
1

Systems Reference Library

IBM System/360 Operating System

Planning Guide for the Loader

This publication is a planning aid only. It
is intended for use prior to the availability of
the loader and shall be replaced by reference
documentation when the loader becomes available.

The loader combines the basic editing and
loading functions of the linkage editor and pro­
gram fetch in one job step. It is designed for
high/performance loading of modules that do not
require the special processing facilities of the
linkage editor and fetch, such as overlay. The
loader does not produce load modules for program
libraries.

File No. 5360-31 OS
Form C28-6702-0

PREFACE

This pub1ication is directed to the pro­
grammer who is planning to use the loader.
The first part of the publication describes
the functional characteristics of the load­
er; the second part describes the job con­
trol language statements and invocation
procedures for the loader. All these items
are discussed in relation to the facilities
of the linkage editor. Therefore, the

First Edition (December 1968)

reader must be familiar with the publica­
tion IBM System/360 operating system: Lin­
kage Editor, Form C28-6538.

Also required for an understanding of
this publication is IBM System/360 Operat­
ing System: Job Control Language. Form
C28-6539.

Requests for copies of IBM publications should be made to the
IBM branch office serving your locality.

A form for readers' comments is provided at the back of
this publication. If the form has been removed, comments may
be addressed to IBM Corpo,j:'ation, Programming Systems Publica­
tions, Department D58, prj Box 390, Poughkeepsie, New York 12602

@ Copyright International Business Machines Corporation 1968

(

CONTENTS

CONCEPTS AND CONSIDERATIONS • • • 0 5 Input for the Loader 0 0 0 • 0 0 8
Functional Characteristics .• 00 5 EXEC Statement 0 0 • 0 8
Compatibility and Restrictions 0 • 0 0 0 5 DD Statements • 0 0 0 0 0 11
Performance Considerations 0 0 6 Loaded Program Data 0 0 0 • 11
Storage Considerations 0 0 .0 0 7 Sample Input for the Loader 12

Invoking the Loader 0 • 0 0 0 0 0 13
PLANNING FOR USE OF THE LOADER 0 8

ILLUSTRATIONS

FIGURES

Figure 1. Input Deck for the Loader
Figure 2. Module Map Format Example
Figure 3. Loader and Loaded Program

8
10

Data
12
12

in PCP Input Stream • • • • • • • •
Figure 4. Input Deck for a Load Job
Figure 5. Input Deck for a Compile-Load

Job . . • • 13
Figure 6. Macro Instruction Basic

Format • • • • • . • • • • • 13

TABLES

Table 1. Main Storage Requirements 7

CONCEPTS AND CONSIDERATIONS

The Loader is one of the IBM System/360 Operating System processing pro­
grams. It combines basic editing and loading functions of the linkage
editor and program fetch in one job step. Therefore, the load function
is equivalent to the link edit-go function. The loader can be used for
compile-load and load jobs. (If the linkage editor and fetch were used
instead of the loader, a compile-load job would be called a compile-link
edit-go job, and a load job would be called a link edit-go job.)

The loader will load object modules produced by a language processor
and load modules produced by the linkage editor into main storage for
execution. Optionally, it will search a call library (SYSLIB) or the
link pack area queue of MVT, or both, to resolve external references.
The loader does not produce load modules for program libraries.

The functional characteristics, compatibility and restrictions, per­
formance considerations" and storage considerations of the loader are
described in the following paragraphs.

FUNCTIONAL CHARACTERISTICS

~he loader can be used with PCP r MFT, and MVT. The loader is reenter­
able and, therefore. it can reside in the link pack area of MVT,.

The loader combines the following basic functions of the linkage edi­
tor and program fetch:

1. Resolution of external references between program modules,.

2. Optional inclusion of modules from a call library (SYSLIB).

3. Automatic deletion of duplicate copies of prog;ram modules. (The
first copy is loaded and all suceedingrequests use that copy.)

4. Relocation of all address constants so that control may be passed
directly to the assigned entry point in main storage. (Relocation
of address constants is performed as the relocation dictionary
(RLD) is encountered unless the referenced control section is not
in main storage. In this case" the RLD is saved and relocated when
the control section is loaded.)

The diagnostics produced by the loader are similar to those of the
linkage editor.

COMPATIBILITY AND RESTRICTIONS

The loader accepts the same basic input as the linkage editor:

1. All object modules that can be proc~ssed by the linkage editor can
be input to the loader .•

2. All load modules produced by the linkage editor can be input to the
loader (except load modules edited with the NE option).

Concepts and Considerations 5

The loader supports the following linkage editor options: MAP, LET,
NCAL, AND SIZE. All other linkage editor options and attributes are not
supported, but if used, they will not be considered as an error. A mes­
sage will be listed on SYSPRINT indicating that they are not supported.
The supported options are specified in the PARM field of the EXEC state­
ment, or with the LINK, ATTACH, LOAD, or XCTL macro instruction. In
addition to the supported linkage editor options, the loader provides
several other options. All loader options are described in "EXEC state­
ment" in the section ·Planning for Use of the Loader."

The loader does not process linkage editor control statements (for
example, INCLUDE, NAME, OVERLAY, etc,.). If they are used, they will not
be treated as an error and a message will be listed on SYSPRINT indicat­
ing that the control statements are not supported .•

The loader and the linkage editor are bound by the same input conven­
tions. (These conventions are discussed in the publication IBM System/
360 Operating System: Linkage Editor.) In addition, the loader can
accept load modules in the SYSLIN data set.

PERFORMANCE CONSIDERATIONS

The execution time of a problem program is the same whether it is pro­
cessed by the loader or by the linkage editor and program fetch. Howev­
er, the editing and loading time is greatly reduced when using the load­
er. Time savings are made by:

1. Reducing scheduling time.

2. Reducing equivalent linkage editor processing time.

3. Reducing I/O operations.

scheduling time is reduced because the usual link edit-go steps are
combined into one job step.

The loader can process a job in approximately half the time required
by the linkage editor. This is done as follows:

1. Linkage editor intermediate and output I/O operations are
eliminated.

2. Certain linkage editor functions, such as OVERLAY, are eliminated.

3. The I/O time required for reading load modules and object modules
is reduced through the use of improved buffering techniques and
through the use of chained scheduling, which reduces seek time
between successive READs.

The processing time can be further reduced in a MVT environment by
using link pack resident modules for the resolution of library
references.

I/O operations and the amount of auxiliary storage required is
reduced in compile-load and load jobs. For compile-load jobs, auxiliary
storage space need not be allocated for linkage editor intermediate and
output data sets. For production (load) jobs, the auxiliary storage
space needed by the job library can be significantly reduced by defer­
ring the inclusion of processor library routines in the program until
load time. This deferment can also be made through the NCAL option of
the linkage editor, but the equivalent processing is faster using the
loader, especially if the loader uses the link pack area of MVT to
resolve external references.

6

(

..

STORAGE CONSIDERATIONS

The loader requires main storage space for the following items:

• Loader code.
• Data management access methods.
• Buffers and tables used by the loader (dynamic storage).
• Loaded program (dynamic storage).

Table 1 shows the appropriate storage requirements in bytes.

All or part of the main storage required is obtained from user
storage,. If the access methods are made resident at IPL time, they are
allocated in system storage.. In an MVT environment the loader code
could also be made resident in the link pack area.

The sizes of the buffers and tables are dynamically expanded to use
the available main storage specified with the SIZE parameter.

The size of the loaded program is the same as if the program had been
processed by the linkage editor and program fetch.

The loader does not use auxiliary storage space for work areas.

Table 1. Main Storage Requirements
r------ ----r------------------------y-----------------------,
I IApproximate Main Storage I I
I Consideration IRequirement in Bytes I Comments I
~--------------------+------------------------+-----------------------~
ILoader Code I 10K I I
~----------------+----------------+--- --------~
I Data Management I 4K I BSAM I
I ------t_-------------+--------------------~
IFixed SYSLIN Buffer IBUFNO(BLKSIZE + 24) Iconcatenation of diff- I
land DECBS I I erent BLKSIZE and BUFNOI
I I lmust be considered. I
I I I (Minimum BUFN0=2) I
• -------+--------------------+---------------------~-~
ILoad Module Buffer I 304 I I
ISize & DECBs I I I
~---------------+--------------------+-----------------------i
ISYSPRINT Buffer IBUFNO(BLKSIZE + 24) IBuffer size rounded up I
I and DECBs I I to integral number of I
I I I double words. I
I I I (Minimum BUE'NO=2) I
~------------+----------------------+---------------------i
ISize of program beinglProgram Size IProgram size is I
I loaded I Irestricted only by I
I I Javailable main storage I
~-----------------t_-------------------+--------------------~
I Each external reloca-I 8 I I
I tion dictionary entry I I I
~--------------+-------------------+----------------------~
lEach external symbol I 20 I I
~------:..------ I --------------------+-------------------i
I Largest ESD number I 4n I Allocated in increments I
I In is the size of the lof 32 entries I
I Ilargest ESD in any I J
I I module I I
~--------------+--------------------+-----------------------i
IFixed Loader Table I 1202 ISubtract 88 if NOPRINT I
ISize I lis specified I L--_________________ ~ ______________________ ~ __________________ _J

~oncepts and Considerations 7

PLANNING FOR USE OF THE LOADER

This section discusses how to prepare an input deck for the loader and
how to invoke the loader.

INPUT FOR THE LOADER

The input deck for the loader must contain job control language state­
ments for the loader and, optionally, for the loaded program (see Figure
1).

r--,
I//name JOB parameters (optional) I
I//name EXEC PGM=LOADER,PARM=(parameters) I
I//SYSLIN DD parameters I
I//SYSLIB DD parameters (optional) I
I//SYSPRINT DD parameters (optional) I
1// (optional DD statements and data required for loaded program) 1 L-___ J

Figure 1. Input Deck for the Loader

Only the EXEC statement and the SYSLIN DD statement are required for
a loader step. The JOB statement is required if the loader is the first
step in the job.

EXEC STATEMENT

The EXEC statement is used to call the loader and to specify options for
the loader and for the loaded program. The loader is called by specify­
ing PGM=IEWLDRGO or PGM=LOADER (see "Invoking the Loader·). Loader and
loaded program options are specified in the PARM field of the EXEC sta­
tement. The PARM field must have the following format:

,PARM=' [loaderoption[,loaderoptionl •••] [/programoption
[,programoptionl ••• l'

Note that the loaded program options, if any, must be separated from the
loader options by a slash (/). If there are no loader options, the pro­
gram options must begin with a slash. The entire PARM field may be
omitted if there are no loader or loaded program options.

All parameters must be enclosed in apostrophes when special charac­
ters (/ and =) are used.

MAP

The loader options are:

The loader produces a map of the loaded program that lists external
names and their absolute storage addresses on the SYSPRINT data
set. (If the SYSPRINT DD statement is not used in the input deck,
this option is ignored.) An example of a module map is shown in
Figure 2.

NOMAP
A map is not produced.

8

(..•

RES
An automatic search of the link pack area queue is to be made.
This search is always made after processing the primary input (SYS­
LIN), and before searching the SYSLIB data set.

NORES

CALL

An automatic search of the link pack area queue is not to be made.

An automatic search of the SYSLIB data set is to be made. (If the
SYSLIB DD statement is not used in the input deck, this option is
ignored.)

NOCALL
or NCAL

LET

An automatic search of the SYSLIB data set will not be made.

The loader will try to execute the object program even though a
severity 2 error condition is found. (A severity 2 error condition
is one that could make execution of the loaded program impossible.)

NOLET
The loader will not try to execute the loaded program when a
severity 2 error condition is found.

SIZE=size
specifies the size, in bytes, of dynamic main storage that can be
used by the loader. Normally, this value will be 17K plus the size
of the program to be loaded. (See ·Storage Considerations".)

EP=name
specifies the external name to be assigned as the entry point of
the loaded program,.

PRINT
Diagnostic messages are produced on the SYSPRINT data set.

NOPRINT
Diagnostic messages will not be produced on the SYSPRINT data set.
SYSPRINT will not be opened

Unless otherwise specified with the LOADER macro instruction during
system generation, the default options are: NOMAP, CALL, NOLET, SIZE=
lOOK, PRINT, and RES.

The following are e'!tamples of the EXEC statement. In these examples"
X and Yare parameters required by the loaded program.

//LOAD
//LOAD
//LOAD
//LOAD
//LOAD

EXEC
EXEC
EXEC
EXEC
EXEC

PGM=LOADER
PGM=IEWLDRGO,PARM='MAP,EP=FIRST/X,Y'
PGM=LOADER" PARM:' /X" Y'
PGM=IEWLDRGO,PARM=(MAP,LET)
PGM=LOADER,PARM=NOPRINT

For further details in coding the EXEC statement refer to the publi­
cation IBM System/360 Operating System: Job Control Language.

Planning for Use of the Loader 9

~ ~ OS/360 LOADER 0
'§

OPTIONS USED - PRINT,MAP,NOLET,CALL,NORES,SIZE=424176 t1
(!)

tv NAME TYPE AOOR . NAME TYPE AOOR NAME TYPE AOOR NAME TYPE AOOR NAME TYPE AOOR

~
SAMPL2B SO 161EO SAMPL2BA SO 16EC8 IHEMAIN SO 17CF8 IHENTRY SO 17000 IHESPRT SO 17010
SYSIN SO 17048 IHEVQC * SO 17080 IHEVQCA * LR 17080 IHEVQB * SO 17F08 IHEVQBA * LR 17F08

0.. IHEOIA * SO 183CO IHEOIAA * LR 183CO IHEOIAB * LR 183C2 IHEVPE * SO 18608 IHEVPEA * LR 18608 s= IHEVPA * SO 18870 IHEVPAA * LR 18870 IHEVFC * SO 18900 IHEVFCA * LR 18900 IHEVPC * SO 189F8 (!)
IHEVPCA * LR 189F8 IHEVFE * SO 18BE8 IHEVFEA * LR 18BE8 IHEVSC * SO 18C08 IHEVSCA * LR 18C08

:i: IHEONC * SO 18CB8 IHEONCA * LR 18CB8 IHEOOA * SO 18F30 IHEOOAA * LR 18F30 IHEOOAB * LR 18F32 1\1
"d IHEOMA * SO 19010 IHEOMAA * LR 19010 IHEVFO * SO 19108 IHEVFOA * LR 19108 IHEVFA * SO 19160

~ IHEVFAA * LR 19160 IHEVPB * SO 19248 IHEVPBA * LR 19248 IHEXIS * SO 193FO IHEXISO* LR 193FO
IHEIOB * SO 19488 IHEIOBA * LR 19488 IHEIOBB * LR 19490 IHEIOBC * LR 19498 IHEIOBO iJ< LR 194AO

i IHESARC * LR 1A9C8 IHESAOO * LR 1A90E IHESAFF * LR 1AA18 IHEPRT * SO 1AB70 IHEPRTA * LR 1AB70
rt IHEBEGA * LR 1AE28 IHEERR * SO 1AE68 IHEERRO * LR 1AE68 IHEERRC * LR 1AE72 IHEERRB * LR 1AE7C

tzj
IHEERRA * LR 1AE86 IHEERRE * LR 1B4E2 IHEIOF * SO 1B580 IHEIOFB * LR 1 B580 IHEIOFA * LR 1B582

>< IHEITAZ * LR 1B81E IHEITAX * LR 1B8.2A IHEITAA * LR 1B83E IHEOCN * SO 1B860 IHEOCNA· * LR 1B860
1\1 IHEOCNB * LR 1B862 IHEIOO * SO 1BA50 IHEIOOG * LR 1BA50 IHEIOOP * LR 1BA52 IHEIOOT * LR 1BB4A
~ IHEVTB * SO 1BCFO IHEVTBA * LR 1BCFO IHEVQA * SO 1B078 IHEVQAA * LR 1B078
(!)

IHEQINV PR 00 IHEQERR PR 4 SAMPL2BB PR 8 SAMPL2BC PR C IHEQSPR PR 10
SYSIN PR 14 IHEQLSA PR 18 IHEQLWO PR 1C IHEQLW1 PR 20 IHEQLW2 PR 24
IHEQLW3 PR 28 IHEQLW4 PR 2C IHEQLWE PR 30 IHEQLCA PR 34 IHEQVOA PR 38
IHEQFVO PR 3C IHEQCFL PR 40 IHEQFOP PR 48 IHEQAOC PR 4C IHEQXLV PR 50
IHEQEVT PR 58 IHEQSLA PR 60 IHEQSAR PR 64 IHEQLWF PR 68 IHEQRTC PR 6C
IHEQSFC PR 70

IEW1001 IHEUPBA
IEW1001 IHEUPAA
IEW1001 IHETERA
IEW1001 IHEM91C
IEW1001 IHEM91B
IEW1001 IHEM91A
IEW1001 IHEOOOO
IEW1001 IHEVPFA
IEW1001 IHEVPOA
IEW1001 IHEOBNA
IEW1001 IHEVSFA
IEW1001 IHEVSBA
IEW1001 IHEVCAA
IEW1001 IHEVSAA
IEW1001 IHEONBA
IEW1001 IHEUPBB
IEW1001 IHEUPAB
IEW1001 IHEVSEB

TOTAL LENGTH 5068
ENTRY ADDRESS 170QO ,... f ", ~

\

"'- i

DD STATEMENTS

The loader uses three DD statements named SYSLIN, SYSLIB, and SYSPRINT.
(These ddnames can be changed during system generation with the LOADER
macro instruction.) The SYSLIN DD statement must be used in every load­
er job. The other two are optional. The data sets defined by the SYS­
LIN DD statements can be either sequential data sets or members of a
partitioned data set. The data set defined by the SYSLIB DD statement
must be a partitioned data set. The data set defined by the SYSPRINT DD
statement must be a sequential data set. concatenation may be used to
include multiple input data sets in SYSLIN and SYSLIB. For better per­
formance, the user can specify the number of buffers and the block rec­
ord size forSYSLIN, SYSLIB, and SYSPRINT. In any case, a minimum of
two buffers are allocated to each data set. Chained scheduling can be
used for data sets with fixed record format.

The SYSLIN data set contains the input to the loader. This input can
be either object modules produced by a language translator, or load
modules produced by the linkage editor, or both. If concatenated data
sets are used, the DD statement for the data set with the largest block­
size should appear first in the sequence for more efficient utilization
of main storage.

The SYSLIB data set contains IBM or user-written library routines to
be included in the loaded program. The SYSLIB data set is searched when
unresolved references remain after processing SYSLIN and optionally
searching the link pack area. The library may contain either object
modules or load modules, but not both.

The SYSPRINT data set is used for error and warning messages and for
an optional map of external references. The record format of SYSPRINT
must be FA, FBA, or FBSA.

In addition to the DD statements used by the loader, any DD state­
ments and data required by the loaded program must be included in the
input deck.

LOADED PROGRAM DATA

Loaded program data and loader data can both be specified in the input
reader. In MFT and MVT, loaded program data can be defined by a DD
statement following the loader data. In PCP, both loader data and
loaded program data must be defined by the same DD statement. As shown
in Figure 3, this is accomplished by using the AFF subparameter of the
UNIT parameter in the DD statement that defines input data for the
loaded program.

Planning for Use of the Loader 11

.---,
I//LOAD JOB MSGLEVEL=l
I//LDR EXEC PGM=LOADER,PARM=MAP
I//SYSLIB DD DSNAME=SYS1.FORTLIB,DISP=SHR
I//SYSPRINT DD SYSOUT=A
I//SYSLIN DD DDNAME=SYSIN
1//FT06FOOl DD SYSOUT=A
1//FT05FOOl DD UNIT=AFF=SYSLIN,DCB=CLRECL=80,RECFM=F)
I//SYSIN DD *
! :~Loader input data

1/* ! : ~ Loaded program data

1/* L __________________ ~ ______________________________ _J

Figure 3. Loader and Loaded Program Data in PCP Input stream

SAMPLE INPUT FOR THE LOADER

Figure 4 shows an input deck for a load job. A previously assembled
program, MAIN, is to be loaded. The SYSPRINT and SYSLIB DD statements
are not used •

.-----.,--,
1/ /LOAD JOB MSGLEVEL=l 1
1// EXEC PGM=LOADER' 1
I//SYSLIN DD DSNAME=MAIN,DISP=OLD 1
1 1
1 DD statements and data required for execution of MAIN 1
1 1
1/* 1 L ___ J

Figure 4. Input Deck for a Load Job

Figure 5 shows an input deck for a compile-load job. The FORTRAN E
CIEJFAAAO) compiler is used for the compile step.

12

(

r--,
I//JOB JOB 22,MCS,MSGLEVEL=1
I//FORT EXEC PGM=IEJFAAAO,PARM='MAP,LIST',REGION=52K,RD=R
I//SYSPRINT DD SYSOUT=A
I//SYSPUNCH DD UNIT=SYSCP
1//SYSUT1 DD UNIT=SYSSQ,SPACE=(TRK,(30,10»
1/ /SYSUT2 DD UNIT=SYSSQ, SPACE= (TRK, (30,10»
//SYSLIN DD DSNAME=tLOADSET,DISP=(MOD,PASS), X
// UNIT=SYSSQ,SPACE=(TRK,(30,10»
//SYSIN DD *

/*
//LOAD
//SYSLIN
//SYSPRINT
//SYSLIB
//FT02F001
//FT03F001
//FT01F001
//SYSIN

:}source program

EXEC
DD
DD
DD
DD
DD
DD
DD

PGM=LOADER,PARM='MAP,LET',COND=(5,LT,FORT)
DSNAME=*.FORT.SYSLIN,DISP=(OLD,DELETE)
SYSOUT=A
DSNAME=SYS1.FORTLIB,DISP=SHR
SYSOUT=B
SYSOUT=A
DDNAME=SYSIN

*
:}Data for Loaded Program

1
1/* 1 L __ J

Figure 5. Input Deck for a Compi1e-Load Job

INVOKING THE LOADER

The 10ader can be referred to by either its program name, IEWLDRGO, or
its a1ias, LOADER. The 10ader can be invoked through the EXEC state­
ment, as described in "Input for the Loader," or through the LOP~,
ATTACH, LINK, or XCTL macro instruction. Figure 6 shows the basic for­
mat for the macro instruction.

r--------r---------T---,
I Name I Operation I Operand I
~--------t---------t---~
I [symbo11 I ~LINK I I EP=1oadername 1
I I I ATTACH \ I PARAM= (option1 ist [, ddname list]) 1
I I IVL=l I
I ~---------t------------------------------------~-------------~
I I~LOADI I EP=loadername I
, I IXCTL \ I I L ________ ~ _________ ~ ___ J

Figure 6. Macro Instruction Basic Format

If desired, the user may invoke the loader to process a program but
not execute it. This can be accomplished by referring to the name IEW­
LOADR with a LOAD and CALL macro instruction. (IEWLOADR is the portion
of the 10ader that processes the 10ader input data.) The entry point of
the loaded program is returned in register O. Register 1 points to two
fu11 words: the first points to the beginning of storage occupied by
the loaded program; the second contains the size of the loaded program.
This location and size can then be used in a FREEMAIN macro instruction
to free the storage occupied by the loaded program when it is no longer
needed.

For further information on the use of these macro instructions, refer
to the publication IBM System/360 Operating System: supervisor and Data
Management Services, Form C28-6646.

Planning for Use of the Loader 13

C28-6702-0

International Business Machines Corporation
Data Processing Division
112 East Post Road, White Plains, N.Y. 10601
[USA Only]

IBM World Trade Corporation
821 United Nations Plaza, New York, New York 10017
[International]

()

•

READER'S COMMENT FORM

IBM System/360 Operating System
Planning Guide for the Loader

• Is the material:
Easy to read?
Well organized? ',
Complete? .. .
Well illustrated?
Accurate?
Suitable for its intended audience? .

• How did you use this publication?
o As an introduction to the subject Other
o For additional knowledge

• Please check the items that describe your position:

Yes
o
o
o
o
o
o

Form C28-6702-0

No
o
o
o
o
o
o

o Customer personnel 0 Operator o Sales Representative
o IBM personnel 0 Programmer
o Manager 0 Customer Engineer
o Systems Analyst D Instructor

o Systems Engineer
o Trainee
Other.

• Please check specinc criticism (s), give page number (s), and explain below:
o Clarincation on page (s) 0 Deletion on page (s) .
o Addition on page (s) 0 Error on page (s)

Explanation:

• Thank you for your cooperation. No postage necessary if mailed in the U.S.A.

C28-6702-0

YOUR COMMENTS PLEASE . . .

This publication is one of a series which serves as reference for systems analysts, program­
mers and operators of IBM systems. Your answers to the questions on the back of this
form, together with your comments, will help us produce better publications for your use.
Each reply will be carefully reviewed by the persons responsible for writing and publish­
ing this material. All comments and suggestions become the property of IBM.

Please note: Requests for copies of publications and for assistance in utilizing your IBM
system should be directed to your IBM representative or to the IBM sales office serving
your locality.

Fold Fold
.. :

BUSINESS REPLY MAIL
NO POSTAGE STAMP NECESSARY IF MAILED IN U. S. A.

Attention: Progromming Systems Publications
Department D5B

Fold

"

POSTAGE WILL BE PAID BY

IBM Corporation

P.O. Box 390

Poughkeepsie, N.Y. 12602

International Business Machines Corporation
Data Processing Division
112 East Post Road, White Plains, N.Y.I06Dl
[USAOnlyj

IBM World Trade Corporation
821 United Nations Plaza, New York, New York 10017
[International j

FIRST CLASS
PERMIT NO. 81

POUGHKEEPSIE, N.Y.

Fold

. . -

..

J
l

n
!l:l
!h s
I o

o

