
PrOCESSOT « o o o o o o o s o o o s o s o s o s o a o« o = o o o« « « <287
Preparation of User-Written Accounting Routines «288
Buffer Storage Considerations for 2250 Display Unit, Model 3291

Contents 7

SATELLITE GRAPHIC JOB PROCESSOR PROCEDURES e o o % o
Writing Cataloged Procedures to be Invoked Through SGJP e o o =
Preparation of User-Written Accounting Routines . . « o« « . &

Initialization Requirements for the

The GFX ProcedUre « o« « o« o « «
The SGIP Procedures . . « « « + «
The GJP Procedures . . . « « « «
Cataloging the Procedures . . .
Cataloging and Allocating Space

INDEX « « o o « o o o o o o o o

System/360 Operating System

- -

- ®© @ ® & & @ ° ® ° e @ o =
. e @ e e e & e ® e e e e =
- - . e

for Data Sets Used by SGJP .

8 System Programmer's Guide (Release 20.1)

& 8 6 8 s 8 o e

.293
294
. 295
.297
.298
-299
«300
302
.303

.305

Figures

Figure
Figure
Figure
Figure
Figure
Figure
Figure

Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure

Cvi.

CVv2a.

ACT
1.
2.
3.

Illustrations

Catalog and VTOC Macro Instructions« -
Return Codes of Catalog and VTOC Macro Instructlons -
1. Accounting Information Available to User
Data Control Block Format for EXCP (After OPEN) .« e
Input/Output Block Format « o . e o o o o
Event Control Block After Posting of Completlon Code .

ATLAS 1. Error lLocations and Return Codes if CCHH is in the
Count Area Field . o o o a o o e s o = s s a a s o« s« s a s o o = =
Figure ATILAS 2. Error Locations and Return Codes if CCHHRKDD is in
the Count Area Field . o o o 2 o o o 2 2 2 a o« o a a o = a o o o @

4.
5.

Event Control Block After Posting of Completion Code .
The XDAP Channel Programs e o o o o o s e o e o o = =

PSWD1l. Password RECOYA =« 2 o o « o o o o « o« a a a o o« o »
PSWD2. Parameter List for Add Function . . « « « « « o « @

PSWD3. Parameter List for Replace Function
PSWDU4. Parameter List for Delete Function e e e e o e
PSWD5. Parameter List for List Function « e o o s o @

RRO
RRO
RRO
6.
7.
8.
9.
10.
11.
12.
13.

1. Resident Routines Options - PCP © 4 e e s e
2. Resident Routines Options - MFT e e e e e e
3. Resident Routines Options - MVT e e e e o e
General lLogic of Standard Output Writer « o o o =
Symbolic Representation of Record Formats . . -
Data Blocking Accepted by Processors Under MVT and MFT
General Flow of Rollout/Rollin Processing o« e
General Shared DASD Environment « o « s e .
Statements in the GFX Cataloged Procedure .« .

Statements in the SGJP Cataloged Procedures . -

Statement in the Cataloged Procedure Used for Each

.
.

" s & @

Telecommunications Line Used With SGJP (Part 1 of 2)

Programming Conventions for SVC Routines
Programming Conventions for WITO/WTOR Exit Routine . . .

PASS1. Return Codes from The PROTECT MAcCXO « « o« o o o o o o

Tables
Table 1.
Table 2.
Table
Table 3.
Table 4.
Table 5.
Table 6.

Parameter List Referred to by Register 1
Control Character Translation for Punch Unit Output . .
Control Character Translation for Printer Unit Output .
Operator Command GXOUPS =« « « « o o « 2 a o o o o o« o =

. 29
. 30
. 54

.101
.112

.113
.119
.121
.131
.135
-136
137
.138
.145
.145
.145
.197
.201
.251
. 257
.267
.298
.299

.300

.138
.195
. 200
. 202
. 219

Illustrations 9

Release 20.1

(GC28-6550-9)

Summary of Major Changes

Item

Description

Chapter Affected

TSO

The PURGE parameter list has a
fourth word that can be used to
purge a list of TCBs.

Execute Channel Program

START command

————

The START command can now be used
to start a problem program.

System Reader, Initiator, and Writer

Cataloged Procedures

7094 Emulator

Change to the ASB procedure for
7094 Emulator

System Reader, Initiator, and Writer

Cataloged Procedures

instruction

FORTRAN G Change to data blocking for System Reader, Initiator, and Writer
FORTRAN G Cataloged Procedures

STAE Change to STAE retry routine System Macro Instructions
procedure

PROTECT Additional return code for PROTECT | Data Set Protection

3211 Printer

New device dependent information
for the 3211 Printer

IECDSECT, IEFJFCBN, and IEFUCBOB

Macro Instructions

Execute Direct Access Program (XDAP)
Macro Instructions

System Macro Instructions
Writing System Output Writers Routines
Output Separation

System Reader, Initiator, and Writer

Cataloged Procedures

Adding a Universal Character Set Image
to the System Library

3330 and 2305
Direct Access

New device dependent information
for the 3330 and 2305 Direct
Access Devices

Maintaining the Catalog and the
Volume Table of Contents

Execute Direct Access Program (XDAP)
Macro Instructions

The Shared Direct Access Storage
Device Option

Summary of Major Changes 11

Release 20 (Gc28-6550-8)

T T T q
|Item | Description |Chapter Affected |
N 4 J
[} L} 1
| PROTECT Macro |A new macro instruction that can be used to | Data Set |
Instruction |maintain the password data set has been added.|Protection.]
L 4 i ¥ |
r 1] 1 1
| STAE Macro | Two new parameters have been added. | System Macro |
|Instruction | |Instructions. |
L 4 - i }
[3] T 1
ASCII	The macro definitions for the UCB and JFCB	TECDSECT, IEFJFCBN,
	have been modified to include ASCII. In	and IEFUCBOB Macro
	addition, restrictions against using ASCII	Instructions.
	data sets in the reader input stream have been	
	added.	System Reader,
		Initiator, and
		Writer Cataloged
		Procedures.
¢ + + '		
Models 155/165	New devices have been added to the device type	System Macro
	characteristics description.	Instructions.]
1 i 4		
T T T "		
Dedicated Data Sets	Additional information on the disposition	System Reader,
	of dedicated data sets, by	Initiator, and
	allocation/termination, has been added.	Writer Cataloged
		Procedures. J
I8 4 1		
r] T 1		
Direct System	The description of the direct system output	System Reader,
Output Writer	writer procedure has been changed to omit the	Initiator, and
	separator function.	Writer Cataloged
		Procedures.
t + t - 1		
2150 Console	The 2150 console has been removed from the	System Macro
	device type characteristics description.	Instructions.
t -— + i 1		
SY¥YS1.MANX and laddition of SYS1.MANX and SYS1.MANY to list [The sShared		
SYS1 . MANY	of data sets that cannot be shared.	Direct-Access
		Device Option.
k 1 - t i		
GSP Routines jAddition of reenterable GSP routines to group	Resident Routines	
	of modules that can be put in the MFT link	Option.
	pack area.	
t + 1 1		
System Management	Modifications to the MDL= and OPI=	System Management
Facilities	parameters.	Facilities.
L 4 4		
) T 1 a1		
Procedure INITD	Removal of ABEND DD statement from INITD	System Reader,
	procedure.	Initiator, and
		Writer Routines.
L L L J

12 sSystem Programmer's Guide (Release 20.1)

Maintaining the Catalog and the 3

Volume Table of Contents CTLG

Adding SVC Routines to the Contr sve
Program

Message Routing Exit Routines————) @Y% {{e) 3]

Handling Accounting Information —p {:{eley

IECDSECT, IEFJFCBN, and }
IEFUCBOB Macro Instructions G

The Must Complete Function ——— 3 QULIEYs

Execute Channel Program (EXCP)
Macro Instruction

—> @23

Execute Direct Access Program

(XDAP) Macro Instruction) XDAP

How to Use the Tracing Routine——)p TRC
Implementing Data Set Protection——p @xsiy'sv)

' ad PRES

Resident Routines Options —»@

The PRESRES Volume
Characteristics List

Job Queue Format

-3

System Macro Instructions ——— - sMI

Writing System Output Writer . (SWHENY

Routines
rad SEPN

S . Initi ' .
ystem Reader, Initiator, and Writer PROC

Cataloged Procedures

Output Separation

Writing Rollout/Rollin Installation ’ R/R
Appendages

Adding a Universal Character Set)

Image to the System Library

The Shared Direct Access Device .
Option e SHRD

The Time Slicing Facility —————— 3 ERESIKS)

Graphic Job Processor Procedures—)— @eN)3

Procedures

Satellite Graphic Job Processor____>_ SGJP

Index ' g INDX

Maintaining the Catalog and the
Volume Table of Contents

" CTLG

This chapter provides detailed information
on how to maintain and modify the catalog
and volume table of contents.

Before reading this chapter, you should
be familiar with the information contained
in the prerequisite publications listed
below.

Documentation of the internal logic of
the routines used to maintain and modify
the catalog and volume table of contents
can be obtained through your IBM Branch
Office.

PREREQUISITE PUBLICATIONS

The IBM System/360 Operating System:
Assembler Language publication (GC28-6514)
contains the information necessary to code
programs in the assembler language.

The IBM System/360 Operating System:
Supervisor and Data Management Serxrvices
publication (GC28-6646) contains a general
description of the structure of catalog
indexes, as well as a brief discussion of
the volume table of contents (VTOC).

The IBM System/360 Operating System:
System Control Blocks publication
(GC28-6628) contains format and field
descriptions of the system control blocks
referred to in this chapter.

RECOMMENDED PUBLICATIONS

The IBM System/360 Operating System:
Utilities publication (GC28-6586) describes
how to maintain and modify the catalog and
the volume table of contents through the
use of utility programs.

Maintaining the Catalog and the Volume Table of Contents 15

Maintaining the Catalog and the Volume Table of Contents

This chapter describes how to maintain and modify the catalog and the
volume table of contents through the use of_macro_instructions. Most of
the maintenance and modification functions can also be performed using
utility statements. The utility statements are described in the
publication IBM System/360 Operating System: Utilities.

The functions you can perform using the macro instructions are
described in text, and the formats of the macro instructions are
tabulated on a fold-out sheet (Figure CV1l) at the back of this chapter.
The chart on the fold-out sheet associates the function described in
text with the macro instructions needed to perform the function. You
should keep the fold-out sheet open when reading the text.

The functions that are described in text are as follows:

How to read a block from the catalog.

How to build an index.

How to build a generation index.

How to delete an index.

How to assign an alias.

How to delete an alias.

How to connect control volumes.

How to disconnect control volumes.

How to catalog a data set.

How to remove data set references from the catalog.
How to recatalog a data set.

How to read a data set control block from the volume table of
contents.

How to delete a data set.

How to rename a data set.

Accompanying the function descriptions in text are coding examples
and programming notes; exceptional-return condition codes for the macro
instructions are tabulated on the back of the fold-out sheet (Figure
cv2).

HOW TO READ A BLOCK FROM THE CATALOG

To read either an index block or a block indicating the volumes on which
a data set is stored (volume-list block), you use the ILOCATE and CAMLIST
macro instructions. There are two ways to specify the block that you
want read into main storage; by using the name of the index level or
data set, or by using the block's location relative to the beginning of
the catalog (TTR).

-By Specifying the Name of an Index Level or Data Set

If you specify an index level name, the first block of the named index
is read into main storage, and an exceptional return code is set. Index
block formats are contained in Appendix A of this chapter.

If you specify a data set name, a 256-byte volume-list blcck is read
into main storage. The block contains up to 20 volume pointers, each of
which points to a volume on which part of the data set is stored. The
first two bytes of the block contain the number of volume pointers for
the data set. Each xolume pointer is a 12-byte fiéld that contains a
4-byte device code, a 6-byte volume serial number, and a 2-byte data set
sequence number. (Device codes are contained in Appendix B of this
chapter.)

16 System Programmer's Guide (Release 20.1)

If the named data set is stored on more than 20 volumes, bytes
253-255 of the block contain the relative track address of the next
block of volume pointers. Byte 255 contains a binary zero.

Example: In the following example, the list of volumes that contain
data set A.B is read into main storage. The search for the volume-list
block starts on the system residence volume.

r T T 1
| Name | Operation| Operand |
b 1 1 {
| | LOCATE | INDAB READ VOLUME-LIST BLOCK FOR |
i Check Exceptional Returns CATALOGED DATA SET A.B INTO|
INDAB	CAMLST	NAME,AB,,LOCAREA MAIN STORAGE AREA NAMED
AB	bC	CL44*An.B* LOCAREA. LOCAREA ALSO
LOCAREA	Ds	OD CONTAINS 3-BYTE TTR AND
	Ds	265C 6~BYTE SERIAL NUMBER
L L L —_ 4

The LOCATE macro instruction points to the CAMLST macro instruction.
NAME, the first operand of CAMLST, specifies that the system is to
search the catalog for a volume-list block by using the name of a data
set. AB, the second operand, specifies the main storage location of a
44-byte area into which you have placed the fully qualified name of a
data set. LOCAREA, the fourth operand, specifies a 265-byte area you
have reserved in main storage.

After execution of these macro instructions, the 265-byte area
contains: the 256-byte volume-list block for data set A.B, the 3-byte
relative track “address (TTR) of the block following the one read 1n¥o
main storage, and the 6—bxte serial number of the volume on which the
block was found. N

If a code of 4 is returned in register 15 indicating that the
required control volume was not mounted, bytes 260-265 of the work area
will contain the volume serial number of this required volume. If
LOCATE finds an old CVOL pointer entry, and the CVOL is not mounted,
binary zeros will be returned in bytes 253-256 of the work area.
However, if a new CVOL pointer entry is found, the four-byte device code
of the CVOL will be returned in those bytes.

-By Specifying the Name of a Generation Data Set

You specify the name of a generation data set by using the fully
qualified generation index name and the relative generation number of
the data set. The value of a relative generation number reflects the
position of a data set in a generation data group. The following values
can be used:

e Zero - specifies the latest data set cataloged in a generation data
group.

e Negative number - specifies a data set cataloged before the latest
data set.

e Positive number - specifies a data set not yet cataloged in the
generation data group.

When you use zero or a negative number as the relative generation
number, a volume-list block is read into main storage and the relative
generation number is replaced by the absolute generation name.

Maintaining the Catalog and the Volume Table of Contents 17

CTLG

When you use a positive number as the relative generation number, an
absolute generation name is created and replaces the relative generation
number. A volume-list block is not read, since none exists for these
data sets.

Example: In the following example, the list of volumes that contain
generation data set A.PAY(-3) is read into main storage. The search for
the volume-list block starts on the system residence volume.

r T T 1
| Name | Operation| Operand |
k- - + !
I | LOCATE | INDGX READ VOLUME-LIST BLOCK FOR |
| Check Exceptional Returns DATA SET A.PAY(-3) INTO |
INDGX	CAMLST	NAME,APAY,,LOCAREA MAIN STORAGE AREA NAMED
APAY	DC	CL44*A.PAY(-3)" LOCAREA. LOCAREA ALSO CON-
LOCAREA	Ds	oD TAINS 3-BYTE TTR AND
	Ds	265cC 6-BYTE SERIAL NUMBER
L 1 1 a

The LOCATE macro instruction points to the CAMLST macro instruction.
NAME, the first operand of CAMLST, specifies that the system is to
search the catalog for a volume-list block by using the name of a data
set. APAY, the second operand, specifies the main storage location of a
44-byte area into which you have placed the name of the generation index
and the relative generation number of a data set in the generation data
group. LOCAREA, the fourth operand, specifies a 265-byte area you have
reserved in main storage.

After execution of these macro instructions, the 265-byte area
contains: the 256-byte volume-list block for generation data set A.PAY
(-3), the 3-byte relative track address (TTR) of the block following the
one read into main storage, and the 6-byte serial number of the volume
on which the block was found. In addition, the system will have
replaced the relative generation number that you specified in yourx
44-byte area with the data set's absolute generation name.

-By Specifving a Name Using an Alias

For each of the preceding functions, you can specify an alias as the
first name in the qualified name of an index level, data set, or
generation data set. Each function is performed exactly as previously
described, with one exception: the alias name specified is replaced by
the true name.

-By Specifying by TTR

You can read any block in the catalog by specifying, in the form TTR,
the identification of the block and its location relative to the
beginning of the catalog. TT is the number of tracks from the beginning
of the catalog, R is the record number of the desired block on the
track. (Formats of each type of catalog block are contained in Appendix
A of this chapter.)

Example: In the following example, the block at the location indicated
by TTR is read into main storage. The specified block is in the catalog
on the system residence volume.

18 sSystem Programmer’s Guide (Release 20.1)

I) b 1
| Namc | Operation| Operand |
{ 4. |

m L] L} "
| | LOCATE | BLK READ A BLOCK INTO MAIN |
| Check Exceptional Returns STORAGE ARFA NAMED LOCAREA |
BLK	CAMLST	BLOCK,TTR,,LOCAREA
TTR	pc	H'S' RELATIVE TRACK 5
	DC	X'03* BLOCK 3 ON TRACK
LOCAREA	Ds	OD LOCAREA ALSO CONTAINS 3-BYTE
	Ds	265C TTR AND 6-BYTE SERIAL NO.
L i L J

The LOCATE macro instruction points to the CAMLST macro instruction.
BLOCK, the first operand of CAMLST, specifies that the system is to
search the catalog for the block indicated by TTR, the second operand.
LOCAREA, the fourth operand, specifies a 265-byte area you have reserved
in main storage.

After execution of these macro instructions, the 265-byte area
contains: the 256-byte index block, the 3-byte relative track address
(TTR) of the block rollowing the one read into main storage, and the
6-byte serial number of the volume on which the block was found.

HOW TO BUILD AN INDEX

To build a new index structure and add it to the catalog, you must
create each level of the index separately. You create each level of the
index by using the INDEX and CAMLST macro instructions.

These two macro instructions can also be used to add index levels to

existing index structures.

Example: In the following example, index structure A.B.C is built on
the control volume whose serial number is 000045.

r T T

| Name | Operation| Operand

t + t

| | INDEX | INDEXA BUILD INDEX A

| Check Exceptional Returns

| | INDEX | INDEXB BUILD INDEX STRUCTURE A.B |

| Check Exceptional Returns

| | INDEX | INDEXC BUILD INDEX STRUCTURE A.B.C

| Check Exceptional Returns |

| INDEXA | CAMLST | BLDX, ALEVEL, VOLNUM {

| INDEXB | CAMLST | BLDX,BLEVEL,VOLNUM

| INDEXC | CAMLST | BLDX,CLEVEL, VOLNUM

| VOLNUM | DC | CL6'000045" VOLUME SERIAL NUMBER |
ALEVEL DC CL2'A’ INDEX STRUCTURE NAMES

: BLEVEL { DC { CL4'A.B"* FOLLOWED BY BLANKS :

| CLEVEL | DC | CL6'A.B.C' WHICH DELIMIT FIELDS |

L L L J

Each INDEX macro instruction points to an associated CAMLST macro
instruction. BLDX, the first operand of CAMIST, specifies that an index
level be built. The second operand specifies the main storage location
of an area into which you have placed the fully qualified name of an
index level. The third operand specifies the main storage location of
an area into which you have placed the 6-byte serial number of the
volume on which the index level is to be built.

Maintaining the Catalog and the Volume Table of Contents 19

HOW TO BUILD A GENERATION INDEX

You build a generation index by using the INDEX and CAMLST macro
instructions. ' All higher levels of the index must exist. If the higher
levels of the index are not in the catalog, you must build them. How to
build an index has been explained previously. In the following example,
the generation index D is built on the control volume whose serial
number is 000045. The higher level indexes A.B.C already exist. When
the number of generation data sets in the generation index D exceeds
four, the oldest data set in the group is uncataloged and scratched.

r T T q
| Name | Operation| Operand |
k 1 + i
| T INDEX } GENINDX BUILD GENERATION INDEX]
| Check Exceptional Returns |
| GENINDX | CAMLST | BLDG,DLEVEL,VOLNUM, ,DELETE, ,4 |
| DLEVEL | DC | CL8'A.B.C.D' BLANK DELIMITER |
| voLNUM | DC | CL6'000045" [
L L 4 J

The INDEX macro instruction points to the CAMLST macro instruction.
BLDG, the first operand of CAMLST, specifies that a generation index be
built. DLEVEL, the second operand, specifies the main storage location
of an area into which you have placed the fully qualified name of a
generation index. VOLNUM, the third operand, specifies the main storage
location of an area into which you have placed the 6-byte serial number
of the volume on which the generation index is to be built. DELETE, the
fifth operand, specifies that all data sets dropped from the generation
data group are to be deleted. The final operand, 4, specifies the
number of data sets that are to be maintained in the generation data
group.

HOW TO DELETE AN INDEX

You can delete any number of index levels from an existing index
structure. Each level of the index is deleted separately. You delete
each level of the index by using the INDEX and CAMLST macro
instructions.

If an index level either has an alias, or has other index levels or
data sets cataloged under it, it cannot be deleted.

Example: In the following example, index level C is deleted from index
structure A.B.C. The search for the index level starts on the system
residence volume.

r T . T 1
L_Name 1 Operatlonl Operand }
T 1
| | INDEX | DELETE DELETE INDEX LEVEL C FROM|
| Check Exceptional Returns INDEX STRUCTURE A.B.C |
| DELETE | CAMLST | DLTX, LEVELC |
| LEVELC | DC | CL6'A.B.C' ONE BLANK FOR DELIMITER |
L— 1 i 3

The INDEX macro instruction points to the CAMLST macro instruction.
DLTX, the first operand of CAMLST, specifies that an index level be
deleted. LEVELC, the second operand, specifies the main storage
location of an area into which you have placed the fully qualified name
of the index structure whose lowest level is to be deleted.

20 System Programmer's Guide (Release 20.1)

HOW TO ASSIGN AN ALIAS

You assign an alias to an index level by using the INDEX and CAMLST
macro instructions. An alias can be assigned only to a high level
index; e.g., index A of index structure A.B.C can have an alias, but
index B cannoct. Assigning an alias to a high level index effectively
provides aliases for all data sets cataloged under that index.

Example: In the following example, index level A is assigned an alias
of X. The search for the index level starts on the system residence
volume.

r T T 1
| Name | Operation| Operand |
L 1 L]
1 3 T] 1
| | INDEX | ALIAS BUILD AN ALIAS FOR A HIGH]|
| Check Exceptional Returns LEVEL INDEX |
ALIAS	CAMLST	BLDA,DSNAME, ,DSALIAS
DSNAME	DC	CL8'A" MUST BE 8-BYTE FIELDS
DSALIAS	DC	cL8"x*
L 1 | J

The INDEX macro instruction points to the CAMLST macxo instruction.
BLDA, the first operand of CAMLST, specifies that an alias be built.
DSNAME, the second operand, specifies the main storage location of an
8-byte area into which you have placed the name of the high level index
to be assigned an alias. DSALIAS, the fourth operand, specifies the
main storage location of an 8-byte area into which you have placed the
alias to be assigned.

HOW TO DELETE AN ALIAS

You delete an alias previously assigned to a high level index by using
the INDEX and CAMLST macro instructioms. .

Example: In the following example, alias X, previously assigned as an
alias for index level A, is deleted. The search for the alias starts on
the system residence volume.

~ T - T 1
| Name | Operation| Operand |
% 4 + {
| | INDEX | DELALIAS DELETE AN ALIAS FOR A |
| Check Exceptional Returns HIGH LEVEL INDEX |
| DELALIAS| CAMLST | DLTA,ALIAS |
| ALIAS | DC | cL8'x* MUST BE 8-BYTE FIELD |
| 8 L i i |

The INDEX macro instruction points to the CAMLST macro instruction.
DLTA, the first operand of CAMLST, specifies that an alias be deleted.
ALIAS, the second operand, specifies the main storage location of an
8-byte area into which you have placed the alias to be deleted.

HOW TO CONNECT CONTROL VOLUMES

You connect two control volumes by using the INDEX and CAMLST macro
instructions. If a control volume is to be connected to the system
residence volume, you need supply only the serial number of the volume
to be connected and the name of a high level index associated with the
volume to be connected.

Maintaining the Catalog and the Volume Table of Contents 21

- CTLG -

If a control volume is to be connected to a control volume other than
the system residence volume, you must supply the serial numbers of both
volumes and the name of a high level index associated with the volume to
be connected.

The result of connecting control volumes is that the volume serial
number of the control volume connected and the name of a high level
index are entered into the volume index of the volume to which it was
connected. This entry is called a control volume pointexr. A control
volume pointed to by a control volume cannot, in turn, point to another
control volume.

Example: In the following example, the control volume whose serial
number is 001555 is connected to the control volume numbered 000155.
The name of the high level index is HIGHINDX.

r T T 1
| Name | Operation| Operand |
F 1- ' 1
| | INDEX i CONNECT CONNECT TWO CON- |
| Check Exceptional Returns TROL VOLUMES WHOSE|
CONNECT	CAMLST	LNKX, INDXNAME, OLDCVOL,NEWCVOL SERIAL NUMBERS ARE
INDXNAME	DC	CL8'HIGHINDX"' 000155 AND 001555.]
oLDCVOL	DC	CL6'000155"
NEWCVOL	DC	X'30002001" 2311 DISK STORAGE
	DC	CL6°001555"
L L 1 4

The INDEX macro instruction points to the CAMLST macro instruction.
LNKX, the first operand of CAMLST, specifies that control volumes be
connected. INDXNAME, the second operand, specifies the main storage
location of an 8-byte area into which you have placed the name of the
high level index of the volume to be connected. OLDCVOL, the third
operand, specifies the main storage location of a 6-byte area into which
you have placed the serial number of the volume to which you are
connecting. NEWCVOL, the fourth operand, specifies the main storage
location of a 10-byte area into which you have placed the 4-byte binary
device code of the volume to be connected followed by the 6-bvte area to
contain the volume serial number of the volume to be connected.

HOW TO DISCONNECT CONTROL VOLUMES

You disconnect two control volumes by using the INDEX and CAMLST macro
instructions. If a control volume is to be disconnected from the system
residence volume, you need supply only the name of the high level index
associated with the volume to be disconnected.

If a control volume is to be disconnected from a control vclume other
than the system residence volume, you must supply, in addition to the
name of the high level index, the serial number of the contrcl volume
from which you want to disconnect.

The result of disconnecting control volumes is that the control
volume pointer is removed from the volume index of the volume from which
you are disconnecting.

Example: In the following example, the control volume that contains the
high level index HIGHINDX is disconnected from the system residence
volume.

22 System Programmer's Guide (Release 20.1)

3 T L] 1
| Name | Operation| Operand |
L 4 4 {
r T L)

| | INDEX | DISCNECT DISCONNECT TWO CONTROL VOLUMES |
| Check Exceptional Returns |
| DISCNECT| CAMLST { DRPX, INDXNAME |
| INDXNAME| DC | CL8'HIGHINDX' MUST BE 8-BYTE FIELD |
L L L J

The INDEX macro instruction points to the CAMLST macro instruction.
DRPX, the first operand of CAMLST, specifies that control volumes be
disconnected. INDEXNAME, the second operand, specifies the main storage
location of an 8-byte area into which you have placed the name of the
high level index of the control volume to be disconnected.

HOW TO CATALOG A DATA SET

You catalog a data set by using the CATALOG and CAMLST macro
instructions. All index levels required to catalog the data set must
exist in the catalog, or an exceptional return code is set.

You must build a complete volume list in main storage. This volume
list consists of volume pointers for all volumes on which the data set
is stored. The first two bytes of the list indicate the number of
volume pointers that follow. Each 12-byte volume pointer consists of a
4-byte device code, a 6-byte volume serial number, and a 2-byte data set
sequence number. The sequence number is always zero for direct access
volumes. (Device codes are contained in Appendix B of this chapter.)

Example: In the following example, the data set named A.B.C is
cataloged under an existing index structure A.B. The data set is stored
on two volumes.

r T K| 1]
| Name | Operation| Operand |
1 4 4

v T L} "
| | CATALOG | ADDABC CATALOG DATA SET A.B.C. THE |
| Check Exceptional Returns INDEX STRUCTURE A.B. EXISTS |
ADDABC	CAMLST	CAT,DSNAME,,VOLUMES
DSNAME	DC	CL6'A.B.C’ ONE BLANK FOR DELIMITER
VOLUMES	DC	H*2' TWO VOLUMES
	DC	X*30002001" 2311 DISK STORAGE
	bC	CL6'000014" VOLUME SERIAL NUMBER
1	bc	B'O" DATA SET SEQUENCE NUMBER
i	DC	X*30002001" 2311 DISK STORAGE
	pC	CL6'000015" VOLUME SERIAL NUMBER
	bc	H'O® SEQUENCE NUMBER
L L L J

The CATALOG macro instruction points to the CAMLST macro instruction.
CAT, the first operand of CAMLST, specifies that a data set be
cataloged. DSNAME, the second operand, specifies the main storage
location of an area into which you have placed the fully qualified name
of the data set to be cataloged. VOLUMES, the fourth operand, specifies
the main storage location of the volume list you have built.

HOW TO REMOVE DATA SET REFERENCES FROM THE CATALOG

You remove data set references from the catalog by using the CATALOG and
CAMLST macro instructions.

Example: In the following example, references to data set A.B.C are
removed from the catalog.

Maintaining the Catalog and the Volume Table of Contents 23

CTLG

r b] 1
| Name | Operation| Operand |
{ 4 i *
L T i !

| | CATALOG | REMOVE ; REMOVE REFERENCES TO DATA |
| Check Exceptional Returns SET A.B.C FROM THE CATALOG |
| REMOVE | CAMLST | UNCAT,DSNAME |
| DSNAME | DC | CL6'A.B.C' ONE BLANK FOR DELIMITER

L iy L J

The CATALOG macro instruction points to the CAMLST macro instruction.
UNCAT, the first operand of CAMLST, specifies that references to a data
set be removed from the catalog. DSNAME, the second operand, specifies
the main storage location of an area into which you have placed the
fully qualified name of the data set whose references are to be removed.

HOW TO RECATALOG A DATA SET

You recatalog a cataloged data set by using the CATALOG and CAMLST macro
instructions. Recataloging is usually performed when new volume
pointers must be added to the volume list of a data set.

You must build a complete volume list in main storage. This volume
list consists of volume pointers for all volumes on which the data set
is stored. The first two bytes of the list indicate the number of
volume pointers that follow. Each 12-byte volume pointer consists of a
4-byte device code, a 6-byte volume serial number, and a 2-byte data set
sequence number. The sequence number is always zero for direct access
volumes. (Device codes are contained in Appendix B of this chapter.)

Example: In the following example, the data set named A.B.C is
recataloged. A new volume pointer is added to the volume list, which
previously contained only two volume pointers.

r T R T 1
] Name | Operation| Operand |
i 4 i ,’
L B T 1

| | CATALOG | RECATLG RECATALOG DATA SET A.B.C, |
| Check Exceptional Returns ADDING A NEW VOLUME |
| | POINTER TO THE VOLUME]
RECATLG	CAMLST	RECAT,DSNAME, ,VOLUMES LIST.
DSNAME	DC	cL6'a.B.c* ONE BLANK FOR DELIMITER
VOLUMEs	DC	H*'3" THREE VOLUMES
	DC	X'30002001° 2311 DISK STORAGE
	DC	CL6'000014" VOLUME SERIAL NUMBER
	DC	H*'O! SEQUENCE NUMBER
	DC	X*30002001" 2311 DISK STORAGE
	pc	CL6'000015"* VOLUME SERIAL NUMBER
	DC	B'O' SEQUENCE NUMBER
	DC	X*30002001° 2311 DISK STORAGE
	DC	CL6'000016" VOLUME SERIAL NUMBER
	DC	H'O® SEQUENCE NUMBER
L L 41 J

The CATALOG macro instruction points to the CAMLST macro instruction.
RECAT, the first operand of CAMLST, specifies that a data set be
recataloged. DSNAME, the second operand, specifies the main storage
location of an area into which you have placed the fully qualified name
of the data set to be recataloged. VOLUMES, the fourth operand,
specifies the main storage location of the volume list you have built.

24 sSystem Programmer's Guide (Release 20.1)

HOW TO READ A DATA SET CONTROL BLOCK FROM THE VOLUME TABLE OF CONTENTS

You can read a data set control block (DSCB) into main storage by using
the OBTAIN and CAMLST macro instructions. There are two ways to specify
the DSCB that you want read: by using the name of the data set
associated with the DSCB, or by using the absolute track address of the
DSCB.

When you specify the name of the data set, a format 1 DSCB is read
into main storage. To read a DSCB other than a format 1 DSCB, you must
specify an absolute track address. (DSCB formats and field descriptions
are contained in the System Control Block publication).

When a data set name is specified, the 96-byte data portiocn of the
format 1 DSCB, and the absolute track address of the DSCB are read into
main storage. When the absolute track address of a DSCB is specified,
the 4u4-byte key portion and the 96-byte data portion of the DSCB are
read into main storage.

Example: 1In the following example, the format 1 DSCB for data set A.B.C
is read into main storage. The serial number of the volume containing
the DSCB is 770655.

m T 1 h
| Name | Operation| Operand |
L L IR J
r B T 1
| | OBTAIN | DSCBABC READ DSCB FOR DATA |
| Check Exceptional Returns SET A.B.C INTO MAIN|
DSCBABC	CAMLST	SEARCH,DSABC,VOLNUM,WORKAREA STORAGE AREA NAMED
bsaBc	DC	CL44*A.B.C* WORKAREA. 96-BYTE
voLNuM	DC	CL6'770655" DATA PORTION IS
WORKAREA	DS	oD READ. THE REST OF
	Ds	1usc THE AREA IS USED BY
		THE OBTAIN ROUTINE
L 1 1 J

The OBTAIN macro instruction points to the CAMLST macro instruction.
SEARCH, the«first operand of CAMLST, specifies that a DSCB be read into
main storage. DSABC, the second operand, specifies the main storage
location of a 4lU-byte area into which you have placed the fully
qualified name of the data set whose associated DSCB is to be read.
VOLNUM, the third operand, specifies the main storage locaticn of a
6-byte area into which you have placed the serial number of the volume
containing the required DSCB. WORKAREA, the fourth operand, sgecifies
the main storage location of a 148-byte work area that is to contain the
DSCB.

After execution of these macro instructions, the first 96 bytes of
the work area contain the data portion of the format 1 DSCB; the next
five bytes contain the absolute track address of the DSCB.

HOW TO DELETE A DATA SET

You delete a data set stored on direct access volumes by using the
SCRATCH and CAMLST macro instructions. This causes all data set control
blocks (DsSCB) for the data set to be deleted, and all space occupied by
the data set to be made available for reallocation. If the data set to
be deleted is sharing a split cylinder, the space will not be made
available for reallocation until all data sets on the split cylinder are
deleted.

Maintaining the Catalog and the Volume Table of Contents 25

A data set cannot be deleted if the expiration date in the format 1
DSCB has not passed, unless you choose to ignore the expiration date.
You can ignore the expiration date by using the OVRD option in the
CAMLST macro instruction.

If a data set to be deleted is stored on more than one volume, either
a device must be available on which to mount the volumes, or at least
one volume must be mounted. In addition, all other required volumes
must be serially mountable. Certain volumes, such as the system
residence volume, must always be mounted.

When deleting a data set, you must build a complete volume list in
main storage. This volume list consists of volume pointers for all
volumes on which the data set is stored. The first two bytes of the
list indicate the number of volume pointers that follow. Each 12-byte
volume pointer consists of a 4-byte device code, a 6-byte volume serial
number, and a 2-byte data set sequence number. The sequence number is
always zero for direct access volumes. (Device codes are contained in
Appendix B of this chapter.)

Volumes are processed in the order that they appear in the volume
list. Those volumes that are pointed to at the beginning of the list
are processed first. If a volume is not mounted, a message is issued to
the operator requesting him to mount the volume. You can indicate the
170 device on which unmounted volumes are to be mounted by locading
register 0 with the address of the UCB associated with the device to be
used. When the volume is mounted, processing continues. If you do not
load register 0 with a UCB address, its contents must be zero.

If the operator cannot mount the requested volume, he issues a reply
indicating that he cannot fulfill the request. A condition code is then
set in the last byte of the volume pointer for the unavailable volume,
and the next volume indicated in the volume list is processed or
requested.

Example: 1In the following example, data set A.B.C is deleted from two
volumes. The expiration date in the format 1 DSCB is ignored.

f T T 1
! Name J Operation{ Operand |
r T T - {
| | SR | 0,0 SET REG 0 TO ZERO|
| | SCRATCH | DELABC DELETE DATA SET |
| Check Exceptional Returns A.B.C. FROM TWO |
j DELABC | CAMLST | SCRATCH,DSABC, ,VOLIST,,OVRD VOLUMES, IGNORING|
| DSABC | DC | CL44*A.B.C* THE EXPIRATION |
| VOLIST | DC | H'2' DATE IN THE DSCB. |
i | DC | X*30002001" 2311 DISK STORAGE|
| | pc | CL6°000017"* VOLUME SERIAL NO. |
[| pc | H'O® SEQUENCE NUMBER |
	DC	X'30002001" 2311 DISK STCRAGE
	pc	CL6"000018°* VOLUME SERIAL NO.
	Dc	H'O® SEQUENCE NUMBER
L 1 1 3

The SCRATCH macro instruction points to the CAMLST macro instruction.
SCRATCH, the first operand of CAMLST, specifies that a data set be
deleted. DSABC, the second operand, specifies the main storage location
of a U44-byte area into which you have placed the fully qualified name of
the data set to be deleted. VOLIST, the fourth operand, specifies the
main storage location of the volume list you have built. OVRD, the
sixth operand, specifies that the expiration date be ignored in the DSCB
of the data set to be deleted.

26 System Programmer's Guide (Release 20.1)

HOW TO RENAME A DATA SET

You rename a data set stored on direct access volumes by using the
RENAME and CAMLST macro instructions. This causes the data set name in
all format 1 data set control blocks (DSCB) for the data set to be
replaced by the new name that you supply.

If a data set to be renamed is stored on more than one volume, either
a device must be available on which to mount the volumes, or at least
one volume must be mounted. In addition, all other required volumes
must be serially mountable. Certain volumes, such as the system
residence volume, must always be mounted.

When renaming a data set, you must build a complete volume list in
main storage. This volume list consists of volume pointers for all
volumes on which the data set is stored. The first two bytes of the
list indicate the number of volume pointers that follow. Each 12-byte
volume pointer consists of a U4-byte device code, a 6-byte volume serial
number, and a 2-byte data set sequence number. The sequence number is
always zero for direct access volumes. . (Device codes are contained in
Appendix B of this chapter.)

Volumes are processed in the order they appear in the volume list.
Those volumes that are pointed to at the beginning of the list are
processed first. If a volume is not mounted, a message is issued to the
operator requesting him to mount the volume. You can indicate the I/O
device on which unmounted volumes are to be mounted by loading register
0 with the address of the UCB associated with the device to be used.
When the volume is mounted, processing continues. If you do not load
register 0 with a UCB address, its contents must be zero.

If the operator cannot mount the requested volume, he issues a reply
indicating that he cannot fulfill the request. A condition code is then
set in the last byte of the volume pointer for the unavailable volume,
and the next volume indicated in the volume list is processed or
requested.

Example: In the following example, data set A.B.C is renamed LC.E.F.
The data set extends across two volumes.

r T T 1
| Name | Operation| Operand |
; 1 t {
| | SR | 0,0 SET REG 0 TO ZERO|
| | RENAME | DSABC CHANGE DATA SET |
| Check Exceptional Returns NAME A.B.C. TO |
DSABC	CAMLST	RENAME,OLDNAME ,NEWNAME,VOLIST D.E.F
OLDNAME	DC	CLuU4'A.B.C*
NEWNAME	DC	CLU4*D.E.F*
VOLIST	DC	H'2" TWO VOLUMES I
	DC	x*30002001° 2311 DISK STORAGE
[DC	CL6'000017" VOLUME SERIAL NO.
DC H'O* SEQUENCE NUMBER		
: , DC = X*30002001" 23%1 DISK STORAGE}		
	DC	CL6'000018°* VOLUME SERIAL NO.
	DC	H'O' SEQUENCE NUMBER
L 1 1 - b |

The RENAME macro instruction points to the CAMLST macro instruction.
RENAME, the first operand of CAMLST, specifies that a data set be
renamed. OLDNAME, the second operand, specifies the main stcrage
location of a u4l4-byte area into which you have placed the fully
qualified name of the data set to be renamed. NEWNAME, the third
operand, specifies the main storage location of a 4u4-byte area into
which you have placed the new name of the data set. VOLIST, the fourth
operand, specifies the main storage location of the volume list you have
built.

Maintaining the Catalog and the Volume Table of Ccntents 27

CTLG

How to Share Space on a Volume Initialized Under DOS

With the addition to the 0S DADSM Allocation program of a routine to
convert a DOS format VIOC to an OS format VTOC, it is now possible to
share the space on such a volume (one initialized under DOS) between
data sets written by users using DOS and users using 0S. The degree and
limits of sharing are:

» The OS user may now request space in any standard OS form of space
allocation, that is: TRK, CYL, average block size, and ABSTR.

e The 0S stand-alone utility program IBCRCVRP does not accert
alternate track assignment made under DOS. If the volume has any
alternate tracks assigned under DOS, and additional alternate tracks
must be assigned, the DOS program Assign Alternate Track must be
used to perform that function.

The net effect is that 0S and DOS may share a volume, but the data sets

written under each system can only be read under the system under which
they were written.

28 System Programmer's Guide (Release 20.1)

Macro Instructions Required to Maintain and Modify the Catalog and VTOC

Catalog and VTOC Macro Instructions

Macro-Instructions Required to Perform Function ! |isf-odc‘irx .
Function points to the parameter list (labeled
Name Operation Operands list-name) set up by the CAMLST macro-
instruction.
Read o block from the | [symbol] LOCATE list-addrx'
catalog - by name [list-name] CAMLST NAME, dsname-relexp®, [cvol-relexp7] ,area-relexp® name-relexp
T specifies the main storage location of the
Read a block from the [symbol] LOCATE list-addrx ; R fully qualified name of a data set or index
catalog - by location [list-name] CAMLST BLOCK, ttr-relexp®, [cvol—relexp] ,area-relexp level. The name cannot exceed 44 char-
ters, If th is less than 44 char-
Build an index [symbol] INDEX list-addrx’ acters . ¢ name 1s fess fhan char
; 2 7 acters, it must be followed by a blank.
{list-name] CAMLST BLDX, name-relexp®, |cvol-relexp The name must be defined by a C-type
Build o generation [symbol] INDEX list-addrx” Define Constant (DC) instruction.
index [fist-name] | CAMLST BLDG, name-relexp?, [cvol—relexp7] . [DELETE’S:I , [EMPTY16] ,number—obsexp17 3
A N K 1 ttr-relexp
Assign an alias [s?/mboll INDEX hst-cldiirx s [7]) o specifies the main storage location of a
[list-name] CAMLST BLDA, index name-relexp”, |cvol-relexp’] ,alias name-relexp 3-byte relative track address (TTR). This
Delete an index [symbol] INDEX list-addrx’ address indicates the position, relative to
[fist-name CAMLST DLTX,nqme-relexpa, [cvol-relexp7] the beginning of the catalog data set, of
& the track containing the block (TT), and
Delete an alias [symbot] INDEX list-addrx 5 7 the block identification on that track (R).
[Hist-name] CAMLST DLTA, index name-relexp”, | cvol-relexp .
Connect control {symbol] INDEX list-addrx’ CChhr"el.efp X .
volumes [1 { CAMLST LNKX, index name-relexp® [cvol-relex 7:| new cvol-relexp'? specifies the main starage location of the
m ist-name _ ! P Pl - p 5-byte absolute track address (CCHHR) of
Disconnect control [symbol] INDEX list-addrx’ 5 ; a DSCB.
volumes {list-name) | CAMLST DRPX, index name-relexp”, [cvol-addrx] s
- 7 index name-relexp
Catalog a data set [symbol] CATALOG list-addrx A ; 13 specifies the main storage location of the
[list-name] CAMLST CAT, name-relexp®, [CVOI-relexp] ,vol list-relexp name of @ high level index. The area
Remove data set refer- [symbol] CATALOG fist-addrx’ . that contains the name must be elg'hf
: 2 7 bytes long. The name must be defined by
ences from the catalog [list-name] CAMLST UNCAT, name-relexp©, |cvol-relexp a C-type Define Constant (DC)instruction
Recatalog a data set [symbol] CATALOG list-addrx' s .
[list-name] CAMLST RECAT, name-relexp?, I:cvo[-relexp7] ,vol list-relexp dsname-re lexp
1 specifies the main storage location of a
Read a DSCB from the [symbol] OBTAIN list-addrx . o " fully qualified data set name. The area
VTOC - by name [list-name] | CAMLST SEARCH, dsname-relexp”, vol-relexp”, wk area-relexp that contains the name must be 44 bytes
: . Th defined b
Read a DSCB from the [symbol] OBTAIN]is’r—addrx1 o 1a Ico_nf;’ . D:f?:emzc:::i;r:)te(De(:;?:stru):::on
VTOC - by location [list-name] CAMLST SEEK,cchhr-relexp4,vo|—relexp ,wk area-relexp p :
Delete a data set [symbol] SCRATCH list-addrx" . s [o " cvol-relexp
[list-name] CAMLST SCRATCH, dsname-relexp®, ,vol list-relexp'” ,, [OVRD] specifies the main storage location of a
Change the data set [symbol] RENAME list-addrx' 6-byte volume serial numberlfz.)r the
name in a DSCB [list-name] CAMLST RENAME,dsncme-relexpe, new name—relexpv| ,vol |ist-re|e><p13 volume to be processed. If ’f parameter
is not specified, the system residence
volume is processed.
8
vol-relexp
specifies the main storage location of the
6-byte serial number of the volume on
which the required DSCB is stored.
S

Figure Cvi.

area-relexp
specifies the main storage location of a
265-byte work area that you must define.
The work area must begin on a double-
word boundary . The first 256 bytes of the
work area will contain the block that is
read from the catalog, and the last nine
bytes of the work area will contain the
relative track address and block identifi-
cation (in the form TTR) of the block
following the one read into main storage
and the serial number of the volume on
which the block was found .

Catalog and VTOC Macro Instructions

14

13

15

alias name-relexp
specifies the main storage location of the
name that is to be used as an alias for a
high level index. The area that contains
the name must be eight bytes long. The
name must be defined by a C-type Define
Constant (DC) instruction.

new name-relexp
specifies the main storage location of a
fully qualified data set name that is to be
used to rename a data set. The area that
contains the name must be 44 bytes long.
The name must be defined by a C-type
Define Constant (DC) instruction.

new cvol-relexp
specifies the main storage location of the
6-byte volume serial number of the control
volume that is to be connected to another
control volume.

vol list-relexp
specifies the main storage location of an
area that contains a volume list. The area
must begin on a half-word boundary .

wk area-relexp
specifies the main storage location of a
148 byte work area that you must define.
The work area must begin on a double-
word boundary.

If a data set name was specified, the first
96 bytes contain the data portion of a
format 1 DSCB, and the next five bytes
contain the absolute track address of the

DsCs,

If an absolute track address was specified,
the first 140 bytes contain the key portion
and data portion of the DSCB.

DELETE
specifies that all data sets dropped from a
generation data group are to be deleted,
i.e., the space allocated to the data sets
is to made available for reallocation.

EMPTY
specifies that references to all data sets in
a generation data group cataloged in the
generation index are to be removed from
the index when the number of entries
specified is exceeded,

number-absexp .
specifies the number of data sets to be in-
cluded in a generation data group. This
number must be specified, and cannot
exceed 255,

OVRD
specifies that the expiration date in the
DSCB should be ignored.

Maintaining the Catalog and the Volume Table of Contents 29

RETURN CODES OF CATALOG AND VTOC MACRO INSTRUCTIONS

EXCEPTIONAL RETURN CONDITION CODES

codes for the macro instruction are as follows:

Control is always returned to the instruction that follows the LOCATE, INDEX, CATALOG, OBTAIN, SCRATCH, or RENAME macro instruction. If the function has
been performed successfully, register 15 contains zeros. Otherwise, register 15 contains a condition code that indicates the reason for the failure. The condition

LOCATE Macro Instruction

Code Interpretation

4 Either the required control volume was not mounted
or the specified volume does not contain a catalog
data set (SYSCTLG). The volume serial number of
the required volume is contained in bytes 260-265
of the work area. *

8 One of the names of the qualified name was not
found. Register O contains the number of the last
valid name in the qualified name. For example,
if the qualified name A.B.C. D were specified, but
name C did not exist at the level specified, register
0 would contain the binary code 2. The work area
contains the first index block of the last valid index
name, the serial number of the volume containing
the index (in bytes 260-265), and the relative
track address (in bytes 257-259) of the next index
block. *

12 Either an index, an alias, or a control volume
pointer was found when the list of qualified names
was exhausted. *

16 A data set resides at some level of index other than
the lowest index level specified. (Register 0 con-
tains the number of simple names referred to before
the data set was found. For example, if the
qualified name A.B.C.D were specified, and a
data set were found cataloged at A.B.C, register
0 would contain the binary code 3.)

20 A syntax error exists in the name (e.g., nine
characters, a double delimiter, blank nan.e field,
etc.). *

24 A permanent /O error was found when processing

the catalog. *

28 Relative track address (TTR) supplied to LOCATE
is out of the SYSCTLG data set extents. *

32 Invalid work area pointer

* If the LOCATE macro instruction fails to perform its function

for any of the reasons indicated above, register O contains
the number of indexes searched before the failure was

encountered,
OBTAIN Macro Instruction
Code Interpretation
4 The required volume was not mounted.

8 The DSCB was not found in the VTOC of the
. specified volume.

12 A permanent /O error was found when
processing the specified volume.

16 Invalid workarea pointer.

20 CCHH not within boundaries of VTOC extent
(Seek mode).

CATALOG Macro Instruction

RENAME Macro Instruction

Code

20

24

28

Interpretation

Either the required control volume was not mounted,
or the specified volume does not contain a catalog

data set (SYSCTLG).

The existing catalog structure is inconsistent with
the operation performed. (Because the INDEX
macro instruction uses the search routine of the
LOCATE macro instruction, register 1 contains the
condition code that would be given by the LOCATE
macro instruction, and register O contains the number
of the index levels referred to during the search.)

Not used with the CATALOG macro instruction.

The index structure necessary to catalog the data
set does not exist.

Space is not available on the specified control
volume.

An attempt was made to catalog an improperly
named generation data set.

A permanent 1/O error was found when processing
the catalog.

INDEX Macro Instruction

Code

20

24

28

Interpretation

Either the required control volume was not mounted,
or the specified volume does not contain a catalog

data set (SYSCTLG).

The existing catalog structure is inconsistent with
the operation performed. (Because the INDEX macro
instruction uses the search routine of the LOCATE
macro instruction, register 1 contains the condition
code that would be given by the LOCATE macro
instruction, and register O contains the number of
index levels referred to during the search.)

An attempt was made to delete an index or
generation index that has an alias or has indexes
or data sets cataloged under it, The index is
unchanged.

The qualified name specified when building an
index or generation index implies an index
structure that does not exist; the high level
index, specified when connecting control
volumes, does not exist.

Space is not available on the specified control
volume.

Not used with the INDEX macro instruction.

A permanent 1/O error was found when processing
the catalog.

Code Interpretation

4 No volumes containing any part of the data set
were mounted, nor was a UCB address contained
in register 0.

8 An unusual condition was encountered on one or
more volumes.

After the RENAME macro instruction is executed, the last byte

of each 12-byte volume pointer in the volume list indicates
the following conditions in binary code:

Code Interpretation

0 The DSCB for the data set has been renamed in
the VTOC on the volume pointed to.

1 The VTCC of this volume does not contain the
DSCB to be renamed.

3 A DSCB containing the new name already
exists in the VTOC of this volume.

4 A permanent |/O error was found when
processing this volume.

5 A device for mounting this volume was
unavailable.

6 The operator was unable to mount this
volume.

SCRATCH Macro Instruction

Figure CV2. Return Codes of Catalog and VIOC Macro Instructions

30 sSystem Programmer's Guide (Release 20.1)

Code Interpretation

4 No volumes containing any part of the data set
were mounted, nor was a UCB address contained
in register 0.

8 An unusual condition was encountered on one or
more volumes.

After the SCRATCH macro instruction is executed, the last byte
of each 12-byte volume pointer in the volume list indicates the
following conditions in binary code :

Code Interpretation

0 The DSCB for the data set has been deleted from
the VTOC on the volume pointed to.

1 The VTOC of this volume does not contain the
DSCB to be deleted.

3 The DSCB was not deleted because either the
OVRD option was not specified or the retention
cycle has not expired.

4 A permanent /O error was found when
processing this volume,

5 A device for mounting this volume was
unavailable.

[The operator was unable to mount this
volume.

Appendix A: Catalog Block Entries

This section describes the contents of all catalog entries.

Control Entries

A volume index control entry is always the first entry in a volume
index. The volume index control entry is 22 bytes long and contains
eight fields.

Field 1: Name Field (8 bytes) -- contains only a binary one to ensure
that this entry is the first entry in the first block of the index.

Field 2: ©Last Block Address (3 bytes) -- contains the relative track
address of the last block in the volume index. The address is in the
form TTR.

Field 3: Halfword Count (1 byte) -- contains a binary five to indicate
that five half words follow.

Field 4: Catalog Upper Limit (3 bytes) -- contains the relative track
address of the last block in the catalog data set. The address is in
the form TTR.

Field 5: Zero Field (1 byte) -- contains binary zeros.

Field 6: First Available Block Address (3 bytes) -- contains the
relative track address of the unused block in the catalog that is
closest to the beginning of the catalog data set.

Field 7: Zero Field (1 byte) -- contains binary zeros.

Field 8: Unused Bytes in lLast Block (2 bytes) -- contains the binary
count of the number of unused bytes in the last block of the volume
index.

An index control entry is the first entry in all indexes except
volume indexes. The index control entry is 18 bytes long and contains
six fields.

Field 1: Name Field (8 bytes) -- contains only a binary one to ensure
that this entry, because it has the lowest binary name value, is the
first entry in the first block of the index.

Field 2: Last Block Address (3 bytes) -- contains the relative track
address of the last block assigned to the index. The address is in the
form TTR.

Field 3: Halfword Count (1 byte) -- contains a binary three to indicate
that three half words follow.

Field 4: Index Lower Limit (3 bytes) -- contains the relative track
address of the block in which this entry appears. The address is in the

form TTR.

Field 5: Number of Aliases (1 byte) -- contains the binary count of the
number of aliases assigned to the index. If the index is not a high
level index, this field is zero.

Field 6: Unused Bytes in Last Block (2 bytes) -- contains the binary

count of the number of unused bytes remaining in the last block of the
index.

Maintaining the Catalog and the Volume Table of Contents 31

An index link entry is the last entry in all index blocks. The entry
is 12 bytes long and contains three fields.

Field 1: Name Field (8 bytes) -- contains only the hexadecimal number
FF to ensure that this entry, because it has the highest binary name
value, will appear as the last entry in any index block.

Field 2: Link Address (3 bytes) -- contains the relative track address
of the next block of the same index, if there is a next block in the
index. Otherwise, the field contains binary zeros.

Field 3: Halfword Count (1 byte) -- contains a binary zero to indicate
that no additional fields follow.

Pointer Entries

An index pointer entry can appear in all indexes except generation
indexes. The entry is 12 bytes long and contains three fields.

Field 1: Name Field (8 bytes) --- contains the name of the index being
pointed to by field 2.

Field 2: 1Index Address (3 bytes) -- contains the relative track address
of the first block of the index named in field 1. The address is in the
form TTR.

Field 3: Halfword Count (1 byte) -- contains a binary zero to indicate
that no additional fields follow.

A data set pointer entry can appear in any index. It contains the
simple name of a data set and from one to five i2-byte fields that each
identify a volume on which the named data set resides. If the data set
resides on more than five volumes, a volume control block must be used
to point to the volumes. The volume control block is identified by a
volume control block pointer entry, not a data set pointer entry.

The data set pointer entry varies in length. The length is
determined by the formula (14+12m), where m is the number of volumes
containing the data set. The variable m can be from 1 through'5. The
data set pointer entry can appear in any index, and it contains five
fields.

Field 1: Name Field (8 bytes) -- contains the simple name of the data
set whose volumes are identified in field 5.

Field 2: Address Field (3 bytes) -- contains a binary zero.

Field 3: Halfword Count (1 byte) -- contains the binary count of the
number of half words that follow. The number is found by the formula
(6m+l1l), where m is the number of volumes on which the data set resides.
The variable m can be from 1 through 5.

Field 4: Volume Count (2 bytes) -- contains the binary count of the
number of volumes identified in field 5 of this entry.

Field 5: Volume€ Entries (12 to 60 bytes) -- contains from one to five
12-byte entries, each of which identifies a volume on which the data set
resides. Each entry contains a U-byte device code, a 6-byte volume '
serial number, and a 2-byte data set sequence numb2r. The data set
sequence number is zero for direct access volumes.

32 System Programmer's Guide (Release 20.1)

A volume control block pointer entry can appear in any index. It can
identify up to 20 volumes. The entry is 14 bytes long and contains four
fields.

Field 1: Name Field (8 bytes) -- contains the last name of the
qualified name of the data set identified by this entry. The data set
resides on the volumes whose serial numbers are given in the volume
control block pointed to by field 2.

Field 2: Address Field (3 byteé) -- contains the relative track address
of the volume control block identifying the volumes containing the data
set named in field 1. The address is in the form TTR.

Field 3: Halfword Count (1 byte) -- contains a binary one to indicate
that one half word follows.

Field 4: Zero Field (2 bytes) -- contains binary zeros.

A control volume pointer entxy can appear only in volume indexes. It
is 18 bytes long and contains four fields.

Field 1: Name Field (8 bytes) =-- contains a high level index name that
appears in the volume index of the control volume identified in field 4.

Field 2: Address Field (3 bytes) -- contains binary zeros.

Field 3: Halfword Count (1 byte) -- contains a binary three to indicate
that three half words follow.

Field 4: Control Volume Serial Number (6 bytes) —-- contains the serial
number of the control volume whose volume index contains an entry
identifying the high level index name in field 1.

A new control volume pointer entry can appear only in volume indexes.
It is 22 bytes long and contains 5 fields.

Field 1: Name field (8 bytes) contains a high level index name that
appears in the volume index of the control volume identified in fields 4
and S.

Field 2: Address field (3 bytes) contains binary zeros.

Field 3: Halfword Count (1 byte) contains a binary 5 to indicate that
five halfwords follow.

Field 4: Control Volume Device Code (4 bytes) contains the 4-byte
binary device code of the control volume whose index contains an entry
identifying the high level index name in field 1.

Field 5: Control Volume Serial Number (6 bytes) contains the serial
number of the control volume whose index contains an entry identifying
the high level index name in field 1.

An alias entry can appear in volume indexes only. An alias entry is
20 bytes long and contains four fields.

Field 1: Name Field (8 bytes) -- contains the alias of the high level
index identified in field 2.

Field 2: Address Field (3 bytes) -- contains the relative track address

of the first block of the index named in field 4. The address is in the
form TTR.

Maintaining the Catalog and the Volume Table of Ccntents 33

Field 3: Halfword Count (1 byte) -- contains a binary four to indicate
that four half words follow.

Field 4: True Name Field (8 bytes) -- contains the name of the index
whose alias appears in field 1. The address of the index is in field 2.

A generation index pointer entry can appear in all indexes except
generation indexes. The entry is 16 bytes long and contains six fields.

Field 1: Name Field (8 bytes) -- contains the name of the generation
index whose address is contained in field 2.

Field 2: Address Field (3 bytes) -- contains the relative track address
of the generation index named in field 1. The address is in the form
TTR.

Field 3: Halfword Count (1 byte) -- contains a binary two to indicate
that two half words follow.

Field 4: Flags (1 byte) -- contains flags that govern the uncataloging
of data sets as specified by the DELETE and EMPTY options of the INDEX
macro instruction. The options and their hexadecimal codes are as
follows:

EMPTY=01 DELETE=02 EMPTY and DELETE=03

Field 5: Maximum Generations Allowed (1 byte) -- contains the binary
count of the maximum number of generations allowed in the index at one
time as specified in the INDEX macro instruction.

Field 6: Current Generation Count (2 bytes) -- contains the binary
count of the number of generations cataloged in the index.

The Volume Control Block Contents

A volume control block is composed of one or more volume-list blocks.
Each volume-1list block contains an 8-byte key and a 256-byte data
portion. The data portion of the volume-list block can -identify up to
20 volumes on which a data set is recorded. The format of the volume
list block is as follows:

Field 1: Number of volumes (2 bytes) -- the first volume-list block
contains the binary count of volumes on which the data set is stored;
the value of this field is reduced by 20 for each subsequent volume-list
block. If a data set is on 61 volumes, for example, it has four
volume-list blocks. The first field of each block contains 61,41,21,
and 1, respectively.

Field 2: Volume Identification (12 to 240 bytes) -- contains from 1 to
20 12-byte entries, each of which identifies a volume on which the data
set resides. Each entry contains a U4-byte device code, a 6-byte volume
serial number, and a 2-byte data set sequence number. The data set
sequence number is zero for direct access volumes.

Field 3: Zero Field (10 bytes) -- contains binary zeros.

Field 4: Chain Address (3 bytes) -- contains the relative track address
of the next block of this volume control block, if additional blocks
exist. The address is in the form TTR. If this is the last block of
the volume control block, the field contains a binary zero. If this
field is not zero, this block must contain twenty 12-byte fields
identifying volumes of the data set.

Field 5: Zerxo Field (1 byte) -- contains binary zeros.

34 System Programmer's Guide (Release 20.1)

Appendix B: Device Code Designations

Device

IBM 2400 Series Magnetic
Tape Units

IBM 2400 Series Magnetic
Tape Units

IBM 2400 Series Magnetic
Tape Units

IBM 2400 series Magnetic
Tape Units

IBM 2400 Series Magnetic
Tape Units

IBM 2311 Disk Storage Drive
IBM 2301 Drum Storage
IBM 2302 Disk Storage
IBM 2303 Drum Storage

IBM 2314 Direct Access
Storage Facility

IBM 2321 Data Cell

IBM 2305 Fixed Head
Storage Model 1

IBM 2305 Fixed Head
Storage Model 2

IBM 3330 Disk Storage

Features

T-track Compatibility
7-track Compatibility
Data Conversion
Phase Encoding

Phase Encoding
with Dual Density

Device Code
Designation
(In Hexadecimal)

30008001

30808001

3008001

34008001

34208001
30002001
30402002
30002004
30002003

30C02008

30002005

30002006

30002007

30002009

Note: These and other device codes are also enumerated under the

DEVTYPE macro instruction in the chapter:

Maintaining the Catalog and the Volume Table of Contents

"System Macro Instructions."

35

{CTLG -

36 System Programmer's Guide (Release 20.1)

o

——

Adding SVC Routines
to the Control Program

This chapter provides detailed information
on how to write an SVC routine and insert
it into the control program portion of the
System/360 Operating System.

Before reading this chapter, you should
be familiar with the information contained
in the prerequisite publications listed
below.

Documentation of the internal logic of
the supervisor and its relationship to the
remainder of the control program can be
obtained through your IBM Branch Office.

PREREQUISITE PUBLICATIONS

The IBM System/360 Operating System:
Assembler Lanquage publication (GC28-6514)
contains the information necessary to code
programs in the assembler language.

The IBM System/360 Operating System:
Supervisor and Data Management Macro
Instructions publication (GC28-6647)
describes the system macro instructions
that can be used in programs coded in the
assembler language.

Adding SVC Routines to the Control Program 37

Writing SVC Routines

Because your SVC routine will be a part of the control program, you must
follow the same programming conventions used in SVC routines supplied
with System/360 Operating System.

Four types of SVC routines are supplied with System/360 Operating
System, and the programming conventions for each type differ. The
general characteristics of the four types are described in the following
text, and the programming conventions for all types are shown in tabular
form.

Characteristics of SVC Routines

All SVC routines operate in the supervisor state. You should keep the
following characteristics in mind when deciding what type of SVC rxoutine
to write:

e location of the routine - Your SVC routine can be either in main
storage at all times as part of the resident control program, or on
a direct access device as part of the SVC library. Type 1 and 2 SVC
routines are part of the resident control program, and types 3 and 4
are in the SVC library.

e Size of the routine - Types 1, 2, and 4 SVC routines are not limited
in size. However, you must divide a type 4 SVC routine into load
modules of 1024 bytes or less. The size of a type 3 SVC routine
must not exceed 1024 bytes.

e Design of the routine - Type 1 SVC routines must be reenterable or
serially reusable; all other types must be reenterable. If you wish
to aid system facilities in recovering from machine malfunctions,
your SVC routines should be refreshable.

e Interruption of the routine - When your SVC routine receives
control, the CPU is masked for all maskable interruptions but the
machine check interruption. 2all type 1 SVC routines must execute in
this masked state. If you want to allow interruptions tc occur
during the execution of a type 2, 3, or 4 SVC routine, you must
change the appropriate masks. If you expect that a type 2, 3, or 4
SVC routine will run for an extended period of time, it is
recommended that you aliow interruptions to be processed where
possible.

Programming Conventions for SVC Routines

The programming conventions for the four types of SVC routines are
summarized in Table 1. Details about many of the conventions are in the
reference notes that follow the table. The notes are referred to by the
numbers in the last column of the table. If a reference note for a

convention does not pertain to all types of SVC routines, an asterisk
indicates the types to which the note refers. S

e

38 sSystem Programmer's Guide (Release 20.1)

Table 1. Programming

Conventions for SVC Routines

r 1 k] T B] v) |
				Reference	
Conventions	Type 1	Type 2	Type 3	Type 4	Code
L [4 }] d				
[3 R])	1 T L]				
Part of resident	Yes	Yes	No	No	
{control program					
L 4 L 1 4 i J4					
. T) T L) L L]					
size of routine	Any	Any	< 1024	}Each	
	I	bytes [load			
	I	module			
			= 1024		
				bytes	
1 4 4 1 4 L ,‘					
. T .] T] T					
Reenterable routine	Optional,	Yes	Yes	Yes	1
	but must				
	be serially				
	reusable				
L 4 1 4 4 4 +					
T N T T n ¥ T					
May allow inter-	No	Yes	Yes	Yes i 2	
ruptions					
F t . L L t 1					
Entry point	Must be the first byte of the routine				
i or load module, and must be on a					
doubleword boundary					
1 N L					
L) 1 Ll					
Number of routine	Numbers assigned to your SVC routines				
should be in descending order from					
255 through 200					
ll' 1 k) L %					
Name of routine IGCnnn	IGCnnn	IGCOOnnn	IGCssnnn	3	
L 1 1 1 o i J					
1] T 1					
Register contents at	Registers 3, 4, 5, and 14 contain	4 i			
[entry time	communication pointers; registers 0,				
	1, and 15 are parameter registers				
—_— 4 1 4					
! i) L)	13 1				
May contain reloca-	Yes	Yes	No#*	No#*	5
table data					
1 [[4 4 [l J				
T .) 1 1 Rl T L}					
Can supervisor re-	Not	Yes*	Yes*	Yes#*	6
quest block (SVRB) belapplicable					
extended					
1] 1 L 4 i .'					
T . T) T] iy					
May issue WAIT macro	No	Yes*	Yes*	Yes*	7
instruction					
1 41 1 4 4 4 ’					
L} 1 1 1 T L]					
{May issue XCTL macro	No	No	No	Yes*	8
instruction					
4 4 4 4 4 +					
T) L)])					
May pass control to	None { Any	Any	Any		
what other types of					
SVC routines					
= t L L t					
Type of linkage with	Not	Issue supervisor call			
other SVC routines	applicable	(SVC) instruction			
[L L L 4					
r T T L)					
Exit from SVC Routine	Branch using return register 14				
L L i 3					
L 8 ' R	L) 1				
[Method of abnormal	Use resi-	Use ABEND	9		
termination jdent abnor-	macro instruction or				
i	mal termi-	resident abnormal			
	[nation rou-	termination routine	1		
[tine	[
L 1 L L 3

Adding SVC Routines to the Control Program 39

Reference SVC Routine

Code Types Reference Notes
1 ali If your SVC routine is to be reenterable, you

cannot use macro instructions whose exransions
store information into an inline parameter list.

2 all You should write SVC routines so that program
interruptions cannot occur. If a program
interruption does occur during execution of an
SVC routine, the routine loses control and the
task that called the routine terminates.

If a program interruption occurs and you are
modifying a serially reusable SVC routine, a
system queue, control blocks, etc., the
modification will never complete; the next time
the partially modified code is used, the results
will be unpredictable.

3 all You must use the following conventions when
naming SVC routines:

e Types 1 and 2 must be named IGCnnn; nnn is
the decimal number of the SVC routine. You
must specify this name in an ENTRY, CSECT, or
START instruction.

e Type 3 must be named IGCOOnnn; nnn is the
signed decimal number of the SVC routine.
This name must be the name of a member of a
partitioned data set.

e Type 4 must be named IGCssnnn; nnn is the
signed decimal number of the SVC routine, and
ss is the number of the load module minus
one, e.g., ss is 01 for the second load
module of the routine. This name must be the
name of a member of a partitioned data set.

4 all Before your SVC routine receives control, the
contents of all registers are saved. For type 4
routines, this applies only to the first load
module of the routine.

In general, the location of the register save
area is unknown to the routine that is called.
When your SVC routine receives control, the
status of the registers is as follows:

e Register 0 and 1 contain the same information
as when the SVC routine was called.

® Register 2 contains unpredictable
information.

e Register 3 contains the starting address of
the communication vector table.

* Register 4 contains the address of the task

control block (TCB) of the task that called
the SVC routine.

40 System Programmer's Guide (Release 20.1)

N

Reference SVC Routine

Code

Types

2,3,4

Reference Notes

e Register 5 contains the address of the
supervisor request block (SVRB), if a type 2,
3, or 4 SVC routine is in control. If a type
1 SVC routine is in control, register 5
contains the address of the last active
request block.

e Register 6 through 12 contain unpredictable
information.

e Register 13 contains the same information as
when the SVC routine was called.

e Register 14 contains the return address.

e Register 15 contains the same information as
when the SVC routine was called.

You must use registers 0, 1, and 15 if you want
to pass information to the calling program. The
contents of registers 2 through 14 are restored
when control is returned to the calling program.

Because relocatable address constants are not
relocated when a type 3 or 4 SVC routine is
loaded into main storage, you cannot use them in
coding these routines; nor can you use macro
instructions whose expansions contain relocatable
address constants. Types 1 and 2 are not
affected by this restriction since they are part
of the resident control program.

You can extend the SVRB, in 8-byte increments,
from 96 bytes up to 144 bytes. The extended area
is available as a work area during execution of
your routine only if you specify the extension
during the system generation process. When your
SVC routine receives control, register 5 contains
the address of the SVRB to which the extended
save area is appended.

You cannot issue the WAIT macro instruction
unless you have changed the system mask to allow
I/0 and external interruptions. If you have
allowed these interruptions, you can issue WAIT
macro instructions that await either single or
multiple events. The event control block (ECB)
for single-event waits or the ECB list and ECBs
for multiple-event waits must be in dynamic main
storage.

When you issue an XCTL macro instruction in a
routine under control of a type 4 SVRB, the new
load module is brought into a transient area.

The contents of registers 2 through 13 are
unchanged when control is passed to the load
module; register 15 contains the entry point of
the called load module.

Adding SVC Routines to the Control Program 41

Reference

SVC Routine

Code

9

Types
all

Reference Notes

Type 1 SVC routines must use the resident
abnormal termination routine to terminate any
task. The entry point to the abnormal
termination routine is in the communication
vector table (CVT). The symbolic name of the
entry point is CVIBTERM.

Type 2, 3, and 4 SVC routines must use the ABEND
macro instruction to terminate the current task,
and must use the resident abnormal termination
routine to terminate a task other than the
current task.

Before the resident abnormal termination routine
is entered, the CPU must be masked for all
maskable interruptions but the machine check
interruption, and registers 0, 1, and 14 must
contain the following:

e Registexr 0 contains the address of the TCB of
the task to be terminated.

e Register 1 contains the following
information:

Bit 0 is a 1 if you want a dump taken.

Bit 1 is a 1 if you want to terminate a job
step.

Bits 2-7 are zero.
Bits 8-19 contain the error code.
Bits 20-31 are zero.

e Register 14 contains the return address. The
resident abnormal termination routine exits
by branching to the address contained in

register 14.

The contents of register 15 are destroyed by the
abnormal termination routine.

42 System Programmer's Guide (Release 20.1)

Inserting SVC Routines Into the Control Program

You insert SVC routines into the control program during the system
generation process.

Before your SVC routine can be inserted into the control program, the
routine must be a member of a cataloged partitioned data set. You must
name this data set SYSl.name.

The following text gives a description of the information you must
supply during the system generation process. You will find a
description of the macro instructions required during the system
generation process in the publication IBM System/360 Operating System:
System Generation, GC28-6554.

Specifying SVC Routines

You use the SVCTABLE macro instruction to specify the SVC number, the
type of SVC routine, and, for type 2, 3, or 4 routines, the number of

double words in the extended save area.

Inserting SVC Routines During the System Generation Process

To insert a type 1 or 2 SVC routine into the resident control program,
you use the RESMODS macro instruction. You must specify the name of the
partitioned data set and the names of the members to be inserted into
the control program. Each member can contain more than one SVC routine.

To insert a type 3 or 4 SVC routine into the SVC library, you use the
SVCLIB macro instruction. You must specify the name of the partitioned
data set and the names of members to be inclvied in the SVC 1library.

The member names must conform to the conventions for naming type 3 and 4
routines, i.e., IGCOOnnn and IGCssnnn.

Adding SVC Routines to the Control Program 43

44 System Programmer's Guide (Release 20.1)

Message Routing Exit Routines

This chapter provides detailed information
on how to write user exit routines that
modify the routing and descriptor codes of
WITO or WTOR messages for any MVT or MFT
operating system that has the Multiple
Console Support Option (MCS). Information
is provided on inserting this exit routine
into the resident portion of the control
program. In addition, a description of the
characteristics and confiquraticn of MCS is
supplied.

Documentation of the internal logic of
the supervisor and its relationship to the
remainder of the control program can be
obtained through your IBM Branch Office.

PREREQUISITE PUBLICATIONS

The publication IBM System/360 Operating
System: Assembler Language, (GC28-6514)
contains the information necessary to code
programs in the assembler language.

The publications IBM System/360
Operating System: Supervisor and Data
Management Macro Instructions, (GC28-6647)
describe the Wr0 and WTOR macro
instructions, including the routing codes
and the descriptor codes used for message
routing, presentation, and deletion.

The publication IBM System/360 Operating
System: System Generation, (GC28-655U4)
provides information on how to generate an
operating system with the MCS option.

The publication IBM Systemn/360 Operating
System: Supervisor and Data Management
Services, (GC28-6646) provides information
on writing to the operator and to the hard
copy log.

The publication IBM System/360 Operating
System: Messages and Codes, (GC28-6631)
provides the standard routing and
descriptor codes for all 0S/360 messages.

Message Routing Exit Routines 45

MSGR

Characteristics of MCS

Multiple Console Support (MCS) is an option of the IBM System/360
Operating System that routes messages to different functional areas
according to the type of information that the message contains. In MCS,
a functional area is defined as one or more operator's consoles that are
doing the same type of work. (Some examples of functional areas are:

(1) the tape pool area, (2) the disk pool area, and (3) the unit record
pool area.) Each WTO and WIOR macro instruction is assigned one or more
routing codes which are used to determine the destination of the
message. There are sixteen routing codes that can be used. When the
message is ready to be routed, the routing codes assigned to the message
are compared to the routing codes assigned to each console. If any of
the routing codes match, the message is sent to that console. (For
descriptions and definitions of the routing codes, see IBM System/360
Operating System: Supervisor and Data Management Macro Instructions,
GC28-6647.)

If the standard routing codes provided on application and system
messages do not cover special situations at your installaticn, the
routing codes used on the message can be modified by coding a user exit
routine. The exit routine receives control prior to the routing of
messages so that you can examine the message text and modify the
message's routing and descriptor codes. The system will use your
modified routing codes to route the message. Descriptor codes provide a
mechanism for message presentation and deletion and are explained later
in this chapter.

Automatic console switching occurs when permanent hardware errors are
detected. Command initiated console switching is provided tc rermit
restructuring of the system console configuration and the hard copy log
by system operators. Consoles can be moved into or out of functional
areas at any time during system operation.

A hard copy log option is provided to record messages, operator and
system commands, and operator and system responses to commands. The
hard copy log may be a console device or it may be the system log
(SYSLOG). The number and type of messages recorded on the lcg is also
optional. Your installation may wish to record a selected group of
messages, or it may wish to record all messages. If commands are
recorded, the system automatically records command responses.

Writing a WTO/WTOR Exit Routine

You write a WTO/WTOR Exit Routine to modify the standard routing codes
and descriptor codes. This routine will be part of the control program.
If a message's routing code field is used by the operating system to
route the message, your routine will receive control prior to the
routing of the message. When your routine receives control, register 1
contains a pointer to the first word of the message text. The message
text field is 128 bytes long; followed by a four-byte routing code field
and a four-byte descriptor code field. Your exit routine may examine
but not modify the message text.

A message will be sent to only those locations specified in the
modified routing codes. All messages with modified routing codes are
sent to the hard copy log when the log is included in the operating
system. When the log is not included, the exit routine must not
suppress messages that contain a routing code of 1, 2, 3, 4, 7, 8, or 10
since messages with these codes are necessary for system maintenance.
Message suppression is turning off all routing codes of a message,
causing the message to be discarded. WTO messages can be sugppressed.

If a WTOR message is suppressed, it will be sent to the master console
by the operating system.

46 System Programmer's Guide (Release 20.1)

PROGRAMMING CONVENTIONS FOR SVC ROUTINES

The programming conventions for the WTO/WTOR exit routine are summarized
in Table 2. Details about many of the conventions are in the reference
notes that follow that table. The notes are referred to by the numbers
in the last column of the table.

Table 2. Programming Conventions for WTO/WTOR Exit Routine

[T b
] | Reference|
| Conventions | Requirements Code |
[i J
r - T 1 MSGR
|Part of resident | Yes | -
|control program | |
i 1 o]
] 1
| Size of routine |Any size | |
- + + 1
|Reenterable routine |Optional, but must be serially reusablej 1 |
L] 1 K]
L) L) i 1
|[May allow interrup- |Yes 2 |
|tions |
F + 1
| Name of routine Must be IEECVXIT | |
t L

L 3 T "
|Disposition of |{Registers must be saved at entry |
| general registers jand restored prior to returning |
L

F 1
|Format of text Provided through the DSECT IEECUCM 3 |
| and codes i
1

) "‘“"
[May issue WAIT, |No | |
| XCTL, WIO or WTOR | |]
jmacro instructions | | |
[N $

i T

|Method of abnormal |None 4

| termination |

L]

r 1

|Exit from routine | RETURN macro instruction

L L

Message Routing Exit Routines 47

Reference
Code

1

Reference Notes

If your exit routine is to be reenterable, you cannot use
macro instructions whose expansions store information into
an inline parameter list.

You should write your exit routine so that program
interruptions cannot occur. If a program interruption
occurs during execution of the exit routine, the routine
loses control and the Communications Task is terminated.

DSECT IEECUCM provides the format of the message text,
routing codes and descriptor codes. The pointer in
register 1 points to the first word of the message text,
UCMMSTXT. The format is:

r

| UCMMSTXT Message Text (128 Characters-

| padded with blanks)

!

1)

| UCMROUTC |
] Routing codes (4 bytes) |
1 ¥
{ 1
| UCMDESCD

| Descriptor codes (4 bytes)

L d

DSECT IEECUCM is contained in SYS1.MODGEN

System messages have a message code as the first seven
characters of the message text. This code may be examined
to aid in identifying system messages, but it must not be
modified.

The UCMROUTC field contains the routing codes. A bit
setting of "1" indicates that the WTO or WITOR was assigned
that particular routing code. Bit assignments and their
meanings are:

Bit Assignment Meaning

Byte 0

Bit 0 Routing code 1 Master Console

Bit 1 Routing code 2 Master Console Informational
Bit 2 Routing code 3 Tape Pool

Bit 3 Routing code 4 Direct Access Pool

Bit 4 Routing code 5 Tape Library

Bit 5 Routing code 6 Disk Library

Bit 6 Routing code 7 Unit Record Pool

Bit 7 Routing code 8 Teleprocessing Control

Byte 1

Bit 0 Routing code 9 System Security

Bit 1 routing code 10 System Error/Maintenance

Bit 2 Routing code 11 Programmer Information

Bit 3 Routing code 12 Emulator Program {undexr OS)
Bit 4 Routing code 13 Available for Customer Usage
Bit 5 Routing code 14 Available for Customer Usage
Bit 6 Routing code 15 Available for Customer Usage
Bit 7 Routing code 16 Reserved

Byte 2 Reserved

Byte 3 Reserved

48 sSystem Programmer's Guide (Release 20.1)

Reference Reference Notes
Code
3 The UCMDESCD field contains the descriptor codes. A bit
(Cont*d) setting of "1" indicates that the WIO or WTOR was assigned
that particular descriptor code. Bit assignments and
their meanings are:

Bit Assignment Meaning

Byte O

Bit 0 Descriptor code 1 System Failure

Bit 1 Descriptor code 2 Immediate Action Required
Bit 2 Descriptor code 3 Eventual Action Required

Bit 3 Descriptor code 4 System Status

Bit 4 Descriptor code 5 Immediate Command Response
Bit 5 Descriptor code 6 Job Status

Bit 6 Descriptor code 7 Application Program/Processor
Bit 7 Descriptor code 8 oOut-of-line Message

Byte 1 Descriptor codes Reserved
9 through 16

Byte 2 Reserved
Byte 3 Reserved
4 The exit routine is part of the Communications Task.

Abnormal termination of the exit routine causes the
operating system to terminate abnormally (code of F03).

Messages That Don't Use Routing Codes

There are certain messages that the exit routine does not see. These
are messages that have the MSGTYP operand in the WITO or WTOR macro
instruction coded with the JOBNAMES, STATUS, or Y parameter, and
messages that are being returned to the requesting console, i.e., a
response to a DISPLAY A command. Routing of these messages is on
criteria other than the routing codes, therefore, the system bypasses
the exit routine.

Adding a WTO/WTOR Exit Routine to the Control Program

A system generation option is available to enable you to include a
resident, user-written exit routine into the communications task.

The CONOPTS operand of the SCHEDULR system generation macro
instruction controls the inclusion of the exit routine. A description
of SCHEDULR is found in the publication IBM System/360 Operating System:
System Generation, GC28-6554.

Task supervision must be performed for the exit routine when the
routine is requested at system generation. This supervision is
performed every time a message is routed by its routing codes, even if
the exit routine is not present. To maintain optimum throughput, the
exit routine should not be specified at system generation unless it will
be used.

Inserting the WTO/WTOR Exit Routine

To enter your exit routine into the control program before system
generation, use the Linkage Editor to replace the dummy WTO/WTOR exit
routine IEECVCTE in SY¥S1.CI505 with your WTO/WTOR exit routine.

To enter your exit routine into the control program after system

generation, use the Linkage Editor to replace the dummy WTO/WTOR exit
routine IEECVCTE in the SYS1.NUCLEUS with your WTO/WTOR exit routine.

Message Routing Exit Routines 49

MSGR

50 sSystem Programmer's Guide (Release 20.1)

Handling Accounting Information

You may add accounting facilities to PCP,
MFT, and MVT configurations of the
operating system. This chapter describes
the input available to an accounting
routine; the characteristics and
requirements of an IBM-supplied data set
writer that may be used to log accounting
information generated by an accounting
routine; and how to insert an accounting
routine into the control program.
Conventions to be followed in preparing an
accounting routine are also noted.

REFERENCE PUBLICATIONS ACCT

The IBM System/360 Operating System:
Operator's Guide publication (GC28-65u40)
describes the procedure used to update
‘'system data sets (used when inserting your
accounting routine into the control program
in MFT and MVT confiqurations).

The IBM System/360 Operating System:
Job Management program logic manuals,
GY28-6613 and GY28-6660* discuss the
control program component in which your
accounting routines are inserted.

3IBM documents with Y prefix order numbers
are restricted in distribution and must be
obtained with the approval of local IBM
management.

Handling Accounting Information 51

Accounting Routines

Your installation may prepare accounting routines for insertion in PCP,
MFT, or MVT configurations of the operating system. These routines are
inserted in the control program during, or after, system generation.
There are differences, between configurations, in the accounting routine
attributes, the time(s) at which an accounting routine is entered, and
the information and facilities available to an accounting routine.

These differences are noted in the text.

PREREQUISITE ACTIONS

At system generation you must specify that an accounting routine is to
be supplied. This is done through the ACCTRTN=parameter of the system
generation SCHEDULR macro instruction. The system generation
specification must be made for PCP, MFT, and MVT configurations of the
operating system.

This specification causes the linkage to your accounting routine to
be installed in the scheduler component of the system being generated,
and makes usable the accounting’ data set writer routine. If you are not
going to install your accounting routine until after the system is
generated, a dummy accounting routine (named IEFACTRT) is also placed in
the system at this time. Insertion of accounting routines in the
control program is discussed later in this chapter.

Add the size of the IEFACTRT routine to your estimate of the minimum
amount of storage required to initiate a job; for MFT and MVT, this

storage requirement should be specified in the MINPART parameter of the
system generation SCHEDULR macro instruction.

Accounting Routine Conventions

Format

Your accounting routine may consist of one or more control sections.

ATTRIBUTES

An accounting routine written for insertion in PCP or MFT configurations
of the operating system must be serially reusable.

An accounting routine written for insertion in an MVT configuration
of the operating system must be reenterable.

CSECT NAME AND ENTRY POINT

The control section containing the entry point of your accounting
routine, and the entry point, must be named IEFACTRT.

REGISTER SAVING AND RESTORING

The content of registers 0 through 14 must be saved upon entry to your
accounting routine and restored prior to exiting.

52 System Programmer's Guide (Release 20.1)

ENTRANCES
Control is given to your accounting routine at the following times:

PCP, MFT, MVT Configurations
Step initiation

Step termination

Job termination

EXIT

You can use the RETURN macro instruction to restore the contents of the
general registers and return control to the operating system.

Input Available to Accounting Routines

The information available to an accounting routine varies slightly
between PCP, MFT and MVT configurations of the operating system. These
differences are noted in the following diagram.

Register 0 contains an entrance code, indicating at what time the
accounting routine is being given control.
Register 0 = 8: Step initiation
= 12: Step termination
= 16: Job termination

Register 1 contains the starting address of a list of pointers to
items of accounting information. Each pointer is on a fullword
boundary. The sequence of pointers in the list and the items of
information provided are described in the following diagram.

User accounting routines should only use pointers that are in the list
addressed by register 1. Other pointers are subject to change in
subsequent releases.

Handling Accounting Information 53

Byte

0

Job Name Pointer

Byte

Y

Job Name 8 Bytes l

8

Programmer
Name Pointer

Programmer

Name 20 Bytes

Byte

4

Step Name
Pointer

Byte

Step Name 8 Bytes

12

Job Running
Time Pointer

Pointer + 3 \

Job Running Time
3 Bytes (MVT, MFT)

Entry Count 1 Byte

The step name pointer is zero at job termi~
nation.

A right justified binary number represents
job running time in hundredths (0.01) of a
second.

If a programmer deferred restart occurs, the
time used during the original execution is
omitted from the job time passed to a user
routine.

The entry count byte contains the number of
job accounting entries picked up from the
JOB statement, Commas used to denote
omitted entries are counted.

Byte
16 Job Accounting
Data Fields Pointer
Y
0 l A byte of zeros indicates that the JOB statement
J did not contain accounting information.
or y
T T ;
Byte [Byte | Byte
Count | Data Count | Data e e e Countp | Datay 00

|

-

L

These data fields contain the accounting information that was specified in the JOB statement. The first byte of each
field contains the number of bytes of data that follow, - The last data field is followed by a byte of zeros.

A data field — consisting only of the first, or count byte, is developed for an omitted accounting entry, The byte
contains zeros, indicating that no data is present for that field. In this case :

When (a, b,, d) appears in the JOB statement

T T T
| ! |
Byte Data Bt 1 Daig, 00 B 1 Datq 00
Count | a County | Countg | d
a b
- I !
Note: Use the entry~count byte (job running time pointer + 3) to determine if you have processed all the accounting
data fields.
Byte
2 Step Running The step running time pointer is zero at job termination.
Time Pointer The step running time is not on a full word boundary. A binary numer, right justified,
| represents step running time in hundredths (0.01) of a second.
A
. . If an automatic restart occurs, the system gives control to a user routine prior fo restarting; step
Step Running Time
time passed is the time used by the step. Upon successful completion of a step that was
3 Bytes (MVT, MFT) ; s . s N
automatically restarted, the step time passed to a user routine does not include the time used
Pointer +3 by the step during its original execution, If a programmer deferred restart occurs, the time
used during the original execution is not included in the step time passed to a user routine.
Entry Count 1 Byte
Ty ~ount TR Number of step accounting entries picked up from the EXEC statement. Commas used to denote
omitted entries are counted,
Byte Byte
24 |SteP Accounting This pointer is zero 2g| "Flags" and Step

Data Fields Pointer| at job termination Number Pointer

Y ‘

The step accounting data
fields conform to the same
specifications as the job
accounting data fields.

"Flags" Byte

Setting bit 7 of this byte to 1 effects job
] cancellation. -

Pointer +1 y

This byte contains the number of the job
step currently being processed. The first
step in the job is 1.

Step Number Byte]

Note: You can use the flag byte to cancel the execution of a job whose accounting information does not conform to your installation’s
standards. You can equate step initiation for the first step in a job to job initiation, i.e., the step number byte contains 1.

Figure ACT 1. Accounting Information Available to User

54 System Programmer's Guide (Release 20.1)

Output From Accounting Routines

You can write output in three ways: by issuing console messages; by
using the standard system output; by using an IBM-supplied accounting
data set writer.

1. Console messages -- You can use Write to Operator (WTO) or Write to
Operator with Reply (WTOR) macro instructions.

2. System output -- You must assemble the following calling sequence
into your routine. The contents of register 12 must be the same as
when your accounting routine was entered, and register 13 must
contain the address of an area of 32 fullwords.

When writing an accounting routine for inclusion in the job
scheduler, you must be aware that register saving conventions
within the control program are different from those for problem
programs. In the job scheduler, registers are saved in the
sequence 0-14 in a 15-word save area. There is no place provided
to save register 13. You must provide some other means of saving
register 13; you may either save it in another register or provide
additional save area that is not known to the control program.
This can be done by adding a word to the end of the save area that
is provided and is addressed as SAVE + 60.

I 0

| Name } Operation} Operand]
H f-—- t {
	MmvC	36(u4,12),MSGADDR MOVE MESSAGE ADDRESS AND
	MvC	42(2,12) ,MSGLEN LENGTH TO SYSTEM TABLE
[L	REG15, VCONYS BRANCH AND LINK TO MESSAGE	
	BALR	REG14,REG15 ROUTINE
	-	l
[- [[
MSGADDR	DC [A(MSG)	
MSG	DC	C'text of message’
MSGLEN	DC	H'two character length of message' {
vconNys	DC { V(IEFYS)	
L L L 1

3. Accounting Data Set Writer -- This writer places accounting records
you have constructed in your accounting routine in a data set named
SYS1.ACCT. The data set must reside on a permanently resident
direct access device. You must provide, in your accounting
routine, linkage to the writer, and pass the beginning address of
the record to be written, to it.

Appendix A of this chapter discusses the use of the data set
writer.

Sample Accounting Routine

A sample accounting routine, showing use of the data set writer, output
to system output, and issuance of console messages, is stored under the
member name SAMACTRT in the SYS1.SAMPLIB data set furnished with the
starter operating system.

Handling Accounting Information 55

Inserting an Accounting Routine Into the Control Program

Your accounting routine can be inserted in the control program in two
ways; by placing the routine on the SYS1.CI505 data set used in system
generation or by placing the routine in the appropriate load module of
the control program after system generation. The effect of either
action is to replace a dummy accounting routine with your accounting
routine.

Insertion at System Generation

To insert your accounting routine into the control program during system
generation, you must, prior to the start of the system generation
process, place your routine in the SYS1.CIS505 data set, using the
linkage editor. The SY¥S1.CI505 data set (furnished with the starter
operating system) contains load modules which are combined during the
system generation process to form the load modules composing the control
program. In response to the specification made in the system generation
SCHEDULR macro instruction, your accounting routine is incorporated in
the appropriate load modules for the system being generated.

You must place vour accounting routine in the SY¥S1.CI505 data set
under the name IEFACTRT. You will be replacing the dummy accounting
routine -- also named IEFACTRT.

Insertion After System Generation

To insert your accounting routine into the control program after system
generation you place the routine in lcad modules of the scheduler
component of the generated control program, using the linkage editor.
The scheduler load modules are in the linkage library (SY¥S1.LINKLIB data
set) of the generated system. The affected load modules of the three
PCP schedulers (18K, 44K, 100K), the MFT schedulers (30K, 44K), and the
MVT scheduler are as followss

PCP Confiqurations

18K Scheduler

load module IEFSELCT -- step initiation
load module IEFSTERM step termination
load module IEFJTRM1 job termination

]
'

44K Scheduler

load module IEFSTERM
load module IEFJTERM

step initiation/termination
job termination

100K Scheduler

load module GO -- step initiation/termination and job termination

MFT Configurations

30K Scheduler

load module IEFSD520 -- step initiation
load module IEFSD515 -- step/job termination

44K Scheduler

load module IEFW21SD -- step initiation
load module IEFSD515 -~ steps/job termination

56 System Programmer's Guide (Release 20.1)

MVT Confiquration

MVT Scheduler

load module IEFSDO61 -- step and job termination
load module IEFW21SD -- step initiation

An example of the input for a linkage editor run to insert your
accounting routine into any of the job schedulers follows:

//jobname JOB (parameters)

//stepname EXEC PGM=IEWL, (parameters)
//SYSPRINT DD SYSOUT=A

//SYSUT1 DD UNIT=SYSDA,SPACE=(parameters)
//SYSLMOD DD DSNAME=SYS1.LINKLIB,DISP=0OLD

//SYSLIN DD * R
. ACCT

. This sequence must be
(object code) e repeated for each
scheduler lcad module
into which you wish
. _J to insert accounting
INCLUDE sSYSIMOD(load module name) routines.

ALIAS alias names

ENTRY entry point name

NAME load module name(R)

In this example "load module name"™ represents the appropriate
scheduler load module as identified in the preceding text. To ensure
accuracy in identifying the correct alias names and entxry point names
for the load modules, obtain these names from the system generation
listing produced during generation of the system you are working with.
These names are specified in the system generation Stage II linkage
editor output for the linkage editor execution that produced the load
module.

Handling Accounting Information 57

Appendix: Accounting Data Set Writer

The accounting data set writer (module IEFWAD) is inserted in the
appropriate scheduler load modules during system generation when
accounting routine inclusion is specified in the SCHEDULR macro
instruction. These are the same modules in which your accounting
routine is inserted. Scheduler storage requirements are increased by
the amount of storage needed by your accounting routine plus 2600 bytes.
The writer places accounting records developed by your routine in a data
set named SYS1.ACCT.

Linkage

Your accounting routine links to the writer via the following mechanism:

L R15,VCON
BALR 14,15
VCON DC V (IEFWAD)

Input

Your accounting routine passes in register 1 the address of the
accounting record to be written.

The recoxrd format is:

DS 3H -- space used by the data set writer

DC H'__' -- contains the number of bytes of data being passed.
This number cannot exceed the capacity of 1 track on
the direct access volume being written on.

bc -- the data to be written in SYS1.ACCT.

Registers 13, 14, and 15 are used as specified by operating system
conventions (14 and 15 are used for linkage, as above; 13 must point to
an 18-word save area).

Specifying the SYS1.ACCT Data Set

The SYS1.ACCT data set must be pre-allocated on a direct access volume
that will be permanently resident. The data set must be named
SYS1.ACCT, have no secondary extents, and be allocated contiguous space.
Do _not catalog the data set.

If your installation has two permanently resident volumes available
for accounting routine use, you may create two SYS1.ACCT data sets and
utilize the console messages and replies or the SET command (PCP only)
to notify the system as to which data set is to be written to.

58 System Programmer's Guide (Release 20.1)

Output

If the IEFWAD routine Successfully writes your record in the SYS1.ACCT
data set, the routine returns control to your accounting routine
immediately. If the routine fails to write your record, it uses message
IEF507D to bring the error condition to the attention of the operator.
(see the publication Messages and Codes, (GC28-6631) for the text of,
and answers to the message.) Depending upon his answer, the routine may
try again to write your record in the SYS1.ACCT data set.

In any case a code is returned to your routine indicating either that
the record was written successfully, or, if it was not written
successfully, the cause of the failure. The return codes are described
in the following table.

r 1 1
!Contents Typel Meaning }
r

| Register 15 {
k T T .
| 0 | D |The record was written to the data set. |
1 1 [l

r T T {
| 4 | D |The record was not written to the data set because the |
| | |record exceeds the length of one track. |
L] 1 .'
) T 1

| 8 | D |[The record was not written to the data set because there|
| | |is no more space in the data set. |
[1 1 "
8 1 1

| 12 | D |The record was not written to the data set because no |
| | | space had been allocated to the data set. |
L 4 {

r 1 1 "
16	D	The record was not written to the data set because a
		pexrmanent I/0 error was encountered while trying to
		write it.
b e , {		
20	D	The record was not written to the data set because the
		previously last record could not be found.
b == {		
24	D	Operator gave invalid device address.
[l 1 L {
" 3

| Register 0 |
1 3 y
| R 1] 1
| n | B |[Number of tracks still available in the data set. |
| | | (Valid only if register 15 is zero.) |
1 L L 3
3 A
[Type - Type of number: D - Decimal, B - Binary J

Use of ENQ/DEQ

IEFWAD enqueues on the major Q name SYSIEFAR and the minor Q name WD.

Specifying the Device on Which SYS1.ACCT Resides

The parameter ([,ACCT=([unitnamel(,N])] has been added as an option to
the SET command (PCP only). In this parameter:

unit name
Device on which SYS1.ACCT resides; if this parameter is omitted the
system residence volume is assumed.

Specifies that the lowest extent of SYS1.ACCT may be used; if this
parameter is omitted writing will be attempted from the last record
written.

Handling Accounting Information 59

ACCT

60 System Programmer's Guide (Release 20.1)

IECDSECT, IEFJFCBN, and
IEFUCBOB Macro Instruction

Jf you want to use the IECDSECT, IEFJFCBN,
and IEFUCBOB macro instructions, you must
either add these macro definitions to the
macro library (SYS1.MACLIB) or place them
in a separate partitioned data set and
concatenate this data set to the macro
library.

This chapter contains the following:

e The format of the macro instructions.

e The job control and utility statements
needed to add the macro instructions to

the library.

e The macro definition to be added to the
library.

The information previously contained in
this chapter on label handling routines may
be found in the publication IBM System/360
Operating System: Tape Labels, GC28-6680.

IECDSECT, IEFJFCBN, and IEFUCBOB Macro Instructions 61

IECDSECT Macro Instruction

This macro instruction defines the symbolic names of all fields in the
work area used by the OPEN, CLOSE, TCLOSE, and EOV routines. Code this
macro instruction with blank name and operand fields, and precede it
with a DSECT statement. Note: The IEFJFCBN macro instructicn is used
in the assembly of IECDSECT. The macro definition for IEFJFCBN must be
present in the macro-library (SYS1.MACLIB) for successful definition of
all fields in the work area.

r T . T a1
| Name | Operation | Operand |
t 1 1 {
| | IECDSECT | |
L L L J
Control Statements Required

r - 1
| 7/7/jobname JOB {parameters} |
} //stepname EXEC PGM=IEBUPDTE,PARM=NEW |
| //SYSPRINT DD SYSOUT=A |
| //SYSUT 2 DD DSNAME=SYS1.MACLIB,DISP=0LD (
| /7SYSIN DD DATA |
| o/ ADD NAME=IECDSECT,LIST=ALL |
| . |
| . l
| . o l
| IECDSECT Macro Definition |
[. |
| . |
| . |
| o/ ENDUP |
| 7% |
L - J

IECDSECT Macro Definition

MACRO

IECDSECT

SPACE 1
* THIS MACRO IS USED TO DEFINE THE WORK AREA
FOR ALL MODULES OF OPEN,CLOSE,TCLOSE
* AND END OF VOLUME FOR O/S 360

SPACE 1

*

THIS MACRO DEFINES A WORK AREA WITH THE
FOLLOWING FORMAT

* %

SPACE 1
1.LABELS AND DSCB
LABELS
VOLUME LABEL
FILE LABEL 1
FILE LABEL 2
DsSCB
FORMAT 1
FORMAT 3 KEY
FORMAT 3 DATA
CORE ADDRESS OF NEXT DSCB
MESSAGE AREA..<cceceecesncs.s 100 BYTES
2.JFCBucacuccccancacncancnnssannses 176 BYTES
3.ECBucecucencnccncnsancnncnnsennsss U4 BYTES
4.TOBeuaccacoannnsaacacnsnscocaanss 40 BYTES

LB K BB N B NE N CBE R N

62 System Programmer's Guide (Release 20.1)

*

* % *k
* %k %k
& %k %k
* % %k

* % K *

*

DXLBL
VOLLABI
VOLNO
VOLSERNO
VOLSEC

VOLVTOC

VOLOWNER

FL1LABI
FL1NO
FL1ID
FL1FILSR
FL1VOLSQ
FL1FILSQ
FL1GNO
FL1VNG
FL1CREDT
FL1EXPDT
FL1FSEC
FL1BLKCT
FL1SYSCD
FL1RES

FLI1RES1

*

FL2RECFM
FL2BLKL
FL2LRECL
FL2DEN
FL2FILP
FL2JSID
FL2J0OBD
FL2JSSP
FL2STEPD
FL2TRTCH
FL2CNTRL

FL2BLKA
FL2RES

SPACE

SPACE

SPACE

SPACE
Ds
Ds
DS
Ds
Ds
Ds
Ds
Ds
DS
Ds
Ds
Ds
SPACE

SPACE
ORG
Ds

Ds

Ds

Ds

Ds

Ds

Ds

Ds

Ds

Ds

DC

Ds

Ds

Ds

Ds

Ds
SPACE

SPACE
ORG
Ds

Ds

Ds

Ds

Ds

Ds

Ds

DC

Ds

Ds

Ds

Ds

Ds

Ds
SPACE

1

2

1

1
0CL80
CL3
CL1
CL6
cLl
0CL10
CL5
CL5
CL10
CL10
CL10
CL29
1

1
DXLBL
CL3
CL1
CL17
CL6
CL4
CL4
CLu4
CL2
CL6
CL6
c'o?
CL6
CL13
0CL7
CLl1
CL6
1

1
FL1ID
CL1
CL5
CL5
CL1
CL1
ocLi7
CLS8
Cl/l
CL8
CL2
CL1
CL1
CL1
CL41
1

IECLCSECT,

S5eDEBecccecccncscnnnscsscancncsnssocs

6.DCBececcccccsnncnncsssnccnnansasses

TeCCW Seaveccnscsescncssnnsnsssssnse

44 BYTES
4 BYTES
96 BYTES

TOTAL #*** U464 BYTES

VOLUME LABEL

LABEL IDENTIFIER
VOLUME LABEL NUMBER

RESERVED

RESERVED
RESERVED
OWNER NAME AND ADDRESS CODE
RESERVED

FILE IABEL 1

LABEL IDENTIFIER

FILE LABEL NUMBER

FILE IDENTIFIER

FILE SERIAL NUMBER
VOLUME SEQUENCE NUMBER
FILE SEQUENCE NUMBER
GENERATION NUMBER
VERSION NUMBER CF GENERATION
CREATION DATE
EXPIRATION DATE

FILE SECURITY INDICATOR
BLOCK COUNT

SYSTEM CODE

RESERVED FOR FUTURE USE

FILE LABEL 2

RECORD FORMAT

BLCCK LENGTH

BLOCKING FACTOR/RECORD LENGTH
DENSITY

FILE POSITION

JOB/STEP IDENTIFICATION
JOB IDENTIFICATION

SLASH

STEP IDENTIFICATION

TAPE RECORDING TECHNIQUE
CARRIAGE CONTROL CHARACTER
RESERVED FOR FUTURE USE
BLOCK ATTRIBUTE

RESERVED FOR FUTURE USE

IEFJFCBN,

and IEFUCBOB Macro Instructions

63

* DATA SET CONTROL BLOCK

SPACE 1
ORG DXLBL
DXDSCB DS 0CL96
DSCFMTID DC c'1®
DSCFILSR Ds CL6 FILE SERIAL NUMBER
DSCVOLSR DS CL2
DSCCREDT Ds cL3 CREATION DATE IN DISCONTINUOUS BIN
DSCEXPDT Ds CL3 EXPIRATION DATE IN DISCONTINUOUS BIN
DSCNOEXT DS cL1
DSCBLDBL DS cLi
DS CL1
DSCSYSCD Ds CL13 SYSTEM CODE
Ds cL7
DSCFILTY DS CL2 FILE TYPE
DSCRECFM DS cL1 RECORD FORMAT
DSCOPTCD DS CcL1 OPTION CODE
DSCBLKL Ds CL2 BLOCK LENGTH
DSCLRECL DS CL2 RECORD LENGTH
DSCKEYL DS cLil KEY LENGTH
DSCRKP DS CL2 KEY LOCATION
DSCDSIND DS cL1
DSCSCALO DS CLU4
DSCLSTAR DS CL5
DSCTRBAL DS CL2
DSCEXTYP DS CL1 EXTENT TYPE INDICATOR
DSCEXTSQ DS cL1 EXTENT SEQUENCE NUMBER
DSCLOWLM DS CL4Y
DSCUPPLM DS CLU4
DSCEXT1 DS CL10
DSCEXT2 Ds CL10
DSCNEXT Ds CL5 POINTER TO NEXT RECORD
DSCCORE DS CL4 CORE ADDRESS OF NEXT DSCB RECORD
DSCBEND EQU *
SPACE 1
* DATA SET CONTROL BLOCK -FORMAT 3- KEY PORTION
SPACE 1
ORG DXDSCB
DXDSCB3K Ds OCL40
DSCBF3C DC X'03030303"
DSCBEXSK DS 0CL40
DSCBEXTY DS cL1 EXTENT TYPE INDICATOR
DSCBEXSQ Ds CL1 EXTENT SEQUENCE NUMBER
DSCBLLMT DS CLY CCHH LOWER LIMIT
DSCBULMT DS CLY4 CCHH UPPER LIMIT
DSCBEX2 Ds CL10 ADDITIONAL EXTENT
DSCBEX3 Ds CL10 ADDITIONAL EXTENT
DSCBEX4 DS CL10 ADDITIONAL EXTENT
SPACE 1
* DATA SET CONTROL BLOCK -FORMAT 3~ RECORD PORTION
SPACE 1
ORG DXDSCB
DSCBFMID DC c'3 FORMAT ID
DSCBEXSD Ds 0CL90 ADDITIONAL EXTENTS
DSCBEX5 DS CL10 ADDITIONAL EXTENT
DSCBEX6é DS CL10 ADDITIONAL EXTENT
DSCBEX7 DS CL10 ADDITIONAL EXTENT
DSCBEX8 DS CL10 ADDITIONAL EXTENT
DSCBEX9 Ds CL10 ADDITIONAL EXTENT
DSCBEXA Ds CL10 ADDITIONAYL EXTENT
DSCBEXB DS CL10 ADDITIONAIL EXTENT
DSCBEXC Ds CL10 ADDITIONAL EXTENT
DSCBEXD DS CL10 ADDITIONAL EXTENT
DSCBNEXT DS CL5 CCHHR OF NEXT FORMAT 3 DSCB
SPACE 1

64 System Programmer's Guide (Release 20.1)

REPLYLTH
REPLYADR
REPLYECB
MSGLSTSZ2
MCSFLAGS
MESSAGEA
DESCODE
ROUTCODE
REPLY

*

*

*

MSERL
MINSTL
MUNL
MVOLL

* MTXTL
* MSGLTH
*
MSGIOSUP
MSGSER

MSGSERLO

MSGINSTR

MSGACTN

MSGUN

MSGVOLSR

MSGTEXT

*

DXJBF

DXECB

*

DXIOB

IOBFLAG1
IOBFLAG2
IOBSENSE
IOBSENSO
IOBSENS1
IOBECBPT

IOBCSW
IOBCOMAD
IOBSTATO
JIOBSTAT1
IOBCNT
IOBSIOCC

MESSAGE AREA

SPACE 1

ORG DXDsCB

Ds CL1

Ds CL3

DS CL4

Ds CL2 MSG LENGTH

DS CL2 FLAG FIELD FOR MCsS
Ds CL68 MESSAGE AREA

DS CL2 DESCRIPTOR CODE FOR MCS
Ds CL2 ROUTING CODE FOR MCS
Ds CL12 REPLY AREA

ORG MESSAGEA

DEFINITION OF LENGTH OF MESSAGE COMPONENTS

EQU 3 MESSAGE SERIAL NUMBER LENGTH
EQU 6 MSG INSTRUCTION LTH INC MSG SER
EQU 3 MESSAGE UNIT NAME LENGTH

EQU 6 MESSAGE VOLUME SERIAL LENGTH

LENGTH MAY BE DEFINED BY EACH MODULE TO FIT REQUIREMENT
LENGTH OF FULL MSG DEFINED BY EACH MODULE

MESSAGE FORMAT IS 'IECO00A M 000,00000 (TEXT) '
DC CL3' IEC! 1/0 SUPPORT MESSAGE IDENTITY
DS ocL3 MESSAGE SERIAL NUMBER
ORG MSGSER+MSERL-1
DS CcLi VOLUME SERIAL LO ORDER BYTE
ORG MSGSER
DC CL6"' 000A M' MESSAGE INSTRUCTION INCL MSGSER
ORG MSGINSTR+MINSTL-1
DS CcL1 MESSAGE ACTION REQD BY OPERATOR
DC cr ot
DC CL3' 000" UNIT NAME THAT MSG REFERS TO
DC c',
DC CL6'000000' VOLUME SERIAL THAT MSG REFERS TO
DC L,
DS 0CL38
SPACE 1
JOB FILE CONTROL BLOCK
SPACE 1
ORG DSCBEND
DS 0CL176
IEFJFCBN
SPACE 1
EVENT CONTROL BLOCK
SPACE 1
DS OCLY4
DC X'00000000"*
SPACE 1
INPUT/OUTPUT BLOCK
SPACE 1
DS 0CL32

DC X*00"
DC X'00"

Ds OH

Ds C11

DS CL1 SENSE BYTE 1
Ds XL1

DC AL3 (DXECB)

DS 0D

DC X*00000000' KEY,0000,COMMAND ADDRESS
DC X'00°" STATUS BYTE O
DC X*'00" STATUS BYTE 1
DC X*'0000" COUNT

Ds XLl

IECDSECT, IEFJFCBN, and IEFUCBOB Macro Instructions 65

IOBSTART
IOBWGHT
IOBDCBPT

IOBINCAN
IOBERRCT
DXDAADDR

*

DYYYY
DXDEB
DXDEBDEB
DXDEBOFL
DXDEBIRB
DXDEBSYS
DXDEBUSR
DXDEBECB
DXDEBID
DXDEBDCB
DXDCBAD
DXDEBAPP
DXDEBMOD
DXDEBUCB
DXDEBBIN
DXDEBSCC
DXDEBSHH
DXDEBECC
DXDEBEHH
DXDEBNTR

*

DXXXX
DXDCB
DXDCBDEB

*

DXCCW
DXCCW1
DXCCW2
DXCCW3
DXCCWY4
DXCCW5
DXCCW6
DXCCW7
DXCCWS8
DXCCW9
DXCCW10
DXCCW11
DXCCW12

DSECTSIZ

DC
DC

Ds
DC
Ds

SPACE
SPACE

EQU
DC
DS
DC

DC
DC

EQU
Ds

Ds
Ds
Ds

Ds

Ds
SPACE

SPACE
DS
EQU
DC
SPACE

SPACE
CNOP
Ds

Ds

Ds

Ds

Ds

Ds
Ds

‘DS

Ds

" SPACE

EQU
MEND

AL3 (DXCCW)
XL1
AL3 (DXDCB)
X1l
XL3
X'0000"
XL2 ' :
D . DIRECT ACCESS ADDRESS (MBBCCHHR)
1 ,
DATA EXTENT BLOCK
1 v
OCLU4 4
DYYYY-4
X*'00000000"
ocLil
X*00000000"
X'00000000"
X'00000000"
X" 00000000"
0CL1
ALY4 (DXDCB)
DXDEBDCB
CLY
ocLl
F

DATA CONTROL BLOCK

ok PRPIN@INDTITmx

F
DXXXX-44
A (DXDEB)
1

POINTER TO RELATIVE BEGINNING OF DCB

" CHANNEL CONTROL WORDS

80’—‘
-
oo
Vel

[=)}

SFHPUOODODUDUOUODUOUODUO

CORE AREA REQUIRED FOR THIS MACRO

66 System Programmer's Guide (Release 20.1)

IEFUCBOB Macro Instruction

This macro instruction defines the symbolic names of all fields in the
unit control block (UCB). Code this macro instruction with blank. name
and operand fields, and precede it with a DSECT stateément.

Name Operation Operand

- — - —
o — e ——
b oo b —‘_j

— T —=

IEFUCBOB

Control Statements Required

//jobname JoB {parameters}

//stepname EXEC PGM=IEBUPDTE, PARM=NEW
//SYSPRINT DD SYSOUT=A

//SYSUT2 DD DSNAME=SYS1.MACLIB,DISP=0OLD
//SYSIN DD DATA

o/ ADD NAME=IEFUCBOB, LIST=ALL

IEFUCBOB Macro Definition

,___.__....._.._____.._____-
e e e —— e e

IEFUCBOB Macro Definition

MACRO

IEFUCBOB
UCBOB EQU =* UNIT CONTROL BLOCKS

Ds oF
SRTEJBNR DS XL1 JOB INTERNAL NUMBER
UCBFLS DS XL1 EXPANDED SENSE INFORMATION
UCBID DS XL1 UCB IDENTIFICATION
SRTESTAT Ds XLl STATUS BITS
SRTEONLI EQU 128 ONLINE
SRTECHGS EQU 64 CHANGE ONLINE/OFFLINE
SRTERESV EQU 32 RESERVED DEVICE
SRTEUNLD EQU 16 UNLOAD THIS DEVICE
SRTEALOC EQU 8 BIT 4 ALLOCATED
SRTEPRES EQU 4 BIT 5 PERMANENTLY RESIDENT
SRTESYSR EQU 2 BIT 6 SYSRES, OR
* PRIMARY CONSOLE
SRTEDADI EQU 1 BIT 7 DADSM INTERLOCK, OR
* TAPE CONTAINS STANDARD LABELS, OR
* ALTERNATE CONSOLE
UCBCHA Ds XLl FLAGl AND CHANNEL ADDRESS
UCBUA Ds XLl UNIT ADDRESS
UCBFL2 Ds XLl FLAG2
UCBDTI Ds XL1 DEVICE TABLE
UCBETI Ds XLl ERROR TABLE
UCBSTI DS XLl STATUS TABLE
UCBLCI Ds XLl LOGICAL CHANNEL TABLE
UCBATI Ds X1 ATTENTION TABLE
UCBWGT Ds XL1 WEIGHT

IECDSECT, IEFJFCBN, and IEFUCBOB Macro Instructions 67

UCBNAME
UCBTYP
UCBTBYT1
UCB1FEAQ
UCB1FEAl
UCB1FEA2
UCB1lFEA3
UCB1FEAUL
UCB1FEA5
UCB1FEA6
UCB1FEA7
UCBTBYT2
UCBTBYT3
UCB3TAPE
UCB3COMM
UCB3DACC
UCB3DISP
UCB3UREC
UCB3CHAR
UCBTBYTU4
UCBLTS
UCBSNS

UCBNBRSN
UCBSNADR
SRTEVOLI
UCBXTADR

UCBUCSO1
UCBUCSO2
SRTESTAB
SRTEBSVL
SRTEBVSC
SRTEBALB
SRTEBPRV
SRTEBPUB
SRTEBVQS
*

STREASCI

SRTEBJLB
SRTEBNUL
SRTEDMCT
SRTEFSCT
SRTEFSEQ
UCBSQC

UCBSKA

SRTEUSER
SRTEECBA

DS

DS

EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
DS

DS

DS

DS

DS

DS

DS

DS

EQU
EQU
DS

EQU
EQU
EQU
EQU
EQU
EQU

EQU

EQU
EQU
DS
DS
DS
DS
Ds
DS
DS

CL3
XL4
UCBTYP
128

64

32

16 -

8

n

2

1
UCBTYP+1
UCBTYP+2
128

6u

32

16

8

4
UCBTYP+3
XL2
0XL6
XL2
XLl
XL3
0XL6
XL4
X1,2
128

64

XL1
128

64

32

16

8

4

SRTEVBQS

2

1
XLl
XL2
XL2
2F
2F
XL1
XL3

UNIT NAME IN 3 EBCDIC CHARACTERS
DEVICE TYPE
BYTE 1 OF UCBTYPE-MODEL

BIT OF OPTION FIELD
BIT OF OPTION FIELD
BIT OF OPTION FIELD
BIT OPTION FIELD
BIT OF OPTION FIELD

BIT OF OPTION FIELD
BIT OF OPTION FIELD
BIT OF OPTION FIELD

BYTE 2 OF UCBTYPE-OPTIONS

BYTE 3 OF UCBTYPE-CLASS

NOUFWNRO
]
o)

BIT 0 OF CLASS - TAPE

BIT 1 OF CLASS - COMMUNIC.
BIT 2 OF CLASS - DIRECT AC
BIT 3 OF CLASS - DISPIAY
BIT 4 OF CLASS - UNIT REC.
BIT 5 OF CLASS - CHAR.READ

BYTE 4 OF UCBTYPE-DEVICE
LAST 12+%
SENSE INFORMATION

NUMBER OF SENSE BYTES
ADDRESS OF SENSE INFORMATION
VOLUME SERIAL

ADDRESS OF UCB-UCS EXTENSION

DEFAULT CHARACTER SET
BUFFER LOADED in FOLD MODE
STATUS B
BIT 0 SHARED VOLUME
BIT 1 NOT USED
BIT 2 ADDIT.VOL.LABEL PROC
BIT 3 PRIVATE
BIT 4 PUBLIC
BIT 5 STORAGE FOR DIRECT
ACCESs
BIT 5 AMERICAN NATIONAL STANDARD IABEL
FOR TAPE DATA SETS
BIT 6 JOBLIB VOLUME
BIT 7 CONTROL VOLUME
DATA MANAGEMENT COUNT
FILE SEQ. COUNT
FILE SEQ. NUMBER
SEEK QUEUE CONTROL WORD
MBBCCHHR FOR LAST SEEK
CURRENT NUMBER OF USERS
DA ECB ADDRESS

*THE FOLLOWING DESCRIBES ONE OF THE 10 SUB-UCBS FOR THE 2321--

DATACELL
DCELBBNR
DCELSTAB
DCELSTAT
DCELVOLI
DCELJBNR
DCELDMCT
DCELVTOC

DCELUSER
*

ORG
Ds
Ds
Ds
Ds
Ds
Ds
Ds
Ds
Ds

SRTEUSER
oCL16
XL2

X

X

CL6

X

X

XL3

X

* PRINTER EXTENSION

*

10 OF THESE ARE PRESENT FOR 2321
BIN NUMBER

STATUS B

STATUS A

VOLUME SERIAL NUMBER

INTERNAL JOB NUMBER

DATA MANAGEMENT COUNT

TTR CF VTOC START

CURRENT NUMBER OF USERS

68 System Programmer's Guide (Release 20.1)

ORG UCBOB

UCBUCSID Ds CL4 UCs IMAGE ID
UCBUCSOP Ds CL1 UCS OPTIONS
UCBFCBOP Ds CL1 FCB IMAGE OPTIONS
Ds CL2 RESERVED BITS
UCBFCBID Ds CLu4 FCB IMAGE ID
UCBERADR DS CL4 ADDRESS ERP LOGOUT AREA

*

* 3211 SENSE INFORMATION
*

ORG UCBOB

UCBSNSXT DS CL6 3211 SENSE BYTES
DS CL2 RESERVED
MEND

IECDSECT, IEFJFCBN, and IEFUCBOB Macro Instructions 69

IEFJFCBN Macro Instruction

This macro instruction defines the symbolic names of all fields in the
job file control block (JFCB). Code this macro instruction with blank
name and operand fields, and precede it with a DSECT statement.

Name | Operation Operand

| IEFJFCBN |
4 L

o —

W Sp——

Control Statements Required

r
| 77/jobname JOB (parameters)

| 7/stepname EXEC PGM=IEBUPDTE, PARM=NEW

| //SYSPRINT DD SYSOUT=A

| 77s¥YsSUT2 DD DSNAME=SYS1.MACLIB,DISP=0OLD
| 7//SYSIN DD DATA

| -7 ADD NAME=IEFJFCBN,LIST=ALL

| .

| .

| .

| IEFJFCBN macro definition

| .

| .

| .

| o/ ENDUP

| 7%

L

T S U S

IEFJFCBN Macro Definition

MACRO

IEFJFCBN
INFMJFCB EQU *
JFCBDSNM Ds CLu44 DATA SET NAME
JFCBELNM DS CL8 ELEMENT NAME OR VERSION
JFCBTSDM Ds CLl TASK SCHEDULER -~ DATA
* MANAGEMENT INTERFACE BYTE
JFCBSYSC Ds 0CL13 SYSTEM CODE
JFCBDSCB DS CL3
JFCFCBID Ds CL4 FCB IMAGE ID
JFCAMPTR DS CL3
JFCRDBPT DS CL3
JFCBLTYP DS CL1 LABEL TYPE AND USER'S-LABEL
* INDICATOR
JFCBUFOF Ds CL1 BUFFER OFFSET FOR TAPE LCATA SETS
JFCBFLSQ Ds CL2 FILE SEQUENCE NUMBER
JFCBVLSQ DS CL2 VOLUME SEQUENCE NUMBER
JFCBMASK Ds CL8 CATA MANAGEMENT MASK
JFCBCRDT DS CL3 DATA SET CREATION DATE
JFCBXPDT Ds CL3 DATA SET EXPIRATION DATE
JFCBIND1 DS CL1 INDICATOR BYTE 1
JFCBRLSE EQU 64 BITS 0 AND 1 - EXTERNAL
* STORAGE RELEASE INDICATOR
JFCBLOCT EQU 16 BITS 2 AND 3 - DATA SET
* HAS BEEN LOCATED
JFCBNEWV EQU 4 BITS 4 AND 5 - NEW VOLUME
* ADDED TO DATA SET
JFCBPMEM EQU 1 BITS 6 AND 7 - DATA SET IS
* A MEMBER OF A PODS OR GDG
JFCBIND2 DS CL1 INDICATOR BYTE 2
JFCBSTAT EQU 64 BITS 0 AND 1 - DATA SET

70 System Programmer's Guide (Release 20.1)

*

JFCBSCTY
*
JFCBUFNO
JFCBUFRQ
JFCBFTEK
JFCBFALN
JFCBUFL
JFCEROPT
JFCTRTCH
JFCKEYLE
JFCMODE
JFCCODE
JFCSTACK
JFCPRTSP
JFCDEN
JFCLIMCT
JFCDSORG
JFCRECFM
JFCOPTCD
JFCBLKSI
JFCLRECL
JFCNCP
JFCNTM
JFCUCSID
JFCRKP
JFCCYLOF
JFCDBUFN
JFCUCSOP
JFCINTVL
JFCCPRI
JFCSOWA
JFCBNTCS
JFCBNVOL
JFCBVOLS
JFCBEXTL
*

*
JFCBEXAD
*
JFCBPQTY
JFCBCTRI
*
JFCBSQTY
JFCBIND3
JFCBCNTG
JFCBMXIG
*
JFCBALXI
JFCBRNDC
JFCBDQTY
*

JFCBSPNM
*

JFCBABST
*
JFCBSBNM
*
JFCBDRLH
JFCBVLCT
JFCBSPTN
*
JFCELGTH
JFCBEND

STATUS (NEW, OLD, OR MOD)
EQU 16 BITS 2 AND 3 - DATA SET
SECURITY INDICATOR

DS 0ALl
Ds ALl
Ds ORBL1
Ds BL1
Ds AL2
DS BL1
Ds OBL1
Ds 0AL1
Ds OBL1
Ds OBL1
Ds 0BL1
Ds BL1
DS BL1
bs AL3
Ds BL2
Ds BL1
DS BL1
DS AL2
DS AL2
Ds ALl
DS ALl
Ds oOCLY Ucs 1D
Ds AL2
Ds ALl
Ds ALl
bs ocL1 UCs OPTIONS
DS ALl
Ds BL1
Ds AL2
Ds cL1 NUMBER OF OVERFLOW TRACKS
Ds CL1 NUMBER OF VOLUME SERIAL NUMBERS
DS CL30 VOLUME SERIAL NUMBERS (THE FIRST FIVE)
Ds CcLi LENGTH OF BLOCK OF EXTRA
VOLUME SERIAL NUMBERS
(BEYOND FIVE)
Ds CL3 TRACK ADDRESS OF BLOCK OF
EXTRA VOLUME SERIAL NUMBERS
Ds CL3 PRIMARY QUANTITY OF D.A. STORAGE REQUIRED
Ds CL1 INDICATES WHETHER CYLINDERS, TRACKS, OR RECORDS
ARE SPECIFIED IN JFCBPQTY AND JFCBSQTY
Ds CL3 SECONDARY QUANTITY OF D.A. STORAGE REQUIRED
Ds CL1 INDICATOR BYTE 3
EQU 64 BITS 0 AND 1 - CONT'IGUOUS STORAGE INDICATOR
EQU 16 BITS 2 AND 3 - MAXIMUM
AVAILABLE EXTENT INDICATOR
EQU 4 BITS 4 AND 5 - ALL EXTENTS INDICATOR
EQU 1 BITS 6 AND 7 - ROUND CYLINDER INDICATOR
DS CL3 QUANTITY OF D.A. STORAGE
REQUIRED FOR A DIRECTORY
Ds CL3 CORE ADDRESS OF THE JFCB
WITH WHICH CYLINDERS ARE SPLIT
Ds CL2 RELATIVE ADDRESS OF FIRST
TRACK TO BE ALLOCATED
Ds CL3 CORE ADDRESS OF THE JFCB
FROM WHICH SPACE IS TO BE SUBALLOCATED
DS CL3 AVERAGE DATA RECORD LENGTH
Ds CL1 VOLUME COUNT
Ds CLli NUMBER OF TRACKS PER CYLINDER TO BE USED BY
THIS DATA SET WHEN SPLIT CYLINDERS IS INDICATED
EQU 176 LENGTH OF JFCB
EQU *
MEND

IECDSECT, IEFJFCBN, and IEFUCBOB Macro Imnstructions 71

72 System Programmer's Guide (Release 20.1)

The Must Complete Function

This chapter provides information
concerning system routine use of the must
complete function. This functicn is
available to system routines operating in
MFT and MVT environments as an extension of
the ENQ/DEQ facilities.

REFERENCE PUBLICATIONS

The IBM System/360 Operating System:
Supervisor and Data Management Serxvices
publication (GC28-6646) describes ENQ and
DEC macro instruction use except for
applications of the must complete function.

The IBM System/360: Supervisor and Data
Management Macro Instructions prublication
(GC28-66L47) describes the ENQ and DEQ macro
instructions except for the SMC and RMC
operands.

The Must Complete Function 73

MUST

The Must Complete Function

System routines (routines operating under a storage protection key of
zero) often engage in updating and/or manipulation of system resources
(system data sets, control blocks, gqueues, etc.) that contain
information critical to continued operation of the system. These
routines must complete their operations on the resource. Otherwise, the
.resource may be left in an imcomplete state or contain erroneous
information -- either condition leads to unpredictable results.

The must complete function is provided in the ENQ service routine to
ensure that a routine queued on a critical resource(s) can ccmplete
processing of the resource(s) without interruptions leading to
termination. The effect of the must complete function is to rlace other

routines (tasks) in a wait state until the requesting task -- the task
" (routine) issuing a ENQ macro instruction with the set-must-complete
(SMC) operand -- has completed its .operations on the resource. The
-requesting task releases the resource and terminates the must complete
condition through issuance of a DEQ macro instruction with the
reset-must-complete (RMC) operand.

Realize that, for the time it is in effect, the must comrlete
function serializes operations to some extent in your computing system.
Therefore, its use should be minimized -- use the function cnly in a
routine that processes system data whose validity must be ensured.

, As an example, in multitask environments, the integrity of the volume
‘table of contents (VTOC) must be preserved during an updating process so
that all future users may have access to the latest, correct, version of
the VTOC. Thus, in this case, you should enqueue on the VTOC and use
the must complete function (to suspend processing of other tasks) when
updating a VTOC.

Just as the ENQ function serializes use of a resource requested by
many different tasks, the must complete function serializes execution of
tasks. '

SCOPE
The must complete function can be applied at two levels:
THE SYSTEM LEVEL: Only the requesting task, and system tasks

included during system generation, are allowed to execute. All other
tasks in the system are placed in a wait state.

THE STEP LEVEL: 1In a partition or region, only the requesting task
is allowed to execute. All other tasks in the partition or region,
including the initiator task, are placed in a wait state.

CAUTION: Use of the must complete function at the system level should
not be attempted until all alternatives have been exhausted. Except for
extremely unusual conditions the system level of must complete should
never be used.

REQUESTING THE MUST COMPLETE FUNCTION

You request the must complete function by coding the set-must-complete
(SM(GC) operand in an ENQ macro instruction. The format is:

r T

| name | ENQ
| ! STEP
L L

T 1
1 ...,SMC={SYSTEM} |
! ;

74 System Programmer's Guide (Release 20.1)

You may specify SYSTEM or STEP. The parameters SYSTEM and STEP
indicate the level to which the must complete function is to apply. The
other operands of ENQ are described in the Supervisor_and Data
Management Macro Instructions publication.

Because of the properties of the TEST and USE parameters of the RET
operand of the ENQ macro instruction, the SMC operand should be used
only if the RET operand is to use the parameters HAVE, or NONE (in the.
E-form of ENQ), or if the RET operand is not used at all. .

You may request the must complete function only in routines operating
under a protection key of zero. If the protect key is not zero, the
task using the routine requesting "must complete" is abnormally ended.

OPERATING CHARACTERISTICS

When the must complete function is requested the requesting task is
marked as being in the must complete mode and all asynchronous exits
from the requesting task are deferred. Other tasks in the system
(except the allowed tasks at the system level) or associated with the
requesting task in a job step (step level) are placed in a wait state.
Thus tasks external to the requesting task are prevented from initiating
procedures that will cause termination of the requesting task. Other
external events, such as a CANCEL command issued by an operator, or a
job step timer expiration are also prevented from terminating the
requesting task.

The must complete mode of operation is not entered until the
resource(s) queued upon are available.

At the system or step level, the requesting task can cause 'its own
abnormal termination. If the requesting task does come to an abnormal
termination before a reset condition has been effected, the operating
system is stopped at the point of error to permit investigation of the
trouble. It is then necessary to restart the system with the
initial-program-load (IPL) procedure.

PROGRAMMING NOTES

1. All data used by a routine that is to operate in the must complete
mode should be checked for validity to ensure against a
program-check interruption. o

2. A routine that is already in the must complete mode should avoid
calling another routine which also operates in the must complete
mode. However, one level of nesting is permltted when necessary,
with the following cautions: }

a. A task may set the must complete mode for both the system and
the step. If multiple settings are made for either the system
or the step, only the first setting of each is effective -- the
others are treated as no operation.

b. The same is true for reset-must-complete. The first RMC for
the system will reset the status of the system, the first RMC
for the step will reset the status of the step, and all others
will be treated as no operation.

The Must Complete Function 75

3. 1Interlock conditions that can arise with the use of the ENQ
function are discussed in the Supervisor and Data Management
Services publication.

Additionally, an interlock may occur if your routine issues an ENQ
macro instruction while in the must complete mode. The resource
you want to queue on may already be queued on by a task placed in
the wait state due to the must complete request you have made.
Since the resource cannot be released, all tasks wait.

4. The macro instructions ATTACH, LINK, LOAD, and XCTL should not be
used, unless extreme care is taken, by a routine operating in the
must complete mode. An interlock condition will result if a
serially-reusable routine requested by one of these macro
instructions has been requested by one of the tasks made
non-dispatchable by the use of the SMC operand or was requested by
another task and has been only partially fetched.

For example, surpose routine "b" in task B has requested and is
using subroutine "c". Subsequently routine "a"™ in task A (of a
higher priority than task B) receives control of the processing
before routine "b" finishes with subroutine "c". If routine "a"
issues an ENQ macro instruction with the SMC operand and puts task
B (and, thus, routine "b") in a non-dispatchable condition,
subroutine "c" remains assigned to routine "b". Now, if routine
"a" issues a request (via a LINK, LOAD, etc. macro instruction) for
subroutine "c", an interlock will occur between tasks A and B:
task A cannot continue since subroutine "c" is still assigned to
task B, and task B cannot continue (and thus release subroutine
"c") because task A in the must complete mode has made task B
nondispatchable.

5. The time your routine is in the must complete mode should be kept
as short as possible -- enter at the last moment and leave as soon
as possible. One suggested way is to:

a. ENQ (on desired resource(s))
b. ENQ (on same resource (s)),RET=HAVE,SMC= SYSTEM
STEP
Item a gets the resource(s) without putting the routine into the
must complete mode.

Later, when appropriate, issue the ENQ with the must complete
request (Item b). 1Issue a DEQ macro instruction to terminate the
must complete mode as soon as processing is finished.

TERMINATING THE MUST COMPLETE FUNCTION

You terminate the must complete function and release the resource queued
upon by coding the reset-must-complete (RMC) operand in a DEQ macxo
instruction. The format is:

DEQ ...,RMC={SYSTEM}

STEP

- ——
o
5
®

o ——

b = s

.
|
|
L

The parameter (SYSTEM or STEP) must agree with the parameter
specified in the SMC operand of the corresponding ENQ macro instruction.

Tasks placed in the wait state by the corresponding ENQ macro

instruction are made dispatchable and asynchronous exits from the
requesting task are enabled.

76 sSystem Programmer's Guide (Release 20.1)

Execute Channel Program
(EXCP) Macro Instruction

This chapter contains a general description
of the function and application of the
Execute Channel Program (EXCP) macro
instruction, accompanied by descriptions of
specific control blocks and macro
instructions used with EXCP. Factors that
affect the operation of EXCP, such as
device variations and program modification,
are also discussed.

The EXCP macro instruction provides you
with a device-dependent means of performing
the I/0 operations. Before reading this
chapter, you should be familiar with system
functions and with the structure of control
blocks, as well as with the operational
characteristics of the I/0 devices required
by your channel programs. Operational
characteristics of specific I/0 devices are
contained in IBM System Reference Library
publications for each device.

Documentation of the internal logic of
the input/output supervisor can be obtained
through your IBM Branch Office.

EXCP
PREREQUISITE PUBLICATIONS :

The IBM System/360 Operating System:
Supervisor and Data Management Services
publication (GC28-6646) explains the
standard procedures for I/0 processing
under the operating system.

The IBM System/360 Operating System:
Assembler Lanquage publication (GC28-651u4)
contains the information necessary to code
programs in the assembler language.

The IBM System/360 Operating System:
Supervisor and Data Management Macro
Instructions publication (GC28-6647)
describes the system macro instructions
that can be used in programs coded in the
assembler language.

The IBM System/360 Operating System:
System Control Block publication
(GC28-6628) contains format and field
descriptions of the system control blocks
referred to in this chapter.

Execute Channel Program (EXCP) Macro Instruction 77

Execute Channel Program (EXCP) Macro Instruction

Execute Channel Program (EXCP) is a macro instruction of System/360
Cperating System that causes a supervisor-call interruption to pass
control to the input/output supervisor. EXCP also provides the
input/output supervisor with control information regarding a channel
program to be executed. When the IBM standard data access methods are
being used, the access method routines are responsible for issuing EXCP.
If you are not using the standard access methods, you may issue EXCP
directly. Direct use of EXCP provides you with device dependence in
organizing data and controlling I/O devices.

You issue EXCP primarily for I/0 programming situations to which the
standard access methods do not apply. When you are writing your own
data access methods, you must include EXCP for I/0 operations. EXCP
must also be used for processing of nonstandard labels, including the
reading and writing of labels and the positicning of magnetic tape
volumes.

To issue EXCP, you must provide a channel program (a list of channel
command words) and several control blocks in your program area. The
input/output supervisor then schedules I/O requests for the device you
have specified, executes the specified I/O commands, handles I/O
interruptions, directs error recovery procedures, and posts the results
of the I/0 requests.

When planning EXCP operations and appendages for use on central
processing units with parallel processing, special precautions must be
observed. Examples of such central processing units are the IBM
System/360 Models 91 and 195 that can execute instructions in a sequence
other than the physical sequence in which they appear in a listing.

Such a central processing unit maintains logical consistency in its own
operations, including the beginning and ending of I/0 operations.
However, it is impossible for such a central processing unit to maintain
consistency with operations performed by asynchronous units. This type
of central processing unit recognizes a special "no operation" to force
sequential operations in the environments where it might be required.
The appropriate hardware manual should be carefully studied before
coding EXCP and appendage routines for this type of central processing
unit.

Use of EXCP in System and Problem Programs

This section briefly explains the procedures performed by the system and
the programmer when the EXCP macro instruction is issued by the routines
of the standard data access methods. The additional procedures that you
must perform when issuing the EXCP macro instruction yourself are then
described by direct comparison.

SYSTEM USE OF EXCP

When using a standard data access method to perform I/0 operations, the
programmexr is relieved of coding channel programs, and of constructing
the control blocks necessary for the execution of channel programs. To
permit I/O operations to be handled by an access method, the programmer
need only issue the following macro instructions:

* A DCB macro instruction that produces a data control block (DCB) for
the data set to be retrieved or stored. If appendages are not being
used, a short DCB is constructed. Such a DCB does not support
reduced error recovery.

e An OPEN macro instruction that initializes the data control block
and produces a data extent block (DEB) for the data set.

e A macro instruction (e.g., GET, WRITE) that requests I/0 operations.

78 System Programmer's Guide (Release 20.1)

Access method routines will then:

1. Create a channel program that contains channel commands for the I1I/0
operations on the appropriate device.

2. Construct an input/output block (IOB) that contains information
about the channel program.

3. Construct an event control block (ECB) that is later surplied with
a completion code each time the channel program terminates.

4. Issue an EXCP macro instruction to pass the address of the IOB to
the routines that initiate and supervise the I/0 operations.

The input/output supervisor will then:

5. Schedule the I/0 request.

6. Issue a start input/output (SIO) instruction to activate the 1I/0
device.

7. Process I/0 interruptions and schedule error recovery procedures,
when necessary.

8. Place a completion code in the event control block after the
channel program has been executed.

The programmer is not concerned with these procedures and does not
know the status of I/O operations until they are completed.
Device-dependent operations are limited to those provided by the macro
instructions of the particular access method selected.

PROGRAMMER USE OF EXCP

If you wish to issue the EXCP macro instruction directly, you must
perform the procedures that the access methods perform, as summarized in
items 1 through 4 of the preceding discussion. You must, in addition to
constructing and opening the data control block with the DCB and OPEN
macro instructions, construct a channel program, an input/output block,
and an event control block before you can issue the EXCP macro
instruction. The input/output supervisor always handles items 5 through
8.

After issuing the EXCP macro instruction, you should issue a WAIT
macro instruction specifying the event control block to determine
whether the channel program has terminated. If volume switching is
necessary, you must issue an EOV macro instruction. When processing of
the data set has been completed, you must issue a CLOSE macro
instruction to restore the data control block.

EXCP Requirements

This section describes the channel program that you must provide in
order to issue the EXCP macro instruction. The control blocks that you
must either construct directly, or cause to be constructed by use of
macro instructions, are also described.

CHANNEL PROGRAM

The channel program supplied by you and executed through EXCP is
composed of channel command words (CCWs) on doubleword boundaries. Each
channel command word specifies a command to be executed and, for
commands initiating data transfer, the area to or from which the data is
to be transferred. Channel command word formats used with specific I/0
devices can be found in IBM Systems Reference Library publications for
each device. All channel command words described in these publications
can be used, with the exception of REWIND and UNLOAD (RUN).

Execute Channel Program (EXCP) Macro Instruction 79

EXC

Data and Command Chaining

Chaining is the successive loading of channel command words into a
channel from contiguous doubleword locations in main storage. Data
chaining occurs when a new channel command word loaded into the channel
defines a new storage area for the original I/O operation. Command
chaining occurs when the new channel command word specifies a new I/0
operation. For detailed information about chaining, refer to the IBM
System/360: Principles of Operation publication (GA22-6821).

To specify either data chaining or command chaining, you must set
appropriate bits in the channel command word, and indicate the type of
chaining in the input/output block. Both data and comrmand chaining
should not be specified in the same channel command word; if they are,
data chaining takes precedence.

When a channel program includes a list of channel command words that
chain data for reading operations, no channel command word may alter the
contents of another channel command word in the same list. (If such
alteration were allowed, specifications could be placed into a channel
command word without being checked for validity. If the specifications
were incorrect, the error could not be detected until the chain was
completed. Data could be read into incorrect locations and the system
could not correct the error.)

CONTROIL BLOCKS

When using the EXCP macro instruction, you must be familiar with the
function and structure of an inputs/output block (IOB), an event control
block (ECB), a data control block (DCB), and a data extent block (DEB).
Brief descriptions of these control blocks follow. Their fields are
illustrated in the section "EXCP Programming Specifications."”

Input/Output Block (IOB)

The input/output block is used for communication between the problem
program and the system. It provides the addresses of other control
blocks, and maintains information about the channel program, such as the
type of chaining and the progress of I/0 operations. You must define
the input/output block and specify its address as the only parameter of
the EXCP macro instruction.

Event Control Block (ECB)

The event control block provides you with a completion code that
describes whether the channel program was completed with or without
error. A WAIT macro instruction for synchronizing I/0 operations with
the problem program must be directed to the event control block. You
must define the event control block and specify its address in the
input/output block.

Data Control Block (DCB)

The data control block provides the system with information about the
characteristics and processing requirements of a data set to be read or
written by the channel program. A data control block must be produced
by a DCB mac¢ro instruction that includes parameters for EXCP. If
appendages are not being used, a short DCB is constructed. Such a DCB
does not support reduced error recovery. You specify the address of the
data control block in the input/output block.

80 System Programmer’s Guide (Release 20.1)

Data Extent Block (DEB)

The data extent block contains one or more extent entries for the
associated data set, as well as other control information. An extent
defines all or part of the physical boundaries on an I/0 device occupied
by, or reserved for, a particular data set. Each extent entry contains
the address of a unit control block (UCB), which provides information
about the type and location of an I/O device. More than one extent
entry can contain the same UCB address. (Unit control blocks are set up
at system generation time and need not concern you.) For all 1/0
devices supported by the operating system, the data extent block is
produced during execution of the OPEN macro instruction for the data
control block. The system places the address of the data extent block
into the data control block.

Channel Program Execution

This section explains how the system uses your channel program and
control blocks after the EXCP macro instruction has been issued.

INITIATION OF CHANNEL PROGRAM

By issuing the EXCP macro instruction, you request the execution of the
channel program specified in the input/output block. The input/output
supervisor checks the request for validity by ensuring that the required
control blocks contain the correct information. If they do not,
abnormal termination procedures are initiated. A program check occurs
if the control blocks are not on correct boundaries.

The input/output supervisor obtains the address of the data control
block from the input/output block and the address of the data extent
block from the data control block. From the data extent block, the
system obtains the address of the unit control block (UCB) for the
desired I/0 device. To protect and facilitate reference to the
addresses of the IOB, DEB, and UCB, the input/output supervisor places
these addresses, along with other information about the channel program,
into an area called a request element. The request element is used by
the input/output supervisor for forming queues to keep track of I/0
requests. A channel program's request element is "available®" if the
information it contains is no longer to be used by the input/output
supervisor and if it is ready to receive information about another
request. When a request element is "made available", it is removed from
all request queues and placed on a queue of available request elements.
You are not concerned with the contents of the request element unless
you have provided appendage routines, as explained in the section
"Appendages."

After completing the request element for the channel program, the
input/output supervisor determines whether a channel and the requested
I1/0 device are ready for the channel program. If they are noct ready,
the request element is placed into the appropriate queue, and control is
returned to the problem program. The channel program is subsequently
executed when the channel and device are ready.

To initiate execution of the channel program, the system obtains its
address from the input/output block, places this address into the
channel address word (CAW), and issues a start input/output (SIO)
instruction.

Before issuing the SIO instruction for direct access devices, the
system issues the initial seek, which is overlapped with other
operations. You specify the seek address in the input/output block.
When the seek has completed, the system constructs a command chain to
reissue the seek, set the file mask specified in the data extent block,

Execute Channel Program (EXCP) Macro Instruction 81

and pass control to your channel program. (When using the operating
system, you cannot issue the initial seek or set the file mask yourself.
The file mask is set to prohibit Seek Cylinder commands, or, if space is
allocated by tracks, Seek Track commands. If the data set is opened for
INPUT or RDBACK, Write commands are also prohibited.)

Before issuing SIO for magnetic tape devices, the system constructs a
command chain to set the mode specified in the data extent block and
pass control to your channel program. (When using the operating system,
you cannot set the mode yourself.)

COMPLETION OF CHANNEL PROGRAM

The system considers the channel program completed when it receives an
indication of a channel end condition. When channel end occurs, the
request element for the channel program is made available, and a
completion code is placed into the event control block. The completion
code indicates whether errors are associated with channel end. If
device end occurs simultaneously with channel end, errors associated
with device end (i.e., unit exception or unit check) are alsc accounted
for. .

Device End Exrors

If device end occurs after channel end and an error is associated with
device end, the completion code in the event control block dces not
indicate the error. However, the status of the unit and channel is
saved in the unit control block (UCB) for the device, and the UCB is
marked as intercepted. The input/output block for the next request
directed to the I/O0 device is also marked as intercepted. The erxror is
assumed to be permanent, and the completion code in the event control
block for the intercepted request indicates interception. The IFLGS
field of the data control block is also flagged to indicate a permanent
error. It should be noted that when a Write Tape Mark or Erase Long Gap
CCW is the last (or only) CCW in your channel program, the I/0
Supervisor will not attempt recovery procedures for Device End errors.
In these circumstances, command chaining a NOPCCW to your Write Tape
Mark or Erase Long Gap CCW ensures initiation of device end error
recovery procedures.

To be prepared for device end errors, you should be familiar with
device characteristics that can cause such errors. After one of your
channel programs has terminated, you should not release buffer space
until you have determined that your next request for the device has not
been intercepted. You may reissue an intercepted request.

INTERRUPTION HANDLING AND ERROR RECOVERY PROCEDURES

An I/0 interruption allows the CPU to respond to signals from an I/O
device which indicate either termination of a phase of I/0 operations or
external action on the device. A complete explanation of I/O
interruptions is contained in the IBM System/360: Principles of
Operation publication. For descriptions of interruptions by specific
devices, refer to IBM Systems Reference Library publications for each
device.

If error conditions are associated with an interruption, the
input/output supervisor schedules the appropriate device-dependent error
routine. The channel is then restarted with another request that is not
related* to the channel program in error. If the error recovery

- s - e e s e ——— - -

1Related channel programs are discussed in the next section.

82 System Programmer's Guide (Release 20.1).

procedures fail to correct the error, the system places ones in the
first two bit positions of the IFLGS field of the data control block.
You are informed of the error by an error code that the system places
into the event control block.

Exrror Recovery Procedures for Related Channel Programs

Related channel programs are requests that are associated with a
particular data control block and data extent block in the same job
step. They must be executed in a definite order, i.e., the order in
which the requests are received by the input/output supervisor. A
channel program is not started until all previous requests for related
channel programs have been completed. You specify, in the input/output
block, whether the channel program is related to others.

If a permanent error occurs in a channel program that is related to
other requests, the request elements for all the related channel
programs are removed from their queue and made available. This process
is called purging. The addresses of the input/output blocks for the
related channel programs are chained together, with the address of the
first input/output block in the chain placed into the "User Purge IOB
Address™ field of the data extent block. The address of the second
input/output block is placed into the "Restart Address"™ field of the
first input/output block, and so on. The last input/output block in the
chain is indicated by all ones in its Restart Address field. The chain
defines the order in which the request elements for the related channel
programs are removed from the request queue.

For all requests that are related to the channel program in error,
the system places completion codes into the event control blocks. The
IFLGS field of the data control block is also flagged. Any requests for
a data control block with error flags are posted complete without
execution. If you wish to reissue requests that are related to the
channel program in error, you must reset the first two bits of the IFLGS
field of the data control block to zeros. You then issue a RESTORE
macro instruction, specifying, as the only parameter, the address of the
"User Purge IOB Address" field of the data extent block. This causes
execution of all the related channel programs. (The RESTORE macro
definition and how to add it to the macro-library are in the Agpendix of
this chapter.) BAlternatively, if you wish to restart only particular
channel programs rather than all of them, you may reissue the EXCP macro
instruction for each channel program desired.

Appendages

This section discusses the appendages that you may optionally code when
using the EXCP macro instruction. Before a programmer-written appendage
can be executed, it must be included in the SVC library. These
procedures are explained first; descriptions of the routines themselves
and of their coding specifications follow.

DEFINING APPENDAGES

An appendage must be defined in a DD statement as a member of a SYS1
partitioned data set. The full member name of an appendage is eight
bytes in length, but the first six bytes are required by IBM standards
to be the characters IGG019. The last two characters must be provided
by you as an identification; they may range in collating sequence from
WA to Z9.

Execute Channel Program (EXCP) Macro Instruction 83

139:40) 4

ENTERING APPENDAGES INTO SVC LIBRARY

The SVC library is a partitioned data set named SYS1.SVCLIB. You can
insert an appendage into the SVC library during the system generation
process or by link-editing it into the S¥S1.SVCLIB. The routine must be
a member of a cataloged partitioned data set whose name begins with
SYsi.

To enter a routine into the SVC library during system generation, you
use the SVCLIB macro instruction. The format of this macro instruction
is given in the publication IBM System/360 Operating System: System
Generation, GC28-6554.

CHARACTERISTICS OF APPENDAGES

An appendage is a programmer-written routine that provides additional
control over I/0 operations during channel program execution. By
providing appendages, you can examine the status of I/0 operations and
determine the actions to be taken for various conditions. An appendage
may receive control when one of the following occurs:

Start I/0 is issued.

Program controlled interruption.
End of extent.

Channel end.

Abnormal end.

Appendages are executed in supervisor state. You must not issue, in
an appendage, any SVC instructions or instructions that change the
status of the computing or operating system (e.g., WTO, LPSW, SVC, or
any privileged instruction). Since appendages are disabled for all
types of interruptions except machine checks, you also must not enter
loops that test for completion of I/0 operations. An appendage must not
alter storage used by either the supervisor or the input/output
supervisor.

The identification of an appendage, which consists of the last two
characters of its 8-character name, must be specified in the DCB macro
instruction, as described in the section "EXCP Programming
Specifications.” When the OPEN macro instruction for the data control
block is issued, any appendages specified in the DCB macro instructicn
are loaded into main storage. The appendages are linked to the
input/output supervisor when their addresses are placed into a table of
addresses called an appendage vector table. This table is always
constructed by the system when OPEN is issued; if an appendage is not
provided, the table contains the address of a return branch instruction
to the input/output supervisor. Using the appendage vector table, the
input/output supervisor branches and links to an appendage at the
appropriate time. The address of the starting location of the appendage
is placed into register 15.

Parameters are passed to appendages by the input/output supervisor.
These parameters are contained in registers, and are as follows:

e Register 1: Address of the request queue element (RQE) for the
channel program.

The request queue element contains the following information:
Bytes 1. and 2 -
Link field when the RQE is an I/0 queue.

Bytes 3 and 4 -
Address of the unit control block (UCB) for the I/0 device.

84 System Programmer's Guide (Release 20.1)

Byte 5 -
Identification of the task control block (TCB) for the task.
(In a multitasking environment, this field is not used. It

contains all zeros if the request element is not available and

all ones when the request element is available.)

Bytes 6, 7, and 8 -
Address of the input/output block.
Byte 9 -

Priority of the request, if the priority option has been
selected for the system.
Bytes 10, 11, and 12 -
Address of the data extent block.

The request queue element is normally 12 bytes in length; for a

multitasking environment, it includes 4 more bytes that contain the
address of the TCB.

e Register 15:

Register 2:
Register 3:
Register 4:
Register 7:
Register 14:

Address
Address
Address
Address

of the
of the
of the
Address of the location in the input/output supervisor
to which control is to be returned after execution of

the appendage.

some of these procedures differ in their treatment of

of the input/output block (IOB).

data extent block (DEB).
data control block (DCB).
unit control block (UCB).

When passing control from an agppendage
to the system, you may use displacements to the return
address in register 14 for optional return procedures.

the request element associated with the channel
programe.

Address of the entry point to the appendage.

You may not change register 1 in an appendage; this is reserved in
case an abnormal condition occurs while the appendage is in control.

Register 9,

returned to the system.

if used, must be set to binary zero before contrcl is
All other registers, except those indicated in

the descriptions of each appendage, must be saved and restored if they
are used. The following table summarizes register conventions.

r T T - T 1
| Appendages | Entry Point| Returns | Available Work Reg. |
b + t y t {
			Extent Error	
EOQE	Reg 15	Reg 14 + 0	Return	
		[Reg 14 + 4	Skip	Reg. 10, 11, 12 & 13
		Reg 14 + 8	Try Again	I
r 1 4 1 1 {				
SIOo	Reg 15	Reg 14 + 0	Normal	Reg. 10, 11 & 13
		Reg 14 + 4	Skip	
F b - 1 1 {				
PCI	Reg 15 Reg 14 + 0	Normal	Reg. 10, 11, 12 & 13	
[N 4 4 [l J				
r 1 T T 1				
CE { Reg 15]Reg 14 + 0	Normal			
		Reg 14 + 4	Skip	Reg. 10, 11, 12 & 13
		Reg 14 + 8	Re-EXCP	
		Reg 14 + 12	By-Pass	
t iR] 4 1 §]				
13 T i] T 1 1				
XCE	Reg 15	Reg 14 + 0	Normal	
		IReg 14 + 4	Skip	Reg. 10, 11, 12 & 13
		Reg 14 + 8	Re-EXCP	
		{Reg 14 + 12	By-Pass	i
L L L L L J
The types of appendages are listed in the following paragraphs, with
explanations of when they are entered, how they return control to the

system, and which registers they may use without saving and restoring.

Execute Channel Program (EXCP) Macro Instruction 85

EXCP

Start Inputs/oOutput (SIO) Appendage

This appendage is entered before the input/output supervisor issues a
start input/output (SIO) instruction for an I/0O operation, unless an
error recovery procedure is in control. If SIO is not initiated because
of a busy condition, the appendage will be reentered before SIO is
reissued.

If the return address in register 14 is used to return ccntrol to the
input/output supervisor, the I/0 operation is executed normally. You
may optionally bypass the SIO instruction and prevent execution of the
channel program by using the contents of register 14 plus 4 as the
return address. In this case, the channel program is not posted
complete, but its request element is made available. You may do the
posting by taking the following steps:

1. Save necessary registers.

2. Place pointer to post entry address from the CVT in Reg 15.
3. Place current TCB address from the CVT in Reg 12.

4. Place ECB address from the I0OB in Reg 11.

5. Set the completion code in the high order byte in Reg 10.
6. Go to Post using BALR 14, 15.

You may use registers 10, 11, and 13 in a start input/output
appendage without saving and restoring their contents.

Program Controlled Interruption (PCI) Appendage

This appendage is entered when a program controlled interruption occurs.
At the time of the interruption, the contents of the channel status word
will not have been placed in the "channel status woxd" field of the
input/output block. The channel status word can be obtained from
location 64. You must use the return address in register 14 to allow
the system to proceed with normal interruption processing.

You may use registers 10 through 13 in a program controlled
interruption appendage without saving and restoring their contents.
This appendage may be reentered for the same channel program if the
error recovery procedure is in the process of retrying a CCW with the
program controlled bit set on. The IOBERR flag is set when the error
recovery procedure is in control (IOCBFLl1 = X'20').

End-of-Extent Appendage

This appendage is entered when the seek address specified in the
input/output block is outside the allocated extent limits indicated in
the data extent block.

If you use the return address in register 14 to return control to the
system, the abnormal end appendage is entered. BAn end-of-extent error
code (X'42') is placed in the "ECB code" field of the input/output block
for subsequent posting in the event control block.

You may use the following optional return addresses:

e Contents of register 14 plus 4 - The channel program is posted
complete, and its request element is returned to the available
queue.

e Contents of register 14 plus 8 - The request is tried again.

You may use registers 10 through 13 in an end-of-extent appendage

without saving and restoring their contents.

86 System Programmer's Guide (Release 20.1)

Note: If an end-of-cylinder or file-protect condition occurs, the
input/output supervisor updates the seek address to the next higher
cylinder or track address, and re-executes the request. If the new seek
address is within the data set's extent, the request is executed; if the
new seek address is not within the data set's extent, the end-of-extent
appendage is entered. If you wish to try the request in the next
extent, you must move the new seek address into the UCB at UCB+U48.

If a file protect condition occurs and was caused by a full seek
(command code=07) embedded within a channel program, the request is
flagged as a permanent error, and the abnorral end appendage is entered.

Channel End Appendage

This appendage is entered when a channel end, unit exception with or
without channel end, or channel end with wrong length record occurs
without any other abnormal end conditions.

If you use the return address in register 14 to return ccntrol to the
system, the channel program is posted complete, and its request element
is made available. 1In the case of unit exception or wrong length
record, the error recovery procedure is performed before the channel
program is posted complete, and the IOBEX flag (X'04") in IOBFL1l is set
on. The condition code may be directly tested by using a BC
instruction. A CC=0 means no UEX or WIR accompanied this interruption.
The CSW status may be obtained from the IOBCSW.

If the appendage takes care of the wrong length record and/or unit
exception it may turn off the IOBEX (X'04') flag in IOBFL1l and return
normally. The event will then be posted complete (completicn code 7F
under normal conditions, taken from the high-order byte of the IOBECB
field). 1If the appendage returns normally without resetting the IOBEX
flag to zero, the request will ke routed to the associated device error
routine, and then the abnormal end appendage will be immediately
entered. This abnormal end appendage will be entered with IOBECB
completion code = *41°.

You may use the following optional return addresses:

s Contents of register 14 plus 4 - The channel program is not posted
complete, but its request element is made available. You may post
the event by using the calling sequence described under the Start
1/0 Appendage. This is especially useful if you wish tc post an ECB
other than the IOBECB.

e Contents of register 14 plus 8 - The channel program is nct posted
complete, and its request element is placed back on the request
queue so that the I/O operation can be retried. For correct
re-execution of the channel program, you must re-initialize the
"Flags 1", "Flags 2", and "Flags 3" fields of the input/output block
and set the "Error Counts"™ field to zero. As an added rrecaution,
the IOBSNS and IOBCSW fields should be cleared.

e Contents of register 14 plus 12 - The channel program is not posted
complete, and its request element is not made available. (The
request element is assumed to be used in a subsequent asynchronous
exit routine.)

You may use registers 10 through 13 in a channel end appendage
without saving and restoring their contents.

Abnormal End Appendage

This appendage may be entered on abnormal conditions, such as: unit
check, unit exception, wrong length indication, program check,

Execute Channel Program (EXCP) Macro Instruction 87

"EXCP

protection check, channel data check, channel control check, interface
control check, chaining check, out-of-extent error, and interxcept
condition (i.e., device end error). It may also be entered when an EXCP
is issued for a DCB that has already been purged.

1. Wwhen this appendage is entered due to a unit exception and/or wrong
length record indication, the IOBECB code is set to X'41'. For
further information on these conditions see "Channel End
Appendage."”

2. When the appendage is entered due to an out-of-extent error, the
IOBECB code is set to X'42'.

3. When the appendage is first entered due to an intercept condition,
the IOBECB code is set to X'"7E'. If it is then determined that the
error condition is permanent, the appendage will be enterxed a
second time with the IOBECB code set to X'44'. The intercept
condition signals that an error was detected at device end after
channel end on the previous request.

4. When the appendage is entered due to an EXCP being issued to an
already purged DCB, this request will enter the abnormal end
appendage with the IOBECB code set to X'48'. This applies only to
related requests.

5. When the appendage is entered with the IOBECB code set to 7F, it
may be due to a unit check, program check, protection check,
channel data check, channel control check, interface control check
or chaining check. When the IOBECB code is 7F, it may ke the first
detection of an error in the associated channel program, or it
could occur after an error routine has attempted to correct the
error but was unsuccessful in its retry. Under these two
conditions, the IOBERR flag is set; it indicates that the error
routine is in control but has not yet declared the error to be
permanent.

To determine if an error is permanent, you should check the "ECB
code" field of the input/output block. To determine the type of error,
check the channel status word and the sense information in the IOB.
However, when the ECB code is X'42" or X'48', these fields are not
applicable. For X'44' the CSW is applicable, but the sense is valid
only if the unit check bit is set. If you use the return address in
register 1i4 to return control to the system, the channel program is
posted complete, and its request element is made available. (The
SYNADAF macro instruction described in the Supervisor and Data
Management Macro Instructions publication may be used in an error
analysis routine to analyze permanent I/0 errors.) You may use the
following optional return addresses:

e Contents of register 14 plus 4 - The channel program is not posted
complete, but its request element is made available.

e Contents of register 14 plus 8 - The channel program is not posted
complete, and its request element is placed back on the request
queue so that the request can be retried. For correct re-execution
of the channel program, you must re-initialize the "Flags 1", "Flags
2", and "Flags 3" fields of the input/output block and set the
"Error Counts" field to zero. As an added precaution, the IOBSNS
and IOBCSW fields should be cleared.

e Contents of register 14 plus‘12 - The channel program is not posted
complete, and its request element is not made available. (The
request element is assumed to be used in a subsequent asynchronous
exit.)

88 System Programmer's Guide (Release 20.1)

You may use registers 10 through 13 in an abnormal end arpendage
without saving and restoring their contents.

EXCP Programming Specifications

This section describes the parameters of the macro instructiocns that you
must use with EXCP, and the fields of the required control blocks.

MACRO INSTRUCTIONS

If you are using the EXCP macro instruction you must also use DCB, OPEN,
CLOSE, and, in some cases, the EOV macro instruction. The parameters of
these macro instructions, and of the EXCP macro instruction itself, are
listed and explained here. A diagram of the data control block is
included with the description of the DCB macro instruction.

DCB -- Define Data Control Block for EXCP

The EXCP form of the LCCB macro instruction pr~dewcer a_daia .control block
that can be used with the EXCP macro instruction. You must issue a 7%
macro instruction for each data set to be processed by your channel
programs. Notation conventions and format illustrations of the LCCB
macro instruction are given in the Supervisor and Data Management Macro
Instructions publication. DCB parameters that apply to EXCP may be
divided into four categories, depending on the following portions of the
data control block that are generated when they are specified:

e Foundation block. This portion is required and is always 12 bytes
in length. You must specify two of the parameters in this category.

e EXCP interface. This portion is optional. If you specify any
parameter in this category, 20 bytes are generated.

e Foundation block extension and common interface. This rportion is
optional and is always 20 bytes in length. If this portion is
generated, the device dependent portion is also generated.

e Device dependent. This portion is optional and is generated only if
the foundation block extension and common interface portion is
generated. Its size ranges from 4 to 20 bytes, depending on
specifications in the DEVD parameter of this category. However, if
you do not specify the DEVD parameter (and the foundation extension
and common interface portion is generated), the maximum 20 bytes for
this portion are generated.

Some of the procedures performed by the system when the data control
block is opened and closed (such as writing file marks for output data
sets on direct access volumes) require information from optional data
control block fields. You should make sure that the data control block
is large enough to provide all information necessary for the procedures
you want the system to handle.

Figure 1 shows the relative position of each portion of an opened
data control block. The fields corresponding to each parameter of the
DCB macro instruction are also designated, with the excepticn of DLNAME,
which is not included in a data control block that has been opened. The
fields identified in parentheses represent system information that is
not associated with parameters of the DCB macro instruction.

Sources of information for data control block fields other than the
DCB macro instruction are data definition (DD) statements, data set

Execute Channel Program (EXCP) Macro Instruction 89

EXCP

labels, and data control block modification routines. Ycu may use any
of these sources to specify DCB parameters. However, if a portion of

the data control block is not generated by the DCB macro instruction,

the system does not accept information intended for that portion from

any alternative source.

FOUNDATION BLOCK PARAMETERS:

DDNAME=symbol
The name of the data definition (DD) statement that describes the
data set to be processed. This parameter must be given.

MACRF= (E)
The EXCP macro instruction is to be used in processing the data
set. This parameter must ke given.

REPOS= Y
N

Magnetic tape volumes:

If your system generation statements include the Dynamic Device
Reconfiguration entry, then this parameter controls whether the DDR
routine will attempt to reposition the volume after swapring
devices. (To have the DDR routine attempt to reposition your tape
volume, you must maintain the block count in the DCBBLKCT field.)

Y - Yes, attempt to reposition.
N - No, do not attempt to reposition.
If the entry is omitted, N is assumed.

EXCP_INTERFACE PARAMETERS:

EOEA=symbol
2-byte identification of an end-of-extent appendage that you have
entered into the SVC library. (See Note A.)

PCIA=symbol
2-byte identification of a program controlled interruption (PCI)
appendage that you have entered into the SVC library.
(See Note A.)

SIOA=symbol
2-byte identification of a start I/0 (SIO) appendage that you have
entered into the SVC library. (See Note A.)

CENDA=symbol
2-byte identification of a channel end appendage that you have
entered into the SVC library. (See Note A.)

XENDA=symbol
2-byte identification of an abnormal end appendage that you have
entered into the SVC library. (See Note A.)

OPTCD=code
A code of Z indicates that for magnetic tape (input only) a reduced
error recovery procedure (5 reads only) will occur when a data
check is encountered. It should be specified only when the tape is
known to contain errors and the application does not require that
all records be processed. Its proper use would include error
frequency analysis in the SYNAD routine. Specification of this
parameter will also cause generation of a foundation block
extension. This parameter is ignored uniess it was selected at
system generation.

90 System Programmer's Guide (Release 20.1)

Note A:

I16G019.

identification; they may range in collating sequence from WA to Z9.

DCB
Address

+ 4

+12

+16

+20

+24

+28

+32

+36

+40

+u4

+48

+52

+56

+60

+64

+68

Figure

The full name of an appendage is eight bytes in length, but the
first six bytes are required by IBM standards to be the charactexs
You provide the last two characters as the 2-byte

Block

r 1 -

I -

| The device dependent portion of | .

| the data control block varies | .

| in length and format according | -

| to specifications in the DSORG | .

| and DEVD parameters. Illustra- | Device
| tions of this portion for each | Dependent
| device type are included in | .

| the description of the DEVD | .

| parameter. | -

| | .

| .

| [.

I)

1) i 1

| | -

| BUFNO | BUFCB | -

L L y |

r T 1 -

| | | Common
| BUFL | DSORG | Interface
b L i

| | .

| IOBAD | .

I } -

1) i |)

| BFTEK, | : | -

| BFALN | ECDAD | .

| HIARCHY | |

b + 4 Foundation
| | | Extension
| RECFM | EXLST] .

L 1 i |

I T 4

| | I

| (TIOT) | MACRF | .

| N L 4

| | T

| (IFLGS) | " (DEB Address) | Foundation Block

+ x| .
| | .

| (OFLGS) | Reserved | -

L 1 X

i 1 A

|] |

| opPTCD | Reserved | -

L L N}

r 1 -

1 | .

| Reserved | -

[4

] T 1 -

I I -

| EOEA i PCIA | EXCP Interface
b t 1.

l | I

| sIOoA] CENDA i .

t i i

1} L]] e

| | -

| XENDA i Reserved | .

L L 3
1. Data Control Block Format for EXCP (After OPEN)

Execute Channel Program (EXCP) Macro Instruction 91

FOUNDATION BLOCK EXTENSION AND COMMON INTERFACE PARAMETERS:

EXLST=relexp
specifies the address of an exit list that you have written for
exceptional conditions. The format of this exit list is given in
the Supervisor and Data Management Services publication.

EODAD=relexp
specifies the address of your end-of-data set routine. If this
routine is not available when it is required, the task is
abnormally terminated.

DSORG=code
specifies the data set organization as one of the following codes.
Each code indicates that the format of the device dependent portion

of the data control block is to be similar to that generated for a
particular access method:

Code DCB_ Format for
PS QSAM or BSAM
PO BPAM
DA BDAM
IS QISAM or BISAM

Note: For direct access devices, if you specify either PS or PO, you
must maintain the following fields of the device dependent portion of
the data control block so that the system can write a file mark for
output data sets:

¢ The track balance (TRBAL) field, which contains a 2-byte binary
number that indicates the remaining number of bytes on the current
track.

e The full disk address (FDAD-MBBCCHHR) field, which indicates the
location of the current record.

IOBAD=relexp
specifies the address of an input/output block (IOB). If a pointer
to the current IOB is not required, you may use this field for any
purpose.

The following parameters are not used by the EXCP routines but
provide cataloging information about the data set. This information can

be used later by access method routines that read or update the data
set.

RECFM=code

specifies the record format of the data set. Record format codes
are given in the Supervisor and Data Management Macro Instructions
publication.

BFTEK={S|E}
specifies the buffer technique as either simple or exchange. BFTEK
bits 0 and S5 specify whether hierarchy 0 or hierarchy 1 is used to
form the buffer pool. If HIARCHY={0|1l} is omitted from the DCB,
the buffer pool is formed in hierarchy 0.

92 System Programmer's Guide (Release 20.1)

BFALN={F| D}
specifies the word boundary alignment of each buffer as either
fullword or doubleword.

BUFL=absexp
specifies the length in bytes of each buffer; the maximum length is
32,767.

BUFNO=absexp
specifies the number of buffers assigned to the associated data
set; the maximum number is 255.

BUFCB=relexp
specifies the address of a buffer pool control block, i.e., the
8-byte field preceding the buffers in a buffer pool.

DEVICE DEPENDENT PARAMETERS:

DEVD=code
specifies the device on which the data set may reside as one of the
following codes. The codes are listed in order of descending space
requirements for the data control block:

Code Device

DA ' Direct access
TA Magnetic tape
PT Paper tape

PR Printer

PC Card punch
RD Card reader

Note: If you do not wish to select a specific device until job set up
time, you should specify the device type requiring the largest area.

The following diagrams illustrate the device dependent portion of the
data control block for each device type specified in the DEVD parameter,
and for each data set organization specified in the DSORG parameter.
Fields that correspond to device dependent parameters in addition to
DEVD are indicated by the parameter name. For special services, you may
have to maintain the fields shown in parentheses. The special sexvices
are explained in the note that follows the diagram.

Device dependent portion of data control block when DEVD=DA and
DSORG=PS or PO:

DCB

r T 1
Address + 4 |Reservd| |
A |
+ 8 | (FDAD - MBBCCHHR) |
I |
| r T 1
+12 | | DVITBL | Reserved |
1 [l 4 i
B] T)
+16 |KEYLEN | DEVT | (TRBAL)
L i L

Note: For output data sets, the system uses the contents of the full
disk address (FDAD-MBBCCHHR) field plus one to write a file mark when
the data control block is closed, provided the track balance (TRBAL)
field indicates that space is available. You must maintain the contents
of these two fields yourself if the system is to write a file mark.

OPEN will initialize DVTBL and DEVT.

Execute Channel Program (EXCP) Macro Instruction 93

.EXCP

Device dependent portion of data control block when DEVD=DA and
DSORG=IS or DA:

DCB r T 1
Address +16 |KEYLEN | Reserved |
L L J

Device dependent portion of data control block when DEVD=TA and
DSORG=PS:

DCB r
|

Address +12 BLKCT

-

SRS Wy

|) T T Ll
+16 |TRTCH |Reservd|DEN |Resxrvd
L L i iy

Note: For output data sets, the system uses the contents of the block
count (BLKCT) field to write the block count in trailer labels when the
data control block is closed, or when the EOV macro instruction is
issued. You must maintain the contents of this field yourself if the
system is to write the correct block count.

When using EXCP to process a tape data set open at a checkroint, you
must be careful to maintain the correct count; otherwise the system may
position the data set incorrectly when restart occurs.

If your system generation statements include the Dynamic Device
Reconfiguration entry, this field must be maintained by you for
repositioning. Also, your DCB macro instruction must include the
REPOS=Y entry.

Device dependent portion of data control block when DEVD=PT and
DSORG=PS:

DCB —
c

1
2Address +16 ODE Reserved i

|
L J

Device dependent portion of data control block when DEVD=PR and
DSORG=PS:

DCB

r T 1
Address +16 |PRTSP | Reserved |
L L ¥ |

Device dependent portion of data control block when DEVD=PC or RD and
DSORG=PS:

DCB T 1
Address +16 |MODE,STACK | Reserved |

4 J

The following parameters pertain to specific devices and may be
specified only when the DEVD parameter is specified.

KEYLEN=value
specifies, for direct access devices, the length in bytes of the
key of a physical record, with a maximum value of 255. When a
block is read or written, the number of bytes transmitted is the
key length plus the record length.

94 sSystem Programmer®s Guide (Release 20.1)

CODE=value
specifies, for paper tape, the code in which records are punched as

follows:

Value Code
I IBM BCD
F Friden
B Burroughs
C National Cash Register
A ASCII
T Teletype
N no conversion (format F recoxrds only)

If this parameter is omitted, N is assumed.

DEN=value
specifies, for magnetic tape, the tape recording density in bits
per inch as follows:

r T 1
| | Density |
| Value k T i
| | Model | Model |
| | 2400 | 2400 i
| | 7-track | 9-track |
L 4 4 .'
1) T L]

| 0 [200 | - l
1	556	-
2	800	800
3	-	1600
L L L]

. . - . . EXCP
If this parameter is omitted, the lowest density is assumed.

TRTCH=value
specifies, for 7-track magnetic tape, the tape recording technique
as follows:

Value Tape Recording Technique
C Data conversion feature is available.
E Even parity is used. (If omitted, odd parity is

assumed.)
T BCDIC to EBCDIC translation is required.
MODE=value

specifies, for a card reader or punch, the mode of operation.
Either C (column binary mode) or E (EBCDIC code) may be specified.

STACK=value
specifies, for a card punch or card reader, the stacker kin to
receive cards as either 1 or 2.

PRTSP=value
specifies, for a printer, the line spacing as either 0, 1, 2, or 3.

Execute Channel Program (EXCP) Macro Instruction 95

OPEN -- Initialize Data Control Block

The OPEN macro instruction initializes one or more data control blocks
so that their associated data sets can be processed. You must issue
OPEN for all data control blocks that are to be used by your channel
programs. (A dummy data set may not be opened for EXCP.) Some of the
procedures performed when OPEN is executed are:

e Construction of data extent block (DEB).

e Transfer of information from DD statements and data set labels to
data control block.

e Verification or creation of standard labels.

Tape positioning.

e Loading of programmer-written appendage routines.

The three parameters of the OPEN macro instruction are:

dcb-addr
specifies the address of the data control block to be initialized.
(More than one data control block may be specified.)

opt,

specifies the intended method of I/0 processing of the data set.

You may specify this parameter as either INPUT, RDBACK, or OUTPUT.

For each of these, label processing when OPEN is executed is as

follows:

INPUT - Header labels are verified.

RDBACK - Trailer labels are verified.

OUTPUT - Header labels are created.

If this parameter is omitted, INPUT is assumed.

optz

specifies the volume disposition that is to be provided when volume

switching occurs. The operand values and meanings are as follows:

REREAD Reposition the volume to process the data set again.

LEAVE No additional positioning is performed at end-of-volume
processing.

DISP The disposition indicated on the DD statement is tested
and appropriate positioning provided. This service is
assumed if this operand is omitted and volume
positioning is applicable. If there is no disposition
specified in the DD statement when this operand is
specified, LEAVE is assumed.

EXCP -- Execute Channel Program

The EXCP macro instruction requests the initiation of the I/0 operations
of a channel program. You must issue EXCP whenever you want to execute
one of your channel programs. The only parameter of the EXCP macro
instruction is:

iob-addrx

specifies the address, or a register that contains the address of
the input/output block of the channel program to be executed.

96 System Programmer's Guide (Release 20.1)

EQOV _-- End of Volume

The EOV macro instruction identifies end-of-volume and end-of-data set
conditions. For an end-of-volume condition, EOV causes switching of
volumes and verification or creation of standard labels. For an
end-of-data set condition, EOV causes your end-of -data set routine to be
entered. Before processing trailer labels on a tape input data set, you
must decrement the DCBBLKCT field. You issue EOV if switching of
magnetic tape or direct access volumes is necessary, or if secondary
allocation is to be performed for a direct access data set opened for
output.

For magnetic tape, you must issue EOV when either a tapemark is read
or a reflective spot is written over. In these cases, bit settings in
the l1-byte OFLGS field of the data control block determine the action to
be taken when EOV is executed. Before issuing EOV for magnetic tape,
you must make sure that appropriate bits are set in OFLGS. BRit
positions 2,3,6, and 7 of OFLGS are used only by the system; you are
concerned with bit positions 0,1,4, and 5. The use of these OFLGS bit
positions is as follows:

Bit 0
indicates that a tape mark is to be written.
Bit 1
indicates that a backwards read was the last I/0 operation.
Bit 4
indicates that data sets of unlike attributes are to be
concatenated.
Bit 5

indicates that a tape mark has been read.

If Bits 0 and 5 of OFLGS are both off when EOV is executed, the tape
is spaced past a tapemark, and standard labels, if present, are verified
on both the o0ld and new volumes. The direction of spacing depends on
Bit 1. If Bit 1 is off, the tape is spaced forward; if Bit 1 is on, the
tape is backspaced.

If Bit 0 is on when EOV is executed, a tapemark is written
immediately following the last data record of the data set, standard
labels, if specified, are created on the 0ld and the new volume.

When issuing EOV for sequentially organized output data sets on
direct access volumes, you can determine whether additional space has
been obtained on the same or a different volume. You do this by
checking the volume serial number in the unit control block (UCB) both
before and after issuing EOV.

The only parameter of the EOV macro instruction is:
dcb-addrx
specifies the address of the data control block that is opened for

the data set. If this parameter is specified as (1), register 1
must contain this address.

Execute Channel Program (EXCP) Macro Instruction 97

CLOSE -- Restore Data Control Block

The CLOSE macro instruction restores one or more data control blocks so
that processing of their associated data sets can be terminated. You
must issue CLOSE for all data control blocks that were used by your
channel programs. Some of the procedures performed when CLOSE is
executed are:

¢ Release of data extent block (DEB).

¢ Removal of information transferred to data control block fields when
OPEN was executed.

e Verification or creation of standard labels.

e Volume disposition.

e Release of programmer-written appendage routines.

The two parameters of the CLOSE macro instruction are:

dcb-addr
specifies the address of the data control block to be restored.
More than one data control block may be specified.

opt
specifies the type of volume disposition intended for the data set.
You may specify this parameter as either LEAVE or REREAD. The
corresponding volume disposition when CLOSE is executed is as

follows:

LEAVE - Volume is positioned at logical end of data set.

REREAD - Volume is positioned at logical beginning of data set.
DISP - The disposition indicated on the DD statement is tested,

and appropriate positioning is provided. This service is
assumed if this operand is omitted and volume positioning
is applicable. If there is no disposition specified in
the DD statement when this operand is specified, LEAVE is
assumed.

This parameter is ignored if specified for volumes other than
magnetic tape or direct access.

Note: When CLOSE is issued for data sets on magnetic tape volumes,
labels are processed according to bit settings in the OFLGS field of the
data control block. Before issuing CLOSE for magnetic tape, you must
set the appropriate bits in OFLGS. The OFLGS bit positions that you are

2 A

concerned with are listed in the EOV macro instruction description.

CONTROL BLOCK FIELDS

The fields of the input/output block, event control block, and data
extent block are illustrated and explained here; the data control block
fields have been described with the parameters of the DCB macro
instruction in the section "EXCP Programming Specifications."

Input/Output Block Fields

The input/output block is not automatically constructed by a macro
instruction; it must be defined as a series of constants and must be on
a fullword boundary. For unit record and tape devices, the input/output
block is 32 bytes in length. For direct access, teleprocessing, and
graphic devices, 8 additional bytes must be provided.

In Figure 2, the shaded areas indicate fields in which you must
specify information. The other fields are used by the system and must
be defined as all zeros. You may not place information into these
fields, but you may examine them.

98 System Programmer's Guide (Release 20.1)

10B Address
o D)
0(0) / 73 Flags 1 Flags 2 First Two Sense Bytes
Z 2 ’
4(4) ECB Code fd // ECB Addreé 7
>
8(8) Flags 3
Channel! Status Word
12(C)
Al
r Devices
16(10) SIO Code Channel Program Address
20(14) Reserved éb Address//
24(18) | Reposition Modifier Restart Address
28(1C) Block Count Increment Error Counts
J
32(20) M % } Direct Access, Teleprocessing, and Graphic Devices
33(21) Direct
Access
BBCCHHR Storage
/ / y/ 4 Devices
4 7 - 39(27) (DASD)

Figure 2. Input/Output Block Format

Flags 1 (1 byte)
specifies the type of channel program. You must set bit positions
0, 1, and 6. One bits in positions 0 and 1 indicate data chaining
and command chaining, respectively. (If both data chaining and
command chaining are specified, the system does not use error
recovery routines except for the 2311, 2671, 1052, and 2150.) A
one bit in position 6 indicates that the channel program is not
related to any other channel program. Bit positions 2, 3, &4, 5,
and 7 are used only by the system.

Flags 2 (1 byte)
is used only by the system.

First Two Sense Bytes (2 bytes)
are placed into the input/output block by the system when a unit
check occurs.

ECB Code (1 byte)
indicates the first byte of the completion code for the channel
program. The system places this code in the high order byte of the
event control block when the channel program is posted complete.
The completion codes and their meanings are listed under "Event
Control Block Fields."

ECB Address (3 bytes)
specifies the address of the U4-byte event control block that you
have provided.

Flags 3 (1 byte)
is used only by the system.

channel Status Word (7 bytes)

indicates the low order seven bytes of the channel status word,
which are placed into this field each time a channel end occurs.

Execute Channel Program (EXCP) Macro Instruction 99

EXCP

SIO Code (1 byte)
indicates, in the high-order four bits, the instruction length, and
in the low-order four bits, the condition code for the SIO
instruction that the system issues to start the channel program.

Channel Program Address (3 bytes)
specifies the starting address of the channel program toc be
executed.

Reserved (1 byte)
is used only by the system.

DCB Address (3 bytes)
specifies the address of the data control block of the data set to
be read or written by the channel program.

Reposition Modifier (1 byte)
is used by the system for volume repositioning in error recovery
procedures.

Restart Address (3 bytes)
is used by the system to indicate the starting address of a channel
program that performs special functions for error recovery
procedures. The system also uses this field in procedures for
making request elements available, as explained under "Error
Recovery Procedures for Related Channel Programs."”

Block Count Increment (2 bytes)
specifies, for magnetic tape, the amount by which the block count
(BLKCT) field in the device dependent portion of the data control
block is to be incremented. You may alter these bytes at any time.
For forward operations, these bytes should contain a binary
positive integer (usually + 1); for backward operations, they
should contain a binary negative integer. When these bytes are not
used, all zeros must be specified.

Error Counts (2 bytes)
indicates the number of retries attempted during error recovery
procedures.

M (1 byte)
Direct access devices:
Extent entry in the data extent block that is associated with the
channel program. (0 indicates the first extent; 1 indicates the
second, etc.)
Teleprocessing and graphic devices:
The UCB index.

BBCCHHR (7 bytes)

specifies, for direct access devices, the seek address for the
programmer's channel program.

Event Control Block Fields

You must define an event control block as a 4-byte area on a fullword
boundary. When the channel program has been completed, the input/output
supervisor places a completion code containing status information into
the event control block (Figure 3). Before examining this information,
you must test for the setting of the "Complete Bit."™ If the complete
bit is not on, and the problem program cannot perform other useful
operations, you should issue a WAIT macro instruction that specifies the
event control block. Under no circumstances may you construct a program
loop that tests for the complete bit.

100 sSystem Programmer's Guide (Release 20.1)

T T R b
WAIT	Complete	Remainder of Completion Code
Bit=0		
	Bit=1	
L 1 1 3

0 1 2 31

Figure 3. Event Control Block After Posting of Completion Code

WAIT Bit
A one bit in this position indicates that the WAIT macrc
instruction has been issued, but that the channel program has not
been completed. .

Complete Bit
A one bit in this position indicates that the channel prcgram has
been completed; if it has not been completed, a zero bit is in this
position.

|C6mpletion Code
— This code, which includes the WAIT and Complete bits, may be one of
the following 4-byte hexadecimal expressions:

Code Interpretation
7r000000 Channel program has terminated without error.
41000000 Channel program has terminated with permanent
error.
42000000 Channel program has terminated because a direct

access extent address has been viclated.

44000000 Channel program has been intercepted because of
permanent error associated with device end for
previous request. You may reissue the
intercepted request.

48000000 Request element for channel program has Leen
made available after it has been purged.

4¥000000 Error recovery routines have been entered

because of direct access error but are unable
to read home address or record 0.

Data Extent Block Fields

The data extent block is constructed by the system when an OPEN macro
instruction is issued for the data control block. You may not modify
the fields of the data extent block, but you may examine them. The Data.
Extent Block format and field description is contained in the System
Control Block publication.

Execute Channel Program (EXCP) Macro Instruction 101

EXCP

Appendix: Restore and Purge Macro Instructions

If you want to use the RESTORE or PURGE macro instruction, you must
either add the macro definitions to the macrc-library (SYS1.MACLIB) or
place them in a separate partitioned data set and concatenate this data
set to the macro-library. This section contains the following:

e The format of the macro instruction.

e The Job Control and Utility statements needed to add the macro
definition to the library.

e The macro definition to be added to the library.

RESTORE MACRO INSTRUCTION

This macro instruction is used to return purged request elements to the
request queues. The format of this macro instruction is as follows:

r
| Name | Operation Operand

RESTORE User Purge IOB Address

e ol
bee. cnen iy =oee

}__—“——-d

The user purge IOB address is the address of a pointer to the first IOB

address in a previously purged IOB list. It could be the DEBRUSRPG field
in the data extent block (see "SVC Purge Routine").

RESTORE Macro Definition

MACRO

6§ NAME RESTORE ELIST
AIF ("¢LIST' EQ ''").E1

ENAME IHBINNRA §LIST LOAD REG 1
SvC 17 ISSUE SVC FOR RESTORE
MEXIT

-El1 IHBERMAC 01,150 LIST ADDR MISSING
MEND

Control Statements Required

1 3 L}
| //jobname JOB {parameters} |
| /7/stepname EXEC PGM=IEBUPDTE, PARM=NEW |
//SYSPRINT DD SYSOUT=A ' |
//SYSUT2 DD DSNAME=SYS1.MACLIB,DISP=0LD |
//SYSIN DD DATA |
./ ADD NAME=RESTORE, LIST=ALL |

. |

. |

| . |
| RESTORE Macro Definition |
- |

. |

. |

./ ENDUP I

/% |

i]

102 sSystem Programmer's Guide (Release 20.1)

PURGE MACRO INSTRUCTION

The PURGE macro instruction is used to return request elements to the
I/0 supervisor inactive queue (next available).

PURGE Macro Definition

MACRO
§ NAME PURGE §LIST
AIF (*&LIST*EQ"*).E1
§NAME IHBINNRA S§LIST LOAD REG 1
SsvC 16
MEXIT
.E1 IHBERMAC 01,147 LIST ADDR MISSING
MEND

Control Statements Required

r]
| //jobname JOB {parameter} |
| 7/7/stepname EXEC PGM=IEBUPDTE, PARM=NEW |
| //SYSPRINT DD SYSQUT=A |
| 7/7/S¥SUT2 DD DSNAME=SYS1.MACLIB,DISP=0LD |
| //SYSIN DD * |
] o/ ADD NAME=PURGE ,LIST=ALL |
| . | _
| - o | EXCP
| PURGE Macro Definition |
| . |
| . I
| 7 ENDUP |
| 7= |
L |
r T K T 1
| Name | Operation | Operand |
L I 1 3
1) 1 1]
| symbol| PURGE | User Purge Parameter List |
L L L]

The purge parameter list is constructed in the user's program area.
Depending on the options specified in the PURGE parameter list, elements
can be purged from

1. The asynchronous exit queue of the task supervisor.
2. The request blocks chained to the TCB.

3. The 1I/0 supervisor logical channel queues.

Execute Channel Program (EXCP) Macro Instruction 103

You can bypass the purge of the RBs chained to the TCB by setting bit
5 of the option byte. The parameter 1list is constructed pricr to
issuing the PURGE macro instruction; this 1list must fall on a fullword
boundary. It is either a three-word list or, if bit 4 of the options
byte in Word 1 equals one (1), a four-word list. It is constructed as
follows:

Word 1
Byte 1
(options byte)

] 1
|Bit 0 - Specified DEB or DEB chain |
| =0 - Purge request elements associated with complete DEB chain|
] starting at the DEB specified in bytes 2, 3, and 4 of |
| word 1. |
| =1 - Purge only the request elements associated with the DEB |
| specified by bytes 2, 3, and 4 of word 1. |
L J
v - 1
|Bit 1 - POST request purged or ignore posting. |
| =0 - Do not POST the purged requests.]
| =1 - POST the purge requests, code = X'48'. |
b - 1
)

|Bit 2 - HALT I/O or quiesce active requests. |
| =0 - Allow the active requests to quiesce. |
| =1 - HALT the I/0 operations. (The HALT I/0 is simulated if |
| the operation is a SEEK. |
. - 1
L}

|Bit 3 - Purge all or only related requests. |
| =0 - Purge all requests. |
| =1 - Purge only related requests. |
L

t - -
|Bit 4 - Normal purge or list purge. |
| =0 - Normal purge. |
| =1 - Purge TCB list. |
' 1
T

|Bit 5 - Purge all queues or bypass RB purge. |
| =0 - Purge AEQ, RB, and I/O Supervisor logical channel queues. |
| =1 - Purge only the I/0 Supervisor logical channel queue (s) |
| and AEQ. |
1

5 - 1
}|Bit 6 - Purge by TCB or DEB |
| =0 - Purge by DEB |
| =1 - Purge by TCB |
| |
| Note: This bit must be zero in order to honor bit 0. |
| If this bit is one, all requests associated with the TCB |
| are purged, and bit 0 is ignored. |
L - J
T 1
|Bit 7 - (Spare) |
L 1

Bytes 2, 3, and 4
DEB address - not required if purging by TCB.

Word 2
Byte 1
completion code
Bytes and 4

3
a

-1
Cufs

2
msy
1\~

dress - if none, the current TCB is used.

104 system Programmer's Guide (Release 20.1)

Quiesce indicator field. It will indicate X'01°' if one or
more requests are gquiescing.

Bytes 2, 3, and 4
Address of the initial link field for chaining IOBs that are
purged. The initial 1link field can be the user purge field in
the DEEB (DEBUSRPG) or any area you select. The initial link
field points to the first IOB in the chain. At the completion
of purge, the contents of word 3 are unpredictable. WNo
chaining is done when TCB with HALT I/0 option is specified.

If the I0B restart field (IOBRESTR) is used as a link field,
the last one will contain X'FFFFFF' in its three lcw-order
bytes.

The following figure below shows the IOB chain.

Chaining IOBs

r T 1 r 1
| | | | DEBUSRPG of DEB, |
| | j—>»{ or other initial}—
| | | | 1link field |
L L ~J L J
Word 3
10B
r 1
| |
| IOBRESTR | |
L 4 ‘
]
L J
I0B
I 1
| | |
»| TOBRESTR | |
| FFFFFF | |
1 |
L J

IOB Chain for PURGE

Execute Channel Program (EXCP) Macro Instruction 105

EXCP

Word 4

Byte 1
(flag byte)

== - 1
|Bit 1 - Purge or wait flag. |
| =0 - Purge entry. |
| =1 - Wait entry. |
- 1
r

|Bit 2 - Wait flag. |
| =0 - Return to caller before waiting. |
| =1 - Perform purge and wait operations, and do not return to |
| caller. |
% :
|Bits 3-8 - Reserved. |
L J

Bytes 2,3, and 4
Address of the QUIESCE I/0O parameter list (QPL). This field
points to a list of TCBs that are to be purged. The format of
the list is shown below.

r T 1 r T 1
| | I 1 |2 l
| | }|——>»{Ccount| Reserved |
I I | |Field| |
E L - :
Word 4 |5 |6 |

| 0 | Chain Field |

| | I

L 1 3

1 3 T 1

19 10 |

— QPL | Address of TCB|

| Flags| |

L 4]

r T 1

—{ 5+n | 6+n |

] 0 | Chain Field |

| I |

L 1 y |

¥ T |

j9+n |10+n |

|QPL | Address of TCB|

| Flags| |

L 1 J

n = 8x(# of TCBs to be purged -1)
1 Count field.

A temporary count field used to keep track of the number of TCBs
that have been purged.

6 Chain Field.

Address of the initial 1link field for chaining IOBs that are
purged. See the illustration for chaining IOBs in this section.

106 sSystem Programmer's Guide (Release 20.1)

QPL Flags - Last entry or current entry.

Bit 0 - Last entry flag.
=0 - More entries follow.
=1 - Last entry.

Bit 1 - Current entry flag.
=0 - Not current.
=1 - Current.

Bits 2-8 - Reserved.

TCB Address.

Address of the TCB to be purged.

Execute Channel Program (EXCP) Macro Instruction

107

ATLAS--Assign an Alternate Track and Copy Data From the
Alternate Track

A program that uses the EXCP macro instruction for input and output may
use the ATLAS macro instruction, during the execution of the program, to
obtain an alternate track and to copy a defective track onto the
alternate track. With the use of ATLAS, the program can recover from
permanent (hard) errors encountered in the execution of the following
types of I/0 commands:

e Search ID.

e Write.
(The error condition must be confirmed during the execution of the
channel program by a CCW that checks the data written.)

e Read Count.

Errors in the CCHHR part of the count area can be recovered from
unless the record is the Home Address or Record Zero.

Errors in the KDD part of the count area cannot be recovered from
unless the user has identified the defective record.

Your DCB must include the DCBRECFM field and the field must show
whether the data set is in the track overflow format. If it is,
recovery from errors in last records on tracks depends on your
identifying the track overflow record segments.

Recovery takes the form of obtaining an alternate good track and
copying the defective track onto the good alternate one. Unless a
re-execution of the channel program by ATLAS can correct the defect, the
user should examine, and if necessary replace, defective recoxds in a
subsequent job if the data set is to be processed again.

ATLAS MACRO INSTRUCTION

The format of the macro instruction is:

LB T k) 1

| Name |Operation] Operands]

b + 1 {

| | | address R |

| (symbol)| ATLAS |PARMADR= .CHANPRG=]

| | | (register) NR |

| | | P YES |

| | | +CNTPTR= +WRITS= |

I | | F NO |

L L L J
PARMADR

Address of a parameter address list of the following format:

— 3

————1 Address of the parameter address list 1

r 1

L—y{ +0 Address of the I0B for the channel program that |

| encountered the error |

L - " |

r L)

| +4 Main storage address of the count area field |

[} J

108 system Programmer's Guide (Release 20.1)

The count area field contains the CCHHRKDD of a defective
record or the CCHH of a track that is to be copied.

address - Address is given as the symbolic label of the address
list.

(register) - Address is given as the number of a general register
(1-12) that contains the address of the list.

CHANPRG
Condition of the channel program that encountered the error.

R - Channel program may be re-executed by ATLAS. Before permitting
re-execution of the channel program by ATLAS, you must reset
the error indications of the previous execution fields in the
DCBIFLGS. (See the example of the use of ATLAS below.)

NR - Channel program may not be re-executed.

If this parameter is omitted, R is assumed.

«CNTPTR
Contents of the count area field.

P - Part of the count area - the CCHH address of the track to be
copied.
F - Full count area - CCHHRKDD count of the record found defective.

If this parameter is omitted, P is assumed.

WRITS
Track Overflow Segment Identification.
EXCP
If your data set is in the track overflow format, this

identification determines recovery from errors in last records on
tracks.

YES - If this is the last record on the track, it is a segment
other than the last of a track overflow record.

NO -~ If this is the last record on the track, it is the last or
only segment of a track overflow record.

If this parameter is omitted, it is assumed that it cannot be
established whether a last record is a segment of an overflow
record.

USE OF ATLAS

If a channel program encounters a unit check condition (shown in the
CSW) in its execution, the I/O0O supervisor program will place the Sense
bytes in the IOB. ATLAS can be used to recover from Sense conditions
shown by the following bit settings:

IOBSENSO X'08" Data Check (Except in the Count Area)
IOBSENS1 X'80" Data Check in the Count Area
IOBSENS1 X*02"' Missing Address Marker

(But see the following for combinations of this
bit setting for which ATLAS is powerless.)

However, defects in the Home Address record or the Record Zero record

cannot be recovered from through the use of ATLAS. These conditions are
shown by:

Execute Channel Program (EXCP) Macro Instruction 109

IOBSENS1 X'02' and IOBSENSO X'"01' - Home Address Defect.

IOBSENS1 X'0OA' - Record Zero Defect, or,
Home Address Cannot Be Located.

Also, before using ATLAS, you must reset error indications as follows:
NI DCBIFLGS,X'3F’ Reset the DCBIFLGS error indications.

The ATLAS program will attempt to find a good alternate track and
will attempt to copy the defective track onto the good track, including
all error conditions in either key or data areas. The error conditions
may be rectified by re-executing the channel program or through the use
of the IEHATLAS utility program in a subsequent step.

The following illustrates the use of the ATLAS macro instruction.

EXCP MYIOB
WAIT MYECB

TM MYECB,X"20" TEST FOR I/0 ERROR

BO NEXT NO, SUCCESSFUL, GO TO ANOTHER
ROUTINE

™ IOBCSW+3,X"02" UNIT CHECK

BL OTHER NO, DO OTHER ERROR PROCESSING

T™ IOBSENSO, X'08" DATA CHECK

BO ATLASGO YES, VALID ERROR

T™ IOBSENS1,X'80" DATA CHECK IN COUNT

BO ATLASGO YES, VALID ERROR

TM IOBSENS1,X'0A" MISSING ADDRESS MARKER

BO OTHER YES, ATLAS CANNOT HANDLE ERROR
DO OTHER ERROR PROCESSING

ATLASGO EQU *
NI DCB1FLGS, X' 3F' RESET ERROR INDICATORS

ATIAS PARMADR=THERE , CHANPRG=R

OPERATION OF THE ATLAS PROGRAM
The ATLAS program (SVC 86):

e Establishes the availability and address of the next alternate track
from the format 4 DSCB of the VTOC.

Brings all count fields from the defective track into main storage
to establish the description of the track.

e Initializes the alternate track. (Write Home Address, Write Record
Zero.)

e Brings the key and data areas of each record into main storage, one
at a time, and combines them with their new count area to write the
complete record onto the alternate track.

e When the copying is finished, chains the alternate to the defective
track and updates the VTOC.

RETURN CODES
When control returns to the user, he will find one of the following

decimal return codes in register 15: (Note that for return codes 0, 36,
40, and 44 the contents of register 0 may be significant.)

110 sSystem Programmer's Guide (Release 20.1)

Decimal

Return
Code

0 -

12 -

16 -

20 -

24 -

28 -

32 -

36 -

40 -

4y -

Meaning

Successful completion.

Key and Data areas have been copied from the defective track onto
a good alternate one. The only error encountered was in the
record identified by the user's CCHHRKDD value.

If the channel program is re-executable, it has been successfully
re-executed.

This device type (2301 drum, 2303 drum) does not have alternate
tracks that can be assigned by programming.

All alternate tracks for the device have been assigned.

A request ftor storage (GETMAIN macro instruction) could not be
satisfied.

All attempts to initialize and transfer data to an alternate
track failed. The number of attempts made is equal to 10% of the
assigned alternates for the device.

The type of error shown by the Sense byte cannot be handled
through the use of the ATLAS macro instruction. The condition is
other than a data check (in the count or data areas) or a missing
address marker.

The Format 4 DSCB of the VTOC cannot be read, therefore alternate
track information is not available to ATLAS.

The record specified by the user was the format 4 DSCB and it
could not be read.

An error found in count area of last record on the track cannot
be handled because Last-record-on-track identification is not
supplied.

An error was encountered reading or writing the Home Address
record or Record Zero. No error recovery has taken place.

If register 0 contains X*'01 00 00 00', the defect is in record
Zero.

Successful completion.

Key and data areas have been copied from the defective track onto
a good alternate one. However, the alternate track may have
records with defective key or data areas. Register 0 identifies
the first three found defective as follows:

n - Number of record numbers that follow (0, 1, 2, or 3).
R - The number of the record found defective but copied anyhow.

If the channel program is re-executable, it has been successfully
re-executed.

Error/Errors encountered and no alternate track has been

assigned. The return parameter register (RO) will contain the R
of a maximum of three error records.

Execute Channel Program (EXCP) Macro Instruction 111

EXC

48

52

56

60

Error Conditions that return this code are:

1. ATLAS received an error indication for a record with a data
length in the count field of zero. Recovery was not possible
because a distinction cannot be made between an EOF record
and an invalid data length.

2. An error occurred while reading the count field of a record
and the KDD (key length-data length) was found to be
defective.

3. More than three records on the specified track contained
errors in their count fields.

No errors found on the track, no alternate assigned. ATLAS will
not assign an alternate unless a track has at least one defective
record.

I/0 error in re-executing user's channel program.

A good alternate is chained to the defective track and data has
been transferred. The user's control blocks will give indication
of the error condition causing failure in re-execution of his
channel program.

The DCB reflects a track overflow data set but the UCB device
type shows that the device does not support track overflow.

The CCHH of the user specified count area is not within the
extents of his data set.

Figures ATLAS 1 and ATLAS 2 summarize the return codes that reflect
track error conditions by error location.

Area in Error
Record in Error Count Area
Key Area Data Area
CCHHR KDD
Recordr (r #0)
Not Last on Track 0 44 40 40
WRITS=YES 0 44 40 40
Last
on WRITS=NO 0 44 40 40
Track
Omitted* 32 44 40 40
Record Zero
| 36 | 36 36 36
Home Address
=]

* Omitted and the Data Set is in the Track Overflow Format,

Figure ATLAS 1. Error Locations and Return Codes if CCHH is in the

112 sSystem Programmer's Guide (Release 20.1)

Area in Error
Record in Error Count Area
Key Area Data Area
CCHHR KDD
Record n (n=R in CCHHRKDD)
Not Last on Track 0 0 0 0
WRITS=YES 0 0 0 0
Last
on WRITS=NO 0 0 0 0
Track
Omitted * 32 32 0 0
Record m (m # R in CCHHRKDD)
Not Last on Track 0 44 40 40
WRITS=YES 0 44 40 40
Last
on WRITS=NO 0 44 40 40
Track
Omitted * 32 44 40 40
Record Zero
36 36 36 36
Home Address
36

* Omitted and the Data Set is in the Track Overflow Format,

Figure ATLAS 2. Error Locations and Return Codes if CCHHRKDD is in the
Count Area Field

Execute Channel Program (EXCP) Macro Instruction 113

114 sSystem Programmer's Guide (Release 20.1)

Execute Direct Access Program
(XDAP) Macro Instruction

This chapter explains what the Execute
Direct Access Program (XDAP) macro
instruction does and how you can use it.
The control block generated when XDAP is
issued and the macro instructions used with
XDAP are also discussed.

The XDAP macro instruction provides you
with a means of reading, verifying, or
updating blocks on direct access volumes
without using an access method and without
writing your own channel program. Since
most of the specifications for XDAP are
similar to those for the Execute Channel
program (EXCP) macro instruction, it is
recommended that you be familiar with the
"EXCP Macro Instruction®™ chapter of this
publication, as well as with the
information contained in the required
publication.

PREREQUISITE PUBLICATION

The IBM System/360 Operating System:
Supervisor and Data Management Services
publication (GC28-6646) explains the
standard procedures for I/0 processing
under the operating system.

XDAP

Execute Direct Access Program (XDAP) Macro Instruction 115

Execute Direct Access Program (XDAP) Macro Instruction

Execute Direct Access Program (XDAP) is a macro instruction of
System/360 Operating System that you may use to read, verify, or update
a block on a direct access volume. If you are not using the standard
IBM data access methods, you can, by issuing XDAP, generate the control
information and channel program necessary for reading or updating the
records of a data set.

You cannot use XDAP to add blocks to a data set, but you can use it
to change the keys of existing blocks. Any block configuration and any
data set organization can be read or updated.

Although the use of XDAP requires much less main storage srace than
do the standard access methods, it does not provide many of the control
program services that are included in the access methods. For example,
when XDAP is issued, the system does not block or deblock records and
does not verify block length.

To issue XDAP, you must provide the actual device address of the
track containing the block to be processed. You must also provide
either the block identification or the key of the block, and specify
which of these is to be used to locate the block. If a block is located
by identification, both the key and data portions of the block may be
read or updated. If a block is located by key, only the data portion
can be processed.

Requirements for Execution of Direct-Access Program

Before issuing the XLCAP macro instruction, you must issue a DCB macro
instruction, which produces a data control block (DCB) for the data set
to be read or updated. You must also issue an OPEN macro instruction,
which initializes the data control block and produces a data extent
block (DEB).

When the XDAP macro instruction is issued, another control block,
containing both control information and executable code, is generated.
This control block may be logically divided into three sections:

e An event control block (ECB), which is supplied with a completion
code each time the direct access channel program is terminated.

e An input/output block (IOB), which contains information about the
direct access channel program.

e A direct access channel program, which consists of three channel
command words (CCWs). The type of channel program generated depends
on specifications in the parameters of the XDAP macro instruction.

After this XDAP control block is constructed, the direct access channel
program is executed. A block is located by either its actual address or
its key, and is either read or updated.

When the channel program has terminated, a completion code is placed
into the event control block. After issuing XDAP, you should therefore
issue a WAIT macro instruction specifying the event control block to
determine whether the direct access program has terminated. If volume
switching is necessary, you must issue an EOV macro instruction. When
processing of the data set has been completed, you must issue a CLOSE
macro instruction to restore the data control block.

116 System Programmer's Guide (Release 20.1)

XDAP Programming Specifications

MACRO INSTRUCTIONS

When you are using the XDAP macro instruction, you must also issue DCB,
OPEN, CLOSE, and, in some cases, the EOV macro instruction. The
parameters of the XDAP macro instruction are listed and described here.
For the other required macro instructions, special requirements or
options are explained, but you should refer to the "EXCP Macro
Instruction" section of this publication for listings of their
parameters.

DCB -- Define Data Control Block

The EXCP form of the DCB macro instruction produces a data control block
that can be used with the XDAP macro instruction. You must issue a DCB
macro instruction for each data set to be read or updated by the direct
access channel program. The "EXCP Macro Instruction®™ section of this
publication contains a diagram of the data control block, as well as a
listing of the parameters of the DCB macro instruction.

OPEN -- Initialize Data Contxrol Block

The OPEN macro instruction initializes one or more data control blocks
so that their associated data sets can be processed. You must issue
OPEN for all data control blocks that are to be used by the direct
access program. Some of the procedures performed when OPEN is executed
are:

e Construction of data extent block (DEB).

e Transfer of information from DD statements and data set labels to
data control block.

e Verification or creation of standard labels.
e Loading of programmer-written appendage routines.

The two parameters of the OPEN macro instruction are the address(es)
of the data control block(s) to be initialized, and the intended method
of I/0 processing of the data set. The method of processing may be
specified as either INPUT or OUTPUT; however, if neither is specified,
INPUT is assumed.

XDAP -- Execute Direct Access Program

The XDAP macro instruction produces the XDAP control block (i.e., the
ECB, IOB, and channel program) and executes the direct access channel
program. The format of the XDAP macro instruction is:

Operation | Operand

XDAP ecb-symbol, type-{R|W|V}{I|K},dcb-addr,area-addr
¢« length-value, [(key-addr, keylength-value)],blkref-addr

., sector-addr

[— e — o o am
.-_.—."._.._4

b e e e et e)

ecb-symbol
specifies the symbolic name to be assigned to the XDAP control
block.

Execute Direct Access Program (XDAP) Macro Instruction 117

XDAP

type-{R|W|V}{I|K}
specifies the type of I/0 operation intended for the data set and
the method by which blocks of the data set are to be located.

The codes and their meanings are as follows:

- Read a block.

- Write a block.

- Verify contents of a block but do not transfer data.

- Locate a block by identification. (The key portion, if
present, and the data portion of the block are read orx
written.)

K - Locate a block by key. (Only the data portion of the

block is read or written.)

H <=

dcb-addr
specifies the address of the data control block of the data set.

area-addr
specifies the address of an input or output area for a block of the
data set.

length-value
specifies the number of bytes to be transferred to or from the
input or output area. If blocks are to be located by :
identification and the data set contains keys, the value must
include the length of the key. The maximum number of bytes
transferred is 32767.

key-addr
specifies, when blocks are to be located by key, the address of a
main storage field that contains the key of a block to be read or
overwritten.

keylength-value
specifies, when blocks are to be located by key, the length of the
key. The maximum length is 255 bytes.

blkref-addr
specifies the address of a main storage field containing the actual
device address of the track containing the block to be located.
When blocks are to be located by key, this field is seven bytes in
length; when blocks are to be located by identification, an eighth
byte indicating block identification must be included in this
field. (The actual address of a block is in the form MBBCCHHR,
where M indicates which extent entry in the data extent block is
associated with the direct access program; BB indicates the bin
number of direct access volume; CC indicates the cylinder address;
HH indicates the actual track address; and R indicates the block
identification.)

sector-addr
specifies the address of a one-byte field containing a sector
value. The sector-address parameter is used for rotational
position sensing (RPS) devices only. When the parameter is codeqd,
a set-sector CCW (using the sector value indicated by the data
address field) precedes the Search-ID-Equal command in the channel
program. The sector-address parameter is ignored if the type
parameter is coded as RK, WK, or VK, or is omitted in the execute
form of the XDAP macro instruction.
Note: No validity check is made on either the address or the
sector value when the XDAP macro is issued. However, a unit
exception interrupt will occur during the channel program execution
if the sector value is larger than the maximum for the device or if
the macro is issued against a device without RPS.

118 System Programmer's Guide (Release 20.1)

EOV -- End of Volume

The EOV macro instruction identifies end-of-volume and end-of-data set
conditions. For an end-of-volume condition, EOV causes switching of
volumes and verification or creation of standard labels. For an
end-of-data set condition, EOV causes your end-of-data set routine to be
entered. When using XDAP, you issue EOV if switching of direct access
volumes is necessary, or if secondary allocation is to be performed for
a direct access data set opened for output.

The only parameter of the EOV macro instruction is the address of the
data control block of the data set.

CLOSE -- Restore Data Control Block

The CLOSE macro instruction restores one or more data control blocks so
that processing of their associated data sets can be terminated. You
must issue CLOSE for all data sets that were used by the direct access
channel program. Some of the procedures performed when CLOSE is
executed are:

e Release of data extent block (DEB).

e Removal of information transferred to data control block fields when
OPEN was executed.

e Verification or creation of standard labels.

e Release of programmer-written appendage routines.

The only parameter of the CLOSE macro instruction is the address of

the data control block to be restored. (More than one data control
block may be specified.)

THE XDAP CONTROL BLOCK

The three portions of the control block generated during execution of
the XDAP macro instruction are described here.

Event Control Block (ECB)

The event control block begins on a full word boundary and occupies the
first 4 bytes of the XDAP control block. Each time the direct access
channel program terminates, the input/output supervisor places a
completion code containing status information into the event control
block (Figure 4). Before examining this information, you must test for
the setting of the "Complete Bit" by issuing a WAIT macro instruction
specifying the event control block.

r T T 1
| WAIT Bit=0 | Complete Bit=1 | Remainder of Completion Code 1
L L L J

0 1 2 31

Figure 4. Event Control Block After Posting of Completion Code

WAIT Bit
A one bit in this position indicates that the WAIT macro
instruction has been issued, but that the direct access channel
program has not been completed.

Complete Bit
A one bit in this position indicates that the channel program has
been completed; if it has not been completed, a zero bit is in this
position.

Execute Direct Access Program (XDAP) Macro Instruction 119

XDAP

Completion Code
This code, which includes the WAIT and Complete bits, may be one of
the following 4-byte hexadecimal expressions:

Code Interpretation
7F000000 Direct access program has terminated without
error.
41000000 Direct access program has terminated with

permanent errore.

42000000 Direct access program has terminated because a
direct access extent address has been violated.

44000000 Channel program has been intercepted because of
permanent error associated with device end for
previous request. You may reissue the
intercepted request.

48000000 Request element for channel program has been
made available after it has been purged.

4¥r000000 Error recovery routines have been entered
because of direct access error but are unable
to read home address or record 0.

Input/Output Block (IOB)

The input/output block is 40 bytes in length and immediately follows the
event control block. The section "EXCP Macro Instruction" of this.
publication contains a diagram of the input/output block. The only
fields with which the user of XDAP is concerned are the "First Two Sense
Bytes" and "Channel Status Word" fields. You may wish to examine these,
fields when a unit check condition or an I/O interruption occurs.

Direct Access Channel Program

The direct access channel program is 24 bytes in length and immediately
follows the input/output block. Depending on the type of I/O operation
specified in the XDAP macro instruction, one of four channel programs
may be generated. The three channel command words for each of the four
possible channel programs are shown in Figure 5.

120 System Programmer's Guide (Release 20.1)

r) |] 1
| Type of I/0 Operation | CCW | Command Code |
L 4 1 __._*
| 3 Rl T

Read by Identification { 1	search ID Equal	
	2	Transfer in Channel
Verify by Identification®*	3	Read Key and Data
L N 1 Jd		
1 3 1 T 1		
Read by Key	1	Search Key Equal
	2	Transfer in Channel
Verify by KRey?	3	Read Data
F + + 1		
i	1	sSearch ID Equal
Write by Identification	2	Transfer in Channel
[3	Write Key and Data
k + 1 1		
	1	Search Key Equal
Write by Key	2	Transfer in Channel
	3	Write Data
F ! 4 1		
*For verifying operations, the third CCW is flagged to suppress the		
transfer of information to main storage.		
L]

Figure 5. The XDAP Channel Programs

XDAP Options

CONVERSION OF REIATIVE TRACK ADDRESS TO ACTUAL ADDRESS

I To issue XDAP for device without the rotational position sensing feature

(RPS), you must provide the actual device address of the track
containing the block to be processed. If you know only the relative
track address, you can convert it to the actual address by using a
resident system routine. The entry point to this conversion routine is
labeled IECPCNVT. The address of the entry point is in the
communication vector table (CVT). The address of the CVT is in location
16. (The CVT macro instruction defines the symbolic names of all fields
in the CVT. The macro definition and how to add it to the macro-library
are in the Appendix of this chapter.)

l For devices without RPS, the conversion routine does all its work in
general registers. You must load registers 0, 1, 2, 14, and 15 with
input to the routine. Register usage is as follows:

Register Use
0 Must be loaded with a U4-byte value of the form

TTRN, where TT is the number of the track
relative to the beginning of the data set, R is
the identification of the block on that track,
and N is the concatenation number of the data
set. (0 indicates the first or only data set
in the concatenation, 1 indicates the second,
etc.)

1 Must be loaded with the address of the data
extent block (DEB) of the data set.

2 Must be loaded with the address of an 8-byte
area that is to receive the actual address of
the block to be processed. The converted
address is of the form MBBCCHHR, where M
indicates which extent entry in the data extent
block is associated with the direct access

Execute Direct Access Program (XDAP) Macro Instruction 121

XDAP

program (0 indicates the first extent, 1
indicates the second, etc.); BB indicates the
bin number of the direct access volume; CC
indicates the cylinder address; HH indicates
the actual track address; and R indicates the
block identification.

3-8 Are not used by the conversion routine.

9-13 Are used by the conversion routine and are not
restored.

14 Must be loaded with the address to which

control is to be returned after execution of
the conversion routine.

15 Is used by the conversion routine as a base
register and must be loaded with the address at
which the conversion routine is to receive
control.

CONVERSION OF RELATIVE SECTOR ADDRESS TO ACTUAL ADDRESS

To issue XDAP for RPS devices, you must provide the actual device
address of the sector containing the block to be processed. If you know
only the relative sector address, you can convert it to the actual
address by using a resident system routine. For RPS devices, the entry
point to the conversion routine is labeled IECSCR0l. The address of the
entry point is in the CVT, and the address of the CVT is in location 16.

For RPS devices, the conversion routine does all its work in general
registers. You must load registers 0, 1, 2, 14, and 15 with input to
the routine. Register usage is as follows:

122 System Programmer's Guide (Release 20.1)

Register Use

] For fixed length records, register 0 must be
loaded with a U4-byte value of the form DDKR,
where DD is a 2-byte field containing the
physical block size, K is a 1-byte field
containing the key length, and R is the record
number with an unknown sector value. For
variable length records, register 0 must be
loaded with a 4-byte value in the form of BBIR,
where BB is a 2-byte field containing the total
number of key and data bytes up to, but not
including the target record, I is a 1l-byte
field containing the record number with an
unknown sector value. The high order bit of
register 0 must be turned on to indicate
variable length records.

1 Not used by the sector convert routine.

2 Must be loaded with a 4-byte field in which the
first byte is the UCB device type code for the
device (obtainable from UCB+19), and the
remaining three bytes are the address of a
1-byte area that is to receive the sector

value.
3-8,12,13 Not used.
9-11 Used by the convert routine and are not saved

or restored.

14 Must be loaded with the address to which
control is to be returned after execution of
the sector conversion routine.

15 Used by the conversion routine as a base
register and must be loaded with the address of
the entry point to the conversion routine.

APPENDAGES

For additional control over I/0 operations, you may write appendages,
which must be entered into the SVC library. Descriptions of these
routines and their coding specifications are contained in the "EXCP
Macro Instruction" section of this publication.

L- AND E-FORMS OF XDAP MACRO INSTRUCTION

You may use the L-form of the XDAP macro instruction for a macro
expansion consisting of only a parameter list, or the E-form for a macro
expansion consisting of only executable instructions. The L- and
E-forms are described in the IBM System/360 Operating System:

Supervisor and Data Management Services publication, GC28-6646 and the
IBM System/360 Operating System: Supervisor and Data Management Macro
Instructions publication, GC28-6647.

Note: The BLKREF parameter is ignored by the "L" form of the XDAP macro
instruction. The field may be supplied in the E-form of the macro
instruction or moved into the IOB by you.

Execute Direct Access Program (XDAP) Macro Instruction 123

XDAP

Appendix: CVT Macro Instruction

If you want to use the CVT macro instruction, you must add the macro
definition to the macro-library (SYS1.MACLIB). This section contains
the following:
e The format of the CVT macro instruction.
e The Job Control and Utility statements needed to add the macro
definition to the library.

Format of the CVT Macro Instruction

This macro instruction defines the symbolic names of all fields in
the communication vector table (CVT). When coding this macro
instruction, you must precede it with a DSECT statement. The format of
the macro instruction is as follows:

r T | a3
| Name | Operation | Operand |
b + + 1
I | cvr I |
L 1 4 J
Control Statements Required

I 1
| 7/jobname JOB {parameters} |
| 7/stepname EXEC PGM=IEBUPDTE, PARM=NEW |
| ~Z7SYSPRINT DD SYSOUT=A |
| /7/SYSUT2 DD DSNAME=SYS1.MACLIB,DISP=OLD |
| 7//sSYSIN DD * |
| o/ ADD NAME=CVT, LIST=ALL |
I . |
| . I
| : - |
| CVT Macro Definition |
I . I
I . l
| .]
| .7 ENDUP I
| 7% |
L J

124 system Programmer's Guide (Release 20.1)

How to Use the Tracing Routine

This chapter describes the function of the
tracing routine, and provides a detailed
description of the information made
available by the tracing routine.

Before reading this chapter, you should

be familiar with the information contained
in the prerequisite publication.

PREREQUISITE PUBLICATION

The IBM_ System/360: Principles of
Operation publication (GA22-6821) contains

information about the SIO instruction and
the I/0 and SVC interruptions.

How to Use the Tracing Routine 125

How to Use the Tracing Routine

The tracing routine is an Operating System/360 optional feature which
The tracing routine

you can use as a debugging and maintenance aid.
stores, in a table, information pertaining to the following conditions:

e STO instruction execution.
e SVC interruption.
e I/0 interruption.

TRACE option in the SUPRVSOR macro instruction.
option requires you to supply the number of entries in the table.

You can include the tracing routine and its table in the control
program during the system generation process.

This is done using the

The format of this

table entry can contain information relating to one of the traced
When the last entry in the table is filled, the next entry
will overlay the first.

conditions.

Table Entry Formats

SI0

Table entry formats are as follows:

Instruction

3 13

21 31

310

Each

31

0

Device
Address

Channel Address Word

Channel S!atus Word
(Meaningful only v‘vhen bits 2-3 = 01)

170 Interruption

\— SIO Condition Code

0 13 16 19 3tjo 3tfo 310 3
0 0000 Channel Status Word
N J
Y
/O Old PSW
SVC Interruption
0 13 16 19 3110 3140 3140 31
1 0001 Contents of Register 0 Contents of Register 1
\ J
s
SVC Old pPsw

126 sSystem Programmer's Guide (Release 20.1)

Location of the Table

The addresses of the last entry made in the table, the beginning of the
table, and the end of the table are contained in a 12-byte field. The
address of this field is contained in the fullword starting at location
20. The format of the field is as follows:

0 31}0 31

Address of the
Table Beginning

Address of the
Last Entry

Address of the
Table End

[o e —
o o e e e
o e o e e
[P P

The tracing routine is bypassed during abnormal termination
procedures, except when incorporated in MFT or MVT configurations of the
operating system.

The abnormal termination dump lists the SIO, SVC, and I/O
interruptions table entries, starting with the oldest. A number is
assigned to each entry and the oldest entry is 0001.

How to Use the Tracing Routine 127

128 System Programmer's Guide (Release 20.1)

Data Set Protection

To use the data set protection feature of
the operating system, you must create and
maintain a password data set consisting of
records that associate the names of the
protected data sets with the password
assigned to each data set. There are two
ways to maintain the password data set:

you can write your own routines to maintain
it or you can use the facilities of the
PROTECT macro instruction to maintain it.

This chapter is divided into two
sections. The first section describes the
general features of data set protection,
including the use of your own routines to
maintain the password data set. It
provides the information you need to create
the data set and it describes the record
format and characteristics of the data set.
The second section discusses the PROTECT
macro, it provides the programming
information you need to use the macro and
it discusses the difference between using
the PROTECT macro and using your own
routines to maintain the password data set.

RECOMMENDED PUBLICATIONS

The IBM System/360 Operating System: Data
Management Services publication (GC28-3746)
contains a general description of the data
set protection feature.

The IBM System/360 Operating System:
Messages and Codes publication (GC28-6631)
contains a description of the operator
messages and replies associated with the
data set protection feature.

The IBM System/360 Operating System:
Job Control Lanquage Reference publication
(GC28-6704) contains a description of the
data definition (DD) statement parameter
used to indicate that a data set is to be
placed under protection.

Documentation of the operating system
routines supporting data set protection can
be obtained through your IBM Branch Office.

Lata Set Protection 129

Data Set Protection

To prepare for use of the data set protection feature of the operating
system, you place a sequential data set, named PASSWORD, on the system
residence volume (containing SYS1.NUCLEUS and SYS1.SVCLIB). Note: If
the routines that you write to maintain the password data set use the
basic direct access method (BDAM), you must place a BDAM data set named
PASSWORD on the system residence volume. This data set must contain one
record for each data set placed under protection. In turn, each record
contains a data set name, the password for that data set, a counter
field, a protection mode indicator, and a field for recording any
information you desire to log. On the system residence volume, these
records are formatted as a "key area"™ (data set name and password) and a
"data area" (counter field, protection mode indicator, and logging
field). The data set is searched on the "key area."”

You can write routines to create and maintain the PASSWORD data set.
(If you use the PROTECT macro instruction to maintain the password data
set, see the section in this chapter called USING THE PROTECT MACRO
INSTRUCTION TO MAINTAIN THE PASSWORD DATA SET.) These routines may be
placed in your own library or the system's linkage editor library
(SYS1.LINKLIB). You may use a data management access method or EXCP
programming to handle the PASSWORD data set.

If a data set is to be placed under protection, it must have a
protection indicator set in its label (DSCB or header 1 tape label).
This is done by the operating system when the data set is created. The
protection indicator is set in response to an entry in the LABEL=
parameter of the DD statement associated with the data set being placed
under protection. The Job Control Lanquage Reference publication
describes the entry. Note: Data sets on magnetic tape are protected
only when standard labels are used.

Users who wish to have the password supplied by some method other
than operator key-in may replace the password reading module with their
own routine. The READPSWD source module may be used as a base for
writing a new module. In this case, the new object module replaces
module READPSWD on the SVCLIB.

The balance of this chapter discusses the PASSWORD data set
characteristics and record format, the creation of protected data sets,
and operating characteristics of the data set protection feature.

Password Data Set Characteristics and Record Format

The PASSWORD data set must reside on the same volume as your operating
system. The space you allocate to the PASSWORD data set must be
contiguous, i.e., its DSCB must indicate only one extent. The amount of
space you allocate is dependent on the number of data sets your
installation desires to place under protection. The organization of the
PASSWORD data set is physical sequential, the record format is
unblocked, fixed length records (RECFM=F). These records are 80 bytes
long (LRECL=80) and form the data area of the PASSWORD data set records
on direct access storage. In these direct access storage records, the
data area is preceded by a key area of 52 bytes (KEYLEN=52). In main
storage, the 52 byte key field (which contains the data set name and the
password) and the 80 byte data field (whose first three bytes contain a
counter and a protection indicator) together form a 132 byte buffer.
Figure PSWD1l shows the password records as you would build them in a 132
byte work area. Explanation of the fields follows the illustration.

130 System Programmer's Guide (Release 20.1)

The name of the protected data set being opened and the gpassword
entered by the operator are matched against the 52-byte "key area." The
data set name and the password must be left-justified in their areas and
any unused bytes filled with blanks (X'40'). The password assigned may
be from one to eight alphameric characters.

52 byte "key" - 30 byte "data area"
3 bytes

<44 bytes ————————— |~ 3 bytes ~ 77 bytes

fully qualified

data set name

logging field
(optional information)

l— protection mode indicator - 1 byte

binary counter - 2 bytes

password

Figure PSWD1l. Password Record

The operating system increments the binary counter by one each time
the data set is successfully opened (except for performance of SCRATCH
or RENAME functions on the data set). When you originate the password
record, the value in the counter may be set at zero (X'0000') or any
starting value your installation desires.

The protection mode indicator is set to indicate that the data set is
to be read-only, or that it may be read or written. Read only and
read/write protection for a data set can be attained by including the
same data set name in the password data set twice and giving it
different passwords. You set the indicator as follows:

e To zero (X'00') if the data set is to be read-only.
e To one (X'01') if the data set may be read or written.

You may use the 77-byte logging field to record any information about

the data set under protection that your installation may desire, e.qg.,
date of counter reset, previous password used with this data set, etc.

Protecting the Password Data Set

You protect the PASSWORD data set itself by creating a password record

for it when your program initially builds the data set. Thereafter, the
PASSWORD data set cannot be opened (except by the operating system

routines that scan the data set) unless the operator enters the

password.

Creating Protected Data Sets

A data definition (DD) statement parameter (LABEL=) is used to indicate
that a data set is to be placed under protection. You may create a data
set, and set the protection indicator in its label, without entering a
password record for it in the PASSWORD data set. However, once the data
set is closed, any subsequent opening results in termination of the
program attempting to open the data set, unless the password record is
available and the operator can honor the request for the password.
Operating procedures at your installation must ensure that password
records for all data sets currently under protection are entered in the
PASSWORD data set.

Data Set Protection 131

Protection Feature Operating Characteristics

This section provides information concerning actions of the protection
feature in relation to termination of processing, volume switching, data
set concatenation, SCRATCH and RENAME functions, and counter
maintenance.

Terxrmination of Processing

Processing is terminated when:

1. The operator cannot supply the correct password for the protected
data set being opened.

2. A password record does not exist in the PASSWORD data set for the
protected data set being opened.

3. The protection mode indicator setting in the password record, and
the method of I/O processing specified in the open routine do not
agree, e.g., OUTPUT specified against a read-only protection mode
indicator setting.

4. There is a mismatch in data set names for a data set involved in a
volume switching operation. This is discussed in the next section.

Volume Switching

The operating system end-of-volume routine does not request a password
for a data set involved in a volume switch. Continuity of protection is
handled in the following ways:

Input Data Sets - Tape and Direct Access Devices

Processing continues if there is an equal comparison between the
data set name in the tape label or DSCB on the volume switched to,
and the name of the data set opened with the password. An unequal
comparison terminates processing.

Output Data Sets - Tape Devices

The protection indicator in the tape label on the volume switched to
is tested:

1. If the protection indicator is set ON, an equal comparison
between the data set name in the label and the name of the data
set opened with the password allows processing to continue. An
unequal comparison results in a call for another volume.

2. If the protection indicator is OFF, processing continues, and a
new label is written with the protection indicator set ON.

3. If only a volume label exists on the volume switched to,
processing continues, and a new label is written w1th the
protection indicator set on.

Output Data Sets - Direct Access Devices

For existing data sets, an equal comparison between the data set
name in a DSCB on the volume switched to, and the name of the data
set opened with the password allows processing to continue. For new
output data sets, the mechanism used to effect volume switching
ensures continuity of protection and the DSCB created on the new
volume will indicate protection.

Data Set Concatenation

A password is requested for every protected data set that is involved in
a concatenation of data sets, regardless of whether the other data sets
involved are protected or not.

132 System Programmer's Guide (Release 20.1)

SCRATCH and RENAME Functions

An attempt to perform the SCRATCH or RENAME functions on a protected
data set results in a request for the password. The protection feature
issues an operator's message (IEC301A) when a protected data set is the
object of these functions. The Messages and Codes publicaticn discusses
the message.

Counter Maintenance

The operating system does not maintain the counter in the password
record and no overflow indication will be given (overflow aftexr 65,535
openings). You must provide a counter maintenance routine to check and,
if necessary, reset this counter.

Using the Protect Macro Instruction to Maintain the Password
Data Set

To use the PROTECT macro instruction, your password data set should be
on the system residence volume. The PROTECT macro can be used to:

o Add an entry to the password data set.
e Replace an entry in the password data set.
e Delete an entry from the password data set.

e Provide a list of information about an entry in the password data
set; this list will contain the security counter, access type, and
the 77 bytes of security information in the "data area" of the
entry.

In addition, the PROTECT macro, will update the DSCB of the protected
data set, for a direct access device, to reflect its protected status;
this feature eliminates the need for you to use job control language
whenever you place a data set under protection.

PASSWORD DATA SET CHARACTERISTICS AND RECORD FORMAT WHEN YOU USE THE
PROTECT MACRO

When you use the PROTECT macro, the record format and characteristics of

the password data set should be the same as the record format and

characteristics when you use your own routines to maintain it, with two

exceptions: the number of records that you establish for each protected

data set and the values of the protection mode indicator. @

Number of Records for Each Protected Data Set: When you use the PROTECT
macro, the password data set must contain at least one record for each
protected data set. The password (the last 8 bytes of the "key area")
that you assign when you place the data set under protection for the
first time is called the control password, in addition, you may create
as many secondary records for the same protected data set as you need.
The passwords assigned to these additional records are called secondary
passwords. This feature is helpful if you want several users to have
access to the same protected data set, but you also want to contxol the
manner in which they can use it. For example: one user could be
assigned a password that allowed the data set to be read and written,
and another user could be assigned a password that allowed the data set
to be read only.

Note: The PROTECT macro will update the DSCB of the protected data set
only when you issue it for adding, replacing or deleting a control
password.

Cata Set Protection 133

Protection Mode Indicator: You can set the protection mode indicator in
the password record to four different values:

e X'00' to indicate that the password is a secondary password and the
protected data set is to be read only.

e X'80' to indicate that the password is the control password and the
protected data set is to be read only.

e X'01' to indicate that the password is a secondary password and the
protected data set is to be read and written.

e X'81"' to indicate the password is the control password and the
protected data set is to be read and written.

Since the DSCB of the protected data set is updated only when the
control password is changed, it is possible to request protection
attributes for secondary passwords which conflict with the protection
attributes of the control password.

If the control password has read only protection, its secondary
passwords may have read only or read write protection. A request for a
secondary password with read without password protection will result in
a secondary password with read write protection. A read only control
password may be changed to a read write control password without
affecting any secondary passwords, but if a read only control passwoxrd
is changed to a read without password control password all secondary
passwords will automatically become read without password secondary
passwords.

If the control password has read write protection, its secondary
passwords may have read only or read write protection. A request for a
secondary password with read without password protection will result in
a secondary password with read write protection. A read write control
password may be changed to a read only control password without
affecting any secondary passwords, but if a read write contrcl password
is changed to a read without password control password all secondary
passwords will automatically become read without password secondary
passwords. :

If the control password has read without password protection, its
secondary passwords must also have read without password protection. A
request for a read only or for a read write secondary password will
result in a read without password secondary password. If a read without
password control password is changed to either a read only or read write
control password all its secondary passwords will automatically become
read write secondary passwords.

PROGRAMMING CONVENTIONS FOR THE PROTECT MACRO INSTRUCTION
The format of the PROTECT macro is:

(1) register 1 with the address of a parameter list
PROTECT (REG) a register with the address of a parameter list
list addr address of location containing the parameter list

When you issue the PROTECT macro, you should have already established
the parameter list. Its size and contents depend on the function that
you want the macro to perform. In any case, the first byte of the
parameter list is an entry code that indicates the function:

134 sSystem Programmer's Guide (Release 20.1)

i

e X'01*' for adding an entry to the parameter list.

e X'02' for replacing an entry in the parameter list.

e X'03" for deleting an entry from the parameter list.

e X'04' for listing the information in a password data set entry. For
a complete discussion of the contents of the parameter lists, see
figures PSWD2 to PSWD5 and the notes explaining each of these
figures.

PROTECT Macro Parameter Lists

The parameter lists, their formats and contents are:

PARAMETER LIST FOR ACD FUNCTION
ﬂ x'o1! ! 00 00 00

5
Data Set Length Pointer to Data Set Name

00 00 00 00

12
00

M Number of Volumes
20 I
Protection Code

rzil String Length 5 Pointer to String

Figure PSWD2. Parameter List for Add Function

Pointer to Control Password

Pointer to Volume List

Pointer to New Password

HIEIEIEE

Explanatory Notes for Figure PSWD2.

0 XxX'o01'
Entry code indicating add function.

13 Pointer to control password.
The control password is the password assigned when the data set was
placed under protection for the first time. This can be a string of
zeros if the new password is the control password.

16 Number of volumes.
If the data set is not cataloged and you want to have it flagged as
protected, you have to specify the number of volumes in this field.
A zero indicates that the catalog information should be used.

17 Pointer to volume list.
If the data set is not cataloged and you want to have it flagged as
protected, you provide the address of a list of volume serial
numbers in this field. Zeros indicate that the catalog information
should be used.

20 Protection code.
A one-byte number indicating the type of protection: X'00°*
indicates default protection (for the add function, the default
protection is the type of protection specified in the control
password record of the data set), X'01' indicates that the data set
is to be read and written, X'02' indicates that the data set is to
be read only and X'03' indicates that the data set can be read
without a password, but a password is needed to write into it.

Data Set Protection 135

The PROTECT macro will use the protection code value, specified in the
parameter list, to set the protection mode indicator in the rpassword
record.

21

24

25

Pointer to new password.

If the data set is being placed under protection for the first time,
the new password is the same as the control password. If you are
adding a secondary entry, the new password is different from the
control password.

String length.

The length of the character string (maximum 77 bytes) that you want
to place in the optional information field of the password record.
If you don't want to add information, set this field to zero.

Pointer to string.

The address of the character string that is going to be put in the
optional information field. If you don't want to add additional
information, set this field to zero.

Parameter List for Replace Function

o] !
X102 00 00 00
4 5
Data Set Length Pointer to Data Set Name
8 9
00 Current Password
12 13
00 Pointer to Control Password
16 17 I . .
Number of Volumes Pointer to Volume List
20 21
Protection Code Pointer to New Password
2¢] 25 |
String Length Pointer to String

Figure PSWD3. Parameter List for Replace Function

Explanatory Notes for Figure PSWD3.

0

13

16

17

20

X'o02"
Entry code indicating REPLACE function

Pointer to current password.
The address of the password that is going to be replaced.

Pointer to control password.

The address of the password assigned to the data set when it was
first placed under protection. This can be zero if the current
password is the control password.

Number of volumes.

If the data set is not cataloged and you want to have it flagged as
protected, you have to specify the number of volumes in this field.
A zero indicates that the catalog information should be used.

Pointer to volume list.

If the data set is not cataloged and you want to have it flagged as
protected, you have to provide the address of a list of volume
serial numbers in this field. 1If this field is zero, the catalog
information will be used.

Protection code.
A one-byte number indicating the type of protection: X'00'
indicates that the protection is default protection (for the replace

136 System Programmer's Guide (Release 20.1)

21

24

25

function the default protection is the protection specified in the
current password record of the data set), X'01' indicates that the
data set is to be read and written, X'02' indicates that the data
set is to be read only, and X'03' indicates that the data set can be
read without a password, but a password is needed to write into the
data set.

Pointer to new password.
The address of the password that you want to replace the current
password.

String length.

The length of the character string (maximum 77 bytes) that you want
to place in the optional information field of the password record.
Set this field to zero if you don't want to add additiocnal
information.

Pointer to string.

The address of the character string that is going to be put in the
optional information field of the password record. Set the address
to zero if you don't want to add additional information.

Parameter List for Delete Function

0 1 t]
——J X'03 00 00 00
4 5
Data Set Length Pointer to Data Set Name
8 9
00 Pointer to Current Password
12 13
00 Pointer to Control Password
16 17
__j Number of Volumes Pointer to Volume List

Figure PSWDU4. Parameter List for Delete Function

Explanatory Notes for Figure PSWDA4.

0

13

16

17

X'03".
Entry code indicating delete function.

Pointer to current password.
The address of the password that you want to delete. You can delete
either a control entry or a secondary entry.

Pointer to control password.

The address of the password assigned to the data set when it was
placed under protection for the first time. This can be zeros if
the current password is also the control password.

Number of volumes.

If the data set is not cataloged and you want to have it flagged as
protected, you have to specify the number of volumes in this field.
A zero indicates that the catalog information should be used.

Pointer to volume list.

If the data set is not cataloged and you want to have it flagged as
protected, you have to provide the address of a list of volume
serial numbers in this field. 1If this field is zero, the catalog
information will be used.

Data Set Protection 137

PSW]

Parameter List for List Function

©] il
X'04! Address of 80 Byte Buffer

4 5
Data Set Length Address of Data Set Name

8 9 l
00 Pointer to Current Password Name

Figure PSWD5. Parameter List for List Function
Explanatory notes for using Figure PSWD5.

0 X'04°'.
Entry code indicating list function.

1 Address of 80-byte buffer.
The address of a buffer where the list of 1nformat10n can be
returned to your program by the macro instruction.

9 Pointer to current password name.
The address of the password of the record that you want listed.

Return Codes from the PROTECT Macro

When the PROTECT macro finished processing, register 15 will contain a
return code that indicates what happened during the processing. Table
PASS1 contains the return codes and their explanations.

Table PASS1. Return Codes from The PROTECT Macro

I 1
|Register 15} Explanation]
F t 1
| 0 |The updating of the password data set was successfully |
| | completed.]
| 4 [The password of the data set name was already in the |
	password data set.
8	The password of the data set name was not in the password
	data set.
12	A control password is required or the one supplied is
]incorrect.]	
16	The supplied parameter list was incomplete or incorrect.
20	There was an I/0 error in the password data set.
**24	The password data set was full. i
28	The validity check of the buffer address failed.
*32	The LOCATE macro failed. LOCATE's return code is in
	register 1 and the number of indexes searched is in
	register 0.
*36	The OBTAIN macro failed. OBTAIN's return code is in
j	register 1.
*40	The DSCB could not be updated.
44	The password data set does not exist.
*48	Tape data set can not be protected.
] *52	Data set in use.
b= L 1	
*For these return codes, the password data set has been updated, but	
the DSCB has not been flagged to indicate the protected status of the	
data set. ‘	
**For this return code, a message is written to the console indicating]	
that the password data set is full. i	
L 4

138 System Programmer's Guide (Release 20.1)

The PRESRES

Volume Characteristics List

This chapter describes the creation and use
of a direct access volume characteristics
list that is placed in the system parameter
library under the member name PRESRES.

PREREQUISITE PUBLICATIONS

The IBM System/360 Operating System:

Job Control Lanquage Reference publication
(GC28-670U4) discusses volume
characteristics and states.

The IBM System/360 Operating System:
Messages and Codes publication (GC28-6631)
describes the operator messages and
responses associated with system use of the
volume characteristics list.

The PRESRES Volume Characteristics List 139

" PREY

The PRESRES Volume Characteristics List

You may use the PRESRES volume characteristics list to define the mount
and allocation characteristics of direct access device volumes used by
your installation. Use of the list enables you to predefine the mount
characteristics (permanently resident, reserved) and allocation
characteristics (storage, public, private) for any, or all, direct
access device volumes used by your installation. The Job Control
Language publication provides a full discussion of the volume
characteristics and the operating system's response to the various
designations. The information presented here describes the creation of
the characteristics list, the format and content of entries in the list,
and how the operating system uses the list.

Creating the List

You use the IEBUPDTE utility program to place the list (under the member
name PRESRES) in the system parameter library, SYS1.PARMLIB. This
utility is also used to maintain the list.

PRESRES Entry Format

Each PRESRES entry is an 80-byte record, consisting of a 6-byte volume
serial number field, a 1-byte mount characteristic field, a 1l-byte
allocation characteristic field, a 4-byte device type field, a 1l-byte
mount-priority field, and an optional information field. Commas are
used to delimit the fields, except the optional information field is
always preceded by a blank. All character representation is EBCDIC.
This format is shown below.

- T
Volume Serial i
Number 6 Bytes |

41

14 L

,

4 Bytes

———
f——

T e —

T T 1
Device Type |, joptional |
1 !

1
| |Information
1

[}
|
|
4 L
A J

o — —

T
I
|

1

T
I
|
4

A

Blank--1 Byte
—— Mount Priority--1 Byte
Allocation Characteristic--1 Byte

Mount Characteristic--1 Byte

The volume serial number consists of up to six characters, left
justified.

Mount characteristics are defined by:

0 to denote permanently resident
1 to denote reserved

The default characteristic is "permanently resident" and is assigned if
any character other than 0 or 1 is present in the field.
Allocation characteristics are defined by:

0 to denote stordge

1 to denote public

2 to denote private

The default characteristic is "public" and is assigned if any character

other than 0, 1, or 2 is present in the field.

140 sSystem Programmer's Guide (Release 20.1)

The device type is defined by:

A four digit number designating the type of direct access device on
which the volume resides, e.g., the IBM 2311 Disk Storage Drive is
indicated by the notation 2311. Note that this field only indicates
the basic device type for the associated volume. You must advise the
operator if the device requires special features (such as track
overflow) to process the data on the designated volume.

The mount priority field is used to suppress mount messages at IPL time
for a volume; the alphabetic character N should be inserted in this
field to suppress the mount message. This field allows the user to
list seldom used volumes in the PRESRES list without having a mount
message issued at each IPL. When these volumes are required, they may
be mounted and attributes will be set from the PRESRES list entry. If
the user does not wish to have the mount message suppressed, he may
omit the mount priority field and the preceding comma.

The optional information field contains:

Any descriptive information about the volume that you may wish to
enter. This information is not used by the system, but will be
available to you on a printout of the list. If necessary, comments may
start in the second byte after the mount priority field or if the mount
priority field is omitted, in the second byte following the comma after
the device type field.

Embedded blanks are not permitted in the volume serial, mount,
allocation, or device type fields.

Operational Characteristics

Upon receiving control from the nucleus initialization program (NIP),
the scheduler compares the volume serial numbers in the PRESRES
characteristics list with those of currently mounted direct access
volumes. Each equal comparison results in the assignment to the mounted
volume of the characteristics noted in the PRESRES entry. (Fields in
the unit control block for the device on which the volume is mounted are
set to reflect the desired characteristics.) If the volume is: +the IPL
volume; the volume containing the data sets SYS1.LINKLIB, SYS1.PROCLIB,
SYS1.SYSJOBQE; or a physically nondemountable volume (such as a 2301
drum storage unit), the mount characteristic (permanently resident) has
already been assigned and only the allocation characteristic is set.

A mounting list is issued for the volumes in the PRESRES
characteristics list that are not currently mounted (except those for
which mounting messages have been suppressed) and the operator is given
the option of mounting none, some, or all of the volumes listed. The
mount and allocation characteristics for the volumes mounted by the
operator are set according to the PRESRES list entry for the volume.
The operator selects the unit on which the volume is to be mounted.

PRES]

The Messagdes and Codes publication describes the operator messages
and responses associated with the use of the PRESRES volume
characteristics list.

After the scheduler has finished PRESRES processing reading of the
job input stream begins, and the PRESRES list is not referred to again
until the next IPL.

Volume characteristics assigned by a PRESRES list entry are

inviolate. They cannot be altered by subsequent references to the
volume in the input stream.

The PRESRES Volume Characteristics List 141

Note:

1. A PRESRES entry identifying a physically nondemountable volume will
appear in the mount list issued to the operator if the volume
(device) is OFFLINE or is not present in the system.

2. Use of the PRESRES list can only be suppressed by deleting the
member from the parameter library (SYS1l.PARMLIB).

3. Only the first 102 volumes on the PRESRES list can be placed on the
mount 1list.

Programming Considerations

The only way to assign an allocation characteristic other than "public"
to volumes whose mount characteristic is "permanently resident" is
through a PRESRES characteristic list entry.

Selection of the volumes for which PRESRES entries are to be created
should be done so that critical volumes are protected. Since the
combination of mount and allocation characteristics assigned to a
specific volume determine the types of data sets that can be placed on
the volume and its usage, you can exercise effective control over the

volume through a PRESRES list entry.

142 System Programmer's Guide (Release 20.1)

Resident Routines Options

The resident routines options are the BLDL
feature, the resident reenterable modules
feature, and the RSVC and RERP features.
These features permit preloading into main
storage routines (or at least their
addresses) that otherwise would be
repeatedly loaded each time the routines
are requested. The Link list feature, also
described in this chapter, permits
references to the Link library to be
extended to other data sets. Figures RRO
1, 2, and 3 describe all these features.

There are three sections to this
chapter. Section 1 discusses the PCP and
MFT use of the features, section 2 the MVT
use, and section 3 the Link list feature.

Section 1 of this chapter discusses the
BLDL Table, reenterable modules, and RSVC
and RERP and provides guidelines for their
use. The purpose of these options is to
improve performance by reducing or
eliminating the access time required to
obtain the routines with which these
options are concerned. You may incorporate
these options in the PCP or MFT
configurations of the operating system.

Section 2 of this chapter discusses the
inclusion of SVC routines, reenterable load
modules, and linkage library directory
entries in the Link Pack Area of the MVT
configuration of the operating system.

Section 3 of this chapter discusses the
link library list and provides guidelines
for its use. The purpose of the link
library list is to allow concatenation of
data sets for SYS1.LINKLIB. The link
library list must be included in the
system.

PREREQUISITE PUBLICATIONS

The IBM System/360 Operating System:
System Generation publicaticn (GC28- 655&)
describes how to specify the options and
content of the link pack area at system
generation time.

The IBM System/360 Operating System:
Supervisor Services publication (GC28-66U46)
contains a general description of the BLDL
function.

Resident Routines Options 143

The IBM Systenv/360 Operating System:
Utilities publication (GC28-6586) contains
a description of the IEBUPDTE utility which
you use to construct lists of load module
names in the parameter library
(SYs1.PARMLIB).

The IBM System/360 Operating System:
Storage Estimates publication (GC28-6551)
provides storage requirement information
for the options and link pack area.

The IBM System/360 Operating System:
Messages _and Codes publication (GC28-6631)
contains the operator message and replies
associated with the options and link pack
area.

144 System Programmer's Guide (Release 20.1)

Feature : BLDL Link List RSVC RAM RERP
RESIDNT= (a) BLDLTAB TRSVC RENTCODE ERP
IPL (b) BLDL= RSVC= RAM= RERP=
Name of List IEABLD, . LNKLSTO00 IEARSV. IEAIGG.. IEAIGE, ,
N, f
Contents of List Names of Routines Names of Data Sets Nares of Routines Names of Routines R:JT:;S
. . X R Type 3 and 4 Access Method and Error Revy
Subject Routines Link Library SVC Routines Link Librory Procedure
Library SYS1.SVCLIB, SYSI,
Residence SYS1,LINKLIB Any volume SYS1.SVCLIB SYST. LINKLIB SVCLIB
o . f Buil ble of Concatenates other Loads
peration o uilds a table o datasets with the Loads Named Routines Loads Named Routines Named
Feature addresses Link Library Routines
(a) = Entry for the SUPRVSOR macro instruction in the system generation procedure,
(b) - Entry for the operator reply to the IPL time message SPECIFY SYSTEM PARAMETERS—~.
Figure RRO 1. Resident Routines Options i;ffé>
. . Reenterable Routines RERP
Option BLDL Link List RSVC Access Methods Link Library
RESIDNT= (a) BLDTAB TRSVC ACSMETH RENTCODE ERP
IPL (b) BLDL= RSVC= RAM= RAM= RERP
] IEAIGG. . (c)
Name of List IEABLD, ., LNKLSTO00 IEARSV.. IEAIGG, . (c) User - Written IEAIGE. .
Reenterable Link Library
SVC or . Names of
Names on . . Type 3 and 4 . Routines, Reenterable k
the List Lmk.lerury Data Sets SVC Routines Access Method Routines GSP routines, and the Routines
Routines
OS Loader
SYS1.SVCLIB SYS1,
Residence SYST.LINKLIB Any Volume SYS1,.SVCLIB SYS1,SVCLIB SYS1,LINKLIB SVCLIB
U ¢ . To Build a Table TohConcafencte To Load Named To Load Named To Load Named :‘\Tcdsd
se of Option of Addresses O', er C!Otcse's Routines Routines Routines ome
with Link Routines
(a) - Entry for the SUPRVSOR macro instruction in the system generation statements,
(b) ~ Entry for the operator reply to the IPL time message SPECIFY SYSTEM PARAMETERS,
(c) - Though similarly named, each IEAIGG. . list can have names of only one of the t/wo-kinc{s of routines, Each list must have a unique name,
Figure RRO 2. Resident Routines Options -/Km?y
Feature : BLDL Link List RSVC RAM RERP
RESIDNT= (a) BLDTAB TRSVC ACSMETH ERP
PL (b) BLDL= RSVC= RAM= RERP=
Nome of List {EABLD., LNKLST00 IEARSV, . IEAIGG, . |EAIGE. .
Contents of Names of
Lizr ents @ } Names of Routines Nomes of Data Sets Names of Routines Names of Routines Ro?;ﬁnes
R . SVC or Type 3 and 4 Error R
Sublect R A ' ype 3 an rror Revy
ubject Routines Link Library SUE Rovtines Access Method Procedure
Library SYS1.SVCLIB SYST.
Residence SYST.LINKLIB Any volume SYS1.SvCLiB SYS1.SVCLIB SVCLIB
Operation of Builds a table of Cor\cutenc.fes other Loads
datasets with the Loads Named Routines Loads Named Routines Named
Feature addresses . . .
Link Library Routines

(a) - Entry for the SUPRVSOR macro instruction in the system generation procedure.
(b) - Entry for the operator reply to the IPL time message SPECIFY SYSTEM PARAMETERS -

Figure RRO 3.

Resident Routines Options

Resident Routines Options

S,

145

Section 1: Nucleus Resident Library Routines (PCP and MFT)

The BLDL, reenterable modules, RSVC and RERP options, when included in a
PCP or MFT configuration of the operating system, enable you to place in
the nucleus area of main storage (make resident):

1. BAll, or a selection of, Link or SVC library directory entries.
2. A selected group of access method routines.

3. A selected group of type 3 and 4 SVC routines.

4. A selected groupr of error recovery procedures.

5. For MFT, user-written reenterable routines from the Link library,
the 0S Loader, and reenterable GSP routines.

Placement occurs during the initial program load (IPL) process. The
main storage area that these resident routines occupy becomes part of
the "fixed storage" area of the system. In effect, the nucleus is
expanded.

These options are included in the system when it is generated. The
System Generation publication describes the procedure. The resident SVC
routine option requires that the Transient SVC Table option also be
included in the system. If you wish to exercise control over the other
options at IPL time, you must also specify the operator communication
facility for these options when the system is generated.

You specify the Link library (SYS1.LINKLIB) and SVC library
(SYS1.SVCLIB) routines and directory entries, the access method
routines, the type 3 and 4 SVC routines, and the error recovery
procedures to be made resident through lists of linkage library, access
method, SVC routine, and the error recovery procedures load module names
placed in the parameter library (SYS1.PARMLIB).

A standard list and alternative lists of load module names may exist
for the options. The standard list (so called because its member name
in the parameter library is predefined) is automatically referred to
during the IPL process when the operator communication facility is not
included in the system with the options. When the operator
communication facility is included, the operator must designate which
list is to be used. IBM provides suggested standard lists for the
resident access method modules and resident SVC routine options. These
lists are in the starter system parameter library. You must specify
operator communication at system generation if you intend to use both
SVC and Link library BLDL lists.

Inclusion of the operator communication facility enables full control
over all the options at IPL time, i.e., selection of alternative or
standard lists, and suppression of the options until the next IPL.
Otherwise, the options are in effect at every IPL, using the standard
lists. The operator communication facility is required for the resident
Link library modules option of MFT. Unless the operator refers to load
list (or lists) for this option in his RAM= reply, none of the modules
named on a load list is made resident.

The balance of this chapter discusses the function of each option,
the creation of the parameter library lists, and, lists the content of
the resident access method modules and resident type 3 and 4 SVC
routines standard lists. The