
Systems Reference Library

IBM System/36D Operating System

System Programmer's Guide

This publication consists of self-contained
chapters, each of which provides information on
how to modify, extend, or implement capabilities
of the IBM System/360 Operating System control
program,. It is designed primarily for system
programmers responsible for maintaining,
updating, and extending the operating system
features.

Topics:

Catalog and VTOC Maintenance
Adding SVC Routines
Adding Accounting Routines
IECDSECT, IEFJFCBN, and IEFUCBOB Macro

Instructions
The Must Complete Function of ENQ/DEQ
The EXCP Macro Instruction
The XDAP Macro Instruction
The Tracing Routine
Implementing Data Set Protection
PRESRES Volume Characteristic List
Residency Options and Link Pack Area
MVT Job Queue Formatting
System Macro Instructions
Adding System Output writer Routines
Output separators
System Reader, Initiator, and writer

Cataloged Procedures
Writing Rollout/Rollin Installation

Appendages
Adding a Universal Character Set Image to the

system Library
The Shared Direct Access Device Option
The Time Slicing Facility
Graphic Job Processor Procedures
Satellite Graphic Job Processor Procedures

File No,. S360-20
Form C28-65S0-S OS

Preface

This publication consists of
self-contained chapters, each of which
provides information on how to modify,
extend, or implement capabilities of the
IBM System/360 Operating System control
program. Although the'information in one
chapter is sometimes related to information
in another" all chapters have been written
as separate and complete units. It is
assumed that users of this publication are
thoroughly familiar with the design of ~he
operating system and its features. Each
chapter contains its own introductory
section and list of prerequisite
publications. This organization has been

,used to reduce cross-referencing and to
facilitate the addition of new chapters.

sixth Edition (Novembe~ 1968)

This is a major revision of, and obsoletes, C28-6550-4.
Descriptions of control volume pointer entries, the EXCP
macro instruction, link pack area uses, the DEVTYPE macro
instruction, standard list IEARSVOO, and SYS1.Accr
specifications have been changed. Descriptions of
checkpoint/restart, user-written I/O appendages, the blocked
procedure library, automatic SYSIN batching, the STAE and
PURGE macro instructions, and the Satellite Graphic Job
Processor have been added. Changes to the text are indicated
by a bar (I> to the left of the change; changed illustrations
are indicated by the symbol • to the left of the caption.

This edition applies to release 17 of IBM system/360
Operating System, and to all subsequent releases until
otherwise indicated in new editions or Technical Newsletters.
Changes are continually made to the specifications herein;
before using this publication in connection with the
operation of IBM systems, consult the latest SRL newsletter,
Form N20-0360, for the editions that are current and
applicable.

Requests for copies of IBH publications should be made to
your IBM representative or to the branch office serving your
locality.

A form is provided at the back of this publication for
readerws comments. If the form has been removed, comments
may be addressed to IBM corporation, Programming Systems
Publications, Department 058, PO Box 390, Poughkeepsie,
N. Y. 12602

© Copyright International Business Machines Corporation 1966, 1967, 1968

Contents

MAINTAINING THE CATALOG AND THE VOLUME TABLE OF CONTENTS • • • • 9
• 10 Maintaining the Catalog and the Volume Table of Contents

How to Read a Block From the Catalog • • • • •
Specifying the Name of an Index Level or Data Set •
Specifying the Name of a Generation Data Set
Specifying a Name Using an Alias • • • •
Specifying by TTR • • • • • • •

How to Build an Index • • • • • •
How to Build a Generation Index •
How to Delete an Index
How to Assign an Alias • • • • •
How to Delete an Alias •••••
How to Con~ect Control Volumes • • • •
How to Disconnect Control Volumes
How to Catalog a Data Set '. • • •
How to Remove Data Set References From the Catalog
How to Recatalog a Data Set • • • • • •• • • • •

• • • • • 10
• • • • • 10

11
• • • • • 12

• 12
• • • • • 13
• • • • • 14

• 14
• 15
• 15
• 15

• • • • • • 16
• • • • • 11

• • • • • 11
• • 18

How to Read a Data set Control Block From the Volume Table of
Con ten ts • • • • '. • • • • • • 19
How to Delete a Data Set •••• • • • • • 19
How to Rename a Data Set •• • • • • • • • • • • • 21

• 25 Appendix A: Catalog Block Entries
Control Entries • • • • • • • • • • • • • • • 25
Pointer Entries • • • • • • • • •• • • • • • • • • • • 26
The Volume Control Block Contents • • • • • • • • • • • 28

Appendix B: Device Code Designations •• • 29

ADDiNG SVC ROUTINES TO THE CONTROL PROGRAM • • • • • • • • • • • 31
Writing SVC ·Routines •• • • • • • • • • • • • • • • • • • •

Characteristics of SVC Routines • • •• •
• • 32
• • 32

• 32 Programming Conventions for SVC Routines
Inserting SVC Routines Into the Control Program

Specifying SVC Routines • •• '.......
• • • 31

• 31
Inserting SVC Routines During the System Generation Process • 37

HANDLING ACCOUNTING INFORMATION
Accounting Routines • • • • • • • • • • •
Prerequisite Actions • • '. • •
Accounting Routine Conventions

Format • • • • • • • • • • •
Attributes ••••••••••
CSECT Name and Entry Point
Register Saving and Restoring •
Entrances • • • • • • • • •
E~it •• • • • • • • • • • •

Input Available to Accounting Routines
Output From the Accounting Routine
Sample Accounting Routine •• • • • • • • • • •
Inserting an Accounting Routine Into the Control Program

Insertion at System Generation • • • •
Insertion After System Generation •

Appendix: Accounting Data Set Writer
Linkage • .• • • • • • • • • •
Input '. • • '. . '. • . . . '. .
Specifying the SYSl.ACCT Data Set .
Outp.ut • • • • •• • • • • •
Use of ENQ/DEQ • •• •
Specifying the Device on Which SYS1.ACCT Resides

• • 39
• • 40

• .• • • • • • 40
• • • '. .• • • 40

• 40
• • 40

• 40
• 40
• 41
• 41
• 41

• • • • • • • 43
• 43

• • • • • • 44
• • 44

'. • • • • 44
• 46

• • • • • • 46
• • • • • • • 46

• • • • 46
• 41

• • 41
• 41

IECDSECT.1 IEFJFCBN, AND IEFUCBOB MACRO INSTRUCTIONS
IECDSECT Macro Instruction

Control Statements Required •
IECDSECT Macro-Definition •

IEFUCBOB Macro Instruction
Control Statements Required •
IEFUCBOB Macro-Definition •

IEFJFCBN Macro Instruction
Control Statements Required
IEFJFCBN Macro~Definition •

THE MUST COMPLETE FUNCTION
The Must Complete Function

Scope • • • • • • • • •
Requesting the Must Complete Function •
Operating Characteristics •• • • • •
Programming Notes. • • .• • • • • • •
Terminating the Must Complete Function

• • 49
• • • • • • 50
· • . • • • 50

• • 50
55

• • • • • • 55
· 55
• • • • . 57

• • • • • 57
• 57

• 61
• • • • • 62
• • • • • 62
• • • • • 62

• • 63
• 63

64

EXECUTE CHANNEL PROGRAM (EXCP) MACRO INSTRUCTION • • • • • 65
Execute Channel Program (EXCP) Macro Instruction • • • • • 66
Use of EXCP in System and Problem Programs • • • • • • • • • 66

System Use of EXCP • • • • • • • • • • • • • • • • 66
Programmer. Use of EXCP • • • • •

EXCP Requirements • .• • • •
Channel Program • • • • •

Data and Command Chaining •
Control Blocks •• • • • • •

Input/Output Block (lOB)
Event Control Block (ECB)
Data Control Block (DCB) ••••••••
Data Extent Block (DEB) •

Channel Program Execution • •
Initiation of Channel Program •
Completio~ of Channel Program •

Device End Errors • • • • •

• 67
• 67

• • • • • • 67
• • • • • • • • • • • • 68

• • • • • 68
• • • • • • • 68

• • • • • • ·68
• • 68

• • • • • 68
• • • • • • • • • 69

• • 69
• • 70

• 70
Interruption Handling and Error Recovery Procedures •

Error Recovery Procedures for Related Channel Programs
• • 70

• 71
Appendages •• • • • • • • • • •

Defining Appendages • • • • • •
Entering Appendages Into SVC Library
Characteristics of Appendages • • • • •

Start Input/Output (SIO) Appendage

• • 71
• 71

· . • 71
• 72

Program Controlled Interruption (PCI) Appendage • •
End-of-Extent Appendage • •

• • 74
• 74

• • • • • 74
Channel End Appendage • • • • • • • •
Abnormal End Appendage

EXCP Programming Specifications •
Macro Instructions • • • • •

DCB -- Def.ine Data Control Block for EXCP .•
OPEN -- Initialize Data Control Block.
EXCP -- Execute Channel Program • •
EOV -- End of Volume • • • •
CLOSE -- Restore Data Control Block

Control Block Fields •• • •
Input/Output Block Fields • •
Event Control Block Fields
Data Extent Block Fields ••••

App.endix: Restore and Purge Macro Instruction
RESTORE Macro Instruction • • • • • • • •
Control Statements Required •••••
RESTORE Macro-Definition • • • • •
PURGE Macro Instruction •• •
PURGE Macro Definition
Control Statements Required

75
• • • • • • • • • 75

• 77
• • • • • 77
• • • • • 77

• • • • • • • • • 84
• • 84

• 85
• • 86
• • 86

• 86
• 88

• • 89
• • • • • • • 90
• • • • • • • 90
• • • . . 90

• 90
• • 91
• • 91

· • • . . 91

EXECUTE DIRECT ACCESS PROGRAM (XDAP) MACRO-INSTRUCTION
Execute Direct Access Program (XDAP) Macro Instruction
Requirements for Execution of Direct-Access Program
XDAP Programming Specifications. • • • ••

Macro Instructions • • • • • • • • • • • • • • •
DCB -- D.efine Data Control Block
OPEN -- Initialize Data Control Block •• •••
XDAP -- Execute Direct-Access Program
EOV -- End of Volume. • • •
CLOSE -- Restore Data Control Block

The XDAP Control Block
Event Control Block (ECB) • • •
Inp.ut/Output Block (lOB)
Direct-Access Channel Program •

• • • • 95
• • • • • 96

• • 96
97

• • • • • • • 97
97
97

• • • • • 97
• • 98

• • • 98
• 99

99
• • • .100

• .100
• •••• 100 XDAP Opti ons • • • • •.• • • • • •

Conversion of Rela.tive Track Address to Actual Address •••••• 100
Appendages •• • • • • • • • • • • • •
L- and E- Forms of XDAP Macro Instruction

Appendix: CVT Macro Instruction
Format of the CVT Macro Instruction •
control Statements Required • • • • •

HOW TO USE THE TRACING ROUTINE • • • •
How to Use the Tracing Routine ••• • • • •

Table En.try Formats. •• • • • • • •
Location of the Table • • • •

IMPLEMENTING DATA SET PROTECTION
Implementing Data Set Protection

• • • • .101
.101

•••••• 102
• •••• 102
• •••• 102

• .103
• .104

.104
• •••• 105

• .107
• • • • • • .108

Password Data Set Characteristics and Record Format • • .108
Protecting the Password Data set • • • • •
Creating Protected Data Sets • • • •
Protection F.eature Operating Characteristics

Termination of Processing • • • • •
Volume switching • • • • • • •
Data Set Concatenation •• • •
SCRATCH and RENAME Functions
Counter Maintenance • • • • • •

THE PRESRES VOLUME CHARACTERISTICS LIST •
The PRESRES Volume Characteristics List •

Creating the List • • • • •
PRESRES Entry Format
Operational Characteristics
Programming Considerations ••••

• •••• 109
• .109
• .110

.110

.110
•••••• 110

• •••• 111
• .111

.113
• • • • .114
• •••• 114

.114
• •••• 115

• .116

USING THE RESIDENT BLDL TABLE, ACCESS ~mTHOD, SVC ROUTINE, AND JOB
QUEUE OPTIONS, THE LINK PACK AREA, AND THE LINK LIBRARY LIST .117

section 1: The Resident BLDL Table, Resident Access t-'lethod.I

Resident SVC Routine. and Resident Job Queue Options (PCP and MFT) .118
• .119 The Resident BLDL Table Option • • • • •

Selecting Entries for the Resident BLDL Table • • • • • • • .119
Table Size • • • • • • • • • • • • • ,. • • • • • .119
Frequency of Use • • • _ • • • • • • • • •••• 119

The Resident Access Method Option • • • • • • • • • .120
Considerations for Use • • • • • .120

The Resident SVC Routine Option •
Storage Requirements ••• • • • • • • • •

The Resident'Job Queue Option (PCP only)
Operational Characteristics • • • • • • • •
Determining Resident Job Queue Size • • • • • •

Creating Parameter Library Lists • • • •
Example • • • • • • • • • • .• • • • •

• •••• 120
• • • • • • • • .121

• .121
• • • • • • .121

• .121
.122

• •••• 123

section 2: Using the Link Pack Area (MVT) •••••••• • .124
Procedure for Using the Link Pack Area

Initialization • • • • • • • • • •
Creatin~ Parameter Library Lists •••••
List Specification • • • •
Operational Characteristics • • • •

Pro gramming Notes • • • • • • • • • • • • • •
E~ample of: Link Pack Area specification • •

Section 3: The Link Library List • • • • ••

• .124
• .124

• ••••• 124
• .125

• •••• 126
• •••• 126

• .127

Appendix: Standard Lists IEAIGGOO, IEARSVOO, IEABLDOO • ,. • •
• .129

.130

MVT AND MFT JOB QUEUE FORMATTING • • • • .133
MVT Job Queue Formatting • • • • • • • • .134

Logical Track Size -- JOBQFMT • • • • • • .135
Reserving Initiator Queue Records -- JOBQLMT .'. .135

Number of Generation Data Groups ••••• 135
Number of Passed Data Sets • • • • • • • • • • • • • .136
Number of I/O Devices For Passed Data sets • • • • .136
Number of Volumes. • • • • • • • • • • •••••••• 136
Number of System Messages • •• • • • • • • • • .136

Reserving Queue Records for Cancellation -- JOBQTMT •••••••• 137
Number of Devices • • • • • • • • • • • • • • •••• 137
Number of Jobs •••••• 137

SYSTEM MACRO INSTRUCTIONS • • • • •
Locate Dev1ce Characteristics (DEVTYPE) Macro Instruction •

Device Characteristics In'formation
Output for Each Device Type • • • •
Graphics Devices • • • • • • • • • • • • • • • •
Exceptional Returns • • • • • • • • • • • •

How to Read a Job File Control Block • • • • • •••

• .139
• .140

.140
• .142

.143
• •••• 144

.145

.145

.146
OPEN -- Prepare the Data Control Block for Processing (S>
RDJFCB -- Read a Job File Control Block (5) • • • • • •

CIRB -- CreateIRB for Asynchronous Exit Processing • • •••• 148
SYNCH -- Synchronous Exits to Processing Program .149

SYNCH Macro Definition
STAE -- Specify Task Asynchronous Exit

WRITING SYSTEM OUTPUT WRITER ROUTINES •
Writing System Output writer Routines • • •• •
Output writer Functions • • • • • • • •

Conventions to be Followed • • • •
Gen_eral Processing Performed by Standard Output
Appendix: Control Character Transformations

Card Punch unit ••• • • • • •
Prin:ter unit. • • • • • '. • • • .. iii • •

• .149
• •••• 150

• .153
.154

• .154
• .154

writer • .156
• •••• 160

.160
• •••• 160

THE OUTPUT SEPARATOR FUNCTION OF THE SYSTEM OUTPUT WRITER •
The output Separator Function of the System Output writer •
Using an Output Separator • • • • • • • • • •

• .163
.164
.164
.164 Functions of the IBM Output Separator •

Punch-Destined Output • • • • • • •
Printer~Destined Output • • • • • •

Creating an Output Separator Program • • • •
Parameter List • • • • • • • • • •
Programming Considerations ••••
output From the separator Program •
Using the Block Character Routine • • • • •

Output separators -- PCP • • • • • • •
Modifying or Adding Output Separators •

• •• 164
• 165

....... 165
• • • • • .165
• • • • • • • • .166
• • • • • .167

• • • • .167
• •••• 168

• •••••••• 168

SYSTEM READER, INITIATOR AND WRITER CATALOGED PROCEDURES .169
Reader/Interpreter, Initiator and Output writer cataloged Procedures 170
Reader/Interp~eter Procedures • • • • • .170

IBM-Supplied Procedures •• •• • • • • • • • • • • • • • • • .171

Procedure Requirements ••••••
The EXEC statement • • • • • • • • • • •
DD statement for the Input Stream
DD Statement for the Procedure Library • • • •
DD statement for the CPP Data Set. .

Initiator Procedures
IBM-Supplied Procedure

.172

.172
• .174

• • • •• • .175
• •••• 175
• •••• 177
• •••• 177

• 177 Procedure Requirements ••••
The EXEC Statement • • • • • • • • • .177
DD Statements • ••• •

Additional Initiator Facilities •
Mounting Control Volumes in MVT •
Initiator Action • • • •
DD Statement Formats •••• • • • .

Output writer Procedures
IBM-Supplied Procedure
Procedure Requirements

The EXEC Statement
DD Statement for the OUTPUT Data Set

cataloging the Procedure
Automatic SYSIN Batching (ASB)
SYSIN and SYSOUT Data Blocking
Blocking the Procedure Library

WRITING ROLLDUT/ROLLIN INSTALLATION APPENDAGES
Writing Rollout/Rollin Installation Appendages
Linkage to User Appendages

Appendage I: IEAQAPGl ••
Appendage II: IEAQAPG2
Appendage III: IEAQAPG3 •
Appendage IV: IEAQAPG4 • • • • • • • •
Sample Coding of Appendages •
General Flow of Rollout processing •• • •

• .178
• ••••• 178

.178
• • • • • • • • • • .178

.178

.179
• .179
• .180
• .180

.181

.182
• .184
• .188

.190

• .191
• ••••• 192

• •••• 192
• .193

• ••••• 193
• .193
• .194
• .194

.194

ADDING A UNIVERSAL CHARACTER SET IMAGE TO THE SYSTEM LIBRARY .197
How to Add a UCS Image to the System Library • • • • • • .198

THE SHARED DIRECT ACCESS DEVICE OPTION • •••••• 201
• ••••• 202

• • • • • .202
The Shared DASD Option
System Configuration • • • •
Devices That Can Be Shared
Volume/Device Status • • • •
Volume Handling • • • • • • •

• • • • •• • • • .202
• .204
• .204

Sharing Application Data Sets • ••••• 204
Reserving Devices •• • •••••• 205
Releasing Devices • • • • .207
Preventing Interlocks • •••• 207
Volume Assignment • • • .207

Appendix • • '. • • • • • • • • • • • • • • • •
Providing the Unit Control Block Address to RESERVE
RES and DEQ Subroutines •

• .208
.208

• •••••• 210

THE TIME SLICING FACILITY • • • • •
The Time Slicing Facility • • • • •

System Configuration and System Relationships
Prerequisite Actions •• • • • • • • • • •

System Initialization Time • • • • •
How to Invoke the Time Slicing Facility

• •••••• 213
• • • • • • • .214

• •••• 214
• • • • • • • • .214

.215
• • • • • .215

Time Slicing's Effect on the ATTACH and CHAP Macro Instructions •• 216
.216 Using the Time Slice Facility • • • • • •

Operating Characteristics • • • • • • •
Effect of System Tasks on Time-Slice Groups _

GRAPHIC JOB PROCESSOR PROCEDURES • • • • • •
Initialization of the' operating System for GJP

• •••• 217
• .217

••• 219
• .220

Cataloging GFX and GJP Procedures •• • • • • • • • • • • • • . •
Cataloging and Allocating Space for Data'Sets Used by GJP ••••

Writing Cataloged Procedures to be Invoked Through the Graphic Job

.220
• 222

Processor. •• • .223
Pr.eparation of User-written Accounting Routines • • • • • • • .224
Butfer Storage Considerations for 2250 Display Unit, Model 3 •• 226

SATELLITE GRAPHIC JOB PROCESSOR PROCEDURES •••••• • • • • .229
Writing Cataloged Procedures to be Invoked Through SGJP .230

preparation of User-Written Accounting Routines • • • • .231
Initialization Requirements for the System/360 Operating System ••• 233
The GFX Procedure. • • •••••••• 234
The SGJP Procedures. •• • • • • • • • • • .234
The GJP ~rocedures ••• • • • • • • • • • .235

Cataloging the Procedures. • .237
cataloging and Allocating Space for Data Sets Used by SGJP .237

INDEX • • '. • • • • • • • • •• 239

Illustrations

Figures

Figure 1. Data Control Block Format for EXCP (After OPEN) • 79
Figure 2. Input/Output Block Format • • • • • • • • • 87
Figure 3. Event Control Block After Posting of Completion Code
Figure 4. Event Control Block After Posting of completion Code

• • 89

Figure 5. The XDAP Channel Programs • • • • • • • • •
Figure 6. General Logic of Standard output Writer • • • •
Figure 7. Symbolic Representation of Record Formats ••••
Figure 80 Data Blocking Accepted by Processors under MVT and tvlFl'
Figure 9. General Flow of Rollout/Rollin Processing • • • •
Figure 10. General Shared DASD Environment •••••••••• •
Figure 11. Statements in the GFX Cataloged Procedure
Figure 12. Statements in the SGJP Cataloged Procedures
Figure 13. Statements in the Cataloged Procedure Used for Each
Telecommunications Line Used With SGJP • • • • • • • • • • • •

Tables

99
• 100
.157
• 161
.189
.195
• 203
.234
.235

.236

Table 1. Programming Conventions for SVC Routines ••• • • • • • • 33

Maintaining the Catalog and the

Volume Table of Contents

This chapter provides detailed information
on how to maintain and modify the catalog
and volume table of contents.

Before reading this chapter, you should
be familiar with the information contained
in the prerequisite publications listed
below.

Documentation of the internal logic of
the routines used to maintain and modify
the catalog and volume table of contents
can be obtained through your IBM Branch
Office.

PREREQUISITE PUBLICArIONS

The !~~stem/360 operating System:
Assembler Langua~ publication (Form
C28-6514) contains the information
necessary to code programs in the assembler
language.

The IBM System/360 operating System:
supervisor and Data Management Services
publication (Form C28-6646) contains a
general description of the structure of
catalog indexes, as well as a brief
discussion of the volume table of contents
(VTOC) •

The IB~stem/360 Operating System:
System Control Blocks publication (Form
C28-6628) contains format and field
descriptions of the system control blocks
referred to in this chapter.

RECOMMENDED PUBLICATIONS

The IBM System/360 Operating System:
Utilities publication (Form C28-6586)
describes how to maintain and modify the
catalog and the volume table of contents
through the use of utility programs.

Maintaining the Catalog and the Volume Table of Contents 9

Maintaining the Catalog and the Volume Table of Contents

This chapter describes how to maintain and modify the catalog and the
volume table of contents through the use of macro instructions. Most of
the maintenance and modification functions can also be performed using
utility statements. The utility statements are described in the
publication IBM Systeml360 Operating System: utilities.

The functions you can perform using the macro instructions are
described in text. and the formats of the macro instructions are
tabulated on a fold-out sheet at the back of this chapter. The chart on
the fold-out sheet associates the function described in text with the
macro instructions needed to perform the function. You .should keep the
fold-out sheet open when reading the text.

The functions that are described in text are as follows:

• How to read a block from the catalog.
• How to build an index.
• How to build a generation index.
• How to delete an index.
• How to assign an alias.
• How to delete an alias.
• How to conn.ect control volumes.
• How to disconnect control volumes.
• How to catalog a data set.
• How to remove data set references from the catalog.
• How to recatalog a data set.
• How to read a data set control block from the volume table of

contents.
• How to delete a data set.
• How to rename a data set.

Accompanying the function descriptions in text are coding examples
and programming notes; exceptional-return condition codes for the macro
instructions are tabulated on the back of the fold-out sheet.

HOW TO READ A BLOCK FROM THE CATALOG

To read either an index block or a block indicating the volumes on which
a data set is stored (volume-list block). you use the LOCATE and CAMLST
macro instructions. There are two ways to specify the block that you
want read into main storage: by using the name of the index level or
data set, or by using the blnck's location relative to the beginning of
the catalog (TTR).

Specifying the Name of an Index Level or Data Set

If you specify an index level name. the first block of the named 1ndex
is read into main storage. and an exceptional return code is set. IndeK
block formats are contained in Appendix A of this chapter.

If you specify a data set name, a 256-byte volume-list block is read
i~to main storage. The block contains up to 20 volume pointers, each of
which points to a volume on which part of the data set is stored. The
first two bytes of the block contain the number of volume pointers for
the data set. Each volume pointer is a 12-byte field that contains a
4-byte device code, a 6-byte volume serial number, and a 2-byte data set
sequence number. (Device codes are contained in Appendix B of this
chapter.)

10 OS System Programmer's Guide (Release 17)

If the named data set is stored on more than 20 volumes, bytes
253-255 of the block contain the relative track address of the next
block of volume pointers. Byte 255 contains a binary zero.

Example: In the following example l the list of volumes that contain
data set A.B is read into main storage. The search for the volume-list
block starts on the system residence volume.

r---------T----------T---,
I Name I Operation I Operand I
~---------+----------+---~
I I LOCATE I INDAB READ VOLUME-LIST BLOCK FOR I
I I Check Exceptional Returns CATALOGED DATA SET A.B INTOI
I INDAB I CAMLST I NAME,ABI,LOCAREA MAIN STORAGE AREA NAMED I
I AB I DC I CL44'A.B' LOCAREA. LOCAREA ALSO I
I LOCAREA I DS I OD CONTAINS 3-BYTE TTR AND I
I I DS I 265C 6-BYTE SERIAL NUMBER I L _________ ~ __________ ~ ___ J

The LOCATE macro instruction points to the CAMLST macro instruction.
NAME, the first operand of CAMLSTI specifies that the system is to
search the catalog for a volume-list block by using the name of a data
set. ABI the second operand, specifies the main storage location of a
44-byte area into which you have placed the fully qualified name of a
data set. LOCAREA1 the fourth operandI specifies a 265-byte area you
have reserved in main storage.

After execution of these macro instructions I the 265-byte area
contains: the 256-byte volume-list block for data set A.B I the 3-byte
relative track address (TTR) of the block following the one read into
main storage l and the 6-byte serial number of the volume on which the
block was found.

If a code of 4 is returned in register 15 indicating that the
required control volume was not mounted, bytes 260-265 of the work area
will contain the volume serial number of this required volume. If
LOCATE finds an old CVOL pointer entry, and the CVOL is not mounted,
binary zeros will be returned in bytes 253-256 of the work area.
However., if a new CVOL pointer entry is found, the four-byte device coje
of the CVOL will be returned in those bytes.

Specifying the Name of a Generation Data Set

You specify the name of a generation data set by using the fully
qualified generation index name and the relative generation number of
the data set. The value of a relative generation number reflects the
position of a data set in a generation data group. The following values
can be used:

• Zero - specifies the latest data set cataloged in a generation data
group.

• Negative number - specifies a data set cataloged before the latest
data set.

• Positive number - specifies a data set not yet cataloged in the
generation data group.

When you use zero or a negative number as the relative generation
number, a volume-list block is read into main storage and the relative
generation number is replaced by the absolute generation name.

Maintaining the Catalog and the Volume Table of contents 11

When you use a positive number as the relative generation number. an
absolute generation name is created and replaces the relative generation
number. A volume-list block is not read, since none exists for these
data sets.

Example: In the. following example, the list of volumes that contain
generation data set A.PAY(-3) is read into main storage. The search for
the volume-list block starts on the system residence volume.

r---------T----------T---,
I Name I Operation I Operand I
~---------+----------+---~
I I LOCATE I INDGX READ VOLUME-LIST BLOCK FOR I
I I Check Exceptional Returns DATA SET A.PAY(-3) INTO I
I INDGX I CAMLST I NAME,APAY"LOCAREA MAIN STORAGE AREA NAMED I
I APAY I DC I CL44'A.PAY(-3)' LOCAREA. LOCAREA ALSO CON- I
I LOCAREA I DS I OD TAINS 3-BYTE TTR AND I
I I OS I 265C 6-BYTE SERIAL NUMBER I L _________ ~ __________ ~ ___ J

The LOCATE macro instruction points to the CAMLST macro instruction.
NAME, the first operand of CAMLST, specifies that the system is to
search the catalog for a volume-list block by using the name of a data
set. APAY. the second operand, specifies the main storage location of a
44-byte area into which you have placed the name of the generation index
and the relative generation number .of a data set in the generation data
group. LOCAREA, the fourth operand, specifies a 265-byte area you have
reserved in main storage.

After execution of these macro instructions, the 265-byte area
contains: the 256-byte volume-list block for generation data set A.PAY
(-3), the 3-byte relative track address (TTR) of the block following the
one read into main storage, and the 6-byte serial number of the volume
on which the block was found. In addition, the system will have
replaced the relative generation number that you specified in your
44-byte area with the data set's absolute generation name~

Specifying a Name Using an Alias

For each of the preceding functions, you can specify an alias as the
first name in the qualified name of an index level, data set, or
generation .data set. Each function is performed exactly as previously
described, with one exception: the alias name specified is replaced by
the true name.

Specifying by TTR

You can read any block in the catalog by specifying, in the form TTR,
the identification of the block and its location relative to the

J
beginning of the catalog. TT is the number of tracks from the beginning
of the catalog., R is the record number of the desired block on the
track.. (Formats of each type of catalog block are contained in Appendix
A of this ch~pter.)

Example: In the following example. the block at the location indicatea
by TTR is read into main storage. The specified block is in the catalog
on the system residence volume.

12 OS System Programmer's Guide (Release 17)

r---------T----------T---,
I Name I Operation I Operand I
~---------f----------f---~
I I LOCATE I BLK READ A BLOCK INTO MAIN I
I I Check Exceptional Returns STORAGE AREA NAMED LOCAREA I
I BLK I CAMLST I BLOCK,TTR"LOCAREA I
I TTR I DC I H' 5' RELATIVE TRACK 5 I
I I DC I X'03' BLOCK 3 ON TRACK I
I LOCAREA I DS I OD LOCAREA ALSO CONTAINS 3-BYrEI
I J DS I 26SC TTR AND 6-BYTE SERIAL NO. I L _________ ~ __________ ~ ___ J

The LOCATE macro instruction points to the CAMLST macro instruction.
BLOCK, the first operand of CAMLST, specifies that the system is to
search the catalog for the block indicated by TTR, the second operan:i.
LOCAREA, the fourth operand, specifies a 265-byte area you have reserved
in main storage.

After execution of these macro instructions, the 265-byte area
contains: the 2S6-byte index block, the 3-byte relative track address
(TTR) of the block following the one read into main storage, and the
6-byte serial number of the volume on which the block was found.

HOW TO BUILD AN INDEX

To build a new index structure and add it to the catalog, you must
create each level of the index separately. You create each level of the
index by using the INDEX and CAMLsr macro instructions.

These two macro instructions can also be used to add index levels to
existing index structures.

Example: In the following example, index structure A.B.C is built on
the control volume whose serial number is 000045.

r---------T----------T---,
J Name J Operation I Operand I
r---------f----------f---~

I INDEX I INDEXA BUILD INDEX A I
I Check Exceptional Returns I
I INDEX I INDEXB BUILD INDEX STRUCTURE A.B I
I Check Exceptional Returns I
I INDEX I INDEXC BUILD INDEX STRUCTURE A.B.CI
I Check Exceptional Returns I

INDEXA I CAMLST I BLDX,ALEVEL,VOLNUM I
INDEXB I CAMLST I BLDX,BLEVEL,VOLNUM I
INDEXC I CAMLST I BLDX,CLEVEL, VOLNUM. I
VOLNUM I DC I CL6'00004S' VOLUME SERIAL NUMBER I
ALEVEL I DC I CL2' A' INDEX STRUCTURE NAMES I
BLEVEL I DC I CL4'A.B' FOLLOWED BY BLANKS I
CLEVEL J DC I CL6' A. B. C' WHICH DELIMIT FIELDS I

---------~---_______ ~ ___ J

Each INDEX macro instruction points to an associated CAMLST macro
instruction. BLDX, the first operand of CAMLST, specifies that an in:iex
level be built. The second operand specifies the main storage location
of an area into which you have placed the fully qualified name of an
index level. The third operand specifies the main storage location of
an area into which you have placed the 6-byte serial number of the
volume on which the index level is to be built.

Maintaining the Catalog and the Volume Table of Contents 13

HOW TO BUILD A GENERATION INDEX

You build a generation index by using the INDEX and CAMLST macro
instructions. All higher levels of the index must exist. If the higher
levels of the index are not in the catalog, you must build them. How to
build an index has been explained previously. In the following example,
the generation index D is built on the control volume whose serial
number is 000045. The higher level indexes A.B.C already exist. When
the number of generation data sets in the generation index 0 exceeds
four, the oldest data set in the group is uncataloged and scratched.

r---------T----------T------------------------------------~------------,
'Name ,Operation, Operand ,
~--------+----------+---~
, 'INDEX' GENINDX BUILD GENERATIO~ ,
, , Check Exceptional Returns INDEX ,
, GENINDX ,CAMLST ,BLDG,DLEVEL,VOLNUM"DELETE,,4 ,
'DLEVEL 'DC , CLS'A.B.C.D' BLANK DELIMITER ,
'VOLNUM I DC , CL6'00004S' , L _________ ~ __________ ~ ___ J

The INDEX macro instruction points to the CAMLST macro instruction.
BLDG, the first operand of CAMLST, specifies that a generation index be
built,. DLEVEL, the second operand, specifies the main storage location
of an area into which you have placed the fully qualified name of a
generation index. VOLNUM, the third operand, specifies the main storage
locatio~ of an area into which you have placed the 6-byte serial number
of the volume on which the generation index is to be built. DELETE, the
fifth operand, specifies that all data sets dropped from the generation
data group are to be deleted. The final operand, 4, specifies the
number of data sets that are to be maintained in the generation data
group.

HOW TO DELETE AN INDEX

You can delete any number of index levels from an existing index
structure~ Each level of the index is deleted separately. You delete
each level of the index by using the INDEX and CAMLST macro
instructions.

If an index level either has an alias, or has other index levels or
data sets cataloged under it, it cannot be deleted.

Example: In the following example, index level C is deleted from index
structure A.B.C. The search for the index level starts on the system
residence volume.

r---------T----------T---,
I Name I Operation I Operand I
~--------+----------+---~ I I INDEX I DELETE DELETE INDEX LEVEL C FROMI
I I Check Exceptional Returns INDEX STRUCTURE A.B.C I
'DELETE I CAMLST I DLTX,LEVELC I
I LEVELC I DC I CL6'A.B.C' ONE BLANK FOR DELI~uTER ,
L ______ ~ __ ~_~--------~--------------------------------_________________ J

The INDEX macro instruction points to the CAMLST macro instruction.
DLTX, the first operand of CAMLST, specifies that an index level be
deleted. LEVELC, the second operand, specifies the main storage
location of an area into which you have placed the fully qualified name
of the index structure whose lowest level is to be deleted.

14 OS System Programmer's Guide -(Release 17)

HOW TO ASSIGN AN ALIAS

You assign an alias to an index level by using the INDEX and CAMLST
macro instructions. An alias can be assigned only to a high level
index; e.g., index A of index structure A.B.C can have an alias, but
index B cannot. Assigning an alias to a high revel index effectively
provides aliases for all data sets cataloged under that index.

Example: In the following example" index level A is assigned an alias
of X. The search for the index level starts on the system residence
volume.

r---------T----------T---,
I Name I Operation I Operand I

~---------+----------+---1
I I INDEX I ALIAS BUILD AN ALIAS FOR A HIGHI
I I Check Exceptional Returns LEVEL INDEX I
I ALIAS I CAMLST I BLDA,DSNAME"DSALIAS I
I DSNAME I DC I CL8'A 1 MUST BE 8-BYTE FIELDS I
I OS ALIAS I DC I CL8'X' I L _________ ~ __________ ~ ___ J

The INDEX macro instruction points to the CAMLST macro instruction.
BLDA, the first operand of CAMLST, specifies that an alias be built.
DSNAME, the second operand, specifies the main storage location of an
8-byte area into which you have placed the name of the high level index
to be assigned an alias. DSALIAS" the fourth operand, specifies the
main storage location of an 8-byte area into which you have placed the
alias to be assigned.

HOW TO DELETE AN ALIAS

You delete an alias previously assigned to a high level index by using
the INDEX and CAMLST macro instructions.

Example: In the following example" alias X, previously assigned as an
alias for index level A, is deleted. The search for the alias starts on
the system residence volume.

r---------T----------T---,
I Name I Operation I Operand I
~---------+----------+---1
I I INDEX I DELALIAS DELETE AN ALIAS FOR A I
I I Check Exceptional Returns HIGH LEVEL INDEX I
I DELALIASI CAMLST I DLTA,ALIAS I
I ALIAS I DC I CL8'X' MUST BE 8-BYTE FIELD I L _________ ~ __________ ~ ___ J

The INDEX macro instruction points to the CAMLST macro instruction.
DLTA" the first operand of CAMLST, specifies that an alias be deleted.
ALIAS, the second operand, specifies the main storage location of an
8-byte area into which you have placed the alias to be deleted.

HOW TO CONNECT CONTROL VOLUMES

You connect two control volumes by using the INDEX and CAMLST macro
instructions. If a control volume is to be connected to the system
residence volume" you need supply only the serial number of the volume
to be connected and the name of a high level index associated with the
volume to be connected.

Maintaining the Catalog and the Volume Table of Contents 15

If a contro~ volume is to be connected to a control volume other than
the system residence volume, you must supply the serial numbers of both
volumes and the name of a high level index associated with the volume to
be connected.

The result of connecting control volumes is that the volume serial
number of the control volume connected and the nam~ of a high level
index are entered into the volume index of the volume to which it was
connected. This entry is called a control volume pointer. A control
volume pointed to by a control volume cannot, in turn, point to another
con.trol volume.

Example: In the following example, the control volume whose serial
number is 001555 is connected to the control volume numbered 000155.
The name of the high level index is HIGHINDX.

r--------T----------T---1
I Name I Operation I Operand I
~---------+----------+---~
I I INDEX I CONNECT CONNECT TWO CON- I
I I Check Exceptional Returns TROL VOLUMES WHOSE I
I CONNECT I CAMLST I LNKX,INDXNAME,OLDCVOL,NEWCVOL SERIAL NUMBERS ARE I
I INDXNAMEI DC I CLS'HIGHINDX' 000155 AND 001555. I
I OLDCVOL I DC I CL6' 000155' I
I NEWCVOL I DC I X' 30002001' 2311 DISK STORAGE I
I I DC I CL6' 001555' I L _________ ~ __________ ~ ___ J

The INDEX macro instruction points to the CAMLST macro instruction.
LNKX, the first operand of CAMLST, specifies that control volumes be
connected. INDXNAME, the second operand, specifies the main storage
location of an 8-byte area into which you have placed the name of the
high level index of the volume to be connected. OLDCVOL, the third
operand, specifies the main storage location of a 6-byte area into which
you have placed the serial number of the volume to which you are
conn.ecting.. NEWCVOL, the fourth operand, specifies the main storage
location of a 10-byte area into which you have placed the 4-byte binary
device code of the volume to be connected followed by the 6-byte area to
contain the volume serial number of the volume to be connected.

HOW TO DISCONNECT CONTROL VOLUMES

You disconnect two control volumes by using the INDEX and CAMLST macro
instructions. If a control volume ~s to be disconnected from the system
residence volume, you need supply only the name of the high level index
associated with the volume to be disconnected.

If a control volume is to be disconnected from a control volume other
than the system residence volume, you must supply, in addition to the
name of the high level index, the serial number of the control volume
from which you want to disconnect.

The result of disconnecting control volumes is that the control
volume pointer is removed from the volume index of the volume from which
you are disconnecting.

Example: In the following example, the control volume that contains the
high level index HIGHINDX is disconnected from the system residence
volume,.

16 OS system programmer's Guide (Release 17)

r--------T----------T---,
I Name I Operation I Operand I
r---------+----------+---1
I I INDEX IDISCNECT DISCONNECT TWO CONTROL I
I I Check Exceptional Returns VOLUMES I
I DISCNECTI CAMLST I DRPX,INDXNAME I
I INDXNAMEI DC I CL8IHIGHI~DX' MUST BE 8-BYTE FIELD I l _________ ~ __________ ~ ___ J

The INDEX macro instruction points to the CAMLST macro instruction.
DRPX, the first operand of CAMLST, specifies that control volumes be
disconnected. INDEXNAME, the second operand, specifies the main storage
location of an 8-byte area into which you have placed the name of the
high level index of the control volume to be disconnected.

HOW TO CATALOG A DATA SET

You catalog a data set by using the CATALOG and CAMLST macro
instructions. All index levels required to catalog the data set must
exist in the catalog, or an exceptional return code is set.

You must build a complete volume list in main storage. This volume
list consists of volume pointers for all volumes on which the data set
is stored. The first two bytes of the list indicate the number of
volume pointers that follow. Each 12-byte volume pointer consists of a
4-byte device code, a 6-byte volume serial number, and a 2-byte data set
sequence number. The sequence number is always zero for direct access
volumes. (Device codes are contained in Appendix B of this chapter.)

Example: In the following example, the data set named A.B.C is
cataloged under an existing index structure A.B. The data set is storej
on two volumes.

r--~------T----------T---,
I Name I Operation I Operand I
r---------+----------+---1

ADDABC
DSNAME
VOLUMES

CATALOG I ADDABC CATALOG DATA SET A.B.C. THE I
Check Exceptional Returns INDEX STRUCTURE A.B. EXISTS I
CAMLST I CAT,DSNAME"VOLUMES I
DC I CL6'A.B.C' ONE BLANK FOR DELIMITER I
DC I H' 2' TWO VOLUMES I
DC I X· 30002001 1 2311 DISK STORAGE I
DC I CL6'000014' VOLUME SERIAL NUMBER I
DC I H'O' DATA SET SEQUENCE NUMBER I
DC I X 130002001 1 2311 DISK STORAGE I
DC I CL6'00001S' VOLUME SERIAL NUMBER I
DC I a' O' SEQUENCE NUMBER I _________ ~ __________ ~ ____ . ___ J

The CATALOG macro instruction points to the CAMLST macro instruction.
CAT t the first operand of CAMLST, specifies that a data set be
cataloged. DSNAME, the second operand, specifies the main storage
location of an area into which you have placed the fully qualified name
of the data set to be cataloged. VOLUMES, the fourth operand, specifies
the main storage location of the volume list you have built.

HOW TO REMOVE DATA SET REFERENCES FROM THE CATALOG

You remove data set references from the catalog by using the CATALOG and
CAMLST macro instructions.

Example: In the following example, references to data set A.B.C are
removed from the catalog.

Maintaining the Catalog and the Volume Table of Contents 17

r---------T----------T---,
'Name ,Operation, Operand ,
~--------+----------+---~
, 'CATALOG 'REMOVE REMOVE REFERENCES TO DATA ,
, , Check Exceptional Returns SET A.B.C FROM THE CATALOG'
'REMOVE ,CAMLST ,UNCAT,DSNAME ,
'DSNAME 'DC , CL6'A.B.C' ONE BLANK FOR DELIMITER , L _________ ~ __________ ~ ___ J

The CATALOG macro instruction points to the CAMLST macro instruction.
UNCAT, the first operand of CAMLST, specifies that references to a data
set be removed from the catalog. DSNAME, the second operand, specifies
the main storage location of an area into which you have placed the
fully qualified name of the data set whose references are to be removed.

HOW TO RECATALOG A DATA SET

You recatalog a cataloged data set by using the CATALOG and CAMLST macro
instructions. Recataloging is usually performed when new volume
pointers must be added to the volume list of a data set.

You must build a complete volume list in main storage. This volume
list consists of volume pointers for all volumes on which the data set
is stored. The first two bytes of the list indicate the number of
volume pointers that follow. Each 12-byte volume pointer consists of a
4-byte device code, a 6-byte volume serial number, and a 2-byte data set
sequence number. The sequence number is always zero for direct access
volumes. (Device codes are contained in Appendix B of this chapter.)

Example: In the following example, the data set named A.B.C is
recataloged. A new volume pointer is added to the volume list, which
previously contained only two volume pointers.

r---------T----------T---,
'Name ,Operation, Operand I
~--~------+-~--------+---~

RECATLG
DSNAME
VOLUMES

CATALOG I RECATLG RECATALOG DATA SET A.B.C,
Check Exceptional Returns ADDING A NEW VOLUME

POINTER TO THE VOLUME
CAMLST RECAT,DSNAME"VOLUMES LIST.
DC CL6' A .• B. C' ONE BLANK FOR DELIMITER
DC H' 3 • THREE VOLUMES
DC X~30002001' 2311 DISK STORAGE
DC CL6'000014' VOLUME SERIAL NUMBER
DC H'O' SEQUENCE NUMBER
DC x'30002001' 2311 DISK STORAGE
DC CL6'OOOOlS' VOLUME SERIAL NUMBER
DC H'O' SEQUENCE NUMBER
DC x'30002001' 2311 DISK STORAGE
DC CL6'000016' VOLUME SERIAL NUMBER
DC H'O' SEQUENCE NUMBER

---------~----------~---

The CATALOG macro instruction points to the CAMLST macro instruction.
RECAT, the first operand of CAMLST, specifies that a data set be
recataloged. DSNAME, the second operand, specifies the main storage
location of an area into which you have placed the fully qualified name
of the data set to be recataloged. VOLUMES, the fourth operand,
specifies the main storage location 9f the volume list you have built.

18 OS System Programmer's Guide (Release 17)

HOW TO READ A DATA SET CONTROL BLOCK FROJ.V.l THE VOLUME TABLE OF CONTENTS

You can read a data set control block (DSCB) into main storage by using
the OBTAIN and CAMLST macro instructions. There are two ways to specify
the DSCB that you want read: by using the name of the data set
associated with the DSCB, or by using the absolute track address of the
DSCB.

When you specify the name of the data set, a format 1 DSCB is read
into main storage. To read a DSCB other than a format 1 OSCB, you must
specify an absolute track address. (DSeB formats and field descriptions
are contained in the System Control Block publication).

When a data set name is specified, the 96-byte data portion of the
format 1 DSCB. and the absolute track address of the DSCB are read into
main storage. When the absolute track address of a DseB is specified,
th€ 44-byte key portion and the 96-byte data portion of the DSCB are
read into main storage.

Example: In the following example, the format 1 DSCB for data set A.B.~
is read into main storage. The serial number of the volume containing
the DSCB is 770655.

r---------r----------T---1
'Name ,Operation, Operand ,
~---------+----------+---~
, ,OBTAIN, DSCBABC READ DSeB FOR DATA ,
, , Check Exceptional Returns SET A.B.C INTO MAINI
I DSCBABC I CAMLST I SEARCH,DSABC,VOLNUM,WORKAREA STORAGE AREA NAMED I
I DSABC I DC I CL44'A.B.C' WORKAREA. 96-BYTE I
I VOLNUM I DC I CL6'770655' DATA PORTION IS I
, WORKAREAI os I OD READ. THE REST OF I
I I OS I 350C THE AREA IS USED BYI
I I I THE OBTAIN ROUTINE I L _________ ~ __________ ~ _______ ~ ___ J

The OBTAIN macro instruction points to the CAMLST macro instruction.
SEARCH. the first operand of CAMLST, specifies that a OSCB be read into
main storage. DSABC, the second operand, specifies the main storage
location of a 44-byte area into which you have placed the fully
qualified name of the data set whose associated DSCB is to be read.
V OLNUM, the third operand, specifies the main storage location of a
6-byte area into which you have placed the serial number of the volume
containing the required DSCB. WORKAREA, the fourth operand, specifies
the main storage location of a 350-byte work area that is to contain the
DSCB.

After execution of these macro instructions , the first 96 bytes of
the work area contain the data portion of the format 1 DSCB; the next
five bytes contain the absolute track address of the oseB. The OBTAIN
routine uses the rest of the area as a work area.

HOW TO DELETE A DATA SET

You delete a data set stored on direct access volumes by using the
SCRATCH and CAMLST macro instructions. This causes all data set control
blocks (DSCB) for the data set to be deleted, and all space occupied by
the data set to be made available for reallocation. If the data set to
be deleted is sharing a split cylinder, the space will not be made
available for reallocation until all data sets on the split cylinder are
deleted.

Maintaining the Catalog and the Volume Table of Contents 19

A data set cannot be deleted if the expiration date in the format 1
DSCB has not passed, unless you choose to ignore the expiration date.
You can ignore the expiration date by using the OVRD option in the
CAMLST macro instruction.

If a data set to be deleted is stored on more than one volume, either
a device must be available on which to mount the volumes, or at least
one volume must be mounted. In addition, all other required volumes
must be serially mountable. certain volumes, such as the system
residence volume, must always be mounted.

When deleting a data set, you must build a complete volume list in
main storage. This volume list consists of volume pointers for all
volumes on which the data set is stored. The first two bytes of the
list indicate the number of volume pointers that follow. Each 12-byte
volume pointer consists of a 4-byte device code, a 6-byte volume serial
number, and a 2-byte data set sequence number. The sequence number is
always zero for direct access volumes. (Device codes are contained in
Appendix B of this chapter.)

Volumes are processed in the order that they appear in the volume
list. Those volumes that are pointed to at the beginning of the list
are processed first. If a volume is not mounted, a message is issued to
the operator. requesting him to mount the volume. You can indicate the
I/O. device on which unmounted volumes are to be mounted by loading
register 0 with the address of the UCB associated with the device to be
used. When the volume is mounted, processing continues. If you do not
load register 0 with a UCB address, its contents must be zero.

If the operator cannot mount the requested volume, he issues a reply
indicating that he cannot fulfill the request. A condition code is then
set in the last byte of the volume pointer for the unavailable volume,
and. the next volume indicated in the volume list is processed or
requested·.

Example:·
volumes.

In the following example, data set A.B.C is deleted from two
The expiration date in the format 1 DSCB is ignored.

r--~------T----------T---,
'Name ,Operation, Operand ,
t---------+----------+---~

DELABC
DSABC
VOLIST

SR , 0,0 SET REG 0 TO ZERO
SCRATCH 'DELABC DELETE DATA SEr
Check Exceptional Returns A.B.C. FROM TWO
CAMLST ,SCRATCH,DSABC"VOLIST"OVRD VOLUMES, IGNORING
DC , CL44'A.B.C' THE EXPIRATION
DC , H'2' DATE IN THE DSCB.
DC , X'30002001' 2311 DISK STORAGE
DC , CL6'000017' VOLUME SERIAL NO.
DC , H'O' SEQUENCE NUMBER
DC , X'30002001' 2311 DISK STORAGE
DC , CL6'00001S' VOLUME SERIAL NO.
DC , H'O' SEQUENCE NUMBER

_______ ~-~----------~----._---------------------------_________________ J

The SCRATCH macro instruction points to the CAMLST macro instruction.
SCRATCH, the first operand of CAMLST, specifies that a data set be
deleted. DSABC, the second operand, specifies the main storage location
of a 44-byte area into which you have placed the fully qualified name of
the data set to be deleted. VOLIST, the fourth operand, specifies the
main storage location of the volume list you have built. OVRD, the
sixth operand, specifies that the expiration date be ignored in the OSCB
of the data set to be deleted.

20 OS System Programmer's Guide (Release 17)

HOW TO RENAME A DATA SET

You rename a data set stored on direct access volumes by using the
RENA~ili and CAMLST macro instructions. This causes the data set name in
all format 1 data set control blocks (DSCB) for the data set to be
replaced by the new name that you supply.

If a data set to be renamed is stored on more than one volume, either
a device must be avaiiable on which to mount the volumes, or at least
one volume must be mounted. In addition, all other required volumes
must be serially mountable. certain volumes, such as the system
residence volume. must always be mounted.

When renaming a data set, you must build a complete volume list in
main storage. This volume list consists of volume pointers for all
volumes on which the data set is stored. The first two bytes of the
list indicate the number of volume pointers that follow. Each 12-byte
volume pointer consists of a 4-byte device code, a 6-byte volume seri~l
number, and a 2-byte data set sequence number. The sequence number is
always zero for direct access volumes. (Device codes are contained in
Appendix B of this chapter.)

Volumes are processed in the order they appear in the volume list.
Those volumes that are pointed to at the beginning of the list are
processed first. If a volume is not mounted, a message is issued to the
operator requesting him to mount the volume. You can indicate the I/O
device on which unmounted volumes are to be mounted by loading register
o with the address of the UCB associated with the device to be used.
When the volume is mounted .• processing continues. If you do not load
register 0 with a UCB address, its contents must be zero.

If the operator cannot mount the requested volume, he issues a reply
indicating that he cannot fulfill the request. A condition code is then
set in the last byte of the volume pointer for the unavailable volume,
and the next volume indicated in the volume list is processed or
requested.

Example: In the following example, data set A.B.C is renamed D.E.F.
The data set extends across two volumes.
r---------T----------T---,
I Name I Operation I Operand I
~---------+~---------+---~

DSABC
OLD NAME
NEW NAME
VOLIST

SR I 0,0 SET REG 0 TO ZEROI
RENAME I DSABC CHANGE DATA SET I
Check Exceptional Returns NAME A.B.C. TO I
CAMLST I RENAME,OLDNAME,NEWNAME,VOLIST D.E.F I
DC I CL44'A.B.C' I
DC I CL44'D.E.F' I
DC I H'2' TWO VOLUMES I
DC I X'30002001' 2311 DISK STORAGE I
DC I CL6'000017' VOLUME SERIAL NO.1
DC I BIO' SEQUENCE NU~rnER I
DC I X'30002001' 2311 DISK STORAGE I
DC I CL6'000018' VOLU~ili SERIAL NO. I
DC I H'O' SEQUENCE NUMBER I _________ ~ __________ ~ ____ • ___ J

The RENAME macro instruction points to the CAMLST macro instruction.
RENAME, the first operand of CAMLST, specifies that a data set be
renamed. OLDNAME. the second operand, specifies the main storage
location of a 44-byte area into which you have placed the fully
qualified name of the data set to be renamed. NEWNAME, the third
operand. specifies the main storage location of a 44-byte area into
which you have placed the new name of the data set. VOLIST, the fourth
operand, specifies the main storage location of the volume list you have
built.

Maintaining the Catalog and the Volume Table of Contents 21

Macro-Instructions Required to Maintain and Modify the Catalog and VTOC

r----------------------------T---I I Macro-Instructions Required to Perform Function
I Function ~------------------T--------------_y--I I Name I Operation I operands
r----------------------------t------------------t---------------+---
I Read a block from the I [symbol] I LOCATE I list-addrx1
I catalog - by name I {list-namel I CAMLST I NAME,dsname-relexp5, [cvol-relexp7l.area-relexp9
r----------------------------t------------------t---------------t--
I Read a block from the I [symbol] I LOCATE I list-addrx1
I catalog - by location I [list-name] I CAMLST I BLOCK,ttr-relexp3,[cvol-relexp7] ,area-relexp9
~----------------------------t------------------t---------------t--
I Build an index I [symbol] I INDEX I list-addrx1
I I (list-name] ~ CAMLST I BLDX,name-relexp2,(cvol-relexp7]
r----------------------------t------------------t---------------t--
I Build a generation I (symbol) I INDEX I list-addrx1
I index I [list-name] I CAMLST I BLDG, name-relexp2, [cvol-relexp7 l , , [DELETE15] , [EMPTy16) , D'.lmber-absel!p17
~----------------------------t------------------t---------------t------------------~---
I Assign an alias I [symbol) I INDEX I list-addrx1
I I [list-name) I CAMLST I BLDA,index name-relexp5,[cvol-relexp7],alias name-relexp10
~----------------------------t---------~--------t---------------+--
I Delete an index I (symbol] I INDEX I list-addrx1
I I (list-namel I CAMLST I DLTX,name-relexp2, (cvol-relexp7)
r----------------------------t------------------t---------------t--
I Delete an alias I [symbol] I INDEX I list-addrx1
I I [list-namel I CAMLST I DLTA,index name-relexp5, [cvol-relexp7]
~----------------------------t------------------t---------------t--
I Connect control I (symboll I INDEX I list-addrx1
I volumes I [list-ndme] I CAMLST I LNKX.index name-relexp5,[cvol-relexp7J,new cvol-relexp12
r----------------------------t------------------t---------------t---
I Disconnect control I [symboll I INDEX I list-addrx1
I volumes I [list-name] I CAMLST I DRPX,index name-relexp5, [cvol-addrx7]
r----------------------------t------------------t---------------~---.---------------
I Catalog a data set I [symbol] I CATALOG I list-addrx1
I I [list-namel I CAMLST I CAT,name-relexp2,[cvol-relexp7 l,vol list-relexp13
r----------------------------t------------------t---------------f--
I Remove data set refer- I [symboll I CATALOG I list-addrx1
I ences from the catalog I [list-name] I CAMLST I UNCAT,name-relexp2,(cvol-relexp7]
~----------------------------t------------------t---------------+--I Recatalog a data set I [symbol] I CATALOG I list-addrx1
I I [list-namel I CP~LST I RECAT,name-relexp2, [cvol-relexp7],vol list-relexp13
r----------------------------t------------------t---------------+--
I Read a DSCB from the I [symbol] I OBTAIN Ilist-addrx1
I VTOC - by name I [list-namel I CAMLST I SEARCH,dsname-relexp5,vol-relexpB,wk area-relexp1~
r----------------------------t-----------------~t---------------+--
I Read a DseB from the I [symbol] I OBTAIN I list-addrx1
I VTOC - by location I [list-name] I CAMLST I SEEK,cchhr-relexp~,vol-relexpe,wk area-relexp1~

r----------------------------t------------------t---------------f--
I uelete a data set I [symbol] I SCRATCH I list-addrx1
I I [list-name] I CAMLST I SCRATCH,dsname-relexp5"vol list-relexp~3,,[OVRD1Bl
r----------------------------t------------------t---------------t--
I Change the data set I [symbol) I RENAME I list-addrx1
I name in a DSCB I [list-namel I CAMLST I RENA!VIE, dsname-relexp5, new name-relexp11, vol list-relexp13
~----------------------------L------------------L-----__________ ~ ___ _
I Note: The superscript numbers refer to the enumerated list of explanations for the operands.
l ___ -- ______________ _

aintain and Modify the catalog and VTOC

---T
Macro-Instructions Required to Perform Function I

----------------T---------------.--+
Name I Operation I Operands I

----------------+---------------+---+
[symbol] I LOCATE I list-addrx1 I
{list-name] I CAMLST I NAME,dsname-relexp6, [cvol-relexp7],area-relexp9 I

----------------+---------------t--+
[symbol] I LOCATE I list-addrx1 I
[list-name] I CAMLST I BLOCK,ttr-relexp3,[cvol-relexp7],area-relexp9 I

----------------+---------------+--+
[symbol] I INDEX I list-addrx1 I
[list-name] ~ CAMLST I BLDX,name-relexp~,[cvol-relexp7] I

----------------+---------------t--+
[symbol] I INDEX I list-addrx1 I
[list-name] I CAMLST I BLDG, name-relexp2, [cvol-relexp7] , , [DELETE15], [EMPTy16] , mlmber-absexp17 I

----------------+---------------t------------------~---+
[symbolJ I INDEX I list-addrx1 I
[list-name] I CAMLST I BLDA,index name-relexp5,[cvol-relexp7],alias name-relexp10 I

-------~--------+---------------t--+
[symbol] I INDEX I list-addrx1 I
[list-namel I CAMLST I DLTX,name-relexp~,[cvol-relexp7l I

----------------+---------------+--+
[symbol] I INDEX I list-addrx1 I
[list-name] I CAMLST I DLTA,index name-relexp5, [cvol-relexp7] I

----------------+---------------+--+
[symbol] I INDEX I list-addrx1 I
[list-nam~l I CAMLST I LNKX,index name-relexps,[cvol-relexp7],new cvol-relexp12 I

----------------+---------------+---+
[symbo.1] I INDEX I list-addrx1 I
[list-name] I CAMLST I DRPX,index name-relexp5, [cvol-addrx7] I

----------------+---------------~--+
[symbol] I CATALOG I list-addrx1 I
[list-name] I CAMLST I CAT,name-relexp2,[cvol-relexp7],vol list-relexp13 I

--------~-------+---------------+--+
[symbol] I CATALOG I list-addrx1 I
[list-name] I CAMLST I UNCAT,name-relexp2,[cvol-relexp7] I

._---------------+---------------+--.--------------+
[symbol] I CATALOG I list-addrx1 I
[list-name] I CF~LST I RECAT,name-relexp2, [cvol-r,elexp7],vol list-relexp13 I

._---------------+---------------+--+
[symbol] I OBTAIN Ilist-addrx1 I
[list-name) I ~AMLST I SEARCH,dsname-relcxp6,vol-relexpB,wk area-relexp1~ I

·---------------~+---------------t--1
[symbol] I OBTAIN I list-addrx1 I
[list-namel I CAMLST I SEEK,cchhr-relexp",vol-relexp8,wk area-relexp14 I

.----------------+--------------.+--1
[symbol] I SCRATCH I list-addrx1 I
[list-namel I CAMLST I SCRATCH,dsname-relexp6"vol list-relexp13,,[OVRD18) I

._---------------+---------------+--_._----------------~
[symbol] I RENAME I list-addrx1 I
[list-name] I CAMLST I REN~lE,dsname-relcxp6,new name-relexp11,vol list-relexp13 I

-----------------~---------------~--+
~rs refer to the enumerated list of explanations for tht! operands. I
--~

1 list-addrx
points to the
list-name) set
instruction.

2 name-relexp

parameter
up by the

list
CAMLST

(labeled
macro-

specifies the main storage location of the
fully qualified name of a data set or index
level. The name cannot exceed 44 characters.
If the name is less than 44 characters, it
must be followed by a blank. The name must be
defined by a C-type Define Constant (DC)
instruction.

3 ttr-relexp
specifies the main stora~c location of a
3-byte relative track address (TTR). This
address indicates the position, relative to
the beginning of the catalog data set, of the
track containing the block (TT), and the block
identification on that track (R).

.. cchhr-relexp
specifies the main storage location o£ the
5-byte absolute track address (CCHHR) of a
DSCE.

5 index name-relexp
specifies the main storage location of the
name of a high level index. The area that
contains the name must be eight bytes long.
The name must be defined by a C-type Define
Constant (DC) instruction.

6 dsname-relexp
specifies the main storage location of a fully
qualified ddta set name. The area that
contains the name must be 44 bytes long. The
name must be defined by a C-type Define
constant (DC) instruction.

7 cvol-relexp
specifies the main storage location of a
6-byte volume serial number for the volume to
be processed. If this parameter is not speci­
fied, the system residence volume is proc­
essed.

8 vol-relexp
specifies the main storage location of the
6-byte serial number of the volume on ~hich
the required DSCE is stored.

g area-relexp
specifies the main storage location of a
265-byte work area that you must define. The
work area must begin on a double-word bounda­
ry. The first 256 bytes of the work area will
contain the block that is read from the
catalog, and the last nine bytes of the work
area will contain the relative track address
and block identification (in the form TTR) of
the block following the one read into main
storage and the serial number of the volume on
which the block was found.

10 alias name-relexp
specifies the main storage location of the
name that is to be used as an alias for a high
level index. The area that contains the name
must be eight bytes long. The name must be
defined by a C-type Define Constant (DC)
instruction.

11 new name-relexp
specifies the main storage location of a fully
qualified data set name that is to be used to
rename a data set. The area that contains the
name must be 44 bytes long. The name must be
defined by a C-type Define Constant (DC)
instruction.

12 new cvol-relexp
specifies the main storage location of the
6-byte volume serial number of the control
volume that is to be connected to another
control volume.

13 vol list-relexp
specifies the main storage location of an area
that contains a volume list. The area must
begin on a half-word boundary.

1~ wk area-rclexp
specifies the
350-byte work
work area must
rYe

main storage location of a
area that you must define. The
begin on a double-word bounda-

If a data set name was specified, the first 96
bytes contain the data portion of a format 1
DSCB, and the next five bytes contain the
absolute track address of the DSCB. The rest
of the area is used as a work area by the
OBTAIN routine.

If an absolute track address was specified,
the first 140 bytes contain the key portion
and data portion of the DSCB. The rest of the
area is used as a work area by the OBTAIN
routine.

1.'5 DELETE
specifies that all data sets dropped from a
generation data group are to be deleted, i.e.,
the space allocated to the data sets is to be
made available for reallocation.

16 EMPTY
specifies that references to all data sets in
a generation data group cataloged in the
generation index are to be removed from the
index when the number of entries specified is
exceeded.

17 number-absexp
specifies the number of data sets to be
included in a generation data group. This
number must be specified, and cannot exceed
255.

1.B OVRD
specifies that the expiration date in the DSCB
should be ignored.

Maintaining the Catalog and the Volume Table of Contents 23

EXCEPTIONAL RETURN CONDITION CODES
r--,
I Control is always returned to the instruction that follows the LOCATE, INDEX, CATALOG, OBTAIN, SCRATCH, or RENAME macro instruction. If the function has I
I been performed successfully, register 15 contains zeros. Otherwise, register 15 contains a condition code that indicates the reason for the failure. I
I The condition codes for the macro instructions are as follows: I L __ J

r--,
I LOCATE Macro-Instruction I
~--~

Code Interpretation I

4 Either the required control volume was not
mounted or the specified volume does not
contain a catalog data set (SYSCTLG). The
volume serial number of the required
volume is contained in bytes 260-265 of
the work area.

8 One of the names of the qualified name was
not found. Register 0 contains the number
of the last valid name in the qualified
name. For example, if the qualified name
A.B.C.D were specified, but name C did not
exist at the level specified, register 0
would contain the binary code 2. The work
area contains the first index block of the
last valid index name, the serial number
of the volume containing the index (in
bytes 260-265), and the relative track
address (in bytes 251-259) of the next
index block.

12 Either an index, an alias, or a control
volume pointer was found when the list of
qualified names was exhausted.

16 A data set resides at some level of index
other than the lowest index level
specified. Register 0 contains the number
of simple names referred to before the
data set was found. For example, if the
qualified name A.B.C.D were specified, and
a data set were found cataloged at A.B.C,
register 0 would contain the binary code
3.

20 A syntax error exists in the name (e.g.,
nine characters, a double delimiter, blank
name field, etc.) •

24 A permanent I/O error was found when
processing the catalog.

28 Relative track address (TTR) supplied to
LOCATE is out of the SYSCTLG data set
extents.

If the LOCATE macro instruction fails to perform
its function for any of the reasons indicated
above, register 0 contains the number of indexes
searched before the failure was encountered.

~ ____________________ , _______________________________ J

r------------------------------~-----------------~-~~,
I OBTAIN Macro-Instruction I
~--~

Code Interpretation

4 The required volume was not mounted.

8 The DSCB was not found in the VTOC of the
specified volume.

12

16

A permanent I/O error was found when
processing the specified volume.

Invalid workarea pointer

20 CCHH not within boundaries of VTOC extent
(seek mode) __ J

24 as System Programmer's Guide (Release 17)

r---,
I CATALOG Macro-Instruction I
~---~~

Code Interpretation I

4

8

Either the required control volume was not
mounted, or the specified volume does not
contain a catalog data set (SYSCTLG).

The existing catalog structure is
inconsistent with the operation performed.
Because the INDEX macro instruction uses
the search routine of the LOCATE macro
instruction, register 1 contains the
condition code that would be given by the
LOCATE macro instruction, and register 0
contains the number of index levels
referred to during the search.

12 Not used with the CATALOG macro
instruction.

16 The index structure necessary to catalog
the data set does not exist.

20 Space is not available on the specified
control volume.

24 An attempt was made to catalog an
improperly named generation data set.

28 A permanent I/O error was found when
processing the catalog.

I
I
I
I
I
I

__ J

r--"
I INDEX Macro-Instruction I
~--~

Cod~ Interpretation '

4 Either the required control volume was not
mounted, or the specified volume does not
contain a catalog data set (SYSCTLG).

8 The existing catalog structure is
inconsistent with the operation performed.
Because the INDEX macro instruction uses
the search routine of the LOCATE macro
instruction, register 1 contains the
conditiori code that would be given ty the
LOCATE macro instruction, and register 0
contains the number of index levels
referred to during the search.

12 An attempt was made to delete an index or
generation index that has an alias or has
indexes or data sets cataloged under it.
The index is unchanged.

16 The qualified name specified when building
an index or generation index implies an
index structure that does not exist; the
high level index, specified when
connecting control volumes, does not
exist.

20

24

Space is not available on the specified
control volume.

Not used with the INDEX macro instruction.

28 A permanent I/O error was found when
processing the catalog. __ J

r--,
I RENAME Macro-Instruction I
~--~
I Code Interpretation
I
I
I
I
I
I
I
I
I
I
I
I
I

4

8

No volumes containing any part of the data
set were mounted, nor was a UCB address
contained in register o.
An unusual condition was encountered on
one or more volumes.

After the RENAME macro instruction is executed,
the last byte of each 12-byte volume pointer in
the volume list indicates the following
conditions in binary code:

I Code Interpretation
I
I
I

o The DSCB for the data set has been renamed
in the VTOC on the volume pointed to.

The VTOC of this volume does not contain
the DSeB to be renamed.

3 A DSCB containing the new name already
exists in the VTOC of this volume.

4 A permanent I/O error was found when
processing this volume.

5 A device for mounting this volume was
unavailable.

6 The operator was unable to mount this
volume. __ J

r--,
I SCRATCH Macro-Instruction I
~--~

Code Interpretation

4 No volumes containing any part of the data
set were mounted, nor was a UCB address
contained in register o.

8 An unusual condition was encountered on
one or more volumes.

After the SCRATCH macro instruction is executed,
the last byte of each 12-byte volume pointer in
the volume list indicates the following
conditions in binary code:

fode Interpretation

o The DSCB for the data set has been deleted
from the VTOC on the volume pointed to.

The VTOC of this volume does not contain
the DSCE to be deleted.

3 The DSCR was not deleted because either
the OVRD option was not specified or the
retention cycle has not expired.

4

5

A permanent I/O error was found when
processing this volume.

A device for mounting this volume was
unavailable.

6 The operator was unable to nlount this
volume. L __ J

Appendix A: Catalog Block Entries

This section describes the contents of all catalog entries.

control Entries

A volume index control entry is always the first entry in a volume
index. The volume index control entry is 22 bytes long and contains
eight fields.

Field 1: Name Field (8 bytes) -- contains only a binary one to ensure
that this entry is the first entry in the first block of the index.

Field 2: Last Block Address (3 bytes) -- contains the relative track
address of the last block in the volume index. The address is in the
form TTR.

Field 3: Half-word Count (1 byte) -- contains a binary five to indicate
that five half words follow.

Field 4: catalog Upper Limit (3 bytes) -- contains the relative track
address of the last block in the catalog data set. The address is in
the form TTR.

Field 5: Zero Field (1 byte) -- contains binary zeros.

Field 6: First Available Block Address (3 bytes) -- contains the
relative track address of the unused block in the catalog that is
closest to the beginning of the catalog data set.

Field 7: Zero Field (1 byte) -- contains binary zeros.

Field 8: Unused Bytes in Last Block (2 bytes) -- contains the binary
count of the number of unused bytes in the last block of the volume
index.

An index control entry is the first entry in all indexes except
volume indexes. The index control entry is 18 bytes "long and contains
six fields.

Field 1: Name Field (8 bytes) -- contains only a binary one to ensure
that this entry, because it has the lowest binary name value, is the
first entry in the first block of the index.

Field 2: Last Block Address (3 bytes) -- contains the relative track
address of the last block assigned to the index. The address is in the
form TTR.

Field 3: Half-word Count (1 byte) -- contains a binary three to
indicate that three half words follow.

Field 4: Index Lower Limit (3 bytes) -- contains the relative track
address of the block in which this entry appears. The address is in the
form TTR.

Field 5: Number of Aliases (1 byte) -- contains the binary count of the
number of aliases assigned to the index. If the index is not a high
level index'I this field is zero.

Field 6: Unused Bytes in Last Block (2 bytes) -- contains the binary
count of the number of unused bytes remaining in the last block of the
index.

Ma~ntaining the Catalog and the Volume Table of Contents 25

An index link entry is the last entry in all index blocks. The entry
is 12 bytes long and contains three fields.

Field 1: Name Field (8 bytes) -- contains only the hexadecimal number
FF to ensure that this entry, because it has the highest binary name
value. will appear as the last entry in any index block.

Field 2: Link Address (3 bytes) -- contains the relative track address
of the next block of the same index" if there is a next block in the
index. Otherwise. the field contains binary zeros.

Field 3: Half-word count (1 byte)
that no additional fields follow.

contains a binary zero to indicate

Pointer Entries

An index pointer entry can appear in all indexes except generation
indexes. The entry is 12 bytes long and contains three fields.

Field 1: Name Field (8 bytes) -- contains the name of the index being
pointed to by field 2.

Field 2: Index Address (3 bytes) -- contains the relative track address
of the first block of the index named in field 1. The address is in the
form TTR.

Field 3: Half-word Count (1 byte) -- contains a binary zero to indicate
that no additional fields follow.

A data set pointer entry can appear in any index. It contains the
simple name of a data set and from one to five 12-byte fields that each
identify a volume on which the named data set resides. If the data set
resides on more than five volumes, a volume control block must be usej
to point to the volumes. The volume control block is identified by a
volume control block pointer entry, not a data set pointer entry.

The data set pointer entry varies in length. The length is
determined by the formula (14+12m), where m is the number of volumes
containing the data set. The variable m can be from 1 through 5. The
data set pointer entry can appear in any index. and it contains five
fields.

Field 1: Name Field (8 bytes) -- contains the simple name of the data
set whose volumes are identified in field 5.

Field 2: Address Field (3 bytes) -- contains a binary zero.

Field 3: Half-word Count (1 byte) -- contains the binary count of the
number of half words that follow. The number is found by the formula
(6m+1). where m is the number of volumes on which the data set resides.
The variable ill can be from 1 through 5.

Field 4: Volume count (2 bytes) -- contains the binary count of the
number of volumes identified in field 5 of this entry.

Field 5: Volume Entries (12 to 60 bytes) -- contains
12-byte entries, each of which identifies a volume on
resides. Each entry contains a 4-byte device code. a
serial number l and a 2-byte data set sequence number.
sequence number· is zero for direct access volumes.

26 OS System Programmer's Guide (Release 17)

from one to five
which the data set
6-byte volume
The data set

A volume control block pointer entry can appear in any index. It can
identify up to 20 volumes. The entry is 14 bytes long and contains four
fields.

Field 1: Name Field (8 bytes) -- contains the last name of the
qualified name of the data set identified by this entry. The data set
resides on the volumes whose serial numbers are given in the volume
control block pointed to by field 2.

Field 2: Address Field (3 bytes) -- contains the relative track address
of the volume control block identifying the volumes containing the data
set named in field 1. The address is in the form TTR.

Field 3: Half-word Count (1 byte)
that one half word follows.

contains a binary one to indicate

Field 4: Zero Field (2 bytes) -- contains binary zeros.

A control volume pointer entry can appear only in volume indexes. It
is 18 bytes long and contains four fields.

Field 1: Name Field (8 bytes) -- contains a high level index name that
appears in the volume index of the control volume identified in field 4.

F'ield 2: Address Field (3 bytes) -- contains binary zeros.

Field 3: Half-word count (1 byte) -- contains a binary three to
indicate that three half words follow.

Field 4: Control Volume Serial Number (6 bytes) -- contains the serial
number of the control volume whose volume index contains an entry
identifying the high level index name in field 1.

A new control volume pointer entry can appear only in volume indexes.
It is 22 bytes long and contains 5 fields.

Field 1: Name field (8 bytes) contains a high level index name that
appears in the volume index of the control volume identified in fields 4
and 5.

Field 2: Address field (3 bytes) contains binary zeros.

Field 3: Halfword Count (1 byte) contains a binary 5 to indicate that
five halfwords follow.

Field 4: Control Volume Device Code (4 bytes) contains the 4-byte
binary device code of the control volume whose index contains an entry
identifying the high level index name in field 1.

Field 5: Control Volume serial Number (6 bytes) contains the serial
number of the control volume whose index contains an entry identifying
the high level index name in field 1.

An alias entry can appear in volume indexes only. An alias entry is
20 bytes long and contains four fields.

Field 1: Name Field (8 bytes) -- contains the alias of the high level
index identified in field 2.

Field 2: Address Field (3 bytes) -- contains the relative track address
of the first block of the index named in field 4. The address is in the
form TTR.

Maintaining the catalog and the Volume Table of Contents 27

Field 3: Half-word Count (1 byte) -- contains a binary four to indicate
that four half words follow.

Field 4: True Name Field (8 bytes) -- contains the name of the index
whose alias appears in field 1. The address of the index is in field 2.

A generation index pointer entry can appear,in all indexes except
generation indexes. The entry is 16 bytes long and contains six fields.

Field 1: Name Field (8 bytes) -- contains the name of the generation
index whose address is contained in field 2.

Field 2: Address Field (3 bytes) -- contains the relative track address
of the generation index named in field 1. The address is in the form
TTR.

Field 3: Half-word Count (1 byte) -- contains a binary two to indicate
that two half words follow.

Field 4: Flags (1 byte) -- contains flags that govern the uncataloging
of data sets as specified by the DELETE and EMPTY options of the INDEX
macro instruction. The options and their hexadecimal codes are as
follows:

EMPTY=Ol DELETE=02 EMPTY and DELETE=03

Field 5: Maximum Generations Allowed (1 byte) -- contains the binary
count of the maximum number of generations allowed in the index at one
time as specified in the INDEX macro instruction.

Field 6: Current Generation Count (2 bytes) contains the binary
count of the number of generations cataloged in the index.

The Volume Control Block contents

A volume control block is composed of one or more volume-list blocks.
Each volume-list block contains an 8-byte key and a 256-byte data
portion. The data portion of the volume-list block can identify up to
20 volumes on which a data set is recorded. The format of the volume
list block is as follows:

Field 1: Number of volumes (2 bytes) -- the first volume-list block
contains the binary count of volumes on which the data set is stored;
the value of this field is reduced by 20 for each subsequent volume-list
block. If a data set is on 61 volumes, for example, it has four
volume-list blocks. The first field of each block contains 61,41,21,
and 1" respectively.

Field 2: Volume Identification (12 to 240 bytes) -- contains from 1 to
20 12-byte entries, each of which identifies a volume on which the data
set resides. Each entry contains a 4-byte device code, a 6-byte volume
serial number, and a 2-byte data set sequence number. The data set
sequence number is zero for direct access volumes.

Field 3: Zero Field (10 bytes) -- contains binary zeros.

Field 4: Chain Address (3 bytes) -- contains the relative track address
of the next block of this volume control block, if additional blocks
exist. The address is in the form TTR. If this is the last block of
the volume control block, the field contains a binary zero. If this
field is not zero, this block must contain twenty 12-byte fields
identifying volumes of the data set.

Field 5: Zero Field (1 byte) -- contains binary zeros.

28 as System Programmer1s Guide (Release 17)

Appendix B: Device Code Designations

Device

IBM 2400 Series Magnetic
Tape Units

IBM 2400 Series Magnetic
Tape Units

IBM 2400 Series Magnetic
Tape Units

IBM 2400 series Magnetic
Tape Units

IBM 2400 Series Magnetic
Tape Units

IBM 2311 Disk Storage Drive

IBM 2301 Drum Storage

IBM 2302 Disk Storage

IBM 2303 Drum Storage

IBM 2314 Dir·ect Access
storage Facility

IBM 2321 Data Cell

7-track Compatibility

7-track compatibility
Data Conversion

Phase Encoding

Phase Encoding
with Dual Density

Device Code
Designation
(In Hexadecimal)

30008001

30808001

30C08001

34008001

34208001

30002001

30402002

30.002004

30002003

30C02008

30002005

Maintaining the catalog and the Volume Table of Contents 29

Adding SVC Routines

to the Control Program

This chapter provides detailed information
on how to write an Svc routine and insert
it into the control program portion of the
System/360 Operating System.

Before reading this chapter, you should
be familiar with the information contained
in the prerequisite publications listed
below.

Documentation of the internal logic of
the supervisor and its relationship to the
remainder of the control program can be
obtained through your IBM Branch Office.

PREREQUISITE PUBLICATIONS

The IBM System/360 Operating System:
Assembler Language publication (Form
C28-6514) contains the information
necessary to code programs in the assembler
language.

The IBM System/360 Operating System:
supervisor and Data Management Macro
Instructions publication (Form C28-6647)
describes the system macro instructions
that can be used in programs coded in the
assembler language.

Adding SVC Routines to the Control Program 31

Writing SVC Routines

Because your SVC routine will be a part of the control program, you must
follow the same programming conventions used in Svc routines supplied
with System/360 Operating System.

Four types of SVC routines are supplied with System/360 Operating
System, and the programming conventions for each type differ. The
general characteristics of the four types are described in the following
text, and the programming conventions for all types are shown in tabular
form.

Characteristics of SVC Routines

All SVC routines operate in the supervisor state.. You should keep the
following characteristics in mind when deciding what type of SVC routine
to write:

• Location of the routine - Your SVC routine can be either in main
storage at all times as part of the resident control program, or on
a direct access device as part of the SVC library. Type 1 and 2 SVC
routines are part of the resident control program, and types 3 an1 4
are in the SVC library.

• Size of the routine - Types 1, 2, and 4 SVC routines are not limite1
in size. However, you must divide a type 4 SVC routine into load
modules of 1024 bytes or less. The size of a type 3 SVC routine
must not exceed 1024 bytes.

• Design of the routine - Type 1 SVC routines must be reenterable or
serially reusable; all other types must be reenterable. If you wish
to aid system facilities in recovering from machine malfunctions,
your SVC routines should be refreshable.

• Interruption of the routine - When your SVC routine receives
control, the CPU is masked for all maskable interruptions but the
machine check interruption. All type 1 SVC routines must execute in
this masked state. If you want to allow interruptions to occur
during the execution of a type 2, 3, or 4 SVC routine, you must
change the appropriate masks. If you expect that a type 2, 3, or 4
SVC routine will run for an extended period of time, it is
recommended that you allow interruptions to be processed where
possible.

Programming Conventions for SVC Routines

The programming conventions for the four types of SVC routines are
summarized in Table 1. Details about many of the conventions are in the
ref_erence notes that follow the table. The notes are referred to by the
numbers in the last column of the table. If a reference note for a
convention does not pertain to all types of SVC routines, an asterisk
indicates the types to which the note refers.

32 OS System Programmer's Guide (Release 17)

Table 1. Programming Conventions for SVC Routines
r--~------------------T-----------T------T---------T--------T----------,
I I I I I IReference I
I Conventions I Type 1 IType 21 Type 3 IType 4 I Code I
I I I I I I I
~---------------------+-----------+------+---------+--------+----------~
IPart of resident I Yes I Yes I No I No I I
I control program I I I I I I
~---------------------+-----------+------+---------+--------+----------1
ISize of routine I Any I Any I ~ 1024 lEach I I
I I I I bytes Iload I I
I I I I I module I I
I I I I I ~ 1024 I I
I I I I I bytes I I
~--~------------------+-----------+------+---------+--------+----------1
IReenterable routine I Optional, I Yes I Yes I Yes I 1 I
I I but must I I I I I
I Ibe serially I I I I I
I I reusable I I I I I
~---------------------+-----------+------+---------+--------+----------~
IMay allow inter- I No I Yes I Yes I Yes I 2 I
I ruptions I I I I I I
~--------------------+-----------~------~---------~--------+----------~
IEntry point IMust be the first byte of the routine I I
I lor load module. and must be on a I I
I Idouble-word boundary I I
~---------------------+-------------------------------------+----------1
INumber of routine INumbers assigned to your SVC routines I I
I Ishould be in descending order from I I
I 1255 through 200 I I
~---------------------+-----------T------T---------T--------+----------~
IName of routine IIGCnnn IIGCnnnlIGCOOnnn IIGCssnnnl 3 I
~---------------------+-----------~------~---------~--------+----------~
I Re.gister contents at I Registers 3 I 4, 5 I and 14 contain I 4 I
lentry time Icommunication pointers; registers 0 , I I
I 11. and 15 are parameter registers I I
~---------------------+-----------T------T---------T--------+----------~
IMay contain reloca- I Yes I Yes I No* I No* I 5 I
I tabl e data I I I I I I
~---------------------+-----------+------+---------+--------+----------~
ICan supervisor re- I Not I Yes* I Yes* I Yes* I 6 I
Iquest block (SVRB) belapplicable I I I I I
I extended I I I I I I
~---------------------+-----------+------+---------+--------+----------1
IMay issue WAIT macro-I No I Yes* I Yes* I Yes* I 7 I
I instruction I I I I I I
~---------------------+-----------+------+---------+--------+----------~
IMay issue XCTL macro-I No I No I No I Yes* I 8 I
I instruction I I I I I I
~---------------------+-----------+------+---------+--------+----------~
I May pass control to I None I Any I Any I Any I I
Iwhat other types of I I I I I I
I SVC routines I I I I I I
~---------------------+-----------+------~---------~--------+----------~
IType of linkage with I Not I Issue supervisor call I I
lother SVC routines lapplicable I <SVC) instruction I I
~--------------------+-----------~-------------------------+----------~
IExit from SVC Routine I Branch using return register 14 I I
~---------------------+-----------T-------------------------+----------~
IMethod of abnormal IUse resi- IUse ABEND I 9 I
I termination Ident abnor-Imacro instruction or I I
I Imal termi- Iresident abnormal I I
I Ination rou-Itermination routine I I
I I tine I I I L _____________________ ~ ___________ ~ _________________________ ~ __________ J

Adding SVC Routines to the. Control Program 33

Ref.~rence

~

1

2

3

4

SVC Routine
Types Reference Notes

all If your SVC routine is to be reenterable, you
cannot use macro instructions whose expansions
store information into an in-line parameter list.

all You should write SVC routines so that program
interruptions cannot occur. If a program
interruption does occur during execution of an
SVC routine, the routine loses control and the
task that called the routine terminates.

all

all

If a program interruption occurs and you are
modifying a serially reusable SVC routine, a
system queue, control blocks, etc., the
modification will never complete; the next time
the partially modified code is used, the results
will be unpredictable.

You must use the following conventions when
naming SVc routines:

• Types 1 and 2 must be named IGCnnn; nnn is
the decimal number of the SVC routine. You
must specify this name in an ENTRY, CSECT, or
START instruction.

• Type 3 must be named IGCOOnnn; nnn is the
signed decimal number of the SVC routine.
This name must be the name of a member of a
partitioned data set.

• Type 4 must be named IGCssnnn; nnn is the
signed decimal number of the SVC routine, and
ss is the number of the load module minus
one, e.g., ss is 01 for the second load
module of the routine. This name must be the
name of a member of a partitioned data set.

Before your SVC routine receives control, the
contents of all registers are saved. For type 4
routines, this applies only to the first load
module of the routine.

In general, the location of the register save
area is unknown to the routine that is called.
When your SVC routine receives control, the
status of the registers is as follows:

• Register 0 and 1 contain the same information
as when the SVC routine was called.

• Register 2 contains unpredictable
information.

• Register 3 contains the starting address of
the communication vector table.

• Register 4 contains the address of the task
control block (TCB) of the task that called
the SVC routine.

34 OS System Programmer's Guide (Release 17)

Reference
Code

5

6

7

8

SVC Routine
~

3,,4

2,3 , 4

2 , 3,,4

4

Reference Notes

• Register 5 contains the address of the
supervisor request block (SVRB), if a type 2,
3 , or 4 SVC routine is in control. If a type
1 SVC routine is in control , register 5
contains the address of the last active
request block.

• Register 6 throuuh_!~ contain unpredictable
information.

• Register 13 contains the same information as
when the SVC routine was called.

• Register 14 contains the return address.

• Register 15 contains the same information as
when the SVC routine was called.

You must use registers 0 , 1" and 15 if you want
to pass information to the calling program. rhe
contents of registers 2 through 14 are restorej
when control is returned to the calling program.

Because relocatable address constants are not
relocated when a type 3 or 4 SVC routine is
loaded into main storage, you cannot use them in
coding these routines; nor can you use macro
instructions whose expansions contain relocatable
address constants. Types 1 and 2 are not
affected by this restriction since they are part
of the resident control program.

You can extend the SVRB, in 8-byte increments,
from 96 bytes up to 144 bytes. The extended area
is available as a work area during execution of
your rou~ine only if you specify the extension
during the system generation process. When your
SVC routine receives control , register 5 contains
the address of the SVRB to which the extended
save area is appended.

You cannot issue the WAIT macro instruction
unless you have changed the system mask to allow
I/O and external interruptions. If you have
allowed these interruptions , you can issue WAlr
macro instructions that await either single or
multiple events. The event control block (ECB)
for single-event waits or the ECB list and ECBs
for multiple-event waits must be in dynamic main
storage.

When yciu issue an XCTL macro instruction in a
routine under control of a type 4 SVRB, the new
load module is brought into a transient area.

The contents of registers 2 through 13 are
unchanged when control is passed to the load
module; register 15 contains the entry point of
the called load module.

Adding SVC Routines to the Control Program 35

Reference SVC Routine
Code Types Reference Notes-

9 all Type 1 SVC routines must use the resident
abnormal termination routine to terminate any
task. The entry point to the abnormal
termination routine is in the communication
vector table (CVT). The symbolic name of the
entry point is CVTBTERM.

Type 2, 3, and 4 SVC routines must use- the ABEND
macro instruction to terminate the current task,
and must use the resident abnormal termination
routine to terminate a task other than the
current task.

Before the resident abnormal termination routine
is entered, the CPU must be masked for all
maskable interruptions but the machine check
interruption, and registers 0 , 1, and 14 must
contain the following:

• Register 0 contains the address of the TCB of
the task to be terminated.

• Register 1 contains the following
information:

Bit 0 is a 1 if you want a dump taken.

Bit 1 is a 1 if you want to terminate a job
step.

Bits 2-7 are zero.

Bits 8-19 contain the error code.

Bits 20-31 are zero.

• Register 14 contains the return address. The
resident abnormal termination routine exits
by branching to the address contained in
register 14.

The contents of register 15 are destroyed by the
abnormal termination routine.

36 OS System Programmer's Guide (Release 17)

Inserting SVC Routines Into the Control Program

You insert svc routines into the control program during the system
generation process.

Before your SVC routine can be inserted into the control program, the
routine must be a member of a cataloged partitioned data set. You must
name this data set SYS1.name.

The following text gives a description of the information you must
supply during the system generation process. You will find a
description of the macro instructions required during the system
generation process in the publication IBM System/360 Operating system:
System Generation, Form C28-6554.

Specifying SVC Routines

You use the SVCTABLE macro instruction to specify the SVC number, the
type of SVC routine, and, for type 2, 3, or 4 routines, the number of
double words in the extended save area.

Inserting SVC Routines During the System Generation Process

To insert a type 1 or 2 SVC routine into the resident control program,
you use the RESMODS macro instruction. You must specify the name of the
partitioned data set and the names of the members to be inserted into
the control program. Each member can contain more than one SVC routine.

To insert a type 3 or 4 SVC routine into the SVC library, you use the
SVCLIB macro instruction. You must specify the name of the partitioned
data set and the names of members to be included in the SVC library.
The member names must conform to the conventions for naming type 3 and 4
routines, i.e., IGCOOnnn and IGCssnnn.

Adding SVC Routines to the Control Program 37

Handling Accounting Information

You may add accounting facilities to PCP,
MFT, and MVT configurations of the
operating system. This chapter describes
the input available to an accounting
routine; the characteristics and
requirements of an IBM-supplied data set
writer that may be used to log accounting
information generated by an accounting
routine; and how to insert an accounting
routine into the control program.
conventions to be followed in preparing an
accounting routine are also noted.

REFERENCE PUBLICATIONS

The IBM System/360 Operating System:
Operator's Guide publication (Form
C28-6540) describes the procedure used to
update system data sets (used when
inserting your accounting routine into the
control program in MFT and MVT
configurations).

The !BM System/360 Operating System:
.Job Management program logic manuals, Forms
Y28-6613 and Y28-66601 discuss the control
program component in which your accounting
routines are inserted.

1IBM documents with Y prefix form numbers
are restricted in distribution and must be
obtained with the approval of local IBM
management.

Handling Accounting Information 39

Accounting Routines

Your installation may prepare accounting routines for insertion in PCP,
MFT, or MVT configurations of the operating system. These routines are
inserted in the control program during, or after, system generation.
There are differences, between 'configurations, in the accounting routine
attributes, the time(s) at which an accounting routine is entered, an:1
the information and facilities available to an accounting routine,.
These differences are noted in the text.

Prerequisite Actions

At system generation you must specify that an accounting routine is to
be supplied. This is done through the ACCTRTN=parameter of the system
generation SCHEDULR macro instruction. The system generation
specification must be made for PCP, MFT, and MVT configurations of the
operating system.

This specification causes the linkage to your accounting routine to
be installed in the scheduler component of the system being generated,
and makes usable the accounting data set writer routine. If you are not
going to install your accounting routine until after the system is
ge~erated, a dummy accounting routine (named IEFACTRT) is also placed in
the system at this time. Insertion of accounting routines in the
control program is discussed later in this chapter.

Accounting Routines Conventions

FORMAT

Your accounting routine may consist of one or more control sections.

ATTRIBUTES

An accounting routine written for insertion in PCP or MFT configurations
of the operating system must be serially reusable.

An accounting routine written for insertion in an MVT configuration
of the operating system must be reenterable.

CSECT NAME AND ENTRY POINT

The control section containing the entry point of your accounting
routine, and the entry point, must be named IEFACTRT.

REGISTER SAVING AND RESTORING

The content of registers 0 through 14 must be saved upon entry to your
accounting routine and restored prior to exiting.

40 OS System Programmer's Guide (Release 17)

ENTRANCES

Control is given to your accounting routine at the following times:

PCP, MFT, MVT Configurations
step initiation
step termination
Job termination

EXIT

You can use the RETURN macro instruction to restore the contents of the
general registers and return control to the operating system.

Input Available to Accounting Routines

The information available to an accounting routine varies slightly
between PCP. MFT and MVT configurations of the operating system. These
differences are noted in the following diagram.

Register 0 contains an entrance code. indicating at what time the
accounting routine is being given control.

Register 0 = 8:
= 12:
= 16:

step initiation
step termination
Job termination

Register 1 contains the starting address of a list of pointers to
items of accounting information. Each pointer is on a fullword
boundary. The sequence of pointers in the list and the items of
information provided are described in the following diagram.

Handling Accounting Information 41

Byte

I 0 I Job Name Pointer

Byte

Programmer
Name Pointer

116 1 Job Accounting
Data Fields Pointer

Byte

or

Step Running
Time Pointer

Pointer + 3

24 Step Accounting
Data Fields Pointer

Job Name 8 Bytes I

Programmer
Name 20 Bytes

00

Byte l
I Count
I

I

Data

Step Name
Pointer

Job Running
Time Pointer

Pointer + 3

Byte
i
I

Count I
I

Step Name 8 Bytes

Job Running Time
3 Bytes (MVT, MFT)

Entry Count 1 Byte

The step name pointer is zero at job termi­
nation.

A right justified binary number represents
job running time in hundredths (0.01) of a
second.

If a programmer deferred restart occurs, the
time used during the original execution is
omitted from the job time passed to a user
routine.

The entry count byte contains the number of
job accounting entries picked up from the
JOB statement. Commas used to denote
omitted entries are counted.

A byte of zeros indicates that the JOB statement
did not contain accounting information.

Byte l
Data I Datan 00 ... Count n !

These data fields contain the accounting information that was specified in the JOB statement. The first byte of each
field contains the number of bytes of data that follow. The last data field is followed by a byte of zeros.

A data fie Id - consisting only of the first, or count byte, is developed for an omitted accounting entry. The byte
contains zeros, indicating that no data is present for that field. In this case:

When (a, b" d) appears in the JOB statement

Byte I Byte I Byte I
I

Data I Datab 00 I Datad 00
Count a

a Countb l Countd I
I

Note: Use the entry-count byte (job running time pointer + 3) to determine if you have processed all the accounting
data fields.

Step Running Time
3 Bytes (MVT, MFT)

Entry Count 1 Byte

This pointer is zero
at job termination

The step running time pointer is zero at job termination.

The step running time is not on a full word boundary. A binary numer, right justified,
represents step running time in hundredths (0.01) of a second.

If an automatic restart occurs, the system gives control to a user routine prior to restarting; step
time passed is the time used by the step. Upon successful completion of a step that was
automatically restarted, the step time possed to a user routine does not inc lude the time used
by the step during its original execution. If a programmer deferred restart occurs, the time
used during the original execution is not included in the step time passed to a user routine.

Number of step accounting entries picked up from the EXEC statement. Commas used to denote
omitted entries are counted.

Byte

~~------------~
1

28 1" Flags" and Step
·1 Number Pointer

The step accounting data
fields conform to the same
specifications as the job
accounting data fie Ids.

Pointer + 1

"Flags" Byte I
Setting bit 7 of this byte to 1 effects job
cance IIation. -

This byte contains the number of the job
Step Number Byte I step currently being processed. The first

step in the job is 1.

Note: You can use the flag byte to cancel the execution of a ~ whose accounting information does not conform to your installation's
standards. You can equate step initiation for the first step ina job to job. i ni tiation, i. e., the step number byte conta ins 1.

42 as System Programmer's Guide (Release 17)

Output From the Accounting Routine

You can write output in three ways: by issuing console messages; by
using the standard system output; by using an IBM-supplied accounting
data set writer.

1. Console messages -- You can use write to Operator (WTO) or write to
Operator with Reply (WTOR) macro instructions.

2. System output -- You must assemble the following calling sequence
into your routine. The contents of register 12 must be the same as
when your accounting routine was entered, and register 13 must
contain the address of an area of 64 full words.

When writing an accounting routine for inclusion in the job
scheduler, you must be aware that register saving conventions
within the control program are different from those for problem
programs. In the job scheduler, registers are saved in the
sequence 0-14 in a 15-word save area. There is no place provided
to save register 13. You must provide some other means of saving
register 13; you may either save it in another register or provide
additional save area that is not known to the control program.
This can be done by adding a word to the end of the save area that
is provided and is addressed as SAVE + 60.

r---------T----------T---,
I Name I Operation I Operand I

~---------+----------+---~
I I MVC I 36(4,12),MSGADDR MOVE MESSAGE ADDRESS AND I
I I MVC I 42(2,12),MSGLEN LENGTH TO SYSTEM TABLE. I
I I L I REG15, VCONYS BRANCH AND LINK TO MESSAGE I
I I BALR I REG14,REG15 ROUTINE I

I I I I
I I I I
I MSGADDR I DC I A(MSG) I
I MSG I DC I C' text of message' I
I MSGLEN I DC I H'two character length of message l I
I VCONYS I DC I V(IEFYS) I L _________ L __________ L ___ J

3. Accounting Data Set Writer -- This writer places accounting records
you have constructed in your accounting routine in a data set named
SYS1.ACCT. The data set must reside on a permanently resident
direct access device. You must provide, in your accounting
routine, linkage to the writer, and pass the beginning address of
the record to be written, to it.

Appendix A of this chapter discusses the use of the data set
writer.

Sample Accounting Routine

A sample accounting routine, showing use of the data set writer, output
to system output, and issuance of console messages, is stored under the
member name SAMACTRT in the SYS1.SAMPLIB data set furnished with the
starter operating system.

Handling Accounting Information 43

Inserting an Accounting Routine Into the Control Program

Your accounting routine can be inserted in the control program in two
ways; by placing the routine on the SYS1.CI505 data set used in system
generation or by placing the routine in the appropriate load module of
the control program after system generation. The effect of either
action is to replace a dummy accounting routine with your accounting
routine·.

Insertion at System Generation

To insert your accounting routine into the control program during system
generation, you must. prior to the start of the system generation
process, place your routine in the SYS1.CI505 data set. using the
linkage editor. The SYS1.CI505 data set (furnished with the starter
operating system) contains load modules which are combined during the
system generation process to form the load modules composing the control
program. In response to the specification made in the system generation
SCHEDULR macro instruction" your accounting routine is incorporated in
the appropriate load modules for the system being generated.

You must place your accounting routine in the SYS1.CI505 data set
under the name IEFACTRT. You will be replacing the dummy accounting
routine -- also named IEFACTRT.

Insertion After System Generation

To insert your accounting routine into the control program after system
generation you place the routine in load modules of the scheduler
component of the generated control program, using the linkage editor.
The scheduler load modules are in the linka~ library (SYS1.LINKLIB jata
set) of the generated system. The affected load modules of the three
PCP schedulers (18K I 44K, lOOK). the MFT schedulers (30K. 44K), and the
MVT scheduler are as follows:

PCP Configurations

18K Scheduler

load module IEFSELCT
load module IEFSTERM
load module IEFJTRMl

44K Scheduler

load module IEFSTERM
load module IEFJTERM

lOOK Scheduler

step initiation
step termination
job termination

step initiation/termination
job termination

load module GO -- step initiation/termination and job termination

MFT Configurations

3 OK Scheduler

load module IEFSD520
load module IEFSD515

44K Scheduler

step initiation
step/job termination

load module IEFW21SD -- step initiation
load module IEFSD510 -- step/job termination

44 as System Programmer's Guide (Release 17)

MVT Configuration

lVIVT Scheduler

load module IEFSD061
load module IEFW21SD

step and job termination
step initiation

An example of the input for a linkage editor run to insert your
accounting routine into any of the job schedulers follows:

//jobname
//stepname
//SYSPRINT
//sysUTl
//SYSLMOD
//SYSLIN

JOB
EXEC
DO
DD
DO
DD

(object code)

INCLUDE
ALIAS
ENTRY
NAME

(parameters)
PGM=IEWL, (parameters)
SYSOUT=A
UNIT=SYSDA,SPACE=(parameters)
DSNAME=SYS1.LINKLIB,DISP=OLD

*

SYSLMOD(load module name)
alias names
entry point name
load module name(R)

This sequence must be
repeated for each
scheduler load module
into which you wish
to insert accounting
routines.

In this example nload module name n represents the appropriate
scheduler load module as identified in the preceding text. To ensure
accuracy in identifying the correct alias names and entry point names
for the load modules, obtain these names from the system generation
listing produced during generation of the system you are working with.
These names are specified in the system generation stage II linkage
editor output for the linkage editor execution that produced the load
module.

Handling Accounting Information 45

Appendix A: Accounting Data Set Writer (PCP, MFT, MVT)

The accounting data set writer (module IBFWAD) is inserted in the
appropriate scheduler load modules during system generation when
accounting routine inclusion is specified in the SCHEDULR macro
instruction. These are the same modules in which your accounting
routine is inserted. Scheduler storage requirements are increased by
the amount of storage needed by your accounting routine plus 2600 bytes.
The writer places accounting records developed by your routine in a data
set named SYS1.ACCT.

Linkage

Your accounting routine links to the writer via the following mechanism:

VCON

Input

L
BALR

DC

R15,VCON
14,, 15

V(IEFWAD)

Your accounting routine passes in register 1 the address of the
accounting record to be written.

The record format is:

DS 3H
DC H'

DC

space used by the data set writer
contains the number of bytes of data being passed.
This number cannot exceed the capacity of 1 track on
the direct access volume being written on.
the data to be written in SYS1.ACCT.

Registers 13, 14, and 15 are used as specified by operating system
conventions (14 and 15 are used for linkage" as above; 13 must point to
an 18-word save area).

Specifying the SYS1.ACCT Data Set

The SYS1.ACCT data set must be pre-allocated on a direct access volume
that will be permanently resident. The data set must be named
SYS1.ACCT,I have no secondary extents, and be allocated contiguous space.
Do not catalog the data set.

If your installation has two permanently resident volumes available
for accounting routine use~ you may create two SYS1.ACCT data sets and
utilize the console messages and replies or the SET command (PCP only)
to notify the system as to which data set is to be written to.

46 OS System Programmer's Guide (Release 17)

Output

When your accounting routine receives control from the writer:

Register 0
Register 15

The number of empty tracks in SYS1.~CCT
Condition codes
o Normal exit
4 Record to be written is longer than a track
8 No space left in SYS1.ACCT

12 SYS1.ACCT not found
16 Permanent I/O error
20 SYS1.ACCT end of file not found
24 Unit name not found

Use of ENQ/DEQ

IEFWAD enqueues on the major Q name SYSIEFAR and the minor Q name wo.

specifying the Device on Which SYS1.ACCT Resides

The parameter [,ACCT=([unitname] [IN])] has been added as an option to
the SET command (PCP only). In this parameter:

unit name

N

specifies the device on which SYS1.ACCT resides; if this parameter
is omitted the system residence volume is assumed.

specifies that the lowest extent of SYS1.ACCT may be used; if this
parameter is omitted writing will be attempted from the last record
written.

Handling Accounting Information 47

IECDSECT, IEFJFCBN, and
IEFUCBOB Macro Instructions

If you want to use the IECDSECT, IEFJFCBN,
and IEFUCBOB macro instructions, you must
either add these macro-definitions to the
macro library <SYS1.MACLIB) or place them
in a separate partitioned data set and
concatenate this data set to the macro
library.

This chapter contains the following:

• The format of the macro instructions.

• The job control and utility statements
needed to add the macro instructions to
the library.

• The macro-definition to be added to the
library.

The information previously contained in
this chapter on label handling routines may
be found in the publication IBM System/360
Operating System: Tape Labels, Form
C28-6680.

IECDSECT, IEFJFCBN, and IEFUCBOB Macro Instructions 49

IECDSECTMACRO INSTRUCTION

This macro instruction defines the symbolic names of all fields in the
work area used by the OPEN, CLOSE, TCLOSE, and EOV routines. Code this
macro instruction with blank name and operand fields, and precede it
with a DSECT statement. Note: The IEFJFCBN macro instruction is used
in the assembly of IECDSECT. The macro-definition for IEFJFCBN must be
present in the macro-library (SYS1.MACLIB) for successful definition of
all fields in the work area.

r--~---T-----------T---,
I Name I Operation I Operand I
r--~---+~----------+---~
I I IECDSECT I I L-_____ ~ ___________ ~ ___ J

Control Statements Required

r--,
//jobname JOB {parameters}
//stepname EXEC PGM=IEBUPDTE,PARM=NEW
//SYSPRINT DO SYSOUT=A
//SYSUT2 DD DSNAME=SYS1.MACLIB,DISP=OLD
//SYSIN DO DATA
./ ADD NAME=IECDSECT,LIST=ALL

IECDSECT Macro-Definition

./ ENDUP
/*

IECDSECT Macro-Definition

*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*

MACRO
IECDSECT
SPACE 1

SPACE 1

SPACE 1

THIS MACRO IS USED TO DEFINE THE WORK AREA
FOR ALL MODULES OF OPEN,CLOSE,TCLOSE
AND END OF VOLUME FOR O/S 360

THIS MACRO DEFINES A WORK AREA WITH THE
FOLLOWING FORMAT

1.LABELS AND DSCB
LABELS

DSCB

VOLUME LABEL
FILE LABEL 1
FILE LABEL 2

FORMAT 1
FORMAT 3 KEY
FORMAT 3 DATA
CORE ADDRESS OF NEXT DSCB

MESSAGE AREA •••••••••••••••• 100 BY'rES
2. JFCB •••• , ••••• ' ••••.••••••••.•••••• 176 BYTES
3.ECB •••••••••••••••••••••••••••••• 4 ByrES
4.IOB ••••••••••••••••••••••••••••• 40 BYTES

50 OS System Programmer's Guide (Release 17)

*
*
*
*
* ***
* ***
* ***
* ***

*
DXLBL
V OLLAB I
VOLNO
VOLSERNO
VOL SEC

VOLVTOC

VOLOWNER

*

FL1LABI
FLlNO
FL1ID
FL1FILSR
FL1VOLSQ
FLlFILSQ
FL1GNO
FL1VNG
FL1CREDT
FLlEXPDT
FL1FSEC
FLlBLKCT
FL1SYSCD
FLlRES

FL1RES1

*

FL2RECFM
FL2BLKL
FL2LRECL
FL2DEN
FL2FILP
FL2JSID
FL2JOBD
FL2JSSP
FL2STEPD
FL2TRTCH
FL2CNTRL

FL2BLKA
FL2RES

SPACE 1

SPACE 2

SPACE 1

SPACE
DS
DS
DS
DS
OS
DS
OS
DS
OS
DS
OS
DS
SPACE

SPACE
ORG
DS
DS
OS
DS
DS
DS
DS
DS
DS
DS
DC
DS
DS
DS
OS
DS
SPACE

SPACE
ORG
OS
DS
DS
DS
OS
DS
DS
DC
OS
DS
DS
DS
DS
DS
SPACE

1
OCL80
CL3
CL1
CL6
CL1
OCL10
CLS
CLS
CL10
CL10
CL10
CL29
1

1
DXLBL
CL3
CL1
CL1?
CL6
CL4
CL4
CL4
CL2
CL6
CL6
ClOt

CL6
CL13
OCL?
CL1
CL6
1

1
FL1ID
CL1
CLS
CLS
CL1
CL1
OCL1?
CL8
C'/'
CL8
CL2
CL1
CL1
CL1
CL41
1

S.DEB ••••••••••••••••••••••••••••• 44 BYTES
6.DCB •••••••••••••••••••••••••••••• 4 BYTES
?CCW S ••••••••••••••••••••••••••• 96 ByrES

TOTAL *** 464 BYTES

VOLUME LABEL

LABEL IDENTIFIER
VOLUME LABEL NUMBER

RESERVED
RESERVED

RESERVED

OWNER NAME AND ADDRESS CODE
RESERVED

FILE LABEL 1

LABEL IDENTIFIER
FILE LABEL NUMBER
FILE IDENTIFIER
FILE SERIAL NUMBER
VOLUME SEQUENCE NUMBER
FILE SEQUENCE NUMBER
GENERATION ImMBER
VERSION NUMBER OF GENERATION
CREATION DATE
EXPIRATION DATE
FILE SECURITY INDICATOR
BLOCK COUNT
SYSTEM CODE
RESERVED FOR FUTURE USE

FILE LABEL 2

RECORD FORMAT
BLOCK LENGTH
BLOCKING FACTOR/RECORD LENGTH
DENSITY
FILE POSITION
JOB/STEP IDENTIFICATION
JOB IDENTIFICATION
SLASH
STEP IDENTIFICATION
TAPE RECORDING TECHNIQUE
CARRIAGE CONTROL CHARACTER
RESERVED FOR FUTURE USE
BLOCK ATTRIBUTE
RESERVED FOR FUTURE USE

IECDSECT 1 IEFJFCBN, and IEFUCBOB Macro Instructions 51

*

DXDSCB
DSCFMTID
DSCFILSR
DSCVOLSR
DSCCRED.T
DSCEXPDT
DSCNOEXT
DSCBLDBL

DSCSYSCD

DSCFILTY
DSCRECFM
DSCOPTCD
DSCBLKL
DSCLRECL
DSCKEYL
DSCRKP
DSCDSIND:
DSCSCALO
DSCLSTAR
DSCTRBAL
DSCEXTYP
DSCEXTSQ
DSCLOWLM
DSCUPPLM
DSCEXTl
DSCEXT2
DSCNEXT
DSCCORE
DSCBEND

*

DXDSCB3K
DSCBF3C
DSCBEXSK
DSCBEXTY
DSCBEXSQ
DSCBLLMT
DSCBULMT
DSCBEX2
DSCBEX3
DSCBEX4

*

DSCBFMID
DSCBEXSD
DSCBEX5
DSCBEX6
DSCBEX7
DSCBEX8
DSCBEX9
DSCBEXA
DSCBEXB
DSCBEXC
DSCBEXD
DSCBNEXT

SPACE
ORG
DS
DC
OS
DS
DS
DS
DS
DS
DS
DS
DS
DS
DS
DS
DS
DS
DS
DS
DS
DS
DS
DS
DS
DS
DS
DS
DS
DS
DS
DS

1
DXLBL
OCL96
C' l'
CL6
CL2
CL3
CL3
CLl
CLl
CLl
CL13
CL7
CL2
CLl
CLl
CL2
CL2
CLl
CL2
CLl
CL4
CL5
CL2
CLl
CLl
CL4
CL4
CL10
CL10
CL5
CL4

EQU *
SPACE 1

SPACE
ORG
DS

1
DXOSCB
OCL40

DATA SET CONTROL BLOCK

FILE SERIAL NUMBER

CREATION DATE IN DISCONTINUOUS BIN
EXPIRATION DATE IN DISCONTINUOUS BIN

SYSTEM CODE

FILE TYPE
RECORD FORMAT
OPTION CODE
BLOCK LENGTH
RECORD LENGTH
KEY LENGTH
KEY LOCATION

EXTENT TYPE INDICATOR
EXTENT SEQUENCE NUMBER

POINTER TO NEXT RECORD
CORE ADDRESS OF NEXT OSCB RECORD

DATA SET CONTROL BLOCK -FORMAT 3- KEY PORTION

DC
DS

X" 03030303'
OCL40

DS
DS
D.s
DS
DS
DS
DS
SPACE

SPACE
ORG
DC
DS
DS
DS
DS
D.S
DS
DS
DS
DS
DS
DS
SPACE

CLl
CLl
CL4
CL4
CL10
CL10
CL10
1

1
DXOSCB
C'3'
OCL90
CL10
CL10
CL10
CL10
CL10
CL10
CL10
CL10
CL10
CL5
1

EXTENr TYPE INDICATOR
EXTENT SEQUENCE NUMBER
CCHH LOWER LIMIT
CCHH UPPER LIMIT
ADDITIONAL EXTENT
ADDITIONAL EXTENT
ADDITIONAL EXTENT

DATA SET CONTROL BLOCK -FORMAT 3- RECORD PORTION

FORMAT ID
ADDITIONAL EXTENTS
ADDITIONAL EXTENT
ADDITIONAL EXTENT
ADDITIONAL EXTENT
ADDITIONAL EXTENT
ADDITIONAL EXTENT
ADDITIONAL EXTENT
ADDITIONAL EXTENT
ADDITIONAL EXTENT
ADDITIONAL EXTENT
CCHHR OF NEXT FORMAT 3 DSCB

52 OS System Programmer's Guide (Release 17)

*

REPLYLTH
REPLYADR
REPLYECB
MSGLSTSZ
MESSAGEA
REPLY

*
*
* l>lSERL
MINSTL
MUNL
MVOLL
* MTXTL
* MSGLTH

* NSGIOSUP
l'.lSGSER

MSGSERLO

lvlSGINSTR

MSGACTN

lv1SGUN

MSGVOLSR

MSGTEXT

*

DXJBF

*
DXECB

*
DXIOB
IOBFLAGl
IOBFLAG2
IOBSENSE
IOBSENSO
10BSENSl
IOBECBPT

IOBCSW
IOBCOMAD
IOBSTATO
IOBSTATl
IOBCNT
IOBSIOCC
IOBSTART
IOBWGHT
IOBDCBPT

SPACE
ORG
DS
DS
DS
DS
DS
DS

ORG

EQU
EQU
EQU
EQU

DC
DS
ORG
DS
ORG
DC
ORG
DS
-DC
DC
DC
DC
DC
DS
SPACE

MESSAGE AREA
1
DXDSCB
CLl
CL3
CL4
CL4
CL60
CLiO

MESSAGEA

DEFINITION OF LENGTH OF MESSAGE COMPONENTS
3 MESSAGE SERIAL NUMBER LENGTH
6 MSG INSTRUCTION LTH INC MSG SER
3 MESSAGE UNIT NAME LENGTH
6 MESSAGE VOLUME SERIAL LENGTH
LENGTH MAY BE DEFINED BY EACH MODULE TO FIT REQUIREMENT
LENGTH OF FULL MSG DEFINED BY EACH MODULE
MESSAGE FORMAT IS 'IECOOOA M 000 1 00000 (TEXT)
CL3'IEC' I/O SUPPORT MESSAGE IDENTITY
OCL3 MESSAGE SERIAL NUMBER
MSGSER+MSERL-l
CLl VOLUME SERIAL LO ORDER BYTE
MSGSER
CL6'OOOA M' MESSAGE INSTRUCTION INCL MSGSER
MSGINSTR+MINSTL-l
CLl MESSAGE ACTION REQD BY OPERATOR
C' ,
CL3'OOO' UNIT NAME THAT MSG REFERS TO
C' , ,
CL6'OOOOOO' VOLUME SERIAL THAT MSG REFERS TO
C ' ,'
OCL38
1

JOB FILE CONTROL BLOCK
SPACE 1
ORG DSCBEND
DS OCL176
IEFJF.CBN
SPACE 1

EVENT CONTROL BLOCK
SPACE 1
DS OCL4
DC X'OOOOOOOO'
SPACE 1

INPUT/OUTPUT BLOCK
SPACE
DS
DC
DC
DS
DS
DS
DS
DC
DS
DC
DC
DC
DC
DS
DC
DS
DC

1
OCL32
X'OO'
X'OO'
OH
CLl
CLl
XLi
AL3(DXECB)
00
X'OOOOOOOO'
X'OO'
X'OO'
X'OOOO'
XLi
AL3 (DXCCW)
XLi
AL3 (DXDCB)

SENSE BYTE 1

KEY, 0000, COMMAND ADDRESS
STATUS BYTE 0
STATUS BYTE 1
COUNT

IECDSECT, IEFJFCBN, and IEFUCBOB Macro Instructions 53

IOBINCAN
IOBERRCT
DXDAADDR

*
DYYYY
DXDEB
DXDEBDEB
DXDEBOFL
DXDEBIRB
DXDEBSYS
DXDEBUSR
DXDEBECB
DXDEBID
DXDEBDCB
DXDCBAD
DXDEBAPP
DXDEBMOD
DXDEBUCB
DXDEBBIN
DXDEBSCC
DXDEBSHH
DXDEBECC
DXDEBEHH
DXDEBNTR

*
DXXXX
DXDCB
DXDCBDEB

*

DXCCW
DXCCWl
DXCCW2
DXCCW~
DXCCW4
DXCCW5
DXCCW6
DXCCW7
DXCCW8
DXCCW9
DXCCW10
DXCCWll
DXCCW12

DSECTSIZ

DS XLl
DS XL3
DC X'OOOO'
DS XL2
DS D DIRECT ACCESS ADDRESS (MBBCCHHR)
SPACE 1

DATA EXTENT BLOCK
SPACE
DS
EQU
DC
DS
DC
DC
DC
DC
DS
DC
EQU
DS
DS
DS
DS
DS
DS
DS
DS
DS
SPACE

1
OCL44
DYYYY-4
X'OOOOOOOO'
OCLl
X'OOOOOOOO'
X'OOOOOOOO'
X'OOOOOOOO'
X'OOOOOOOO'
OCLl
AL4 (DXDCB)
DXDEBDCB
CL4
oeLl
F
H
H
H
H
H
H
1

DATA CONTROL BLOCK
SPACE
DS
EQU
DC
SPACE

1
OF
DXXXX-44
A (DXDEB)
1

POINTER TO RELATIVE BEGINNING OF DCB

CHANNEL CONTROL WORDS
SPACE 1
CNOP
DS

0,8
OCL96
D DS

DS
DS
DS
DS
DS
DS
DS
DS
DS
DS
DS
SPACE
EQU
MEND

D
D
D
D
D
D
D
D
D
D
D
1
464 CORE AREA REQUIRED FOR THIS MACRO

54 OS System Programmer's Guide (Release 17)

IEFUCBOB MACRO INSTRUCTION

This macro instruction defines the symbolic names of all fields in the
unit control block (UCB). Code this macro instruction with blank name
and operand fields, and precede it with a DSECT statement.

r------T-----------T---1
I Name I Operation I Operand I
~-----+-----------+---~
I I IEFUCBOB I I L ______ ~ ___________ ~-__ J

Control Statements Reguired

r--,
I //jobname JOB {parameters}
I //stepname EXEC PGM=IEBUPDTE,PARM=NEW
I //SYSPRINT DD SYSOUT=A
I //SYSUT2 DD DSNAME=SYS1.MACLIB,DISP=OLD
I //SYSIN DD DATA
1./ ADD NAME=IEFUCBOB,LIST=ALL
I
I
J
I IEFUCBOB Macro-Definition
I
I
I
1./ ENDUP
I /* L ___ _

IEFUCBOB Macro-Definition

UCBOB

SRTEJBNR
SRTECHAN
UCBID
SRTESTAT
SRTEONLI
SRTECHGS
SRTERESV
SRTEUNLD
SRTEALOC
SRTEPRES
SRTESYSR

* SRTEDADI

*
* UCBCHA
UCBUA
UCBFL2
UCBD.TI
UCBETI
UCBSTI
UCBLCI
UCBATI
UCBWGT
UCBNAME
UCBTYP

MACRO
IEFUCBOB
EQU *
DS OF
ns XLl
DS XLl
ns XLl
DS XLl
EQU 128
EQU 64
EQU 32
EQU 16
EQU 8
EQU 4
EQU 2

EQU 1

DS XLl
DS XLl
DS XLl
DS XLl
DS XLl
ns XLl
DS XLl
DS XLl
DS XLl
DS CL3
DS XL4

UNIT CONTROL BLOCKS

JOB INTERNAL NUMBER
ALLOC.CHANNEL MASK
UCB IDENTIFICATION
STATUS BITS

ONLINE
CHANGE ONLINE/OFFLINE
RESERVED DEVICE
UNLOAD THIS DEVICE
BIT 4 ALLOCATED
BIT 5 PERMANENTLY RESIDENT
BIT 6 SYSRES, OR

PRIMARY CONSOLE
BIT 7 DADSM INTERLOCK, OR

TAPE CONTAINS STANDARD LABELS, OR
ALTERNATE CONSOLE

FLAGl AND CHANNEL ADDRESS
UNIT ADDRESS
FLAG 2
DEVICE TABLE
ERROR TABLE
STATUS TABLE
LOGICAL CHANNEL TABLE
ATTENTION TABLE
WEIGHT
UNIT NAME IN 3 EBCDIC CHARACTERS
DEVICE TYPE

I ECDSECT" IEFJFCBN, and IEFUCBOB Macro Instructions 55

UCBTBYT1
UCB1FEAO
UCB1FEA1
UCB1FEA2
UCBIFEA3
UCB1FEA4
UCB1FEA5
UCB1FEA6
UCB1FEA7
UCBTBYT2
UCBTBYT3
UCB3TAPE
UCB3COMM
UCB3DACC
UCB3DISP
UCB3UREC
UCB3CHAR
UCBTBYT4
UCBLTS
UCBSNS
UCBUCSID
SRTEVOLI
UCBUCSOP
UCBUCS01
UCBUCS02
SRTESTAB
SRTEBSVL
SRTEBVSC
SRTEBALB
SRTEBPRV
SRTEBPUB
SRTEBVQS

* SRTEBJLB
SRTEBNUL
SRTEDMCT
SRTEFSCT
SRTEFSEQ
UCBSQC
UCBSKA
SRTEUSER
SRTEECBA

EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
DS
DS
EQU
DS
EQU
EQU
EQU
DS
EQU
EQU
EQU
EQU
EQU
EQU

EQU
EQU
DS
DS
DS
DS
DS
DS
DS

UCBTYP
128
64
32
16
8
4
2
1
UCBTYP+1
UCBTYP+2
128
64
32
16
8
4
UCBTYP+3
XL2
XL6
UCBSNS+2
CL6
UCBSNS+6
128
64
XL1
128
64
32
16
8
4

2
1
XL1
XL2
XL2
2F
2F
XL1
XL3

BYTE 1 OF UCBTYPE-MODEL
BIT 0 OF OPTION FIELD
BIT 1 OF OPTION FIELD
BIT 2 OF OPTION FIELD
BIT 3 OF OPTION FIELD
BIT 4 OF OPTION FIELD
BIT 5 OF OPTION FIELD
BIT 6 OF' OPTION FIELD
BIT 7 OF OPTION FIELD

BYTE 2 OF UCBTYPE-OPTIONS
BYTE 3 OF UCBTYPE-CLASS

BIT 0 OF CLASS - TAPE
BIT 1 OF CLASS - COMMUNIC.
BIT 2 OF CLASS - DIRECT AC
BIT 3 OF CLASS - DISPLAY
BIT 4 OF CLASS - UNIT REC.
BIT 5 OF CLASS - CHAR. READ

BYTE 4 OF UCBTYPE-DEVICE
LAST 12*
SENSE INFORMATION
UCS CHARACTER SET-ID
VOLUME SERIAL
ues OPTIONS
DEFAULT CHARACTER SET
BUFFER LOADED in FOLD MODE
STATUS B

BIT 0 SHARED VOLUME
BIT 1 VOLUME SECURITY
BIT 2 ADDIT.VOL.LABEL PRoe
BIT 3 PRIVATE
BIT 4 PUBLIC
BIT 5 VOLUME TO BE QUIESCED

TO MOUNT ANOTHER
BIT 6 JOBLIB VOLUME
BIT 7 CONTROL VOLUME

DATA MANAGEMENT COUNT
FILE SEQ. COUNT
FILE SEQ. NUMBER
SEEK QUEUE CONTROL WORD
MBBCCHHR FOR LAST SEEK
CURRENT NUMBER OF USERS
DA ECB ADDRESS

*THE FOLLOWING DESCRIBES ONE OF 'J'BE 10 SUB-UCBS FOR THE 2321--

DATACELL
DCELBBNR
DCELSTAB
DCELSTAT
DCELVOLI
DCELJBNR
DCELDMCT
DCELVTOC
DCELUSER

ORG
DS
DS
DS
DS
DS
DS
DS
DS
DS
MEND

SRTEUSER
OCL16
XL2
X
X
CL6
X
X
XL3
X

10 OF THESE ARE PRESENT FOR 2321
BIN NUMBER
STATUS B
STATUS A
VOLUME SERIAL NUMBER
INTERNAL JOB NUMBER
DATA MANAGEMENT COUNT
TTR OF VTOC START
CURRENT NUMBER OF USERS

56 OS System Programmer's Guide (Release 17)

IEFJFCBN MACRO INSTRUCTION

This macro instruction defines the symbolic names of all fields in the
job file control block (JFCB). Code this macro instruction with blank
name and operand fields, and precede it with a oSECT statement.

r------T-----------T---,
I Name I operation I Operand I
~------+-----------+---~
I I IEFJFCBN I I L ______ ~ ___________ ~ ___ J

Control Statements Required

r--,
//jobname JOB (parameters)
//stepname EXEC PGM=IEBUPDTE,PARM=NEW
//SYSPRINT DD SYSOUT=A
//SYSUT2 DO DSNAME=SYS1.MACLIB,oISP=OLD
//SYSIN DD DATA
./ ADD NAME=IEFJFCBN,LIST=ALL

IEFJFCBN macro-definition

./ ENDUP
/* __ J

IEFJFCBN Macro-Definition

MACRO
IEFJFCBN

INFMJFCB EQU * JFCBDSNM OS CL44 DATA SET NAME
JFCBELNM DS CL8 ELEMENT NAME OR VERSION
JFCBTSDM OS CLl TASK SCHEDULER - DATA

* MANAGEMENT INTERFACE BYTE
JFCBSYSC OS CL13 SYSTEM CODE
JFCBLTYP DS CLl LABEL TYPE AND USER'S-LABEL

* INDICATOR
DS CLl NOT USED

JFCBFLSQ OS CL2 FILE SEQUENCE NUMBER
JFCBVLSQ DS CL2 VOLUME SEQUENCE NUMBER
JFCBMASK OS CL8 DATA MANAGEMENT MASK
JFCBCRDT DS CL3 DATA SET CREATION DATE
JFCBXPoT OS CL3 DATA SET EXPIRATION DATE
JFCBINDl DS CLl INDICATOR BYTE 1
JFCBRLSE EQU 64 BITS 0 AND 1 - EXTERNAL

* STORAGE RELEASE INDICATOR
JF'CBLOCT EQU 16 BITS 2 AND 3 - DATA SET

* HAS BEEN LOCATED
JFCBNEWV EQU 4 BITS 4 AND 5 - NEW VOLUME

* ADDED TO DATA SET
JFCBPMEM EQU 1 BITS 6 AND 7 - DATA SET IS

* A MEMBER OF A PODS OR GOG
JFCBIND2 OS CLl INDICATOR BYTE 2

IECDSECT, IEFJFCBN, and IEFUCBOB Macro Instructions 57

JFCBSTAT EQU

* JFCBSCTY EQU

* JFCBUFNO DS
JFCBUFRQ DS
JFCBFTEK DS
JFCBFALN DS
JFCBUFL DS
JFCEROPT DS
JFCTRTCH DS
JFCKEYLE DS
JFCMODE DS
JFCCODE DS
JFCSTACK DS
JFCPRTSP DS
JFCDEN DS
JFCLIMCT DS
JFCDSORG DS
JFCRECFM DS
JFCOPTCD DS
JFCBLKSI DS
JFCLRECL DS
JFCNCP DS
JFCNTM DS
JFCRKP DS
JFCCYLOF DS
JFCDBUFN DS
JFCINTVL DS
JFCCPRI DS
JFCSOWA DS
JFCBNTCS DS
JFCBNVOL DS

* JFCBVOLS DS

* JFCBEXTL DS

*
* JFCBEXAD DS

* JFCBPQTY DS

* JFCBCTRI DS

*
*
* JFCBSQTY DS

* JFCBIND3 DS
JFCBCNTG EQU

* JFCBMXIG EQU

* JFCBALXI EQU

* JFCBRNDC EQU

* JFCBDQTY DS

* JFCBSPNM DS

*
* JFCBABST DS

*

.64

16

OAL1
ALl
OBL1
BL1
AL2
BL1
OBL1
OAL1
OBL1
OBL1
OBL1
BL1
BL1
AL3
BL2
BL1
BL1
AL2
AL2
ALl
ALl
AL2
ALl
ALl
ALl
BL1
AL2
CL1
CL1

CL30

CL1

CL3

CL3

CL1

CL3

CL1
64

16

4

1

CL3

CL3

CL2

BITS 0 AND 1 - DATA SET
STATUS (NEW, OLD, OR MOD)
BITS 2 AND 3 - DATA SET
SECURITY INDICATOR

NUMBER OF OVERFLOW TRACKS
NUMBER OF VOLUME SERIAL
NUMBERS
VOLUME SERIAL NUMBERS (THE
FIRST FIVE)
LENGTH OF BLOCK OF EXTRA
VOLUME SERIAL NUMBERS
(BEYOND FIVE)
TRACK ADDRESS OF BLOCK OF
EXTRA VOLUME SERIAL NUMBERS
PRIMARY QUANTITY OF D.A.
STORAGE REQUIRED
INDICATES WHETHER CYLINDERS
TRACKS, OR RECORDS ARE
PSECIFIED IN JFCBPQTY ~ND
JFCBSQTY
SECONDARY QUANTITY OF D.A.
STORAGE REQUIRED
INDICATOR BYTE 3

BITS 0 AND 1 - CONTIGUOUS
STORAGE INDICATOR

BITS 2 AND 3 - MAXIMUM
AVAILABLE EXTENT INDIC~TOR
BITS 4 AND 5 - ALL EXTENTS
INDICATOR
BITS 6 AND 7 - ROUND
CYLINDER INDICATOR

QUANTITY OF D.A. STORAGE
REQUIRED FOR A DIRECTORY
CORE ADDRESS OF THE JFCB
WITH WHICH CYLINDERS ARE
SPLIT
RELATIVE ADDRESS OF FIRST
TRACK TO BE ALLOCATED

58 OS System programmer's Guide (Release 17)

JFCBSBNM OS CL3 CORE ADDRESS OF THE JFCB

* FROM WHICH SPACE IS TO BE

* SUBALLOCATED
JFCBDRLH DS CL3 AVERAGE DATA RECORD LENGTH
JFCBVLCT OS CLl VOLUME COUNT
JF.CBSPTN DS CLl NUMBER OF TRACKS PER

* CYLINDER TO BE USED BY THIS

* DATA SET WHEN SPLIT

* CYLINDERS IS INDICATED
JFCBLGTH EQU 176 LENGTH OF JFCB
JFCBEND EQU * MEND

IECDSECT. IEFJFCBN, and IEFUCBOB Macro Instructions 59

The Must Complete Function

This chapter provides information
concerning system routine use of the must
complete function. This function is
available to system routines operating in
MFT and MVT environments as an extension of
the ENQ/DEQ facilities.

Reference Publications

The IBM System/360 Operating System:
Supervisor and Data Management Services
publication (Form C28-6646) describes ENQ
and DEQ macro instruction use except for
applications of the must complete function.

The IBM System/360: supervisor and Data
Management Macro Instructions publication
(Form C28-6647) describes the ENQ and DBQ
macro instructions except for the SMC an1
RMC operands.

The Must Complete Function 61

The Must Complete Function

System routines (routines operating under a storage protection key of
zero) often engage in updating and/or manipulation of system resources
(system data sets, control blocks, queues, etc.) that contain
information critical to continued operation of the system. These
routines must complete their operations on the resource. Otherwise. the
resource may be left in an imcomplete state or contain erroneous
information -- either condition leads to unpredictable results.

The must complete function is provided in the ENQ service routine to
ensure that a routine queued on a critical resource(s) can complete
processing of the resource(s) without interruptions leading to
termination. The effect of the must complete function is to place other
routines (tasks) in a wait state until the requesting task -- the task
(routine) issuing a ENQ macro instruction with the set-must-complete
<SMC) operand -- has completed its operations on the resource. The
requesting task releases the resource and terminates the must complete
condition through issuance of a DEQ macro instruction with the
reset-must-complete (RMC) operand.

Realize that, for the time it is in effect, the must complete
function ser.ializes operations to some extent in your computing system.
Therefore, its use should be minimized -- use the function only in a
routine that processes system data whose validity must be ensured.

As an .example, in multi task environments, the integrity of the
volume table of contents (VTOC) must be preserved during an updating
process so th~t all future users may have access to the latest, correct,
version of the VTOC. Thus. in this case, you should enqueue on the VTOC
and use the must complete function (to suspend processing of other
tasks) when updating a VTOC.

Just as the ENQ function serializes use of a resource requested by
many different tasks, the must complete function serializes execution of
tasks.

scope

The must complete function can be applied at two levels:

THE SYSTEM LEVEL: Only the requesting task, and system tasks
included during system generation, are allowed to execute. All other
tasks in the system are placed in a wait state.

THE STEP LEVEL: In a partition or region, only the requesting task
is allowed to execute. All other tasks in the partition or region,
including the initiator task, are placed in a wait state.

CAUTION: Use of the must complete function at the system level should
not be attempted until all alternatives have been exhausted. Except for
extremely unusual conditions the system level of must complete should
never be used.

REQUESTING THE MUST COMPLETE FUNCTION

You request the must complete function by coding the set-must-complete
(SMC) operand in an ENQ macro instruction. The format is:

name ENQ ••• ,SMC={SYSTEM}
STEP

62 OS System Programmer's Guide (Release 17)

You may specify SYSTEM or STEP. The parameters SYSTEM and STEP
indicate the level to which the must complete function is to apply. rhe
other operands of ENQ are described in the Supervisor and Data
Management Macro Instructions publication.

Because of the properties of 'the TEST and USE parameters of the RET
operand of the ENQ macro instruction, the SMC operand should be used
only if the RET operand is to use the parameters HAVE, or NONE (in the
E-form of ENQ), or if the RET operand is not used at all.

You may request the must complete function only in routines operating
under a protection key of zero. If the protect key is not zero, the
task using the routine requesting "must complete" is abnormally ended.

OPERATING CHARACTERISTICS

When the must complete function is requested the requesting task is
marked as being in the must complete mode and all asynchronous exits
from the requesting task are deferred. Other tasks in the system
(except the allowed tasks at the system level) or associated with the
requesting task in a job step (step level) are placed in a wait state.
Thus tasks external to the requesting task are prevented from initiating
procedures that will cause termination of the requesting task. Other
external events, such as a CANCEL command issued by an operator, or a
job step timer expiration are also prevented from terminating the
requesting task.

The must complete mode of operation is not entered until the
resource(s) queued upon are available.

At the system or step level, the requesting task can cause its own
abnprmal termination. If the requesting task does come to an abnormal
termination before a reset condition has been effected, the operating
system is stopped at the point of error to permit investigation of the
trouble. It is then necessary to restart the system with the
initial-program-Ioad (IPL) procedure.

PROGRAMMING NOTES

1. All data used by a routine that is to operate in the must complete
mode should be checked for validity to ensure against a
program-check interruption.

2. A routine that is already in the must complete mode should avoid
calling another routine which also operates in the must complete
mode,. However, one level of nesting is permitted, when necessary,
with the following cautions:

a. A task may set the must complete mode for both the system and
the step. If multiple settings are made for either the system
or the step" only the first setting of each is effective -- the
others are treated as no operation.

b. The same is true for reset-must-complete. The first RMC for
the system will reset the status of the system, the first RMC
for the step will reset the status of the step, and all others
will be treated as no operation.

3. Interlock conditions that can arise with the use of the ENQ
function are discussed in the Supervisor and Data Management
Services publication.

The Must Complete Function 63

Additionally, an interlock may occur if your routine issues an ~NQ
macro instruction while in the must complete mode. The resource
you want to queue on may already be queued on by a task placed in
the wait state due to the must complete request you have made.
Since the resource cannot be released. all tasks wait.

4. The macro instructions ATTACH, LINK, LOAD, and XCTL should not be
used, unless extreme care is taken, by a routine operating in the
must complete mode. An interlock condition will result if a
serially~reusable routine requested by one of these macro
instructions has been requested by one of the tasks made
non-dispatchable by the use of the SMC operand or was requested by
another task and has been only partially fetched.

For example, suppose routine "b" in task B has requested and is
using subroutine "c". Subsequently routine "a" in task A (of a
higher priority than task B) receives control of the processing
before routine "b" finishes with subroutine "c". If routine "a"
issues an ENQ macro instruction with the SMC operand and puts task
B (and" thus, routine "b") in a non-dispatchable condition,
subroutine "c" remains assigned to routine "b". Now, if routine
"a" issues a request (via a LINK, LOAD, etc. macro instruction) for
subroutine "c". an interlock will occur between tasks A and B:
task A cannot continue since subroutine "c" is still assigned to
task B, and task B cannot continue (and thus release subroutine
ftc") because task A in the must complete mode has made task B
nondispatchable.

5. The time your routine is in the must complete mode should be kept
as' short as possible -- enter at the last moment and leave as soon
as possible. One suggested way is to:

a.
b.

ENQ (on desired resource(s»
ENQ (on same resource(s»'RET=HAVEISMc=lSYSTEM~

STEP \

Item a gets the resource(s) without putting the routine into the
must complete mode.

Later, when appropriate, issue the ENQ with the must complete
request (Item b). Issue a DEQ macro instruction to terminate the
must complete mode as soon as processing is finished.

TERMINATING THE MUST COMPLETE FUNCTION

·You terminate the must complete function and release the resource queued
upon by coding the reset-must-complete (RMC) operand in a DEQ macro
instruction. The format is:

name DEQ ••• , RMC= 1 SYSTEM ~
STEP \

The parameter (SYSTEM or STEP) must agree with the paramete~
specified in the SMC operand of the corresponding ENQ macro instruction.

Tasks placed in the wait state by the corresponding ENQ macro
instruction are made dispatchable and asynchronous exits from the
requesting task are enabled.

64 OS System Programmer's Guide (Release 17)

Execute Channel Program

(EXCP) Macro Instruction

This chapter contains a general description
of the function and application of the
Execute Channel Program (EXCP) macro
instruction, accompanied by descriptions of
specific control blocks and macro
instructions used with EXCP. Factors that
affect the operation of EXCP, such as
device variations and program modification,
are also discussed.

The EXCP macro instruction provides you
with a device-dependent means of performing
the I/O operations. Before reading this
chapter, you should be familiar with system
functions and with the structure of control
blocks, as well as with the operational
characteristics of the I/O devices required
by your channel programs. Operational
characteristics of specific I/O devices are
contained in IBM System Reference Library
publications for each device.

Documentation of the internal logic of
the input/output supervisor can be obtained
through your IBM Branch Office.

PREREQUISITE PUBLICATIONS

The IBM System/360 Operating System:
supervisor and Data Management Services
publication (Form C28-6646) explains the
standard procedures for I/O processing .
under the operating system.

The IBM System/360 Operating System:
Assembler Language publication (Form
C28-6514) contains the information
necessary to code programs in the assembler
language.

The IBM System/360 Operating system:
supervisor and Data Management Macro
Instructions publication (Form C28-6647)
describes the system macro instructions
that can be used in programs coded in the
assembler language.

The IBM System/360 Operating System:
System Control Block publication (Form
C28-6628) contains format and field
descriptions of the system control blocks
referred to in this chapter.

Execute Channel Program (EXCP) Macro Instruction 65

Execute Channel Program (EXCP) Macro Instruction

Execute Channel Program (EXCP) is a macro instruction of System/360
Operating System that causes a supervisor-call interruption to pass
control to the input/output supervisor. EXCP also provides the
input/output supervisor with control information regarding a channel
program to be executed. When the IBM standard data access methods are
being used, the access method routines are responsible for issuing EXCP.
If you are not using the standard access methods, you may issue EXCP
directly. Direct use of EXCP provides you with device dependence in
organizing data and controlling I/O devices.

You issue EXCP primarily for I/O programming situations to which the
standard access methods do not apply. When you are writing your own
data access methods, you must include EXCP for I/O operations. EXCP
must also be used for processing of nonstandard labels, including the
reading and writing of labels and the positioning of magnetic tape
volumes.

To issue EXCP, you must provide a channel program (a list of channel
command words) and several control blocks in your program area. The
input/output supervisor then schedules I/O requests for the device you
have specified" executes the specified I/O commands, handles I/O
interruptions, directs error recovery procedures, and posts the results
of the I/O requests.

When planning EXCP operations and appendages for use on central
processing units with parallel processing, special precautions must be
observed. An example of such central processing units is the IBM
System/360 Model 91 which can execute instructions in a sequence other
than the physical sequence in which they appear in a listing. Such a
central processing unit maintains logical consistency in its own
operations, including the beginning and ending of I/O operations.
However, it is impossible for such a central processing unit to maintain
consistency with operations performed by asynchronous units. This type
of central processing unit recognizes a special "no operation'" to force
sequential operations in the environments where it might be required.
The appropriate hardware manual should be carefully studied before
coding EXCP and appendage routines for this type of central processing
unit.

Use of EXCP in System and Problem Programs

This section briefly explains the procedures performed by the system and
the programmer when the EXCP macro instruction is issued by the routines
of the standard data access methods. The additional procedures that you
must perform when issuing the EXCP macro instruction yourself are then
described by direct comparison.

SYSTEM USE OF EXCP

Whe~ using a standard data access method to perform I/O operations, the
programmer is relieved of coding channel programs, and of constructing
the control blocks necessary for the execution of channel programs. To
permit I/O operations to be handled by an access method, the programmer
need only issue the following macro instructions:

• A DCB macro instruction that produces a data control block (DCB) for
the data set to be retrieved or stored.

• An OPEN macro instruction that initializes the data control block
and produces a data extent block (DEB) for the data set.

• A macro instruction (e.g., GET, WRITE) that requests I/O operations.

66 OS System Programmer's Guide (Release 17)

Access method routines will then:

1. create a channel program that contains channel commands for the I/O
operations on the appropriate device.

2. construct an input/output block (lOB) that contains information
about the channel program.

3. Construct an event control block (ECB) that is later supplied ~ith
a completion code each time the channel program terminates.

4. Issue an EXCP macro instruction to pass the aqdress of the lOB to
the routines that initiate and supervise the I/O operations.

The input/output supervisor ~ill then:

5. Schedule the I/O request.
6. Issue a start input/output (SID) instruction to activate the I/O

device.
7. Process I/O interruptions and schedule error recovery procedures,

when necessary.
8. Place a completion code in the event control block after the

channel. program has been executed.

The programmer is not concerned with these procedures and does not
know the status of I/O operations until they are completed.
Device-dependent operations are limited to those provided by the macro
instructions of the particular access method selected.

PROGRAMMER USE OF EXCP

If you wish to issue the EXCP macro instruction directly, you must
perform the procedures that the access methods perform l as summarized in
items 1 through 4 of the preceding discussion. You must, in addition to
constructing and opening the data control block with the DCB and OPEN
macro instructions, construct a channel program l an input/output block,
and an event control block before you can issue the EXCP macro
instruction. The input/output supervisor always handles items 5 through
8.

After issuing the EXCP macro instruction, you should issue a WAIT
macro instruction specifying the event contrg.L-b-l.oek-tO-det_e.r.roj.n...~ __ ~
~he~~h~.E._~~~~~~~ne~._~E<?~;cHI1 .h.~.9,._:t~rmlna~ed._{ If. volu~e~.!_!:9_hi?g ~s ~
(necessary ~ __ Y2~ .. !llJISj~_.~~.~~~ _a~._~Q~_ macro l.~~.:r_~..9!:~~ •. _('When processrng of
the-data---set has been completed, ~'-61.r·rriust issue a CLOSE macro
instruction to restore the data control block.

EXCP Requirements

This section describes the channel program that you must provide in
order to issue the EXCP macro instruction. The control blocks that you
must either construct directly, or cause to be constructed by use of
macro instructions, are also described.

CHANNEL PROGRAM

The channel program supplied by you and executed through EXCP is
composed of channel command words (CCWs) on double-word boundaries.
Each channel command word specifies a command to be executed and, for
commands initiating data transfer, the area to or from which the data is
to be transferred. Channel command word formats used with specific I/O
devices can be found in IBM Systems Reference Library publications for
each device. All channel command words described in these publications
can. be used, with the exception of REWIND and UNLOAD (RWU).

Execute Channel Program (EXCP) Macro Instruction 67

Data and Command Chaining

Chaining is the successive loading of channel command words into a
channel from contiguous double-word locations in main storage. Data
chaining occurs when a new channel command word loaded into the channel
defines a new storage area for the original I/O operation. Command
chaining occurs when the new channel command word specifies a new I/a
operation. For detailed information about chaining l refer to the IBM
system/360: Principles of Operation publication (Form A22-6821).

To specify either data chaining or command chaining, you must set
appropriate bits in the channel command word, and indicate the type of
chaining in the input/output block. Both data and command chaining
should not be specified in the same channel command word; if they are,
data chaining takes precedence.

When a channel program includes a list of channel command words that
chain data for reading operations, no channel command word may alter the
contents of another channel command word in the same list. (If such
alteration were allowed, specifications could be placed into a channel
command word without being checked for validity. If the specifications
were incorrect, the error could not be detected until the chain was
completed. Data could be read into incorrect locations and the system
could not correct the error.)

CONTROL BLOCKS

When using the EXCP macro instruction, you must be familiar with the
function and structure of an input/output block (lOB), an event control
block (ECB), a data control block (DCB) " and a data extent block (DEB).
Brief descriptions of these control blocks follow. Their fields are
illustrated in the section "EXCP Programming Specifications."

Input/Output Block (lOB)

The input/output block is used for communication between the problem
program and the system. It provides the addresses of other control
blocks, and maintains information about the channel program, such as the
type of chaining and the progress of I/O operations. You must define
the input/output block and specify its address as the only parameter of
the EXCP macro instruction.

Event Control Block (ECB)

The event control block provides you with a completion code that
describes whether the channel program was completed with or without
error. A WAIT macro instruction for synchronizing I/O operations with
the problem program must be directed to the event control block. You
must define the event control block and specify its address in the
input/output block.

Data Control Block (DCB)

The data control block provides the system with information about the
characteristics and processing requirements of a data set to be read or
written by the channel program. A data control block must be produced
by a DCB macro instruction that includes parameters for EXCP. You
specify the address of the data control block in the input/output block.

Data Extent Block (DEB)

The data extent block contains one or more extent entries for the
associated data set, as well as other control information. An extent
defines all or part of the physical boundaries on an I/O device occupied

68 OS system Programmer's Guide (Release 17)

by, or reserved for, a particular data set. Each extent entry contains
the address of a unit control block (UCB), which provides information
about the type and location of an I/O device. More than one extent
entry can contain the same UCB address. (Unit control blocks are set up
at system generation time and need not concern you.) For all I/O
devices supported by the operating system, the data extent block is
produced during execution of the OPEN macro instruction for the data
control block. The system places the address of the data extent block
into the data control block.

Channel Program Execution

This section explains how the system uses your channel program and
control blocks after the EXCP macro instruction has been issued.

INITIATION OF CHANNEL PROGRAM

By issuing the EXCP macro instruction, you request the execution of the
channel program specified in the input/output block. The input/output
supervisor checks the request for validity by ensuring that the required
control blocks contain the correct information. If they do not6

abnormal termination procedures are initiated. A program check occurs
if the control blocks are not on correct boundaries.

The input/output supervisor obtains the address of the data control
block from the input/output block and the address of the data extent
block from the data control block. From the data extent block, the
system obtains the address of the unit control block (UCB) for the
desired I/O device. To protect and facilitate reference to the
addresses of the lOB, DEB, and UCB, the input/output supervisor places
these addresses, along with other information about the channel program,
into an area called a request element. The request element is used by
the inp.ut/output supervisor for forming queues to keep track of I/O
requests. A channel program's request element is "available" if the
information it contains is no longer to be used by the input/output
supervisor and if it is ready to receive information about another
request. When a request element is "made available"r it is removed from
all request queues and placed on a queue of available request elements.
You are not concerned with the contents of the request element unless
you have provided appendage routines, as explained in the section
"Appendages."

After. completing the request element for the channel program, the
input/output supervisor determines whether a channel and the requested
I/O device are ready for the channel program. If they are not ready,
the request element is placed into the appropriate queue, and control is
returned to the problem program. The channel program is subsequently
executed when the channel and device are ready.

To initiate execution of the channel program, the system obtains its
address from the input/output block" places this address into the
channel address word (CAW), and issues a start input/output (SIO)
instruction.

Before issuing the SIO instruction for direct access devices, the
system issues the initial seek, which is overlapped with other
operations. You specify the seek address in the input/output block.
When the seek has completed, the system constructs a command chain to
reissue the seek, set the file mask specified in the data extent block,
and pass control to your channel program. (When using the operating
system, you cannot issue the initial seek or set the file mask
yourself.)

Execute Channel Program (EXCP) Macro Instruction 69

Before issuing SIO for magnetic tape devices, the system constructs a
command chain to set the mode specified in the data extent block and
pass· control to your channel program. (When using the operating system,
you cannot set the mode yourself.)

COMPLETION OF CHANNEL PROGRAM

The system considers the channel program completed when it receives an
indication of a channel end condition. When channel end occurs, the
request element for the channel program is made available, and a
completion code is placed into the event control block. The completion
code indicates whether errors are associated with channel end. If
device end occurs simultaneously with channel end, errors associated
with device end (i.e., unit exception or unit check) are also accounted
for.

Device End Errors

If device end occurs after channel end and an error is associated with
device end, the completion code in the event control block does not
indicate the error. However, the status of the unit and channel is
saved in the unit control block (UCB) for the device, and the UCB is
marked as intercepted. The input/output block for the next request
directed to the I/O device is also marked as intercepted. The error is
assumed to be permanent, and the completion code in the event control
block for the intercepted request indicates interception.. The IFLGS
field of the data control block is also flagged to indicate a permanent
error. It should be noted that when a write Tape Mark or Erase Long Gap
CCW is the last (or only) CCW in your channel program, the I/O
Supervisor ~ill not attempt recovery procedures for Device End errors.
In these circumstances, command chaining a NOPCCW to your Write Tape
Mark or Erase Long Gap CCW ensures initiation of device end error
recovery procedures.

To be prepared for device end errors, you should be familiar with
device characteristics that can cause such errors. After one of your
channel programs has terminated., you should not release buffer space
until you have determined that your next request for the device has not
been intercepted. You may reissue an intercepted request.

INTERRUPTION HANDLING AND ERROR RECOVERY PROCEDURES

An I/O inter.ruption allows the CPU to respond to signals from an I/O
device'~hich indicate either termination of a phase of I/O operations or
external action on the device. A complete explanation of I/O
interruptions is contained in the IBM system/360: Principles of
Operation publication. For descriptions of interruptions by specific
devices, refer to IBM Systems Reference Library publications for each
device·.

If error conditions are associated with an interruption, the
input/output supervisor schedules the appropriate device-dependent error
routine. The channel is then restarted with another request that is not
related1 to the channel program in error. If the error recovery
procedures fail to correct the error, the system places ones in the
first two bit positions of the IFLGS field of the data control block.
You are informed of the error by an error code that the system places
into the event control block.

1Related channel programs are discussed in the next section.

70 OS System Programmer's Guide (Release 17)

Error Recovery Procedures for Related Channel programs

Related channel programs are requests that are associated with a
particular data control block and data extent block in the same job
step. They must be executed in a definite order, i.e., the order in
which the requests are receiv~d by the input/output supervisor. A
channel program is not started until all previous requests for related
chan~el programs have been completed. You specify, in the input/output
block, whether the channel program is related to others.

If a permanent error occurs in a channel program that is related to
other requests, the request elements for all the related channel
programs are removed from their queue and made available. This process
is called purging. The addresses of the input/output blocks for the
related channel programs are chained together, with the address of the
first input/output block in the chain placed into the "User Purge lOB
Address" field of the data extent block. The address of the second
input/output block is placed into the "Restart Address" field of the
first input/output block, and so on. The last input/output block in the
chain is indicated by all ones in its Restart Address field. The chain
defines the order in which the request elements for the related channel
programs are removed from the request queue.

For all requests that are related to the channel program in error,
the system places completion codes into the event control blocks. The
IFLGS field of the data control block is also flagged. Any requests for
a data control block with error flags are posted complete without
execution. If you wish to reissue requests that are related to the
channel program in error, you must reset the first two bits of the IFLGS
field of the data control block to zeros. You then issue a RESTOKE
macro instruction, specifying, as the only parameter, the address of the
"User Purge lOB Address" field of the data extent block. This causes
execution of all the related channel programs. (The RESTORE
macro-definition and how to add it to the macro-library are in the
Appendix of this chapter.) Alternatively, if you wish to restart only
particular channel programs rather than all of them, you may reissue the
EXCP macro instruction for each channel program desired.

Appendages

This section discusses the appendages that you may optionally code when
using the EXCP macro instruction. Before a programmer-written appendage
can be executed, it must be included in the SVC library. These
procedures are explained first; descriptions of the routines themselves
and of their. coding specifications follow.

DEFINING APPENDAGES

An appendage must be defined in a DD statement as a member of a SYSl
partitioned data set. The full member name of an appendage is eight
bytes in length, but the first six bytes are required by IBM standards
to be the characters IGG019. The last two characters must be provided
by you as an identification; they may range in collating sequence from
WA to Z9.

ENTERING APPENDAGES INTO SVC LIBRARY

The SVC library is a partitioned data set named SYS1.SVCLIB. You can
insert an appendage into the SVC library during the system generation
process or by link-editing it into the SYS1.SVCLIB. The routine must be
a member of. a cataloged partitioned data set whose name begins with
SYS1.

Execute Channel Program (EXCP) Macro Instruction 71

To enter a routine into the sve library during system generation, you
use the SVCLIB macro instruction. The format of this macro instruction
is given in the publication IBM System/360 Operating System: System
Generation, Form e28-6554.

CHARACTERISTICS OF APPENDAGES

An appendage is a programmer-written routine that provides additional
co~trol over I/O operations during channel program execution. By
providing appendages. you can examine the status of I/O operations and
determine the actions to be taken for various conditions. An appendage
may receive control when one of the following occurs:

• start I/O is issued.
• Program controlled interruption.
• End of extent.
• Chan.nel end.
• Abnormal end.

Appendages are executed in supervisor state. You must not issue, in
an appendage, any sve instructions or instructions that change the
status of the computing or operating system (e.g., wTO, LPSW, sve, or
any privileged instruction). Since appendages are disabled for all
types of interruptions except machine checks, you also must not enter
loops that test for completion of I/O operations. An appendage must not
alter storage used by either the supervisor or the input/output
supervisor .•

The identification of an appendage" which consists of the last two
characters of its 8-character name, must be specified in the DeB macro
instruction, as described in the section nEXCP Programming
specifications." When the OPEN macro instruction for the data control
block is issued, any appendages specified in the DCB macro instruction
are loaded into main storage. The appendages are linked to the
input/output supervisor when their addresses are placed into a table of
addresses called an appendage vector table. This table is always
constructed by the system when OPEN is issued; if an appendage is not
provided, the table contains the address of a return branch instruction
to the input/output supervisor. Using the appendage vector table, the
input/output supervisor branches and links to an appendage at the
appropriate time. The address of the starting location of the appendage
is placed into register 15.

Parameters are passed to appendages by the input/output supervisor.
These parameters are contained in registers, and are as follows:

• Register 1 contains the address of the request queue element (R~E)
for the channel program.

The request queue element contains the following information:

Bytes 1 and 2
are the link field when the RQE is an I/O queue.

Bytes 3 and 4
indicate the address of the unit control block (UCB) for the
I/O device.

Byte 5
indicates the
for the task.
not used. It
available and

identification of the task control block (TCB)
(In a multitasking environment, this field is

contains all zeros if the request element is not
all ones when the request element is available.)

72 OS System Programmer's Guide (Release 17)

Bytes 6 , 7, and 8
indicate the address of the input/output block.

Byte 9
indicates the priority of the request, if the priority option
has been selected for the system.

Bytes 10 , 11, and 12
indicate the address of the data extent block.

The request queue element is normally 12 bytes in length; for a
multitasking environment, it includes 4 more bytes that contain the
address of the TCB.

o Register 2 contains the address of the input/output block (lOB) •
• Register 3 contains the address of the data extent block (DEB).
o Register 4 contains the address of the data control block (DCB).
o Register 7 contains the address of the unit control block (UCB).
o Register 15 contains the address of the entry point to the

appendage.

Register 14 contains the address of the location in the input/output
supervisor to which control is to be returned after execution of the
appendage. When passing control from an appendage to the system, you
may use displacements to the return address in register 14 for optional
return procedures. Some of these procedures differ in their treatment
of the request element associated with the channel program.

You may not change register 1 in an appendage; this is reserved in
case an abnormal condition occurs while the appendage is in control.
Register 9, if used, must be set to binary zero before control is
returned to the system. All other registers, except those indicated in
the descriptions of each appendage, must be saved and restored if they
are used. The following table summarizes register conventions.

r--~-------T-----------T------------------------T----------------------,
IAppendageslEntry Point I Returns I Available Work Reg. I
~-~-------+-----------+-----------T------------+----------------------~
I I I IExtent Error I I
I EQE I Reg 15 IReg 14 + a IReturn I I
I I IReg 14 + 4 ISkip I Reg. 10, 11, 12 & 13 I
I I IReg 14 + 8 ITry Again I I
~----------+-----------+-----------+------------+----------------------~
I SIO I Reg 15 IReg 14 + a INormal I Reg. 10, 11 & 13 I
I I I Reg 14 + 4 I Skip I I
~----------+-----------+-----------+------------+----------------------~
I PCI I Reg 15 IReg 14 + a INormal I Reg. la, 11, 12 & 13 I
~----------+-----------+-----------+------------+----~-----------------~
I CE I Reg 15 IReg 14 + a INormal I I
I I IReg 14 + 4 ISkip I Reg. la, 11, 12 & 13 I
I I IReg 14 + 8 IRe-EXCP 1 1
I 1 IReg 14 + 12lBy-Pass 1 I
~----------+-----------+-----------+------------+----------------------~
I XCE I Reg 15 IReg 14 + a INormal I I
I I IReg 14 + 4 ISkip I Reg. 10 , 11, 12 & 13 I
I I IReg 14 + 8 IRe-EXCP I I
I 1 I Reg 14 + 121 By-Pass 1 I
L-_~-------i-----------i-----------i------------i------________________ J

The types of appendages are listed in the following paragraphs I with
explanations of when they are entered , how they return control to the
system, and which registers they may use without saving and restoring.

Execute Channel Program (EXCP) Macro Instruction 73

start Input/Output (SIO) Appendage

This appendage is entered before the input/output supervisor issues a
start input/output (SIO) instruction for an I/O operation, unless an
error recovery procedure is in control. If SIO is not initiated because
of a busy condition, the appendage will be reentered before SIO is
reissued.

If the return address in register 14 is used to return control to the
input/output supervisor§ the I/O operation is executed normally. You
may optionally bypass the SIO instruction and prevent execution of the
channel program by using the contents of register 14 plus 4 as the
return address. In this case, the channel program is not posted
complete l but its request element is made available. You may do the
posting by taking the following steps:

1. Save necessary registers.
2. Place pointer to post entry address from the CVT in Reg 15.
3. Place current TCB address from the CVT in Reg 12.
4. Place ECB address from the lOB in Reg 11.
5. set the completion code in the high order byte in Reg 10.
6. Go to Post using BALR 14, 15.

You may use registers 10, 11, and 13 in a start input/output
appendage without saving and restoring their contents.

Program controlled Interruption (PCI) Appendage

This appendage is entered when a program controlled interruption occurs.
At the time of the interruption, the contents of the channel status word
will not have been placed in the "channel status word" field of the
input/output block. . The channel status word can be obtained from
location 64. You must use the return address in register 14 to allow
the system to proceed with normal interruption processing.

You may use registers 10 through 13 in a program controlled
interruption appendage without saving and restoring their contents.
This appendage may be reentered for the same channel program if ,the
error recovery procedure is in the process of retrying a CCW with the
program controlled bit set on. The IOBERR flag is set when the error
recovery procedure is in control (IOBFL1 = X'20').

End~of-Extent Appendage

This appendage is entered when the seek address specified in the
input/output block is outside the allocated extent limits indicated in
the data extent block.

If you use the return address in register 14 to return control to the
system" the abnormal end appendage is entered. An end-of-extent error
code (X'42 1

) is placed in the "ECB code" field of the input/output block
for subsequent posting in the event control block.

You may use the following optional return addresses:

• contents of register 14 plus 4 - The channel program is posted
complete, and its request element is returned to the available
queue.

• contents of register 14 plus 8 - The request is tried again.

You may use registers 10 through 13 in an end-of-extent appendage
without saving and restoring their contents.

74 OS System Programmer's Guide (Release 17)

~: If an end-of-cylinder or file-protect condition occurs, the
input/output supervisor updates the seek address to the next higher
cylinder or track address" and re-executes the request. If the new seek
address is ~ithin the data set's extent, the request is executed; if the
new seek address is not within the data set's extent, the end-of-extent
appendage is en_tered. If you wish to try the request in the next
extent., you must move the new seek address into the UCB at UCB+48.

If a file protect condition occurs and was caused by a full seek
(command code=07) embedded within a channel program, the request is
flagged as a permanent error, and the abnormal end appendage is entered.

Channel End Appendage

This appendage is entered when a channel end, unit exception with or
without channel end, or channel end with wrong length record occurs
without any other abnormal end conditions.

If you use the return address in register 14 to return control to the
system, the channel program is posted complete, and its request element
is made available. In the case of unit exception or wrong length
record, the error recovery procedure is performed before the channel
program is posted complete, and the IOBEX flag (X'04')in_,IOBFLl is set
0J4:-' The co~dition_code.Jn.~y be. dir~ctly t-e~tecl by u:sin-g ~ BC '--.,

Q.nst~~C?!-_iQ!!~.J(' A CC=O means 'no'UE-X'-or' 'WLR- accompanied this interruption.
The CSW status may be obtained from the IOBCSw.

If the appendage takes care of the wrong length record and/or unit
exception it may turn off the IOBERR flag and return normally. The
event will then be posted complete (completion code 7F under normal
conditions, taken from the high-order byte of the IOBECB field). If the
appendage returns normally without resetting the IOBEX flag to zero, the
request will be routed to the associated device error routine, and then
the abnormal en~ appendage will ·be immediately entered. This abnormal
end appendage will be entered with IOBECB completion code = '41'.

You may use the following optional return addresses:

• Contents of register 14 plus 4 - The channel program is not postej
complete, but its request element is made available. You may post
the event by using the calling sequence described under the start
I/O Appendage. This is especially useful if you wish to post an ECB
other than the IOBECB.

• contents of register 14 plus 8 - The channel program is not posted
complete, and its request element is placed back on the request
queue so that the I/O operation can be retried. For correct
re-execution of the channel program, you must re-initialize the
"Flags 1", "Flags 2", and "Flags 3" fields of the input/output block
and set the "Error Counts" field to zero. As an added precaution,
the IOBSNS and IOBCSW fields should be cleared.

• contents of register 14 plus 12 - The channel program is not posted
complete., and its request element is not made available. (The
request el.ement is assumed to be used in a subsequent asynchronous
exi t routine.)

You may use registers 10 through 13 in a channel end appendage
without saving and restoring their contents.

Abnormal End Appendage

This appendage may be entered on abnormal conditions, such as: unit
check, unit exception, wrong length indication, program check,
protection check, channel data check, channel control check, interface

Execute Channel Program (EXCP) Macro Instruction 75

control check, chaining check, out-of-extent error, and intercept
condition (i.e., device end error). It may also be entered when an EXCP
is issued for a DCB that has already been purged.

1. When this appendage is entered due to a unit exception and/or wrong
length record indication" the IOBECB code is set to X'41'. For
further information on these conditions see "Channel End
Appendage."

2. When the appendage is entered due to an out-of-extent error, the
IOBECB code is set to X'42'.

3. When the appendage is entered due to an intercept condition the
IOBECB code is set to X'44'. The intercept condition signals that
an error was detected at device end after channel end on the
previous request.

4. When the appendage is entered due to an EXCP being issued to an
already purged DCB, this request will enter the abnormal end
appendage with the IOBECB code set to X'4S'. This applies only to
related requests.

5. When the appendage is entered with the IOBECB code set to 7F, it
may be due to a unit check, program check, protection check,
channel data check, channel control check, interface control check
or chaining check. When the IOBECB code is 7F, it may be the first
detection of an error in the associated channel program, or it
could occur after an error routine has attempted to correct the
error but was unsuccessful in its retry. Under these two
conditions, the IOBERR flag is set; it indicates that the error
routine is in control but has not yet declared the error to be
permanent.

To determine if an error is permanent, you should check the "ECB
code" field of the input/output block. To determine the type of error,
check the channel status word and the sense information in the lOB.
However, when the ECB code is X'42' or X'4S', these fields are not
applicable. For X'44' the CSW is applicable, but the sense is valid
only if the unit check bit is set. If you use the return address in
register 14 to return control to the system, the channel program is
posted complete, and its request element is made available. (The
SYNADAF macro instruction described in the supervisor and Data
Management Macro Instructions publication may be used in an error
analysis routine to analyze permanent I/O errors.) You may use the
following optional return addresses:

• contents of register 14 plus 4 - The channel program is not posted
complete, but its request element is made available.

• contents of register 14 plus S - The channel program is not posted
complete, and its request element is placed back on the request
queue so that the request can be retried. For correct re-execution
of the channel program, you must re-initialize the "Flags 1", riFlags
2" " and n Flags 3" fields of the input/output block and set the
"Error Counts" field to zero. As an added precaution, the IOBSNS
and IOBCSW fields should be cleared.

• contents of register 14 plus 12 - The channel program is not posted
complete, and its request element is not made available. (The
request element is assumed to be used in a subsequent asynchronous
exit'.)

You may use registers 10 through 13 in an abnormal end appendage
without saving and restoring their contents.

76 OS System Programmer's Guide (Release 17)

EXCP Programming Specifications

This section describes the parameters of the macro instructions that you
must use with EXCP, and the fields of the required control blocks.

MACRO INSTRUCTIONS

If you are using the EXCP macro instruction you must also use DCB, OPEN,
CLOSE, and, in some cases, the EOV macro instruction. The parameters of
these macro instructions, and of the EXCP macro instruction itself, are
listed and explained here. A diagram of the data control block is
included with the description of the DCB macro instruction.

DCB -- Define Data Control Block for EXCP

The EXCP form of the DCB macro instruction produces a data control block
that can be used with the EXCP macro instruction. You must issue a DCB
macro instruction for each data set to be processed by your channel
programs. Notation conventions and format illustrations of the DCB
macro instruction are given in the supervisor and Data Management Macro
Instructions publication. DCB parameters that apply to EXCP may be
divided into four categories, depending on the following portions of the
data control block that are generated when they are specified:

• Foundation block. This portion is required and is always 12 bytes
in length. You must specify the t~o parameters in this category.

• EXCP interface. This portion is optional. If you specify any
parameter in this category, 20 bytes are generated.

• Foundation block extension and common interface. This portion is
optional and is always 20 bytes in length. If this portion is
generated, the device dependent portion is also generated.

• Device dependent. This portion is optional and is generated only if
the foundation block extension and cornmon interface portion is
generated. Its size ranges from 4 to 20 bytes, depending on
specifications in the DEVD parameter of this category. However, if
you do n.ot specify the DEVD parameter (and the foundation extension
and common interface portion is generated), the maximum 20 bytes for
this portion are generated.

Some of the procedures performed by the system when the data control
block is opened and closed (such as writing file marks for output data
sets on direct access volumes) require information from optional data
control block fields. You should make sure that the data control block
is large enough to provide all information necessary for the procedures
you want the system to handle.

Figure 1 shows the relative position of each portion of an opened
data control block. The fields corresponding to each parameter of the
DCB macro instruction are also designated, with the exception of DONAME,
which is not included in a data control block that has been opened. The
fields identified in parentheses represent system information that is
not associated with parameters of the DCB macro instruction.

Sources of information for data control block fields other than the
DCB macro instruction are data definition (DO) statements, data set
labels, and data control block modification routines. You may use any
of these sources to specify DCB parameters. However, if a portion of
the data control block is not generated by the DCB macro instruction,
the system does not accept information intended for that portion from
any alternative source.

Execute Channel Program (EXCP) Macro Instruction 77

FOUNDATION BLOCK PARAMETERS:

DDNAME=symbol
specifies the name of the data definition (DO) statement that
describes the data set to be processed.

IVJACRF= .(E)
specifies that the EXCP macro instruction is to be used in
processing the data set.

EXCP INTERFACE PARAMETERS:

EOEA=symbol
specifies the 2-byte identification of an end-of-extent appendage
that you have entered into the svc library.

PCIA=symbol
specifies the 2-byte identification of a program controlled
interruption (PCI) appendage that you have entered into the SVC
librar.y.

SIOA=symbol
specifies the 2-byte identification of a start I/O (SIO) appendage
that you have entered into the svc library.

CENDA=symbol
specifies the 2-byte identification of a channel end appendage that
you have entered into the SVC library.

XENDA=symbol
specifies the 2-byte identification of an abnormal end appendage
that you have entered into the svc library.

OPTCD=code
A code of Z indicates that for magnetic tape (input only) a reduce3
error recovery procedure (5 reads only) will occur when a data
check is encountered. It should be specified only when the tape is
known to contain errors and the application does not require that
all records be processed. Its proper use would include error
frequency analysis in the SYNAD routine. Specification of this
parameter will also cause generation of a foundation block
extension.. This parameter is ignored unless it was selected at
system generation.

Note: The full name of an appendage is eight bytes in length. but the
first six bytes are required by IBM. standards to be the characters
IGG019. You provide the last two characters as the 2-byte
identification; they may range in collating sequence from WA to Z9.

78 OS System Programmer's Guide (Release 17)

DCB
Address

+ 4

+ 8

+12

+16

r---,
The device dependent portion of
the data control block varies
in length and format according
to specifications in the DSORG
and DEVD parameters. Illustra­
tions of this portion for each
device type are included in
the description of the DEVD
parameter.

~---------_r--------------------------------~
I I I

+20 I BUFNO I BUFCB I
~----------~----------T---------------------~

Device
Dependent

I I I Common
+24 I BUFL I DSORG I Interface

~---------------------~---------------------~
I I

+28 I IOBAD I
~---------_r--------------------------------~
I B.FTEKI I I

+32 I BFALN I EODAD I
I HIARCHY I I
~---------+--------------------------------~ Foundation Block
I I I Extension

+36 I RECFM I EXLST I
~----------~----------T---------------------~
I I I

+.40 I (TIOT) I MACRF I
~---------T----------~---------------------~
I I I

+44 I (IFLGS) I (DEB Address) I Foundation Block
~----------+--------------------------------~
I I I

+48 I (OFLGS) I Reserved I
~----------~--------------------------------~
I I

+52 I OPTCD I
~---~
I I

+56 I Reserved I
~---------------------T---------------------~
I I I

+60 I EOEA I PCIA I EXCP Interface
~---------------------+---------------------~
I I I

+64 I SIOA I CENDA I
~---------------------+---------------------~
I I I

+68 I XENDA I Reserved I L-____________________ ~ _____________________ J

eFigure 1. Data Control Block Format for EXCP (After OPEN)

Execute channel Program (EXCP) Macro Instruction 79

FOUNDATION B~OCK EXTENSION AND COMMON INTERFACE PARAMETERS:

EXLST=relexp
specifies the address of an exit list that you have written for
exceptional conditions. The format of this exit list is given in
the Supervisor and Data Management Services publication.

EODAD=relexp
specifies the address of your end-of-data set routine. If this
routine is not available when it is required, the task is
abnormally terminated.

DSORG=code
specifies the data set organization as one of the following codes.
Each code indicates that the format of the device dependent portion
of the data control block is to be similar to that generated for a
particular access method:

~ DCB Format for

PS QSAM or BSAM
PO BPAM
DA BDAM
IS QISAM or BISAM

Note: For direct access devices l if you specify either PS or PO, you
must maintain the following fields of the device dependent portion of
the data control block so that the system can write a file mark for
output data sets:

• The track balance (TRBAL) field, which contains a 2-byte binary
number that indicates the remaining number of bytes on the current
track •

• The ful1 disk address (FDAD-MBBCCHHR) field, which indicates the
location of the current record.

IOBAD=relexp
specifies the address of an input/output block (lOB). If a pointer
to the current lOB is not required, you may use this field for any
purpos·e.

The following parameters are not used by the EXCP routines but
provide cataloging information about the data set. This information can
be used later by access method routines that read or update the data
set.

RECFM=code
specifies the record format of the data set. Record format codes
are given in the Supervisor and Data Management Macro Instructions
publication.

BFI'EK={S I El
specifies the buffer technique as either simple or exchange. BFrEK
bits 0 and 5 specify whether hierarchy 0 or hierarchy 1 is used to
form the buffer pool. If HIARCHY={Oll} is omitted from the DCB,
the buf.fer pool is formed in hierarchy o.

80 OS System Programmer's Guide (Release 17)

BFALN={F.I D}
specifies the word boundary alignment of each buffer as either full
word or double word.

BUF.L=absexp
specifies the length in bytes of each buffer: the maximum length is
32.,767.

BUFNO=absexp
specifies the number of buffers assigned to the associated data
set; the maximum number is 255.

BUFCB=relexp
specifies the address of a buffer pool control block, i.e., the
8-byte field preceding the buffers in a buffer pool.

DEVICE DEPENDENT PARAMETERS:

DEVD=code
specifies the device on which the data set may reside as one of the
following codes. The codes are listed in order of descending space
requirements for the data control block:

Code
DA
TA
PT
PR
PC
RD

Device
Direct-access
Magnetic tape
Paper tape
Printer
Card punch
Card reader

Note: If you do not wish to select a specific device until job set up
time, you should specify the device type requiring the largest area.

The following diagrams illustrate the device dependent portion of the
data control block for each device type specified in the DEVD parameter,
and for each data set organization specified in the DSORG parameter.
Fields that correspond to device dependent parameters in addition to
DEVD are indicated by the parameter name. For special services, you may
have to maintain the fields shown in parentheses. The special services
are explained in the note that follows the diagram.

Device dependent portion of data control block when DEVD=DA and
DSORG=PS or po:

DCB r-------T---------------------,
Address + 4 I Reservdl I

~-------J I
I I

+ 8 I (FDAD - MBBCCHHR) I
I I
I r-------T-------------~

+12 I I DVTBL I Reserved I
~-------+-------+-------------~

+16 IKEYLEN I DEVT I (TRBAL) I L _______ ~ _______ ~ _____________ J

Note: For output data sets, the system uses the contents of the full
disk address (FDAD-MBBCCHHR) field plus one to write a file mark when
the data control block is closed, provided the track balance (TRBAL)
field indicates that space is available. You must maintain the contents
of these two fields· yourself if the system is to write a file mark.
OPEN will initialize DVTBL and DEVT.

Execute Channel Program (EXCP) Macro Instruction 81

Device, dependent portion of data control block when DEVD=DA and
DSORG=IS or DA:

DCB r-------T---------------------,
Address +16 IKEYLEN I Reserved I L _______ ~ _____________________ J

Device dependent portion of data control block when DEVD=TA and
DSORG=PS:

DCB r-----------------------------,
Address +12 I (BLKCT) I

.------T-------T-------T------~
+16 ITRTCH IReservdlDEN I Resrvdl L ______ ~ _______ ~ _______ ~ ______ J

Note: For output data sets, the system uses the contents of the block
count (BLKCT) field to write the block count in trailer labels when the
data control block is closed, or when the EOV macro instruction is
issued. You must maintain the contents of this field yourself if the
system is to write the correct block count. When using EXCP to process
a tape data set open at a checkpoint, you must be careful to maintain
the correct count; otherwise the system may position the data set
incorrectly when restart occurs.

Device dependent portion of data control block when DEVD=PT and
DSORG=PS:

DCB r------T----------------------,
Address' +16 I CODE I Reserved I L ______ ~ ______________________ J

Device dependent portion of data control block when DEVD=PR and
DSORG=PS:

DCB r------T----------------------,
Address +16 IPRTSP I Reserved I L ______ ~ ______________________ J

Device dependent portion of data control block when DEVD=PC or RD and
DSORG=PS:

DCB r-----------T-----------------,
Address +16 IMODE,STACK I Reserved I L ___________ L _________________ J

The following parameters pertain to specific devices and may be
specified only ,when the DEVD parameter is specified.

KEYLEN=value
specifies, for direct access devices. the length in bytes of the
key of a physical record, with a maximum value of 255. When a
block is read or written, the number of bytes transmitted is the
key length plus the record length.

82 OS System Programmer's Guide (Release 17)

CODE=value
specifies, for paper tape, the code in which records are punched as
follows:

Value

I
F
B
C
A
T
N

IBM BCD
Friden
Burroughs
National Cash Register
ASCII
Teletype
no conversion
(format F records
only)

If this parameter is omitted, N is assumed.

DEN=value
specifies, for magnetic tape, the tape recording density in bits
per· inch as follows:

r----------------------------------T-----------------------------------,
I I Density I
I Value ~-----------------T-----------------~
I I Model I Model I
I I 2400 I 2400 I
I I 7-track I 9-track I
~----------------------------------+-----------------+-----------------~
I 0 I 200 I I
I 1 I 556 I I
I 2 I 800 I 800 I L __ ,-___ . ____ . _______________________ ..1 _________________ ..1 _________________ J

If this parameter is omitted, the lowest density is assumed.

TRTCH=value
specifies, for 7-track magnetic tape, the tape recording technique
as follows:

Value

C

E

T

MODE=value

Tape Recording Technique

Data conversion feature is available.

Even parity is used. (If omitted, odd parity is
assumed.)

BCDIC to EBCDIC translation is required.

specifies., for a card reader or punch, the mode of operation.
Either C (column binary mode) or E (EBCDIC code) may be specified .•

STACK=value
specifies, for a card punch or card reader, the stacker bin to
receive cards as either 1 or 2.

PRTSP=value
. specifies, for a printer, the line spacing as either 0, 1, 2, or 3.

Execute Channel Program (EXCP) Macro Instruction 83 1

OPEN -- Initialize Oata Control Block

The OPEN macro instruction initializes one or more data control blocks
so that their associated data sets can be processed. You must issue
OPEN for all data control blocks that are to be used by your channel
programs. (A dummy data set may not be opened for EXCP.) Some of the
procedures performed when OPEN is executed are:

• Construction of data extent block (DEB).
• Transfer· of information from DO statements and data set labels to

data control block.
• Verification or creation of standard labels.
• Tape positioning.
• Loading of programmer-written appendage routines.

The three parameters of the OPEN macro instruction a're:

dcb-addr

optj.

specifies the address of the data control block to be initialized.
(More than one data control block may be specified.)

specifies the intended method of I/O processing of the data set.
You may specify this parameter as either INPUT.. ROBACK.. or OUTPUT.
For each of these" label processing when OPEN is executed is as
follows:

INPUT - Header labels are verified.
ROBACK - Trailer labels are verified.
OUTPUT - Header labels are created.

If this parameter is omitted, INPUT is assumed.

specifies the· volume disposition that is to be provided when volume
switching occurs. The operand values and meanings are as follows:

REREAD.

LEAVE

DISP

Reposition the volume to process the data set again.

No additional pOSitioning is performed at end-of-volume
processing.

The disposition indicated on the 00 statement is testej
and appropriate positioning provided. This service is
assumed if this operand is omitted and volume
positioning is applicable •. If there is no disposition
specified in the 00 statement when this operand is
specified, LEAVE is assumed.

EXCP -- Execute Channel Program

The EXCP macro instruction requests the initiation of the I/O operations
of a channel program. You must issue EXCP whenever you want to execute
one of your channel programs. The only parameter of the EXCP macro
instruction is:

iob-addrx
specifies the address, or a register that contains the address of
the input/output block of the channel program to be executed.

84 OS System Programmer's Guide (Release 17)

EOV -- End of Volume

The EOV macro instruction identifies end-of-volume and end-of-data set
conditions. For an end-of-volume condition. EOV causes switching of
volumes and verification or creation of standard labels. For an
end-of-data set condition, EOV causes your end-of-data set routine to be
entered. You issue EOV if switching of magnetic tape or direct access
volumes is necessary, or if secondary allocation is to be performed for
a direct access data set opened for output.

For magnetic tape, you must issue EOV when either a tape mark is read
or a reflective spot is written over. In these cases. bit settings in
the 1-byte OFLGS field of the data control block determine the action to
be taken when EOV is executed. Before issuing EOV for magnetic tape.
you must make sure that appropriate bits are set in OFLGS. Bit
positions 2.3,6" and 7 of OFLGS are used only by the system; you are
concerned with bit positions 0.1,4, and 5. The use of these OFLGS bit
positions is as follows:

Bit 0

Bit 1

Bit 4

Bit 5

indicates that a tape mark is to be written.

indicates that a backwards read was the last I/O operation.

indicates that data sets of unlike attributes are to be
concatenated.

indicates that a tape mark has been read.

If Bits 0 and 5 of OFLGS are both off when EOV is executed. the tape
is spaced past a tape mark, and standard labels. if present" are
verified on both the old and new volumes. The direction o~ spacing
dep.ends on Bit 1. If Bit 1 is off" the tape is spaced forward; if Bit 1
is on, the tape is backspaced.

If Bit 0 is on when EOV is executed, a tape mark is written
immediately following the last data record of the data set, standard
labels, if specified. are created on the old and the new volume.

When issuing EOV for sequentially organized output data sets on
direct access volumes, you can determine whether additional space has
been obtained on the same or a different volume. You do this by
checking the volume serial number in the unit control block (UCB) both
before and after issuing EOV.

The only parameter of the EOV macro instruction is:

dcb-addrx
specifies the address of the data control block that is opened for
the data- set. If this parame.ter is specified as (1), register 1
must contain this address.

Execute Channel Program (EXCP) Macro Instruction 85

CLOSE -- Restore Data Control Block

The CLOSE macro instruction restores one or more data control blocks so
that processing of their associated data sets can be terminated. You
must issue CLOSE for all data control blocks that were used by your
channel programs. Some of the procedures performed when CLOSE is
executed are:

• Release of data extent block (DEB).
• Removal of information transferred to data control block fields when

OPEN was executed.
• Verification or creation of standard labels.
• Volume disposition.
• Release of programmer-written appendage routines.

The two parameters of the CLOSE macro instruction are:

dcb-addr

opt

specifies the address of the data control block to be restored.
More than one data control block may be specified.

specifies the type of volume disposition intended for the data set.
You may specify this parameter as either LEAVE or REREAD. The
corresponding volume disposition when CLOSE is executed is as
follows:

LEAVE
REREAD
DISP

- Volume is positioned at logical end of data set.
- Volume is positioned at logical beginning of data set.
- The disposition indicated on the DO statement is tested,

and appropriate positioning is provided. This service is
assumed if this operand is omitted and volume positioning
is applicable. If there is no disposition specified in
the DD statement when this operand is specified, LEAVE is
assumed.

This parameter is ignored if specified for volumes other than
magnetic "tape or direct access.

Note: When CLOSE is issued for data sets on magnetic tape volumes,
labels are processed according to bit settings in the OFLGS field of the
data control" block. Before issuing CLOSE for magnetic tape, you must
set the appropriate bits in OFLGS. The OFLGS bit pOSitions that you are
concerned ~ith are listed in the EOV macro instruction description.

CONTROL BLOCK FIELDS

The fiel:ds of :the input/output block, event control block, and data
extent block are illustrated and explained here; the data control block
fields have been described with the parameters of the DCB macro
instruction in the section "EXCP Programming Specifications."

Input/Output Block Fields

The input/output block is not automatically constructed by a macro
instruction; it must be defined as a series of constants and must be on
a full-word boundary. For nondirect access devices. the input/output
block is 32 bytes in length. For direct access devices, 8 additional
bytes must be provided.

In Figure 21 the shaded areas indicate fields in which you must
specify information. The other fields are used by the system and must
be defined as all zeros. You may not place information into these
fields, but you may examine them.

86 OS System Programmer's Guide (Release 17)

lOB
Address

+4

+8

+12

+16

+20

+24

+28

+32

+36

All
Devices

Direct­
Access
Devices
Only

Figure 2. Input/Output Block Format

Flags 1 (1 byte)
specifies the type of channel program. You must set bit positions
0, 1, and 6. One bits in positions 0 and 1 indicate data chaining
and command chaining, respectively. (If both data chaining and
command chaining are specified, the system does not use error
recovery routines except for the 2311 , 2671, 1052, and 2150.) A
one bit in position 6 indicates that the channel progranl is not
related to any other channel program. Bit positions 2, 3, 4, 5,
and 7 are used only by the system.

Flags 2 (1 byte)
is used only by the system.

First Two Sense Bytes (2 bytes)
are placed into the input/output block by the system when a unit
check occurs.

ECB Code (1 byte)
indicates the first byte of. the completion code for the channel
program. The system places this code in the high order byte of the
event control block when the channel program is posted complete.
The completion codes and their meanings are listed under "Event
Control Block Fields."

ECB Address (3 bytes)
specifies the address of the 4-byte event control block that you
have provided.

Flags 3 (1 byte)
is used only by the system.

Channel status Word (7 bytes)
indicates the low order seven bytes of the channel status word,
which are placed into this field each time a channel end occurs.

Execute Channel Program (EXCP) Macro Instruction 87

SIO Code (1 byte)
indicates, in the four low-order bits, the instruction length and
condition code for the SIO instruction that the system issues to
start the channel program.

Channel Program Address (3 bytes)
specifies the starting address of the channel program to be
executed.

Reserved (1 byte)
is used only by the system.

DCB Addr·ess (3 bytes)
specifies the address of the data control block of the data set to
be read or written by the channel program.

Reposition Modifier (1 byte)
is used by the system for volume repositioning in error recovery
procedures.

Restart Address (3 bytes)
is used by the system to indicate the starting address of a channel
program that performs special functions for error recovery
procedures. The system also uses this field in procedures for
making request elements available, as explained under "Error
Recovery Procedures for Related Channel programs."

Block Count Increment (2 bytes)
specifies, for magnetic tape, the amount by which the block count
(BLKCT) field in the device dependent portion of the data control
block is to be incremented. You may alter these bytes at any time.
For forward operations, these bytes should contain a binary
positive integer (usually + 1); for backward operations, they
should contain a binary negative integer. When these bytes are not
used, all zeros must be specified.

Error Counts (2 bytes)
indicates the number of retries attempted during error recovery
procedures.

Extent M (1 byte)
specifies, for direct access or telecommunications devices, which
extent entry in the data extent block is associated with the
channel program. (0 indicates the first extent; 1 indicates the
second, etc.)

BBCCHHR (7 bytes)
specifies, for direct access devices, the seek address for the
programmer's channel program.

Event Control Block Fields

You must define an event control block as a 4-byte area on a full-worj
boundary. When the channel program has been completed, the input/output
supervisor places a completion code containing status information into
the event control block (Figure 3). Before examining this information,
you must test for the setting of the "Complete Bit." If the complete
bit is not on, and the problem program cannot perform other useful
operations, you should issue a WAIT macro instruction that specifies the
event control block. Under no circumstances may you construct a program
loop that tests for the complete bit.

88 OS System programmer's Guide (Release 17)

r---------T----------T--,
I WAIT I Complete I Remainder of completion Code I
I Bit=O I I I
I I Bit=l I I L __________ i~ _________ ~ __ J

o 1 2 31

Figure 3. Event Control Block After Posting of Completion Code

WAIT Bit
A one bit in this position indicates that the WAIT macro
instruction has been issued, but that the channel program has not
been completed.

Complete Bit
A one bit in this position indicates that the channel program has
been completed; if it has not been completed" a zero bit is in this
position.

Completion Code
This code, which includes the WAIT and Complete bits, may be one of
the following 4-byte hexadecimal expressions:

Code
7FOOOOOO

41000000

42000000

44000000

48000000

4FOOOOOO

Data Extent Block Fields

Interpretation
Channel program has terminated without error.

Channel program has terminated with permanent
error.

Channel program has terminated because a direct
access extent address has been violated.

Channel program has been intercepted because of
permanent error associated with device end for
previous request. You may reissue the
intercepted request.

Request element for channel program has been
made available after it has been purged.

Error recovery routines have been entered
because of direct access error but are unable
to read horne address or record O.

The data extent block is constructed by the system when an OPEN macro
instruction is issued for the data control block. You may not modify
the fields of the data extent block, but you may examine them. The Data
Extent Block format and field description is contained in the System
Control Block publication.

Execute Channel Program (EXCP) Macro Instruction 89

Appendix: Restore and Purge Macro Instruction

If you want to use the RESTORE or PURGE macro instruction, you must
either add the macro definitions to the macro-library (SYS1.MACLIB) or
place them in a separate part~tioned data set and concatenate this data
set to the macro-library. This section contains the following:

• The format of the macro instruction.

• The Job Control and Utility statements needed to add the
macro-definition to the library.

• The macro-definition to be added to the library.

RESTORE Macro Instruction

This macro instruction is used to return purged request elements to the
request queues. The format of this macro instruction is as follows:

r------T-----------T---,
I Name I Operation I Operand I
~------+-----------+---~
I I RESTORE I User Purge lOB Address I L ______ L ___________ ~ ___ J

The user purge lOB address is the address of a pointer to the first lOB
address in a previously purged lOB list. It could be the DEBUSRPG field
in the data extent block (see "SVC Purge Routine").

Control Statements Required

r--~---,
//jobname JOB {parameters}
//stepname EXEC PGM=IEBUPDTE,PARM=NEW
//SYSPRINT DO SYSOUT=A
//SYSUT2 DD DSNAME=SYS1.MACLIB,DISP=OLD
//SYSIN DO DATA
./ ·ADD NAME=RESTORE,LIST=ALL

RESTORE Macro Definition

'./ ENDUP
/*

RESTORE Macro-Definition

& NAME

& NAME

.El

MACRO
RESTORE
AIF
IHBINNRA
SVC
MEXIT
IHBERMAC
MEND

&LIST
('&LIST' EQ ").El
&LIST
17

90 OS System Programmer's Guide (Release 17)

LOAD REG 1
ISSUE SVC FOR RESTORE

LIST ADDR MISSING

PURGE Macro Instruction

The PURGE macro instruction is used to return request elements to the
I/O supervisor inactive queue (next available).

PURGE Macro Definition

&NAME

& NAME

.E1

MACRO
PURGE
AIF
IHBINNRA
SVC
MEXIT
IHBERMAC
MEND

Control Statements Required

&LIST
(. &LIST' EQ") • E1
&LIST
16

01,147

LOAD REG 1

LIST ADDR MISSING

r--,
//jobname JOB {parameter}
//stepname EXEC PGM=IEBUPDTE,PARM=NEW
//SYSPRINT DO SYSOUT=A
//SYSUT2 DD DSNAME=SYS1.MACLIB,DISP=OLD
//SYSIN DO. *
./ ADD NAME=PURGE,LIST=ALL

PURGE Macro Definition

'./ ENDUP
/*

r--~----T------------T---,
I Name I Operation I Operand I
~-------+------------+---~ I symbol I PURGE I User Purge Parameter List I L ___ ----~ ____________ ~ ___ J

The purge parameter list is constructed in the user's program area.
Depending on the options specified in the PURGE parameter list, elements
can be purged from .

1. The asynchronous exit queue of the task supervisor.
2. The request blocks chained to the TCB.
3. The I/O supervisor logical channel queues.

You can bypass the purge of the RBs chained to the TCB by setting bit
5 of the op.tion byte. The parameter list is a three-word list
constructed prior to issuing the PURGE macro instruction; this list must
fallon a fullword boundary. It is constructed as follows:

Execute Channel Program (EXCP) Macro Instruction 91

Word 1

Byte 1
(options byte)

r--,
IBit 0 - Specified DEB or DEB chain I
I =0 - Purge request elements associated with complete DEB chainl
I starting at the DEB specified in bytes 2, 3, and 4 of I
I word 1. I
I =1 - Purge only the request elements associated with the DEB I
I specified by bytes 2, 3, and 4 of word 1. I
~--~---------------------------~---------------------------------------~
IBit 1 - POST request purged or ignore posting. I
I =0 - Do not POST the purged requests. I
I =1 - POS'l' the purge requests, code = X' 48' • I
~--~---~
IBit 2 - HALT I/O or quiesce active requests. I
I =0 - Allow the active requests to quiesce. I
I =1 - HALT the I/O operations. (The HALT I/O is simulated if I
I the operation is a SEEK. I
~-~---~
IBit 3 - Purge all or only related requests. I
I =0 - Purge all requests. I
I =1 - Purge only related requests. I
~--~
IBit 4 - (Spare) I
~--~---~
IBit 5 - Purge all queues or bypass RB purge. I
I =0 - Purge AEQ, RB, and I/O supervisor logical channel queues. I
I =1 - Purge only the I/O Supervisor logical channel queue(s) I
I and AEQ. I
~--~
IBit 6 - Purge by TCB or DEB I
I ==0 - Purge by DEB I
I =1 - Purge by TCB I
I I
I Note: This bit must be zero in order to honor bit o. I
I If this bit is one, all requests associated with the TeB I
I are purged, and bit 0 is ignored. I
~--~
IBit 7 - (Spare) I L __ J

Bytes 2, 3, and 4
DEB address - not required if purging by TeB.

Word 2

Byte 1
completion code

Bytes 2, 3, and 4
TeB address - if none. the current TeB is used.

92 OS System programmer's Guide (Release 17)

Word 3

Byte 1
Quiesce indicator field. It will indicate X'Ol' if one or
more requests are quiescing.

Bytes 2, 3, and 4
Address of the initial link field for chaining lOBs that are
purged. The initial link field can be the user purge field in
the DEB (DEBUSRPG) or any area you select. The initial link
field points to the first lOB in the chain. At the completion
of purge" the contents of word 3 are unpredictable. No
chaining is done when TCB with HALT I/O option is specified.

If the lOB restart field (IOBRESTR) is used as a link field,
the last one will contain X'FFFFFF' in its three low-order
bytes.

The following figure below shows the lOB chain.

Chaining lOBs

r----T-----------, r----------------,
I I I IDEBUSRPG of DEBII
I I I--------.~Ior other initial
I I I I link field I L-___ ~ __________ J l ________________ J

Word 3

lOB
r----------------,

-~I I I
IIOBRESTR I I

--~----------J I l ________________ J

lOB
r----------------,
I I I

~--.I IOBRESTR I I
I FFFFFF I I
~----------J I l ________________ J

lOB Chain for PURGE

Execute Channel Program (EXCP) Macro Instruction 93

Execute Direct Access Program
(XDAP) Macro Instruction

This chapter explains what the Execute
Direct-Access Program (XDAP) macro
instruction does and how you can use it.
The control block generated when XDAP is
issued and the macro instructions used with
XDAP are also discussed.

The XDAP macro instruction provides you
with a means of reading, verifying, or
updating blocks on direct access volumes
without using an access method and without
writing your own channel program. Since
most of the specifications for XDAP are
similar to those for the Execute Channel
program (EXCP) macro instruction, it is
recommended that you be familiar with the
"EXCP Macro Instruction" chapter of this
publication l as well as with the
information contained in the required
publication.

PREREQUISITE PUBLICATION

The IBM System/360 Operating System:
Supervisor and Data Management Services
publication (Form C28-6646) explains the
standard procedures for I/O processing
under the operating system.

Execute Direct Access Program (XDAP) Macro Instruction 95

Execute Direct Access Program (XDAP) Macro Instruction

Execute Direct Access Program (XDAP) is a macro instruction of
System/360 Operating System that you may use to read, verify, or update
a block on a direct access volume. If you are not using the standard
IBM data access methods, you can, by issuing XDAP, generate the control
inf.ormation and channel program necessary for reading or updating the
records of a data set.

You cannot use XDAP to add blocks to a data set, but you can use it
to change the keys of existing blocks. Any block configuration and any
data set organization can be read or updated.

Although· the use of XDAP requires much less main storage space than
do the standard access methods, it does not provide many of the control
program services that are included in the access methods. For example,
when XDAP is issued, the system does not block or deblock records and

.does not verify block length.

To issue XDAP, you must provide the actual device address of the
track containing the block to be processed. You must also provide
either th€ block identification or the key of the block, and specify
which of these is to be used to locate the block. If a block is located
by identification, both the key and data portions of the block may be
read or updated. If a block is located by key, only the data portion
can be processed.

Requirements for Execution of Direct Access Program

Before issuing the XDAP macro instruction, you must issue a DCB macro
instruction, which produces a data control block (DCB) for the data set
to be read or updated. You must also issue an OPEN macro instruction,
which initializes the data control block and produces a data extent
block (DEB) .•

When the XDAP macro instruction is issued, another control block,
containing both control information and executable code, is generated.
This control: block may be logically divided into three sections:

• An event control block (ECB), which is supplied with a completion
code each time the direct access channel program is terminated.

• An input/output block (lOB), which contains information about the
direct access channel program.

• A direct access channel program, which consists of three channel
command words (CCWs). The type of channel program generated depends
on specifications in the parameters of the XDAP macro instruction.

Af.ter this XDAP control block is constructed, the direct access channel
program is executed. A block is located by either its actual address or
its key, and is either read or updated.

When the channel program has terminated, a completion code is placed
into the event control block. After issuing XDAP, you should therefore
issue a WAIT macro instruction specifying the event control block to
determine whether th~ direct access program has terminated. If volume
s~tching is necessary., you must issue an EOV macro instruction. When
processing of the data set has been completed, you must issue a CLOSE
macro instruction to restore the data control block.

96 OS System Programmer's Guide (Release 17)

XDAP Programming Specifications

MACRO INSTRUCTIONS

When you are using the XDAP macro instruction" you must also issue DCB,
OPEN, CLOSE, and, in some cases, the EOV macro instruction. The
parameters of the XDAP macro instruction are listed and described here.
For· the other required macro instructions, special requirements or
options are exp~ainedl but you should refer to the "EXCP Macro
Instruction" section of this publication for listings of their
parameters.

DCB -- Define Data Control Block

The EXCP form of the DCB macro instruction produces a data control block
that can be used with the XDAP macro instruction. You must issue a DCB
macro instruction for each data set to be read or updated by the direct
access channel program. The "EXCP Macro Instruction" section of this
publication contains a diagram of the data control block, as well as a
listing of the parameters of the DCB macro instruction.

OPEN -- Initialize Data Control Block

The OPEN macro instruction initializes one or more data control blocks
so that their associated data sets can be processed. You must issue
OPEN for all data control blocks that are to be used by the direct
access program. Some of the procedures performed when OPEN is executed
are:

• Construction of data extent block (DEB).

• Transfer of information from DD statements and data set labels to
data control block.

• Verification or creation of standard labels.

• Loading of programmer-written appendage routines.

The two parameters of the OPEN macro instruction are the addressees)
of the data control block(s) to be initialized, and the intended method
of I/O processing of the data set. The method of processing may be
specified as either INPUT or OUTPUT; however, if neither is specified,
INPUT is assumed.

XDAP -- Execute Direct-Access Program

The XDAP macro instruction produces the XDAP control block (i.e., the
ECB, lOB, and channel program) and executes the direct access channel
program. The format of the XDAP macro instruction is:

r-----------T--,
I Operation I Operand I
~----------+--~ I XDAP I ecb-symbol,type-{RIWIV}{IIK},dcb-addr,area-addr I
I I ,length-value,[(key-addr,keylength-value)],blkref-addr I L ___________ ~ __ J

ecb-symbol
specifies the symbolic name to be assigned to the XDAP control
block.

type-{RI WI V} {II K}
specifies the type of I/O operation intended for the data set and
the method by which blocks of the data set are to be located.

Execute Direct Access Program (XOAP) Macro Instruction 91

The codes and their meanings are as follows:

dcb-addr

R - Read a block.
W - Write a block.
V - Verify contents of a block but do not transfer data.
I - Locate a block by identification. (The key portion, if

present, and the data portion of the block are read or
written.)

K - Locate a block by key. (Only the data portion of the
block is read or written.)

specifies the address of the data control block of the data set.

area-addr
specifies the address of an input or output area for a block of the
data set.

len.gth-value
specifies the number of bytes to be transferred to or from the
input or output area. If blocks are to be located by
identification and the data set contains keys, the value must
include the length of the key. The maximum number of bytes
transferred is 32767.

key-addr
specifies, when blocks are to be located by key, the address of a
main storage field that contains the key of a block to be read or
overwr.itten.

keylength-value
specifies, when blocks are to be located by key, the length of the
key. The maximum length is 255 bytes.

blkref-addr
specifies the address of a main storage field containing the actual
device address of the track containing the block to be located.
When blocks are to be located by key, this field is seven bytes in
length; when blocks are to be located by identification, an eighth
byte indicating block identification must be included in this
field. (The actual address of a block is in the form MBBCCHHR,
where M indicates which extent entry in the data extent block is
associated with the direct access program; BB indicates the bin
number of. direct access volume; CC indicates the cylinder address;
HH indicates the actual track address; and R indicates the block
identification.)

EOV -- End of Volume

The EOV macro instruction identifies end-of-volume and end-of-data set
conditions. For an end-of-volume condition, EOV causes switching of
volumes and verification or creation of standard labels. For an
end-of-data set condition, EOV causes your end-of-data set routine to be
entered. When using XDAP, you issue EOV if switching of direct access
volumes is necessary, or if secondary allocation is to be performed for
a direct access data set opened for output.

The only parameter of the EOV macro instruction is the address of the
data control block of the data set.

CLOSE -- Restore Data control Block

The CLOSE macro instruction restores one or more data control blocks so
that processing of their associated data sets can be terminated. You
must issue CLOSE for all data sets that were used by the direct access

98 OS System Programmer's Guide (Release 17)

channel program. Some of the procedures performed when CLOSE is
executed are:

• Release of data extent block (DEB).
• Removal of information transferred to data control block fields when

OPEN was executed.
• Verification or creation of standard labels.
• Release of programmer-written appendage routines.

The only parameter of the CLOSE macro instruction is the address of
the data control block to be restored. (More than one data control
block may be specified.)

THE XDAP CONTROL BLOCK

The three portions of the control block generated during execution of
the XDAP macro instruction are described here.

Event Control Block (ECB)

The event control block begins on a full word boundary and occupies the
first 4 bytes of the XDAP control block. Each time the direct access
channel program terminates, the input/output supervisor places a
completion code containing status information into the event control
block (Figure 4). Before examining this information, you must test for
the setting of the "Complete Bit" by issuing a WAIT macro instruction
specifying the event control block.

r--------------T---------~--------T------------------------------------,
I WAIT Bit=O I Complete Bit=l I Remainder of Completion Code I L ______________ ~ __________________ ~ ____________________________________ J

o 1 2 31

Figure 4. Event Control Block After Posting of Completion Code

WAIT Bit
A one bit in this position indicates that the WAIT macro
instruction has been issued, but that the direct access channel
program has not been completed.

Complete Bit
A one bit in this position indicates that the channel program has
been completed; if it has not been completed, a zero bit is in this
position.

Completion Code
This code l which includes the WAIT and Complete bits, may be one of
the following 4-byte hexadecimal expressions:

Code
7FOOOOOO

41000000

42000000

44000000

Interpretation
Direct-access program has terminated without
error.

Direct-access program has terminated with
permanent error.

Direct-access program has terminated because a
direct access extent address has been violated.

Channel program has been intercepted because of
permanent error associated with device end for
previous request. You may reissue the
intercepted request.

Execute Direct Access Program (XDAP) Macro Instruction 99

48000000

4FOOOOOO

Input/Output Block (lOB)

Request element for channel program has been
made available after it has been purged.

Error recovery routines have been entered
because of direct access error but are unable
to read home address or record o.

The input/output block is 40 bytes in length and immediately follows the
event control block. The section "EXCP Macro Instruction" of this
publication contains a diagram of the input/output block. The only
fields with which the user of XDAP is concerned are the "First Two Sense
Bytes" and "Channel status Word" fields. You may wish to examine these
fields when a unit check condition or an I/O interruption occurs.

Direct-Access Channel Program

The direct access channel program is 24 bytes in length and immediately
fo~lows the input/output block. Depending on the type of I/O operation
specified in the XDAP macro instructio~, one of four channel programs
may be generated. The three channel command words for each of the four
possible channel programs are shown in Figure 5.

r--~-----------------------T-----T-------------------------------------,
I Type of I/O Operation I CCW I Command Code I
r--------------------------+-----+-------------------------------------~
I Read by Identification I 1 I Search ID Equal I
I I 2 I Transfer in Channel I
I Verify by Identification1 1 3 I Read Key and Data I
~--?"'----.-.------------------+--.---+-------------------------------------~
I Read by Key I 1 I Search Key Equal I
I I 2 I Transfer in Channel I
I Verify by Key1 I 3 I Read Data I
r--... ----.~------------------+-----+-------------------------------------~
I I 1 I Search ID Equal I
I write by Identification I 2 I Transfer in Channel I
I I 3 I Write Key and Data I
~--~-----------------------+-----+-------------------------------------~
I I 1 I Search Key Equal I
I Write by Key I 2 I Transfer in Channel I
I I 3 I write Data I
r--~-----------------------~-----~-------------------------------------~
I 1For verifying operations, the third CCW is flagged to suppress the I
I trans·fer of information to main storage. I l __ J

Figure 5. The XDAP Channel Programs

XDAP Options
CONVERSION OF RELATIVE TRACK ADDRESS TO ACTUAL ADDRESS

To issue XDAP. you must provide the actual device address of the track
containing the block to be processed. If you know only the relative
track address, you can convert it to the actual address by using a
resident system routine. The entry point to this conversion routine is
labeled IECPCNVT. The address of the entry point is in the
communication vector· table (CVT). The address of the CVT is in location
16. (The CVT macro instruction defines the symbolic names of all fields
in the CVT. The macro-definition and how to add it to the macro-library
are in the Appendix of this chapter.)

100 OS System Programmer's Guide (Release 17)

The conversion routine does all its work in general registers. You
must load registers 0, 1, 2, 14, and 15 with input to the routine.
Register usage is as follows:

Register
o

1

2

3-8

9-13

14

15

APPENDAGES

Use
Must be loaded with a 4-byte value of the form
TTRN" where TT is the number of the track
relative to the beginning of the data set, R is
the identification of the block on that track,
and N is the concatenation number of the data
set. (0 indicates the first or only data set
in the concatenation, 1 indicates the second,
etc.)

Must be loaded with the address of the data
extent block (DEB) of the data set.

Must be loaded with the address of an 8-byte
area that is to receive the actual address of
the block to be processed. The converted
address is of the form MBBCCHHR, where M
indicates which extent entry in the data extent
block is associated with the direct access
program (0 indicates the first extent, 1
indicates the second, etc.); BB indicates the
bin number of the direct access volume; CC
indicates the cylinder address; HH indicates
the actual track address; and R indicates the
block identification.

Are not used by the conversion routine.

Are used by the conversion routine and are not
restored,.

Must be loaded with the address to which
control is to be returned after execution of
the conversion routine.

Is used by the conversion routine as a base
register and must be loaded with the address at
which the conversion routine is to receive
control.

For additiona~ control over I/O operations, you may write appendages,
which must be e~tered into the SVC library. Descriptions of these
routines and their coding specifications are contained in the "EXCP
Macro Instruction" section of this publication.

L- AND E- FORMS OF XDAP MACRO INSTRUCTION

You may use ~he L- form of the XDAP macro instruction for a
macro-expans~on consisting of only a parameter list, or the E- form for
a macro-expansion consisting of only executable instructions. The L­
and E- forms are described in the IBM Systern/360 Operating System:
Supervisor and Data Management Services publication. Form C28-6646 and
the IBM System/360 Operating System: supervisor and Data Management
Macro Instructions publication, Form C28-6647.

~: The BLKREF parameter is ignored by the "L" form of the XDAP macro
instruction. The field may be supplied in the E-form of the macro
instruction or moved into the lOB by you.

Execute Direct Access Program (XDAP) Macro Instruction 101

Appendix: CVT Macro Instruction

If you want to use the CVT macro instruction, you must add the
macro-definition to the macro-library (SYS1.MACLIB). This section
contains the following:

• The format of the CVT macro instruction.

• The Job Control and utility statements needed to add the
macro-definition to the library.

Format of the CVT Macro Instruction

This macro instruction defines the symbolic names of all fields in
the communication vector table (CVT). When coding this macro
instruction, you must precede it with a DSECT statement. The format of
the macro instruction is as follows:

r--~---T-----------T---,
I Name I Operation I Operand I
r------+-----------+---~
I I CVT I I L ______ ~ __________ ~ ___ J

control statements Reguired

r--,
//jobname JOB {parameters}
//stepname EXEC PGM=IEBUPDTE,PARM=NEW
//SYSPRINT DD SYSOUT=A
//SYSUT2 DD DSNAME=SYS1.MACLIB,DISP=OLD
//SYSIN DD *
./ ADD NAME=CVT,LIST=ALL

CVT Macro-Definition

./ ENDUP
/*

L __ ~--________________ _

102 OS System Programmer's Guide (Release 17)

How To Use The Tracing Routine

This chapter describes the function of the
tracing routine, and provides a detailed
description of the information made
available by the tracing routine.

Before reading this chapter, you should
be familiar with the information contained
in the prerequisite publication.

PREREQUISITE PUBLICATION

The IBM System/360: Principles of
Operation publication (Form A22-6821)
contains information about the SIO
instruction and the I/O and SVC
interruptions.

How to Use the Tracing Routine 103

How to Use the Tracing Routine

The tracing routine is an Operating System/360 optional feature which
you can use as a debugging and maintenance aid. The tracing routine
stores, in a table, information pertaining to the following conditions:

• SIO instruction execution.
• SVC interruption.
• I/O interruption.

You can include the tracing routine and its table in the control
program during the system generation process. This is done using the
TRACE option in the SUPRVSOR macro instruction.. The format of this
option requires you to supply the number of entries in the table. Each
table entry can contain information relating to one of the traced
conditions. When the last entry in the table is filled, the next entry
will overlay the first.

Table Entry Formats

Table entry formats are as follows:

SIO Instruction

0 2 3 13 21 31 0 31 0 31/ 0

0
Device

Channel Address Word
Channel status Word

Address (tv\eaningful only ,hen bits 2-3 = 01)

~SIO Condition Code

I/o Interruption

0 13 16 19 31 0 31 0 31\0

I
0 0000 Channel Status Word

I
~~----------------------v~----------------------J

I/O Old PSW

SVC Interruption

0 13 16 19 31 0 31 0 31 0

1 0001 Contents of Register 0 Contents of Register 1

\~--------------------~v----------------------~)
SVC Old PSW

104 OS System Programmer1s Guide (Release 17)

31

31

31

Location of the Table

The addresses of the last entry made in the table, the beginning of
the table, and the end of the table are contained in a 12-byte field.
The address of this field is contained in the full word starting at
location 20. The format of the field is as follows:

10 3110 3110 311
~--~--~-----------------+-----------------------+----------------------~
1 Address of the 1 Address of the 1 Address of the 1
1 Last Entry 1 Table Beginning 1 Table End 1 L _______________________ ~ _______________________ ~ ______________________ J

The tracing routine is bypassed during abnormal termination
procedur€s, except when incorporated in MFT or MVT configurations of the
operating system.

The abnormal termination dump lists the SIO, SVC, and I/O
interruptions table entries, starting with the oldest. A number is
assigned to each entry and the oldest entry is 0001.

How to Use the Tracing Routine 105

Implementing Data Set Protection

To use the data set protection feature
of the operating system, you must create
and maintain a data set, named PASSWORD,
consisting of records that associate the
names of protected data sets with the
password designated for each data set.
This chapter provides the information you
need to create the PASSWORD data set, and
describes operating characteristics of the
data set protection feature.

Recommended Publications

The IBM System/360 Q£erating System:
Supervisor and Data Management Services
publication (Form C28-6646) contains a
general description of the data set
protection feature.

The IBM system/360 Operating System:
Mess~ges and ~odes publication (Form
C28-6631) contains a description of the
operator messages and replies associated
with the data set protection feature.

The IBM system/360 Operating System:
Job Control Lang~age publication (Form
C28-6539) contains a description of the
data definition (DO) statement parameter
used to indicate that a data set is to be
placed under protection.

Documentation of the operating system
routines supporting data set protection can
be obtained through your IBM Branch Office.

Implementing Data Set Protection 107

Implementing Data Set Protection

To prepare for use of the data set protection feature of the operating
system, you place a sequential data set. named PASSWORD, on the system
residence volume <containing~SYS1.NUCLEUS and SYS1.SVCLIB). This data
set must contain one record for each data set placed under protection.
In turn, each record contains a data set name, the password for that
data set, a counter field, a protection mode indicator, and a field for
recording any information you desire to log. On the system residence
volume, these records are formatted as a "key area" (data set name and
password) and a "data area" <counter field, protection mode indicator,
and logging field). The data set is searched on the "key area."

You must write routines to create and maintain the PASSWORD data set.
These routines may be placed in your own library or the system's linkage
editor library (SYS1.LINKLIB). You may use a data management access
method or EXCP programming to handle the PASSWORD data set.

If a data set is to be placed under protection, it must have a
protection indicator set in its label (DSCB or header 1 tape label).
This is done by the operating system when the data set is created. The
protection indicator is set in response to an entry in the LABEL=
parameter of the DD statement associated with the data set being placed
under protection. The Job Control Language publication describes the
entry. Note: Data sets on magnetic tape are protected only when
standard labels are used.

Users who wish to have the password supplied by some method other
than operator key-in may replace the password reading module with their
own routine. The READPSWD source module may be used as a base for
writing a new module. In this case, the new object module replaces
module READPSWD. on the SVCLIB.

The balance of this chapter discusses the PASSWORD data set
characteristics' and record format, the creation of protected data sets,
and oper.ating characteristics of the data set protection feature.

·Password Data Set Characteristics and Record Format

The PASSWORD data set must reside on the same volume as your operating
system. The space you allocate to the PASSWORD data set must be
con.tiguous, i..e., its DSCB must indicate only one extent. The amount of
space you allocate is dependent on the number of data sets your
installation desires to place under protection. The organization of the
PASSWORD data set is physical sequential, and the content is unblockej
format-F records, 132 bytes in length (key area plus data area). The
following illustration shows the password records as you would build
them in a 132 byte work area. Explanation of the fields follows the
ill ustration.

108 as System programmer's Guide (Release 17)

1------ 52 byte "key" -----~I·--------- 80 byte "data area" ---------1
3 bytes

44 bytes-----I-B byte.- 11 ... ---------77 bytes ---------~~I

fully qualified
password

logging field
data set name (optional information)

L protection mode indicator - 1 byte

_0 -binary counter 2 bytes

The name of the protected data set being opened and the password
entered by the operator are matched against the 52-byte nkey area.'n The
data set name and the password must be left-justified in their areas and
any unused bytes filled with blanks (X'40'). The password assigned may
be from one to eight alphameric characters.

The operating system increments the binary counter by one each time
the data set is successfully opened (except for performance of SCRATCH
or RENAME functions on the data set). When you originate the password
record, the value in the counter may be set at zero (X'OOOO') or any
starting value your installation desires.

The protection mode indicator is set to indicate that the data set is
to be read-only, or that it may be read or written. Read only and
read/write protection for a data set can be attained by including the
same data set name in the password data set twice and giving it
dif,ferent passwords. You set the indicator as follows:

• To zero (X'OO') if the data set is to be read-only •
• To one (X'Ol') if the data set may be read or written.

You may use the 77-byte logging field to record any information about
the data set under protection that your installation may desire, e.g.,
date of counter, reset, previous password used with this data set, etc.

Protecting the Password Data Set·

You protect the PASSWORD data set itself by creating a password record
for it when your program initially builds the data set. Thereafter, the
PASSWORD data set cannot be opened (except by the operating system
routines that scan the data set) unless the operator enters the
password.

Creating Protected Data Sets

A data definition (DO) statement parameter (LABEL=) is used to indicate
that a data set is to be placed under protection. You may create a data
set. and set the protection indicator in its label, without entering a
password record for it in the PASSWORD data set. However, once the data
set is closed, any subsequent opening results in termination of the
program attempting to open the data set, unless the password record is
available and the operator can honor the request for the password.
Operating procedures at' your installation must ensure that password
records for all data sets currently under protection are entered in the
PASSWORD data set.

Implementing Data Set Protection 109

Protection Feature Operating Characteristics

This section provides information concerning actions of the protection
feature in relation to termination of processing, volume switching" data
set concatenation, SCRATCH and RENAME functions" and counter
maintenance. . .

Termination of Processing

Processing is terminated when:

1. The operator cannot supply the correct password for the protected
data set being opened.

2. A password record does not exist in the PASSWORD data set for the
protected data set being opened.

3. The protection mode indicator setting in the password record, and
the method of I/O processing specified in the open routine do not
agree, e.g., OUTPUT specified against a read-only protection mode
indicator setting.

4. There'is a mismatch in data set names for a data set involved in a
volume switching operation. This is discussed in the next section.

Volume Switching

The operating system end-of-volume routine does not request a password
for a data set involved in a volume switch. continuity of protection is
handled in the following ways:

Input Data Sets - Tape and Direct-Access Devices
Processing continues if there is an equal comparison between the
data set name in the tape label or DSCB on the volume switched to,
and the name of the data set opened with the password. An unequal
comparison terminates processing.

Output Data Sets - Tape Devices
The protection indicator in the tape label on the volume switched to
is tested:

1. If the protection indicator is set ON, an e~ual comparison
between the data set name in the label and the name of the data
set opened with the password allows processing to continue. An
unequal comparison results in a call for another volume.

2. If the protection indicator is OFF, processing continues, and a
new label is written with the protection indicator set ON.

3. If only a volume label exists on the volume switched to,
processing continues, and a new label is written with the
protection indicator set on.

Output Data Sets - Direct-Access Devices
For existing data sets, an equal comparison between the data set
name in a DSCB on the volume switched to, and the name of the data
set opened with the password allows processing to continue. For new
output data sets, the mechanism used to effect volume switching
ensures continuity of protection and the DSCB created on the new
volume will indicate protection.

Data Set Concatenation

A password is r-equested for every protected data set that is involved. ~n.
a concatenation of data sets, regardless of whether the other data sets
involved are protected or not.

110 OS System Programmer's Guide (Release 17)

SCRATCH and RENAME Functions

An attempt to perform the SCRATCH or RENAME functions on a protected
data set results in a request for the password. The protection feature
issues an operator's message when a protected data set is the object of
these functions. The Messages and Codes publication discusses the
message.

Counter Maintenance

The operating system does not maintain the counter in the password
record and no overflow indication will be given (overflow after 67,535
openings). You must provide a counter maintenance routine to check and,
if necessary, reset this counter.

Implementing Data Set Protection 111

ThePRESRES
Volume Characteristics List

This chapter describes the creation and use
of a direct access volume characteristics
list that is placed in the system parameter
library under the member name PRESRES.

Prereguisite Publications

The IBM System/360 Operating System:
Job Control Language publication (Form
C28-6539) discusses volume characteristics
and states.

The IBM_§ystem/360 Operating System:
Messages and cod~2 publication (Form
C28-6631) describes the operator messages
and responses associated with system use of
the volume characteristics list.

PRESRES Characteristics List 113

The PRESRES Volume Characteristics List

You may use the PRESRES volume characteristics list to define the mount
and allocation characteristics of direct access device volumes used by
your installation. Use of the list enables you to predefine the mount
characteristics (permane~tly resident, reserved> and allocation
characteristics (storage, public, private) for any, or all, direct
access device volumes used by your installation. The Job Control
Language publication provides a full discussion of the volume
characteristics and the operating system's response to the various
designations. The information presented here describes the creation of
the characteristics list, the format and content of entries in the list,
and how the operating system uses the list.

Creating the List

You use the IEBUPDTE utility program to place the list (under the member
name PRESRES) in the system parameter library, SYS1.PARMLIB. This
utility is also used to maintain the list.

PRES RES Entry Format

Each PRESRES entry is an 80-byte record, consisting of a 6-byte volume
serial number field, a i-byte mount characteristic field, a i-byte
allocation characteristic field, a 4-byte device type field, a i-byte
mount-prior,ity field, and an optional information field. Commas are
used to delimit the fields, except the optional information field is
always preceded by a blank. All character representation is EBCDIC.
This format is shown below.

r--------~---------T-T-T-T-T-T------------T-T-T-T-----------,

I Volume Serial I, I I, I I, I Device Type I, I I I Optional I
I Number 6 Bytes I I I I I I 4 Bytes I I I I Information I l __________________ i_i_~_i_~_~ ____________ ~_i_i_i ___________ J

LJL L Mount Priority--l Byte
Allocation Characteristic--1 Byte

Mount Characteristic--l Byte

The volume serial number consists of up to six characters, left
justified.

Mount characteristics are defined by:

o to denote permanently resident
1 to denote reserved

The default characteristic is "permanently resident" and is assigned if
any character other than 0 or 1 is present in the field.

Allocation characteristics are defined by':

o to denote storage
1 to denote public
2 to denote private

The default characteristic is "public" and is assigned if any character
other than 0, 1, or 2 is present in the field.

114 OS System Programmer's Guide (Release 17)

The device type is defined by:

A four digit number designating the type of direct access device on
which the volume resides, e.g. , the IBM 2311 Disk Storage Drive is
indicated by the notation 2311. Note that this field only indicates
the basic device type for the associated volume. You must advise the
operator if the device reguires special features (such as track
overflow) to process the data on the designated volume.

The mount priority field is used to suppress mount messages at IPL time
for a volume; the alphabetic character N should be inserted in this
field to suppress the mount message. This field allows the user to
list seldom used volumes in the PRESRES list without having a mount
message issued at each IPL. When these volumes are required, they may
be mounted and attributes will be set from the PRESRES list entry. If
the user does not wish to have the mount message suppressed, he may
omit the mount priority field and the preceding comma.

The optional information field contains:

Any descriptive information about the volume that you may wish to
enter. This information is not used by the system, but will be
available to you on a print-out of the list. If necessary, comments
may start in the second byte after the mount priority field or if the
mount p.rior.ity field is omitted, in the second byte following the comma
after the device type field.

Embedded blanks are not permitted in the volume serial, mount,
allocation, or device type fields.

Operational Characteristics

Upon receiving control from the nucleus initialization program (NIP),
the scheduler compares the volume serial numbers in the PRESRES
characteristics list with those of currently mounted direct access
volumes. Each equal comparison results in the assignment to the mounted
volume of the characteristics noted in the PRESRES entry. (Fields in
the unit control block for the device on which the volume is mounted are
set to reflect the desired characteristics.) If the volume is: the IPL
volume; the volume containing the data sets SYS1.LINKLIB, SYS1.PROCLIB,
SYS1.SYSJOBQE; or a physically nondemountable volume (such as a 2301
drum storage unit), the mount characteristic (permanently resident) has
already been assigned and only the allocation characteristic is set.

A mounting list is issued for the volumes in the PRESRES
characteristics list that are not currently mounted (except those for
which mounting messages have been suppressed) and the operator is given
the option of mounting none, some, or all of the volumes listed. The
mount and allocation characteristics for the volumes mounted by the
operator are set according to the PRESRES list entry for the volume.
The operator selects the unit on which the volume is to be mounted.

The Messages and Codes publication describes the operator messages
and responses associated with the use of the PRESRES volume
characteristics list.

After the scheduler has finished PRESRES processing reading of the
job input stream begins, and the PRESRES list is not referred to again
until the next IPL.

Volume characteristics assigned by a PRESRES list entry are
inviolate. They cannot be altered by subsequent references to the
volume in the input stream.

PRESRES Characteristics List 115

Note:

1. A PRESRES entry identifying a physically nondemountable volume will
appear in the mount list issued to the operator if the volume
(device) is OFFLINE or is not present in the system.

2. Use of the PRESRES list can only be suppressed by deleting the
member from the parameter library (SYS1.PARMLIB).

Programmdng Considerations

The only way to assign an allocation characteristic other than "public"
to volumes ~hose mount characteristic is ftpermanently resident" is
through a PRESRES characteristic list entry.

Selection of the volumes for which PRESRES entries are to be created
should be done so that critical volumes are protected. Since the
combinatio~ of mount and allocation characteristics assigned to a
specific volume determine the types of data sets that can be placed on
the volume and its usage. you can exercise effective control over the
volume through a PRESRES list entry.

116 OS System Programmer's Guide (Release 17)

Using the Resident BLDL Table,
Access Method, SVC Routine, and
Job Queue Options (PCP and MFT)
and the Link Pack Area (MVT)
section 1 of this chapter discusses the BLDL
Table, Access Method, SVC Routine and Job Queue
options and provides guidelines for their use.
The purpose of these options is to improve
performance by reducing or eliminating the access
time required to obtain the records or routines
with which these options are concerned. You may
incorporate any or all of these' options in the
PCP (Primary Control Program) or MFT
(Multiprogramming with a Fixed Number of Tasks)
configurations of the operating system.

section 2 of this chapter discusses the
inclusion of SVC routines, reenterable load
modules, and linkage library directory entries in
the Link Pack Area of Multiprogramming with a
Variable Number of Tasks (MVT) configurations of
the operating system.

section 3 of this chapter discusses the link
library list and provides guidelines for its use.
The purpose of this facility is to allow
concatenation of data sets for SYS1.LINKLIB. rhe
link library list must be included in the system.

Prerequisite Publications

The IBM System/360 Operating System: System
Generation publication (Form C28-6554) describes
how to specify the options and content of the
link pack area at system generation time.

The IBM System/360 Operating System:
supervisor and Data Management Services
publication (Form C28-6646) contains a general
discussion of the BLDL function.

The IBM System/360 Operating System:
utilities publication (Form C28-6586) contains a
description of the IEBUPDTE utility which you use
to construct lists of load module names in the
parameter library (SYS1.PARMLIB).

The IBM' System/360 Operating System: Storage
Estimates publication (Form C28-6551) provides
storage requirement information for the options
and link pack area.

The IBM System/360 Operating System: Messages
and Codes publication (Form C28-6631) contains
the operator message and replies associated with
the options and link pack area.

Residency Options and Link Pack Area 117

Section 1: The Resident BLDL Table, Resident Access Method,
Resident ·SVC Routine, and Resident Job Queue Options (PCP and MFT)

These options, wpen included in a PCP or MFT configuration of the
operating system, enable you to place in main storage:

1. All, or a selectl.on of, linkage library (SYS1.LINKLIB) directory
entries.

2. A selected group of access method routines.
3. A selected group of type 3 and 4 SVC routines.
4. A specified number of job queue records. (PCP only)

Placement occurs during the initial program load (IPL) process, except
for the job queue option: a main storage area large enough to contain
the specified number of job queue records is reserved at IPL time. rhe
main storage area that these resident routines and records occupy
becomes part of the "fixed storage" area of the system. In effect, the
nucleus is expanded.

These options are included in the sys.tem when it is generated. The
System Generation publication describes the procedure. The resident SVC
routine option reguires that the Transient SVC Table option also be
included in the system.

If you wish to exercise control over these options (except the
Transient SVC Table option) at IPL time, you must also specify the
operator communication facility for these options when the system is
generated.

You specify the linkage library (SYS1.LINKLIB) directory entries, the
access method routines, and the type 3 and 4 SVC routines to be made
resident through lists of linkage library, access method, and SVC
routine load module names placed in the parameter library
(SYS1.PARMLIB). The resident job queue option does not use a parameter
library list; you specify, at system generation time (and, if desired,
at IPL time) a value indicating the number of job queue records to be
made resident.

A standard list and alternative lists of load module names may exist
for the BLDL table, access method, and SVC routine options. The
standard list (so called because its member name in the parameter
library is predefined) is automatically referred to during the IPL
process when the operator communication facility is not included in the
system with the options. When the operator communication facility is
included, the operator must designate which list is to be used. IBM
provides suggested standard lists for the resident access method and SVC
routine options. These lists are in the starter system parameter
library.

Inclusion of the operator communication facility enables full control
over all the options at IPL time, i.e., selection of alternative or
standard lists, specification of the number of resident job queue
records, and suppression of the options until the next IPL. Otherwise,
the options are in effect at every IPL, using the standard lists and the
job queue record value specified during system generation.

The Messages and Codes publication describes the message (message
number IEA101A) and replies associated with the options.

The balance of this chapter discusses the function of each option,
the creation of the parameter library lists, and, in Appendix A, lists
the content of the resident access method and resident type 3 and 4 SVC
routine standard lists.

118 OS System Programmer's Guide (Release 17)

The Resident BLDL Table Option

System issued ATTACH, LINK, LOAD, or XCTL macro instructions requesting
load modules from partitioned data sets cause a search of the data set
directory for the location of the requested module (the BLDL table
operation) and a fetch of the module. The resident BLDL table option
eliminates the directory search required during execution of these macro
instructions when a load module (whose directory entry is resident) is
requested from the linkage library.

This option builds, in the system nucleus, a list of linkage library
directory entries for use by ATTACH" LINK, LOAD, or XCTL macro
instructions requesting linkage library load modules. During execution
of the BLDL operation in the macro instruction routines, the linkage
library directory is searched only when the directory entry for the
requested load module is not present in the resident BLDL table.

You list, in a member of SYS1.PARMLIB, the names of those linkage
library load modules whose directory entries are to be made resident.
The member name for the standard list is IEABLDOO. The load module
names must be listed in the same order as they appear in the directorYi
that is, they must be in ascending collating sequence. Creation of
parameter library lists is discussed later in this chapter. The next
section provides guidelines for choosing the content of the list.

Note: Directory entries in the resident table are not updated as a
result of updating the load module in the linkage library. The old
version of the load module is used until an IPL operation takes place
and the new directory entry for the module is made resident.

SELECTING ENTRIES FOR THE RESIDENT BLDL TABLE

Any load module in the linkage library may have its directory entry
placed in the resident BLDL table. Other items you should consider are:

1. Table size. (Each entry requires 40 bytes of storage with PCP and
MFTi MVT requires 56 bytes for each entry.)

2. Frequency of use of the load module.

Table Size

The resident BLDL table is incorporated in the system nucleus. The
additional storage required is governed by the number of table entries
and is acquired by reducing the amount of dynamic storage area
available, i.e., the system nucleus expands. Each installation using
the resident BLDL table option must determine the amount of storage it
can afford for the resident BLDL table.

Freguency of. Use

Short of placing the entire linkage library directory in the resident
BLDL table, you make the option effective by selecting directory entries
representing the load modules which are called most frequently. Your
choice will depend on the system configuration and the operating
practices of your installation. You should give load modules of the
scheduling components of the system, linkage editor, and language
processor(s) thorough consideration.

Residency Options and Link Pack Area 119

The Resident Access Method Option

This option places access method load modules in the system nucleus and
creates a resident list of these modules. A LOAD macro instruction
requesting any access method module first scans the resident list. If
the module is listed, no fetch operation is required.

You list, in a member of SYS1.PARMLIB, the load module names of
access method load modules to be made resident. The member name for the
standard list is IEAIGGOO. A standard list of most frequently used
access method modules is supplied by IBM (see Appendix A), and is in
SYS1.PARMLIB of the starter system under the standard member name. rhe
modules are listed by frequency of use; the least used module is first
in the list.

The creation of parameter library lists is discussed later in this
chapter. The next section discusses some considerations pertaining to
the use of the access method option.

CONSIDERATIONS FOR USE

The storage space required for each access method module consists of the
byte requirements of the module and its associated load request block
(LRB),. The storage Estimates publication provides the byte requirements
for· access method modules eligible to be made resident. The byte
requirement of the code supporting the option is also provided.

All access method modules placed in the system nucleus are "only
loadable". ATTACH, LINK, and XCTL macro instructions cannot refer to
the resident modules.

You may alter the,standard access method list (or create alternative
lists) to include access method modules supporting program controlled
interrupt scheduling (PCI), exchange buffering, track overflow, and the
UPDAT function of the OPEN macro instruction.

To be eligible for use with the resident access method option, access
method load modules must be reenterable. The module name must be of the
form IGG019xx, where xx can be any two alphanumeric characters.

The Resident SVC Routine Option

This option places type 3 and 4 SVC routine load modules in main
storage. Some, or all, of the modules associated with a SVC service
routine may be made resident. Placing the most frequently used SVC load
modules of a system service routine, such as OPEN, in main storage
improves system performance. All load modules of type 3 and 4 SVC
routines are eligible for residence. For type 3 SVC load modules and
initial type 4 SVC load modules" the SVC table entries associated with
these modules are adjusted to reflect an entry point address rather than
a relative track address. A resident SVc load list is used by the xcrL
macro instruction for transfer of control between resident type 4 Svc
load modules.

You list, in a member of SYS1.PARMLIB the type 3 and 4 SVC load
modules to be made resident. The member name for the standard list is
IEARSVOO. The modules are listed by frequency of use; the least used
module is first in the list. A standard list of type 3 and 4 SVC loa:i
modules is provided by IBM (see Appendix A) and is in SYS1.PARMLIB of
the starter system under the standard member name. The creation of
parameter library lists is discussed later in this chapter.

120 OS System Programmer's Guide (Release 17)

storage Requirements

The storage Estimates publication provides the byte requirements of type
3 and 4 SVC routines eligible to be made resident. The byte requirement
of the code supporting the option is also provided.

The Resident Job Queue Option (PCP only)

This option places a specified number of system job queue records in
main storage rather than in external storage (the SYS1.SYSJOBQE data
set). The records are taken sequentially from the beginning of the
queue. There is one break in the sequence which is noted in the next
section "Operational Characteristics."

Operational Characteristics

The job queue is formatted as a series of 176 byte records. The first
42 records form a "fixed group" of job queue records used by the
scheduler. These 42 records are always present in the job queue. Of
this group, 26 records are used by the interpreter routines of the
scheduler as a work area. These 26 records are never made resident Qy
the option. The remaining 16 records in the "fixed group" may be made
resident. After the "fixed group" of records, a series of records
forming a "variable group" of job queue records is developed. The
number of records in the "variable group" fluctuates from job to job
reflecting the make-up of the input job stream for the job being read
in. All records in the "variable group" may be made resident.

starting with the first (in sequence) of the 16 eligible "fixed
group" records, the option places the specified number of records in
main storage. For example, a specification of 5 resident records will
place the first 5 of the 16 "fixed group" records in main storage; a
specification of 20 resident records will place all 16 of the "fixed
group" records in main storage plus the first 4 records from the
"variable group."

Reference to a specific job queue record causes a test to be made -­
in resident queue or in external storage -- and the record is referred
to accordingly.

In an MFT configuration of the operating system only the "variable
group" job queue records developed from the input job stream for the
lowest priority partition may be made resident.

Determining Resident Job Queue Size

The storage occupied by the resident job queue cannot be allocated to
any other use, therefore you must determine the amount of storage your
installation can afford to devote to a resident job queue. Since the
size of the queue can be varied from IPL to IPL you may want to estimate
several sizes -- each estimate reflecting a feasible job queue size in
view of the work to be performed after the IPL.

The following formula can be used to estimate the number of resident
job queue records developed for a given job. The constant (16)
represents the 16 "fixed group" records that are always developed and
are eligible for inclusion in the resident job queue.

Residency Options and Link Pack Area 121

Number of. Records= 16 + B + 2C + E + F + 3G + H-S + ~
3 28 176 15 22

Where:

B = the number of data sets passed between job steps.

C = the number of steps in the job.

E the number of volume serial numbers specified in the DD statements
for each job step. (Evaluate each job step separately and sum the
resul ts to obtain the total value.)

F the number of characters in data set names, including qualifiers,
appearing in DD statements in the parameter VOL=REF=dsname.
(Evaluate each job step separately and sum the results to obtain the
total value.)

G = the number of DD statements in the job.

H = the number of volume serial numbers specified in each DD statement
(if H$S, H-5=O). (Evaluate each DD statement separately and sum the
results to obtain the total value.)

J = the total number of job control language statements used to describe
the job. when all messages are to be written on the system output
device, otherwise J=l.

Multiplying the number of records by 176 provides the resident job queue
size in terms of bytes.

If possible, the entire set of eligible job queue records should be
made resident. It is recommended that at least the 16 eligible records
from the "fixed group" of job queue records be made resident.

Creating Parameter Library Lists

You use the IEBUPDTE utility program to construct the required lists of
load module names in the parameter library. Standard member names for
these lists are:

IEABLDOO for the BLDL table option
IEAIGGOO for the access method option
IEARSVOO for the SVC routine option
LNKLSTOO for the link library list option

These are the member names that the nucleus initialization program
recognizes at IPL time in the absence of any other specification, i.e.,
when th€ operator communication facility is not incorporated.

Notg: The nucleus initialization program (NIP) will search the system
catalog to locate the SYS1.PARMLIB data set. If it is not found in the
catalog, SYS1.PARMLIB is assumed to reside on the IPL volume. If no
VTOC entry Cdn be found, the operator will receive message IEA211I
"OBTAIN FAILED FOR SYS1.PARMLIB DATA SET". Message IEA208I "RAM, BLDL,
RSVC FUNCTIONS INOPERATIVE" will follow either of these messages.
Processing will continuei however, any resident functions dependent on
parameter lists contained in the parameter library will be omitted from
the system nucleus.

Your input format (to IEBUPDTE) for the lists is the same for all
three options, consisting of library identification followed by the load
module names. You use eighty character records with the initial or only

122 OS System Programmer's Guide (Release 17)

record containing the library identification. continuation is indicated
by placing a comma after the last name in a record and a non-blank
character in column 72. Subsequent records must start in column 16.

The initial record format (with continuation) is:

1
SYS1.LINKLIB
SYS1.SVCLIB

72

b ••• name1,name2.name3, ••• X

Subsequent records do not contain the library name.
SYS1.LINKLIB indicates that linkage library load module names follow.
SYS1.SVCLIB indicates that SVC library module names follow.

You may construct alternative lists for all three options and place
them in the parameter library. Member names for these alternative lists
are of the form:

IEABLDxx for the BLDL option
IEAIGGxx for the resident access method option
IEARSVxx for the resident SVC routine option

where xx can be any two alphameric characters.
LNKLSTOO f.or the link library list option

Use of the alternative lists is indicated by the operator at IPL time
and requires that the communication facility be present. When the
operator communication facility is present, the operator must indicate
(for all three options) that the standard list is to be used; that
alternative lists are to be used; or that, for this IPL, the option(s)
will not be used. In the latter case, no resident BLDL table, access
method routines, or SVC routines are placed in the nucleus.

EXAMPLE

The following coding illustrates the format and content of a BLDL option
list that might be used to support the resident BLDL table· option. The
operator, at IPL time, would have to indicate the member name, IEABLDAE
to the system. The load module names listed are from the Assembler (E),
Lin~age Editor, and scheduler components of the operating system. Note
that the module names are listed in ascending collating sequence as
required for the resident BLOL option. Resident access method or SVC
modules should be listed in order of anticipated frequency of use.

//BLDLIST EXEC PGM=IEBUPDTE,PARM=NEW
//SYSPRINT DD SYSOUT=A
//SYSUT2 DD: DSNAME=SYS1.PAR~~IB,DISP=OLD
//SYSIN DO *
./ ADD NAME=IEABLDAE,LIST=ALL
./ NUMBER NEW1=Ol,INCR=02

SYS1.LINKLIB GO,IEEGESTO,IEEGK1GM,IEEICIPE,IEEIC2NQ,IEEIC3JF, X

./ ENDUP
/*

IEEQOTOO,IEFINTQS,IEFK1,IEFSD008,IEFW21SD,IEFXA, X
IETASM,IETDI,IETE1,IETE2,IETE2A,IETE3,IETE3A,IETE4M, X
IETE4P,IETE4S,IETE5,IETE5A,IETE5E,IETE5P,IETINP,IETMAC, X
IETPP,IETRTA,IETRTB,IET07,IET071,IET08,IET09,IET09I, X
IET10,IET10B,IET21A,IET21B,IET21C,IET210,IEWL,IEWSZOVR

Note: During IPL the operator reply nLn may be used in conjunction with
a list specification and causes the content of the list to be printed.
You should use this feature initially (especially with extensive lists)
to easily identify format errors, e. g., a 9 character name" or incorrect
name specifications.

Residency Options and Link Pack Area 123

Section 2: Using the Link Pack Area (MVT)

In MVT configurations of the operating system the link pack area is
always present in main storage, and, as a minimum, always contains a
group of system-specified load modules concerned with job management
processing. You may extend the link pack area to contain:

• Load modules of nonresident SVC routines.
• other reenterable load modules from the system linkage library

(SYS1.LINKLIB) and SVC library (SYS1.SVCLIB).
• A table (the BLDL table) containing directory entries of load

modules in the linkage library (SYS1.LINKLIB).

Essentially" the link pack area in MVT configurations is the
coun~erpart of the PCP and MFT configuration residency options (except
job queue) discussed in section 1 of this chapter.

You select the load modules to be made resident and the linkage
library load modules whose directory entries are to appear in the BLDL
table. You indicate your choices to the system through lists of the
load module names placed in the system parameter library (SYS1.PARMLIB).
standard (default) and alternative lists may be made up for each
category.

During the initial program loading (IPL) process the nucleus
initialization program places the specified load modules in the link
pack area and constructs the BLDL table. The load modules and BLDL
table remain, unchanged, in the link pack area until the next IPL
procedure is performed, and can be used by all tasks.

PROCEDURE FOR USING THE LINK PACK AREA

The following material, under the headings "Initialization," "Creating
Parameter Library Lists," "List Specification," and "Operational
Characteristics," provides guidelines for use of the link pack area.

Initialization

When your MVT operating system is generated you must indicate whether
you wish to extend the link pack area to include nonresident SVC
routines, other reenterable load modules, the BLDL table, or any
combination of these. The System Generation publication describes the
procedure (the SUPRVSOR macro instruction).

To exercise full control over the content of the link pack area
(except for the mandatory modules which are always loaded) you must
specify, at system generation, that the operator communication facility
be included. The System Generation publication describes the procedure
(the SUPRVSOR macro instruction). The operator communication facility
enables you to respecify the content of the link pack area at each IPL.

creating Parameter Library Lists

As discussed under the same heading in section 1 of this chapter you use
the IEBUPDTE utility program to place your load module name lists in the
parameter library (see section 1). The format of your input to the
utility program is the same.

Note: In an MVT configuration of the operating system, updating of the
system data set SYS1.PARMLIB should not be attempted while other jobs
are operative. The recommended procedure is described in the Operator's
Guide publication.

124 OS System Programmer's Guide (Release 17)

List Specification

The names and content of the parameter library lists are:

List Name

IEARSVOO
IEARSVxx1

lEAIGGOO
IEAIGGxx1

IEABLDOO
IEABLDxx1

standard list
alternative list(s)

standard list
alternative list(s)

standard list
alternative list(s)

LNKLSTOO -standard list

List Content

Names of type 3 and 4 SVC
routine load modules.

Names of reenterable load modules
in the SVC and linkage libraries.

Names of linkage library load
modules whose directory entries
are to be entered in the BLDL
table.

SYS1.LINKLIB -- ~dditional data sets
may be concatenated after system
generation via IEBUPDTE.

1XX can be any two alphameric characters.

SVC LOAD MODULE LISTS: Only one standard SVC load module list -­
IEARSVOO -- may be present in the parameter library. You may create as
many alternative lists as your needs require. To use alternative lists,
you must have specified the operator communication facility at system
generation. The standard list is the only list referred to by the
nucleus initialization program at IPL time if the operator communication
facility is not installed in the system. A suggested standard list,
supplied by IBM, is shown in Appendix A of this chapter. The Storage
Estimates pubLication provides a list (with storage requirements) of IBM
originated type 3 and 4 SVC load modules that are eligible for inclusion
in the link pack area.

REENTERABLE LOAD MODULE LISTS: Only one standard list of reenterable
load modules -- IEAIGGOO -- may be present in the parameter library.
You may create as many alternative lists as your needs require. You
cannot incorporate load modules from the SVC library and the linkage
library in one list. Use of the standard and/or alternative lists is as
discussed under SVC LOAD MODULE LISTS. A suggested standard list,
supplied by IBM, is shown in Appendix A of this chapter. The Storage
Estimates publication provides a list (with storage requirements) of IBM
originated reenterable load modules (other than SVC modules) that are
eligible for inclusion in the link pack area.

BLDL TABLE LISTS: Only one standard list of linkage library load
modules -- IEABLDOO -- may be present in the parameter library. You may
create as many alternative lists_as your needs require. Use of the
standard and/or alternative lists is as discussed under SVC LOAD MODULE
LISTS. A sUggested standard list, supplied by IBMI is shown in Appen3ix
A of this chapter. Each load module name in the list originates a
56-byte entry in the BLDL table. You compute the amount of storage
required for the BLDL table constructed from any given list by
multiplying the number of names in the list by 56.

~ You must arrange the linkage library load module names in your
list(s) in the same order as they appear in the linkage library
directory. All load modules in the linkage library are eligible to have
their directory entries placed in the BLDL table.

Residency Options and Link Pack Area 125

Operational Characteristics

Your specifications at system generation time determine the types of
load modules that are placed in the link pack area and whether a BLDL
table is constructed in the link pack area. In response to your
specifications, the nucleus initialization program (at IPL time) refers
to the parameter library lists to determine the specific load modules to
be placed in the link pack area and/or the specific linkage library
directory entries to be placed in the BLDL table. In the absence of the
operator communication facility only the standard lists are referred to.
If the operator communication facility is present the operator must
specify the list or lists to be used. The operator may:

• Specify use of the standard list for each category, i.e., SVC loaj
modules, other reenterable load modules, the BLDL table content.

• Specify alternative lists for each category, or a combination of the
standard list and alternative lists. Up to four lists may be
specified for each load module category.

Only one list may be specified for the BLDL table.

• Specify that (for the current IPL) the loading of modules and/or
construction of a BLDL table be suppressed. Each category is
treated independently.

With operator communication you can specify, at each IPL, the content
of the link pack area extension. The number and type of load modules
selected for· inclusion in the link pack area, and the content of the
BLDL table" can thus be altered to reflect the type of workload to be
presented to the system after the IPL.

The Messages and Codes publication describes the operator message anj
responses associated with use of the link pack area.

PROGRAMMING NOTES

A list of the load modules always placed in the link pack area by the
system is contained in the Storage Estimates publication. The main
storage space requirements of these modules determines the basic
(minimum) size of the link pack area. The area is extended by the
number of storage bytes needed to accommodate the load modules and BLDL
table content specified at IPL time.

Placing the initiator/terminator load module IEFSD061 in the link
pack area enables the system to make more efficient use of the dynamic
area of storage. The operating system allocates to each job a part of a
region not less than the size required to accommodate the
initiator-terminator. This allocation is from processor storage
(hierarchy 0) and occurs even when the REGION parameter requests less
than the required space or no space. After initiation, the part of the
region in hierarchy 0 is reduced by as much as 40,000 bytes when the job
terminator is resident in the link pack area.

126 OS System Programmer's Guide (Release 17)

EXAMPLE OF LINK PACK AREA SPECIFICATION

The following example illustrates the extension of the link pack area to
contain SVC load modules, other reenterable load modules, and a BLDL
table. The RESIDNT field of your system generation SUPRVSOR macro
instruction would look like:

SUPRVSOR RESIDNT=TRSVC,RENTCODE,BLDLTAB •••

If you intend to alter the content of your link pack area, you woulj
also specify: OPTIONS=COMM,444 in the SUPRVSOR macro instruction.

Assume that you wish to place five lists on SYS1.PARMLIB. These
lists are:

1. IEARSVOO, which contains names of modules of the open SVC routine
used for direct access devices.

2. IEARSV20, which contains names of modules of the close SVC routine.

3. IEAIGG01, which contains names of modules of the basic sequential
access method (BSAM).

4. IEABLD:OO, which contains names of modules of the initiator portion
of the job scheduler.

5. IEABLDF.O, which contains names of modules of both the FORTRA1.~
compiler and the initiator ..

Note that there is no standard list for reenterable modules from the
linkage or SVC library (IEAIGGOO)4 This implies that you don't want
modules of this type loaded unless a list is explicitly specified.

To place these lists in SYS14PARMLIB, you could use the IEBUPDTE
utility program as shown:

//ADDLISTS
//STEP
//SYSPRINT
//SYSUT2
//SYSIN
./
./
SYS14SVCLIB

./

./
SYS1.SVCLIB

./

./
SYS1.SVCLIB

./

JOB 61938,R.L.WILSON
EXEC PGM=IEBUPDTE,PARM=NEW
DD SYSOUT=A
DD DSNAME=SYS1.PARMLIB,DISP=OLD
DD DATA
ADD NAME=IEARSVOO,LIST=ALL
NUMBER NEW1=Ol.,INCR=02
IGC00019,IGG0190Z,IGG0190I,IGG0190L,

IGG0190M,IGG0190S
ADD NAME=IEARSV20,LIST=ALL
NUMBER NEW1=Ol,INCR=02
IGC00020,IGG0200A,IGG0200B,IGG0200C,IGG0200F,

IGG0200G,IGG0200Y
ADD NAME=IEAIGG01,LIST=ALL
NU~rnER NEW1=Ol,INCR=02
IGG019BA,IGG019BB,IGG019BC,IGG019BD,

IGG019BE,IGG019BF,IGG019BG,
IGG019BH,IGG019BI,IGG019BK,IGG019BL

ADD NA~~=IEABLDOO,LIST=ALL

C

c

c
c

Residency Options and Link Pack Area 127

./
SYS1.LINKLIB

./

./
SYS1.LINKLIB.

./
/*

NUMBER NEW1=Ol,INCR=02
IEFSD061,IEFSD062,IEFw21SD,IEFwCOOO,

IEFSD065,IEFW42SD,IEFSD104,IEFUM1,
IEFXJOOO,IEFWDOOO,IEFw41SD

ADD NAME=IEABLDFO,LIST=ALL
NUMBER NEW1=Ol,INCR=02
IEFSD061,IEFSD062,IEFW21SD,IEFWCOOO,

ENDUP

IEJAAAO,IEJEAAO,IEJFAAO,IEJGAAO,
IEJJAAO,IEJLAAO,IEJNAAO,IEJPAAO,
IEJRAAO,IEJVAAO,IEJXAAO,IEFSD065,
IEFW42SD,IEFSD104,IEFUM1,IEFXJOOO,
IEF'WOOOO ,IEFW41SD

without operator communication only the standard lists IEARSVOO and
IEABLDOO would be referred to at IPL time. with operator communication
use of all the lists or any combination could be specified at IPL time.

C
C

c
c
c
c
c

If after a given IPL you intend to extensively use the FORTRAN
compiler, and BSAM with direct access devices, you would probably want
to use all of these lists -- except IEABLDOO -- to specify the content
of your extended link pack area. To do this your operator would specify
the following in response to the SPECIFY SYSTEM PARAMETERS operator's
message:

REPLY id, "RSVC=OO,20,RAM=Ol"BLDL=FO"

If, after an IPL you intended to perform general processing without
extensive use of any particular compiler or access method, you might
want to put just the linkage library directory entries of initiator
modules in a BLDL table. In this case, your operator's reply at IPL
would be:

REPLY id, "RSVC=,RAM=,"

Since the list of initiator modules is the standard list, it need not
be specified. "RSVC=," must be specified to prevent the use of the
standard list of SVC modules. Although you have no standard list of
reenterable modules "RAM=," should be specified to prevent NIP from
performing unnecessary processing.

128 OS System Programmer1s Guide (Release 17)

Section 3: The Link Library List

The link library list (LNKLSTOO) enables you to concatenate up to 16
data sets, on multiple volumes, to form SYS1.LINKLIB. LNKLSTOO is
included in the system when at is generated as a required member of
SYS1.PARMLIB. If SYS1.PARMLIB does not include the member LNKLSTOO,
SYS1.LINKLIB will be used as the system link library and a warning
message will be provided.

Note: The amount of space required for SYS1.PARMLIB is discussed in IBM
sYStem/3.60 Operating System: storage Estimates, Form C28-65S1.

LNKLSTOO contains one member, SYS1.LINKLIBc After system genera~ion
you will have the option of ctu.uing members via the IEBUPDTE util.i.ty
program. Each member may have up to 16 extents. After making additions
to SYS1.SVCLIB, SYS1.LINKLIB, or data sets concatenated to LINKLIB via
LNKLSTOO, and before using the additions, IPL should be performed to
update the description of the link and/or SVC library in main storage.

Your input forw~t (to IEBUPDTE) consists of eighty character records.
continuation is indicated by placing a comma after the last name in a
record and a non-blank character in column 72. Subsequent records must
start in column. 16. The initial format is:

[b •••] SYS1.LINKLIB

To add member names to LNKLSTOO, replace the initial record with:

[b~ ••] SYS1~LINKLIBlname1,name2,name3, •••

IBM Systew/360 Operating System: Messages and Codes, Form C28-6631,
describes the NIP messages associated with LNKLSTOO.

Residency Options and Link Pack Area 129

Appendix A: Standard Lists IEAIGGOO, IEARVOO, IEABLDOO

I The content of the IBM supplied standard list IE~IGGOO is shown below.

Module Name

IGG019AV
IGG019AN
IGG019~M
IGG019AH

IGG019BE
IGG019~G

IGG019CB
IGG019CA
IGG019~K

IGG019AJ
IGG019FJ
IGG019AI
IGG019AC
IGG019AB
IGG019FB
IGG019AA
IGG019AR
IGG019AQ
IGG019AL
IGG019FL
IGG019FG
IGG019AD
IGG019FD
IGG019FF.
IGG019BD
IGG019BC
IGG019BB
IGG019BA
IGG019CK
IGG019CJ

IGG019CI
IGG019CH

IGG019CL
IGG019CF

IGG019CE
IGG019CD
IGG019CC

Access Method

QSAM (SB)
QSAM (SB)
QSAM (SB)
QSAM (SB)

BSAM
QSAM (SB)

SAM
SAM
QSAM (SE)
QSAM (SB)
QSAM (SB)
QSAM (SB)
QSAM (SB)
QSAM (SB)
QSAM (SB)
QSAM (SB)
QSAM (SB)
QSAM (SB)
QSAM (SB)
QSAM (SB)
QSAM (SB)
QSAM (SB)
QSAM (SB)
QSAM (SB)
BSAM
BSAM
BSAM
BSAM
SAM
SAM

SAM
SAM

SAM
SAM

SAM
SAM
SAM

Function

PUT Locate for Dummy Data Set
Backward Move - Format F, FB, U Records
Backward Locate - Format F, FB, U Records
GET Move with CNTL - Format V Records (Carj
Reader)
Magnetic Tape Forward Space or Backspace
GET Move with CNTL - Format V Records (Card
Reader)
Space or Skip Printer
Stacker Select (Card Reader)
PUT Move, Format F, FB, U Records
PUT Locate, Format V, VB Records
PUT Locate, Format VS, VBS Records
PUT Locate, Format F, FB, U Records
GET Move, Format F, FB, U Records
GET Locate, Format V, VB Records
GET Locate, Format VS, VBS Records
GET Locate, Format F~ FB, U Records
PUT Synchronization Routine
GET Synchronization Routine
PUT Move, Format V, VB Records
PUT Move, Format VS, VBS Records
PUT Data, Format VS, VBS Records
GET Move, Format V, VB Records
GET Move, Format VS, VBS Records
GET Data, Format VS, VBS records
NOTE/POINT Tape
NOTE/POINT Disk
CHECK (all devices)
READ/WRITE (all devices)
SYSIN Delimiter Check (Appendage)
Read Length Check, Format V Records
(Appendage)
Length Check, Format FB Records (Appendage)
End-of-Extent Check (Data Extent Block)
(Appendage)
Printer Test Channels 9,12 (Appendage)
ASA Character to Command Code
(Printer-Punch)
End-of-Block (Printer-Punch)
Schedules I/O for Direct-Access Output
Schedules I/O for Tape, Direct-Access
Input, Card Reader, Paper Tape Reader

SB=simple buffering
SAM=common sequential access method routines

Note: The BSAM and SAM Modules are necessary if the checkpoint/restart
facility is to be used.

130 as System Programmer's Guide (Release 17)

The content of the IBM supplied standard list IEARSVOO is shown
below.

Module Name

IGC0001F
IGC0001I
IGCOOOSE
IGC0002 OS, ?) *
IGG0190L
IGG0190M
IGG0190N
IGG0190S
IGG0191A
IGG0191B
IGG0191D
IGG0191G
IGG01910
IGG01911
IGG0199M
IGG0200A
IGG0200F
IGG0200G
IGG0200Y
IGG0200Z
IGG0201Z

Function

Purge Routine
Open - Initial Load
EOV - Initial Load
Close - Initial Load
Open - Merge and Access Method Determination
Open - Merge and DCB Exit Routine
Open - Final Load
Open - Rewrite JFCB
Open - DEB Construction
Open - Main Executor
Open - Direct Access Executor
Open - Tape and Unit Record Executor
Open - Load Executor
Open - lOB and Buffer Construction
Open - JFCB Merge
Close - Read JFCB and DSCB
Close - Direct Access Routine
Close - Delete Routine
Close - Direct Access Processing
Close - Second Load
Close - SAM Executor

(SAM - Common sequential access methods modules)

*The last (eighth) character is a 12 and 0 punch. In EBCDIC this is 5
(the blank character), in BCD? (the question mark).

The IBM supp~ied standard list IEABLDOO is shown below.

SYS1. LINKLIB IEBCOMPR., IEBGENER, IEBPTPCH" IEBUPDTE, IEHLIST, IEHMOVE, X
IEHPROGM,LINKEDIT,SORT

Residency Options and Link Pack Area 131

MVT and MFT Job Queue
Formatting

In MVT and ~~T configurations of the
operating system, the job queue format is
specified when the system is generated and
may be altered during subsequent system
start procedures. Formatting consists of
specifying the number of queue records in a
job queue logical track, reserving queue
records for initiators, and reader/
interpreters, and reserving queue records
for job cancellation.

This chapter provides guidelines for
estima ting:

• The number of queue records in a job
queue logical track.

• The number of queue records to be
reserved for use by an initiator and
reader/interpreter.

• The number of queue records to be
reserved for cancellation of job
initiation and running when the number
of queue records reserved for initiator
use is insufficient.

Reference Publications

The IBM System/360 Operating System:
System Generation publication (Form
C28-6554) describes the SCHEDULR macro
instruction parameters used to initially
specify job queue format.

The IBM system/360 Operating System:
Operator's Guide publication (Form
C28-6540) describes the procedure used to
alter job queue format.

MVT and MFT Job Queue Formatting 133

MVT Job Queue Formatting

In MVT and MFT operating system configurations, the basic element of the
system job queue (the data set SYS1.SYSJOBQE) is a 176-byte record -­
the queue record. The total number of queue records available is fixed
by the space allocated to the ~YS1.SYSJOBQE data set. Queue records
con.tain the tables, control blocks, and system messages developed by the
reader/interpreter and initiator control program routines -- the
information used to run a job.

Lack of queue records to work with is not critical for a
reader/interpreter routine. In Mvr processing of the input job stream
assigned to a reader/interpreter is suspended until queue records become
available, at which time processing is resumed. In MFT the operator
will receive a message if there is insufficient space for a
reader/interpreter. He may wait for space or cancel the reader. An
initiator, however, must have sUfficient gueue records available to
complete the initiation and running of a job or the job is canceled.
Because, in an MVT configuration, one or more reader/interpreters and
one or more initiators may be concurrently active, steps must be taken
to ensure that queue records are available to each initiator started, so
that it may complete its operations. In addition queue records must be
reserved for use by initiators in the event job cancellation does take
place. The main function of job queue formatting is to reserve queue
records for initiator use.

To format the job queue you must:

1. Designate the number of queue records to be contained in a job
queue logical track. A logical track consists of a header recor1
(20 bytes) plus the designated number of queue records.
Reader/interpreters and initiators are assigned queue records in
terms of logical tracks.

2. Designate the number of queue records to be reserved for use by an
initiator. Each initiator is allocated this number of records. If
the allocation is insufficient for the job currently being
processed by the initiator, the job is canceled in MVT.

3. Designate the number of queue records to be reserved for use in
case of job cancellation. All initiators that cancel use these
queue records. If the allocation is insufficient, the initiator is
placed in a WAIT state and a message issued.

The balance of the queue (total queue records less the reservations
in items 2 and 3) is available for use by the reader/interpreters.

You specify initial values for logical track size, queue record
reservation for initiators, and queue record reservation for job
cancellation, in the SCHEDULR macro instruction parameters JOBQFr<lT,
JOBQLMT, and JOBQTMT respectively. The ~stem~~~er~tiog publication
describes the procedure.

There are no comprehensive, foolproof formulas for calculating values
of JOBQFMT, JOBQLMT, and JOBQTMT. The values to be estimated are
dependent upon the requirements and structure of the jobs to be
presented to the system, the number of job steps., the number of I/O
devices required, the number and type of data sets, the number of
volumes, and most unpredictable, the number of system messages issued
during the initiation and running of a job. The rest of this chapter
provides some basic guidelines for your use in determining these values.

134 OS System Programmer's Guide (Release 17)

LOGICAL TRACK SIZE JOBQFMT

Logical track size the number of queue records in a logical track
affects the efficient use of queue records. Reader/Interpreters and
initiators are allocated queue records in terms of logical tracks.
Unused queue records in a logical track are not available for use by
other reader/interpreters or initiators. Therefore, an over generous
logical track size specification results in wasted queue records and
reduction of job queue capacity, i.e., the unused queue records, if
available, could contain the required information for another job.

Logical track size affects performance to some extent. Specification
of a logical track size of 10 queue records or less can result in
excessive execution of the track assignment routines, etc. 1 i.e., the
"overhead" r.equired to use very small logical track sizes impairs
performance.

You may, as a starting point, wish to use the default value for
JOBQFMT (12 queue records).

You may make your logical track size (or mUltiples of it) correspond
to the physical track capacity of the device on which the job queue is
resident. For example, if the IBM 2301 Drum storage unit is to be used l

66 queue records may be contained in one physical track. You might
specify, in this case l a logical track size of 22 queue records l thereby
allocating 3 logical tracks to one physical track (3 x 22 = 66 queue
records). The 3 logical track header records (20 bytes each) use up the
remaining record.

You may wish to make your logical tracks contain the same number of
queue records as are reserved for initiator use.

RESERVING INITIATOR QUEUE RECORDS -- JOBQLMT

The value you specify for JOBQLMT must be large enough for the queue
entries of any job that enters the system. The following list shows the
factors that affect the value of JOBQLMT:

• Number of entire generation data groups in a job.

• Number of passed data sets in a job.

• Number of devices required for passed data sets.

• Number of volumes containing the data sets in a step.

• Number of system messages issued during initiation of a step.

The sum of the queue records required for each of these items
provides you with a JOBQLMT value.

When a start initiator command is issued l a check is made to see if
enough free logical tracks are available to provide the required number
of queue records for the initiator. If not, the system rejects the
command.

Number of Generation Data Groups

Each entire generation data group (GDG) used during a job increases the
number of queue records needed by an initiator. Two queue records
should be reserved for every generation in excess of the first in a GDG.
One queue record should be reserved for every four GDGs used in a job.

MVT and MFT Job Queue Formatting 135

Thus, if a job uses two entire GDGs, one having 5 data sets
(generations), and the other having 24 data sets, 55 queue records must
be reserved -- (4+23)x2+1.

Number of Passed Data Sets

Two queue records are needed by an initiator for every three data sets
passed during a job. If the number of data sets passed is not a
multiple of three, queue records must be allocated as if the number of
data sets passed was a multiple of three. Thus if one. two, or three
data sets are passed. two queue records are allocated; if four, five, or
six data sets are passed, 4 queue records are allocated, and so on.

Number of I/O Devices For Passed Data sets

When a data set being passed requires more than ten I/O devices, one
queue record is required by an initiator. This queue record
accommodates 43 devices. If the number of required devices exceeds 53,
a second queue record is needed. separate calculations must be made for
each- data set.

Number o.f Volumes

An initiator requires queue records for each data set that occupies more
than five volumes, and is located by a search of the catalog. (If a
data set's location is specified in a DD statement, the reader routines
acquire the necessary records.) One queue record is needed if the data
set occupies between 6 and 20 volumes; two queue records if 21 to 35
volumes; three if 36 to 50 volumes; and so on. Separate calculations
must be made for each data set.

Number of System Messages

An initiator requires queue records for system messages it issues. If
you assume that each message is 80-characters in length, each queue
record holds two messages. Messages from initiators are primarily
device allocation, allocation recovery, and data set disposition
messages.

To cover most device allocation and data set disposition situations,
you should allocate two queue records for every three DD statements in a
job step.

Allocation r.ecovery messages apply to devices that are offline. You
will cover most situations if you allocate queue records according to
the following algorithm:

• Determine the largest number of devices of a given class that will
be offline at any given time.

• Divide by two.

• Add one.

since you will probably make this calculation for a job step, you
should multiply your result by the number of steps in a large job.

System messages are the least predictable of all the variables used
in calculating initiator queue record needs. The number of messages
depends on the number of devices offline, the number not available, and
the number required at any given time.

136 os system programmer's Guide (Release 17)

RESERVING QUEUE RECORDS FOR CANCELLATION -- JOBQTMT

If an initiator's queue record requirements exceed the number of queue
records reserved for it, the job associated with that initiator is
canceled. Queue records must be reserved for this purpose. Enough
queue records must be reserved to accommodate two (or more) initiators
that may be cancelling concurrently. The JOBQTMT value (like the value
JOBQLMT) is unpredictable because of factors such as the installation's
configuration, the size of the job being canceled, and the number of
jobs that can be multiprogrammed.

The following guidelines should be used in calculating JOBQTMT:

• Number of devices used during a job.

• Number of jobs that might be concurrently canceled because of
insufficient initiator queue records.

• For any system task to be started, combined JCL from its associated
catalogued procedure and the START command must first be
interpreted. This requires queue records, and the system allows
assignment of records for this purpose whenever any logical tracks
are available. During normal use of the queues, this space is
always available. However, in order to insure availability of queue
records for system tasks when the reserves approach the critical
state, the value of JOBQTMT should be increased over the above
amount by the number of records necessary to get tasks started.
(This is especially true for writer and initiator tasks, since they
return queue records to the system.) This amount may be estimated
in a manner similar to calculating JOBQLMT, taking into
consideration that each valid START command generates one input and
one output queue entry. Formulas for estimating queue entry sizes
are given in the Storage Estimates publication.

Number of Devices

The devices currently assigned to a job are released when the job is
canceled. Since messages are issued when devices are released, you
should reserve a number of queue records equal to the largest number of
devices assigned at anyone time to a job, multiplied by two. Thus if
your largest job (in terms of devices) has three steps requiring 4, 11,
and 8 devices respectively, 22 queue records should be reserved.

Number of Jobs

The number of queue records reserved for cancellation must be large
enough to fill the requirements of all jobs being canceled at anyone
time because of insufficient initiator queue records. If your estimate
of initiator queue records was accurate" it is unlikely that you will
have more than one job (if any) cancelling at anyone time.

· hn initiator that runs out of queue records for cancellation is
placed in the wait state and an operator message -- IEF4261 QUEUE
CRITICAL -- is issued. This can result in the interlocking of all
reader/interpreters, initiators, and sysout writers functioning at the
moment.

MVT and MFT Job Queue Formatting 137

System Macro Instructions

This chapter contains the description and
formats of macro instructions that allow
you either to modify control blocks or to
obtain information from control blocks and
system tables. Before reading this
chapter, you should be familiar with the
information contained in the prerequisite
publications listed below.

Prerequisite Publications
The IBM Systern/360 Operating System:
Assembler Language publication (Form
C28-6514) contains the information
necessary to code programs in the assembler
language.

The IBM Systern/360 Operating System:
System Control Block publication (Form
C28-6628) contains format and field
descriptions of the system control blocks
referred to in this chapter.

System Macro Instructions 139

Locate Device Characteristics (DEVTYPE) Macro Instruction

The DEVTYPE macro instruction is used to request information relating to
the characteristics of an I/O device, and to cause this information to
be placed into a specified area. (The results of a DEVTYPE macro
instruction executed before a checkpoint is taken should not be
con.sider.ed valid after a checkpoint restart occurs.)

r--~-------T-----------T---,
I Name I Operation I Operand I
r----------+-----------+---1
I [symbol] I DEVTYPE I ddloc-addrx,area-addrx[,DEVTAB] I
L ________ ~-~-----------~------------------------------_________________ J

ddloc-addrx
specifies the address of a double word that contains the symbolic
name of the DD statement to which the device is assigned. The name
must be left justified in the double word, and must be followed by
blanks if the name is less than eight characters. The double word
need not be on a double-word boundary.

area-addrx
specifies the address of an area into which the device information
is to be p~aced. The area can be either two full words or five
full words, depending on whether or not the DEVTAB operand is
specified. The area must be on a full word boundary.

DEVTAB
If DEVTAB is specified l and the device is a direct access device,
five full words of information are placed into your area. If
DEVTAB is specified, and the device is not a direct access device,
two full words of information are placed into your area. If DEVTAB
is not specified, two full words of information are placed into
your area.

Note: Any reference to a dummy DD statement in the DEVTYPE macro
instruction will cause zeroes to be placed in the output area.

Device Characteristics Information

The following information is placej into your area:

Word 1 Device Code from the UCB in which:

Byte 1

Byte 2

Byte 3

Byte 4

bit 0 Unassigned
bit 1 Overrunable Device
bit 2 Burst/Byte Mode
bit 3 Data Chaining
bit 4-7 Model Code

Optional Features

Device Classes

Unit Type

1 yes
1 = burst
1 = yes

Note: Bit settings for Byte 2 -- Optional Features are noted in the nCB
format and field description in the System Control Blocks publication.

140 OS System Programmer's Guide (Release 17)

Word 2 Maximum block size. For direct access devices, this
value is the maximum size of an unkeyed block; for
magnetic or paper tape, this value is the maximum
block size allowed by the operating system. For all
other devices, this value is the maximum block size
accepted by the device.

If DEVTAB is specified, the next three full words contain the
following information:

Word 3

Word 4

Word 5

Bytes 1-2 The number of physical cylinders on the
device.

Bytes 3-4 The number of tracks per cylinder.

Bytes 1-2 Maximum track length.

Byte 3

Byte 4

Byte 1

Byte 2

Block Overhead - the number of bytes
required for gaps and check bits for each
keyed block other than the last block on a
track.

Block Overhead - the number of bytes
required for gaps and check bits for a
keyed block that is the last block on a
track.

Block Overhead - the number of bytes to be
subtracted if a block is not keyed.

bits 0-6

bit 7

Reserved (except for the 2321 on
which a 1 in bit 6 indicates the
device has byte addressing).
If 1, a tolerance factor must be
applied to all blocks except the
last block on the track.

Bytes 3-4 Tolerance Factor - this factor is used to
calculate the effective length of a block.
The calculation should be performed as
follows:

Step 1 - add the block's key length to the
block's data length.

Step 2 - test bit 7 of byte 2 of word 5.
If bit 7 is 0, perform step 3. If bit 7
is 1, multiply the sum computed in step 1
by the tolerance factor. Shift the result
of the multiplication nine bits to the
right.

Step 3 - add the appropriate block
overhead to the value obtained above.

System Macro Instructions 141

Output for Each Device Type

Maximum
UCB Type Field Record Size DEVTAB
(Word 1 (Word 2 (Words 3, 4, and 5
In Hexadecimal) In Decimal!. In Hexadecimal)

2540 Reader 10 00 08 01 80 Not Applicable

2540 Reader W/CI 10 01 08 01 80 Not Applicable

2540 Punch 10 00 08 02 80 Not Applicable

2540 Punch W/CI 10 01 08 02 80 Not Applicable

1442 Reader-Punch 50 00 08 03 80 Not Applicable

1442 keader-Punch W/CI 50 01 08 03 80 Not Applicable

1442 Serial Punch 51 80 08 03 80 Not Applicable

1442 Serial Punch W/CI 51 01 08 03 80 Not Applicable

2501 Reader 50 00 08 04 80 Not Applicable

2501 Reader W/CI 50 01 08 04 80 Not Applicable

2520 Reader Punch 50 00 08 05 80 Not Applicable

2520 Reader Punch W/CI 50 01 08 05 80 Not Applicable

2520 B2-B3 11 00 08 05 80 Not Applicable

2520 B2-B3 W/CI 11 01 08 05 80 Not Applicable

1403 10 00 08 08 120* Not Applicable

1403 W/UCS 10 80 08 08 120* Not Applicable

1404 10 00 08 08 120* Not Applicable

1443 10 00 08 OA 120* Not Applicable

2671 10 00 08 10 32767 Not Applicable

1052 10 00 08 20 130 Not Applicable

2150 10 00 08 21 130 Not Applicable

2400 (9-track) 30 00 80 01 32767 Not Applicable

2400 (9-track
phase encoding) 34 00 80 01 32767 Not Applicable

2400 (9-track
dual-density) 34 20 80 01 32767 Not Applicable

2400 (7-track) 30 80 80 01 32767 Not Applicable

2400 (7-track and 30 CO 80 01 32767 Not Applicable
data conver-
sion)

142 OS System Programmer's Guide (Release 17)

Maximum
UCB Type Field Record Size DEVTAB
(Word 1 (Word 2 (Words 3, 4, and 5
In Hexadecimal) In~eci!!!all In Hexadecimal)

2301 30 40 20 02 20483 000100C85003BA3535000200

2302 30 00 20 04 4984 00F~002E1378511414010219

2303 30 00 20 03 4892 0050000A131C922626000200

2311 30 00 20 01 3625 00CBOOOAOE29511414010219

2314 30 CO 20 08 7294 00CBOO141C7E922D2D010216

2321 30 00 20 05 2000 140~051~07D0641010030219

GraQhics Devices

1053 14 0 0 10 04 Not Applicable
2250 (Mod 1) 31 x x 10 02 Not ~pplicable
22~0 (Mod 2) 32 x x 10 02 Not Applicable
2250 (Mod 3) 33 x x 10 02 Not Applicable
2280 30 o 0 10 05 Not Applicable
2282 30 o 0 10 06 Not Applicable
2260 (Mod 1) 11 x x 10 03 Not Applicable
2260 (Mod 2) 12 x x 10 03 Not Applicable

CI=Card Image Feature

UCS=Universal Character Set

*Although certain models can have a larger line size, the minimum line
size is assumed.

xx = Special Feature (byte 2) configurations may be obtained from the
System Control Blocks publication.

System Macro Instructions 143

UCB Type Field
Communication Equipment

1030.1050,83B3, TWX,22S0, S360
1060 ,l15A" 1130

51xx40YZ
52xx40YZ
53xx40YZ
54xx40YZ

2780
2740

Y=Adapter Type
Hex Value

1
2
3
4
5
6
7
8
9

(Bits 0-3)
Meaning
IBM Terminal Adapter, Type I
IBM Terminal Adapter, Type II
IBM Telegraph Adapter
Telegraph Adapter, Type I
Telegraph Adapter, Type II
World Trade Telegraph Adapter
Synchronous Adapter, Type I
IBM Terminal Adapter. Type III
Synchronous Adapter. Type II

Z=control Unit (Bits 4-7)

Hex Value
1
2
3

Meaning
2702
2701
2703

Exceptional Returns

Record Size

Not Applicable
Not Applicable
Not Applicable
Not Applicable

The following return codes are placed in register 15:

00 - request completed satisfactorily.

04 - ddname not found.

08 - invalid area address. The address of the output area either
violates protection, or it is out of the range of main storage.

144 OS System Programmer's Guide (Release 17)

How to Read a Job File Control Block

To accomplish the functions that are performed as a result of an OPEN
macro instruction" the OPEN routine requires access to information that
you have supplied in a data definition (DO) statement. This information
is stored by the system in a job file control block (JFCB).

Usually, the programmer is not concerned with the JFCB itself. In
special applications, however, you may find it necessary to modify the
contents of a JFCB before issuing an OPEN macro instruction. To assist
you. the system provides the RDJFCB macro instruction. This macro
instruction causes a specified JFCB to be read into main storage from
the job queue in which it has been stored. Format and field description
of the JFCB is contained in the System Control Blocks publication.

When subseql1ently issuing the OPEN macro instruction, you must
indicate, by specifying the TYPE=J option, that you have supplied a
modified JFCB to be used during the initialization process.

The JFCB is returned to the job queue by the OPEN routine or the
OPENJ routine, if any of the modifications in the following list occur.
These modifications can occur only if the information is not originally
in the JFCB.

• Expiration date field and creation date field merged into the JFCB
from the DSCB.

• Secondary quantity field merged into the JFCB from the DSCB.

• DCB fields merged into the JFCB from the DSCB.

• DCB fields merged into the JFCB from the DCB.

• Volume serial number fields added to the JFCB.

• Data set sequence number field added to the JFCB.

• Number of volumes field added to the JFCB.

If you make these, or any other modifications, and you want the JFCB
returned to the job queue, you must set the high-order bit of field
JFCBMASK+4 to one. This field is in the,JFCB. Setting the high-order
bit of field JFCBl~SK+4 to zero does not necessarily suppress the return
of the JFCB to the job queue. If the OPEN or OPENJ routines have made
any of the above modifications, the JFCB is returned to the job queue.
To inhibit writing the JFCB back to the job queue during an OPENJ, the
field JFCBTSDM should be set to X'OS' prior to issuing the OPEN macro.

OPEN -- Prepare the Data Control Block for Processing (S)

The OPEN macro instruction initializes one or more data control blocks
so that their associated data sets can be processed.

A full explanation of the operands of the OPEN macro instruction,
except f.or the TYPE=J option, is contained in the Supervisor and Data
Management Macro Instructions publication. The TYPE=J option, because
it is used in conjunction with modifying a JFCB, should be used only by
the system programmer or only under his supervision.

System Macro Instructions 145

r-------~--T----------T--------·--,
I Name I Operationl Operand I
~----------+----------+--~
I [symbol] I OPEN I ({ dcb-addr, [(opt;l-code [,opt2-code])] , l •••) I
I I I [,TYPE=J] I L __________ ~ __________ ~ __ J

TYPE=J
specifies that, for each data control block referred to, the
programmer has supplied a job file control block (JFCB) to be used
during initialization. A JE'CB is an internal representation of
information in a DD control statement.

During initialization of a data control block, its associated JFCB
may be modified with information from the data control block or an
existing data set label or with system control information.

The system always creates a job file control block for each DD
control statement. The job file control block is placed in a job
queue on direct access storage. Its position, in relation to other
JFCBs created for the same job step" is noted in a main storage
table.

When this operand is specified" the user must also supply a DD
control statement. However" the amount of information given in the
DD statement is at the programmer's discretion, because he can
ignore the system-created job file control block. (See the
examples of the RDJFCB macro instruction for a technique for
modification of a system-created JFCB.)

caution: In MVT configurations of the operating system, data set
integrity provided by the job scheduler functions is lost if you change,
or do not use, the DSNAME=parameter in the DD statement.

Note: The DD statement must specify at least:

• Device allocation (refer to the Job Control Lan~~~ publication for
methods of preventing share status).

• A ddname corresponding to the associated data control block DCBDDNAM
field.

RDJFCB -- Read a Job File Control Block (S)

The RDJFCB macro instruction causes a job file control block (JFCB) to
be read from the job queue into main storage for each data control block
specified.

r----------T----------T--,
I Name I Operation I Operand I
~---------+----------+--~
I [symbol] I RDJFCB I ({dcb-addr, [(opt;l-code[,opt2-code])],l •••) I L __________ ~ __________ ~ __ J

dcb.(opt;l,opt2)
(same as dcb, opt;l, and Opt2 operands in OPEN macro instruction)

Although the Opt;l and Opt2 operands are not meaningful during the
execution of the RDJFCB macro instruction, these operands can
appear in the L-forrn of either the RDJFCB or OPEN macro
instructionto generate identical parameter lists. which can be
referred to with the E-form of either macro instruction.

146 OS System Programmer's Guide (Release 17)

Examples: The macro instruction in EX1 creates a parameter list for two
data control blocks: INVEN and MAS'rER. In creating the list, both data
control blocks are assumed to be opened for input; opt2 for both blocks
is assumed to be DISP. The macro instruction in EX2 reads the system­
created JFCBs for INVEN and MASTER from the job queue into main storage,
thus making the JFCBs available to the problem program for modification.
The macro instruction in EX3 modifies the parameter list entry for the
data control block named INVEN and indicates, through the TYPE=J
operand, that the problem program is supplying the JFCBs for system use.

EX1 RDJFCB (INVEN"MASTER),MF=L

EX2 RDJFCB MF=(E,EX1)

EX3 'OPEN (,(RDBACK,LEAVE»,TYPE=J,MF=(E,EX1)

Programming Notes: Any number of data control block addresses and
associated options may be specified in the RDJFCB macro instruction.
This facility makes it possible to read job file control blocks in
parallel.

An exit list address must be provided in each data control block
specified by an RDJFCB macro instruction. Each exit list must contain
an active entry that specifies the main storage address of the area into
which a JFCB is to be placed. A full discussion of the exit list and
its use is contained in the supervisor and Data Management Services
publication. The format of the job file control block exit list entry
is as follow.s:

r--------------T------------------T------------------------------------,
I Type of Exit I Hexadecimal Code I contents of Exit List Entry I
I List Entry I (high-order byte) I (three low-order bytes) I
~--------------+------------------+------------------------------------~
I Job file I 07 I Address of a 176-byte area to be I
I control block I I provided if the RDJFCB or OPEN I
I I I (TYPE=J) macro instruction iSi used. \
I I I This area must begin on a full word I
I I I boundary. \ L ______________ L_. _________________ ~ ____________________________________ J

The main storage area into which the JFCB is read must be at least
176 bytes long.

The data control block may be open or closed when this macro
instruction is executed.

cautions: The following errors cause the results indicated:

Error
A DD. control statement has not been
provided.

A main storage address has not been
provided.

Result
No-action

Abnormal termination of task

L- and E-Form Use: The Land E forms of this macro instruction are
written as described in the supervisor and Data Management Services and
supervisor and Data Management Macro Instructions publications.

System Macro Instructions 147

CIRB-Create IRB for Asynchronous Exit Processing

The CIRB macro instruction is included in SYS1.MACLIB and must be
included in your system at system generation time if you intend to use
it. The issuing of this macro instruction causes a supervisor routine
(called the exit effector routine) to create an interruption request
block (IRB) if one is not already in existence for the task in question.
In addition, other operands of this macro instruction may specify the
building of a register save area and/or a work area to contain
interruption queue elements, which are used by supervisor routines in
the scheduling.of the execution of user exit routines.

r--------T---------T---,
I Name I Operation I Operand I
~-~-----+---------+---~
I [symbol] I CIRB I {EP=addrx} I KEY= l~ C MODE= l~ t, [STAB=code,] I
I I I SUPR ~ SUPR \ I
I I I I
I I I SVAREA=lNO ~, [WKAREA=value] I
I I I YES\ I L ________ i _________ i ___ J

EP

KEY

MODE

STAB

specifies the entry point address of the user's asynchronous exit
routine.

specifies whether the user's asynchronous routine will operate with
a CPU protection key established by the supervisory program (SUPR)
or with a protection key obtained from the task control block of
the task for which the macro instruction is issued (PP).

specifies whether the user asynchronous routine will be executed in
the problem program (PP) state or in a supervisory (SUPR) state.

indicates the status condition of the interruption request block.
The 'code' parameter may be either of the following:

(RE) to indicate that the IRB is reusable in its current form.

(DYN) to indicate that the storage area assigned to the IRB is to
be made available (i.e. , freed) for other uses when the
asynchronous exit routine is completed.

SVAREA
specifies whether a register save area (of 72 bytes) is to be
obtained from the main storage assigned to the problem program. If
it is" the address of this save area is placed in the IRB. The
asynchronous exit routine then follows the system register saving
convention of using the SAVE and RETURN macro instructions. In
this manner, a generalized subroutine can be used as an
asynchronous exit routine.

WKAREA
specifies the number of double words (given as a decimal value)
required for an area in which the routine issuing the macro
instruction can construct interruption queue elements.

148 OS System Programmer's Guide (Release 17)

:'SYNCH-Synchronolls Exits to Processing Program

The SYNCH macro instruction is a system macro instruction that permits
control program supervisor call (SVC) routines to make synchronous exits
to a processing program.

r--------T---------T---,
I Name I Operation I Operand I
~--------+---------+---~
I [symbol] ISYNCH I lentry-point~ I
I I I (15) \ I L ________ ~ _________ ~ ___ J

entry-point
specifies the address of the entry point for the processing program
that is to be given control.

If (15) is specified, the entry-point address of the processing
program must have been pre-loaded into parameter register 15 before
execution of this macro instruction.

SYNCH Macro Definition

MACRO
& NAME SYNCH

AIF
AIF

& NAME LA
AGO

• REG AIF
& NAME LR
.SVC SVC

MEXIT
• NAME IT ANOP
& NAME SVC

MEXIT
.El IHBERMAC

MEND

&EP
('&EP' EQ ·').El
('&EP' (1,1) EQ I (') .REG
15,&EP
.SVC
('&EP' EQ ' (15)').NAMEIT
15,&EP(1)
12

12

27,405

LOAD ENTRY POINT ADDRESS.

LOAD ENTRY POINT ADDRESS.
ISSUE SYNCH SVC

ISSOE SYNCH SVC

Programming Notes: In general, you use the SYNCH macro instruction when
a control program in the supervisor state is to give temporary control
to a processing program routine, and you expect the processing program
to return control to the supervisor state. The program to which control
is given must be in main storage when the macro instruction is issued.
The use of this macro instruction is similar to that of the BALR
instruction in that register 15 is used for the entry point address.
When the processing progranl returns control , the supervisor state bit,
the storage protection key bits, the system mask bits and the program
mask bits of the program status word are restored to the settings they
had before execution of the SYNCH macro instruction.

Example: As a result of an OPEN macro instruction, label processing may
be carried out to a point at which a user's processing program indicates
that private processing is desired (or necessary). The control
program's open routine then will issue a SYNCH m~cro instruction giving
the entry point of the subroutine required for the user's private label
processing.

System Macro Instructions 149

STAE-Specify Task Asynchronous Exit

The STAE macro instruction permits control to be returned to the user
when a task is scheduled for ABEND. When issued, STAE causes a
supervisor routine (called the STAE service routine> to create a STAB
con,trol block (SCB) which points to the user's STAE exit routine
address.

r--~-----T-----T---,
I lOper-I I
I Name I at ion I Operand I
~--------+-----+---~

I [symbolJ/ STAE I{exit
0
address} .{ OV } [,PARAM=list address] CXCTL={YES}]:

I I I er [NO I L ________ ~ _____ ~ ___ J

exi t address

OV

CT

specifies the address of a oTAE exit routine to be entered if the
task issuing this macro instruction terminates abnormally. If 0 is
specified, the last SCB created is cancelled and the previously
created SCB becomes current. The address may be loaded' into one of
the general registers (r1> 2 through 12.

indicates' that the parameters passed in this STAE macro instruction
are to overlay the data currently in the SCB.

indicates the creation of a new STAE environment; i.e., creates and
initializes an SCB with the parameters specified.

PARAM=
specifies the address of a parameter list containing data to be
used by the STAE exit routine when it is scheduled for execution.
The address may be loaded into one of the general registers (r2) 2
through 12.

XCTL=YES
indicates that the STAE macro instruction will not be cancelled if
an XCTL macro instruction is issued.

XCTL=NO
indicates that the STAE macro instruction will be cancelled if an
XCTL is issued.

Programming ,Notes: When control is returned to the user after the STAE
macro instruction has been issued, register 15 contains one of the
following return codes:

Code Meaning

00 An SCB is successfully created, overlaid, or cancel'led.

04 Storage for an SCB is not available.

08 The user is attempting to cancel or overlay a non-existent SCB,
or is issuing a STAE in his STAE exit routine.

OC The exit routine or parameter list address is invalid.

10 The user i's attempting to cancel or overlay an SCB not
associated with his level of control.

150 OS System Programmer's Guide (Release 17)

OV

CT

task issuing this macro instruction terminates abnormally. If 0 is
specified, the most recent STAE request is canceled. The address
may be loaded into one of the general registers 2 through 12.

indicates that the parameters passed in this STAE macro instruction
are to overlay the data contained in the previous STAE request.

indicates the creation of a new STAE request. If neither OV or CT
is specified, CT is assumed.

PARAM=
specifies the address of a parameter list containing data to be
used by the STAE exit routine when it is scheduled for execution.
The address may be loaded into one of the general registers 2
through 12.

XCTL=YES
indicates that the STAE macro instruction will not be canceled if
an XCTL macro instruction is issued.

XCTL=NO
indicates that the STAE macro instruction will be canceled if an
XCTL is issued by this program. If neither XCTL=YES or XCTL=NO is
coded, XCTL=NO is assumed.

PURGE=
QUIESCE

HALT

NONE

1\.SYNCH=
YES

204

indicates that all outstanding requests for input/output (I/O)
operations will be saved when the STAE exit is taken. At the
end of the .STAE exit routine, the user can code a retry
routine to handle the outstanding I/O requests. (See the
description of the STAE macro instruction in IBM system/360
Operatinq System: system Proqrammer's Guide, for a
description of the STAE retry routine.) If the PURGE operand
is not specified, QUIESCE is assumed. If I/O cannot be
quiesced, then I/O is halted (see PURGE=HALT).

indicates that all outstanding requests for input/output
operations will not be saved when the STAE exit is taken.

indicates that input/output processing is allowed to continue
normally when the STAE exit is taken.

Note: If PURGE=NONE is specified and the ABEND was originally
scheduled because of an error in input/output processing, an
ABEND recursion will develop when an input/output interruption
occurs, even if the exit routine is in progress. Thus, it
will appear that the exit routine failed when in reality
input/output processing was the cause of the failure.

indicates that asynchronous interrupt processing is allowed to
interrupt the processing done by the STAE exit routine.
ASYNCH=YES must be coded if:

• Any supervisor services that require asynchronous
interruptions to complete their normal processing are
going to be requested by the STAE exit routine.

(
\"--./

STAE

STAE -- Specify Task Abnormal Exit

The STAE macro instruction enables the user to intercept a scheduled
ABEND and to have control returned to him at a specified exit routine
address. The STAE macro instruction operates in both problem program
and supervisor modes.

The STAE macro instruction creates a STAE control block (SCB) which
represents a STAE environment that remains in effect during the
execution of the program that issued the STAE. When a RETURN, XCTL, or
SVC3 is issued, the system automatically cancels the STAE environment
for that program, unless XCTL=YES is coded in the STAE macro
instruction. If XCTL=YES is coded and an XCTL macro instruction is
issued, the STAE environment remains in effect for the program that
receives control as a result of the XCTL macro instruction.

Note that issuing a LINK macro instruction does not cancel the STAE
environment and that the user is responsible for canceling the STAE
environment if his program does not exit via a RETURN, XCTL, or SVC3,.
The user cannot cancel or overlay a STAE control block not created by
his own program. For more information on the STAE macro instruction,
see the publication IBM System/360 operating System: supervisor
services.

Within the STAE exit routine, the user may perform pre-termination
functions or diagnose an error. Upon completion of STAE exit routine
processing, the user can either allow abnormal termination processing to
continue for the task or request that a STAE retry routine be scheduled
which would circumvent the scheduled ABEND. For further explanation of
the facility for scheduling a STAE retry routine, see the publication
IBM System/360 Operating system: system Programmer's Guide.

The STAE exit routine cannot contain a STAE or an ATTACH macro
instruction. When a STAE retry routine is not to be scheduled, the STAE
exit routine should return with a code of zero in register 15.

The STAE macro instruction is written as follows (see section III fOl:
the list and execute forms):

[symbol] STAE I exit ~ddress I [:~~] [,PARAM-list address]

['XCTL=I~~}] tPURGE={ ~!:CE} J

[,ASYNCH = I ~~ J]

exit address
specifies the address of a STAE exit routine to be entered if the

[] indicates optional name or operand; select one from vertical stack
wi thin {}~; select one or none from vertical stack wi thin [].

section II: Standard Forms 20~

(
06

NO

S'I

o PURGE=QUIESCE is specified for any access method that
requires asynchronous interruptions to complete norma
input/output processing~

• PURGE=NONE is specified and the CHECK macro instructi
is issued in the STAE exit routine for any access
method that requires asynchronous interruptions to
complete normal input/output processing.

Note: If ASYNCH=YES is specified and the ABEND was original
scheduled because of an error in asynchronous exit handling,
an ABEND recursion will develop when an asynchronous
interruption occurs. Thus, it will appear that the exit
routine failed when in reality asynchronous exit handling wa
the cause of the failure.

indicates that asynchronous interrupt processing is not
allowed to interrupt the processing done by the STAE exit
routine. If the ASYNCH operand is not specified, NO is
assumed.

ISAM Notes: If ISAM is being used and PURGE=HALT is specified or
PURGE=QUIESCE is .specified but I/O is not restored:

• Only the input/output event on which the purge is
done will be posted. Subsequent event control
blocks (ECBs) will not be posted.

• The ISAM Check routine will treat purged I/O as
normal I/O.

• Part of the data set may be destroyed if the data
set is being updated or added to when the failure
occurred.

Control is returned to the instruction following the STAE macro
instruction. When control is returned, register 15 contains one of thE
following return codes:

Hexadecimal Code

00

04

08

OC

10

Meaning

Indicates successful completion of creating,
overlaying, or canceling a STAE request.

Indicates that STAE was unable to obtain storage f(
the STAE request.

Indicates that the user was attempting to cancel 01

overlay a non-existent STAE request, or that the
user issued an STAE in his STAE exit routine.

Indicates that the exit routine or parameter list
address was invalid.

Indicates that the user was attempting to cancel 01

overlay a STAE request of another user.

Section II: Standard Forms 20

When a program with an active STAE environment encounters an ABEND
situation, control is returned to the user through the ABEND/STAB
interface routine at the STAE exit routine address. The register
contents are as follows:

•

•

Register 0:

Code
0

4

8

Register 1:

Indication
Active I/O at the time of the ABEND was quiesced and is
restorable.

Active I/O at the time of the ABEND was halted and is
not restorable.

No I/O was active at the time of the ABEND.

Address of a 104-byte work area:
r-------------------------------T-------------------------------,

o I STAE exit routine parameter I I
I list addr or 0 I ABEND completion code I
t-------------------------------~-------------------------------~

8 I I
I PSW at time of ABEND I
~---~

16 I I
I Last P/P PSW before ABEND I
~---~

24 I I
I Registers 0-15 at time of ABEND (64 bytes) I L ___ J

If problem program issued srAE:
r---,

88 I I
I Name of ABENDing program or 0 I
~----~--------------------------T-------------------------------~

96 I Entry point addr of I I
I ABENDing program I 0 I L _______________________________ L _______________________________ J

If supervisor program issued STAE:
r-------------------------------T-------------------------------,

88 I Request Block addr 0 f I I
I ABENDing program I 0 I
~-------------------------------L---------------------__________ ~

96 I I
I 0 I L ___ J

• Registers 2-12: Unpredictable.
• Register 13: Address of a.supervisor save area.
• Register 14: Address of an.SVC 3 instruction.
• Register. 15: Address of the STAE exit routine.

Registers 13 and 14, if used by the STAE exit routine l must be saved anj
restored prior to returning to the calling program. Standard sUbroutine
linkage conventions are employed.

If storage was not available for the work areal the register contents
upon entry to the STAE exit routine are as follows:

• Register 0:
• Register 1:

• Register 2:

12.
AB£ND completion code as it appears in the TCBCMP
field.
Address of STAE exit parameter list.

System Macro Instructions 151

The STAE exit routine may contain an ABEND" but must not contain
either a STAE or an ATTACH macro instruction. At the time the ABEND is
scheduled, the STAE exit routine must be resident as part of the program
issuing STAE, or brought into storage via the LOAD macro instruction.

The STAE exit routine may perform pre-termination functions, attempt
to diagnose the error, or attempt to correct the error by specifying
that a retry routine is to be scheduled. If a retry routine is not
specified" normal ABEND processing continues by returning control to the
ABEND/STAE interface routine with a 0 in register 15. To schedule a
retry routine with a purge of the RB chain (not including the STAE
user's RB)J the STAE exit routine must return to the ABEND/STAE
interface routine with a 4 in register 15. Register 0 must contain the
address of the retry routine, and register 1, the address of the work
area. (The work area is the same as that passed to the exit routine
except that the first word may now contain user data.)

In supervisor mode, you may want the failing task to remain in its
present status and not be reestablished. A retry routine may be
scheduled without a purge of the RB chain by returning to the ABEND/srAE
interface routine with an 8 in register 15 and registers 0 and 1
initialized as described above.

Like the STAE exit routine, the STAE retry routine must be in storage
when the exit routine determines that retry is to be attempted. If not
already resident within your program, the retry routine may be brought
into storage via the LOAD macro instruction by either the user's program
or exit routine.

Upon entry to the STAE retry routine, register contents are as
follows:

• Register 0:
• Register 1:

• Registers 2-13:
• Register 14:
• Register 15:

o.
Address of the work area, as previously described,
except that word 2 now contains the address of the
first I/O Block anj word 26 now contains the address
of the I/O restore chain.
Unpredictable.
Address of an SVC 3 instruction.
Address of the STAE retry routine.

The retry routine should free the 104 bytes of storage occupied by the
work area when it is no longer needed.

Again, if the ABENO/STAE interface routine was not able to obtain
storage for the work area, register 0 contains a 12; register 1" the
ABEND completion code upon entry to the STAE retry routine; and register
2, the address of the first I/O Block on the restore chain, or 0 if I/O
is not restorable.

If continued protection against ABEND is desired within the STAE
retry routine, a STAE macro instruction may be issued.

Note: If'the program using the STAE macro instruction terminates via
the EXIT macro instruction, the EXIr routine cancels all SCBs related to
the terminating program. If the program terminates via the XCl'L macro
instruction, the EXIT routine cancels all SCBs related to the
terminating program except those SCBs that were created with the
XC']L=YES option. If the program terminates by any other means, the
terminating program must reinstate the previous STAE environment by
canceling all SCBs related to the terminating program.

152 OS System Programmer's Guide (Release 17)

Writing System Output Writer
Routines

This chapter provides guidelines for
wTiting your own output writer routines for
use in an MVT or MFT configuration of the
operating system.

f~~_~y~te~36Q_Q2~E~~i~System:
~~2ervisor and Data Management Macro
In~~E~ctions, Form C28-6647

I~~_~~te~i36Q_Q£erating System:
~~£ervisor and Data Management Services,
Form C28-6646

writing Output writer Routines 153

Writing System Output Writer Routines

When a job is executing, system messages and data sets specifying the
SYSOUT parameter (e.g., in the DD statement) are recorded on direct
access devices. When the job completes, entries are made in system
output class queues that represent the data sets and messages directej
to the output classes. Later system output writers remove these entries
from the queues and process the data they represent. Processing
consists of transcribing system messages to the output device and
calling a data set writer routine for each data set encountered. The
data set writer routine used for a data set may be specified by name in
a DD statement, otherwise, a standard IBM-supplied writer routine is
used. The standard routine transcribes the data set to the specified
output device, making only those data format and control character
transformations required to conform to the attributes specified for the
output data set.

The following material describes how you may write a non-standard
data set writer routine.

Output Writer Functions

Before writing or modifying an output writer routine, you should be
familiar with the functions performed by the standard data set writer
for Operating Systeml360. (For the remainder of this chapter, the
operating System/360 data set writer is referred to as the standard
writer.) In general~ these functions include opening the data set
(referred to as an input data set) that contains the processed
info~mation, obtaining the records of the data set, making any necessary
transformations in record format or control character attributes, and
placing these (possibly transformed) records in the output data set,
which appears on a specified output device. The standard writer also
must close the input data set and restore system conditions to the state
they were in before the writer routine was invoked.

conventions to be Followed

To use your own output writer routine" you must specify the name of your
routine as a paranleter in the SYSOUT operand of a DO statement (see the
Job Control Language publication). Your routine must be in the system
library (SYS1.LINKLIB). A writer routine is not limited in size except
that size may influence the region requirements of the system output
writer (see the storage Estimates publication).

In MVT your routine is attached (via the ATTACH macro instruction)
when a data set requiring the routine is to be processed. The standard
linkage conventions for attaching are used. Any storage required for
work areas and tables should be obtained by the GETMAIN macro
instruction and released by the FREEMAIN macro instruction. Your output
writer routines must be reentrable.

When your routine is finished, it must return control to the standard
writer by using the RETURN macro instruction.

After job ~anagement routines perform initialization requirements and
open the output data set into which your writer routine will put
records, control is given to your routine via the ATTACH macro
instruction. At this time, general registers 1 and 13 contain
information that your program must use. Register 1 contains the storage
address of a 12-byte list. 'I·able 2 describes the information in this
parameter 1 ist.

lS4 os System PI:'ogrammer' s Guide (Release 17)

Table 2. Parameter List Referred to by Register 1.
r------------~---,

Byte 0 Output Device Indicator.

Bytes 1-3

Byte 4-7

Bit 0 (High-order bit): If this bit is on (set
to 1), the output unit is a 1442 punch.

Bit 1 If this bit is on, the output unit is
either a punch or a tape with a punch as
the ultimate destination.

Bit 2 If this bit is on, the output unit is
either a printer or a punch.

Bits 3 - 7 No significant information.

Not used (i.e., do not contain information significant
to data set writers, but must be left intact.)

This word contains the address of the data control
block (DCB) for the opened output data set to be
referred to by the writer.

Bytes 8-11 This word contains the DCB address for the input data
set from which your writer will obtain logical records.
(At the time this 12-byte parameter list is given to
your writer, the input dat? set is not open.) ____________ ~ ___ J

The switches indicated by the three high-order bit settings in byte 0
should be used to translate control character information from the input
data set records to the form required by the output data set records.
Based on the indications given in Table 2, the high-order three bits of
byte 0 signify the type of output device as follows:

111 .•• ' •••
011 ••.••.•
001 •••••
010 •••••
000 •••••

1442 punch unit
2520 punch unit or 2540 punch unit
1403 printer, 1404 printer, or 1443 printer unit
tape unit with ultimate punch destination
tape unit with ultimate printer destination

When your writer gets control, it must preserve the contents of
register 0 through 12, and 14. Register 13 contains the address of a
standard register save area where you are to save the contents of these
registers. You can save the contents of register 13 by using the SAVE
macro instruction.

An output writer routine must issue an OPEN macro instruction to open
the desired input data set residing on a direct access device as a
result of the previous execution of a processing program. (Note: The
output data set used by a writer is opened by a job management routine
before control is given to the writer. This output data set must be
given records by a PUT macro instruction operating in the 'locate' rnode.
The supervisor and Data Management ~mcro Instructions publication
describes this macro instruction.)

If the processing program that produces a given data set (to be used
as an input data set by a writer) did not open the data set, the data
set contains no records, and the DCBBLKSI and DCBBUFL fields of the
input DCB contains zero. The DCBBLKSI field may also be zero even if
the data set does contain records -- if the processing program did not
put the block size value for the input data set in the DCB. If both
these DCB fields are zero, a value (the standard writer uses the decimal
value 18) is inserted in the DCBBLKSI field to permit the open routine
to continue. The standard writer does this via a routine pointed to by
an entry in the EXLIS'I' parameter of the DCB. Since there is no data
set" nothing is put on the output device. Your data set writer must
provide a SYNAD routine to process errors associated with the output as
well as the input data set.

Writing Output writer Routines 155

Before the OPEN macro instruction is issued, the DCBD macro
instruction can be used to symbolically define the fields of the DCB,
and the EXLIST and/or SYNAD routine addresses can be inserted. Other
than SYNAD, no modifications can be made to the output DCB.

After your routine finishes writing the output data set, it must
close the input data set and return using the RETURN macro instruction.
A return code must be placed in register 15. This code should indicate
that an unrecoverable output error either has occurred (code of 8) or
has not occurred (code of 0).

General Processing Performed by Standard Output Writer

This section provides a general description of the procedures followed
by the standard writer. (see Figure 6.) If you write your own writer
routine, you may wish to delete. modify, or add to some of these
procedures., depending on the characteristics of your data set(s).
How.ever, your procedures must be consistent with operating system
conventions.

SAVING REGISTER CONTENTS: Upon entering the writer program, your
program must save the contents of the general registers, as previously
discussed.

OBTAINING MAIN STORAGE FOR WORK AREAS: In this work area, switches are
established l record lengths and control characters are saved, and space
is reserved for other uses. You should obtain storage by a GETMAIN
macro instruction.

PROCESSING INPUT DATA SET(S): To process a data set, the writer must
get each record individually from the input data set. transform (if
necessary) the record format and the control characters associated with
the record in accordance with the output data set requirements, and put
the record in the output data set. Data set processing by the standard
writer can be considered in three aspects.

1. The first consideration is what must be done before actually
obtaining records from an input data set. If the output device is
a printer, provision must be made to handle the two forms of recor~
control character that may accompany a record in an output data
set. The printer is designed so that if the output data set
records contain machine control characters, a record (line) is
printed before the effect of its control character is considered.
However, if USASI control characters are used in the output data
set records~ the control character effect is considered before the
printer prints a record. See Appendix A.

Thus, if all the input data sets do not have the same type of
control characters., it may be desirable to avoid overprinting of
the last line of one data set with the first line of the following
data set. If the records of the input data set have machine
control characters (rocc) and the output data set records are to
have USASI control characters (acc), the standard writer produces a
control character that indicates one line should be skipped before
printing the first line of output data.

If the input data set records have acc and the output data set
records are to be written with mcc, the standard writer prints a
line of blanks before printing the first actual output data set
record. Following this line of blanks, a one-line space is
generated before the first output record is printed.
The preceding 'printer initialization' procedure (or a similar one
based on the characteristics of your data sets) is recommended.

156 OS System Programmer1s Guide (Release 17)

Entry From
Control Program
Module IEFSD070

Modify Input Record
Length For Control

Character

Translate Control
Character For Output

If Reguired

Set Message If Invalid
Control Char

Figure 6. General Logic of Standard Output Writer

No

If Printer, Adjust
Control Character

Attachment

Buffering For End Of
Input Data Set (Put
Out Last Record)

Close Input Data Set

Return To
Module IEFSD070

2. After an input data set is properly opened and any necessary
printer initialization completed, the writer obtains records from
the input data set. The locate mode of the GET macro instruction
is used. As each record is obtained, its format and control
character must be adjusted, if necessary, to agree with that
required for output.

Writing Output writer Routines 157

Note: Check the MACREF field of the input data set DCB to see if
GET in locate mode can be used. If not the M~CREF field must be
overridden.

since the output data set is previously opened by another routine
(job management), a writer routine must adhere to the established
conventions. The data set is opened to receive records from the
PUT macro instruction operating in the locate mode. For
fixed-length record output" the length of the records in the output
data set is obtained from the DCBLRECL field of the DCB. If an
input record length is greater than the length specified for the
records of the output data set, the standard writer truncates the
necessary right-hand bytes of the input record. If the input
record length is smaller than the output record length, the
standard writer left-justifies the input record and adds blanks on
the right end to give the correct length.

When the output record length is variable and the input record
length is fixed, the standard writer constructs each output record
by adding control character information (if necessary) and variable
record control information to the output record. The record
control information is four bytes long and the control character
information is one byte long. Both additions are made to the left
end of the record. If the output record is not at least 18 bytes
long, it is further modified by padding bytes (blanks) added to the
right end of the record. If the output record length does not
agree with the length of the output buffer, the standard writer
makes the proper adjustment.

3. The third aspect to consider is an end-of-input data set routine.
The standard writer handles output to either a card punch unit or a
printer unit, as required. Output to an intermediate device such
as a tape unit is considered in light of the ultimate destination
(e.g., punch or printer). If proper consideration is not given,
all records from a given data set may not be available on the
output device until the output of records from the next data set is
started or until the output data set is closed. when the output
data set is closed, the standard writer automatically puts out the
last record of its last input data set.

Punch Output: Normally, when the standard writer is using a card punch
as the output device, the last three output records are not in the
collection pockets of the punch when the input data set is closed. To
put out these three records with the rest of the data set and with no
intervening pauses, the writer provides for three blank records
following the actual data set records.

Printer Output: When the standard writer uses a printer as an output
device, the last record of the input data set is not normally put in the
output data set when the input data set is closed. To force out this
last record, the writer generates a blank record that follows the last
record of the actual data set.

The problem of overprinting the last line of one data set by the
first line of the following data set must also be considered. Depending
on the combination of input record control character and required output
record control character, a line of blanks and a spacing control
character m~y be used either individually or in combination to preclude
overprinting. {Note: If overprinting is desired for some reason,
control characters in the data set records themselves may be used tq
override the ef.fect (bpt not the action) of the previously described
solutions to overprinting.)

158 os System Programmer's Guide (Release 17)

CLOSING INPUT DATA SET(s): After the standard writer finishes putting
out the records of an input data set, it closes the data set· before
returning control to the system output writer. You must close all input
data sets.

RELEASING MAIN STORAGE: The storage and buffer areas obtained for the
writer must be released to the system before the writer relinquishes
control. The FREEMAIN macro instruction should be used for this.

RESTORING REGISTER CONTENTS: The original contents of general registers
o through 12, and 14 must be restored. The RETURN macro instruction is
used for this. To inform the operating system of the results of the
processing done by the writer, a return code is placed in general
register 15 before control is returned. If the writer routine
terminates because of an unrecoverable error on the output data set, the
return code is 8; otherwise, the return code is o. Unrecoverable input
errors must be handled by the data set writer.

Writing output writer Routines 159

Appendix A: Control Character Transformations

To help determine what you can do with a writer routine" the control
character transformation features of the standard writer are described.

Effectively there are nine control character combinations that can
occur between input data set records and output data set records. Both
data sets may have records whose control characters are either USASI
type (acc) or machine type (mcc), or the records may not contain any
control characters. However, within any given data set, the records all
must contain the same form of control character. The standard writer
has procedur,es to handle control character transformations for both an
output to a card punch unit and an output to a printer unit.

Card Punch unit

If an input data set record does not have a control character, the
standard writer produces one that indicates output into pocket 1 of the
punch. If the output unit is a tape unit and the ultimate destination
is a punch unit, the standard writer assumes that the punch unit is
either a 2540 or a 2520 unit and sets a control character accordingly.
The standard writer translation of punch-type control characters is
gi ven in Table 3. In this table" the first three columns of figures are
machine control character codes, and the right hand column of figures
represent USASI control character codes. Each record that requires a
control character has one of these 8-bit codes attached to it. Input
records whose control characters are mcc and are shown in horizontal
rows 1, 2, 5, and 6 are given the acc code of 'V' if they are placed in
an output data set that has acc. An mcc given in rows 3 or 4 is changed
to an acc code of ·W'. However, if translation is from an acc input to
an mcc output" the standard writer translates the control character into
the appropriate mcc on the same horizontal row.

Table 3. Control Character Translation for Punch Unit Output
r--------------T--------------------------------T----------------------,
1 1 Machine Control Characters 1 1
1 ~----------T----------T----------~ USASI I
I Stacker Unit 12540 Punchl2520 Punchl1442 Punchl Control Characters I
~--------------+----------+----------+----------+----------------------~
1. Pl 1 00000001 00000001 10000001 11100101 (V)

1
2. Pl 1 00100001 00100001 10100001
Column Binary I

1
3. P2 I 01000001 01000001 11000001 11100110 (W)

1
4. P2 I 01100001 01100001 11100001

Column Binaryl
1

5. RP3 1 10000001
I

16. RP3 1 10100001
1 Column Binary I L ______________ ~ __________ ~ __________ ~ __________ ~ ______________________ J

Printer Unit

When the output unit is a printer, the standard writer prevents
overprinting between data sets. If the successive data sets contain
records with the same type of control character, there is no
overprinting problem~ If the control characters vary from one data set
to the next, the standard writer, solutions are applications of the
technique illustrated by Figure 7. In this figure, the possible forms
of the input record control characters are given in the left hand

160 OS System Programmer's Guide (Release 17)

column. The tt~ee right hand columns (containing cases 1-9) represents
the possible forms of the output record control characters. Within each
of the 12 main sections of the figure is shown a symbolic representation
of a data set whose records possess the indicated form of control
character. Each record consists of a print line representation and a
control character representation (where appropriate). For records with
acc. the controL character is shown preceding the print line, since the
effect of the control charactei occurs before the line is printed. For
records with rncc 1 the converse is shown. An input record with no
control character is treated as if it had an acc. Because of this
variance in the printer's mechanical action, whenever there is a control
character transformation, the standard writer places a transformed
control character with an output data set record other than the recor3
to which the character was attached in the input data set.

In Figure 7, case 1 and 5 represent situations in which there is the
same type of control character in the output as there is in the input.
Thus, for records 1 through n, there is no change in the record format.
However, there is a provision to allow for the possibility that two
consecutive input data sets may have different control characters. In
this case, a minimum separation between the data sets as they appear in
the output data set is provided as indicated by the printing of blanks
and suppressing the spacing of the printer to allow another control
character to take effect. The 'extra' record (ScBo or BoSe> provides.
the more important function of forcing out the last record of the
current data set before the writer's processing of that data set is
done.

INPUT DATA SET OUTPUT DATA SET RECORD FORMATS
RECORD FORMATS I

Machine

Machine 0) cp
I I

I P1C11 P2C21 I PnCnl I P1 C1 I P2C21 I PnCn I BoSc I I S1 P1 I C1P21

ASA 0 CD -:; I I I

, I C1 P1 I C2P21 , CnPnl I BoC1' P1C21 , Pn-1 Cn 'PnS1 , BoSc I
'

C1P1
1 C2P21

No Control Character*' CD CD
/ .; I I I / I "7 I

I S1 P1 , S1 P21 I S1 Pn I I BoSn I P1 S1 I I P n-1 51 I P nS 1 , BaS c I , SnP1 IS1P2'

= Writer generated.
* = No control character on input causes the standard writer to generate an ASA

control character as indicated.
Bo = A print line of blanks.

C1-s-' = Control characters of records 1-N of a given data set.

P1-P n = Print lines of a given data set.

51 = A control character causing a 1-line space.

5 c = A control character causing spacing to be suppressed.

Sn = A control character causing a skip to channel 1.

ASA

I

I Cn-1 Pn I CnBol

I I

I CnPn I ScBo I

I I .;

I S1 Pn , ScBo I

Figure 7. Symbolic Representation of Record Formats

No Control Character

CD
I P1 I P2 I I Pn I

CD
, P1 I P2 , , Pn I

G
I P1 I P2 I I Pn I

In cases 2 and 4 of Figure 7, the output data set records have
different control characters than the input data set records. Case ~
shows that the standard writer generates a i-line space control
character to precede the first print line of the output. When the

I

Bo I

I

Bo I

I
Bo I

Writing Output writer Routines 161

output is written, each control character of an input record is then
attached to the next record. The last input record control character
(Cn) is attached to a line of blanks (Bo). In case 4, the first input
record control character is attached to a line of blanks, and each of
the other control characters is attached to a preceding record, as
indicated. The last input record (Pn) has a writer-generated space
l-line control character attached to it before the buffering and forcing
record (BoSe) generated by the writer is put out.

Cases' 7 and 8 show that the standard writer first generates a • skip
to channel l' control character and then generates 11 line space' and
then generates '1 line space' control characters for all but the last
control character. The last control character is the space suppression
character shown as part of the buffering or forcing record generated.

Cases 3, 6, and 9 show that if no control characters are required in
the output data set, the records are printed consecutively and a line of
blanks genera·ted by the writer is printed after the final record in a
data set. Any control character appearing in the input data set are
dropped in the output data set.

Notice that in all cases involving control characters in the output
data set, the standard writer allows for (1) an output record to force
the printing of the last record of an input data set and (2) a means of
minimum buffering between data sets by using generated control
characters and print lines in conjunction with the actual data set
control characters.

The standard writer translation of printer-type control characters is
given in Table 4~ In this table, the type of action indicated is given
in the left-hand column. The middle column and the right-hand column
Show, respectively, the bit settings of the control character byte for
machine type and USASI type control characters corresponding to the
entries in the left-hand column. A control character transformation is
effected by changing the bit-configuration of the control character byte
as indicated in the table.

Table 4. Control Character Translation for Printer unit Output.
r-------------------------T---------------------------T----------------,
I I Machine Type control I USASI I
I Action Desired 1(1403, 1404, 1443 Printers) I Type Control I
~-------------------------+---------------------------+----------------~
IWrite space 0 00000001 01001110
I Write space 1 00001001 01000000
IWrite space 2 00010001 11110000
I Write space 3 00011001 01100000
IWrite skip to channell 10001001 11110001
IWrite skip to channel 2 10010001 11110010
IWrite skip to channel 3 10011001 11110011
I Write skip to channel 4 10100001 11110100
IWrite skip to channel 5 10101001 11110101
I Write skip to channel 6 10110001 11110110
IWrite skip to channel 7 10111001 11110111
I Write skip to channel 8 11000001 11111000
IWrite skip to channel 9 11001001 11111001
I write skip to channel 10 11010001 11000001
IWrite skip to channel 11 11011001 11000010
I Write skip to channel 12 11100001 11000011 l _________________________ ~ ___________________________ ~ ________________ J

When machine control characters are used which indicate spacing or
skipping without writing (bit 6 set to 1, e.g., write and space
0-00000011) the standard writer generates the indicated USASI control

. character and also generates a blank record of the proper type and
length.

162 OS System Progranuner's Guide (Release 17)

The Output Separator Function

of the System Output Writer

I'n the MVT, PCP, and MFT operating system
configurations, the system output writer
can use the output separator facility to
write separation records prior to writing
the output of each job. These separation
records make it easy to identify and
separate the various job outputs that are
written contiguously on the same printer or
card punch device.

This chapter describes the output
separator that is supplied by IBM, and
tells how to write your own. A separate
section describes the differences between
separators for MVT configurations and PCP,
MFT configurations. Before reading this
chapter, you should' be familiar with the
information contained in the prerequisite
publications listed below:

Prerequisite Publications

The IBM System/360 Operating System:
Assembler Language publication (Form
C28-6514) contains the information
necessary to code programs in the assembler
language.

The IBM System/360 Operating System:
supervisor and. Data Management Services
publication (Form c28-6646) describes the
queued sequential access method (QSAM) used
by the system output writer, and discusses
program linkage conventions.

The IBM System/360 Operating System:
Supervisor and Data Management Macro
Instructions publication (Form C28-6647)
describes the system macro instructions
that can be used in programs coded in the
assembler language.

The Output Separator Function of the System Output writer 163

The Output Separator Function of the System Output Writer

In the MVT and MFT operating system configurations, problem programs
write their output on a direct access volume. Later, a system output
writer transcribes the data from the direct access volume to the output
unit (printer, punch, or magnetic tape device). As a result, the output
of. more than one job may be written contiguously on the same output
unit.

The output separator facility of the operating system provides a
means of identifying and separating the output of various jobs processed
by the same output unit. To do this, the separator writes separation
records to the system output data set prior to the writing of each job's
output.

You can use the output separator that is supplied by IBM, or you can
create and use your own output separator programs.

Using an Output Separator

The output separator function operates under control of the system
output writer. To use the function, the separator program must reside
in the link library (SYS1.LINKLIB), and its name must be included as a
parameter in the output writer's cataloged procedure (the second part of
the PARM field in the EXEC statement). Cataloged procedures for the
output writer are fully described in another chapter of this
publication.

The name of a separator program is not specified in the IBM-supplied
cataloged procedure for the output writer, and cannot be added by the
START comman.d at execution time. In other words, if you wish to use the
separator function, you must add the parameter to the output writer
cataloged procedure. Also, you must have a different output writer
cataloged procedure for each separator program to be used.

Functions of the IBM Output Separator

The IBM-supplied output separator resides in the link library
(SYS1~LINKLIB). When its name, IEFSD094, is specified as a parameter in
the output writer cataloged procedure, the output writer uses it to
separate job output. The type of separation provided by the separator
depends on whe~her the output is punch-destined or printer-destined.

Punch-Destined output

For punch-destined output, the IBM-supplied separator provides three
specially punched cards (deposited in stacker 1) prior to the punched
card output of each job. Each of these separator cards is punched in
the following format:

Columns
Columns
columns
Column
columns

1 to 35
36 to 43
44 to 45
46
47 to 80

blanks
jobname
blanks
output classname
blanks

164 as system Programmer's Guide (Release 17)

Printer-Destined Output

For printer-destined output, the IBH-supplied separator provides three
specially printed pages prior to printing the output of each job. Each
of these three separator pages is printed in the following format:

• Beginning at the channel 1 location (normally near the top of the
page), the jobname is printed in block character format over 12
consecutive lines. The first block character of the 8-character
jobname begins in column 11. Each block character is separated by 2
blank columns.

• The next 2 lines are blank.

• The output classname is printed in block character format covering
the next 12 lines. This is a 1-character name, and the block
character begins in column 55.

• The remaining lines to the bottom of the page are blank.

In addition to the above, a full line of asterisks(*) is printed
twice (overprinted) across the folds of the paper. These lines are
printed on the fold preceding each of the three separator pages, and on
the fold following the third page. This feature provides easy
separation of job output in a stack of printed pages.

For printer-destined output with the IBM-supplied separator, you must
include a channel 9 punch on the carriage control tape for the printer,
in addition to the channel 1 punch. The channel 9 punch controls the
location of the line of asterisks and should correspond to the bottom of
the page. To print the line of asterisks on the fold of the pages, you
must also offset thp. printer registration.

Creating an Output Separator Program

You can write your own output separator program by using the information
provided by the system output writer and by conforming to the
requirements explained below. Your separator program, when added to the
link library (SYS1.LINKLIB), is invoked by specifying its name as a
parameter in the EXEC statement of the output writer cataloged
procedure.

Parameter List

The output writer provides your separator program with a 4-word
parameter list of needed information. When your program receives
control. register 1 contains the address of a 4-word parameter list, anj
the parameter list contains the following:

r---,
IBytes 0-3 In this word, byte 0 contains switches that indicate
I the type of output unit. and bytes 1-3 are reserved
I for future use.
I
IBytes 4-7
I
I
IBytes 8-l.1
I
I

This word is the address of the output DeB (data
control block).

This word is the address of an 8-character field
containing the jobname.

IBytes 12-15 -- This word is the address of a 1-character field
I containing the output classname.
L __ ~--________________ _

The output Separator Function of the System Output writer 165

In the parameter list, the three high-order bits of byte 0 are
switches that your separator program uses to determine the type of
output unit. The first bit to the left is set to 1 if the output unit
is a 1442 punch device. The second bit is set to 1 if the output unit
is a punch device or a tape device with punch-destined output. The
third bit is set to 1 if the output unit is a printer or punch device.
The resulting bit combinations indicate the following:

111.
011,.
001.
010.
000.

1442 punch device
2520 or 2540 punch device
1403, 1404, or 1443 printer device
tape device with punch-destined output
tape device with printer-destined output

The parameter list also points to the DCB for the output data set.
This DCB is established for the queued sequential access method (QS~l).
and is already open when your separator program receives control.

The address of the jobname and the address of the output classname
are provided in the parameter list so that this information may be used
in the separation records written by your separator program.

programming Considerations

Your separator program. if specified in the output writer cataloged
procedure, is brought in by a LINK macro instruction issued from module
IEFSD078 of the output writer. Your separator program can be any size.
but a program over 8K may affect the region requirement of the output
writer.

CAUTION: Since the separator program operates with the supervisor
protection key, but in the program mode, your separator program must
insure data protection during its execution.

When writing a separator program, you must observe the following
programming requirements:

• Your program must conform to the standard linkage conventions. This
includes saving and restoring the contents of registers 0 through
12, and 14. These registers can be preserved with the SAVE and
RETURN macro instructions. When your program receives control, the
address of a standard save area is in register 13.

• Your program must use the PUT macro instruction in the locate mode
to write separation records on the output data set. (This method is
required by the QSAM DCB that is open for the output data set.)

• Your program rrrust establish its own synchronous error exit routine,
and the address of this routine must be placed into the DCBSYNAD
field· of the output DCB. This gives control to your error exit
routine in case an uncorrectable I/O error occurs while writing your
program's output.

• Your program should use the RETURN macro instruction to return
control to the output writer. Before returning, your program must
free any main storage it obtained during its operation, and your
program must place a return code (binary) in register 15. The
return codes signify:

o Successful operation.

8 Unrecoverable output error (should be set if your error exit
routine is entered).

166 OS System progran~er's Guide (Release 17)

output From the separator Program

Your separator program can write any kind of separation identification.
The jobname and the output classname for each job are available through
the parameter list for inclusion in your output, if desired. You can
use an IBM-supplied routine that constructs block characters (explained
later). You can punch as many separator cards or print as many
separator pages as you deem necessary.

The output from your separator program must conform to the attributes
of the output data set. These attributes, which can be determined from
the open output DCB pointed to by the parameter list, are:

• Record format (fixed, variable" or undefined length).
• Record length.
• Type of carriage control characters (machine, USASI, or none).

For printer-destined output, you can begin your separation records on
the same page as the previous job output, or skip to any subsequent
page. However, your separator program should skip at least one line
before writing any records, because in some cases the printer is still
positioned on the line last printed.

After completing the output of your separation records, your
separator program should write SUfficient blank records to force out the
last separation record. This also allows your error exit routine to
obtain control if an uncorrectable output error occurs while writing the
last record. The requirements are:

• One blank record for printer-destined output.
• Three blank records for punch-destined output.

Usipg the Block Character Routine

For printer-destined output, your separator program can use an
IBM-supplied routine to construct separation records in a block
character format. 'I'his routine is a reenterable module named IEFSD095,
and resides in the module library (SYS1.CISOS).

The blockchara.cter routine constructs block letters (A to Z), block
numbers (0 to 9) " and a blank. Your program furnishes the desired
character string and the construction area. The block characters are
constructed one line position at a time. Each complete character is
co~tained in 12 lines and 12 columns; therefore, a block character area
consists of 144 print positions. For each position, the routine
provides either a space or the character itself.

The routine spaces 2 columns between each block character in the
string. However, the routine does-not enter blanks between or within
the block characters. Your program must prepare the construction area
with blanks or other desired background before entering the block
character routine.

To use the IBM-supplied block character routine, your separator
program executes the CALL macro instruction with the entry point name of
IEFSD09S. Since the block characters are constructed one line position
at a time, complete construction of a block character string requires 12
entries to the routine. Each time you enter the routine, you must
provide the address of a 4-word parameter list in register 1. The
parameter list must contain the following:

The Output Separator Function of the system Output writer 167

r----------------~---,
IBytes 0 - 3 This word is the address of a field containing the
I desired character string in EBCDIC format.
IBytes 4 - 7 -- This word is the address of a full word field
I containing the line count as a binary integer from 1
I to 12. This represents the line position to be
I constructed on this call.
IBytes 8 -11 -- This word is the address of a construction area in
I main storage where the routine will construct a line
I of the block character string. The required length in
I bytes of this construction area is 14n-2, where n
I represents the number of characters in the string.
IBytes 12-15 -- This word is the address of a full word field
I containing, in binary, the number of characters in the
I string. L __ J

Output Separators-PCP

For PCP configurations of the operating system IBM will supply output
separators for output classe!s A and B.. Final destination for class A
output is the printer, and final destination for class B is the punch.
Separators for either or both may be chosen at system generation, or
both may be omitted. If you choose separator routines for classes A
and/or B at system generation time, these routines will be entered
automatically when one of these output classes is requested. The
separation provided is the same as that for MVT configurations. The
parameters passed to these routines are the same also; the switches in
byte 0 indicate the type of output device. These switches are the three
high-order bits only:

Class A 001 Device is a printer
000 Device is a tape

Class B 111 Device is a 1442 punch
011 Device is a punch
010 Device is a tape

Others 011 Device is a punch
111 Device is a 1442 punch
001 Device is a printer
000* Device is a tape

*If the output device is a tape, this bit setting indicates to the
IBM separator routines that final destination is the printer. To use
IBM routines for punched output you must set bit 1 on to signify
eventual destination as the punch. Therefore, the bit setting for punch
separators at entrance to IBM routines would be 010. The classname is
available to the user for determination of final destination.

MODIFYING OR ADDING OUTPUT SEPARATORS

If you choose the IBM separators for classes A and/or B, you may wish to
employ a separator for classes other than A or B; in this case you must
replace the module IEFSEPAR with your own routine or use the IBM
supplied routines by setting the correct switch in the parameters for
printer or punch final destination and branching to IEFSD094 or
IEFSD09S;. These routines are entered by branch and link register 14.
If you write your own routine, the procedure is the same as that
described for MVT. .

If you do not choose IBM separator routines, control is passed to
IEFSEPAR for all output requests, and if you wish output separation, you
must replace this with your own routine.

168 OS System ProgramrnerSs Guide (Release 17)

System Reader~ Initiator~ and
Writer Cataloged Procedures

In the MVT and MFT operating system
configurations, reader/interpreters, and
output writers are controlled by catalogej
procedures. In MVT configurations
initiators are also controlled by a
cataloged procedure. This chapter
describes the reader, initiator, and writer
cataloged procedures that are.supplied by
IBM, and tells how to write your own.

Before reading this chapter, you should
be familiar with the information contained
in the prerequisite publications listed
below.

Prereguisite Publications

The IBM system/360 Operating System:
Job Control Language publication (Form
C28-6539) contains information about job
control statements and cataloged
proced ures.

The IBM System/360 Operating System:
Operator's Guide publication (Form
C28-6540) describes the START command used
to start reader/interpreters, initiators,
and output writers.

The IBM system/360 Operating System:
Storage Estimates publication (Form
C28-6551) contains information for
estimating storage requirements.

The IBM System/360 Operating System:
utilities publication (Form C28-6586) tells
how to add a cataloged procedure to the
procedure library.

The IBM system/360 Operating System:
supervisor and Data Management Services
publication (Form C28-6646) discusses the
queued sequential access method (QSAM) that
is used by reader/interpreters and output
writers.

System Reader and writer Cataloged Procedures 169

Reader/Interpreter, Initiator and Output Writer Cataloged Procedures

In the MVT and MFT operating system configurations, system
reader/interpreters and output writers are controlled by cataloged
procedures. Initiators are controlled by cataloged procedures in MVT
configurations. These procedures reside in the procedure library
(SYS1.PROCLIB) and provide the parameters required for operation of the
readers and writers.

IBM supplies three cataloged procedures for reader/interpreters, one
for initiators, and one for output writers. You can:

• Use the IBM-supplied procedures.

• Use the IBM-supplied procedures. and override given parameters.

• Write and use your own cataloged procedures.

• Write and use your own cataloged procedures, and override given
parameters.

The START command starts a reader/interpreter, an initiator. or an
output writer, and designates the cataloged procedure to be used •. You
can override given parameters in the cataloged procedure by specifying
the desired parameters in the STARr command. (A complete description of
the S'l'ART command is contained in the operator's Guide publication.)

Some of your installation's parameters may differ consistently from
those in the IBM-supplied procedure. If so, you may wish to use your
own cataloged procedure, rather than respecifying the parameters in
every START command. You can use your own cataloged procedure by:

1. Writing the procedure in the required format.

2. Adding the procedure to the procedure library.

3. Specifying the procedure name in the START command.

Reader/Interpreter Procedures

A cataloged procedure for reader/interpreters requires four job control
statements: an EXEC statement and three DD statements. The names and
purposes of these statements are listed below:

• An EXEC statement with the step name IEFPROC specifies the
reader/interpreter program.

• A DD statement named IEFRDER provides the reader/interpreter with a
description of the input stream.

• A DD statement named IEFPDSI describes the procedure library.

• A DD statement named IEFDATA defines the CPP (concurrent peripheral
processing) data set that is used for intermediate storage of input
stream data. (In MVT, the attributes of the CPP data set must not
be changed for a checkpoint restart if the data set was open and, not
completely read. The extents and number of extents do not have to
remain the same.)

170 OS System Programmer's Guide (Release 17)

IBM-SUPPLIED PROCEDURES

The standard reader/interpreter procedure supplied by IBM is named RDR.
It specifies a block size of SO bytes for the CPP data set. The
complete standard procedure is:

r---,
//IEFPROC EXEC PGM=IEFIRC,REGION=4SK, XI

I
// PARM='S010300S00102490S010SYSDA I

I
//IEFRDER DD UNIT=2400,LABEL=(,NL),VOLUME=SER=SYSIN, XI

I
// DCB= (BLKSIZE=SO, LRECL=SO, BUFL=SO, XI

I
/ / BUFNO=l, RECFM=E') I

I
/ /IEFPDSI DD DSNAME=SYS1,. PROCLIB, DISP=OLD I

I
//IEFDATA DD UNIT=SYSDA, XI

I
// SPACE=(SO,(SOO,SOO),RLSE,CONTIG), XI

I
// DCB=(BLKSIZE=SO,LRECL=80,BUFL=SO, XI

I
// BUFNO=2,RECFM=F) I L __ J

Two other cataloged procedures for reader/interpreters are supplied
by IBM. These provide different block size specifications for the CPP
data set. One of these procedures is named RDR400, and provides a block
size of 400 bytes for the CPP data set. The RDR400 procedure is:

r--~---,
I//IEFPROC EXEC PGM=IEFIRC,REGION=SOK, XI
I I
1// PARM='S010300S00102490S010SYSDA I
1 I
I//IEFRDER DD UNIT=2400,LABEL=(,NL),VOLU~~=SER=SYSIN, XI
1 I
1// DCB=(BLKSIZE=SO,LRECL=SO,BUFL=SO, XI
I I
1// BUFNO=l,RECFM=F) I
I I
l//IEFPDSI DD DSNAME=SYS1.PROCLIB,DISP=OLD I
I I
I//IEFDATA DD UNIT=SYSDA, XI
1 1
1// SPACE=(SO, (SOO,100),RLSE,CONTIG), XI
1 I
1// DCB=(BLKSIZE=400,LRECL=SO,BUFL=400, XI
1 1
1// BUFNO=2,RECFl-1=FB) I L __ J

System Reader and Writer Cataloged Procedures 171

The third IBM-supplied procedure for reader/interpreters is named
RDR3200. It provides a block size of 3200 bytes for the CPP data set.
The RDR3200 procedure is:

r--,
//IEFPROC EXEC PGM=IEFIRC,RE~ION=S2K, XI
// PARM='S0103005001024905010SYSDA 1

//IEFRDER
//
//

//IEFPDSI

DD

DD

UNIT=2400,LABEL=(,NL),VOLUME=SER=SYSIN,
DCB=(BLKSIZE=SO,LRECL=SO,BUFL=SO,
BUFNO=l,RECFM=F)

DSNAlvlE=SYS1,. PROCLIB" DISP=OLD

1
XI
XI

I
I
I
I

//IEFDATA DD UNIT=SYSDA, XI
// SPACE=(SO, (SOO,12),RLSE,CONTIG), XI
// DCB= (BLKSIZE=3200, LRECL=SO,BUFL=3200, XI

1// BUFNO=l,RECFM=FB) 1 L ___ J

PROCEDURE REQUIREMENTS

When creating your own reader/interpreter procedure, you must conform to
the procedure format and the statement requirements. Use the
IBM-supplied procedures as examples. The statement requirements are
explained individually in the following paragraphs.

The EXEC Statement

The EXEC statement specifies the reader/interpreter program and for ~IVT
configurations its region size. It also passes a set of parameters to
the reader/interpreter program~ The format for the EXEC statement is:

r--,
I//IEFPROC EXEC PGM=IEFIRC,REGION=nnnnnK, XI
1 I
1// PARM='bpptttooornrnmiiicccrlssssssss' I L __ ,-_____ . __ J

The step name must be IEFPROC, as shown. The parameter requirements
are as follows:

PGM=IEFIRC
specifies the reader/interpreter program. The name of the program
must be IEFIRC, as shown.

REGION=nnnnnK (valid for MVT configurations only)
specifies the region size for the reader/interpreter. The value
nnnnn represents a number from one to five digits that is
multiplied by K (K=1024 bytes) to designate the region size. The
region requirement depends on the size of the buffers and on the
reader/interpreter modules (if any) in the link pack area. The
complete algorithm for estimating the required region is contained
in the "Estimating the Dynamic Nain Storage Requirement" section of
the storage Estimates publication. An insufficient size
specification will result in an abormal termination. If blocked
procedure library has been specified, the region size will have to
be increased by the block size rounded off to the next highest
multiple of 2K. This is to allow for the increase in buffer size.
In the event that double buffering is used, the region size must be
increased by twice the block size, rounded off to the next highest
multiple of 2K.

172 OS System Programmer's Guide (Release 17)

PARM='bpptttooommmiiicccrlssssssss'
is a set of parameters for the reader/interpreter program. This
parameter field must consist of 28 characters. Their meanings are
explained in the following text.

b -- character from 0 through 9 or A through F that indicates
whether the job step can be rolled out by another job step,
whether it can cause rollout of another job step, whether an
account number is required or not, and whether a programmer
name is required. The chart below shows the meaning of each
possible character.

r----------T-------------T----------------T------------T----------,
I I Can step Be I Can step Cause I ~ccn't Infol Pgmr Name I
ICharacter I Rolled Out? I Rollout? I Required? I Required? I
~----------+-------------+----------------+------------+----------~ o no no no I no I

1 no no no I yes I
2 no no yes I no I
3 no no yes I yes I
4 no yes no I no I
5 no yes no I yes I
6 no yes yes I no I
7 no yes yes J yes I
8 yes no no I no I
9 yes no no I yes I
A yes no yes I no J
B yes no yes I yes I
C yes yes no I no I
D yes yes no I yes I
E yes yes yes I no I
F yes yes yes I yes I __________ ~ _____________ ~ ________________ ~ ____________ ~ __________ J

pp -- two numeric characters from 00 to 14 indicating the default
priority for jobs read from this input stream. When no
priority is specified in the JOB statement, this default
priority is assigned to the job.

ttt -- three numeric characters indicating the default for the
maximum time (in minutes) that each job step may run. (This
value is not used by MFT but must be present.)

000 -- three numeric characters indicating the default for the
primary number of tracks assigned for SYSOUT data sets. This
pr~mary allocation should be made sufficient for most of your
needs, so that secondary allocation will not usually be
needed.

mmm -- three numeric characters indicating the default, for ·the
secondary number of tracks assigned for SYSOUT data sets.

iii -- three numeric characters under 255 indicating the
dispatching priority of this reader while it is processing JCL
statements. (This value is not used by MFT but must be
present.)

ccc -- three numeric characters indicating the default for the
region size (specified as a number of 1024-byte blocks)
assigned to job steps read from this input stream. (This
value is not used by MFT but must be present.)

System Reader and writer Cataloged Procedures 173

r -- a numeric character from 0 to 3 that specifies the disposition
of commands read from this input stream. The
reader/interpreter, if r is:

0 executes the command.
1 displays the command (via a WTO macro instruction), and

executes it~
2 displays the command (via a WTOR macro instruction), but

does not execute it until advised by the operator.
3 ignores the command (treated as no operation).

1 -- a numeric character 0 or 1 which specifies the bypass label
processing options. 0 signifies that the BLP parameter in the
label field of a DD statement is to be ignored. The label
parameter is processed as NL. 1 signifies that BLP is not to
be ignored. The label parameter is processed as it appears.

ssssssss -- eight alphameric characters specifying the default
device for SYSOUT. This becomes the UNIT subparameter in the
DD statement that defines SYSOUT (if the UNIT field is omitted
from the DD statement). If the designation is less than eight
characters, the ssssssss field must be padded to the right
with blanks.

Note: This default device can be specified by its address,
group, or type. However, the UNIT=type form may cause all
units of that type to be used for system output, since the
device allocation program spreads the data sets among all
candidate devices. To preserve some devices for private
volumes, you should define a U~~IT group which is a subset of
the available direct access devices. You may specify the name
SYSOUT as the default unit name for the system output data
sets if it was specified at system generation time; when this
default is used, a unit count of 1 is implied. UNITNAME
SYSOUT is fully described in the ~stem Generation
publication.

DD statement for the Input stream

Your procedure for the reader/interpreter must include a DD statement
that describes the input stream. The format for this statement is:

r---,
I//IEFRDER DD UNIT=device,LABEL={,type), XI
I I
1// VOLUME=SER=SYSIN, xI
I I
1// DCB={list of attributes) [,DSNAME=name,DISP=dispositionlI L __ J

This statement must be named IEFRDER, as shown.
statement can be overridden with a START command.
requirements are as follows:

UNIT=device

The IEFRDER
The parameter

specifies the device from which the input stream is read. This can
be any device supported by the queued sequential access method
(QSAM). The device can be specified by its address,r type, or
group.

LABEL= (, type)
describes the data set label (needed only for tape data sets). If
this parameter is omitted, a standard label is assumed.

174 as system Programmer's Guide (Release 17)

VOLUME=SER=SYSIN
specifies the volume containing the input stream. This parameter
is required for magnetic tape or direct access volumes. The serial
SYSIN is recommended for identification of this volume, but other
serials can be used.

DCB=(list of attributes)
specifies the characteristics of the input stream and the buffers.
If the BLKSIZE, LRECL, and BUFL subparameters are not specified, an
80-byte value is assigned to each. Other subparameter fields may
be specified as needed; otherwise. the QSAM default attributes are
assigned. as follows:

BUFNO -- two buffers. (In ~wr if the procedure is to be used for
transient readers. BUFNO=l must be specified.)

RECFM U-format. with no control characters.

TRTCH odd parity. no data conversion. and no translation.

DEN lowest density.

DSNAME=name,DISP=disposition
specifies the name and disposition of the input stream data set to
be read. this keyword should be used only with direct access input.
stream.

DD statement for the Procedure Library

Your procedure for the reader/interpreter must include a DD statement
that defines the procedure library. This statement must follow the
IEFRDER statement which describes the input stream. The format for this
statement is:

r--~---,
I//IEFPDSI DD DSNAME=SYS1.PROCLIB,DISP=OLD I L __ J

This statement must be named IEFPDSI. as shown. The parameter
requirements are as follows:

DSNAME=SYS1.PROCLIB
identifies the procedure library. To concatenate other dat~ sets
with the system library, you may follow the IEFPDSI DO statement
with other unnamed DD statements thus expanding the system
procedure library.

DISP=OLD
specifies that the procedure.library is an existing data set. In
the MVT environment. the procedure library is assigned the share
status (SHR) when referred to by the reader/interpreter.

DD statement for the CPP Data Set

Your procedure for the reader/interpreter must include a DO statement
that def.ines the CPP (concurrent peripheral processing) data set.riNO
DCB parameters (BLKSIZE. and buffer number) may be overridden by
parameters in the input stream on 00* and DO DATA statements. The CPP
data set is used for intermediate storage of input stream data. The
format for this statement is:

System Reader and writer Cataloged Procedures 175

r--,
I//IEFDATA DD UNIT=device, xI
I I
1// SPACE=(units,(quantities),RLSE,CONTIG), XI
1 1
1// VOLU£4E=SER=volser, DISP= (status, dis p) , XI
I 1
1// DCB=(list of attributes) 1 L __ J

This statement must be named IEFDATA, as shown. The parameter
requirements are as follows:

UNIT=device
specifies one or more direct access devices on which data sets from
the input stream will be written. If more than one device is
provided, the different data sets are not necessarily written in a
continuous manner from device to device. Instead, the different
data sets might be "spread" among the available devices in
accordance with a reader/interpreter algorithm that is based on
priorities and optimum access. If you want all the input stream
data sets written on the same device, use the VOLUME parameter in
this DD statement to identify the specific volume. The DEFER
option must not be used.

CAUTION: Do not use UNIT group names unless the request is for no
more than one device, or the group is defined to have devices of
only one type.

SPACE=(units, (quantities),RLSE,CONTIG)
specifies space allocation for the direct access volume. The RLSE
subparameter releases all unused space to the system when the data
set is closed. The CONTIG subparameter ensures that space is
allocated in contiguous tracks or cylinders.

Note: The first space allocation made by the system will be for
the reader/interpreter program itself, which does not need or use
the space.

VOLUME=SER=volser
identifies a specific direct access volume. This parameter is not
required, but you can use it to cause all input stream data sets to
be written on the same volume. You should also use this parameter
if you specify the DISP parameter.

DISP=(status,disp)
specifies the status and disposition of the CPP data set. This
parameter is not required, but can be used to bypass the first
space allocation (as explained above). To do this, specify the
parameter as DISP=OLD. The system then assumes that the data set
exists, and does not allocate space for the reader/interpreter
program. Subsequently, the reader/interpreter forces a
DISP=NEW,PASS status for the cpp data set so that space is
allocated on it for recording the input stream data sets.

DCB=(list of attributes)
specifies the characteristics of the CPP data set and the buffers.
The subparameters may be specified as needed. The BLKSIZE, LRECL,
and BUFL subparameters must be specified in all cases. The BLKSIZE
and BUFNO parameters may be overridden by specifying them on a DD*

176 OS System Programmer's Guide (Release 17)

or DO DATA statement in the reader input stream. However, the
BLKSIZE and BUFNO values on the IEFDATA statement are always used
as upper limits. Thus" if the overriding statements exceed these
limits, the IEFDATA values are used. (An explanation of how to
override these parameters is contained in the Job Control Language
publication.) The BUFNO and RECFM subparameters, if not specified"
assume the QSAM default attributes which are:

BUFNO two buffers.

RECFM U-format, with no control characters.

Initiator Procedures

A cataloged procedure for an initiator requires only one job control
statement: an EXEC statement. Additional DD statements may be
optionally added so that specific control volumes will be allocated to
the initiator task.

o An EXEC statement w.ith the step name IEFPROC specifies the initiator
program and any job classes to be associated with the initiator if
the START command does not specify job classes •

• Optional DO statements specify control volumes to be allocated to
the initiator task.

IBM-SUPPLIED PROCEDURE

The standard initiator procedure supplied by IBM is named INIT. The
INIT procedure is:

r-----~--,
I//IEFPROC EXEC PGM=IEFSD060,PARM=A I
L--r--_________________ J

P~OCEDURE REQUIHEMENTS

When creating your own initiator procedures, you must conform to the
procedure format and the statement requirements. The statement
requirements are explained individually in the following paragraphs.

The. EXEC Statement

The EXEC statement specifies the initiator program and passes a set of
parameters to the initiator program. The format for the EXEC statement
is:

r--~---,
I//IEFPROC EXEC PGM=IEFSD060,PARM=xxxxxxxx I L __ J

The step name must be IEFPROC, as shown. l'he parameter requirements
are as follows:

PGM=IEFSD060
specifies the initiator program. The name of the program must be
IEFS0060 1 as shown.

System Reader and writer Cataloged Procedures 177

PARM=xxxxxxxx
specifies from zero to eight (no padding required) single-character
class names for job input. These specify the class of input that
the initiator can process, and also establish the priority of the
input job classes, with the highest priority on the left. If class
name parameters are included in the START command, they override
the entire set of class names in the cataloged procedure.

DD Statements

DD statements for control volumes are optional. The standard procedure
INIT does not include a DD statement for a control volume. This
optional facility is discussed in the next section "Mounting Control
Volumes in MVT."

ADD.ITIONAL INITIA'I'OR FACILITIES

Mounting Control Volumes in MVT

A control volume that will be referenced during a catalog search can be
mounted before the search begins to avoid the possibility of a job
failure because the necessary control volume was not mounted.

DD statements for control volumes may be included in initiator
procedures cataloged in the procedure library (SYS1.PROCLIB). Such DO
statements cause direct access volumes to be mounted and allocated for
the life of the initiator. This facility is particularly useful when
control volumes will be needed for departmental job batches.

Initiation by an initiator with a DD statement for a control volume
ensures that the control volume will be mounted prior to a catalog
search from the catalog on the system residence volume to the catalog on
the control volume for a specified data set. If such DD statements for
control volumes are not included in initiator procedures, attempt will
be made to mount a required control volume if a catalog search could not
be completed during allocation for a step. However, when control
volumes are mounted in this manner, they are available for demounting
immediately after the catalog search has completed and will not
necessarily remain mounted for the life of the job or job step requiring
them.

Initiator Action

By starting an initiator that includes a DO statement for a control
volume, mounting is requested before the initiator is allowed to start
initiating jobs. If the volume is already mounted, the initiator
proceeds with initiation.

When a stop. command is issued to the started initiator and the volume
is demountable and PRIVATE, it will be demounted providing no other job
steps or other initiators are allocated to the volume. the volume then
would stay mounted until the last job step using it terminated or the
ini tiators using it are stopped" at which time the volume would be
demounted.

DD Statement Formats

As many volumes may be defined by DD statements in the initiator
procedure as the user finds useful. The format follows the
specifications contained in the Job Control Language publication. The
following is an example of a DD statement that could be included in an
initiator procedure for a control volume:

178 OS System Progran~er's Guide (Release 17)

r--,
I//ddname DD VOLUME=(PRIVATE,SER=ser#), XI
I I
I {addreSS} I
1// UNIT= type ,DISP=OLD I
I group I L __ J

VOLUME=(PRIVATE,SER=ser#),
specifies the volume serial of the control volume. PRIVATE
ensuresthat this volume will not be used to satisfy job step data
set requests unless requested by the specify volume serial number.
Also, unless already mounted and permanently resident or reserved,
the volume will be demounted when the initiator is stopped or upon
its last use by job steps being processed by other initiators, or
when other initiators allocated to the volume are stopped.

UNIT={~~~ess} ,
group

specifies the unit address, unit type, or group on which the
control volume is to be mounted.

DISP=OLD
specifies that a temporary data set will not be allocated to the
volume. A dsnarne will be generated for this data set and when the
initiator is stopped a message will be written out on the system
output that this data set (generated name) has been kept. This
message can be ignored as no action needs to be taken.

Output Writer Procedures

A cataloged procedure for output writers requires two job control
statements: an EXEC statement and a DO statement.

• An EXEC statement with the step name IEFPROC specifies the output
writer program •

• A DD statement named IEFRDER defines the output data set. (In MVT,
the attributes of the output data set must remain unchanged for a
deferred checkpoint restart if the data set was opened but not
completely written. The extents and number of extents do not have
to be the same.)

IBM-SUPPLIED PROCEDURE

The standard output writer procedure supplied by IBM is named IEEVWPCR.
The standard procedure is:

r--,
I//IEFPROC EXEC PGM=IEFSD080,REGION=20K, XI
I I
1// PARM=' PA' I
I I
I//IEFRDER DD UNIT=1403,VOLUME=(",3S), XI
I I
1// DSNAME=SYSOUT,DISP=(NEW,KEEP), XI
I I
1// DCB=(BLKSIZE=133,LRECL=133,BUFL=133, XI
I I
1// BUFNO=2,RECFM=FM) I
L __ ~--_________________ J

System Reader and writer Cataloged Procedures 179

PROCEDURE REQUIREMENTS

When creating your own output writer procedure, you must conform to the
procedure format and the statement requirements. Use the IBM-supplied
procedure as an example. The statement requirements are explained
individually in the following paragraphs.

The EXEC Statement

The EXEC statement specifies the output writer program and its region
size. It also passes a set of parameters to the output writer program.
The format for the EXEC statement is:

r--,
I//IEFPROC EXEC PGM=IEFSD080,REGION=nnnnnK, XI
1// PARN='cxxxxxxxx,seprname' I
L __ ~--_________________ J

The step name must be IEFPROC, as shown. The parameter requirements
are as follows:

PGM=IEFSD080
specifies the output writer program. The name of the program must
be IEFSD080 1 as shown.

REGION=nnnnnK (MVT configurations only)
specifies the region size for the output writer. The value nnnnn
represents a number from one to five digits that is multiplied by K
(K=1024 bytes) to designate the region size. The region
requirement depends on the size of the buffers, the data set writer
used, and which modules of the output writer (if any) are in the
link pack area. The complete algorithm for estimating the require1
region is contained in the "Estimating the Dynamic Main storage
Requirement" section of the storage Estimates publication. An
insufficient size specification will result in an abnormal
termination.

PARM='cxxxxxxxx,seprname'
is a set of parameters for the output writer program. The first
part of this parameter field can contain from two to nine
characters~ The second part of this parameter field, if specified,
is separated from the first part by a comma, and contains a program
name from one to eight characters. Both parts of this parameter
field are explained below.

c -- an alphabetic character, either P (for printer) or C (for
punch), that specifies the type of control characters for the
output of the writer.

xxxxxxxx -- from one to eight (no padding required)
single-character class names for system output. These specify
the type of output tha~ the writer can process, and also
establish the priority of the output classes, with the highest
priority on the left,;, If class name parameters are included
in the START command" they override this entire set of class
names in the cataloged procedure.

seprname -- the name of the program (up to eight characters) that
provides job separation in the output data set. The named
program must reside in the link library (SYS1.LINKLIB). You
can specify the name I~FSD094 to use the output separator
supplied by IBM, or you can specify the name of your own
program. This subparameter may be omitted, in which case no
output separator is used. (Output separators are described in
another chapter of this publication.)

180 os System Programmer's Guide (Release 17)

DD statement for the OUTPUT Data set

Your procedure for the output writer must include a DD statement that
defines the output data set. The format for this statement is:

r--~---,
I//IEFRDER DD UNIT=device,LABEL=(,type), XI
I I
1// VOLUME=(",volcount), XI
I I
1// DSNAME=anyname,DISP=(NEw,KEEP), xI
1 I
1// DCB=(list of attributes) I L __ J

This statement must be named IEFRDER, as shown. The parameter
requirements are as follows:

UNIT=device
specifies the printer, magnetic tape, or card punch device on which
the output data set will be written. The devices that can be used
are: 1403, 1442, 1443, 2400, 2400-1, 2400-2, 2400-3, 2420, or 2540.

LABEL= (, type)
describes the data set label (needed only for tape data sets).' If
this parameter is omitted, a standard label is assumed.

VOLUME=(",volcount)
limits the number of tape volumes that can be used by this writer
during its entire operation (from the time it is started to the
time it is stopped). This parameter is not required for printer or
card punch devices.

DSNAME=anyname
specifies a name for the output data set (tape only), so that it
can be referred to by subsequent jab steps. This name is also
necessary for specification of the KEEP subparameter in the DISP
field.

DISP= (NEW, KEEP)
specifies the KEEP subparameter to prevent deletion of the output
data set (tape only) at the conclusion of the job step.

DCB=(list of attributes)
specifies the characteristics of the output data set and the
buffers~ The BLKSIZE and LRECL subparameter fields must be
specified in all cases. The BUFL subpararneter field, if not
specified, is calculated on the basis of the BLKSIZE value. Other
subparameter fields may be specified as needed; otherwise, they
will assume the QSAf\1 defa ul t attributes which are:

BUFNO -- three buffers for the 2540 device, two buffers for all
other devices.

RECFM U-format, with no control characters.

TRTCH odd parity. no data conversion, and no translation.

DEN lowest density.

System Reader and Writer Cataloged Procedures 181

By using a certain kind of procedure" it is possible to reduce the
amount of CPU time needed by the writer. This is done by having the
SYSOUT writer intercept PUT instructions and execute an EXCP only when
all of a chain of buffers are full. This command chaining is provided
if the writer procedure specifies all of the following conditions:

1. It uses more than 3 buffers.

2. It uses machine control characters in writing to the OUTPUT print
or punch device.

3. It does not usePCI.

4. The OUTPUT device is a printer or punch.

It should be noted that if a command chaining procedure is used to a
punch, there is no automatic punch recovery even though there are more
than 3 buffers.

Cataloging the Procedure

You use the IEBUPDTE utility program to add your reader, initiator, or
writer procedures to the cataloged procedure library (SYS1.PROCLIB).
Use of this program is fully explained in the utilities publication.

The following example shows the control statements needed to add a
reader/interpreter procedure and an output writer procedure to the
procedure library. For this example, the reader/interpreter procedure
is named RDPROC4, and the output writer procedure is named WTPROC2.

The EXEC statement in this example specifies the IEBUPDTE program.
The PARM=NEW parameter indicates that all input to the utility program
is contained in. the data set defined by the SYSIN statement.

The ADD control statement furnishes the name of the member to be
added to the procedure library. The three numbers following the member
name indicate:

• The level of modification (00 indicates first run).

• The source of the modification (0 indicates user-supplied).

• The printed output desired (ALL indicates print entire updated
member and control statements).

The NU~~ER statement specifies the sequence numbers for records
within the new member~ with this statement, the number 00000010 is
assigned to the first record of the new procedure, and subsequent
records are incremented by 00000010.

182 OS System Programmer's Guide (Release 17)

r--,
//NEWPROCS JOB 09#770 , D.P.BROWN

// EXEC

//SYSPRINT DD

//SYSUT2 DD

//SYSIN DD

./ ADD

./ NUMBER

//IEFPROC EXEC

//

//IEFRDER DD

//

//

//

//IEFPDSI DO.

//IEFDATA DD

//

//

//

//

./ ADD.

./ NUMBER

//IEFPROC ·EXEC

//

//IEFRDER DD

//

PGM=IEBUPDTE,PARM=NEW

SYSOUT=A

DSNAME=SYS1.PROCLIB,DISP=OLD

DATA

RDPROC4,LEVEL=00,SOURCE=0,LIST=ALL

NE Wi =10, I NCR =10

PGM=IEFIRC,REGION=40K,

PARM='S010l00150102490S01SYSDA

UNIT=2400-2,LABEL=(,NL),

VOLUME=SER=SYSIN,

DCB=(BLKSIZE=SO,LRECL=SO,BUFL=SO,

BUFNO=l,RECFM=F,TRTCH=C,DEN=O)

DSNA~ili=SYS1.PROCLIB,DISP=OLD

UNIT=2311,

SPACE=(SO,(SOO,500),RLSE,CONTIG),

VOLUME=SER=222222,DISP=OLD,

DCB= (BLKSI ZE=S 0, LRECL=S 0 " BUFL=S 0,

BUFNO=2, RECFM=F)

WTPROC2,LEVEL=00,SOURCE=0,LIST=ALL

NEW1=1 0, I NCR=l 0

PGM=IEFSDOSO,REGION=20K,

PARM= , PAC ,

UNIT=2400-2,LABEL=(,NL),VOLUME=C",40),

DSNAME=SYSOUT,DISP=(NBw,KEEP),

XI
I
I
I

XI
I

XI
I

X

X

X

X

X

X

x

X

// DCB=(BLKSIZE=133,LRECL=133,RECFM=F, XI
I

/ / TRTCH=C) I
I

1/* I L __ J

system Reader and writer Cataloged Procedures lS3

Automatic SYSIN Batching (ASB)

Reader/interpreters in MVT are usually resident and continuously active;
they read and interpret job control language statements and place SYSIN
data sets on direct access devices for later processing. since the
interpreting of job control language statements often requires only a
small proportion of the total time used by the reader/interpreter yet
remains resident even when inactive., you may save space by separating
the interpretation of job control statements from the storing of SYSIN
data sets. If the two functions are separated, the interpreter portion
of the reader/interpreter does not have to be resident at all times and
will be called into storage only after a certain number of job control
language statements have been collected. separating the two functions
of the reader/interpreter is called automatic SYSIN batching (ASB).

IBM supplies a cataloged procedure that provides automatic SYSIN
ba tching; this procedure is named RORA and is invoked by issuing a S'l'1\RT
command. The procedure is shown and described in the following text; by
using it as a model, you may write your own procedure, coding the
parameters suited to your installation.

r--,
//IEFPROC EXEC PGM=IEFVMA,REGION=16K,

// PA~M=·80103005001024905030SYSOAbbb,11012SYSD1\bbb·

//IEFRDER DO UNIT=2400,LABEL=(,NL),VOLUME=SER=SYSIN,

// OCB=(BLKSIZE=80,RECFM=F,BUFL=80,BUFNO=10)

//IEFPOSI DO OSNAME=SYS1.PROCLIB,OISP=OLD

//IEFDATA DD UNIT=SYSDA,SPACE=(3200,(15,15),RLSE,CONTIG),

1// DCB=(BLKSIZE=3200,BUFNO=2,RECFM=FB,BUFL=3200) L ___ _

The EXEC statement for the SYSIN batcher is similar to the EXEC
statement for the standard reader/interpreter. It specifies the SYSIN
batcher program, the MVT region size and passes a set of parameters to
the program. The format is as follows:

//IEFPROC EXEC PGM=IEFVMA,REGION=nnnnnK,
/ / PARM=" bpptttooomrnmiiicccrlssssssssejjaadddddddd'

The step name must be IEFPROC, as shown. The parameters are as follows:

PGM=IEFVMA
specifies the automatic SYSIN batcher program. It must be IEFV~m
as·shown.

REGION=nnnnnK
specifies the region size for the ASB reader. The value nnnnn
represents a number from one to five digits that is multiplied by K
(K=1024 bytes) to designate the region size,. The region
requirement depends on the size and number of input buffers and ASB
reader modules (if any) in the link pack area. The complete
algorithm for estimating the required region is contained in the
"Estimating the Dynamic Main Storage Requirement" section of the
Storage Estimates publication. An insufficient size specification
will result in an abnormal termination.

184 os System programmer's Guide (Release 17)

PARM='bpptttooommmiiicccrlssssssss'
is a set of parameters for the reader/interpreter program. This
parameter field must consist of 28 characters. Their meanings are
explained in the following text.

b -- character from 0 through 9 or A through F that indicates
~hether the jOb step can be rolled out by another job step,
whether it can cause rollout of another job stepl whether an
account number is required or not, and whether a programmer
name is required. The following chart shows the meaning of
each possible character.

r---------T-------------T----------------T------------T----------,
I I Can step Be I Can step Cause I ~ccn't Infol Pgmr Name I
ICharacter I Rolled Out? I Rollout? I Required? I Required? I
~--------~-+-------------+----------------+------------+----------i o no no no no

1 no no no yes
2 no no yes no
3 no no yes yes
4 no yes no no
5 no yes no yes
6 no yes yes no
7 no yes yes yes
8 yes no no no
9 yes no no yes
A yes no yes no
B yes no yes yes
C yes yes no no
D yes yes no yes
E yes yes yes no
F yes yes yes yes

----------~-------------~----------------~------------~----------

pp -- two numeric characters from 00 to 14 indicating the default
priority for jobs read from this input stream. . When no
priority is specified in the JOB statement" this default
priority is assigned to the job.

ttt -- three numeric characters indicating the default for the
maximum time (in minutes> that each job step may run.

000 -- three numberic characters indicating the default for the
primary number of tracks assigned for SYSOUT data sets. This
primary allocation should be made sUfficient for most of your
needs, so that secondary allocation will not usually be
needed.

mmm -- three numeric characters indicating the default for the
secondary number of tracks assigned for SYSOUT data sets.

iii -- three numeric characters under 255 indicating the
dispatching priority of this reader while it is proc~ssing JCL
statements.

ccc -- three numeric characters indicating the default for the
region size (specified as a number of 1024-byte blocks>
assigned to job steps read from this input stream.

r -- a numeric character from 0 to 3 that ordinarily specifies the
disposition of commands read from this input stream. However,
since the automatic SYSIN batcher handles all commands in the
input stream, this field will have no effect on the
reader/interpreter though it must be present.

system Reader and Writer Cataloged Procedures 185

I -- a numeric character 0 or 1 which specifies the bypass label
processing options. 0 signifies that the BLP parameter in the
label field of a DD statement is to be ignored. The label
parameter is processed as NL. 1 signifies that BLP is not to
be ignored. The label parameter is processed as it appears.

ssssssss -- eight alphameric characters specifying the default
device for SYSOUT. This becomes the UNIT subparameter in the
DD statement that defines SYSOUT (if the UNIT field is omitte~
from the DO statement). If the designation is less than eight
characters, the ssssssss field must be padded to the right
with blanks.

Note: This default device can be specified by its address,
group, or type. However, the UNIT=type form may cause all
units of that type to be used for system output, since the
device allocation program spreads the data sets among all
candidate devices. To preserve some devices for private
volumes, you should define a UNIT group which is a subset of
the available direct access devices. You may specify the nam~
SYSOUT as the defa ul t unit name for the system output d'ata
sets if it was specified at system generation time; when this
default is used, a unit count of 1 is implied. UNITNAME
SYSOUT is fully describes in the System Generation
publication.

e -- a numeric character from 0 to 3 that ordinarily specifies the
disposition of commands read from this input stream. The
SYSIN batcher, if e is:

0 executes the command.
1 displays the command (via a WTO macro instruction) , an::I

executes it.
2 displays the command (via a WTOR macro instruction), but

does not execute it until advised by the operator.
3 ignores the command (treated as no operation).

jj -- two numeric characters which indicate the number of jobs to
be read by the SYSIN batcher before control is to be passed to
the reader/interpreter for interpreting the job control
language and enqueueing the jobs onto the job input queue for
execution.

aa -- the nurr~er of logical tracks on the SYS1.SYSJOBQE which can
be used by the SYSIN batcher for later interpretation. The
Storage Estimates publication contains information on
estimating SYS1.SYSJOBQE work space.

dddddddd -- the unit type or name of the direct access device where
the SYSIN batcher is to temporarily store all SYSIN data.
This must be the same as that indicated in the IEFDATA UNIr
parameter.

The OD statements are the same as those described for the standard
reader/interpreter with the exceptions noted in the following text.

IEFRDER (DO. statement for the input stream)
The parameter requirements are the same as those for the
reader/interpreter except for the DCB parameter. This parameter
specifies the characteristics of the input stream and the buffers.

186 OS System programmer's Guide (Release 17)

If the BLKSIZE and BUFL subparameters are not specified, an 80-byte
value is assigned to each. LRECL need not be specified because
fixed length 80-byte records are the only input accepted by the ASB
reader. Other subparameter fields may be specified as needed;
otherwise, the QSAM default attributes are assigned as for the
reader/interpreter.

IEFDATA (DO statement for the CPP data set)
If the BLKSIZE and BUFL subparameters are not specified, an 80-byte
value is assigned to each. LRECL need not be specified because
fixed length 80-byte records are the only input accepted by the ASB
reader. The BLKSIZE and BUFNO parameters may be overridden by
specifying them on a 00* or DO OA'rA statement in the reader input
stream. However, the BLKSIZE and BUFNO values on the IEFOArA
statement are always used as upper limits. Thus, if the overriding
statements exceed these limits, the IEFDATA values are used. In
addition, the ASB reader always uses one buffer for IEFDATA.
Therefore, the BUFNO value specified applies only as a default.

System Reader and writer Cataloged Procedures 187

SYSIN and SYS,OUT Data Blockiing

Significant performance advantages can be gained by blocking of SYSIN
and SYSOUT data. Blocking reduces interference on the devices
containing the intermediate data, and improves direct access space use.
The IBM-supplied reader procedures provide three levels of SYSIN
blocking; you should review the blocking provided by the cataloged
procedures of the various processors. Figure 8 shows the data blocking
that is accepted by processors operating under MVT and ME'T
configurations.

Blocking is obtained by including in the appropriate DD statement DCB
information in the general form

DCB=(RECFM=x,LRECL=x,BLKSIZE=x)

The various programmer's guides should be consulted to determine
options that need not be specified in individual cases. LRECL must be
specified for the PL/I and FORTRAN H SYSLIN DO cards, and the COBOLF
SYSPUNCH DD card, when these files are blocked. Assembler F, COBOL F,
and FORTRAN G and H are effectively unlimited. Sort is limited by
assembled-in values. The utilities and RPG are limited by assembled-in
values of LRECL but may have a blocking factor other than 1. SYSIN and
SYSOUT for the FORTRAN E compiler cannot be blocked through the system
input reader an~ output writer, although the SYSOUT DD cards must
include DCB=BLKSIZE=121.

When you institute data blocking, you must consider the following
variables:

SIZE option
REGION values
MINPART value
Default REGION value provided by the reader procedure

The FORTRAN H SIZE parameter is independent of blocking and buffering
con.siderations, although the REGION value must be 8K larger than the
SIZE value.

Notes to Figure 8:
(Data Blocking Accepted by Processors under MVT and MFT)

For compile-load-go cases, only the compile step must include
complete SYSIN (SYSGO) DCB specifications.

F=Fixed, FA=Fixed, USASI control characters, FB=Fixed blocked,
FBA=Fixed blocked, USASI control characters, FBM=Fixed blocked, machine
control characters, VBA=Variable blocked, USASI control characters,
FT=Full track, U=Undefined.

Region and partition sizes must be adequate to accommodate the
specified blocking. The user should consult the individual programmer
guides.

188 OS System Progra~ner's Guide (Release 17)

r--,
I LRECL I
I RECFM I
I BLKSIZE \

r-------------------t--------T--------T---------T----------------------~
I I I I SYSIN I SYSLIN I
\ Processor ISYSPRINTISYSPUNCHI (IEFDATA)I(~3200) I
~-------------------t--------+--------+---------t----------------------1
IAssembler F 1121 180 180 180 I
I IFBM IFB IFB IFB I
I I FT I FT I FT I Fr I
~--~----------------t--------+--------t---------t----------------------1
I COBOL F 1121 180 180 18 0 I
I I FBA I FB I FB I FB I
I I FT I FT I FT I FT I
~-------------------+--------+--------+---------t----------------------1
IFORTRAN E 1121 180 180 180 I
I (~ith PRFRM option)IFM IF IFB IFB I
I 1121 180 1FT 1FT I
~-------------------+--------+--------+---------t----------------------~
IFORTRAN G 1120 180 180 180 I
I IFBA IFB IFB IFB I
I I FT I FT I FT I FT I
~--~----------------+--------+--------+---------t----------------------1
I FORTRAN H 1137 I 80 180 180 I
I I VBA I FB I FB I FB I
I I FT I FT I FT I FT I
~-------------------t--------+--------+---------t----------------------~
I PL/ I F 1125 I 80 I 80 I 80 I
I I VBA I FB I FB I FB I
I I FT I FT I FT I FT I
~--~----------------+--------+--------+---------+----------------------1
I Linkage Editor 1121 I I 180 I
I I FM I I IF, FS I
IE15,E18 1121 I I 180 I
~-------------------+--------+--------+---------+----------------------~
ILinkage Editor 1121 I I 180 I
IF44 IFM,FBM I I IF,FS,FB,FBS I
I 1605 I I 1400 I
~-------------------+--------+--------+---------t----------------------1
ILinkage Editor 1121 I I 180 I
IF88,F128 IFM,FBM I I IF,FS,FB,FBS I
I I FT~4840 I I 13200 I
~--~----------------+--------+--------+---------+----------------------~
I Sort I I I 80 I I
I IU I IFB I I
I 1120 I I FT I I
~--~----------------t--------+--------+---------+----------------------~
I RPG 1121 180 180 180 I
I I FA I F I FB I F I
I 1121 180 1FT 180 I
~~------------------+--------+--------+---------+----------------------~
IUtilities 1121 I 180 I I
I I FBA I NA I FB I I
I 1FT 11FT I I
L_~~-----~----------~--------~--------~---------~------------r---------J
Figure 8. Data Blocking Accepted by Processors under MVT and MFT

System Reade~ and writer Cataloged Procedures 189

Blocking the Procedure Library

You may, in some cases, improve the use of direct access space and gain
performance advantages by blocking the procedure library. It may be
blocked at system generation or subsequently by using the operating
system utilities. Block size must be a multiple of 80. Increased
buffer size necessary for a blocked procedure library must be provided
for in the region parameter of the reader procedures for MFT and MVT.
The region size must be increased by the block size rounded to the next
higher multiple of 2K. The PCP scheduler correspondingly requires more
storage at each of its design levels. .

In cases where the region size has been increased for blocked
SYSIN/SYSOUT in excess of that actually required (due to rounding) and
the excess is greater than the block size for the procedure library, a
further increase in region size may not be necessary for processing
blocked records from the procedure library.

The following example shows the control statements needed to block
the procedure library using the IEBCOPY and IEHPROGM utility programs.
step Cl of job BLOCK copies the procedure library and blocks it to 400.
It deletes the old copy and catalogs the new copy under the name of
LIBCOPY. step Rl renames the procedure library to SYS1.PROCLIB and
catalogs it under that name.

r--,
IIIBLOCK JOB ACCT,D82,MSGLEVEL=1 I
I I
I//Cl EXEC PGM=IEBCOPY I
I I
IllSYSUTl DO DSNAME=SYS1.PROCLIB,UNIT=2311,DISP=(OLD,DELETE,KEEP) I
I I
IIISYSUT2 DO DSNAt-1E=LIBCOPY, UNIT=2311, VOLUME=SER=111111, XI
I I
// DISP=(NEW,CATLG,DELE·rE) "DCB= (RECFM=FB,LRECL=80, X

1/ BLKSIZE=400) JSPACE= (TRK, (50,1,10»

/ISYSPRINT DD. SYSOUT=A

IISYSIN DO OUML\1Y

/IRl EXEC PGM=IEHPROGM

IIDD1 DD UNIT=2311,VOLUME=SER=111111,OISP=OLD

//SYSPRINT DD SYSOUT=A

/ISYSIN DD *
RENAME DSNAME=LIBCOPY,VOL=2311=111111,NEWNAME=SYS1.PROCLIB

CATLG DSNAME=SYS1.PROCLIB,VOL=2311=111111

1/* l ___ _

190 OS System programmer's Guide (Release 17)

Writing Rollout/Rollin
Installation Appendages

This chapter explains how to write
rollout/rollin appendages for MVT
configurations of the operating system and
how to insert them into the operating
system before or after system generation.
The four exits to user-written appendages
and their functions are explained. The
chapter also presents sample coding for an
appendage.

Additional information on insertion of
these appendages at system generation is
contained in the publication IBM System 360
Operatin~Eem: ~stem Generation, Form
C28-6554.

The publication IBM system 360 OperatinR
System: Job Control Language, Form
C25-6539 explains how to indicate that a
job step may be rolled out or may cause
rollout of another job step.

Writing Rollout/Rollin Installation Appendages 191

Writing Rollout/Rollin Installation Appendages

The rollout/rollin feature of IBM Systeml360 Operating System is used
with MVT configurations as an aid to main storage management.
Rollout/rollin allows the temporary, dynamic expansion of your job step
beyond its originally specified region. when your job step needs more
space, rollout/rollin attempts to obtain unassigned storage for its use.
If there is no such unassigned storage, another job step is rolled out
-- transferred to auxiliary storage (IBM 2301, 2311, 2314 or 2321 -- so
that its region may be used by your job step. When released by your job
step., this additional storage is again available, either as unassigned
storage, if that was its source, or to receive the job step to be
transferred back into main storage (rolled in). (Note: Teleprocessing
jobs which use the Autopoll option should not be marked eligible for
rollout. A rolled-out job which is using the Autopoll option cannot be
rest.a.rted properly.)

During the course of 'normal rollout processing, exits are taken to
installation-written routines, so that you can dynamically control
various aspects of the rollout function. The routines you write must be
serially reusable; they will reside as part of the resident nucleus and
will be entered by a branch entry. IBM has supplied a dummy module
which resolves the appendage exits during system generation.

A copy of the IBM supplied dummy user appendage module, IEAQRAPG, in
symbolic form will reside in SYS1.SAMPLIB. You may use this as a basic
module in which to incorporate your code for one or more appendages.
You may extract the symbolic deck for inclusion into one of your own
symbolic libraries, or you may enter your changes directly onto the
module in SYS1.SAMPLIB through the use of IEBUPDTE. To replace the
dummy module before system generation" the object module which results
from the assembly of the updated appendage routine should be link edited
into the SYS1.CI505. To replace the assembled dummy appendage module
after system generation, you should link edit your new appendage module
as a CSECT replacement in IEANUC01.

It may be necessary for the appendages to address the jobname;
however, unless the job has issued an ATTACH, SYSINIT will appear in the
jobname, and the actual jobname will appear in the stepname.' Therefore,
an appendage checking for a specific jobname should also check for
SYSINITi if it is encountered, the appendage should further check the
stepname for the actual jobname.

There are four installation exits; their functions and the linkage to
them are discussed in the following paragraphs.

Linkage to User Appendages

1. Register 15 contains the base address of the routine.

2. Register 14 contains the return address.

3. Register 13 contains the address of an 18-word save area in which
you must save any registers that you will use. You must restore
registers before exiting.

4. Register 1 contains the address of the TCB for the task that
invoked rollout. (Exception: on entry to Appendage IV, register 1
contains the address of the PQE for the region selected for
rollout.)

192 as System Programmer's Guide (Release 17)

5. Register 0 contains the address of a three-fullword area. rhe
first two bytes of the first word contain the number of rollouts
no~ in effect. The third and fourth bytes of the first word
contain the number of requestors now queued for rollout. The
rollout queue is ordered according to dispatching priority. The
second word contains the address of the queue origin for queued
rollout requests (IhAROQUE). The third word is the address of the
parameter list for the task that invoked rollout. The first worj
of the two-word parameter list contains the address of the TCB for
the task that invoked rollout" and the second word contains a
hexadecimal number which represents the length, in bytes, of the
originally requested main storage area.

APPENDAGE I: IEAQAPGl

The exit to Appendage I is taken when the current request for additional
storage has invoked rollout, and at least one other job step has alre~jy
invoked rollout. You can determine" using your own criteria" whethe:r- to
override the normal rollout procedure of allowing only one job step to
invoke rollout at any given time. If you do allow multiple (successive)
rollouts, you are responsible for preventing system interlocks such as
occur if each of two job steps needed two-thirds of main storage at the
same time. (Your obvious escape from this situation would be to
arbitrarily cancel one of the steps.) If you do not elect to allow
multiple rollouts" the requesting task is placed upon the queue of tasks
that have requested and are waiting for rollout. From the linkage .
information. passed in the registers, you must decide whether or not to
make an immediate attempt at rollout for the requesting step. If you do
not desire an immediate attempt at rollout, you should return the TCE
address passed in register 1 without change. If you do desire an
immediate attempt at rollout, you should return the address of the
requesting task in complement form. If you use the IBM-supplied
Appendage I, your request will be queued. and no multiple rollout will
occur.

APPENDAGE II: IEAQAPG2

The Appendage II exit is taken whenever neither enough free space nor a
rolloutable job step of lower dispatching priority than the job step
that invoked rollout exists. No attempt is made to find a higher
dispatching priority step to rollout. You have the option of
requesting that the rollout function attempt to find a job step of
high€r dispatching priority that can be rolled out.

If you do not want to attempt to find a higher dispatching priority
step to rollout" return the address of the requesting task without
change. If you do desire the higher dispatching priority pass, return
the address in complement form.

APPENDAGE III: IEAQAPG3

The exit to Appendage III is taken after the rollout function has
determined, through the use of both its own and (optionally) your
criteria, that a job step suitable for rollout does not exist. Through
this appendage you can select either the step which requested the
unavailable storage or any other job step in the system for abnormal
termination (ABEND). If you do not select a job step for ABEND (or if
you use the IBM-supplied Appendage III), the requestor is placed on the
rollout queue. If a job step other than the requestor is selected by
the appendage, ABEND of the selected job step is initialized, and the
requestor is queued for rollout.

Writing Rollout/Rollin Installation Appendages 193

If you do not desire to initiate an ABEND, you must set register 1 to
zero before exiting. The requestor is then queued for rollout. If you
do desire an ABEND, you must return in register 1 the address of the job
step TCB for the task to be ABENDed. (The address you return will be
checked to ensure that it is a job step TCB. If it is not, it is
ignored and the requestor is queued for rollout.) If the address is
valid and is not the address of the requesting step, ABEND is initiated
and the requestor is queued for rollout. If it is the address of the
requesting step, ABEND is initiated and the requestor's IQE is returned
to the available queue. If you use the IBM-supplied Appendage III, no
ABEND occurs.

APPENDAGE IV: IEAQAPG4

The Appendage IV exit is taken each time a job step has been selected as
a candidate for rollout. This appendage gives you the opportunity to
apply your criteria to each job step that the rollout function has found
to be eligible for rollout. Job steps are considered for rollout
eligibility beginning with the job step of lowest dispatching priority,
and continuing upward until all eligible job steps with a lower
dispatching priority (than that of the requesting job step) have been
presented to your appendage. If you have supplied an appendage which
permits job steps of higher dispatching priority to be eligible for
rollout" these w:ill also be presented to your appendage beginning with
the job step of next highest dispatching priority (than that of the
requesting step), and continuing upward until all eligible job steps
with a higher dispatching priority have been presented.

The process of presenting job steps to your appendage for approval
continues either until a job step is approved for rollout by the
app.endage, or until all eligible job steps have been examined and
disapproved by the appendage.

SAMPLE CODING OF' APPENDAGES

The following pages contain sample coding illustrating the linkage to
the appendages. In the example given., an Appendage II which approves
the rollout of job steps with a higher priority than the requesting job
step is used to illustrate appendage coding.

GENERAL FLOW OF ROLLOUT PROCESSING

The flowchart in Figure 9 depicts the overall flow of control through
the various user appendages and the Rollout module.

194 OS System programmer's Guide (Release 17)

Set TCB Scon to Start
at Top of TCB Queue
and Stop at Requestor's
JSTCB

Figure 9.

A Request for Rollout from
Top of the Rollout Queue

IEAQAPG4

Criterion Selection
Appendoge

General Flow of Rollout/Rollin Processing

Successful
Rollout
Performed

SVC
Exit

Exit RO/RJ Module
via Task Switch

writing Rollout/Rollin Installation Appendages 195

SOURCE STATEMENT

IEAQAPG2 CSECT
r--~-----------~---,
ITHIS ROUTINE WILL APPROVE THE ROLLOUT OF JOBSTEPS WITH A HIGHER I
IPRIORITY THAN THE REQUESTING JOBSTEP. IT IS ENTERED FROM USER I
I APPENDAGE - IEAQAPG2 - WHICH IS RESIDENT IN THE NUCLEUS AS PART OF I'HE I
IROLLOUT/ROLLIN CODE. I
I I
lIT WILL WRITE TO THE OPERATOR INDICATING THE FOLLOWING: I
I • ROLLOUT STATUS (NUMBER OF ROLLOUTS IN EFFECT ~ND THE NUMBER OF I
I ROLLOUT REQUESTS QUEUED.) I
I • THE NAME OF THE JOB REQUESTING ROLLOUT. I
I • APPROVAL OF THE REQUEST. I L ___ ~ __ J

R1 EQU 1
R2 EQU 2
R3 EQU 3
R4 EQU 4
R5 EQU 5
RS EQU S
R12 EQU 12
R13 EQU 13
R14 EQU 14

STM R14, R12, 12 (R13)
BALR R12,O
USING *,R12
LR R14.,R13
ST R13,SAVEAREA+4
LA R13,SAVEREA
ST R13,S(R14)
LR R2,0
LR R3,R1
USING TCB,R3
L R4,TIOTA
USING TIOT,R4

GET ADDRESS OF T~SK I/O TABLE

MVC WTLENTER+27(S),JOBNAME
WTLENTER WTO 'IEAQAPG2 ENTERED

USING ROSTATUS,R2
LH RS,INEFFECT
CVD RS I WORK
UNPK WTLEXIT+29(2),WORK

REQUESTS ROLLOUT'

GET NBR OF ROLLOUTS IN EFFECT

LH RS.QUEUED GET NBR OF ROLLOUT REQUESTS QUEUED
CVD. RS , WORK
UNPK WTLEXIT+51(2),WORK
MVC WTLEXIT+74(3),YES

WTLEXIT WTO 'ROLLOUTS IN EFFECT -

SAVEAREA
WORK
YES
ROSTATUS
INEFFECT
QUEUED
TCB

TIOTA
TIOT
JOBNAME

L
LM
LCR
BR
DS
DS
DS
DC
DSECT
DS
DS
DSECT
ORG
DS
DSECT
DS
END

APPROVED -
R13,SAVEAREA+4
R14,R12,12(R13)
R1,R1
R14
OD
lSF
FLS
C' YES'

H
H

*+12
F

FLS

ROLLOUTS QUEUED -

196 OS System Programmer's Guide (Release 17)

REQUEsr

Adding a Universal Character Set
Image to the System Library

This chapter provides a detailed
description of how to add either an IBM UCS
character set image or a user-designed
character set image to the SYS1.SVCLIB.

Before reading this section, you should
be familiar with the information contained
in the publications listed below.

REFERENCE PUBLICATIONS

IBM 2821 Control Unit, Form A24-3312
contains the information necessary to
create a user-designed chain/train.

IBM Systern/360 Operating system,
Supervisor and Data Management Macro
Instructions, Form C28-6647 describes the
SETPRT macro instruction that loads a UCS
image into the UCS buffer.

The IBM System/360 Operating System, Job
Control Language, Form C28-6539 describes
the UCS parameters that may be specified in
a DD statement to load a UCS image into the
UCS buffer at OPEN time.

Adding a Universal Character set Image to the System Library 197

How to Add a ues Image to the System Library

The IBM standard character set images listed in the following table may
be included in the SYS1.SVCLIB at SYSGEN time if a printer with the UCS
feature is specified. (These character set images are described in IB~
2821 Control Unit. Form A24-3312.) The member name on the system
library (SVCLIB) is developed by prefixing the character set code shown
in the table with UCS1 (e.g., UCS1AN or UCS1YN).

r--~-----~---,
IAN alphameric
IBN alphameric
IPCAN alphameric*
IPCHN alphameric*
IPN alphameric (PL1) PL/I
IQNC alphameric (PL1 PL/I - Cornmercial)*
IQN alphameric (PL1 PL/I - Scientific)*
IRN FORTRAN - COBOL - Commercial*
ISN text printing*
ITN text printing
IXN high speed alphanumeric
IYN high speed alphanumeric*
I *preferr.ed character set L __ ~ __ - _______________ _

IBM Standard Character Set Codes

You may add a user-designed character image to the system library or
make an existing image a default image by following these rules.

1. The member name must be the four characters UCS1 followed by a
uniquely assigned character set code which is from 1-4 bytes long.
This character set code may be any valid combination of letters and
numbers according to the rules for ordinary symbols in the
assembler language, except the single letter U or C which are
abbreviations for special conditions recognized by the system.

2. This uniquely assigned character set code must be specified in the
DD card or in the SETPRT macro instruction.

3. The first byte of the load module of a character image must specify
if the image is a default image. A default image must have X'80'
in the first byte. When loaded, the default image is used when you
do not specify a ues parameter in the DD statement. X·OO·
specifies that an image is not to be used as a default.

4. The second byte of the load module of a character image indicates
the number of lines (n) to be printed for the image verification
print-out. This corresponds to the number of times the basic
character set is repeated in the image.

5. Each byte of the next n bytes indicates the number of characters to
be printed on each line.

6. The 240 characters UCS image must follow the previously described
fields. Two apostrophes and two ampersands must be used to
represent an apostrophe or an ampersand respectively that is part
of a character set image specified in a DC statement.

198 OS System Programmer's Guide (Release 17)

As an example to add the image YN to the system library, the
following code may be used.

r--,
//ADDUCS JOB MSGLEVEL=l I
/ /STEP EXEC PROC=ASMFCL, PARM. ASM= 1 l~ODECK, LOAD' , X
// PARM.LKED='LIST,NCAL,NE,OL'
//ASM.SYSIN DD *
UCS1YN CSECT

/*

DC X' 80' (this is a default image)
DC ALl(6) (number of lines to be printed)
DC ALl (39) (39 characters printed on 1st line)
DC ALl(42) (42 characters printed on 2nd line)
DC ALl (39) (39 characters printed on 3rd line)
DC ALl(39) (39 characters printed on 4th line)
DC AL1(42) (42 characters printed on 5th line)
DC ALl(39) (39 characters printed on 6th line)
DC C'1234567890STABCDEFGHIJKLMNOPQRSTUVWXYZ* •• '
DC C'1234567890STABCDEFGHIJKLMNOPQRSTUVWXYZ*,.#-$'
DC C'1234567890STABCDEFGHIJKLMNOPQRSTUVWXYZ*,.'
DC C'1234567890STABCDEFGHIJKU4NOPQRSTUVWXYZ*,.'
DC C' 1234567890STABCDEFGHIJKLlvlNOPQRSTUVWXYZ*, • #-$'
DC C'1234567890STABCDEFGHIJKLMNOPQRSTUVWXYZ*,.'
END

I//LKED.SYSLMOD DD DSNAME=SYS1.SVCLIB(UCS1YN),DISP=OLD L ___ _

Note: Executing the assembler procedure does not actually generate
executable code. The assembler/linkage editor is used as a vehicle to
load the UCS image into the system library.

Adding a Universal Character Set Image to the System Library 199

The Shared Direct Access
Device Option

This chapter describes the Shared Direct
Access Device Option (Shared DASD) of the
System/360 Operating System. It describes
the functions of the option, its operating
environment, and 'volume acceptability.
sections also explain operating procedures
and data set considerations that the
systems programmer must be aware of in
using the option. An appendix to the
chapter describes a procedure for finding
unit control block addresses necessary for
using the RESERVE macro instruction: it
also shows an assembler language subroutine
that issues a RESERVE and can be called by
a higher level language.

IBM System/360 Operating System:
Operator's Guide, Form C28-6540 provides
information on operator responsibility when
the Shared DASD facility is being used in a
system; this should be read before using
the Shared DASD option.

IBM System/360 Operating System:
Concepts and Facilities, Form C28-6535
discusses the purposes of the Shared DASD
facility.

IBM System/360 Operating System:
Storage Estimates, Form C28-6551 provides
information on the storage requirements for
the option.

IBM System/360 Operating system: System
Generation, Form C28-6554 explains how the
option is included in a system.

IBM System/360-2Eerating System:
supervisor and Data Management Macro
Instructions, Form C28-6647 provides
information on the use of the DEQ macro
instruction.

The Shared Direct Access Device Option 201

THE SHARED DASD OPTION

The Shared DASD option allows computing systems to share direct access
storage deviceso Systems can share coromon data and consolidate data
when necessary; no change to existing records, data sets, or volumes is
necessary to use the facility. However, reorganization of volumes may
be desirable to achieve better performance. Briefly, the sharing is
accomplished by a two-channel switch which allows a shared control unit
to be switched between two channels from different systems. (With
certain hardware configurations sharing between a maximum of four
systems is possible.) The switching is controlled by program use of the
RESERVE macro instruction which reserves a shared device or volume for
the use of one system until it is freed by the program's issuing a DE~
macro instruction. During this time the device is under the exclusive
control of the system which issued the RESERVE.

The Shared DASD facility can only be included in a system at system
generation time. This facility is shown diagrammatically in Figure 10.

SYSTEM CONFIGURATION

The Shared DASD option can be used with any combination of PCP, MFT, anj
MVT configurations of the operating system. Identical operating system
configurations are not necessary for systems to share devices unless
they share the system data set SYS1.LINKLIB. The option requires no
additional equipment except the two-channel switch or the IBM 2844
Auxiliary Storage Control unit, which does not require the two-channel
switch. Any of your installation's applications data sets can be
sharedi SYSCTLG can be shared when it does not reside on a systems
residence volume. The following system data sets cannot be shared:

SYS1.SVCLIB
SYS1.NUCLEUS
SYS1.LOGREC
SYS1.SYSLOGX (MVT only)
SYS1.SYSLOGY (MVT only)

DEVICES THAT CAN BE SHARED

SYS1.SYSJOBQE
PASSWORD data set
SYSCTLG (on system residence volume)
SYS1.ROLLOUT
SYS1.ACCT

The following control units and devices are supported by the Shared DASD
option:

1. IBM 2841 Storage Control Unit equipped with two-channel switch -­
IBM 2311 Disk Storage Drive, 2303 Drum Storage, and 2321 Data Cell.

2. IBM 2314 Direct Access Storage Facility equipped with the
two-channel switch -- IBM 2314 Disk Storage Module.

3. IBM 2314 Direct Access Storage Facility combined with the IBM 2844
Auxiliary Storage control -- IBM Disk Storage Module. Device
reservation and release are supported by this combination with or
without the presence of the two-channel switch. Two channels -­
one from System A and one from System B -- may be connected to the
combination. In addition, the two-channel switch may be installed
in either or both of the control units, thus permitting as many as
four systems to share the devices. Only one channel to the device
from each system is permitted.

4. IBM 2820 Control Unit with two-channel switch -- IBM 2301 Drum
Storage.

Alternate channels to a device from anyone system may only be specified
for the IBM 2314 Direct Access Storage Facility.

202 OS System Programmer's Guide (Release 17)

* In multiprogramming systems (MFT, MVT), the RESERVE macro instruction
also serializes use of the same resource between tasks in the system. In a
single task (PCP) system, RESERVE effects device reservation only.

Figure 10. General Shared DASD Environment

~----- The two-channel switch handles
concurrent accesses and device
reservations on a first-come first­
serve basis.

The Shared Direct Access Device Option 203

VOLUME/DEVICE STATUS

The Shared DASD option requires that certain combinations of volume
characteristics and device status be in effect for shared volumes or
devices.. One of the following combinations must be in effect for a
volume or device:

System A

1. permanently resident
2. Reserved
3. Removable
4,. Offline

Systems B,C,D

Permanently resident
Reserved
Offlitle
Removable or reserved

If a volume/device is marked removable on anyone system, the device
must be in off-line status on all other systems. rhe mount
characteristic of a volume and/or device status may be changed on one
system as long as the resulting combination is valid for other systems
sharing the device. No other combination of volume characteristics and
device status is supported or detected if present.

VOLUME HANDLING

Volume handling on the Shared DASD option must be clearly defined since
operator actions on the sharing systems must be performed in parallel.
You should make sure that operators understand the following rules when
the Shared DASD option is in effect:

1. Operators should initiate all shared volume mounting and
dismounting operations. The system will dynamically allocate
devices unless they are in reserved or permanently resident status.
Only the former of the two can be changed by the operator.

2. Mounting and dismounting operations must be done in parallel on all
sharing systems. A VARY OFFLINE must be effected on all systems
before a device may be dismounted.

3. Valid combinations of volume mount characteristics and device
status for· all sharing systems must be maintained. To IPL a
system, a valid combination must be established before device
allocation can proceed. This valid combination is established
either by

a. Specifying mount characteristics of shared devices in PRESRES
(See the chapter "The PRESRES Volume Characteristics List.")

b. Varying all sharable devices off line prior to issuing start
commands and then following parallel mount procedures described
in the chapter "How to Use the Shared DASD Option" in the
Operator's Guide publication.

SHARING APPLICATION DATA SETS

As indicated previously, all application data sets can be shared, but
you must give special consideration to the classification of these data
sets. It is recommended that you classify your shared data sets as read
only or read/write. A read-only data set may be read by all sharing
systems but is never updated by them. A read/write data set may be read
or written -- updated by all sharing systems. Read-only data sets are
not reserved for the duration of their use; read/write data sets must be
reserved for data set protection.

204 OS System Programmer's Guide (Release 17)

If a data set is seldom updated, but is read often, it is wise to
classify it as read only. Minimizing reservation of devices will
minirrdze the interference between systems.

A shared data set may be updated, effecting a device reservation for
the write operation only, if the records being read are independent of
each other. An example of such a data set with independent records is a
private job library. Such a library may be reserved for the write
operation only as long as members are not being deleted.

A system update time should be defined for updates to read-only data
sets. For system update time the operator must vary offline, on all but
one system, the device upon which the data set resides. Then the system
update may be p.erforrned on the system to which that device is dedicated
without any need to reserve the device. Processing of data sets by the
linkage editor and utility programs constitutes update runs -- the data
sets they process are regarded as read/write data sets. You may want to
prepare a routine that will issue a RESERVE macro instruction, invoke
the program to be executed, and issue a DEQ macro instruction after
program execution.

There is no protection for shared data sets across job steps. That
is, the RESERVE and DEQ for a data set must be done within each step
(task); if devices are still reserved at the end of a task, device
release is effected. Therefore, it is possible for one system to
reserve a device and update a data set on that device between the
execution of two steps in the other systems which are using that data
set~ There is no guarantee that a data set will remain unchanged
bet~een e~ecution of steps.

RESERVING DEVICES

The RESERVE macro instruction is used to reserve a device for use by a
particular system; it must be issued by each task needing device
res·ervation. The RESERVE macro instruction protects the issuing task
from interference by other tasks in the system. Each task issuing the
RESERVE macro instruction must also use the DEQ macro instruction to
release the device; two RESERVE instructions for the same resource
without an intervening DEQ will result in an abnormal termination unless
the second one specifies the keyword parameter RET=. (If a restart
occurs when a RESERVE is in effect for devices, the system will not
restore the RESERVE; the user's program must reissue the RESERVE.) Even
if a DEQ is not issued for a particular device, termination routines in
all operating system configurations will release devices reserved by a
terminating tas·k. The sample program described in the System Generation
publication sho,ws the use of the RESERVE and DEQ macro instructions.
(In PCP configurations DEQ is treated as a NOP when used with E~Q;
however, it is not a NOP when used with RESERVE.)

The Set-Must-Complete (SMC> parameter available with the ENQ macro
instruction may also be used with RESERVE; this parameter is discusse1
in the chapter "The Must Complete Function of ENQ/DEQ."

The use of the RESERVE macro instruction is explained below:

[symbol] RESERVE (qnarne address,rname address,[~j,

[rname length), SYSTEMS) [. RET= {~!~:}] ,UCB=pointer address

The Shared Direct Access Device Option 205

qnarne
is' the address in main storage of an eight-character name. Every
task (within the system) issuing RESERVE against the same resource
(data and device) must use the same qname-rname combination to
represent the resource. The qname should not start with SYS.

rnarne address

~J

is the address in main storage of a name used in conjunction with
the qname to represent the resource. The rname can be qualified,
and may be 1 to 255 bytes in length.

specify either exclusive control of the resource (E); or shared
control with other tasks in the system (S). E is the default
condition.

rname length
is the length, in bytes, of rname. If omitted, the assembled
length of rname is used. If zero (0) is specified, the length of
rname must be contained in the first byte of the field designated
by the rname address.

SYSTEMS

RET=

specifies that the resource represented by qname-rname is known
across systems as well as within the system whose task is issuing
RESERVE, i.e,., the resource is shared between systems.

specifies a conditional request for all of the resources named in
the RESERVE macro instruction. If the operand is omitted, the
request is unconditional. The types of conditional requests are as
follows:

TEST

USE

HAVE

tests the availability status of the resources but does not
request control of the resources.

specifies that control of the resources be assigned to the
active task only if the resources are immediately available.
If. any of the resources are not available, the active task is
not p~aced in a wait condition.

specifies that control of the resources is requested only if a
r,equest has not been made previously for the same task.

Retur~ codes are provided by the control program only if RET=TEST,
RET=USE, or RET=HAVE is designated; otherwise, return of the task
to the active condition indicates that control of the resource has
been assigned to the task. Return codes are identical to those
supplied by the ENQ macro instruction (see the supervisor and Data
Management Macro Instructions publication).

UCB=pointer address
This keyword specifies either:

1. The address of a full word that contains the address of the Unit
Control Block (UCB) for the device to be reserved.

2. A general register (2-12) that points to a fullword containing
the address of the unit control block for the device to be
reserved.

206 OS System Programmer's Guide (Release 17)

The EXTRACT macro instruction is used to obtain the address of the task
input/output table (TIOT) from which the UCB address can be obtained.
The Appendix to this chapter explains some procedures for finding the
UCB address.

To use the Shared DASD option in higher level languages, you may wish
to write an assembler language subroutine to issue the RESERVE macro
instruction. You should pass to this subroutine the following
information: ddname, qname address, rname address, rname length, and
RET parameter.

RELEASING DEVICES

The DEQ macro instruction is used in conjunction with RESERVE just as it
is used with· ENQ. It must describe the same resource and its scope must
be stated as SYSTEMS; however, the UCB=pointer address parameter is not
required. If the DEQ macro instruction is not issued by a task which
has previously reserved a device, the system will free the device when
the task is terminated.

PREVENTING INTERLOCKS

Certain precaution must be taken to avoid system interlocks when the
RESERVE macro instruction is used. The more often device reservations
occur in each sharing system, the greater the chance of interlocks
occurring. Allowing each task to reserve only one device minimizes the
exposure to interlock. The system cannot detect interlocks caused by
program use of the RESERVE macro instruction and enabled wait states
will occur on the system(s).

VOLUME ASSIGNMENT

Since exclusive control is by device, not by data set, you must consi1er
which data sets reside on the same volume. In this environment it is
quite possible for two tasks in two different systems -- processing four
different data sets on two shared volumes -- to become interlocked. For
example, data sets X1 and X2 reside on device X and data sets Y1 and Y2
reside on device Y. Task A in system A reserves device X in order to
use data set X1 i task B in system B reserves device Y in order to use
data set Y1 • Now task A in system A tries to reserve device Y in order
to use data set Y2 and task B in system B tries to reserve device X in
order to use data set X2 • Neither can ever regain control and thus,
will never complete normally. In a PCP or MFT environment, or in an ~VT
environment without job step timing, the job(s) should be cancelea. In
an MVT environment in which job step time limits are specified, the
task(s) in the interlock would be abnormally terminated when the time
limit expires. Moreover, an interlock could mushroom, encompassing new
tasks as these tasks try to reserve the devices involved in the existing
interlock.

The Shared Direct Access Device Option 207

Appendix

This appendix provides some procedures for finding the UCB address for
use with the RESERVE macro instruction; it also shows a sample assembler
language subroutine which issues the RESERVE and DEQ macro instructions
and can be called by higher level languages.

PROVIDING THE UNIT CONTROL BLOCK ADDRESS TO RESERVE

The EXTRACT macro instruction is used to obtain information from the
Task Control Block (TCB). The address of the TIOT can be obtained from
the TCB in response to an EXTRACT in all configurations of the operating
system. Prior to issuing an EXTRACT macro instruction, the user sets up
an answer ar€a in main storage which is to receive the requested
information. One full word is required for each item to be provided by
the control program. If the user wishes to obtain the TIOT address he
must issue the following form of the macro instruction:

EXTRACT answer-area address, FIELDS=TIOT

The address of the TIOT is then returned by the control program,
right-adjusted l in the full word answer area.

The TIOT is constructed by job management routines and resides in
mai~ storage during step execution. The TIOT consists of one or more DO
entries, each of which represents a data set defined by a DD statement
for the jobstep. Each entry includes the DD name. Associated with each
DD entry is the UCB address of the associated device. In order to fin~
the UCB address, the user must locate the DD entry in the TIOT
corresponding to the DD name of the data set for which he intends to
issue the RESERVE macro instruction.

The UCB address may also be obtained via the DEB and DCB. The Data
Con:trol Block (DCB) is the block within which data pertinent to .the
current use of the data set is stored. The address of the Data Extent
Block (DEB) is contained at offset 44 decimal after the DCB has been
opened. The DEB contains an extension of the information in the DCB.
Each DEB is associated with a DCB, and the two point to each other.

The DEB contains information concerning the physical characteristics
of the data set and other information that is used by the control
program. A device dependent section for each extent is included as part
of the DEB. Each such extent entry contains the UCB address of the
device to which (that portion of) the data set has been allocated. In
ord.er to find the UCB address the user must locate the extent entry in
the DEB for which he intends to issue the RESERVE macro instruction.
(In disk addresses of the form MBBCCHHR, the tw1 indicates the extent
number starting with 0.)

Followi~g are suggested procedures for finding the UCB address of the
device to be reserved.

If the data set is a multi-volume sequential data set, it must be
assumed that al1 jobs will process that data set in a sequential manner
starting with the first volume of the data set. In this case, by
issuing a RESERVE for the first volume only, the user effectively
reserves all: the volumes of the data set.

208 OS System Programmer's Guide (Release 17)

For data sets using the queued access methods in the update mode or
for unopened data sets:

1. Extract the TIOTfrom the TCB.

2. Search the TIOT for the DO name associated with the shared data
set.

3. Add 16 to the address of the DD entry found in step 2. This
results in a pointer to the UCB address in the TIOT.

4. Issue the RESERVE rnacro specifying the address obtained in.step 3
as the operand of the UCB keyword.

For opened data sets:

1. Load the DEB address from the DCB field labeled DCBDEBAD.

2. Load the address of the field labeled DEBDVMOD in the DEB obtained
in step 1. The result is a pointer to the UCB address in the DEB.

3. Issue the RESERVE macro specifying the address obtained in step 2
as the operand of the UCB keyword.

For BDAM data sets the user may reserve the device at any point in his
processing in the following manner:

1. Open the data set successfully.

2. convert the block address used in the READ/WRITE macro to an actual
device address of the form MBBCCHHR. (A conversion method is
discussed in the XDAP macro instruction section.)

3. Load the DEB address from the DCB field labeled DCBDEBAD.

4. Load the address of the field labeled DEBDVMOD in the DEB.

5. Multiply the nMn of the direct access address by 16.

6. The sum of steps 4 and 5 is the address of the correct extent entry
in the DEB for the next READ/WRITE operation. The sum is also a
pointer; to the UCB address for this extent.

7. Issue the RESERVE macro specifying the address obtained in step 6
as the operand of the UCB keyword.

If the data set is an ISAM data set, QISAM in the load mode should be
used only at system update time. Further, if it is a multi-volume ISAM
data set, it must be assumed that all jobs will access the data set
through the highest level index. The indexes should never reside in
mai~ storage when the data set is being shared. In this case, by
issuing a RESERVE macro for the volume on which the highest level index
resides, the user effectively reserves the volumes on which the prime
data and independent overflow areas reside. The following procedures
may be used to achieve this:

1. Open the data set successfully.

2. Locate the actual device address (MBBCCHH) of the highest level
index. This address can be obtained from the DCB.

3. Load the DEB address from the DCB field labeled DCBDEBAD.

The Shared Direct Access Device Option 209

4. Load the address of the field labeled DEBDVMOD in the DEB.

5. Multiply the "M" of the actual device address located in step 2 by
16.

6. The sum of steps 4 and 5 is the address of the correct extent entry
in the DEB for the highest level index not in core. This extent
entry is also a pointer to the UCB address.

7. Issue the RESERVE macro specifying the address obtained in step 6
as the operand of the UCB keyword.

RES AND DEQ SUBROUTINES

The following assembler language subroutine may be used by FORTRAN,
COBOL, or assembler language programs to issue the RESERVE and DE~ macro
instructions. Parameters that must be passed to the RESDEQ routine if
the RESERVE macro instruction is to be issued are

DDNAME

QNAME

the eight character name of the DDCARD for the device that you wish
to reserve

an eight character name

RNAME LENGTH
one byte (a binary integer) that contains the RNru~E length value

RNAME
a name from 1 to 255 characters in length

The DEQ macro instruction does not require the UCB=pointer address as a
parameter. If the DEQ macro is to be issued, a full word of binary
~eros must be placed in the DDNAME field before control is passed.

RESDEQ CSECT
SAVE (14,12),T SAVE REGISTERS
BALR 2, 0 SET UP ADDRESS ABILITY
USING *,2
ST 13, SAVE +4
LA 11, SAVE ADDRESS OF MY SAVE AREA IS STORED
ST 11,,8(13) IN THIRD WORD OF CALLER'S SAVE AREA
LR 13,11 ADDRESS OF MY SAVE AREA
LR 91 1 ADDRESS OF PARAMETER LIST
L 3,0(9) DDNAME PARAMETER OR WORD OF ZEROS
CLC 0 (4, 3) " =F • O' WORD OF ZEROS IF DEQ IS REQUESTED
BE WANTDEQ

*PROCESS FOR DETERMINING THE UCB ADDRESS USING THE TIOT
XR 11,11 REGISTER USED FOR DO ENTRY
EXTRACT ADDRTIOT,FIELDS=TIOT
L 7,ADDRTIOT ADDRESS OF TASK I/O TABLE
LA 7,24(7) ADDRESS OF FIRST DD ENTRY

NEXTDD CLC 0(8,3),4(7) COMPARE DDNAMES
BE FINDUCB
IC 11,0(7) LENGTH OF DD ENTRY
LA 7,.0(7,11) ADDRESS OF NEXT DO ENTRY
CLC 0(4,7),,=F'0' CHECK FOR END OF TIOT
BNE NEXTDD
ABEND. 200, DUMP DDNAME IS NOT IN TIOT, ERROR

210 OS System Programmer ,. s Guide (Release 17)

FINDUCB LA S,16(7) ADDRESS OF WORD IN TIOT THAT
* CONTAINS ADDRESS OF UCB
*PROCESS FOR DETERMINING THE QNAME REQUESTED
WANTDEQ L 7,4(9) ADDRESS OF QNAME

MVC QNAME(S),O(7) MOVE IN QNAME
*PROCESS FOR DETERMINING THE RNAME AND THE LENGTH OF RNAME

*
*

ISSUEDEQ
RETURN

MOVERNAM
ADDRTIOT
SAVE
QNAME
RNAME
RNLEN

L 7,8(9) ADDRESS OF RNAME LENGTH
MVC RNLEN+3(l),O(7) MOVE BYTE CONTAINING LENGTH
L 7,RNLEN
STC 7,RNAME

L 6,12(9)
BCTR 7,0
EX 7, MOVERNAM
CLC O(4,3),=F'0'
BE ISSUEDEQ

STORE LENGTH OF RNAME IN THE
FIRST BYTE OF RNAME PARAMETER
FOR RES/DEQ MACROS
ADDRESS OF RNAME REQUESTED
SUBTRACT ONE FROM RNAME LENGTH

MOVE IN RNAlvlE

RESERVE (QNAME,RNAME,E,O,SYSTEMS),UCB=(S)
B RETURN
DEQ (QNAME,RNAME,O,SYSTEMS)
L 13" SAVE+4 RESTORE REGISTERS AND RETUkN
RETURN (14,12),T
BCR 15,14
MVC RNAME+1(0),O(6)
DC F' 0'
DS lSF
DS 2F
DS CL256
DC F' 0'
END

The Shared Direct Access Device Option 211

The Time Slicing Facility

This chapter describes the time slicing
facility, a system generation option
available with the MFr and MVT control
programs of the IBM System/360 Operating
syste~. Use of this facility allows the
group1ng of tasks of equal priority or
partitions into a time-slice group so that
each task within the group is limited to a
fixed interval of CPU time each time it is
given control. The facility is included in
the system mainly to provide a method of
controlling response time of a task.

Included in the chapter are a
description of the facility, how it fits
into the system, and the applications for
which it is most effective. Other sections
describe the prerequisite actions that must
be taken, the use of the time slicing
facility, and its operating
characteristics.

IBM System/360 Operating system:
§upervisor and Data Management Services,
Form C28-6646 discusses task priority
information that the system programmer must
be aware of for effective use of this
facility; it also provides a formula to
derive dispatching priority from the job
priority.

IBM System/360 Operating System: System
Generation, Form C28-6554 describes the
procedures to follow to include the
facility in your system.

IBM System/360 Operating System: Job
Control Language, Form C28-6539 discusses
the CLASS and PRTY parameters of the JOB
statement, which are used to invoke the
facility.

IBM System/360 Operating System:
Supervisor and Data Management Macro
Instructions, Form C28-6647 discusses the
ATTACH and CHAP macro instructions which
can be used in MVT to change from one
time~slice priority group to anotheri or
from a task which is not a member of a
time-slice group to one that is.

IBM System/360 Operating System:
Operator's Guide, Form C28-6540 provides
info~mation on the messages and responses
necessary to alter system generation
specifications at system initialization
time and, witp MFT, at DEFINE time.

The Time Slicing Facility 213

The Time Slicing Facility

The time slicing facility allows the user to establish a group of tasks
(called the time-slice group) or partitions that are to share the use of
the CPU, each f.or the same, fixed interval of time. When a member of
the time-slice group has been active for the fixed interval of time, it
is interrupted and control is given to another member of the group,
which will, in turn., have control of the CPU for the same length of
time. In this way, all member tasks are given an equal slice of CPU
time, and no task or partition within the group can monopolize the CPU.
In MVT only tasks in the group are time sliced, and they are time sliced
only when the priority level of the group is the highest priority level
that has a ready task. Dispatching of tasks continues within the group
until

1. All tasks are in a waiting state, or

2. A task of higher priority than the one assigned to the group
becomes' ready.

In MFT, only partitions that are assigned to the time-slice group
will be time-sliced, and they are time sliced only when the first
partition in the group is the highest-priority ready task. Dispatching
of the partitions continues within the group until all the partitions
are in a waiting state. or until a partition with a higher priority is
in a ready state.

The group of tasks to be time sliced (selected by priority or
partition range) and the length of the time slice are specified by the
installation at system generation time. This can be modified in MVT at
system initialization time and in MFT through the DEFINE command. Any
task or partition in the system that is not defined within the
time-slice group is dispatched under the current priority structure;
that is, the task or partition is dispatched only when it is the highest
priority ready task or partition on the TCB queue.

SYSTEM CONFIGURATION AND SYSTEM RELATIONSHIPS

The time slicing facility can be used with any MFT or MVT configuration
of the IBM System/360 Operating System. The time slicing facility is
especially useful in a graphics environment or in any application of a
conversational nature where concurrent tasks may involve conversation
between the user and the problem program through a terminal.
Establishing a time-slice group within this environment enables those
tasks to be performed with a uniform response time.

PREREQUISITE ACTIONS

Time slicing is specified in the TMSLICE parameter of the CTRLPROG
system generation macro instruction. The group(s) of tasks or
partitions to be time sliced and the length of the time slice are
specified in this parameter.

In MVT, a job priority defines the tasks that are to be time sliced.
That is, all tasks that are executed in the system at the specified
priority are to be time sliced. For example, time slice groups for MVT
might be specified during system generation, as follows:

CTRLPROG TYPE=MVT
TMSLICE=(13,SLC-100,7,SLC-500)

214 OS System Programmer's Guide (Release 17)

In this example, two time-slice groups are defined. All jobs runnin~ at
job priority 13 will be members of a time-slice group and will each have
a slice of 100 milliseconds. All jobs running at job priority 7 will be
members of a time-slice group and will each have a slice of 500
mill:iseconds. (See the section "Using the Time Slicing Facility" for a
discussion of job and dispatChing priority.)

In MFT" a group of contiguous partitions defines the time-slice
group. All tasks scheduled into those partitions are time sliced and
are treated as though they had the same dispatching priority. In MFT,
only ~ group of tasks can be specified to be time sliced. For
example., a time-slice group for MFT might be specified during system
generation" as follows:

CTRLPROG TYPE=MFT
TMSLICE=(P4-P6,SLC-256)

In this example, partitions P4, P5, and P6 make up the time-slice grqup
and are assigned a time slice of 256 milliseconds for each and every~
task executing in these partitions.

System Initialization Time

If time slicing has been selected during system generation, the group
(or group~ in MVT) of tasks to be time sliced and the length of the time
slice can be modified during system initialization. In MVT, the
modifications are limited by the number of groups specified during
system generation. The values specified at system initialization
supersede all those specified during system generation. (NOTE: If the
operator communication is desired during NIP, the parameter OPTIONS=
COMM must be specified in the SUPRVSOR system generation macro
instruction.)

In MFT, modifications to the time-slicing specifications are made in
much the same way as other partition modifications. At system
initialization, changes can be indicated by replying 'YES' to the
message: 'IEE801D CHANGE PARTITIONS?'. After system initialization,
changes can be indicated through the DEFINE command. In both cases,
changes are actually made by responding to the message: IIEE002A ENTER
DEFINITIONS' or IEE803A CONTINUE DEFINITION' with the new TMSL reply.
With- this reply, the operator can request a list of current time-slicing
specifications, change the range of time-slicing partitions and the time
interval, or cancel time-slicing specifications altogether.

In MVT, the time-slicing specifications can be modified at system
initialization time or they can be cancelled altogether. The
modification can be accomplished by means of a new TMSL parameter in
response to the system message "SPECIFY SYSTEM PARAMETERS".

HOW TO INVOKE THE TIME SLICING FACILITY

In MFT, a task is assigned to a time-slicing partition through the CLASS
parameter on the JOB statement. The position of the time-slicing
partitions with respect to other partitions in the system determines
when the time-slice tasks gain control of the CPU.

In MVT, if the priority specified in the PRTY parameter of the JOB
statement is the same as the priority specified at system generation
and/or NIP time. that job (or the task representing that job) will be
time sliced.

The Time Slicing Facility 215

TIME SLICING'S EFFECT ON THE ATTACH AND CHAP MACRO INSTRUCTIONS

In MVT new tasks can be introduced into a time-slice group through the
use of the ATTACH and CHAP macro instructions, when the attaching or new
priority selected is equal to that of a time-slice group. These new
tasks conform to all the rules for time slicing.

The CHAP macro instruction may remove a task from a time-slice group.
If it does, this terminates all that task's time-slice characteristics.
The AT'TACH macro instruction may create a task that is not a member of 3.

time-slice group, even though the originating task was.

Using the Time Slice Facility

In MFT, the time slice group is composed of a group of contiguous
partitions and all tasks scheduled into those partitions are time
sliced. Also, each partition in the system is assigned to at least one
job class. Since a job is scheduled into a partition according to the
CLASS parameter. on the JOB statement" careful consideration should be
given to the job-class assignment in order to enable the user to control
the use of time slicing'at his installation. For example,

1. Partitions PO-P2 have been assigned as the time-slice partition

2. The partitions have been assigned the following job classes:

PO=G
Pl=G
P2=G,D
P3=B
P4=B,C,D

In this example, the user can ensure that a job will be time sliced by
specifying CLASS=G on the JOB statement. This specification guarantees
that the scheduler will initiate the job only into a partition assigned
to CLASS G, i.e., PO" Pl, or P2. Since PO-P2 have been designated as
time-slice partitions, that job will be time sliced.

CAUTION: Note that if the CLASS parameter of a job was D, the job may
or may not be time sliced, depending on whether it is initiated into
partition P2 or P4. See the Operator's Guide publication for
information on warning the operator about such situations.

In MVT., the job priority number (0-13) is specified on the PRTY
parameter of the JOB statement. This job priority number is used as the
scheduling priority number (that is, this number determines the
initiation sequence of jobs on the input work queue, within their job
classes); the job priority number is also used to derive the dispatching
priority number, that is, it is used to determine where a TCB is placed
on the queue of ready TCBs. Any task that has a dispatching priority
number equal to the time-slicing dispatching priority number will be a
member of the time-slice group. A task can have a dispatching priority
number equal to that of the time-slice group as a result of the PRTY
parameter of the JOB statement or by specifying parameters on the' ATrACH
or CHAP macro instructions. You should remember that where job
pr~orities differ by 1, corresponding dispatching priorities differ by
16. Therefore" if a job step uses CHAP to change from one priority
time-slicing group to another group, it must change the dispatching
priority by 16, not just by 1. A full discussion of task priorities an::!
the formula to derive a dispatching priority from a job priority is
found in the Supervisor and Data Management Services publication.

216 OS System programmer's Guide (Release 17)

OPERATING CHARACTERISTICS

The time-slicing mechanism operates within the structure of the current
dispatcher. A priority is assigned to a group of tasks that are to be
time sliced. The time slicing occurs among the tasks in the group only
when the pr.iority level of the group is the highest priority level that
has a ready task. Each task 9r partition in the group is dispatched for
the speci:fied time slice. The time slicing continues until either all
tasks or partitions are waiting" or a task or partition of higher
priority than that of the group becomes ready.

In both MFT and MVT, the dispatcher will recognize that a priority
level is one that is being time sliced; it will determine which task or
partition within the group is to be dispatched and then dispatch that
task or partition for the maximum time interval. If the time slice task
loses control prior to the expiration of its interval (because an
implicit or explicit wait is issued, or because a higher priority task
or partition becomes ready>. the remainder of the time is not saved.
That is, when c9ntrol returns to the time-slice group, the next ready
task or partition in the group is given control, not the interrupted
task or partition.

EFFECT OF SYSTEM TASKS ON TIl'4E-SLICE GROUPS

The time slicing option is included in the system mainly to provide a
method of controlling response time of a task. However, since it is
being implemented in a priority dispatcher, any task of a higher
priority than that of the time-slice group will be dispatched first, if
it is ready. Note also that the time-slicing mechanism applies only to
the problem program priorities. 0-13. Priorities 14 and 15 are reser.ved
for the system and cannot be time sliced. Therefore, the response time
of a time-slice task can be affected by the processing of system tasks,
such as Readers l Writers l Master Scheduler, etc., which will always run
at a higher pr.iority than the time-slice group. Therefore, to guarantee
response time, the time slice group should be defined. with t-1FT, in the
high priority partitions. or, with MVT, at a high dispatching priority.

In MFT configurations non-interactive jobs should not be run
concurrently and time sliced since this may significantly decrease
performance.

The Time Slicing Facility 217

Graphic Job Processor Procedures

The Graphic Job Processor is an
IBM-provided program that enables users to
define and initiate jobs directly from the
IBM 2250 Graphic Display units. If your
system includes the Graphic Job Processor,
you must write cataloged procedures which
are used in starting major parts of the
program.

This chapter provides information on
writing and cataloging GFX and GJP
procedures; it also provides information on
allocating space and cataloging data sets
for GJP. A section explains how to write
cataloged procedures to be invoked through
the Graphic Job Processor. The preparation
of accounting routines to be used with the
Graphic Job Processor is explained.

IBM System/360 Operating System User's
Guide for Job Control from the IBM 2250
Display Unit, Form C21-6933 provides a
description of the Graphic Job Processor.

Graphic Job Processor Procedures 219

Initialization of the Operating System for GJP

To make the Graphic Job Processor available when requested by the system
operator with a START GFX command, several initialization actions must
be taken. These actions are

• Adding a cataloged procedure for the Graphics Interface Task (GFX)
to the procedure library (SYS1.PROCLIS).

• Adding a Graphic Job Processor cataloged procedure to the procedure
library (SYS1.PROCLIB) for each 2250 display unit that is to be use1
with GJP.

• Allocating space for data sets that are required for each 2250
display unit to be used with GJP and cataloging these data sets on
any convenient system volume.

The GFX and GJP cataloged procedures may be added to the procedure
library (SYS1.PROCLIB) either before or after system generation using
the IEBUPDTE utility program. Before system generation, the procedures
must be added to the procedure library (SYS1.PROCLIS) of the starter
system_ After system generation, the procedures are added directly to
SYS1.PROCLIB on the new system. Similarly, the space allocations and
cataloging of the data sets for each 2250 may be added to any convenient
system volume either before or after system generation using the
IEHPROGM utility program. It is usually more convenient to perform
these initializations after system generation.

CATALOGING GFX AND GJP PROCEDURES

The GFX cataloged procedure consists of an EXEC statement and several DO
statements. The exact number of DO statements depends on the number of
2250 display units that may use the Graphic Job Processor. The name of
the procedure must be GFX.

The following is the coding for the GFX cataloged procedure that you
must provide on SYS1.PROCLIB:

r---------~--,
l//GFXEXEC EXEC PGM=IKAGFX,REGION=10K I
1//GJPnnn DO. DSNAME=SYS1.JCLnnn,UNIT=SYSDA,DISP=SHR I
I I
I I
I I
I (DO statement in the format above for each 2250 to be used) I
I I
I I
I I
l//SYSABEND. DO SYSOUT=z I L __ J

Where ~n~ is· the address of the display unit being defined, and z is the
output class to which printed output is assigned for abnormal
terminations. A separate DO statement is required for each 2250 to
identify the JCL data set for that device. In an MFT configuration the
REG~ON parameter is ignored and the GFX Task is executed in a partition
whose size is 10K or larger.

220 OS System Programmer's Guide (Release 17)

The GJP cataloged procedure consists of an EXEC statement and 11 DO
statements. A separate cataloged procedure is required for each 2250
display unit that may use the Graphic Job Processor. The procedure name
for each procedure must be in the form GJPnnn, where nnn is the address
of a specific display unit.

The following is the coding for each GJP cataloged procedure. (Three
separate procedures would be required if three display units were
desired. The address used in the procedure name must be the same as
that specified on the DD statements for the GFX cataloged procedure.)

r--,
//GJPEXEC EXEC PGM=IKAGJP,REGION=60K I
//GJP2250 DD UNIT=nnn I
//GJPDIA DD DSNAME=SYS1.DIAnnn,UNIT=SYSOA,OISP=(OLO,KEEP) I
//GJPEXT DO DSNAME=SYS1.EXTnnn,UNIT=SYSDA,DISP=(OLD,KEE.P) I
//GJPEXTl DD DSNAM~=SYS1.EXTnnnA,UNIT=SYSD~,OISP=(OLD,KEEP) I
//GJPJCL DO DSNAME=SYS1.JCLnnn,UNIT=SYSDA,DISP=SHR I
//GJPPROC DD DSNAME=SYS1.PROCLIB,UNIT=SYSDA,DISP=SHR I
//IEFPDSI DO DSNAME=SYS1.PROCLIB,UNIT=SYSD~,OISP=SHR I
//GJPOUT DO SYSOUT=z I
/ /SYSABEND DD SYSOU'I'=z I
//IEFRDER DD DU~~Y I
//IEFDATA DD UNIT=SYSDA,SPACE=(80" (500,500) ,RLSE,CONTIG), XI

1// DCB=(BUFNO=2,LRECL=80,BLKSIZE=80,RECFM=F,BUFL=80) I
L ___ --_________________ J

Where nnn is the address of the specific display unit to be used, and z
is the output class to which printed output is assigned for abnormal
terminations. The 60K value in the REGION parameter is the IDln1mum size
region or partition that may be specified; larger values are
permissible. In an MFT configuration the REGION parameter is ignored
and GJP is executed in a partition whose size is 60K or larger.

Note: In the / /IEFDA'I'A DD statement, the user may vary the SPACE
requirements depending on the amount of SYSIN data that will be entered
on the ENTER DATA and DESCRIBE DATA frames. If data will not be entered
on the 2250" a DUMMY parameter may be used as follows:

//IEFDATA DD DUlVlMY

The following sample coding could be used to catalog both the GFX and
GJP cataloged procedures in the procedure library (SYS1.PROCLIB) after
system generation using the IEBUPDTE utility program. The example
assumes that two 2250 display uni"ts will use GJP. The use of the
IEBUPDTE utility program is fully explained in IBM System/360 Operatin9.
System: Utilities, Form C28-6586.

Graphic Job Processor Procedures 221

r--,
I//UPDATE JOB 1
1// EXEC PGM=IEBUPDTE,PARM=NEW I
I//SYSP~INT DD SYSOUT=A I
1//SYSUT2 DD DSNAME=SYS1.PROCLIB,DISP=OLD I
//SYSIN DD DATA I
./ ADD LIST=ALL,NAME=GFX,LEVEL=OO,SOURCE=O I
./ NUMBER NEW1=10,INCR=10 I

./

./

./

./

(GFX cataloged procedure)

ADD LIST=ALL,NAME=GJP1EO,LEVEL=00,SOUKCE=0
NUMBER NEW1=10,INCR=10

(GJP cataloged procedure for first 2250)

ADD LIST=ALL,NAME=GJP1D3,LEVEL=00,SOURCE=0
NUMBER NEt-ll=10,IHCR=10

(GJP cataloged procedure for second 2250)

./ ENDUP
1/*
L ___________ ~----_------------------------------------________________ _

CATALOGING AND ALLOCATING SPACE FOR DATA SETS USED BY GJP

I
I
I

Four data sets are required for each 2250 Display unit to be used with
GJP. The name of these data sets must be SYS1.DIAnnn, SYS1.EXTnnn,
SYS1.EXTnnnA" and SYS1.JCLnnn, where nnn is the address of the specific
display unit. The data sets may reside on any convenient system volume.
The space allocations and cataloging may be accomplished using the
IEHPROGM utility program. The actual space allocations required depends
on the users problem program. However, the following allocations are
suggested for most graphics programs.

Date Set Name

SYS1.DIAnnn
SYS1.EXTnnn
SYS1.EXTnnnA
SYS1.JCLnnn

Allocation

SPACE=(TRK,(3,3»
SPACE=(TRK,(5,5»
SPACE=(TRK,(5,5»
SPACE=(TRK,(5,5»

The following sample coding could be used to allocate space and
catalog the data sets using IEHPROGM. The use of the IEHPROGM utility
program is fully explained in IBM System/360 Operating System:
Utilities, Form C28-6586.

222 OS System Programmer's Guide (Release 17)

r--,
//jobstep JOB
//STEP EXEC
//SYSPRINT DD
//DIAlEO DD
//
//EXT1EO
//

DD

//EXT1EOA DO
//
//JCL1EO
//

DD

PGM=IEHPROGM,PARM=NEW
SYSOUT=A
DSNAME=SYS1.DIA1EO,VOLUME=(,RETAIN,SER=111111),
UNIT=SYSDA,DISP=(,KEEP),SPACE=(TRK, (3,3»
DSNAlv1E=SYS1. EXT1EO, VOLUME= (, RETAIN, SER=llllll) ,
UNIT=SYSDA,DISP=(,KEEP),SPACE=(TRK, (5,5»
DSNAME=SYS1.EXT1EOA,VOLUME=(,RETAIN,SER=111111),
UNIT=SYSDA,DISP=(, KEEP), SPACE=(TRK, (5,5»
DSNAME=SYS1. JCL1EO, VOLUME= (, RETAIN, SER=llllll) ,
UNIT=SYSDA,DISP=(,KEEP),SPACE=(TRK,(5,5»

(DD statements for other 2250s in the above format)

//SYSIN * CVOL=SYSDA=111111,VOL=SYSDA=111111,DSNAME=SYS1.DIA1EO

X

x

X

X

DD
CATLG
CATLG
CATLG
CATLG

CVOL=SYSDA=111111,VOL=SYSDA=111111,DSNAME=SYS1.EXT1BO
CVOL=SYSDA=111111" VOL=SYSDA=111111, DSNAME=SYS1. EXT1EOAI
CVOL=SYSDA=11ll1l,VOL=SYSDA=1111ll,DSNAME=SYS1.JCL1EO 1

(CATLG statements for other 2250s in the above format)

1
1
1
1

1/* 1 L __ J

Writing Cataloged Procedures to be Invoked Through the Graphic
Job Processor

A problem program that refers to the display unit either contains a DCB
macro instruction for the display unit, or the data control block is
generated as a result of statements written in a higher-level language.
In addition, the operating system requires that a DD statement for the
display unit be included in the job control statements for each job step
associated with the display unit.

In writing cataloged procedures to be invoked through the Graphic Job
Processor, the programmer should include DD statements for the display
unit in the procedure as follows:

For a Single-Step Procedure: You should include a DD statement
containing the parameter UNI'I'=unit name as the first DD statement
following the EXEC statement, where "unit name" is either "2250-1" (for
a 2250 Modell Display unit) or "2250-3" (for a 2250 Model 3 Display
Unit). The Graphic Job Processor replaces the "unit name" with the
3-digit unit address of the actual display unit at which the user is
sitting,. However, if you specify the 3-digit address of a particular
display unit in the first DD statement, the Graphic Job Processor will
not override the address.

If you do not provide a DD statement for the display unit as the
first DD statement in a single-step procedure, the Graphic Job Processor
creates a Dn: statement for the unit and inserts the 3-digit address of
the display unit at which the user is sitting. The name field of the DD
statement will contain a name in the form stepname.ddname, where ddname
is either the system generation default or the name has been entered as
a DISPLAY UNIT REFERENCE parameter on the SPECIFY JOB STEP frame.

Graphic Job Processor Procedures 223

For a Multi-Step Procedure: You should include a DO statement for the
display unit in each step of the procedure. The DO statement in the
first step should include the parameter UNIT=unit name, where "unit
name" is either "2250-1" (for a 2250 Modell Display Unit) or "2250-3"
(for a 2250 Model 3 Display Unit). The DD statement for the display
unit in each succeeding step of the procedure should refer back to the
statement in the first step by means of the DSNAME=*.stepname.ddname
parameter ..

To override the display unit DD statements in all steps of the
procedur.e, you need only override the display unit DO statement in the
first step of the procedure. However, to override the display unit DO
statement in the second or a succeeding step of the procedure, you can
employ the appropriate stepname.ddname combination in the name field of
the statemen.t.

Note that failure to provide display unit DO statements in a
multi-step procedure, means the Graphic Job Processor creates such a
statement for the first step of the procedure only as described in the
single-step procedure above.

For additional information on overriding statements in cataloged
procedur€s, see the publication IBM System/360 Operating System: Job
Control Language, Form C28-6539.

Reguesting Dumps: The Graphic Job Processor does not generate a
SYSABEND DD. statement for procedures invoked with GJP operations. ThUS,
if a dump is desired when the problem program is abnormally terminated,
the programmer must include a SYSABEND OD statement in his procedure.

Preparation of User-Written Accounting Routines

An accounting routine receives control from the Graphic Job Processor
when a user performs the LOG ON and LOG OFF operations. The accounting
module in the distributed Graphic Job Processor is a dummy routine that
performs no processing; the routine merely returns to the LOG ON and LOG
OFF processors with a return code (4) that indicates a normal return.
To perform accounting functions at LOG ON or LOG OFF, the user must
write his own accounting routine following the conventions described
below.

Entry to the Accounting Routine: The entry point of the accounting
routine must be named IKAACCTG. This name is specified in either a
CSECT statement or an ENTRY statement.

Input to the Accounting Routine: Bit 0 of register 1 is on (1) is entry
to the accounting routine was from the LOG ON processor; bit 0 is off
(0) if entry was from LOG OFF. Bits 8-31 of register 1 contain the
address of a 28-byte parameter list, structured as follows:

224 OS System Programmer's Guide (Release 17)

Byte
o

1

4

8

12

16

20

24

r---,
lane-byte condition code for IKAACCTG. I
~---~
IThree-character unit address. I
~---1
IAddress of a 20-byte area containing the user's name. I
~---~
IAddress of a 20-byte area containing the account number. I
~---1
IAddress of a 20-byte area containing other accounting I
I in.formation. I
~---1
IAddress of a 20-byte area where the accounting routine can place I
Idata. I
~---1
IAddress of a 72-byte area where the accounting routine can place I
la message to be displayed. I
~--~--1
IAddress of a 72-byte area which contains the text entered on the I
ILOG OFF frame. I L ___ J

The condition code mentioned above contains one of the following
codes to indicate the condition of entry to IKAACeTG:

Hexadecimal
Code
00

04
08

Meaning
This is the initial entry (for LOG ON or LOG OFF frame) to

IKAACCTG.
The LOG OFF frame has been canceled.
The LOG OFF frame has been completed.

output From the Accounting Routine: Upon return from the user's
accounting routine, register 15 must contain a return code to indicate
the results of the accounting routine processing. The codes that may be
returned are as follows:

Hexadecimal
Code

o

4
8

C

10

t-leaning
Normal return -- Text for a message to be displayed on

the frame has been provided in the 72-byte area. The
2250 user must perform the END function to acknowledge
the message.

Normal return -- No message is to be displayed.
Error return -- Text for an error message to be displayed

on the LOG ON frame has been provided in the 72-byte
area. The 2250 uSer must correct the information and
perform the END function again. -The accounting routine
will again receive control to perform a new check of
the information.

Invalid user's name -- The Graphic Job Processor is to
display an appropriate error message.

Invalid user's account number -- The Graphic Job
Processor is to display an appropriate error message.

The user's accounting routine can also use the Write To Operator (WTO>
or a write To operator With Reply (WTOR) macro instruction to write a
message to the system operator.

Exit From the Accounting Routine: A RETURN macro instruction restores·
the contents of the registers and returns control to the Graphic Job
Processor with the~return code in register 15.

Graphic Job Processor Procedures 225

Inserting an Accounting Routine: The accounting routine can be insertej
into the Graphic Job Processor either before or after the system
gen.eration process.

To insert an accounting routine before system generation, link edit
it into the module library (SYS1.RC541), thereby replacing the existing
module named IKAACCTG.

To insert an accounting routine after system generation, link edit
the accounting routine with the IKAPLONO and IK~PLOGO modules. The
Graphic Job Processor modules are in the linkage library (SYS1.LINKLIB).
The linkage editor control statements necessary to insert the accounting
routine in the IK~PLONO and IKAPLOGO modules are as follows (card input
is assumed) :

r--,
I//jobname JOB parameters
I//stepname EXEC PGM=IEWL,parameters
I//SYSPRINT DD SYSOUT=A
1//SYSOUT1 DD UNIT=SYSDA,SPACE=parameters
l//SYSLMOD DD DSNAME=SYS1.LINKLIB,DISP=OLD
//SYSLIN DD *

1/*

(accounting routine object deck)

INCLUDE SYSLMOD (IKAPLONO)
ENTRY IKAPLONO
NAME IKAPLONO(R)

(accounting routine object deck; identical to deck above)

INCLUDE SYSLMOD (IKAPLOGO)
ENTRY IKAPLOGO
NAME IKAPLOGO(R)

L ___ _

Buffer Storage Considerations for 2250 Display Unit, Model 3

When two or more 2250 Model 3 display units are operated from the
same IBM 2840 Display Control Unit, buffer storage is shared among the
associated 2250 display units. Buffer storage is assigned to a specific
display unit when the executing program issues an ASGNBFR macro
instruction. Assignments are made in 256-byte increments (called
sec~ions) on a first come, first served basis. When requests for buffer
storage are made, the sections are assigned from contiguous storage; if
the number of requested sections are not available, no storage is
assigned and a return code is provided to the requesting program.

Buffer sections may be reserved (guaranteed) for a particular display
unit at system generation time with the NUMSECT operand of the IODEVICE
macro instruction. Once assigned, guaranteed sections cannot be shared
with other display units.

226 OS System Programmer's Guide (Release 17)

The Graphic Job Processor requires that seven buffer sections be
available to the display unit. These sections are requested dynamically
when GJP is initiated and are released before GJP transfers control.
When seven sections are not available, GJP will modify its request anj
request one section. If one section is available l GJP will write a
message to the 2250 user informing him that GJP is unable to execute
because sUfficient buffer sto~age is not available. If one section is
unavailable, the 2250 screen will remain blank and the 2250 user will be
unaware of the reason. However, a message about this condition will be
written to the system operator.

To assure that the 2250 GJP user is provided with the minimal
response of a message, at least one buffer section must be available,
whether guaranteed or not. An installation may guarantee the
availability of at least one buffer section at system generation time
with the IODEVICE macro instruction. Unless an installation must ensure
that GJP is started every time that it is requested from a 2250 lviodel 3,
it is usually n.ot advantageous to reserve more than one buffer section
for each unit.

Graphic Job Processor Procedures 227

Satellite Graphic Job Processor
Procedures

The Satellite Graphic Job Processor <SGJP)
is a program that facilitates job control
from a remote 1130/2250 subsystem. SGJP
enables a user at an 1130/2250 subsystem
<attached to a system/360 via a
telecommunication line) to define and
initiate jobs to be processed in the
System/360. The jobs defined with SGJP can
be run under the operating system
independently or in conjunction with a
related program in the 1130.

This chapter explains how to initialize
the system for SGJP. how to write cataloge1
procedures to be invoked through SGJP, and
how to write accounting routines for use
with SGJP.

satellite Graphic Job Processor Procedures 229

Writing Cataloged Procedures to be Invoked Through SGJP

The IBM System/360 Operating System treats an 1130/2250 subsystem as a
data set. The operating system identifies the subsystem by the
telecommunications line that links the subsystem to the System/360. A
problem program that communicates with the subsystem contains either a
DCB macro instr.uction for the telecommunications line, or the data
control block is generated as a result of statements written in a
higher-level language. In addition, the operating system requires that
a DD statement for the subsystem be included in the job control
statements for each job step that communicates with the subsystem.

In writing cataloged procedures to be invoked through SGJP, you
should include DO statements for the subsystem as indicated in the
following sections.

For a Single-step Procedure: Include a DD statement containing the
parameter UNIT=1130. In producing the final job control statement, SGJP
replaces the unit name 1130 with the 3-digit unit address of the
subsystem at which the user is located.

If the user fails to provide a DD statement for the subsystem or
provides a DD statement containing the address of a particular
telecommunications line (other than the line to the subsystem at which
the user is located), SGJP creates a new DD statement in the form:

//stepname.lineref DD UNIT=address

where

stepname
is the name of the job step in which the statement appears.

lineref
is the default parameter provided in the LINEREF operand of the
GJOBCTL macro instruction at system generation.

address
is the 3-digit address of the telecommunications line to the
subsystem at which the user is located.

For a Multi-step Procedure: Include a DD statement for the subsystem in
each step of the procedure that requires communication with the system.
The DD statement in the first step should include the parameter
UNIT=1130. The DD statement for the subsystem in each succeeding step
should refer back to the statement in the first step by means of the
DSNAME=*.stepname.ddname parameter.

This makes it easier for the user to override the subsystem DD
statement in the procedure. To override the subsystem DD statements in
all steps of the procedure, the user need override only the subsystem DO
statement in the first step. To override the subsystem DD statement in
the second or a succeeding step of the procedure, you can employ the
appropriate stepname.ddname combination in the name field of the
statement.

You should note that, if you fail to provide subsystem DD statements
in a multi~step procedure, SGJP creates such a statement for the first
step of the procedure only. The statement is in the form:

//stepname.lineref DD UNIT=address

as described above.

230 os System Programmer's Guide (Release 17)

(For additional information on overriding statements in cataloged
procedures, see the publication IBM System/360-22erating System: Job
control Language, Form C28-6539.)

PREPARATION OF USER-WRITTEN ACCOUNTING ROUTINES

An accounting routine receives control from the satellite Graphic Job
Processor when a user performs the LOG ON or LOG OFF operation. The
accounting module in the distributed Satellite Graphic Job Processor is
a dummy routine that performs no significant processing; the routine
merely returns to the LOG ON or LOG OFF processor with a return code
(04) indicating a normal return. To perform accounting functions at LOG

ON or LOG OFF, you must write your own accounting routine following the
conventions described below.

En.try to the Accounting Routine: The entry point of the accounting
routine must be named IKAACCTG. This name is specified in either a
CSECT statement or an ENTRY statement.

Input to the Accounting Routine: Bit 0 of register 1 is on (1) if entry
to the accounting routine was from the LOG ON processor; bit 0 is off
(0) if entry was from LOG OFF. Bits 8-31 of register 1 contain the
address of a 28-byte parameter list, structured as follows:

Byte r---·--1
o lOne-byte condition code for IKAACCTG. I

~---~
1 I Three-character unit address. I

r---~
I I

4 I Address of a 20-byte area containing the user's name. I
r---~
I I

8 I Address of a 20-byte area containing the account number. I
r--~--~

12 I Address of a 20-byte area containing other accounting I
I information. I
r---~

16 I Address of a 20-byte area where the accounting routine can I
I place data. I
r---~

20 I Address of a 72-byte area where the accounting routine can I
I place a message to be displayed. I
r---~

24 I Address of a 72-byte area which contains the text entered on I
I the LOG OFF frame. I L ___ J

The condition code mentioned above contains one of the following
codes to indicate the condition of entry to IKAACCrG:

Hexadecimal
~

00

04
08

Meaning
This is the initial entry (for LOG ON or LOG OFF frame)

to IKAACCTG.
The LOG OFF frame has been canceled.
The LOG OFF frame has been completed.

Output From the Accounting Routine: Upon return from your accounting
routine, register 15. must contain a return code indicating the results
of the accounting routine processing. The acceptable codes are:

Satellite Graphic Job Processor Procedures 231

Hexadecimal
Code Meaning
00

04
08

OC
10

Normal return -- Text for a message to be displayed on
the frame has been provided in the 72-byte area. rhe
user must perform the END function to acknowledge the
message.

Normal return -- No message is to be displayed.
Error return -~ Text for a message to be displayed on the

frame has been provided in the 72-byte area.
Error return -- The name supplied by the user is invalid.
Error return -- The account number supplied by the user

is invalid.

Your accounting routine can also use the write To Operator (WTO) or
the Write To Operator with Replay (WTOR) macro instruction to write a
message to the system operator.

Exit From the Accounting Routine: A RETURN macro instruction restores
the contents of the registers and returns control to the LOG ON or LOG
OFF processor with the return code in register 15.

Insertina an Accountina Routine: The accounting routine can be inserted
into the Satellite Graphic Job Processor either before or after system
generation.

To insert an accounting routine before system generation, link edit
it into the module library (SYS1.RC541)1 thereby replacing the existing
module named lKAACCTG.

To insert an accounting routine after system generation, link edit
the accounting routine into the IKAPLONO and IKOPLOFO modules. The
Satellite Graphic Job Processor modules are in the link library
(SYS1.LINKLIB). The linkage editor control statements necessary to
insert the accounting routine in the IKAPLONO and IKDPLOFO modules are
as follows:

r--,
//jobname JOB parameters
//stepname EXEC PGM=IEWL,parameters
//SYSPRINT DD SYSQUT=A
//SYSUTl DO UNIT=SYSOA,SPACE=parameters
//SYSLMOD DD DSNAME=SYS1.LINKLIB10ISP=OLD
//SYSLIN DO *

/*

(accounting routine object deck)

INCLUDE SYSLMOO (IKAPLONO)
ENTRY IKAPLONO
NAME IKAPLONO(R)

(accounting routine object deck)

INCLUDE SYSLMOD (IKDPLOFO)
ENTRY IKDPLOFO
NAME IKOPLOFO(R)

______ . __ J

232 OS System Programmer's Guide (Release 17)

Initialization Requirements for the System/360 Operating System

To prepar.e the operating system for SGJP operations, the following
initialization actions must be performed:

• A GFX cataloged procedure (which is used to start the GFX Task) must
be added to the procedure library (SYS1.PROCLIB) unless the
procedure has already been placed in the library for the Graphic Job
Processor operations.

• An SGJP cataloged procedure (which is used to start an Initial
Processor) must be added to the procedure library for each
telecommunication line address that was included in the GJOBCTL
system generation macro instruction. (Use of Initial Processors is
optional in an MFT system. If use of Initial Processors is not
specified, no SGJP cataloged procedures are required.)

• A GJP cataloged procedure (which is used to start the Systeml360
SGJP routines) must be added to the procedure library for each
telecommunication line address that was included in the GJOBCTL
system generation macro instruction.

• Space for four data sets must be allocated for each
telecommunication line" and the data sets must be cataloged.

The cataloged procedures can be added to the procedure library either
before or after system generation by using the IEBUPDTE utility program.
If the cataloged procedures are added beforehand, they can be
transferred to the procedure library during system generation. The
alternative is to add the procedures directly to the procedure library
after system generation.

Similarly, the space allocations and cataloging of data sets for each
telecommunication line can be performed either before or after system
gen~ration by using the IEHPROGM utility program. It is usually more
convenient to allocate space for and catalog the data sets after system
generation.

Satellite Graphic Job Processor Procedures 233

'The GFX Procedure

The GFX procedure is used to start the GFX Task when the system operator
issues the START GFX command. The procedure consists of an EXEC
statement" a series of DO statements, and a SYSABEND DD statement. One
GFX procedure must exist on the procedure library.

The statements in the GFX procedure are shown and explained in Figure
11.

r--T'"---·--,
I 1//GFXEXEC EXEC PGM=IKAGFX,REGION=10K I
I 2//GJPnnn DD OSNAME=SYS1.JCLnnn,UNIT=SYSDA,DISP=SHR I
I I
I (Additional DD statements. One DO statement in I
I the format shown above must be provided for each I
I telecommunication line used for SGJP operations.) I
I I
I I
I 3//SYSABENO DO SYSOUT=w I
~-----------~--~

Note: The procedure must be named GFX.

1When the procedure is executed in an MFT system, the REGION
parameter is ignored and the GFX rask is executed in a small
partition.

20ne DO. statement in this format must be included for each
telecommunication line that was specified for SGJP operations in the
GJOBCTL system generation macro instruction. (For a description of
the GJOBCTL macro instruction, see the publication IBM System/360
Operating system: System Generation, Form C28-6554.)

Each statement defines a data set (called the JCL data set) that
will be used by GFX to pass system messages to the appropriate SGJP
routines. The "nnn" in the ddname and in the data set name must be
the 3-digit address of the telecommunication line for which the data
set is being defined.

]3This statement defines the system output class for printed output if
I the GFX Task is abnormally terminated. The "w" must be the
I alphabetic or numeric character that represents an output class for
I printed output. Any printed output class can be specified. I L __ J

Figure 11. Statements in the GFX Cataloged Procedure

The SGJP Procedures

Upon receipt of a VARY ONGFX command containing the address of a
telecommunication line, the operating system starts an Initial Processor
(if specified) that will handle the first message received on that line.
An SGJP cataloged procedure to be used in starting the Initial Processor
(for. that line) must be provided for each telecommunication line address
included in the GJOBCTL system generation macro instruction.

The statements that must be included in each SGJP cataloged procedure
are shown and explained in Figure 12. (These SGJP cataloged procedure,S
are always required in an MVT system. They are only required in an ~FT
system if use of Ihitial Processors has been specified in the GJOBCrL

234 OS System Programmer's Guide (Release 17)

system generation or in the START GFX command. For further information
on use of Initial Processors, see the publication IBM Systern/360
Operating System and 1130 Disk Monitor System: User's Guide for Job
Control From an IBM 2250 Display Unit Attached to an IBM 1130 System,
Form C27-6938.)

r--,
I ~//SGJPEXEC EXEC PRG=IKDINPRO,REGION=10K I
I 2//SYBSYSDD UNIT=nnn I
I 3//SYSABEND DD SYSOUT=x I
r--i
I~: Each procedure must be named SGJPnnn where "nnn" is the
I 3-digit address of the telecommunication line for which the
I procedure is being provided.
I
I
I
I
I
I
I
I
I
I
I
I
I

~When the procedure is executed in an ~WT system, the REGION
parameter is ignored and the Initial Processor is executed in the
small partition.

2The statement defines the telecommunication line for which the
procedure is being provided. The "nnnn is the 3-digit address of
the line.

3This statement defines the print output class for printed output if
the Initial Processor is abnormally terminated. The "x" must be an
alphabetic or numeric character that represents an output class for
printed output. This class may be the same or different from the

I abnormal termination output class specified in the GFX procedure.
L __ ~--________________ _

Figure 12. statements in the SGJP Cataloged Procedures

The GJP Procedures

A GJP procedure is required to start the Systern/360 SGJP routines for
each telecommunication line. These routines are started after a message
is received from the subsystem indicating that the 2250 user has
completed the LOG ON frame. One GJP procedure must be provided for each
telecommunication line address included in the GJOBCTL system generation
macro instruction.

Each GJP procedure consists of an EXEC statement and 11 DD
statements. The statements that must be included in each GJP cataloged
procedure are shown and explained in Figure 13.

Satellite Graphic Job Processor Procedures 235

r--~---,
1//GJPEXEC EXEC PGM=IKDSGJP,REGION=60K X
2//FT99F001 DD UNIT=nnn
3//GJPDIA DD DSNAME=SYS1.DIAnnn,UNIT=SYSO~,DISP=(OLD,KEEP)
4/ /GJPEXT DD OSNAME=SYS1 .• EXTnnn, UNIT=SYSDA, DISP= (OLD, KEEP)
5//GJPEXT1 DD DSN~lE=SYS1.EXTnnnA,UNIT=SYSD~,DISP=(OLD,KEEP)
6//GJPJCL DO DSNAME=SYS1..JCLnnn,UNIT=SYSD~,DISP=(OLD,KEEP)

7/ /IEFPDSI DD DSNAME=SYS1. PROCLIB, UNIT=SYSDA" DISP=SHR
8//GJPPROC DD DSNAME=SYS1.PROCLIB,UNIT=SYSP~,DISP=SHR
9//GJPOUT DD SYSOUT=y

10//SYSABEND DD SYSOUT=z
11//IEFRDER DD DUMMY
12//IEFDATA DD UNIT=SYSDA,SPACE=(SO, (500,500)"CONTIG), X

DCB=(BUFNO=2,LRECL=80,BLKSIZE=SO,RECMF=F,BUFL=SO
~--~---~

Note: Each procedure must be named GJPnnn where "nnn" is the
3-digit address of the telecommunication line for which the
procedure is being provided.

1When the procedure is executed in an ~WT system, the REGION
parameter is ignored and the ·SGJP routines are started in a problem
program partition.

2This statement defines the telecommunication line as a data set an1
associates the line with the partition or region in which the SGJP
routines are being executed. The "nnn" in this statement and in
succeeding statements must be the same as the 3-digit address in
the name of the procedure.

3This statement defines a data set (called the Diary data set) used
by the SGJP routines.

4This statement defines a data set (called the Extract data set)
used by the SGJP routines.

5This statement defines a data set (called the ~lternate Extract
data set) used by the SGJP routines.

6This statement defines a data set (called the JCL data set) used by
the SGJP routines.

7This statement defines the procedure library for use by the
reader/interpreter (a component of the operating system).

8This statement defines the procedure library for use by the SGJP
routines.

9This statement defines the system output class to which PRINTED
RECORP output is to be assigned for jobs defined over this
telecommunication line. The "y" must be an alphabetic or numeric
character· that represents an output class for printed output.

10This statement defines the system output class to which printed
output is to be assigned if the SGJP routines for this
telecommunication line are abnormally terminated. The "z" must be
an alphabetic or numeric character that represents an output class
for printed output. The output class can be the same or different
from the one assigned in statement 9. If the same output class is
assigned, PRINTED RECORD output and abnormal termination output
will appear in the same printed listing.

11This statement is required by the operating system.
112This statement is required if the user wishes to enter SYSIN data
I from the ENTER DATA frame; the space requirements may be varied
I depending on. the amount of SYSIN data that will be entered. If
I data will not be entered, a dummy parameter may be used as follows:
I
I //IEFDATA DD DUMMY L __ ~ __ _

Figure 13. statements in the cataloged Procedure Used for Each
Telecommunications Line Used With SGJP

236 OS System Programmer's Guide (Release 17)

CATALOGING THE PROCEDURES

The following sample coding could be used to catalog the GFX, GJP and
SGJV cataloged procedures in the procedure library (SYS1.PROCLIB) after
system generation, using the IEBUPDTE utility program. The example
assumes that two telecommunication lines (with the addresses 024 and
025) will be used for SGJP operqtions. The use of the IEBUPDTE utility
program is fully explained in the publication IBM System/360 Operatina
System: Utilities, Form C28-6586.

r------·--,
//UPDATE JOB
// EXEC PGM=IEBUPDTE,PARM=N£w
//SYSPRINT DD SYSOUT=A

DSNA~lli=SYS1.PROCLIB,DISP=OLD //SYSUT2 DD
//SYSIN DD DATA

LIST=ALL,NAME=GFX,LEVEL=OO,SOURCE=O ./ ADD

./

./

NUMBER NEW1=10,INCR=10
(GDX cataloged procedure)

ADD LIST=ALL, NAME=SGJP024, LEVEL=OO" SOURCE=O
NUMBER NEW1=10,INCR=10

(SGJP cataloged procedure for first telecommunica­
tion line)

./ ADD LIST=ALL,NAME=SGJP025,LEVEL=OO,SOURCE=O

./

./

./

NUMBER NEW1=lO,INCR=10

(SGJP cataloged procedure for second telecommuni­
cation line)

ADD LIST=ALL,NAME=GJP024,LEVFL=OO,SOURCE=0
NUMBER NEW1=10,INCR=lO

(GJP cataloged procedure for first telecommunica­
line)

ADD LIST=ALL,NAME=GJP025,LEVEL=OO,SOURCE=0
NUMBER NEW1=10,INCR=10

(GJP cataloged procedure for second telecommunica-I
tion line) I

./ ENDUP 1
1/* 1
L __ ~--------~-------------------_---------------------_________________ J

CATALOGING AND ALLOCATING SPACE FOR DATA SETS USED BY SGJP

Four data sets are required for each telecommunication line to be used
with SGJP. The names of these data sets must be SYS1.DIAnnn,
SYS1.EXTnnn, SYS1.EXTnnnA, and SYS1.JCLnnn, where "nnn" is the address
of the specific display unit. The data sets may reside on any
convenient system volume. The space allocations and cataloging may be
accomplished by using the IEHPROGM utility program. The amount of space
to be allocated depends on user job definition requirements. HOwever,
the following allocations are suggested for most graphics programs.

Data Set Name
SYS1.DIAnnn
SYS1.EXTnnn
SYS1.EXTnnnA
SYS1.JCLnnn

Allocation
SPACE=(TRK,(10,5»
SPACE=(TRK,(20 , 5»
SPACE= (TRK, (20,,5»
SPACE=(TRK,(5,5»

satellite Graphic Job Processor Procedures 237

The following sample coding could be used to allocate space and
catalog the data sets using IEHPROGM. The use of the IEHPROGM utility
program is fully explained in the publication IBM Systeml360 Operating
System: Utilities, Form C28-6S86.

r--,
I//jobstep JOB
I//STEP EXEC
//SYSPRINT DD.
//DIA024 DD

//EXT024 DO.

//EXT024A DD.

//JCL024 DD

//SYSIN DD

1/*

PGM=IEHPROGM,PARM=NEW
SYSOU'l'=A
DSNN1E=SYS1.DIA024,VOLUME=(,RETAIN,SER=111111),
UNIT=SYSDA,DISP=(,KEEP) ,SPACE=(TRK,(10,S»
DSNAME=SYS1. EXT024" VOLUME= (, RETAIN, SER=llllll),
UNIT=SYSDA,DISP=(,KEEP),SPACE=(TRK,(20,S»
DSNAME=SYS1.EXT024A,VOLUME=(,RETAIN,SER=111111),
UNIT=SYSDA" DISP= (, KEEP) " SPACE= (TRK, (20, S))
DSNAME=SYS1.JCL024,VOLUME=(,RETAIN,SER=111111),
UNIT=SYSDA,DISP=(,KEEP),SPACE=(TRK,(S,S»
(DD statements in the above formats to allocate
space for the same data sets for each telecommuni­
cation line to be used for SGJP operations.)

* CATLG CVOL=SYSDA=111111,VOL=SYSDA=111111,
DSNAME=SYS1.DIA024
CATLG CVOL=SYSDA=llllll,VOL=SYSDA=llllll,
DSNAME=SYS1.EXT024
CATLG CVOL=SYSDA=111111,VOL=SYSDA=111111,
DSNAME=SYS1.EXT024A
CATLG CVOL=SYSDA=llllll,VOL=SYSDA=llllll,
DSNA¥£=SYS1.JCL024
(CATLG statements in the above formats to catalog
the data sets for the other telecommunication
lines.)

x

x

x

x

L __ ~--________________ _

238 OS System Programmer's Guide (Release 17)

hbnorrnal end appendage ••••••••••••••••• 75
Abnormal termination with SMC •••••••••• 64
hccess method routines, resident •••••• 120
Accounting r,outines ••••••••• 39-47,224,231
hddress conversion (TTR, actual) •••••• 100
Alias name in catalog •••••••••••• 12,15,27
Alterations of channel command words ••• 66
hppendages

rollout/rollin ••••••••••••••••• 191-196
use with EXCP •••••••••••••••••••• 71-76

ASA control characters •••••••••••••••• 160
hsynchronous exit

for a program (CIRB) ••••••••••••••• 148
for a task (STAE) •••••••••••••••••• 150

ATTACH
use with data set writer ••••••••••• 154
use with SMC ••• '. •• • • •• • • ••• • • • • • • • • •• 6
use with time slicing •••••••••••••• 216

Automatic SYSIN batching •••••••••• 184-187
Autopoll option, in rollout/rollin •••• 192

BLDL option ••••••••••••••••••••••••••• 119
Block character routine ••••••••••••••• 167
Block count

maintaining ••••••••••••••••••••••••• 82
use with EXCP ••••••••••••••••••••••• 80

Blocking of data ••••• : •••••••••••••••• 188
Blocking the procedure library •••••••• 190
Buffer technique •••••••••••••••••••• 79,80

C AMLS T '.............................. 10 - 24
Canceling jobs, interlock ••••••••••••• 207
Card punch control characters ••••••••• 160
CATALOG ••••••••••••••••••••••••••••• 17,23
Catalog

block, control entries •••••••••••• 25-28
maintenance ••••••••••••••••••••••• 9-18

Cataloged procedure
autoroatic SYSIN batching ••••••• 184-187
graphic job processor.......... 219-228
initiator •••••••••••••••••••••••••• 177
reader/interpreter ••••••••••••••••• 171
writer ••••••••••••••••••••••••••••• 179

Channel end •••••••••••••••••••••••••••• 70
appendage ••••••••••••••••••••••••••• 75

Channel program
use with EXCP ••••••••••••••••••••••• 71
use with XDAP •••••••••••••••••••••• 100

CHAP, use with time slicing ••••••••••• 216
Checkpoint/restart ••••••••• 82,131,141,179
CIRB macro instruction •••••••••••••••• 148
Class narr,es

for job input •••••••••••••••••••••• 170
for system output •••••••••••••••••• 179
for time slicing ••••••••••••••••••• 215

Classifying data sets with shared DASD
option •••••••••••••••••••••• ' ••••• '. • •• 186

CLOSE macro instruction ••••••••••••• 86,98
Communication equipment DEVTYFE ••••••• 144
Compile-load-go, in data blocking ••••• 184

Index

Completion code, in ECB •••••••••••••••• 68
Connecting control volumes ••••••••••••• 15
Connecting volumes ••••••••••••••••••••• 16
Control blocks, with EXCP •••••••••••••• 68
Control character transformations ••••• 160
Control entries in catalog block ••••••• 23
Control volume pointer ••••••••••••••••• 27
Control volume pointer entry ••••••••••• 25
Control volume, unmounted •••••••••• 11,178
Controlling I/O devices •••••••••••••••• 66
CPP data set •••••••••••••••••••••• 175-176
Creating IRB •••••••••••••••••••••••••• 148
Oreating PASSWORD data set routines ••• 109
CVT macro instruction

use with XDAP •••••••••••••••••••••. 100

Data blocking ••••••••••••••••••••••••• 188
Data and command chaining with EXCP •••• 65
Data chainin3 •••••••••••••••••••••••••• 66
Data control block, use with EXCP •••••• 66
Data extent block fields ••••••••••••••• 85
Data extent block, use with EXCP ••••••• 66
Data set

characteristics, password •••••••••• 108
concatenation with protected data
sets •••••••••••••••••••••••••••••. 110

password ••••••••••••••••••••••• 107-112
pointer entry •••••••••••.••••••••••• 24
protection ••••••••••••••••••••• 107-112
protection with shared DASD option . 204
writer •••••••••••••••••••••• 46 , 153, 179

Data sets
cataloging ••••••••••••••••••••••• 10-18
used by GJP •••••••••••••••.•••••••• 222

DCB ••••••••••••••••••••••••••••••••• 77, 97
DEB

~ields •••••••••••••••••••••••••••••. 68
forma t •••••••••••••••••••••••••••••• 89

DEQ
macro instruction ••••••••••••••••••• 64
subroutine ••••••••••••••••••••••••• 210
use of in accounting data set writer 47
use with shared DASD ••••••••••••••• 207

Device type
code designations ••••••••••••••• 29,142
in DCB •••••••••••••••••••••••••••••• 77
end errors, in channel program •••••• 68
in PRESRES list •••••••••••••••••••• 114

DEVTYFE macro instruction ••••••••••••• 140
Direct access channel program •••••• 95-102
Direct access space, improving use of • 190
Direct access volume characteristics list

(PRESRES list) ••••••••••••••••••• 113-116
DSCB, how to read from catalog ••••••••• 19

ECB ••••••••••••••••••••••••••••••••• 88, 99
End-of-cylinder condition •••••••••••••• 98
End-of-extent appendage •••••••••••••••• 74
End-of-volume (see EOV)

Index 239

Enqueue
macro instruction ••••••••••••••••••• 62
use of in accounting data set writer 47

EOV macro instruction •••••••••••••••••• 85
Error recovery procedures

reduced ••••••••••••••••••••••••••••• 78
use with EXCP ••••••••••••••••••••••• 70

Everit control block (see ECB)
EXCP

how to use ••••• ' •••• '. • • • • • • • • • • • •• 65-93
macro instruction ••••••••••••••••••• 84

Execute direct access ,channel program (see
XDAP)

Exit processing, creating IRB for ••••• 138
Exits "to processing program

asynchronous •• , ••••••••••••• '. • • • • • •• 148
synchronous ••• ,.. •• •• •••• •• • •• • • • • •• 149

Formatting job queues ••••••••••••• 133-137

Generation data sets •••••••••••••••• 11,14
Graphic job processor (GJP)

procedures ••••••••••••••••••••••• 219-228
Graphics interface task (GFX) ••••• 220,234

IBM 1130/2250 Subsystem ••••••••••••••• 230
IEABLDOO ••••••••••••• '. • • • • • • • • • • • • • • •• 131
IEAIGGOO •• '. •• 130
IEAQAPG ••••••••••••••••••••••••••••••• 193
IEARSVOO •••••••••••••••• '.. • • • • • • • • • • •• 131
IECDSECT •••••••••••••••••••••••••••• 50-54
IEFACTRT ••• ;. ••••••••••••••••••••• ,...... 44
IEFJFCBN ••••••••••••••••••••••••••••••• 57
IEFPDSI DO statement •••••••••••••••••• 163
IEFPROC cataloged procedure ••••••• 165,167
IEFRDER procedure ••••••••••••••••• '. • •• 162
IE:FUCBOB ••••••••••••••••••••• '. • • • • • • • •• 55
Index

block formats •••••••••••••••••••• 25-28
of the catalog ••••••••••••••••••• 13,14

Initialization
of link pack area •••••••••••••••••• 124
of operating system for GJP •••••••• 216
of operating system for SGJP ••• 233-236

Initiation, queue records necessary for 126
Initiator cataloged procedures •••••••• 177
Interlock

with shared DASD ••••••••••••••••••• 207
with SMC •••••••••••••••••••••••••••• 63

Input/output block (see IOB)
Interpreter (see reader/interpreter)
Interruption handling with EXCP ••• ' ••••• 70
Invoking the time ,slicing facility •••• 197
I/O

interruption, information routine •• 100
operation ••••••••••••••••••••••• 65-102
supervisor function with EXCP ••••••• 64

IOB
format •••••••••••••••••••••••••• 86,100
with EXCP macro instruction ••••••••• 68

JFCB •••••••••••• ' •••• ' •••••••••••••• ' •••• 145
Job cancellation •••••••••••••••••••••• 137
Job file control block •••••••••••••••• 145

240 OS system Programmer's Guide (Release 17)

JOBQFMT 135
JOBQLMT ••••••••••••••••••••••••••••••• 135
JOBQTMT ••••••••• ' •••••••••••••••••••••• 137
Job queue formatting •••••••••••••• 133-137

Link library list ••••••••••••••••• 117,130
Link library list option •••••• 122,125,130
Link pack area, use of •••••••••••• 124-127
Linkage editor input, example of ••••••• 4,3
LNKLSTOO •••••••• ' •••••••••••••••••• 125,129
Locate device characteristics (DEVTYPE)

macro instruction •••••••••••••••• 140-144
LOCATE macro instruction •••••••••••• 10,12

Must complete function •••••••••••••• 61-64

NEWCVOL •••••••••••••••••••••••••••••••• 16

OPEN
use with EXCP •••••••••••..•••••••.•. 84
use with RDJFCB •••••••••••••••••••• 145
use with XDAP ••••••••••••••••••••••• 97

Operation of SMC ••••••••••••••••••••••• 61
Option

resident access method ••••••••• 113,114
resident BLDL table •••••••.•••••••• 113
resident job queue ••••••••••••••••• 115
resident SVC routine ••••.•••••••••• 114

OUtput
buffer length •••••••••••••••••••••• 146
classes •••••••••••••••••••••••••••• 156
from accounting routine for GJP •••• 207

Output separator in SYSOUT writer • 163-168
OUtput writer

(SYSOUT writer) •••••••••• 153-162,179-182

Pages printed before job output ••••••• 167
Passed data sets, queue records for ••• 136
Password data set •••••••••••••.••• 108-109
PCI appendage •••••••••••••••••••••••••• 74
PRESRES volume characteristics
list ••••••••••••••••••••••••••••• 113-116

Printer unit control characters ••••••• 160
Procedure library blocking •••••••••••• 190
Program check ••• '. •• 72
Program check with EXCP •••••••••••••••• 67
Program controlled interruption ••••• 70-71

(see also PCI)
Protected data sets ••••••••••••••• 107-111
Protection check ••••••••••••••••••••••• 72
Protection feature operating
characteristics •••••••••••••••••••••• 106

Punch control characters •••••••••••••• 160
PURGE ••••••••••••••••••••••••••••••• 91-93

Queue record •••••••••••••••••••••• 133-138
Queueing on critical resources ••••••••• 63

RAM ••••••••••••••••••••••••••••••••••• 120
RDJFCB (read job file control block) •• 146
Reader/interpreter cataloged

procedure •••••••••••••••••••••••• 170-176

Reader/interpreter with ASB ••••••• 184-187
Reading a block from the catalog ••••••• 10
Reading DSCB from VTOC ••••••••••••••••• 19
Record control characters ••••••••••••• 160
Reduced error recovery procedure ••.••••• 78
Region size ••••••••••••••.•••••••• ~72,190
Register conventions in appendages •• 73-76
Register saving conventions, accounting
routines •••••••••••••••••••••••••••••• 43

Related channel programs •••••••••••• 69-71
Releasing devices, with shared DASD ••• 207
Reading a job file control block •••••• 146
Reenterable SVC routines ••••••••••••••• 32
RENAME, use with protected data sets •• 111
Request element •••••••••••••••••••••••• 69
RES and DEQ SUbroutines, use with shared

DASD ••••••••••••••••••••••••••••••••• 211
Reset-must-complete •••••••••••••••••••• 62
Resident abnormal termination routine •• 32
Resident access method •••••••••••••••• 120.
Resident BLDIJ table ••••••••••••••••••• 120
Resident job queue •••••••••••••••••••• 121
Resident SVC routines ••••••••••••••••• 120
RESTORE macro instruction •••••••••••••• 90
Restoring register contents from output
writers ••••••••••••••••••••••.•••••••• 147

RET operand of ENQ •••••••••••••••••••• 147
RMC operand of ENQ ••.•••••••••••••••••• 64
Rollout, flow of •••••••••••••••••••••• 177
Rollout/rollin appendages and
exits ••••.••••••••••••••••••••.•• 191-196

satellite Graphic Job Processor
procedures ••••••••••••••••••••••• 229-238

SCRATCH
macro instruction, function •••••• 14,24
use with protected data sets ••••••• 111

Seek address ••••••••••••••••••••••••••• 67
Separating output in MFT, MVT ••••• 163-168
separating reader interpreter
functions •••••••••••••••••••••.••• 184-187

Serializing operations in system
(SMC) .~ •••••••••••••••••••••••••••• 61-64

Serially reusable SVC routines ••••••••• 32
Set-Must-Complete (see SMC)
SGJP (Satellite Graphic Job Processor

procedure) ••••••••••••••••••••••• 229-238
writing catalog procedures for. 230-231

Shared DASD option •••••••••••••••• 201-211
Shared direct access device
option ••••••••••••••••••••••••••• 201-211

SIO
appendage •••••• '. • • • • • • • • • • • • • • • • • • •• 74
information from tracing routine ••• 104

SMC operand of ENQ ••••••••••••••••••••• 62
SMC parameter, with sharedDASD ••••••• 207
STAE •••••••••••••••••••••••••••••• 150-152
Standard character set images ••••••••• 198
Start I/O (see SIO>
Supervisor-call (see SVC)
Suppressing mount messages •••••••••••• 108
Suspending processing of tasks .••••••••• 60

SVC interruption, information from tracing
routine •••••••••••••••••••••••••••••• 104

SVC routines
adding •••••••••.••••••••••••••••••••• 31
conventions •••••••••••••••••••••. 33-36
insertion into control program ••.••• 37

SYNCH macro instruction ••••••••••••••• 149
Synchronous exits to processing
programs ••••••••••••••••••••••••••••• 149

SYS1.ACCT data set ••••••••••••••••••••• 46
SYS1.CI505 ••••••••••••••••••••••••••••• 44
SYS1.JOBQE data set ••••••••••••••• 121,133
SYS1.LINKLIB •••••••••••••••••• 117,118,130
SYS1.SVCLIB ••••••••••••••••••••••••••• 130
SYS1.LINKLIB ••••••••••••••••••••• ~ 117,118
SYS1.PARMLIB ••••• 114,116,117,118,119,120,
122,127

SYSIN hatching •••••••••••••••••••• 184-187
SYSIN data blocking ••••••••••••••••••• 188
SYSOUT data blocking •••••••••••••••••• 188
System output writer •••••••••••••• 153,179

separator function ••••••••••••• 163-168
SYSTEM parameter •••••••••••••••••••• 60- 62
System reader cataloged procedures •••• 171
System tasks, effect on time-slice

groups ••••••••••••••••••••••••••••••• 217

Table size for BLDL table ••••••••••••• 119
Time slicing facility ••••••••••••• 213-217
TIOT address, obtaining ••••••••••••••• 208
Tracing routine ••••••••••••••••••• 103-105
Track addresses, conversion of •••••••• 100
TTR, address conversion ••••••••••••••• 100

UCB address, finding •••••••••••••••••. 208
UCS ••••••••••••••••••••••••••••••• 197-199
Universal character set (see UCS)
User-designed character set images •••• 197
User purge lOB address ••••••••••••••••• 91

Volume characteristics •••••••••••• 113-116
Volumes, connecting •••••••••••••••••••• 16
Volume control block ••••••••••••••••••• 26
Volume index control entry ••••••••••••• 23
Volume-list block ••••••••••••••••••••••• 8
Volume pointer in volume list block ••••• 8
Volume switching with protected data
sets •.••••••••••••••••••••••••••••••• 110

Volumes needed for queue records •••• ~. 136
VTOC maintenance •••••••••••••••••• 9,19-25

Write tape mark •••••••••••••••••••••••• 69
Writing system output writer
routines ••••••••••••••••••••• 156,163,179

XCTL with SMC •••••••••••••••••••••••••• 62
XDAP control block ••••••••••••••••••••• 99
XDAP macro instruction ••••••••••••• 95-101

Index 241

C28-6550-5

YOUR COMMENTS PLEASE . . .

This publication is one of a series which serves as reference for systems analysts, program­
mers and operators of IBM systems. Your answers to the questions on the back of this
form, together with your comments, will help us produce better publications for your use.
Each reply will be carefully reviewed by the persons responsible for writing and publish­
ing this material. All comments and suggestions become the property of IBM.

Please note: Requests for copies of publications and for assistance in utilizing your IBM
system should be directed to your IBM representative or to the IBM sales office serving
your locality.

®

International Business Machines Corporation
Data Processing Division
112 East Post Road, White Plains, N.Y.10601
[USA Only]

IBM World Trade Corporation
821 United Nations Plaza, New York, New York 10017
[International]

READER'S COMMENT FORM

IBM System/360 Operating System
System Programmer's Guide

• Is the material:
Easy to read?
Well organized?
Complete?
Well illustrated?
Accurate?
Suitable for its intended audience? .

• How did you use this publication?
D As an introduction to the subject
D For additional knowledge

Other.

• Please check the items that descrihe your position:
D Customer personnel D Operator
D IBM personnel D Programmer
D Manager D Customer Engineer
D Systems Analyst D Instructor

Yes

D
D
D
D
D
D

Form C2S-6550-5

No
D
D
D
D
D
D

D Sales Representative
D Systems Engineer
D Trainee
Other

• Please check specific criticism (s), give page number (s), and explain below:
D Clarification on page (s) D Deletion on page (s)
D Addition on page (s) D Error on page (s)

Explana tion:

• Thank you for your cooperation. No postage necessary if mailed in the U.S.A.

C28-6550-5

YOUR COMMENTS PLEASE . . .

This publication is one of a series which serves as reference for systems analysts, program­
mers and operators of IBM systems. Your answers to the questions on the back of this
form, together with your comments, will help us produce better publications for your use.
Each reply will be carefully reviewed by the persons responsible for writing and publish­
ing this material. All comments and suggestions become the property of IBM.

Please note: Requests for copies of publications and for assistance in utilizing your IBM
system should be directed to your IBM representative or to the IBM sales office serving
your locality.

Fold Fold
•••••••••••••••••••••••••••••• it ••• ••• :

BUSINESS REPLY MAIL
NO POSTAGE STAMP NECESSARY IF MAILED IN U. S. A.

Attention: Programming Systems Publications

Department 058

POSTAGE WILL BE PAID BY

IBM Corporation

P.O. Box 390

Poughkeepsie, N.Y. 12602

FIRST CLASS
PERMIT NO. 81

POUGHKEEPSIE, N.Y.

t •••••••••• ••• ••

Fold

®

International Business Machines Corporation
Data Processing Division
112 East Post Road, White Plains, N.Y.10S01
[USA Only]

IBM World Trade Corporation
821 United Nations Plaza, New York, New York 10017
[International]

Fold

. -

