File No. $360-20 [
GC28-6670-3 as

IBM Systems Reference Library

IBM System/360 Operating System:

Programmer’'s Guide to Debugging

This publication describes the major debugging
facilities provided with the System/360
Operating System for the assembler language
programmer:

Abnormal termination and shapshot dumps.
Indicative dumps.

Core image dumps.

Stand-alone hexadecimal dumps.

The text explains those aspects of system
control pertinent to debugging facility offers,
and outlines procedures for invoking and
interpreting dumps issued at the three operating
system levels: PCP, MFT, and MVT.

Debugging facilities inherent in higher
languages and additional aids open to the
assembler language programmer are discussed
in other SRL publications.

Fourth Edition (June, 1970)

This is a major revision of, and obsoletes C28-6670-2. The
new subtasking option of the MFT control prograr is
described, and those control differences that must be
understood to debug a program run on a subtasking system are
explained. All changes to the text, and small changes to
illustrations, are indicated by a vertical line to the left
of the change. New figures have been added. Changed and
added illustrations are denoted by the symbcl e to the left
of the caption.

| This editicn applies to release 19 of IBM System/360
Operating System and to all subsequent releases until
otherwise indicated in new editions or Technical Newsletters.
Changes are continually made to the information herein;
before using this publication in connection with the
operation of IBM systems, consult the latest IBM System/300
Newsletter, Order No. GN20-0360, for the editions that are
applicable and current.

Requests for copies of IEM publications should be made to
your IBM representative or to the IEM branch office serving
your locality.

A form for readers' comments is provided at the kack of
the publication. If the form has been removed, comments may
be addressed to IBM Corporation, Prograrming Systems
Publications, Department D58, P.C. Box 390, Poughkeepsie,
N. Y. 12602

© Copyright International Business Machines Corporation 1967,1968,1969,1970

This publication is intended to help you
use the debugging facilities provided with
the IBM System/360 Operating System. To
fulfill this purpose, the publication is
divided into two sections: "Section 1:

! Operating System Concepts,” and "Section 2:

Interpreting Dumps."™ You should read the
introduction to familiarize yourself with
the debugging facilities before proceeding
to Section 1.

Section 1 deals with internal aspects, of
the operating system that you should know
to use the debugging facilities
efficiently. A working knowledge of this
information will provide you with the means
of determining the status of the system at
the time of the failure, and the course of
events which led up to that failure. It
includes information from other System
Reference Library publications, Program
Logic Manuals, and Installation Guides.

You should be familiar with the information
covered in Section 1 before attempting to
use Section 2.

Section 2 includes instructions for
invoking, reading, and interpreting dumps
issued by systems with PCP, MFT, and MVT.
It presents an after-the-fact look at a
dump. You've put in a run, it failed, and
you now have a dump before you. Where do
you start; what do you look at; what does
it all mean? The section begins with a
general debugging procedure, followed by
topics dealing with each type of dump.
Each topic tells how to invoke a particular
dump, what information the dump contains,
and how to use this information in
following the debugging procedure. The
material in Section 2 is intended to aid
you in interpreting dumps and isolating
errors.

Before reading this publication, you
should have a general knowledge of
operating system features and concepts as
presented in the prerequisite publications.

Preface

Occasionally, the text refers you to other
publications for detailed discussions
beyond the scope of this book.

For information on debugging facilities
provided within higher languages, consult
the programmers' guides associated with the
respective languages. Other System/360
Operating System publications, such as
TESTR2AN and Messages and Codes, descripe

additional debugging aids provided for the
assemkler language programmer.

Prerequisite Publications

IBM System/360: Principles of
Operation, GA22-6821

IBM System/360 Operating System:

Introduction, GC28-6534

Concerts and Facilities, GC28-6535

Supervisor and Lata Management Services,
GC28-66U46

Reference Publications

IBM System/360 Operating System:

System Control Blocks, GC28-6628

Messages and Codes, GC28-6631

Supervisor and Data Management Macro
Instructions, GC28-6647

System Programmer's Guide, GC28-6550

Service Aids, GC28-6719

N

SUMMARY OF MAJOR CHANGES - RELEASE 19 .

INTRODUCTION o « 4 o o o o o o o o o o =

SECTION 1:
Task Management . .

OPERATING SYSTENM CONCEPTS .

Request Blocks .
Active RB Queue
Load List
Job Pack Area Queue (MFT with

Task Control Block .

s s & @ s
.

o s e

Subtasking only) . . « « . < . .
Effects of LINK, ATTACH, XCTIL,
LOAD o ¢ o o « o w o o o o o « &
System Task Control Differences
Main Storage Superv131on « e o -

Storage Control in Systems Wlth PCP
Storage Control in Systems with WMFT

(Without Subtasking) . «
Storage Control in Systems with
MFT (With Subtasking)
Storage Control for a Region in
Systems with MVT . « . . « « . .
Storage Control for a Subpool in
Systems with MVT
Storaqe Control for a Load Module
in Systems with MvTr
System Control Blocks and Tables . .
Communications Vector Table (CVT)
Task Input/Output Table (TIOT) .
Unit Control Block (UCB)
Event Control Block (ECB) . . .
Input/Output Block (IOB)
Data Controcl Block (DCB) . . .
Data Extent Block (DEB)
Summary of Control Block
Relationships . « ¢« &« « « « . .
TraceS « o o o o o o o o o o o o o @
Save Area Chain . . « « « o « &
Trace Table . . « '« ¢ &« ¢ o « &

SECTION 2: INTERPRETING DUMPS . . .
General Debugging Procedure . .
Debugging Procedure Summary -

ABEND/SNAP Dump (Systems with PCP and

MFT) . « . . . e« e e o e a = o =
Invoking an ABEND/SNAP Dump
(PCP,MFT) e o o o ® 4« e e o .
contents of an ABEND/SNAP Dump
(PCP,MFT) e o e« + e o o e o = o

and

Guide to Using
(PCP, MFT) . .

Contents

an ABEND/SNAF Dump

e e o e . .

ABEND/SNAP Dump (Systems w1th MVi) .

Invoking an ABLND/SNAP Dump

Contents of an
(MVT)
Guide to Using
(MVT) e o 4 e
Indicative Dump .
Contents of an
Guide to Using

(MVT)
ABEND/SNAP Dump
an ABEND/SNAP Dump

Indicative pDung .
an Indicative Dump

Core Irage Dump . « « « « = -
Damage Assessment Routine (DAR) .
System Failure . . ¢ & o & o o o« .
The SYS1.DUMP Data Set

TALE o ¢ o o o o o o s s o o o

Direct Access . . - s e e .
The Print Dump Program (IEAPRINT)

Input to the Print Dump Program

Output From the Print Dump Program

Contents of a Core Image Dump . .
Low Storage and Registers . . .
Main Storage .« . o « ¢ » ¢ o o =

Stand-Alone DUNE & o« « = o o o o «
Invoking a Stand-Alone Durp . .
Contents of a Stand-Alone Dump .

Guide to Using a Core Image or a

Stand-Alone DUNMP « « « « = « « « « &
Guide to Using a PCP Dump . . .
Guide to Using an MFT Dump . . .
Finding the Partiiton TCBS . . .

Guide to Using an MVT Durp . . .
APPENDIX A: SVCs e e o o s e s = @
APPENDIX B: COMPLETION CODES . . .
APPENDIX C: SYSTEM MODULE NAME

PREFIXES o « o o o« o o o« a o o o o =

APPENDIX D: LIST OF ABBREVIATIONS .
APPENDIX E: ECB COMFLETION CODES .
APPENDIX F: UCB SENSE BYTES
APPENPIX G: SERVICE AIDS
APPENDIX H: CONTROL BLOCK PCINTERS

INDEX &« o ¢ o o o o o o o s o s = =

100

.107

Illustrations

Figure 1.

Control Information

Available Through the TCB .

Figure 2.
Figure 3.
Figure 4.
Figure 5.
Figure 6.
(pPCP) « . o
Figure 7.

Figure 8.
Figure 9.
(MVT) « o =
Figure 10.
Figure 11.

Fiqgure 12.

RB Formats « e
Active RB Queue
Load List (PCP, MFT
Job Pack Area queune

)

Main Storage Snapshot

e e o = s e .

-

Main Storage Snapshot (MFT
Without Subtasking)« .
Main Storage Snagpshot (MFT
With Subtasking) . . . « . .« .
Main Storage Snapshot

Storage

Control (PCP) .

Storage Control for a
Partition (MFT Without Subtasking)

Storage Control for Suabtask

Storage (MFT with Subtasking)
Storage Control for a

Figure 13.
Region (MVT)
Figure 14.

Storage Control for a

Subpool (MVT) « 2 e o e = = @
Storage Control for a Load

Figure 15.
Module (MVT)
Figure 16.

. s+ e a e e s

Control Block

Relationships . . «

Figure 17.
Figure 18.
Figure 19.

Save Area Trace .

Trace Table Entries (PCP)

Trace Table Entries

(MFT)

17

18

18
19

20

20

22

23

Figure 20. Trace Table Entries (MVT)
Figure 21. Trace Table Entries (MVT
with Model 65 multiprocessing) « . .
Fiqure 22A. Sample of an ABEND Dunp
(pPCP, MFT) e & e = & o e o s o & =
Figure 228. Samrple of an ABEND Cunp
(PCP, MFT) v v 2 v v« o o o o o o « o «
Fiqure 23. SYSABEND DD Statements -
Figure 24A. Sample of Complete AREND
Dump (MVT) e« e & o s s s s a » & o =
Fiqure 24E. Samrple of Complete ARKND

Durrp (MVT) “ s e e s s e e e e s s e
Fiqure 25. Contents of an Indicative
Dump . e « e e e 4 e s e e e e

Figure 26. Samgple JCL Statement
Required for IEAFRINT . . o o o o o =«
Figure 27. Samxple of a Core Image

Durp e 4 e o e+ a‘s 8 s e s & s o s @
Fiqure 28. Sample of a Stand-Alone
Dump e e s @ s = = e e = = ®w @ o = =

Figure 29. sSamrle Trace Table Entries
(PCP) e e o 8 8 s e e = e e e & a «
Figqure 30. Re-Creating the Task
Structure . . <« ¢ ¢ ¢ 4 4 c e e e e e
Fiqgure 31. Sawple Trace Table Entries
(MFT) e & & s s & & @ & e e @« e o o @
Figure 32. Samnple Trace Table Ekntries
(MVT) e e o e s o @ 8 = e e 5 e o o
Figure 33. Recreating the Task
Structure . . .+ ¢ ¢ ¢ ¢ 4 e e e & o =
Figure 34. Control Elock Flow « o .
Figure 35. MVT Storage Control Flcw

. 28

. 29

- 34

. 35
. 36

- 50
. 51
. 68
- 72
. 74
- 77
- 80
. 81
. 82
- 84
. 85

.103
-105

Summary of Major Changes--Release 19

r T T - 1
| Item | Description | Areas Affected |
r + + -= i
Input/Output	SvC 85 has been added to AFPENDIX A.	90
Recovery Management		
Support (I/0 RMS)		
		I
7094 Emulator	SVC numbers 88 and 89 have been added to	920
the Model 85	APPENDIX A.	
	The system module name prefix IIN has	95
	been added to APPENDIX C.	
		[
2495 Tape	A description of the UCB sense bytes for	98
Cartridge Reader	this unit has been added to APFENDIX F.	
		[
Optical Readers	A description of the UCB sense bytes for	98
1285/87/88	these units has been added to APPENDIX F.	
[
1419 Magnetic	A description of the UCB sense bytes for	98
Character Reader and	these units has been added to APPENDIX F.	{
1275 Optical Reader		
		[
0S Volume Statistics	SVC number 91 has been added to APPENDIX	90
i	A.	
		[
Service Aids	A new APPENDIX, APPENDIX G, has been	99
	added to priefly describe the debugging	
	facilities provided by the new service	i
	aids.	
i		
IEHATLAS	SVC number 86 has been added to APPENDIX	90
	A.	
L e e L e d

(Continued)

Summary of Major Changes - (Release 19) 7

(continued)

r

l..__......

[T o ——— ————— — — — — " — e, o B o S s " e T e ot W o S e, o e S

Iten

Description

Areas Affected

Attach in MFT

Write to Programmer

Resolution of the
transient area
contention problem

Main Storage
Hierarchy support
MVT extension

The sections on core
image dumps and
stand-alone dumps
have been combined

Expanded Index

Various small
changes

e e ———

Various sections have been added to
explain the MFT with subtasking system,
the debugging of modules run cn that

system, and the ABEND/SNAP dumnps produced

by it.

SVC 90 has been added to APPENDIX A.

A pointer to the Job Step Control Block
(JSCB) has been included in APPENDIX H.

The transient area loading task has
been included in discussions and artwork
concerning the MFT TCB gueue.

A secondary link pack area may be
present in an MVT system with main
storage hierarchy sugport.

The debugging procedures used for
these dumps are the same and are now
rresented under the one

chapter headed: Guide to Using a Core
Image or a Stand-Alone Dump.

The index has been expanded and more
cross referencing entries have been
provided.

Various small improvements have been
made throughout the manual.

gy g S g g SO RIS p Sp——

11-21,33-35,39-43
47,81-82,84,100

90
100-101
17-18
18
78-86
107-112

8 Programmer's Guide to Debugging (Release 19)

Lo s s o e . — — —— —_—— —————— — — —_ ————— — — —— ——————— — —— —]

Debugging is possibly the most important
aspect of programming. Few programmers,
especially those involved in control
program modification, ever produce a
perfect solution in one run; abnormal
termination is inevitable and must be
prepared for.

Program debugging in an operating system
environment is made more difficult by the
large volume of control information, the
presence of control program routines, and
the changing contents of main storage.
Frequently, a large part of debugging lies
in determining what state the system was in
when the error occurred and which essential
information was obscured.

To debug problem programs efficiently,
you should be familiar with the system
control information reflected in dumps.
This control information, in the form of
control blocks and traces, tells you what
has happened up to the point of error and
where key information related to the
program is located.

This book is therefore designed to:

e Help you prepare proper dump data set
definitions.

e Provide an insight into the IBM
System/360 Operating System and its
complex aspects of task management,
storage supervisor, control blocks, and
debugging aids.

e Give you a starting roint, an approach,
and a method of debugging.

The IBM System/360 Operating System
provides extensive dequgging facilities to
aid you in locating errors and determining
the system state quickly. Some debugging

ids, such as console messages, provide
imited information that may not always
elp you identify the error. This manual
1iscusses those debugging facilities that
provide you with the most extensive
information:

a. Abnormal termination (ABEND) and
snapshot (SNAP) dumps.

b. Indicative dumps.

c. Core image dumps.

d. Stand-alone hexadecimal dumps.

ABEND and SNAP Dumps are invoked by ABEND
and SNAP macro instructions, respectively.
They are grouped in a single category
because they provide identical information.

Introduction

In addition to a hexadecimal dump cf main
storage, they can contain conveniently
edited control information and displays of
the orerating system nucleus and trace
table.

Indicative dumps contaln control

inforraticn useful in isolating the
instruction that caused an abnormal end of
task situation. The information is similar
to that given in an ABEND/SNAP dump, but
does not include a dump or main storage.

Core image dumps are taken by the damage

assessment routine (DAR) at the time of a
syster failure. The dump is written to a
SYS1.DUMF data set which you may print by
means of the IEAPRINT print dump program.
The dump consists of a first page,
containing edited control information,
followed by a dump of the printable
contents of main-storage, beginning at
location 00. Xach line contains the
hexadecimal address of the first byte in
the line, eight main-storage words in
hexadecimal, and the same eight words in
EBCDIC.

Stand-alone dumps, invoked by the dump

program you have produced from the IMDSADMP
macro instruction (see Appendix G) or by a
Systen/360 Operating System card program
number UT-056, offer a complete picture of
main storage at a given time. They are,
for the most part, unedited. Each line
contains the hexadecimal address of the
first byte in the line, eight main-storage
words in hexadecimal, and the same eight
words in EBCDIC.

General Notes:

e Displacements and addresses shown in
the text and illustrations of this
publication are given in decimal
nunbers, followed by the corresponding
hexadecimal number in parentheses,
e.g., TCB+1U4(E); location 28(1C); SVC
42(2R). All other numbers in the text
are decimal, e.g., the seventeenth word
of the TCB; a #4-word control klock; 15
jok steps.

e Control block field names referred to
are those used in the IBM System/360
Operating System: System Control
Blocks manual, GC28-6628.

e Wherever possikle, diagrams, and
reproductions of dumps have been
included to aid you during the
debugging process.

Introduction 9

Section 1:

To effectively use the debugging aids
provided by the IBM System/360 Operating
System, you should be familiar with those
control blocks, traces, and other control
information that can lead you quickly to
the source of error. This section of the
manual introduces you to the control
information that you must know to interpret
dumps. It is divided into four topics:

TASK MANAGEMENT

MAIN STORAGE SUPERVISION

SYSTeM CONTROL BLOCKS AND TABLES
TRACES

The first two topics deal with those
aspects of task management and maln storage
management, respectively, that are
represented in dumps. The third toric
describes the remaining system control
blocks and tables helpful in pinpointing
errors. The last topic covers tracing
features that are useful in re-creating the
events that led to an error condition.

Note: The descriptions of system control
blocks and tables in this section emphasize
function rather than byte-by-byte contents.
Appendix H summarizes the contents of those
control blocks most useful in debugging.

For a more detailed description of
system contrcl blocks and tables, please
see the System Control Blocks publication,
GC28-6628.

Task Management

The task management control information
most useful in debugging with a dump
includes the task control block and its
associated request blocks and elements.
These items have the same basic functions
at each of the three control program
levels. Their functions, interactions, and
relationships to other system features are
discussed in this topic. A summary of how
task supervision differs at each system
level concludes the topic.

Task Control Block

The operating system keeps pointers to all
information related to a task in a task
control block (TCB). For the most part,
the TCB contains pocinters to other system
control blocks. By using these pointers,
you can learn such facts as what 1/0

Operating System Concepts

devices vwere allocated to the task, which
data sets were oren, and which load modules
were requested.

Figure 1 shows scmre of the control
inforration that can be located ky using
the pointers in the TCB. Later, in the
discussion of system control klocks and
takles, Fiqure 1 is expanded to show the
actual block names and pointer addresses.

| Data set i [Device |
|
| attributes ’ I |

L
\V

o |

Fﬂ, informrion i l’;@
L S VA
- e 7]
et ——
e | | con i
| events ,| | st]I
L) | I
[E— | PO O—

Control Information Available
Through the TCB

Fiqure 1.

Request Blocks

Frequently, the routines that comprise a
task are not all brocught intc main storage
with the first load mcdule. Instead, they
are requested by the task as it requires
them. Tnis dynaric loading capakility
necessitates another type of contrcl block
to descrike each lcad module associated
with a task -- a request block (RB). An RB
is created by the control progran when it
receives a request from the system or trom
a proklem program to fetch a load rodule
for execution, and at other times, such as
when a type II supervisor call (SVC) is
issued. By looking at RBs, you can

10 Programmer's Guide to Debugging (release 19)

determine which load modules have been
executed, why each lost control, and, in
most cases, which one was the source of an
error condition.

There are seven types of RBs created by
the control program:

Program request block (PRB)
Supervisor request block (SVRB)
Interrupt request block (IRB)
Supervisor interrupt request block
(SIRB)

Loaded program request block (LPRi)
Loaded request block (LRB)

e Finch request block (FRB)

Of these, you will most often encounter
the PRB and SVREB in dumps. The type of RB
created depends on the routine or load
module with which it is associated.

PRB (Systems with PCP and MFT): A PRB is
created whenever an XCTL, LINK, or ATTACH
macro instruction is issued. It is located
immediately before the load module with
which it is associated.

PRB (Systems with MVT): A PRB is created
whenever an XCTL or LINK macro instruction
is issued. It is located in a fixed area
of the operating system.

SVRB: An SVRB is created each time a type
I, III, or IV supervisor call is issued.
(Type I SVC routines are resident, but run
disabled; they do not require a request
block.) This block is used to store
information if an interruption occurs
during execution of these SVC routines. A
list of SVCs, including their numbers and
types, appears in Appendix A.

IRB: An IRB is created each time an
asynchronous exit routine is executed. It
is associated with an event that can occur
at an unpredictable time during program
execution, such as a timing routine
initiated by an STIMER macro instruction.
The IRB is filled at the time the event
occurs, just before control is given to the
exit routine.

SIRB: An SIRB is similar to an IRB, except
that it is associated only with
IBM-supplied input/output errxor routines.
Its associated error routine is fetched
from the SYS1.SVCLIB data set.

LPRB: (PCP and MFT only): An LPRB is
created when a LOAD macro instruction is
issued unless the LOAD macro instruction
specifies:

e A routine that has already been loaded.

e A routine that 1is being lcaded in
response to a LOAD macro instruction
previously issued by a task in the
partition (MFT with subtasking).

¢ A routine that is "only loadable”
LRE).

(see

An LPRRE is located immediately before the
load module with which it is associated.
Routines for which an LPRB is created can
also be invoked by XCTL, LINK, and ATTACH
macro instructions.

LRB: (PCP and MFT only): The LRB is a
shortened form of an LPRB. Routines
associated with LRBs can be invoked only by
a LOAL macro instruction. This attribute
is assigned to a routine through the OL
(only loadable) subparameter in the PARM
parameter of the EXEC statement that
executes the linkage editor. The most
common reason for assigning this attribute
is that linkage conventions for XCTL, LINK,
and ATTACH are not followed. This request
block is located immediately before the
load module with which it is associated.

FRB (MFT with subtasking only): An FRB is
created and attached to the job pack area
queue, during LOAD macro instruction
processing, if the requested module is not
already in the job pack area. The FRB
describes a module being loaded in response
to a LOAD macro instruction. Any
suksequent requests for the same nrodule,
received while it is still bkeing loaded,
are deferred by means of wait list elements
(WLES) qgueued to the FRB. When the module
is fully loaded, an LRB or an LPRB is
created, the FRE is removed from the job
pack area queue, and any requests,
represented by wait list elements, are
reinitiated.

Figure 2 shows the relative size of the
seven types of RBs and the significant
fields in each.

In Figure 2, the "size" field tells the
numbexr of doublewords in both the KB and
its associated load module. The PSW
contained in the "resume PSW" field
reflects the reason that the associated
load module lost control. Other fields are
discussed in succeeding topics.

Task Supervision 11

LPRB

-12 Major RB address
(MFT with subtasking)

LRB

PRB

FRB

-8 Load list pointers -8 Loac list pointers
(PCP, MFT) (PCP, MFT) Load list
-4 pointers
-4 Absent (MVT) -4 Absent (MVT)
0 Module name 0 Module name 0 Module name 0
(PCP, MFT) (PCF, MFT) (PCP, MFT)
Last half of user's Last half of user's Last half of user's Module name
PSW (MVT) PSW (MVT) PSW (MVT)
8 8 8 8
Size Flags Size Flags Size Flags Size Flags
12(C) A Entry poin‘f (PCP, 12(C) (A Enh-y" point (PCP, 12(C) + Entry point (PCP, 12 (C)
Use Ct | A MFT); CDE (MVT) Use Ct |4 MFT}; CDE (MVT) Use Ct | A MFT); CDE (MVT) Address of WLE
16 (10) 16 (10) 16 (10)
Address of TCB
Resume PSW Resume PSW 20 (14)
Address of LPRB
28 (1C)
) X 28 (1C)
wait cr| | Next R Program Extent List wairer| T Next B
r‘—o Lenath of extent in 1
| kiearchy 0 I
= = = = —1 Note: Program extent list is added to LPRB, LRB, or PRB if the
4 Length of extent in | program described was hiearchy block loaded.
hiearchy 1
b g o =
-8 Address of extent in
l hiearchy 0 I
l__ e e e — ._.. J—
! +12(C) Address of extent in (
L hiearchy 1 _J
SVRB IRB SIRB
0 0 0

Module nome

Module name

Module name

(PCP, MFT) (PCF, MFT) (PCP, MFT)
Last half of user's Last half of user's Last half of user's
PSW (MVT) PSW (MVT) PSW (MVT)
8 .
Size Flags Size Flags Size Flags

12(C) |A Entry point (PCP,
Use Ct |4 MEFT); CDE (MVT)

12(C) |4 Entry point (PCP,
Use Ct | A MFT,; CDE (MVT)

12(C) {A Entry point (PCP
Use Ct [A MFT); CDE (MVT)

e Figure 2.

RB Formats

16 (10) 16 (10) 16 (10)
Resume PSW Resume PSW Resume PSW
28 (10) ‘ 28(1C) 28(1C)
Wait Ct Next RB Wait Ct T Next RB Wait Ct ? Next RB
32 (20) 32 (20) 32 (20)
Register Register Register
Save Area Save Area Save Area
[96 (60)
Extended
Save Area

12 Programmer's Guide to Debugging (kelease 19)

Thus far, the characteristics of the TCB
and its associated RBs have been discussed.
With the possibility of many RBs
subordinate to one task, it is necessary
that queues of RBs be maintained. 1In
systems with PCP and MFT without
subtasking, two queues are maintained by
the system -- the active RB queue and the
load list. 1In MFT systems with subtasking,
a job pack area queue, containing FRBs, and
LRBs and LPRBs that represent reenterable
modules is also maintained. MVT systems
maintain an active RB gueue and a contents
directory. The contents directory is made
up of three separate queues: the link pack
area control queue (LPAQ); the job pack
area control queue (JPAQ); and the load
list.

Active RB Queue

The active RB queue is a chain of request
blocks associated with active load modules
and SVC routines. This queue can contain
PRBS, SVRBs, IRBs, SIRBs, and under certain
circumstances, LPRBs. Figure 3 illustrates
how the active RB queue links together the
TCB and its associated RBs.

|
l

RB-A RB-B RB-C
Ta T‘J fc S
L[Free Fre-a fren i{J
A B C
Load | .iiond | —
modules... | — | SVC routines| ———

il

|
|

|

Figure 3. Active RB Queue

The request blocks in the active kB
queue in Figure 3 represent three load
modules. Load module A invokes load module
B, and B, in turn, invokes C. When
execution of A began, only one RB existed.
When the first invoking request was
encountered, a second RB was created, the
TCB field that points to the most recent RB
was changed, and A's status information was

stored in RE-A. A similar set of actions
occurred when the second invoking request
was encountered. As each load module is
executed and control is returned to the
next higher level lcad wmodule, its RB is
removed frow the chain and pointers are
updated accordingly.

Load List

The lcad 1list is a chain of request blocks
or elements assocociated with load modules
invoked by a LCAL macrxo instruction. The
load list differs from the active RB queue
in that RBs and associated load rodules are
not deleted automatically. They remain
intact until they are deleted with a DELETE
macro instruction or job step terminaticn
occurs. By looking at the lcocad list, you
can determine whicn syster and problem
program routines were loaded before the
durp was taken. Tne format of the load
list differs with control program levels.

‘'systems with PCP and MFT (without
subtasking): At these control program
levels, the locad list associated with a TCB
contains LRBs and LEFRBs. RBs on the load
list are linked together somewhat
differently from those on the active RB
queue because of the characteristics of the
LOAD macro instruction. Because REs may ke
deleted from a load list in a different
order than they were created (derending cn
the oxdexr of DELETE macro instructions),.
they must have both forward and backward
pointers. Figure 4 illustrates how a load
list links together a TCB and three RBs.

RB-A

0000
LRB-B

A

il:

il

Figure 4. Load List (PCP, MFT)

Task Supervision 13

Here, each RB contains a pointer both to
the previous RB and the next most recent RB
in the list. If there is no previous or
more recent RB, these fields contain zeros
and a pointer to the TCB, respectively.

Another field of a load list RE that
merits consideration is the use count.
Whenever a LCAD macro instruction is
issued, the load list is searched to see if
the routine is already loaded. 1f it is
loaded, the system increments the use count
by one and passes the entry point address
to the requesting routine.

Each time a DELETE macro instruction is
issued for the routine, the use count is
decremented by one. When it reaches zero,
the RB is removed from the load list and
storage occupied by the associated routine
is freed.

Systems with MFT (with subtasking): At
this control program level, the load list
is used as described for PCP and MFT
without subtasking, with the following
exceptions:

1. The LRBs and LPRBs queued on the load
list represent modules that are not
reenterable. LRBs and LPKBs
representing reenterable modules are
queued on the job pack area queue.
Wwhen a LOAD macro instruction is
issued, the system searches the job
pack area queuve before searching the

load 1list.

Systems with MVT: Instead of LRBs and
LPRBs created as a result of LCAD macro
instructions, the load list maintained by a
system with MVT contains elements
representing load modules. Load list
elements (LLEsS) are associated with load
modules throuch another control medium
called the contents directory.

The contents directory is made up of
three separate queues: the link pack area
control queue (LPAQ), the job pack area
control queue (JPAQ), and the load list.

The LPAQ is a record of every program in
the system link pack area. This area
contains reenterable routines specified by
the control prograw or by the user. The
routines in the system link pack area can
be used repeatedly to perform any task of
any job step in the system. The entries in
the LPAQ are contents directory entries
(CDEs) .

There is a JPAQ for each job step in the
system that uses a program not in the 1link
pack area. The JPAQ, like the LPAQ, is
made up of CDEs. It describes routines in
a job step region. The routines in the job
pack area can be either reenterable or not

14 Programmer's Guide to Debugging

reenterable. These routines however,
cannot be used to perform a task that is
not part of the job step.

The load
are brought

list represents routines that
into a job pack area or found
in the link pack area by the routines that
perform the Load function. The entries in
the 1lcad list are lcad list elements, not
CDEs. Fach load list element is associated
witn a CDE in the JFAQ or the LPAQ; the
programs represented in the load list are
thus alsc represented in one of the other
contents directory queues.

Loaa list elements also contain a count
field that corresponds to the use count in
a LPRE or LRB. Each time a LOAD macro
instruction is issued for a load mcdule
already represented cn the load list, the
count is incremented by one. As
correspronding DELETE macro instructions are
issued, the count is decremented until it
reaches zero. An LLE has the following
format:

0 1 4 5

Byte 0: rReserved (RES).

Bytes 1-3: Pointer to the next more recent
LLE on the load list.

Byte U4: Count.

Bytes 5-7: Pointer to the corresponding

CDE.

More will be said about CDEs in the next
topic cf Section 1, titled "Main Storage
Supervision."™

Jot Pack Area Queue (MFT with Subtasking
only)

In an MFT system with subtasking, the job
pack area queue is a chain of request
blocks associated with load modules invoked
by a LOAD macro instruction. The queue
contains FRBs, and those LREs and LPRBs
that represent reenterable nodules. Frbs
are queued cn the jok pack area queue until
the reguested wodule is completely loaded.
When the module is completely loaded into
main storage, the $RB is removed from the
Job Pack Area Queue and replaced with an
LRE or an LPRB gueued on the Job Pack Area
Queue if the loaded module is reenterable,
and on the load 1list if it is not.

In the MFT with subtasking
configuration, the load list represents
non-reenterable nodules, while the job pack

(Release 19)

area queue represents only reenterable
modules within the partition. These RBs on
the job pack area queue are not deleted
automatically, but remain intact until they
are deleted by a DELETE macro instruction,
or until job step termination occurs.
Reenterable load modules are therefore
retained in the partition for use by the
job step task or any subtasks which may be
created.

Whenever a LOAD macro instruction is
issued, the job pack area queue is
searched. If the routine is already fully
loaded and represented by an LRB or an LPRB
on the JPA¢ (the routine is reenterable),
the system increments the use count by one
and passes the module entry point address
to the requesting routine. If an FRB for
the requested module is found, a wait list
element (WLE) representing the deferred
request is queued to the FRB, and the
request is placed in a wait. When the
requested routine is fully loaded, the
system releases the request from the wait
condition, and the request is re-initiated.
If no RB for the requested routine is
found, an FRB is created and queued on the
JPAQ. The system then searches the load
list of the requesting task for an RB for
the requested routine. If an RB for that
routine is found on the load list (the
routine is not reenterable), the use count
is incremented by one, the entry point
address of the module is passed to the
requesting routine, and the FRE is dequeued
from the JPAQ. If no RB is found on the
load list, the FRB remains on the JPAC and
the system begins loading the requested
module.

Each time a DELETE macro instruction is
issued for the routine, the use count is
decremented by one (the DELETE routine
ignores FRBs). When the use count reaches
zero, the RB is removed from the qgueue.

Figure 5 illustrates how the job pack area
queue is chained to a TCB.

In Figure 5, each RB contains a pointer to
the previous RB and a pointer to the next

RB on the queue. If there is no previous

RB on the queue, that pointer will contain
zero; if there is no next RB on the queue

(this RB is the most recent on the JPAQ),

the next RB pointer will point back to the
job pack area queue pointer in the PIB.

Two wait list elements (WLes) are queued
to FRB-C representing deferred requests
waiting until the initial loading of the
module is completed. The last WLE contains
zexo in its forward pointer, indicating
that it is the last element on the WLE
queue.

Tc

B
PIB

| tPB || >

[pAa | | <

— S—

eFigure 5. Job Pack Area gqueue

Effects of LINK, ATTACH, XCTL, and LOAD

In the previous paragraphs we have
mentioned the LINK, ATTACH, XCTL, and L(AD
macro instructions. A brief description ot
each will be helpful at this point. LINK,
ATTACH, XCTL, and LOAD, though similar,
have some distinguishing characteristics
and system dependencies worth menticning.
By knowing what harrens when these macro
instructions are issued, you can make more
effective use of the active RB queue and
the lcad list.

LINK: A LINK results in the creation of a
PRB chained to the active rt queue. Upon
completion of the invoked routine, control
is returned to the invoking routine. 1n
systens with PCP and MFT, the KRB is removed
from the queue. The storage occuried by
the invoked routine is freed unless the
routine is also represented on the load
list, cxr on the job pack area qgueue in MFT
systems with subtasking. In systers with
MVT, the use count in the RE is decremented
by one; if it is then zero, the RB and the
storage occupied by the routine are marked
for deletion. 2 LINK macro instruction
generates an SVC 6.

ATTACH: An ATTACH is similar to tne other
three macro instructions in systems with
PCP or with MFT without subtasking. 1In
systems with MFT (with subtasking) or MVT,

Task Supervision 15

ATTACH is the means for dynamically
creating a separate but related task -- a
subtask. At the PCP and MFT (without
subtasking) levels, tasks cannot create
subtasks. ATTACH effectively pexforms the
same functions as LINK at these control
program levels, with two notable additions:

1. You can request an exit routine to be
given control upon normal completion
of the attached routine.

2. You can request the posting of an
event control block upon the routine's
completion.

Exit routines are represented by additional
RBs on the active RB queue. The ATTACH
macro instruction generates an SVC 42(2A).

XCTL: An XCTL also results in the creation
of a PRE and immediate transfer of control
to the invoked routine. However, XCTL
differs from the other macro instructions
in that, upon completion of the invoked
routine, control is passed to a routine
other than the invoking routine. 1In fact,
an XCTL does not result in the creation of
a lower level RB. Instead, the invoking
routine and its associated RBEs are deleted
when the XCTL is issued. In effect, the BB
for the invoked routine replaces the
invoking routine's RB. The XCTL macro
instruction generates an SVC 7.

LCAD: The LOAD macro instruction was
treated previously in the discussion of the
load list. To summarize: the system
responds to a LOAD by fetching the routine
into main storage and passing the entry
point address to the requesting routine in
register 0. [Pecause the system does not
have an indication of when the routine is
no longer needed, a LOAD must be
accompanied by a corresponding DELETE macro
instruction. If not, the routine and its
RB remain intact until the job step is
terminated. The LOAD macro instruction
generates an SVC 8.

System Task Control Differences

Thus far, this topic has dealt with the
aspects of task supervision that are
similar at the three control program
levels. There are, however, sowe major
areas of difference, namely:

1. The number of tasks that can be known
to the system concurrently.

2. The layout of main storage.

3. The additional main storage control
information in systems with MVT.

The first two subjects are discussed
here, by syster. The third subject,
because of its volume, is discussed in the
next topic of Section 1.

Systems with PCP: The distinguishing
characteristic of an operating system with
the primary control program is that it
handles a single task. It has one TCB at
any given time, which resides in the system
nucleus. Jobs are processed sequentially,
one step at a time. ATTACH macro
instructions are treated similarly to
LINKs; that is, they do not create
sutctasks.

Figure 6 is a snapshot of main storage
in a system with PCP. The fixed area
contains those routines, ccntrol blocks,
and takles that are brought into main
storage at 1IPL, and never overlaid. It
alsc may contain optional access method and
SVC routines which are normally
nonresident, and an optional list of
absolute addresses for routines which
reside on direct access devices. These
options can ke selected during system
generation.

DYNAMIC
AREA

FIXED
AREA

Fiqgure 6.

Main Storage Snapshot (PCP)

The dynamic area contains, in lower main
storage adjacent to the fixed area, the
processing program and routines invoked by

16 Programmer's Guide to Debugging (rRelease 19)

LINK, XCTL, and ATTACH macro instructions.
At some points in the job processing flow,
the processing program may be a job
management routine. Upper main storage
contains the user save area, user parameter
area, task input/output table, routines
requested by LOAD macro instructions, and
non-resident routines, such as access
method routines.

Systems with MFT (Without Subtasking):

| Operating Systems that provide

multiprogramming with a fixed number of
tasks without the subtasking option (MFT
without subtasking), resemble systems with
PCP except that the dynamic area may be
divided into as many as 52 partitionms.
Partitions sizes and attributes are defined
during system generation. These sizes and
attributes remain fixed unless redefined by
the operator during or after system
initialization. Each partition contains
one task. Three additional tasks, the
transient area loading task, the
communication task, and the master
scheduler task, reside in the fixed area.
One TCB exists for each task. All TCBs are
linked by dispatching priority in a TCB
queue, beginning with the TCBs for the
three resident tasks.

The dynamic axea may contain as many as

3 reading tasks, as many as 36 writing
tasks, and as many as 15 job step tasks, so
long as the total number of tasks does not
exceed 52. Jobs are processed sequentially
in a partition, one job step at a time. An
ATTACH macro instruction, as in systens
with PCP, is treated similarly to a LINK.

Because more than one task exists at any
given time, systems with MFT introduce the
concept of task switching. The relative
dispatching priority of tasks is determined
by the TCB queue. Control of the CPU must
often be relinquished by one task and given
to another of higher priority. MFT dumps
contain task switching information often
important in reconstructing the environment
at the time of task failure.

Figure 7 is a snapshot of main storage
in a system with MFT (without subtasking),
having n partitions. The fixed area
contains the nucleus (including the TCB
queue, transient area loading task,
communications task, and mraster scheduler
task), and the system queue area. The
fixed area may also contain the same system
generation options discussed under the
heading "Systems with PCP," and a
reenterable load module area, which is
optional in MFT. Each partition in the
dynamic area is similar to the entire
dynamic area of PCP.

¢ Figure 7.

DYNAMIC
AREAS
(PARTITIONS

FIXED
AREA g

EACH PARTITION LOOKS
LIKE PCP's DYNAMIC AREA

Main Storage Snapshot (MFT
Without Subtasking)

Systems with MFT (With Subtasking):

Operating Systems that provide
multirrogramming with a fixed number of
tasks with the subtasking option (MFT with
subtasking) more closely resemble systems
with MVT, and differ from MFT systems
without subtasking in the following major
areas:

1. MFT with subtasking has an ATTACH
facility similar to the ATTACH
facility in MVT. While the numwber of
job step TCBs still may not exceed 15,
the number of tasks in any partition,
and therefore the total numwber of
tasks in the system, is now variable.
Job step task TCBs reside in the
nucleus. They are queued, following
the system task TCBs, in the same
manner as in MFT without suktasking.
When subtasks are created, however,
the subtask TCBs are placed in the
system queue area and gueued to the
job step TCBs according to dispatching
priority (TCBTCB field), and according
to subtask relationships (TCBNTC,
TCBOTC, TCBLTC fields).

Task Supervision 17

2. MFT witn subtasking provides the
ability to change the dispatching
priority of any task within a
partition through the use of the CHAP
macro instruction. For information
regarding the use of the CHAP macro
instruction, refer to the publication
IBM System/360 Operating System:
Supervisor and Data Management
Services, GC28-6646.

Figure 8 is a snapshot of main storage in
an MFT system with subtasking having n
partitions. Note here that the TCBs in the
nucleus are all job step TCEs, while those
residing in the sytem queue area are the
subtask TCBs.

DYNAMIC
AREAS
(PARTITIONS)

FIXED
AREA

EACH PARTITION DOES NOT LOOK LIKE
PCP's DYNAMIC AREA

e Pigure 8. Main Storage Snapshot (MFT With

subtasking)

Systems with MVT: In Operating Systemns
that provide multiprogramming with a
variable number of tasks (MVT), as many as
15 job steps can be executed concurrently.

18 Programmer's Guide to Debugging

e Fiqure 9.

rach jokb step requests an area of main
storage called a region and is executed as
a job_step task. 1In addition, system tesks
request regions and can be executed
concurrently with job step tasks.

rRegions are assigned automatically frcm
the dynamic area when tasks are initiated.
Regicns are constantly redefined accorxding
to the main storage requirements of each
new task.

With the facility of attacning subtasks
availakle to eacn task through the ATTACH
macro instruction, the number of TCBs in
the system is variabie. Tasks gain control
of the CPU py priority. To keep track of
the priority ana status of each task in the
system, '1CBs are linked together in a TCH
queae.,

Figure 9 is a snapshot oi main storage
in a system with AVT. The fixed area is
occupied by the resident portion of the
control proaram loaded at IFL. The systen
queue space is reserved for comntrol blocks
and tatles built by the control program.
The dynamic area is divided into
variakle-sized regions, each of which ig
allocated to a job step task or a system
task. Finally, the link pack area contains
selected reenterable routines, loaded at
IPL. 1If an IBM 2361 Core Storage device
and sain Storage hierarchy Support are
included in the system, a secondary link
pack area may be created in Hierarchy 1 to
contain other reenterable routines.

LINK PACK
AREA

DYNAMIC
AREA
(REGIONS)

SYSTEM
QUEUE
AREA

FIXED
AREA

Main Storage Snapshot (MVT)

(release 19)

Main Storage Supervision

Because main storage is allocated
dynamically in an operating system, current
storage control information must be kept.
Such information is contained in a series
of control blocks called queue elements.

In systems with PCP and MFT without
subtasking, queue elements reflect areas of
main storage that are unassigned. In MFT
systems with subtasking, a gotten subtask
area queue element (GQE) is introduced to
record storage obtained for a subtask by a
supervisor issued GETMAIN macro
instruction. In systems with MVT, more
elaborate storage control is maintained; at
any given time, queue elements reflect the
distribution of main storage in regions,
subpools, and load modules. A familiarity
with storage contxol information is
necessary to understand the main storage
picture provided in dumps.

The dynamic area may be significantly
expanded by including IBM 2361 Core Storage
in the system. Main Storage Hierarchy
Support for IBM 2361 Models 1 and 2 permits
selective access to either processorx
storage (hierarchy 0) or 2361 Core Storage
(hierarchy 1). If IBM 2361 Core Storage is
not included, regquests for storage from
hierarchy 1 are obtained from hierarchy 0.
If 2361 Core Storage is not present in an
MVT system ana a region is defined to exist
in two hierarchies, a two-part region is
establisned within processor storage. The
two parts are not necessarily contiguous.

Storage Control in Systems With PCP

The chain of storage control information in
a system with PCP begins at a table called
the main storage supervisor (MSS) boundary
box, located in the system nucleus. This
table, pointed to by the TCBMSS field of
the TCB, contains three words. The first
word points to a free queue element (FCE)
associated with the highest free area in
processor storage. The second word points
to the first doubleword outside the
nucleus. The third word contains the
highest address in processor storage plus
cne.

If Main Storage Hierarchy Support for
IBM 2361 Models 1 and 2 is included in the
system, the boundary box is expanded to six
words. The first byte of the expanded
boundary box contains a "1" in bit 7 to
indicate that hierarchy support is
included. The second set of three words
describes storage in hierarchy 1. The
first word of this second set points to an
FQE associated with the highest free area
in hierarchy 1. The second word points to
the first doubleword in hierarchy 1. The

third word points to the highest positicn
in hierarchy 1 plus one. If 2361 Core
Storage is not included in the system, the
hierarchy 1 pointers are set to zero.

FQE: Each free area in main storage is
descriked by an FQE. FQEs are chained,
beginning with the FCE associated with the
free area having the highest address. If
Main Storage Hierarchy Support is present,
one FQr chain exists for each aierarchy
specified. Each Fuk occupies the first 8
It has the

bytes of the area it describes.
following format:

Bytes 0-3: Pointer to F(QE assocliated with
next lower free area or, if
this is the last FJE, zeros.

Bytes 4-7: Number of bytes in the free

area.

Storage control in systems with PCP is
surmarized in Figure 10.

DYNAMIC
AREA

FIXED

AREA Loy -

‘-....-

Storage Control (PCP)

NUCLEus

Figure 10.

Main Storage Supervision 19

Storage Control in Systems with MFT
(Without Subtasking)

Storage control information in systems with

| MFT without subtasking is similar to that
in systems with PCP, except that one MSS
boundary box is maintained for each
partition. The TCB associated with the
partition contains a pointer (TCBMSS) to
the boundary box.

If Main Storage Hierarchy Support is
included, the first half of each expanded
boundary box describes the processor
storage (hierarchy 0) partition segment,
and the second half describes the 2361 Core
Storage (hierarchy 1) partition segment.
Any partition segment not currently
assigned storage in the system has the
applicable boundary box pointers set to
zero. If the partition is established
entirely within hierarchy 0, or if 2361
Core Storage is not included in the system,
the hierarchy 1 pointers in the second half
of the expanded boundary box are set to
zero. If a partition is established
entirely within hierarchy 1, the hierarchy
0 pointers in the first half of the
expanded boundary box are set to zero.

The boundary box format for MFT is
identical to the format for PCP. The
pointers, however, point to the boundaries
of the partition and to the partition FQEs
rather than to the boundaries of storage.
Figure 11 summarizes storage control in
systems with MFT.

DYNAMIC
AREA

FIXED
AREA

sFigure 11.

Storage Control for a Partition
(MFT Without Subtasking)

20 Programmer's Guide to Debugging (Release

eFigure 12.

Storage Ccontrol in Systems with MFT (With
Subtasking)

Storage control iniormation for the job
step or partition TCB in MFT systems with
subtasking is handled in the samre way as in
MFT systens without subtasking. However,
when subtasks are created, the supervisor
builds another control klock, the Gotten
subtask area Queue Element (GQE). The GQEs
associated with each subtask originate from
a one word pointer addressed by the TCBMSS
field of the subtask TCB.

GQE: £ach area in main storage belonging
to a subtask, and obtained by a supervisor
issued GETMAIN macro instruction, is
described by a gotten subtask area queue
element (GQE). GQEs are chained in the
order they are created. The TCBMSS field
of the subtask TCB contains the address of
a word which points to the most recently
created GQE.

ONE
PARTITION§

FIXED
AREAj

Storage Control for Subtask
Storage (MFT with Subtasking)

19)

If Main Storage Hierarchy Support is
present in the system, the GQE chain can
span from hierarchy 0 to hierarchy 1 and
back in any order. Each GQE occupies the
first eight bytes of the area it describes,
and has the followina forrat:

acquires unassiocned free space to satisfy
an unconditional G&TMAIN request. These
additional PQEs are removed from the queue
as the rollin feature is used. If Main

Storage Hierarchy Support is rresent, one
PQE exists for each hierarchy used by the
job step.

A PQE has the following format:

Bytes 0-3: Pointer to the Previous GgE or,
if zero, this is the last GQE
on the chain.

Bytes 4-7: Number of bytes in the gotten

subtask area.
Figure 12 summarizes the chaining of GQEs
to a subtask TCB.

Storage Control for a Region in Systems
with MVT

Unassigned areas of main storage within
each region of a system with MVT are
reflected in a queue of partition queue
elements (PQEs) and a series of free block
queue elements (FBQES).

PQE:

The partition queue associated with a

region resides in the system queue space.
It is connected to the TCBs for all tasks
in the job step through a dummy, PQE located
in the system queue space.
the following format:

A dummy PQE has

Bytes 0-3: Pointer to the first PQE in the
partition queue.
Bytes 4-7: Pointer to the last PCE in the

partition queue.

In systems that do not include the
rollout/rollin feature or Main Storage
Hierarchy Support for IBM 2361 Models 1 and
2, there is one PQE for each jok step. If
the rollout feature is used, additional
PQEs are added each time a job step borrows
storage space from existing steps or

12 (C)

17 (1) 20 (14) 21 (15)

16 (10)

24“&'

25 (19)

28 (1C) 29 (1D)

Bytes 1-3: Pointer to the first FBQE or,
if there are no FBQEs, a
pointer to the PQE itself.
Bytes 5-7: Pointer to the last FBCE or, if
there are no FB(GEs, a pointer
to the PQE itself.

Bytes 9-11(B): Pointer to the next PQE or,
if this is the last PQE, zeros.

Bytes 13-15(D-F): Pointer to the previous
PQE or, if this is the first
PQE, zeros.

Bytes 17-19(11-13): Pointer to the TCB of
the owning job step.

Bytes 21-23(15-17): sSize of the region, in
2K (2048) bytes.

Bytes 25-27(19-1B): Pointer to the first
byte of the region.

Byte 28(1C): Rollout flags.

FBCE: The FBQEs chained to a PQE reflect
the total amount of free space in a regicn.
Each FBQE is associated with one or more
contiguous 2K blocks of free storage area.
FBCEs reside in the lowest part of their
associated area. As area distribution
within the region changes, FBQEs are added
to and deleted from the free klock queue.

Main Storage Supervision 21

An FBQE has the following format:

Bytes 1-3:

Bytes 5-7:

Bytes 9-12(C):

next lower FBCE
the last FBQE, a
PQE.

Pointer to the
or, if this is
pointer to the

Pointer to the preceding FBQE,
or, if this is the first FRCE,
a pointer to the PQE.

Number of bytes in the free
block.

The remaining main storage in a region
is used py problem programs and system

programs.

storage areas,

For convenience in referring to
the total amount of space

assigned to a task represents one or more

numbered subpools.
shared by tasks.)

(Subpools can also be
Subpools are designated

by a number assigned to the area through a

GETMAIN macro instruction.

Subpool numbers

available for problem program use range

from 0 through 127.

Subpool numbers 128

through 255 are either unavailable or used
by system programs.

Storage control elements and queues for
a region are summarized in Figure 13.

DYNAMIC
AREAS

SYSTEM
QUEUE
SPACE

e Figure 13.

s3torage Control for a region
(MVT)

Storage Control for a Subpool in Systems
with MVT ’

within each
subpool queue
of descriptor
free queue

Main storage distribution
subpool is reflected in a
element (SPQE) and queues
queue elements (DQrs) and
elements (FGEs).

SPQE: SECEs are associated with the
sukpocls created for a task. SPCEs reside
in the system gueue space and are chained
to the TCB(s) that use the subpool. They
serve as a link ketween the TCB and the
descriptor queue, and may be part of a
sukpocl queue if the task uses more than
one subpool. 1If a subpool is used by more
than one task, only one SPQL is created.

An SPQE has the following format:

Byte 0O:

Bit 0 - Subpool is owned by this task
if zero; shared, and cwned by
another task, if one.

Bit 1 - This SPQE is the last on the
queue, if one.

Bit 2 - Subpool is shared and owned by
this task, if one.

Bits 3-7 - Reserved.

Bytes 1-3: Pointer to next SPQE or, in
last SPQE, zero.

Byte U44: Subprool number.

Bytes 5-7: Pointer to first DQE or, if the
subpool 1s shared, a pointer to
the "owning"™ SPQE.

DQE: DQFs associated with each SPQE

reflect the total amount of space assigned
to a subpool. Each DQE is associated with
one or more 2K blocks of main storage set
aside as a result of a GETMAIN macro
instruction. Each DQF is also the starting
A DQF has the

point for the free gueue.
fcllowing format:

12(C)

13(D)

22 Programmer's Guide to Debugging (Release 19)

Bytes 1-3: Pointer to the FQE associated

with the first free area.
if

Bytes 5-7: Pointer to the next DQE or,

this is the last DQE, zeros.

Bytes 9-11(B): Pointer to first 2K block
described by this DQE.

Bytes 13-15(D-F): Length in bytes of area

described by this DQE.

oYNAMIC J
AREAS

SYSTEM I
QUEUE
SPACE

eFigure 14.

Storage Control for a Subpool
(MVT)

FQE: The FQE describes a free area within
a set of 2K blocks described by a DQE. It
occupies the first eight bytes of that free
area. Since the FQE is within the subpool,
it has the same protect key as the task
active within that subpool. Extreme care
should be exercised to see that FQEs are
not destroyed by the problem program. If
an FQE is destroyed, the free space that it
describes is lost to the system and cannot
be assigned through a GETMAIN. As area

distribution within the set of blocks
changes, FQEs are added to and deleted from
the free queue.
format:

An FGE has the following

Bytes 1-3: Pointer to the next lower FQE
or, if this is the last FQE,
zeros.

Bytes 5-7: Number of bytes in the free

area.

A subpool is summarized in Figure 14.

Storage Control for a Load Module in
Systems with MVT

Each load module in wain storage is
described by a contents directory entry
(CDE) and an extent list (XL) that tells
how much space it occupies.

CDE: The contents directory is a group of
queues, each of which is asscciated with an
area of main storage. The CDEs in each
queue represent the load modules residing
in the associated area. There is a CDE
queue for the link pack area and one for
each region, or job pack area. The TCB for

the jcb step task that requested the region
points to the first CDE for that region.
Contents directory queues reside in the
system gueue space.
following format:

A CDE has the

RN
16(10) 17(11) 20014) 21(15)
Byte 0: Flag bits, when set to one,
indicate:
Bit 0 - Module was loaded by NIP.
Bit 1 - Mcdule is in process of being
loaded.
Bit 2 - Module is reenterable.
Bit 3 - Module is sexrially reusable.
Bit 4 - Module may not be reused.
Bit 5 - This CDE reflects an alias
name (a minor CDE).
Bit 6 - Module is in job pack area.
Bit 7 - Module is not only-loadable.
Bytes 1-3: Pointer to next CDE.
Bytes 5-7: Pointer to the RB.

Bytes 8-15(F): EBCDIC name of locad module.

Byte 16(10): Use count.

Main Storage Supervision 23

Bytes 17-19(11-13): E=ntry point address of
load module.

Byte 20: Flag bits, when set to one,
indicate:

Bit 0 - Reserved.

Bit 1 - Module is inactive.

Bit 2 - En extent list has opeen built
for the module.

Bit 3 - This CDE contains a relocated
alias entry point address.

Bit 4 - The module is refreshatle.

Bits 5, 6, 7 - Reserved.

Bytes 21-23(15-17): Pointer to the XL for
this module or, if this is a
minor CDE, pointer to the
rajor CDE.

XL: The total amount of main storaqge
occupied oy a load module is reflected in
an extent list (XL).
the system gueue space.
following format:

XLs are located in
An XL has the

8 U0

Bytes 0-3:

Length of XL in bytes.

Number of scattered control
sections. If the control
sections are block-loaded, 1.

Bytes 4-~7:

Reraining
cytes:

Length in bytes of each
control section in the module
(4 bytes for each control
section) and starting locaticn
of each control section (4
bytes for each control
secticn).

Storage control elements and gueues for
load modules are surmarized in Figure 15.

DYNAMIC J
AREAS

SYSTEM
QUEUE
SPACE

Figure 15.

Storage Control for a Load

Module (MVT)

24 Programmer's Guide to Debugging (release 19)

System Control Blocks and Tables

In addition to the key task management
control blocks (TCB and RB), several other
control blocks containing essential
debugging information are built and
maintained by data management and job
management routines. Although scme of
these blocks are not readily identifiable
on a storage dump, they can be located by
following chains of pointers that begin at
the TCB.

The control blocks discussed here have
the same basic functions at each control
program level. The precise byte-by-byte
contents of the blocks can be found in the
publication System Control Blocks. Block
contents useful in debugging are listed in
Appendix H.

Communications Vector Table (CVT)

The CVT provides a means of communication
between nonresident routines and the
control program nucleus. Its most
important role in debugging is its pointer
to two words of TCB addresses. These words
enable you to locate the TCB of the active
task, and from there to find other
essential control information. Storage
location 16(10) contains a pointer to the
CVT.

Task Input/Output Table (TIOT)

A TIOT is constructed by job management for
each task in the system. It contains
primarily pointers to control blocks used
by I/0 support routines. It is usually
located in the highest part of the main
storage area occupied by the associated
task (in systems with MVT, TIOTs are in the
system gueue space.) Through the TIOT, you
can obtain addresses of unit control blocks
allocated to the task, the job and step
name, the ddnames associated with the step,
and the status of each device and volume
used by the data sets.

Unit Control Block (UCB)

The UCB describes the characteristics of an
1/0 device. One UCB is associated with’
each I1/0 device configured into a system.
The UCB's most useful debugging aid is the
sense information returned by the last
sense command issued to the associated
device.

Event Control Block (ECB)

The ECR is a 1-word control block created
when a READ or WRITE macro instruction is
issued, initiating an asynchronous 1I/Q
operation. At the completion of the I/0
operation, the access method routine posts
the ECB. By checking this ECB, the
completicn status of an I/0 operation can
be determined. 1In all access methods but
QTAM, the ECB is the first word of a larger
block, the data event control block.

Input/Output Block (I0B)

The IOB is the source of information
required by the I/0 supervisor. It is
filled in with information taken from an
I/0 oreration request. In debugging, it is
useful as a source of pointers to the DCB
associated with the I/0 operation and the
channel commands associated with a
particular device.

Data Control Block (DCB)

The DCR is the place where the operating
system and the problem program store all
pertinent inforwation akout a data set. It
may be completely filled by operands in the
DCE macro instruction, or partially filled
in and completed when the data set is
opened, with subparameters in a DD
statement and/or information from the data
set label. The format of DCBs differs
slightly for each of the various access
methods and device types. The DCB's
primary debugging aids are its pointers to
the DEB and current IOB associated with its
data set, and the offset value of the
ddname in the TI1OT.

Data Extent Block (DEB)

A DEB describes a data set's auxiliary
storage assignments and contains pointers
to some other control blocks. The DEB is
created and queued to the TCB at the time a
data set is opened. Each TCB contains a
pointer to the first DEB on its chain.
Through this pointer you can find out which
data sets are opened for the task at a
given time, what extents are occupied by
open data sets, and where the DCB and UCB
are located.

summary of Control Block Relationships

Figure 16, an expansion of Figure 1, shows
the relationships among the principal
control blocks and tables in the System/360
Operating System.

System Control Blocks and Tables 25

Location +0 TCB Words
>

e
16(10) V1
____._H +]3(D)
‘F ?}
Rs TIOT
Rs
Ry
F25(19) +33(21)
5:_"_ o
s @) B
Dc,
U
68 Cy
(44)8 ﬂ+21(15)
Og
IOB
4 | +17 (11
E o
Cg Sw
List

eFigure 16. Control Block Relationships

26 Programmer's Guide to Debugging (Release 19)

Traces

Two features that assist you in tracing the
flow of your program are the save area
chain and the trace table (the trace table
is optional at system generation.) Both
these features are edited and clearly
identified on ABEND/SNAP dumps, and can be
located easily on core image and
stand-alone dumps.

Save Area Chain

When control is passed from one load module
to another, the requested module is
responsible for storing the contents of
general registers. This necessitates the
use of separate save areas for each level
of load module in a task, With the
different types of linkages that can occur,
save areas must be chained so that each one
points to both its predecessor and
successor.

A save area is a block of 72 bytes
containing chain pointers and register
It has the following format:

contents.

8 12(C)

16(10) 20(14) .

Bytes U4-7: ©Pointer to the next higher
level save area or, if this is
the highest level save area,

Z€eros.

Bytes 8-11(B): Pointer to the next lower
level save area or, if this is
the lowest level save area,
unused.

Bytes 12-15(C-F): Contents of recister 14
(optional)

Bytes 16-19(10-13): Contents of register
15 (optional)

Bytes 20-71(14-3F):
0 to 12

Contents of registers

The save area for the first or highest
level load module in a task (save area 1)

is provided by the control program. The
address of this area is contained in
register 13 when the load module is first
entered. It is the responsibility of the
highest level module to:

1. Save registers 0-12 in bytes
20-71(14-3F) of save area 1 when it is
entered.

2. Establish a new save area (save area
2).

3. Place the contents of register 13 into
tytes 4-7 of save area 2.

4. ©Place the address of save area 2 into
register 13.

5. Place the address of save area 2 into
kytes 8-11(B) of save area 1.

At this point, the save areas appear as
shown in Figure 17.

Save area 2

Save area 1

+4

+8 Register 13

+20(14) | - Cor

+68(44)

Figure 17. Save Area Trace

If a module requests a lower level
module, it must perform actioms 1 through 4
to ensure proper restoration of registers
when it regains control. (Action 5 is not
required, but rust be performed if the dump
printout of the field is desired.) A
module that does not request a lower level
module need only perform the first action.

ABEND and SNAP dumps include edited
information from all save areas associated
with the dumped task under the heading
"SAVE AREA TRACE". 1In a stand-alone dump,
the highest level save area can be located
through a field of the TCB. Subsequent
save areas can be located through the save
area chain.

Traces 27

Trace Table

The tracing routine is an optional feature
specified during system generation. This
routine places entries, each of which is
associated with a certain type of event,
into a trace table. The size cf the table
is also a system generation option; when
the table is filled, the routine overlays
0ld entries with new entries, beginning at
the top of the table (the entry having the
lowest storage address). The contents and
size of a trace table are highly
system-dependent.

Systems_with PCP: Trace table entries for
systems with PCP are 4 words long and
represent occurrences of 3SI0O, I/0, and SVC
interruptions. Figure 18 shows the word
contents of each type of entry.

SIO CC/Dev (CAW TSW
0 1 2

1/0 1/0 OLD PSW CSW
0 2

%e SVC OLD PSW Reg O Reg |
0 2 3

Figure 18. Trace Table Entries (PCP)
Systems with MFT: Systems with MFT have
the same type of trace table entries as
PCP, plus an additional type representing
task switches, as shown in Figure 19.

Systems with MVT: The trace table in a
system with MVT is expanded to include more
entries and more information in each entry.
Trace table printouts occur only on SNAP
dumps and stand-alone dumps. Entries are
eight words long and represent occurences
of SIO, external, SVC, program, and 1/0
interruptions, and dispatcher loaded PSWs.

sFigure 20.

Figure 20 shows the word contents of trace
table entries fcr SNAP dumps and
stand-alone dumps. Figure 21 shows the
contents of trace table entries as filled
by MVT with Model 65 multiprocessing. (SSM
-- set system mask -- entries are
optional.)

SIO CC/Dev CAW csw
0 1 2
/0 /O OLD PSW Csw
0 2
SvVC SVC OLD PSW Reg O Reg 1
2 3
Jask PSW } New Tcs | f Old TCB
Switch
0 2 3
Figure 19. Trace Table Entries (MFT)
svC
External PSW Reg 15 Reg O
Program
Dispatcher 0 2 3
3 Reg 1 e ITCB Timer
4 6 7
SIO CC/Dev CAW CswW {
0] 2
} g TTCB Timer
6 7
/O PSW Csw g
0 2

7

Trace Table Entries (MVT)

28 Programmer's Guide to Debugging (Release 19)

Dispatcher
Reg O

2 External

SVC and
Program Old PsW Reg 15
0 2 3
Old TCB Qld TCB)
g Reg 1 (CPU A) T (CPU B) Timer iD
4 5 6 7
SIO
CC/Dev CAW CSW
0 i 2
T TCB Old TCB Old TCB Timer D
(RQE) (CPU A) (CPU B)
4 5 [7
1/0
Old PSW Ccsw
0 2
Old TCB Old TCB .
1
; Reg T(cpu A) T (CPU B) Timer 11D
4 5 6 7
Figure 21.

New PSW Reg 15 Reg 0 g
0 3
New TCB New TCB .
z Reg 1 (CPU A) (CPU B) Timer ID
4 5 7
Old PSW Reg 15 Reg 0 g
0 3
STMASK i
Reg 1 of other CPU TQE Timer ID
4 5 7
Old PSW Reg 15 Reg O g
0 3
Locking |4O!ld TCB Old TCB .
1 T |
3 Reo T fcpuip |l cpu A) (CPU B) imer 1P
4 5 7

Trace Table Entries (NMVT with Model 65 multiprocessing)

Traces 29

Section 2: Interpreting Dumps

How are ABEND dumps invoked? What does
information in a SNAP dump mean? What
useful facts can be gleaned from an
indicative dump? Where are key tables and
control blocks in a stand-alone dumg?

These and similar debugging questions
are answered in this section of the manual.
Topics comprising Section 2 describe each
of the debugging facilities introduced
earlier -- what information they provide,
where to find this information , and how to
apply it.

The introduction to tnis section
describes a general procedure for debugging
with a dump. Subsequent topics deal with

» ABEND/SNAP dumps issued by systems with
PCP and MFT.

e ABEND/SNAP dumps issued by systems with
MVT.

e Indicative dumps.

e Core Image dumps.

¢ Stand-alone dumps.
Each topic includes instructions fox
invoking the dump, a detailed description
of the dump's contents, and a guide to
using the dump, with specific instructions

for following the general debugging
procedure.

General Debugging Procedure

The first facts you must determine in
debugging with an operating system dump are
the cause of the abnormal termination and
whether it occurred in a system routine or
a problem program. To aid you in making
these determinations, ABEND, SNAP, and
indicative dumps provide two vital pieces
of information -- the completion code and
the active RB queue. Similar information
can be obtained from a core image dump or a
stand-alone dump by analyzing PSWs and
re-creating an active RB queue.

A Completion code is printed at the top
of ABEND, SNAP, and indicative dumps. It
consists of a system code and a user code.
The system code is supplied by the control
program and is printed as a 3-digit
hexadecimal number. The user code is the
code you supplied when you issued your own
ABEND macro instruction; it is printed as a
4-digit decimal number. If the dump shows

a user code, the error is in your program,
and the completion code should lead you
directly to the source of error. Hormally,
however, a system code will ke listed; this
indicates that the operatinc systenr issued
the ABEND. Often the system corpleticn
code gives enough information for you to
determine the cause of the errcr. The
explanaticns of system completion codes,
along with a short explanation of the
action to ke taken by the programmer to
correct the error, are contained in the
puktlication IBM System/360 COperating
System: Messaces and Codes, GC28-6631.

To locate the load module that had
control at the time the dump was issued,
find tne RB associated with the mcdule. If
the dump resulted from an ABEND oxr SNAP
macro instruction, the third most recent RB
on the queue represents the load module
that had control. The most recent and
second mcst recent RBEs represent the ABDUMP
and ABtUD routines, respectively. Core
image dunps and stand-alone dumps contain
PSWw information that can be used to
identify the load module in ccntrol.

Once you have located the RB or load
module, look at its name. If it dces not
have a name, it is probakly an SVRE for an
SVC routine, such as one resulting from a
LINK, ATTACH, XCTL or LCAD macro
instruction. To find the SVC nunber, lock
at the last three digits of the resume PSW
in the previous RB on the gueuve. If a
previcus RB does nct exist, the RB in
guestion is an SVR2 for a routine invoked
by an XCTL macro instruction. Register 15
in the extended save area of the RB gives a
pointer to a parameter list containing the
nare of the routine that issued the XCTL.

If the RE doces not bear the name of one
of your load mcdules, either an RB was
overlaid or termination occurred during
execution of a systen routine. The first
three characters of the name identify the
system component; Arpendix C contains a
list of component nares to aid you in
determining which load module was Lkeing
executed.

I1f the RB bears the name of one cf your
load modules, you can be reasonakly certain
that the source of the abnormal termination
lies in your opject code. However, an
access method routine may be at fault.

This possibility arises because your
program branches to access method routines

30 Programmer's Guide to Debugging (Release 19)

through a supervisor-assisted linkage,
instead of invoking them. Thus, an access
method routine is not represented on the
active RB queue. To ascertain whether an
access method routine was the source of the
abnormal termination, you must examine the
resume PSW field in the RB. If the last 3
bytes in this field point to a main storage
address outside your program, check the
load list to see if an access method
routine is loaded at that address. If it
is, you can assume that it, and not your
program, was the source of abnormal
termination.

Abnormal Termination in System Routines:

By analyzing the RB's name field or the SvVC
number in the previous RB, you can
determine which system load module
requested the termination. If the RR has a
system module name, the first three
characters tell you the name of the system
component. The remaining characters in the
name identify the load module in error.

Remember, although a system routine had
control when the dump was taken, a problem
program error may indirectly have been at
fault. Such a situvation might result from
an incorrectly specified macro
instruction,an FQ& modified inadvertently,
a request for too much storage space, a
branch to an invalid storage address, etc.
To determine the function of the load
module that had control, consult Appendix
C. With its function in mind, the
completion code together with an
examination of the trace table may help you
to uncover which instruction in the problern
program incorrectly requested a system
function.

Program Check Interruptions in Problem
Programs: If you have determined from the
completion code or PSWs and evaluation of
the RB queue that the dump resulted from a
program check in your problem program,
examine the status of your program in main
storage. (If you have received only an
indicative dump, you must obtain either an
ABEND/SNAP dump or a stand-alone dump at
this point.) Locate your program using
pointers in the RB. 1If its entry point
does not coincide with the lower boundary
of the program, you can find the lower
boundary by adding 32(20) to the address of
the RB (systems with PCP and MFT). The
RB's gsize field gives the number of
doublewords occupied by the RB, the
program, and associated supervisor work
areas. ABEND/SNAP dumps with PCP and MFT
have the storage boundaries of the problem
program calculated and printed.

Next, locate the area within your
program that was executed immediately prior
to the dump. To do this, you must examwine

the program check old PSW. Pertinent
inforrmation in this PSW includes:

Bits 12-15: ANMWP bits

Bits 32,33: Instruction length in
halfwords.

Bits 40-63: Instruction address

A useful item of information in the pPsSw
is the P bit of the AMWP bits (bits 12-15).
If the P kit is on, the PSW was stored
while the CPU was operating in the problem
program state. 1f it is off, the (PU was
operating in the supervisor state.

Find the last instruction executed
before the dump was taken by subtracting
the instruction length from the instruction
address. This gives you the address of the
instruction that caused the termination.

If the source program was written in a
higher level language, you must evaluate
the instructions that precede and follow
the instructicn at fault to determine their
function. You can then relate the functicn
to a statement in the source program.

Other Interruptions in Problem Programs:
If the corpletion code or PSWs and the
active RB queue indicate a machine check
interruption, a hardware error has
occurred. Call your IBM Field Engineering
representative and show him the duwp.

If an external interruption is
indicated, with no other type of
interruption, the dump probably was taken
by the operator. Check with him to find
out why the dump was taken at this point.
The mcst likely reasons are an unexgpected
wait or a program loop. If a trace table
exists, examine it for the events preceding
the trouble or, if the trace table was made
ineffectual by a program loop, resubmit the
job and take a dump at an earlier point in
the program. You may want to consider
using the TESTRAN facility to find where
the program loop occurred.

The remaining causes of a dump are an
error during either execution of an SVC ox
an I/0 interruption. In either case,
examine the trace table. Entries in tne
table tell you what events occurred leading
up to termination. From the sequence of
events, you should be able to determine
what caused a dump to be taken. From here,
you can turn to system control blocks and
save areas to get specific information.

For example, you can find the sense
information issued as a result of a unit
check in the UCB, a list of the open data
sets from the DEBR chain, the CCW list from
the 1I0B, the reason for an I/0 interrupt in
the status portion of the CSW, etc.

Section 2: Interpreting Dumps 31

Debugging Procedure Summarxy

Look at the completion code or PSW
printouts to find out what type of
Common completion
codes and causes are explained in

Check the name of the load module that
had control at the time the dump was
taken by looking at the active RB's.

If the
name identifies a problem program and
the completion code or PSW indicates a
program check, proceed to step 6. If
the name identifies a problem program,

indicates other than a program check,

If the dump contains a trace table,
begin at the most recent entry and
proceed backward to locate the most

From this entry,

examining each entry for an error that
could have caused the system routine

1.
error cccurred.
Appendix B.

2.

3. If the name identifies a system
routine, proceed to step 4.
and the completion code or PSW
proceed to step 10.

4. Find the function of the system
routine using Appendix C.

5.
recent 3SVC entry indicating the
problem state.
proceed forward in the table,
to be terminated.

32

11.

12.

Programmer's Guide to Debugging (Release 19)

If the name identifies one of your
load modules, check the instruction
address and the load list to see if an
access’ method routine last had
control. If so, return to step 4.

Locate your program in the dump.

Locate the last instruction executed
kefore the dump.

Examine the instruction and, if the
progran was written in a high-level
language, the instructions around it
for a possible error in object code.

If a machine check interruption is
indicated, call your IBM Field
Engineering representative.

If only an external interruption is
indicated, ask the operator why he
took the dump. Resubmit the job and
take a dump at the point where trouble
first occurred.

Examine the trace table, if one is
present, for events leading up to the
ternrination. Use trace table entries
and/or information in system control
klocks and save areas to isolate the
cause of the error.

ABEND/SNAP Dump
(Systems With PCP and MFT)

ABEND/SNAP dumps for systems with PCP and
MFT are discussed together because they are
nearly identical in format. System
differences in the contents of the dumps
are shaded for easy recognition. Debugging
instructions for the dumps are discussed
later, in the guide to using the dump.

ABEND/SNAP storage dumps are issued
whenever the control program or problem
program issues an ABEND or SNAP macro
instruction, or the operator issues a
CANCEL command requesting a dump, and
proper dump data sets have been defined.
However, in the event of a system failure,

"if a SYS1.DUMP data set has been defined

and is available, a full core image dump
will be provided, as explained in the
section headed "Core Image Dump."

Since, in an MFT with subtasking system,
subtasks may be created, you may receive
one or more partial dumps in addition to
the complete dump of the task that caused
the abnormal termination. A complete dump
includes a printout of all control
information related to the terminating
task, and the nucleus and all allocated
storage within the partition in which the
abending task resided. A partial dump of a
task related to the terminating task
includes only control information. The
partial dump is identified by either ID=001
or ID=002 printed in the first line of the
dump. Figure 22 is a copy of the first few
pages of a complete ABEND dump of an MFT
system with subtasking. It illustrates
some of the key areas on an ABEND dump, as
issued by systems with PCP and MFT. Those
portions of the dump that would only appear
on a dump of a subtasking system are noted
in the later discussions as appearing only
in a dump of an MFT with subtasking system.

Invoking an ABEND/SNAP Dump (PCP,MFT)

ABEND dumps are produced as a result of an
ABEND macro instruction, issued either by a
processing program or an operating system
routine. The macro instruction requires a
DD statement in the input stream for each
job step that is subject to abnormal
termination. This DD statement must be
identified by one of the special ddnamnes
SYSABEND or SYSUDUMP. SYSABEND results in
edited control information, the system
nucleus, the trace table, and a dump of
main storage; SYSUDUMP excludes the nucleus
and the trace table. In the event of a
system failure, the Damage Assessment
routine (DAR) attempts to write a core
image dump to the SYS1.DUMP data set. A
full exgplanation of core image dumps may be

found in the section headed "Core Image
Dump."

SNAP Dumps result from a problem program
issuing a SNAP macro instruction. The
contents of a SNAP dump vary according to
the operands specified in the SNAP macro
instruction. GSNAP dumps also require a DD
statement in the input stream. This DD
statement has no special characteristics
except that its ddname must not be SYSAREND
or SYSUDUMP. The processing program must
define a DCB for the snapshot data set.

The DCB macro instruction must contain, in
addition to the usual DCB requirements, the
operands DSORG=PS, RECFM=VBA, MACRF=(W),
BLKSIZE=882 or 1632, and LRECL=125. 1In
addition, the DCB must be opened before the
first SNAP macro instruction is issued.

Reference: The SNAF and DCE macro
instructions are discussed in the
publication Superviscr and Data Management
Macro Instructions.

Device and Space Ccnsiderations: DD
statements for ABEND/SNAP dumps, must
contain parameters appropriate for a basic
segquential (BSAM) data set. Data sets can
be allocated to any device supported by the
basic sequential access method. There are
several ways to code these DD statements
depending on what type of device you choose
and when you want the dump printed.

If you wish to have the dump printed
imrediately, code a DD statement defining a
printer data set.

- == 3

______ - PR

If your installation operates under a
system with PCP or MFT, and a printer is
associated with the SYSOUT class, you can
also ckbtain immediate printing by routing
the data set through the output stream.

- - - 1

r
| //SNAPDUMP DD SYSCUT=A,DCB=(...
L

This type of request is the easiest,
most economical way to provide for a dump.
All other DD statements result in the tying
up of an output unit or delayed printing of
the dump.

If you wish to retain the dump, you can
keep or catalog it on a direct access or
tape unit. The last step in the grertinent
jok can serve several functions: to print
out key data sets in steps that have been

ABEND/SNAP Dump (Systems With PCP and MFT) 33

abnormally terminated, to print an ABEND or

SNAP dump stored in an earlier step, or to
release a tape volume or direct access
space acquired for dump data sets.
Conditional execution of the last step can
be established through proper use of the
COND parameter and its subparameters, EVEN
and ONLY, on the EXEC statement.

* ABDUMP REQUESTED *

JOB ATHEOQT24 STEP STEP TIME 000737

COMPLETION CODE USER = 0123

INTERRUPT AT C6EFSA

PSW AT ENTRY TQ ABEND 00150000 4006EFS5A

TCe 01CB20 RB 0007FCS8 PLE 00000000

M5S 0001CC58 PK/FLG 10810408
FSA 1506EBF8 TCB 0001D0A0

ACTIVE RBS
PRB 06EE28 NM TATHB1O0G

SVRB JQTFD20 NM SVC-601C SZ/STAB 00120062
RG 0-7 000002A0 80000078
8~15-7 Q006EE6D 000 7FF78

SVRB O7FC58 NM SVC-AQ0S5A SZ/STAB 000CD062
RG 0-7 0007F7ES 000 7FD80
8-15-7 O007F7E8 0006F296

40007874

P/P STORAGE BOUNCARIES 0J06E800 TO 00080000
FREE AREAS SI1ZE

06EB 90 000CC060
06ECSO 00000050
06F588 0000FCS8
07F668 €0000098
QTFTD8 00000010
07F840 ¢0000228
07FB90 000000CO
CTFEES €000C018

eFigure 22A.

DATE 99366

000TF78C
000001F8B
0001C8D8

SZ/STAB 003D20D0 USE/EP 0106EE48 PSW 00150000 4006EF5A

USE/EP 00007878 PSW FF040033 50007020
00080000
0007FFFB

00000000
Q007FFBO

USE/EP 20007878 PSW FFO4000E BOOLETEC
000097F 8

0001CCS56 0000225C

Direct access space should be requested
in units of average block size rather than
in cylinders (CYL) or tracks (TRK). If
abnormal termination occurs and the data
set is retained, the tape volume or direct
access space should be released (DELETE in
the DISP parameter) at the time the data
set is printed.

PAGE 7001

000TFDRO

00000000

E0012420
0

80000078 TRN 00000000
0007FF78 JST 00005508

Q 000200 WT/LNK C001CB20
Q 900390
00000098
0006EE6D

WT/LNK QOO06EE28
00005508 0007FC30
00009848 00000000

000TFE48
4006EE4E

Q FBO3F8 WT/LNK COQTFD20
0037FD20 0006F230 00005508
0006F230 997007CBC CO001£7C8

0001CB29
0001C820

Sample of an ABEND Dump (PCP, NFT)

34 Programmer's Guide to Debugging (Release 19)

A,

SAVE AREA TRACE

TATHBLOG

SA O6EBFB

SA 06EE

WAS ENTERED

WDl 0606EACS
R1 0001CC80
R7 O0O007FC30

60 WDl 00000000
R1 00000000
R7 00000000

PROCEEDING BACK VIA REG 13

SA 06EE

TATHB10G

SA 06EB

DATA SETS
SNAP2
DUMDCB
JOBLIB
SYSPRINT
SYSABEND
SNAPY

REGS AT E
FL.PT.REG

REGS 0-7
REGS 8-15

NUCLEUS

000C00
000020
00C040
006060
000080
0000A0
LINES
c00l160
000180
0001A0
LINE
000LlEQ
000200
000220
000240
000260
00G280
0002A0
0002Cco
0002E0
000300
000320

e Figure 22B.

60 WDl 00000000
R1 00000000
R7 00000000

WAS ENTERED

F8 WD1 0606EACS
R1 o00lcCcC80
RT CO07FC30

uce 192 00225C

ucs 192 00225¢C

ucs 190 00218C

ucs 192 00225¢C

uce 192 00225C

uce 190 00218C

NTRY TO ABEND
§ 0-6

000002A0
0006EE60

FOFQF5C1
00000000
00001480
00040000
00000000
00000000

€Q0ccoo0
00040004
1007FSES
0040000
000153BC 00000000
0000C000 000000060
0000CC-000140
00000000 00000000
0001CB20 O0007E91 0006F465
00000000 00000000 00000000
0001C0 SAME AS ABOVE
000CTI9FC 00006888 0000A43A
0000846C 000083E4 00006780
00013340 00234700 024C96F0
40100038 94FD4011 90A13030
D2070440 003847F0 024C940QF
04409C29 018091F0 023B4780
90A1903C 58990000 D2079010
91800018 478002CE 58200208
01A098CD 002858B0 02189101
000012AA 47C00332 90C2B004
078850F0 002C41EQ0 02DC98AD

0000051C
50006846
50000000
00000334

00000000

80000078
0007FFT78

00000100
00000000
0006ECEQ

0006EBF8
00000000
00000000

0006EBF8
00000000
00000000

00000100
00000000
0006ECEQ

0006EE6O
00080000
0007FF78

00000000
00006000
00000000

00000000
00000000
00000000

0006EE60
00080000
0QO07FF78

DEB OTF78C

DEB OT7FAF4

00.000000 00000000

00000000
00000000
000097F8
0000020E
00003000
00000000

SAME AS ABOVE

82000170
80007016
00000000

00000001
00006942
02279029
5890021C
02279829
029C90Al1
001894FD
052247F0
00290788
18185880
01408200

20000000
0007FFBO

0007

00009 7F8
0000FFOO
60C850C0
00000000
00000000
00000000

00040000
00000080
00000000

40007720
00001000
01805830
05895850
018091F0
01lEQD207
90119140
026A0000
58A006C4
02189280
00281818

00009848
O00TFE48
0007FFBO

00000000
00000000
00000000

00000000
00000000
00000000

00009848
0007FE48
Q00TFFBO

DCB 06EFB4

DCB O6EFSC

00.000000 00000000
00080000

FFF8

00013440
00000000
00000000
00008278
00000000
00000000

0003A7A0
0006F491
00000000

0000AD42
000C0F28
06C45840
02105890
02384780
04400018
001B4780
00015388
58A0A004
100098F0
58800218

Sample of an AREND Dump (PCP, MFT)

ABEND/SNAP Dump (Systems With PCP and MFT)

00.000000 00000000

0007FE48
4006EE4E

01040080
FFO4000E
00040000
00040000
00000000
00000000

00000000
00000001
00000000

90001520
00009730
30004700
021407F9
044898A1
47F00282
02C05820
0000870A
L2AAOTCB
A0008900
0 7FB90OF

4006EE48
00000098
0007FFF8

00000000
00000000
00006000

00000000
60000000
00000000

4006EE48
00000098
Q007FFF8

8003ACD4
AODOOT7E2A
00000282
00000226
00000000
00000000

00000000
0006F4A8
00000000

00000000
0001335C
025CD207
90ALOLEQ
01€08200
589006C4
02040522
0A0390A9
18BA58AA
C0001200
04005890

00000098
OQ06EE6D

PAGE D002

000098CE
00005508
4006ECCE

00000000
00000000
00000000

00000000
00000000
00000000

000098CE
00005508
4006ECCE

00.000000 00000000

00005508
00009848

OCOTFC30
00000000

¥evsOseaeenaeasese ssecccsvassascca¥

seeesseDes
esssrssessle

FeoeDoooasoscossscccccossnnnsnsensX®

35

Sample DD Statements: Figure 23 shows a
set of job steps that include DD statements
for ABEND dump data sets.

The SYSABEND DD statement in STEP2 takes
advantage of the direct access space
acquired in STEP1 by indicating MOD in the
DISP parameter. Note that the space
request in STEP1 is large so that the
dumping operation is not inhibited due to
insufficient space. The final SYSABEND DD
statement in the job should indicate a
disposition of DELETE to free the space
acquired for dumping.

Contents of an ABEND/SNAP Dump (PCP,MFT)

This explanation of the contents of
ABEND/SNAP dumps for systems with PCP and

MFT is interspersed with sample sections
taken from an AREND dump. Capital letters
represent tne headings found in all dumps,
and lowercase letters, information that
varies with each dump. The lowercase
letter used indicates the mode of the
informration, and the number of letters
indicates its length:

o h represents 1/2 byte of hexadecimal
information

¢ d represents 1 byte of decimal
information

e c represents a 1l-byte charactex

You may prefer to follow the explanation
on your own ABEND or SNAP dump.

/[STEPI | [EXEC | [PGN=PROGRAMI

//SYSABEND DD

DSNAME=DUMP,UNIT=231/1,D!S

P= (K
/7 VOLUME=SER|=1234/,S5PACE= (TRiK, (1 1l0,10)])

EEP,K@EP)l X

othiey DD sitatements

//STEP2 | [EXEC | [PGM=PROGRAM2
/SYSABEND DD | [DSNAME=%.S[TEP I ./SYSAB|END,D|i SP=(MOD ,D[ELETE|, KEEP]), X
// VOL=R|EF=7¢.[STEP!|. SYSABEND :

Figure 23. SYSABEND DD Statements

36 Programmer's Guide to Debugging (Release 19)

~n,

* * *x ABDUMP D * * *

REQUESTE
*CCCCCCC.a
JOB ccccccce

STEP cccccecce TIME dddddd

COMPLETION CODE SYSTEM = hhh (or USER = dddd)
CCCCCCau e

INTERRUPT AT hhhhhh

PSW AT ENTRY TO ABEND (SNAP) hhhhhhhh hhhhhhhh

DATE ddddd

PAGE dddd

identifies the dump as an ABEND or
SNAP dump.

¥CCCCCCCenowa

is omitted or is one or more of the
following:

#CORE NOT AVAILABLE, LOC.
hhhhhhhhhhhh TAKEN...

* * * ARDUMP REQUESTETD * * %

indicates that the ABDUMP routine

confiscated storage locations

hhhhhh through hhhhhh because not

enough storage was available.
This area is printed under P/P
STORAGE, but can be ignoread
because the problem program
originally in it was overlaid
during the dumping process.

*MODIFIED, /SIRB/DEB/LLS/ARE/MSS...
indicates that the one or more
queues listed were destroyed or
their elements dequeued during
abnormal termination:
¢ SIKB -- system interruption

request block queue. One orx
more SIRB elements were found
in the active RB queue:
elements are always dequeued
during dumping.

e DEB -- DEB queue.
message also appeared, either
DEB or an associated DCB was
overlaid.

e LLS load list.
message also appeared,

e ARB -- active RB queue.
first message also appeared,

these

in the free area specified by
an MSS element.

*FOCUND ERROR IN /DEB/LLS/ARB/ISS...
indicates that one or more of the
following contained an error:

e DEB: data extent block
e LLS: 1load list

e ARB: active RB

¢ MSS: Lkoundary box

This message appears with either
the first or second message
above. The error could ke:
improper toundary alignment,
control block not within storage
assigned to the program being
dumped, or an infinite lcop (300
times is the maximum for this
test). For an MSS block, 4 other
exrrors could also be found:
incorrect descending sequence
(omitting loop count),
overlapping free areas, free area
not entirely within the storage
assigned to the program being
dumped, ox count in count field
not a multiple of 8.

JOB cccceccecece

If the first

a STEP

If the first
cne or
more loaded RBs were overlaid.

TIME

If the

one or more RBs were overlaid.

e MSS -- boundary box queue.
or more MSS elements werxe
dequeued, but an otherwise
valid control block was found

DATE

One

ABEND/SNAP Dump (Systems With PCP and MFT)

is the job name specified in the JOB
statement.

cceceeece

is the ster name specified in the EXEC
statement for the problem program
being dumped.

dddddd

is the hour (first 2 digits), minute
(second 2 digits), and second (last 2
digits) when the ABDUMP routine began
processing.

dddaa

is the year (first 2 digits) and day
of the year (last 3 digits). For
example, 67352 would be Decerber 18,
1967.

37

PAGE dddd
is the page numper.
top of each page.

Appears at the

COMPLETION CODE SYSTEM=hhh or COMPLETION

CODE USER=dddd
is the completion code supplied by the
control program (SYSTEM=hhh) or the
problem program (USkER=dddd). Either
SYSTEM=hhh or USER=dddd is printed,
but not both. Common completion codes
are explained in Appendix B.

CCCCCCauw
explains the completion code or, if a
program interruption occurred:
PROGRAM INTERRUPTION ccccc... AT
LOCATION hhhhhh,

where ccccc is the program
interruption cause -- OPERATION,
PRIVILEGED OPERATION, EXECUTE,
PROTECTION, ADDRESSING, SPECIFICATION,
DATE, FIXED-POINT OVERFLOW,

FIXED-PCINT DIVIDE, DECIMAL CVERFLCW,
DECIMAL DIVIDE, EXPONERT
CVERFLOW,EXPONENT UNDERFLOW,
SIGNIFICANCE, or FLOATING-PCINT
DIVIDE; and hhhhhh is the starting
address of the instruction being
executed when the interruption
occurred.

INIERRUPT AT hhhhhh
is the address of next instruction to
te executed in the problem procram.
It is obtained from tne resume PSw of
the PKR or LPRB in the active RB queue
at the time aknormal termination was
requested.

PSW AT ENTRY TO ABEND hhhhhhhh hhhhhhhh or
PSW AT ENTRY TC SNAF hhhbhhhh hhhhhhhh
is the PSwWw for the problem or contrcl
progaran that nad control when abnormal
terwrination was requested or when the
SNEP macro instruction was executed.

STAE hhhhhhhh TCT ahhhhhhh

USER hhhhhhhh DAR hhhhhhhh

TCB hhhhhh RB hhhhhhhh PIE Ahhhhhhh DEB hhhhhhhh TIOT hhhhhhhh CMP hhhhhhhh TRN hhhhhhhh
MSS hhhhhhhh PK/FLG hhhhhhhh FLG hhhhhhhh LLS hhhhhhhh JLB hhhhhhhh JST hhhhhhhh
RG 0-7 hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh
RG 8-15 hhhhhhhh hhahhhhh hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh
FSA hhhhhhhh TCB hhhhhhhh TME hhhhhhhh PIB hhhhhhhh NTC hhhhhhhh OTC hhhhhhhh
LTC hhhhhhhh IQE nhhhhhhh ECB hhhhhhhh XTCB hhhhhhhh LP/FL hhhhhhhh RESV hhhhhhhh

RESV hhhhhhhh JSCB hhhhhhhh

TCE hhhhhh
is the starting address of the TCB.

RB hhhhhhhh
is the TCBRBP field (bytes 0 through
3): starting address of the active RE
queue and, consequently, the most
recent RB on the queue (usually
ABEND'Ss RB).

PIE hhhhhhhh
is the TCBPIE field (bytes 4 through
7): starting address of the program
interruption element (PIE) for the
task.

DEB hhhhhhhh
is the TCBDEB field (bytes 8 through
11): starting address of the DEB
gqueue.

TIOT hhhhhhhh
is the TCBTIO field (bytes 12 through
15): starting address of the TIOT.

cMP hhhhhhhh
is the TCBCMP field (bytes 1o throuch
19): task completion code in

hexadecimal. System codes are shown
in the third through fifth digits and
user codes in the sixth thrcugh
eighth.

TRN hhhhhhhh
is the TCRTIRN field (bytes 20 through
23): starting address of control core
(table) for controlling testing of the
task by TESTRAN.

MSS hhhhhhhh
is the TCBMSS field (bytes 24 through
27): starting address of the mrain
storage supervisor's boundary box.

PK/FLG hhhhhhhh
contains, in the first 2 digits, the
TCREKF field (Lbyte 28): protection
key.

FLG hhhhhhhi
ccntains, in the first 4 digits, the
last 2 bytes of the TCBFLGS field
(bytes 32 and 33): 1last 2 flag bytes.

contaians, in the next 2 digits, the
TCBIMP field (byte 34): in systems

38 Programmer's Guide to Debugging (Release 19)

oo

with PCP, both digits are zeros; in
systems with MFT, number of resources
on which the task is queued.

contains, in the last 2 digits, the
TCBDSP field (byte 35):

e Reserved in PCP and MFT without
subtasking; both digits are zero.

e In MFT with subtasking, this field
contains the dispatching priority of
the TCB.

LLS hhhhhhhh
is the TCBLLS field (bytes 36 through
39): starting address of the RB
most recently added to the locad
list.

JLB hhhhhhhh
is the TCBJLB field (bytes 40 through
43): starting address of the DCB
for the JOBLIB data set.

JST hhhhhhh
is the TCBJST field (bytes 44 through
47). Not currently ussd in PCP or NFT
without subtasking. In MFT with
subtasking - the starting address of
the TCB for the job step task.

RG 0-7 and RG 8-15
is the TCBGRS field (bytes 48 through
111): contents of general registers 0
through 7 and 8 through 15, as stored
in the save area of the TCB when a
task switch occurred. These 2 lines
appear only in TCBs of tasks other
than the task in control when the dump
was requested.

FSA hhhhhhhh
contains, in the first 2 digits, the
TCBIDF field (byte 112): TCB
identifier field.

contains, in the last 6 digits, the
TCBFSA field (bytes 113 through 115):
starting address of the first problem
program save area. This save area was
set up by the control program when the
job step was initiated.

TCB hhhhhhhh
is the TCBTCB field (bytes 116 through
119): in systems with PCP, all digits
are zeros; in systems with MFT,
starting address of the next TCB of
lower priority or, if this is the last
TCB, zeros.

TME hhhhhhhh

is the TCBTME field (bytes 120 through
123): starting address of the timer
element created when an STIMER macro
instruction is issued by the task.
This field is not printed if the
computer does not contain the timer
option.

PIE hhhhhhhh

is the TCBPIB field (bytes 124 through
127): starting address of the program
information block (MFT) or zeros
(PCP).

NTC hhhhhhhh (printed only in MFT)

is the TCBNTC field (bytes 128 through
131):

MFT without subtasking: zexos.

MFT with suptasking: the starting
address of the TCB for the previous
subtask on this subtask TCB queue.
This field is zero both in the job
step task, and in the TCB for the
first subtask created by a parent
task.

OTC hhhhhbhh (printed only in MFT)

is the TCBOTC field (bytes 132 through
135): starting address of the TCB for
the parent task. Both in the TCB for
the job ster task, and in MFT systems
without subtasking this field is zero.

LTC hhhhhhhh (printed only in MFT)

is the TCBLTC field (bytes 136 through
139): starting address of the TCB for
the most recent subtask created by
this task. This field is zero in the
TCB for the last subtask of a job
step, or in the TCB for a task that
does not create subtasks. This field
is always zero in an MFT system

without suktasking.

IQE hhhhhhhh (printed only in WMFT)

is the TCBIQE field (bytes 140 through
143).

MFT without subtasking: zero.

MFT with subtasking: starting address
of the interruption gqueue element
(IQE) for the ETXR exit routine. This
routine is specified by the ETXR
operand of the ATTACH macro
instruction that created the TCB being
dumped. The routine is to be entered
when the task terminates.

ABEND/SNAF Dump (Systems With PCP and MFT) 39

ECB hhhhhhhh (printed only in MFT)

XTCB

LP/FL hhhhhhhh

RESV

STAE

is the TCBECE field
147).

(bytes 144 throuah

MFT without subtasking: zero.

MFT with subtasking: starting address
of the ECB field to be posted by the
control program at task termination.
This field is zero if the task was
attached without an ECB operand.

hhhhhhhhh (printed only in MFT)
reserved for future use.

(printed only in MFT)
MFT without subtasking: reserved.

MFT with subtasking: contains in the
first byte, the limit priority of the
task (byte 152). contains, in the
last three bytes the field TCBFTFLG
(bytes 153 throuch 155) - flag bytes.

hhhhhhhh (printed only in MFT)
reserved for future use.

hhhhhhhh
contains, in the first 2 digits, STAE
flags (byte 160).

contains, in the last 6 digits, the
TCENSTAE field (bytes 161 throuch
163): starting address of the current
STAE control block for the task. This
field is zero if STAE has not peen
issued.

USER

RESV

JSCB

TCT hhhhhhhh

is the TCBTCT tield (bytes 164 through
167):

ECP: 4Leros.

MFT: Address of the Timing Control
Takle (TCT) Zeros of the System
Manacement Facilities option is
not present in the system.

hhhhhhhn

is the TCRUSER field (bytes 168
through 171): to be used as the user
chooses .

DAR hhhhhhhh

contains, in the first 2 digits,
Damage Assessment Routine (DAR) flags
(byte 172);

MFT only, contains, in the last 6
digits, tne secondary
non-dispatchability bits (bytes 173
through 17%).

hhhhhhhh
resexrved for future use.

hhhhhhhh

is the TCRJISCB field (bytes 180
through 183): the last three bytes
contain the address of the Job Step
Control Block.

ccce hhhhhh

ACTIVE RBS

NM ccccccecc
RG 0=7
RG 8-15

5Z/STAB hhahhhhh
hhhhhhhh hhhhahhh
hhhhhhhh hhhhahhh

USE/EP hhhh
hhhhhhhh
hhhhhhhh

hhhh PSW
hhhhhhhh
hhhhhhhh

hhhhhhhh hhhhhhhh
hhhhhhhh
hhhhhhhh

® hhhhhh
hhhhhhhh
hhhhhhhh

WT/LNK hhhhhhhh
hhhhhhhh hhhhhhhh
hhhhbhhhh hhhhhhhh

ACTIVE RES

CCccCcC

40

identifies the next lines as the
contents of the active RBs queued to
the TCB.

hhhhhh
indicates the RB type and its starting
address.

The RB types are:

PRB Program request block

SIRB Supervisor interrupt request
klock

LERE Loaded procram request klock

IRB Interruption request block

SVRB Supervisor request block

NM XXXXXXXX

Programmer's Guide to Debugging (Release 19)

is the XRBNM field (bytes 0 through
7): in FRE, LRB, and LPRB, the

program nare; in IRB, the first byte
contains flags for the timer or, if

the timer is not being used, contains
no meaningful information; in SVRB for
a type 2 SVC routine, the first 4
bytes contain the TTR of the load
module in the SVC library, and the
last 4 bytes contain the SVC number in
signed, unpacked decimal.

SZ/STAB hhhhhhhh
contains in the first 4 digits, the
XRBSZ field (bytes 8 and 9): number
of contiguous doublewords in the RB,
the program (if applicable), and
associated supervisor work areas.

contains in the last 4 digits, the
XSTAB field (bytes 10 and 11): flag
bytes.

USE/EP hhhhhhhh
contains, in the first 2 digits, the
XRBUSE field (byte 12): use count.

contains, in the last 6 digits, the
XRBEP field (bytes 13 through 1b5):
address of entry point in the
associated program.

PSW hhhhhhhh hhhhhhhh
is the XRBPSW field (bytes 16 through
23): resume PSW.

0 hhhhhh

is the last 3 bytes of the XRB¢ field
(bytes 25 through 27): in PR8 and
LPRE, starting address of an LPRB for
an entry identified by an IDENTIFY
macro instruction; in IRB, starting
address of a request element; in SVRE
for a type 3 or 4 gsvc, size of the
program in bytes.

WT/LNK hhhhhhhh

contains, in the first 2 digits, the
XRBWT field (byte 28): wait count.

contains, in the last 6 digits, the
XRBLNK field (kytes 29 through 31):
primary queuing field. It is the
starting address of the previous RB
for the task or, in the first RB to be
placed on the queue, the starting
addxess of the TCB.

RG 0-7 and RG 8-15

is the XRBREB field (bytes 32 through
95 in IRBs and SVRBs): contents of
general recisters 0 through 15 stored
in the RB. These 2 lines do not
appear for PRBs, LPRBs, and LRBs.

LOAD LIST

ceccec hhhhhh NM cccccccc S2/STAB hhhhhhhh USE/EP hhhhhhhh

PSW hhhhhhhh hhhhhhhh Q hhhhhh WT/LNK hhhhhhhh

LOAD LIST
identifies the next lines as the
contents of the load list queued to
the TCB.

cccc hhhhhh
indicates the RB type and its starting
address.

The RB types are:

LRB Loaded request block

LPRB Loaded program request block

D~-LPRB Dummy loaded program request
block. (Present if the
resident reenterable lcad
module option was selected in
MFT).

NM cccecccec
is the XRBNM field (bytes 0 through
7): program name.

SZ/STAB hhhhhhhh

contains, in the first 4 digits, the
XRBsSZ field (bytes 8 and 9):
number of contiguous
doublewoxrds for the RB, the
program (if applicable), and
asscciated supervisor work
areas.

contains, in the last 4 digits, the
XSTAB field (bytes 10 and 11):
flag bytes.

USE/EP hhhhhhhh

contains, in the first 2 digits, the
XRBUSE field (byte 12): use
count.

contains, in the last 6 digits, the
XREBEP field (bytes 12 through
15): address of entry point
in the program.

ABEND/SNAP Dump (Systems With PCP and MFT) 41

| JOB PACK AREA QUEUE

PSW hhhhhhhh hhhhhhhh
is the XRBPSW field (bytes 16 through
23): resume PSW.

¢ hhhhhh
is the last 3 bytes of the xRBy field

(bytes 25 through 27): in
.PRB, starting address of an
LPRB for an entry identified
by an IDENTIFY macro
instruction; in LKB, unused.

WT/LNK hhhhhhhi

contains, in the first 2 digits, the

XEBWT tield (byte 28): wait
count. o

contains, in the last 6 digits, the
XRELNK field (bytes 29 through
31): primary queuing field
fcr LREs and LPRBs also on the
active RB queue. It points to
the previous RB for the task
or, in the oldest RE in the
queue, back to the TC3.

JOB PACK AREA QUEUE

cccc hhhhhh NM cccoccccce $Z/STAB hhhhhhhh USE/EP hhhhhhhh
cccec hhhhhh NM cccccecce SZ/STAB hhhhhhhh WTL hhhhhhhh
ccce hhhhhh NM cecccceec SZ/STAB hhhhhhhh USE/EP hhhhhhhh

PSW hhhhhhhh hhhhhhhh @ hhhhhh WT/LNK hhhhhhhh
REQ hhhhhhhh TLPRB hhhhhhhh .
PSW hhhhhhhh hhhhhhhh Q hhhhhh WT/LNK hhhhhhhh

(MFT with subtasking
only)
identifies the next lines as the
contents of the job pack area queue
originating in the partition
information block (PIB).

PSW hhhhhhhh

12 through 15): address of the most
recent wait list element (WLE) on the
WLL gueue.

hhhhhhhi: (LPRB, LRE Only)
is the XRERPSW field (bytes 16 through

cccce hhhhhh 23): resume PSW. -—
indicates the RB type and its starting T
address.
REC hhhhbhhh (FRE Cnly)
The RB types are: is the XRREQ field of the FRE (bytes
1o thrcugh 19): address of the TCE of
FRB Finch request block the requesting task.
LRB Loaded request block
LPRB Loaded program request block TLPRB hhhhhhhh (FRE Cnly)
is the XR1LPRE field of the F:B (bytes
NM cccceccce 20 through 23): address of the LPkB
is tne XRBNM field (bytes 0 through built by the Finch routine for the
7): Prodram name. requested program.
SZ/STAB hhhhhhhh 0 hhhhhh (LRB, LPRE Only)
contains, in the first 4 digits, the is the last 3 bytes of the XRE¢ field
XRBSZ field (bytes 8 and 9): number (bytes 25 through 27):
of contiquous douklewords for the RB,
the program (if applicable), and e in an LPREB, the starting address of
associated supervisor work areas. an LPRE for an entry identified by
an IDENT1FY macro instructiocon.
contains, in the last 4 digits, the ¢« in an LRE, unused.
XSTAB field (bytés 10 and 11): flag
bytes. WT/LNK hhhhhhhti (LRE, LPRB Only)
contains, in the first 2 digits, the
USE/EP hhhhhhhh (LPRB, LRB Only) XRBWT field (byte 28): wait ccunt.
contains, in the first 2 digits, the
XRBUSE field (byte 12): wuse count. contains, in the last 6 digits (bytes
29 through 31): primary queuing field
contains, in the last 6 digits, the for RB3s. These RBs may be queued
XRBEP field (bytes 13 through 15): eithexr on the jobk pack area queue or
address of entry point in the program. on the active RE queue. It points to
the previous RE for the task or, in
Wil hhhhhhhh (FRE Only) the oidest KB on the queue, back tc o,
is the XRWTL field of the FkD (bytes the TCD.

42 Programmer's Guide to Debugging (Release 19)

P/P STORAGE BOUNDARIES hhhhhhhh TO hhhhhhhh

FREE AREAS SIZE
hhhhhh hhhhhhhh
GOTTEN CORE S1ZE

hhhhhh hhhhhhhh
SAVE AREA TRACE
ccccccece WAS ENTERED VIA LINK (CALL) ddddd AT EP GCCCGCaas

SA hhhhhh WDl hhhhhhhh HSA hhhhhhhh LSA hhhhhhhh

R1 hhhhhhhh R2 hhhhhhhh R3 hhhhhhhh
R7 hhhhhhhh R8 hhhhhhhh R9 hhhhhhhh
INCORRECT BACK CHAIN

PROCEEDING BACK VIA REG 13

RET hhhhhhhh

R10 hhhhhhhh

EPA hhkhhhhhh RO hhhhhhhh
hhhhhhhh R5 hhhhhhhh R6 hhhhhhhh
R11 hhhhhhhh R12 hhhhhhhh

P/P STORAGE BOUNDARIES hhhhhhhh TO hhhhhhhh
gives the addresses of the lower and
upper boundaries of a main storage
area assigned to the task. This
heading is repeated for every
noncontiguous block of storage owned
by the task.

FREE AREAS SIZE
hhhhhh hhhhhh
hhhhhh hhhhhh

are the starting addresses of free
areas and the size, in bytes, of each
area contained within the P/P STORAGE
BOUNDARLIES field listed above.

GOTTEN CORE SIZE
hhhhhh hhhhhhhh
hhhhhh hhhhhhhh

(Printed only in a dump of a system
with the MFT with subtasking option).
These figures represent the starting
addresses of the gotten areas (those
areas obtained for a subtask through a
supervisor issued GETMAIN macro
instruction), and the size, in bytes,
of each area contained within the P/P
STORAGE BOUNDARILS field listed above.
If main storage hierarchy support is
included in the system, the values in
this field can address storage in
either. hierarchy 0 or hierarchy 1, or
both.

SAVE AREA TRACE
identifies the next lines as a trace
of the save areas for the program.

cccccece WAS ENTERED
is the naxe of the program that stored
register contents in the save area.
This name is oktained from the RB.

VIAa LINK (CALL) ddddd
indicates the macro instruction (LINK
or CALL) used to give control to the
next lower level module, and is the 1D
operand, it it was specified, of the
LINK or CALL macro instruction.

AT EP ccccc...
is the entry point identified, which
appears only if it was specified in
the SAVE macro imstruction that filled
the save area.

SA hhhhhn
is the starting address of the save
are€a.

WD1 hhhhhhhh
is the first word of the save area:
use of this word is optional.

HSA hhhhhhhh
is the second woxrd of the save area:
starting address of the save area in
the next higher level module. In the
first save area in a job step, this
word ccntains zeros. In all cother
save areas, this word must be filled.

LS2 hhhhhhhh
is the third word of the save area
(register 13): starting address of
the save area in the next lower level
rodule.

RET hhhhhhhh
is the fourth word of the save area
(register 14): return address.
Optional.

ABEND/SNAP Dump (Systems With PCP and MFT) 43

EPA hhhhhhhh
is the fifth word of the save area
{register 15): entry point to the
invoked module. Optional.

RO hhhhhhhh R1 hhhhhhhh ... R12 hhhhhhhh
are words 6 through 18 of the save
area (registers 0 through 12):
contents of registers 0 through 12
immediately after the linkage for the
module containing the save area.

INCORRECT BACK CHAIN
indicates that tne following lines may
not be a save area because the second

word in this area does not point back
to the previous save area in the
chain.

PROCEEDING BACK VIA REG 13
indicates that the next 2 save areas
are (1) tne save area in the lowest
level module, followed by (2) the save
area in the next higher level module.
The lowest save area is assumed to be
the save area rointed to by register
13. These 2 save areas arpear only if
register 13 points to a full word
boundary and does not contain zeros.

DATA SETS
#*2x% N OT F ORMAMTTE D **#*%»

cccecececece ucs ddad hhhhhh DEB hhhhhh DCB

D/S FORMATTING TERMINATED

hhhhhh

DATA SETS
indicates that the next lines present
information about the data sets for
the task. For unopened data sets,
only the ddname and UCB information
are printed.

NOT FORMATTETD
indicates that the aknormal
termination dump routine confiscated
storage (indicated by *CORE NOT
AVAILABLE, LCC. hhhhhh-hhhhhh TAKEN) ;
because DCBs may have been overlaid,
data set information is not presented.

cceecccee
is the name field (ddname) of the DD
statement.

UCB 444 hhhhhh
is the unit to which the data set was

assigned, and the starting address of
the UCB for that unit. If the data
set was assigned to several units, the
additional units are identified on
following lines.

DEs hhhhhh
is the starting address of the DEB for
the data set. Appears only fcr open
data sets.

DCB hhbhhh
is the starting address of the DCB for
the data set. Appears only fcor open
data sets.

D/S FORMATTING TERMINATED
indicates that no more data set
information is presented because a DCB
is incorrect, possibly because a
Frogram incorrectly modified it.

44 Programmer's Guide to Debugging (Release 19)

TRACE TABLE - STARTING WITH OLDEST ENTRY

dddd 1/0 ddd PSW hhhhhhhh hhhhhhhh csw hhhhhhhh hhhhhhhh
ddda SIO dda cc =4 CAW hhhhhhhh OLD CSW hhhhhhhh hhhhhhhh (or CSW STATUS hhhh)
dadda svc dda PSW hhhhhhhh hhhhhhhh RG 0 hhhhhhhh RG 1 hhhhhhhh

TRACE TABLE -- STARTING WITH OLDEST ENTRY cec=a

identifies the next lines as the
contents of the trace table. Each
entry is presented on one line. The
types of entries are:

I/0 Input/output interruption entry

SIO Start input/output (SIO) entry
SVC Supervisor call (sSvC) interruption
entry

dddd
is the number assigned to each entry.
The oldest entry receives the number
0001.

ddd
is the channel and unit that caused
the input/output interruption.

/0

PSW hhhhhhhh hhhhhhhh
is the program status word that was
stored when the input/output
interruption occurred.

CSW hhhhhhhh hhhhhhhh
is the channel status word that was
stored when the input/output
interruption occurred.

SI0 ddad
is the device specified in the SIO
instruction.

is the condition code resulting from
execution of the SIO instruction.
Zero indicates a successful start.

CAW hhhhhhhi
is the channel address word used by
the SIC instruction.

OLD CSw hhhhbhhh hhhhhhhh
is the channel status word stored
during execution of an SIC operation.
It arpears when CC is not egual to 1.

CSW STATUS hhhb
is the status portion of the channel
status word stored during execution of
an SIO instruction. Appears when CC
is equal to 1.

Svc ddad
is the SVC instruction's operand.

PSW hhhhhhhh hhhhhhhh
is the PSW stored during the sSvVC
interruption. (After release 11, an F
in the fifth digit of the first word
identifies the entry as representing a
task switch.)

RG 0 hhhhhhhh
is the contents of register 0 as
passed to the SVC routine.

RG 1 hhhhhhhh

is the contents of register 1 as
passed to the SVC routine.

ABEND/SNAP Dump (Systems With PCP and MFT) 45

REGS AT ENTRY TO ABEND (SNAP)

FLTR 0«6 hhhhhhhhhhhhhhhh hhhhhhhhhhhhhhhh hhhhhhhhhhhhhhhh hhhhhhhhhhhhhhbh

REGS 0O=7 hhhhhhhh hhhhhhhh khhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh

REGS 8~15 hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh
REGS AT ENTRY TO ABEND or REGS AT ENTRY TO FLTR 0-0

SNAP
identifies the next 3 lines as the
contents of the floating point and

is the contents
registers 0, 2,

of floating point
4, and o.

general registers when the abnormal REGS 0-7
termination routine received control is the contents of general registers 0
in response to an ABEND macro throuagh 7.
instruction or when the SNAP routine
received control in response to a SNAP REGS 8-15
macro instruction. is the contents of general registers 8
torough 15.
NUCLEUS
hhhhhh hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh *ccccccccoccccoccccccceccceccecece?
hhhhhh hhhhhhhh hhhhhhhh hhhhhhhh hhhohhhh hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh *ccecececceocegececccccoecccecececcecccee®
LINE hhhhhh SAME AS ABOVE
hhhhhh hhhhhhhh hhhhhhhh hhhhhhhh hhhuhhhh hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh *cceococgoecceccoeccececccceccecec®
LINES hhhhhh=hhhhhh SAME AS ABOVE
hhhhhh hhhhhhhh hhhhhhhh hhhhhhhh hhhhbhhhh hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh *cccccceccccceocccccoccccoccceccececce®
P/P STORAGE
hhhhhh hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh *ccceoceccccecececccocceccceccececccccce
hhhhhh hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh *cecceccccccccacaccecceccecceccccecce®
hhhhhh hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh *ccccccgceccececccececccceccececcece®
LINES hhhhhh=hhhhhh SAME AS ABOVE
hhhhhh hhhhhhhh hhhhhhhh hhhhhhhh hhhhhiahh hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh *ccceccoccococeoecececccccecececceccecccee®
END OF DUMP

The content of main storage is given
under 2 headings: NUCLEUS and P/P STORAGE.
Under these headings, the lines have the
following format:

e First entry: +the address of the
initial byte of main storage contents
presented on the line.

e Next 8 entries: 8 full words (32
bytes) of main storage in hexadecimal.

e Last entry (surrounded by asterisks):
the same 8 full words of main storage
in EBCDIC. Only A through %2, 0 through
9, and blanks are printed; a period is
printed for anything else. A2An
exception occurs in the printed lines
representing the ABDUMP work area. The
contents of the ABDUMP work area during
the printing of EBCDIC characters

differs from the contents durinc
printing of the hexadecimal characters
because a portion of the work area is
used to write lines to the printer.
This excepticn should not create any
problems since the ccntents of the
AEDUMP work area is of little use in
debugging.

The following lines may also agrear:

LINES hhhhhhhh-hhhhhhhh SAME AS ABOVE
are the starting addresses of the
first and last line of a group of
lines that are identical to the line
immediately preceding.

LINE hhhhhih SAME AS ABOVE

is the starting address of a line that

is identical to the line immediately

preceding.

46 Programmer's Guide to Debugging (kelease 19)

N

NUCLEUS
identifies the next lines as the
contents of the control program
nucleus.

P/P STORAGE
identifies the next lines as the
contents of the main storage area
assigned to the task (problem
program) .

END OF DUMP
indicates that the dump or snapshot is
completed.

Guide to Using an ABEND/SNAP Dump (PCP,
MFT)

Cause of Abnormal Termination: Lvaluate
the user (USER Decimal code) or system
(SYSTEM=hex code) completion code using
Appendix B or the publication Messages and
Codes.)

Active RB Queue: The first RB shown on the
dump represents the oldest RB on the gueue.
The RB representing the load module that
had control when the cdump was taken is
third from the bottom. The last RB
represents the ABDUMP routine, and the
second from last, the ABEND routine. The
names of load modules represented in the
active RB queue are given in the RB field
labeled Ni in the dump. Names of load
modules in SVC routines are presented in
the format:

NM SVC-mnnn

= -
e —

where m is the load module number (minus 1)
in the routine and nnn is the signed
decimal SVC number. The last two RBs on an
ABEND/SNAP dump will always be SVRBs with
edited names SVC-1053A (ABLUMP--SVC 51) and
SVC-401C (ABEND--SVC 13).

Resume PSW: The resume PSW field is the
fourth entry in the first line of each R3
printout. It is identified by the
subheading PSW. For debugging purposes,
the resume PSW of the third RB from the
bottom, on the dump, is most useful. The
last three characters of the first word
give the SVC number or the I/0 device
address, depending on which type of
interruption caused the associated routine
to lose control. It also provides the CPU
state at the time of the interruption (bit
15), the length of the last instruction
executed in the program (bits 32,33), and
the address of the next instruction to be
executed (bytes 5-8).

Load List and Jopb Pack Area Queue: The
load module that had control at the time of
abknormal termination may not contain the
instruction address pointed to by the
resume PSW. In that case, 100k at the RBs
on the load list and on the job pack area
queue (MFT with subtasking). Corpare the
instruction address with the entry points
of each load module (shown in the last 3
bytes of the field labeled USE/EP). The
module which contains the instruction
pointed to by the resume PSW is the one in
which abnormal termination occurred. The
nare of the load module is indicated in the
field labeled NM.

Trace Table: Entries in the trace table
reflect SI0, I/0, and SVC interruptions.
SIC entries can ke used to locate the CCW
(through the CAW), which reflects the
operation initiated by an SIO instruction.
If the SIO operation was not successful,
the CSW STATUS portion of the entry will
show you why it failed.

I/0 entries reflect the I/0 old PSW and
the CSW that was stored when the
interruption occurred. From the PSW,
can learn the address of the device on
which the interruption occurred (bytes 2
and 3), the CPU state at the time of
interruption (bit 15), and the instruction
address where the interruption occurred
(bytes 5-8). The CSW provides you with the
unit status (byte 4), the channel status
(byte 5), and the address of the previous
CCW plus 8 (bytes 0-3).

you

SVC entries provide the SVC old PSW and
the contents of registers 0 and 1. The PSW
offers you the hexadecimal SVC number (bits
20-31), the CPU mode (bit 15), and the
address of the sSvC instruction (bytes 5-8).
The contents of registers 0 and 1 are
useful in that many system macro
instructions use these registers for
parameter information. Contents of
registers 0 and 1 for each SVC interruption
are given in Appendix A.

Note: If an ABEND macro instruction is
issued by the system when a program check
interruption causes abnormal termination,
an SVC entry does not appear in the trace
table, but is reflected in the PSW at entry
to ABEND.

Free Areas: ABEND/SNAP dumps do not print
out areas of main storage that are
available for allocation. Since the ABLND
routine uses some available main storage,
the only way you can determine the amount
of free storage available when abncrmal
termination occurred is to re-create the
situation and take a stand-alone dump.

ABEND/SNAP Dump (Systems With PCP and MFT) 47

MFT Considerations: Dumps issued by
systems with MFT include an additional
trace table entry for task switches. This
entry looks similar to an SVC entry, except
that words 3 and 4 of the entry contain the
address of the TCBs for the "new" and "old"
tasks being performed, respectively. The
trace table entries for one particular task
are contained between sets of two task
switch entries. Word 3 of the beginning
task switch entry and word 4 of the ending
task switch entry point to the TCB for that
task. With release 11 and following

releases, task switch entries are
identified ky a fifth digit of 'F'.

Note: To find all the entries for the
terminated task, on a dump issued prior to
release 11, obtain the TCB addresses under
the TCE heading of the dump and scan the
trace table under words 3 and 4 for these
addresses. Then enclose the areas that
begin with an entry having the TCB address
in word 3, and end with an entry having the
same TCB address in word 4. If words 3 and
4 contain the same address, disregard the
task switch entry.

48 Programmer's Guide to Debugging (Release 19)

g

ABEND/SNAP Dum
(Systems With MVT

MVT dumps differ from PCP and MFT dumps in
the addition of detailed main storage
control information, the omission of a
complete main storage dump, and the
omission of a trace table in ABEND dumps.
MVT dumps occur immediately after an
abnormal termination, provided an AREND or
SNAP macro instruction was issued and
proper dump data sets were defined.
However, if a system failure has occurred
and a SYS1.DUMP data set has been defined
and is available, a full core image dump is
provided, as explained in the section
headed "Core Image Dump."

With MVT's subtask creating capability,
you may receive one or more partial dumps.
in addition to a complete dump of the task
that caused abnormal termination. A
complete dump includes all control
information associated with the terminating
task and a printout of the load modules and
subpools used by the task. A partial dump
of a task related to the terminating task
includes only control information. A
partial dump is identified by either ID=001
or ID=002 printed in the first line of the
dump. Figure 24 shows the key areas of a
complete dump.

In systems with MVT, you can effect
termination of a job step task upon
abnormal termination of a lower level task.
To do this, you must either terminate each
task upon finding an abnormal termination
completion code issued by its subtask or
pass the completion code on to the next
higher level task.

Invoking an ABEND/SNAP Dump (MVT)

ABEND/SNAP dumps issued by systems with MVT
are invoked in the same manner as those
under systems with PCP and MFT. They
result from an ABEND or SNAP macro
instruction in a system or user program,
accompanied by a properly defined data set.
In the case of a system failure, the Damage
Assessment routine (DAR) attempts to write
a core image dump to the SYS1.DUMP data
set. A full explanation of core image
dumps may be found in the section headed
"Core Image Dump." The instructions that
invoke an ABEND/SNAP dump in MVT
environment are the same as those given in
the preceding topic for systems with PCP
and MFT. However, some additional
considerations must be made in requesting
main storage and direct access space.

MVT Considerations: In specifying a region

size for a job step subject to abncrmal
terrxination, you must consider the space
requirements for opening a SYSABENL or
SYSUDUMP data set (if there is one), and
loading the ABDUMP routine and regquired
data management routines. This space
requirement can run as high as 6000 bytes.

Direct access devices are used
frequently for intermediate storage of dump
data sets in systems with MVT. To use
direct access space efficiently, the space
for the dumg data set should be varied,
depending on whether or not abnormral
termination is likely. A small gquantity
should be requested if normal termination
is expected. To prevent termination of the
durp due to a lack of direct access space,
always specify an incremental (secondary)
guantity when coding a SPACE parameter for
a dump data set. You can obtain a
reascnable estimate of the direct access
space required for an ABEND/SNAP dump by
adding, (1) the number of bytes in the
nucleus, (2) the part of the system queue
space required by the task (9150 Lkytes is a
sufficient estimate), and (3) the amount of
regicn space occupied by the task.

Multiply the sum by 4, and request this
amount of space in 1024-byte blocks.

This formula gives the space
requirements for one task. Request
additional space if partial dumps of
subtasks and invoking tasks will be
included.

Contents of an ABEND/SNAP Dump (MVT)

This explanation of the contents of
ABEND/SNAP dumps issued by systems with MVT
is interspersed with sample sections from
an ABEND dump. Carital letters represent
the headings found in all dumps, and
lowercase letters, information that varies
with each dqump. The lowercase letter used
indicates the mode of the information and
the nurnber of letters indicates its length:

e h represents 1/2 byte of hexadecimal
information

e d@ represents 1 byte of decimal
information

» c rerresents a l-byte character

You may prefer tc follow the explanation on
your own ABEND or SNAP dump.

ABEND/SNAP Dump (Systems with MVT) 49

JNR T PCT4Y STFN CXSTFO TIME 0n240Q NATE 9alsgh PAGE 0001

LAMDLETIAN (AR QVETEM = R37
PSW AT TNTPY TN ARFMP FFEAANNON &§NNOFLOR

Tra A’fFA’a nan OONAOECTR ore nnnnnnnn AnNnN2FN34 000302F0 80RITOO0D 00000000
weS N1N21 728 NPK~F] 6 FARRNLOQ onnonnnn 000309RN 00000000 Q0N301ER
Y NINANTAR TrR QLGN nfONNNNN0O 0002FN28 0e000000 > 00N30S0R
[IREs arannnnn 10F nnnagneo C NONANL R4 nononneo 0rNA26A8 0NO?2FAAD
NSTAF 0CO0NONN TCT nNeN2OPER a0nonnnon nnonnnoo 00000009 000131 461

ACTTIVF RS

pon N3INNER RIZNY annnoonn APSW [alalalalsEatele} WS =S7=STAR NNO4NNRY FL-CNFE 0NN2]1 290 PSW FFFSONN6 7003553F
AZTTD . 00D00ONN0 WT-LNK NCAPFO?R

PESY connnnnn APSW naNoorno WE-S7-STAR ONO4ONND FL-CDF 07Q2NEJ0 PSW FFFS0017 5207EC4A
AVARE4 nnnnpann WT-]1 NK NNNIONFA

N2FNFEA TAS-IN 009RN4ANN APSW FEESFENF 2 WE=S7-STAR N012N0N7 TOoN oennnono PSW FFN&A00ND S000C408
RIARSY nNNNICAF WY=L NK 0MA20ARA
nG o 0-7 nannneENQ NNNICKF 4 0onnonna ANANNNNH 0onnnanT3 a003RCON N0036FRA nono3cc33
7% A-18 NNN9LNn ann3anre 0NNANKTO NNN3ALSRA DONIACF] nnn39sea 5?207F434 000TECIO0
EXTSA F?FRFPF8 FANAC 40 ONOANNEN NON2FFF &4 O0N?2FFr & N006NFARA nonnaal7 00030360
ANONIA4R onpnrnng 0NOARNFFN TArASNN4
APF1I7N TAR-tN NNRANICA APSW EPFEOF1CY Wr-S7-STAR NO120O02 TN onnannno PSW 00040032 S000COCE
ATTR nonnalon WT={ NK ONNDFOFO
°n N=7 _RNOONNNN /RNRITNANQ DONIGAF 4 40N0C1A2 000ANNFO NNN2EEDN4 ONN2EFC4 0NNANFARA
25 a-18 ANNNNRLT ANNANTIAL ANON?64R nnonoont 0ONO6DFEFD nenNn2e48 00NONDRGR 00000001
FXTRA nnnnpanE 0O0ANNAA 2NNNEFFF NNNANREND FFORNOON DNOPFLEC 00N2F1F4 F2E8F2(9
CECIRNRT rarsri2e c1co2rsns r4n7nilas
APECT] TAR-IN NNCRARCR APSY FIFQFSCL Wr-SZ2-STAB 00120002 TON aonnnonn PSW FFD40001 40NTFBA4
n/TTR ONNNA211Y WT-LNK ONN2F1TO
enN-7 annnnnnn ann2rno ANOORNT A NNONNRAR 0002FN2R 0002F170 0ono3y2a0 ao0Nn000
% f/-1% nNN2FEN2 R 4000PNTA nonN2Fo28 INNANNAAR 00030320 NDO2F1F 4 4NNONS94 00000000
FYTSA 00627300 arnanoa NN08NNJA 1”RN02648 noonNnNn4ao n00N90041 NON2R46N 00000018
0n12c992 ornrannn nonnnnan LLLLGIT
A~
tISY
NF nnNn2nnrR RSP-TNF N20A0TFA NE N0N2ADFQ RSP-CDF 01032390 NE 00031078 RSP-CDE 01032290
NE D0N3TAR0 28P-rNF 110122460 NFE ONN310Ce RSP-CNE 01032390 NE N0031170 RSP-CDE 010327200
NF nAnN211c00 RSP-rNF NIN323MN NF NND00900 P<P-CNF 0103NRFO
n31tzen noenne ROC=RA NAN3INNFQ [S1a] 035508 031280
n3nFon nr2nn RNC-PR OON309PY IFKAAQD n36240 02F398
nanrFAa 030nEN RNC-RY 3N0OONOOO IGCOANSA 06C980 030AB0
niz3on n32acn POC-PA I12D)N0N0N InGO19arD 07FANQO 032380
03?200 n3z2con ROC-RPR NNCANONDO 166019BA OTE4AD 032280
012260 nizran ROC-R2 HNODNO0O 156019RR : OTFRRO 032250
n3?300 07123r.0 RMC~RA ONODO0O0OC 166019CN NTFAQO 032380
ni220n n372130 RMAC-RA NNOOOCON 16GOI9AY 0TF3A0 0321F0
nizarn 0323F0 ROC-RA NONOINDND 16607 9AR aTFC10 0323R0
nN3I0IFN n3anFan ROAC-R" NOADOOOD TEWS70VR N6C4R0 030888
(8] ADR LN ADR LN ANR
031290 [slela laloTo R N¢} noonnnnl ﬂnﬂﬂn?Fﬁ NNNIARKNR
n2F3qa anonnnac noooneont AON1AFAR NNO3IRSC AR 000352CR 0030800 010A0400 010n0500
n1inninn 011n0300 011E0200 01290400 012F0500 01300500
a1izaann 013A0100 01450600 01480400 01&D0S00
030AR0 [SaleianTen el 0ooonnny RANOONAKRO 106980
N373R0 0nonon1o anonoony ANNON210 NNOTFAND
niz2an nonnNn10 nonsonol ANODN1RN naNTF4AD
N327250 000nNno1n a 00000001 40000D5R nnoTFasn
nN323R0 0oeneot1o nenooeol a8no0n210 nANNTEANQ
n0321F0 [sels Ialale A Ne) annonont RNNNO100 00D TEAAN
n323a0 oonnenin noonnnn] annoan9gn [olelordcion N¢)
nN3nRena annpnntn npnnonng annnn3so 0ANsC4nn
nNONNNDSO NANOONSH 00NOONSH 00000N5N ¥eovesoaseesecssenscssnnons
03200050 000NNNOO DNNJDP0A DONOIPREC OFNNDY00N 0NO2FQ2R N4D2EENS 98000000 esscanas 0.
AFEONNONN O100N0NN NNONNNND FFNANNARP N402END10 1AON2A4R 00N0003) ONO10032 con *eeessves .
nAONINNNA ANAYINANT 12020201 CIC4N000 0nNN3NnNo 000NONO0O 0NNN00NO C2RC40000 esePBBACD s
N

e Figure 24A. Sample of Complete ABEND Dunp (MVT)

50 Programmer's Guide to Debugging (Release 19)

S

nfa

N2FFAN
APEFSN
Q2FFEN
N2FFOO0
N2€r20
02EF60
N2FF60
NIFEFAN
N2FEAN
nN2FESN
N2rFFO

09990n&n
araonnnn
LALELLEE]
[elslalialatal.}
onnanAnA
nnNARANNA
nHN]INNNA
NOORONOA
nOO3NANA
anngnnQAa

TInTY JOR 10 T4Y

apenaonnn
10000000
180N2 ¢ 40
12002 64R
18002640
18002464
18002648
1RNND A4
18007648
18002 A4 R

STED
14040101
14n40100
14040180
14040100
14000000
14040100
14040101

SR Rk kK

LGS

n31739 nn

N3 740 no

0314R3
031400

0=PNE 00NR2AKAQ
POF 031460 FFR

TR

TANE 04rROO NFR

NCAR TRACFE

MAS n11CE NMAJ

A31088 FOFL

NOFL

030170 NMA Y

030180 FOFL

NAFL

SAVF AREA TRACF

SA 0ANTHB WN1 O

*t 0
RY 0

NSPOF
031740

N314R8

nnnooo
anannn

FIRST 00N
NO04CROO
00030808

nOO2146N

0nn3nIno
nanea1698
noneoncon
naeoneoon
00030190

noponono

Q000000
apnnnno
anannoo

INTFRRUPT AT NTEC4A

PPOCFENING BACK VI

SA N308CN Wnl Q@

21 o
27 0

SA 004780 WDl &

NHICLFUS
nonono

000020
009040

e Figure 24B.

LA 0
nT 4

sample of Complete

A PF5G 13

57095FF
207F3A0
nO6N6RA

7900000
0000000
rcoanno

nnonp2or
nononnnn
[alaleleloaokel 3
nonNnnNNsn
annnnng?
nooNnnasa
00nnnn46
nONNO04R
ANONON4LA
noNNHOEr

EXSTEP
DGM=*
SYSAR
FETOARF
FTNL T

SYSPUNCH

sysor
SYSIN

SPOE Ak
seIn
251

282

fCONYTIAFC
FENANAF 4
00nann3fF
nnoannst
0003nN42
fnponngs
non9on04sT
nnnNenNao
fanenO4sn
000ennan

« NN NO230F0N
D 00240900
any na240000
N 00250100
NO2%0800
T 00240F00

00280A0N

s e e el Rk
nof

031250

N31L4C0

n31400
0%14RA

00009050
28003000
04025FRO
NOORDONA
NOOADINOA
NOORICHA
00na9nA
00029004
IUGELLUY
NNORINOA
aN029004

nNNNNSO
nIn2rnpe
1R0N2A 48
180026&4R
18902648
18002644
18002647
1800 2R48
18002668
18002448
0nn1onny

30002648
ANNO264R
ANON264R
300029R4
nooonanne
anpn2448
RON02448

00000DS0
n4000000
00000029
nN000NN3F
00000041
0onooens3
0ononensgs
nonennaT
00000049
00NN0N4R
CIneCcInt

00000050
8RONOONO
000900 3%
20090040
00090042
00090044
00090046
000an048
00030044
0NNaN04C
£3C4F6CH

Aol ek ok Aok dok ko NOF foksokkkdkokhfoprxk

BLK

FOF

00075500 NN03500
nnn35300 OD003SRO
000ADRNO NNNANBO
N00BLONND N0N6L0
2006C800 N00RTRQ
NOD6BROO DONLRAN

0006NOON INNEDT4

31460 LAST 00031460
4CR00 NPQ 00000000
29000 RAN 00N3S000

LFR 000
RST 000

PFR 0NN

oo

31460 Sz

01C6A0

onn3lirs

RO

021088

000311e8

00030100

00N30140

00000000
naonNnoon
00000000

70004780
0nae6nsTe
0ONeNTARCE

FFDO00Q0
00000000
FFOO0ND0

0NaNNaNN NOONNOON NNNINNO0 00000000
FFNENN01 4007FC3C FEFS0001 0203ACF?
NDONATC] 0CNADNAN0 DOOT25A0 ONOCNRLA

0N0LFNNO

PP 000
FLG 000

00031088 NM§

[elelelalviksle) NM FF

00020608 SVRR

nno301A0 NMS

00000000 NM O FO

0002FN28 SVRA

00000200
nooonnno
Q0000200

957289180
000396F4
0N00NENg

0030000
47800000
00000000

N

NDOE

0 00000800 00CI10FN
0 00017000 ONOONONO
0 00000800 00030878
0 0N0N0RNO NNOZ03NS
0 00000R00 00Q2F3BA
0 00000800 0000D000

8 00000800 00000000

00000
]

YSDSN

SYS1.MACLIR

00030100
YSIFAOL
TEA

0002FERER

00000000
00000000
0000000

RO064710
NON396F4
00OT7ECTIO

a0nnNonno

FFOO
onno

0000
0000

00000000
00000009
0nonooona

958c1811
000ADSTO
5207F434

47800000
00000000
47D00000N

00NONRAR DONODODO FFO40080 8003RBT24
0N00FF)0 0DA0NCON FFNHK0336 BLOO0O0O
NR3AKFAJC 0N0L13RIC 00040000 NNOOF678

ABEND Dump

(MVT)

ABEND/SNAP Dump (Systems with MVT)

% % % 4 T % o % ®

.

kKRR FOF kiR siokd

NENF

a0000000
noooonoo
00000000
00000000
[adelololelelels]
00000000

00060000
00000000

00000000
00000000
00006000

5203936F
TEOADSCC
0007FEC1O

FFO00000
00000000
FF000000

.o

LN

00000508
000001C8
00000538
000004R0
00000180
000001A0

00000020
00000518

PAGE 0002

51

JOB cceecceec STEP ccccccce TIME dddddd DATE ddddd ID = d&dd PAGE dddd
COMPLETION CODE SYSTEM = hhh (or USER = dddd)
PSW AT ENTRY TC ABEND (SNAP) hhhhhhhh hhhhhhhh

JOB cccccccce terminated. (Note that, when a task

is the job name specified in the JOB

statement.

STEP cccccecce

is the step name specified in the EXEC
statement for the problem program
associated with the task being dumped.

TIME dddddd

is the hour (first 2 digits), minute
(next 2 digits), and second

PAGE
(last 2

digits) when the abnormal termination
dump routine began processing.

DATE ddddd

is the year (first 2 digits) and day
of the year (last 3 digits).
67352 would be December 18,

example,
1967.

Ib=ddd

is an identification of the dump.
dumps requested by an ABEND macro

instruction, this identification is:

For CODE

For

¢« Absent if the dump is of the task
being abnormally terminated.

s 001

if the dump is of a subtask of

the task being abnormally

PSW AT ENTRY TG
PSW AT ENTRY TO

is abncrmally terminated, its
subtasks are also abnormally
terminated.)

e 002 if the dumg is of a task that
directly or indirectly created the
task being abnormally terminated, up
to and including the job ster task.

dddd

is the page nunber. Appears at the
top of each page. Page numbers begin
at 0001 for each task or suktask
dumped.

COMPLETION CODE SYSTEM=hhh or COMPLETION

USER=dddd

is the completion code sugplied by the
control program (SYSTkM=hhh) or the
problem program (USER=dddd).

ABEND hhhhhhhh hhhhhhhh or
SNAP hhhhhhhh bhhhhhhh

is the PSW for the problem program or
control program routine that had
control when abnormal termination was
requested, or when the SNAP racro
instruction was executed. It is not
necessarily tne PSW at the time the
errcr condition occurred.

NSTAE hhhhhhhh

TCT

hhhhhhhh

USER hhhhhhhh

DAR hhhhhhhh

TCB hhhhhh RBP hhhihhhhh PIE hhhhhhhh DEB hhhhhhhh TIO hhhhhhhh CMP hhhhhhhh TRN hhhhhhhh
MSS hhhahhhh PK-FLG hhhhhhhh FLG hhhhhhhh LLS hhhhhhhh JLB hhhhhhhh JPQ hhhhhhhh
RG 0=7 hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh
RG B8=15 hhhhhhhh hbhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh
FsSa hhhahhhh TCB hhhhhhhh TME hhhhhhhh JST hhhhhhhh NTC hhhhhhhh OTC hhhhhhhh
LTC hhhhhhhh IQE hhhhhhhh ECB hhhhhhhh STA hhhhhhhh D=PQE hhhhhhhh $0S hhhhhhhh

RESV hhhhhhhh JSCB hhhhhhhh

TCB hhhhhh

is the starting address of the

RBP hhhhhhhh

PIE hhhhhhhh

TCB.

is the TCBRBF field (bytes 0 through

3):
queue and,

consequently,

recent RB on the queue.

52

starting address of the active KB

the most

Programmer's Guide to Debugging (Release 19)

is the TCEPIE field (bytes 4 through
7): starting address .f the program
interruption element (PIL) for the
task; however, in an abnormal
termination dung for the task causing
the abnormal termination, zeros. The
field is zeroed %, the ABEND routine
to prevent interruptions during
dumpin

DEB hhhhhhhh
is the TCBDEB field (bytes 8 through
11): starting address of the DEB
queue. Under the heading DEB3 in the
dump, the prefix section for the first
DER in the queue is presented in the
first 8-digit entry on the first line.
The 6-digit entry at the left of each
line under DEB is the address of the
second column on the line, whether or
not the column is filled.

TIO hhhhbhhh
is the TCBTIO field (bytes 12 through
15): starting address of the TIOT.

CMP hhhhhhhh
is the TCBCMP field (bytes 16 through
19): task completion code or contents
of register 1 when the dump was
requested. System codes are given in
the third through fifth digits and
user codes in the sixth through eight
digits.

TRN hhhhhhhh
is the TCBTRN field (bytes 20 through
23): starting address of the control
core (table) for controlling testing
of the task by TESTRAN.

MSS hhhhhhhh
is the TCBMSS field (bytes 24 through
27): starting address of SPQE most
recently added to the SPQE queue.

PK-FLG hhhhhhhh

contains, in the first 2 digits, the
TCBPKF field (byte 28): protection
key.

contains, in the last 6 digits, the
first 3 bytes of the TCBFLGS field
(bytes 29 through 31): first 3 flag
bytes.

FLG hhhhhhhh
contains, in the first 4 digits, the
last 2 bytes of the TCBFLGS (bytes 32
and 33): last 2 flag bytes.

contains, in the next 2 digits, the

TCBLMP field (byte 34): 1limit
priority (converted to an internal
priority, 0 to 255).

contains, in the last 2 digits, the
TCBDSP field (byte 35): dispatching
priority (converted to an internal
priority, 0 to 255).

LLS hhhhhbhhh

is the TCBLLS field (bytes 36 through
39): starting address of the load
list element most recently added to
the load list.

JLB hhhhhhhh

is the TCBJLB field (bytes 40 through
43): starting address of the DCB for
the JOBLIB data set.

JPQ hhhhhhhh

is the TCRJIFQ field (bytes 41 through
47): when translated into bkinary
bits:

e Rit 0 is the purge flag.

s Lits 1 through 7 are reserved for
future use and are zeros.

e Bits 8 through 31 are the starting
address of the queuve of CDEs for the
jok pack area control queue, which
is for programs acquired by the job
step.

The TCBIJPQ field is used only in the
first TCB in the job step; it is zeros
for all other TCBs.

RG 0-7 and RG 8-15

is the TCBGRS field (bytes 48 through
111): contents of general registers 0
through 7 and 8 through 15, as stored
in the save area of the TCB when a
task switch occurred. These 2 lines
appear only in dumps of tasks other
than the task in control when the dump
was requested.

Fsa hhhhhhhh

contains, in the first 2 digits, the
TCBCEL field (byte 112): count of
enqueue elements.

contains, in the last 6 digits, the
TCBFSA field (bytes 113 through 115):
starting address of the first problem
program save area. This save area was
set up by the control program when the
job step was initiated.

TCB hhhhhhhh

is the TCBTCB field (bytes 116 through
119): starting address of the next
lower priority TCB on the TCB gqueue
or, if this is the lowest priority
TCB, zZerxos.

TME hhhbhhhhh

is the TCBTME field (bytes 120 through
123): starting address of the timer
element created when an STIMER macro
instruction is issued by the task.

ABEND/SNAP Dump (Systems with MVT) 53

JST hhhhhhhh D-PQE hhhhhhhh

is the TCBJISTCB field (bytes 124
through 127): starting address of the
TCB for the job step task. For tasks
with a protection key of zero, this
field contains the starting address of
the TCB.

NTC hhhhhhhh

is the TCEFQE field (bytes 152 through
155): startine address minus 8 bytes
of the dummy PCF. This field is
rassed ky the ATTACH macro instruction
to each TCB in a job step.

is the TCBNTC field (bytes 128 through S¢S hhhhhhhh

131): the starting address of the TCB
for the previous subtask on this
subtask queue. This field is zero in
the job step task, and in the TCb for
the first subtask created by a parent
task.

is the TCRAQE field (bytes 156 through
159): staerting address of the
allocation gueue element (ACE).

NSTAE hhhhhhhh

OTC hhhhhhhh
is the TCBOTC field (bytes 132 through
135): starting address of TCB for the
parent task. In the wCB for the job
step task, this field contains the
address of the initiator.

LTC hhhhhhhh
is the TCBLTC field (bytes 136 through
139): starting address of the TCB for
the most recent subtask created by

contains, in the first 2 dicits, STAE
flags (cyte 160).

contains, in the last 6 digits, the
TCBNSTAE field (bytes 161 thrcugh
163): starting address of the current
STAE control block for the task. This
field is zero if ZTAE has nct peen
issued

this task. This field is zero in the TCT hhhhhhhh

TCB for the last subtask of a job
step, or in a TCB for a task that does
not create subtasks.

IQE hhhhhhhh USER
is the TCBIQE field (bytes 140 through
143): starting address of the
interruption queue element (IQE) for
the ETXR exit routine. This routine
is specified by the ETXR operand of
the ATTACH macro instruction that DAR
created the TCB being dumped. The
routine is to be entered when the task
terminates.

ECB hhhhhhhh
is tne TCBECE field (bytes 1u44 through
147): starting address of the ECB to
be posted by the control program at
task termination. This field is zero RESV
if the task was attached without an
ECB operand.

JSCB

STA hhhhhhhh
contains zeros, reserved for future
use.

54 Programmer's Guide to Debugging (Release 19)

is the TCBICT field (bytes 164 through
167): address of the Timing Control
Table (TCT).

hnhhhhhh

is the TCBUSEX field (bytes 168
thhrough 171): to be used as the userx
chooses.

hhhhhhhih

ccntains, in the first two digits,
Danage Assessment Routine (DAR) flags
(byte 172);

MFT cnly, contains, in the last 6
digits, the secondary
non-dispatcinabiliity bits (bytes 173
tnrough 175).

hhhhhhhh
reserved for future use.

hhhhhhhh

is the TCBJISCop field (kytes 180
tnrough 183): the last three bytes
contain the address of the Job Step
Contrcl Block.

T nip—

cccc hhhhhh

ACTIVE RBS

ceccecc hhhhhhhh APSW hhhhhhhh

Q/TTR hhhhhhhh WT-LNK hhhhhhhh

RG 0~-7 hhhhhhhh hhhhhhhh hhhhhhhh

RG 8=-15 hhhhhhhh hhhhhhhh hhhhhhhh

EXTSA hhhhhhhh hhhhhhhh hhhhhhhh
hhhhhhhh hhhhhhhh hhhhhhhh

WC-SZ2~STAB hhhhhhhh

hhhhhhhh
hhhhhhhh
hhhhhhhh
hhhhhhhh

cccccc hhhhhhhh PSW hhhhhhhh hhhhhhhh
hhhhhhhh
hhhhhhhh
hhhhhhhh

hhhhhhhh
hhhhhhhh
hhhhhhhh

hhhhhhhh
hhhhhhhh
hhhhhhhh

hhhhhhhh
hhhhhhhh
hhhhhhhh

ACTIVE RBS

cccce

identifies the next lines as the
contents of the active RBs gueued to
the TCB, beginning with the oldest RB
first.

hhhhhh
indicates the RB type (cccc) and
starting address (hhhhhh).

The RB types are:
PRB program request block

IRB interruption request block
SVRB supervisor request block

ccccec hhhhhhhh

indicates the RB's function (cccccee)
and bytes 0 through 3 of the RB
(hhhhhhhh) :

¢ RESV hhhhhhhh indicates PRB or SVRB
for resident routines. Bytes 0
through 3 are reserved for later use
and contain zeros.

s TAB-LN hhhhhhhh indicates SVRE for
transient routines. The first 4
digits contain the RBTABNO field
{bytes 0 and 1): displacement from
the beginning of the transient area
control table (TACT) to the entry
for the module represented by the
RB. The last 4 digits contain the
RBRTLNTH tield (bytes 2 and 3):
length of the $VC routine.

¢ FL-PSA hhhhhhhh indicates IRB. Tne
first 2 digits contain the RBTMFLO
field (byte 0): indicators for the
timer routines. This byte contains
zexros when the IRR does not
represent a timer routine. The last
6 digits contain the RBPSAV field
(bytes 1 through 3): starting
address of the problem program
register save area (PSA).

APSW hhhhhhhh

is the RBABOPSW
7):

field (bytes 4 through

e In PrRB, right
program's PSW
occurred.

half of the problem
when the interrugtion

e In IRB or SVRB for type II SVC
routines, right half of routine's
PSW during execution of ABREND or
ABTERM, Or zerxros.

e In SVREB for type III or IV 3VC
routines, right half of routine's
PSW during execution of ABEND or
ABTERM, or the last four characters
of the name of the requested
routine. (The last two characters
give the SVC number.)

WC-SZ-STAR hhhhhhhh

contains, in the first 2 digits, the
RBWCSA field (byte 8): wait count in
effect at time of abnormal termination

.of the prograrm.

contains, in the second 2 digits, the
RESIZE field (byte 9): size of the RB
in doublewords.

contains, in the last 4 digits, the
RESTAB field (bytes 10 and 11):
status and attribute bits.

cccccce hhhhhhhh

indicates the RB's function (cccccce)
and bytes 12 through 15 of the RB
(hhhhhhhh):

e FL-CDE hhhhhhhh indicates SVRB for
resident routines, or PRB. The
first 2 digits contain the RBCDFLGS
field (byte 12): control flags.

ABEND/SNAP Dunp (Systems with MVT) 55

The last 6 digits contain the RECDE
field (bytes 13 through 15):
starting address cof the CDE for the
module associated with this RB.

e LPA hhhhhhhh is the RBEP tield of
an IRs (bytes 12 through 15):
entry-point address of
asynchronously executed routine.

¢ TCN hhhhhbhhh indicates SVRB for WT~LN
transient routines. Is the REBSVTCHN

field (bytes 12 tnrough 15):

address of the next RB in the

transient control queue.

PSW hhhhhhhh hhhhhhhh
is the RBOPSW field (bytes 16 through
23): resume PSW.

Q/TTR hhhhhhhh

¢ In PRBsS and SVkBs for resident
routines, contains zeros in the
first 2 digits. The last o digits RG 0~
contain the RBPGM(field (bytes 25
through 27): queue field for
serially reusable programs (also
called the secondary queue).

EXTSA

e In IRBs, contains the KBUSE field in
the first 2 digits (byte 24): count
of requests for the same exit
(ETXR). The RBIQF field in last o
digits (bytes 25 through 27):
starting address of the queue of
interruption queue elements (IQE),
or zeros in the first 4 digits and
the RBIQE field in the last 4 digits
(bytes 26 and 27): starting address
of the request queue elements.

e In SVREs for transient routines the
first 2 digits contain the RETAWCSA
field (byte 24): number of requests
(used if transient routine is
overlaid) and the last 6 aigits, the
RBSVITR fieid (bytes 25 through 27):
relative track address icr the SVC
routine.

K hhhhhhhi
contains, in the first 2 digits, the
RBWCF field (byte 28): wait count.

contains, in the last o digits, the
RELINK field (bytes 29 through 31):
starting address of the previous RB on
the active RB gueue (primary gqueuing
field) or, if this is the first or
only RE, the starting address of the
TCE.

7 and rG 8-15

is the RBGkSAVE field (bytes 32
throuch 95): in SVRBs and IRPEs,
contents of registers 0 through 15.

e In IxBs, contains the RBNEXAV field
in thne first 8 digits (kytes 9o
throuch 99): address of next
availakle interruption queue element
(ICE), and in the remaining digits,
the interrugtion queue element work
space (up to 1948 bytes).

e In SVRRs, contains the RBEXSAVE
field (bytes 96 through 1u43):
extended save area for SVC routine.

LOAD LIST

NE hhhhhhhh RSP=CDE hhhhhhhh NE hhhhhhhh RSP=CDE hhhhhhhh NE hhhhhhhh RSP=CDE hhhhhhhh

LOAD LIST RSP-C
identifies the next lines as the
contents of the load list elements
(LLEs) queued to the TCB by its TCBLLS
field. The contents of 3 load list
elements are presented per line until
all elements in the queue are shown.

NE hhhhhhhh
contains, in the first 2 digits, LLE
byte 0: zeros.

contains, in the last 6 digits, LLE

bytes 1 through 3: starting address
of the next element in the load list.

56 Programmer's Guide to Debugging (Release 19)

DE hhhhhhhh

contains, in the first 2 digits, LLE
byte 4: the count of the number of
requests made by LOAD macro
instructions for the indicated locad
module. This count is decremented by
DELETE macro instructions.

contains, in the last 6 digits, LLE
bytes 5 through 7: starting address
of the CDE for the load module.

CDE

hhhhhhhh ATR1l hh NCDE hhhhhh ROC=RB hhhhhhhh

NM ccececcce

USE hh EFA hhhhhh ATR2 hh XL/MJ hhhhhh

CDE
identifies the next lines as the
contents directory. One entry is
presented per line.

hhhhhhhh
is the starting address of the entry
given on the line.

ATR1 hh
is the attribute flags.

NCDE hhhhhn
is the starting address of the next
entry in the contents directory.

ROC-RB hhhhhhhh
contains, in the first 2 digits,
ZEeros.

contains, in the last 6 digits, the
starting address of the RB for the
load module represented by this entry.

NM ccccccece
is the name of the entry point to the
load module represented by this entry.

USE hh
is the count of the uses (through
ATTACd, LINK, and XCTL macro
instructions) of the load module, and
cf the nurker of LOAD macro
instructions executed for the rodule.

EPA hhhhhh
is the entry point address associated
with the name in the NN field.

ATR2 hh
is the attribute flags.

XL/MJ hhhhhh
is the starting address of the extent
list (XL) for a major CDE, or the
starting address of the major CDE for
a minor CDE. (Minor CDEs are for
aliases.)

XL LN

hhhhhh SZ hhhhhhhh NO hhhhhhhh hhhhhhhh

ADR LN ADR LN ADR

hhhhhhhh

hhhhhhhh hhhhhhhh

XL
indicates the next lines are entries
in the extent list, which is queued to
the major contents directory entry.
Each extent list entry is given in one
or more lines. Only the first line
for an entry contains the left 3
colunmns; additional lines for an entry
contain information only in the right
6 columns.

hhhhhh
is the starting address of the entry.

52 hhhhhhhh
is the total length,
entry.

in bytes, of the

NO hhhhhhhh
is the number of scattered control
sections in the load module described
Ly this entry. If this number is 1,
the load module was loaded as one
block.

LN hhhhhhhh
gives the length, in bytes, of the
control sections in the load module
described by this entry. Bit 0 is set
to 1 in the last, or only, LN field to
signal the end of the list of lengths.

ADR hhhhhhhh
gives the starting addresses of the
control sections. Each ADR field is
raired with the LN field to its left.

ABEND/SNAF Dump (Systems with MVT) 57

DEB
hhhhhh nhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhnh
hhhhhh hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh
hhhhhh hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh
hhhhhh hhhhhhhh hhhhhhhh
TIOT JOB ccecccce STEP ccgcccce PROC ccccecce
DD hhhhhhhh cececcee hhhhhhhh hhhhhhhh
DEB STEP ccccccecc
identifies the next lines as the is the name of the step whose task is
contents of the DEBs and their prefix being cumped.
sections. The first 6 digits in each
line give the address of the DEB
contents shown on the line, beginning PRCC ccccccce
with the second column. The first six is the name for the jok step that
digits of the first line contains the called the cataloged procedure. This
prefix section for the first DEB on field appears if the job ster whose
the queue. task 1s being dumped was part of a
TIOT cataloged procedure.
identifies the next lines as tne
contents of the TIOT.
DD
JOB cccccecece identifies the line as the contents of
is the name of the job whose task is the DD entry in the TICT.
being dumped.
,A!!Q&
MSS LR AR R R R RSN SpQE (I ZARE SRR RN] ARB Ak ko DQE IZX2 RS2SRRSR} L2 2R R R 2 FQE L2 2R RS S
FLGS NSPQE SPID DQE BLK FQE LN NDQE NFQE LN
hhhhhh hh hhhhhh dadd hhhhhh hhhhhh hhhhhh hhhhhh hhhhhh hhhhhhhh hhhhhhhh
D=PQE hhhhhh FIRST hhhhhhhh LAST hhhhhhhh
PQE hhhhhh FFB hhhhhhhh LFB hhhhhhhh NPO hhhhhhhh PPO hhhhhhhh
TCB hhhhhhhh RSI hhhhhhhh RAD hhhhhhhh FLG hhhhhhhh
FBQE hhhhhh NFB hhhhhhhh PFB hthhhhhh S2Z hhhhhhhh
PéE hhhhhh F}B hhhhhhhh L;B hhhhhhhh N;O hhhhhhhh PPQ hhhhhhhh
TCB hhhhhhhh RSI hhhhhhhh RAD hhhhhhhh FLG hhhhhhhh
FBEQE hhhhhh NFB hhhhhhhh PFB hhhhhhhh s2 hhhhhhhh
MSS SPCE
identifies the next lines as the identifies the 4 columns peneath it as
contents of the main storage the contents of SPQEs.
supervisor queue. This gueue includes
subpool queue elements (SPQE),
descriptor queue elements (DOE), and FLGS hh
free queue elements (FQE). is the SPCE flag byte.

hhhhhh
is the starting address of the first
element shown on the line.

NSPCE hhhhhh

58 Programmer's Guide to Debugging (Release 19)

is the starting address of the next
SPQE in the queue.

SPID ddd
is the subpool number.

DWE hhhhhh
for a subpool owned by the task being
dumped: the starting address of the
first DQE for the subpool.

for a subpool that is shared: the
starting address of the SPQE for the
task that owns the subpool.

DOE
identifies the 4 columns beneath it as
the contents of D(Es.

BLK hhhhhh

is the starting address of the
allocated 2K block of main storage or
set of 2K blocks.

FQE hhhhhh
is the starting address of the first
FQE within the allocated blocks.

LN hhhhha
is the length, in bytes, of the
allocated blocks.

NDQE hhhhha
is the starting address of the next
DQE.

FOE
identifies the 2 columns beneath it as
the contents of FQEs.

NFQE hhhhhhhin
is the starting address of the next
FQE.

LN hhhhhhhh
indicates the number of bytes in the
free area.

D-PQE hhhhhh
is the TCBPQE field (bytes 152 throucgh
155): starting address minus 8 bytes
of the dummy PQE shown on the line.

FIRST hhhhhhhh
is the starting address of the first
PQE.

LAST hhhhhhhh
is the starting address of the last
PQE.

PQE hhhhhn
is the starting address of the PQE
shown on the line.

FFB hhhhhhhh
is bytes 0 through 3 of the PQE:
starting address of the first FBQE.

If no FEQEs exist, this field is the
starting address of this pPQE

LFB hhhhhhhh
is bytes 4 through 7 of the PQE:
starting address of the last FBQE. If
no FBQEs exist, this field is the
starting address of this PQE.

NPQ hhhhhhhh
is bytes 8 through 11 of the element:
starting address of the next PCE or,
if this is the last PQL, zeros.

PP¢C hhhhhhhh
is bytes 12 through 15 of the element:
starting address of the preceding PQE
or, if this is the first PQE, zeros.

TCE hhhhhhhh
is bkytes 16 through 19 of the element:
starting address of the TCB for the
jcb step to which the space kelongs
or, if the space was obtained from
unassigned free space, zeros.

RSI hhhhhhhh
is Lkytes 20 through 23 of the element:
size of the region described by this
PCE (a multiple of 2048).

RAD hhhhhhhh
is bytes 24 through 27 of the element:
starting address of the regicn
described by this PQE.

FLG hhhhhhhh
is byte 28 of the element:
kit 0 when 0, indicates space
described by this PQE is owned;

when 1, indicates space is
borrowed.
kit 1 when 1, indicates region has
been rolled out (meaningiful only
when bit 0 is 0).
when 1, indicates region has
peen borrowed.
bit 3-7, reserved for future use.

kit 2

Note: PQE information is contained in two
lines on the dump. When the rollcut/rollin
feature or lNain Storage Hierarchy Support
is included in the system, PQE information
(with associated FBQEsS) appears once in the
durnp for each region segment of the job
step. (Each FQE on the partition queue
defines a region segment. A job step's
region contains more than one segment only
when the step has rolled out another step
or steps, or Main Storage Hierarchy Supgort
is present.)

AREND/SNAP Dunp (Systems with MVT) 59

FBOQE hhhhhh
is the starting address of the FBQE
shown on the line.

NFB hhhhhhhh
is bytes 0 through 3 of the element:

starting address of the next FBCE. 1In

the highest or only FBQE, this field
contains the address of the PQE.

PFB hhhhhhhh

is bytes 4 through 7 of the element:
starting address of the previous FBQE.
In the lowest or only FBCE, the field
contains the address of the PCE.

SZ hhhhhhhh

is bytes 8 through 11 of the element:
size, in bytes, of the free area.

QCB TRACE
MAJ hhhhhh NMAJ hhhhhhhh PMAJ hhhhhbhh FMIN hhhhhhhh NM cccccccce
MIN hhhhhh FQEL hhhhhhhh PMIN hhhhhkhh NMIN hhhhhhhh NM XX XXXXXXXX
NQEL hhhhhhhh PQEL hhhhhkhh TCB hhhhhhhh SVRB hhhhhhhh
QCB TRACE PMIN hhhhhhhh
identifies the next lines as a trace is the starting address cf the
of the queue control blocks (QCB) previous minor (CB.
associated with the job step. Lines
beginning with MAJ show major QCBs, NMIN hhhhhhhh

lines beginning with MIN show minor
QCBs, and lines beginning witnh NQEL
show queue elements (QEL).

MAJ hhhhhh
is the starting address of the major
QCB whose contents are given on the
line.

NMAJ hhhhhhhh
is the starting address of the next
major QCB for the job step.

PMAJ hhhhhhhh
is the starting address of the
previous major QCB for the job step.

FMIN hhhhhhhh
is the starting address of the first
minor QCB associated with the major
QCB given on the line.

NM cccccccc
is the name of the serially reusable

resource represented by the major QCB.

MIN hhhhhh
is the starting address of the minor
QCB whose contents are given on the
line.

FQEL hhhhhhhh
is the starting address of the first
queue element (QEL), which represents

a request to gain access to a serially
reusable resource or set of resources.

is the starting address of the next
minor QCB.

NM XX XXXXXXXX

NQEL

PQEL

60 Programmer's Guide to Debugging (Release 19)

indicates, in the first 2 digits, the
scope of the name oxr address of the
minor QCB being dumped. If the scope
is hexadeciral FF, the name is known
to the entire operating system. 1If
the scope is hexadecimal 00 or 10
through FO, the name is known only to
the job step; in this case, the scope
is the protection key of the TCB
enqueuing the minor QCB.

Also contains, in the last 8 digits,
the name or the starting address of
the minor QCB.

hhhhhhhh

indicates, by hexadecimal 10 in the
first 2 digits, that the queuve element
on the line represents a request for
step-wrust-complete; by 00, ordinary
request; and by 20, a
set-rust-complete request.

Also contains, in the last 6 digits,
the starting address of the next queue
element in the queue, or for the last
queue element in the queue, zeros.

hhhhhhhh

indicates, by hexadecimal 80 in the
first 2 digits, that the gueue element
represents a shared request or, by
hexadecimal 00, that the element
represents an exclusive request. (1f

(

the shared DASD option was selected,
hexadecimal 40 in the first 2 digits
indicates an exclusive RESERVE request
and 00 indicates a shared RESERVE
request.)

TCB hhhhhhhh

is tne starting address of the TCB
under which the ENQ macro instruction
was issued.

SVRB hhhhhhhh

is the starting address of the SVRE
under which the routine for the ENQ
macro instruction is executed, or,
after the requesting task receives
control of the resource, the UCB
address of a device being reserved
through a RESERVE macro instruction
(the latter value occurs only when the
shared DASD option was selected).

SAVE AREA TRACE

ccececccce WAS ENTERED VIA LINK (CALL) ddddd AT EP cCCCCa4s

SA

hhhhhh WDl hhhhhhhh HSA hhhhhhhh LSA hhhhhhhh RET hhhhhhhh EPA hhhhhhhh RO hhhhhhhh

R1 hhhhhhhh R2 hhhhhhhh R3 hhhhhhhh R4

hhhbhhhhh R5 hhhhhhhh R6 hhhhhhhh

R7 hhhhhhhh R8 hhhhhhhh R9 hhhhhhhh R10 hhhhhhhh R11 hhhhhhhh R12 hhhhhhhh

INCORRECT BACK CHAIN

INTERRUPT AT hhhhhh

PROCEEDING BACK VIA REG 13

SAVE AREA TRACE

identifies the next lines as a trace
of the save areas for the program.
Each save area is presented in 3 or 4
lines. The first line gives
information about the linkage that
last used the save area. This line
will not appear when the RB for the
linkage cannot be found. The second
line gives the contents of words 0
through 5 of the save area. The third
and fourth lines give the contents of
words 6 through 18 of the save area;
these words are the contents of
registers 0 through 12. Save areas
are presented in the following order:

1. The save area pointed to in the
TCBFSA field of the TCB. This
save area is the first one for the
problem program; it was set up by
the control program when the job
step was initiated.

2. If the third word of the first
save area was filled by the
problem program, then the second
save area shown is that of the
next lower level module of the
task. However, if the third word
of the first area points to a
location whose second word does
not point back to the first area,
the message INCORRECT BACK CHAIN
appears, followed by possible
contents of the second save area.

3. The third, fourth, etc. save
areas are then shown, provided the
third word in each higher save
area was filled and the second
word of each lower save area
points back to the next higher
save area. This process is
continued until the end of the
chain is reached (the third word
in a save area contains zexos) or
INCORRECT BACK CHAIN appears.

Following the forward trace, the
message INTERRUPT AT hhhhhh appears,
followed by the message PROCEEDING
BACK VIA REG 13. Then, the save area
in the lowest level module is
presented, followed by the save area
in the next higher level. The lowest
save area is assumed to be the 76
tytes beginning with the byte
addressed by register 13. These two
save areas apgear only if register 13
points to a full word boundary and
does not contain zeros.

ccccecececce WAS ENTERED

is the name of the module that stored
register contents in the save area.
This name is obtained from the RB.

VIA LINK d4dddd or VIA CALL ddddd

indicates the macro instruction (LINK
or CALL) used to give controcl to the
next lower level module, and is the ID

ABEND/SNAP Dunp (Systems with MVT) 61

operand, if it was specified, of the
LINK or CALL wmacro instruction.

AT EP CCCCCu...
is the entry point identifier, which
appears only if it was specified in
the SAVE macxo instruction that filled
the save area.

SA hhhhhh
is the starting address of the save
area.

WD1 hhhhhhhh
is the first word of the save area
(optional).

HSA hhhhhhhh
is the second word of the save area:
starting address of the save area in
the next higher level module. In the
first save area in a job step, this
word contains zeros. In all other
3ave areas, this word must be filled.

LSA hhhhhhhh
is the third word of the save area
(register 13): starting address of
the save area in the next lower level
(called) module. If the module
containing this save area did not fill
the word, it contains zeros.

RET hhhhhhhh
is the fourth word of the save area
(registexr 14): return address
(optional); if the called module dia
not £ill the word, it contains zeros.

EPA hhhhhhhh
is the fifth word of the save area

RO hhhbhhhhin R1 hhhhhhhh ...

(register 15): entry point to the
called module. Use of this word is
optional; if the called module did not
fill the word, it ccntains zercs.

R12 hhhhhhhh
are words 6 through 18 of the save
area (registers 0 through 12):
contents of registers 0 through 12 for
the module containing the save area
immnediately after the linkage. Use of
these words is optional; if the called
module did not fill these words, they
contain zeros.

INCORRECT BACK CHAIN
indicates that the following lines may
not be @ save area because the second
word in this area does not pcint kack
to the previous save area in the
trace.

INTERRUPT AT hhhhhn
is the address cof the next instruction
to be executed in the problen rrogram.
It is oktained from the resume PSW
word cf the last PRE or LPRB in the
active RB queue.

PROCEEDING BACK VIA REG 13
indicates that the next 2 save areas
are (1) the save area in the lowest
level nodule, followed by (2) the save
area in the next higher level rodule.
The lowest save area is the save area
pcinted to by register 13. These 2
save areas dppear only if register 13
points to a fullword boundary and does
not contain zero.

62 Programmer's Guide to Debugging (Release 19)

CPUx PSA

hhhhhh hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh ¥gecoeoccccececcecccecececcccccecceeck
hhhhhh hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh *cccceceocccccccceccccecccecccccceeec*
NUCLEUS

hhhhhh hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh *ccecccceceocceccecececcececcccecceccec*
hhhhhh hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhhhhhhhhhhh hhhhhhhh *¥cccecceoeeccocccocccccecccecceceoce®

NUCLEUS CONT.

hhhhhh
hhhhhh

hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh
hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh

hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh
hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh

ccececcecccccecccceccccecccceccceceec
¥ccecccceccceccccecccececccecececcea

REGS AT ENTRY TO ABEND (SNAP)

FLTR 0-6 hhhhhhhhhhhhhhhh hhhhhhhhhhhhhhhh hhhhhhhhhhhhhhhh hhhhhhhhhhhhhhhh
REGS 0-7 hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh ~ hhhhhhhh hhhhhhhh hhhhhhhh
REGS 8-15 hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh

LOAD MODULE ccccccce

hhhhhh hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh

hhhhhh hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh
LINES hhhhhh-hhhhhh 5AME AS ABOVE

hhhhhh hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh

hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh
hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh

cceoecocecocceececcecceccecccceccecec®
¥cccececcecccccecceccccceccecececeecH

hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh *cccecccceccccccceccccccccccecceccc*

hhhhhh hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh
LINE hhhhhh SAME AS ABOVE

CSECT dd OF cccceccece

hhhhhh
hhhhhh

hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh
hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh

hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh

hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh
hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh

cccceceoceoccececcecceccecceccecceccccecc

ccccececececccocccececcccocccccccoec®
ccecceeccccccoccececcceccececcccceceec

The contents of main storage are given
under 6 headings: CPUx PSA, NUCLEUS,
NUCLEUS CONT., LOAD MODULE cccccccc, CSECT
dd OF cccccecec, and in the trace table, SP
ddd BLK hh. Under these headings, the
lines have the following format:

e First entry: the address of the
initial bytes of the main storage
presented on the line.

e Next 8 entries: 8 full words (32
bytes) of main storage in hexadecimal.

e Last entry (surrounded by asterisks):
the same 8 full words of main storage
in EBCDIC. Only A through-Z, 0 through
9, and blanks are printed; a period is
printed for anything else.

The following lines may also appear:

LINES hhhhhh-hhhhhh SAME AS ABOVE
are the starting addresses of the
first and last lines for a group of
lines that are identical to the line
immediately preceding.

LINE hhhhhh SAME AS ABOVE
is the starting address of a line that
is identical to the line immediately
preceding.

CPUx PSA (Model 65 Multiprocessing dumps

only)
identifies the next lines as the
contents of the prefixed storage area
(PSA) -- 0 through 4095 (FFF). If the
system is operating in partiticned
mode (1 CPU), x is the CPU
identification. If the system is
operating in a 2 CPU multisystem mode,
both PSAs are printed, the first under
the heading CPUA PS2 and the second
under CPUB PSA.

NUCLEUS
identifies the next lines as the
contents of the nucleus of the control
prograrm.

NUCLEUS CONT.
identifies the next lines as the
contents of the part of the nucleus
that lies above the trace table.

REGS AT ENTRY TO ABEND or REGS AT ENTRY TO

SNAP
identifies the next 3 lines as the
contents of the floating point and
general registers when the abnormal
termination routine received control
in response to an ABEND macro
instruction or when the SNAP routine
received contxol in response to a SNAP

AREND/SNAP Durwp (Systems with MVT) 63

macro instruction. These are not the
registers for the problem program when
the error occurred.

FLTR 0-6
indicates the contents of floating
point registers 0, 2, 4, and 6.

REGS 0-7
indicates the contents of general
registers 0 through 7.

REGS 8-15
indicates the contents of general
registers 8 through 15.

LOAD MODULE cccccccce
identifies the next lines as the
contents of the main storage area
occupied ky the load module cccccccc.
All the modules for the job step are
dumped under this type of heading.
Fartial dumps do not contain this
information.

l CSECT hhhh OF ccccccce

identifies the next lines as the
contents of the main stoxage area
occuplied by the control section
(CSECT) indicated by hhhh. This
control section belongs to the
scatter-loaded load module cccccccc.

TRACE TABLE

hhhhhhhh

DSP NEW PSW hhhhhhhh hhhhhhhh R15/RJ hhhhhhhh

I/0 OLD PSW hhhhhhhh hhhhhhhh R15/RJ hhhhhhhh hhhhhhhh
SI0O CC/DEV/CAW hhhhhhhh hhhhhhhh csw hhhhhhhh hhhhhhhh
SVC OLD PSW hhhhhhhh hhhhhhhh R15/RO hhhhhhhh hhhhhhhh
PGM OLD PSW hhhhhhhh hhhhhhhh R15/RD2 hhhhhhhh hhhhhhhh
EXT OLD PSW hhhhhhhh hhhhhhhh R15/R2 hhhhhhhh hhhhhhhh

Rl hhhhhhhh
Rl hhhhhhhh
RES hhhhhhhh
R1 hhhhhhhh
R1 hhhhhhhh
Rl hhhhhhhh

SW

RES
RES
RES
RES
RES

hhhhhhhh
hhhhhhhh
hhhhhhhh
hhhhhhhh
hhhhhhhh
hhhhhhhh

TCB
TCB
TCB
TCB
TCB
TCB

hhhhhhhh
hhhhhhhh
hhhhhhhh
hhhhhhhh
hhhhhhhh
hhhhhhhh

TME
TME
TME
TME
TME
TME

hhhhhhhh
hhhhhhhh
hhhhhhhh
hhhhhhhh
hhhhhhhh
hhhhhhhh

TRACE TABLE (SNAP dumps only)
identifies the next lines as the
contents of the trace table. Each
trace table entry is presented on one
line; the name at the beginning of
each line identifies the type of entry
on the line:

e DSP Dispatcher entry

e I/0 Input/output interruption entry

e SIO Start input-output (SIO) entry

e SVC $upervisor call (svce)
interruption entry

e PGM Program interruption entry

e EXT External interruption entry

OLD PSW hhhhhhhh hhhhhhhh
is the PSW stored when the
interruption represented by the entry
occurred.

NEW PSW hhhhhhhh hhhhhhhh
is the new PSW stored in the entry.

CC/DEV/CAW hhhhhhhh hhhhhhhh
contains, in the first 2 digits:
completion code.

contains, in the next 6 digits:
device type.

ccntains, in the last 8 digits:
address of the channel address woxd
(CAW) stored in the entry.

R15/R0Q0 hhhhhhhh hhhhhhhh
contains, in the first 8 digits:
contents of register 15 stored in the
entry.

contains, in the last 8 digits:
contents of register 0 stored in the
entry.

CSW hhhhhhhh hhhhhhhh
is the channel status word (CSW)
stored in the entry.

R1 hbhhhhhh
is the contents of register 1 stored
in the entry.

RES hhhhhhhh
is reserved for future use; all digits
are zeros.

SW hhhhhhhh
is reserved for future use; all digits
are zeros.

TCE hhhhhhhh
is the starting address of the TCB
associated with the entry.

TME hhhhhhhh
is a representation of the timer
element associated with the entry.

64 Programmer's Guide to Debugging (Release 19)

TRT

MMM XN KX

DSp NEW PSW hhhhhhhh hhhhhhhh R15/R0 hhhhhhhh hhhhhhhh R1
I/0 OLD PSW hhhhhhhh hhhhhhhh csw hhhhhhhh hhhhhhhh R1
SI0 CC/DEV/CAW hhhhhhhh hhhhhhhh Ccsw hhhhhhhh hhhhhhhh
SVC OLD PSW hhhhhhhh hhhhhhhh R15/R0 hhhhhhhh hhhhhhhh R1
PGM OLD PSW hhhhhhhh hhhhhhhh R15/R0 hhhhhhhh hhhhhhhh R1
EXT OLD PSW hhhhhhhh hhhhhhhh R15/R0 hhhhhhhh hhhhhhhh R1
SSM OLD -PSW’ hhhhhhhh hhhhhhhh R15/R0 hhhhhhhh hhhhhhhh R1

hhhhhhhh NUA hhhhhhhh NUB hhhhhhhh TME hhhhhh
hhhhhhhh OLA hhhhhhhh OLB hhhhhhhh TME hhhhhh

TCB hhhhhhhh OLA hhhhhhhh OLB hhhhhhhh TME hhhhhh

hhhhhhhh OLA hhhhhhhh OLB hhhhhhhh TME hhhhhh
hhhhhhhh OLA hhhhhhhh OLB hhhhhhhh TME hhhhhh
hhhhhhhh MSK hhhhhhhh TQE hhhhhhhh TME hhhhhh
hhhhhhhh AFF yyhhhhhh OLB hhhhhhhh TME hhhhhh

TRT (MVT with Model 65 multiprocessing

dunmps only)
identifies the next lines as the
contents of the trace table. Each
trace table entry is presented on one
line; the letter and name at the
beginning of each line identify the
CPU and the type of entry,
respectively:

e DSP Dispatcher entry.

e I/0 Input/output interruption
entry.

e SIO Start input/cutput entry.

® SVC Supervisor call interruption
entry.

e PG¥ Program interruption entry.
e EXT &xternal interruption entry.
s SSM Set system mask entry-.

OLD PSW hhhhhhhh hhhhhhhh
is the PSW stored when the
interruption represented by the entry
occurred.

NEW PSW hhhhhhhh hhhhhhhh
is the new PSW stored in the entry.

CC/DEV/CAW hhhhhhhh hhhhhhhh
contains, in the first 2 digits:
completion code; in the next 6 digits:
device type; in the last 8 digits:
address of the channel address word
stored in the entry.

R15/R0 hhhhhhhh hhhhhhhh
contains, in the first 8 digits:
contents of register 15; in the last 8
digits: contents of register 0, both
as stored in the entry.

CSW

hhhhhhhk hhhhhhhh
is the channel status word stored in
the entry.

R1 hhhhhhhh

TCo

NUA

OLA

MSK

NUB

OLB

TQE

TME

AFF

is the contents of register 1 as
stored in the entry.

hhhhhhhh
is the starting address of the TCb
associated with the entry.
hhhhhhhh
is the starting address of the new TCB
for CPU A, as stored in the entry.
hhhhhhhh
is the starting address of the old TCB
for CPU A, as stored in the entry.
hhhhhhhh
is the STMASK of the other CPU as
stored in the entry.
hhhhhhhh
is the starting address of the new TCB
fcr CPU B, as stored in the entry.
hhhhhhhh
is the starting address of the old TCB
for CPU B, as stored in the entry.
hhhhhhhh
is the first word of the timer queue
element stored in the entry, provided
a timer interrupt occurred.
hhhhhhhh
is a representation of the timer
element associated with the entry.
yyhhhhhh

contains, in the first 2 digits: the
ID of the locking CPU at the time of
the interrupt; in the last 6 digits:
starting address of the old TCB forx
CPU A, as stored in the entry.

ABEND/SNAP Dump (Systems with MVT) 65

SP ddd

hhhhhh
hhhhhh

hhhhhhhh hhhhkhhh hhhhhhhh hhhhhhhh
hhhhhhhh hhhhkhhh hhhhhhhh hhhhhhhh

END OF DUMP

hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh
hhhhhhhh hhhhhhhh hhhhhhth hhhhhhhh

*ccecececccccceccececececccecceccccece®
*ccccececccococceecceteeecceccccececc®

| sp add
identifies the next lines as the
contents of a block of main storage
obtained through a GETMAIN macro
instruction, and indicates the subpool

l number (ddd). The part of suorocol 252
that is the supervisor work area is
prresented first, followed by the
entire contents of any problem program
subpools (0 through 127) in existence
during the dumping.

END OF DUMP
indicates that the dump or snagpshot is
completed. If this line does not
appear, the ABDUMP routine was
abnormally terminated before the dump
was completed, possibly because enough
space was not allocated for the dump
data set.

Guide to Using an ABEND/SNAP Dump (MVT)

Cause of Abnormal Termination: Evaluate
the user (USER=decimal code) or systen
(SYSTEM=hex code) completion code using
Appendix B or the publication Messages and
Codes.

Dumped Task: Check the ID field for an
indication of which task is being dumped in
relation to the task that was abnormally
terminated:

e 001 indicates a partial dump of a
subtask

e 002 indicates a partial dump of the
invoking task

If the 1D field is absent, the dunp
contains a full dump of the task that was
abnormally terminated.

Active RB Queue: The first KRB shown on the
dump represents the oldest kB on the queue.
The RB representing the load module that
had control when the dump was taken is
third from the bottom. The last RB
represents the ABDUMP routine and the
second from last, the ABEND routine. The
load module name and entry point (for a
PRB) are given in a contents directory
entry, the address of which is shown in the
last 3 bytes of the FL/CLCE field.

66 Programmer's Guide to Debugging

Program Check PSW: The program check old
PSW is the fifth entry in the first line of
each RB printout. It is identified by the
subheading APSW. For debugging purposes,
the APSW of the third RE from the bottonr of
the durp is most useful. It provides the
length of the last instruction executed in
the program (bits 32,33), and the address
of the next instruction to be executed
(bytes 5-8).

Load List: Does the resume PSw indicate an
instruction address outside the limits of
the load module that had contrcl at the
time c¢f aktnormal termination? If so, lock
at the LLFs on the lcad list. Fach LLL
contains the CDE address in the dump field
lakeled RSP-CDE.

CDEs: The entries in the contents
directory for the region are listed under
the dump heading CDE. The printcuts for
each CDE include the load module and its
entry point. If you have a complete dumrp,
each load module represented in a CDE is
printed in its entirety follcowing the
NUCLEUS section of the dump.
Trace Table (SNAF dumps only): Entries cn
an MVI SNAP dunp, if valid, represent
occurrences of $SI0, external, SVC, program,
I/0, and dispatcher interruptions. SIO
entries can be used to locate the CCW
(through the CAW), which reflects the
operation initiated by an SIC instruction.
If the SIC operation was not successful,
the CSW STATUS portion of the entry will
show you why it failed. EXT and PGM
entries are useful for locating the
instruction where the interruption cccurred
(bytes 5-8 of the PSW).

SVC trace table entries provide the SvC old
PSW and the contents of registers 0, 1, and
15. The P3w offers you the hexadecimal SVC
nunber (bits 20-31), the CPU mode (bit 15),
and the address of the SVC instruction
(bytes 5-8). The contents of registers 0
and 1 are especially useful in that many
system macro instructions pass key
information in these registers. (See
Appendix 2.)

1/¢ entries reflect the 1/0 old PSWw and the
CSW that was stored when the interrupticn
occurred. From the PSW, you can learn the

(Release 19)

address of the device that caused the
interruption (bytes 2 and 3), the CPU state
at the time of interruption (bit 15), and
the instruction address where the
interruption occurred (bytes 5-8). The CSW
provides you with the unit status (byte 4),
the channel status (byte 5), and the
address of the previous CCW plus 8 (bytes
0-3).

You can use the DSP entry to delimit the
entries in the trace table. To find all
entries for the terminated task, scan word
7 of each trace table entry for the TCB
address in a DSP entry. The lines between
this and the next DSP entry represent
interruptions that occurred in the task.

Region Contents: Free areas for the region
occupied by the dumped task are identified
under headings PQE and FBQE. The field

labeled Sz gives the number of bytes in the
free area represented by the FBQL.

Subpool Contents: Free and requested areas

of the subpools used by the dumped task are
described under the dump heading MSS.
Sukpool numbers are given under the SPID
column in the list of SPQEs. If a GETMAIN
macro instruction was issued without a
subpool specification, space is assigned
from subpool 0. Thus, two SPQEs ray exist
for subpcol 0. The sizes of the requested
areas and free areas are given under the LN
column in the lists of DQEs and FQEs,
respectively.

Load Module Contents: The contents of each

load mcdule used by the job step are given
under the heading XL. Each entry includes
the sizes (LN) and starting addresses (ADR)
of the contreol sections in the load module.

ABEND/SNAP Dump (Systems with MVT) 67

Indicative Dump

An indicative dump is issued when a task is
abnormally terminated by an ABEND macro
instruction, and a dump is requested, but a
dump data set is not defined, due either to
omission or incorrect specification of a
SYSABEND or SYSUDUMP DD statement. In
systems with PCP or MFT, an indicative dump
is issued automatically on the system
output (SYSOUT) device. Indicative dumps
issued by these two systems are identical
in format. Systems with MVT do not issue
indicative dumps.

Contents of an Indicative Dump

This explanation of indicative dumps
utilizes capital letters for the headings
found in all dumps, and lowercase letters
for information that varies with each dump.
The lowercase letter used indicates the
mode of the information, and the number of
letters indicates its length:

e h represents 1/2 byte of hexadecimal
information

e d represents 1 byte of decimal
information

e c represents a l-byte character

Figure 25 shows the contents of an
indicative dump. You may prefer to follow
the explanation on your own indicative
dump.

CONTROL BYTE=hh
describes the contents of the
indicative dump.

NO.
USER=dddd

CONTROL BYTE=hh TCB FLAGS=hh
COMPLETION CODE - SYSTEM=hhh
CCCCCCa s
REGISTER
hhhhhhhh
hhhhhbhhh
REGISTER
hhhhhhhh
hhhhhhhh

SET 1
hhhhhhhh
hhhhhhhh

SET 2
hhhhhhhh
hhhhhhhh

hhhhhhhh
hhhhhhhh

hhhhhhhh
hhhhhhhh

INSTRUCTION IMAGE=hhhhhhhhhhhhhhbhhhhhhhbhhh

hhhhhhhhhhhhhhhh hhhhhhhhhhhhhhhh
PROGRAM ID=cccccecce
RESUME PSW SM=hh K=h AMWP=h

PROGRAM ID=cccccccc

Figure 25.

68

Programmer's Guide to Debugging (Release 19)

First digit:

RB TYPE=hh ENTRY POINT=hhhhhh

RB TYPE=hh ENTRY POINT=hhhhhh

iy
Bit Setting Meaning
0 0 Instruction image not
present
1 Instruction image present
1 0 Floating-point registers
not present
1 Floating-point registers
present
2 0 One general register set
present
1 Two general register sets
present
3 0 All active RBs present
1 All active RBs not present
Last digit:
Cigit in
Hexadecimal Meaning
0 All loaded RBs present
8 All loaded REs not present
TCB FLAGS=hh
is the first byte of TCBFLGS field
(byte 29 in the TCB for the progranm -
being dumped): task end flag byte: T
Bit Setting Meaning
0 1 Aknormal termination in
process
1 1 Normal termination in
process
2 1 Abnormal termination was
initiated by the resident
ABTERM routine
ACTIVE RB=dd NC. LOAD RB=dd
hhhhhhhh hhhhbhhh hhhbhbhh hhhhhhhh hhhhhhhh
hbhhhhhh hhbhhhbh hhhbbhhh hbhhhhbh hhhbhbhh
nhhhhhbh hhhhhhbh bhbbhbbh hhhhhhhh hhbhhhhh
hhhhhhhh hhhhhhbh hhhbhhbhh hhbhhbhbhh hhhbhhhh
hhhhhhhhhhbbhhhh hhhhbhhhhhhbhhhhhh
IC=hhhh IL.CC=h PM=h TaA=hhhbhh
A

Contents of an Indicative Dump

3 1 ABTERKM routine entered
because of program
interruption

4 1 Reserved for future use

5 1 Data set closing initiated

by the ABTERM routine

6 1 The ABTERM routine
overlaid some or all of
the problem program

7 1 The system prohibited
queuing of asynchronous
exit routines for this
task

NO. ACTIVE RB=dd
is the number of active RBs presented
in the dump.

NO. LOAD RB=4d
is the number of RBs in the load 1list
presented in the dump.

COMPLETION CODE SYSTEM=hhh USER=dddd
is the completion code supplied by the
control program (SYSTEM=hhh) or the
problem program (USER=dddd). BRoth
SYSTEM=hhh and USER=dddd are printed;
however, one of them is always zero.

CCCCCC.us
explains the completion code or, if a
program interruption occurred:

PROGRAM INTERRUPTION ccccCa... AT

LOCATION hhhhhh
where ccccc is the program
interruption cause: OPLERATION,
PRIVILEGED OPERATION, EXECUTE,
PROTECTION, ADDRESSING,
SPECIFICATION, DATE, FIXED-POINT
OVERFLOW, FIXED-POINT DIVIDE,
DECIMAL OVERFLOW, DECIMAL DIVIDE,
EXPONENT OVERFLOW, DECIMAL
DIVIDE, EXPONENT OVERFLOW,
EXPONENT UNDERFLOW, SIGNIFICANCE,
or FLOATING-POINT DIVIDE; and
hhhhhh is the address of the
instruction being executed when
the interruption occurred.

REGISTER SET 1
indicates that the next 2 lines give
the contents of general registers 0
through 7 and 8 through 15 for a
program being executed under control
of an RB when it:

s Passed control to a type I SVC
routine through an SVC instruction
and the routine terminated
abnormally.

e Lost control to the input/output
interruption handler, which
suksequently terminated abnormally.

* Was abnormally terminated ky the
contrcl program because of a prooram
interruption.

¢ Issued an ABEND macro instruction to
request an abnormal termination.

If REGISTER SET 2 also appears in the
dump, the lines under REGISTER SET 1
give the general register contents for
a type II, III, or IV SVC routine
orerating under an SVRE.

REGISTER S¥T 2

indicates that the next 2 lines give
the contents of general registers 0
through 7 and 8 through 15 for a
rrogram being executed under control
of an RB other than an SVRB when the
rrogram last passed control to a type
11, III, or IV SVC routine.

INSTRUCTICN IMAGE=hhhhhhhhhhhhhhhhhhhhhhhh

is 12 bytes of main storage, with the
instruction that caused a program
intexruption in the right part of the
printout. This field appears only if
a program interruption occurred and is
also valid when the instruction length
in the resume PSW is 0.

hhhhhhhhhhhhhhhh hhhhhhhhhhhhhhhh
hhhhhhhhbhhhhhho hhhhhhhhhhbhhhhh

are the contents of floating-point
registers 0, 2, 4, and 6 when the
abnormal termination occurred. This
field appears only if the floating
point option is present. The first 2
digits of each register are the
characteristic of the floating point
number. The last 14 digits are the
mantissa.

PROGRAM ID=ccccccecce

is the XRBNM field (bytes 0 through
7): in PRB, LRBs, and LPRBs, the
Frogram name; in IRBs, the first
character contains flags for the timer
or, if the timer is not being used,
contains no meaningful information; in
SVRBs for a type II SVC routine,
contains no meaningful information; in
SVRBs for a type III or IV SVC
routine, the first 4 bytes contain the
relative track address (TTR) of the
load module in the SVC library and the
last 4 bytes contain the SVC number in
signed, unpacked decimal; in SIRBs,
the name of the error routine
currently occupying the #400-byte
input/output supervisor transient
area.

Indicative Dump 69

RB TYPE=hh
indicates the type of active RB

hh Type of RB

00 PRB that does not contain entry
points identified by IDENTIFY
macro instructions

10 PRB that contains one or more
entry points identified by
IDENTIFY macro instructions

20 LPRB that does not contain entry
points identified by IDENTIFY
macro instructions

30 LPRE that contains one or more
entry points identified by
IDENTIFY macro instructions

40 IRB
80 SIRB
C0 SVRB for a type II SVC routine

DO SVRB for a type III or IV SVC
routine

E0 LPRB for an entry point identified
py an IDERTIFY macro instruction

FO LRB

ENTRY POINT=hhhhhh
is the XRBEP field (bytes 13 through
15): address of entry point in the
program.

RESUME PSW
XRBPSW field (bytes 16 throuch 23):
is the contents of the resume PSW.

SM=hh
is bits 0 through 7 of PSW:
mask.

system

K=h
is bits 8 through 11 of PSwW:
protection key.

AMWP=h
is bits 12 throuch 15 of PSW:
indicators.

IC=hhhh
is bits 16 through 31 of PSw:
interruption code.

IL.CC=h
is bits 32 through 35 of PSW:
instruction length code (bits 32 and
33) and condition code (bits 34 and
35).

PM=h
is kits 36 through 39 of PSW:
resk.

prograrm

IA=hhhhhh
is bits 40 through 03 of PSW:
instruction address.

PROGRAM ID=cccccccecce
is the XRBuM field (bytes 0 through
7): program name.

RB TYPE=hh
indicates the type of KB:

hti Type of RB

20 LPRB that does not contain entry
points identified by IUENTIFY
racro instructions.

36 LPRE that contains one cxr more
entry points identified Ly
IDENTIFY macro instructions.

EC LPRE for an entry point identified
by an IDENTIFY macro instructicn.

FO LRB.

ENTRY POINT=hhhhhh
is the XRBEP field (bytes 13 through
15): address of entry point in tne
program.

Guide to Using an Indicative Dump

Completicn Code: Evaluate the user
(UstR=decimal code) or system (SYSTEM=hex
code) corrpletion code using either Appendix
B of this publication or the publication
Messages and Codes. The line under the
completion code gives a capsule explanatiocn
of the code or the type of progranm
interruption that occurred.

Instruction Address: If a program
interruption occuxrred, get the address cf
the erroneous instruction in the last 3
bytes of the field labeled INSTRUCTICH
IMAGE.

Active RB Queue: RBs are shown in the
first group of two-line printouts labeled
PRCGRAM ID and RESUME PSW, with the most
recent KB shown first. There are two lines
for as rany RBs indicated by NC. ACTIVE
RB=dd.

Register Contents: General register
contents at the time a program last had
contrcl are given under the heading
REGISTER SET 2 or, if this nheading is not
present, under REGISTER SET 1. Register
contents, particularly those of register
14, may aid you in locating the last
instruction executed in your program.

70 Programmer's Guide to Debugging (release 19)

Core Image Dump

A core image dump displays all of main
storage from location 00 through the end of
printable storage. These dumps are
identical for all control program options,
except for the first line of the dunp,
which identifies the control program
option; i.e., PCP, MFT, MVT, or M65MP.

The Damage Assessment routine (DAR) will
produce a core image dump when a system
task fails if the SYS1.DUMP data set is
properly defined and available to accept
the dump. Once the core image dump has
been written to the SYS1.DUMP data set, the
print dump program (IEAPRINT) can print it.

| Note: IEAPRIJT is placed in
SYS1.LINKLIB at SYSGEN time; it may be
invoked with the JCL statements shown in
Figure 23.

DAMAGE ASSESSMENT ROUTINE (DAR)

The Damage Assessment routine (DAR) is
designed to provide increased system
availability in the event of a system
failure, and to provide more meaningful
diagnostic information by means of a core
image dump taken at the time of the system
failure. This core image dump is written
to the SYS1.DUMP data set, which you may
print by means of the IEAPRINT print dump
procram.

If a system routine fails, DAR attempts
to reinitialize the failing task, thereby
permitting the system to continue operation
without interruption. DAR permits the
system to continue processing in a degraded
condition if it encounters a system failure
that does not permit total reinstatement of
the affected task or region. The operator
will be informed, via a WTO, that the
system is in an unpredictable state; he
then must decide whether or not
already-scheduled jobs should be allowed to
attempt completion.

SYSTEM FAILURE

If .a system failure occurs, the Darage
Assessment routine immediately attempts to
write a core image dump to the SYS1.DUMP
data set. A system failure may be caused
by a failure in any of the following system
tasks:

PCP and MFT:
Communications Task

Master Scheduler Task
Log Task (MFT only)

MVT:

System Error Task
Rollout/Rollin Task
Communications Task
Master Scheduler Task
Transient Area Fetch Task

A system failure is also caused by an
ABEND recursion in other than OPEN, CLOSE,
ABDUMP, or STAE; by a failure of a task in
'must complete' status; or, in MFT only, by
a failure in the scheduler if no SYSABEND
or SYSULUMP DD card is provided.

THE SY¥S1.DUMP DATA SET

One of the primary functions of the Damage
Assessment routine is to provide a core
image durp at the time of a system failure.
Secondary storage space must be available
to receive this dump. The SYS1.DUMP data
set provides this space.

The SYS1.DUNF data set may reside on
tape or on a direct access device.

Tape

If you wish to have the SYS1.DUMP data set
reside on tape, you may specify the tape
drive during IPL. If the drive has not
been made ready prior to IPL, a MCUNT
message is issued to the console,
specifying the selected device. The device
should ke mounted with an unlabeled tape.

Keep
routine

in mind that the Damage Assessment
rewinds and unloads a tape after
writing a core image dump. If the operator
has not readied the specified device before
a second core image dump is to be written,
DAR will kypass the writing of the dump but
will continue processing.

Direct Access

If you wish to have the SYS1.DUMP data set
placed on a direct access device, you may
preallocate the data set at SYSGEN or prior
to any IPL of the system. The following
restrictions apply:

* The data set name must be SYS1.DUMP.
¢ The

IPL

data set must be cataloged on the
volume.

» The data set may be preallocated on any
vclure that will be online during
system operation.

¢ The data set must be sequential.

s Sufficient space must be allocated to

receive a core image dump for all of
main storage.

Core Image Dump 71

When a direct access device is used for
the SYS1.DUMP data set, the data set can
hold only one core image dump. If
additional failures occur, and if the
SYS1.DUMP data set is occupied, DAR does
not attempt to write another core image
dump .

You may execute the print dump program
(IEAPRINT) to produce hard copy of the
dump. Once the print dump program is
executed, the SYS1.DUMP data set can accept
another core image dump.

THE PRINT DUMP PROGRAM (IEAPRINT)

You must use the print dump program to
print out the core image dump contained on
the SYS1.DUMP data set. The print dump
program is placed in SYS1.LINKLIB at SYSGEN
time; it may be invoked in the same manner
as any other problem program.

You must supply the job control
statements for the print dump program; the
following statements are required:

JOB This is a standard statement.

EXEC This statement specifies the
program name (PGM=IEAPRINT)
or, if the job ccentrol
statements reside on the
procedure library, the

procedure name.

This statement defines an
output data set. The data set
may be written onto a system
output aevice, a magnetic tape
volume, or a direct access
device.

SYSPRINT DD

SYSUT1 DD This statement defines the
input data set. The DSNAME

S¥S1.DUMP must ke used.

(See Figure 26 for the JCL statements
required to execute the IEAPRINT print dump
program.)

//URJOB [|JOB > URNAME ,MS|GLEVE|L=(1,/1)

/1 EXEC | PGM=I[EAPRINT

//SYSPRINT DD

SYSOUT=A, SIPACE=/(CYL,{(20,5]))

//SYSUT) DD _| [DSNAM
// VOLUME=SER[=123%

=SYS5[i .DUMP,UNIT=2400,LABEL=(,NL),D|ISP=(|OLD,KIEEP) , [X

® Figure 26.

Sample JCL Statements Required for IEAPRINT

72 Programmer's Guide to Debugging (Release 19)

Input to the Print Dump Program

Input to the IEAPRINT program is the
sequential data set SYS1.DUMP, which may
reside on either a direct access device or
on magnetic tape. The first byte of the
first record on the SYS1.DUMP data set will
be the contents of storage location 00, and
the data set will contain the full core
image up to the last writable byte. The
input devices supported are:

IBEM 2301 Drum Storage Unit
IBM 2302 Disk Storage Drive
IBM 2303 Drum Storage Unit
IBM 2311 Disk Storage Drive
IBM 2314 Storage Facility

IBM 2400 Magnetic Tape Drive

Output From the Print Dump Program

The output from the print dump program is a
formatted core image dump of the printable
contents of main storage, beginning at
location 00. The dump may be written onto
a system output device, a magnetic tape
volume, or a direct access device. You
must define the device, upon which the dump
is to be written, on the SYSPRINT DD card
of the JCL statements that invoke the print
dump program. (See Figure 26.)

CONTENTS OF A CORE IMAGE DUMP

The core image dump is formatted into two
distinct sections: 1low storage and
register contents are displayed on the
first page, and a printout of the contents
of main storage begins on the second page.
The main storage contents are unedited and
are displayed beginning from location 00
through the end of printable storage. (See
Figure 27.)

Low Storage and Registers

The initial section of a core image dump
(the first page) consists of information of
immediate use to the programmer who must
determine the cause of the failure.

The first printed line displays the
control program option of the operating
system, i.e. PCP, MFT, MVT, or M65MP; the
timer contents at the time of the failure;
and the date of the failure.

The remainder of the first page consists
of a printout of register contents and
hardware control words as they appeared at
the time of the failure. The contents of
flocating point registers 0, 2, 4, and 6 are
displayed; if the floating point feature is
not present in the system, these register
printouts contain zeros. The two lines
beginning with REG 0-7 and REG 8-15 show
the contents of general registers 0 through
7 and 8 through 15, respectively.

Storage below location 128(80 hex) is
permanently assigned and can be used to
determine the status of a program. The
line beginning 40-CSW (following the
register printout) gives, in unedited form,
the CSW and CAW. The next five lines
contain the new and old PSWs for the five
types of interruptions.

The last line in this portion of the
durp, beginning U4C-UNUSED-, gives the
contents of locations 76 (4C hex) through 87
(57 hex), which include unused bytes and
the timer. This line contains pointers
useful in locating key debugging
information, such as the CVT and the trace
takle. The use of these locations will be
explained under the sections headed "Guide
to Using...".

Main Storage

The main section of the dump is printed
starting with location zexo and continuing
to the end of printable storage. Each line
contains, from left to right:

e The hexadecimal storage address of the
first byte on the line.

¢ Eight words of storage in hexadecimal.

e« The same eight words in EBCDIC,
enclosed in asterisks (*).

If one or more consecutive lines contain
the same word throughout the line, the
first line will be printed, followed by the
message,

hhhhhh TO THE NEXT LINE ADDRESS - SAME AS
ABOVE

where:
hhhhhh

is the address of the first omitted
line.)

Core Image Dump 73

CORE IMAGE DUMP OF MvT

FLOATING POINT REGISTERS

REG G-1
REG 8-15

40-CSw 000CD5C00C000000

EXTERNAL INTERRUFT PSWS
SUPERVISGR CALL FSWS
PROGRAM CHECK PSWS
MACHINE CHECK PSWS
INPUT/QUTPUT PSWS

4C~UNUSED-0000DE48

00000
06602¢
00€04¢C
000060
000080
000040
ococcce
00GOEQ
06010¢
00012¢
0CC14¢C
06016C
occisc
6CC1AC
0€0200
0CC220
006240
0CC260
0cC28¢
0CC24C
0c02C0
0CC2EC
000300
occ3zc
000340
006360
occace
000420
0CC460Q
0CC480
CCC4AQ
0CC4CE
0CC4EC
00Cs0C
0ccs2¢
000540
000560
0C0580
000540
0C05C0
0CCSEC
000600
cccezc
000640
0CCe60
000680
0CCEAC
00C6C0
0CCEEC
00¢700
06C720
00C74C
000760
occrec
060740

occeeccee
FF0400CL
oceconscce
0CV400CC
ATABCCFF
0000400C
00000425
FFO6FFFFF
occcacce
gcccocce
cceeeccce
0goccceo
occcocec
TC THE NEXT
FFO60291
ogczacceco
8CCOL644
0GCCO0nC
occcocce
oaccoloc
003CC8340
0000000C
00000000

0cCccooo
5000C8C4
cceeccece
0000B0BC
F2F3GFFF
4cocooce
0CCOOE&CC
€C000000
001001CA
0CQ00000
€00000cCC
Qccoooce
0C0Q00co

8000C0CC
8C00D68C
000C24F4
€00C0000
¢0o00co00
8230C200
00008340
€00124C0
00000000

FFFFFFEF FFFFFFFF
€CCCocce cccoocee

ccccocee
05109110
04714770
04D8FCOC
00060000
0C020F10
478CC56C
04BED20C
S4F702CC
9121E28BC
91FFFOOC
D600C4DE
clcaccec
00040GC0C
SCEFC4EO
E2B8C471C
471F00588
9121028C
82C00600
4TFCG58C
C7189€68C
62C04570
1255077€
SQ0FQ810
488C7000
l1ccceeac
074A58C0

occacecc
E2BC4T1C
O4PESBEC
98EF04D0Q
occcoocce
00Q0DS5F2
SEFCC25C
FOO0E2B8
S58FQ0618
4717CC02C
478004BE
20180207
ccceoses
30000644
58E002B0
J740%1C1L
‘I1C302AF
4TEGCOCH
54CFC471
J8EFO4ES
0ZzBC4SEC
07185840
58504CC0
910302AF
417070C2
€CC4542C
(B6BASFO

Figure 27. sSample of a

74

coo020C00
000218B8C

LINE ADDRESS

1C THE NEXT LINE ACDRESS -
TC THE NEXT LINE ACODRESS

TC THE NEXT LINE ACCRESS

SYSTEM

[}
CID5CIEICICIEIDE

gccoocoe
OOFFFFF8

00021898
00000068

NEW=0004000000007628
NEW=0004000€000C8080
NEW=000400000000785C
NEW=00000000000184C0
NEW=0CC4C0CC000077E0

50-TIMER-CB40B262

0C000006
0000000
0CCODE4B
0000785¢C
F23FOFFF
005FHFB1
03831600
00038304
CCBCEROO
02010000
06000000
82000170
00000000
SAME AS ABOVE
00010344
00021508
0€000000
00000000
00000000
36060001
0000COLF
0C00CA21
00000000
SAME AS ABOVE
FESFFFRFF
SAME AS ABOVE
0€0C0000
SAME AS ABOVE
00000000
E2BC4T70
€508477¢C
00000000
0€000006
94EFE2BC
47800542
02E058EQ
07000700
41FCO5F0
00180207
94DFO)18
0G00058C
00000300
4710888
06540207
026CO78E
58£002B0
00184780
04F050EQ
64714780
07189848
077807F7
5EE00280
47800760
087C4780
0288542C

00000000
€000000C
QCCC4a4Ce
0CC40C00
OFO03FFF
30008CC8
€C000429
CO2CFGFF
ccecocce
00000000
ccececcec
£G6C00000
€C000000
0CC00001
$0CCNB32
ceeeecoo
00000C0C
€CQQ0000
34CC0350¢C
00000000
ccczacoc
0000000C

FFEFFEFF

CGCOGCoo
€0000090
0s0C912t
£2BC54ED
82000408
€CCCC000
CEFFFFFF
§300F001L
C207ECOC
S58EQO6LC
46FC0568
C2070408
001804D8
cccaocca
00019548
9120€28C
04714780
Q77€9141
58F0060C
C6CCL4T70
O7FE9048
C66451C2
02€045170C
91FFS501C
478C075C
5480087C
Ce874442¢C
D0064320

Core Image

2
094070C1D3D37D40

0000DE4R
00QOFFOC
084CB262
€0000000
00000000
00LAC200
02078300
00000000
€C0C0000
00C00000
000C00C00
0gocceoo
00000000

CCCCDE4E
0001C310
ceococoo
000C0000
00004820
CCOTFBCC
112C1BE4
cceacoce
0000C000

FFFFFEFF
00000000

GCO0SQEF
06209120
C4BE9ICF
0Cc000000
0C020CCOo
968002CC
C500F000
0614070C
46EQ057C
4TFO04BE
CC58C5EC
D207005¢€
oco2cceo
0€8C0CGCO
91010471
00400400
9CEFO4EE
91FFEQ32
CER6SE02
05045860
06884180
Q4F C58EQ
070302C0
94FEE2BC
558C0870
07604320
08748920

TIMER= 084082 DATE = 00099366

4 6
E6C1C9E3CID5CT40 0000000000000000

000000FQ
400586EE

00000010
6007EAB2

400586EC
000587Ap

00020CDO
00008904

00021748
00000008

48-CAW 00004408

CLD=01040080800388F6
OLD=FF040C01500008C4
OLC=000C0CCCCCO00C00
0LD=000CFFO000000000
OLD=FFC6C2S1€8C0OC0OC00

54-UNUSED-O000EETO

800388F6
80000000
00007628
000077E0
0ccesnce
00000000
D207G030
00021000
5010CF03
000000CO
00000000
00000000
00000000

€0000000 cesscsseab®
000000C0
Q000EETQ
000184CC
€00000GC
FFC40000
C3DAEBCL
00000000
46C08285
0€0C0CCo
€0000000
00038280
00000000

€1040C8¢
FF060291
00040000
£CC40000
FFFEFEFF
02010000
COTOCFEA
00000000
€CCCCo00
60000000
00000000
€6C06000
00000000

Howsesansonnnevsncasse
cseek

seavsac®

Q0000E48
F30024F8
00000000
acoceccec
0C000000
cceeecee
24FB02DA
00007628
00000C00

00C1D380
0C020CDO
00000000
cooocccce
0000DE38
€200C0CO
02DA02DA
00040000
00000000

400005CA
000006CA
00000000
00000900
00019CC8
00000000
02DATFFF
00000472
00000000

Hesossesovsesecveesrscscsscnccanca¥

FFFFFFFF FFFFFFFF FEFFFFFF [

Kevesosanoanaane

00000000 €0Q0COCC 0CQ000CO ¥eoeoossocesnnsscssoncenssaccsnveX

C4DCS5EEC Heeoevenvososoressersnsascssananet
04714710
COLB4T7C
000¢oC00
400005CA
918CE2CC
02884770
07000700
$10802CC
58F00608
£2000058
C2F841FQ
00000A22
0003512F
4780C63E
GBEFO4EQ
SEFCO61C
47100686
C4T14€F0
02B04170
07305840
050407FF
02C0D703
980F0810
4780074C
10005420
00045720

€2809120
04BA41FO
C4BE4LFC
0C000000
00020CLO
477CC53A
€54241F0
46EC0558
47700594
9102F001
82CC0SE8
02FB4TF0
0104c0C0
CCCO1F 40
D207C4C0
918002CC
5CFCC60C
96200471
06780207
06F25840
02C44570
12440788
62C062C0
47F00646
5810086C
€8785920
€8704420

00184710
02F09107
00180207
00000000
70000622
91200018
02€EB4TFC
848005F0
58ECO02BO
478005A8
947TF02CC
04BEQQOQ
00000640
000006CB
€04091C1
47800492
841005FC
820005F8
04CO04E8B
62C445€0
07185840
48504020
47F007CE
58700864
14184320
02844770
088447F0

*..Ko0u0SeKe
*.7eee00oue

*¥.Cevvaasa=s

¥ereveasDO

GeaeoaTPuus

v¥ee0seaS,

¥eeeeseeDecansnnssocccoccnscnnaadlk

Dunip

Programmer's Guide to Debugging (Release 19)

Stand-Alone Dump

Stand-alone hexadecimal dumps display all
of main storage with the exception of
certain low storage locations.

untouched contents of main storage at a
given time. They are identical in format
for all levels of the operating system.

In this discussion, dumps are referred

to as PCP, MFT, and MVT dumps, depending on

which level operating system occupied the
CPU at the time the dump was taken.

Invoking a Stand-Alone Dump

A stand-alone dump is most useful when a
program check or unexpected wait has
occurred and abnormal termination and
ABEND/SNAP routines overlaid a critical
area of main storage. To recover this
critical area, re-execute the job step and
take a stand-alone dump at the point where
abnormal termination or the wait occurxred.

To reach this point, either (1) turn on
the wait bit in the program check PSW or
(2) set an address stop at the entry point
to the ABTERM routine. To find the entry
point of ABTERM, stop the system after IPL
but before setting the date, and display
the address of the CVT given at location
16(10). Then, display the contents of the
word beginning at CVT+52(34). This woxrd
contains the address of the entry point to
ABTERM. ©Next, run the job with an address
stop set at this address. When the system
enters the wait or manual state, IPL and
execute the dump program you have produced
from the IMDSADMP macro instruction, ox
execute card program number UT-056 to
produce a stand-alone dump. The
stand-alone dump described here is the one
produced by the card program UT-056.
discussion of the dump produced by the

sexvice aids IMDSADMP and IMDPRDMP, and for

discussions of the other IBM provided
service aids, see the manual, IBM
System/360 Operating System: Service Aids,
GC28-6719.

Contents of a Stand-Alone Dump

A stand-alone dump comprises three
different types of storage printouts, each
with its own format:

These dumps
are the only means by which you can see the

For a

¢ The initial areas
¢ Lower main storage and registers
¢ Remaining main storage

To return the largest practical number
of main storage locations, editing of the
initial area of the dump is limited.
However, locations 0 to 23(17) and 128(80)
to 319(13F) are destroyed. If you wisn to
see the contents of these areas, you must
display them before taking the dump.
Figure 28 illustrates the three printout
formats in a stand-alone dump.

Initial areas: The initial areas (the
first page) printed in a stand-alone dump
consist of locations 320(140) thxough 1023
(3FF). The first 16 lines are locations
320(140) through 383(17F), printed at a
rate of one word per line. The seccnd §
lines are locations 384(180) through 511
(1FF), printed 4 words per line. The last
16 lines represent locations 512(200)
through 1023(3FF), 8 words pexr line. The
printout of the initial areas is followed
by a legend of the hexadecimal address
lirits of each area.

Low Storage and kegisters: The next
secticn of the dump (top of page 2) is a
printout of registexr contents and hardware
contrcl words. If the floating point
feature is present, the first line gives
the contents of flcocating point registers O,
2, 4, and 6. The two lines, keginning with
REGO and REG8, show the contents of general
registers 0 through 7 and 8 through 15,
respectively.

Stcoxage kelow location 128(80) is
permanently assigned and can be used to
deterrine the status of a program. The
line beginning 40-CSW (following the
register printout) gives, in edited form,
the CSW and CAW. The next ten lines are a
takle containing the o0ld and new PSWs for
the five types of interruptions. The
identification and address of each PSW is
given on tne first two lines across the top
of the table. Entries in the table (i.e.,
edited fields in each PSW) make up the
remaining 8 lines.

The last line in this portion of the
dump, beginning 4C-UNUSED-, gives the
contents of locaticns 76(4C) through
87(57), which include unused bytes and the
timer. On some durps, this line contains
pointers useful in locating key dekugging
information, such as the CVT and the trace
takle.

Stand-Alone Dump 75

Remaining Main Storage: The contents of
remaining main storage, beginning at
location 1024(400), are printed in the
third and largest portion of the dump.
Each line contains, from left to right:

e The hexadecimal storage addxess of the
first byte on the line.

e Eight words of storage in hexadecimal.

s The same eight words in EBCDIC,
enclosed in asterisks(*). (This field

76

is found only in dumps issued with
release 9 and after.)

I1f one or more lines contain the same
word throughout the line, the lines are
omitted from the dump and the message
hhhhhh TC THE NEXT LINE ADDRESS CONTAINS
hhhhhhhh is sukstituted, where hbhhhhh is
the address of the first omitted line and
hhhhhhhh is the cormon word.

Programmer's Guide to Debugging (kelease 19)

Figure

cceeccece
CELCCeee
cceocece
cceeecce
cecccece
cececeoe
ceeacecece
cceceecc
cecceccce
cecceccce
ceecoccce
82ccclic
cccacccce
cccin?ic
ceeoeece
cececcee
00C3F8EC
OCCAFB4E
€ceacoec
creecece
grccccee
ceceeeoce
COCOEENC
4cCc3272
CCCO55AA
celp4aice
S4FD4CH
47F00248
G1F0022F
accocze?
C2cAa582¢
2149101
07CBS2EC
0028470C
€2C0434A8
47A0C3C4
63730022
€366582C
41FGC324A
aacncacc

0CC3FBEE

ccccagco
ccceeece
ccccooce
cceeecce
CCCCCCec
ccee3sac
cceeeace
CCCCH564
0248S6F0
SCAL3CAC
$4CF0223
47ECC2S6
GC1CCOlE
czceceee?
cc2sc7en
1CCCSEFC
Q3BLGCCF
ACCC41EA
1FHED2CZ
477CC3%6
€55e6CAl
£22F4C3C
ceceecoce

CCC3Fest

cocccocc CCO3F864
cocceece cceceecee
gocccocc ccoccceo
cocccoce cececeeceo
¢ceeceecce ccoccece
€CCCou6C ccococol
CCCCIEIC cecececeo
€0CC4D4E ccecacuc
02235026 olLac47CcC
585CC218 CEHSSESC
Ge25C1&EC G1FCC22F
S0AlCieC £2C7C42e
S4FDS0O11 914cCCLE
476CC264 CCCCEZCC
58ACC558 58ACACC4
A0CCESCC ccgolzce
c3E8585C c21ccs5e9
A00C1ARA 478CC3CC
a2cCceCCC S1c78CC2
SB2EC3FC £sC2C55¢
2C3C5822 ccccoae?
C3E858CC C2CECTFC
€0CCC2CC CCO3IFE4E

ENTERF AREAwees.GCOL4C TG GCCIFF
INIT] AREA..asasCCCL4C TC OCCLIF
INET2 AREAeesaeo.CCCLEC TC CCCIFF
INIT3 ARFA...0s.€CC2CC TC CCC2FF

FLOATING PCIANT REGESTERS

REGO
REGS

4C-CSh

KEY-Q0

¢caccice
5C004F02

PSiw CONTENTS

FIELD

SYSTEM MASK
PRCTECTECN KEY

AMwP

INTFRRUPT COCE
TNSTR LENGTH
CChNDITICA COCE
PROGRAM MASK
INSTR ADDRESS

4C-UNUSFD-COCCSB28

00G40C
€C0420
0€C44C
CCo4sC
0c€c480
0C04A0
00C4CO
0CC4ED
eccsce
000520
cees4c
CCCheE
accsao
06G5AC
000560
GCLO5FC
CCG6CO
cecoeze
0C6640 |

FCRMAT-CLC 18

CCCOCHSE gcccacce ECC2FEE4
€cccoaac CCC3FA4E eGCC3504A

ACDR-01FHBC

[
cecegecccacoooccee

STATUS-CCCCRLCCCCCCCOCO

CCCCICCC CCLC3CEC
€256583C 05585840
€z1CaFC OCSEYCAL
47€CC43C GEAlCLEC
CClE4TFC C2AC585C
478CC28A SB2CC2CC
€CCCSCE8 CAC2ISCAS
12paGC7CH 5CC2A004
CIBES5CFC cc2Catkc
1848438C €C235545
SE3CCCIC 584CC558
477CC3C4 §€FC0323
CE564717C C29A82CC
2€1CCC20 582(C3F0
4gtccc22 411C1F0C
SCCC4LCE cceesB2e
AREA PRINTEC BY INITIAL PRIAT CCMPCAENT

2
ceeeeececccecocaeco

EXTERNAL INTERRUPT SUPERVISCKR CALL

BIT-CCCO

GCO3FE48
€6¢C0Cac
C46CSELC
C428CC1C
FCOCEC?B
563CC55C
1€6aClepa
FO1068¢8
S8FCCE40C
477CC524
CCCC4F24
GSSECSSE
4C1CC56C
05845025
95003C21
£5681C0C
C55FS14C
56303CCC
1603415

+EX-=C0CO
CkC-C
CEC-C
B171-00C0
HEX-CCCO00

50CC2F48
€0Cc0000
Bo7e1211
S8A1BO3C
FCCEEC4B
5231248
SCABCS554
Folesacc
180C 1848
18AC47FQ
€GCC4374
FFCCCS5¢€4
62FCC435
ROSC581C
477CCSEC
455CC664A
€7534770
$5€63021
C7AC4170

=NER 58 ~CLC

=-C -C

~C1C0 -G1cC
~0c¢cc -Ccca

-C -1
-0 -C

-occe -cocce
-¢ac217c ~0C23F4

S0-TIMER-63(9109E

5CCG4EC2 TFECCOCC
FF04019C 0CC066€0
4780045€ S1€110CC
82000428 §C29805¢
FC1C6C6R FC18581C
478C0O5CE 18CAl818
91CHBCLF 4T8004EE
AQCC91DC CCCASBLS
58C0020€ QTFFlecs
C4AC58DC CCT412C0
CCCCT4C8 €COC51E4
FFCCO564 1211474C
CTFEL3L1 58ACC568
C5641211 474CCSFE
91013010 427CCSEC
47FCO5AE 5510C5¢8
C14C4S1C (5624780
4780063E 1£414810
0656415C C6725)C1

2C —NEw €0
BIT~C0000CCC —000CCACG ~0CCCCCCC -C0COCQCC —00C0000C —00CCOCCL
FEX-C

-C
-C100
-CCCe
-C
~-C
-ccco

-CC0322

CCCLl79¢C
CCCCob6C

CLLANT-0CCO0V

C00071DE
30000207
OlEOL207
82000428
C5589CAL
C522914C
CclAcssCl
181A58A0
G20498AC
C02347AC
$8504C0C
5860020C
CC2095FF
47F0C43C
8910C00C
C0003ED8

ccecrics
4C1€C038
C428CC38
SC29C180
$023C5E55
CCle4 780
CC285ERC
1CCOL2AA
C1aCE20C
C3ILCSEBY
4%aCC220
CSEEC4CO
cC2c4at4C
S2FFCC22
SEERC408
CCC3F A48

4
000000cCacCLCCCCCO

CCO0055E
50003802

PRCGRAM CHECK

-0LL 28

-0
-ccco
-ccco
-0
-0
-0u00

-Ccocooo

S4-UNUSEL—0CCCCCOC

0GC3FA4e
984BCH54
41G0C4EE
SiC8BCLF
HC781211
0207C020
41F0C020C
BC4B4T7EC
SECCocco
4770C510
cCCoocic
.055A48A0
ca2¢zicce
4140C564
cec34cco
478CCSFE
C734414C
10Ccas10
AGk4770

28. Sémple of a Stand-Alone Dump

FEOO4EZ4
47000542
5€3C054C
4T8C048E
478004A6
CCLO09¢F0
11FF6E0B
Ca420217
SIFFCC1C
5€C08C00
CCOCIEDS
c560D2¢C1
AcCOCSclO
£€30100C
1CCC5510
1€415810
CSSEL1R33
€5624780

Co2C94FE,

-0
-010C
-0C0C
-0
-0
—000C

0000666C
15AB58C0
€5239829
41FCoC2C
918E10C0
€0225890
F00C6828
B8058803¢C
47700524
9602C011
C0003ED8
10004000
ACO05CIC
9120301F
05684770
100047FQ
43301004
074C47F0
10035820

-NEw &8

-ccoace

CCCCCY5E
ccececoo

48-CAn KEY-00

[}
cccooccceccoocco

CCCG3ECe
0c000cCC

ACOR-CC13CC

MACHINE ChECK INPUT/CUTPUT

-C
-c¢cco
-FFOO
-G
-C
-ccco

€0ccocco
AQCC4770
Bceccac?
11FFeCCR
417C0446
05480545
FCCEERYB
90CSR030
S1FFCC21
4TFCC4EE
CCCCCHSE
401CACCO
G56847+0
471C0SEC
05E40203
CEpa4Elc
S5E3CCS544
C61€93C1
16cec2C1

-CLC 30 -NEn T1C —-GCLD 38 ~NEw 78
-C¢CO0UOG ~000CCCOC ~11111111 -000000CO

~-C -0 -0
-ccClc -C110 -0160
-c0ccC -C190 -C000
-C -0 -0
-C -0 -0
-c00C -0000 -coco

~CC0000 -CCCCE2 -006660 -000222

*#Caes0ouw

*#.00 eoeees

*

shessbioe
seessssssccnse®

sevsccasnclUKon

L I

Stand-Alone Dump 77

Guide to Using a Core Image or a
Stand-Alone Dump

The core image dump and the stand-alone
dump are both hexadecimal dumps of the
contents c¢f main storage. The stand-alone
durmp destroys the contents of locations 0
to 23 (18) and 128 (80) to 319 (13F), but
aside from this, the hexadecimal printouts
of the stand-alone and the core image dumg
are identical. The debugging procedures to
be used for either of these dumps are the
same, and are presented, in the fcllowing
pages, under the sub-headings: Guide to
Using a PCP Dump, Guide to Using an MFT
Dump, and Guide to Using an MVT Durp.

If you are not sure under which system
configuration the stand-alone dump was
taken, pick up the address of the CVT from
the formatted section of the dump,
following the heading 4C UNUSED. Add 74
hex to this address and look at that
location in the dump. The first two
hexadecimal digits found at this location
are the contents of the CVIDCR field, and
indicate the systen configuration according
to the following convention:

10 MVT Uniprocessing
14 MVT Multiprocessing
20 MFT

40 PCP

78 Programmer's Guide to Debugging (kelease 19)

Guide to Using a PCP Dump

Cause of the Dump: Evaluate the PSWs that
appear in the formatted section of the dump
(first or second page), to find the cause
of the dump.

The PSw has the following format:

Program Status Word

System Mask Key AMWP Interruption Code
0 7 8 1112 15 16 31
ILC | CC P;\j\g‘im Instruction Address
32 33 34 35 36 39 40 63

e Does the instruction address field of
the o0ld machine check PSW show either
the value E2 or E02? If so, a hardware
error has occurred.

e Does the instruction address field of
the 0ld program check PSW have a value
other than zero. If so, a program
check at the instruction preceding that
address caused the interruption.

Active RB Queue: To find the active RB
queue, look at location 384(180 hex), the
TCB. The first word of the TCB contains a
one-word pointer to the first word of the
most recent RB added to the queue. 1In its
eighth word, RB+28(1C), each RB contains a
pointer to the next most recent RB. The
last RB points back to the TCB. The TCB
occupies locations 384(180) to 504 (1F8).
You can determine the identity of the load
module by looking either in the first
and/or second words of the RB for its
EBCDIC name or in the last 3 digits of the
resume PSW in the previous RB for its SVC
nunber. The entry point to the module is
in the last 3 bytes of the fourth word in
the R3, RB+13(D).

load List: In systems with PCP, the load
list is a chain of regquest blocks
associated with load modules invoked by a
LOAD macro instruction. By looking at the
load list, you can determine which system
and problem program routines were loaded
before the dump was taken.

To construct the load list, look at the
tenth word in the TCB, location 420(1A4),
for a pointer to the most recent KB entry
on the load list (RB-8). This word, in
turn, points to the next most recent entry
(minus 8), and so on. The word preceding
the most recent RB on the list (RB-4)
points back to the TCB's load list pointer.

TRACE TABLE: Look at the 3-word trace

takle control plock.

Location 20(14) contains the address of the
first word of this control block. 1f you
are using a stand-alone dump and do not
have access to the contents of location
20(14), scan the contents of main storage
between locations 16,384 (4000) and
32,768(8000) for trace table entries.
entry is four words long. To find the
table koundaries and the current entry,
scan the table in reverse until you reach
the three-word trace takle control klock.

Each

To distinguish trace table entries, look
at the fourth and fifth digits of the first
words for the following kit configurations:

r 1 h) bl
[| Fourth pigit | Fifth Digit |
| | 84 21 bits | 8 4 2 1 bits |
t + - + 1
| s10 | 0 | 0 |
| svc | 1 | 1 |
| 170 | 1 | 0 [
L L L 4

Trace table entries for systems with PCP
are 4 words lonc and represent occurrences
of SIO, I/0, and SVC interruptions. Figure
29 gives some sample entries and their
contents.

SIQ entries can be used to locate the CCW
(through the CAW), which reflects the
operation initiated by an SIO instruction.
If the SIO operation was not successful,
the CSW STATUS portion of the entry will
show you why it failed.

1/0 entries reflect the I/0O old PSW ana the
CSw that was stored when the interxrrupticn
occurred. From the PSW, you can learn the
address of the device on which the
interruption occurred (bytes 2 and 3), the
CPU state at the time of interrurtion (bit
15), and the instruction address where the
interruption occurred (bytes 5-8). The CSW
provides you with the unit status (byte 4),
the channel status (byte 5), and the
address of the prrevious CCW plus 8 (bytes
0-3).

SVC entries provide the SVC old PSW and the
contents of registers 0 and 1. The PSW
offers you the hexadecimal SVC number (bits
20-31), the CPU mode (bit 15), and the
address of the sSvC instruction (bytes 5-8).
The contents of registers 0 and 1 are
useful in that many system macro

Using a Core Image or a Stand-Alone Dump 79

instructions use these registers for
parameter information. Contents of
registers 0 and 1 for each SVC interruption
are given in Appendix A.

SIO 00190,

il
| [
Condition Device CAW CSw
code address

{C0000F 98, 00000000 04000000,

P S

=L

/o FF060190 0000320A, ,O00IF70B 0C000000,

1/O old PSW Csw

SVC number

1
sve FF051009

50014424, (O003E3BC, 00000050,

SVC old PSW Register O Register 1

Figure 29. <Sample Trace Table Entries

(PCP)

CVT: To find the CVT, a source of other
pointers, look at location 76(4C) in the
formatted section of the dump (first or
second page). The address given following
the heading 4C-UNUSED- points to the first
word of the CVT.

Queue of DEBS: To find the queue of DEBs,
look at location 392(188). The address
given there points to the first word of the
most recent entry on the DEB queue. The
last three bytes of the second word in each
DEB (DEB+5) point to the next most recent
DEB on tne queue. The queue contains one
DEB for each cpen data set.

UCBs: Unit information for each device can
be found in the UCB. The address of the
UCB is contained in the last 3 bytes of the
ninth word of the DEB, DEB+33(21). If the
DEB queue is empty, scan the dump around
location 4096(1000) for words whose fifth
and sixth digits are FF. These are the
first words of the UCBs for the system;
UCBs are arranged in numerical order by
device address. (You may find it easier to
locate UCEs by looking for the device
address in the EBCDIC printout to the right
of each page.) The first two bytes of the
second word of each UCB give the device
address. The device type and class are
given in the third and fourth bytes of the
fifth word, UCB+18(12). The sense bytes

begin in the last two bytes of the sixth
UCE word, UCB+22(leo), and extend for from 1
to 6 bytes depending on the device type.
Sense bytes are explained in Appendix F.

DCB: The address of the DCB, a control
klock that describes the attributes of an
open data set, is in the last 3 bytes of
the seventh DEB word, DER+25(19).

I0B: The IOB for an open data set ccntains
a pointer to the CCW list in the last three
bytes of the fifth word, IOER+17(11). The
I0B address is in the seventeenth word of
the DCB, DCE+68(44). You can alsc locate
the IOR associated with an I/0 request by
looking at the fourth word of the trace
table entry for an 3vC 0.

ECB: The address of the ECB is in the last
3 kytes of the seconu word of the IOB
(ICB+5). The corpletion code for the 1/0
event is posted in the first byte of the
ECb. ECB completion codes are_explained in
Appendix E. If the I/0 event 1s not
complete and an SVC 1 has been issued, the
high~-crder bit of the ECB is on, and bytes
1 through 3 contain the address of the
associated RB.

Free Areas: Areas of main storage
availakle for allocation at the time the
dunp was taken are described ky the MSs
boundary box and a series of Fgks. The
seventh word of the TCB, TCRB+24(18), points
to the MSS koundary box. The first word of
the MSS boundary box points to the FQE with
the highest processor storage address, and
the fourtin word, to the Fgr with the
highest 2361 Core Storage address. The
first word of each FQE points to the next
lower F(E; the second woxrd gives the length
of the free area it describes. FQES occupy
the first 8 bytes of the area they
descrikte.

Guide to Using an MFT Dump

Cause of the Dump: Evaluate the PSWs that
appear in the formatted section of the dump
(first second page), to find the cause of
the durp.

The PSW has the following format:

Program Status Word

System Mask Key AMWP Interruption Code
0 7 8 1112 15 16 31
ILC CcC Program Instruction Address
Mask
32 33 34 3536 39 40 63

80 Programmer's Guide to Debugging (Release 19)

e Figure 30.

e Does the instruction address field of
the 0ld machine check PSW show either
the value E2 or E02? If so, a hardware
error has occurred.

e Does the instruction address field of
the o0ld program check PSW have a value
other than zero? If so, a program
check at the instruction preceding that
address caused the interruption.

Finding the TCB: To find the TCE for the
task that had control at the time the Jdump
was taken:

1. Look at location 76(u4C), following the
heading U4C-UNUSED-, for a pointer to
the CVT.

2. The first word of the CVT contains a
pointer to a doubleword of TCB
addresses, which contain pointers to
the next TCE to be dispatched (first
word) and the current TCB (second
word) .

3. The TCB found at the address shown in
the second word represents the task
that last had control.

JVL TCB+ 132 (84)
Task in
control TCB+128(80)
f——— e |
TCB+ 136 (88)

Most recent
task invoked
by the same
parent task

Most recent task
invoked by the
task in control

ke-Creating the Task Structure

Re-Creating the Task Structure (MFT with
Subtasking only): To re-create the task
structure for the job step, use the
thirty-third through thirty-fifth words of
the TCB. The thirty-fourth word,

TCB+132(84), contains the address of the
TCB for the parent task. The thirty-third
word, TCB+128(80), is a prointer to the TCB
of the task invoked most recently by the
same parent task. The thirty-fifth word,
TCRB+136(88), contains the address of the
TCE for the subtask invoked most recently
by the task in control, or zeros if none
were invoked. Efach TCB in the job step
contains the samwe pointers. Using these
TCE pointers, you can re-create a task
structure to aid in locating the point of
error, as shown in Figure 30.

Finding the Partiiton TCBS

The partition TCBs (job step TCBs in M¥T
with suktasking) can be found by beginning
at the CVTIXAVL field of the CcvT, offset
124(7C). The address contained at CVTIXAVL
is a pointer to the 105 freelist. At
offset 4 in the I0S freelist is a pointer
to the first address in a 1lsit of TCB
addresses. You can look through this list
of TCB addresses, and, keeping your system
options in mind, find the TCBs for each
partition (the. job step TCBs in an MFT with
subtasking system). The TCB addresses are
listed in the following orxder:

e Transient area loading task.

¢ System error task (MFT with
subtasking).

¢ Multiple console support write-to-lcg
task (optional).

¢ I/0 recovery management support task
(optional).

e Communications task.

Master scheduler task.

Syster management facilities task

(optional).

e Partition 0 task.

o Partition 1 task.

° L]

L]

L]

LN

*
Partition n task.

In an MFT system with subtasking, the
partition TCBs (jok step TCEs) may be found
by a more direct method. CVT offset
245(F5) contains a pointer to the partition
0 job step TCB address in this address
takle.

To recreate the task structure within
any partition, simply locate the jcL step
TCB, and follow the TCB pointers - as
explained in the previous section,
"Re-Creating the Task Structure."

Active RB Queue: The first word of a TCB

points to the most recent RB added to the
active Rb gueue. Each RB on the active RB
queue, contains a pointer to the previous
RB in its eighth word, RB+28(1C). The last
RB points back to the TCB. You can
determine the identity of the load module
by looking either in the first and/or

Using a Core Image or a Stand-Alone Dump 81

second words of the Rb for the EBCDIC name,
or in the last 3 digits of the resume PSW
in the previous rRB for the SVC numkber. The
entry point to the module is given in the
last 3 bytes of the fourth word in the Rs,
KB+13(D).

Load List: In systems with MFT, the load
list is a chain of request blocks
associated with load modules invoked by a
LOAD macro instruction. By looking at the
load 1list, and at the job pack area gueue
described below, you can determine which
system and problem program routines were
loaded before the dump was taken. To
construct the load list associated with the
task in contrxol, loock at the tenth word in
the TCB, TCB+36(24), for a pointer to the
most recent RB entry on the load list,
minus 8 bytes (RB-8). This word, in turn,
points to the next most recent entry (minus
8), and so on. The word preceding the most
recent RB on the list (Rb-#) points back to
the TCB's load 1list pointer.

Job Pack irea Queue (MFT with subtasking
only): To reconstruct the job pack area
queue, look at TCB+125(7D) for a three byte
pointer to the Partition Information Block
(PIB). The twelfth word of the PIB,

PIB+44 (2C), points to the most recent RB on
the job pack area queue minus 8 bytes
(RB-8). This woxrd in turn points to the
next most recent RB minus 8, and so on.

The word preceding the most recent RB on
the queue (Rb-4) points back to the 7job
pack area gqueue pointer in the PIE. You
can determine the identify of the load
module by looking either in the first
and/or second words of the RB for its
EBCDIC name, or in the last three digits of
the resume PSW in the previous RB for the
SVC number. The entry point of the module
is given in the last three bytes of the
fourth word in the RB, RB+29(1D), unless it
is an FRB.

The first five words of an FRB
(beginning at offset minus 8) are identical
in content tc those of other RBs. The
XRWTL field, offset 12(C), contains the
address of a wait list element. The first
word of the WLE points to the next WLE, or
contains zeros if the WLE is the last one.
The second word points to the waiting SVRB.
You can determine the number of deferred
requests for the module by tracing the
chain of WLEs.

The XRREQ field of an FRB, coffset
16(10), contains a pointer to the TCE of
the requesting task. The next word,
XRTLPREB, offset 20(14), points to an LPRHB
built by the Finch routine for the
requested program. The FRB for the
requested program is removed fromw the job
pack area queue by the Finch routine when
the program is fully loaded.

Trace Takle: Look at the 3-word trace
takle control blcck, which precedes the
table by several words (usually four
words) :

Location 20(14) contains the address of the

first word of this control bklock. If you
are using a stand-alone dump and do not
have access to the contents of lccation
20(14), scan the contents of main storace
between locations 16,384 (4000) and
32,768(8000) for trace table entries.
Entries are four woxrds long and begin at
addresses ending with zero. To find the
table boundaries and current entry, scan
the takle in reverse until you reach the
trace takle control block. Figure 31 gives
some sample trace table entries and their
contents.

Nle} I]QPOOOQ?EJ JOO03FCE8, 00014600 e
|
Condition Device CAW CSW
code address
i/0 LFFo7o?l§r6 10014424, 00014600 O

1/O old PSW Csw
SVC number SVC address
sve \FEOS1001 20014424,
SVC old PSW Register O Register 1
Task switch identifier
(after release 1)
Task FFos‘i‘m 10014424, OD0O3EDS, 00K
Switch ¢ Esiies
Dispatched new PSW New TCB Old TCB
address oddress
Figure 31. sample Trace Table kntries

(MFT)

82 Programmer's Guide to Debugging (Release 19)

SIO entries can be used to locate the CCW
(through the CAW), which reflects the
operation initiated by an SIO instruction.
If the SIO operation was not successful,
the CSW STATUS portion of the entry will
snow you why it failed.

I/0 entries reflect the I/0 old PSW and the
CSW that was stored when the interruption
occurred. From the PSW, you can learn the
address of the device on which the
interruption occurred (bytes 2 and 3), the
CPU state at the time of interruption (bit
15), and the instruction address where the
interruption occurred (bytes 5-8). The CSW
provides you with the unit status (byte &),
the channel status (byte 5), and the
address of the previous CCW plus 8 (bytes
0-3).

SVC entries provide the SVC old PSW and the
contents of registers 0 and 1. The PSW
offers you the hexadecimal SVC number (bits
20-31), the CPU mode (pit 15), and the
address of the SvC instruction (bytes 5-8).
The contents of registers 0 and 1 are
useful in that many system macro
instructions use these registers forx
parameter information. Contents of
registers 0 and 1 for each SVC interruption
are given in Appendix A.

TASK SWITCH entries look similar to an SVC
entry, except that words 3 and 4 of the
entry contain the address of the TCBs for
the "new" and "old" tasks being performed,
respectively. The trace table entries for
one particular task are contained between
sets of two task switch entries. Word 3 of
the beginning task switch entry and word 4
of the ending task switch entry point to
the TCB for that task. Task switcn entries
are identified by a fifth digit of '¥F'.

gueue of DEBs: To find the queue of DEBs
for the task, look at the third word in the
TCB (TCB+8). It points to the first word
of the most recent entry on the DEB gueue.
The last three bytes of the second word in
each DEB (DEE+5) point to the next most
recent DEB on the queue. The queue
contains one DEE for each oren data set.

UCBs: Unit information for each device can
be found in a UCB. The address of the UCB
‘is contained in the last 3 bytes of the
ninth word of the DEB, DEB+33(21). 1f the
DEB queue is empty, scan the dump around
location 4096(1000) for words whose fifth
and sixth digits are FF. These are the
first words of the UCBs for the system;
UCBs are arranged in numerical order by
device address. (You may find it easier to
locate UCBs by looking for the device
address in the EBCDIC printout to the right
of each page.) The first two bytes of the

second word of each UCB gives the device
address. The sense bytes begin in the
second byte of the sixth UCB word, UCB+22
(16), and extend from 1 to 6 kytes,
depending on the device type. Sense bytes
are explained in Aprpendix F. The device
type and class are given in the third and
fourth kytes of the fifth word,
respectively.

DCB: The address of the DCB, a control
block that describes the attributes of an
open data set, is located in the last 3
bytes of the seventh DEB word, DEB+25(19).

I0B: The ICB for an open data set contains
a pointer to the CCW list in the last three
bytes of the fifth word, ICB+17(11). The
I0B address is located in the seventeenth
word of the DCE, DCB+68(44). You can also
locate an IOR Ly locking at the fourth word
of a trace table entry for an SVC 0.

ECB: The address of the ECP for BSiAM and
BDAM data sets can be found in the last 3
bytes of the seccnd word of the IOB
(ICB+5). The cowmpletion code for the 1/0
event is posted in the first kyte of the
ECB. ECB completion codes are explained in
Aprendix E. If the 1/0 event is not
complete and an SVC 1 has been issued, the
high-ordexr bit of the ECE is on, and bytes
1 through 3 contain the address of the
associated RB.

Free Areas: Areas of a partition that are
available for allocation at the time the
dunp was taken are described Ly the MSsS
boundary box and a series of FgEs. The
seventh word of the TC3 for the task,
TCB+24(18), points to a six-word MSS
boundary box. The first word of the MsSS
boundary kox proints to the FQE with the
highest processor storage address in the
partition, and the fourth word, to the
highest 2361 Core Storage address in the
partition. The seccnd word of the FQE
gives the length of the area it descripes.
FCEs occupy the iirst 8 bytes of the area
they describe.

Gotten Suktask Areas: Areas of a pertition
allocated by the system to a subtask within
the partition are described by gotten
subtask area queue elements (GCE). The
seventh word of the subtask TCB,
TCR+24(18), points to a one word pointer to
the most recently created GQE on the Gk
queue. Bytes 0 through 3 of the GQL
contain a pointer to the previous GQE or,
if zero, indicate that the GQE is the last
one on the queue. Bytes 4 through 7 ot the
GQin contain the length of the gotten
subtask area. Each GQE occupies the first
eight bytes of the gotten subtask area it
descrikes.

Using a Core lmage or a Stand-Alone Lump 83

Guide to Using an MVT Dump

cause of the Dump: Evaluate the PSWs that
appear in the formatted section of the dump
(first or second page), to find the cause
of the dump.

The PSW has the following format:

Program Status Word

System Mask Key AMWP Iaterruption Code
0 7 8 1112 15 16 31
P
Inc | cc el Instruction Address
32 33 34 35 36 39 40 63

~

e Does the instruction address field of
the old machine check PSW show either
the value E2 or E02? If sao, a hardware
error has occurred.

e Does the instruction address field of
the old program check PSW have a value
other than zero? If so, a program
check at the instruction preceding that
address caused the interruption.

Trace Table: Location 84(54), labeled
54-UNUSED-hhhhhhhh cn the dump, contains
the address of the first word of a 3-woxd
trace table control block that immediately
precedes the table:

Entries in an MVT trace table are 8
words long and represent occurrences of
SI10, external, SVC, program, I/0, and
dispatcher interruptions. You can identify
what type of interruption caused an entry
by looking at the fifth digit:

0 = SIO

1 = External

2 = SVC

3 = Program

5 = 1I/0

D = Dispatcher

Figure 32 gives some sample entries and
their contents.

SIO

/o

e
External
Program
Dispatcher

Figure

In d
systems
follows

SIC

1/0

SVC and
Program

84 Programmer's Guide to Debugging (Release 19)

SIO entry identifier

dos oomeess 00004768, 0C000000, 5
50000193 OD0D0ESE, 00004 0
{ Lﬁ —— "ml —

Condition Device CAW csw
code address
3 00004800 00000000 ~@_’@F_¢_¢_Q;. S1I99DGE
TCB address Timer
I/O entry
identifier

|_I Device address

L, - '
.FFOé%T 3 80000000, {00004, z
0004458 | 0€000000,

I/O old PSW Csw

r 00004800 00060000 00003640 BII98ESE,

Timer

Entry identifier
(SVC here) SVC number

o

! . '
[FF042603 _ 40006ACE, 000046CO, 00000017, {

SVC old PSW Register 15 Register O

; 00000038 00000000 000 1'2CE8(OB1EDESY,

Register 1 TCB address Timer

32. Sample Trace Table Entries
(MVT)

umps of Model 65 Multiprocessing
, trace takle entries differ as

-

5th word: address of TCB.

6th word: address of oid TCB
for CPU A.

7th word: address of old TCB
for CPU B.

8th word: CPU identification
(last byte).

3rd word: contents of register
15.

4th word: contents of register
0.

8th word: CPU identification
(last byte).

6th word: address of old TCE
for CPU A.

7th word: address of old TCB
for CPU B.

8th word: CPU identification
(last byte).

Dispatcher 6th word: address of new TCB

for CPU A.

7th word: address of new TCB
for CPU B.

8th word: CPU identification

(last byte).

External 6th word: STMASK of other CPU.

7th word: TQE if timer inter-
rupt occurred.
8th word: CPU identification

(last byte).

Finding the TCB: To find the TCB for the
task that had control at the time the dump
was taken, perform one of the following
steps:

1. Examine the current entry in the trace
table. Look at the seventh word of
this entry for the address of the TCB.
If an I/0O interruption caused the
current entry, scan the table in
reverse order for the corresponding
SIO entry (the most recent SIO entry
having the same device address). The
seventh word of this entry contains
the TCB address.

2. If you do not have a trace table, look
at location 76(4C) for a pointer to
the CVT, following the heading
4C-UNUSED-. The first word of the CVT
contains a pointer to a doubleword of
TCB addresses, which contains pointers
to the next TCB to be dispatched
(first word) and the current TCB
(second word). Beginning with the
current TCB, you can recreate the task
structure for the job step.

Note: If the first word of the TCB located
by the above steps points to itself, there
are no ready tasks to be dispatched, and
the system has been placed in an enabled
wait state. This TCB, now in control, is
called the System Wait TCB.

Recreating The Task Structure: To recreate
the task structure for the job step, use
the thirty-third through thirty-fifth words
of the TCB. The thirty-fourth word,
TCB+132(84), contains the address of the
TCB for the parent task. The thirty-third
word, TCB+128(80), is a pointer to the TCB
of the task invoked most recently by the
same parent task. The thirty-fifth word,
TCB+136(88), contains the address of the
TCB for the subtask invoked most recently
by the task in control, or zeros if none
were invoked. Each TCB in the job step
contains the same pointers. Using these
TCB pointers, you can recreate a task
structure to aid in locating the point of
error, as shown in Figure 33.

T Parent
C - task

TCB+]32(84)I

Task in

Most recent
control

_task invoked
by the same
parent task

TCB+128(80) T
|~ oL - o

TCB+ 136 (88)

Most recent task

C -] invoked by the
B task in control

Figure 33. Recreating the Task Structure

Active RB gueue: The first word of the TCB

points to the most recent RB added to the
queue. Each RB contains a pointexr to the
next most recent RB in its eighth word,
RB+28(1C). The last RB points back to the
TCB. Unlike the RBs for other systems, the
name and entry point of the associated load
module are not always contained in the RB
associated with the module. Instead, they
are found in a contents directory entry.

CDE: The address of the contents directory
entry for a particular load rodule is given
in the fourth word of the KRB, RB+12(C).

The CDE gives the address of the next entry
in the directory (bytes 1-3), the name of
the lcad module, bytes 8-15(F); the entry
point of the module, bytes 17-19(11-13);
and a pointer to the extent list, bytes
21-23(15-17).

Load List: To construct the load list
associated with the task in control, loock
at the tenth word in the TCB, TCB+36(24),
for a pointer to the most recent load list
entry (LLE). Each LLE contains the address
of the next most recent entry (bytes 0-3),
the count (byte 4), and the address of the
CDE for the associated load module (bytes
5-7).

Using a Core Image or a Stand-Alone Dump 85

Queue of DEBs: To find the queue of LEBs
for the task, look at the third word in the
TCB (TCB+8). The address given here points
to the first word of the most recent entry
on the DEB queue. The last three bytes of
the second word in each DEB (DEB+5) points
to the next most recent DEB on the queue.
The queue contains one DEB for each open
data set.

UCBs: Unit information for each device can
be found in a UCB. The address of the UCu
is contained in the last 3 Lytes of the
ninth word of the DEB, DEB+33(31). If the
DEB queue is empty, scan the dump around
location 4096(1000) for words whose fifth
and sixth digits are FF. These are the
first words of the UCis for the system;
UCBs are arranged in numerical order by
device address. (You may find it easier to
locate UCBs by looking for the device
address in the EBCDIC printout +o the right
of each page.) The first two bytes of the
second word of each UCB give the device
address. The device type and class are
given in the third and fourth bytes of the
fifth word, UCB+18(12), respectively. Tne
sense bytes are given in the last two bytes
of the sixth UCB word, UCE+22(16), anc
extend for from 1 to 6 bytes, depending on
the device type. Sense bytes are explained
in Appendix F.

DCB: The address of the DCB, a control
block that describes the attributes of an
open data set, is located in the last 3
bytes of the seventh DEE word, DEE+25(19).

IOB: The IOB for an open data set contains
a pointer to the CCW list in the last three
bytes of the fifth word, IOB+17{11). The
I0B address is located in the seventeenth
word of the DCB, DCB+o8(44). You can also
locate the IOB for an I/0 request Ly

looking at the fifth word of the trace
takle entry for the svC 0.

ECk: 1he address of the ECB for BSAM and
BDAM data sets can be found in the last 3
bytes c¢f the sccond word of the ICk (IOE+5)
or in the liast 3 bytes of the
thirty-seventh word of the TICB,
TCE+145(91). Tre conpletion code for the
I/C event is posted in the first byte of
the ECE. ECBE coirpietion codes are
explained in Aprpendix «. If the I/C event
is not complete and an SVC 1 has been
issued, the high-order it of the XCE is
on, and bytes 1 through 3 ccntain the
address of the associated RE.

Region Ccntents: The TCB for the dumped
task ccntains a pointer to the dummy
partition queue element minus 8 in its
thirty-ninth word, TCE+152(98). The first
word cf the durrny rQr points to the first
PCr and the second word, to the last PQF.
Eacn PCL, in turn, voints to tne first and
last FB(ixs within a given storage
nierarcny.

Sunpool Contents: The seventh woxrd of the
TCH, TCE+24(18), points to the SECE
reoresenting the first subpcol used by the
task. Fach SP¢r contains the address of
the next SPQE (pytes 1-3), the subpool
nunper (obyte 4), and the address cf the
fixst Dgk for the subkpool (bytes 5-7) or,
if the sukrcol is cwned ky another task
(bit 0 is 1), the address of the SFCE that
descrikes it (oytes 5-7). Fach LCE
contains a pointer to the Fuk representing
the free area with the nichest rain storaqge
address in the subgocl (Lkytes 1-3), a
pointexr to the next DgE (bytes 5-7), and
the length of the area descrired Ly the
DCE, bytes 13-15(D-F).

86 Programmer's Guide to Debugging (release 19)

Appendix A: SVCs

Register contents at entry to an SVC routine are often helpful in finding pointers and
control information. The table belcw lists SVC numkers in decimal and hexadecimal, and
gives the type, associated macro instruction, and significant contents of registers 0 and
1 at entxy to each SVC routine.

Macro instructions followed by an asterisk (*) are documented in the System
Programmers Guide. iZxpanded descriptions of remaining macro instructions listed here may
be found in the publication Supervisor and Data Management MacrQ Instructions. Graphics
and telecommunications macro instructions are discussed in the Program Logic Manuals
associated with these access methods.

r . T T T T T 1
|pecimal |Hex. | | | | |
| No. | No. | Type | Macro | Register 0 | Register 1 |
L 1 1 i —_ - L 1
T L] T A T T a
| 0 | 0 | I | EXCP * | | IOB address |
| | | I | | !
| 0 | 0 | I | XDAP * | | |
| | | | | | I
| 1 | ¥ | I | WAIT | Event count |ECB address |
| i | | | I I
| 1 | 1 | I | WAITK |Event count 12 complement of |
| | | | | |ECB address |
I | | | | | I
| 1 | 1 § I | PRTOV | | |
| I | | I _ I I
| 2 | 2 | I | POST |Completion code | £CB address |
| | | I I | |
I3 i3 1 I | I I |
I | | | | | |
| 4 | & | I | GETMAIN | |Parareter list address
5	5	I	FREEMAIN		Parameter list address
6	o	II	LINK		Parameter list address
				[
7 I 7	II	XCTL		Parameter list address	
i					
8	8	1II	LOAD	Address of entry goint	DCB address
				address	
9 { 9 I, IT	DELETE	Address of program name			
]		
10	&2	I	GETMAIN or	Subpool number (byte 0)	Address of area to
			FREEMAIN	Length (bytes 1-3)	te freed
			(R Operand)		
		I		I	
10	a	I	FREEPOOL		
					I
11	B	I, III	TIME		Time units code
					I
12	¢	1I	SYNCH *		i
13	D	IV	ABEND		Completion code
	I			I	
14	E	II, III	SPIE		PICA address
15	F	} I			Address of request queue
					element
L L L L U, ——— J
(Part 1 of 4)

Appendix A: SVCs 87

r T T T T 1
|Decimal IHex. | | | | |
| No. | No. | Type | Macro | Register 0 | Register 1 |
F o 1 + } |
| 16 | 10 | III |PURGE * I I I
I | | I | | |
17	14	III	RESTORE * I	10R chain address	
18	12	II	BLDL	Address of puild list	DCB address
		[I			
: 18 } 12 : II	FIND l }				

19	13	Iv	OPEN		Address of parameter list
				jof DCB addresses	
20	24	IV	CLOSE		Address of parameter 1list
]]	of DCB addresses		
21	15	III	STOW	parameter list address	LCB address
	[
22	16	IV	OPEN TYPE=J%	jAddress of parameter 1list	
]				of DCB addresses	
I I I I	I				
23	17	1V	CLOSE TYPL=T		Address of parameter list
					of DCB addresses
I	I				
24	18	III	DEVTYPE *		ddname address
			I		
25	19	III			DCB address
		I I I			
26	1A	IV	CATALOG *		Parareter list address
I	I				
26	14	1Iv	INDEX *		Parameter list address
	!				
26	1A	III	LOCATE *		Parameter list address
I	I				
27	18	III	OBTAIN *		Farameter list address
					I
: 28 } ic : v { l : {					
29	1D	IV	SCRATCH *	UCB address	Farameter list address
		I			
30	1E	IV	RENAME *	UCB address	Parameter list address
	I				
31	1F	IV	FEOV I	DCB address	
I				I	
32	20	Iv			Address of UCB list
!		I			
33	22	ITIII	IOHALT		UCE address
	I I I				
34	22	IV	MGCR (MAST		
			CMD EXCP)		
			I		
35	23	1V	WTO		Message address
I]	I				
35	23	Iv	WTOR		Message address
				I	
36	24	IV	WTL		Address of message
I I I					
37	25	1T	SEGLD		Segment name address]
				I	
37	25	II	SEGWT		Segment name address
I		I I			
: 38 : 26 { II : : = {					
39	27	IIi,IV	LABEL		Parameter 1ist address
L—. L 1 I _—d e ————— - 4L d
(Part 2 of 4)

88 Programmer's Guide to Debugging (Release 19)

3

-~

-,

1||II|“| lll =
| +
| 9]
o
0] 9] 0] 0] n = 9]
9] 9] " 0 n 7]
Q =] Q] 0] Q ™ <]
o) 0] M~) H M Q M
] 0] i} o o] o] + o]
T [© o T T o Q he}
] 1] M] G 1] 0]] =] [0
@ T M w D
L ie}] | + + + Hn ¢
0] " © o] 0]] 0] [J0] n
Rl s ~ > o~ o~ o Qo A
ol - + M0 9] N w — 9] 0] 9] (0] 0]] 0 ~ - [0} 0 [
9] S [ele}] —~] 9} 2] %] 9] 9] 9] 9] 0] 2] [} 4 T
x ™ o kIRl) [T 9} I 0} [} 9] @ 9})) ~] 9] [} o M
0] Q o M 0 =) 3 [} M 1% 15| 1S} 15 S ™~ Q] 5] N ©)
+ [o]] Y2 T =3 o e} 4 o] T e} o] e} o e} 4+ + o] e} 1] +
] [0} T] Lol 9] i) o] L] Le] Lo} Lol T Q (] o] e} 0 m]
= > — o] O] H M & 1]] o] © (1])] =1 g (o] o] QQ g
]] ¢ Q]] ©] N Q ©
M + N3 0 g m M 28] k) jes} m fpal a 48] M) o8] 28] Le] ~ |
] a -~ 0 O o ooHd U [v Q QO Q QO O Q] s O U ©Tw o] |
L LTP 4 T - B A Q a A QA A o} A H QA KO0 & L
9]
9]
v
]
e} DDy
i) 2 P
] 9] e
] H oM
o o N o0
=] T o o
N © T MM
@ =] © Qi mm
+] 9] Qo
[0)] + + (O3] 0 0 [0)] 9] 9] n
o =} o n u 9] n 7} 7] 4]
o U a) © @ M Q 0]] M U~
Q Q o] (O] e} M M M ie} + U
| 24 Q e H oM Lol Jel T T T [V IRS]
| 00 1] T Lol T 0] g |
> > =] © 0]] M ©
r N = QO + 28] [N & N
+ + o > m 4 Q
=] o] x Y] o = m
e = + o » S| o] oF®
I e e e e e e e e ————— e ——_——————————————— -
*
o] > < *
oo H fry 0 D
V1O H o oo % >4 > [N T o] o]
[M = QO [E3 I3 < %* X a D D O & QO
= Z < q ol = = E s o] H @ MmM M] L N
I3 13 B = o << HoOoH O W0 < - > o w o Hg 4 O < H M B
i A B H et H B @m ® Z = O Z2 B m ®H o B H om A
1= H o< QU &} H . A H 0n a4 [EST <S B < T < P A+ 0] A U ™ i
e e o e e e e e e e e e e e e e
oo M
[0) - HooH -
QlHH H H M H H ~ HooH M H o H - =
>] H H H > > P2 H O H P H O H M H M - H >
I3 [} - - - HooH -+ H HooH - - - H M oH H H M HoOoH - - H D
- HooH - - ~ - S
- [] = o - =
e e et e T e —— -
X O | ™ (= N . U Q M M © = N M T N O M~ ©® O O A& & M OO A ®H N o - N
M"N o~ N NN N N N N ™M MMM M MmN Mmoo M M ®m M M o NN oM [ag] m M T =
o et e o e T e e e oo e e e e e S e i e e S et T e e s . S e e et e e e e . e e i S -
~
g
- Q0 | o - N ™ T O N O N O +H$H N M F N VW O~ ® o o O < N ™ = n 0
mN =r = T = > F O JF N N O N N N D NN N N N O O YW Y v o
[}
e o e iy e e — — — — — . —— — —— —— — — — — v e s " et P o o ol e s S s e s i s, S S — i S o —— g — i . e — S — i S i — Vg i S T s -

89

(Part 3 of)
SVCs

Appendix A:

r A T T T T T h)
|Decimal |Hex. | | | | |
| No. | No. | Type | Macro | Register 0 | Register 1 |
L 4 1 1 1 4 __,l
r i T T T T T

| 67 | 43 | II | ENDREADY | | QPCST |
| | i I [i]
68	44	IV	SYNADAF	Same as register 0 on	Same as register 1 on
]	jentry to SYNAD lentry to SYNAD			
68	44	Iv	SYNADRLS		
] 69	45	III	BSP		PCe address
]				
70	s6	II	GSERV		Parameter 1list address
	[
71	47	1III	RLSEBFR		Farameter list address
71	47	III	ASGNBFR		Parameter list address
71	47	III	EBUFINQ [Parameter list address	
		i			
72	48	1V			Farameter list address
73	49	III	SPAR		Parameter list address

			i		
74	4o	III	DAR		Farameter list address
75	4B	III			Paraweter list address

	i				
76	sc	III			
77	4D	IV i]		
		i i i			
78	4E	ITI			

	i				
79	4F	I	STATUS		
80	50	1I1III			
81	51	Iv	SETPRT		
82	52	1v			i
83	53	III	SMFWTIM *		Message address
	i		i		
84	54	I		UCB address and puffer	
				restart address	

| | l | | | |
| 85 1 55 | 1v | | i |
l [| | | | _ |
86	56	IV	ATLAS		Parameter list address
87	57	IIT	DOM	If zero	A DOM message I.D.
				1f negative	2 pointer to a list of LOM
					message I1I.Ds
		i	i		
88	58	TIII	MOD88	Routine code }DCB address	
	[
89	59	III	[£MSRV	jParameter list address	
90	54	1V	XCMNGR	Address of 1list of	OMEA address
				ECB/IOB pointers	
				(optional)	
n [[_			
921	58	III	VOLSTAT	DCB address	zexo: issued by CLCSE
AR T A J

4

90 Programmer's Guide to Debugging (kelease 19)

|Non-zerc: issued by EOV
______ e e e e m

(Part 4 of 4)

-,

A=,

Completion codes issued by operating system
routines are often caused by problem

program errors.

This appendix includes the

most common system completion codes, their
probable causes, and how to correct the
error or locate related information using a

For a more comprehensive coverage of

completion codes, see the publication
Messages and Codes.

0Cx A program check océurred without a

.
dump.
-’
OF1
'—ﬁ _ ,

recovery routine. If bit 15 of the
0ld program PSW (PSW at entry to
ABEND) is on, the problem program had
control when the interruption
occurred; "x" reflects the type of
erxor that causes the interruption:

Cause

Operation

Privileged operation
Execute

Protection
Addressing
Specification

Data

Fixed-point overflow
Fixed-point divide
Decimal overflow
Decimal divide
Exponent overflow
Exponent underflow
Significance
Floating-point

HEOODD> ©0 3O U £ Wk PX

The correct register contents are
reflected under the heading "REGS AT
ENTRY TO ABEND" in an ABEND/SNAP dump.
In a stand-alone dump, register
contents can be found in the register
save area for ABEND'S SVRB.

A program check occurred in the
interruption handling part of the
input/output supervisor. The
applicable program check PSW can be
found at location 40(28). (In systems
with MFT, this PSW is valid only if
the first four digits are 0004).

The problem program can be responsible
for this code if:

1. An access method routine in the
problem program storage area has
been. overlaid.

2. An IOB, DCB, or DEB has been
modified after an EXCP has been
issued, but prior to the
completion of an event.

Appendix B: Completion Codes

0F2

100

101

102

106

If a trace table exists (trace opticn
was specified at system generation),
the instruction address in the new
program check PSW, location 104(68),
contains the address of a field of
register contents. This field
includes registers 10 through 1 (pCP)
or 10 through 9 (MFT) on an AREND/SNAP
dunp, or 10 through 1 (both systems)
on a stand-alone dump.

If no trace table exists, the above
field contains registers 10 through 1
cn koth ABEND/SNAP (MFT only) and
stand-alone dumps.

Most frequently caused by incorrect
rarameters passed to a type I 3SVC
routine.

A device has been taken off-line
without informing the system, or a
device is not operational.

If a trace table exists, the rost
current entry is an SIO entry
beginning with 30. The last 3 digits
of the first word give the device
address.

If a trace table does not exist,
register 1 (in the SVRB for the ABEND
routine) contains a - -pointer to the IOB
associated with the device.

The wait count, contained in register
0 when a WAIT macro instruction was
issued, is greater than the number of
ECBs being waited upon.

An invalid kCB address has been given
in a POST macro instruction.

If a POST macro instruction has been
issued by the problem program, the ECB
address is given in register 1 of
either the trace table entry cr the
SVRB for the ABEND routine.

If the POST was issued by an I/0
interruption handler, the ECB address
can be found in the IOB asscciated
with the event.

During a transient area load or a
dynamic load resulting from a LINK,
LOAD, XCTL, or ATTACH macro
instruction, the fetch routine found
an error. A description of the error
is contained in register 15 of ABEND's
SVRB register save area:

Appendix B: Completion Codes 91

122

155

201

202

213

222

0D The control program found an
invalid record type.

0E The control program found an
invalid address. The problem
program may contain a relocatable
expression that specifies a
location outside the partition
boundaries.

OF A permanent I/0 error has
occurred. This error can probably
be found in the trace table prior
to the ABEND entry.

Register 6 of ABEND's SVRB register
save area points to the work area used
by the fetch routine. This area
contains the IOB, channel program, RLD
buffer, and the BLDL directory entry
associated with the program being
loaded.

The operator canceled the job and
requested a dump.

An unauthorized user (a user other
than Dynamic Device Reconfiguration)
has issued SVC 85. The user's task
has been abnormally terminated by
Dynamic Device Reconfiguration.

This completion code is identical to
102, but applies to the WAIT macro
instruction instead of POST.

An invalid RB address was fotnd in an
ECB. The RB address is placed in the
ECB when a WAIT macro instruction is
issued.

The error occurred during execution of
an OPEN macro instruction for a data
set on a direct-access device.

fither:

1. The data set control block (DSCB)
could not be found on the direct
access device.

2. An uncorrectable input/output
error occurred in reading or
writing the data set control
block.

Register 4 contains the address of a
combined work and control block area.
This address plus x'64' is the address
of the data set name in the JFCBDSNM
field of the job file control block
{JFCB).

The operator canceled the job without
requesting a dump. The cancellation
was probably the result of a wait
state or loop.

301

308

400

406

506

92 Programmer's Guide to Debugging (Release 19)

A WAIT macro instruction was issued,
specifying an ECB which has not been
rosted complete from a previous event.
Either:
1. The ECB has been reinitialized by
the problem program prior to a
second WAIT on the same ECB, or

2. The high order bit of the ECB has
been inadvertently turned on.

The problem program requested the
loading of a module using an entry
point given to the control program by
an IDENTIFY macro instruction.

Register 0 of LOAD's SVRB register
save area contains the address (or its
complement) of the name of the module
keing loaded.

The control program found an invalid
I0B, DCB, or DEB. Check the following
tlocks for the indicated informwmation:

e JTOB - a valid DCB address.

e DCB - a valid DEB address.
e DEB - ID of OF and a valid UCB
address.

e UCB - a valid identification of
FF.

Note: In systems with MVT, this code
may appear instead of a 200 code, for
the reasons given under 200.

A program has the "only loadable"
attribute or has an entry point given
to the control program by an IDENTIFY
macro instruction. In either case,
the program was invoked by a LINK,
XCTL, or ATTACH macro instruction.

Register 15 of the LINK, XCTL, or
ATTACH SVRB register save area
contains the address of the name of
the program being loaded.

The error occurred during execution of
a LINK, XCTIL, ATTACH, or LOAD macro
instruction in an overlay program or
in a program that was being tested
using the TESTRAN interpreter.

The program name can be found as
follows:

1. If a LOAD macro instruction was
issued, register 0 in the trace
table SVC entry or in the SVRB
register save area contains the
address (or its complement) of
the program name.

604

605

606

60A

613

700

704

2. If a LINK, XCTL, or ATTACH was
issued, register 15 of the
associated SVRB register save
area contains the address of a
pointer to the program name.

Note: Programs written in an overlay
structure or using TESTRAN should not
reside in the SVC library.

During execution of a GETMAIN macro
instruction, the control program found
one of the following:

1. A free area exceeds the
boundaries of the main storage
assigned to the task. This can
result from a modified FQE.

2. The A-operand of the macro
instruction specified an address
outside the main storage
boundaries assigned to the task.

During execution of a FREEMAIN macro
instruction, the control program found
that part of the area to be freed is
outside the main storage boundaries
assigned to the task, possibly
resulting from a modified FQE.

Item 1 under the 604 completion code
is also applicable to 605.

During execution of a LINK, XCTIL,
ATTACH, or LOAD macro instruction, a
conditional GETMAIN reguest was not
satisfied because of a lack of
available main storage for a fetch
routine work area. Consequently, the
request was not satisfied.

The name of the load module can be
found as described under completion
code 506.

Results from the same situations
described under 604 and 605 for R-form
GETMAIN and FREEMAIN macro
instructions.

The error occurred during execution of
an OPEN macro instruction for a data
set on magnetic tape. An
uncorrectable input/output erxor
occurred in tape positioning or in
label processing.

A unit check resulted from an SIO
issued to initiate a sense cormand.

The defective device can be determined
from the SIO trace table entry that
reflects a unit check in the CSW
status.

A GETMAIN macro instruction requested
a list of areas to be allocated. This

705

706

804

800

80A

type of request is valid only for
systems with MVT.

The applicable SVC can be found in a
trace takle entry or in the PSW at
entry to ABEND.

Results from the same situations
described under 704 for FREEMAIN macro
instructions.

During execution of a LINK, LOAD,
XCTL, or ATTACH macro instruction, the
requested load module was found to be
not executakle.

The name of the module can be found as
described under the completion code
506.

The error occurred during execution of
a GETMAIN macro instruction with a
mode operand of EU or VU. More main
storage was requested than was
available.

The error occurred during execution of
a LINK, XCTL, ATTACH, or LOAD mwacro
instruction.

An error was detected by the controi
program routing for the BLDL macro
instruction. This routine is executed
as a result of these macro
instructions if the problem program
names the requested program in an EP
or EFPLOC operand. The contents of
register 15 indicate the nature of the
error:

X'04' The requested program was
not found in the indicated
source.

X'08'" An uncorrectable

input/output error occurred
when the control program
attempted to search the
directory of the library
indicated as containing the
requested program.

Register 12 contains the address of
the BLDL list used by the routine.
This address plus 4 is the location of
the 8-byte name of the requested
program that could not be loaded.

The error occurred during execution of
an R-form GETMAIN macro instruction.
More main storage was requested than
was available.

Appendix B: Completion Codes 93

905

90A

A0S

A0A

BOY

94

The address of the area to be freed
{given in a FREENMAIN macro
instruction) is not a multiple of
eight. The contents of register one
in either the trace table entry or
ABEND's SVRB register save area
reflect the invalid address.

Results from the same situations
described under 905 for R-forms of
GETMAIN and FREEMAIN macro
instructions.

The error occurred during execution of
a FREEMAIN macro instruction. The
area to be freed overlaps an already
existing free area. This error can
occur if the address or the size of
the area to be freed were incorrect or
modified.

The contents of registers 0 and 1 in
either the SVC trace table entry or
ABEND's SVRB register save area
reflect the size and address.

Results from the same situations
described under A05 for R-form of
GETMAIN and FREEMAIN macro
instructions.

This error occurred during execution
of a GETMAIN macro instruction. A
subpool number greater than 127 was
specified. The problem program is
restricted to using subpools 0-127.
This error can occur if the sukpool
number was either incorrectly
specified or modified.

A displacement of nine bytes from the
list address passed to GETMAIN in

BOS

BOA

B37

Fnn

Programmer's Guide to Debugging (Release 19)

registexr 1 contains the subpool
numker. Register 1 can be found in
either the 5SVC trace table entry or
ABEND's SVRE register save area.

Results from the same situation
described under BOU4 for a FREEMAIN
macro instruction.

Results frow the same situaticns
described under BO4 and BOS5 for R-form
of GETMAIN anda FREEMAIN macro
instructions.

The subpool number can be found in the
high order kytes of register 0 in
either the SVC trace table entry orx
ABEND's SVRE register save area.

The error occurred at an end of
volume. The control program found
that all space on the currently
mounted volumes was allocated, that
more space was required, and that no
volure was available for demounting.

Eitnexr allocate more devices or change
the program so that a device will ke
free when a volume must be mounted.

An SVC instruction contained an
invalid operand; nn is the hexadecimal
value of the svc.

This error can occur if either an
invalid instruction was issued by the
problem program or an operand
referring tc an optional function was
not included during syster generaticn.

Appendix C: System Module Name Prefixes

All load modules associated with a specific operating system component have a common
prefix on their module names. This appendix lists the module name prefixes and the

associated system component(s).

Prefix Ccomponent

IBC Independent utility programs

IEA Supervisor, 1I/0 supervisor, and
NIP

IEB Data set utility programs

IEC Input/output supervisor

IEE Master scheduler

IEF Job scheduler

IEG TESTRAN

IEH System utility programs

IEI Assemblgr program during system
generation

IEJ FORTRAN IV E compiler

IEK FORTRAN IV H compiler

IEM PL/I F compiler

IEP COBOL E compiler

IEQ COBOL F compiler

IER Sort/Merge program

IES report program generator

IET Assempler E

IEU Assembler F

IEW Linkage editor/overlay

supervisor/program fetch

IEX ALGOL compiler

IEY FORTRAN IV G compiler

IFB Environment recording routines

1IFC Enviyonment recording and print
routines

Prefix

Component

IFD

IFF

IGC

IGE

IGF

1GG

IHA

IHB

IHC

IHD

IHE

IHF

IHG

IHI

IHJ

IHK

IIN

IKA

IKD

IKF

ILB

On line test executive program

Graphic programming support

Transient SVC routines

I/0 error routines

Machine check handler pregram

Close, open, and related routines

System control klocks
Assembler during expansion of
superv@sor and data managerent
racro instructions

FORTRAN library subroutines
COBOL library subroutines

PL/1I libkrary -subroutines

PL/I library subroutines
Update analysis program

Object rrogram originally coded
ALGOL language

Checkpoint/restart
Remote jok entry

7094 emwulator program for the
Model 85

Graphic Job Processor

Satellite graphic jok processor
messages

USAS CORBOL compiler

USAS COROL subroutines

Appendix C: System Module Name Prefixes

in

95

Appendix D: List of Abbreviations

ABEND abnormal end-of-task MFT multiprograrming with a fixed
number of tasks
APR alternate path retry
MVT multiprogramming with a variable
CCW channel command word nunber of tasks
NIP nucleus initialization program
CDE contents directory entry
PCP primary control program
CPU central processing unit
| PIB partition information block
CSW channel status word
PQE partition queue element
CVT communications vector table
PRB program request block
DAR damage assessment routine
PSA prefixed storage area
DCB data control block
PSW program status word
DDR dynamic device reconfiguration
QCB queue control block
DER data extent block
QOEL queue element
DPQE dummy partition queue element
RB request block
DQE descriptor queue element
scB STAE control block
ECB event control block
SIO start input/output
FBQE free block queue element
SIRB supervisor interrupt request block
FQE free gueue element
SPCE subpool queue element
FRB finch request block
svcC supervisor call
GQE gotten subtask area queue element
SVRB supervisor request block
TI0B input/output block
SYSOUT system output
IPL initial program loading
TCB task control blcck
IRB interrupt request block
TIOT task input/output table
LLE load list element
UcCB unit control block
LPRB loaded program request block
XCTL transfer control
LRB loaded request block XL extent list

96 Programmer's Guide to Debugging (Release 19)

Appendix E: ECB Cdmpletion Codes

r R T 1
| Hexadecimal | |
| Code | Meaning -]
k } , . _ 1
7r000000	Channel program has terminated without error. (CSW contents can be
	useful.)
41000000	Channel program has terminated with permanent error. (CSW contents can
	be useful.) :
I	
42000000	Channel program has terminated because a direct access extent address
	has been violated. (CSW contents do not apply.)
44000000	Channel program has keen intercepted because of permanent error
	associated with device end of previous request. You may reissue the
	intercepted request. (CSW contents do not apply.)
I	
48000000	Request element for channel program has been made available after it
	has been purged. (CSW contents do nct apply.)
[[
4000000	Error recovery routines have been entered because of direct access
‘	error but are unable to read home address of record 0. (CSW contents
i | do not apply.) |
L i - 4

Appendix E: ECB Completion Codes 97

Appendix F: UCB Sense Bytes :

BYTE 0 BYTE 1 BYTE 2
BIT
DEVICE 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7
00-NON-XST TU
cMD | INT | BUS | EQ | DATA | over-| WRT | DATA Q1-NOT READY 7 AT IweT [FILE | TaPE BITS 0-7 INDICATE A TRACK IS IN ERROR 6 &7 INDICATE
24001 ge) REQ | ouT | chk | cHK | Run | CNT [CNVIT | | NOBE fiopovanorwd | trg | LOAD | srarislproTecT! IND NO ERROR OR
‘ ZERO | CHK 11-RbY & RWDNG POINT MULTI-ERROR
23, |cmp | INT | Bus | E@ | DATA | over-| RN lseek DATA 1TRK END JIN- 4 NO | g mssive | OVER- |, TAG) ALy
2841 | REJ REQ | OUT | CHK | CHK | RUN | SEND I ey CHK |OVER- | OF = |VALID | REC | ppryp |ADR [FLOW SAFE LINE | g
CHK FID |RUN | CYL |SEQ |FOUND wRKR | INL CHK
2301, 2302, oo | mr | oss | eq | DATA DATA | TRK END | \uvatl NO | pie |SERVICE| OVER- o~ x| comr
2303, 2314, CHKINfOVER- | OF | e oAt rec | o |over- | FLow o PN v
2820 REJ REQ | OUT | CHK | CHK COUNT|RUN cyL FOUND RUN
SHOULD SHOULD| pa7p [SHOULD| BUFFER[SHOULD LIGHT [END BUFFER ADDRESS REGISTER
2250 SE’G‘D NOT f)lﬁT NOT | cyk . INOT | RUN- |NOT PEN | ORDER fA"gDRE
OCCUR OCCUR OCCUR | NING |OCCUR | |DETECT|SEQ | BIT 15 ‘sn 14 }Bnla lm 2 !awn I BIT 10 I BIT9
oo | mr | sus | ea | oara [HOU(sHOUD] o READ |- | RECRDKISHOULDISHOULD[2840 12840 | oo BUFFER ADDRESS REGISTER
280 |V e | oo | ene | 2ng NoT ot) B COUNT| Sw |FORCEDINOT INOT JouTpuT|INPUT | (2520 '
AR) CAK ioccur joccw | 5F CHK GAP |OCCUR |[OCCUR [CHK |CHK BITI5 |BiT14 |BIT13 [BiT12 | BIT1) [BiTi0 | 819
CMD INT BUS £Q DATA [SHOULD|SHOULD| |\~ READ FILM RECRDR | FiLm SHOULD{ 2840 2840 GRAPH- BUFFER ADDRESS REGISTER
22 | tea | oot | emk | cadt Not ot B0 COUNT|[- |FORCED| Motion [NOT |OUTPUT|INPUT | (2RI
occur |occur CHK GAP |uMm |OCCUR |CHK |CHK BITI5 [BIT14 |BITI3 [BIT12 | BITV | BIT1O | BITO
1052, |cMp | INT | BUS | EQ
2150 | REJ REQ | OUT | CHK
cMo | INT | BUS | EQ | DATA | OVER-| NON | KYBD
1285 | gey REQ | OUT | CHK | CHK |RUN |RCVY |CORR
KYED N
1y |CMD | INT | BUS | EQ | DATA | OVER-| NON | cope Dgc NOT
! REJ REQ | OUT | CHK |CHK |RUN |RCVY FOUND loccu | OF
)
1gs |CMP [INT laus | €@ | DATA | OVER-| NON ﬁg? NO
REJ REQ | OUT | CHK | CHK |RUN | RCVY |\Sccipe
sigs |SMD | INT L BUs | EQ | DATA f\IHgTULD POSN i:"gT”'-D
K HK
REJ ke | our | chk |cue [NOT fc N
; UN-
2540, |cMp | INT | BUS | EQ | DATA DSUAL
2021 | REJ REQ | ouT | cHK | cHk o
1403, CMD INT BUS EQ
1443 {REJ REQ | OUT | CHK Tvee| rvee CHe
BAR BAR &
1442,
seor’ lCMD | INT | BUS | EQ | DATA | OVER-
et G 3 REQ | OUT | CHK | CHK | RUN
2671, CMD INT BUS EQ DATA
2822 |REJ REQ | OUT | CHK | CHK
SHOULDISHOULD|SHOULD | SHOULD
s leMp L NT L aus | EQ [GoT IwoT NOT |NOT
REJ REQ | OUT | CHK |OCCUR JOCCUR JOCCUR |OCCUR
2701, {CMD | INT | BUS | EG | DATA | OVER-| tosT lmme
2702 | REs REQ | OUT | CHK | CHK | RUN | DATA |oUT
:‘2‘;‘;" CMD | INT | BUS | NOT | DATA | OVER-| AUTO |NOT NoT | noT | 58Sk ?I"E"LTD j PRo TraN ngg'—"
REJ REQ | OUT | USED | CHK | RUN |SELECT | USED Rero |
PCU USED | USED | {ehp [vALID VALID |VALID [VALID
T o
:;‘;Z/ CMD | INT ?JUUST NOT | NOT 'S“;Ig AUTO | OP
s ke REQ | oot | useo | usep | STKR IsELECT | ATT
BYTE 3 BYTE 4 BYTE 5
BIT
DEVICE 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 4 5 s 7
, SKEW | N _ RES |READ |WRITE |DELAY | SEQ |SEQ | SEQ COMMAND [N PROGRESS WHEN OVERFLOW INCOMPLETE OCCURS
2400 & WRCR | skew| cRc | Req | 97pe00] BAWO | COM ECHO e |cLock|cLock [eNTR | IND | IND IND OR
VRC 1-800 | STATUS| PARE R
VRC ERR ERR ZERO
o | | COMMAND IN PROGRESS WHEN OVERFLOW INCOMPLETE OCCURS
1 N | READ
gfm: READY (L)INE SAFETY \S’ﬁ{;g% WRITE = X'05!
28 READ = X'08’ ZERO
2301, 2302
02302, 1 g RC | RC | ke !
, N
2303, 2314,1 51’ gri | B2 | i3 IND IND IND ! IND 1 IND IND IND D
2820
, BUFFER ADDRESS REGISTER
250 | | | i
BT8 | BIT7 | BIT6 | BITS | BT4 | BT3 | BT2 BT
BUFFER ADDRESS REGISTER
2280 | ; : l i :
BIT8 | BIT7 | BITS | BITS | Bre lmralsnz et
- BUFFER ADDRESS REGISTER
2282 | ! '
BiTE | BIT7 | BTe | ®iTs | mT4 |83 | BT2 BT

e
®
ey
m
£
t:
o]
i
¥e)
-

98 Preogrammer’s Guide to Debugging (k

Appendix G: Service Aids

In addition to the debugging facilities discussed in this manual, IBM provides the
following service aid programs to aid you in debugging. A complete description cf each
of these service aids and instructions for their use are found in the publication IBM
System/360 Operating System Service Aids, GC28-6719.

Program Name

IMDSADMP

IMDPRDMP

IMCJQDMP

IMBMDMAP

IMASPZAP

IMAPTFLS

IMAPTFLE

Functional Description

A stand-alone program, assembled with user-selected options, that dumps
the contents of main storage onto a tape or a printer. The prograr has
two versions:

e A high speed version that dumps the contents of main storage to a
tape.

e A low speed version that formats and dumps the contents of main
storage either to a tape or directly to a printer.

A problem program that reads, formats according to user supplied
paramreters, and prints the tape produced by execution of the stand-alone
dump program assembled from the service aid IMDSADMP. The format cf the
printed output is similar to that produced by ABEND.

A stand-alone program that reads, formats, and prints either the entire
operating system data set SYS1.SYSJOBQE, or selects and prints
information related to a specific job in that data set. Because it
operates independently of the operating system, IMCJQDMP can print the
contents of the job queue as it appeared at the time of abnormal
termination.

A problem that produces a map of the system nucleus, any load module, the
resident reenterable load module area of an MFT system, or the link pack
area of an MVT system. The listing produced by this program shows the
locations of CSECTS, external references, and entry roints within a load
mrodule.

A problem program that can inspect and modify either data records or load
modules located on a direct access storage device.

A problem program that identifies program temporary fixes (PTFs) and
local fixes that have been applied to libraries.

A probklem program that produces the job control language (JCL) statements
necessary to apply PTFs to a syster; these JCL statements are tailored to
the user's individual system.

Appendix G: Sexrvice Aids 99

Appendix H: Control Block Pointers

This appendix summarizes the contents of the control blocks that are most useful in
Control blocks are presented in alphabetical order, with displacements in

debugging.
decimal, followed ky the hexadecimal counterpart in parentheses.
control block relationships in the System/360 Operating Syster.

Figure 34 illustrates
Figure 35 shows

relationships between storage control elements in a system with MVT.

CVT - Communications Vector Table

+0
+53(35)
+193(Cc1)

DCB - Data Control

Address of TCB control words

Address of entry point of ABTERM

Address of secondary CVT (used
only with Model 65
Multiprocessing systems)

Block

+40(28)

+45(2D)
[+69 (45)

ddname (before open); offset to
ddname in TIOT (after open)

DEB address

IOB address

DEB - Data Extent Block

Address of start of extent

+1 TCB address

+5 Address of next DEB
+25(19) DCB address

| +33 (21) UCB address

+38(26)

+42 (2A) Address of end of extent
ECB - Event Control Block

+1

RB address or completion code

IOB - Input/Output Block

-7

+2
+5
+9
+17(11)
+21(15)

RB - Request Block

Address of next IOB (BSAM, QSAM,
and BPAM)

Sense bytes

ECB address

CSW

CCW list address

DCB address

(PCP_and MFT)

-8

-4

+0
+13(D)
+16 (10)
+29(1D)

100

Programmer 's

Address of previous RB on load
list

Address of next RB on load list
rModule name

tntry point address

Resume PSW

Address of previous RB

RB - Request Block (MVT)

+4
+13(D)
+16(10)
+29(1D)

Last half of user's PSW
CDE address
Resume PSW
Address of previous KRB

TICT - Task Input/Cutput Table

+0
+8
+24(18)

+0
+4
+16 (10)!

+20(14)

TCB - Task Control Block

Job name

Ster name

DD entries begin (cne variable-
length entry for each DD
statemwent)

Length of DD entry

ddname

Device entries begin (one U4-byte
entry for each device)

Next device entry (if there is
one)

(Next DD entry begins at 24(18)
plus length of first DD entry)

(PCP_and MFT)

+1

+9
+13(D)
+10(10)
+25(19)
+37(25)

+113(71)
+101 (A1)
+181(B5)

Aqdress of most recent RB

Address of most recent DEE

TIOT address

Completion code

MSS boundary box address

Address of most recent RE on load
list
Address
Address
Address

of first save area
of STAE control klock
of the job step control

TCB - Task control Block

(MFT)

with Suktasking

Guide to Debugging (Release

+45(2D)
+129(81)

+133(85)
+137(89)

+145(91)

+181(B5)

19)

Address of TCB for job step task
Address of TCB for next subtask
attached by same parent task
Address of TCB for parent task
Address of TCB for most recent
subtask -

Address of ECB to be posted at
task completion

Address cf the job step control

TCB - Task Control Block (MVT)

+1

+9
+13(D)
+16 (10)
+25(19)
+33(21)
+37(25)
+113(71)
+125(7D)
+129(81)

+133(85)
+137(89)

+145(91)

Address of most recent RB
Address of most recent DEB

TIOT address

Completion code

Address of most recent SPCE ‘
Bit 7 -- Non-dispatchability bit
Address of most recent LLE
Address of first save area
Address of TCB for job step task
Address of TCB for next subtask
attached by same parent task
Address of TCB for parent task
Address of TCB for most recent
subtask

Address of ECB to be posted at
task completion

+153(99)

+161 (A1)
+181 (B5)

Address of dummy PCE minus 8
bytes

Address of STAE control block
Address of the jok step control

UCB - Unit Control Block

y

+2

+4
+13(D)
+18(12)
+19(13)
+22(16)
+40(28)

Appendix H:

CPU ID (used only with Model 65
Multiprocessing systens)

FF (UCB identification)

Device address

Unit name

Device class

Device type

Sense bytes

Number of outstanding RESERVE
requests (shared DASD only)

control Block Pointers 101

H xTpuaddy

SI23UTOd YO0Td TOIIUOD

€0T

*he 2InbTg

MOTJ ¥oOTd TOIIUOD

Prefix

16 (10)

$rcs

Loc 16 (10)

4 ovr
cvr .-
T TCB Words

L Words
Current

TNew TCB ? Toh

0 4

7cB
TNewest RB
0
8 1 DEB Queve L
TIOT ;
12 (C) f l
36 (24) ? Load List 3
tood List N : DEB Queue
Is
e Tior DEB
Next RB jobname
T ex / o /
A o Next
_______ // 8 stepname : L DEB /
5N
25) DE) vd
e TNexf RB / / f /“H’ /
- ddname Repeat A Next
TPrevious RB |] 28 (1C) for each el DEB /
—————— r ddname e
DEB vd
Repeated{ 40 ? i
for each ucCs L
device (28) < 0 T TCe /
i Next
; [Ao]
Previous RB | /
7
L P — /
T DCB
24 (18)
Resume PSW
32 (20)
e
uce
0
4 Direct
access
8 address /
Unit
12(C) Name 12 (C)
TIOT
40 (28) |Offset
T DEB
44 (2D)
8 (44) TIOB Prefix
108
108 2
TNexr 108 |o
108 e
?Nexf [ol:\.
Prefix -8
4l —ECB—_— _‘/,
Sense
0 bytes

16 (10)

28 (1C)

Active RB Queuve

Resume PSW Re

TPrevious RB

RB

‘g xTpuaddy

SI93UTOd XO0TH [O0IIUOCD

E0T

MOTJI ¥DOTd

iy
Load List
4 ~N
rE
T Next RB /
A
,
——————— V,
RB o
‘m EEE TNext RB ;,ﬁ{
i Previous RB ’
Repeated
B] for each
T ‘ device
CB
Prefix{
refix
. 1 Previous RB Pt
ol _____} —
et
Resume PSW
16 (10)

Prefix -8

12 (C)
16 (10)

20 (14)

 1ce Words
e
Current 1
TNew TCB T o
0 4 ;
¢ Il
7CcEB
A ?Newest RB
o| 1 DEB Queve
TIOT
12 (C) T
% (24) 4 Load List
DEB Queue Active RB Queue
r ™~
7/0T DEB
iob o
o jobname /
8 stepname) /
ddname Repeat \
28 (1C) for each . 0
ddname
DFB
40
UCB
{ (28) T 0 T TCB 16 (10) Resume PSW
T Next
4 DEB
e 28 (1C) TPrevious RB
t bcs
24 (18)
ucs
32 (20) T) 0
o oCB
vcs
0
4 Direct
access
8 address /
Unit
IZ(C) Name 12 (C)
TIOT
40 (28) |Offset
DEB
44 (2D) 1
68 (44) TlOB Prefix
108
08 N
sy ?Nexr 108
108 R
$ Next 108
ECB 4
_____ N g
Sense
bytes
CcC
Ccsw
} cew
t ocs e ccw
Code TDatc Flags Count
0 4 b

7CB

T

0 H RB Queue = >
25 (19) IfSubpoolQueue
37 (25)|__HLod List o W
& .
San s
?
Load List Subpool Queue :; Active RB Queue
- N 4
iz e =
LLE | SPQE RB
LLE | \ SPOE RE
A Next LLE d 4 Next SPQE
- : S
4 4 coE 2 4 |4 oaE 12l |4 coE
; - 28 (1c)|__|} Previous RB
. Descriptor Queue
—
DQE
. . DOE
DQE
¥ 4 rQe
“ 4 f Next DQE e
i Free Queue
i . la —
’ |
a FQE
. FOE
FQE
N f Next FQE
4 Length
Contents Directory
.
CDE XL
Length
COE Number CSECTs
Length CSECT-1
CDE
’Nexf CDE Length CSECT-N
ARE Location CSECT-1
4
8 Program
12 © Name Location CSECT-N
16 (10) 4Entry point
XL MVT
20 (14) 1 Storage Control
Pointers

Figure 35.

MVT Storage Control Flow

Appendix H:

Control Block

Pointers

Indexes to systems reference library
manuals are consolidated in the publication
IBM System/360 Operating System: Systems
Reference Library Master Index, GC28-66M4l.
For additional information about any
subject listed below, refer to other
publications listed for the same subject in
the Master Index.

When more than one page reference is
given, the major reference is first.

Abbreviations, list of 96

ABEND dumps
contents of (MVT) 49-67
contents of (PCP,MFT) 36-u47
guide to using (MVT) 66-67
guide to using (PCP,MFT) 47,48
how to invoke (MVT) 49
how to invoke (PCP,MFT) 33

introduction to 9
samples of (MVT)
samples of (PCP) 34,35
ABEND macro instruction 33
Abnormal termination, cause of
in an ABEND/SNAP dump (MVT) 66
in an ABEND/SNAP dump (PCP,MFT) 47
Abnormal termination dumps (see ABEND
dumps)
Active RB queue
description of 13
instructions for using 30

50,51

in a core image dump (MFT) 81,82
in a core image dump (MVT) 85
in a core image dump (PCP) 79
in a stand-alone dump (MFT) 81,82
in a stand-alone dump (MVT) 85
in a stand-alone dump (PCP) 79
in an ABEND/SNAP dump (MVT) 55-56,67
in an ABEND/SNAP dump
(PCP,MFT) 40-41,47
in an indicative dump 70
AMWP bits

in an indicative dump 70
meaning of 31

APSW field, in an ABEND/SNAP dump

(MVT) 55,66
ATTACH macro instruction, effects of 15,16
lAttaching subtasks 17,18
Boundary
problem program 31,43

Catalog dump 33,34
CDE
as used with the load 1list 14
format of 23,24
in an ABEND/SNAP dump 57
in a core image dump 85
in a stand-alone dump 85

INDEX

CHAP macro instruction 18
Cormunications vector table (see CVT)
Ccorplete dump (MVT)
description of
sample of 50,51
Completion codes

49

description of common 91-94
exrlanation of 30
in an ABEND/SNAP dump (MVT) 52
in an ABEND/SNAP dump (PCP,MFT) 38
in an indicative dump 69

COND parameter,
to regulate jcb step execution 34
to regqulate space deletion 36

Contents directory
description of * 14,23-24
entries (see CDE)

Control blocks
descriptions of 25-26
pointers in 100-101
relationships between 25
use in debugging 31

Contrcl information 10

Control program nucleus
ABEND/SNAP (MVT) 63
ABEND/SNAP (PCP,MFT) 46-47

Core image dumps
contents of 73
guide to using (MFT) 80-84
guide to using (MVT) 84-86
guide to using (PCP) 79,80
introduction to 71

CVvT
description of 25
in a core image dump (PCP) 80
in a stand-alone dump (PCP) 80
pointers in 100

Data control block (see DCB)

Data event control block 25

Data extent block (see DEBR)

Damage assessment routine (DAR) 71

DCB
description of 25
in a core image dump (MFT) 83
in a core image dump (MVT) 86
in a core image dump (PCP) 80
in a stand-alcone dump (MFT) 83
in a stand-alone dump (MVT) 86
in a stand-alone dump (PCP) 80
pointers in 100

DD statements
required with ABEND/SNAP dumps 33-34
sample of SYSABEND 36

DEB
description of 25
in a ccre image dump (MFT) 83
in a core image dump (MVT) 86
in a core image dump (PCP) 80
in a stand-alone dump (MFT) 83

Index 107

DEB (continued)
in a stand-alone dump (MVT) 86
in a stand-alone dump (PCP) 80
in an ABEND/SNAP dump (MVT) 58
in an ABEND/SNAP dump {(PCP,MFT) 44
pointers in 100
DEB queue
in a core image dump (MFT) 83

in a core image dump (MVT) 86
in a core image dump (PCP) €0
in a stand-alone dump (MFT) 83
in a stand-alone dump (MVT) 86
in a stand-alone dump (PCP) 80

in an ABEND/SNAP dump (MVT) 53
in an ABEND/SNAP dump (PCP,MFT) 38
Debugging procedure
description of 30-32
summary 32
DECB 25
| DELETE macro instruction 14
Dequeued elements 37
Descriptor queue element (see DQE)
Destroyed queues 37
Device considerations,
for ABEND/SNAP dumps 33-34
Dispatcher trace table entry (MVT)
format of 28
in a SNAP dump 64,66
| in a core image dump 84-85
in a stand-alone dump 84-85
| Dispatching priority 17-18
Displacenments, how shown 9
DQE
format of 22-23
1 in a core image dump 86
in a stand-alone dump 86
in an ABEND/SNAP dump 59,67
Dump (see individual type of dump, e.g.,
ABEND, indicative)
Dump data set
MVT 49
PCP,MFT 33
Dynamic area
in systems with MVT 18
| in systems with MFT 17
in systems with PCP 16-17

ECB
completion codes, list of 97
description of 25
in a core image dump (MFT) 83-84

in a core image dump (MVT) 86

in a core image dump (PCP) 80

in a stand-alone dump (MFT) 83-84
in a stand-alone dump (MVT) 86

in a stand-alone dump (PCP) 80

pointers in 100

posting of, using ATTACH 16
Event control block (see ECB)
Extent list (see XL)
External interruption 31,32
External trace table entry

format of 28

in a SNAP dump 64,66-67

in a core image dump 84-85

in a stand-alone dump 8u4-85

FBOE
format of 21-22
in a core image dump 86
in a stand-alone dump 86
in an ABEND/SNAF dump 60,67
FINCH request block 11-12
Finding the partition TCB 81
FRB 11-12
Fixed area
in systems with MFT 17-18
in systems with MVT 18
in systems with PCP 16
FCE
format of (MFT,PCP) 19
forrat of (MVT) 23
in a core image dump (MFT) 84
in a core image dump (PCP) 80
in a stand-alone dump (MFT) 84
in a stand-alone dump (PCP) 80
in an ABEND/SNAP dump (MVT) 59,67
Free areas
in a core image dump (MFT) 84
in a core image dump (PCP) 80
in a stand-alone dump (MFT) 84
in a stand-alone dump (PCP) 80
in an ABEND/SNAP dump (ECPF,MFT) 47
Free block queue element (see FBCE)
Free queue element (see FQE)

General debugging procedure
description of 30-32
summary 32
GETMAIN macro instruction 20
Gottcn subtask area 18-20
Gotten subtask area queue element 20-21
GQE 20-21
Guide to using core image or a stand-alone
dump 78

Hardware error 31
Hierarchy, main storage 19-21

IEAPRINT 71,72
IMAPTFLE 99
IMAPTFLS 99
IMASPZAP 99
IMBMDMAP 99
IMCJQDNMP 99
IMDPRDMP 99
IMDSADMP 99
Indicative dumps
contents of 68-70
description of 68
guide to using 70
introduction 9
Intut/cutput block (see IOB)
Interrupt request block 11
Interruptions 31-32
Introduction 9
IOB
description of 25
in a core image dump (MFT) 83
in a core image dump (MVT) 86

108 Programmer's Guide to Debugging (kelease 19)

IOB (continued)
in a core image dump (PCP) 80
in a stand-alone dump (MFT) 83
in a stand-alone dump (MVT) 86
in a stand-alone dump (PCP} 80
pointers in 100

I/0 interxruption 31-32

I/0 trace table entry
format of 28

in a core image dump (MFT) 83

in a core image dump (MVT) 84-85
in a core image dump (PCP) 79

in a stand-alone dump (MFT) 83

in a stand-alone dump (MVT) 84-85
in a stand-alone dump (PCP) 79

in a SNAP dump (MVT) 64,66-67

in an ABEND/SNAP dump (PCP,MFT)
IRB 11,12

45,47

Job pack area 14-15

Job pack area queue 14-15
Job step 16-18
Job step task (MVT)
JPAQ 14,15

18,49

Keep dump 33-34

LINK macro instruction, effects of 15
Link pack area (MVT) 18
LLE

count field 14

description of 14

in an ABEND/SNAP dump (MVT) 53
Load list

description of 14

instruction for using 30,32

in a core image dump (MFT) 82
in a core image dump (MVT) 85
in a core image dump (PCP) 79
in a stand-alone dump (MFT) 82
in a stand-alone dump (MVT) 85
in a stand-alone dump (PCP) 79

in an ABEND/SNAP dump (MVT) 56,66
in an ABEND/SNAP dump (PCP,MFT)
41-42,47
in an indicative dump 69
in systems with MVT 14
in systems with PCP or MFT 13-14
Load list element (see LLE)

LOAD macro instruction, effects of 16.
Load module, storage control forxr
in an ABEND/SNAP dump (MVT)
in systems with MVT 23-24
Loaded program request block 11,12
Loaded request block 11,12

LPRB 11,12
LRB 11,12

56-57,67

Main storage hierarchy support
inclusion of 19-21
effects on MSS boundary box 19-20
effects on partition queue 19

Main storage layout
in systems with MFT with suptasking
17-18
in systems with MFT without subtasking
17
in the systems with MVT 18
in system with PCP 11-17
Main storage managemrwent 10
Main storage supervisor's boundary box
(see MSS)
Machine check interrxruption
MFT, systems with
consideraticons in using an ABENL/SNAP
dump of 47-48
contents of an ABEND/SNAP dump of
guide to using a core image
dump of 80-84
guide to using a stand-alone dump of
80-84
how to invoke an AREND/SNAP
dump of 33-34
main storage layout in 17,18
storage contreol in 20-21
task control characteristics of 17-18
trace table entries in 25,82-83
Model 65 Multiprocessing system
trace table formats 28
prefixed storage area, as shown in an
ABREND/SNAP dump (MVT) 63
trace table entries in a SNAP dump 65
Module name prefixes, list of 95
description of (MFT) 20
description of (BCP) 19
in a core image dump (MFT) 84
in a core image dump (PCP) 80
in a stand-alone dump (MFT) 84
in a stand-alone aump (PCP) 80
in an ABEND/SNAP dump (MVT) 58-59
starting address (PCP,MFT) 38
Multiprogramming with a fixed number of
tasks (see MFT, systems with)
Multiprogramming with a variable number of
tasks (see MVT, system with)
MVT, systems with
cornplete ABEND/SNAP dump of
contents of an ABEND/SNAP dump
guide to using a core image dump

31-32

36-47

50-51
49-66

of 84-86
guide to using a stand-alcone dump of
84-86
guide to using an ABEND/SNAP duicg
of 66-67

how to invoke an ABEND/SNAP dump of 49
load 1list in 14

main storage layout in 18

storage control in 22-24

task control characteristics in 18

trace table entries in 28,8u4-85
Nucleus

contents of 16-18

in an ABEND/SHAP dump (MVT) 63

in an ABEND/SNAP dump (PCP,MFI) 47

Only loadable (CL) 11
Option 2 (see MFTI, systerms with)

Index 109

Option 4 (see MVT, systems with)
Overlaid problem program 37

Partition (MFT) 17-18
Partition queue element (see PQE)
Partition TCBs 81

PCP, system with
contents of an ABEND/SNAP dump of 37-47
guide to using a core image dump
of 79-80
guide to using a stand-alone dump of
79-80
guide to using an ABEND/SNAP
dump of 47-48
how to invoke an ABEND/SNAP dump
of 33-34

load 1list in 13-14

main storage layout in 16

storage control in 19

task control characteristics of 16-17

trace table entries in 28,79-80
PIE 38,52
Pointers, control block 100-101
PQE

format of 21
in a core image dump 86
in a stand-alone dump 86
in an ABEND/SNAP dump 59-67
PRB 11
Prerequisite publications 3
Primary control program (see PCP,
with)
Priority 17,18
Problem program, how to locate in a
dump 30-32
Problem program storage boundaries, in an
ABEND/SNAP dump (PCP, MFT) 43
Program check interruption 31
Program check old PSW
in an ABEND/SNAP dump (MVT)
information in 31
Program check trace table entry
format of 28
in a SNAP dump 64-65
in a core image dump 80-85
in a stand-alone dump 80-85
Program interruption element (see PIE)
Program request block 11
Protection key 38
PSW at entry to ABEND
in an ABEND/SNAP dump (MVT) 52
in an ABEND/SNAP dump (PCP,MFT) 38
PSW, program check old (see program check
old PSW)
PSW, resume (see resume PSW)

systems

55, 66

QCB 60
Queue elements (MVT)
Queues destroyed 37

19,21-24

RB
as affected by LINK, ATTACH,
LOAD 15-17
formats of

XCTL and

10-12

110

| contents of, in

RB (continued)

in an ABEND/SNAP dump (MVT) 55-56
in an ABEND/SNAP dump

(PCP,MFT) 40-41,47
in an indicative dump 69-70

most recent 38,52

name field, in a dump 30,32
purpose of 12-13

pointers in 100

pointers to, in a core image dump
(MFT) 81-82

pointers to, in a core image dump
(MVT) 86

pointers to, in a core image dump
(pCcP) 79

pointers to, in a stand-alone dump
(ecp) 79

queue (see active RB queue)

sizes of 11-12

types of 10-12

usefulness in debugging
when created 11-15

¢ a0

which ones aprear in a dump 30-31
Re-creating the task structure

MFT with subtasking 81

HMVT 85
Reenterable load module area (MFT) 17

Reference publications 3

Region (MVT)

a core image dump 86
contents of, in a stand-alone dump 86
contents of, in an ARBREND/SNAP dump 67
description of 18

storage control for 21-22
Register contents

in a save area 27

in an ABEND/SNAE dump (NMVT) 63-ol

in an ABEND/SNAP dump (PCP,MFT) U46
in an indicative dump 69

Request block (see RB)

Resume PSW
description of 11

in an ABEND/SNAP dump (MVT) 56,65
in an ABEND/SNAF dump (PCP,MFT) 41,47
in an indicative dump 68,70

Retain durxp 33-34
Rollout/rollin
effects on partition gqueue 20

Save areas
format of 27
in an ABEND/SNAP dump
in an ABEND/SNAP dump

(MVT) 61-62
(PCP,MFT) 43

Sense bytes, UCB
in a core image dump (MFT) 83
in a core image dump (MVT) 86
in a core inage dump (PCP) 80
in a stand-alone dump (MFT) 83
in a stand-alone dump (MVT) 86
in a stand-alone dump (PCP) 80

takle of 98
Sequential partitioned system (see MFT,
systemns with)
Sequential scheduling system (see PCP,
systens with)
} Sexvice aids 99

Programmer's Guide to Debugging (Release 19)

10-11,26,28

Set system mask trace takle entry
format of 29
in a core image dump (MVT)
in a stand-alone dump (MVT)
in an ABEND/SNAP dump 64-65

SI0 trace table entry
format of (MFT) 28
format of (MVT) 28-29
format of (PCP) 28
in SNAP dump (MVT) 6U4-65
in core image dump (MFT)
in core image dump (MVT)
in core image dump (PCP)
in stand-alone dump (MFT)
in stand-alone dump (MVT)
in stand-alone dump (PCP)
in an ABEND-SNAP dump

(PCP,MFT) U45,47-48

SIRB 11-12

SNAP dumps
contents of (MVT)
contents of (PCP,MFT)
guide to using (MVT)
guide to using (PCP,MFT)
how to invoke (MVT) 49
how to invoke (PCP,MFT)
introduction to 9

SNAP macro instruction 33

Snapshot dumps (see SNAP dumps)

Space considerations, for ABEND/SNAP

dumps 33-34

SPQE
format of 22-23
in a core image dump 86
in a stand-alone dump 86
in an ABEND/SNAP dump 58,67

SQS (see system queue space)

SSM (see set system mask trace table entry)

Stand-alone dumps
areas shown on 75-76
description of 75-76
contents of 75-76

84-85
84-85

82-83

84-85

79-80
82-83
84-85
79-80

oMY

49-66

36-47
66-67
47-48

33-34

guide to using (MFT) 80-84
guide to using (MVT) 84-86
guide to using (PCP) 79-80

how to invoke 75
introduction to 9
Storage control
in systems with MFT with subtasking 20
in systems with MFT without subtasking
20-21
in systems with MVT 21-24
in systems with PCP 19
Subpool
definition of 22
in a core image dump 86
in a stand-alone dump 86
in an ABEND/SNAP dump 58-59,67
queue elements (see SPQE)
Subtask, as created by ATTACH 15-16
Supervisor calls, list of 87-90
Supervisor interrupt request block 11-12
Supervisor request block 11-12
SVC interruption 31-32
SVC trace table entries
format of (MFT) 28
format of (MVT) 28
format of (PCP) 28

SVC trace table entries (continued)

in a SNAP dump (MVT) 64-65-

in a core image dump (MFT) 83

in a core image dump (MVT) 84-85
in a core image dump (PCP) 79-80
in a stand-alone dump (MFT) 83

in a stand-alone dump (MVT) 84-85
in a stand-alone dump (PCP) 79-80

in an ABEND/SNAP dump (PCP,MFT)
SvVCs, list of 87-90
SVRB 11-12
SYSABEND DD statement

description of 33-34

samples of 33
SYSOUT, as a dump data set 33-34
System control blocks (see control blocks)
System differences in task control 16-18
System failure 71
System gqueue space (NVT) 18
System tasks 16-18
System wait TCB 85
SYS1.DUMP data set 71
S¥S1.SVCLIB
SYSUDUMP DD statement

45,47

33-34

Task completion code (see completion codes)
Task control block (see TCB)
Task control differences, by system
Task dispatching priority 17-18
Task input/output table (see TIOT)
Task management 10-12
Task supervision 10-12
Task structure, recreating the, using a
core image dump (MVT) 85
Task structure, recreating the, using a
stand-alone dump (MVT) 85
Task switch trace table entry (MFT)
forrat of 28
in core image dump 82-83
in a stand-alone dump 82-83
in an ABEND/SNAP dump 47
Task switching (MFT) 17-18
TCB
description of 10
in an ABEND/SNAP dump (MVT)
in an ABEND/SNAP dump (PCP,MFT)
information available through 10
locating, in a core image dump 85
locating, in a stand-alone dump 85
pointers in 100-101
pointers to, in a core image dump (MFT)

16-18

52-54
38-40

76
pointers to, in a stand-alone dump
(MFT) 81

queue (MFT) 17

gueue (MVT) 18

relationships
TCBLTC 17,100-101
TCENTC 17,100-101
TCBOTC 17,10Q-101
TCBTCB 17,100-101
Termination, abnormal (see abnormal
termination)
TIOT

description of 25

pointers in 100

17-19

Index 111

Traces 27-29
Trace table
control block 79,82,84

durp (MFT) 47

UCB

delimiting entries, in an ABEND/SMNAP ‘

description of 27-29
format of entries (MFT) 28
format of entries (MVT) 28
format of entries (PCP) 28
format of entries

(Mod 65 multiprocessing systens)

description of 25
in a core image dump (MFT) 83

in a core image dump (MVT) 86
in a core image dump (PCP) 80
in a stand-alcne dump (MFT) 83
in a stand-alone dump (MVT) 86
in a stand-alone dump (PCP} 80

in an ARBREND/SNAP dump (PCP,MFT)
pointers in 101

29 Unit control block (see UCRB)

in a SNAP dump (MVT) 64-65 Use count 15-17

in a core image dump (MFT) 82-83

in a core image dump (MVT) 84-85

in a core image dump (PCP) 79-80 Wait list 15,20

in a stand-alone dump (MFT) 82-83 Wait list element 15,20

in a stand-alone dump (MVT) §&L4-85 WLE 15,20

in a stand-alone dump (PCP) 79-60

in an ABEND/SNAP dump (PCP,MFT) 45 XCTL mracro instruction, effects of
samples of entries (MFT) 82-83 XL

samples of entries (MVT) 8U4-85
samples of entries (PCP) 79-80
usefulness in debugging 31-32

112 Programmer's Guide to Debugging

(Release 19)

description of 24

in a core image Gump 86

in a stand-alone dump 86
in a ABEND/SNAP dumps 57,67

uy

16

GC28-6670-3

TSI

International Business Machines Corporation
Data Processing Division

112 East Post Road, White Plains, N.Y. 10601
[USA Only]

IBM World Trade Corporation
821 United Nations Plaza, New York, New York 10017
[International]

€-0£99-8209 "V S N Ui pajuid (0Z-09€S) oping BuiBbnqag SO 0% }Ks

READER’'S COMMENT FORM

IBM System/360 Operating System Order No. GC28-6670-3
Programmer's Guide to Debugging

® Is the material: Yes No
Easytoread? 0O O
Well organized? ... O O
Completel 0O O
Well illustrated® ... 0O O
Accurate?l O O
Suitable for its intended audience? ... O O

® How did you use this publication?

[As an introduction to the subject Other
0 For additional knowledge

® Please check the items that describe your position:

] Customer personnel 1 Operator] Sales Representative

[IBM personnel [J] Programmer O Systems Engineer

(0 Manager 1 Customer Engineer [] Trainee

[J Systems Analyst O Instructor Other
® Please check specific criticism(s), give page number(s), and explain below:

O Clarification on page(s)] Deletion on page(s)

O Addition on page(s) 1 Error on page(s)
Explanation:

® Thank you for your cooperation. No postage necessary if mailed in the U.S.A.

GC28-6670-3

YOUR COMMENTS, PLEASE . . .

This manual is part of a library that serves as a reference source for systems analysts,
programmers and operators of IBM systems. Your answers to the questions on the back
of this form, together with your comments, will help us produce better publications for
your use. Each reply will be carefully reviewed by the persons responsible for writing
and publishing this material. All comments and suggestions become the property of IBM.

Note: Please direct any requests for copies of publications, or for assistance in using your
IBM system, to your IBM representative or to the IBM branch office serving your locality.

FIRST CLASS
PERMIT NO. 81
POUGHKEEPSIE, N.Y.

]
BUSINESS REPLY MAIL

P
NO POSTAGE STAMP NECESSARY IF MAILED IN THE UNITED STATES ——
L]

POSTAGE WILL BE PAID BY ...
NI
A
IBM Corporation |
P.O. Box 390 I—

Poughkeepsie, N.Y. 12602

Attention: Programming Systems Publications
Department D58

Fold Fold

TSI

International Business Machines Carporation
Data Processing Division

112 East Post Road, White Plains, N.Y. 10601
[USA Only]

I1BM World Trade Corporation
821 United Nations Plaza, New York, New Yark 10017
[International]

sul Buopy 40

€-0£99-8229 "V S°N Ul pajuiyd (0Z-09¢€S) epino Bubbngeq SO 09¢,)s

)

