
Systems Reference Library

IBM System/360 Operating System:

Programmer's Guide to Debugging

This publication describes the major debugging
facilities provided with the System/360
Operating System for the assembler language
programmer:

• Abnormal termination and shapshot dumps.
• Indicative dumps.
• Core image dumps.
• Stand-alone hexadecimal dumps.

The text explains those aspects of system
control pertinent to debugging facility offers,
and outlines procedures for invoking and
interpreting dumps issued at the three operating
system levels: PCP, MFT, and MVT.

Debugging facilities inherent in higher
languages and additional aids open to the
assembler language programmer are discussed
in other SRL publications.

File No. S360-20
GC28-6670-3 DS

Fourth Edition (June, 1970)

This is a major revision of, and obsoletes C28-6670-2. The
new subtasking option of the MFT control program is
described, and those control differences that must be
understood to debug a program run on a subtaskinq system dre
explained. All changes to the tex1:, and small changes to
illustrations, are indicated by a vertical line to the l~ft
of the change. New figures have b'=en added. Changed and
added illustrations are denoted by the syrrbcl • to the left
of the caption.

I This edition applies to release 19 of IB~ System/360
Operating system and to all subsequent releases until
otherwise indicated in new editions or Technical Newsletters.
Changes are continually made to the information herein;
before using this publication in connection with the
operation of IBM systems, consult the latest IBM System/3bO
Newsletter, Order No. GN20-0360, for the editions that are
applicable and current.

Requests for copies of IBM publications should be wade to
your IBM representative or to the IB~ branch office serving
your locality.

A form for readers' comments is provided at the tack of
the publication. If the form has neen removed. comments may
be addressed to IB~ corporation, Prograrr:roing systems
publications, Department D58, P.O. Box 390, Pouqhkeepsie,
N. Y. 12602

©Copyriqht International Business Machines Corporation 1967,1968,1969,1970

'-"'"

This publication is intended to help you
use the debugging facilities provided with
the IBM System/360 Operating system. To
fulfill this purpose, the publication is
divided into two sections: "Section 1:
Operating System Concepts," and "Section 2:
Interpreting Dumps." You should read the
introduction to familiarize yourself with
the debugging facilities before proceeding
to section 1.

section 1 deals with internal aspects,of
the operating system that you should know
to use the debugging facilities
efficiently. A working knowledge of this
information will provide you with the means
of determining the status of the system at
the time of the failure, and the course of
events which led up to that failure. It
includes information from other System
Reference Library publications, Program
Logic Manuals, and Installation Guides.
You should be familiar with the information
covered in Section 1 before attempting to
use Section 2.

section 2 includes instructions for
invoking, reading, and interpreting dumps
issued by systems with PCP, MFT, and MVT.
It presents an after-the-fact look at a
dump. You've put in a run, it failed, and
you now have a dump before you. Where do
you start; what do you look at; what does
it all me,an? The section begins with a
general debugging procedure, followed by
topics dealing with each type of dump.
Each topic tells how to invoke a particular
dump, what information the dump contains,
and how to use this information in
following the debugging procedure. The
material in section 2 is intended to aid
you in interpreting dumps and isolating
errors.

Before reading this publication, you
should have a general knowledge of
operating system features and concepts as
presented in the prerequisite publications.

Preface

Occasionally, the text refers you to other
publications for detailed discussions
beyond the scope of this book.

For information on debugging facilities
provided within higher languages, consult
the programmers' guides associated with the
respective languages. Other System/360
Operating System publications, such as
TESTRAN and Messages and Codes, descrine
additional debugging aids provided for the
assembler language prograromer.

Prerequisite Publications

IBM System/360: Principles of
9peration, GA22-6821

IBM_System/360 Operating System:

Introduction, GC28-6534

Concepts and Facilities, GC28-6535

supervisor and Data Management services,
Gc28-6646

Reference Publications

IBM System/360 Operating System:

§ystem Control Blocks, GC28-6628

Messages and Codes, GC28-6631

supervisor and Data Management Macro
Instructions, GC28-6647

system Programmer's Guide, GC28-b550

service Aids, GC28-6719

SUMMARY OF MAJOR CHANGES - RELEASb 19 7

INTRODUCTION • • 9

I SECTION 1: OPERATING SYSTE~ CONCEPTS • 10
Task Management •••••• •• • • 10

Task Control Block ••••••• 10
Request Blocks • • • • • • 10
Active RB Queue • 13
Load List • • • • 13
Job Pack Area Queue (MFT with
Subtasking only) • • • • • • • 14
Effects of LINK, ATTACH, XCTL, and
LOAD • • . • • • .• • • • • • • 15
system Task Control Differences •• 16

Main Storage supervision • • • • • 19
Storage control in Systems With PCP 19
Storage control in Systems with NFT
(without subtasking) • • • • • 20
Storage control in Systems with
MFT (with Subtasking) • • • • • 20
Storage control for a Region in
Systems with MVT • • • • • • • • • • 21
Storage Control for a Subpool in
Systems with MVT • • • • • • • • • • 22
storage Control for a Load Module
in Systems with MVT • • • • ~ • • • 23

system Control Blocks and Tables • • • • 25
Communications vector Table (CVT) 25
Task Input/Output Table (TIOT) • • • 25
unit Control Block (UCB) • • • • • • 25
Event Control. Block (ECB) ••••• 25
Input/Output Block (lOB) • • 25
Data Control Block (DCB) • • • • • • 25
Data Extent Block (DEB) • • • • 25
summary of Control Block
Relationships

Traces • • • • • • • •
Save Area Chain • • • • • •
Trace Table

• • • • 25
• 27

• • • • 27
• • • 28

SECTION 2: INTERPRETING DUMPS ••••• 30
General Debugging Procedure • • • • 30
Debugging Procedure Summary • • • • 32

ABEND/SNAP Dump (Systems with PCP and
MFT) • • • • • • • • • • • • • • • 33

Invoking an ABEND/SNAP Dump
(PCP,MFT) ••••••••••• 33
Contents of an ABEND/SNAP Dump
(PCP,MFT) ••••••••••• 36

Contents

Guide to Using an ABEND/SNAP Dump
(PCP, MFT) • • • • • • • • • • • • • 47

ABEND/SNAP Dump (Systems with MV'l') . • . 49
Invoking an AB~ND/SNAP Dump (MVT) • 49
Contents of an ABEND/SNAP Dump
(MVT) ••••••••••• · 49
Guide to Using an ABEND/SNAP Dunlp
(MVT) ••••••••••• 6 b

Indicative Dump • • • • • • • • • 68
Contents of an Indicative Dump • • • 68
Guide to Using an Indicative Durrp • 70

Core Irrage Dump • • • • • • • • •• 71
Damage Assessment Routine (DAR) ••. 71
System Failure • • • • • • 71
The SYS1.DUMP Data set •••••• 71

Tape • • • • •• ••• • • • • • 71
Direct Access • • • • • • 71

The Print Dump Program (IEAPHINT) •• 72
Input to the Print Dump Program 73
Output FrOID the Print Durrp Program • 73

contents of a Core Image Dump 73
Low storage and Registers • 73
Main Storage • • • • • • • • • 73

Stand-Alone Dump • • • • • • • •• • 75
Invoking a Stand-Alone Durr:p • 75
contents of a stand-Alone Dump • • • 75

Guide to Using a Core Image or a
Stand-Alone Dump • • • • • • • • •

Guide to Using a PCP Dump
Guide to Using an MFT Dump •
Finding the Partiiton TCBS ••
Guide to Using an MVT Durrp •

APPENDIX A: SVcs · . . . · · · ·
APPENDIX B: CO~jPLETION CODES

APP.ENDIX C: SYSTEM MODULE NAME
PREFIXES . . . · · · · ·
APPENDIX D: LIST OF ABBREVIATIONS

APPENDIX E: ECB COMFLETION CODES

APPENDIX F: UCB SENSE BYTES · · I APPENDIX G: SERVICE AIDS

APPENDIX H: CONTROL BLOCK PCINTBRS

INDEX . . . · · · · ·

· • • 78
79
80

• • • 81
• • 84

· · · 87

· · 91

· 95

· · · 96

97

· · 98

99

.100

· · .107

III ustra tic)ns

Figure 1. Control Information
· 10 Available Through the TCB

Figure 2. RB Forroats . . 12
Figure 3. Active RB Queue
Figure 4. Load List (PCP, MFT)
Figure 5. Job Pack Area queue
Figure 6. Main storage Snapshot
(PCP) • • . • . . .
Figure 7. Main storage Snapshot (MFT
wi thout subt:askinq) . • • • . • •

I Figure 8. Main storage Sna~shot (MFT
With Subtasking) .. • . • . • • • •
Figure 9. Main storage Snapshot
(MVT) .. . •
Figure 10. storage Control (PCP)
Figure 11. Storage Control for a

· 13
• 13
· 15

· 16

· 17

· 18

· 18
· 19

Partition (MFT Without subtasking) .• 20
Figure 12. storage Control fOI' S~btask
storage (MFT with Subtasking) • • 20
Figure 13. storage Control for a
Region (MVT)
Figure 14. storage Control for a
subpool (MV~~) •.••..••.
Figure 15. Storage Control for a Load
Module (MVTJI •...••.
Figure 16. control Block

• 22

· 23

24

Relationships ••••.• • • . • 26
Figure 17. Save Area Trace .•.• 27
Figure 18. Trace Table Entries (PCP) • 28
Figure 19. Trace Table Entries (MFT) . 28

Fiqure 20. Trace Table Entries (MVT) • 28
Fiqure 21. Trace Table Entries (MVT
with Model 65 multiprocessing) • • 29
Fiqure 22A. Sample of an ABEND Durop
(PCP, ~FT) •••..•••.••. 34
Fiqure 22B. Sarrple of an ABEND Lump
(PCP, ~FT) . • . . . • • • • • • •• 35
Fiqure 23. SYSAEEND DD Stateroents 36
Fiqure 24A. Sample of Complete AEEND
Dump (rvN'I) •••••••••• • 50
Fiqure 24E. Sarr:ple of Complete AEFND
Durrp n-W'I) •••• • 51
Fiqure 2~. Contents of an Indicative
Dump • • • • • • • • • • • • 68
Fiqure 26. SamFle JCL StatEments
Required for IEA~RINT 72
Fiqure 27. Saaple of a Core Irrage
Dump •••• ' ••••••••••• 74

I Fiqure 28. Sample of a Stan~-Alone
Durop • • . • 77
Fiqure 29. Sample Trace Table Entries
(PCP) • • • • • • • • • • . • • 80
Fiqure 30. Re-creating the Task
Structure
Figure 31.
(MFT)
Figure 32.
(MVT)
Figure 33.
Structure
Fiqure 34.
Fiqure 35.

·
·
·

· · · . . . · · · · . 81
Sawple Trace Table Entries

· · · · · · · . 82
sample Trace Table bntries

· · · . . . · · · 84
Recreating the Task

85
Control Elock Flow
MVT Storage Control Flcw

• .103
.105

,~

Summary of Major Changes--Release 19

r---------------------T--T----------------------,
I Item I Description I Areas Affected I
~---------------------+--+----------------------1

Input/Output SVC 85 has been added to APPBNDIX A. 90
Recovery Management
Support (I/O RMS>

7094 Emulator
the Model 8~

2495 Tape
Cartri-dge Reader

Optical Readers
1285/87/88

1419 Magnetic
Character Reader and
1275 Optical Reader

SVC numbers 88 and 89 have been added to
APPENDIX A.

90

The system module name prefix lIN has 95
been added to APPENDIX C.

A description of the UCB sense bytes for
this unit has been added to APFENDIX F.

98

A description of the aCB sense bytes for I 98
these units has been added to APPENDIX F.

A description of the UCB sense bytes for
these units has been added to APPENDIX F.

98

OS Volume Statistics SVC number 91 has been added to APPENDIX 90
A.

service Aids A new APPENDIX, APPENDIX G, has been 99
added to oriefly describe the debugging
facilities provided by the new service
aids.

IEHATLAS SVC number 86 has been added to APPENDIX 90
A.

---------------------~--~----------------------
(Continued)

Summary of Major Changes -(Release 19) 7

(Continued)
r---------------------T--T----------------------,
I Iterr I Description I Areas Affected I
~---------------------t--t----------------------1

Attach in MFT various sections have been added to 11-21,33-35,39-43
explain the MFT with subtasking system, 47,81-82,84,100

Wri te to Pr"ogrammer

Resolution of the
transient area
contention problE~m

Main Storage
Hierarchy support
MVT extension

The sections on core
image dumps and
stand-alonE~ dumps
have been combined

Expanded Index

the debugging of modules run en that
system, and the ABEND/SNAP dURlps produced
by it.

SVC 90 has been added to APPENDIX A.

A pointer to the Job Step Control Block
(JSCB) has been included in APPENDIX H.

The transient area loading task has
been included in discussions and artwork
concerning the MFT TCB queue.

A secondary link pack area Ray be
present in an MVT system with main
storage hierarchy su~port.

The debugging procedures used for
these dumps are the same and are now
presented under the one
chapter headed: Guide to Using a Core
Image or a Stand-Alone Dump.

The index has been expanded and more
cross referencing entries have been
provided.

Various small various small improvements have been

90

100-101

17-18

18

78-86

107-112

changes made throughout the manual. . L _____________________ ~ __ ~ ______________________ J

8 Programmer's Guide to Debugging (Release 19)

Debugging is possibly the most important
aspect of programming. Few programmers,
especially those involved in control
program modification, ever produce a
perfect solution in one ruri; abnormal
termination is inevitable and must be
prepared for.

Program debugging in an operating systeIII
environment is made more difficult by the
large volume of control information, the
presence of control program routines, and
the changing contents of main storage.
Frequently, a large part of debugging lies
in determining what state the syst.em was in
when the error occurred and which essential
information was obscured.

To debug problem programs efficiently,
you should be familiar with the system
control information reflected in dumps.
This control information, in the form of
control blocks and traces, tells you what
has happened up to the point of er'ror and
where key information related to the
program is located.

This book is therefore designed to:

• Help you prepare proper dump data set
definitions.

• Provide an insight into the IBM
System/360 Operating System qnd its
complex aspects of task management,
storage supervisor, control blocks, and
debugging aids.

• Give you a starting ~oint, an approach,
and a method of debugging.

The IBM System/360 Operating System
provides extensive degugging facilities to
aid you in locating errors and determining
~he system state quickly. Some debugging

ids, such as console messages, provide
imited information that may not always
elp you identify the error. This manual

liscusses those debugging facilities that
provide you with the most extensive
information:

a. Abnonnal termination (ABEND) and
snapshot (SNAP) dumps.

b. Indicative dumps.
c. Core image dumps.
d. Stand-alone hexadecimal dumps.

ABEND and SNAP Dumps are invoked by ABEND
and SNAP macro instructions, respectively.
They are grouped in a single category
because they provide identical information.

In trod uction

In addition to a hexadecimal dump of main
storage, they can contain conveniently
edited control information and displays of
the o~erating system nucleus and trace
table.

Indicative dumps contain control
information useful in isolating the
instruction that caused an abnormal end of
task situation. The information is similar
to that given in an ABEND/SNAP dump, but
does not include a dump or main storage.

Core image dumps are taken by the damage
assessment routine (DAR) at the tiITte of a
systerr failure. The dump is written to a
SYS1.DUMP data set which you may print by
means of the IEAPRINT print dump program.
The dump consists of a first page,
containing edited control information,
followed by a dump of the printable
contents of main-storage, beginning at
location 00. Each line contains the
hexadecimal address of the first byte in
the line, eight main-storage words in
hexadecimal, and the same eight words in
EBCDIC.

Stand-alone dumps, invoked by the dump
program you have produced from the IMDSADMP
macro instruction (see Appendix G) or by a
System/360 Operating System card program
number UT-056, offer a complete picture of
main storage at a given time. They are,
for the most part, unedited. Each line
contains the hexadecimal address of the
first byte in the line, eight main-storage
words in hexadecimal, and the same eight
words in EBCDIC.

General Notes:

• Displacements and addresses shown in
the text and illustrations of this
publication are given in decimal
numbers, followed by the corresponding
hexadecimal number in parentheses,
e.g., TCB+14(E}; location 28(lC); SVC
42(2A). All other numbers in the text
are decimal, e.g., the seventeenth word
of the TCB; a 4-word control block; 15
job steps. - --

• Control block field names referred to
are those used in the IBM systern/360
Operating system: System Control
Blocks manual, GC28-6628.

• Wherever possible, diagrams, and
reproductions of dumps have been
included to aid you during the
debugging process.

Introduction 9

Section 1" Ol)erating S'ystem Concepts

To effectively use the debugging aids
provided by t:he IB~1 System/360 Operating
System, you should be familiar with those
control blocks, traces, and other control
information t:hat can lead you quickly to
the source of error. This section of the
manual introduces you to the control
information that you must know to interpret
dumps. It is divided into four topics:

• TASK MANF.,GEMEN~2
• MAIN STORAGE SUPERVISION
• SYSTBM CONTROL BLOCKS AND TABLES
• TRACES

The first two topics deal with those
aspects of task management and main storage
management, respectively, that are
represented in dumps. The third topic
describes the remaining system control
blocks and tables helpful in pinpointing
errors. The last topic covers tracing
features that are useful in re-creating the
events that led to an error condition.

Note: The dE!scr ipt:ions of sys1:em control
blocks and tables in this section emphasize
function rather than byte-by-byte contents.
Appendix H stilmmarizes the contents of those
control blocks most useful in debugging.

For a more detailed description of
system control blocks and tables, please
see the syste'm Cont.rol Blocks publication,
GC28- 6628.

Task Manag'ement

The task management control information
most useful in debugging with a dump
includes the task control block and its
associated request blocks and elements.
These items have the same basic functions
at each of the three control program
levels. Their functions, interactions, and
relationships to ot.her system features are
discussed in this t:opic. A summary of how
task supervision differs at each system
level concludes the topic.

Task Control Block

The operating system keeps pointers to all
information related to a task in a task
control block (TCB). For the most part,
the TCB contains pointers to other system
control blocks. By using these pointers,
you can learn such facts as what I/O

devices were allocated to the task, which
data sets were open, and which load modules
were requested.

Figure 1 shows some of the control
inforrration that can be located by using
the pointers in the TCB. Later, in the
discussion of system control blocks and
tables, Figure 1 is expanded to show the
actual block narres and pointer addresses.

o
f-~-=:'ii
I Open I I

1"--r----,iI data I I '-1 ---~-,
V I sets I, V r ~ ~17] L __ ..J/ (-=---,71

I Dataset I ' : Device II
I ottrfbute$j I I attributes I ,

L __ J/ L - _-1/

o t----=--i7J

I I/O II U===' ;n'<Kmoti"",, ::::::"1 -=--=------0-,
/---/1 L~_J) C--71
r---,'I I ..,---,

I Complete ,I, I CCW 'I:
I I/O I I I events I I list j I
L __ --.l/I L.. ___ V

Fiqure 1. Control Information Available
Through the TeB

He_quest blocks

Frequently, the routines that corr~rise a
task are not all brought into rrain storaQe
with the first load Thodule. Instead, they
are requested by the task as it requires
them. Tnis dynarric loading capability
necessitates another type of contrel block
to describe each lead wodule associated
with a task -- a request block (RB). An RB
is created by thE: control progran. when it
receives a request from the system or from
a problerr. prograrro to fetch a load rrodule
for execution, and at other tunes, such as
when a type II supervisor call (SVC) is
issued. By looking at REs, you can

10 Programmer's Guide to Debugging (rtelease 19)

determine which load modules have been
executed, why each lost control, and, in
most cases, which one was the source of an
error condition.

There are seven types of RBs created by
the control program:

• Program request block (PRB)
• supervisor request block (SVRB)
• Interrupt request block (IRB)
• supervisor interrupt request block

(SIRB)
• Loaded program request block (LPR~)
• Loaded request block (LRB)
• Finch request block (FRB)

Of these, you will most often encounter
the PRB and SVRB in dumps. The type of rtB
created depends on the routine or load
module with which it is associated.

PRB (Systems with PCP and MFT): A PRB is
created whenever an XCTL, LINK, or ATTACH
macro instruction is issued. It is located
immediately before the load module with
which it is associated.

PRB (Systems with MVT): A PRB is created
whenever an XCTL or LINK macro instruction
is issued. It is located in a fixed area
of the operating system.

SVRB: An SVRB is created each time a type
~III, or IV supervisor call is issued.
(Type I SVC routines are resident, but run
disabled; they do not require a request
block.) This block is used to store
information if an interruption occurs
during execution of these SVC routines. A
list of SVCs, including their nmobers and
types, appears in Appendix A.

IRB: An IRB is created each time an
asynchronous exit routine is executed. It
is associated with an event that can occur
at an unpredictable time during program
execution, such as a timing routine
initiated oy an STIMER macro instruction.
The IRB is filled at the time the event
occurs, just before control is given to the
exit routine.

SIRB: An SIRB is similar to an IRB, except
that it is associated only with
IBM-supplied input/output error routines.
Its associated error routine is fetched
from the SYS1.SVCLIB data set.

LP~~: (PCP and Iv'JF'I only): An LPRB is
created when a LOAD ~acro instruction is
issued unless the LOAD macro instruction
specifies:

• A routine that has already been loaded.

• A routine that is being loaded in
response to a LOAD macro instruction
previously issued by a task in the
partition (MFT with subtasking).

• A routine that is "only loadable" (see
LRB).

An LPRB is located irrmediately before the
load module with which it is associated.
Routines for which an LPRB is created can
also be invoked by XCTL, LINK, and ATTACH
macro instructions.

LRB: (PCP and NFT only): The L.HB is a
shortened form of an LPRB. Routines
associated with LRBs can be invoked only by
a LOAL roacro instruction. This attribute
is assi~ned to a routine through the OL
(only loadable) subparameter in the PAR~
parameter of the EXEC staterrent that
executes the linkage editor. The most
common reason for assigning this attribute
is that linkage conventions for XCTL, LINK,
and ATTACH are not followed. This request
block is located immediately before the
load module with which it is associated.

FRB (MFT with subtasking only): An FRB is
created and attached to the job pack area
queue, during LOAD macro instruction
processing, if the requested module is not
already in the job pack area. The FRB
describes a module being loaded in response
to a LOAD macro instruction. Any
subsequent requests for the saKe module,
received while it is still being loaded,
are deferred by means of wait list elements
(WLEs) queued to the FRB. When the module
is fully loaded, an LRB or an LPRB is
created, the FRB is removed frorrl the job
pack area queue, and any requests,
represented by wait list elerrents, are
reinitiated.

Figure 2 shows the relative size of the
seven types of REs and the significant
fields in each.

In Figure 2, the "size" field tells the
number of doublewords in both the RB and
its associated load module. The PSW
contained in the "resume PSW" field
reflects the reason that the associated
load module lost control. Other fields are
discussed in succeeding topics.

Task Supervision 11

•

LPRB
-12 Ma ior RB address

(MFT with subtasking)
f---- - ----------~---------------

-8 Load list pointers
(PCP, MFT)

-4

o

8

Absent (MVT)

Module name
(PCP, MFT)
Last ha I f of user's
PSW (MVT)

Size
I

Flags

12(C) I~ Entry point (PCP,
Use Ct + MFT); CDE (MVT)

16 (10)

Resume PSW

~--- -- ---- -------------------- ----- ---------------- ------

SVRB
o

8

Use

Module name
(PCP, MFT)
Last ha I f of user's
PSW (MVT)

Flags

1--------'-------- ----- ---------
16 (10)

Resume PSW

28
Wait Next RB

32 (20)

Register
Save Area

96 (60)

Extended
Save Area

r'igure 2. RE Formats

LRB

-8

-4

o

8

12 (C)

Use Ct

Loac list pointers
(PCP, MFT)

AbsE·nt (MVT)

Module name
(PCF', MFT)
Last ha I f of user's
PSW (MVT)

Program Edent List
" 0 - 'Lencl-;:hoF;xtent i:- I
I I~ie~rchy 0 I 1-- -- -- -- - - - - -,
I ' 4 Len9th of extent in I

hiearcry 1
1-- - --- --- --- -- ---1
I ' 8 Add,es!. of extent in 1

hiearchy 0
t- - --- - - --I
I I 12(C) Add,es! of extent in I
L _ hiear~~ 1 ___ .-J

IRB
o

8

12 (C)
Use Ct

Module name
(PCF', MFT)
Last half of user's
PSW (IvIVT)

Flags

Resume PSW

28 (lC) t
WaitCt Next RB

32 (20)

Register
:;ave Area

PRB

o

8

12 (C)

Use Ct

16 (10)

Module name
(PCP, MFT)
Last half of user's
PSW (MVT)

Flags

Resume PSW

t Next RB

FRB

-8
Load list

-4 pointers

0

Module name

8
Size Flags

12 (C)
Address of WLE

16 (10)
Address of TCB

20 (14)
Address of LPRB

Note: Program extent list is added to LPRB, LRB, or PRB if the
program described was hiearchy block loaded.

SIRB
o

16 (10)

Module name
(PCP, MFT)
Last half of user's
PSW (MVT)

Resume PSW

Next RB

Register
Save A,-eo

12 Programmer's Guide to Debusging (Release 19)

-

Thus far, the characteristics of the TCB
and its associated RBs have been discussed.
with the possibility of many RBs
subordinate to one task, it is necessary
that queues of RBs be maintained. In
systems with PCP and 1-1FT without
subtasking, two queues are maintained by
the systeni -- the active HB queue and the
load list. In MFT systems with subtasking,
a job pack area queue, containing FRBs, and
LRBs and LPRBs that represent reenterable
modules is also maintained. MVT systems
maintain an active RB queue and a contents
directory. The contents directory is made
up of three separate queues: the link pack
area control queue (LPAQ)i the job pack
area control queue (JPAQ): and the load
list.

Active RB Queue

The active RB queue is a chain of request
blocks associated with active load modules
and SVC routines. This queue can contain
PRBs, SVRBS, IRBs, SIRBS, and under certain
circumstances, LPRBs. Figure 3 illustrates
how the active RB queue links together the
TCB and its associated RBs.

A C

1 Il=d 1 I· .. aod 1 1
_ modules. SVC routines _

Figure 3. Active RE Queue

The request blocks in the active ~B
queue in Figure 3 represent three load
modules. Load module A invokes load n,odule
B, and B, in turn, invokes C. When
execution of A began, only one RE existed.
When the first invoking request was
encountered, a second RE was created, the
TCB field that points to the most recent RB
was changed, and A's status information was

stored in RE-A. A similar set of actions
occurred when the second invoking request
was encountered. As each load module is
executed and control is returned to the
next higher level load roodule, its RE is
removed from the chain and pointers are
updated accordingly.

Load List

The lcad list is a chain of request blocks
or elements associated with load modules
invoked by a LCAD macro instruction. The
load list differs from the active RE queue
in that RBs and associated load nodules are
not deleted auton,atically. They remain
intact until they are deleted with a DELETE
macro instruction or job step terwination
occurs. Ey looking at the load list, you
can determine whicn systerr and problem
program routines were loaded before the
dunp was taken. Tne format of the load
list differs with control progran levels.

II.§.ystems with PCP and MFT (without
subtaskinq~: At these control program
levels, the load list associated with a TCE
contains LRBs and LPRBs. RBs on the load
list are linked together somewhat
differently from those on the active RB
queue because of the characteristics of the
LOAD macro instruction. Because REs may be
deleted from a load list in a different
order than they were created (de~ending cn
the order of DELETE macro instructions),
they must have both forward and backward
pointers. Figure 4 illustrates how a load
list links together a TCB and three RBs.

t.s

C

~
Figure 4. Load List (PCP, MFT)

Task supervision 13

Here, each RB contains a pointer both to
the previous HB and the next most recent HB
in the list. If there is no previous or
more recent RB, these fields contain zeros
and a pointer to the TCB, respectively.

Another field of a load list RE that
merits consideration is the use count.
Whenever a LOAD macro instruction is
issued, the load list is searched to see if
the routine is already loaded. If it is
loaded, the system increments the use count
by one and passes t:he entry point address
to the requesting routine.

Each time a DELETE macro instruction is
issued for the routine, the use count is
decremented by one. When it reaches zero,
the RB is removed from the load list and
storage occupied by the associated routine
is freed.

§ystems with ~iFT (y,dth sul?task~1l9): At
this control program level, the load list
is used as described for PCP and MFT
without subtasking, with the following
exceptions:

1. The LRBs and LPRBs queued on the load
list represent modules that are not
reenterable. LRBs and LPRBs
representing reenterable modules are
queued on the job pack area queue.

2. When a LOAD macro instruct.ion is
issued, the system searches the job
pack area queue before searching the
load list.

Systems with MVT: Instedd of LRBs and
LPRBs created as a result of LOAD macro
instructions, the load list maintained by a
system with MVT contains elements
representing load modules. Load list
elements (LLEs) are associated with load
modules through another control medium
called the contents directory.

The contents directory is made up of
three separate queues: the link pack are~
control gueue (LPAQ), the ~ack are,a
control gueue (JPAQ), and the load list.

The LPAQ is a record of every program in
the system link pack area. This area
contains reenterable routines specified by
the control program or by the user. The
routines in the system link pack area can
be used repeatedly to perform any task of
any job step in the system. The entries in
the LPAQ are contents directory entries
(CDEs) •

There is a JPAQ for each job step in the
system that uses a program not in the link
pack area. The JPAQ, like the LPAQ, is
made up of CDEs. It describes routines in
a job step region. The routines in the job
pack area can be either reenterable or not

reenterable. These routines however,
cannot be used to perforIT: a task that is

, not part of the job step.

The load list represents routines that
are brought into a job pack area or found
in the link pack area by the routines that
perform the Load function. The entries in
the lead list are load list elements, not
CDEs. Each load list element is associated
with a CDE in the JFAQ or the LPAQ; the
programs represented in the load list are
thus alsc represented in one of the other
contents directory queues.

Loan list elements also contain a count
field that corr~3ponds to the use count in
a LPRE or LRB. Each time a LOAD macro
instruction is issued for a load rrcdult
already represented en the load list, the
count is incremented by one. As
corresfonding DELETE macro instructions are
issued, the count is decremented until it
reaches ~ero. An LLE has the following
format:

Byte 0: Reserved (RES).

Bytes 1-3: Pointer to the next IT:ore recent
LLE on the load list.

Byte 4: Count.

Bytes S-7: Pointer to the corresponding
CDE.

More will be said about CDEs in the next
topic cf Section 1, titled "Main Storage
Supervision."

Job Pack Area Queue (MFT with Subtasking
on!y)

In an MFT system with subtasking, the job
pack area queue is a chain of request
blo~ks associated with load modules invoked
by a LOAD macro instruction. The queue
contains FRBs, and those LR£s and LFRBs
that represent reenterable nodules. FKLS
are queued en the jo~ pack area queue until
the requested IPodule is completely loaded.
When the rr,odule is completely loaded into
main storaqe, th~ ~RB is rerroved fron the
Job Pack Area Queue and replaced with an
LR~ or an LPRB queu~d on the Job Pack Area
Queue if the loaded module is reenterable,
and on the load list if it is not.

In the MET with subtasking
configuration, the load list represents
non-reenterable nodules, while the iob pack

14 Programme:r-'s Guide to Debugging (Release 19)

,',m __ " _________ • _____ "' _____ '_, lIIIMIIlm llIIIIlIiIIIIIIlllllllilllll _ 1IRDI mmnnn= ,lIIIIz _________ "_IIII __ IIII ____ I&IIIII1_II1I_ •• h!!Ii&IiIiIi_ IIIIII __ IIIIIIIIIII __ IIIIIIIIIIIIIIIIIIIIII"'''.!!I!t!m!!!W~

-.......

area queue represents only reenterable
modules within the partition. These RBs on
the job pack area queue are not deleted
automatically, but remain intact until they
are deleted by a DELETE macro instruction,
or until job step termination occurs.
Reenterable load modules are therefore
retained in the partition for use by the
job step task or any subtasks which rr.ay be
created.

Whenever a LOAD macro instruction is
issued, the job pack area queue is
searched. If the routine is already fully
loaded and represented by an LRB or an LPRB
on the JPAQ (the routine is reenterable),
the system increments the use count by one
and passes the module entry point address
to the requesting routine. If an FRB for
the requested module is found, a wait list
element (WLE) representing the deferred
req'uest is queued to the- FRB, and the
request is placed in a wait. When the
requested routine is fully loaded, the
system releases the request from the wait
condition. and the reque.st is re-initiated.
If no RB for the requested routinE~ is
found, an FRB is created and queued on the
JPAQ. The system then searches the load
list of the requesting task for an RB for
the requested routine. If an RB for that
routine is found on the load list (the
routine is not reenterable), the use count
is incremented by one, the entry point
address of the module is passed to the
requesting routine, and the FRB is dequeued
from the JPAQ. If no RB is found on the
load list, the FRB remains on the JPAQ and
the systerr: begins loading the requested
module.

Each time a DELETE macro instruction is
issued for the routine, the use count is
decremented by one (the DELETE routine
ignores FRBS). When the use count reaches
zero, the RB is removed from the queue.

Figure 5 illustrates how the job pack area
queue is chained to a TCB.

In Figure 5, each RB contains a pointer to
the previous RB and a pointer to the next
RB on the queue. If there is no previous
RB on the queue, that pointer will contain
zero; if there is no next RB on the queue
(this RB is the most recent on the JPAQ),
the next RB pointer will point back to the
job pack area queue pointer in the PIB.

Two wait list elements (wL~s) are queued
to FRB-C representing deferred requests
waiting until the initial loading of the
module is completed. The last WLE contains
zero in its forward pointer, indicating
that it is the last element on the wLE
queue.

A B

~ ~
~-

--- ---
--- --
-- ---
-- ~-

-Figure 5. Job Pack Area queue

c

~
I I
L __ .J

Effects of LINK, ATTACH, XC~L, and LOAD

In the previous paragraphs we have
mentioned the LINK, ATTACH, XC~'L, and LCAD
macro instructions. A brief description of
each will be helpful at this point. LlNK,
AT~ACH, XCTL, and LOAD, though similar,
have some distinguishing characteristics
and system dependencies worth mentieninq.
By knowing what happens when these macro
instructions are issued, you can make more
effective use of the active RE queue anc
the lead list.

LINK: A LINK results in the creation of a
PRB chained to the active ~£ queue. U~on
cOH,pletion of the invoked routine, control
is returned to the invoking routine. In
systems with PCP and MFT, the HE is removed
from the queue. The storage occupied ny
the invoked routine is freed unless the
routine is also represented on the load
list, or en the job pack area queue in 1";FT
systems with subtasking. In systerrs with
MV~, the use count in the RB is decremented
by one; if it is then zero, the RB and the
storage occupied by the routine are narked
for deletion. A LINK macro instruction
generates an SVC 6.

ATTACH: An ATTACH is sirr.ilar to tne other
three macro instructions in systems with
PCP or with MFT without subtasking. In
systems with MFT (with subtasking) or MVT,

Task supervision 15

ATTACH is the means for dynamically
creating a separate but related task a
subtask. At the PCP and MFT (wiJthout
subtasking) levels, tasks cannot create
subtasks. AT'rACH effectively peJ:::forJl1s the
same functions as LINK at these control
program levels, with two notable additions:

1. You can request an exit routine to be
given control upon normal completion
of the attached routine.

2. You can request the posting of an
event control block upon the routine's
completion.

Exit routines are represented by additional
RBs on the ac·ti ve RB gueue. The ATTACH
macro instruction generates an SVC 42(2A).

XCTL: An XCTL also results in the creation
of a PRB and immediate transfer of control
to the invoked routine. However" XCTL
differs from the other macro instructions
in that, upon completion of the invoked
routine, control is passed to a routine
other than thle invoking routine. In fact,
an XCTL does not result in the creation of
a lower level RE. Instead, the invoking
routine and its associated RBs are deleted
when the XCTL is issued. In effect, the RB
for the invoked routine replaces the
invoking routine's RE. The XCTL macro
instruction generates an SVC 7.

LOAD: The LOAD mac:r-o instruction was
treated previously in the discussion of the
load list. To summarize: the system
responds to a LOAD by fetching the routine
into main storage and passing the entry
point address to the requesting routine in
register O. l:',ecause the system does not
have an indication of when the routine is
no longer needed, a LOAD must be
accompanied by a corresponding DELETE macro
instruction. If not, the routine and its
RB remain intact until the job step is
terminated. The LOAD Jl1acro instruction
generates an SVC 8.

System Task Control Differences

Thus far, this topic has dealt with the
aspects of task supervision that are
similar at the three control program
levels. There are, however, some major
areas of difference, namely:

1. 'rhe number of tasks that can be known
to the system concurrently.

2. The layout of main storage.

3. The addi 1:iona 1 main storage control
information in systems with MVT.

The first two subjects are discussed
here, by system. The third subject,
because of its volume, is discussed in the
next topic of section 1.

§ystems with PC~: The distinguishing
characteristic of an operating system with
the primary control program is that it
handles a single task. It has one TCB at
any given time, which resides in the system
nucleus. Jobs are processed sequentially,
one step at a time. A'ITACH rr:acro
instructions are treated similarly to
LINKS; that is, they do not create
subtasks.

Figure 6 is a snapshot of main storage
in a system with PCP. The fixed area
contains those routines, control blocks,
and tables that are brought into main
storage at IPL; and never overlaid. It
also may contain optional access method and
SVC routines which are normally
nonresident, and an optional list of
absolute addresses for routines which
reside on direct access devices. These
options can be selected during system
generation.

DYNAMIC
AREA

FIXED
AREA

Figure 6. Main Storage Snapshot (PCP)

The dynamic area contains, in lower main
storage adjacent to the fixed area, the
processing proqram and routines invoked by

16 Programmer's Guide to Debugging Ct<.elease 19)

LINK, XCTL, and ATTACH macro instructions.
At some points in the job processing flow,

...,.. the processing program may be a job
management routine. Upper main storage
contains the user save area, user parameter
area, task input/output table, routines
requested by LOAD macro instructions, and
non-resident routines, such as access
method routines.

Systems with r·1FT <without subtasking):
Operating Systems that provide
multiprogramming with a fixed number of
tasks without the subtasking option (MFT
without subtasking), resemble systems with
PCP except that the dynamic area may be
divided into as nlany as 52 partitions.
Partitions sizes and attributes are defined
during system generation. These sizes and
attributes remain fixed unless redefined by
the operator during or after system
initialization. Each partition contains
one task. Three additional tasks, the
transient area loading task, the
communication task, and the master
scheduler task, reside in the fixed area.
One TCB exists for each task. All TCEs are
linked by dispatching priority in a TCB
queue, beginning with the TCEs for the
three resident tasks.

The dynamic a;ea may contain as many as
3 reading tasks, as many as 36 writing
tasks, and as many as 15 job step tasks, so
long as the total number of tasks does not
exceed 52. Jobs are processed sequentially
in a partition, one job step at a time. An

DYNAMIC
AREAS

(PARTITIONS

FIXED
AREA

LOW

ATTACH macro instruction, as il:\ systems • Figure 7. Main storage Snapshot (MFT
without Subtasking) with PCP, is treated similarly to a LINK.

Because more than one task exists at any
given time, systems with MFT introduce the
concept of task switching. The relative
dispatching priority of tasks is determined
by the TCB queue. Control of the CPU must
often be relinquished by one task and given
to another of higher priority. MFT dumps
contain task switching information often
important in reconstructing the environment
at the time of task failure.

Figure 7 is a snapshot of main storage
in a system with MFT <without subtasking),
having n partitions. The fixed area
contains the nucleus (including the 'l'CB
queue, transient area loading task,
communications task, and rraster scheduler
task), and the system queue area. The
fixed area may also contain the same system
generation options discussed under the
heading ·Systems with PCP," and a
reenterable load module area, which is
optional in MFT. Each partition in the
dynamic area is similar to the entire
dynamic area of PCP.

systems with MFT (With Subtaskingl:
Operating Systems that provide
multiprogramming with a fixed number of
tasks with the subtasking option (MFT with
subtasking) more closely resemble systems
with MVT, and differ from MFT systems
without subtasking in the following major
areas:

1. MFT with subtasking has an ATTACH
facility similar to the ATTACH
facility in MVT. While the nurober of
job step TCBs still may not exceed 15,
the number of tasks in any partition,
and therefore the total nurober of
tasks in the system, is now variable.
Job step task TCBs reside in the
nucleus. They are queued, following
the system task TCBS, in the same
manner as in MFT without surtasking.
When subtasks are created, however,
the subtask TCEs are placed in the
system queue area and queued to the
job step TCEs according to dispatching
priority (TCBTCB field), and according
to subtask relationships (TCBNTC,
'l·CBOTC, TCBLTC fields).

Task supervision 17

2. MFT witn sUDtasking prOVloes th~
ability to change the dispatching
priority of any task within a
partition through the use of the CM.!:'
macro instruction. For information
regarding the use of the CHAP macro
instruction, refer to the publication
IBM Sysitem/ 36 0 Operatin~§.ystem :_
Supervisor and Data }1an~eIl~!l_!:
Services, GC28-6646.

Figure 8 is a snapshot of main storage in
an MFT system with subtasking having n.
partitions. Note here that the TCBs in the
nucleus are all job step TCEs, while those
residing in the sytem queue area are the
subtask TCEs"

DYNAMIC
AREAS

(PARTITIONS)

FIXED
AREA

• Figure 8.

LOW

EACH PARTITION DOES NOT LOOK LIKE
pcp's DYNAMIC AFIEA

lVlain St:orage Snapshot (lVJFT with
:::ubtdsking)

syst_ems with ~NT: In Operating SystEll,S
that provide multiprogramming with a
variable number of tasks (MVT) , as many as
15 job steps can be executed concurrently.

~ach jOb step requests an area of main
storag~ called a region and is executed as
a job step task. In addition, system t2sks
request regions and can be executed
concurrently with jab step tasks.

~egions are assigned automatically frerr
the dynamic arEa when tasks are initiated.
Reyicns are constantly redefined according
to the main storage requirements of each
new task.

With the facility of attacning subtasks
aVdilatle to each task through the A'ITACH
macro instruction, the number of TCBs in
the system is varictble. Tasks gain control
of the CPU ny priority. To keep track of
the priority ann status of each task in the
system, 'lCEs are linked together in a TCB
queue.

Figure 9 is a snapshot of rrain storaqe
in a s}stem with ~VT. The fixed area is
occupied by the resident portion of tht
control program loaded at IFL. 'lhe .§Y:?teII
~~ue space is rEserved for control blocks
and tables built by the control program.
The dynamic area is divided into
varial:;le-sized regions, each of which i~
allocated to a job step task or a system
task. Finally, the link pack area contains
selected reenter3ble routines, loaded at
IPL. If an IE~ 2361 Core Storage device
an~ ~ain StoragE hierarchy Su~~ort are
included in the system, a secondary link
pack area may bt created in Hierarchy 1 to
contain other reenterable routines.

LINK PACK
AREA

DYNAMIC
AREA

(REGIONS)

SYSTEM
QUEUE
AREA

FIXED
AREA

• Fiqure 9. Main Storage Snapshot (YNT)

18 Programmer' s Guide to Debuqqing CH.elease 19)

Main Storage Supervision

Because main storage is allocated
dynamically in an operating system, current
storage control information must be kept.
Such information is contained in a series
of control blocks called queue elements.
In systems with PCP and MFT without
subtasking, queue elements reflect areas of
main storage that are unassigned. In !'-jFT
systems with subtasking, a gotten subtask
area queue element (GQE) is introduced to
record storage obtained for a subtask by a
supervisor issued GETMAIN macro
instruction. In systems with MVT, more
elaborate storage control is maintained; at
any given time, queue elements reflect the
distribution of main storage in regions,
subpools, and load modules. A familiarity
with storage control information is
necessary to understand the main storage
picture provided in dumps.

The dynamic area may be significantly
expanded by including IBM 2361 Core Storage
in the system. Main Storage Hierarchy
Support for IBM 2361 tv10dels 1 and 2 permits
selective access to either processor
storage (hierarchy 0) or 2361 Core storage
(hierarchy 1). If IBM 2361 Core storage is
not included, requests for storage from
hierarchy 1 are obtained from hierarchy O.
If 2361 Core storage is not present in an
MVT system ana a region is defined to exist
in two hierarchies, a two-part region is
established within processor storage. The
two parts are not necessarily contiguous.

storaqe Control in Systems with PCP

The chain of storage control information in
a system with PCP begins at a table called
the main storage supervisor (MSS) boundary
box, located in the system nucleus. This
table, pointed to by the TCBMSS field of
the TCB, contains three words. The first
word points to a free queue element (FQE)
associated with the highest free area in
processor storage. The second word points
to the first doubleword outside the
nucleus. The third word contains the
highest address in processor storage plus
one.

If Main Storage Hierarchy Support for
IBM 2361 Models 1 and 2 is included in the
system, the boundary box is expanded to six
words. The first byte of the expanded
boundary box contains a "1" in bit 7 to
indicate that hierarchy support is
included. The second set of three words
describes storage in hierarchy 1. The
first word of this second set points to an
FQE associated with the highest free area
in hierarchy 1. The second word points to
the first doubleword in hierarchy 1. The

third word points to the highest position
in hierarchy 1 plus one. If 2361 Core
Storage is not included in the system, the
hierarchy 1 pointers are set to zero.

.fQE: Each free area in main storage is
descrited by an FQE. FQEs are chained,
beginning with the FQE associated with tbe
free area having the highest address. If
Main storage Hierarchy Support is ~resent,
one FQ~ chain exists for each nierarchy
specified. Each F~b occupies the first 8
byte3 of the area it describes. It bas tne
following format:

o 4

Bytes 0-3: Pointer to FQE associated with
next lower free area or, if
this is the last FQE, zeros.

Bytes 4-7: Number of bytes in the free
area.

storage control in systems with PCP is
summarized in Figure 10.

DYNAMIC
AREA

FIXED
AREA

Figure 10. Storage Control (PCP)

Main Storage Supervision 19

storage Control in Systems with MFT
(Without Subtaskin:.9l

Storage control information in systems with
NFT without subtasking is similar to that
in systems with PCP, except that one MSS
boundary box is maintained for each
partition. The TCB associated with the
partition contains a pointer (TCBMSS) to
the boundary box.

If Main Storage Hierarchy Support is
included, the first half of each expanded
boundary box describes the processor
storage (hierarchy 0) partition segffient,
and the second half describes the 2361 Core
Storage (hierarchy 1) partition segment.
Any partition segment not currently
assigned storage in the system has the
applicable boundary box pointers set to
zero. If the partition is established
entirely within hierarchy 0, or if 2361
Core Storage is not included in the system,
the hierarchy 1 pointers in the second half
of the expanded boundary box are set to
zero. If a partition is established
entirely within bierarchy 1, the hierarchy
o pointers in the first half of the
expanded boundary· box are set to zero.

The boundary box format for !>1FT is
identical to the format for PCP. The
pointers, however, point to the boundaries
of the partition and to the partition FQEs
rather than to the boundaries of storage.
E'igure 11 summarizles storage control in
systems with MFT.

DYNAMIC
AREA

FIXED
AREA

Storage Control in Systems with MFT (With
Subtasking)

Storage control information for the job
step or partition TCB in MFT systems with
subtasking is handled in the saree way as in
MFT systerrs without sUbtasking. However,
when subtasks are created, the supervisor
builds another control block, the Gotten
subtask area Queue Element (GQE). The GQES
associated with each subtask originate from
a one word pointer addressed by the TCBMSS
field of the subtask TCB.

GQE: Each area in main storage belonging
to a subtask, and obtained by a supervisor
issued GETMAIN macro instruction, is
described by a gotten subtask area queue
element (GQE). GQEs are chained in the
order they are created. The TCBMSS field
of the subtask TCB contains the address of
a word which points to the most recently
created GQE.

ONE
PARTITION

FIXED
AREA

-Figure 11. Storage Control for a partition -Figure 12.
(MFT without Subtasking)

Storage Control for Subtask
Storage (MFT with subtasking)

20 Programme~r' s Guide to Debugging (Release 19)

If Main storage Hierarchy support is
present in the system, the GQE chain can
span from hierarchy 0 to hierarchy 1 and
back in any order. Each GQE occupies the
first eight bytes of the area it describes,
and has the followinq forrr.at:

o 4

Bytes 0-3: Pointer to the Previous GQE or,
if zero, this is the last GQE
on the chain.

Bytes 4-7: Number of bytes in the gotten
subtask area.

Figure 12 summarizes the chaining of GQEs
to a subtask TCB.

storage Control for a Region in Systems
with MVT

Unassigned areas of main storage within
each region of a system with MVT are
reflected in a queue of partition queue
elements (PQEs) and a series of free block
queue elements (FBQEs).

PQE: The partition queue associated with a
region resides in the system queue space.
It is connected to the TCBs for all tasks
in the JOD step through a dummy.PQE located
in the system queue space. A dummy PQE has
the following format:

o 4

Bytes 0-3: Pointer to the first PQE in the
partition queue.

Bytes 4-7: Pointer to the last PQE in the
partition queue.

In systems that do not include the
rollout/rollin feature or Main Storage
Hierarchy Support for IBM 2361 Models 1 and
2, there is one PQE for each job step. If
the rollout feature is used, additional
PQEs are added each time a job step borrows
storage space from existing steps or

acquires unassioned free space to satisfy
an unconditional G~TMAIN request. These
additional PQEs are removed froffi the queue
as the rollin feature is used. If Main
storage Hierarchy Support is Fresent, one
PQE exists for each hierarchy used by the
job step. A PQ:t: has the following format:

16 (10) 17 (11) 20 (14) 21 (15)

24 (18) 25 (19) 28 (1C) 29 (1D)

Bytes 1-3: Pointer to the first FBQE or,
if there are no FBQEs, a
pointer to the PQE itself.

Bytes 5-7: Pointer to the last FBQE or, if
there are no FBQES, a pointer
to the PQE itself.

Bytes 9-11(B): Pointer to the next PQE or,
if this is the last FQE, zeros.

Bytes 13-15(D-F}: Pointer to the previous
PQE or, if this is the first
PQE, zeros.

Bytes 17-19(11-13): Pointer to the TeB of
th~ owning job step.

Bytes 21-23(15-17}: Size of the region, in
2K (2048) bytes.

Bytes 25-27(19-1B): Pointer to the first
byte of the region.

Byte 28(lC}: Rollout flags.

FBQE: The F'BQEs chained to a PQE reflect
the total amount of free space in a regicn.
Each FBQE is associated with one or more
contiguous 2K blocks of free storage area.

I FBQES reside in the lowest part of their
associated area. As area distribution
within the region changes, FBQhs are added
to and deleted from the free block queue.

Main Storage SUpervision 21

An FBQE has the following forma-t:

o

8 9

Bytes 1-3:

Bytes 5-7:

4 5

Pointer to the next lower FBQE
or, if this is the last FBQE, a
pointer to the PQE.

Pointer to the preceding FBQE,
or, if this is the first FBQE,
a pointer to the PQE.

Bytes 9-12(C): Number of bytes in the free
block.

The remaining main storage in a region
is used by problem programs and system
programs. For convenience in referring to
storage areas, the total amount of space
assigned to a task represents one or more
numbered subpool~. (Subpools can also be
shared by tasks.) Subpools are designated
by a number assigned to the area through a
GETMAIN macro instruction. Subpool numbers
available for problem program use range
from 0 through 127. Subpool numbers 128
through 255 are either unavailable or used
by system programs.

Storage control elements and queues for
a region are summarized in Figure 13.

DYNAMIC
AREAS

SYSTEM
QUEUE
SPACE

-Figure 13. Storage Control for a ~egion
(l<lVT)

St9rage control for a Subpool_in Systems
with MV'I

Main storage distribution within each
subpool is refl~cted in a subpool queue
element (SPQE) and queues of descriptor
queue elements (DQ~s) and free queue
elements (FQEs).

SPQE: SPQEs are associated with the
sutpools created for a task. SPQEs reside
in the system queue space and are chained
to the TCB(s) that use the subpool. They
serve as a link between the TCB and the
descriptor queut, and may be part of a
subpool queue if the task useS more than
one subpool. If a subpool is used by Thore
than one task, only one SPQE is created.
An SPQE has the following forlrat:

o 4 5

Byte 0:
Bit 0 - Subpool is owned by this task

if zero; shared, and owned by
another task, if one.

Bit 1 - This SPQE is the last on the
queue, it one.

Eit 2 Subpool is shared and owned by
this task, if one.

Eits 3-7 - keserved.

Bytes 1-3: Pointer to next SPQE or, in
last SPQE, zero.

Byte 4: Subpool number.

Bytes 5-7: Pointer to first DQE or, if the
subpool is shared, a pointer to
the "owning" SPQE.

DQE: DQES associated with each SPQE
reflect the total arrount of s~ace assigned
to a subpool. Each DQE is associated with
one or more 2K blocks of main storage set
aside as a result of a GETMAIN macro
i~struction. Each DQE is also the starting
point for the free queue. A DQE has the
following forrrat:

o 4 5

8 9 12(C) 13(D)

22 Programm4er's Guide to Debugging (Release 19)

- _--

Bytes 1-3: Pointer to the FQE associated
with the first free area.

Bytes 5-7: Pointer to the next DQE or, if
this is the last DQE, zeros.

Bytes 9-11(B): Pointer to first 2K block
described by this DQE.

Bytes 13-15(D-F): Length in bytes of area
described by this DQE.

DYNAMIC
AREAS

-Figure 14. Storage Control for a Subpool
(MVT)

FQE: The FQE describes a free area within
a set of 2K blocks described by a DQE. It
occupies the first eight bytes of that free
area. Since the FQE is within tne subpool,
it has the same protect key as the task
active within that subpool. Extreme care
should be exercised to see that FQES are
not destroyed by the problem program. If
an FQE is destroyed, the free space that it
describes is lost to the system and cannot
be assigned through a GETMAIN. As area
distribution within the set of blocks
changes, FQES are added to and deleted from
the free queue. An FQE has the following
format:

o 4 5

Bytes 1-3: Pointer to the next lower FQE
or, if this is the last FQE,
zeros.

By"tes 5-7: Number of bytes in the free
area.

A subpool is summarized in Figure 14.

storage Control for a Load Module in
Systems with MVT

Each load module in main storage is
described by a contents directory entry
<CDE) and an extent list (XL) that tells
how much space it occupies.

CD~: The contents directory is a grouj.J of
queues, each of which is associated with an
area of rrain storage. The CDEs in each
queue represent the load modules residing
in the associated area. There is a CDE
queue for the link pack area and one for
each region, or job pack area. ~he TCB for
the jcb step task that requested the region
points to the first CDE for that region.
Contents directory queues reside in the
system queue space. A CDE has the
following format:

o 4 5

8

16(10) 17(11) 20(14) 21(15)

Byte 0: Flag bits, when set to one,
indicate:

Bit 0 - Module was loaded by NIP.
Bit 1 - Module ~s in process of being

loaded.
Bit 2 - Module is reenterable.
Bit 3 - Module is serially reusable.
Bit 4 - Module may not be reused.
Bit 5 - This CDE reflects an alias

name (a minor CDE).
Bit 6 - Module is in job pack area.
Bit 7 - Module is not only-loadable.

Bytes 1-3: Pointer to next CDE.

Bytes ~-7: Pointer to the RB.

Bytes 8-15(F): EBCDIC name of load module.

Byte 16(10): Use count.

Main Storage Supervision 23

Uytes 17-19(11-13): Sntry point address of
load module.

Byte 20: Flag bits, when set to one,
indica.te:

Bit 0 - Reserved.
Bit 1 - ~odulE is inactive.
Bit 2 - An extent list has Deen built

for the module.
Bit J - This CDE contains a relocated

alias entry point address.
Bit 4 - The module is refreshable.
Bits 5, 6, 7 - Reserved.

Bytes 21-23(15-17): Pointer to the XL for
this module or, if this is a
minor CDE, pointer: to the
major CDE.

XL: The total amount of main storage
occupied ny a load ~odule is reflected in
an extent list (XL). XLs are located in
the system queue space. An XL has the
following format:

o 4

8 12(C)

Bytes 0-3: Length of XL in bytes.

Bytes 4-7: Number of scattered control
sections. If the control
sections are block-loaded, 1.

rl.erraininq
cytes:

Length in bytes of each
control section in the module
(4 bytes for each control
section> and starting location
of each control section (4
bytes for each control
section) •

storage control elements and queues for
load modules are suwmarized in Figure 1~.

DYNAMIC .
AREAS

SYSTEM
QUEUE
SPACE

Fiqure 15. Storage Control for: a Load
Module (MVT)

24 Programmer's Guide to Debug<;Jing (rl.elease 19)

System Control Blocks and Tables

In addition to the key task management
control blocks (TCB and RB), several other
control blocks containing essential
debugging information are built and
maintained by data management and job
management routines. Although some of
these blocks are not readily identifiable
on a storage dump, they can be located by
following chains of pointers that begin at
the TCB.

The control blocks discussed here have
the same basic functions at each control
program level. The precise byte-by-byte
contents of the blocks can be found in the
publication System Control B~ocks. Block
contents useful in debugging are listed in

I Appendix H.

communications vector Table (CVT)

The CVT provides a means of communication
between nonresident routines and the
control program nucleus. Its most
important role in debugging is its pointer
to two words of TCB addresses. These words
enable you to locate the TCB of the active
task, and from there to find other
essential control information. storage
location 16(10) contains a pointer to the
CVT.

Task Input/Output Table (TIOT)

A TIOT is constructed by job management for
each task in the system. It contains
primarily pointers to control blocks used
by I/O support routines. It is usually
located in the highest part of the main
storage area occupied by the associated
task (in systems with MVT, TIOTs are in the
system queue space.) Through the TIOT, you
can obtain addresses of unit control blocks
allocated to the task, the job and step
name, the ddnames associated with the step,
and the status of each device and volume
used by the data sets.

unit Control Block (UCB)

The UCB describes the characteristics of an
I/O device. One UCB is associated with
each I/O device configured into a system.
The UCB's most useful debugging aid is the
sense information returned by the last
sense command issued to the associated
device.

Ev~nt Control Block (ECE)

The ECE is a 1-word control block created
when a READ or WRITE macro instruction is
issued, initiating an asynchronous 1/0
operation. At the completion of the 1/0
operation, the access method routine posts
the ECE. By checking this ECE, the
corrpletion status of an I/O operation can

I
b~ determine.d. In all access methods but
QTAM, the ECB is the first word of a larger
block, the data event control block.

Input/Output Block (lOB)

The lOB is the source of information
required by the I/O supervisor. It is
filled in with inforroation taken from an
I/O o~eration request. In debugging, it is
useful as a source of pointers to the DCB
associated with the I/O operation and the
channel commands associated with a
particular device.

Data Control Block (DCB)

The DCE is the place where the operating
system and the problem program store all
pertinent information about a data set. It
may be completely filled by operands in the
DCB macro instruction, or partially filled
in and completed when the data set is
opened, with subparameters in a DD
statement and/or information from the data
set label. The format of DCBs differs
slightly for each of the various access
methods and device types. The DCB's
primary debugging aids are its pointers to
the DEB and current lOB associated with its
data set, and the offset value of the
ddname in the TIOT.

Data Extent Block (DEB)

A DEB describes a data set's auxiliary
storage assignments and contains pointers
to some other control blocks. The DEB is
created and queued to the TCB at the time a
data set is opened. Each TCB contains a
pointer to the first DEB on its chain.
Through this pointer you can find out which
data sets are opened for the task at a
given time, what extents are occupied by
open data sets, and where the DCB and UCB
are located.

Summary of control Bleck Relationships

Figure 16, an expansion of Figure 1, shows
the relationships among the principal
control blocks and tables in the System/360
Operating System.

System control Blocks and Tables 25

Location to TeB Words

E===i) c:::=:=:::> U ~ (0
J6(10) LJJ

{·1 +13(D)

1-25 (19) +33(21)
{J-~:-.. =;
~M5(2DI

168 n <I
(44) 0 /J +21 (15)

+17(11)

==u

r:~~
-Figure 16. control Block Relationships

26 Programmer's Guide to Debugging (Release 19)

Traces

Two features that assist you in tracing the
flow of your program are the save area
chain and the trace table (the trace table
is optional at system generation.) Both
these features are edited and clearly
identified on ABEND/SNAP dumps, and can be
located easily on core image and
stand-alone dumps.

Save Area Chain

When control is passed from one load module
to another, the requested module is
responsible for storing the contents of
general registers. This necessitates the
use of separate save areas for each level
of load module in a task. With the
di~ferent types of linkages that can occur,
save areas must be chained so that each one
points to both its predecessor and
successor.

A save area is a block of 72 bytes
containing chain pointers and register
contents. It has the following format:

o 4

16(10) 20(14)

Bytes 4-7: Pointer to the next higher
level save area or, if this is
the highest level save area,
zeros.

Bytes a-l1(B): Pointer to the next lower
level save area or, if this is
the lowest level save area,
unused.

Bytes 12-15(C-F): Contents of register 14
(optional)

Bytes 16-19(10-13): Contents of register
15 (optional)

Bytes 20-71(14-3F): Contents of registers
o to 12

The save area for the first or highest
level load module in a task (save area 1)

is provided by the control program. The
address of this area is contained in
register 13 when the load module is first
entered. It is the responsibility of the
hiqhest level module to:

1. Save registers 0-12 in bytes
20-71(14-3F) of save area 1 when it is
entered.

2. Establish a new save area (save area
2) •

3. Place the contents of register 13 into
bytes 4-7 of save area 2.

4. Place the address of save area 2 into
register 13.

5. Place the address of save area 2 into
bytes a-ll(B) of save area 1.

At this point, the save areas appear as
shown in Figure 17.

Save area 2

+4 0000 +4

+8

+20(14)

+68(44) r===JJ
Figure 17. Save Area Trace

If a module requests a lower level
module, it must perform actions 1 through 4
to ensure proper restoration of registers
when it regains control. (Action 5 is not
required, but ~ust be performed if the dump
printout of the field is desired.) A
module that does not request a lower level
module need only perform the first action.

ABEND and SNAP dumps include edited
information from all save areas associated
with the dUff,ped task under the heading
"SAVE AREA TRACE". In a stand-alone dump,
the highest level save area can be located
through a field of the TCB. Subsequent
save areas can be located through the save
area chain.

Traces 27

The tracing routine is an optional feature
specified during system generat.ion. This
routine places entries, each of which is
associated with a certain type of event,
into a trace table. The size of the table
is also a system generation option; when
the table is filled, the routine overlays
old entries with new entries, beginning at
the top of the table (the entry having the
lowest storag·e address). The contents and
size of a trace table are highly
system-dependent.

Systems with PCP: Trace table entries for
systems with PCP are 4 words long and
represent occurrences of SIO, I/O, and SVC
interruptions. Figure 18 shows 1:he word
contents of ei:lch type of entry.

SID [~~ __ L--__ _
:sw I
-"~ o 1 2

VO [I/O OLD PSW I==(~~~ _____ " .. "_~
() 2

SVC [SVC OLD PSW Reg 0 .J_R~
0 2 :3

Figure 18. Trace Table Entries (PCP)

systems with !-1FT: Systems with ~IFT have
the same type of trace table entries as
PCP, plus an additional type representing
task switches" as shown in Figu:CE 19.

systems with NVT: ~~he trace table in a
system with MVT is E~xpanded to include more
entries and more information in each entry.
Trace table pI:intout:s occur only on SNAP
dumps and stand-alone dumps. Entries are
eight words long and represent occurences
of SIO, external, SVC, program, and I/O
interruptions, and dispatcher loaded PSWS.

Figure 20 shows the word contents of trace
table entries fer SNAP dumps and
stand-alone dumps. Figure 21 shows the
contents of trace table entries as filled
by MVT with Model 65 mUltiprocessing. (SSM
-- set system rr,ask entries are
optional.)

510 CC/Dev CAW CSW

o 2

I/O I/O OLD psw CSW

o 2

SVC [SVC OLD PSW Reg 0 [Reg 1

~O--------------------~~---------~3~------~

Task I PSW I f New TCEI I fOld TCB
Sw itch L ___________________ --I... __________ .J.. ________ ----I

2 3 o

Figure 19. Trace Table Entries (MFT)

SVC
External
Program
Dispatcher 0

4

510

o

I/O

o

PSW

2

Reg J

6

CC/Dev CAW

2

6

PSW

2

Reg 15 Reg 0 I
3

tTCB Timer

7

CSW I
tTCB Timer

7

CSW I
Timer

7

-Figure 20. Trace Table Entries (MVT)

28 Programmer's Guide to Debugging (Release 19)

sve aod I Old PSW

I Reg 15 Reg 0 ~ D;'patch" I
New PSW

I
Reg 15 Reg 0 ~ "..,. Program .

0 2 3 0 2 3

6 7 4 5 6 7

SIO

I I ~ External

I I ~ CC/Dev CAW CSW Old PSW Reg 15 Reg 0

0 2 0 2 3

l Reg 1
STMASK I
of other CPU •

TQE Timer H
4 5 6 7 4 5 6 7

I/O

I (SSM

~ Old PSW CSW Old PSW Reg 15 Reg 0

0 2 0 2 3

4 5 6 7

Figure 21. Trace Table Entries (~VT with Model 65 multiprocessing>

Traces 29

Interpreting Dumps

How are ABEND dumps invoked? 111ihat does
information in a SNAP dump mean? what
useful facts can be gleaned from an
indicative dump? Where are key tables ane
control blocks in a stand-alonl= dump?

These and similar debugging questions
are answered in this section of the manual.
Topics comprising Section 2 de:3cribe each
of the debug<;Iing facilities introduced
earlier -- what information they provide,
where to find this information , and how to
apply it.

The introduction to tnis section
describes a general procedure for debugging
with a dump. SubsE~quent topics deal with

I. ABEND/SNAP dumps issued by systems wi tn
PCP and MFT.

• ABEND/SNAP dumps issued by systems with
MVT.

• Indicative dumps.

• Core Image dumps.

• Stand-alone durr,ps.

Each topic includes instructions for
invoking the dump, a detailed description
of the dump's contents, and a guide to
using the dump, with specific instructions
for following the general debugging
procedure.

General Debugging Procedure

The first facts you must determine in
debugging with an operating system durr.p are
the cause of the abnormal termination and
whether it occurred in a system routine or
a problem program. To aid you in making
these determinations, ABEND, SNAP, and
indicative dumps provide two vital pieces
of information -- the completion code and
the active RB queue. Similar inforrration
can be obtainl2d from a core image dump or a
stand-alone dump by analyzing PSWs and
re-creating an active RB queue.

A completion cod,e is printed at the top
of ABEND, SNAP, and indicative dumps. It
consists of a system code and a user code.
The system code is supplied by the control
program and is prin1:ed as a 3-digi t
hexadecimal number. The user code is the
code you supplied when you issued your own
ABEND macro instruc1:ion; it is pIinted as a
4-digit decimal number. If the dump shows

a user code, the error is in your program,
and the corr'.i?letion code should lead you
directly to the source of error. Normally,
however, a system code will be listed; this
indicates that the operatinc systerr issued
the AB£ND. Often the system corrpletion
code gives enough information for you to
determine the cause of the errcr. ~he
explanations of system completion codes,
along with a snort explanation of the
action to te taken by the programmer to
correct the error, are 'contained in the
publication IB~ system/360 Operating
systerr: MessaC;es and Codes, GC28-6631.

To locate the load module that had
control at the time the durrp was issued,
find toe RB associated with the ffiodule. If
the dump resulted froIT. an ABEND or SNAP
macro instruction, the third ffiOSt recent RE
on the queue represents the load mOdule
that had control. ~he most recent and
second mcst recent RBs represent the ABDUMP
and AE~~D routines, respectively. Core
image dun,ps and stand-alone dumps contain
PSW inforRation that can be used to
identify the load ~odule in control.

Once you haVE located the RB or load
module, look at its name. If it dces not
have a nawe, it is probably an SVRB for an
SVC routine, such as one resulting fron, a
LINK, ATTACH, XCTL or LOAD macro
instruction. To find the SVC number, lock
at the last three digits of the resume PSW
in the ~revious RB on the queue. If a
previous HB does net exist, the BB in
question is an ~VRB for a routine invoked
by an ~CTL macro instruction. R~gister 15
in the extended save area of the RB gives a
pointer to a parameter list containing the
narre of the routine that iSbued thE XCTL.

If the HE does not bear the name of one
of .your load modules, either an RB was
overlaid or termination occurred during
execution of a systen. routine. The first
three characters of the na~e identify the
system corr:ponent; AFpendix C contains a
list ot component narres to aid you in
determining which load module was being
executed.

If the ~B bears the name of one of your
load modules, you can be reasonably certain
that the source of the abnormal termination
lies in your oDject code. However, an
access method routine may be at fault.
This possibility arises because your
program branches to access method routines

30 ProgrammeI~' s Guide to Debugqing (Release 19)

through a supervisor-assisted linkage,
instead of invoking them. Thus, an access
method routine is not represented on the
active RB queue. To ascertain whether an
access method routine was the source of the
abnormal termination, you must examine the
resume PS~ field in the RB. If the last 3
bytes in this field point to a main storage
address outside your program, check the
load list to see if an access method
routine is loaded at that address. If it
is, you can assume that it, and not your
program, was the source of abnormal
termination.

Abnormal Termination in system Routines:
By analyzing the RB's name field or the SVC
number in the previous RB, you can
determine which system load module
requested the termination. If the RB has a
system module name, the first three
characters tell you the name of the system
component. The remaining characters in the
name identify the load module in error.

Remember, although a system routine had
control when the dump was taken, a problem
program error may indirectly have been at
fault. Such a situation might result from
an incorrectly specified macro
instruction,an FQ~ modified inadvertently,
a request for too much storage space, a
branch to an invalid storage address, etc.
To determine the function of the load
module that had control, consult Appendix
C. with its function in mind, the
completion code together with an
examination of the trace table may help you
to uncover which instruction in the problerr
program incorrectly requested a system
function.

Program Check Interruptions in Problem
Programs: If you have determined from the
completion code or PSWs and evaluation of
the RB queue that the dump resulted from a
program check in your problem program,
examine the status of your program in main
storage. (If you have received only an
indicative dump, you must obtain either an
ABEND/SNAP dump or a stand-alone dump at
this point.) Locate your program using
pointers in the RB. If its entry point
does not coincide with the lower boundary
of the program, you can find the lower
boundary by adding 32(20) to the address of
the HB (systerr:s with PCP and MFT). The
RBis size field gives the number of
doublewords occupied by the RB, the
program, and associated supervisor work
areas. hB.I!.ND/SNAP dumps with PCP and MFT
have the storage boundaries of the problem
program calculated and printed.

Next, locate the area within your
program that was executed immediately prior
to the dump. To do this, you must examine

the program check old PSW. Pertinent
information in this PSW includes:

Bits 12-15: AMWP bits

Bits 32,33: Instruction length in
halfwords.

Bits 40-63: Instruction address

A useful item of information in the PSW
is the P bit of the AMWP bits (bits 12-15).
If the P bit is on, the PSW was stored
while the CPU was operating in the problelI'
program state. If it is off, the CPU was
operating in the supervisor state.

Find the last instruction executed
before the dUIr,p was taken by subtracting
the instruction length from the instruction
address. This gives you the address of the
instruction that caused the termination.
If the source program was written in a
hiqher level language, you must evaluate
the instructions that preceGe and follow
the instruction at fault to determine their
function. You can then relate the function
to a statement in tne source program.

other Interruptions in problem Programs:
If the corrpletion code or PSWs and the
active RB queue indicate a machine check
interruption, a hardware error has
occurred. Call your IBM Field Engineering
representative and show him the dump.

If an external interruption is
indicated, with no other type of
interruption, the dump probably was taken
by the of::erator. Check with him to find
out why the dump was taken at this ~oint.
The mcst likely reasons are an unexpected
wait or a program loop. If a trace table
exists, examine it for the events preceding
the trouble or, if the trace table was made
ineffectual by a program loop, resubmit the
job and take a dump at an earlier point in
the program. You may want to consider
using the TESTRAN facility to find where
the program loop occurred.

The remaining causes of a dump are an
error during either execution of an SVC or
an I/O interruption. In either case,
examine the trace table. Entries in tne
table tell you what events occurred leading
up to termination. From the sequence of
events, you should be able to determine
what caused a dump to be taken. From here,
you can turn to system control blocks and
save areas to get specific information.
For example, you can find the sense
infor~ation issued as a result of a unit
check in the UCB, a list of the open data
sets fro~ the DEB chain, the CCw list from
the lOB, the reason for an I/O interrupt in
the status portion of the csw, etc.

section 2: Interpretinq Dumps 31

Debugging Procedure Summary

1. Look at the completion code or PSW
printouts to find out what type of
error occurr€:d. Common completion
codes and causes are explained in
Appendix B.

2. Check thE name of the load module that
had control at the time t.he dump was
taken by looking at the active RB's.

3. If the name identifies a system
routine, proceed to step 4. If the
name identifies a problem program and
the completion code or PSW indicates a
program check, proceed to step 6. If
t~he name identifies a problem program,
and the completion code or PSW
indicates other than a proqram check,
proceed to step 10.

4. Find the function of the system
routine using Appendix c. -

5. If the dump contains a trace table,
begin at th~ most recent entry and
proceed backward to locate the most
recent SVC entry indicating the
problem state. From this E~ntry,
proceed forward in the table,
examininq each entry for an error that
could have caused the system routine
to be terminated.

6. If the name identifies one of your
load modules, check the instruction
address and the load list to see if an
access' method routine last had
control. If so, return to step 4.

7. Locate your program in the dump.

8. Locate the last instruction executed
before the dump.

9. Examine the instruction and, if the
progra~ was written in a high-level
language, the instructions around it
for a possible error in object code.

10. If a machlne check interruption is
indicated, call your IBM Field
Engineering representative.

11. If only an external interruption is
indicated, ask the operator why he
took the dump. Resubmit the job and
take a dump at the point where trouble
first occurred.

12. Examine the trace table, if one is
present, for events leading up to the
termination. Use trace table entries
and/or information in system control
blocks and save areas to isolate the
cause of the error.

32 Programmer's Guide to Debugging (Release 19)

ABEND/SNAP Dump
(Systems With PCP and MFT)

ABEND/SNAP dumps for systems with PCP and
MFT are discussed together because they are
nearly identical in format. System
differences in the contents of the dumps
are shaded for easy recognition. Debugging
instructions for the dumps are discussed
later, in the guide to using the dump.

ABEND/SNAP storage dumps are issued
whenever the control program or problem
program issues an ABEND or SNAP macro
instruction, or the operator issues a
CANCEL command requesting a dump, and
proper dump data sets have been defined.
However, in the event of a system failure,

'if a SYS1.DUMP data set has been defined
and is available, a full core image dump
will be provided, as explained in the
section headed "Core Image Dump."

Since, in an MFT with subtasking system,
subtasks may be created, you may receive
one or more partial dumps in addition to
the com~lete dump of the task that caused
the abnormal termination. A complete dump
includes a printout of all control
information related to the terminating
task, and the nucleus and all allocated
storaqe within the partition in which the
abending task resided. A partial dump of a
task related to the terminating task
includes only control information. The
partial dump is identified by either ID=OOl
or ID=002 printed in the first line of the
dump. Figure 22 is a copy of the first few
pages of a complete ABEND dump of an MFT
system with sUbtasking. It ill'ustrates
some of the key areas on an ABEND dump, as
issued by systems with PCP and MFT. Those
portions of the dump that would only appear
on a dump of a subtasking system are noted
in the later discussions as appearing only
in a dump of an MFT with subtasking system.

Invoking an ABEND/SNAP Dump (PCP,MFT)

ABEND dumps are produced as a result of an
ABEND macro instruction, issued either by a
processing program or an operating system
routine. The macro instruction requires a
DD statement in the input stream for each
job step that is subject to abnormal
termination. This DD statement must be
identified by one of the special ddnames
SYSABEND or SYSUDUMP. SYSABEND results in
edited control information, the system
nucleus, the trace table, and a dump of
main storage; SYSUDUMP excludes the nucleus
and the trace table. In the event of a
system failure, the Damage Assessment
routine (DAR) attempts to write a core
image dump to the SYS1.DUMP data set. A
full ex~lanation of core image dumps may be

found in the section headed "Core Image
Dump."

SNAP Dumps result from a problem program
issuing a SNAP macro instruction. The
contents of a SNAP dump vary according to
the operands specified in the SNAP macro
instruction. SNAP dumps also require a DD
statement in the input stream. This DD
statement has no special characteristics
except that its ddname must not be SYSABEND
or SYSUDU~P. The processing program must
define a DCB for the snapshot data set.
The DCB macro instruction must contain, in
addition to the usual DCB requirements, the
operands DSORG=PS, RECFM=VBA, MACRF=(W),
BLKSIZ£=882 or 1632, and LRLCL=125. In
addition, the DCb must be opened before the
first SNAP macro instruction is issued.

Reference: The SNAP and DCB macro
instructlons are discussed in the
publication supervisor and Data Management
Macro Instructions.

Device and space Ccnsiderations: DD
statements for ABEND/SNAP dumps, must
contain parameters a~propriate for a basic
sequential (BSAM) data set. Data sets can
be allocated to any device supported by the
basic sequential access method. There are
several ways to code these DD statements
depending on what type of device you choose
and when you want the dump printed.

If you wish to have the dump printed
immediately, code a DD statement defining a
printer data set.

r---,
I//SYSABEND DD UNIT=1443,DCB=(... I l ___ J

If your installation operates under a
system with PCP or MFT, and a printer is
associated with the SYSOUT class, you can
also obtain immediate printing by routing
the data set through the output stream.

r---,
I//SNAPDUMP DD SYSOUT=A,DCB=(... I L _____________________________________ ~ ___ J

This type of request is the easiest,
most economical way to provide for a dump.
All other DD statements result in the tying
up of an output unit or delayed printing of
the dump.

If you wish to retain the dump, you can
keep or catalog it on a direct access or
tape unit. The last step in the ~ertinent
job can serve several functions: to print
out key data sets in steps that have been

ABEND/SNAP Dump (Systems With PCP and MFT) 33

abnormally t.erminated, to print~ an ABEND or
SNAP dump stored in an earlier step, or to
release a tape volume or direct~ access
space acquiJred for dump data SE!tS.
Conditional execution of the last step can
be established thlcough proper use of the
COND parameter and its subparameters, EV~N
and ONLY, 011 the EXEC statement~.

* ABOUMP REQUESTED *

Direct access sface should be requested
in units of average block size rather than
in cylinders (CYL) or tracks (TRK). If
abnormal termination occurs and the data
set is retained, the tape volume or direct
access space should be released (DELETE in
the DISP parameter) at the time the data
set is printed.

JOB ATHEOT24 STEP STEP TIME 000131 DATE 99366 PAGE ')001

COMPLETION CODE USER" 0123

INTfRRUPT AT C6EF5A

PSW AT ENTRY TO ABEND 00150000 400bEF5A

TCB 0lCB20 REI CMP B000001B TRN 00000000

ACTIVE RBS

PRB 06EE28 NM TATH810G SZ/STAB 00302000 USE/EP 0106EE48 PSW 00150000 4006fF5A Q 000')00 WT/LNK 0001CB20

SVRB 01F020 NM SVC-601C SZ/STAB 0012D062 USE/fP 0000187B PSW FF040033 50001020 Q 900390 WT/LNK 0006EE28
RG 0-1 000002AO 80000018 00000000 00080000 0007FE4A 0000009B 00005508 000lFC3,)
8-15-1 0006EE60 000lFF78 0007FF80 0007FFFB 4006EE4E 0006EE60 00009848 00000000

SVRB 01FC58 NM SVC-A05A SZ/STAB 000C0062 USE/EP 00007878 PSW FF04000E 8001E1EC Q FB03F8 WT/LNK C001F020
HG 0-1 0007F1E8 0031F080 40007B7A 000097FB 000lC820 000lF020 0006F230 0000550R
8-15-7 0007F7E8 0006F296 0001CC56 0000225C 0001CB20 0006F23!) Q,)007CBC OOOlE7CB

pIP STORAGE BOUNCARIES 0~06E800 TO 00080000

FREE AREAS SIZE

-Figure 22A. sample of an ABEND Dump (PCP, MFT)

34 Programm,er' s Guide to Debug9ing (Release 19)

SAVE AREA TRACE

TATHBI0G WAS ENTERED

SA 06EBF8 WDI 0606 EAC8 HSA 00000100 lSA 0006EE60 RET 00009848 EPA 4006EE48 RO 00009'lCE
R1 0001CC80 R2 00000000 R3 00080000 R4 0007FE48 R5 00000098 R6 00005508
R7 0007FC30 R8 0006ECEO R9 0007FF78 RIO 0007FFBO Rll 0007FFF8 R12 4006ECC E

SA 06EE60 WD1 00000000 HSA 0006EBF8 lSA 00000000 RET 00000000 EPA 00000000 RO 0000001)0
Rl 00000000 R2 00000000 R3 00000000 R4 00000000 R5 00000000 R6 OOOOCOOI)
R7 00000000 R8 00000000 R9 00000000 RIO 00000000 Rll 00000000 R12 00000000

PROCEEDING BACK VIA REG 13

SA 06EE60 WDI 00000000 HSA 0006EBF8 lSA 00000000 RET 00000000 EPA 00000000 RO 00000001)
R1 00000000 R2 00000000 R3 00000000 R4 00000000 R5 00000000 R6 00000000
R7 00000000 R8 00000000 R9 00000000 RIO 00000000 Rll 00000000 R12 00000000

TATHB10G WAS ENTERED

SA 06EBF 8 WD1 0606EAC8 HSA 00000100 lSA 0006EE60 RET 00009848 EPA 4006EE48 RO 000098CE
R1 0001CC80 R2 00000000 R3 00080000 R4 0007FE48 R5 00000098 R6 00005508
R7 0007FC30 R8 0006ECEO R9 0007FF 78 RIO 0007FFBO Rll 0007FFF8 R12 4006ECC E

DATA SETS

SNAP2 UCB 192 00225C DEB 01F78C DCB 06EFB4

DUMDCB UCB 192 00225C DEB 07FAF4 DCB 06EF5C

JOBLIB UCB 190 00218C

SYSPRINT UCB 192 00225C

SYSABEND UCB 192 0022'>C

SNAP1 UCB 190 0021BC

REGS AT ENTRY TO ABEND

Fl.PT.REGS 0-6 00.000000 00000000 00.000000 00000000 00.000000 00000000 00.000000 00000000

REGS 0-1 000002AO 8000001B 00000000 00080000 0001FE48 00000098 000(l550B 0001FC30
REGS 8-15 0006EE60 0007FF78 0007FFBO 0007FFF8 4006EE4E 0006EE60 00009848 00000000

~
NUCLEUS

000000 OOOCCOOO 0000051C FOFOF5Cl 00000000 0001)97F8 00013440 01040080 8003ACD4 * •••••••• 005A ••••••• 8 ••• ••••••• M.
000020 0004000A 50006B46 00000000 00000000 OOOOFFOO 00000000 FF04000E AOO01E2A *•............. *
00C040 1001F5E8 '>0000000 00001480 000097F8 60C850CO 00000000 00040000 00000282 * .• 5Y ••••••••••• 8.H •••••••••••••• *
000060 00040000 0000033A 00040000 0000020E 00000000 0000B278 00040000 00000226 * ...•........•.•................. *
000080 000153BO 0000·0000 00000000 00000000 00000000 00000000 00000000 00000000 * *
OOOI)AO 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000 *•.•.•............ *

LINES 0(,00CO-000140 SAME AS ABOVE
000160 00000000 00000000 00000000 82000170 00040000 0003A 1AO 00000000 00000000 *•.......................... *
000180 0001CB20 00001E91 0006F465 80007016 00000080 0006F491 00000001 0006F4A8 * 4 ••••••••••• 4 ••••••• 4.*
OOOlAO 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000 * ...•...•....•..................• *

LINE 0001CO SAME AS ABOVE
0001EO 0000 19F 0 000068B8 0000A43A 00000001 40001720 0000A042 90001520 00000000 * ••• 0 •••••••••••• *
000200 0000846C 000083E4 00006180 00006942 00001000 00000F28 00009730 0001335C * ••••••• U •••••••••••••••••••••••• *
000220 00013340 00234100 024C96FO 02279029 01805830 06C45840 30004700 025C0207 * ... ••••••• 0 ••••••••• 0. •••••• K. *
000240 40100038 94F04011 90A13030 5890021C 05895850 02105890 021407F9 90AI0IEO * •••••••••••••••••••• 9 •••• *
000260 02010440 003847FO 024C940F 02279829 018091FO 023B4180 044898A 1 01E08200 *K •• ••• 0 ••••••••••• 0 •••••••••••• *
000280 04409C29 018091FO 023B4780 029C90Al 01EOD207 04400018 47F00282 589006C4 *. ••••• 0 •••••••••• K •• ••• 0 ••••• U*
0002AO 90A1903C 58990000 02079010 001894FD 90119140 00184180 02C05820 02040522 * K •••••••••• ••••••••• M •• *
0002CO 91BOOO18 418002CE 58200208 052247FO 026AOOOO 000153B8 0000810A OA0390A9 * Q • •• 0 •••••••••••••••• *
0002EO 01A098CO 002858BO 02189101 00290788 58A006C4 58AOA004 12AA07C8 18BA58AA *•.•.......•... 0 •••••••••••• *
000300 000012AA 41C00332 90C2B004 181B5880 02189280 100098FO AOO08900 COOO1200 * ••••••••• B ••••••••••••• 0 •••••••• *
000320 01BB50FO 002C41EO 020C98AO o lAOa200 0028181B 58800218 01FB900F 04005890 * ... 0 •••••••••••••••••••••••••••• *

• Figure 22B. Sample of an ABEND Dump (PCP, MFT)

ABEND/SNAP Dump (Systems With PCP and MFT) 35

§ample DD Sitatements: Fiqure 23 shows a
set of job steps that include DD statements
for ABEND dump data sets.

The SYSA13END DD statement in STEP2 takes
advantage of the direct access space
acquired in STEP1 by indicatin<J ~lOD in the
DISP parameter. Note that the space
request in STEP1 is large so that the
dumping operation is not inhibited due to
insufficient space. The final SYSABEND DD
statement in the iob should indicate a
disposition of DKLETE to free t:he space
acquired for dumping.

Contents of an ABEND/SNAP Dump (PCP,~I.';r.)

This explanation of the content:s of
ABEND/SNAP dumps :Ear systems with PCP and

Figure 23. SYSABEND DD Statements

MFT is interspersed with sample sections
taken from an ABEND dump. capital letters
represent tne headings found in all dumps,
and lowercase letters, information that
varies with each dump. The lowercase
letter used indicates the mode of the
inforrration, and tne nurober of letters
indicates its length:

Q h represents 1/2 byte of hexadecimal
information

• d represents 1 byte of decimal
information

• c represents a 1-byte character

You may prefer to follow the ex~lanation
on your own ABEND or SNAP dump.

36 Programmer's Guide to Debugqing (Release 19)

• • • A B DUM PRE QUE S TED • • •

*ccccccc .•.

JOB ecce ecce STEP ecce ecce TIME dddddd DATE ddddd PAGE dddd

COMPLETION CODE SYSTEM - hhh (or USER - dddd)

cccccc .••

INTERRUPT AT hhhhhh

PSW AT ENTRY TO ABEND (SNAP) hhhhhhhh hhhhhhhh

* * * A B DUM PRE QUE S TED * * *
identifies the dump as an ABEND or
SNAP dump.

*ccccccc •••••
is omitted or is one or more of the
following:

*CORE NOT AVAILABLE, LOC.
hhhhhhhhhhhh TAKEN •••

indicates that the ABDUNP routine
confiscated storage locations
hhhhhh through hhhhhh because not
enough storage was available.
This area is printed under P/P
STORAGE, but can be ignored
because the problem program
originally in it was overlaid
during the dumping process.

*MODIFIED, /SIRB/DEB/LLS/ARB/MSS •••
indicates that the one or more
queues listed were destroyed or
their elements dequeued during
abnormal termination:
• SIRB -- system interruption

request block queue. One or
more SIRB elements were found
in the active RE queue: these
elements are always dequeued
d'.lring dumping.

• DEB -- DEB queue. If the first
message also appeared, either a
DEB or an associated DCB was
overlaid.

• LLS -- load list. If the first
message also appeared, one or
more loaded RBs were overlaid.

• ARB -- active RB queue. If the
first message also appeared,
one or more RBs were overlaid.

• MSS boundary box queue. One
or more MSS elements were
dequeued, but an otherwise
valid control block was found

in the free area specified by
an I".1SS element.

*FOUND ERROR IN /DEB/LLS/ARB/MSS ••.
indicates that one or rr,ore of the
following contained an error:

• DEB:
" LLS:
• ARB:
• IVlSS:

data extent block
load list
active RB
boundary box

This message appears with either
the first or second message
above. The error could be:
improper boundary alignment,
control block not within storaqe
assigned to the program being
dumped, or an infinite loop (300
times is the maximum for this
test). For an MSS block, 4 other
errors could also be found:
incorrect descending sequence
(omitting loop count),
overlapping free areas, free area
not entirely within the storage
assigned to the program being
dumped, or count in count field
not a multiple of 8.

JOB cccccccc
is the job name specified in the JOB
statement.

STEP cccccccc
is the step name specified in the EXEC
statement for the problem program
being dumped.

TIME dddddd
is the hour (first 2 digits), minute
(second 2 digits), and second (last 2
digits) when the ABDUMP routine began
processing.

DATE ddddd
is the year {first 2 digits) and day
of the year (last 3 digits). For
example, 67352 would be December 18,
1967.

ABEND/SNAP Dump (Systems With PCP and MFT) 37

PAGE dddd
is the page numoer. Appears at the
top of each page.

COMPLETION CODE SYST.E.i'JJ=hhh or COMPLETION
CODE USER=dddd

is the completion code supplied by the
control prog:ram (SYSTElil=hhh) or the
problem program (USER=dddd). Either
SYSTEN==hhh or USER=dddd is printed,
but no1: both. Common completion codes
are explained in Appendix B.

cccccc •••
explains the completion code or, if a
program inteJrruption occurred:
PROG~AM INTERRUPTION ccccc •.. AT
LOCATION hhhhhh,

where ccccc is the program
interruption cause -- OPERATION,
PRIVILEGED OPERATION, EXECUTE,
PROTECTION, ADDRESSING, SPECIFICATION,
DATE, FIXED-POINT OVERFLOW,

FIXED-POINT DIVIDE, DECIMAL OVERFLCw,
DECIMAL DIVIDE, EXPON.E.~T

OVERFLow,EXPONENT UNDERFLOW,
SIGNIFICA~CE, or FLOATING-PCINT
DIVIDE; and hhhhhh is the startinq
address of the instruction being
executed when the interruption
occurred.

INTERRUPT AT hhbhhh
is the address of next instruction to
l::e executed in the problerr, proqram.
It is obtained from tne resume PSw of
the P~B or LPRB in the active RB queue
at the tirr.t atnormal termination was
requested.

PSW AT E~TRY TO ABEND hhhhhhhh hhhhhhhh or
PSW AT fNTRY TO SNAP hhhbhhhb hhhhhhhh

is the PSW for the problerr or contrel
prograrr, that had control when abnormal
ter~ination was requested or when the
SNAP macro instruction was executec.

TCB hhhhhh RB hhhhhhhh PIE !1hhhhhhh DEB hhhhhhhh TIOT hhhhhhhh CMP hhhhhhhh TRN hhhhhhhh
M.SS hhhhhhhh PK/FLG :'1hhhhhhh FLG hhhhhhhh LLS hhhhhhhh JLB hhhhhhhh JST hhhhhhhh
RG 0-7 hhhhhhhh hh:'1hhhhh hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh
RG 8-15 hhhhhhhh hh::1hhhhh hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh
FSA hhhhhhhh TCB hhhhhhhh TME hhhhhhhh PIB hhhhhhhh NTC hhhhhhhh OTC hhhhhhhh
LTC hhhhhhhh IQE ':1hhhhhhh ECB hhhhhhhh XTCB hhhhhhhh LP/FL hhhhhhhh RESV hhhhhhhh
STAE hhhhhhhh TCT ':lhhhhhhh USER hhhhhhhh DAR hhhhhhhh RESV hhhhhhhh JSCB hhhhhhhh

TCB hhhhhh
is the starting address of the TCB.

RB hhhhhhhh
is the TCBRBP field (bytes 0 through
3) : s1:artinq address of the active RE
queue and, consequently, the most
:cecent RB on the queue (usually
ABEND's RB).

PIE hhhhhhhh
is the TCBPIE field (bytes 4 through
7) : s1:artinq address of the program
interruption element (PIE) for the
task.

DEB hhhhhhhh
is the TCBDEB field (bytes 8 through
11): starting address of the DEB
queue.

TrOT hhhhhhhh
is the TCBTIO field (bytes 12 through
15): starting address of the 'IIOT.

CIY1P hhhhhhhh
is the TCBCMP field (bytes lb throu~h
19) : t~ask completion code in

hexadecimal. System codes are shown
in the third through fifth digits and
user codes in the sixth threuqh
eighth.

TR~ hhhhhhhh
is the TCB~RN field (bytes 20 through
23): starting address of control core
(table) for controllinq testin~ of the
task by TESTRAN.

MSS hhhhhhhh
is the TCBMSS field (bytes 24 through
27): startinq address of the rrain
storage su~ervisor's boundary box.

PK/FLG hhhhhhhh
contains, in the first 2 diqits, the
TCBFKF field (byte 28): protection
key.

FLG hhhhhhhn
centains, in the first 4 digits, the
last 2 bytes of the TCBFLGS field
(bytes 32 and 33): last 2 flag bytes.

contains, in the next 2 digits, the
~CDI~P field (byte 34): in systems

38 Programmer's Guide to Debugging (Release 19)

....... ,

with PCP, both digits are zeros; in
systems with MFT, number of resources
on which the task is queued.

contains, in the last 2 digits, the
TCBDSP field (byte 35):

• Reserved in PCP and MFT without
subtaskingi both digits are zero •

• In MFT with subtasking, this field
contains the dispatching priority of
the TCB.

LLS hhhhhhhh
is the TCBLLS field (bytes 36 through

39): starting address of the RB
most recently added to the load
list.

JLB hhhhhhhh
is the TCB~LB field (bytes 40 through

43): starting address of the DCB
for the JOBLIB data set.

JST hhhhhhh
is the TCBJST field (bytes 44 through
47). Not currently uspd in PCP or MFT
without sUbtasking. In MFT with
subtasking - the starting address of
the TCB for the job step task.

RG 0-7 and RG 8-15
is the TCBGRS field (bytes 48 through
111): contents of general registers 0
through 7 and 8 through 15, as stored
in the save area of the TCB when a
task switch occurred. These 2 lines
appear only in TCBs of tasks other
than the task in control when the dump
was requested.

FSA hhhhhhhh
contains, in the first 2 digits, the
TCBIDF field (byte 112): TCE
identifier field.

contains, in the last 6 digits, the
TCBFSA field (bytes 113 through 115):
starting address of the first problem
program save area. This save area was
set up by the control program when the
job step was initiated.

TCB hhhhhhhh
is the TCBTCB field (bytes 116 through
119): in systems with PCP, all digits
are zeros; in systems with MFT,
starting address of the next TCB of
lower priority or, if this is the last
TCB, zeros.

TMb hhhhhhhh
is the TCBTME field (bytes 120 through
123): starting address of the timer
element created when an STIMER macro
instruction is issued by the task.
This field is not printed if the
computer does not contain the timer
option.

PIB hhhhhhhh
is the TCBPIB field (bytes 124 through
127): starting address of the program
information block (MFT) or zeros
(PCP).

NTC hhhhhhhh (printed only in MFT)
is the TCBNTC field (bytes 128 through
131):

MFT without subtasking: zeros.

MFT with sUDtasking: the starting
address of the TCB for the previous
subtask on this subtask 'ICB queue.
This field is zero both in the job
step task, and in the TCB for the
first subtask created by a parent
task.

OTC hhhhhhhh (printed only in MFT)
is the TCBOTC field (bytes 132 through
135): starting address of the TCB for
the parent task. Both in the TCB for
the job step task, and in MFT systems
without subtasking this field is zero.

LTC hhhhhhhh (printed only in MFT)
is the TCBLTC field (bytes 136 through
139): starting address of the TCB for
the most recent subtask created by
this task. This field is zero in the
TCB for the last subtask of a job
step, or in the TCB for a task that
does not create subtasks. This field
is always zero in an MFT systEm
without subtasking.

IQE hhhhhhhh (printed only in MF~)
is the TCBIQE field (bytes 140 through
143).

MFT without subtasking: zero.

MFT with subtasking: starting address
of the interruption queue element
(IQE) for tj)e ETXR exit routine. ~'his
routine is specified by the ETXR
operand of the ATTACH wacro
instruction that created the TCB being
dumped. The routine is to be entered
when the task terminates.

ABEND/SNAP Dump (Systems With PCP and MFT) 39

ECB hhhhhhhh (printed only in MFT)
is the TCEEC.t3 field (bytes 144 tbrouqh
147).

MFT without subtasking: zero.

MFT with sub~asking: starting address
of the BCE field to be posted by the
control program at task termination.
This field is zero if the task was
attached without an ECE operand.

XTCB hhhhhhhh (printed only in Mf'T)
reserved for future use.

LP/FL hhhhhhhh (printed only
MFT without subtasking:

in MFT)
l~eserved .

MFT with sUbtasking: contains in the
first byte, the limit priority of thp
task (byte 152). contains, in the
last three bytes the field TCBFTFLG
(bytes IS3 throuoh 155) - flag bytes.

R~SV hhhhhhhh (printed only in MFT)
reserved for future use.

STAE hhhhhhhh
contains, in the first 2 diqits, STAE
flags (byte 160).

contains, in the last 6 digits, the
TCENSTAE field (bytes 161 through
163): starting address of the current
STAE control block for the task. 'l'his
field is zero if STAE has not Deen
issue.::i.

TC'l hhhhhhhh
is the TCBTCT field (bytes 164 through
lb7):

PCP: heros.

t-JFT: Addre ss of the Timing Control
Table (TCT) Zeros of the System
Mana~ement Facilities option is
not present in the system.

OSER hhhhhhhn
is the TCBUSER field (bytes 168
through 171): to be used as the user
chooses.

DAR hhhhhhhh
contains, in the first 2 digits,
Damage Assessment Routine (DAR) flags
(byte 172);

MFT only, contains, in the last 6
digits, tn~ secondary
non-dispatchability bits (bytes 173
tbrough 17':;).

HESV hhhhhhhh
reserved for future use.

JSCB hhhhhhhh
is the TCBJSCE field (bytes 180
throuGh 183): the last three bytes
contain the address of the Job Stef
Control Block.

t
CTI\~-B-S -----.---.

ecce hhhhhh NM cccccccc SZ/STAB hh1hhhhh USE/EP hhhhhhhh psw hhhhhhhh hhhhhhhh Q hhhhhh WT/LNK hhhhhhhh
RG 0-7 hhhhhhhh hhhh1hhh hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh
RG 8-15 hhhhhhhh hhhh1hhh hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh

_________ • _____ • __ ""' .. __ D"_~ ... ___ ~_"' ___ •

ACTIVE RBS
identifies the next lines as the
contents of the active REs queued to
the TCB.

cccc hhhhhh
indicates the RE type and its starting
address.

SIRB supervisor interrupt request
block

LPRE Loaded program request block

IRE Interruption request block

SVRB Supervisor request block

NM xxxxxxxx

rhe RE types are:

PRB Proqram request block

40 Progra~ner's Guide to Debugging (Release 19)

is the XRBNt-~ field (bytes 0 through
7): in PRE, LRB, and LPRB, the
proqram narre; in IRB, the first byte
contains flags for the timer or, if

the timer is not being used, contains
no meaningful information: in SVRB for
a type 2 SVC routine, the first 4
bytes contain the TTR of the load
module in the SVC library, and the
last 4 bytes contain the SVC number in
signed, unpacked decimal.

SZ/STAB hhhhhhhh
contains in the first 4 digits, the
XRBSZ field (bytes 8 and 9): nurrlber
of contiguous doublewords in the RB,
the program (if applicable), and
associated supervisor work areas.

contains in the last 4 digits, the
XSTAB field (bytes 10 and 11): flag
bytes.

USE/EP hhhhhhhh
contains, in the first 2 digits, the
XRBUSE field (byte 12): use count.

contains, in the last 6 digits, the
XRBBP field (bytes 13 through lS):
address of entry point in the
associated program.

PSW hhhhhhhh hhhhhhhh
is the XRBPSW field (bytes 16 through
23): resume PSW.

LOAD LIST

Q hhhhhh
is the last 3 bytes of the XRB~ field
(bytes 25 through 27): in PRB and
LPRE, starting address of an LPRB for
an entry identified by an IDENTIFY
macro instruction; in IRB, startinq
address of a request element: in SVRB
for a type 3 or 4 SVC, size of the
program in bytes.

WT/LNK hhhhhhhh
contains, in the first 2 digits, the
XRBWT field (byte 28): wait count.

contains, in the last 6 digits, the
XRBLNK field (bytes 29 through 31):
primary queuing field. It is the
starting address of the previous rtB
for the task or, in the first RB to be
placed on the queue, the startinq
address of the TCB.

RG 0-7 and RG 8-15
is the XRBREB field (bytes 32 through
9S in IRBs and SV~BS): contents of
general registers 0 through 15 stored
in the RB. These 2 lines do not
appear for PRBS, LPRBS, and LRBs.

ecce hhhhhh NM cccccccc SZ/STAB hhhhhhhh USE/EP hhhhhhhh psw hhhhhhhh hhhhhhhh Q hhhhhh WT/LNK hhhhhhhh

LOAD LIST
identifies the next lines as the
contents of the load list queued to
the TCB.

cccc hhhhhh
indicates the RB type and its starting
address.

The RB types are:

LRB
LPRB
D-LPRB

NM cccccccc

Loaded request block
Loaded program request block
Dummy loaded program request
block. (Present if the
resident reenterable lead
module option was selected in
tJiFT) •

is the XRBNM field (bytes 0 through
7): program name.

SZ/STAB hhhhhhhb
contains, in the first 4 digits, the

XRBSZ field (bytes 8 and 9):
number of contiguous
doublewords for the RB, the
program (if applicable), and
associated supervisor work
areas.

contains, in the last 4 digits, the
XSTAB field (bytes 10 and 11):
flag bytes.

USE/EP hhhhhhhh
contains, in the first 2 digits, the

~~BUSE field (byte 12): use
count.

contains, in the last 6 digits, the
XREEP field (bytes 12 through
15): address of entry point
in the program.

ABEND/SNAP Dump (Systems With PCP and MFT) 41

PSW hhhhhhhh hhhhhhhh
is the XRBPSW field (bytes lb throuqh

23): resume PSW.

\,d hhhhhh
is the last 3 bytes of the ~RB~ field

(bytes 25 through 27): in
~PRB, starting address of an
LPRB for an entry identified
by an IDENTIFY macro
instruction; in Lf(B, unused.

WT/LNK hhhhhhhh
contains, in the first 2 diqits, the

,JOB PACK AREA QUEUE

XRB~T field (byte 28): wait
count.

contains, in the last b digits, th€
XRELNK field (bytes 29 through
31): primary queuing field
fcr LRBs and LPRBs also on the
active RB queue. It points to
the previous HE for the task
or, in the oldest R~ in the
queUE, back to the TCB.

ecce hhhhhh NM ecce ecce
ecce hhhhhh NM cccecccc
ecce hhhhhh NM cccccccc

SZ/STAB hhhhhhhh USE/EP hhhhhhhh psw hhhhhhhh hhhhhhhh Q hhhhhh WT/LNK hhhhhhhh
SZ/STAB hhhhhhhh WTL hhhhhhhh REQ hhhhhhhh TLPRB hhhhhhhh
SZ/STAB hhhhhhhh USE/EP hhhhhhhh psw hhhhhhhh hhhhhhhh Q hhhhhh WT/LNK hhhhhhhh

JOB PACK AREA QUEUE (Io/,FT with subtasking
only)

identifies the next lines as the
contents of the job pack area queue
originating in the partition
information block (PIB).

cccc hhhhhh
indicates the RB type and its starting
address.

The HE types are:

FRB
LRB
LPRB

Ntv'l cccccccc

Finch request block
Loaded request block
Loaded program request block

is the XRBNM field (bytes 0 throuqh
7): Program name.

SZ/STAB hhhhhhhh
contains, in the first 4 digits, the
XRBSZ field (bytes 8 and 9): number
of contiguous doublewords for the RB,
the program (if applicable), and
associated supervisor work areas.

contains, in the last 4 digits, tne
XSTAB field (byt~ 10 and 11): flaq
bytes.

USE/EP hhhhhhhh (LPRB, LRB Only)
contains, in the first 2 digits, the
XRBUSE field (byte 12): use count.

contains, in the last 6 digits, the
XRBEP field (bytes 13 through 15):
address ot entry point. in the program.

WTL hhhhhhhh (FRB Only)
is the XRWTL field of the FRE (Lyte~

12 through 15): address of the most
r~cent wait list element (WLE) on the
~LL queue.

PSW hhhhhhhh hhhhhhhll (LPRB, LRB Only)
is the XRBPSW field (bytes 16 through
23): resume PSW.

REQ hhhhhhhh (FRB Only)
is the XRREQ field of the FNB (bytes
lb thrcugh 19): address of the TeE of
the requesting task.

TLPRB hhhhhhhh (FRE Only)
is the XR1LPRH field of the FrtB (oytes
20 through 23): address of the LP~B
built by the Finch routine for the
requested program.

Q hhhhhh (LRE, LPRE Only)
is the last 3 bytes of the XRBQ field
(bytes 25 through 27):

• in an LPBB, the starting address of
an LPRB for an entry identified by
~n IDENTIFY wacro instruction.

• in an LRB, unused.

WT/LNK hhhhhhhh (LRB, LPRB Only>
contains, in the first 2 digits, the
XRB~T field (byte 28): wait count.

contains, in the last 6 digits (bytes
29 through 31): primary queuing field
for RBs. These RBs rray be queued
either on the job pack area queue or
on the active RB queue. It roints to
the previous RB for the task or, in
tne oldest RB on the queue, back tc
the TeD.

42 Programmer' s:;uide to Debuqginq O\eledse 19)

PIP STORAGE BOUNDARIES hhhhhhhh TO hhhhhhhh

FREE AREAS SIZE

hhhhhh hhhhhhhh

GOTTEN CORE SIZE

hhhhhh hhhhhhhh

SAVE AREA TRACE

cccccccc WAS ENTERED VIA LINK (CALL) ddddd AT EP ccccc •••

SA hhhhhh WD1 hhhhhhhh
R1 hhhhhhhh
R7 hhhhhhhh

HSA hhhhhhhh
R2 hhhhhhhh
R8 hhhhhhhh

LSA hhhhhhhh
R3 hhhhhhhh
R9 hhhhhhhh

INCORRECT BACK CHAIN

PROCEEDING BACK VIA REG 13

P/P STORAGE BOUNDARIES hhhhhhhh TO hhhhhhhh
gives the addresses of the lower and
upper boundaries of a main storage
area assigned to the task. This
heading is repeated for every
noncontiguous block of storage owned
by the task.

FREE AREAS SIZE

hhhhhh hhhhhh

hhhhhh hhhhhh
are the starting addresses of free
areas and the size, in bytes, of each
area contained within the P/P STORAGE
BOUNDARIES field listed above.

GOTTEN CORE SIZE

hhhhhh hhhhhhhh

hhhhhh hhhhhhhh
(Printed only in a dump of a system
with the MFT with subtasking option).
These figures represent the starting
addresses of the gotten areas (those
areas obtained for a subtask through a
supervisor issued GETMAIN macro
instruction), and the size, in bytes,
of each area contained within the P/P
STORAGE BOUNDARIES field listed above.
If main storage hierarchy support is
included in the system, the values in
this field can address storage in
eithe~ hierarchy 0 or hierarchy 1, or
both.

SAVE AREA TRACE
identifies the next lines as a trace
of the save areas for the progran,.

RET hhhhhhhh
R4 hhhhhhhh
R10 hhhhhhhh

EPA hh~hhhhh RO hhhhhhhh
R5 hhhhhhhh R6 hhhhhhhh
R11 hhhhhhhh R12 hhhhhhhh

cccccccc WAS ENTERED
is the narre of the program that stored
register contents in the save area.
This name is obtained from the RB.

VIA LINK (CALL) ddddd
indicates the macro instruction (LINK
or CALL) used to give control to the
next lower level module, and is the ID
operand, if it was specified, of the
LINK or CALL macro instruction.

AT EP ccccc •••
is the entry point identified, which
appears only if it was specified in
the SAVE macro instruction that filled
the save area.

SA hhhhhn
is the starting address of the save
area.

WDl hhhhhhhh
is the first word of the save area:
use of this word is optional.

HSA hhhhhhhh
is the second word of the save area:
starting address of the save area in
the next higher level module. In the
first save area in a job step, this
word contains zeros. In all other
save areas, this word must be filled.

LSA hhhhhhhb
is the third word of the save area
(register 13): starting address of
the save area in the next lower level
rradule.

RET hhhhhhhh
is the fourth word of the save area
(register 14): return address.
Optional.

ABEND/SNAP Dump (Systems With PCP and MFT) 43

EPA hhhhhhhh
is the fifth word of the save area
(register 15): entry point to the
invoked module. Optional.

RO hhhhhhhh Rl hhhhhhhh ••• R12 hhhhhhhh
are words 6 through 18 of the save
area (registers 0 through 12):
contents of registers 0 through 12
immediately after the linkage for the
module containing the save area.

INCORRECT BACK CHAIN
indicates that tne following lines may
not be a save! area because the second

DATA SETS

.**** NOT FOR MAT TED •• ***

word in this area does not point back
to the previous save area in the
chain.

PROCEEDING BACK VIA REG 13
indicates that the next 2 save areas
are (1) tne save area in the lowest
level module, followed by (2) the save
area in the next higher level module.
The lowest save area is assumed to be
the save area pointed to by register
13. These 2 save areas a~pear only if
register 13 points to a full word
boundary and does not contain zeros.

cccccccc UCB ddd hhhhhh DEB hhhhhh DCB hhhhhh

**0/5 FORMATTING TERMI~ATED*·

DAT.A SETS
indicates that the next lines present
information about the dat.a sets for
the task. For unopened data sets,
only the ddname and UCB information
are printed.

NOT FOR M A ~ TED
indicates that the abnormal
termination dump routine confiscated
storage (indicated by *CORE NOT
AVAILABLE, LOC. hhhhhh-hhhhhh TAKEN);
because DCBs may have be€!n overlaid I
data set information is not presented.

cccccccc
is the name field (ddnam€!) of the DD
statement.

UCB ddd hhhhhh
is the unit to which the data set was

assigned, and the starting address of
the UCB for that unit. If the data
set was assigned to several units, the
additional units are identified on
following lines.

DEH hhhhhh
~s the starting address of the DEB for
the data set. Appears only fer open
data sets.

DCB hhhhhh
is the starting address of the DCB for
the data set. Appears only fer open
data sets.

**D/S FORMATTING TERMINATED*.
indicates that no more data set
information is presented because a DCB
is incorrect, possibly because a
~rogram incorrectly modified it.

44 Programmer's Guide to Debu.gging (Release 19)

TRACE TABLE - STARTING WITH OLDEST ENTRY

dddd
dddd
dddd

I/O ddd
SIO ddd
SVC ddd

PSW hhhhhhhh hhhhhhhh
CC - d
PSW hhhhhhhh hhhhhhhh

CAW hhhhhhhh
RG 0 hhhhhhhh

TRACE TABLE -- STARTING WITH OLDEST ENTRY
identifies the next lines as the
contents of the trace table. Each
entry is presented on one line. The
types of entries are:

dddd

I/O Input/output interruption entry

SIO Start input/output <SIO} entry

SVC supervisor call (SVC> interruption
entry

is the number assigned to each entry.
The oldest entry receives the number
0001.

I/O ddd
is the channel and unit that caused
the input/output interruption.

PSW hhhhhhhh hhhhhhhh
is the program status word that was
stored when the input/output
interruption occurred. .

CSW hhhhhhhh hhhhhhhh
is the channel status word that was
stored when the input/output
interruption occurred.

SIO ddd
is the device specified in the SIO
instruction.

CSW hhhhhhhh hhhhhhhh
OLD CSW
RG 1

hhhhhhhh hhhhhhhh (or CSW STATUS hhhh)
hhhhhhhh

CC=d
is the condition code resulting from
execution of the SIO instruction.
Zero indicates a successful start.

CAW hhhhhhhh
is the channel address word used by
the SIC instruction.

OLD CS~ hhhhhhhh hhhhhhhh
is the channel status word stored
during execution of an SIO operation.
It afpears when CC is not equal to 1.

CSW S~ATUS hhhb
is the status portion of the channel
status word stored during execution of
an SIO instruction. Appears when CC
is equal to 1.

SVC ddd
is the SVC instruction's operand.

PSW hhhhhhhh hhhhhhhh
is the PSW stored during the SVC
interruption. (After release 11, an F
in the fifth digit of the first word
identifies the entry as representing a
task switch.)

RG a hhhhhhhh
is the contents of register a as
passed to the SVC routine.

RG 1 hhhhhhhh
is the contents of register 1 as
passed to the SVC routine.

ABEND/SNAP Dump <systems With PCP and MFT} 45

REGS AT ENTRY TO ABEND (SNAP)

FLTR 0-6

REGS 0-7
REGS 9-15

hhhhhhhhhhhhhhhh hhhhhhhhhhhhhhhh

hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh
hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh

hhhhhhhhhhhhhhhh hhhhhhhhhhhhhhhh

hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh
hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhh"h

REGS AT ENTRY TO ABEND or REGS lllT ENTRY TO
SNAP

FLTR 0-6
is the contents of floating point
registers 0, 2, 4, and 6. identifies the next 3 lines as the

contents of the floating point and
general registers when the abnormal
termina1::.ion routine receivE~d control
in response to an ABEl~D macro
instruction or when the SNAP routine
received control in response to a SNAP
macro instruction.

REGS 0-7

NUCLEUS

hhhhhh hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh
hhhhhh hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh

LINE hhhhhh SAME AS ABOVE
hhhhhh hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh

LINES hhhhhh-hhhhhh SAME AS ABOVE
hhhhhh hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh
PIP STORAGE

hhhhhh hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh
hhhhhh hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh
hhhhhh hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh

LINES hhhhhh-hhhhhh SAME AS ABOVE
hhhhhh hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh

END OF DUMP

The content of main storage is given
under 2 headings: NUCLEUS and P/P STORAGE.
Under these headinqs, the lines have the
following fo:cnla t:

• First entry: the address of the
ini tial ;byte of main storage contents
presented on the line.

• Next 8 entries: 8 full words (32
bytes) of main storage in hexadecimal.

is the contents of general registers
through 7.

REGS 8-15

hhhhhhhh
hhhhhhhh

hhhhhhhh

hhhhhhhh

hhhhhhhh
hhhhhhhh
hhhhhhhh

hhhhhhhh

is the contents of general registers
tnrough 1S.

hhhhhhhh hhhhhhhh *cccccccccccccccccccccccccccccccc*
hhhhhhhh hhhhhhhh *cccccccccccccccccccccccccccccccc*

hhhhhhhh hhhhhhhh *cccccccccccccccccccccccccccccccc*

hhhhhhhh hhhhhhhh *cccccccccccccccccccccccccccccccc*

hhhhhhhh hhhhhhhh *cccccccccccccccccccccccccccccccc*
hhhhhhhh hhhhhhhh *cccccccccccccccccccccccccccccccc*
hhhhhhhh hhhhhhhh *cccccccccccccccccccccccccccccccc*

hhhhhhhh hhhhhhhh *cccccccccccccccccccccccccccccccc*

differs from the contents durino
printing of the hexadecimal characters
because a portion of the work area is
used to write lines to the printer.
This excepticn should not create any
problems since the contents of the
AEDUMP work area is of little use in
debugging.

The following lines may also ar~ear:

LINES hhhhhhhh-hhhhhhhh SAME AS ABOVE
are the starting addresses of the
first and last line of a qroup of
lines that are identical to the line
immediately preceding.

LINE hhhhhh SAME AS ABOVE

0

8

• Last entry (surrounded by asterisks):
the same 8 full words of main storage
in EBCDIC. Only A through Z, 0 through
9, and blanks are printed; a period is
printed for anything else. An
exception occurs in the printed lines
representing the ABDUMP work area. The
contents of the ABDUMP work area during
the printing of EBCDIC characters

is the starting address of a line that
is identical to the line immediately
preceding.

46 Programmer' s Guide to Debugqing Ckelease 19)

NUCLEUS
identifies the next lines as the

~ contents of the control program
nucleus.

P/P STORAGE
identifies the next lines as the
contents of the main storage area
assigned to the task (problem
program).

END OF DUMP
indicates that the dump or snapshot is
completed.

Guide to Using an ABEND/SNAP Dump (PCP,
MFT)

Cause of Abnormal Termination: hvaluate
the user (USER Decimal code) or system
(SYSTEM=hex code) completion code using
Appendix B or the publication Messages and
Codes. '

Active RE Queue: The first RB shown on the
dump represents the oldest RB on the queue.
The RB representing the load module that
had control when the dump was taken is
third from the bottom. The last rtB
represents the ABDUMP routine, and the
second from last, the ABEND routine. The
names of load modules represented in the
active RB queue are given in the HB field

~ labeled NM in the dump. Names of load
modules in SVC routines are presented in
the format:

r---,
I NM SVC-mnnn I L ___ J

where m is the load module number hr:inus 1)
in the routine and nnn is the signed
decimal SVC number. The last two REs on an
ABEND/SNAP dump will always be SVRBs with
edited nan,es SVC-l05A (AEDUMP--SVC 51) and
SVC-401C (ABEND--SVC 13).

Resume PSW: The resume PSW field is the
fourth entry in the first litte of each RB
printout. It is identified by tht
subheading PSW. For debugging purposes,
the reSllnle PSW of the third RB from the
bottom, on the dump, is most useful. The
last three characters of the first word
give the SVC number or the I/O device
address, depending on which type of
interruption caused the associated routine
to lose control. It also provides the CPU
state at the time of the interruption (bit
1~), the length of the last instruction
executed in the program (bits 32,33), ana
the address of the next instruction to be
executed (bytes 5-8).

Load List and Jon Pack Area Queue: The
load module that had control at the time of
abnormal termination may not contain the
instruction address pointed to by the
resume PSW. In that case, look at the RBs
on the load list and on the job pack area
queue (MFT with subtasking). Compare the
instruction address with the entry points
of each load module (shown in the last 3
bytes of the field labeled USE/EP). ThE
module which contains the instruction
pointed to by the resume PSW is the one in
which abnormal termination occurred. The
name of the load module is indicated in the
field labeled NM.

Trace Table: Entries in the trace table
reflect SIO, I/O, and SVC interruptions.
SIO entries can be used to locate the CCW
(through the CAw), which reflects the
operation initiated by an SIO instruction.
If the SIO operation was not successful,
the CSW S'I'ATUS portion of the entry will
show you why it failed.

I/O entries reflect the I/O old PSW and
the csw that was stored when the
interruption occurred. From the PSW, you
can learn the address of the device on
which the interruption occurred (bytes 2
and 3), the CPU state at the time of
interru~tion (bit 15), and the instruction
address where the interruption occurred
(bytes 5-8). The CSW provides you with the
unit status (byte 4), the channel status
(byte 5), and the address of the previous
CCW plus 8 (bytes 0-3).

SVC entries provide the SVC old PSW and
the contents of registers 0 and 1. The PSW
offers you the hexadecimal SVC number (bits
20-31), the CPU mode (bit 15), and the
address of the SVC instruction (bytes 5-8).
The contents of registers 0 and 1 are
useful in that many system ~acro
instructions use these registers for
parameter information. Contents of
registers 0 and 1 for each SVC interruption
are given in Appendix A.

Not~: If an ABEND macro instruction is
issued by the system when a program check
interruption causes abnormal termination,
an SVC entry does not appear in the trace
table, but is reflected in the PSW at entry
to ABEND.

Free Areas: ABEND/SNAP dumps do not print
out areas of main storage that are
available for allocation. since the ABLND
routine uses some available rrain storage,
the only way you can determine the amount
of free storage available when abncrmal
termination occurred is to re-create the
situation and take a stand-alone dump.

ABEND/SNAP Dump (Systems with PCP and MFT) 47

MFT Conside:rations: Dumps issued by
systems with MFT jLnclude an additional
trace table entry for task switches. This
entry looks similar to an SVC entry, except
that words 3 and 4 of the entry contain the
address of the TCBs for the "new" and "old"
tasks being perforroed, respectively. The
trace table entries for one particular task
are contained between sets of two task
switch entries. 'V~ord 3 of the beginning
task switch entry and word 4 of the ending
task switch entry point to the TCB for that
task. with relea!:'e 11 and following

releases, task switch entries are
identified by a fifth digit of 'F'.

Note: To find all the entries for the
terminated task, on a dump issued prior to
release 11, obtain the TCE addresses under
the TCE heading of the dump and scan the
trace table under words 3 and 4 for these
addresses. Then enclose the areas that
begin with an entry having the TCB address
in word 3, and end with an entry having the
same TCE address in word 4. If words 3 and
4 contain the sarre address, disregard the
tasK switcb entry.

48 Programmer's Guide to Debugging (Release 19)

ABEND/SNAP DumJ?
(Systems With MVT)

MVT dumps differ from PCP and MFT dumps in
the addition of detailed main storage
control information, the omission of a
complete main storage dump, and the
omission of a trace table in ABEND dumps.
MVT dumps occur immediately after an
abnormal termination, provided an AEF~ND or
SNAP macro instruction was issued and
proper dump data sets were defined.
iiowever, if a system failure has occurred
and a SYS1.DUMP data set has been defined
and is available, a full core image dump is
provided, as explained in the section
headed "Core Image Dump."

with l\jVT's subtask creating capability,
you may receive one or more partial dumps,
in addition to a complete dump of the task
that caused abnormal termination. A
complete dump includes all control
information associated with the terminating
task and a printout of the load modules and
subpools used by the task. A partial dump
of a task related to the terminating task
includes only control information. A
partial dump is identified by either ID=OOl
or ID=002 printed in the first line of the
dump. Figure 24 shows the key areas of a
complete dump.

In systems with MVT, you can effect
termination of a job step task upon
abnormal termination of a lower level task.
To do this, you must either terminate each
task upon finding an abnormal termination
completion code issued by its sUbtask or
pass the completion code on to the next
higher level task.

Invoking an ABEND/SNAP Dump (MVT)

ABEND/SNAP dumps issued by systems with MVT
are invoked in the same manner as those
under systems with PCP and MFT. They
result from an ABEND or SNAP macro
instruction in a system or user program,
accompanied by a properly defined data set.
In the case of a system failure, the Damage
Assessment routine (DAR) attempts to write
a core image dump to the SYS1.DU~P data
set. A full explanation of core image
dumps may be found in the section headed
"Core Image Dump." The instructions that
invoke an ABEND/SNAP dump in MVT
environment are the same as those given in
the preceding topic for systems with PCP
and MFT. However, some additional
considerations must be made in requesting
main storage and direct access space.

MVT Considerations: In specifying n region
size for a job step subject to abnormal
termination, you must consider the space
requirements for opening a SYSABEND or
SYSUDUMP data set (if there is one), and
loading the AEDUMP routine and required
data management routines. This space
requirement can run as high as 6000 bytes.

Direct access devices are used
frequently for intermediate storage of dump
data sets in systems with MVT. To use
direct access space efficiently, the space
for the dump data set should be varied,
depending on whether or not abnorrral
termination is likely. A small quantity
should be requested if normal termination
is expected. To prevent termination of the
durrp due to a lack of direct access space,
always specify an incremental (secondary)
quantity when coding a SPACE parameter for
a dump data set. You can obtain a
reasonable estimate of the direct access
space required for an ABEND/SNAP dump by
adding, (1) the number of bytes in the
nucleus, (2) the part of the system queue
space required by the task (9150 bytes is a
sufficient estimatE), and (3) the amount of
region space occupied by the task.
Multiply the sum by 4, and request this
amount of space in 1024-byte blocks.

This formula gives the space
requirements for one task. Request
additional space if partial dumps of
subtasks and invoking tasks will be
included.

Contents of an ABEND/SNAP Dump (MVT)

This explanation of the contents of
ABEND/SNAP dumps issued by systems with MVT
is interspersed with sample sections from
an ABEND dump. Capital letters represent
the headings found in all dumps, and
lowercase letters, information that varies
with each dump. The lowercase letter used
indicates the mode of the information and
the number of letters indicates its length:

& h represents 1/2 byte of hexadecimal
information

• d represents 1 byte of decimal
information

• c represents a 1-byte character

You may prefer to follow the explanation on
your own AEEND or SNAP dump.

ABEND/SNAP Dump (Systems with MVT) 49

"~"7~r7R

,,~<: nl""1.17"1.~

r~" 01f"6f")7hQ
I Tr nr ... ·H''1 r'')'")1

'J<;Thl' oroo"ono

TI"F on?t.no

Olc nnnnnnno
nl(-~1 r; I=nF~"(,)4()Q

T0J:'" 0"nl"'\Of)('O
T,T n(''1>O?h~

I1F" Or),.,?I'n14
Flr. 00'100("10
TMI' "onO"'lfJn
I'Cq MI0,fJ41'14
ll<;cQ (10000fJnO

Tln o0030no
LL<; OOI)~OqRfJ

J<;T 0002FO?R
q/\ '1000(1)('(1
n~~ n0(100n(10

fJ,nn~q 1rc;v nnl)nooon IP<;W n'1 n fJn"OO W~-<;7-<;T~1'\ fJfJ(14nOR;>
'1/TTf' N)(10(lfJOO \.JT-l "JK fJrn?F(1?R

r"'lO ROR17000
JL1' (100nOOOO
"lTC (10000(100
[)- oDF (100"l? hA q

PF<;V 000000(")

DAGE 0001

TR"l 00000000
JPQ 0001(1lf8
OTC (10fJ"I(1C;OR
<;()<; 000;>1' "A(1
J5rR 000H4M:

(,"1.nQ<lq "r<;1/ ('000nr)~'1 ~r<;\,1 ("lnr)rW(10 wr-<J-ST~I' OfJ04t'r)lP FL-rnr O"O"1.0FRO PSw FFFC;0017 ~2n7fC4A
n!TTO ('1''1''(11'1'1' ~IT-l f\IK nnrp(11'FP

T~R-l 'I n:lqPO/,fJO ~P<;W F~C~F"r? wr-~7-<;T~~ 'lnl;;>n00~ TO'J 0(11'000'10 psw FF0400no ~onOC408
'J/TTo ('n'ln1rI)F
~r, n-7 nnonnFOO
?~ R-I~ 1)'10"1.qlnn
~XT<;A F?r~~?F~

flf'('('?A'tP

T.~"_l 'I ('fJRP01rQ
'l/TTP (I(]'10A! 01')
~~ 1'-7 flnooon0n
~-; Q-I~ nn(1')Ofl17
cXT<;ft 'lnnn;>nqr

r~rlr.:(IFl

WT-l 'I~ n"0~oq'1A

nn'1,o~F4 OnOnnnn~ nn'lonnOh
()()n~n6~4

",oAr140
or0n rc),)l

n'1IJ~'l"~ I'

OnOf,nnrc n
OnOf,I1F c n

!"1'1 '1 1 ~ 1 ''''
nn02rFr4
~ ,r. 4~nOI,

ftP~W F'l'orlr, wr-~l-~T'~ Onl?OOO?
I~T-l '11K n'l"l?FOFO

'1np,7"no
'lnn'''ll,r:
nnnA"r1!'\'I
rQr~r);> ~

nOn1QAF't
pnnrJ?A4f\
;>nnnFrrF
r I r ?r'i'1 'i

4n'lOCIP2
'1n00n001
'l'1n~nRFO

r:4n7"'RA

000fJOn73
000~ AU:!
(l007FFr4

OOOhnOFO
0(]06nFFO
FF n~nO(l(l

00"l1flcon
0n01qC;rO
0006nF'IfI

nOn?EFf14
noon7/,4A
nnO;;>FlFC

n003hFAIJ
C;;>07F434
OnnnOIJ37

onO?HC4
oonOnRhA
000;>FIF4

0003[C)1
On07F[l. 0
O(l01031>[

OOnf,TlFflA
00000001
F2f'lF2CQ

T'R-\'11 (In,'IO,r'l TQ"J nooonooo PSW FF040001 4007F8&4
'1!TTP OnnOA?'ll ~IT-I~.IK n00?F17n
0, 0-7 nnn'10n'lO (lnn?rlon "In(]O"ln:":R '10(lnnR" R

'lnnAonAA
1 RfJO?A4 R
'1nnnooOO

oon;>FO?'I
00n,n1;;>0
1'0001'0"0

~~ '1-1< fJnO?Fn7R
F"T<;~ OOA?11'ln

onpc'l')?

1 T <;T

4000~·O"

onoorrJ/,r.
Ot;(1f""()(HH'

~F '''In'n'lrq Q<;o-c.'lF n70,nlF'I
'lie n0011'lAO ~.p-CnF 'lIO"2"n
'IIF n"0~I!rn D<;O-rnF nln~?'r'1

!Jl1?OfJ
01n!=,on
0Vnl'A
01?1 0 0
n':l??ofJ
1)1"7,.'1
fJl?':\OO
fJ,;>7nfJ
nU"Ir'1
1'':\01 r"

0112 "1)
'1?F,qq

01'1"1'0
fJ3?lAO
01?;>RO
O"l??C;O
'11;;>1 '10
0121·0
:1121"1'
01nRpP

~T() 1 (If'

IITI'I (1'1

AT" 1 ~ 1
ft T" 1 f'R
AT" I
n TP I RR
~ TI) 1 RA
t. TI> 1 1''1
n T" 1
~T"I

c;7 Orn"fJOIO
<;1 01'0·'004(

<;? (1'1(1[,0010
C7 OnO'lnOlO
<; 7 ['On ['0'1 I 0
<;7 n(lO'1OOIf1
<;7 On[,OOOlO
<;7 or()nnOln
<;7 OOOO(l'1ln
S7 0['1'[''11'111

'JrnF 00(101'1'
~r.')r '1' I ?"In
'l[OF (I~oq Fn
"Jrnr n17lro
"Jf'lF rn;;>?rO
"Jr,)F 017?on
"Jr'1F: f)'\;;>'r 0
'JroF (]1??ln
"JrnF 0~;;>"lFn

'Jr'lF o,OFRn

N" I' nnonnn 1
"JrJ nooooool

''In nOl)l)nnnl
f\,n I' nOfJnrnl
IIIn '1nnOOn(11
IIII' I) 0(001)0 I
'III' '1OOOOOO!
"Jfl (10nnOOf)1
'.In nOOO()Onl
'III' f)n'1fJ0n'1l

nOn?Fn?fI
n00R()()}f.
Ol)on(1()'ln

'.IF ()(1!J'Inn F (1 PSP-CO" 0lnl?1qO
NF nnrnlor'l "<;P-CnF 01n1?3qO
'JI' On10ClCln0 o<;p-CnF OIO,nAFO

III'C-I> 'I 0'ln1 "I'll' 'I
I>l'r-on 000l0QP'l
I>fI(-""I OCJnOnOoo
"flr-PR '1'ln)n~On

Pflr-I>R n'l""nOOO
RflC-P'I l)'ln()I)OOO
"flC-II'I oonoooon
prC-PR I)noooooo
nfle-II" 0001()OOO
PfI(-Qn 001'001'00

L"J

~nnOO?F<i
ROOIAFl'l
011r:010'l
011?1).10n
RnOOOA'lO
RnOOn?lO
RnOonlA'1
'lnOonoc; fI
8nOOn?1 0
RI)OOOIOO
'lnoonnqn
'In()n'11C;0

'1"'1 r.n

"J" '''K''~OO
'1'1 IGr.OAn5A
N" Ir,GOlorO
'1-" lGGOlQAA
"J'" Ir;GOlqRI'
~I'" TGGOIqrf1
N'" 1r.r,OlqAJ
'1"'1 Tr,r,nlqAR
N"'I Ir:W<;7nVQ

1J5F 01
U<;F 01
USf n;;>
USF 01,
I)SF O'i
USF n<;
ll'5F 06
lJ<;f 01
IISF ()4
U<;F 01

1'"

on01~"OR

000l~qr R
nIl oO~OO
Ol1Anlno
'1'1nA(')80
'1'10 71' ~'1 0
nnn7F4AO
0007FAAn
(11)'171'111'(1
00()7D~0

0007Fr.10
r006(4RO

OOOViOr: R
011En200
01460600

0002FI70
n002r:IF4
1'00'10041

OnO"l17QO
4'1oon~q4

nOO?R460

ooonoooo
00000000
00000018

"JF 00031078 R~D-rOE 01037790
~E 1'0011170 P SP-COE 0103:> ;;>00

FPA 015508
FPA 1'16:>40
ED" 0l,Cq80
FDA 07FI\no
FDII 07f4M)
EP" 07FRfln
FPII n7FAOO
FPA 07F3110
EDII 07F(10
E"/\ 06(41'0

n0010ROO
012'10400
01'.1'0400

IITR? 70
ATQ;> 70
ATPl ;>'1
ATR;;> 20
t. TP2 ?O
ATR? lO
ATR2 ;>0
ATP? 20
ATP? 20
ATP? ;;>0

LN

010A04no
012F0500
014f10500

XL/"'J 1131780
XL/"1J 071'398
XL/"1J 010t.BO
XL/"'IJ 0321RO
XL/"1J 01?lAO
XL/'1J 037250
XL/"1J 017'\80
XLl~J 0371FO
XL/"'J 03::>3RO
Xl/"1J 030RR'l

AnQ

01000C;00
01300500

OO'1o~o~n onnnon'iO OOOOOf)C;O 00000'10;0 * .••....••••••••.••••.••••••••••• *

• Figure 24A.

01()nOnC;0 OOI)f)O(lOO onoJO?OA nO'1O?AF[,
PFOf)fJnnn 0lnn00n n I)I)0nnrno FFnf,nnRP
n00lnnn'l n(1nlf)rnl ~?r:?r?r:l rl(4nnoo

OFrl0100 n On0 7 FO;;>11 040lEFn4 qAOOOOOO * .•...•...........•..•• 0 •••• ~ •••• *
n4'l?rnln IflnO?1,4R 00000031 00(11001;> * ..••.•••••...••••.••..•••••••.•••
onOO}OnO 001'00000 ooonOOno C'C40000 *• RB9ACO •••••••••••••• CTl •• *

Sample of Complete ABEND Dunlp (IvlVT)

50 Programmer's Guide to Debugqing (Reledse 19)

00'101n<;~ n'1'1000C;n OOnOOD<;O OOOnO!)<;o * .• p *
n110nn~n nn0nnono "nnno?or rO"11hFC
"ronnonn 1000'1000 onnooono rFn'a~r.
nnn~n"1' \Rnn?~hp on00001f oonooo'lr
ro"~nn"~ IRn"?A4~ nnnnn040 nnon0041
"O"QOnOA \ROn'A4P nnnonn4' 00oqn04~
nonqon"A lROO'~~Q '1'100'1044 rOnon04~
nOO'lnooa lRnO'64R 0000nn46 00'100041
nOnqOOO~ l'1on'~4n 000"004R nOn'lon4Q
nOOQ n 1nft JRnO'64A noono04~ "nOa004r
no"qn~o~ ,onO'~4R "000004r 0000004n

?~nOJO'o n1fl?Fn?p !)'.I)OOOOI) 8Rononoo * •.•.•.•••.••..•••••••• 0 ••••••••• *
0402~F"0 1ROO'~4A OOOOOO'l'l 001)<)00'lr- * .•.•...•••••.•. 4 •••••••••••••••• *
'1nOf1oo'1,~ 1 Rnl) 'AI, FI '100000 "IF 000'l0040 *.. *
nnOR:)ooa l'Ion'64<1 (1)0n0041 onO<)0042 * .••••..••.•.••••••••••••••••••• *
OOOR)O;)/\ J A'10 ?A/,<1 OnOOf''141 onn'lOO/,l, *•....•..•.•....•......... *
00:"'1')0"11 I Ron?64<1 0000004<; nOn'l004" *•...........••••••••.•••..• *
nO(Hl'OOIl \1100'''411 nn'1f'nn41 000<)n04'1 * *
0008[\0'1~ 1 '30021,4'1 '1nOooo /,<) non'lOo',/\ * *
n"OA,)OOIl 1'100?I'4<1 00"0(H)4<1 O"O'lnO'tC * *
000"!'l00~ 00010'10] r:lnQClOI C3f.'.F6(fl * ARAJf.[}6.*

STFO FY<;TFP
]I.0't01 '11
14"4010(\
140401RO
\ 40'.0100
, 4 n ON100
14n4f'10n
14(""0 I 0 1

PGM=*.nn
SYSAfln'o
FTO"Fonl
rTNt. n'
SYS"IJ"CH
C;ysoPT '!T
<;yq~,

00?30F00
00?l,0'l00
00'40C00
0'1;>50100
00?C;O~00

00'401"00
O(l;>'i0~on

B000,,'>'."!
~OOO;>"4'1

floon26'.f'
gOOO'lo~4

OOOOOl)f'r
111)01) ''''',8
f1000'(,'tP'

************ C;"?F ************ *************** OOF ***************
ru;s ''',POF SP 1') nOF RlK F'1F L~ ~nDE

00 (11114'1

no n 114f1 A

'51 011?50

0314(0

OOO~'i10n 000~5000 OOOOOAOO 000~10F0

'1001<;P,00 OOO'lt;AOO 00011noO 00000000
OOO~[}qoo 000An~00 OOOOO~OO 000'lOfl78
0006C000 000Af.000 00000flOn f)00'l010Q
0006CQOO nOOAfPOO OOOOOAOO n002F1RfI
'100"'B800 I)On"P800 00'100800 00000'1'10

1)00000
'11)0"'11)

01)0
000

1)114"0
0"114<1'1 ooo~nnoo 0'106014'.1 0001)0800 00000'100

I)-onE non'l,,,,,,,q FIRST 000314~0 LAST OnO~1460
011460 cF~ 1)004CROO LFq 0004C<l00 NP!) 00000000

Tffl 000,0~08 PSI 000'10000 PliO OOO~<;OOO

04F Aon SZ OOOlFOOO

~M~J 0001'1100 ~M~J 000lC610 FMtN 000310AA

PMIN oon'lllrs ~f,lT~ 00000000

POFt qOO'lIORfI TCfI OOn'ln<;OA

010110 PM~J 000311CR FMIN 1)0~30\10

oVll~n F'lrt On030l'lO PMT~ 00n"l01.0'l ~,.,~ oonooooo

"l')Fl nnooonoo P()Fl oon~OI ~O

IIRFII TR~CF

o"nlAA W'l1 00000000 HSA 0'100(01)0
"1 0'10000'10 ., 00'11)"000
01 00'10(1)00 ~R 00'1000'10

01FC411

1)1 0 5C'1 wnl <)570q<;FF
'H o::>OlFlilO
07 000M'6!"1A

0047AD WOI 47 0 '10"00
PI Ooooooon
r'7 47fOO()()1)

H<;/\ 100041AO
Il? 00060'HO
RR Of''1AnlRC

H<;A FFOOOnOO
R? '100'10000
'1A FFOOOOOO

0000'10'1'1 '100'1'1000 0'l0'10000
r-Fn~O'lOI 4001FC"IC FFF5(01))
nOO'l1l7CQ Ocnoonoo 000?'5~1)

Teo OOO;>F')'?A

lSfI 00000::100
R3 00000')00
PC) 000003'1'1

t <;A oC;l'1QI AD
R"I OnO"lCJ6F4
Po OOOOOFnq

lSIl onl)()OOOO
III 41AOOOnO
Po nooooaon

PPq 00(1)0000
Fl.!; 0000

~M SYS[}SN

NM FF SYSl.MACLIA

SVRfI 00'1101(1)

~,. SVStFAOl

N" Fa TEA

SV~A OOO'FflFI'l

R FT nnonnOOO
P4 noooool)O
RIO 0000000'1

R,FJ R0064110
P4 n001c)6F',
R\O (1)0"71::'=10

RFT 00'100000
R4 FFnooooo
RIO OOf'Ol)ono

FPI\ 00000000
~<; 00000000
~ II 'l0000000

f:PI 'l5~Clflll

115 000"051'1
R 11 <;2011=414

!,PA 4HOOOOO
!l5 000'10000
R I t 41000001)

• Figure 24B. sample of complete ABEND Dump (LViVT)

******* FOF ********
~Ff)F L~

00000000
1)0000000
0'1000000
0000'100'1
ooooonoo
00000000

00060000
00000000

R 0 00000000
R 6 00000000
R 12 00000000

Il 0 52')"IQ"l6F R" 7FOAD5CC
~" 0001FC I a

PO FFOOOOOO
R6 0000'1'100
p 12 HnOnOOO

n0000509
nOOOOle8
0000059~

OnOn04f10
000'10180
OOOnOlAO

00000020
00000518

*•........... *
* 'i ••••• 7 •••••••••••••••• *
* ••• H Y ••••••••••• 6.*

AB£ND/SNAP Dump (Systems with MVT) 51

JOB cccccccc STEP cccccccc TIME dddddd DATE ddddd ID - ddd PAGE dddd

COMPLETION CODE SYSTEM - hhh (or USER • dddd)

PSW AT ENTRY TO ABEND (SNAP) hhhhhhhh hhhhhhhh

JOB cccccccc
is the job name specified in the JOB
statement.

STEP cccccccc
is the step name specified in the EXBC
statement for the problem program
associated with the task being dumped.

TIME dddddd
is the hour (first 2 digits), minute
(next 2 digits), and second (last 2
digits) when the abnormal termination
dump routine began processing.

DP\TE ddddd
is the year (first 2 digits) and day
of the year (last 3 digits). For
example, 67352 would be December 18,
1967.

ID=ddd

TCB

is an identification of the dump. For
dumps requested by an ABEND macro
instruction, this identification is:

• Absent if the dump is of the task
being abnormally terminated.

• 001 if the dump is of a subtask of
the task being abnormally

hhhhhh RBP hhhhhhhh PIE hhhhhhhh DEB hhhhhhhh
MSS hhhhhhhh PK-FLG hhhhhhhh FLG hhhhhhhh

terrninat~d. (Note that, when a task
is abnormally terminated, its
subtasks are also abnormally
terminatE:d.)

• 002 if the dum~ is of a task that
directly or indirectly created the
task being abnormally terminated'" up
to and including the job step task.

PAGE dddd
is the page number. Appears at the
top of each page. Page numbers begin
at 0001 for each task or subtask
dumped.

COMPLETION CODE SYSTEM=hhh or COMPLETIO~
CODE USER=dddd

is the completion code sUfplied by the
control program (SYST£M=hhh) or the
problem program (USER=dddd).

psw AT ENTRY TO ABEND hhhhhhhh hhhhhhhh or
PSW A~ ENTRY TO SNAP hhhhhhhh hhhhhhhh

TIO
LLS

is the PSW for the problero program or
control program routine that had
control when abnormal termination was
requested, or when the SNAP rracro
instruction was executed. It is not
necessarily the PSW at the tirre the
error condition occurred.

hhhhhhhh CMP hhhhhhhh TRN hhhhhhhh
hhhhhhhh JLB hhhhhhhh JPQ hhhhhhhh

RG 0-7 hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh
RG 8-15 hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh
FSA hhhhhhhh TCB hhhhhhhh TME hhhhhhhh JST hhhhhhhh NTC hhhhhhhh OTC hhhhhhhh
LTC hhhhhhhh IQE hhhhhhhh ECB hhhhhhhh STA hhhhhhhh D-PQE hhhhhhhh SQS hhhhhhhh
NSTAE hhhhhhhh TCT hhhhhhhh USER hhhhhhhh DAR hhhhhhhh RESV hhhhhhhh JSCB hhhhhhhl.

TCB hhhhhh PIE hhhhhhhh
is the starting address of the TeB.

RBP hhhhhhhh
is the TCBRBP field (bytes a through
3): starting address of the active RB
queue and, consequently, the most
recent RB on the queue.

52 Programmer's Guide to Debugging (Release 19)

is the TCBPIE field (bytes 4 through
7): starting address "f the program
interruption element (PIb) for the
task; however, in an abnormal
termination duw~ for the task causing
the abnormal termination, zeros. The
field is zerOEd ~~ the AB~ND routine
to prevent interruptions during
dumpin

DEB hhhhhhhh
is the TCBDEB field (bytes 8 through
11): starting address of the DEB
queue. Under the heading DE~ in the
dump, the prefix section for the first
DEB in the queue is presented in the
first 8-digit entry on the first line.
The 6-digit entry at the left of each
line under DEB is the address of the
second column on the line, whether or
not the column is filled.

TIO hhhhhhhh
is the TCBTIO field (bytes 12 through
15): starting address of the TIOT.

CMP hhhhhhhh
is the TCBCMP field (bytes 16 through
19): task completion code or contents
of register 1 when the dump was
requested. System codes are given in
the third through fifth digits and
user codes in the sixth through eight
digits.

TRN hhhhhhhh
is toe TCBTRN field (bytes 20 through
23): starting address of the control
core (table) for controlling testing
of the task by TEST~AN.

MSS hhhhhhhh
is the TCBMSS field (bytes 24 through
27): starting address of SPQE most
recently added to the SPQE queue.

PK-FLG hhhhhhhh
contains, in the first 2 digits, the
TCBPKF field (byte 28): protection
key.

contains, in the last 6 digits, the
first 3 bytes of the TCBFLGS field
(bytes 29 through 31): first 3 flag
bytes.

FLG hhhhhhhh
contains, in the first 4 digits, the
last 2 bytes of the TCBFLGS (bytes 32
and 33): last 2 flag bytes.

contains, in the next 2 digits, the

TCBLMP field (byte 34): limit
priority (converted to an internal
priority, 0 to 255).

contains, in the last 2 digits, the
TCBDSP field (byte 35): dispatching
priority (converted to an internal
priority, 0 to 255).

LLS hhhhhhhh
is the TCBLLS field (bytes 36 through
39)£ starting address of the load
list element most recently added to
the load list.

JLB hhhhhhhh
is the TCBJLB field (bytes 40 through
43): starting address of the DCB for
the JOBLIB data s~t.

JPQ hhhhhhhh
is the TCBJFQ field (bytes 41 through
47): when translated into binary
bits:

• Bit 0 is the purge flag.
• Eits 1 through 7 are reserved for

future use and are zeros.
• Bits 8 through 31 are the starting

address of the queue of CDEs for the
job pack area control queue, which
is for programs acquired by the job
step.

The TCBJPQ field is used only in the
first TCB in the job step; it is zeros
for all other TCBs.

RG 0-7 and RG 8-15
is the TCBGRS field (bytes 48 through
111): contents of general registers 0
through 7 and 8 through 15, as stored
in the save area of the TCB when a
task switch occurred. These 2 lines
appear only in dumps of tasks other
than the task in control when the dump
was requested.

FSA hhhhhhhh
contains, in the first 2 digits, the
~CBCEL field (byte 112): count of
enqueue elements.

contains, in the last 6 digits, the
TCBFSA field (bytes 113 through 115):
starting address of the first problem
program save area. This save area was
set up by the control program when the
job step was initiated.

TCB hhhhhhhh
is the TCBTCB field (bytes 116 through
119): starting address of the next
lower priority TCB on the TCB queue
or, if this is the lowest priority
TCB, zeros.

TME hhhhhhhh
is the TCBTME field (bytes 120 through
123): starting address of the timer
element created when an STIMErt macro
instruction is issued by the task.

ABEND/SNAP Dump (Systems with MVT) 53

JST hhhhhhhh
is the ~[,CBJSTCB field (bytes 124
through 127): starting address of the
TCB for the job step task. For tasks
with a protection key of zero, this
field contains the starting address of
the 'ICB.

NTC hhhhhhhh
is the ~rCBNTC field (bytes 128 through
131): the starting address of the TCB
for the previous subtask on this
subtask queue. This field is zero in
the job step task, and in the TCb for
the first subtask creat,ed by a parent
task.

OTC hhhhhhhh
is the ~rCBOTC field (bytes 132 through
135): starting address of TCB for the
parent task. In the ~CB for the job
step task, this field contains tbe
address of the initiator.

LTC hhhhhhhh
is the 'rCBLTC field (bytes 136 tbrough
139): starting address of the TeB for
the most recent subtask created by
this task. This field is zero in the
TCB for the last subtask of a job
step, or in a TCB for a task that does
not create subtasks.

IQE hhhhhhhh
is the TCBIQE field (bytes 140 throuqh
143): starting address of the
interruption queue element (IQE) for
the l!.TXR exit routine. 'Ihis routine
is specified by the ETXR operand of
the ATT,ACH macro instruction that
created the TCB being duropE:=d. 'Ihe
routine is to be entered when the task
t,erminates.

ECB hhhhhhhh
is tne 'rCBECB field (bytes 144 throuqh
147): starting address of the BCB to
be posted by the control p:cogram at
task termination. This field is zero
if the task was attached without an
BCB operand.

STA hhhhhhhh
contains zeros, reserved for future
use.

D-PQB hhhhhhhh
is the TCEFQE field (bytes 152 through
1SS): starting address minus 8 bytes
of the durnrr,y PQI'. This field is
~assed by the ATTACH macro instruction
to eacb TCE in a job step.

SQS hhhhhhhh
is the TCB.t\QE field (bytes 156 through
159): starting address of the
allocation queue element (AQE).

NSTAE hhhhhhhh
contains, in the 'first 2 digits, S!AE
flags (Lyte 160).

contains, in th~ last 6 digits, the
TCBNSTAE field (bytes 161 through
163): starting address of the current
S'IAE control block for the task. 'Ihis
field is zero if STAE has net been
iSSUE;"!

TCT hhhhhhhh
is the TCBTCT field (bytes 164 through
167): address of the 'liming control
'Iable (TCT).

USEL"< hnhhhhhh
is the TCBOSE~ field (bytes 168
tLrougb 171): to be used dS the user
chooses.

DAR hhhhhhhh
ccntains, in the first two digits,
Danaqe Assessment Routine (DAR) flags
(byte 172}i

MFT only, contains, in the last 6
diyits, the secondary
non-dispatcnability bits (bytes 173
tnrough 17':».

RESV hhhhhhhh
reserv~d for future USE.

JSCB hhhhhhhh
is the TCBJSCB field (tytes 180
tnrouqh 183): the last three byte~
contain the address of the JOb Step
Control Block.

54 Programmer's Guide to Debugging (Rel8ase 19)

ACTIVE RBS

ecce hhhhhh cccccc hhhhhhhh
Q/TTR hhhhhhhh
RG 0-7 hhhhhhhh
RG 8-15 hhhhhhhh
EXTSA hhhhhhhh

APSW hhhhhhhh WC-SZ-STAB hhhhhhhh
WT-LNK hhhhhhhh

cccccc hhhhhhhh PSW hhhhhhhh hhhhhhhh

hhhhhhhh hhhhhhhh
hhhhhhhh hhhhhhhh
hhhhhhhh hhhhhhhh

hhhhhhhh hhhhhhhh hhhhhhhh

ACTIVE RES
identifies the next lines as the
contents of the active RBs queued to
the TCB, beginning with the oldest ~B
first.

cccc hhhhhh
indicates the RE type (cccc) and
starting address (hhhhhh).

The RB types are:

PRB program request block
IRB interruption request block
SVRB supervisor request block

cccccc hhhhhhhh
indicates the RB'S function (cccccc)
and bytes 0 through 3 of the RB
(hhhhhhhh) :

• RESV hhhhhhhh indicates PRB or SVRB
for resident routines. Bytes 0
through 3 are reserved for later use
and contain zeros.

• TAB-LN hhhhhhhh indicates SVRE for
transient routines. The first 4
diqits contain the RBTABNO field
(bytes 0 and 1): displacement from
the beginnins of the transient area
control table (TACT) to the entry
for the rr.odule represented by the
RE. The last 4 digits contain the
RBRTLNTH field (bytes 2 and 3):
length of the SVC routine.

• FL-PSA hhhhhhhh indicates IRB. Tne
first 2 digits contain the RBTMFLD
field (byte 0): indicators for the
timer routines. This byte contains
zeros when the IRB does not
represent a timer routine. The last
6 digits contain the RBPSAV field
(bytes 1 through 3): starting
address of the problem program
register save area (PSA).

hhhhhhhh
hhhhhhhh
hhhhhhhh
hhhhhhhh

hhhhhhhh
hhhhhhhh
hhhhhhhh

hhhhhhhh
hhhhhhhh
hhhhhhhh

hhhhhhhh
hhhhhhhh
hhhhhhhh

hhhhhhhh
hhhhhhhh
hhhhhhhh

APSW hhhhhhhh
is the REABOPSW field (bytes 4 through
7):

• In PRB, right half of the problem
program's PSW when the interruption
occurred.

• In IRB or SVRB for type II SVC
routines, right half of routine's
PSw during eXEcution of AEEND or
AETERM, or zeros.

• In SVRE for type III or IV 3VC
routines, right half of routine's
PSW during execution of ABEND or
AETERM, or the last four characters
of the narre of the requested
routine. (The last two characters
give the svc number.)

WC-SZ-STAE hhhhhhhh
contains, in the first 2 digits, the
REWCSA field (byte ,8): wait count in
effect at time of abnormal termination
of the prograrr.

contains, in the second 2 digits, tbe
RESIZE field (byte 9): size of the RB
in doublewords.

contains, in the last 4 digits, the
RES'IAB field (bytes 10 and 11):
status and attribute bits.

cccccc hhhhhhhh
indicates the RB's function (cccccc)
and bytes 12 through 15 of the RB
(hhhhhhhh) :

• FL-CDE hhhhhhhh indicates SVRB for
resident routines, or PRE. The
first 2 digits contain the RBCDFLGS
field (byte 12): control flags.

AE.E.ND/SNAP DUITj::: (systems with MVT) 5~

The last 6 digits contain the RBCDE
field (bytes 13 through 1S):
starting address of the CDE for thE
module associated with this RB.

• EPA hhhhhhhh is the RBEP field of
an IR~ (bytes 12 through 15):
entry·-point address of
asyncnronously executed routine .

• TQN hhhhhhhh indicates SV~B for
transient routines. Is the HLSVT<,.2N
field (bytes 12 tnrough 1~):
address of the next RB in the
transient control queUE.

PSW hhhhhhhh hhhhhhhh
is the RBOPSW field (bytes 16 throuyh
23): resume PSW.

Q/TTR hhhhhhhh
• In PRBs and SVkBs for resident

routines, contains zeros in the
first 2 digits. The last b digits
contain the RBPGM~ field (bytes 25
through 27): queue field for
serially reusable programs (also
called the secondary queue).

• In IRBS, contains tne RBUSE field in
the first 2 diqits (byte 24): count
of requests for the same exit
(ETXR). The RBIQE field in last b

digits (bytes 25 tnrough 27):
starting address of the queue of
interruption queue elements (IQE),
or zeros in the first 4 diqits and
the RBIQE field in the last 4 digits
(bytes 26 and 27): starting address
of the request queue elements.

LOAD LIST

• In SVREs for transient routines the
first 2 digits contain the 1<.BTAwCSA
field (byte 24): number of requests
(used if transient routine is
overlaiti) and the last 6 digits, the
MBSViTH field (bytes 2~ through 27):
relative track address Eor the SVC
routine.

WT- LNK hhhhhhhl1
contains, in the first 2 digits, the
RE~CF field (byte 28): wait count.

contains, in the last b digits, the
RELIN~ field (nytes 29 through 31):
starting address of the previous HB on
the active HE queue (primary queuing
field) or, if this is the first or
only RB, ~he starting address of the
'ICE.

RG 0-7 and RG 8-15

EXTSA

is the kBGhSAVE field (bytes 32
throuc;h 95): in SVRBs and IRES,
contents of registers 0 through 1S.

• In IMBs, contains the RBNEXAV field
in tne first 8 digits (bytes 96
through 99): address of next
availatle interruption queue element
(ICE), and in the remaining digits,
the interruption queue element work
~pact (up to 1948 bytes).

• In SVRBS, contains the RBEXSAVE
field (bytes 96 through 143):
extended save area for SVC routine.

NE hhhhhhhh RSP-CDE hhhhhhhh NE hhhhhhhh RSP-CDE hhhhhhhh NE hhhhhhhh RSP-CDE hhhhhhhh

LOAD LIST
identifies the next lines as the
contents of t.he load list elements
(LLEs) queued to the TCE by its TCBLLS
field. The contents of 3 load list
elements are presented per line until
all el€~ments in the queue are shown.

NE hhhhhhhh
contains, in the first 2 digits, LLE
byte 0: zeros.

contains, in the last 6 digits, LLE
bytes 1. through 3: starting address
of the next element in the load list.

RSP-CDE hhhhhhhh
contains, in the first 2 digits, LLE
byte 4: the count of the nurrber of
requests made by LOAD macro
instructions for the indicated load
module. This count is decremented by
DELETE macro instructions.

contains, in the last 6 digits, LLE
bytes ~ through 7: startinq address
of the CDE for the load nodule.

56 Programmer's Guide to Debugging (Release 19)

CDE

hhhhhhhh ATRl hh NCDE hhhhhh ROC-RB hhhhhhhh NM cccccccc USE hh EPA hhhhhh ATR2 hh XL/MJ hhhhhh

CDE
identifies the next lines as the
contents directory. One entry is
presented per line.

hhhhhhhh
is the starting address of the entry
given on the line.

ATRl hh
is the attribute flags.

NCDE hhhhhn
is the starting address of the next
entry in the contents directory.

ROC-RB hhhhhhhh

XL

contains, in the first 2 digits,
zeros.

contains, in the last 6 digits, the
starting address of the RB for the
load module represented by this entry.

LN

NM cccccccc
is the name of the entry point to the
load module represented by this entry.

USE hh
is the count of the uses (through
ATTACd, LINK, and XCTL macro
instructions) of the load module, and
cf the nuwcer of LOAD macro
instructions executed for the rrodule.

EPA hhhhhh
is the entry point address associated
with the name in the NM field.

ATrt2 hh
is the attribute flags.

XL/lVlJ hhhhhh

ADR

is the starting address of the extent
list (XL) for a major CDE, or the
starting address of the major CDE for
a minor CDE. (Minor CDEs are for
aliases.)

LN ADR LN ADR

hhhhhh SZ hhhhhhhh NO hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh

XL
indicates the next lines are entries
in the extent list, which is queued to
the major contents directory entry.
Each extent list entry is given in one
or more lines. Only the first line
for an entry contains the left 3
columns; additional lines for an entry
contain information only in the right
6 columns.

hhhhhh
is the starting address of the entry.

SZ hhhhhhhh
is the total length, in bytes, of the
entry.

NO hhhhhhhh
is the nunlber of scattered control
sections in the load module described
by this entry. If this number is 1,
tne load module was loaded as one
block.

LN hhhhhhhh
gives the length, in bytes, of the
control sections in the load module
described by this entry. Bit 0 is set
to 1 in the last, or only, LN field to
signal the end of the list of lengths.

ADR hhhhhhhh
gives the starting addresses of the
control sections. Each ADR field is
paired with the LN field to its left.

AEEND/SNAF Dump (Systems with MVT) 57

DEB

hhhhhh
hhhhhh
hhhhhh
hhhhhh

hhhhhhhh
hhhhhhhh
hhhhhhhh

hhhhhhhh
hhhhhhhh
hhhhhhhh

nhhhhhhh
hhhhhhhh
:hhhhhhhh

hhhhhhhh
hhhhhhhh
hhhhhhhh

TIOT JOB ecce ecce STEP ecce ecce PROe ecce ecce

hhhhhhhh
hhhhhhhh
hhhhhhhh

hhhhhhhh
hhhhhhhh
hhhhhhhh

hhhhhhhh
hhhhhhhh
hhhhhhhh

hhhhhhnh
hhhhhhhh
hhhhhhhh

DO hhhhhhhh cccccccc hhhhhhhh hhhhhhhh

DEB

TIOT

identifies the next lines as the
contents of the DEB!::) and their prefix
sections. The first 6 digits in each
line give the address of the DEB
contents shown on the line, beginning
with the second column. The first six
digits of the first line contains the
prefix section for the first DEB on
the queue.

identifies the next lines as tne
contents of the TIOT.

JOB cccccccc
is the name of the job whose task is
being dumped.

ST~P cccccccc
is the name of the step whose tasK is
being aumiJEd.

PRoe ecce ecce

DD

is the name for the JOb step that
called the cataloged procedure. This
field appears if the job ste~ whose
task is being dumped was part of a
cataloged procedure.

identifies the line as the contents of
the DD entry in the TIOT.

MSS ************ SPQE -*** •• _.---- *.************* DQE * * * * .". * * '* * * * *. * FQE ********
FLGS NSPQE SPID DQE BLK FQE LN NDQE NFQE LN

hhhhhh hh hhhhhh ddd hhhhhh hhhhhh hhhhhh hhhhhh hhhhhh hhhhhhhh hhhhhhhh

D-PQE hhhhhh FIRST hhhhhhhh LAST hl1hhhhhh

PQE

FBQE

PQE

FBQE

MSS

hhhhhh FFB hhhhhhhh LPB hl1hhhhhh NPI) hhhhhhhh
TeB hhhhhhhh RSI hl1hhhhhh RAD hhhhhhhh

hhhhhh NFB hhhhhhhh PFB hr.hhhhhh SZ hhhhhhhh

hhhhhh FFB hhhhhhhh LFB hl1hhhhhh NPI) hhhhhhhh
TeB hhhhhhhh RSI hl1hhhhhh RAD hhhhhhhh

hhhhhh NFB hhhhhhhh PFB hhhl1hhhh SZ hhl1hhhhh

identifies the next lines as the
contents of the main storage
supervisor queue. This queue includes
subpool queue elements (SPQE),
descriptor queue elements (DQE), and
free queue elements (FQE).

hhhhhh
is the starting address of the first
E~lement shown on the line.

ppo

FL~

PPQ
FL~

SP~E

hhhhhhhh
hhhhhhhh

hhhhhhhh
hhhhhhhh

identifies the 4 columns Deneath it as
the contents of SPQEs.

FLGS hh
is the SPCE flag byte.

NSPQE hhhhhb
is the starting address of the next
SPQE in the queue.

58 Programmer's Guide to Debugqing (Release 19)

SPID ddd
is the subpool number.

D~E hhhhhh

DQE

for a subpool owned by the task being
dumpea: the startinq address of the
first DQE for the subpool.

for a subpool that is shared: the
starting address of the SPQE for the
task that owns the subpool.

identifies the 4 columns beneath it as
the contents of DQEs.

ELK hhhhhh
is the starting address of the
allocated 2K block of main storage or
set of 2K blocks.

FQE hhhhhh
is the starting address of the first
FQE within the allocated blocks.

LN hhhhhn
is the length, in bytes, of the
allocated blocks.

NDQE hhhhhn

FQE

is the starting address of the next
DQE.

identifies the 2 columns beneath it as
the contents of FQEs.

NFQE hhhhhhhh
is tne starting address of the next
FQE.

LN hhhhhhhh
indicates the number of bytes in the
free area.

D-PQE hhhhhh
is the TCBPQE field (bytes 1~2 through
155): starting address minus 8 bytes
of the dummy PQE shown on the line.

FIRST hhhhhhhh
is the starting address of the tirst
PQE.

LAST hhhhhhhh
is the starting address of the last
PQE.

PQE hhhhhn
is the starting address of the PQE
shown on the line.

FFB hhhhhhhh
is bytes 0 through 3 of the PQE:
starting address of the first FBQE.

If no FEQEs exist, this field is the
starting address of this PQE

LFB hhhhhhhh
is bytes 4 through 7 of the PQE:
starting address of the last FBQE. If
no FBQEs exist, this fi~ld is the
starting address of this PQE.

NPQ hhhhhhhh
is bytes 8 through 11 of the element:
starting address of the next PQE or,
if this is the last PQE, zeros.

ppc hhhhhhhh
is bytes 12 through 15 of the element:
starting address of the preceding PQE
or, if this is the first PQE, zeros.

TCE hhhhhhhh
is tytes 16 through 19 of the element:
starting address of the TCB for tIle
jeb step to which the space belongs
or, if the space was obtained fron;
unassigned free space, zeros.

RSI hhhhhhhh
is tytes 20 through 23 of the element:
size of the region described by this
PQE (a multiple of 2048).

RAD hhhhhhhh
is bytes 24 through 27 of the element:
starting address of the regien
described by this PQE.

FLG hhhhhhhh
is byte 28 of the element:

bit 0 when 0, indicates space
described by this PQE is owned;

wben 1, indicates space is
borrowed.

tit 1 when 1, indicates reqion has
been rolled out (meaningful only
when bit 0 is 0).

tit 2 when 1, indicates resion has
Deen borrowed.

bit 3-7, reserved for future use.

~: PQE inforITiation is contained in two
lines on the durop. When the rollout/rollin
feature or Eain Storage Hierarchy Support
is included in the system, PQE information
(with associated FBQEs) appears once in the
durrp for each region segment of the jab
step. (Each PQE on the partition queue
defines a region segment. A job step's
reqion contains more than one .segment only
when the step has rolled out another step
or steps, or Main storage Hierarchy Sup~ort
is present.)

ABEND/SNAP Durrp (systeros with MVT) 59

FBQE hhhhhh
is the starting address of the FBQE
shown on the line.

NFB hhhhhhhh
is bytes 0 through 3 of the element:
starting addr~=ss of the next FEQE. In
the highest or only FBQE, this field
contains the address of the PQE.

QCB TRACE

PFB hhhhhhhh
is bytes 4 through 7 of the element:
starting address of the previous FBQE.
In the lowest or only FBQE, the field
contains the address of the PCE.

sz hhhhhhhh
is bytes 8 through 11 of the element:
size, in bytes, of the free area.

MAJ hhhhhh NMAJ hhhhhhhh PMAJ hhhhh~hh FMIN hhhhhhhh NM cccccccc

MIN hhhhhh FQEL hhhhhhhh PMIN hhhhh~hh NMIN hhhhhhhh NM xx xxxxxxxx

NQEL hhhhhhhh PQEL hhhhh~hh TCB hhhhhhhh SVRB hhhhhhhh

QCB TRACE
identifies the next lines as a trace
of the queue control blocks (QCB)
associated with the job step. Lines
beginning with MAJ show major QCBs,
lines beginning with MIN show minor
QCBs, and lines beginning witn NQEL
show qUE~ue ell:!ments (QEL).

MAJ hhhhhh
is the starting address of the major
QCB whose contents are given on the
line.

NMAJ hhhhhhhh
is the starting address of the next
major QCB for the job step.

PMAJ hhhhhhhh
is the starting address of the
previous major QCB for the job step.

FMIN hhhhhhh11
is the starting address of the first
minor QCB associated with the major
QCE givE~n on the line.

NM cccccccc
is the name 0:E the serially reusable
resourCE~ repr4:!sented by the major QCE.

MIN hhhhhh
is the starting address of the minor
QCE whose conit.ents are given on the
line.

FQEL hhhhhhhh
is the starting address of the first
queue element (QEL), which represents
a request to qain access to a serially
reusable resource or set of resources.

PMIN hhhhhhhh
is the starting address of the
previous minor QCB.

NMIN hhhhhhhh
is the starting address of the next
minor QCE.

NM xx xxxxxxxx
indicates, in the first 2 digits, the
scope of the narre or address of the
minor QCB being dumped. If the scope
is hexadeci~al FF, the name is known
to the entire operating system. If
the scope is hexadecimal 00 or 10
through FO, the name is known only to
the job step; in this case, the scope
is the protection key of the TCB
enqueuing the minor QCB.

Also contains, in the last 8 digits,
the name or the starting address of
the minor QeB.

NQEL hhhhbhhh
indicates, by hexadecimal 10 in the
first 2 digits, that the queue element
on the line represents a request for
step-rrust-complete; by 00, ordinary
request; and by 20, a
set-must-complete request.

Also contains, in the last 6 digits,
the starting address of the next queue
element in the queue, or for the last
queue eleme~t in the queue, zeros.

PQEL hhhhhhhh
indicates, by hexadecimal 80 in the
first 2 digits, that the queue element
represents a shared request or~ by
hexadecimal 00, that the element
represents an exclusive request. (If

60 Programmer's Guide to Debugging (Release 19)

the shared DA.SD option was selected,
hexadecimal 40 in the first 2 digits
indicates an exclusive RESERVE request
and 00 indicates a shared RESERVE
request.)

TCB hhhhhhhh
is the starting address of the TCB
under which the ENQ macro instruction
was issued.

SAVE AREA TRACE

ecce ecce WAS ENTERED VIA LINK (CALL) ddddd AT EP ccccc •••

SVRB hhhhhhhh
is the starting address of the SVRE
under which the routine for the ENQ
macro instruction is executed, or,
after the requesting task receives
control of the resource, the UCB
address of a device being reserved
through a RES~RVE macro instruction
(the latter value occurs only when the
sbared DA8D option was selected).

SA hhhhhh WDl hhhhhhhh
Rl hhhhhhhh
R7 hhhhhhhh

-HSA hhhhhhhh
R2 hhhhhhhh
R8 hhhhhhhh

LSA hhhhhhhh RET hhhhhhhh EPA hhhhhhhh RO hhhhhhhh
R3 hhhhhhhh R4 hhhhhhhh R5 hhhhhhhh R6 hhhhhhhh
R9 hhhhhhhh RiO hhhhhhhh Rll hhhhhhhh R12 hhhhhhhh

INCORRECT BACK CHAIN

INTERRUPT AT hhhhhh

PROCEEDING BACK VIA REG 13

SAVE AREA TRACE
identifies the next lines as a trace
of the save areas for the prograw..
Each save area is presented in 3 or 4
lines. The first line gives
information about the linkage that
last used the save area. This line
will not appear when the RB ,for the
linkage cannot be found. The second
line gives the contents of words 0
through ~ of the save area. The third
and fourth lines give the contents of
words 6 through 18 of the save area;
these words are the contents of
registers 0 through 12. Save areas
are presented in the following order:

1. The save area pointed to in the
TCBFSA field of the TCB. This
save area is the first one for the
problem program; it was set up by
the control program when the job
step was initiated.

2. If the third word of the first
save area was filled by the
problem prograrr" then the second
save area shown is that of the
next lower level module of the
task. However, if the third word
of the first area points to a
location whose second word does
not point back to the first area,
the message INCORRECT BACK CHAIN
appears, followed by possible
contents of the second save area.

3. Tne third, fourth, etc. save
areas are then shown, provided the
third word in each higher save
area was filled and the second
word of each lower save area
points back to the next higher
save area. This process is
continued until the end of the
chain is reached (the third word
in a save area contains zeros) or
INCORRECT EACK CHAIN appears.

Following the forward trace, the
message INTbRRUPT AT hhhhhh appears,
followed by the message PROCEEDING
BACK VIA REG 13. Then, the save area
in the lowest level module is
presented, followed by the save area
in the next higher level. The lowest
save area is assumed to be the 76
tytes beginning with the byte
addressed by register 13. These two
save areas ap~ear only if register 13
points to a full word boundary and
does not contain zeros.

cccccccc WAS ENTERED
is the name of the rr,odule that stored
register contents in the save area.
This name is obtained from the RB.

VIA LINK ddddd or VIA CALL ddddd
indicates the macro instruction (LINK
or CALL) used to give control to the
next lower level module, and is the ID

ABEND/SNAF DUIr,p (Systems with MVT) 61

operand, if it was specified, of the
LINK or CALL macro instruction.

AT EP ccccc
is the entry point identifier, which
appears only if it was specified in
the SAVE mac]co instruction that filled
·the save area..

SA hhhhhh
is the starting address of the save
area.

WDl hhhhhhhh
is the first word of the save area
(optional).

HSA hhhhhhhh
is the second word of the save area:
starting add]~ess of the save area in
·the next higher level module. In the
first save area in a job step, this
'liord contains zeros. In all other
save areas, this word must be filled.

LSA hhhhhhhh
is the third word of the save area
(register 13): starting address of
the save area in the next lower level
(called) module. If the module
containing this save area did not fill
the word, it contains zeros.

RET hhhhhhhh
is the fourth word of the save area
(register 14): return address
(optional)~ if the called module diu
not fill the word, it contains zeros.

EPA hhhhhhhh
is the fifth word of the save area

(register 15): entry point to the
called module. Use of this word is
optional; if the called module did not
fill the word, it contains zeros.

RO hhhhhhhh Rl hhhhhhhh ••• R12 hhhhhhhh
are words 6 through 18 of the save
area (registers 0 through 12):
contents of rEgisters 0 through 12 for
the module containing the save area
imnlediately after the linkage. Use of
these words is optional~ if the called
module did not fill these words, they
contain zeros.

INCORRECT EACK CHAIN
indicates that the following lines may
not be a save area because the second
word in thi~ area does not point rack
to the previous save area in the
trace.

INTERRUPT AT hhhhhn
is th~ address of the next instruction
to be executed in the problerr ~rogram.
It is ortained from the resume PSW
word of the last PRE or LPRB in the
active RB queue.

PROCEEDING BACK VIA REG 13
indicates that the next 2 save areas
ar€ (1) the save area in the lowest
level nodule, followed by (2) the save
area in the next higher level ffodule.
The lowest save area is the save area
pointed to by register 13. These 2
save areas dppear only if register 13
points to a fullword boundary and does
not contain zero.

62 Programmer's Guide to Debugging (l-{elease 19)

...

CPUx PSA

hhhhhh hhhhhhhh hhhhhhhh
hhhhhh hhhhhhhh hhhhhhhh

hhhhhhhh hhhhhhhh
hhhhhhhh hhhhhhhh

hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh *cccccccccccccccccccccccccccccccc*
hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh *cccccccccccccccccccccccccccccccc*

NUCLEUS

hhhhhh hhhhhhhh hhhhhhhh
hhhhhh hhhhhhhh hhhhhhhh

hhhhhhhh hhhhhhhh
hhhhhhhh hhhhhhhh

hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh *cccccccccccccccccccccccccccccccc*
hhhhhhhh hhhhhhhhhhhhhhhhh hhhhhhhh *cccccccccccccccccccccccccccccccc*

NUCLEUS CONT.

hhhhhh hhhhhhhh hhhhhhhh
hhhhhh hhhhhhhh hhhhhhhh

hhhhhhhh
hhhhhhhh

hhhhhhhh
hhhhhhhh

hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh *cccccccccccccccccccccccccccccccc*
hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh *cccccccccccccccccccccccccccccccc*

REGS AT ENTRY

FLTR 0-6

REGS 0-7
REGS 8-15

TO ABEND (SNAP)

hhhhhhhhhhhhhhhh hhhhhhhhhhhhhhhh

hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh
hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh

LOAD MODULE cccccccc

hhhhhhhhhhhhhhhh hhhhhhhhhhhhhhhh

hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh
hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh

hhhhhh
hhhhhh

LINES
hhhhhh
hhhhhh

LINE

hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh
hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh

hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh *cccccccccccccccccccccccccccccccc*
hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh *cccccccccccccccccccccccccccccccc*

hhhhhh-hhhhhh SAME AS ABOVE
hhhhhhhh'hhh'hhhhh hhhhhhhh hhhhhhhh
hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh

hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh *cccccccccccccccccccccccccccccccc*
hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh *cccccccccccccccccccccccccccccccc*

hhhhhh SAME AS ABOVE

CSECT dd OF cccccccc

hhhhhh hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh
hhhhhh hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh

hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh *cccccccccccccccccccccccccccccccc*
hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh *cccccccccccccccccccccccccccccccc*

The contents of main storage are given
under 6 headings: CPU x PSA, NUCLEUS,
NUCLEUS CONT., LOAD MODULE cccccccc, CSECT
dd OF cccccccc, and in the trace table, SP
ddd BLK hh. Under these headings, the
lines have the following format:

• First entry: the address of the
initial bytes of the main storage
presented on the line.

• Next 8 entries: 8 full words (32
bytes) of main storage in hexadecimal.

• Last entry (surrounded by asterisks):
the same 8 full words of main storage
in EBCDIC. Only A througb,Z, 0 through
9, and blanks are printed; a period is
printed for anything else.

The following lines may also appear:

LINES hhhhhh-hhhhhh SAME AS ABOVE
are the starting addresses of the
first and last lines for a group of
lines that are identical to the line
immediately preceding.

LINE hhhhhh SAME AS ABOVE
is the starting address of a line that
is identical to the line immediately
preceding.

CPUx PSA (Model 65 Multiprocessing dumps
only)

identifies the next lines as the
contents of the prefixed storage area
(PSA) -- 0 through 4095 (FFF). If the
system is operating in partitioned
mode (1 CPU), x is the CPU
identification. If the system is
o~erating in a 2 CPU multisystem mode,
both PSAs are printed, the first under
the heading CPUA PSA and the second
under CPUB PSA.

NUCLEUS
identifies the next lines as the
contents of the nucleus of the control
program.

NUCLEUS CONT.
identifies the next lines as the
contents of the part of the nucleus
that lies above the trace table.

REGS AT ENTRY TO ABEND or REGS AT ENTRY TO
SNAP

identifies the next 3 lines as the
contents of the floating ~oint and
general registers when the abnormal
termination routine received control
in response to an ABEND macro
instruction or when the SNAP routine
received control in response to a SNAP

ABEND/SNAP Dump (Systems with MVT) 63

macro instruction. These are not the
registers for the problem program when
the error occurred.

E'LTR 0-6
indicates the contents of floating
point registers 0, 2, 4, and 6.

REGS 0-7
indicates the contents of general
registers 0 through 7.

REGS 8-15
indicates the contents of general
registers 8 through 15.

TRACE TABLE

DSP NEW PSW hhhhhhhh hhhhhhhh R1S/R:l hhhhhhhh hhhhhhhh
I/O OLD PSW hhhhhhhh hhhhhhhh R1S/RJ hhhhhhhh hhhhhhhh
SIO CC/DEV /CA 1iJ hhhhhhhh hhhhhhhh CSW hhhhhhhh hhhhhhhh
SVC OLD PSW hhhhhhhh hhhhhhhh R1S/R:l hhhhhhhh hhhhhhhh
PGM OLD PSW hhhhhhhh hhhhhhhh R15/RO hhhhhhhh hhhhhhhh
EXT OLD PSW hhhhhhhh hhhhhhhh RIS/RO hhhhhhhh hhhhhhhh

TRACE TABLE (SNAP dumps only)
identifies the next lines as the
contents of the trace table. Each
trace table entry is presented on one
line; the name at the beginning of
each line identifies the type of entry
on the line:

• DSP Dispatcher entry

• I/O Input/output interruption entry

• SIO Start input-output (SIO) entry

• SVC supervisor call (sve)
interruption entry

• PGM Program interruption entry

• EXT External interruption entry

OLD PSW hhhhhhhh hhhhhhhh
is the PSW stored when the
interruption :represented by the entry
occurred.

NEW PSW hhhhhhhh hhhhhhhh
is the Ilew PSW stored in the entry.

CC/DEV/CAW hhhhhhhh hhhhhhhh
contains, in the first 2 digits:
completion code.

contains, in the next 6 digits:
device t:ype.

LOAD MODULE cccccccc
identifies the next lines as the
contents of the main storage area
occupied ty the load module cccccccc.
All the modules for the job step are
dumped under this type of heading.
Fartial dun,ps do not contain this
information.

CSECT hhhh OF cccccccc

Rl
Rl
RES
Rl
Rl
Rl

identifies the next lines as the
contents of the main storage area
occupied by the control section
(CSECT) indicated by hhhh. This
control section belongs to the
scatter-loaded load module cccccccc.

hhhhhhhh SW hhhhhhhh TCB hhhhhhhh TME hhhhhhhh
hhhhhhhh RES hhhhhhhh TCB hhhhhhhh TME hhhhhhhh
hhhhhhhh RES hhhhhhhh TCB hhhhhhhh THE hhhhhhhh
hhhhhhhh RES hhhhhhhh TCB hhhhhhhh TME hhhhhhhh
hhhhhhhh RES hhhhhhhh TCB hhhhhhhh TME hhhhhhhh
hhhhhhhh RES hhhhhhhh TCB hhhhhhhh THE hhhhhhhh

ccntains, in the last 8 digits:
address of the channel address word
(CAW) stored in the entry.

R15/RO hhhhhhhh hhhhhhhh
contains, in the first 8 digits:
contents of register 15 stored in the
entry.

contains, in the last 8 digits:
contents of register 0 stored in the
entry.

CSW hhhhhhhh hhhhhhhh
is the channel status wO:I'd (CSW)
stored in the entry.

Rl hhhhhhhh
is the contents of register 1 stored
in the entry.

RES hhhhhhhh
is reserved for future use; all digits
are zeros.

SW hhhhhhhh
is reserved for future use; all digits
are zeros.

TCE hhhhhhhh
is the starting address of the TCB
associated with the entry.

TME hhhhhhhh
is a representation of the timer
element associated with the entry.

64 ProgrammE~r' s Guide to Debugging (Release 19)

.~.

TRT

X DSP
x I/O
X SIO
X SVC
X PGM
X EXT
X SSM

NEW PSW hhhhhhhh hhhhhhhh
OLD PSW hhhhhhhh hhhhhhhh
CC/DEV/CAW hhhhhhhh hhhhhhhh
OLD PSW hhhhhhhh hhhhhhhh
OLD PSW hhhhhhhh hhhhhhhh
OLD PSW hhhhhhhh hhhhhhhh
OLDPSW hhhhhhhh hhhhhhhh

R15/RO
CSW
CSW
R 15/RO
R15/RO
R15/RO
R15/RO

hhhhhhhh hhhhhhhh
hhhhhhhh hhhhhhhh
hhhhhhhh hhhhhhhh
hhhhhhhh hhhhhhhh
hhhhhhhh hhhhhhhh
hhhhhhhh hhhhhhhh
hhhhhhhh hhhhhhhh

R1 hhhhhhhh
R1 hhhhhhhh
TCB hhhhhhhh
R1 hhhhhhhh
R1 hhhhhhhh
R1 hhhhhhhh
R1 hhhhhhhh

NUA hhhhhhhh
OLA hhhhhhhh
OLA hhhhhhhh
aLA hhhhhhhh
aLA hhhhhhhh
MSK hhhhhhhh
AFF yyhhhhhh

NUB hhhhhhhh
aLB hhhhhhhh
aLB hhhhhhhh
aLB hhhhhhhh
aLB hhhhhhhh
TQE hhhhhhhh
aLB hhhhhhhh

TME hhhhhh
TME hhhhhh
TME hhhhhh
TME hhhhhh
TME hhhhhh
TME hhhhhh
TME hhhhhh

TRT (MVT with Model 65 mUltiprocessing
dumps only)

identifies the next lines as the
contents of the trace table. Each
trace table entry is presented on one
line; the letter and name at the
beginning of each line identify the
CPU and the type of entry,
respectively:

• DSP Dispatcher entry.

• I/O Input/output interruption
entry.

• SIO Start input/output entry.

• SVC Supervisor call interruption
entry.

• PGM Program interruption entry.

• EXT External interruption entry.

• SSM Set system mask entry.

OLD PSW hhhhhhhh hhhhhhhh
is the PSW stored when the
interruption represented by the entry
occurred.

NEW PSW hhhhhhhh hhhhhhhh
is the new PSW stored in the entry.

CC/DEV/CAW hhhhhhhh hhhhhhhh
contains, in the first 2 digits:
completion code; in the next 6 digits:
device type; in the last 8 digits:
address of the channel address word
stored in the entry.

R15/RO hhhhhhhh hhhhhhhh
contains, in the first 8 digits:
contents of register 15; in the last 8
digits: contents of register 0, both
as stored in the entry.

CSw hhhhhhhh hhhhhhhh
is the channel status word stored in
the entry.

Rl hhhhhhhh
is the contents of register 1 as
stored in the entry.

TCL hhhhhhhh
is the starting address of the TCb
associated with the entry.

NUA hhhhhhhh
is the starting address of the new TCB
for CPU A, as stored in the entry.

OLA hhhhhhhh
is the starting address of the old TCB
for CPU A, as stored in the entry.

MSK hhhhhhhh
is the STMASK of the other CPU as
stored in the entry.

NUB hhhhhhhh
is the starting address of the new TCB
fer CPU B, as stored in the entry.

OLB hhhhhhhh
is the starting address of the old TCB
for CPU B, as stored in the entry.

TQE hhhhhhhh
is the first word of the timer queue
element stored in the entry, provided
a timer interrupt occurred.

TME hhhhhhhh
is a representation of the timer
element associated with the entry.

AFF yyhhhhhh
contains, in the first 2 digits: the
ID of the locking CPU at the time of
the interrupt; in the last 6 digits:
starting address of the old TCB for
CPU A, as stored in the entry.

ABEND/SNAP Dump (Systems with MVT) 65

SP ddd

hhhhhh hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh
hhhhhh hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh

hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh *cccccccccccccccccccccccccccccccc*
hhhhhhhh hhhhhhhh hhhhhh~·h hhhhhhhh *cccccccccccccccccccccccccccccccc*

END OF DUMP

I SP ddd
identifies the next lines as the
contents of a block of main storage
obtained through a G~;TMAI.N macro
instruction, and indicates the subpool
number (ddd). The part of sUD~ool 252
t.hat is the supervisor work area is
presented first, followed by the
entire contents of any problem program
subpools (0 through 127) in existence
during the dum~ing.

END OF DUfvlP
indicates that the dump or sna~shot is
completed. If this line does not
appear, the ABDUMP routine was
abnormally terrr,inated before the dump
was completed, possibly because enough
space wa~ not allocated for the dump
data set.

Guide to U3ino an ABEND/SNAP Dwnp (MvT)

Cause of Abnormal Termination: Evaluate
tne user (USER=decimal code) or system
(SYSTEM=hex code) completion code using
Appendix B or the publication Messages an~
Codes.

Dumped Task: Check the ID field for an
indication of which task is being dumped in
relation to the task that was abnormally
terminated:

• 001 indicates a partial dump of a
subtask

• 002 indicates a partial dump of the
invoking task

If the ID field is absent, the dUllip
contains a full dump of the task that was
abnormally terminated.

Active R~~~: The first RB shown on the
dump represents the oldest kB on the queue.
The RB representing the load module that
had control when the dump was taken is
third from the bottom. The last HB
represents the ABDUMP routine and the
second from last, the AEEND routine. The
load module name and entry point (for a
PRE) are given in a contents directory
entry, the address of which is shown in the
last 3 bytes of the FL/CDE field.

Prograrr' Check f'3W: The program check old
PSw is the fifth entry in the first line of
each RB printout. It is identified by the
subheading APSw. For debugging purposes,
the APSw of the third RE from the bottoIT' of
the durrp is most useful. It provides the
length of the last instruction executea in
the program (bits 32,33), and the address
of the next instruction to be executed
(bytes 5-8).

Lo~d L~~t.: Does the resume PS~ indicate an
instruction address outside the limits of
the load module that had control at the
time of abnormal termination? If so, lock
at the LLEs on tile load list. Bac!i LLL
contains the CDE address in the durrp field
labeled ..KSP-CDE.

CDEs: ~he entries in the contents
directory for the region are listed unGer
the dump heading CDE. The printcuts for
each CDE include the load module and its
entry !,Joint. If you have a complete durrp,
each load module represented in a CDE is
printed in its entirety following the
NUCLEUS section of the dump.

Trace ~able (SNAP dumps only): Entries cn
an MV~ SNAP durrp, if valid, represent
occurrences of SIO, external, SVC, program,
I/O, and dispatcher interruptions. SI9
entries can be used to locate the ccw
(through the CAW), which reflects the
operation initiated by an SIC instruction.
If the SIC operation was not successful,
the CSW S~ATUS portion of the entry will
show you why it failed. EXT and PGM
entries are useful for locating the
instruction where the interruI~tion cccurred
(pytes 5-8 of the psw).

SV~ trace table entries provide the svc old
PSW and the contents of registers 0, 1, and
15. The PS~ offers you the hexadecimal svc
nurrber (bits 20-31), the C~U mode (bit IS),
and the address of the SVC instruction
(bytes 5-8). The contents of registers 0
and 1 are especially usefUl in that many
system macro instructions pass key
inforrration in the~e registers. (See
Appendix A.)

I/C entries reflect the 1/0 old PSw and the
csw that was stored when the interrupticn
occurred. From the PSW, you can learn the

66 Programmer's Guide to Debugging (Release 19)

address of the device that caused the
interruption (bytes 2 and 3), the CPU state
at the time of interruption (bit 15), and
the instruction address where the
interruption occurred (bytes 5-8). The CSw
provides you with the unit status (byte 4),
the channel status (byte 5), and the
address of the previous CCW plus 8 (bytes
0-3).

You can use the DSP entry to delimit the
entries in the trace table. To find all
entries for the terminated task, scan word
7 of each trace table entry for the TCB
address in a DSP entry. The lines between
this and the next DSP entry represent
interruptions that occurred in the task.

Region contents: Free areas for the region
occupied by the dumped task are identified
under headings PQE a.nd FBQE. The field

labeled SZ gives the number of bytes in the
free area represented by the FBQ~.

subpool contents: Free and requested areas
of the subpools used by the dumped task are
described under the dump heading MSS.
Subpool numbers are given under the SPID
column in the list of SPQEs. If a GETI~IN
macro instruction was issued without a
subpool specification, space is assigned
from subpool O. Thus, two SPQEs ~ay exist
for subpcol O. The sizes of the requested
areas and free areas are given under the LN
column in the lists of DQEs and FQEs,
respectively.

Load Module Contents: The contents of each
load module used by the job step are given
under the heading XL. Each entry includes
the sizes (LN) and startinq addresses (ADR)
of the control sections in the load module.

ABEND/SNAP Dump (Systems with MVT) 67

Indicative I)ump

An indicative dump is issued when a task is
abnormally terminated by an ABEND macro
instruction, and a dump is requested, but a
dump data set is not defined, due either to
omission or incorrect specification of a
SYSABEND or SYSUDUMP DD statement. In
systems with PCP or MFT, an indicative dump
is issued automatically on the system
output (SYSOUT) device. Indicative dumps
issued by these two systems are identical
in format. ,Systems with MVT do not issue
indicative dumps.

Contents of an Indicative Du"!!!p

This explanation of indicative dumps
utilizes capital letters for the headings
found in all dumps, and lowercase letters
for information that varies with each dump.
The lowercase letter used indicates the
mode of the information, and the number of
letters indicates its length:

• h repres.ents 1/2 byte of hexadecimal
information

First digit:

Bit setting Meaning
--0- 0 Instruction image not

present

1

2

3

1 Instruction image present

o

1

o

1

o
1

Floating-point registers
not present
Floating-point registers
present

One general register set
present
Two general register sets
present

All active RBs present
All active RBs not present

Last digit:

Digit in
Hexadecimal Meaning

o All loaded ~Bs present

8 All loaded REs not present

TCB FLAGS=hh
• d repres.ents 1 byte of decimal

information

• c repres1ents a .L-byte character

FigQre 25 shows the cQntents of an
indicative dump. You may prefe]~ to follow
the explanation on your own indicative
dump.

CONTROL BYTE:=hh
describes the contents of t:he
indicative dump.

is the first byte of TCBFLGS field
(byte 29 in the TCB for the prograrr
being dumped): task end flag byte:

Eit setting Meaning
--0- 1 Atnormal termination in

process

1 1

2 1

Normal terrr.ination in
process

Abnormal termination was
initiated by the resident
ABTERM routine

TCB FlAGS=hh NO. ACTIVE RB=dd NC. LOAD RB=dd
- SYSTEM=hhh USER=dddd

CCCCCC •••
REGISTER SET 1
hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh
hhhhhhhh hhhhhhhh hhbhhhhh hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh
REGISTER SET 2
hhhhhhhh hhhhhhhh hhbhhhhh nhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh
hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh
INSTRUCTION IMAGE=hhhhhhhhhhhhhhhhhhhhhhhh
hhhhhhhhhhhhhhhh hhhhhhhhhhhhhhhh hhhhhhhhhhhhhhhh hhhhhhhhhhhhhhhh
PROGRAM ID=cccccccc RE TYPE=hh ENTRY POINT=hhhhhh
RESUME PSW S~=hh K=h AMWP=h IC=hhhh Il.CC=h PM=h !A=hhhhhh
PROGRAM ID=cccccccc RE TYPE=hh ENTRY POINT=hhhhhh

Figrure 2~.. contents of an Indicative Dump

68 Programmer's Guide to Debugging (Release 19)

3

4

5

6

7

1

1

1

1

1

ABTER~ routine entered
because of progra.-m
interruption

Reserved for future use

Data set closing initiated
by the AETERM routine

The AETERl\1 routine
overlaid some or all of
the problem program

The system prohibited
queuing of asynchronous
exit routines for this
task

NO. ACTIVE RB=dd
is the number of active RBs presented
in the dump.

NO. LOAD RB=dd
is the number of REs in the load list
presented in the dump.

COMPLETION CODE SYSTEM=hhh USER=dddd
is the coropletion code supplied by the
control program (SYSTEM=hhh) or the
problem program (USER=dddd). Eoth
SYSTEM=hhh and USER=dddd are printed;
however, one of them is always zero.

cccccc •••
explains the completion code or, if a
program interruption occurred:

PROGRAM INTERRUPTION ccccc.~. AT
LOCA'l'ION hhhhhh

where ccccc is the program
interruption cause: OPERATION,
PRIVILEGED OPERATION, EXECUTE,
PROTECTION, ADDRESSING,
SPECIFICATION, DATE, FIXED-POINT
OVERFLOW, FIXED-POINT DIVIDE,
DECIMAL OVERFLOW, DECIl-1AL DIVIDE,
EXPONENT OVERFLOW, DECIMAL
DIVIDE, EXPONENT OVERFLOW,
EXPONENT UNDERFLOW, SIGNIFICANCE,
or FLOATING-POINT DIVIDE; and
hhhhhh is the address of the
instruction being executed when
the interruption occurred.

REGISTER SET 1
indicates that the next 2 lines give
the contents of general registers 0
through 7 and 8 through 15 for a
program being ex~cuted under control
of an RB when it:

• Passed control to a type I SVC
routine through an SVC instruction
and the routine terminated
abnormally.

• Lost control to the input/output
interruption handler, which
subsequently terminated abnormally.

• Was abnormally terminated by the
control program because of a program
interruption.

• Issued an ABEND macro instruction to
request dn abnormal termination.

If REGISTER SET 2 also appears in the
dump, the lines under REGISTER SET 1
give the general register contents for
a type II, III, or IV SVC routine
operating under an SVRB.

REGISTER SB'l 2
indicates that the next 2 lines give
the contents of general registers 0
throuqh 7 and 8 through 15 for a
program being executed under control
of an HB other than an SVRB when the
program last passed control to a type
II, III, or IV SVC routine.

INSTRUCTION IMAGE=hhhhhhhhhhhhhhhhhhhhhhhh
is 12 bytes of main storage, with the
instruction that caused a program
interruption in the right part of the
printout. This field appears only if
a program interruption occurred and is
also valid when the instruction length
in the resume PSW is o.

hhhhhhhhhhhhhhhh hhhhhhhhhhhhhhhh
hhhhhhhhhhhhhhhn hhhhhhhhhhhhhhhh

are the contents of floating-point
registers 0, 2, 4, and 6 when the
abnormal termination occurred. This
field appears only if the floating
point option is present. The first 2
digits of each register are the
characteristic of the floating point
number. The last 14 digits are the
mantissa.

PROGRAM ID=cccccccc
is the XRENM field (bytes 0 through
7): in PRB, LRBs, and LPREs, the
program name; in IRBS, the first
character contains flags for the timer
or, if the timer is not being used;
contains no meaningful information; in
SVRBs for a type II SVC routine,
contains no meaningful information; in
SVRBs for a type III or IV SVC
routine, the first 4 bytes contain the
relative track address (TTR) of the
load module in the svc library and the
last 4 bytes contain the SVC number in
signed, unpacked decimal; in SIREs,
the name of the error routine
currently occupying the 400-byte
input/output supervisor transient
area.

Indicative Dump 69

RB TYPE=hn
indicates the type of active RE

hh ~= of RB
00 PRB that does not contain entry

points identified by IDENTIFY
macro instructions

10 PRB that contains one or more
entJry points identified by
IDENTIFY macro instructions

20 LPru3 that does not contain ~ntry
points identified by IDENTIFY
macro instructions

30 LPRB that contains one or more
entry points identified by
IDENTIFY macro instructions

40 IRB

80 SIRB

co SVRB for a type II SVC routine

DO SVRB for a type III or IV SVC
rou"tine

EO LPRB for an entry point identifi~d
ny an IDENTIFY macro instruction

FO LRB

ENTRY POINT=hhhhhh
is the XRBEP field (bytes 13 through
15): address of entry point in the
program.

RESUME PSW

SM=hh

K=h

XRBPSW field (bytes 16 throu~h 23):
is the contents of the resume PSW.

is bits 0 through 7 of PSW: system
mask.

is bits 8 through 11 of PSW:
protection key.

AMWP=h
is bits 12 throuqh 15 of PSW:
indicators.

IC=hhhh
is bits 16 through 31 of PSW:
interruption code.

IL.CC=h
is bits 32 through 35 of PSW:
instruct.ion length code (hits 32 and
33) and condition code (bits 34 and
35).

PM=h
is tits 36 through 39 of PSW: program
rr:ask.

IA=hhhhhb
is bits 40 through b3 of PSW:
instruction address.

PROGRAM ID=cccccccc
is the XRB~M field (bytes 0 through
7): program nane.

RB TYPE=hh
indicates the type of KB:

htl 'Type of RE
20 LPHB that does not cbntain entry

points identified by lDENTIFY
nacro instructions.

30 LPRB that contains one or rrore
entry points identified ty
IDENTIFY macro instructions.

EO LPRB for an entry point identified
by an IDE~TIFY macro instructicn.

FO LRB.

ENTRY POINT=hhhhhh
is thE XRBEP field (bytes 13 throuqh
15): address of entry point in tne
progrant •

Gu~de to Using an Indicative D~

COIllplE::ticn Code: Evaluate the user
(USER=decimal code) or system (SYSTEM=hex
code) corrpletion code usinq either Appendix
B of this publication or the pUblication
Messages and Codes. The line under the
completion code gives a capsule explanaticn
of the code or the type of progran
interruption that occurred.

Instruction Address: If a program
interruption occurred, get the address cf
the erroneous instruction in the last 3
bytes of the field labeled INS~RUCTIGN
IMAGE.

Active RB~~: REs are shown in the
first group of two-line printouts labeled
PRCGRAM ID and RESUtv'.iE PSW, with the most
recent RE shown first. ~here are two lines
for as wany RBs indicated by NC. ACTIVE
RE=dd.

Register Contents: General register
contents at the time a proqrarr last had
contrel are given under the heading
REGIS~ER SET 2 or, if this heading is not
present, under REGISTER SET 1. ~egister
contents, particularly those of register
14, may aid you in locating the last
instruction executed in your program.

70 Programmer' s Guide to Debugging Ci\elease 19)

Core Image Dump

A core image dump displays all of main
storage from location 00 through the end of
printable storage. These dumps are
identical for all control program options,
except for the first line of the dump,
which identifies the control program
option; i.e., PCP, MFT, NVT, or M65MP.

The Damage Assessment routine (DAR) will
produce a core image dump when a system
task fails if the SYS1.DUMP data set is
properly defined and available to accept
the dump. Once the core image dump has
been written to the SYS1.DUMP data set, the
print dump program (IEAPRINT) can print it.

Note: IEAPRILJT is placed in
SYS1.LINKLIB at SYSGEN time: it may be
invoked with the JCL statements shown in
Figure 23.

DAMAGE ASSESSMENT ROUTINE (DAR)

The Damage Assessment routine (DAR) is
designed to provide increased system
availability in the event of a system
failure, and to provide more meaningful
diagnostic information by means of a core
image dump taken at the time of the system
failure. This core image dump is written
to the SYS1.DUMP data set, which you may
print by n,eans of the IEAPRINT print dump
program.

If a system routine fails, DAR attempts
to reinitialize the failing task, thereby
permitting the system to continue operation
without interruption. DAR permits the
system to continue processing in a degraded
condition if it encounters a system failure
that does not permit total reinstatement of
the affected task or region. The operator
will be informed, via a WTO, that the
system is in an unpredictable state: he
then must decide whether or not
already-scheduled jobs should be allowed to
attempt completion.

SYSTEM FAILURE

If.a system failure occurs, the Damage
Assessment routine immediately attempts to
write a core image dump to the SYS1.DUMP
data set. A system failure may be caused
by a failure in any of the following system
tasks:

PCP and MFT:

Communications 'I'ask
Master Scheduler Task
Log Task (MFT only)

MVT:

System Error Task
Rollout/Rollin Task
Communications Task
Master scneduler Task
Transient Area Fetch Task

A system failure is also caused by an
ABEND recursion in other than OPEN, CLOSE,
ABDUMP, or STAE: by a failure of a task in
'must complete' status; or, in MFT only, by
a failure in the scheduler if no SYSAEbND
or SYSUDUMP DD card is provided.

THE SYS1.DUMP DATA SET

One of the primary functions of the Damage
Assessment routine is to provide a core
iroage dUIFp at tne tiroe of a system failure.
Secondary storage space If'Ust be available
to receive this dump. The SYS1.DUMP data
set provides this space.

The SYS1.DU~F data set may reside on
tape or on a direct access device.

If you wish to have the SYS1.DUMP data set
reside on tape, you may specify the tape
drive during IPL. If the drive has not
been made ready prior to IPL, a ~OUNT
message is issued to the console,
specifying the selected device. The device
should be mounted with an unlabeled tap€.

~eef in mind that the Damage Assessment
routine rewinds and unloads a tape after
writing a core image dump. If the operator
has not readied the specified device before
a second core image dump is to be written,
DArt will bypass the writing of the dump but
will continue processing.

Direct Access

If you wish to have the SYS1.DUMP data set
placed on a direct access device, you may
preallocate the data set at SYSGEN or prior
to any IPL of the system. The following
restrictions apply:

• The data set name must be SYS1.DUMP.

~ The data set must be cataloged on the
IPL volume.

• The data set may be preallocated on any
vcluroe that will be online during
system operation.

• The data set must be sequential.

• Sufficient space must be allocated to
receive a core image dump for all of
main storage.

Core Imaqe Dump 71

When a direct access device :is used for
the SYS1.DUMP data set, the data set can
hold only one core image dump. If
additional failures occur, and :if the
SYS1.DUMP data set is occupied, DAR does
not attempt -to write another core image
dump_

You may execute the print dump program
(IEAPRINT) toO produce hard copy of the
dump. Once -the pr int dump program is
executed, th,e SYS1. DUHP data set can accept
another core image dump.

THE PRINT OUlIllP PROGRAM (IEAPRIN'r)

You must use the p:r-int dump program to
print out th4e core image dump contained on
the SYS1.DUMP data set. The print dump
program is placed in SYS1.LINKLIB at SYSGEN
time; it may be invoked in the same manner
as any other problem program.

You must supply the job control
statements for the print dump program; the
following statements are required:

JOB This is a standard statement.

EXEC This statement specifies the
program name (PGM=IEAPRINT)
or, if the job centrol
staterr.ents reside on the
procedure library, the
procedure name.

SYS~RINT DD This statement defines an
output data set. The data set
may be written onto a system
output device, a rragnetic tape
volume, or a direct access
device.

SYSUT1 DD This statement defines the
input data set. The DSNAME
S~Sl.DUMP must be used.

(see Figure 26 for the JCL statements
required to execute the IEAPRINT print dump
program.)

• Figure 26. s.ample JCL Statements Required for IEAPRINT

12 Programmer's Guide to Debugging (Release 19)

Input to the Print Dump Program

Input to the IEAPRINT program is the
sequential data set SYS1.DUMP, which may
reside on either a direct access device or
on magnetic tape. The first byte of the
first record on the SYS1.DUMP data set will
be the contents of storage location 00, and
the data set will contain the full core
image up to the last writable byte. The
input devices supported are:

IBM 2301 Drum Storage Unit

IBM 2302 Disk Storage Drive

IBM 2303 Drum Storage Unit

IBIvl 2311 Disk Storage Drive

IBM 2314 Storage Facility

IBM 2400 Magnetic Tape Drive

outQut From the Print DumQ Program

The output from the print dump program is a
formatted core image dump of the printable
contents of main storage, beginning at
location 00. The dump may be written onto
a system output device, a magnetic tape
volume, or a direct access device. You
must define the device, upon which the dump
is to be written, on the SYSPRINT DD card
of the JCL statements that invoke the print
dump program. (See Figure 26.)

CONTENTS OF A CORE II~GE DUMP

The core image dump is formatted into two
distinct sections: low storage and
register contents are displayed on the
first paqe, and a printout of the contents
of main storage begins on the second page.
The main storage contents are unedited and
are displayed beginning from location 00
through the end of printable storage. (See
Figure 27.)

Low Storage and Registers

The initial section of a core image dump
(the first page) consists of information of
immediate use to the programmer who must
determine the cause of the failure.

The first printed line displays the
control program option of the operating
system, i.e. PCP, MFT, MVT, or M65MP; the
timer contents at the time of the failure;
and the date of the failure.

The remainder of the first page consists
of a printout of register contents and
hardware control words as they appeared at
the time of the failure. The contents of
floating point registers 0, 2, 4, and 6 are
displayed; if the floating point feature is
not present in the system, these register
printouts contain zeros. The two lines
beginning with REG 0-7 and REG 8-15 show
the contents of general registers 0 through
7 and 8 through 15, respectively.

Storage below location 128(80 hex) is
permanently assigned and can be used to
determine the status of a program. The
line beginning 40-CSW (following the
register printout) gives, in unedited forw,
the csw and CAW. The next five lines
contain the new and old PSWs for the five
types of interruptions.

The last line in this portion of the
durrp, beginning 4C-UNUSED-, gives the
contents of locations 76(4C hex) through 87
(57 hex), which include unused bytes and
the timer. This line contains pointers
useful in locating key debugging
inforrr.ation, such as the CVT and the trace
table. The use of these locations will be
explained under the sections headed "Guide
to Using ••• n.

Main Storage

The main section of the dump is ~rinted
starting with location zero and continuing
to the end of printable storage. Each line
contains, from left to right:

• The hexadecimal storage address of the
first byte on the line.

• Eight words of storage in hexadecimal.

• The same eight words in EBCDIC,
enclosed in asterisks (*).

If one or more consecutive lines contain
the samE word throughout the line, the­
first line will be printed, followed by the
message,

hhhhhh TO TEE NEXT LINE ADDRESS - SAME AS
ABOVE

where:

hhhhhh
is the address of the first omitted
line.

Core Image Dump 73

FlOATlI~G POINT REGISTERS 2 4 o
C905C9E3C9CIE306 D94070C 103D37D40 E6Cl C9E3C 9D5C 740

6
0000000000000000

REG G-~'
REG 8-1.5

C0020CDO 8ecooeoe 00021898 OOOOOOFO
00021B8C OOFFFFFB 00000068 400586EE

00000010 400586EC 00020CDO 00021748
6007EAB2 000587AP 00008904 00000008

40-CSII 000C05COOCOOOOOO 4B-CAW 00004408

EXlERNtll INlERRUF T PSIolS
SUPERIiISOR Oll FSWS
PROGRA~' CHECK PS~IS
MAcHINE CHECK PS.'S
INPUT lOUT PUT P SWS

OOCOOO oeceocec oecocooo
OCC02C FF0400Cl 500008(4
ooe 04e OeCCU5(C ecce ecce
ooe060 00ll400e c OOuOPOBe
000080 A7A800FF F2F39FfF
oooeAO 0000400e 4(0(00eo
oeoccc 00000429 oceOOECC
JOGOEQ FF6FFFFF OCOOOOOO
uGGIOe occeocce 001001eA
00C12O oeoeocec OCOOOOOO
OCC14C (cccecce eoooooce
OG016C oeooccoo occoooce
oee18e oceeoccc ocooooeo

NEIoI=OOO 4 00000000762 e
NEW= 0004 oooeoooc 80BO
NEW=000400000000 78 5(
NEW= ooeo 0000000 184CO
NEW=OC C4 COCC000077EO

OLO=O 10400RO 800388F6
OLO=fF 040e015000D8(4
Ol C=OOO CO eoc ccooocoo
OL o=oooeFFOOOOOOOOOO
OlD=FF06C2S 1 8eoeoooo

54-UNU 5ED-0000 EE70

00000000 OCOI)I)OOO 0000DE4~ COOOOOOO CI040C8C 80038AF6
C000000e OCOOI)OOO OOOOFFOO ooooooeo FF060291 80000000
00e044e8 oc COIJE48 08408262 0000EE70 00040000 00001628
OCC40000 0000785(COOOOOOO 000184CC OC040000 000077EO
OFOO3FFF F 23F'lFFF 00000000 eooooooc ~FFFFFFF 00e88cee
30e080C8 005FBF81 001AUOO fF(40000 020 10000 00000000
eOOO0429 03831600 D2078300 e3UAE 8el e070(F BA 02070030
C02CF'lFF 0003B30A 00000000 00000000 00000000 00021000
CGeeOCCO CC80E800 COOCOOOO 46(08289 cccecooo 5010CF03
00000000 020111000 00000000 oooooceo 00000000 ooooooeo
eeeceece ocoooooo 00000000 00000000 00000000 00000000
ooeooooo 82000170 00000000 0003B2S!0 COOOOOOO 00000000
cooooooo 00000000 00000000 00000000 00000000 00000000

OCCIAC Ie THE NEXI LINE ADORE 5 S - SAME AS ABOVE
OC0200 FF060 291 800000CO OCCOOOO 1 000 lD344 eCCeDE4!l 0000DE41l 0001D380 4000D5CA
oce'<20 ooe 2ece 0 BeOOD6B(soeCD832 00021508 00010310 F30024F8 OC020CDO 000006CA
000240 8eOO0644 00oe24F4 eeecoeoo oeoooooo ceoeocoo 00000000 ooououoo 00000000
OCC260 OOCOOODC C00COOOO oooooeoc oeoooooo OOOCOOOO oeoceeee e oooeccc 00000000
oce280 oeeeocee C oooeooo COOOOOOO 00000000 00001182 a 00000000 0000DE38 00019CC6
OC02AC ooeeo 10C B200C 300 34C0350e 3t:OCOOO 1 CC01F8CC eccccecc e200eoco 00000000
0002(0 00Ge8340 00008340 00000000 OOOOCO 1 F 112(IBE4 24F B02DII 0201l02DII 02011 7FFF
oce2EC oooooooe COOle4CO eCC20COO OOOOOA21 ce04COOc 00007628 00040000 00000472
000300 00000000 00000000 00000000 00000000 ooooeooo 00000000 00000000 00000000
oeC32C lC 1HE IlEXT lHE ACDRES5 5 ~~ f AS ABOVE
000340 FFFFFfFF FFFFFFFF FFFFFFFF FFcFFFFF FFFFFFFF FFFFFF FF FFFFFFFF FFFFFFFF
000360 1C THE ~EXT L1~E ACDRESS - SAM E AS ABOVE
OCC4ce ecccocce cecoocce eccooooo oeocoooo 00000000 00000000 cooocoec 00000000
000420 Te THe NEXT liNE ACCR~SS - 5AME A5 ABOVE
OC0460 ccecococ occoccee 00000000 00000000 OC0090EF C4De5EEc C2809120 00184110
OCC480 05109110 ~2~C471C 050C9121 E213C4770 06209120 04714110 04BA41F0 02F09101
OCC4AO 04714770 04eE56EC E2B(54EO e508417C C4BE91(F C01B417e C4BE41FC 00160207
OOG4CO 04D8FOOC 98EF0400 820004D8 00000000 oeoooooo 00000000 oeoooooo 00000000
OCC4EC 00000000 oceoooec ecccoooo ocoooooo OC020CCO 400005CA 00020CCO 70000622
00C50C OC020FI0 00a005F2 CEFFFFFF 94EFE2BC 966002((918CE 2ec 471CC5'3A 9120001B
ace 52C 478CC56e 5EFC02SC 9300F001 47000542 C500FOOO 02884770 C54241FO 02E647FC
000540 04Be020C FOOOE:2B8 C207ECOO 021:058EO 0614070C 07000700 46F.00558 848005FO
000560 <)4F702((58F00618 58E0061 (07000700 46E0057C C; 10602CC 47700594 o;BEC02BO
Oe0560 9121E2eC 471eC62C 46F CO~68 411' 005 FO 4 7F004B E 58Fa0608 9102FOO 1 478005A6
0005AO 91FFFOOC 478004BE C20104IJ8 00181)201 eC58C5EC 82000056 82C005E8 947F02CC
0005eO 06000408 301AD207 001804D8 94DFOJlB D207005E C2F841FO 02F841FO 04REOOOO
OeC5EC elC4Ceee eeCCOS88 CCe40eeC OCOO05BC Oe02CeOO 000001122 010'.00 CO 000006110
000600 0004000C JOOO06A4 00019<;48 00000-)00 OC8 eoaoo 0003512F CCe01F40 000006(8
CCet2C SCEFC4fO ,8E002BO 9120E28(4110C888 91010471 4780C63E D207C4CO C04091Cl
000640 E2BC41l0 374091C1 04114780 06~'40207 00400400 90E F04 E:O 918002Ce 47800492
OCCMO 41F00588 nC302AF 077f91Al 02B(078E 90E~04E e S8FC06lC 5eFCe60(841005FC
000680 9121021l(,.7ECC6e4 56F0060e 58E002BO 91FFE032 471006B6 96200471 82000SF8
OCCtAe 82C00600 S4CFC411 D6eeC470 00lB4180 OtB6S602 e4714tFO 06780207 04C004E8
0006(0 47FCC58('/8EF04E8 07FE9048 04F 050EO 05045660 02804170 06F25840 62C445eO
OCCtEC C718968C C664<) lC2 64714780 06e64180 01305640 02(44570 071658.40
OOC 700 62C04570 02C04570 0718'l848 04FC58EO 050407FF. 12440788 48504020
00C720 1255077E 'lIFF501C 01780'1F7 070302(0 02COD703 62C062CO 41F007eE
OOC 74e <j00F0610 47BC015e seE002BO 94FEE2B(960F0810 41F00646 58700864
000760 488C7000 5480087C 47800'160 55800870 4780074C 5810086C lA164320
oeC1ec lcccee2C C e 744 42 0 081C4"180 07604320 10005420 08785920 02844770
0007110 OHA58CO 00064320 02885"2C oe748920 00045720 08704420 068447FO

Figure 27. Sample of a Core Image Dump

74 programmer's Guide to Debugging (Release 19)

................................. 6*
* •••• &. QO ••••••••• iii •••••••••••••••

* .• N •••••••••••••• ..••.••••••••• *
* •••••••••.••••• * *
* •••• 23 •••••• 2 ••••••••••••••••••• *
* •• ••••••••••••••• 8 •• D •••••••••• *
••••••••••••••••• K ••••• Y ••••• K ••••
* 9 ••••••••••••••••••••• *
••••••••••••••• Y & ••• *
* •......••...•..•••.. 'I'I •••••••• 'I'I1Or

* ••••••.•..••••.••• (J ••••••••••••• *
* •••••.•.....•••••• " ••.••••.•••.• *
* ••..••.....•••.••••.•.•..••••.•• *
* •••••••••••••• L ••••••••••• L. .N.·
••••••• 0 ••• Q •••• Q •• L.3 •• 8 •••••••• *
* •• 0 •••• 4 •••••••••••••••••••••••• *
* •.••...•..•.••••.•.••...•••••••• *
* •••••••••••••••••••••••••••••• oH*
* •••••••••••••••••• Il ••••• B ••••••••
* ••• ... • •••••••••• U.8 •••••••• " .*
* *
* *
* •.•.•••••..••.•••.•••••.••.•.••.•
................................ to ••

.................................. *
••••• 5 ••••••• 5 •••••••••••••• 0.0 •• *
••••••••• 5 •••••••••••••••••• 0 •• 1<: ••
*.00 •••••••• Q •••••••••••••••••••••

* ••••••.••••.•••••••• .N ••••••• 0.*
* .••... N2 •••••• 5 ••••••• 5 ••••••••• *
•••• -.0 •••• o ••••• N. o •••••••• 0. Y. c*
••• K. 0.5. K •••••••••••••••••••••• 0*
*.7 ••• 0 •••••••••••••••••••••••••••
* •• 5 •••••• 0 ••• 0.0.0 ••• 0 •••• 0 ••••• *
* •• O ••••• K •• Q •• K •••••••••••• V.·· •••
.0 ••••• K •••• Q •••• K •••• 8.0.8.0 •••••
*••..... *
* .••....•...•.••.••.•••••••• ••• • *
* ••••••••.• S ••••••••••••• K •••• ...
*5 •••• •••••••• K •••
•• C ••••••• = ••••••••• V.O •• £0 ••••• 0*
*•. 0.0 ••••••••••••••••••••• 8*
* •••••••• C •••••••••••••• 0 •• K •••• V*
*.0 ••••• Y ••••• 0& •••• - ••••• 2. .0 •• *
••••••••••••••••••• 'II, ••• .0 ••• •• * * ..••••. ••••••••• 0 ••••••••••• & ..
* ••••• & ••• & •••• 7P ••••• P •••••• 0 •• *
•••••••••••• * •••••• S •••••• O •••••• *
* .•• , ••••••••• , ,- ••••••••••. ~ •••• *

~

-~

Stand-Alone Dump

stand-alone hexadecimal dumps display all
of main storage with the exception of
certain low storage locations. These dumps
are the only means by which you can see the
untouched contents of main storage at a
given time. They are identical in format
for all levels of the operating system.

In this discussion, dumps are referred
to as PCP, MFT, and MVT dumps, depending on
which level operating system occupied the
CPU at the time the dump was taken.

Invoking a Stand-Alone Dump

A stand-alone dump is most useful when a
program check or unexpected wait has
occurred and abnormal termination and
ABEND/SNAP routines overlaid a critical
area of main storage. To recover this
critical area, re-execute the job step and
take a stand-alone dump at the point where
abnormal termination or the wait occurred.

To reach this point, either (1) turn on
the wait bit in the program check PSw or
(2) set an address stop at the entry point
to the ABTERM routine. To find the entry
point of ABTERM, stop the system after IPL
but before setting the date, and display
the address of the CVT given at location
16(10). Then, display the contents of the
word beginning at CVT+52(34). This word
contains the address of the entry point to
ABTERM. Next, run the job with an address
stop set at this address. when the system
enters the wait or manual state, IPL and
execute the dump program you have produced
from the IMDSADMP macro instruction, or
execute card program number UT-OS6 to
produce a stand-alone dump. The
stand-alone dump described here is the one
produced by the card program UT-056. For a
discussion of the dump produced by thE
service aids IMDSADMP and IMDPRDMP, and for
discussions of the other IBM provided
service aids, see the manual, IBM
System/360 Operating System: service Aids,
GC28-6719.

Contents of a Stand-Alone Dump

A stand-alone dump comprises three
different types of storage printouts, each
with its own format:

e The initial areas
8 Lower main storage and registers
• Remaining main storage

To return the largest practical numner
of main storage locations, editing of the
initial area of the dump is limited.
However, locations 0 to 23(17) and 128(80)
to 319(13F) are destroyed. If you wisn to
see the contents of these areas, you must
display therr. before taking the dump.
Figure 28 illustrates the three printout
formats in a stand-alone dump.

Initial areas: The initial areas (the
first page) printed in a stand-alone dump
consist of locations 320(140) through 1023
(3FF). The first 16 lines are locations
320(140) through 383(17F), printed at a
rate of one word per line. The second 8
lines are locations 384(180) through 511
(1FF), printed 4 words per line. The last
16 lines represent locations 512(200)
through 1023(3FF), 8 words per line. The
printout of the initial areas is followed
by a legend of the hexadeci~al address
lirrits of each area.

Low Storage and Registers: The next
section of the dump (top of page 2) is a
printout of register contents and hardware
control words. If the floating point
feature is present, the first line gives
the contents of floating point registers 0,
2, 4, and 6. The two lines, beginning with
REGO and REG8, show the contents of general
registers 0 through 7 and 8 through 15,
respectively.

Storage below location 128(80) is
permanently assigned and can be used to
deterrrine the status of a program. The
line beginning 40-CSW (following the
register printout) gives, in edited form,
the CSW and CAW. The next ten lines are a
table containing the old and new PSWs for
the five types of interruptions. The
identification and address of each PSW is
given on tne first two lines across the top
of the table. Entries in the table (i.e.,
edited fields in each PSW) make up the
remaining 8 lines.

The last line in this portion of the
dump, beginninq 4C-UNUSED-, gives the
contents of locations 76(4C) through
87(57), which include unused bytes and the
tirr.er. On some durrps, this line contains
pointers useful in locating key debugging
information, such as the CV'I' and the trace
tal::le.

Stand-Alone Dump 75

Remaining Main Storage: The contents of
remaining main storage, beginning at
location 1024(400), are printed in the
third and largest portion of the dump.
Each line contains, from left to right:

• The hexadecimal storage address of the
first byte on the line.

• Eight words of storage in hexadecimal.

• The same eight words in EBCDIC,
enclosed in asterisksC*). (This field

is found only in dumps issued with
release 9 and after.)

If one or more lines contain the same
word throughout the line, the lines are
omitted from the dump and the message
hhhhhh TO THE NEXT LINE ADDRESS CONTAINS
hhhhhhhh is sutstituted, where hhhhhh is
the address of the first omitted line and
hhhhhhhh is the corr.mon word.

76 Programme:r's Guide to Debugging (Release 19)

.~ ..

.........
Figure

('efceeer.
ceeecccc
(r eeecce
e('ecceoe
ecececee
e(eeecce
ce(eecee
cceeccce
c((oeccc
8;>('CCI7C
efC4(CCe
cee1n1c
Cfccccec
cecrrcce
OOC3f8H
OenFP,4f.
ccceeooc
Cfeeecce
occcccec
c(cceoce
eocOH lC
4CCC3~12
CCC05O;AA
C01841CC
<i4f04C11
47f0024R
" 1f0022f
OCCOC2C7
C2r.f!58;>(
(;> 14" 10 1
a 7C1I,,2f.C
0028410e
c;>eo43A'i
41AOC3Ct,
0173e02.1
('3'i65en
41FCC.32A
OACOCOCC

oe03Fsse CCC3Fe4€
CCCOBtO cocceoce CC03f 864
eccccccc eoecc,;cc ceCCGCCC
c(ceOOCc ooeccocc ccocceco
cc(eccec cocccoee ecc(ceCO
cceCGCce Ccccccce CCOCCCCO
ccCe3'3AC ccec606C CCOCOCO 1
CCC(64eS CCCOElC CCCCCCCO
CCCC5564 COCe4041: CCCC2ClJe cCCClecc
0248'>bFO 0223C;0~" 018e41CC C250583C
"O'\\13C3C 58<;CC218 C~tlC;5f.5C (<lC47Fe
"4CF0223 'i€2<;CltiC CJIFCC22F 4lECC43C
47eC(2C;6 c;OA1elH D2C7e42e CCle47FC
<i01CCOte C;4FO'i01l 914C((le 41eCC2eA
C2CCC~22 ,,7FCC;i64 eeceenc CCeCScstl
CC2'iC181l 58'\\CC558 5eAC,\\C04 l2AAC 1CIl
lC(CC;P'FC AocoeCJCc CCOOl<CC CHt!SCfC
031!CCJCCf e3Ee5e'iC C2leC5~9 leA,\\4HC
ACCC4ll!A AOOOlAl!A 41t!eC3DC ~e3CCC IC
lFIle0202 02CCbCCC C;lC18CC2 411ce3C4
411CC3S6 C;82EC3FC [;SC7C55~ C~5S"11(
C55eC;CAl 2C~C5822 COCCD2e1 2(leeC20
r:23floC3C (3E8!>8CC C2ceC1FC Ioe lCCCU
Cccccoce coccc~ec OCO]F€Ioe C;CCC,,!;CE

AREA PRIIlTEC B~ INITIAL PRIIIT ",.PCIIEIIT

(,NHIIF AHEA ••••• CC014C TO CCC~FF
ItdT! ,\\RE,\\ •••••• CCeI4C TC OCCIIF
HdT2 'OREA •••••• CCCIBC Te (eCIFf
I~ 113 tlRFA •••••• (eC2CC TO ceOFF

flO,\\TlIIG P('liT REGISTHS c

C(COCEC
055e'840
CCC;E9CAl
c;eAlOIEC
C2.6C58S!;
51!2ec.!cC
OC~'iCA<;

C;CUAC04
CC2C41EC
(C23'i5""
58"CC558
CJHC0323
C~<;Ae2CC

582CC3FO
4l1Cnoc
ccce5B2e

C000110t
3000()201
01EOlJ207
e2000428
C,5t19CA 1
C52291t1C
CIACC;tlCC
181A58AO
C2U498AC
CCZ341AC
5tl504COC
58b002uC
CC2'l95FF
41FOC430
8" 10COOC
COOOH08

4

ceCC71CH
"CICCOl8
e42EeC38
C;Cz<;e180
c;o~csec;c;

eCle41tlO
C(2e5~I'C

lCCO l~'\\A
clACEzOC
neC'ie8"
4'>AeGno
c SEt;C4CO
CC2(414C
c;2fFCCZ2
C;eeBG40H
CC03FA48

6
C CCO C CCOOC 0000 C C

2
CtCCCCCCCCCOCOO~ 0000 aoe OC C (C C C co ceca OCCC 0 C C OOCCO

RHO
R(,G8

ococe ICO
5C004f02

CCCOC~5E 9CCCIoCC~
ceccooo~ OCC3FA"e

eCnfE€4
tOce 3'iOA

CCC17<;fC CCOOO~5E
CCCC600C 50003802

ceCCC55E
ccceocoo

CCC03Ece
ocooocce

4C-CSI> KE~-OO ACOR-OJHIIlC STATus-eCCLIlCccecccoco CLlIIT-OCCOOU 48-CAI> KEY-OO ACOR-conce

PSI> CONTEt.TS EXTERNAL It.TfRlIlJPT SlJPERvlSCH CAL l PflC('fl A/I CHECK "ACHINE Ch~CK I NPU T leUT PUT
FlflO FCRI'AT-ClC ltl -N~I> 58 -ClC 2e -lltlol /:0 -Ule 28 -NE~ 6d -[LC 30 -I\E~ 1C -OLD 38 -NEw 18
SYSTEM MASK III T-COOOOC Cll -oooecoco -occcceec -COOOGOce -oocooooo -OOCCOCCL -CCCOOUOO -oooeccoc -11111111 -OOOOOOCO
PROTECTl(II ~H H~-C -C -G -c -0 -0 -C -C -0 -0
A p 8U-CCCO -cleo -GlCe -ClOO -CCCO -OIOC -ceca -CC Ie -CIlO -OlGO
1" 1f RIWPT COCE HX-COCO -OGec -CCCA -ccce -ecco -OGOC -FFOO -COCC -C1'10 -COOO
IIIsa l ENGlH Ck:C-C -0 -1 -c -0 -0 -C -c -0 -0
r.rt-.fJ" 1(11 COCE CfC-C -0 -C -c -0 -0 -0 -C -0 -0
PRr.GRA" MASK e I T-OOOO -OCCC -coee -CCCO -OUOO -0000 -CCCO -COOC -0000 -coco
It.STR AOURF SS HElI-CCCOOO -cocnc -OC;!3F4 -CC0322 -COLOOO -CC02Dt> '-CCOOOO -CCCC E2 -OC6bbO -000222

OC040e .C;CC3Fe4S 50CC2F48 5CC04EC2 1F8CCOCC 00C3FAIoe fE004E24 0000b66C coceocco ••• 8.& ••• &.+ • ••••••••• + •••• (•••••
eoo""o ececococ COCCOOOO FF04019C 00C066tO 98~BC!l54 410005A2 15AB5!lCO AOCC4110 * .•••.....•• -... - ...••.•.•.•...•.•
0(C44C CIobC5E1C P.01el211 418004~E S1EI10CC Io1'iOC4~E 5DC054C C!l239829 BcseC2C7 .. (......... • ••) ••••• GK •• OCCl46C 0428CC1C C;8,\\1803C 820e0428 '>C298050 'ilCaeC1F 478C'llo8E 41FCOC2C I1FHOCp •••••••••••••••• G ••••••••• C •••• -.*
0(C4S0 f(OCl:OIl FCCHC4B FOIC6C6e FC18581C !lC78121l 41 tlO04A6 'l18E lOCO 4J7C04Ab .c.-.c.-.c.-,O ••••••••••••••••••••
OCo",\\O 5630C55C C!> 2312U "18CO,OE 18C A181e 0201C020 cel0CJt:FO 002258YO 054€05tlC; •••• G •••••••••••• K •••••• 0 •••••••• t
OCC4CO HAC lee. SCAI;lC554 9lC81lelF 418004H 41FOC02C I1fFbl:!Otl FOOOb8.!e fCCE6e"ll • ••••••• -•••••••• I> • 0 •••••• 0 ••• o ••••
OCC4EO f01068l:B F01P.58CC AOeO'l10C CCCA'i8C9 eC4e41EC C4420211 BOSI:l803 C 900<;8030 .C •• ,0 ••••••••••••••••• K ••••••••• *
ceC5CO 5PFCC54C 180C1848 58CC0201: 01H 18C8 5ECCCCCO '>lfFCCIC 41100?2A c; I FfCC21 *.0 •
000520 411CC'S;>' ISAC41FO C4,\\C580C CCH12CO 4710C510 5 ECOt! COO 96(12CO II 41FCC4tE * ••••••• C ••••••••••••••••••••• 0 •••
crC<;4C CCCC4F2it coce4314 CCCCHC8 eGOCSH4 oecO,CIC CCOCH08 COO·b3EOB CC(COSSE •••••••• t- •••••• & •••• Q ••• Q ••• ..
Ccc:~I':C 055EC55E FFCC05t4 fFCC0564 12114140 .05tiA48AO C5600201 1000AOOO "OlCACCO * • • •••• -K ••••• •• • * Ocr. <; P.O 4CICeStle <;2FCC~35 C1FEl311 5e'\\OC568 CLC31CCC ,ACOCSOI0 /lC005(lC 051:8411-<1 • •• -.0 •••••••••• K ••••• !:. ••• !:. •••• C"
OOC SAO C~8"C;C2C; IlC5C581D C5641211 474CCSFF 41100e56'' ~e30100C 'l120301F 477COSEC t ••••• & ••••••• • ••••••••••••• *
oc:oo;r.o CJ500~C21 417CC5EC 9101301C 417CC5EC C~C34CCO lCCC5510 OSt>I:l" 110 05E40203 * •••••••••••••••• K • •••••••••• UK.*
CCO~FC C56p.leoc 45C;CC6<;A 47FC05At 5510C5(:8 4HCC5FE lE415810 100t)47FO c~e44Ele * ••••••••• 0 ••••••••••••••••• 0 •••••
CCCbCO C~5F'il<4C C153'o170 C11oC4<;lC C562"7SC C 13410 14C C5~Ele33 4HOIC04 Sf3CC544 *.
Cr.C62C '5F3C3CCC C;5C03021 47110063E H414810 10CC4'i10 C5624180 074C41FO 061691Cl * ••....••••••...•••.•.••••. 0 •••• •
OCC640 l~.cHJ<;1:: e1ACIo170 0656419C C6.1;>9.1 C I 3(1l(:4170 CI>2C94FE,;. 10035f'lO IOCe~2C.1 * ••••••••••••••••••••• ••••••••• K ••

28. Sample of a Stand-Alone Dump

Stand-Alone Dump 77

Guide to Using a Core Image or a
Stand-Alone Dump

The core image dump and the stand-alone
dump are both hexadecimal durn~s of the
contents of main storage. The stand-alone
dump destroys the contents of locations 0
to 23 (18) and 128 (80) to 319 (13F), but
aside from this, the hexadecilIial ~rintouts
of the stand--alone and the core image dum~
are identical. The debugging procedures to
be used for Edther of these dumps are the
same, and arE~ presented, in the fcllowing
pages, under the sub-headings: Guide to
Using a PCP Dump, Guide to usiQ9. an MFT
Dump, and Guide to Using an MV'f Durrp.

If you arE! not sure under which system
configuration the stand-alone dump was
taken, pick up the address of the CVT from
the formatted section of the dump,
following the heading 4C UNUSED. Add 74
hex to this address and look at that
location in t.he dun~p. The first two
hexadecimal digits found at this location
are the contents of the CVTDCB field, and
indicate the systerr configuration according
to the following convention:

10 MVT
14 ~VT

20 MFT
40 PCP

Uniprocessing
lo',ultiprocessing

78 Programmer's Guide to Debug9in9 (kelease 19)

Guide to Using a PCP Dump

~ Cause of the Dump: Evaluate the PSWs that
appear in the formatted section of the dump
(first or second page), to find the cause
of the dump.

The PSw has the following format:

Program Status Word

o

System Mask Interruption Code

31

Instruction Address

63

• Does the instruction address field of
the old machine check PSW show either
the value E2 or E02? If so, a hardware
error has occurred.

• Does the instruction address field of
the old program check PSW have a value
other than zero. If so, a program
check at the instruction preceding that
address caused the interruption.

Active RB Queue: To find the active RB
queue, look at location 384(180 hex), the
TCB. The first word of the TCB contains a
one-word pointer to the first word of the
most recent RB added to the queue. In its
eighth word, RB+28(lC), each RB contains a
pointer to the next most recent RB. The
last RB points back to the TCB. The TCB
occupies locations 384(180) to 504(lF8).
You can determine the identity of the load
module by looking either in the first
and/or second words of the RB for its
EBCDIC name or in the last 3 digits of the
resume PSW in the previous RB for its SVC
number. The entry point to the module is
in the last 3 bytes of the fourth word in
the RB, RB+13(D).

Load List: In systems with PCP, the load
list is a chain of request blocks
associated with load modules invoked by a
LOAD macro instruction. By looking at the
load list, you can determine which system
and problem program routines were loaded
before the dump was taken.

To construct the load list, look at the
tenth word in the TCB, location 420(lA4),
for a pointer to the most recent HB entry
on the load list (RB-8). This word, in
turn, points to the next most recent entry
(minus 8), and so on. The word preceding
the most recent RB on the list (RB-4)
points back to the TCB's load list pointer.

TRACE ~ABLE: Look at the 3-word trace
tatle control block.

8

Location 20(14) contains the address of the
first word of this control block. If you
are using a stand-alone dump and do not
have access to the contents of location
20(14), scan the contents of main storage
between locations 16,384(4000) and
32,768(8000) for trace table entries. Each
entry is four words long. To find the
table boundaries and the current entry,
scan the table in reverse until you reach
the three-word trace table control block.

To distinguish trace table entries, look
at the fourth and fifth digits of the first
words for the following tit configurations:

r-----T-----------------T-----------------,
I I Fourth Digit I Fifth Digit I
I I 8 4 2 1 bits I 8 4 2 1 bits I
~-----+-----------------+-----------------~
I SIO I 0 I 0 I
I SVC I 1 I 1 I
I I/O I 1 I 0 I L _____ ~ _________________ ~ _________________ J

TraCe table entries for systems with PCP
are 4 words long and represent occurrences
of SIO, I/O, and SVC interruptions. Figure
29 gives some sample entries and their
contents.

SIO entries can be used to locate the ccw
(through the CAW), which reflects the
operation initiated by an SIO instruction.
If the SIO operation was not successful,
the CSW S'lA'IUS ~ortion of the entry will
show you why it failed.

I/O entries reflect the I/O old PSW ana the
csw that was stored when the interruption
occurred. From the PSW, you can learn the
address of the device on which the
interruption occurred (bytes 2 and 3), the
CPU state at the time of interru~tion (bit
15), and the instruction address where the
interruption occurred (bytes 5-8). The CSW
provides you with the unit status (byte 4),
the channel status (byte 5), and the
address of the previous CCW plus 8 (bytes
0-3).

SVC entries provide the SVC old PSW and the
contents of registers 0 and 1. The PSW
offers you the hexadecimal SVC number (bits
20-31), the CPU mode (bit 15), and the
address of the SVC instruction (bytes ~-8).
The contents of registers 0 and 1 are
useful in that many system macro

Using a Core Image or a Stand-Alone Dump 79

instructions use these registers for
parameter information. Contents of
registers 0 and 1 for each SVC interruption
are given in Appendix A.

S10 Irr + ,00000000 I 04000J00 , I
Condition Device CAW CSW

code address

I

I/O [FF06O~=20~ ~1F7oa I OCOOOOOO, I
I/O old PSW CSW

svc number

svc I J_F_05_'! I ~)_=O_14_4_2_A __ ~_or· ~
SVC old PSW Register 0 Register 1

Figure 29. ~;ample Trace Table Entries
(PCP)

CVT: To find the CVT, a source of other
pointers, look at location 76(4C) in the
formatted section of the dump (first or
second page). The address given following
the heading 4C-UNUSED- points to the first
word of the CVT.

~!:!~~L12EB~ : To find the queue of DEBs r
look at location 392(188). The address
given there ~oints to the first word of the
most recent entry on the DEB queue. The
last three bytes of the second word in each
DEB (DEB+5) point to the next most recent
DEB on tne queue. The queue contains one
DEB f 01: each open data set.

ueBs: unit information for each device can
be found in the UCB. The addrE~s:s of the
UCB is contained in the last 3 bytes of the
ninth word of the DEB, DEB+33(21:). If the
DEB queue is empty, scan the dump around
location 4096(1000) for words whose fifth
and sixth digits are FF. These are the
first words of the UCBs for the system;
UeBs are arranged in numerical order by
device address. (You may find it easier to
locate UCBs by looking for the device
address in the EBCDIC printout to the right
of each page.) The first two bytes of the
second word of each UCB give the device
address. The device type and class are
given in the third and fourth bytes of the
fifth word, UCB+18(12). The sense bytes

beqin in the last two bytes of the sixth
UCE word, UCB+22(1o), and extend for from 1
to 6 bytes depending on the device type.
Sense bytes are explained in Appendix F.

DCB: The address of the DCB, a control
block that describes the attributes of an
open data set, is in the last 3 bytes of
the seventh DEB word, DEB+2S(19).

IOJ~: 'Ihe lOB tor an open data set contains
a pointer to the CCW list in the last three
bytes of the fifth word, IOB+17(11). The
lOB address is in the seventeenth word of
the DCB, DCB+68(44). You can also locate
the IOE associated with an I/O request by
looking at the fourth word of the trace
table entry for an 3VC o.

.~l?: The address of the ECB is in the last
3 bytes of the secona word of the lOB
(IOB+5). Tlle corrpletion code for the I/O
event is posted in the first byte of the
ECB. ECB completion codes are explained in
Appendix E. If the I/O event is not
complete and an SVC 1 has been issued, the
hiqh-crder bit of the ECB is on, and bytes
1 through 3 contain the address of the
associated RB.

Free Areas: Areas of main storage
available for allocation at the time the
durrp was taken are described by the MS~
boundary box and a series of FQES. The
seventh word of the TCE, TCF+24(18), points
to the MSS boundary box. The first word of
the MSS boundary box points to the FQE with
the higbest processor storage address, and
the fourth word, to the FQ~ with the
hiqhest 2361 Core storaqe address. The
first word of each FOE points to tne next
lower }~E; the second word gives the iength
of the free area it describes. FQEs occupy
the first 8 bytes of the area they
descrite.

Guide to Using an ~FT DU~p

Cause of the Dump: ~valuate the psws that
appear in the formatted section of the dump
(first second page), to find the cause of
the durr:p.

The PSW has the following format:

Program Status Word

System Mask Key AMWP I 'oteceop,;oo Code

o 7 8 11 12 15 16 31

I nstruction Address

63

80 Programme:r's Guide to Debugging (Release 19)

• Does the instruction address field of
the old machine check PSW show either
the value E2 or E02? If so, a hardware
error has occurred.

• Does the instruction address field of
the old program check PSW have a value
other than zero? If so, a program
check at the instruction preceding that
address caused the interruption.

Finding the TCE: To find the TCE for the
task that had control at the time the dump
was taken:

1.

2.

3.

Look at location 76(4C), follo~ing the
heading 4C-UNUSBD-, for a pointer to
the CVT.

The first word of the CVT contains a
pointer to a doubleword of TCE
addresses, which contain pointers to
the next TCE to be dispatched (first
word) and the current TCE (second
word).

The TCE found at the address shown in
the second word represents the task
that last had control.

~", .•.... , .• :,., ••. , •. :: .• ,:,:"., .• :, .• ,.':.: .. ' ..• ,:, .•....• : ...• ,':.,.,.".'".:.:.:,., ..•.. , .•....• " .•.•• " .• , ••• ::,:, .• , .•. ::: •.• ,:,•.. , .• :.: •...•...•.•..• :, ..••.• , .. : ••.• ,.",.:.: •.• : .•.• ,' ...•.....• ,": •..•.•... ' ... : •.•.•...•...•..• , •.. ,:.,: •.•..... : •.•...• , ..• , ..• : •..•. " .•.. ' .•.•.. , ...• ,:.,', •.. , ..•..• , ..•. ,., ..•........•..•. ,• ,: •. ' .•..•..

~ ~
. Most recent task

.,.', •. :.,.: ...•....•... ' •• , '•. ' ...• :" ••.•. ·.T.'.'.~C.' ••.• ,.,.',:· ..• · •.. ' ..• ,.:.:.:.', .• , .•• , ••.••.••.•..•.•. ,., •.••.•••.• : •••.••• , .••• ,.' invoked by the Ii ": task in control

• Figure 30. Re-creating the Task structure

Re-Creating the Task structure (MFT with
Subtasking only): To re-create the task
structure for the job step, use the
thirty-third through thirty-fifth words of
the TCB~ The thirty-fourth word,

TCB+132(84), contains the address of the
TCE for the parent task. The thirty-third
word, TCB+128(80}, is a pointer to the TCB
of the task invoked roost recently by the
same parent task. The thirty-fifth word,
TCB+136(88), contains the address of the
TCE for the subtask invoked Rost recently
by the task in control, or zeros if none
were invoked. ~ach TCE in the job step
contains the same pointers. Using these
TCE pointers, you can re-create a task
structure to aid in locating the point of
error, as shown in Figure 30.

Finding the Partiiton TCES

The partition TCBs (job step TCBs in Ml"T
with sULtasking) can be found by beginning
at the CVTIXAVL field of the CVT, offset
124(7C). The address contained at CVTIXAVL
is a pointer to the lOS freelist. At
offset 4 in the LOS freelist is a pointer
to tne first address in a lsit of TCB
addresses. You can look through this list
of TCE addresses, and, keeping your systew
options in mind, find the TCBs for each
partition (the job step TCBs in an MFT with
subtasking systero). The TCB addresses are
listed in the following order:

Q Transient area loading task.
~ System error task (MFT witn

subtasking) •
• Multiple console support write-to-log

task (optional).
~ I/O recovery management support task

(optional).
• communications task.
• Master scheduler task.
* System management facilities task

(optional).
• partition 0 task.
• Partition 1 task.
•
•

•
•

• Partition n task.

In an MFT system with subtasking, the
partition TCBs (job step TCEs) may be found
by a more direct method. CVT offset
245(FS) contains a pointer to the partition
o job step TCB address in this address
ta1:le.

To recreate the task structure within
any partition, simply locate the job step
TCB, and follow the TCB pointers - as
explained in the previous section,
"Re-creating the Task Structure. n

Active BB Queue: The first word of a TCB
points to the most recent RB added to the
active RB queue. Each RB on the active RB
queue, contains a pointer to tne previous
RB in its eighth word, RB+28(lC). The last
RB points back to the TCB. You can
determine the identity of the load module
by looking either in the first and/or

Using a Core Image or a stand-Alone Dump 81

second words of the RE for the EBCDIC name,
or in the last 3 digits of the resu~e PSW
in the previous KB for the SVC number. The
entry point ;to the module is given in the
last 3 bytes of the fourth word in the R~,
RB+13(D).

Load List: In sys·tems with !V1E'T, the load
list is ~ chain of request blocks
associated with load modules invoked by a

I
LOAD macro instruc"tion. By looking at the
load list, and at the job pack area queue
described below, you can determine which
system and problem program routines were
loaded before the dump was taken. To
construct the load list associated with the
task in control, look at the tenth word in
the TCE, TCE+36(241, for a pointer to the
most recent HE entry on the load list,
minus 8 .bytes (RB-B). This wor-d, in turn,
points to the next most recent entry (minus
8), and so on. The word preceding the most
recent RE on the list (Rb-4) poi.nts back to
the TCE's load list poi.nter.

Job Pack Area Queue (MFT ~ith sUbtasking
only~: To rE~construct the job pack area
queue, look at TCB+125(7D) for a three byte
pointer to the par1:ition Information Block
(PIB). The twelfth word of the PIB,
PIB+44(2C), points to the most recent HB on
the job pack area queue minus 8 bytes
(RB-8). This word in turn points to the
next most recent RB minus 8, and so on.
The word preceding the most recent RE on
the queue (Rb-4) points back to the job
pack area qUE~ue pointer in the PIB. You
can determine the identify of the load
module by looking either in the first
and/or second words of the RB for its
EBCDIC name, or in the last three digits of
the resume PSW in the previous RE for the
SVC number. The entry point of the module
is given in t.ne last three bytes of the
fourth word i.n the RB, RB+29(1D), unless it
is an FRB.

The first five words of an FRB
(beginning at offsE~t minus 8) are identical
in content to those of other REs. The
XRWTL field, offset: 12 (C), contains the
address of a wait list element. The first
word of the WLE points to the next WLE, or
contains zeros if the WLE is the last une.
The second word poi.nts to the waiting SVRB.
You can determine the number of deferred
requests for the module by tracinq the
chain of WLEs.

The XRREQ field of an FRE, offset
16(10), contains a pointer to the TCE of
the requesting task. The next word,
XHTLPRE, offset 20(14), points to an LPR~
built by the Finch routine for the
requested program. The FRB for the
requested program is removed frolT' the job
pack area queue by the Finch routine when
the program is fully loaded.

Trace ~atle: Look at the 3-word trace
table control block, which precedes the
table by several words (usually four
words):

o 4 8

Location 20(14) contains the address of the
first word of this control block. If you
are using a stand-alone dumr and do not
have aCCESS to the contents of location
20(14), scan the contents of main storage
between locations 16,384(4000) and
32,768(8000) for trace table entries.
Entries are four words lonq and begin at
addresses ending with zero. To find the
table boundaries and current entry, scan
the tatle in reverse until you reach the
trace table control block. Figure 31 gives
some saIDfle traCE table entries and their
contents.

SIO

I/O

SVC

Task
Switch

Fiqure 31.

Condition Device CAW CSW
code address

I/O old PSW CSW

SVC number SVC address

SVC old PSW Register 0 Register 1

Task switch identifier
(after release II)

Dispatched new PSW New TCB Old TCB
address address

Harrple Trace T~ble ~ntries
(MF'l)

82 Programmer's Guide to Debugging (Release 19)

SIO entries can be used to locate the ccw
(through the CAW), which reflects the
operation initiated by an SIO instruction.
If the SIO operation was not successful,
the CSW STATUS portion of the entry will
snow you why it failed.

I/O entries reflect the I/O old PSW and the
CSW that was stored when the interruption
occurred. From the PSW, you can learn the
address of the device on which the
interruption occurred (bytes 2 and 3), the
CPU state at the time of interruption (bit
15), and the instruction address where the
interruption occurred (bytes 5-8). The CSW
provides you with the unit status (byte 4),
the channtl status (byte 5), and the
address of the previous CCW plus 8 (bytes
0-3).

SVC entries provide the SVC old PSW and the
contents of registers 0 and 1. The PSW
offers you the hexadecimal SVC number (bits
20-31), the CPU mode (nit 15), and the
address of the SVC instruction (bytes 5-8).
The contents of registers 0 and 1 are
useful in that reany system macro
instructions use these registers for
parameter information. contents of
registers 0 and 1 for each SVC interruption
are given in Appendix A.

TASK SWITCH entries look similar to an SVC
entry, except that words 3 and 4 of the
entry contain the address of the TCBs for
the "new" and "old" tasks being performed,
respectively. The trace table entries for
one particular task are contained between
sets of two task switch entries. Word 3 of
the beginning task switch entry and word 4
of the ending task switch entry point to
the TCB for that task. Task switch entries
are identified by a fifth digit of 'F'.

Queue of DEBs: To find the queue of DEBs
for the task, look at the third word in the
TCB (TCB+8). It points to the first word
of the most recent entry on the DEB queue.
The last three bytes of the second word in
each DEB (DEB+5) point to the next most
recent DEB on the queue. The queue
contains one DEE for each open data set.

UCBs: Unit information for each device can
.be found in a UCB. The address of the UCB
is contained in the last 3 bytes of the
ninth word of the DEB, DEB+33(21). If the
DEB queue is empty, scan the dump around
location 4096(1000) for words whose fifth
and sixth digits are FF. These are the
first words of the UCBs for the system;
UCBs are arranged in numerical order by
aevice address. (You may find it easier to
locate UCBs by looking for the device
address in the EBCDIC printout to the right
of each page.) The first two bytes of the

second word of each UCB gives the devicE
address. The sense bytes begin in the
second byte of the sixth UCB word, UCB+22
(16), and extend frorr, 1 to 6 rytes,
depending on the device type. Sense bytes
are explained in Appendix F. The device
type and class are given in the third and
fourth rytes of the fifth word,
respectively.

DCB: The address of the DCB, a control
block that describes the attributes of an
open data set, is located in the last 3
bytes of the seventh DEB word, DEB+25(19).

rOB: 'Ihe lOB for an open data set contains
a pointer to the CCW list in the last three
bytes of the fifth word, IOB+17(11). The
lOB address is located in the seventeenth
word of the DCB, DCB+68(44). You can also
locate an lOB by looking at the fourth word
of a trace table entry for an SVC o.

ECB: 'Ihe address of the Bcn for BSl\I1 and
BDAM data sets can be found in the last 3
bytes of the seccnd word of the lOB
(IOB+5). The cowpletion code for the I/O
event is posted in the first byte of the
ECB. ECB completion codes are ex~lained in
Ap~endix E. If the I/O event is not
complete and an SVC 1 has been issued, the
high-oreer bit of the ECE is on, and bytes
1 through 3 contain the address of the
associated RB.

Free Areas: Areas of a partition that are
available for allocation at the tiUt the
dump was taken are described ry the MSS
boundary box and a series of FQEs. The
seventh word of the TCE for the task,
TCB+24(18), points to a six-word ~Ss
boundary box. The first word of the MSS
boundary box points to the FQE with the
hiqhest processor storage address in tne
partition, and the fourth word, to the
highest 2361 Core Storage address in the
partition. The seccnd word of the FQE
gives the length of the area it descriDes.
FQES occupy the iirst 8 bytes of the area
they describe.

Gotten Subtask Areas: Areas of a p~rtition
allocated by the system to a subtask within
the partition are described by gotten
subtask area queue elements (GQE). The
seventh word of the subtask TCB,
TCB+24(18), points to a one word pointer to
the most recently created GQE on the G~E
qutue. Bytes 0 through 3 of the GQE
contain a pointer to the previous GQE or,
if zero, indicate that the GQE is the l~st
one on the queu~. Bytes 4 through 7 of the
GQn contain the length of the gotten
sUDtask area. Each GQE occupies the first
eiqht bytes of the gotten subtask area it
descrires.

usinq a Core Image or a stand-Alone Dump 83

Guide to Using an MVT DUfQj2

Cause of the Dump: Evaluate the PSWs that
appear in the formatted section of the dump
(first or second page), to find the cause
of the dump.,

The PSW has the following format:

Program ~;tatus Word

[Sy,'em MO'~iJ AM:]
o 78 11121516

h,e'mp,;oo~
31

B~~;:m 'm'mc';oo Add,e" I
32 33 3435 36 ---39 40---------' -------6--13

• Does the instruction address field of
the old machine check PSW show either
the value E2 or E02? If so, a hardware
error has occurred.

• Does the instruction address field of
the old program check PSW have a value
other than zero? If so, a progrdm
check at the instruction preceding that
address caused the interruption.

Trace Table: Location 84(54), labeled
54-UNUSED-hhhhhhhh en the dump, contains
the address of the first word of a 3-word
trace table control block that immediately
precedes the table:

] t last entry

8

Entries in an MVT trace table are 8
words long and represent occurrences of
SIO, external, SVC, program, I/O, and
dispatcher interruptions. You can identify

510

1/0

SVC
External
Program
Dispatcher

510 entry identifier

Condition Device CAW
code address l 00004Boo 00000000

1/0 old P5W

00004600 00000000

Entry identifier
(5VC here) 5VC number

5VC old P5W

00000000

Register 1

C5W

,61 1 99.D 9E,

I
TCB address Timer

C5W

00003660

Timer

Register 15 Register 0

TCB address Timer

Figure 32. sample Trace Table Entries
(r.-1V'l)

In dumps of lJjodel 65 Multiprocessing
systems, trace table entries differ as
follows:

SIC 5th word: address of TeB.
6th word: address of old TeB

for CPU A.
7th word: address of old TCB

for CPU B.
8th word: CPU identification

(last byte).

what type of interruption caused an entry I/O 3rd word: contents of register
by looking alt the fifth digit:

0 SIO
1 Exter'nal
2 SVC
3 Progr'am
5 I/O
D Dispatcher

Fiqure 32 gives some sample entries and
their contents.

SVC and
Progranl

84 Programmer's Guide to Debugging (Release 19)

4th word:

8th word:

6th word:

7th word:

8th word:

15.
contents of register
o.
CPU identification
(last byte).

address of old TCE
for CPU A.
address of old TCB
for CPU B.
CPU identification
(last byte).

~.

~

Dispatcher

External

6th word:

7th word:

8th word:

6th word:
7th word:

8th word:

address of new TCB
for CPU A.
address of new TCB
for CPU B.
CPU identification
(last byte).

STMASK of other cpu.
TQE if timer inter­
rupt occurred.
CPU identification
(last byte).

Finding the TCB: To find the TCB for the
task that had control at the time the dump
was taken, perform one of the following
steps:

1. Examine the current entry in the trace
table. Look at the seventh word of
this entry for the address of the TCB.
If an I/O interruption caused the

{)

[S}r . Parent
C task

B

.-----------'L-lJ

[3] Most recent
_ T C ._ task invoked

B by the same
parent task

current entry, scan the table in 0
reverse order for the corresponding .
SIO entry (the most recent SIO entry '.'
having the same device address). The
seventh word of this entry contains
the TeB address. B Most recent task

. T C invoked by the
B task in control

2. If you do not have a trace table, look
at location 76(4C) for a pointer to
the CVT, following the heading
4C-UNUSED-. The first word of the CVT
contains a pointer to a doubleword of
TCB addresses, which contains pointers
to the next TCB to be dispatched
(first word) and the current TeB
(second word). Beginning with the
current TCB, you can recreate the task
structure for the job step.

Note: If the first word of the TCB located
by the above steps points to itself, there
are no ready tasks to be dispatched, and
the systere has been placed in an enabled
wait state. This TCB, now in control, is
called the System Wait TCB.

Recreating The Task structure: To recreate
the task structure for the job step, use
the thirty-third through thirty-fifth words
of the TCB. The thirty-fourth word,
TCB+132(84), contains the address of the
TCB for the parent task. The thirty-third
word, TCB+128(80), is a pointer to the TCB
of the task invoked most recently by the
same parent task. The thirty-fifth word,
TCB+136(88), contains the address of the
TCB for the subtask invoked most recently
by the task in control~ or zeros if none
were invoked. Each TCB in the job step
contains the same pointers. Using these
TCB pointers, you can recreate a task
structure to aid in locating the point of
error, as shown in Figure 33.

Figure 33. Recreating the Task Structure

Active RB Queue: The first word of the TCB
points to the most recent RB added to the
queue. Each RB contains a pointer to the
next most recent RB in its eighth word,
RB+28(lC). The last RB points back to the
TCE. Unlike the RBs for other systems, the
name and entry point of the associated load
module are not always contained in the RB
associated with the module. Instead, they
are found in a contents directory entry.

CDE: The address of the contents directory
entry for a particular load module is given
in the fourth word of the RB, RB+12(C).
The CDE gives the address of the next entry
in the directory (bytes 1-3), the name of
the lead module, bytes 8-15(F); the entry
point of the module, bytes 17-19(11-13);
and a pointer to the extent list, bytes
21-23(15-17).

Load List: To construct the load list
associated with the task in control, look
at the tenth word in the TCE, TCB+36(24),
for a pointer to the most recent load list
entry (LLE). Each LLE contains the address
of the next most recent entry (bytes 0-3),
the count (byte 4), and the address of the
CDE for the associated load module (bytes
5-7).

Using a Core Image or a Stand-Alone Dump 85

~eue of :GEB:?_: To find the queue of LEBs
for the task, look at the third word in the
TCB (TCB+8). The address given here points
to the first word of the most recent entry
on the DEB queue. Tne last three bytes of
the second word in each .DEB (DEB+S) points
to the next most recent DEB on the queue.
The queue contains one DEB for each open
data set.

UCBs: Unit information for each device can
be found in a UCB. The address of the UCL
is contained in the last 3 ~ytes of the
ninth word of the DEB, DEB+33(31). If th~
DEB queue is empty, scan the dump around
location 4096(1000) for ~ords whose fifth
and sixth digits are FF. These are the
first words of the UCBs for the system;
aCBs are arranged in numerical order by
device address. (You may find it easier to
locate UCBs by looking for the device
address in the EBCDIC printout to the ri~ht
of each page.) The first two bytes of the
second word of each UCB give the device
address. The device type and class are
given in the third and fourth bytes of the
fifth word, UCB+18(12) , respectively. Tne
sense bytes are given in the last two bytes
of the sixth UCB word, UCE+22(161, ane
extend for from 1 to b bytes, depending on
the device type. Sense nytes are explained
in Appendix F.

DCB: The address of the DCB, a control
block that describes the attributes of an
open data set, is located in the last 3
bytes of the seventh DEB word, DEE+2~(19).

lOB: The lOB for an open data set contains
a pointer to the CCW list in tne last three
bytes of the fifth word, IOB+17(11). The
lOB address is located in the seventeenth
word of the DCB, DCB+D8(44). tau can also
locate the 1013 for an I/O request Ly

lookins at the fifth word of the trace
tatle entry for the SVC O.

FCl::: 'Ir:.e address of the ECD for E,sAM and
BDA~ data sets can be found in the last 3
bytes af the Second word of the lOB (10£+5)
or in the last 3 bytes of the
thirty-seventh word of the ~CB,
TC.f:<+145 (91). 'Ite conpletion code for trle
I/O event i~ posted in the first byte of
the ECL. ECB con,p.letion codes are
explained in Appendix~. If the I/O event
is not co~~lete and an SVC 1 has been
issued, the hiqh-order bit of the lCB is
on, and bytes 1 throuqh 3 contain the
address of the associated ~B~

... -{eqion Conb.'nts: The TCB for the dumped
task ccntains a pointer to the dummy
partition queue element minus 8 in its
thirty-ninth word, TCB+152(98). Tne first
word cf the dumrr:~t J::.Q.t. points t:o the first
PQ~ and the second word, to the last PQE.
Eacn FQ~, in turn, faints to tne first and
last FB~~s within a given storaqe
hieIarcny.

SU!JB201 content!:;: The seventh word of the
TCB, ~CD+24(18), points to the SlQE
reoresenting the first subpool used by the
ta~k. Each SFQ~ contains the address of
the next SPQE (cytes 1-3), the subpool
nuroner (byte 4), and the address of th~
first D~~ for the subpool (bytes 5-7) or,
if the sub~ool is owned by another task
(bit 0 is 1), thL address of the S~QE that
describes it (Dytes S-7). ~ach DQE
contains a ~ointer to tne F~E r~~resenting
the free area with the hiohest rrain storage
address in the sub~ool (bytes 1-3), a
pointer to the next DQE (bytes 5-7), and
thE length of tne area descriLed by the
DQl, bytes 13-15(D-F).

86 Prograrnmter's Guide to Debugging (t{elea~e 19)

Appendix A: SVCs

Register contents at entry to an SVC routine are often helpful in finding pointers and
control information. The table below lists SVC numters in decimal and hexadecimal, and
gives the type, associated macro instruction, and significant contents of registers 0 and
1 at entry to each SVC routine.

Macro instructions followed by an asterisk (*) are documented in the System
Programmers Guide. Expanded descriptions of remaining roacro instructions listed here may
be found in the publication Supervisor and Data Management Macro Instructions. Graphics
and telecommunications roacro instructions are discussed in the Program Logic Manuals
associated with these access methods.

r--------T-----T-------T------------T------------------------T--------------------------,
IDecimal IHex. I I I I I
I No. I No. 1 Type I Macro I Register 0 I Register 1 I
~--------+-----+-------+------------+------------------------+--------------------------~ o

o

1

1

1

2

3

4

5

6

7

8

9

10

10

11

12

13

14

15

o I EXCP *
o I XDAP *
1 I WAIT

1 I WAITR

1 I PRTOV

2 I POST

3 II

4 I GETMAIN

I FREEMAIN

b II LINK

7 II XCTL

8 II LOAD

9 I, II DELETE
I

A I GETMAIN or
FREEMAIN
(R Operand)

I
I A I Fl-{EEPOOI,
I
I B I, III TIME
I
I C II SYNCH *
I
I D IV ABEND
I
I E II, IIIISPIE
I I

I
I
I
I
IEvent count
I
IEvent count
I
I
I
I
Icompletion code
I
I
I
I
I
I
I
I
I
I
I
IAddress of entry foint
I address
I
IAddress of program name
I
ISubpool number (byte 0)
Length (bytes 1-3)

IIOB address
I
I
I
ECB address

2's complement of
BCE address

ECB address

Parameter list address

Parameter list address

IParameter list address
I
IParameter list address
I
IDCB address
I
I
I
I
IAddress of area to
be freed

Time units code

completion code

PICA address

I F I I IAddress of request queue
I I I element

--------~-----~-------~------------~------------------------~--------------------------
(Part 1 of 4)

Appendix A: SVCs 87

r--------T-----T-------T------------T------------------------T--------------------------,
I Decimal I He)!:. I I I I I
I No. I No. I rrype I Macro I Register 0 I Register 1 I
~--------+-----+-------t------------t------------------------t--------------------------i

16 10 III PURGE * I I

17

18

18

19

20

21

22

23

24

25

26

26

26

27

28

29

30

31

32

33

34

35

35

36

37

37

38

11

12

12

13

1 [­
-)

16

17

HI

19

11\

11\

11\

lB

lC

lD

lE

11"

20

21

22

23

23

25

2 "­-,

26

III

II

II

IV

IV

III

IV

IV

III

III

IV

IV

III

III

IV

IV

IV

IV

IV

III

IV

IV

IV

IV

](1

II

II

RESTORE *

BLDL

FIND

OPEN

CLOSE

STOW

OPEN TYF'E=J*

CLOSE 'r"YPB=T

DEVTYPE *

CATALOG *

INDEX *

LOCATE *

OBTAIN *

SCRATCH *

RENAME *
FEOV

IOHALT

MGCR (MAST
CMD EXCP)

WTO

IWTOR
I
IWTL
I
ISEGLD
!
!SEGWT
I
!
I

I I
I IlOB chain address
I I
IAddress of nuild list IDCB address
I I
I I
I I
I IAddress of parameter list
I lof DCB addresses

I
IAddress of parameter list
lof DCB addresses
I

Parameter list address IDCB address
I

UCB address

UCB address

I

Address of pararoeter list
of DCB addresses

Address of parameter list
of DCB addresses

ddnaIIie address

DCB address

Pararoeter list address

Parameter list address

Parameter list address

Parameter list address

Farameter list address

Parameter list address

DCB address

Address of UCB list

UCE address

JYjessage address

Message address

Address of message

segment name address

Segment name address

I 39 21 III,IV ILABEL IParameter list address I l ________ ~ _____ ~ _______ ~ ____________ ~ ________________________ ~ __________________________ J

(Part 2 of 4)

88 ProgrammE~r' s Guide to Debugging (Release 19)

r--------T-----T-------T------------T------------------------T--------------------------,
IDecimal IHex. I I I I I
I No. I No. I Type I Macro I Register 0 I Register 1 I
~--------+-----+-------+------------+------------------------+--------------------------1

40 28 I, II, IEXTRACT I IPararreter list address

41 29

42 2A

43 2B

44 2C

45 2D

46 2E

47 2F

48 30

49 31

50 32

51 33

52 34

53 35

54 36

55 37

56 38

56 38

51 39

58 3A

58 3A

59 3B

60 3C

61 3D

62 3E

63 3F

III I I I
I 1 I

II, IIIIIDENTIFY Ibntry point name addressl~ntry point address
I 1 1

II, III ATTACH I I

II, III CIRE *

I

II

I

II

I, II

III

IV

IV

IV

III

II

IV

I, II

I, II

III

I

I

III

III

III

II

IV

CHAP

TTIMER

STIMER

DEQ

TEST

SNAP

I
IRELEX
I
I
I
IEOV *
I
IENQ
I
IRESERVE *
I
IFREEDBUF
I
IRELBUF
I
REQBUF

STAE

DETACH

CHKPT

I I
IEntry point address ISize of work area in
I Idoublewords
I 1
1+ Increase priority ITCB address
\- Decrease priority
I
I
1
1
IExit address
1
I
I
I
I
1
I
I
I
1
1
IKey address
I
I
1
IEOB address
I
IQEL address
I
I
I
DECB address

o Create SCE
4 Cancel seB
8 0

1: Cancel

Timer interval address

~CB address

IParameter list address
I
IDCB address
I
IDCB address
I
I
I
DCE address

~CB address

LCB address

DCB address

DCB address

Parameter list address

Parameter list address

'ICB address

DCB address

64 40 III RDJFCB * IAddress of parameter list
lof DCB addresses
1

65 41 II I Parameter list address
I

66 42 IV I L ________ ~ _____ ~ _______ ~ _________ ~ __ ~ ________________________ ~ _________________________ _

-........ (Part 3 of 4)

Appendix A: SVCs 89

r--------T-----T-------T------------T------------------------T--------------------------,
IDecimal IHex. I I I I I
I No. I No. I Type I Macro I Register 0 I Register 1 I
~--------+-----+-------+------------+------------------------+--------------------------i

67 43 II I ENDREADY I QPOST

68 44

68 44

69 45

70 46

71 47

71 47

71 47

72 48

73 49

74 4A

75 4B

76 4C

77 4D

78 4E

79 4F

80 50

81 51

82 52

83 53

84 5·LJ

85 55

86 56

87 57

88 5:3

89 59

90 SA

I I
IV ISYNADAF ISame as register 0 on

I lentry to SYNAD
I I

IV ISYNADRLS I
I

III IBSP
I

II G;:jERV

III RLSEBF'R

III ASGNBFR

III BUFINQ

IV

III SPAR

III DAR

III

III

IV

III

I STA'I'US

III

IV SETPRT

IV

III SMFWTM *

I

IV

IV ATLAS

III DOM

III MOD88

III i.MSRV

IV XQMNGR

UCB address and Duffer
restart address

If zero
If 'negative

Routine code

Address of list of
ECB/IOB pointers
(optional>

j

SaThe as register 1 on
entry to SYNAD

DCb address

Parameter list address

Parameter list address

ParaIPeter list address

Parameter list address

Parameter list address

Fararoeter list address

Parameter list address

Pararf:eter list address

11l1essage address

Pararoeter list address

A DaM message I.D.
A pointer to a list of LOM
message I.Ds

DCB address

Parameter list address

QMf'A address

91 513 III VOLSTAT DCB address zero: issued by CLOSE
Non-zero: issued by EOV ________ ~ _____ ~ _______ ~ ____________ ~ ________________________ ~ __________________________ J

(Part 4 of 4)

90 ProgranunE~r I s Guide to Debugging (.kelease 19)

Completion codes issued by operating system
routines are often caused by problem
program errors. This appendix includes the
most common system completion codes, their
probable causes, and how to correct the
error or locate related information using a
dump. For a more comprehensive coverage of
completion codes, see the publication
Messages and Codes.

OCx A program check occurred without a
recovery routine. 1f bit 15 of the
old program PSW (PSW at entry to
ABEND) is on, the problem program had
control when the interruption
occurred; "x" reflects the type of
error that_causes the interruption:

~ Cause
1 Operation
2 Privileged operation
3 Execute
4 Protection
5 Addressing
6 specification
7 Data
8 Fixed-point overflow
9 Fixed-point divide
A Decimal overflow
B Decimal divide
C Exponent overflow
D Exponent underflow
E Significance
F Floating-point

The correct register contents are
reflected under the heading "REGS AT
ENTRY TO ABEND" in an ABEND/SNAP dump.
In a stand-alone dump, register
contents can be found in the register
save area for ABEND'S SVRB.

OFl A program check occurred in the
interruption handling part of the
input/output supervisor. The
applicable program check PSW can be
found at location 40(28). (In systems
with MFT, this PSW is valid only if
the first four digits are 0004).

The problem program can be responsible
for this code if:

1. An access method routine in the
problem program storage area has
been-overlaid.

2. An lOB, DCB, or DEB has been
modified after an EXCP has been
issued, but prior to the
completion of an event.

Appendix B: Completion Codes

If a trace table exists (trace opticn
was specified at system generation),
the instruction address in the new
program check PSW, location 104(68),
contains the address of a field of
register contents. This field
includes registers 10 throuqh 1 (PCP)
or 10 through 9 (MFT) on an AEEND/SNAP
dump, or 10 through 1 (both systems)
on a stand-alone dump.

If no trace table exists, the above
field contains registers 10 through 1
on both ABEND/SNAP (MFT only) and
stand-alone dumps.

OF2 Most frequently caused by incorrect
parameters passed to a type I SVC
routine.

100 A device has been taken off-line
without informing the system, or a
device is not operational.

If a trace table exists, the nost
current entry is an SIO entry
beginning with 30. The last 3 digits
of the first word give the device
address.

If a trace table does not exist,
register 1 (in the SVRB for the ABEND
routine> contains a-pointer to the lOB
associated with the device.

101 The wait count, contained in register
o when a WAIT macro instruction was
issued, is greater than the number of
ECBs being waited upon.

102 An invalid ~CB address has been given
in a POST macro instruction.

If a POST macro instruction has been
issued by the problem program, the ECB
address is given in register 1 of
either the trace table entry or the
SVRB for the ABEND routine.

If the POST was issued by an I/O
interruption handler, the ECB address
can be found in the lOB associated
with the event.

106 During a transient area load or a
dynamic load resulting from a LINK,
LOAD, XCTL, or ATTACH macro
instruction, the fetch routine found
an error. A description of the error
is contained in register 15 of ABEND's
SVRB register save area:

Appendix B: Completion Codes 91

OD ThE~ contl::ol program found an
invalid record type.

OE ThE~ control program found an
invalid address. The problem
program may contain a relocatable
expression that specifies a
location outside the partition
boundaries.

OF A permanent I/O error has
occurred. This error can probably
be found in the trace table prior
to the Al3END entry.

RegistE~r 6 of ABEND's SVH.B register
save area points to the work area used
by the fetch routine. This area
contains the lOB, channel program, RLD
buffer, and the BLDL directory entry
associated with the program being
loaded.

122 The operator canceled the job and
request.ed a Clump.

155 An unauthorized user (a user other
than Dynamic Device Reconfiguration)
has issued SVC 85. The user's task
has bee!D abnormally terminated by
Dynamic Device Reconfiguration.

201 This completion code is identical to
102, but applies to the WAIT macro
instruction instead of POST.

202 An invalid RB address was fofind in an
ECB. The RE address is placed in the
EeB wh€!n a W]!lIT macro instruction is
issued.

213 The error occurred during execution of
an OPEN macro instruction for a data
set on a direct-access device.
Either:

1. The data set control block (DSCB)
could not be found on the direct
access device.

2. An. uncorrectable input/output
error occurred in reading or
writing the data set control
block.

Register 4 contains the address of a
combined work and control block area.
This address plus x'64' is the address
of the data set name in the JFCBDSNM
field of the job file control block
(JFCB).

222 The operator canceled the job without
requesting a dump. The cancellation
was probably the result of a wait
state or loop.

301 A WAIT macro instruction was issued,
specifying an ECB which has not been
fosted complete from a previous event.
Either:
1. The FCB has been reinitialized by

the problem program prior to a
second WAIT on the same ECB, or

2. The high order bit of the ECB has
been inadvertently turned on.

308 The problem program requested the
loading of a module using an entry
point given to the control progra~m by
an IDENTIFY macro instruction.

Register 0 of LOAD's SVRB register
save area contains the address (or its
complement) of the name of the module
being loade~.

400 The control program found an invalid
lOB, DCB, or DEB. Check the following
tlocks for the indicated information:

• lOB - a valid DeB address.

• DCB - a valid DEB address.

• DEB - IV of OF and a valid UCB
address.

• UCB - a valid identification of
FF.

Note: In systems with MVT, this code
may appear instead of a 200 code, for
the reasons given under 200.

406 A program has the "only loadable"
attribute or has an entry point given
to the control program by an IDENTIFY
macro instruction. In either case,
the program was invoked by a LINK,
XCTL, or ATTACH macro instruction.

Register 15 of the LINK, XCTL, or
ATTACH SVRB register save area
contains the address of the name of
the program being loaded.

506 The error occurred during execution of
a LINK, XCTL, ATTACH, or LOAD macro
instruction in an overlay program or
in a program that was being tested
using the TESTRAN interpreter.

The program name can be found as
follows:

1. If a LOAD macro ins·truction was
issued, register 0 in the trace
table svc entry or in the SVRB
register save area contains the
address (or its complement) of
the program name.

92 Programmer's Guide to Debugging (Release 19)

2. If a LINK, XCTL, or ATTACH was
issued, register 15 of the
associated SVRB register save
area contains the address of a
pointer to the program name.

Note: Programs written in an overlay
structure or using TESTRAN should not
reside in the SVC library.

604 During execution of a GETMAIN macro
instruction, the control program found
one of the following:

1. A free area exceeds the
boundaries of the main storage
assigned to the task. This can
result from a modified FQE.

2. The A-operand of the macro
instruction specified an address
outside the main storage
boundaries assigned to the task.

60j During execution of a FREEMAIN rr,acro
instruction, the control program found
that part of the area to be freed is
outside the main storage boundaries
assigned to the task, possibly
resulting from a modified FQE.

Item 1 under the 604 completion code
is also applicable to 605.

606 During execution of a LINK, XCTL,
A'I'TACH, or LOAD macro instruct.ion, a
conditional GETMAIN request was not
satisfied because of a lack of
available main storage for a fetch
routine work area. Consequ~ntly, the
request was not satisfied.

The name of the load module can be
found as described under completion
code 506.

60A Results from the same situations
described under 604 and 605 for R-form
GETMAIN and FREEMAIN macro
instructions.

613 The error occurred during execution of
an OPEN macro instruction for a data
set on magnetic tape. An
uncorrectable input/output erl:'or
occurred in tape positioning or in
label processing.

700 A unit check resulted from an SIO
issued to initiate a sense co~mand.

The defective device can be determined
from the SIO trace table entry that
reflects a unit check in the csw
status.

704 A GETMAIN macro instruction requested
a list of areas to be allocated. This

type of request is valid only for
systems with MV'I·.

The applicable SVC can be found in a
trace tatle entry or in the PSW at
entry to ABEND.

705 Results from the same situations
described under 704 for FREEMAIN macro
instructions.

706 During execution of a LINK, LOAD,
XCTL, or A'ITACH macro instruction, the
requested load module was found to be
not executatle.

The name of the module can be found as
described under the co~pletion code
506.

S04 The error occurred during execution of
a GETMAIN ffacro instruction with a
mode operand of EU or VUe More main
storage was requested than was
available.

SOb The error occurred during execution of
a LINK, XCTL, ATTACH, or LOAD macro
instruction.

An error was detected by the control
program routing for the BLDL rracro
instruction. This routine is executed
as a result of these macro
instructions if the problem program
names the requested program in an EP
or EFLOC operand. The contents of
register 15 indicate the nature of the
error:

X'04' The requested program was
not found in the indicated
source.

X'OS' An uncorrectable
input/output error occurred
when the control program
attempted to search the
directory of the library
indicated as containing the
requested program.

Register 12 contains the address of
the BLDL list used by the routine.
This address plus 4 is the location of
the S-byte name of the requested
program that could not be loaded.

SOA The error occurred during execution of
an R-form GETMAIN macro instruction.
More main storage was requested than
was available.

Appendix B: Completion Codes 93

905 The address of the area to be freed
(given in a FREEMAIN macro
instruction) is not a multiple of
eight. The contents of register one
in either the trace table entry or
ABEND's SVRB register save area
reflect the invalid address.

90A Results from the same sit:uations
described under 905 for R-forms of
GETMAIN and FREEMAIN macro
instructions.

A05 The error occurred during execution of
a FREEMAIl~ ma.cro instruction. The
area to be freed overlaps an already
existing freE~ area. This error can
occur if the address or the size of
the area to be freed were incorrect or
modified.

']:he contents of registers 0 and 1 in
either the svc trace table entry or
ABEND's SVRB register save area
reflect the size and address.

AOA Results from the same situations
described under AOS for R-form of
GETMAIN and FREEMAIN macro
instructions.

B04 This error occurred during execution
of a GETIVlAIN ll1acro instruc·tion. A
subpool numbe:r greater than 127 was
specified. The problem program is
restricted to using subpools 0-127.
This error can occur if the subpool
number was ei ther incorrE~c·tly
specified or modified.

A displacement of nine bytes from the
list address passed to GETMAIN in

register 1 contains the subpool
nUffiber. ~egister 1 can be found in
either the SVc trace table entry or
ABEND'S SVRB register save area.

B05 Results froffi the saroe situation
described under B04 for a FRE~~lliIN
macro instruction&

BOA Results from the sarre situations
described under B04 and B05 for R-form
of GETMAIN ana FREEMAIN macro
instructions.

The subpool nurr.ber can be found in the
high order bytes of register 0 in
either the svc trace table entry or
ABhND's SV~~ register save area.

B37 The error occurred at an end of
volume. ThE control program found
that all space on the currently
mounted volumes was allocated, that
more space was required, and that no
volume was available for derr.ounting.

Eitner allocate more devices or change
the program so that a device will be
free when a volume must be mounted.

Fnn An SVC instruction contained an
invalid operand; nn is the hexadecimal
value of the svc.

This error can occur if either an
invalid instruction was issued by the
problerr. prograffi or an operand
referring to an optional function was
not inclu~ed during systerr generaticn.

94 Programmer's Guide to Debugging (Relea.se 19)

Appendix C: System Module Name Prefixes

All load modules associated with a specific operating system component have a common
prefix on their module names. This appendix lists the module name prefixes and the
associated system component(s).

Prefix

IBC

lEA

Component

Independent utility prograrr:s

Supervisor, I/O supervisor, and
NIP

IEB Data set utility programs

IEC Input/output supervisor

lEE

IEF

lEG

IEH

lEI

IEJ

Master scheduler

Job scheduler

TESTRAN

System utility programs

Assembler program during system
generation

FORTRAN IV E compiler

IEK FORTRAN IV H compiler

IEM PL/I F compiler

IEP COBOL E compiler

IEQ COBOL F compiler

IER Sort/Merge program

IES

lET

lEU

lEW

lEX

LEY

Report program generator

Asserrbler E

Assembler F

Linkage editor/overlay
supervisor/program fetch

ALGOL compiler

FORTRAN IV G compiler

IFB Bnvironment recording routines

IFC Environment recording and print
routines

component

IFD On line test executive program

IFF Graphic programrr-ing support

IGC Transient SVC routines

IGE

IGF

IGG

IHA

IHB

IHC

I/O error routines

Machine check handler program

Close, open, and related routines

System control tlocks

Assembler during expansion of
supervisor and data roanagerrent
rracro instructions

FORTRAN library subroutines

IHD COBOL library subroutines

IHE PL/I library-subroutines

IHF PL/I library subroutines

IHG Update analysis program

IHI

IHJ

IHK

lIN

IKA

IKD

Object program originally coded in
ALGOL language

Checkpoint/restart

Remote jot entry

7094 errulator program for the
Model 85

Graphic Job Processor

Satellite graphic jot processor
messages

IKE' USAS COBOL compiler

ILB USAS COBOL subroutines

Appendix C: System Module Name Prefixes 95

Appendix D: List of A,bbreviations

ABEND abnormal end-of-task

APR alternate path retry

CCW channel command word

CDE contents directory entry

CPU central processing unit

csw channel status word

CVT communications vector table

DAR damage assessment routine

DCB data control block

DDR dynamic device reconfiguration

DEB data extent block

DPQE dununy partition queue element

DQE descriptor queue element

ECB event control block

FBQE frE!e block queue element

FQE free queue element

FRB finch request block

GQE got:ten subtask area queue element

lOB input/ou1:put block

IPL initial program loading

IRB int:errupt: request block

LLE load list element

LPRB loaded program request block

LRB loaded request block

MFT

MVT

multiprograrrming with a fixed
number of tasks

multiprogramming with a variable
nUIT,ber of tasks

NIP nucleus initialization program

PCP primary control program

PIB partition information block

PQE partition queue element

PRE program request block

PSA prefixed storage area

PSW program status word

QCB queue control block

QEL queue element

RB request block

SCB STAE control block

SIO start input/output

SIRB supervisor interrupt request block

SPQE subpool queue element

SVC supervisor call

SVRB supervisor request block

SYSOUT system output

TCE task control block

TIOT task input/output table

UCB unit control block

XCTL transfer control

XL extent list

96 Programmer's Guide to Debugging (Release 19)

Appendix E: ECB Completion Codes

r-------------T---,
I Hexadeciwal I I
I Code I Meaning I
t-------------+---~
I 7FOOOOOO Channel program has terminated without error. (CSW contents can be I
I useful.) I
I I
I 41000000 channel program has terminated with permanent error. (CSW contents can I
I be useful.) I
I I
I 42000000 Channel program has terminated because a direct access extent address I
I has been violated. (CSW contents do not apply.) I

44000000

48000000

4FOOOOOO

channel program has been intercepted because of permanent error
associated with device end of previous request. You may reissue the
intercepted request. (CSW contents do not apply.)

Request element for channel program has been made available after it
has been purged. (CSW contents do net apfly.)

Error recovery routines have been entered because of direct access
error but are unable to read horne address of record O. (CSW contents

I
I
I
I
I
I
I
I
I
I

do not apply.) I _____________ 4 ___ J

Appendix E: ECB Completion Codes 97

Appendix F: UCB Sense Bytes

BYTE 0 BYTE 1 BYTE 2

DATA OVER-
OO-NON-XST TU

CMD INT BUS EO NOISE o l-NOT READY BITS 0-7 INDICATE A TRACK IS IN ERROR
REJ REO OUT CHK CHK RUN 1 O-ROY & NO RWD

l1-RDY & RWDNG

CMD INT BUS EO DATA
DATA TRK END TAG
CHK OVER- OF LINE

REJ REO OUT CHK CHK FlO RUN CYL CHK

CMD INT BUS EO DATA
REJ REO OUT CHK CHK

CMD SHaUL BUS SHOULD
2250 REJ NOT OUT NOT

OCCUR OCCUR

2280
CMD INT BUS EO
REJ REO OUT CHK

2282
CMD INT BUS
REJ REO OUT

1052, CMD INT BUS EO
2150 REJ REO OUT

CMD INT BUS EO
1285 REJ REO OUT CHK

CMD INT BUS EO DATA OVER-
1287 REJ REO OUT CHK CHK RUN

CMD INT BUS EO DATA OVER-
1288

REJ REO OUT CHK

CMD INT BUS EO
2495 REJ REO OUT CHK

2540, CMD INT BUS EO
2021 REJ REO OUT CHK

1403, CMD INT BUS EO
1443 REJ REO OUT CHK

1442,
CNID INT BUS EO

2501,
REJ REO OUT CHK 2520

2671, CNID INT BUS EO
2822 REJ REO OUT CHK

SHOU

2260
CMD INT BUS EO NOT
REJ REO OUT CHK OCCUR

2701, CNID IN[~uS EO \.Jf-\IM lOST TfME
2702 RES REO OUT CHK CHK RUN DATA OUT

1419/ CMD INT NOT DATA OVER- AlITO NOT
1275 REJ REO USED CHK RUN SELECT USED
PCU

1419/ CNID INT LATE
1275 REJ REO
SCU

98 programmer; s Guide to Debuggin';i Cr-..elEasc 19)

Appendix G: Service Aids

In addition to the debugging facilities discussed in this manual, IBM provides the
following service aid programs to aid you in debugging. A complete description of each
of these service aids and instructions for their use are found in the publication IBM
System/360 Operating System Service Aids, GC28-6719.

Program Name

IMDSADMP

IMDPRDMP

IMCJQDMP

IMBMDMAP

IMASPZAP

n.rlAPTFLS

Il'-'lAPI'FLE

Functional Description

A stand-alone program, assembled with user-selected options, that dumps
the contents of main storage onto a tape or a printer. ~he prograrr has
two versions:

• A high speed version that dumps the contents of main storage to a
tape.

• A low speed version that formats and dumps the contents of main
storage either to a tape or directly to a printer.

A problem program that reads, formats according to user supplied
pararr.eters, and prints the tape produced by execution of the stand-alone
dump program assembled from the service aid IMDSADMP. The format of the
printed output is similar to that produced by ABEND.

A stand-alone program that reads, formats, and prints either the entire
operating system data set SYS1.SYSJOBQE, or selects and prints
information related to a specific job in that data set. Because it
operates independently of the operating system, IMCJQDMP can print the
contents of the job queue as it appeared at the time of abnormal
te:r:mination.

A problem that produces a map of the system nucleus, any load module, the
resident reenterable load module area of an MFT system, or the link pack
area of an t'1VT system. The listing produced by this program shows the
locations of CSECTS, external references, and entry points within a load
rr.odule.

A problem program that can inspect and modify either data records or load
modules located on a direct access storage device.

A problem program that identifies program temporary fixes (PTE's) and
local fixes that have been applied to libraries.

A problem program that produces the job control language (JCL) statements
necessary to apply PTFs to a systerr; these JCL statements are tailored to
the user's individual system.

Appendix G: Service Aids 99

Appendix H:: Control Block Pointers

This appendix summarizes thE~ contents of the control blocks that are most useful in
debugging. control blocks are presented in alphabetical order, with displacements in
decimal, followed by the hexadecimal counterpart in parentheses. Figure 34 illustrates
control block relationships in the System/360 Operating syste~. Figure 35 shows
relationships between storaae control elements in a system with MV'I'.

CVT - Co~munications vector Table
+0 Address of TCB control words

1
+53(35) Address of entry point of ABTERM
+1.93(C1) Address of secondary CVT (used

only with Model 65
Multiprocessing systems)

DCB - Data Control Block
+40 (28-)--~:1dname (before open); offset to

(aftE~r open)
+45(2D)

f +69 (45)

ddname in TIOT
DEB address
IOB address

DEB - Data Extent Block
+1
+5
+25(19)

1+33(21)
+38(26)
+42(2A)

'rCB address
,~ddress of next DEB
DCB address
UCB address
Address of start of extent
Address of end of extent

ECB - Even1: Cont:t:"ol Block
+:C---- -RB address or completion code

IOB=-_ Input::t0ut~:!!-_ Bloc~
-7 Address of next IOB CBSAM, QSAM,

and BPAM)
+2
+5
+9

, +17(11)
+21 (15)

Sense bytes
ECB address
CSW
CCW list address
DCB address

RB - Request Block (PCP and MFT)
-8 Address of previous RB on load

list
-4
+0
+13(1)
+16(10)
+29(lD)

Address of next RB on load list
I'lodule name
Entry point address
Resume PSW
Address of previous RB

RB - Request Block (MVT)
+4 Last half of user"s PSW
+13(D) CDE address
+lb(10) Resume PSW
+29(lD) Address of previous kB

TIOT - Task Input/Output Table
+0 Job name
+8 Step name
+24(18) DD entries begin (one variable­

length entry for E~ach DD
state~ent)

+0 Length of DD entry
+4 ddnarne
+16(10)1 Device entries begin (one 4-byte

entry for each device)
+20(14) Next device entry (if there is

one) "",f.!!!ra.

(Next DD entry begins at 24(18)
plus length of first DD entry)

TCB - Task control Block (PCP and MFT)
+1
+9
+13(D)
+10(10)
+25(19)
+37(25)

Address of most recent RB
Address of most recent DEB
'rIOT address
Completion code
MSS boundary box address
Address of most recent RE on load
list

+113(71) Address of first save area
+It>l(Al) Address of S'IAE control block
+181(B5) Address of the job step control

TCB - Task control Block
(MFT) with Subtasking
+45(2D) Address of TCB for job step task
+129(81) Address of TCB for next subtask

attached by same parent task
+133(85) Address of TCB for parent task
+137(89) Address of TCB for most recent

subtask
+145(91) Address of ECB to be posted at ~

task completion
+181(BS) Address of the job step control

100 Programmer's Guide to Debugging (Release 19)

~1 j!I~IIIIRIIIIIIIIIiIIJIII_,_IIIIIIIIIIIiIIIJalllllllllllllllllilllllllltlllllllillllilllllllllllllWilllllilliilllllillii!Ji;._illbll __ ," J __ ".""",,. __ , ... ""_" ,"".,',_~

TCB - Task Control Block (MVT)
+1
+9
+13(0)
+16(10)
+25(19)
+33(21)
+37 (25)
+113(71)
+125(70)
+129(81)

Address of most recent RB
Address of most recent DEB
TIOT address
Completion code
Address of most recent SPCE
Bit 7 -- Non-dispatchability bit
Address of most recent LLE
Address of first save area
Address of TCE for job step task
Address of TCB for next subtask
attached by same parent task

+133(85) Address of TCB for parent task
+137(89) Address of TCB for mo~t recent

subtask
+145(91) Address of ECB to be posted at

task completion

+153(99)

+161(A1)
+181 (E5)

Address of dummy PCE minus 8
bytes
Address of STAE control block
Address of the job step control

UCB -
-4

Unit Control Block

+2
+4
+13(0)
+18 (12)
+19 (13)
+22(16)
+40(28)

CPU ID (used only with Model 65
Multiprocessing systerrs)
FF (UCB identification)
Device address
Unit name
Device class
Device type
Sense bytes
Number of outstanding RESERVE
requests (shared OASD only)

Appendix H: C.ontrol Block Pointers 101

n
o
lj
rt
11
o
I-'

to
o o
>t

~
o
fool·
lj
rt
(1)
H
CJl

Load List

16 (10),1--___ -1'

stepname
81--____ .,.

ddname

Repeated { 40
for each
de vi ce (28) 1-....... ___,.

81--_____ -1'"

12 (C) t TIOT

() t Load List
36 24 I-------t'

Active RB Queue

16 (10) I------r

4t-"""----r

28 (lC) jPrevious RB

24 (18) 1--"""------1'

32 (20) I--~ __ ---I'

40 (28) r--.--'----(

44 (2D) r---'------(

68 (44) i lOB Prefix

LJ)

:J>I
'd
'"0
ITJ
::J

81-____ f" 0,
)<

tIl
t TIOT

12 (C) I------f"

n
0
::J
rt

) • Load List
36 (24 t--I----r

11
0
1-1

tl1
1-1
0
0
:;.;"

t-c.i Load liSt
0 r-_______ A~ ______ _

::J
rT
II)

t"i
[II

~

0 8
w

Repeated {
for each 40
device (28) 1---'-------(16 (10) I-------t'"

41-....I----f"

28 (1 C) jPrevious RB

24 (18)1-...I-__ -r

16 (10)t------r

32 (20) I--...L-----i'

40 (28) t--,---'----r

44 (2D) t-........ ------r

68 (44) j lOB Prefix

-4

Sense

0 bytes

CC
4

8
C<:;W

12 (C)

16 (10) t CCW

t DCB
20 (14)

0 6

0l-..J-____ __�''

25 (19) ~...L'------t'

37 (25) ~-'-------t"

Load List ___ S_u_b_po~~ Queue

Descriptor Queue

r-_____ Co_n_t_en~t~ Directory

8

12 (C)I--~-___ .y

16 (lO)r--tGi~:.=....:.:...--nmlJ~m'iili£1l1F1liJ;~~
20 (14)L------1...~ ___ ..v

Figure 35. MVT storage Control Flow

Location CSECT - 1

Location CSECT -N

Appendix H:

Active RB Queue

MVT
Storage Control

Pointers

Control Block Pointers 105

~,

""----------------------------,

.......

Indexes to systems reference library
manuals are consolidated in the publication
IBM System/360 Operating System: Systems
Reference Library Master Index, GC28-6644.
For additional information about any
subject listed below, refer to other
publications listed for the same subject in
the Master Index.

When more than one page reference is
given, the major reference is first.

Abbreviations, list of 96
ABEND dwnps

contents of (MVT) 49-67
contents of (PCP,MFT) 36-47
guide to using (MVT) 66-67
guide to using (PCP,MFT) 47,48
how to invoke (MVT) 49
how to invoke (PCP,MFT) 33
introduction to 9
samples of (MVT) 50,51
samples of (PCP) 34,35

ABEND macro instruction 33
Abnormal termination, cause of

in an ABEND/SNAP dump (MVT) 66
in an ABEND/SNAP dump (PCP,MFT) 47

Abnormal termination dumps (see ABEND
dumps)

Active RB queue
description of 13

81,82
85
79

81,82
85
79

instructions for using 30
in a core image dump (MFT)
in a core image dump (MVT)
in a core image dump (PCP)
in a stand-alone dump (MFT)
in a stand-alone dump (MVT)
in a stand-alone dump (PCP)
in an ABEND/SNAP dump (MVT)
in an ABEND/SNAP dump

55-56,67

(PCP,MFT) 40-41,47
in an indicative dump 70

AMWP bits
in an indicative dump 70
meaning of 31

APSW field, in an ABEND/SNAP dump
(MVT) 55,66

ATTACH macro instruction, effects of
Attaching subtasks 17,18

Boundary
problem program 31,43

catalog dump 33,34
CDE

as used with the load list 14
format of 23,24
in an ABEND/SNAP dump 57
in a core image dwnp 85
in a stand-alone dump 85

15,16 I

CHAP macro instruction 18
Corr'munications vector table (see CVT)
Corr,plete dump (MVT)

description of 49
sample of 50,51

Completion codes
description of common 91-94
explanation of 30
in an ABEND/SNAP dwnp (MVT) 52
in an ABEND/SNAP dump (PCP,MF'I) 38
in an indicative dump 69

COND parameter,
to regulate jeb step execution 34
to regulate space deletion 3b

Contents directory
description of' 14,23-24
entries (see CDE)

Control blocks
descriptions of 25-26
pointers in 100-101
relationships between 25
use in debugging 31

Contrel information 10
Control program nucleus

ABEND/SNAP (MVT) 63
ABEND/SNAP (PCP,MFT) 46-47

Core image dumps
contents of 73

CVT

guide to using (MFT) 80-84
guide to using (MVT) 84-86
guide to using (PCP) 79,80
intro9uction to 71

description of 25
in a core image dump (PCP) 80
in a stand-alone dump (PCP) 80
pointers in 100

Data cont~ol block (see DCB)
Data event control block 25
Data extent block (see DEB)
Damage assessment routine (DAR) 71
DCB

description of 25
in a core image dump (MF'l) 83
in a core image dump (MVT) 86
in a core image dump (PCP) 80
in a stand-alone dump (MFT) 83
in a stand-alone dwnp (MVT) 86
in a stand-alone dump (PCP) 80
pointers in 100

DD statements

INDEX

required with ABEND/SNAP dumps 33-34
sample of SYSABEND 36

DEB
description of 25
in a core image dwnp (MFT) 83
in a core image dump (MVT) 86
in a core image dump (PCP) 80
in a stand-alone dump (MFT) 83

Index 107

DEB (continuE~d)
in a stand-alont2 dump (MVT) 86
in a stand-alone dump (PCP) 80
in an ABEND/SNAP dump (MVT) 58
in an ABEND/SNAP dump (PCP ,1'1FT) 44
pointers in 100

DEB queue
in a core image dump (MFT) 83
in a core image dump (MVT) 86
in a core 1mage dump (PCP) 80
in a stand-alone dump (MFT) 83
in a stand-alone dump (MVT) 86
in a stand-alon42 dump (PCP) 80
in an ABEND/SNAJI? dump (MVT) 53
in an ABEND/SNAP dump (PCP,MFT)

Debugging procedure
description of 30-32
summary 32

DECB 25
DELETE macro instruction 14
Dequeued elements 37
Descriptor queue element (see DQE)
Destroyed queues 37
Device considerations,
for ABEND/SNAP dumps 33-34

Dispatcher trace table entry (MVT)
format of 28
in a SNAP dump 64,66
in a core image dump 84-85
in a stand-alone dump 84-85

Dispatching priority 17-18
Displacements, how shown 9
DQE

format of 22-23
in a core image dump
in a stand-alone dump
in an ABEND/SNAP dump

86
86
59,67

38

Dump (see individual type
ABEND, indicative)

of dump, e. g • ,

Dump data set.
MVT 49
PCP,MFT 33

Dynamic area

ECB

in systems with MVT 18
in systems with MFT 17
in systems with PCP 16-17

completion codes, list of 97
description of 25
in a core image dump (MFT)
in a core image dump (MVT)
in a core image dump (PCP)
in a stand-alon,e dump (MFT)
in a stand-alon,e dump (MVT)
in a stand-alonle dump (PCP)
pointers in 100

83-84
86

posting of, using ATTACH 16
Event control block (see ECB)
Extent list (see XL)
External interruption 31,32
External trace table entry

format of 28
in a SNAP dump 64,66-67
in a core image dump 84-85
in a stand-alonle dump 84-8~

80
83-84
86
80

FBQE
format of 21-22
in a core image dump 86
in a stand-alone dump 86
in an ABEND/SNAF dump 60,67

I
FINCH request block 11-12
Finding the partition TCB 81
FRB 11-12
Fixed area

FQE

in systems with MFT 17-18
in systems with MVT 18
in systems with PCP 16

format of (MFT,PCP) 19
forrrat of (MVT) 23

84
80

84

in a core image dump (MF'l)
in a core image dump (PCP)
in a stand-alone dump (MFT)
in a stand-alone dump (PCP)
in an ABEND/SNAP dump (MVT)

80
59,67

Free areas
in a core image dump (MFT) 84
in a core image dump (PCP) 80
in a stand-alone dump (MFT) 84
in a stand-alone dump (PCP) 80
in an ABEND/SNAP dump (~CP,MFT)

Free block queue element (see FBQE)
Free queue element (see FQE)

General debugging procedure
description of 30-32
summary 32

GETMAIN macro instruction 20
Got~cn subtask area 18-20

47

Gotten subtask area queue element 20-21
GQE 20-21
Guide to using core image or a stand-alone

dump 78

Hardware error 31
Hierarchy, main storage 19-21

IEAPRINT 71,72
IMAP'I'FLE 99
IMAPTFLS 99
lMASPZAP 99
IMBMDMAP 99
IMCJQDMP 99
IMDPRDMP 99
IMDSADMP 99
Indicative dumps

contents of 68-70
description of 68
guide to using 70
introduction 9

In~ut/output block (see
Interrupt request block
Interruptions 31-32
Introduction 9
lOB

description of 25

lOB)
11

in a core image dump (MF'l)
in a core image dump (MVT)

83
86

108 Programmer' 5 Guide to Debugging tkelease 19)

'~

lOB (continued)
in a core image dump (PCP) 80
in a stand-alone dump (MFT) 83
in a stand-alone dump (MVT) 86
in a stand-alone dump (PCP) 80
pointers in 100

I/O interruption 31-32
I/O trace table entry

format of 28
in a core imag-e dump (MFT) 83
in a core image dump (MVT) 84-85
in a core image dump (PCP) 79
in a stand-alone dump (MFT) 83
in a stand-alone dump (MVT) 84-85
in a stand-alone dump (PcP) 79
in a SNAP dump (MVT) 64,66-67
in an ABEND/SNAP dump (PCP,MF'r)

IRB 11,12

I
Job pack area 14-15
Job pack area queue
Job step 16-18

14-15

Job step task (MVT) 18,49
I JPAQ 14,15

Keep dump 33-34

45,47

LINK macro instruction, effects of 15
Link pack area (MVT) 18
LLE

count field 14
description of 14
in an ABEND/SNAP dump (MVT) 53

Load list
description of 14
instruction for using 30,32
in a core image dump (MFT) 82
in a core image dump (MVT) 85
in a core image dump (PCP) 79
in a stand-alone dump (MFT) 82
in a stand-alone dump (MVT) 85
in a stand-alone dump (PCP) 79
in an ABEND/SNAP dump (MVT) 56,66
in an ABEND/SNAP dump (PCP,MFT)

41-42,47
in an indicative dump 69
in systems with MVT 14
in systems with PCP or MFT 13-14

Load list element (see LLE)
LOAD macro instruction, effects of 16·
Load module, storage control for

in an ABEND/SNAP dump (MVT) 56-57,67
in systems with MVT 23-24

Loaded program request block 11,12
Loaded request block 11,12
LPRB 11,12
LRB 11,12

Main storage hierarchy support
inclusion of 19-21
effects on MSS boundary box
effects on partition queue

19-20
19

Main storage layout
in systems with MFT with suntasking

17-18
in systems with MFT without subtasking

17
in the systems with MVT 18
in system with PCP 11-17

Main storage management 10
Main storage supervisor's boundary box

(see MSS)
Machine check interruption 31-32
MFT, systems with

considerations in using an AEENL/SNAP
dump of 47-48

contents of an ABEND/SNAP dump of 36-47
guide to using a core imag-e

dump of 80-84
guide to using a·stand-alone dump of

80-84
how ·to invoke an AEEND/SNAP

dump of 33-34
main storage layout in 17,18
storage control in 20-21
task control characteristics of 17-18
trace table entries in 25,82-83

Model 65 Multiprocessing system
trace table formats 28
prefixed storage area, as shown in an

AEEND/SNAP dump (MVT) 63
trace table entries in a SNAP durrp 65

Module name prefixes, list of 95
description of (MFT) 20
description of (PCP) 19
in a core image dump (MFT) 84
in a core image dump (PcP) 80
in a stand-alone dump (MFT) 84
in a stand-alone dump (PCP) 80
in an ABEND/SNAP dump (MVT) 58-59
startinq address (PCP,MFT) 38

Multiprogramming with a fixed nurr,ber of
tasks (see MFT, systems with)

Multiprogramming with a variable number of
tasks (see MVT, system with)

MVT, systems with
com~lete ABEND/SNAP dump of ~0-51
contents of an ABEND/SNAP dum~ 49-66
guide to using a core image dump
of 84-86

guide to using a stand-alone dump of
84-86

guide to using an ABEND/SNAP dump
of 66-b7

how to invoke an ABEND/SNAP dump of 49
load list in 14
main storage layout in 18
storage control in 22-24
task control characteristics in 18
trace table entries in 28,84-8~

Nucleus
contents of 16-18
in an AEEND/Sl~AP dump (IvlVT) 63
in an ABEND/SNAP dump (PCP,MFT) 47

Only loadable (OL) 11
Option 2 (see i'1}-'I, systerrs with)

Index 109

option 4 (see MVT, systems wit.h)
Overlaid problem program 37

Partition (MFT) 17-18
Partition queue element (see PQE)
Partition TCBs 81
PCP, system with

contents of an ABEND/SNAP dump of 37-47
guide to using a core image dump
of 79-80

guide to using a stand-alone dump of
79-80

guide to using an ABEND/SNAP
dump of 47-48

how to invoke an ABE.ND/SNAP dump
of 33-34

load list in 13-14
main storage layout in 16
storage control in 19
task control characteristics of 16-17
trace table entries in 28,79-80

PIE 38,52
Pointers, control block 100-101
PQE

format of 21
in a core image dump 86
in a stand-alone dump 86
in an ABEND/SNAP dump 59-67

PRB 11
Prerequisite publications 3
primary cont:rol program (see PCl?, systems
with)

Priority 17,18
Problem prog:ram, how to locate in a

dump 30-32
Problem program storage boundaries, in an

ABEND/SNAP dump (PCP, MFT) 43
Program check interruption 31
Program check old PSW

in an ABEND/SNAP dump (MVT) 55,66
information in 31

Program check trace table entry
format of 28
in a SNAP dump 64-65
in a core image dump 80-85
in a stand-alone dump 80-85

Program inte:cruption element (see PIE)
Program request block 11
Protection key 38
PSW at entry to ABEND

in an ABEND/SNAP dump (MVT) 52
in an ABEND/SNAP dump (PCP,MFT) 38

PSW, program check old (see proqram check
old PSW)

PSW, resume (see resume PSW)

QCB 60
Queue elemenits (MVT) 19,21-24
Queues destroyed 37

RB
as affectl~d by :LINK, ATTACH, XCTL and

LOAD 15,-17
formats of 10-12

RB (continued)
in an ABEND/SNAP dump eM""""" • .!.. ~ J. JI 55-56
in an ABEND/SNAP dump

(PCP,MFT) 40-41,47
in an indicative dump 69-70
most recent 38,52
name field, in a dump 30,32
purpose of 12-13
pointers in 100
pointers to, in a core image dump

(ME'T) 81-82
pointers to, in a core image dump

(MVT) 86
pointers to, in a core imaqe dump

(PCP) 79
pointers to, in a stand-alone dump

(PCP) 79
queue (see active RB queue)
sizes of 11-12
types of 10-12
usefulness in debugging 10-11,26,28
when created 11-15
which ones apr:;ear in a dump 30-31

Re-creating the task structure
MF~ with subtasking 81
IWT 85

Reenterable load module area (MFT) 17
Reference publications 3
Region (MVT)

contents of, in a core image dump 86
contents of, in a stand-alone dump 86
contents of, in an ABEND/SNAP dump 67
descrir:;tion of 18
storage control for 21-22

Register contents
in a save area 27
in an ABEND/SNAP dump (~VT) b3-64
in an ABE.ND/SNAP dump (PCP .. MF~') 46
in an indicative dump 69

Request block (see RE)
Resume PSW

description of 11
in an ABEND/SNAP dump (MVT) 56,65
in an ABEND/SNAP dump (PCP,MFT) 41,47
in an indicative dump b8,10

Retain durrp 33-34
Rollout/rollin

effects on partition queue 20

Save areas
forrriat of 27
in an ABEND/SNAP dump (MVT) 61-62
in an ABEND/SNAP dump (PCP,MFT) 43

Sense bytes, UCE
in a core image dump (MFT)
in a core image dump (MVT)
in a core iThage dump (PCP)
in a stand-alone dump (MFT)
in a stand-alone dump (MVT)
in a stand-alone dump (PCP)
table of 98

83
8b
80

83
86
80

Sequential partitioned system (see MFT,
systems with)

Sequential scheduling system (see PCP,
systerr.s with)

Service aids 99

110 Programmer's Guide to Debuqging (Release 19)

~.

set system mask trace table entry
format of 29
in a core image dump (MVT) 84-85
in a stand-alone dump (MVT) 84-85
in an ABEND/SNAP dump 64-65

SIO trace table entry
format of (MFT) 28
format of (MVT) 28-29
format of (PCP) 28
in a SNAP dump (MVT) 64-65
in a core image dump (MFT)
in a core image dump (MVT)
in a core image dump (PCP)
in a stand-alone dump (MFT)
in a stand-alone dump (MVT)
in a stand-alone dump (PCP)
in an ABEND-SNAP dump

(PCP,MFT) 45,47-48
SIRB 11-12
SNAP dumps

82-83
84-85
79-80

82-83
84-85
79-80

contents of (MVT) 49-66
contents of (PCP,MFT) 36-47
guide to using (MVT) 66-67
guide to using (PCP,MFT) 47-48
how to invoke (MVT) 49
how to invoke (PCP,MFT) 33-34
introduction to 9

SNAP macro instruction 33
Snapshot dumps (see SNAP dumps)
Space considerations, for ABEND/SNAP

dumps 33-34
SPQE

format of 22-23
in a core image dump 86
in a stand-alone dump 86
in an ABEND/SNAP dump 58,67

SQS (see system queue space)
SSM (see set system mask trace table entry)
Stand-alone dumps

areas shown on 75-76
description of 75-76
contents of 75-76
guide to using (MFT) 80-84
guide to using (MVT) 84-86
guide to using (PCP) 79-80
how to invoke 75
introduction to 9

Storage control
in systems with MFT with subtasking 20
in systems with MFT without subtasking

20-21
in systems with MVT 21-24
in systems with PCP 19

Sub pool
definition of 22
in a core image dump 86
in a stand-alone dump 86
in an ABEND/SNAP dump 58-59,67
queue elements (see SPQE)

subtask, as created by ATTACH 15-16
Supervisor calls, list of 87'-90
supervisor interrupt request block 11-12
supervisor request block 11-12
SVC interruption 31-32
SVC trace table entries

format of (MFT) 28
format of (MVT) 28
format of (PCP) 28

SVC trace table entries
in a SNAP dump (MVT)
in a core image dump
in a core image dump
in a core irr.age dump
in a stand-alone dump
in a stand-alone dump
in a stand-alone dump
in an ABEND/SNAP dump

svcs, list of 87-90
SVRB 11-12
SYSABEND DD statement

description of 33-34
samples of 33

(continued)
64-65-

(MFT) 83
(MVT) 84-85
(PCP) 79-80

(MFT) 83
O'.lVT) 84-85
(PCP) 79-80
(PCP,MFT) 45,47

SYSOUT, as a dump data set 33-34
System control blocks (see control blocks)
System differences in task control 16-18
System failure 71
System queue space U"-VT) 18
System tasks 16-18
System wait TCE 85
SYS1.DUMP data set 71
SYS1.SVCLIB
SYSUDUMP DD statement 33-34

Task completion code (see completion codes)
Task control block (see TCB)
Task control differences, by system 16-18
Task dispatching priority 17-18
Task input/output table (see TIOT)
Task management 10-12
Task supervision 10-12
Task structure, recreating the, using a

core image dump (MVT) 85
Task structure, recreating the, using a

stand-alone dump (MVT) 85
Task switch trace table entry (MFT)

forrrat of 28
in core image dump 82-83
in a stand-alone dump 82-83
in an ABEND/SNAP dump 47

Task switching (MFT) 17-18
TCE

description of 10
in an ABEND/SNAP dump (MVT) 52-54
in an ABEND/SNAP dump (PCP,MFT) 38-40
information available through 10
locating, in a core image dump 85
locating, in a stand-alone dump 85
pointers in 100-101
pointers to, in a core image dump (NFT)

76
pointers to, in a stand-alone dump

(MFT) 81
queue (MFT) 17
queue (MVT) 18
relationships 17-19

TCBLTC 17,100-101
TCBNTC 17,100-101
TCBOTC 17~10Q-101
TCBTCB 17,100-101
Termination, abnormal (see abnormal
termination)

TIOT
description of 25
pointers in 100

Index 111

Traces 27-29
'rrace table

control block 79,82,84
delimiting entries, in an ABEND/SNAP

dump (I~FT) 47
description of 27-29
format of entries (MFT) 28
format of entries (MVT) 28
format of entries (PCP) 28
format of entries

(Mod 65 multiprocessing systen:s) 29
in a SNAP dump (MVT) 64-65
in a core image dump (MFT) 82-83
in a core image dump (~VT) 84-85
in a core image dump (PCP) 79-80
in a stand-alone dump (MFT) 82-83
in a stand-alone dump (MVT) 84-85
in a stand-alone dump (PCP) 79-80
in an ABEND/SNAP dump (PCP,MFT) 45
samples of entries (MFT) 82-83
samples of entries (MVT) 84-85
samples of entries (PCP) 79-80
usefulness in debugging 31-32

UCE
description of 25
in a core image dump (MFT) 83
in a core ireage dump (MVT) 86
in a core 1mage dump (PCP) 80
in a stand-alone dump (MFT) 83
in a stand-alone dump (MVT) 86
in a stand-alone dump (PCP) 80
in an ABEND/SNAP dump (PCP,MFT) 44
pointers in 101

Unit control block (see UCB)
Use count 15-17

XCTL rracro instruction, effects of 16
XL

description of 24
in a core image dump 86
in a stand-alone dump 86
in a ABEND/SNAP dumps 57,67

112 Programmer's Guide to Debugging (Release 19)

GC28-6670-3

Intern1ltional Business Machines Corporation
Data Processing Division
112 East Post ROB.d, White Plains, N.Y.106Ot
IUSAOnly]

IBM World Trade Corporation
821 United Natiollls Plaza" New York, New York 10017
(International]

V'
o
o
Vl

o
<II
cr
C
(0

eg.
::I

(0

Q
c
a.:
<II

Q
()
N
00

~
"'l o
I

W

READER'S COMMENT FORM

IBM System/360 Operating System
Programmer's Guide to Debugging

Order No. GC28-6670-3

• Is the material: Yes No
Easy to read? 0 0
Well organized? 0 0
Complete? 0 0
Well illustrated? 0 0
Accurate? 0 0
Suitable for its intended audience? . 0 0

• How did you use this publication?
o As an introduction to the subject Other.
o For additional knowledge

• Please check the itenlS that describe your position:
o Customer personnel 0 Operator
o IBM personnel 0 Programmer
o Manager 0 Customer Engineer
o Systems Analyst 0 Instructor

o Sales Representative
o Systems Engineer
o Trainee
Other.

• Please check specific criticism (s), give page number (s), and explain below:
o Clarification on page (s) 0 Deletion on page (s)
o Addition on page (s) 0 Error on page (s)

Explanation:

• Thank you for your cooperation. No postage necessary if mailed in the U.S.A.

GC28-6670-3

YOUR COMMENTS, PLEASE ...

This manual is part of a library that serves as a reference source for systems analysts,
programmers and operators of IBM systems. Your answers to the questions on the back
of this form, together with your comments, will help us produce better publications for
your use. Each reply will be carefully reviewed by the persons responsible for writing
and publishing this material. All comments and suggestions become the property of IBM.

Note: Please direct any requests for copies of publications, or for assistance in using your
IBM system, to your ll3M representative or to the IBM branch office serving your locality.

Fold

I I BUSINESS REPLY MAIL

~'-!_O_P_O_S_TA_G_E_S_TA_MP NECESSARY IF MAILED IN THE UNITED STATES

Attention: Programming Systems Publications
Departme,nt DS8

Fold

POSTAGE WILL BE PAID BY •••

IBM Corporation

P.O. Box 390

Poughkeepsie, N.Y. 12602

Interna-tional BllIsiness Machines Corporation
Data Processing Division
112 East Post Road, White Plains, N.Y. 10601
[USA Only)

IBM World Trade Carpor,ation
821 United Nati[lns PlaziL, New York, NewYDlrk 10017
[International]

Fold

FIRST CLASS
PERMIT NO. 81
POUGHKEEPSIE, N. Y.

•

• .

Fold

()

s.

v:i
0-
o
o
Vl

o
<b
()
C

co
<e.
::l

co

Vl
W
0-
o
I
tv
..s

G>
()
tv
(X)
I

0-
0-
'I o
I

W

