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PREFACE 

This volume describes the Floating Point Feature of 
the IBM 2044 Processing Unit, the processor for the 
IBM System/360 Model 44. Chapter 1 of the volume 
introduces the concepts of floating-point arithmetic 
and defines its application within the hexadecimal 
system used in the IBM 2044. Chapter 2 describes 
the functional parts of the floating point feature and 
the interaction of the feature with the basic central 
processing unit. Chapter 3 describes in detail the 
operation of the floating-point instruction set. 

The manual assumes knowledge of the System/ 
360 as described in IBM System/360 Principles of 
Operation, Form A22-6821. 

The volumes that constitute the IBM Field 
Engineering Theory of Operation manual for the 
IBM System/360 Model 44, and their form numbers, 
are: 

System/360 Model 44, Introduction and Functional Units, Form 
Y33-0001: Gives a general introduction to digital computers 
and computing techniques, defines the relationship of the 
IBM 2044 to the System/360 and describes the various parts 
which form the processing unit. 

System/360 Model 44, Principles of Operation -Processing 
Unit, Form Y33-0002: Describes the operation of the 
instructions for the accelerator and basic machine (other than 
floating-point instructions), and program and machine 

interrupts. 

First Edition 

System/360 Model 44, Principles of Operation - Channels, 
Form Y33-0003: Describes the Common Channel area, the 
Multiplexor Channel 0 and the High Speed Multiplexor 
Channel. 

These volwnes are referenced in other volumes 
by the main element of their titles. 

Reference is also made in these volumes to the 
following associated manuals: 

System/360 Model 44, Single Disk Storage Drive, Form 
Y33-0006: Gives an introduction to the operation of the 
control unit and describes in detail the functional parts and 
the operations that may be performed. 

Field Engineering Maintenance Manual (FEMM), IBM System/ 
360 Model 44, Form Y33-0007: Contains information for 

servicing the 2044 Processing Unit. 
Field Engineering Maintenance Diagrams (FEMD), IBM System/ 

360 Model 44, Volume 2, Form Y33-0008: Contains 
maintenance information in the following categories: Data 
Flow Charts, Flow Charts, Timing Charts, MAP's. 

Other related manuals that describe units used in 
the System/360 Model 44 are: 

Field Engineering Manual of Instruction (FEMI), 1052 Adapter, 
Form 223-2808. 

Field Engineering Maintenance Manual (FEMM) Sini/;le Disk 

Storage/Direct Access, Form Y26-3663. 

This manual makes obsolete Field Engineering Theory of Operation, System/360 Model 44, 
Form Z33-0005-0. 

The manual is written basically to Engineering Change Level 390049 and in some cases anticipates 
Engineering Change Level 390063. Significant changes or additions to the information in the manual 
will be coyered in subsequent revisions of FE supplements. 

This publication was prepared by IBM European Laboratories, Product Publications. A form is provide 
at the back of this manual for reader's comments. If the form has been removed, comments may be 
addressed to: IBM Corporation, FE Manuals, Dept. B96, PO Box 390, Poughkeepsie, N. Y. 12602 

© International Business Machines Corporation 1966 

( 

( 

( 



CHAPTER 1. INTRODUCTION • 
Properties of Numbers 
System/360 Floating-Point Numbers • 

Hexadecimal and Decimal Conversion (Examples) 
Terms used in System/360 FP Arithmetic 

Rules for Floating-Point Arithmetic 

Multiply 

Divide 
Shifting. 
Add and Subtract 

Floating-Point Exceptions 
Instructions and Instruction Format 

Variable-Precision Feature. 

CHAPTER 2. FUNCTIONAL UNITS • 
Floating-Point Data Flow 
Characteristic Arithmetic • 

Characteristic Addition • 
Characteristic Subtraction 
Characteristic Incrementing 

Characteristic Decrementing 
Control Components • 
Arithmetic Components. 

Floating-Point Registers 
Use 
Input. 
Output 
Controls. 
Read Controls 

Write Controls • 
Description. 
Display and Store Facilities 

Floating-Point Scratch Register 

Use 
Input. 
Output 
Controls • 
Description. 

Display • 
Exponent Register A 

Use 
Input. 
Output 
Control 
Description • 
Display • 
Special Aspects 

Exp0J;lent Register B 

Use 
Input. 
Output 

Controls. 
Description. 
Display • 

Exponent CLA 
Use 

Input. 
Output 
Controls. 
Description. 

Plus 1 Carry Generator 
Use 

Page 
1- 1 
1-
1-
1- 2 
1- 3 
1- 4 
1- 4 
1- 4 
1- 4 
1- 4 
1- 4 
1- S 
1- S 

2-

2-
2- 2 
2- 2 
2- 2 
2- 2 
2- 2 
2- 3 
2- 4 
2- 4 
2- 4 
2- 4 
2- 4 

2- 4 
2- 4 
2- 6 
2- 6 
2- 6 
2- 6 
2- 6 
2- 6 
2- 7 
2- 7 
2- 7 
2- 7 
2- 7 
2- 7 
2- 7 
2- 7 
2- 7 
2- 7 
2- 8 
2- 8 
2- 8 
2- 8 
2- 8 
2- 8 

2- 8 
2- 9 
2- 9 
2- 9 
2- 9 

2- 9 
2- 9 
2- 9 
2-10 
2-10 
2-10 

CONTENTS 

Input and Output 

Controls 
Description 

Minus 1 Carry Generator 
Use. 
Input 
Output. 
Controls 
Description 

Exponent Funnel. 
Input 
Output. 
Controls 
Description 

ABC Funnel (Variable-Precision Controls) 
Use. 
Input and Output 
Controls 
Description 

Console Facilities 
Exponent Underflow and Overflow Detection 

Examples of Underflow/Overflow Detection 
FP Check Circuits . 

FP Sequence Control Checking 
FP Program Exceptions 

Significance Exception 
Divide Exception 
Exponent Overflow Exception 
Exponent Underflow Exception 

.' 

CHAPTER 3. PRINCIPLES OF OPERATION 
Load and Store Instructions 

Load Instructions 
Short Precision 

Long Precision 
Store Instructions 

Short Precision 
Long Precision 

Halve Instructions 
Short Precision • 
Long Precision 

Add and Subtract Instructions (Short-Precision Operands) . 
Step 1 - Fetching of Operands 

Operand-Fetch (RX Format) . 
Operand-Fetch (RR Format) • 

Step 2 - Matching of Cha .. acteristics and Adding of 
Fractions . 

Operand 1 Exponent HI 
Operand 1 Exponent LO 
Exponents EQ 

End Conditions • 
Step 3 - Recomplementing of Fraction Result 
Step 4 - COITecting of Fraction Overflow and Normalizing 

of Result • 
Step S - Storing of Result and Setting of Condition Code. 

Analysis of B Register Sign Bit • 

Setting of Condition Code 
Examples of Short-Precision Add/Subtract 

Compare Instructions (Short-Precision Operands) 
Step 1 - Fetching of Operands 
Step 2 - Matching of Characteristics and Subtracting of 

Fractions • 

Page 
2-10 
2-10 
2-11 

2-11 
2-11 
2-11 
2-11 

2-11 
2-11 
2-11 
2-12 
2-12 
2-12 

2-12 
2-13 
2-13 

2-13 
2-13 

2-13 
2-14 
2-14 
2-15 

2-16 

2-16 
2-17 
2-17 
2-19 
2-19 
2-20 

3-
3-

3-

3-
3-
3-
3- 2 
3- 2 
3- 2 
3- 2 
3- 2 
3- 3 
3- 3 
3- 3 
3- 4 

3- 4 
3- S 

3- 6 
3- 6 
3- 6 
3- 6 

3- 7 
3- 7 
3- 7 
3- 8 
3- 8 
3-12 
3-12 

3-12 



CONTENTS (continued) 

Step 3 - Analysis of Result and Setting of Condition Code. 
Add and Subtract Instructions (Long-Precision Operands) 

Step 1 - Fetching of Operands • 
Step 2 - Matching of Characteristics and Adding of 

Fractions 
Step 3 - Recomplementing of Fraction Result 
Step 4 - Correction of Fraction Overflow and Normalization 

of Result 
Step 5 - Storage of Results and Setting of Condition Code. 
Examples of Long-Precision Add/Subtract 

Example 1 . 
Example 2 • 

Compare Instructions (Long-Precision Operands) 

Step 1 - Fetching of Operands • 
Step 2 - Matching of Characteristics and Subtracting of 

Fractions 

Step 3 - Analysis of Result and Setting of Condition Code. 
Multiply Instructions (Short-Precision Operands) • 

Step 1 - Fetching of Operands and Initialization . 
Step 2 - Fraction Multiply Cycles and Addition of 

Characteristics (Exponent) . 
Step 3 - Post-Normalization of Product 
Step 4 - Storing the Result • 
Step 5 - Test for FP Exceptions 

Page 
3-12 
3-13 

3-13 

3-14 
3-15 

3-1S 
3-15 

3-16 
3-16 
3-17 
3-19 
3-19 

3-20 

3-20 
3-20 
3-21 

3-21 

3-22 
3-22 

3-22 
Introduction to Multiply Instructions (long-Precision Operands) 3-22 

Principles of Long-Precision Multiply 3-23 

Execution of long-Precision Multiply (Precision = 10, 12, 14) 3-23 
Step 1 - Operand Fetch and Pre-Normalization 

Sequence lA, R2 Cycle (RR Format) 
Double EA Cycles, Sequence lA (RX Format) 

Sequence 5A 
Sequence 2A 

Rl Cycle 
Sequence 3A 
Sequence 4A 
Setting of Zero HI and LO Latches 

Step 2 - Low-Order Product 
Sequence IB 
Sequence 3B 
Sequence 2B 

Step 3 - First Cross-Product 
Sequence 4B 

Sequence 3B 
Sequence 5B 

Step 4 - Second Cross-Product 
Sequence lC 
Sequence 2C 
Sequence 3C 
Sequence 5C 
Sequence 4C 
Sequence ID 

Sequence 3D 
Step 5 - High-Order Product 

Sequence 4D 
Sequence 2D 

3-25 
3-25 
3-25 

3-25 
3-25 
3-25 

3-26 
3-26 

3-26 
3-26 
3-26 
3-26 

3-27 

3-27 
3-27 
3-27 
3-27 

3-27 
3-28 

3-28 
3-28 
3-28 

3-28 
3-28 
3-28 
3-28 

3-28 

3-28 

Step 6 - Post-Normalization, Exception Test and Result 

Store. 
Sequence 5D 
Rl Cycle 

Execution of Long-Precision Multiply (Precision = 8) 
Step 1 - Operand Fetch and Pre-Normalization 

Step 2 - Multiplication 
Sequence IB 
Sequence 2B 

S!ep 3 - Post-Normalization, Exception Test and Product 
Store • 

FP Common Multiply Cycles . 
Divide Instructions (Short-Precision Operands) 

Instruction Execution 
Operand 2 Fetch and Pre-Normalizing Cycles 
Operand 1 Fetch and Pre-Normalizing Cycles 
Divide Cycles • 
Quotient Store Cycle 

Introduction to Divide Instructions (Long-Precision Operands) • 
Execution of long-Precision Divide (Precision = 10, 12, 14) 

Step 1 - Operand 2 Fetch and Pre-Normalizing 
EAEA Cycle with Sequence lA (RX Format) 

Sequence lA, R2 Cycle (RR Format) 
Sequence 5A 
Sequence 2A 

Step 2 - Operand 1 Fetch and Pre-Normalizing 

Rl Cycle 
Sequence 3 . .'\. 
Sequence 4A 

Step 3 - Divide Cycles and High-Order Quotient Storing 
Sequence IB or Sequences IB, 2B, 3B 
Rl Cycle 
Sequence 4B 

Rl Cycle 
Sequence IB or Sequences IB, 2B, 3B 

Step 4 - Low-Order Quotient Storing and Testing for 
Exceptions • 
Sequence lC 

Sequence 2C (N=lO only) 
Rl Cycle 

Execution of long-Precision Divide (Precision = 8) 
Step 1 - Operand 2 Fetch and Pre-Normalizing 

Step 2 - Operand 1 Fetch and Pre-Normalizing 
Step 3 - Divide Cycles • 
Step 4 - Quotient Storing and Testing for Exceptions 

Sequence lC 

Sequence 3C 
Rl Cycle 

FP Common Divide Cycles. 

Principles of FP Divide • 
FP Common Divide, Single Arithmetic Cycles 

FP Common Divide, Double Arithmetic Cycles 

Page 

3-29 

3-29 
3-29 
3-29 
3-29 

3-30 
3-30 
3-30 

3-30 
3-31 
3-32 

3-33 
3-33 
3-34 

3-34 
3-35 

3-35 
3-35 

3-35 
3-35 
3-36 

3-36 
3-36 
3-36 

3-36 
3-36 
3-36 
3-36 
3-37 

3-37 
3-37 
3-37 
3-37 

3-37 
3-37 
3-37 

3-37 

3-37 
3-37 
3-38 

3-38 
3-38 
3-38 
3-39 
3-39 

3-39 
3-40 

3-42 
3-43 

APPENDIX A. POWERS OF 16 • A- 1 

\'<11\ 

/ 
I 

\. 



ILLUSTRATIONS 

Figure Title Page Figure Title Page 

CHAPTER 1. INTRODUCTION 3- 5 Example of FP Complement Add with 
1- 1 Floating-Point Fo=at . 1- Recomplement (Opnd 1 Exp HI Condition) . 3-10 

1- 2 Floating-Point Instruction Details 1- 6 3- 6 Logic for Gate BOO Inverted on Long-Precision 
Add, Subtract, Compare Operations. 3-15 

CHAPTER 2. FUNCTIONAL UNITS 3- 7 Example of Long-Precision Add (Opnd 1 Exp LO 
2- 1 Exponent Arithmetic Data Flow. 2- 1 Condition) 3-16 

2- 2 FP Sequence Controls and Latches 2- 3 3- 8 Example of Long-Precision Complement Add with 

2- 3 FP Medium-Speed Local Storage Read and Write Recomplement (Opnd 1 Exp HI Condition) . 3-18 

Drives. 2- 5 3- 9 Principles of Long- Precision Multiply 3-23 

2- 4 Typical Scratch Register Position 2- 7 3-10 Single-Cycle Chart for Long-Precision Multiply 
2- 5 Typical Exponent Register A Position (Bit 6) 2- 8 (Precision = 10, 12, 14) . 3-24 

2- 6 Typical Exponent Register B Position and Plus 1 3-11 Single-Cycle Chart for Long-Precision Multiply 

Carry Generator. 2- 9 (Precision = 8) . 3-30 

2- 7 Exponent CLA 2-10 3-12 Instructional Diagram of B Register Extension 
2- 8 Minus 1 Carry Generator 2-11 Sign Bit for Multiply Cycles 3-32 

2- 9 Exponent Funnel 2-12 3-13 Initial Shift Counter Values for Common Multiply 
2-10 FP Variable-Precision True/Criss-Cross Controls 2-13 Loop . 3-32 

2-11 FP Underflow/Overflow Condition Detection. 2-15 3-14 Single-Cycle Chart for Long-Precision Divide 
2-12 Control Checking 2-17 (Precision = 10, 12, 14) 3-34 

2-13 FP Significance and Divide Exceptions 2-18 3-15 Single-Cycle Chart for Long-Precision Divide 
2-14 Exponent Overflow and Underflow Exceptions 2-19 (Precision = 8) . 3-38 

3-16 Initial Shift Counter Values for FP Common 

CHAPTER 3. PRINCIPLES OF OPERATION Divide - Single Arithmetic Cycles 3-39 

3- 1 Operand 1 Exponent HI, to and EQ Latches 3- 4 3-17 Initial Shift Counter Values for FP Common 
3- 2 FPA Complement and Recomplement Latches 3- 5 Divide - Double Arithmetic Cycles 3-39 

3- 3 Logic for Gate BOO Inverted on Short-Precisio? 3-18 Example of Full Reduction Cycle. 3-40 

Add, Subtract, Compare Operations 3- 8 3-19 Examples of Combined Correction and Reduction 
3- 4 Example of FP No=alized Addition (Opnd 1 Cycle 3-40 

Exp LO Condition) 3- 9 3-20 FP Quotient Bit Controls 3-41 



ABBREVIATIONS 

The following abbreviations are used in this manual. 
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PROPERTIES OF NUMBERS 

Scientific and engineering applications demand 
extensive handling of numbers with values that vary 
from the very large to the very small. To allow 
for the handling of these numbers, and to obtain 
results with sufficient precision, registers in com­
puters would need an excessively large capacity. 

Since register size is generally limited, and the 
result of a calculation using very large or very small 
numbers is usually meaningful only in the significant 
digits, the floating-point (FP) system of arithmetic 
is applied to the calculations. 

This system of representing numbers is, in effect, 
a shorthand method which allows the significant 
digits of a number to be used in a calculation and the 
magnitude of the number to be held separately from 
the calculation. 

In decimal notation this type of operation is 
familiar. For example, the timing of computer 
operations is expressed in milliseconds, micro­
seconds or nanoseconds. This expression produces 
a number in which extraneous zeros are removed 
and only relevant significant digits remain. Thus an 
operation that takes 0.000015 seconds is expressed 
as 15 x 10 - 6 seconds (15 microseconds) and an 
operation that takes a much shorter time, such as 
0.000000015 seconds can be expressed, with the 
same ease, as 15 x 10 - 9 seconds (15 nanoseconds). 

Similarly, large numbers may be expressed in 
this manner. For example, light travels approxi­
mately 6,000,000,000,000 miles in one year that is, 
6 x 10 12 miles. 

In the foregoing examples, the significant digits 
and the power of ten to which they are raised may be 
expressed in a smaller number of positions than the 
original number. 

It is usual in floating-point representation to place 
place the point immediately to the left of the most­
significant digit. Thus 15 microseconds becomes 
. 15 x 10 -4 seconds and 15 nanoseconds becomes 
.15 x 10 -7 seconds, while 6,000,000,000,000 miles 
becomes. 6 x 10 13 miles. 

The number of significant digits held determines 
the accuracy of the calculation and is called the 
"precision" . 

CHAPTER 1. INTRODUCTION 

SYSTEM/360 FLOATING-POINT NUMBERS 

• Floating-point numbers are recorded in the hexa­
decimal number system. 

• The Significant digits are recorded as hexa­
decimal fractions. 

• The exponent is the value to which the base 16 is 
raised. 

• The characteristic can be a number from 0 to 
127. The characteristic has a value of exponent 
plus 64, giving a range of exponents of - 64 to 
+63. 

• Floating-point numbers are recorded in fixed­
length format: 

For short precision in a single word. 
For long precision in a double word. 

• Bit 0 of either format denotes the sign of the 
fraction. 

• Bits 1 to 7 of either format denote the charact­
eristic. 

• Bits 8 to 31 for short precision or bits 8 to 63 
for long precision denote the fraction. 

• Negative fractions are always carried in true 
form 

The format in which floating-point numbers are 
held is shown in Figure I-I. 

Chapter 1, Introduction and Functional Units, 
Form Y33-0001, shows that floating-point numbers 
are not expressed with a base of 10 as in the deci­
mal system but use, instead, the hexadecimal 
system with a base of 16. Thus, numbers in System! 
360 format are expressed as a fraction to the base 
16 times a power of 16, whereas decimal represen­
tation is a fraction to the base 10 times a power of 
10 . 

The format chosen for System/360 floating­
point data allocates seven binary digits to express 

Short-Precision Floating-Point Format: 

I S I Characteristic Fraction) Q 
o 7 8 31 

Long-Precision Floating-Point Format: 

~I _s~I ___ C_h_a_ra_ct_e_ris_ti_C ____ ~_F_ra_c_ti_on __ ~)S~ ____ ~ 
o 7 8 63 

Figure 1-1. Floating-Point Format 
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the power or exponent. The allocation provides an 
allowable range of 0 to 127. 

Since provision must be made for the represen­
tation of either positive or negative exponents, a 
system of expressing the exponent in "excess 64 
arithmetic" is used. This is done by adding + 64 to 
each exponent and the result or characteristic is 
expressed in the seven binary digits allocated. This 
method allows both positive and negative exponents 
to be expressed as a positive binary number. Thus 
the characteristic is contained in seven digits 
allowing a range of 0 through + 64 to + 127, repre­
senting an exponent reange of - 64 through 0 to + 63 
(as characteristic = exponent = + 64) . 

The format chosen for the fraction allows either 
6 or 14 hexadecimal digits in the fraction and thus 
the range of numbers is from a fraction x 16 63 to a 
fraction x 16 -64 ; the precision of expressing the 
fraction may range from the short-precision 6 
hexadecimal digits to the long-precision 14 hexa­
decimal digits. 

The sign of the floating-point number is held 
separately from both the fraction and characteristic 
and, as usual, is a single digit with a 1 represen­
ting a minus and a 0 representing a plus. The 
fraction is always in true form. 

The following are sample normalized short 
floating-point numbers. The last two rows repre­
sent the smallest and the largest positive normalized 
numbers. 

1.0 

0.5 

1/64 

0.0 

1 
=+ 1/16 x 16 =0 1000001 0001 00000000000000000000 

o 
=+ 8/16 x 16 =0 1000000 100000000000000000000000 

-1 
=+ 4/16 x 16 =00111111 01000000 0000 0000 00000000 

-64 
= + 0 x 16 = 0 0000000 0000 0000 0000 0000 0000 0000 

1 
-15.0 =- 15/16 x 16 = 1 1000001 111100000000000000000000 

-79 
5.4x 10 

-64 
=+ 1/16 x 16 =000000000001 00000000000000000000 

75 -6 63 
7xlO =(1-16 )x16 =011111111111 11111111111111111111 

Hexadecimal and Decimal Conversion (Examples) 

Refer to the Appendix of the manual for a Powers of 
16 table. 

Conversion Example 1 

Convert the hexadecimal (hex) number 1B2. 3C to 
decimal (dec) notation. 

21012 
Result: (1 x 16 ) + (11 x 16 ) + (2 x 16 ) + (3 x 1/16 ) + (12 x 1/16 ) 

=256 + 176 + 2 + 0.1875 + 0.0469 
= 434. 2344 

1-2 8/66 Model 44 Floating Point FETO 

Conversion Example 2 

Convert the decimal number 434.2344 to hexa­
decimal notation. 
a. Convert 434 to hexadecimal. 

434 ... 16 

27 ... 16 

1 + 16 

434 (dec) 

= 27 and a remainder of ~ 

= 1 and a remainder of 1i (11) 

= 0 and a remainder of 1 

= IB2 (hex) 

b. Convert 0.2344 to hexadecimal. 

0.2344 x 16 = 1. 7504 

O. 7504 x 16 = !E. 0064 

0.0064 x 16 = Q. 1024 

O. 2344 (dec) = O. 3CO (hex) 

C. Combine the results of the above two steps. 

434.2344 (dec) = IB2. 3C (hex) 

Conversion Example 3 

Convert the decimal number 2277.302 to a System/ 
360 short-precision floating-point number. 
a. Convert 2277 to hexadecimal. 

2277 ... 16 

142 + 16 

8 ... 16 

2277 (dec) 

= 142 and a remainder of .i! 
= 8 and a remainder of ~ (14) 

= 0 and a remainder of §. 

= 8E5 (hex) 

b. Convert 0.302 to hexadecimal. 

0.302 x 16 

0.832 x 16 

0.312 x 16 

=1·832 

= 1l. 312 

= 1:. 992 

0.302 (dec) = O. 4D5 (hex) 

c. Combine results of steps (a) and (b) and express 
as a fraction multiplied by a power of 16 
(exponent). 

2277.302 (dec) = 8E5. 4D5 (hex) 

3 
= O. 8E54D5 x 16 (hex) 

d. Convert the exponent to binary representation 
and add to 64 to form the characteristic. 

Characteristic = 1000011, that is (64 + 3) 

e. Assemble sign (bit 0), characteristic (bits 1 to 8) 
and fraction (bits 9 to 31) to form System/360 
short-precision floating-point number. 

Result = 0 1000011 1000 1110 0101 0100 1101 0101 



Conversion Example 4 

Convert to decimal notation the following System/ 
360 short-precision floating-point numbers. 

a 1000010 0001 0101 1100 0000 0000 0001 

a. Obtain the exponent in decimal form. 

Characteristic = 66 

Exponent = 66 - 64 = +2 

b. Express each unit of the fraction as a decimal 
number times a power of 16. 

-1 -2 -3 -6 
Fraction=(lx16 )+(5x16 )+(12x16 )+(lx16 ) 

c. Multiply each unit of the fraction by 16 to the 
power of the exponent. (Add exponents. ) 

Result = 162 x Fraction 

1 a -1 -4 
Result =(lx16)+(5x16)+(12x16 )+(lx16 ) 

d. Calculate result (using if necessary the Powers 
of 16 table). 

Result = 16 + 5 + (12 x O. 0625) + (0. 000015) 

= 21. 750015 (to 6 decimal places) 

e. Add sign. 

Result = + 21. 7500 15 

Conversion Example 5 

Convert to decimal notation the following System/ 
360 short--precision floating-point number. 

1 0111110 1111 1001 0000 0001 0000 0000 

a. Obtain the exponent in decimal form. 

Characteristic = 62 

Exponent = 62 - 64 = -2 

b. Express each unit of the fraction as a decimal 
number times a power of 16. 

-1 -2 -4 
Fraction =(15x16 )+(9x16 )+(lx16) 

c. Multiply each unit of the fraction by 16 to the 
power of the exponent. (Add exponents.) 

-2 
Result = 16 x Fraction 

-3 -4 -6 
= (15 x 16 ) + (9 x 16 ) + (1 x 16 ) 

= 0.003 662 109 375 + 0.000 137 101 + 0.000 000 059 604 

= O. 003 799498 180 

-3 
= 3. 7995 x 10 

d. Add sign. 
-3 

Result = - 3. 7995 x 10 

Terms Used in System/360 FP Arithmetic 

Characteristic: The exponent plus 64, expressed as 
a seven-bit binary number. 

Exponent: The number (or power) by which the base 
(or radix) 16 is raised. 

FP Number: The floating-point number consists of 
a sign bit, a seven-binary-bit characteristic and 
either a 6- or 14- hexadecimal-digit fraction. 

Fraction: The fraction is either 6 or 14 hexadecimal 
digits, numbered from 0 to 5 or 0 to 13 respectively. 
The radix point is in front of the leftmost digit. 

Guard Digit: A hexadecimal digit which is preserved 
in the (hexadecimal) digit-6 position of short­
precision results, to take part in the post­
normalizing process if it is required by the instruc­
tion. 

Hexadecimal: A number system using a base (or 
radix) of 16. 

Normalization: The process of shifting left the 
hexadecimal digits of the fraction portion of an un­
normalized number until the leftmost hexadecimal 
digit becomes significant. The characteristic is 
reduced by one for each shift left executed. Note 
that the first three binary digits may be zero, pro­
vided that the first hexadecimal digit is significant. 

Pre-normalization: The process of normalizing 
operands prior to performing arithmetic operations. 

Post-normalization: The process of normalizing 
results. 

Precision: The accuracy with which the fraction is 
expressed and a measure of the length of the oper­
ands and results. Short-, variable- and long­
precision operands contain 6, 8 to 14, and 14 hexa­
decimal digits respectively. 

Radix Point: A general term for use with any num­
ber system to describe a function equivalent to that 
of the decimal point in decimal notation. 

Un-normalized Number: A number in which the 
fraction digits contain one or more hexadecimal 
zeros prior to the first significant hexadecimal 
digit. 

Variable-Precision: A preset precision (determined 
by a console switch) which defines the number of 
hexadecimal digits which are to be used in calcula­
tions. The precision switch on System/360 Model 
44 allows a precision of 8, 10, 12 or 14 hexadecimal 
digits, and causes long operands to be truncated to 
the defined precision on the cycle when low-order 
digits are fetched. 
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RULES FOR FLOATING-POINT ARITHMETIC 

Multiply 

• The exponents are added 

• The fractions are multiplied. 

• If necessary, the result is normalized. 

Example (in decimal notation): 

(0.25 x 104 ) x(O. 33x 10- 7) 
Add exponents: 4 + (-7) = - 3 
Multiply fractions: 0.25 xO. 33 =0. 0825 
Result: 0.0825 x 10- 3 

Nonnalized: 0.825 x 10-4 

This sequence is executed with one instruction. 

Divide 

• The divisor exponent is subtracted from the 
dividend exponent. 

• The fractions are divided. 

• If necessary, the result is normalized. 

Example (in decimal notation): 

-2 -5 
(0.222 x 10 ) + (0.4 x 10 ) 
Subtract exponents: -2- (-5) = + 3 

Divide fractions: 0.222 + 0.400 = 0.555 
Result: O. 555 x 103 

Normalization not necessary (in this example). 

Shifting 

• Shift Left: for each digit position shifted, the 
value of the exponent is reduced by one. 

• Shift Right: for each digit position shifted, the 
value of the exponent is increased by one. 

Examples (in decimal notation); 

a. Shift-left-three: .000073 x 107 

Result = • 073000 x 104 

b. Shift-right-two: .560000 x 106 

Result = . 005600 x 108 
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Add and Subtract 

• The number with the smaller exponent is shifted 
to the right and the value of its exponent increased 
until the values of both exponents are equal. 

• The fractions are added (or subtracted). 

• The exponent remains unchanged. 

• If specified, the result is normalized. 

Example (using decimal notation): 

Add 0.00217 x 1010 and 0.8 x 103 

1. The number with the smaller exponent is shifted 
right until exponents become equal. 

0.00217 x 10 
10 

O. 00000008 x 10 10 

2. The fractions are added (or subtracted). 

0.00217008 x 1010 

3. If specified, the result is normalized. 
8 

0.217008 x 10 

FLOATING-POINT EXCEPTIONS 

• Normal exceptions apply to FP instructions and 
data: 

Operation. 
Protection. 
Addressing. 
Specification (Basic). 

• Additional exception conditions are used with the 
FP feature: 

Specificiation (floating-point). 
Exponent overflow. 
Exponent underflow. 
Significance. 
Floating-point divide. 

Exceptional instructions, data, or results cause a 
program interrupt. When the interrupt occurs, the 
current Program Status Word (PSW) is stored as an 
old PSW, and a new PSW is obtained. The interrupt 
code in the old PSW identifies the cause of the inter­
rupt. The following exceptions cause a program 
interrrupt in floating-point arithmetic . 
1. Operation Exception: Occurs when the floating­

point feature is not installed, and an attempt is 
made to execute a floating-point instruction. 



The instruction is suppressed and the condition 
code, data in registers, and storage data are 
unchanged. 

2. Protection Exception: Occurs if the storage pro­
tect feature is installed and the storage key of a 
store-instruction location does not match the 
protection key in the PSW. The operation is 
suppressed and the condition code, data in reg­
isters, and storage data are unchanged. 

3. Addressing Exception: Occurs when an address 
designates a location outside the available stor­
age for the installed system. The operation is 
terminated and the resultant data and the condi­
tion code, if affected, are unpredictable and 
should not be used for further computation. 

4. SpeCification Exception: Occurs when a short 
operand is not located on a 32-bit boundary, a 
long operand is not located on a 64-bit boundary, 
or a floating-point register address other than 
0, 2, 4 or 6 is specified. The instruction is 
suppressed, and the condition code, data in reg­
isters, and storage data are unchanged. 

5. Exponent Overflow Exception: Occurs when the 
result exponent of an addition, subtraction, 
multiplication or division overflows (that is, is 
greater than +63) and the result fraction is not 
zero. The operation is terminated; the resul­
tant data is unpredictable and should not be used 
for further computation. The condition code is 
set to binary 11 for addition or subtraction and 
remains unchanged for multiplication and divi­
sion. 

6. Exponent Underflow Exception: Occurs when the 
result exponent of an addition, subtraction, 
multiplication or division underflows (that is, is 
less than - 64) and the result fraction is not 
zero. A program interrupt occurs if the expo­
nent underflow mask bit is one. The operation 
is completed by replacing the result with a true 
zero. The condition code is set to 00 for addi­
tion and subtraction and remains unchanged for 
multiplication and division. The state of the 
mask bit does not affect the result. 

7. Significance Exception: Occurs when the result 
fraction of an addition or subtraction is zero. A 
program interrupt occurs if the significance 
mask bit is one. The mask bit also affects the 
result of the operation. When the significance 
mask bit is zero, the operation is completed 
without further change to the characteristic of 
the result. In either case, the condition code is 
set to 00. 

8. Floating-Point Divide Exception: Occurs when a 
division by a number with zero fraction is 
attempted. The division is suppressed and the 
condition code, data in registers, and storage 
data are unchanged. 

INSTRUCTIONS AND INSTRUCTION FORMAT 

• RR and RX formats are used for FP instructions. 

• The R1 and R2 fields must specify floating-point 
register 9, 2, 4 or 6. 

• For long-precision instructions the actual preci­
sion is determined by the setting of the variable­
preCision switch. 

The standard RR and RX formats are used in the 
floating-point instruction set. 

For floating-point instructions, R1 and R2 fields 
must specify one of the Floating-Point Registers 
(FPR's), 0, 2, 4 or 6, that are provided with the 
feature. If either R1 or R2 specifies other than one 
of these FPR's, a specification exception and a 
program interrupt occur. 

In common with the standard instruction set, 
results replace the first operand, except for storing 
operations, when the second operand is replaced. 

Figure 1-2 lists the floating-point instructions, 
their mnemonics, operation (op) codes and formats, 
and the exceptions that cause a program interrupt. 

VARIABLE-PRECISION FEATURE 

• Applies to long-precision instructions. 

• Precision of 8, 10, 12 or 14 digits can be 
selected. 

• Operands are truncated on operand-fetch. 

• Truncated positions are replaced by zeros. 

• Results are stored in long-precision format (with­
out truncation) regardless of the setting of the 
variable-precision switch. 

• Results are truncated when they are next fetched. 

• Truncation does not occur on console display. 

The Model 44 user may specify that long..:precision 
instructions shall be executed with less than 14 digits 
of preCision. Specifying is made by means of a 
console rotary switch marked 'floating-point preci­
sion'. This switch has four positions (14, 12, 10, 
8) which refer to the number of hexadecimal digits 
of the fraction that are to be processed by long­
preCision instructions. 

When the switch is set to 14, the full 14-digit­
(56-bit) fraction is processed and results of floating­
point instructions are identical to those obtained on 
other System/360 Models with floating-point facili-

Introduction 8/66 1-5 



Name 

Load 
Load 
Load 
Load 
Load and Test 
Load and Test 
Load Complement 
Load Complement 
Load Positive 
Load Positive 
Load Negative 
Load Negative 

Add Normalized 
Add Norma Ii zed 
Add Normalized 
Add Norma Ii zed 
Add Un-normalized 
Add Un-normalized 
Add Un-normalized 
Add Un-normalized 
Subtract Normalized 
Subtract Normalized 
Subtract Normalized 
Subtract Normalized 
Subtract Un-normalized 
Subtract Un-normalized 
Subtract Un-normalized 
Subtract Un-normalized 
Compare 
Compare 
Compare 
Compare 
Halve 
Halve 

Multiply 
Multiply 
Multiply 
Multiply 

Divide 
Divide 
Divide 
Divide 

Store 
Store 

legend: 

A Addressing exception 
C Condition cade is set 

Precision 

Long' 
Long' 
Short 
Short 
Long * 
Short 
Long * 
Short 
Long * 
Short 
Long * 
Short 

Long * 
Long * 
Short 
Short 
Long * 
Long * 
Short 
Short 
Long * 
Long * 
Short 
Short 
Long * 
Long * 
Short 
Short 
Long * 
long * 
Short 
Short 
long * 
Short 

long' 
long' 
Short 
Short 

Long' 
long' 
Short 
Short 

Long' 
Short 

E 
FK 
LS 

Exponent-overflow exception 
Floating-point divide exception 
Significance exception 

Type 

RR 
RX 
RR 
RX 
RR, C 
RR, C 
RR, C 
RR, C 
RR, C 
RR, C 
RR, C 
RR, C 

RR, C, N 
RX,C, N 
RR, C, N 
RX,e, N 
RR, C 
RX, C 
RR, C 
RX, C 
RR, C, N 
RX, C, N 
RR, C, N 
RX, C, N 
RR, C 
RX, C 
RR, C 
RX, C, 
RR, C 
RX, C 
RR, C 
RX, C 
RR 
RR 

RR, N 
RX, N 
RR, N 
RX, N 

RR, N 
RX, N 
RR, N 
RX, N 

RX 
RX 

Mnemonic Op Code Exceptions 

LDR 28 S 
LD 68 A, S 
LER 38 S 
LE 78 A, S 
LTDR 22 S 
LTER 32 S 
LCDR 23 S 
LCER 33 S 
LPDR 20 S 
LPER 30 S 
LNDR 21 S 
LNER 31 S 

ADR 2A S, U, E, LSi 
AD 6A A, S, U, E, LS 
AER 3A S,U,E,LS 
AE 7A A, S, U, E, LS 
AWR 2E 5, E, L5 
AW 6E A,S,E,LS 
AVR 3E 5, E, LS 
AV 7E A,5,E,LS 
SDR 28 S,U,E,LS 
SD 68 A, S, U, E, LS 
SER 38 S,U,E,LS 
SE 78 A, S, U, E, LS 
SWR 2F S, E, LS 
SW 6F A, S, E, LS 
SUR 3F S, E, LS 
SU 7F A, S, E, LS 
CDR 29 S 
CD 69 A,S 
CER 39 S 
CE 79 A, S 
HDR 24 S 
HER 34 S 

MDR 2C S, U, E 
MD 6C A, S, U, E 
MER 3C S, U, E 
ME 7C A, S, U, E 

DDR 2D S, U, E, FK 
DD 6D A, S, U, E, FK 
DER 3D S, U, E, FK 
DE 7D A, S, U, E, FK 

STD 60 P, A, S 
STE 70 P, A, S 

P Protection exception 
S Specification exception 
U Exponent-underflow exception 
• Precision determined by FP precision 

switch 
N Normalized operation 

Figure 1-2. Floating-Point Instruction Details 
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ties. At the 12, 10 and 8 settings, all long-precision 
instructions of the floating-point set operate on 
fractions that are truncated to 12, 10 or 8 digits 
respectively; these results will normally differ 
in precision, and possibly in significance, from 
those of other models with floating-point facilities. 
Short-precision instructions are unaffected by the 
switch. 

Truncation occurs at the ABC funnel at the time 
that operands are fetched from core storage. Since 
the least-significant halves of the FPR's are located 
in extension storage, the least-significant half of all 
floating-point operands (whether located in main 
storage or in an FPR) must pass through the Storage 
Data Register (SDR) and ABC funnel. Truncation 
applies in this way to all long-precision operands, 
whether fetched for RR or for RX instructions. 

Once truncation has occurred, the operand(s) 
may be extended with zeros to a full 56-bit fraction, 
and processed as such; this processing is amplified 
in the sections of the manual concerning specific 
instructions. It follows that where shifting has 
occurred (to align fractions whose exponents differ) 
non-zero results in the low-order bytes may be 
placed in the result register, and manual display of 
FPR's may show a full-length non-zero fraction, 
regardless of the setting of the variable-precision 
switch. 

In order to fetch the contents of an FPR, one of 
the 22 long-precision FP instructions must be given. 
Since all these instructions truncate on fetching, the 
Central Processing Unit (CPU) program can never 
access fraction bytes beyond the selected precision. 
For the programmer, therefore, results may be 
considered to be stored truncated. 

Introduction 8/66 1-7 



( 

\. 

\. 

\ 



FLOATING-POINT DATA FLOW 

• Floating-point registers are used instead of the 
general-purpose registers for storing floating­
point operands. 

• FP fraction arithmetic is performed by the basic 
CPU arithmetic and logic data flow. 

• Two registers are added to the basic arithmetic 
data flow, the AX register and the floating-point 
scratch register. 

• A separate exponent arithmetic data flow is pro--
vided for characteristic handling and consists of: 

Exponent registers A and B 
Exponent carry look-ahead 
Exponent funnel 
Plus 1 and minus 1 carry generators. 

• Four FP sequence latches are added for control 
purposes. 

The floating point feature provides additional regis­
ters, data flow and control circuitry to enable the 
floating-point instructions to be executed. These 
additions cause the console facilities and the 
checking features of the Model 44 to be extended. 

Floating-point operands are not stored in the 
General-Purpose Registers (GPR's) but are con­
tained in separate FPR's which are provide with 
the floating point feature. These FPR's are num­
bered 0, 2, 4 and 6 and can contain long-precision 
(double-word) floating-point operands. Note that 
GPR's are used, however, during the I-fetch of RX­
type floating-point instructions. 

The fraction arithmetic is performed in the basic 
Arithmetic and Logic Section (ALS) of the CPU but 
a separate section of data flow is provided for char­
acteristic arithmetic. This section of the data flow 
(shown in Figure 2-1 and in FEMD Figure 1001) 
contains the following units: 

Exponent funnel Exponent C LA 
Exponent register A Plus 1 carry generator 
Exponent register B Minus 1 carry generator 
This additional section of the data flow is logi-

cally equivalent to the main arithmetic section; the 
exponent registers A and B and the exponent CLA 
perform the same logical function on input data as 
the A and B Registers and the main CLA. 

Two additional registers, each of 32 bits, are 
provided in the main data flow to facilitate the han­
dling of long-precision operands. The registers are 
the AX register (which can be accessed only by a 

CHAPTER 2. FUNCTIONAL UNITS 

32-bit interchange with the A register) and the FP 
scratch register (which can be loaded from the B 
register and read out to the Hardware (HW) funnel). 

The floating-point instructions in general require 
lengthy execute times, and four additional FP 
sequence latches are used to provide adequate con­
trols for the execute phase of these instructions. 

During the execute phase of these instructions, 
the normal rules for single-cycle operation, apply 
as stated in "Console" in FEMM IBM System/360 
Model 44, Form Y33-0007. The additional data 
flow registers, all FPR's, and the status of the FP 
sequence latches and their control latches can be 
displayed from the console. The FPR's and AX 
register may be stored into, also from the console. 

The FP sequence latches are subject to the same 
type of control check as the basic sequence latches. 
Other program checks are provided for the excep­
tions which can occur with floating-point operation; 
these exceptions include specification (floating­
point), significance, FP divide, exponent overflow 
and exponent underflow. 

From A Register From MSLS 
Bits 00 to 07 FPR's Bits 00 to 07 
(5.7 Bits) (5.7 Bits) 

(C. 7 Bi ts) (C.7 Bi ts) 

(5.7 Bi ts) to 
ABC Funnel Bits 00 to 07 
via Hardware Funnel 

Legend: 7: Characteristic Bits 1 to 7 
C:BitCarry 
5: Bit Sign (Bit 0) 

Figure 2-1. Exponent Arithmetic Data Flow 
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CHARACTERISTIC ARITHMETIC 

• Characteristic arithmetic is performed in the 
exponent register area. 

• The fraction sign is stored in this area but does 
not take part in characteristic arithmetic. 

• Any carry from characteristic arithmetic is 
preserved for exponent underflow/overflow 

. detection circuits. 

• Arithmetic processes include: 
Characteristic addition 
Characteristic subtraction 
Characteristic incrementing 
Characteristic decrementing 

The characteristic arithmetic is performed in the 
exponent register area (Figure 2-1). The whole 
characteristic (fraction sign and characteristic) is 
brought from the main data flow to exponent regis­
ters A and B via the exponent funnel. 

Characteristic arithmetic is, however, performed 
only on bits 01 to 07 and any carries are preserved 
in the exponent registers. Thus, these registers 
are nine bits wide and consist of bit 'sign', bit 
'carry' and bits 01 to 07. 

The arithmetic processes which may be per­
formed by the exponent register area are: charac­
teristic addition, subtraction, incrementing and 
decrementing. The result of this arithmetic, formed 
in exponent register B and gated to the HW funnel at 
the appropriate time, consists of the fraction sign 
(bit 'sign') and the characteristic (bit 01 to 07). Bit 
'carry' is used for exception detection and is not 
gated out as part of the characteristic result. 

Thus, the different bus widths as shown in Fig­
ure 2-1, contain seven, eight or nine bits, depending 
on their use. Inputs and outputs of the exponent 
register area are seven data bits with the fraction 
sign bit. Inputs to each of the three carry units are 
seven data bits while the output of these same carry 
units is eight bits (seven data bits and a carry bit). 

Characteristic Addition 

• Used for the multiply instruction. 

The exponent register area is used for character­
istic addition for the multiply operation. For this 
operation the two characteristics are added and 64 
is subtracted from the result (using 'excess 64 
arithmetic') to obtain the true result characteristic. 
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Example 
Characteristic 1: 98 

Exponent 
+ 34 

Characteristic 2: ...R.. 
+ - 32 + 

Sum of characteristics: 130 
Less 64: ..§i... 

Result characteristic: 66 + 2 

Characteristic Subtraction 

• Used for the divide instruction . 

• Used for exponent matching for add, subtract, 
and compare instructions. 

The exponent register area is used for character­
istic subtraction associated with the divide instruc­
tion. One characteristic is subtracted from the 
other and 64 is addp,d to the result ('excess 64 arith­
metic') to provide the true result characteristic. 

Example 

Characteristic 1: 
Characteristic 2: 

73 
49 

Difference of characteristics: 24 
Add 64 64 + 

Exponent 
+ 9 
- 15 

Result Characteristic: 88 + 24 

For the add, subtract and compare instructions, 
an arithmetic difference between the two character­
istics is needed to determine the number of shifts 
required for matching the exponents of the two 
operands; the difference is obtained by subtraction. 

Characteristic Incrementing 

• Used during shift-right-four operations (digit 
shifting). 

• Used for some characteristic adjustment during 
the divide instruction. 

For digit shifting of a fraction to the right, the 
corresponding increment of one must be performed 
on the exponent for each position shifted. This 
function can be performed on a characteristic in 
exponent register B by the plus 1 carry generator. 

Characteristic Decrementing 

• Used during shift-left-four operations (digit 
shifting). 

• Used for some characteristic adjustment during 
the divide instruction. 

For digit shifting of the fraction to the left, the 
corresponding decrement of one must be performed 
on the exponent for each position shifted. This 
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function can be performed on a characteristic in 
exponent register B by the minus 1 carry generator. 

CONTROL COMPONENTS 

• Lengthy execute times require additional sequence 
latches. 

• Four additional FP sequence latches (A, B, C, D) 
are required. 

• FP controls are provided by the AND of the FP 
sequence latches and the basic sequence latches. 

• FP sequence latches are subject to control­
checking. 

• FP sequence latches advance (A to B, B to C, C 
to D) each time' sequence l' is called. 

• Basic sequence latches can turn on in any order 
between each time that 'sequence l' is called. 

CC 3 Se 1 Ctrl 
CC 4 CC 

Because of the lengthy execution times required for 
floating-point instructions, four FP sequence latches 
(A, B, C and D) are added with the floating point 
feature. The latches augment the basic sequence 
latches by providing, with them, 20 combinations of 
controlling sequences for floating-point operations. 
These combinations are provided by the AND con­
dition of each of the four FP sequence latches with 
the five basic sequence latches to give sequence 
controls that are called, for example, lA, lB, 2B, 
5D. 

The FP sequence latches are subject to the same 
control check as the basic sequence latches. That 
is, a control check occurs if two of these FP latches 
are on at CC 2, CP 2 time of any compute clock 
cycle. 

Figure 2-2 shows the FP sequence latches and 
the FP sequence controls. The first FP sequence 
combination used in any floating-point instruction is 
sequence lA. The FP sequence A latch then 
remains on until the next sequence 1 is called, at 

""CC:=-=2,---=-_-;--=---,--:=-:-----I A OR FP Reset Seq 
Not An Console Clock Ctrl Latches 

~~~~~~~-------~OR 

Fixed-Pt Divide Re 

Turn On Seq A 

Turn On Se 

FP Div Turn On Se 
FP Div Turn On Se 

Refer also to ALD Pages KT 011 
and KT 021 

Figure 2-2. FP Sequence Controls and Latches 

Clear Data Flow 

CC 2 CP 2 Not Console 

Seq B Ctrl 

FL 

Seq C Ctrl 

FL 

Seq D Crrl 

FL 

Seq A Latch 

FL 

Seq BLotch 

FL 

Seq C Latch 

FL 

Seq D Latch 

FL 
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which time the FP sequence latches are advanced 
(in this case) from A to B. 

While the FP sequence latch is on, the basic 
sequence latches can be used in any combination 
with it although generally each basic sequence latch 
is used only once within each group. . For example, 
the sequence progression for the FP short-precision 
divide instruction is sequence lA, 5A, 2A, 4A, 1B, 
2B. Note that the FP sequence A latch remains on 
through the basic sequences 5, 2 and 4 and advances 
to sequence B when sequence 1 is called. 

ARITHMETIC COMPONENTS 

Floating-Point Registers 

• Four floating-point registers, numbered 0, 2, 4 
and 6, are provided. 

• Each register is 64-bits wide. 

• The high-order 32 bits use special triggers in 
hardware while the low-order 32 bits use exten­
sion storage. 

• Addressable by the Ra and Rb registers and the 
console. 

• The hardware storage is of the medium-speed 
local storage type. 

Use 

Four FPR's are provided with the floating point 
feature. They are used exclusively to store FP 
operands and are numbered 0, 2, 4 and 6. Each 
register has a 64-bit capacity so that long-precision 
operands can be stored. 

The registers are split into two 32-bit sections, 
the high-order 32 bits (0 to 31) being hardware 
sections and the low-order 32 bits (32 to 63) being 
in core-storage locations in extension storage. For 
short-precision operands, only the hardware sec­
tion of the register is used, while for long-precision 
operands both sections are used. 

Input 

The hardware section of the register is loaded 
directly from the B register, while the extension 
storage section is loaded from the B register via 
the SDR. 

Output 

Bits 0 to 31: These bits are gated to the correspon­
ding positions of the ABC funnel via the HW funnel. 
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Gating along this bus can select bits 0 to 31 or bits 
8 to 31 (the fraction bits) only. 

Bits 0 to 7: These bits can be gated to the exponent 
funnel (exponent arithmetic section only). 

Bits 32 to 63: These bits are gated to the ABC fun­
nel through the normal path for data from core 
storage, but the entry into the ABC funnel is con­
trolled by the setting of the variable-precision 
switch. Byte 0, bytes 0 and 1, bytes 0, 1 and 2 or 
bytes 0, 1, 2 and 3 can be selected. 

Controls 

The part of the registers located in extension stor­
age is controlled by the normal storage addressing 
circuits with the address formed from the Ra and/ 
or Rb registers. 

The part located in hardware is addressed from 
the same Ra or Rb register and is controlled for 
write or read by the circuits shown in Figure 2-3. 

Read Controls 

FPR addresses are obtained from the Ra or Rb 
register by decoding the FPR number that is defined 
by the contents of the particular register. 

'I-cycle control latched up' latch is used to con­
trol which of these two registers is decoded to 
provide the FPR address data. The latch is set by 
the I-cycle control and is reset during the instruc­
tion execution after operand 2 has been fetched. 
When this latch is on, the Rb register is decoded to 
allow operand 2 data to be fetched; when the latch is 
off, the Ra register is decoded to allow operand 1 
data to be fetched and the result to be stored in the 
operand 1 FPR. 

The FPR addresses can also be generated from 
the console address switches during console store 
or display operations. 

The decoding network output consists of four 
'FPA primary read decode xx', lines. Only one 
line can be active at a time. The common input 
condition of 'FPA address' of the subsequent AND 
blocks is permanent during execution of a Floating 
Point Arithmetic (FPA) instruction or when FPR's 
are addressed from the console; these AND blocks 
raise the 'array drive read FPR' line corresponding 
to the decoded address. 

The 'array drive read FPR' line, when active (+), 
gates the state of all 32 positions of the selected 
FPR hardware portion to the HW funnel via the last 
OR blocks shown in Figure 2-3. In the HW and ABC 
funnels, the data (which is thus available at all times 
during FP executions other than when the ABC fun­
nel is handling other data) is controlled further by 
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Figure 2-3. FP Medium-Speed Local Storage Read and Write Drives 



the different FP operations for admission to the ALS 
of the data flow. 

Write Controls 

The FPR address decoding circuits for write are 
similar to those for read but the Ra register only is 
used during instruction execution as no operation 
stores its results in the operand 2 field. The write 
decoding circuits are common to the FPR's and to 
the CPR's used with the accelerator feature. How­
ever, the output 'primary write decode xxxx' shown 
in Figure 2-3 is sufficient to address the FPR's. 
Further decoding to address the GPR's as necessary 
is achieved by including Ra register bits 0 and 3 in 
the address analysis. One only of the 'primary 
write decode' lines shown can be active at a time. 

The common condition 'write strobe FPR's is 
active when 'FPA address' is present (+) with 'FPA 
gate B register to FPR'. An adjustable time delay 
has been added, which is set to suppress the write 
strobe 30 nanoseconds before the B register is reset. 
Since the B register provides the input data, this 
suppression prevents possible trouble if the B reg­
ister is reset while the 'FPA gate B register to FPR' 
signal is still effective. 

NOTE: Except during FP operation execution, 
the condition 'FPA address' is absent and the condi­
tion 'GPR address' (obtained by inversion) is per­
manentlyavailable. When the GPR's are imple­
mented in Medium-Speed Local Storage (MSLS), 
the same kind of circuits are used for read GPR's 
and for write GPR's as for the FPR's. 

Description 

The FPR's are so designed that the high-order 32 
bits consist of hardware latches, and the low-order 
32 bits are accommodated irr a predetermined area 
of extension storage. A low-order word needs a 
one-microsecond access time; however, the high­
order word has a 250-nanosecond read/write capa­
bility, as MSLS modules with a non-destructive read 
cycle are used (refer to "Accelerator Feature" in 
Chapter 2, Introduction and Functional Units, Form 
Y33-0001). Only the hardware (MSLS) section is 
used for FP short-precision operands. For FP 
long-precision operands, both hardware and core 
storage sections are used. 

This core storage use allows the amount of hard­
ware to be reduced without affecting the performance 
of long-precision operations, because the two halves 
of an operand can be fetched in parallel. The low­
order word (in extension storage) is addressed, read 
out and placed into the SDR while the high-order wor 
is fetched in parallel from the hardware registers. 
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The high-order word is loaded in the appropriate 
register (A, B or C), which is then interchanged 
with the auxiliary register (AX or BX register). 
The second word is available from the SDR as soon 
as the handling of the first word is terminated (that 
is, when A and B registers are free). 

Display and Store Facilities 

Both parts of each FPR can be displayed separately 
on the console. The high-order 32 bits (hardware) 
are displayed by the SDR via the funnels and the B 
register, while the low-order 32 bits are displayed 
by the SDR after being read out from the extension 
storage. 

The display is produced by operating the display 
pushbutton with the storage select rotary switch at 
the FPR position. The address of the register is 
defined by the address switches 29, 30 and 31. 
(Position 31 indicates that the low-order part of the 
FPR is used.) 

For the same setup of address switches, the 
store operation is performed by operating the store 
pushbutton. This operation stores the content of the 
data switches in the addressed section of the FPR 
selected. 

Floating-Point Scratch Register 

• Used to store, provisionally, certain partial 
results during fraction arithmetic. 

• Used to develop the floating-point divide quotient. 

• Is 32 bits wide. 

• Each position is a multi-input trigger. 

• Can be displayed on the console. 

Use 

The scratch register is used to store parts of inter­
mediate fraction results during FP multiply or 
divide operations. 

The FP divide quotient is developed by condi­
tioning the quotient bit entry to position 31, and 
inserting it on the next shift-left-one operation. 

Input 

The input to the scratch register is from correspon­
ding positions of the BX register. Also, position 31 
receives the quotient bit (during FP divide) and each 
other position receives the contents of the position 
to its right on a shift-left-one operation. 

, 
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Output 

All 32 positions of the scratch register can be gated 
to the corresponding positions of the ALS registers 
by gating them to the scratch register output bus and 
routing them through the HW and ABC funnels. By 
this method, the stored partial results of the frac­
tions are re-introduced into the ALS for further 
processing. The data paths involved are shown on 
FEMD Figure 100l. 

Positions 28 to 31 are tested for zero for use 
during FP divide normalization cycles. 

Note that when the scratch register content is not 
gated to its output bus, the state of the output bus 
lines is the positive 'logical one' condition. This 
condition is also the normal output of the HW funnel 
and is used for generating the decrement value for 
updating the interval timer. 

Controls 

The scratch register is used and controlled to store 
the BX register with FP mUltiply and divide opera­
tions only. During the division cycles of FP divide, 
shift-left-one operations are performed on the 
scratch register content and, as the developing of 
the quotient progresses, each FP quotient bit is 
inserted in the vacated position 31. 

Description 

Each position of the scratch register is a multi-input 
trigger as shown in Figure 2-4. Note that position 
bit 31 receives the quotient bit instead of the next 
low-order position. The multi-input trigger and 
the shift signal supply circuits are described in 
FEMM IBM System/360 Model 44, Form Y33-0007. 

Display 

The 32 positions of the scratch register are dis­
played on the console with the CPU roller switch set 
to position 7. 

Not FP Scrotch Reg Bi t 06 

DC Reset Scratch 

S = Shift Pulse occurring with the 
Appearance of the Condition 

Figure 2-4. Typical Scratch Register Position 

FP Scratch Reg 
Bit 05 

FL 

Exponent Register A 

• Used for exponent arithmetic in the exponent data 
flow section. 

• Nine bits wide: seven exponent bits, one carry 
bit and one fraction sign bit. 

• Controlled by the particular FP instruction. 

• The fraction sign bit is not affected by arithmetic 
operations on the exponent. 

• Each position is a multi-input trigger. 

• Bit 'sign' and bits 1 to 7 can be displayed on the 
console. 

Use 

Exponent register A is used in exponent arithmetic 
in conjunction with exponent register B to feed 
exponent CLA. Its sign bit is the fraction sign bit 
and is used with bit 'sign' of the exponent register B 
in analysis circuits for correct result sign gating 
(gate BOO inverted). 

Jnput 

Exponent register A receives its input (one charac­
teristic) from the exponent funnel, at the time of 
operand characteristic gating. The register receives 
the exponent register B contents by interchanging. 

Output 

The output is to the corresponding position of the 
CLA (bits 1 to 7 only), and to exponent register B 
for interchanging. Position 1 to 3 are also gated to 
analysis circuits to set the operand 1 exponent high 
(HI) latch, operand 1 exponent low (LO) latch or 
exponents equal (EQ) latch. As the B register bit 
00 normally contains the fraction sign bit of the 
result, bit 'sign' is fed to the circuits that control 
the 'gate B register bit 00 inverted' line. 

Control 

The input commands are generated from the FP 
operation decoding circuits and from the FP 
sequence latches. 

Description 

A typical exponent register A position is shown in 
Figure 2-5. The register receives input from the 
exponent funnel at the time it receives a character-
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FP Ex onent Funnel Bit 6 
~~~~~~~~~----~A 

OR 
FP Exp Reg A 

Bit 6 

AC Interchan e Ex onent Re isters 

S = Shift Pulse occurring with the 
Appearance of the Condition 

A 

Note: Exponent register A bit sign has a binary-triggered 
exponent funnel entry, 

FL 

Figure 2-5. Typical Exponent Register A Position (Bit 6) 

istic from the A register or from the FPR' s. The 
carry bit input is fed not from the A register or the 
FPR's but from the exponent register B. 

Display 

Bit 'sign' and bits 1 to 7 only are displayable on the 
console in CPU roller switch position 2 with the CPU 
2 switch operated. The display is indirect and oper­
ates similarly to the AX or BX register display, but 
the interchange made by the CPU 2 switch position is 
with the exponent register B. 

Special Aspects 

The positions of the exponent register A are single­
triggered, except for bit 'sign' which is binary­
triggered. Since exponent register A receives only 
one characteristic, the Exclusive OR (EXOR) prop­
erties of the binary-triggered input have no special 
effect on the operation. 

Exponent Register B 

• Used for exponent arithmetic in the exponent data 
flow section. 

• Nine bits wide: seven exponent bits, one carry 
bit and one fraction sign bit. 

• Controlled by the particular FP instruction. 

• Performs an Exclusive OR function on data from 
the exponent funnel. 

• The fraction sign bit is not affected by arithmetic 
operations on the exponent. 

• Each position is a multi-input trigger. 

• Bit' sign' and bits 1 to 7 can be displayed on the 
console. 

• Is the path out of the exponent data flow. 
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Use 

Exponent register B is used in characteristic hand­
ling in conjunction with exponent register A and the 
exponent C LA, and the exponent funnel. It is also 
the only path out of the characteristic handling area 
for the results and has therefore an interchange 
capability with exponent register A. Exponent reg­
ister B can be incremented or decremented with the 
aid of the plus 1 and minus 1 carry generators when 
shift-left-four or shift-right-four operations are 
performed during fraction manipulation. 

Input 

The inputs from the operand characteristic area, the 
exponent CLA and the minus 1 carry generator enter 
exponent register B via the exponent funnel. Inputs 
are binary-triggered at the register to perform an 
EXOR function. 

A further (binary-triggered) input to exponent 
register B is from the plus 1 carry generator. This 
input does not affect bit 'sign' position which receives 
its input only from the characteristic. Exponent 
register B can receive data from exponent register 
A with an 'interchange exponent registers A, B' 
signal. 

The 'clear data flow' input sets all ones in the 
whole exponent register B. The ones remain if a 
dc reset exponent register B signal does not occur. 

Output 

All nine bits can be gated to exponent register A. 
All bits, except bit 'carry', can be gated to the HW 
funnel for assembly of the result characteristic. 

All seven exponent bits (1 to 7) can be gated to the 
plus 1 and minus 1 carry generators where an analy­
sis, for exponent register B equals zero or equals 
one, is made. These seven bits can also be gated to 
the CLA, to the console for display and to the oper­
and 1 exponent HI, operand 1 exponent LO, or expo­
nents EQ latch circuits. 

Bits 1 and 'carry' are used by the underflow and 
overflow detection circuits and bit 'sign' is used by 
the complement-add circuits for add, subtract and 
compare instructions. 

Controls 

The input command lines are normally generated 
from the FP operation analysis and from the' FP 
sequence latches as shown in the ALD's. However, 
'DC reset exponent register B' is raised only during 
the FP multiply operation where an addition of the 
exponents is required. 

( 
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Description 

Figure 2-6 (upper part) shows that exponent register 
B (like B register in the main CPU data flow) per­
forms an EXOR function to produce an analysis 
combination of both operands for feeding the CLA. 
Note that exponent register B feeds the exponent 
CLA directly. There is no need for an exponent 
register C analagous to the C register in the main 
CPU data flow as the use of conditioning inputs from 
the exponent funnel prevents possible feedback. 

Because bit 'sign' represents the sign of the 
fraction and is not the exponent sign, it is not 
altered by exponent add or subtract operations (+1, 
-1 CLA gating), although it is set from the exponent 
funnel. 

Display 

The exponent register B bit 'sign' and bits 1 to 7 
only can be displayed on the console with the CPU 
roller rotary switch in position 2. 

Exponent C LA 

• Carry generator and carry-rippling circuits for 
exponent arithmetic. 

• Boolean expression is Kn = (Exp A. Not Exp B) + 
(Exp B. Kn-l). 

• Output is controlled by the instruction. 

• The high-order output is the bit 'carry' and is 
part of the exponent underflow/overflow detection. 

Use 

The exponent CLA, which is seven bits wide and is 
part of the exponent arithmetic area, provides the 
carries required to complete exponent arithmetic 
when they are required by the operation. 

Input 

The inputs to the exponent CLA are fed directly from 
bits 1 to 7 of both exponent register A and exponent 
register B. 

Output 

The output from the exponent CLA is gated to the 
corresponding position of the exponent funnel. Eight 
output lines are used, as the bit 'carry' developed by 
the exponent CLA is gated to the bit 'carry' position 
of exponent register B for underflow and overflow 
detection. 

-.--

AC Set Plus 1 to Exp Reg B A 
S -'--

Exponent Funnel Bit 3 
A OR ~ Exponent 

Exp Reg A Bit 3 - -S - Register B 

AC Interchange Exp Regs S A 
Bit 3 Exp Reg B 

Clear Data Flow - FL Bit 3 
-

DC Reset Exp Reg B -
S-

Not Exp Reg A Bit 3 A 

U AC Set Exp Reg B 
'---- -

5 A OR 
r-- -S 

A 

~ -
Exp RegB Bit 1 To Exponent Reg B 
Exp Reg B Bi t 2 
Exp Reg B Bit 3 
Exp Reg B Bit 4 

A 
Exp Reg B all One's 

Exp Reg B Bit 5 
Exp Reg B Bi t 6 
Exp Reg B Bit 7 

-
Cond Plus 1 Carry Bi t 1 

~ I- A 

I-

r---

~- A 
Cond Plus 1 Carry Bi t 2 

>-

~ 

~ -c- Cond Plus 1 Carry Bi t 3 

-I- A -
~ 

'--

~o Cond Plus 1 Carry Bi t 4 

~tr:l Cond Plus 1 Carry Bi t 5 
ate: Exponent register B is 

always conditioned 
~ To Exp Reg B Bit 6 

N 

To Exp Reg B Bit 7 

Figure 2-6. Typical Exponent Register B Position and Plus 1 
Carry Generator 

Controls 

There are no controls on the input to the exponent 
CLA, which is fed directly from the output of expo­
nent registers A and N. The gating of the exponent 
CLA output through the exponent funnel is controlled 
and is gated by the line 'condition sum to exponent 
register'. The timing of this signal differs for each 
of the various floating-point operations requiring 
exponent addition or subtraction. 
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Description 

The exponent CLA is a seven-bit wide block of 
unlatched high-speed logic. This logic is shown in 
Figure 2-7. The exponent CLA performs a similar 
function to that of the C LA in the main ALS of the 
machine. 

The carry-in to each position of exponent register 
B is derived from the exponent register A (OR of the 
two characteristics) and the exponent register B 
(EXOR of the two characteristics). 

C d't' S t E R on I Ion urn 0 xp egs 

1 A 
To Exponent Funnel 

Not FP Multiply operation Exp CLA Bit 7 
r--r--

Exp Reg Bit 7 ~ 
A Exp CLA Bit 6 

Not Exp ReQ Bi t 7 f...- OR 
Exp Reg A Bit 7 A 

L-r-
Not Exp Reg B Bit 6 OR Exp CLA Bit 5 Exp ReQ A Bit 6 - A 
Exp Reg B Bit 6 OR 

-I.-

L--
Exp Rea B Bit 5 A Exp CLA Bit 4 
Nat Exp Reg B Bi t 5 - OR 
Exp Reg A Bit 5 A 

I.-L--

...--....--
L--

A 

r-
'--

A 

OR 
Exp CLA Bit 3 

>- -
A 

~ 
~ 

Exp Reg B Bit4 A 

Not Exp Reg B Bit 4 ~ 
Exp Reg A Bit 4 

LOR Not Exp Rea B Bit 3 
Exp CLA Bit 2 

Exp RegB Bit 3 ~ A 
Exp Reg A Bit 3 OR 

'---

L 
Exp Reg B Bit 2 A 
Not Exp Reg Bi t 2 f...- OR 

Exp CLA Bit 1 

Exp Rea A Bit 2 A 

r-B 
~-

--
Not Exp Rea A Bit 1 OR 

- A 
Exp C LA Bi t Carry 

Exp Rea A Bit 1 OR 
Not Exp Rea B Bit 1 -

-

Figure 2- 7. Exponent CLA 
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A carry-in to a position is equivalent to a carry­
out of the preceding position which is given by the 
following: 
1. A one-bit in exponent register A and a zero bit 

in exponent register B. This state is the (1+1) 
condition for this bit and a carry-out will always 
result regardless of the carry-in condition for 
this position. 

2. A one-bit in exponent register B and a carry-in 
condition to that bit. This state is the (1 + 0 + 
carry-in) condition and represents a carry ripple 
or propagation through a bit position. 

Bit position 7 of both exponent registers A and B 
is used to generate the carry-in for bit position 6, 
bit position 6 of both registers is used to generate 
the bit position 5 carry-in, and so on. The input 
from bit position 1 generates the eight output line 
(bit carry). 

Bit position carry in the exponent register B is 
set and reset with the other positions and is used in 
underflow and overflow detection. 

Note that the line 'not FP multiply op' (Figure 
2-7) is used to provide the CLA carry-in as 'carry­
in to exp CLA' (not shown). This is valid because, 
for all but multiply operations, characteristic sub­
traction is performed. The prinCiple of using the 
C LA output of one bit to feed the next position (as 
used in the main C LA) is applied . 

Plus 1 Carry Generator 

• Provides carry-in bits to increase the value of 
exponent register B. 

• Output is direct to exponent register B input. 

Use 

The plus 1 carry generator is used to increase by 
one the value of exponent register B during fraction 
manipulation, such as during the shift-right-four 
action that occurs with characteristic matching in 
add, subtract or compare operations. 

Input and Output 

The input to the plus 1 carry generator is the data 
bits 0 to 7 of the exponent register B. The output is 
directly coupled to a conditioning input to exponent 
register B. 

Controls 

There are no controls on the input to the plus 1 
carry generator from exponent register B. The 
output is set into exponent register B by the' AC set 
plus 1 to exponent register B' signal (Figure 2-6). 



Description 

The logic of the plus 1 carry generator is shown in 
Figure 2-6, together with a typical exponent register 
B position. 

The logic used is simple cascading AND circuits 
that produce the carry-in required to increase the 
value of the exponent register B by one. 

Minus 1 Carry Generator 

• Provides carry-in bits to reduce the value of 
exponent register B. 

• Output is normally conditioned through the expo­
nent funnel if no other exponent funnel controls 
are present. 

Use 

The minus 1 carry generator is used to reduce the 
value of exponent register B by one during fraction 
manipulation such as normalizing. 

Input 

The input to the minus 1 carry generator is the data 
bits 0 to 7 of exponent register B. 

Output 

The output of the minus 1 carry generator is gated 
to the corresponding position of the exponent funnel. 
Eight output lines are used, as the bit 'carry' devel­
oped by the minus 1 carry generator is gated to the 
bit 'carry' position of exponent register B for 
underflow detection. 

Controls 

There are no controls on the input to the minus 1 
carry generator from exponent register B. The 
gating of the output lines through the exponent fun­
nel is normally conditioned if no other gates are 
present. 

Description 

The logic of the minus 1 carry generator is shown 
in Figure 2-8. As with the plus 1 carry generator, 
AND circuits are used to produce the carry-in 
required to reduce the value of exponent register B 
by one. 

C d" on Itlon um to XP eas 
Condi tion A Reg to Exp Regs 

I OR N Condition FPR's to Exp Regs 

Condition Minus 1 to Exp Regs 1 
Not Exp Reg B Bit 1 -
Not Exp Reg B Bit 2 
Not Exp Reg B Bit 3 
Not Exp Reg B Bit 4 
Not Exp Reg B Bit 5 A E~Re9 Boll Zeros 

Not Exp Reg B Bit 6 
Not Exp Reg B Bit 7 -

p---

~ f-
f- f-

Cond Mi nus 1 Carry Bi t 1 
A 

-
~r--

~ I-
~f-f- A 

Cond Mi nus 1 Carry Bi t 2 

'----

~-

~ r- Cond Mi nus 1 Carry Bi t 3 
~I-r- A 

--
~ 

~ f-
A 

Cond Mi nus 1 Carry Bi t 4 
'-I-r-

-
'-
~ Cond Minus 1 Carry Bit 5 

A 
Cond Mi nus 1 Corry Bi t 6 

To Exp Funnel Bit 7 

Figure 2- 8. Minus 1 Carry Generator 

Exponent Funnel 

• Collects information to be directed to exponent 
registers A or B. 

• Eight bits wide: seven data bits and sign bit, or 
seven data bits and carry bit. 

• Unlatched logic is used. 

• Entry via the exponent funnel is controlled by the 
instruction. 

• Minus 1 carry generator is normally conditioned. 
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Input 

The active inputs to the exponent funnel are: 
A register (bits 00 to 07) 
FPR's (bits 00 to 07) 
Minus 1 carry generator (bits 1 to 7 and bit 

'carry') 
Exponent CLA (bits 1 to 7 and bit 'carry') 

An inactive input comes from the exponent reg­
ister A output, but the corresponding gate at the 
exponent funnel is never conditioned. 

Refer to Figure 2-9 for the exponent funnel logic. 
Note that the data from the exponent CLA bit 1 is 
inverted for FP multiply and divide operations to 
fulfil the requirements of excess 64 arithmetic. 

Output 

The exponent funnel output is available at all times 
as an input to both exponent register A and exponent 
register B. Unlike the A and B registers of the 
ALS, the exponent registers A and B require an 
'AC set' pulse to read in. 

Controls 

The exponent funnel controls are shown in Figure 
2-9, the conditioning lines being: 

Condition minus 1 carry bit (normally conditioned) 
Condition sum to exponent registers 
Condition FPR's to exponent registers 
Condition A register to exponent registers 

Condition Minus 1 Carry Bit: This conditioning line 
is always present if no other conditioning line is 
active. It provides the minus 1 carry bit generator 
data to the inputs of the exponent funnel bits 1 to 7 
and bit 'carry'. 

Condition Sum to Exponent Registers: This condi­
tioning line de-conditions the condition minus 1 
carry bit line and gates the exponent CLA ou.tput 
through the exponent funnel bit 1 to 7 and bit 'carry'. 

Condition FPR's to Exponent Registers: This condi­
tioning line de-conditions the condition minus 1 
carry bit line and gates the bits 00 to 07 of the FPR 
read-out on to the FPR output bus through the expo­
nent funnel bit 'sign' and bits 1 to 7. 

Condition A Register to Exponent Registers: This 
conditioning line de-conditions the condition minus 
1 carry bit line and gates bits 00 to 07 of the A 
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Condi ti on Mi nus 1 to Exp Regs -
Exp CLA Bit 7 r--

Condition Sum to Exp Regs A 
Exp Reg A Bit 7 f..-
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MSLS Output Bit 07 f..- OR 
Condition FPR's to Exp Regs A 
A Reg Bit 07 - " 

Condition A Reg to Exp Regs A 

----------- 1 ------------
------- - --- -------- - ---

Condition Minus 1 Carry Bit 3 -
Exp CLA Bit 3 

>--
A 
->--Exp Reg A Bit 3 A FPA Exp Funnel Bi t 3 - OR ---MSLS Output Bit 03 A 
-

A Reg Bit 03 A 

- - - - - - -- --- - ------- - --
---------- -----------
Condi ti on Mi nus 1 Carry Bi t 1 

~ 

FP Add, Subtract, Compare Ops -
Exp CLA Bit 1 A 

FP MUltiPIY'DiVideo~ "- -
~ A FPA Exp Funnel Bit 1 

OR 

Exp Reg A Bit 1 >-f.- -A 

-f.- -
MSLS Output Bit 01 A 

-
A Reg Bit 01 A 

Exp C LA Bi t Carry '--
A 
i-- OR 

FPA EXl'Funnel Bi t 

Exp Reg B a II Zeros A Carry 

Exp Reg A Bit Carry -- A 

- I-- FPA Exp Funnel Bit 
MSLS Output Bit 00 A OR 

Sign I--
A Reg Bit 00 A 

- '--

Figure 2-9. Exponent Funnel 

register through the exponent funnel bit 'sign' and 
bits 1 to 7. 

Description 

The logic for the exponent funnel is shown on the 
following ALD pages: 

Bit 'sign' position 
Bits 1 to 7 

Page KT 181 
Pages K T 231 to 251 

,/ 
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ABC Furmel (Variable-Precision Controls) 

• Used for truncating low-order bits of long­
precision operands. 

• Amount of truncation is defined by switch setting. 

• Variable-precision switch controls the 'gate 
true/criss-cross to ABC funnel' signals. 

Use 

The FP controls on the 'true/criss-cross to ABC 
funnel' gating allow the low-order 32 bits of long­
precision floating-point operands to be truncated 
to the precision defined by the variable-precision 
switch on the console. 

Input and Output 

All inputs and outputs of the ABC funnel are as 
described in Chapter 2 of Introduction and Functional 
Units, Form Y33-0001. 

L Halve 0 
Active Rl C cle Control A 
L Divide 0 and lB 

A FPA Op 
L Divide 0 and 3B 

A OR N 

FPA last EX at WC4. Rl 
A 

FP Store 0 
Active EA C de Control A 

FP 14 Di it Precision 

WC 1.CP 1 A OR FP Gate T/XC to ABC Funnel 

OR 

FP Gate T/XC 0 to 7 to ABC Funnel 

----------- -------

Controls 

The setting of the variable-precision switch controls 
the gating of the true/criss-cross output to the ABC 
funnel on those cycles where the 32 low-order bits 
of a long-precision operand are fetched. 

These fetch cycles are always an R1, R2 or EA 
cycle and are defined by the logic in the upper part 
of Figure 2-10. 

The output of the variable-precision switch is 
then used to control the bit gates that are condi­
tioned on the 'true/criss-cross to ABC funnel' path. 

Description 

Figure 2-10 shows that the bits gated from the true/ 
criss-cross to the ABC funnel for each position of 
the variable-precision switch are as in the following 
table. 

A 

Variable-Precision Switch Setting 

14 

12 

10 

8 

Bits Gated 

00 to 31 

00 to 23 

00 to 15 
00 to 07 

FP Gate T/XC 8 to 15 to ABC Funnel 
Not FP 8 Digit Precision 

Figure 2-10. FP Variable-Precision True/CriSs-Cross Controls 
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CONSOLE FACILITIES 

• FPR's 0, 2, 4 and 6 can be displayed in the data 
lights and stored into from the data bit switches 
by using the storage select switch. 

• The following FP feature registers can be dis-
played by the CPU roller: 

AX register (Position 3, CPU 2) 
Exponent register A (Position 2, CPU 2) 
Exponent register B (Position 2) 
FP scratch register (Position 7) 

• The AX register can be stored into from the data 
bit switches using the CPU roller position 3 and 
the CPU 2 switch. 

• The FP sequence control latches and sequence 
latches are displayed in console panel lights. 

• The FP sequence control check is part of the 
control check circuits which operate the control 
check lamp. 

• The variable-precision switch controls the pre­
cision of long-operands to either 8, 10, 12 or 14 
digits. 

The foregoing statements summarize the console 
facilities available for the FP feature. For full 
details of the store-and-display procedure and the 
associated circuits refer to FEMM IBM System/360 
Model 44, Form Y33-0007. 

EXPONENT UNDERFLOW AND OVERFLOW 
DETECTION 

• Exponent overflow can occur on FP add, sub­
tract, multiply or divide instructions. 

• Exponent underflow can occur on FP add, normal­
ized, subtract normalized, multiply or divide 
instructions. 

• Exponent overflow occurs if the result character­
istic exceeds 127. 

• Exponent overflow occurs if the result cha1'acter­
istic is less than zero. 

• Underflow/overflow detection is performed on 
the result characteristic in exponent register B. 

During the various characteristic manipulations an 
exponent underflow or overflow may occur. If this 
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condition exists at the end of the instruction execu­
tion (and the underflow exception is not masked off) 
the exception latch is set and a program interrupt 
is requested. Some operations may cause exponent 
underflow or overflow conditions during instruction 
execution which are corrected later in the opera­
tions. When the conditions occur the result charac­
teristic is correct and the temporary exception 
condition is ignored. 

Exponent overflow conditions take place when the 
result characteristic is greater than 127. This can 
occur during the normal execution of FP multiply 
and divide instructions. 

For FP add and subtract instructions an exponent 
overflow can occur. However, the result charac­
teristic exceeds 127 only if the partial result charac­
teristic (after matching of exponents) is already 127 
and a fraction overflow occurs. This means that a 
shift-right of the fraction by one digit takes place 
with a corresponding increment (and overflow) of the 
result exponent. 

Exponent underflow conditions occur when the 
result characteristic is less than zero. This can 
take place during the normal execution of FP mul­
tiply and divide instructions. For FP add and sub­
tract instructions an exponent underflow occurs only 
with the post-normalization process on add normal­
ized and subtract normalized instructions. During 
the normalization process the value of the exponent 
register B is reduced for each digit position shifted. 
This decrementing can cause the result character­
istic to be reduced to less than zero. 

In order to detect the various conditions that 
occur, both the exponent registers A and B have a 
bit 'carry' position to retain the carry-outs which 
may occur during exponent arithmetic. This bit 
'carry' position is set and reset with the other posi­
tions of the exponent registers. The bit 'carry' 
position also participates in any exponent register 
interchange. 

During an exponent add, plus one or. minus one 
operation, an underflow. or overflow causes the 
exponent register bit 'carry' to be inverted (flipped). 
Since two consecutive underflows or two consecutive 
overflows cannot occur, t:p.e state of the bit 'carry' 
position can be used to detect an underflow or over­
flow condition. 

For add, subtract and multiply instructions the 
initial condition of the result exponent register bit 
'carry' is zero, and thus an underflow or overflow 
condition is detected when the bit 'carry' is a one. 

For the divide instruction, the initial condition of 
the result exponent register bit 'carry' is a one and 
thus an underflow or overflow condition is detected 
when the bit 'carry' is a zero. 

For add and subtract instructions, the underflow 
can be distinguished from an overflow by the state of 

\ 
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exponent register bit 1. An overflow turns off bit 1 
and an underflow turns on bit 1. 

For multiply and divide instructions, the same 
analysis normally occurs. However, the amount of 
exponent arithmetic that occurs during these instruc­
instructions may cause the exponent register B bit 
1 to be inverted without a corresponding change in 
the bit 'carry'. Ii this condition occurs, the FP MD 
underflow/overflow inversion latch is set on and the 
overflow is detected when the exponent register B 
bit 1 is on. Conversely, for this condition, an 
underflow is detected when the exponent register 
B bit 1 is off. 

This logic is interpreted in Figure 2-11 and is 
demonstrated in the following examples. 

Examples of Underflow/Overflow Detection 

Example 1. Add normalized instruction 

Operand 1 (hex) 

Operand 2 (hex) 
Characteristic 1 (binary) 
Characteristic 2 (binary) 

Mult + Add Subt Comp + Halve Op 

01 00A102 
01 000010 
000 0001 
000 0001 

.---

The characteristics are equal and so the fractions 
can be added. 

00A112 
o 

Fraction result (hex) 
Fraction sign (binary) 
Characteristic result (binary) 000 0001 

Normalization is specified and so two shift-left­
four operations are performed on the fraction result 
which now becomes: 

A11200 

The characteristic is correspondingly decre­
mented twice as follows: 

C 1234567 Exponent (dec) 
Exponent register B 00000001 -63 
Minus 1 carry generator 1 1111111 - 1 

00000000 - 64 
Minus 1 carry generator 1 1111111 - 1 

1 1111111 - 65 (underflow) 

This gives a result characteristic in binary notation 
of: 

111 1111 with bit 'carry' turned on. 

Exp Re!:)ister B Bit Carry A (Mply/Div Uflo/Oflo Condition) 
(Divide Operation) r- OR 
Exp Regi ster B Not Bi t Carry A 

Exp Funnel Bit 1 - 1 Control Lalched 

r-- Mply~o/Oflo Inversion Latch 

~ AW FL Not Exp Funnel Bit Carry 
FP Mult or Div Op 

1- -~ 

-
NOTE: For Add Subt A 

OR - Comp Ops this Latch 
1 is OFF 

Clear Data Flow t -
I '--

L--
Exp Register B Bit 1 

~OR~ Not Exp Register B Bit 1 
-.....-.--

Mult + Add Subt Comp + Halve Op -'--

A EXD Reai ster B Bi t Carry __ r- OR FPA Underflow Condition 

(Divide Operation) A 
Not Exp ReQister B Bit Carry 

--8-r""'--
Exp Register B Bit Carry 

Not Exp Re!:)ister B Bit Carry 

Note: For add, subtract, compare operations, the multiply/divide 
underflow/overflow inversion latch is off. 

Figure 2-11. FP Underflow/Overflow Condition Detection 

A 

L-r- OR 

A 

FPA Overflow Condition 
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For the add instruction, the exponent register B 
bit 'carry' turned on indicates an underflow/over­
flow condition and the exponent register B bit turned 
on indicates an exponent underflow condition. 

Example 2. Add un-normalized instruction 

Operand 1 (hex) 
Operand 2 (hex) 
Characteristic 1 (binary) 
Characteristic 2 (binary) 

7EA06B02 
7FF82oo3 
111 1110 
111 1111 

The characteristics are matched by a right-shift­
four of the operand 1 fraction with corresponding 
increment of the operand 1 characteristic. Operand 
1 now becomes: 

Operand 1 (hex) 7FOA06BO (2) 

The fractions can then be added: 

Fraction 1 (hex) OA06BO 
Fraction 2 (hex) F82003 
Result fraction (hex) : 10226B3 

This fraction addition results in a fraction over­
flow, and a shift-right-four of the fraction with a 
corresponding increment of the result characteristic 
is necessary: 

Result fraction (hex) : 10226B 

The characteristic arithmetic is as follows: 

C 1234567 Exponent (dec) 
Exponent register B 
Plus 1 carry generator 

o 1111111 +63 
o 0000001 + 1 
1 0000000 + 64 (overflow) 

This gives a result characteristic in binary notation 
of: 

0000000 with bit 'carry' turned on. 

For the add instruction, the exponent register B 
bit 'carry' turned on indicates an underflow/overflow 
condition and exponent register B bit 1 turned off 
indicates an exponent overflow condition. 

Example 3. Multiply instructions 

Operand 1 (hex) 81008000 
Operand 2 (hex) 7A8ooooo 

Assuming that the operands are pre-normalized, 
the operand 1 fraction is given two shift-left-four 
operations with two corresponding decrements of the 
operand 1 characteristic. The operand 1 fraction 
then becomes (hex): 800000 
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The operand 1 characteristic arithmetic is as 
follows: 

s C 1234567 Exponent (dec) 
Exponent register B (binary) 1 0 0000001 -63 
Minus 1 carry generator 1 1111111 - 1 

1 0 0000000 -64 
Minus 1 carry generator 1 1111111 - 1 

1 1 1111111 -65 

This stage represents an exponent underflow of 
the operand 1 characteristic. As this is not the 
result exponent, an exponent underflow condition 
is not signalled. 

The multiply operation continues with the frac­
tions being multiplied: 

Result fraction (hex) : 400000 

The characteristics are added using excess 64 
arithmetic. This causes the carry-in to the bit 1 
position to be inverted. 

s C 1234567 Exponent (dec) 

Exponent register B 1 1 1111111 - 65 
Add Operand 2 Characteristic 0 0 1111010 + 58 

1 0 0111001 - 7 

The result sign and characteristic (hex) is thus 
B9. Note that the temporary underflow during the 
pre-normalization has been corrected as the expo­
nent register B bit 'carry' of the result is now 
turned off. 

The combined result (hex) is: B9 400 000 

FP CHECK CIRCUITS 

FP Sequence Control Checking 

• A control check on the FP sequence control 
latches is performed. 

• The sequence control check latch is set with more 
than one FP sequence control latch on at CC 1, 
CC 2 time. 

• The FP sequence control check is performed in 
parallel with the basic sequence control check. 

The control check on the FP sequence control latches 
is performed by checking (at CC 1, CC 2 time) that 
not more than one latch (A, B, C or D) is on. The on 
state of the sequence control check latch is indicated 
on the console by the control check lamp. 

The sequence control check latch is reset by the 
'master reset for latches' signal. The reset of this 
latch and the handling of the machine check caused 
by the latch are described in Chapter 2 of Introduction 
an<;l Functional Units, Form Y33-0001, under the 
heading "Checking". 

\ 



The logic used for testing the basic and FP se­
quence controllatcp.es is shown in Figure 2-12. 

FP Program Exceptions 

The types of exceptions that can occur with the 
floating-point feature are detailed in Chapter 1 of 
this manual under "Floating-Point Exceptions". The 
handling of all these types of exceptions is described 
in "Checking" in Chapter 2 of Introduction and Func­
tional Units, Form Y33-0001, as is the method of 
detection of all but the FP arithmetic type of excep­
tion. Detection of the FP arithmetic type of excep­
tion is described in this section. 

Rl -
R2 ODD 
EA 

The significance exception and the underflow 
exception can occur only if the corresponding mask 
bit in PSW 1 is a one. All the FP arithmetic excep­
tions cause a program interrupt to be requested. 

Significance Exception 

• Can be masked by PSW 2 bit 7 when the bit equals 
zero. 

• Is recognized when a floating-point add or subtract 
result is zero (zero fraction). 

• Is reset by the reset interrupt latches signal. 

C 
Cycle Control 

Active Cycle Controls I 
X K0 Check Latch Cycle Control Check Latch 

B JA FL 
Timer 
Intr 

Any Console Clock COlltrol "-

~-
-

I/O Cycle Control 

RC 2.CP 2 

Reset CPU Error Latches 
Check Reset Switch I OR Master reset for Check Latches 
System Reset 1 I 
CC 1.CC 2 

OR 
Any Control Check 

1 1"'"""",....-

A 
r-

4 A 
r-

A 
r-

A 

Sequence Control Latches 
5 r-

A 

f-- r-
A - r-

2 A Sequence Control 
r- Check Latch Sequence Control Check Latch 

A 
f-- - lA FL 

-r-- OR 
3 A 

" -- A 
/A -

,....--f- A 
-..! 

f-
A -f- -..! 

FI-Pt Seq Control Latches 
'- A 

B 
r- --=. 

A 
f- --=. 

C 
'-t- A . -'--

D A 

-..!---

• Floating Point Feature 

Figure 2-12. Control Checking 
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When the result fraction of a floating-point add or 
subtract operation is all zero and the significance 
mask bit (PSW 2 bit 7) is a one, a significance excep­
tion is recognized. 

Figure 2-13 shows the significance exception latch 
and its associated logic. The latch is. set at the end 
of the operation on sequence 5B for a short-precision 
operation, or on sequence 3C for a long-precision 
operation. The latch is set if PSW 2 bit 7 is a one 
and if the floating-point zero result line is active. 
AND blocks 6 and 7 are included for speed-up 
purposes. 

Floating-Point Long Add, Sub, Camp 
~r---' -

Sequence 3B 
A CC 6.CP 2 FI-Pt Set Zero LO 

EA or RC 2 Control Cycle -1 OR 
WC 2.CP 2 

A 
Floating-Point Long Mult or Div Ops 2 -
B Register Zero Result --"'i...,...o' 

~AIoRl 
Clear Data Flow 

;:::0 

n-~ :::t AjORI 

Floating-Point Long Add, Sub, Comp ""'-"1"--
I--

Sequence 1C 
CC 6.CP 2 A 

L ~ 
Sequence 1 B or 3B OR A 
Short ASC -Guard Diait -ASN 

~ Floating-Point Divide Operation 
~uence 1A 

A 
CC 2.CP 2 

r-2 
~'--

Floating-Point Long Operation 

FloatinjL-Point Short Operation 

Floatina-Pt Add Sub and Sea 5B or 3C 
Sianificance Mask Latch (PSW 2 Bit 7) 

Reset Interrupt Latches 

Specification Irpt Request 

Addressing Irpt Request OR 

Floating-Pt Short Div Op and Seq 1 A --
CC 4 A FI-Pt Set Divide -Floatina-Pt Lana Div Op and Sea 1 A OR 

Exception 
WC4 A 

'---

Figure 2-13. FP Significance and Divide Exceptions 
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Floating-point zero result is generated by differ­
ent AND blocks (blocks 6 to 10) depending on the 
precision of the operation. 

For short-precision operations, a zero HI con­
dition (which means the leftmost part of the fraction 
is zero) is sufficient to define a floating-point zero 
result. This condition is given by the on state of the 
zero HI latch. The zero HI latch is set in this case 
with 'B register zero result' and 'floating-point set 
zero HI' signals obtained through AND block 4 with 
normalized short add, subtract or compare opera­
tions (the guard digit equals zero) or with short add 

Zro LO 
A FL -

Zero HI 

IA FL 

0--
f---

A 

---2 
~ 

>-f-f- A 

-2 
Floating-Point 
Zero Result 

L- OR 
L-- A 

r- ....,..§ 
-f- A 

~......-2 KT291 
EC390041 A 

10 

FP Sgnf 
Excpn Latch 

Floatina-Point Sianificance Exception 
J A FL 

I -
lOR 

FP Div 
Excpn Latch Floatina-Point Divide Exception 
A FL 

...-
lOR 



or subtract un-normalized operations. (These con­
ditions are OR'ed to produce the line 'short ASC, 
-guard digit 0, -ASN operation'.) 

For long-precision operations, both a zero HI 
and a zero W condition are needed to ensure that 
the fraction is zero (AND block 6). The B register 
zero result signal sets the zero HI latch in conjunc­
tion with the OR'ed output of AND block 3. In con­
junction with the OR'ed output of AND block 1, B 
register zero result can also set the zero LO latch. 
Note that when the low part of the fraction is ana­
lyzed for zero, the B register result output takes 
into account the variable-precision switch setting; 
additional FP circuits produce outputs which force 
zero detection on the B register bytes 1,2 and 3, 
bytes 2 and 3, or byte 3 only for precision switch 
settings of 8, 10 or 12 respectively, regardless of 
the real content of the B register. 

The zero LO and zero HI latches are shown as 
FL blocks in Figure 2-13. In practice, these latches 
are of the same type as the condition code latches 
which are described in Chapter 2 of Introduction and 
Functional Units, Form Y33-0001. 

The significance exception latch is reset during a 
system reset or with the reset interrupt latches 
signal. 

FP Divide Exception 

• Is recognized if the divisor fraction is zero. 

• Is reset by the reset interrupt latches signal. 

An FP divide exception is recognized if the fraction 
of the divisor is zero, as zero gives a result of 
infinity. Figure 2-13 shows the FP divide exception 
latch which is set by the floating-point set divide 
exception line (active at CC 4 and sequence lA for 
a short-precision divide operation, and at WC 4 and 
sequence lA for a long-precision divide operation) 
if the floating-point zero result signal is present. 
In this case floating-point set zero HI is derived 
from AND block 5. 

For a long-precision divide operation, the zero 
HI and zero W latches must be activated to raise 
the line floating-point zero result. The zero HI latch 
is set from AND block 5 in the same way as for a 
short-precision divide operation. The zero LO latch 
is set by the floating-point set zero LO signal (which 
is derived from AND block 2) and with the B register 
zero result signal. The same variable-precision 
considerations are made as in the significance excep­
tion for the B register zero result analysis. 

The FP divide exception latch is reset during a 
system reset or by the reset interrupt latches signal. 

The handling of an FP divide exception causes the 
operation to be terminated. 

Exponent Overflow- Exception 

• Is recognized when the result characteristic is 
greater than 127 after a floating-point add, sub­
tract, multiply or divide operation. 

• Is reset by the reset interrupt latches signal. 

An exponent overflow exception is recognized if the 
result characteristic in floating-point add, subtract, 
multiply or divide operations exceeds the character­
istic capacity (127). As the characteristic is always 
carried in excess 64 arithmetic, this value of greater 
than 127 actually corresponds to an exponent greater 
than plus 63. 

In order to understand the operation of the overflow 
exception detection, a knowledge of exponent handling 
is necessary. Refer, therefore, to "Exponent Under­
flow and Overflow Detection" in this chapter and to 
the following FEMD Figures: 

6319 to 6340 (FP add, subtract, compare) 
6345 and 6346 (FP short multiply) 
6357 to 6368 (FP long multiply) 
6369 to 6374 (FP short divide) 
6383 to 6394 (FP long divide) 
6395 and 6396 (FP common multiply) 
6397 to 6400 (FP common divide) 
Figure 2-14 shows the logic circuits that set the 

exponent overflow exception latch. The floating­
point overflow conditions signal also participates 
in condition code setting for these operations. 

The exponent overflow exception latch is reset 
during a system reset or by the reset interrupt 
latches signal. 

FP Exp Oflo Floating Point 
E La h E t FP Overflow Conditions xc n tc xponen 

JA FL Overflow 
Speci fi cation Irpt Req - Exception 

I OR 
...-

Addressinll Irpt Req JOR 

FP Exp Uflo Floating Point 

FP Underflow Condi tions Exc n Latch Exponent 

Exp Uflo Masl Latch PSW 2 Bi t 6) IA FL Underflow 

J Exception 

Reset Interrupt Latches lOR 

No! FI-Pt ramonre Ooeration 

CC 3 CI' L 
FI-Pt End Execute with CC (Clock Control) A 

Overflow and 
Not FI-Pt Zero Result r-::-
Not FI-Pt Halve Operation 1 L I-- OR Underflow Latches 

- EI-Pt Last Ex at WC 4 RI I 
RI Cvcle A 

WC 2. CP 2 

Refer also to ALD page K K 024 

Figure 2-14. Exponent Overflow and Underflow Exceptions 
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The handling of the exponent overflow exception 
allows the instruction to be completed. 

Exponent Underflow Exception 

• Can be masked by PSW 2 bit 6 when the bit equals 
zero. 

• Is recognized when the result exponent is less 
than zero after floating-point add or subtract nor­
malized, multiply or divide operations. 

• Is reset by the reset interrupt latches signal. 

An exponent underflow exception is generated if the 
result characteristic in floating-point add or subtract 
normalized, multiply or divide operations is less 
than zero. As the characteristic is always carried 
in excess 64 arithmetic, this value of less than zero 
corresponds in practice to an exponent of less than 
minus 64. Since the characteristic is decreased 
only by left-shifting the fraction, add or subtract un­
normalized operations cannot give this exception. 

In order to understand fully the way in which this 
exception detection operates, a knowledge of exponent 
handling is necessary. Refer, therefore, to "Expo­
nent Underflow and Overflow Detection" in this 
chapter, and to the following FEMD Figures: 

6319 to 6340 (FP add, subtract, compare) 
6345 and 6346 (FP short multiply) 
6353 and 6354 (FP long multiply) 
6357 to 6368 (FP long multiply) 
6369 to 6374 (FP short divide) 
6383 to 6394 (FP long divide) 
6395 and 6396 (FP common multiply) 
6397 to 6400 (FP common divide) 
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LOAD AND STORE INSTRUCTIONS 

Load Instructions 

• Operand 2 is placed in the first operand location 
in the form specified by the instruction: 

Load: Unchanged. 
Load and test: Unchanged. 
Load complement: Sign inverted. 
Load positive: Sign made positive. 
Load negative: Sign made negative. 

• The condition code is set from the result for load 
and test, load complement, load positive and load 
negative as follows: 

00: Result fraction is zero. 
01: Result fraction less than zero (not load 

positive). 
10: Result fraction greater than zero (not load 

negative). 
11: Not set. 

• The 'load' instruction is used for either short­
precision or long-precision operands in either 
RR or RX formats. 

• Load and test, load complement, load positive 
and load negative are RR instructions for either 
short-precision or long-precision operands. 

The timings and sequences applied to the load instruc­
tions for short-precision operands and long-precision 
operands are shown in FEMD Figures 6303 to 6310. 

Short Precision 

The operand 2 field is read out of storage (RX format, 
EA cycle) or gated from the FPR defined by the Rb 
register (RR format) and set into the B register. 

The op code and sign are then analyzed and, where 
necessary, the B register bit 00 is gated inverted to 
the output bus. Inversion of the B register bit 00 is 
necessary for the load complement instructions, for 
load positive instructions when bit 00 is a 1 and for 
load negative instructions when bit 00 is a O. The 
B register is then gated to the operand 1 FPR defined 
byRa. 

The fraction bits 08 to 31 are analyzed and, if 
zero, cause the zero HI latch to be set for the load 
positive, load negative, load complement or load 
and test instructions. 

This zero HI latch is then analyzed in conjunction 
with the B register· gated sign to determine the 
setting of the condition code for these instructions. 

CHAPTER 3. PRINCIPLES OF OPERATION 

For the 'load' instructions (LE, LER), the condition 
code is not set. 

Long Precision 

The operand 2 high -order field is read out of storage 
(RX format, EA cycle) or gated from the FPR defined 
by the Rb register (RR format) and set into the B 
register. The fraction bits 08 to 31 are analyzed 
in the B register and, if zero, set the zero HI latch 
for the load complement, load positive, load nega­
tive, and load and test instructions. The Band BX 
registers are then interchanged. 

The operand 2 low-order word is fetched and 
set into the B register. The low-order bits are 
truncated to the length defined by the variable­
precision switch on the SDR to B register transfer. 
If the low-order bits in the B register are zero, the 
zero LO latch is set for the load complement, load 
positive, load negative and load and test instructions. 

The B and BX registers are interchanged and the 
high-order word of the result is gated to the high­
order half of the operand 1 FPR defined by the Ra 
register. The B and BX registers are then re­
interchanged and the low-order word is gated from 
the B register to the SDR, from where it is stored 
in the low-order half of the operand 1 FPR defined 
by the Ra register. The op code and B register bit 
00 are analyzed and, if necessary, bit 00 is gated to 
the output bus in inverted form. The sign is inverted 
on the load complement instruction, on the load nega­
tive instruction when BOO is a zero and on the load 
positive instruction when BOO is a one. 

This gated sign bit and the zero HI and zero LO 
latches are analyzed for the load complement, load 
negative and load and test instructions to determine 
the condition code setting. 

Store Instructions 

• Operand 1 is stored at the operand 2 storage loca­
tion. 

• The instruction format is RX. 

• Operands may be either short-precision or long­
precision. 

• The condition code is not altered by this instruc­
tion. 

The timing and sequences involved in the 'store' 
instruction for both short-precision and long­
precision operands are shown in FEMD Figures 
6311 to 6314. 
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Short Precision 

Operand 1 is to be stored in the operand 2 location. 
For this operation an EA cycle is initiated and the 
Band BX registers are interchanged, leaving the B 
register at a reset value. 

The operand 1 high-order bits are gated from the 
FPR defined by the Ra register and set to the B 
register. The bits are then gated from the B reg­
ister to the SDR, from where they are stored into 
the operand 2 location on the write section of the EA 
cycle. 

Long Precision 

The effective address is temporarily stored out of 
the main data flow by a B to BX register interchange 
and the A register is reset in preparation for receiv­
ing the operand 1 data. 

The operand 1 low-order bits are read out of the 
operand 1 FPR low-order bits in storage on an R1 
cycle and are gated from the SDR to the A register, 
truncating low-order bits to the value defined by the 
variable-precision switch. 

The operand 1 high-order bits are gated to the B 
register from operand FPR high-order bits. The B 
and BX registers are then interchanged and the effec­
tive address in the B register is used to address the 
storage during the double EA cycle which is then 
called. 

A re-interchange of the B and EX registers occurs 
and the high-order bits of operand 1 in the B register 
are transferred to the SDR and stored in the effective 
address high-order bit location during the write sec­
tion of the first phase (EAH) of the double EA cycles. 

At the second phase (EAL) of the double EA cycle, 
the B register is reset and the low-order bits in the 
A register are gated via the ABC funnel to the B 
register. The B register is then gated to SDR and 
the low-order bits are stored in the effective address 
low-order bit location during the write section of the 
double EA cycle, second phase. 

HALVE INSTRUCTIONS 

• Operand 2 is halved by right-shifting the fraction 
bits one binary position, leaving the characteristic 
unaltered. 

• The result is stored in the operand 1 FPR. 

• Instructions are in the RR format and operands 
may be either long-precision or short-precision. 

• The condition code is not altered by this operation. 
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For details of the sequence and timing of halve in­
structions, refer to FEl\ID, Figures 6315 to 6318. 

Short Precision 

The fraction of operand 2 is prepared for the halving 
process by gating bits 08 to 31 of operand 2 from the 
FPR (defined by the Rb register) to the B register 
via the HW and ABC funnels. 

The sign and characteristic field of operand 2 
is the sign and characteristic of the result and so 
this field (bits 00 to 07) of the operand 2 FPR is 
gated via the exponent funnel to exponent registers 
A and B. These bits enter exponent register B and 
are EXOR 'ed with the ones that are set into this 
register by the 'clear data flow' signal during 
instruction-fetch (I -fetch). 

As the result sign and characteristic are assem­
bled with the exponent register B contents, an inter­
change between exponent registers A and B is then 
performed. 

The frac~ion bits in the B register are halved by 
a shift-right-one operation and the result assembled 
by gating the exponent register B to bits 00 to 07 of 
the B register via the HW and ABC funnels. The 
result is then gated from the B register to the oper­
and 1 FPR defined by the Ra register. 

Long Precision 

The handling of the operand 2 sign and characteristic 
is performed in the same manner as with short­
precision operands. However, storage cycles are 
needed to fetch and store the low-order bits of the 
FP operands. 

An R2 cycle is called to read out to the SDR the 
low-order bits of the operand 2 fraction. The high­
order bits are gated in parallel to the B register 
from bits 08 to 31 of the FPR defined by the Rb reg­
ister. Bits 00 to 07 of this FPR are then gated to 
exponent registers A and B and the registers are then 
interchanged; this places the result (operand 2) sign 
and characteristic in exponent register B. 

The B and BX registers are interchanged and the 
operand 2 fraction (read out to the SDR on the R2 
cycle) is gated to the B register. Truncation, as 
defined by the variable-precision switch, occurs on 
this transfer. 

The B and BX registers are then re-interchanged 
and the fraction halved by a shift-right-one operation 
of.the B and BX registers. The Band BX registers 
are then again'interchanged and the low-order frac­
tion bits are stored during an R1 cycle into the FPR 
defined by the Ra register. 

The B and BX registers are again re-interchanged 
and the result high-order bits are assembled by 



gating exponent register B via the HW and ABC fun­
nels to bits 00 to 07 of the B register. 

The result high -order bits in the B register are 
then stored in the operand 1 FPR high-order bits by 
gating from the B register to the FPR defined by the 
Ra register. 

Note that for long-precision operands, when the 
variable-precision switch is set for truncation, the 
result may contain one unwanted bit. This bit is 
stored but will be lost during truncation when the 
operand is next fetched. 

ADD AND SUBTRACT INSTRUCTIONS (SHORT­
PRECISION OPERANDS) 

• Operand 2 is added to or subtracted from operand 
1. 

• The result, normalized if specified by the op code, 
is placed in the operand 1 location. 

• Both RR and RX formats are used. 

• The condition code is set to indicate the form of 
the results. 

00: Result fraction is zero or exponent under-
flow. 

01: Result fraction is less than zero. 
10: Result fraction is greater than zero. 
11: Result exponent overflow. 

The floating-point add and subtract instructions are 
executed in the following steps: 

1. Fetching of operands. 
2. Matching of characteristics (exponents) and 

addition of fractions. 
3. Recomplementing of fraction result (where 

necessary) • 
4. Correction of fraction overflow and normal­

ization of result (where specified by op code). 
5. Storage of result and setting of condition code. 

This sequence applies to both long-precision and 
short-precision operands, but the operations involved 
in each step depend on the operand length. 

Use the following description in conjunction with 
FEMD Figures 6319 to 6330. 

Step 1 - Fetching of Operands 

• The operand 2 fraction and characteristic are 
fetched. 

• Operand 1 characteristic only is fetched. 

• Operand 2 fraction is placed in bits 08 to 31 of 
both the A and BX registers. 

• The partial difference of the second characteristic 
minus the first characteristic is formed in expo­
nent register B. 

• The partial difference is analyzed to set the oper­
and 1 exponent HI latch, operand 1 exponent LO 
latch or exponents EQ latch. 

• The shift counter is set to seven. 

The add and subtract instructions can be in either 
RR or RX format, giving two distinct types of 
operand-fetch cycles. 

Operand-fetch (RX format) 

Operand 2 is located at the word defined by the 
effective address developed in the B register during 
I-fetch, and operand 1 is located in the FPR defined 
by the Ra register. 

An EA cycle is taken first and operand 2 is read 
out from storage to the SDR. The B register is 
cleared of the effective address by a B to BX reg­
ister interchange and a reset of the BX register. 
Operand 2 is then gated from the SDR and set into 
the A, Band C registers. 

The characteristic of operand 1 is gated from the 
FPR to the exponent register B, and the operand 2 
characteristic is gated from the A register and set 
into both exponent registers A and B. 

Exponent register B is set to all ones during 1-
fetch and this register performs an EXOR function 
of its contents and input data. Therefore, at this 
time, exponent register A contains the operand 2 
characteristic and sign, and exponent register B 
contains the one's complement of the EXOR of the 
characteristics and signs. 

This partial sum in exponent register B is ana­
lyzed in conjunction with the operand 2 character­
istic in exponent register A to set the operand 1 
exponent HI latch, operand 1 exponent LO latch or 
exponents EQ latch. These latches indicate the 
value of the operand 1 characteristic relative to the 
operand 2 characteristic; the latches are used to 
determine whether characteristic matching is re­
quired and, if so, which of the operands is the 
smaller. 

The logic used to set the appropriate latch is 
shown in Figure 3-1. The analysis logic is similar 
to the exponent CLA logic (described in Chapter 2) 
as, at the time of this analysis, the exponent regis­
ter B contains the partial difference of the two char­
acteristics (EXOR of two characteristics EXOR led 
with ones). If this partial difference in exponent 
register B is all ones, then the two characteristics 
(and therefore exponents) are equal and the exponents 
EQ latch is set. 
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Operand 1 
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J 
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-
Not Exp Reg B Bit 1 
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Exp Reg S Sit 1 r--
Not Exp Reg B Bit 2 A Operand 1 
Not Exp Reg A Sit 2 

",""I--
Expn HI 

Exp Reg B Bit 2 
OR 

jA 
Not Exp Reg S Sit 3 A 
Not Exp Keg A ~it J 

...... r--
Exp Reg B Bit 3 - A 
Not Exp CLA Carry-In to 6; t J 

'-- -
Figure 3-1. Operand 1 Exponent HI, 10 and EQ Latches 

At the time of analysis the A, Band C registers 
all contain operand 2 (both fraction and character­
istic). At the concluding portion of the analysis 
cycle, a B to BX register interchange is performed 
and the operand 2 characteristic portion (bits 00 to 
07) of both the A and BX registers is reset. This 
leaves the operand 2 fraction in bits 08 to 31 of both 
the A and BX registers. The B register now con­
tains all zeros. The shift counter is set to seven 
for use in subsequent operations, while the com­
plement add latch is set if complement arithmetic 
(add operation and operand signs unequal, or sub­
tract operation and operand signs equal) is required. 
The logic associated with the complement add and 
recomplement latches is shown in Figure 3 -2. 

Operand-fetch (RR Format) 

Operands 1 and 2 are in FPR's and a storage-fetch 
cycle is not required. The operand 2 fraction is 
gated out of the FPR defined by the Ra register and 
set (via the ABC funnel) to the A, Band C registers. 
The B and BX registers are then interchanged, leav­
ing the fraction section of operand 2 in bit positions 
08 to 31 of both the A and BX registers and all zeros 
in the B register. 

The characteristic section of operand 2 is gated 
to the exponent funnel and set into exponent registers 
A and B. The characteristic of operand 1 is then 
gated from the FPR defined by the Ra register to the 
exponent funnel and set into exponent register B. 
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/""t. 1 EXllonent HI 

Therefore, as with the RX instructions, exponent 
register B contains the one's complement of the 
EXOR of the two characteristics (including their 
signs). This partial result is again used to set the 
operand 1 exponent HI latch, operand 1 exponent LO 
latch or exponents EQ latch. 

The shift counter is set to seven for use in sub­
sequent operations. 

Step 2 - Matching of Characteristics and Adding of 
Fractions 

• Characteristic 2 minus characteristic 1 is formed 
in exponent register B. 

• Characteristics are already matched for the expo­
nents EQ condition. 

• For the operand 1 exponent LO and operand 1 
exponent HI cases, the fraction of the smaller 
operand is shifted right until either the character­
istics are equal or seven hexadecimal shifts have 
been performed. 

• The fractions are added or subtracted in the B 
register. The result fraction is as follows: 
Operand 1 exponent HI : Operand 2 ± Operand 1 
Operand 1 exponent LO} ° d 1 Op d 
Operand EQ : peran ± eran 2 

• The result characteristic is set in exponent reg­
ister B. 

( 



• The result fraction is tested for zero result to 
set the zero HI latch. 

As a result of the analysis performed during the 
operand-fetch operation, the comparison of char­
acteristics sets the operand 1 exponent HI latch, 
operand 1 exponent LO latch or exponents EQ latch. 

If either the operand 1 exponent HI latch or oper­
and 1 exponent LO latch is set, the two character­
istics must be matched by shifting right the smaller 
number until either the exponents become equal or 
the fraction is shifted out of the operand field (B 
register plus guard digit). 

For the exponents EQ condition, the character­
istics are already equal and only fraction addition is 
required. 

Operand 1 Exponent HI 

The operand 1 exponent HI latch indicates that the 
value of operand 1 is higher than that of operand 2. 
Operand 2 must be shifted right, therefore, until the 
characteristics are matched. 

The operand 2 fraction is placed in the B register 
by a B to BX register interchange and operand 2 is 
cleared from the A register by an A to AX register 
interchange. 

The A register is loaded with the operand 1 frac­
tion by gating bits 08 to 31 of the FPR defined by the 
Ra register to the ABC funnel. At this time, the A 
register is conditioned and the B register is de­
conditioned to allow access to the A register only. 

FP Subtract, Compare Operations 

The exponent CLA output is gated to exponent reg­
ister B via the exponent funnel, forming 'character­
istic 2 minus characteristic 1 '. In this case, the 
difference is in complement form since the charac­
teristic of operand 1 is greater than the character­
istic of operand 2. 

The matching of characteristics begins by re­
peated shift-right-four operations on the B register, 
increasing the value of exponent register Band 
reducing the value of the shift counter until either 
becomes zero. 

If the shift-counter becomes zero, all seven digits 
of the fraction have been shifted out of the fraction 
field, indicating that operand 2 was too small to alter 
operand 1. If exponent register B becomes zero, the 
characteristics have been matched. The operand 1 
characteristic in either case is the characteristic 
of the result and, after exponent register A has been 
reset, this characteristic is gated from the operand 
1 FPR to exponent register A. It is then placed into 
exponent register B by an exponent register A to B 
interchange. 

Bits 04 to 31 of the BX register are reset to pro­
vide the guard digit for any subsequent normalization. 
If the complement latch is on, the A register is 
inverted and common add control is turned on. This 
action adds or subtracts operand 1 to or from oper­
and 2, the result being contained in the B register. 
The zero HI latch is set if this result (including the 
guard digit for normalized operations) is zero. 

Exp Reg B Bit Sign A 
°FPA Complement Add Required FP Add Operation -OR 

Not Exp Re!:i B Bit Sign _'--- Lr-r-
FPA Seguence 1 A 
CC 6 CP 2 A 

Subtract Trigger Carry-In ~ OR n Complement 

CC 5 CP 1 
Add Latch 
~ 

FP L Divide Ooerotion and Sequence 2B 
A 

FL 
L....-L....-

CC3 CPl A 
Clear Data Flow 1 0R 

~ FPA Complement Add 

Not CO latch ~-+--~ FPA Recomplement Required 
I A Not FP Compare Operation 

~I---

FP Compare Operation '------I-

Sequence B or C 
A 

FPA Sequence 5 
OR 

Fp L ASC Operation and Seq 2C 
FP S ASC Operation and Seq 4B -
"* Turns on: 

Sequence 4B, short-precision add, subtract, compere operations 
Sequence 2C, long-precision odd, subtract, compare operations 

Figure 3-2. FPA Complement and Recomplement Latches 

Recomplement 
Latch 

FL 
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Operand 1 Exponent LO 

The operand 1 exponent LO latch indicates that the 
value of operand 1 is lower than that of operand 2. 
Operand 1 must be shifted right therefore, until the 
characteristics are matched. 

The exponent CLA is gated to exponent register B 
via the exponent funnel, forming the result of 'char­
acteristic 2 minus characteristic I' in the exponent 
register B. This value indicates the number of 
shifts that are required to equalize exponents. 

The operand 1 fraction is prepared for shifting 
by gating it from the FPR defined by the Ra register 
to the B and C registers via the ABC funnel. 

The operation of matching the characteristic then 
begins with repeated shift-right-four operations on 
the B register and decrementing of both the shift 
counter and exponent register B on each shift cycle 
until either becomes zero. 

If the shift counter becomes zero, all seven digits 
of the fraction have been shifted out of the fraction 
field, indicating thal operand 1 was too small to 
alter operand 2. If exponent register B becomes 
zero, the characteristics have been equalized. The 
operand 2 characteristic in either case is the charac­
teristic of the result and is placed in exponent reg­
ister B by an exponent register A to B interchange. 

The BX register bits 04 to 31 are reset, leaving 
bits 00 to 03 as a guard digit. This digit provides 
one more significant digit in the low-order position 
of short operands if normalization is required. 

The A register is inverted if the complement 
latch is on, and the 'common add control' is again 
switched on. This action adds or subtracts the oper­
and 2 fraction to or from the operand 1 fraction, the 
result being contained in the B register. The zero 
HI latch is set if this result fraction is zero. The 
characteristic result is again formed in the exponent 
register B. 

Exponents EQ 

The fraction from operand 1 is set to the ABC funnel 
and gated to the Band C registers. As the B reg- _ 
ister was zero and the C register contained operand 
1, a 'dc set B register into C register' operation 
was performed. 

Depending on the operation and the operand signs, 
the A register is inverted if required and the 'com­
mon add control' is switched on. This makes active 
the gates necessary to add or subtract operand 2 to 
or from operand 1; these gates are: gate A reg to 
ABC funnel, de-condition C reg, and gate CLA to 
ABC funnel. The A register is inverted if comple­
ment arithmetic is to be performed (complement 
latch on). 
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In the exponent arithmetic register area, the 
exponent CLA output is gated to exponent register B 
giving, in this condition, a result of zero. The 
result characteristic is the same as the character­
istic of either of the original operands. The expo­
nent register A contains the operand 2 exponent and 
this Js placed into exponent register B by an expo­
nent register interchange. 

At the completion of this step in the operation, 
the two fractions have been added with the fraction 
result contained in the B register, and the charac­
teristics have been analyzed with the characteristic 
result being contained in the exponent register B. 

The fraction result (including the guard digit for 
normalized operations) is tested for all zeros. If 
this condition exists, the zero HI latch is set. 

End Conditions 

The B register contains the result of the fraction 
addition or subtraction. In the operand 1 exponent 
HI case, this is the operand 2 fraction plus or minus 
the operand 1 fraction, whereas in the operand 1 
exponent LO and exponents EQ cases, the result is 
the operand 1 fraction plus or minus the operand 2 
fraction. These contents of the register are used 
in Sign development. In all cases, the characteristic 
of the result is contained in exponent register B. 

If the B register bits 04 to 07 are not equal to 
zero, a fraction overflow has occurred and the 'shift­
right-four required' latch is set. If the B register 
content is in complement form, the result must be 
recomplemented prior to storing the result. If the 
B register is in true form, these recomplement 
cycles are skipped. 

Step 3 - Recomplementing of Fraction Result 

• This cycle is required if the fraction result is in 
complemented form. 

• The condition is detected by a no-carry-out from 
the B register during a complement add operation. 

• For normalized operations, the fraction is shifted 
left one digit to include the guard digit in the re­
complementing proce ss. 

• Recomplementation inverts B and C registers by 
using all one's output of the true/criss-cross. 

• A shift right is required if the fraction overflows 
i.nto the exponent field on the recomplement cycle. 

If complement arithmetic was performed on the frac­
tions and the result of the fraction arithmetic is in 
complemented form, a recomplementing cycle is 
required. 

, 
r 

( 
\, 
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This condition is detected as shown in Figure 3-2 
by a no-carry-out from the B register during the 
complement add operation. The no-carry-out causes 
the 'FPA recomplement required' signal to be gen­
erated which permits sequence 4B to be called, for 
the recomplementing process. The fact that the 
cycle has been taken is stored in the recomplement 
latch for subsequent use in result sign-analysis 
circuits. 

For the recomplement cycle, the A register is 
reset and a shift-left-four operation of the B and BX 
register is executed. The shifting occurs so that 
the guard digit from bits 00 to 03 of the BX register 
is included in the recomplementing process. The 
shift-left-four is coupled with a decrement by one of 
the result characteristics in exponent register B. 

The fraction to be recomplemented is now in the 
B register. The recomplementing process is accom­
plished by dc setting the B register to the C register, 
inverting the B and C registers by gating ones from 
the true/criss-cross into both registers and bringing 
up the common add control. Note that the subtract 
trigger will be on and will provide a CLA carry-in 
for this cycle. 

Bits 00 to 07 of the result in the B register are 
analyzed for a fraction overflow into the character­
istic field. If an overflow has occurred, the 'shift­
right-four required' latch is set. This latch is also 
set for all un-normalized operations to shift right 
the guard digit back into the BX register. 

Step 4 - Correcting of Fraction Overflow and 
Normalizing of Result 

• The result fraction overflow is corrected if the 
'shift-right-four required' latch is on. 

• For all the following conditions, normalizing 
cycles are required: 

If the op code specifies normalized results. 
The high-order digit of the fraction is zero 

(B register bits 08 to 11). 
The result fraction is not all zeros. 
The 'shift-right-four required' latch is off. 

• Shift-left-four operations are performed until the 
high-order digit of the fraction becomes a sig­
nificant digit. 

• The result characteristic is decremented by one 
on each shift left of the fraction. 

When the 'shift-right-four required' latch is on, the 
fraction is corrected by a shift-right-four of the B 
and BX registers with a corresponding increment of 
the exponent register B. 

A series of shift-left-four operations of the Band 
BX registers is performed when normalization has 
been specified by the op code, the result in the B 
register is not equal to zero, the 'shift-right-four 
required' latch is off and the high-order digit of the 
fraction (bits 08 to 11 of the B register) is zero. 

A corresponding decrementing by one of expoaent 
register B is also performed for each shift, and the 
process is continued until bits 08 to 11 of the B reg­
ister contain a significant digit. 

step 5 - storing of Result and Setting of Condition 
Code 

• The characteristic result is transferred from 
exponent register B to bits 00 to 08 of the B reg­
ister. 

• The B register is stored in the first operand FPR. 

• The sign bit is analyzed and, where necessary, 
corrected by gating the B register bit 00 in inverted 
form to the output bus. 

• The condition code is set. 

• FP exception latches are set if an exception which 
is not masked has occurred. 

The fraction section of the result is now in bits 08 to 
31 of the B register, and the characteristic of the 
result is in exponent register B. 

To form the complete result, exponent register B 
is gated via the ABC funnel and set into bits 00 to 07 
of the B register. This result is then gated from the 
B register to the FPR specified by the Ra register. 

As the sign bit now in the B register bit 00 was 
transferred from exponent register B, it is the sign 
of the operand that was in the A register for the arith­
metic operation. This is the operand that was com­
plemented and, as such, is not necessarily the sign 
of the result. An analysis is required, therefore, 
to determine if the B register sign bit is the correct 
result sign. 

Analysis of B Register Sign Bit 

Four conditions exist under which the sign bit fn the 
B register is incorrect and therefore needs to be 
gated in inverted form to the B register output bus 
(Figure 3-3). Note that 'exponent register A bit 
sign' is the inverted EXOR of the operand sign and is 
used as a control for generating sign inversion. The 
sign bit in the B register represents the operand 
that is complemented (that is, the operand 1 sign for 
the operand 1 exponent HI case and the operand 2 
sign for the exponents EQ and operand 1 exponent 
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Figure 3-3. Logic for Gate BOO Inverted on Short-Precision Add, 
Subtract, Compare Operations 

La cases). The sign of the result is the sign of the 
arithmetic operation of operand 1 plus or minus oper­
and 2 after the characteristics have been matched. 

Condition 1: For the add operation when complement 
arithmetic is performed (add operation with unlike 
signs). If no recomplement is required, the result 
sign is the sign of the operand that was not comple­
mented and the inverse of the sign of the operand 
that was complemented. Thus the B register sign 
bit 00 is gated in inverted form onto the B register 
output bus if this condition exists at the end of the 
operation. 

Condition 2: For the subtract operation when com­
plement arithmetic is performed (like signs) and the 
operand 1 exponent HI latch is on. If no recomple­
ment cycle is required, it means that the sign of the 
result is the inverse of the operand signs since, in 
the operand 1 exponent HI case, operand 2 minus 
operand 1 is formed in the B registerj the result of 
the operation should be operand 1 minus operand 2. 

Condition 3: For the subtract operation for the expo­
nents EQ or operand 1 exponent La cases when a 
recomplement is required. In both cases, operand 1 
minus operand 2 is formed in the B register and, i~ 

a recomplement is required, operand 2 must have 
been greater than operand 1. Thus the result sign 
must be the inverse of the operand 2 sign in the B 
register. 

Condition 4: For the subtract operation, with either 
exponents EQ or operand 1 exponent LO conditions, 
where the original signs were different. As with the 
third condition, operand 1 minus operand 2 is formed 
as a result and the sign in the B register is the sign 
of operand 2. As complement arithmetic is not per­
formed, the result sign must be that of operand 1 
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and the inverse of operand 2. Thus, for this case, 
the B register sign bit 00 is again gated in inverted 
form onto the B register output bus. 

Setting of Condition Code 

The fraction result in the B register bits 08 to 31 
and the gated B register bit 00 are used to set the 
condition code as follows: 

00: Result fraction is zero (zero HI latch on). 
01: Result fraction is less than zero (gated B 

register bit 00 = 1 j zero HI latch off). 
10: Result fraction is greater than zero (gated 

B register bit 00 = OJ zero HI latch off) . 
11: Result exponent overflow. 

When the intermediate sum is zero and the signifi­
cance mask is a one, a significance exception is 
signalled and a program interrupt is taken. No 
normalization occurs and the intermediate sum char­
acteristic value remains unchanged. The sign of the 
zero result is forced to positive. 

When the intermediate sum is zero and the sig­
nificance mask bit is a zero, the program interrupt 
is masked off and the result is set to a true zero by 
resetting the B register prior to storing the result. 

If the exponent overflows during the subtraction 
of exponents, an overflow exception is signalled and 
a program interrupt is taken. 

If normalization causes the exponent to underflow', 
both the characteristic and fraction are made zero 
and if the corresponding program mask bit is a one, 
an underflow exception is signalled and a program 
interrupt is taken. 

Examples of Short-Precision Add/Subtract 

Example 1 

Figure 3-4 shows an example of floating-point addi­
tion, including characteristics matching and guard 
digit preservation. The following operands which 
give an operand 1 exponent La condition are used: 

First Operand. + 2,890 (dec) = + B4A (hex) 

Shown in a non-normalized short-operand format: 
5 

+ O. 00B4A x 16 
Shown in System/360 binary notation: 

Sign Characteristic Fraction 

o 1000101 0000 0000 1011 0100 1010' 0000 

Second Operand. + 27,776 (dec) = + 6C80 (hex) 

Shown in a non-normalized short-operand format: 
7 

+ O. 0006C8 x 16 

Shown in System/360 binary notation: 
Sign Characteristic Fraction 

o 1000111 0000 0000 0000 0110 1100 1000 

To facilitate the notation of the fraction, and since 
fraction handling can be associated with the basic 



--
Exponent Ari thmeti c Exp Reg 8 Exp Reg A 

Binary Digits S CI-----7 S CI-----7 

o 0 OO?OOOO 1 1 1111111 

Opnd I Exp to Exp Reg B State A 

OO~OOOO (0 - 1000101) 
o 0 I I 0 I I 10 10 

Opnd 2 Exp to Exp Reg A ond B o 0 1000 I 1 1 (0 - I 000 I I I 

o 0 1 000 1 I I 1 1 1 1 1 1 1 0 1 

Exp CLA Output 
State B 

~ (- 0 1 1 1 I 1 1 I) 
Exp Funnel Output (- 0 III I 1 1 1) 

o 0 1 000 1 1 1 1 I 0000010 

~ 
Decrement Exp Reg 8 0 0 1000 I 1 1 I I 0000001 a 
Decrement Exp Reg B b 0 a 1000 I 1 1 I I 0000000 

State D 
Interchange Exp Reg's I 1 0000000 0 0 10 a a I I 1 

~ 

Normalization Only. 
~ 

{~ 
1 1 0000000 0 0 1 000 1 1 0 

Decrement Exp Reg 8 1 1 0000000 a 0 1 000 101 
1 1 0000000 a 0 1000100 

~ 
Fraction Arithmetic A Reg AX Reg C Reo a Reg BX Reg 

Hex Digits 00000000 00000000 00 000000 0 0000000 
(State A 

Opnd 2 to A and B Reg 47 0006C8 ;\: 470006C8 0 0000000 
Interchange a and BX Reg 47 0006C8 00000000 4 70006C8 
Reset A and ax Reg 00 to 0, 00 0006C8 00000000 a 00006C8 

~ 
Gate Opnd 1 08 to 31 to 8 Re ~, 00 00 B 4A 0 a 0000000 
Reset 8X Reg 04 to 31 00 00 8 4A 0 0 0000000 

(5Ici;C) -- . -
~ 

Shift Right Four ,:~ 00 000B4A o 0000000 a 

-.J Shift Right Four b ~~ 00 0000B4 A 0000000 

(State D 

Reset BX Reg 04 ~ 00000084 A 0000000 
Add A Reg to B Reg (0 a 0006 C 8) A 0000000 

Set A Reg + Gate CLA 0000077C A 0000000 

( State E 

Normalization OnIY.~ 00 0077CA 0 0000000 
Sh i ft Ri ght Four d 00 07 7C AD 0 0000000 

e 00 77 CAD 0 0 0000000 

~ 
Final Contents of 8 Reg 4477CAOO o 0000000 

~, C Register end B Register contents are simi lor 

Figure 3-4. Example of FP Normalized Addition (Opnd 1 Exp LO Condition) 

arithmetic explanation, the following notation is adop­
ted, shOwing the characteristics in binary and the 
fractions in hexadecimal: 

Operand 1 
Operand 2 

o 1000101 
o 1000111 

ooB4AO 
0006C8 

by 'clear data flow' and a carry-in exponent CLA 
is provided, since all operations (except multiply) 
call for a complement add of the characteristics. 
Note that, for speed requirements, the B register 
might be reset indirectly by interchanging with a 
blank BX register. The BX register is then reset 
at convenience. 

Refer to Figure 3-4 (where exponent and fraction 
arithmetic are shown separately) in conjunction with 
the following description of the state of registers at 
various steps during the operation. 

State A may be considered as the state of the reg­
isters immediately before entering the operands. 
Exponent register B is set to all ones during I-fetch 

In state B, the exponent registers are analyzed 
to set the operand 1 exponent HI, LO or EQ latches 
(LO is set in the example). The EXOR of the signs, 
inverted and represented by the exponent register B 
bit 'sign', is used to decide the type of operation 
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Exponent Arithmetic 
Exp Reg A Exp Reg B 

S CI-----7 S C 1-----7 
Binary Digits 

0 0 0000000 I I I I I II I I 
State A 

Opnd I Exp to Exp Reg B (0 - 1000101) 
Opnd 2 Exp to Exp Reg A and B o 0 1000100 (0 - 1000 I 00) 

o 0 1000100 I I I I I I I 10 

--------
Exp C LA and Exp Funne I output ~ 0 0 1000100 (- 00000001) 

I I I I I I I I I 
Reset Exp Reg A o 0 0000000 I I I I I I I I I 

(State C 
(0 o I I I I I I I) 

Increment Exp Reg B o 0 0000000 I 10000000 

(SIc;t;D) 
Opnd I Exp to Exp Reg A 

~ 

00 1000 10 I I I 0000000 
Interchange Exp Reg's I I 0000000 0 0 I 000 I 0 I 

(State E 
~ 

Decrement Exp Reg B I I 0000000 0 0 1000100 

(State G 

Fractian Arithmetic A Reg AX Reg C Reg B Reg BX Reg 

Hex Digits 00 000000 OOQOOOOO 00 000000 0 0000000 

State A 

Opnd 2 to A and B Reg 44 2 3C 9 0 0 * 44 2 3C 900 0 0000000 
Intere hange Band BX Reg 44 23C900 00 000000 4 423C900 
Reset A and BX Reg 00-07 00 2 3C 9 0 0 00 000000 0 023C900 

State B 

Int'eh A, AX and B, BX Reg 00 000000 0023C900 00 23C900 0 0000000 
Opnd I bits 08 to 31 to A Reg 00 04B050 00 23C900 0 0000000 

State C 

Invert A Reg (+ Subt Trigger) F F F B 4 FA F 00 023C90 0 0000000 
Shift Right Four Band BX * 00 023C90 0 000

1
0000 

State D 

! Add A Reg to B Reg (F F F B 4 FA F) 
+ Carry-In (Subt Trigger) (00 00000 I) 

Set A Reg, Gate CLA F F FD8C40 0 0000000 

State E 
Reset A Reg and 00 000000 :'r: FF D8C400 0 0000000 
Sh ift Left Four Band BX 

Re State G 
Invert B, C Reg (Ga~e T/XC ~!t 00 273BFF 
Add A Reg to B Reg (00 000000) 
+ Carry-In (Subt Trigger) (00 00000 I) 

Set A Reg, Gate CLA 00273COO 

(State H 

Final Contents of B Reg - 44 273COO 

i,~ C Register and B Register contents are similar 

Figure 3-5. Example of FP Complement Add with Recomplement (Opnd 1 Exp HI Condition) 

(true add in this case). The bits 00 to 07 of the A 
and BX registers are also reset to avoid interference 
with the fraction during processing. 

The characteristic difference is obtained in state 
C. At this time, the fraction of the correct operand 
is in the B, BX registers for shifting until the char­
acteristics are matched (that is, until the exponent 
difference in exponent register B is zero). Since the 
operand 1 exponent LO latch is on in this case, the 
operand 1 fraction is adjusted and the characteristic 
result is decreased by one on each shift-right-four 
operation. For the same reason, the BX register 
bits 04 to 31 are reset since during shift-right-four 
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operations, these bits loop into the B register left­
most positions (FEMD Figure 1001). 

The matching of the characteristics is terminated 
in state D and the common add signal performs a 
normal add between the A register and the B reg­
ister; that is, the A register is EXOR'ed with the B 
register contents, the C register is de-conditioned 
to avoid feed-back and the CLA is gated to the B reg­
ister. Since operand numbering does not necessarily 
correspond, care must be taken if reference is made 
to the basic add operation. While the fraction result 
is formed, the exponent registers are interchanged 
since the only path out of the exponent data flow is 

( 

( 
\, 



from exponent register B and the correct exponent 
(operand 2 exponent in this case) is located in expo­
nent register A. 

The FP add operation is completed after state E 
by gating the exponent register B to the B register, 
where it is combined with the fraction (not shown in 
the example). In this case the guard digit is lost. 
However, if the op code specifies a normalized 
result, the normalizing cycles occur immediately 
after state E. 

Figure 3-4 shows, at the end of the add operation 
example (following at state E), the three steps that 
perform the normalization of this specific result. 
The result exponent is adjusted with the fraction man­
ipulation. At the end of the normalization (state F), 
the exponent register B is placed in front of the frac­
tion in the B register, in preperation for storing the 
result. 

The 'gate BOO inverted' line is not active in this 
example and the result in the B register is gated 
directly to the operand 1 FPR. 

Example 2 

Figure 3-5 shows an example of floating-point sub­
traction including the matching of characteristics 
with operand 1 exponent HI conditions, and recom­
plementation, with the following operands; 

First Operand. + 19,205 (dec) = + 4B05 (hex) 

Shown in a non-normalized short-operand format; 
5 

+ O. 04B05 x 16 

Shown in System/360 binary notation: 
Sign Characteristic Fraction 

o 100010 1 0000 0100 1011 0000 010 1 0000 

Second Operand. + 9,161 (dec) = + 23C9 (hex) 

Shown in a normalized short-operand format; 
4 

+0.23C9x16 
Shown in System/360 binary notation; 

Sign Characteristic Fraction 
o 1000100 0010 0011 1100 1001 0000 0000 

To facilitate the notation of the fraction, and since 
fraction handling can be associated with the basic 
arithmetic explanation, the following notation is 
adopted, showing the characteristics in binary and 
the fractions in hexadecimal. 

Operand 1 0 1000 101 04BOSO 

Operand 2 0 1000 100 23C900 

Refer to Figure 3-5 (where a floating-point sub­
traction is made and exponent and fraction arithmetic 
are shown separately) in conjunction with the follow­
ing description of the state of registers at various 
steps of the operation. 

State B is reached in the same way as in the pre­
vious example. The analysis that compares the 

exponents sets the operand 1 exponent HI latch in 
this case. At the same time, the exponent register 
B bit 'sign' is inspected. Since the bit is 1, the signs 
are equal and, as a subtract instruction is being per­
formed, the complement add latch is set. 

The exponent arithmetic progresses normally, 
but since operand 1 characterisitc is the result char­
acteristic, the operand 2 characteristic is cleared 
from exponent register A. For the same reason, 
the operand 2 fraction is set again in the B register 
since it will have to be shifted to match the char­
acteristics. The A register is cleared and operand 
1 fraction is set in the A register. 

In state C, the exponent register B contains the 
difference between exponents, while the correct oper­
and is in the B register for shifting. 

With state D, the matching of the characteristics 
is completed and the A register has been inverted 
as the first step to perform the complement add. 
The second step (carry-in) is achieved by gating the 
C LA with the subtract trigger on. 

The complement add result is obtained in state E 
and exponent register B contains the characteristic 
result. However, therE" was no carry-out of the CLA 
during the fraction add (CO latch off); therefore, the 
complemented operand (operand 1) is greater than 
operand 2 and the result is in complement form. 

Since the fraction is always stored in true form, 
a recomplement process is required. Note that if 
a carry-out of the CLA had occurred, the subtract 
operation result (being in true form) can be stored 
after the characteristic has been gated to the B reg­
ister. 

For the recomplementing process the fraction 
result, in complement form, is shifted left four if 
it is a normalized operation, to include the guard 
digit in the recomplementation. If it is an un­
normalized operation, the guard digit is lost and no 
shifting takes place. 

In state G, the first step in deriving the two's 
complement of the B register contents is to invert 
the contents. The second step is to reset the A reg­
ister to allow usage of the CLA with a carry-in (sub­
tract trigger). Since the A register has been reset, 
the floating-point common add signal is used without 
restrictions. 

The result obtained in state H is thus in true form 
(the two's complement of the complement result). 
Since no further normalization is required and no 
fraction overflow has occurred, the exponent reg­
ister B is combined with the fraction in the B reg­
ister to form the complete floating-point subtract 
result. The B register bit 00 is gated out of the B 
register in true form during the storing process. 
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COMPARE INSTRUCTIONS (SHORT-PRECISION 
OPERANDS) 

• Operand 1 is compared with operand 2, and the 
condition code indicates the result of this com­
parison. 

• Comparison is arithmetic, the sign, fraction and 
characteristic being compared. 

• The rules of normalized floating-point subtraction 
are used to establish the operand difference. 

• Instruction format can be either RR or RX. 

• The condition code setting is as follows: 
00: Operands are equal 
01: Operand 1 is low 
10: Operand 1 is high 
11: Not set 

The compare operation follows the rules for floating­
point un-normalized subtraction and differs from that 
operation in only four major areas: 

A recomplement cycle is never taken. 
The arithmetic result of the subtraction is not 

stored. 
The meaning and setting of the condition code. 
Exponent overflow, exponent underflow or sig­

nificance exceptions cannot cause a program 
interrupt. 

The compare instruction is thus performed in the 
following steps: 

1. Fetching of operands. 
2. Matching of characteristics and subtraction of 

fractions. 
3. Analysis of result and setting of condition code. 

This sequence applies to both long-precision and 
short-precision operands, but the operations involved 
in each step depend on the operand length. Refer to 
FEMD Figures 6319 to 6330 for the sequences of the 
short-precision compare instruction. 

Step 1 - Fetching of Operands 

• The operand 2 fraction and characteristic are 
fetched. 

• The operand 1 characteristic only is fetched. 

• The operand 2 fraction is placed in bits 08 to 31 
of both A and BX registers. 

• The partial difference of the operand 2 character­
istic minus the operand 1 characteristic is formed 
in exponent register B. 
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• This partial difference is analyzed to set the oper­
and 1 exponent HI, operand 1 exponent LO or 
exponents EQ latches. 

• Dc sets the shift counter to seven. 

Fetching of operands is the same for short-precision 
add, subtract and compare instructions. 

Step 2 - Matching of Characteristics and Subtracting 
of Fractions 

• Characteristic 2 minus characteristic 1 is formed 
in exponent register B. 

• For the exponents EQ case, the exponents already 
match. 

• For the operand 1 exponent LO and operand 1 
exponent HI cases, the fraction of the smaller 
operand is shifted right until either the character­
istics are equal or seven shifts have been per­
formed. 

• The fractions are subtracted and the result is 
contained in the B register. 

• The result characteristic is set into exponent reg­
ister B. 

The operation is the same for add, subtract and 
compare instructions. 

Note that if the result of the compare subtraction 
is in complement form, the recomplement latch is 
turned on. However, the signal to start a recomple­
ment cycle is degated by the compare op. The re­
complement latch is used once again for determining 
the correct sign of the result. Refer to Figure 3-1 
for this logic. 

The B register bits 00 to 07 are all ones if the 
recomplement latch is turned on. For this condition, 
therefore, the sign is inverted and the characteristic 
is in one's complement form when it is transferred 
from exponent register B. 

Step 3 - Analysis of Result and Setting of Condition 
Code 

• The characteristic result (with sign) is transferred 
from exponent register B to the B register. 

• The B register sign bit is checked, and when it is 
not correct, is gated in inverted form to the B 
register output bus. 

• The B register sign and the zero HI latch are ana­
lyzed to set the condition code. 



The fraction section of the result is contained in the 
B register and the characteristic of the result in 
exponent register B. As with the add and subtract 
instructions (Step 5), exponent register B is trans­
ferred to bits 00 to 07 of the B register. The sign 
of the B register is the sign of the operand that was 
originally in the A register, and does not necessarily 
represent the true sign of the result. 

The analysis is similar to that used for the add 
and subtract instructions (Figure 3-3). 

The sign in the B register is the same as for the 
subtract operation, except when the recomplement 
latch is on, in which case it is the inverse of sub­
tract. 

Thus the logic used in the subtract operation for 
the second and fourth conditions described previously 
in "Add and Subtract Instructions" (Step 5), is also 
activated for the compare operation. For the remain­
ing condition (that is, when the recomplement latch 
is on) the sign must be inverted on the operand 1 
exponent HI condition. 

The result fraction in the B register and the sign 
gated onto the B register output bus are analyzed 
with the same logic as in "Add and Subtract Instruc­
tions" (Step 5) to set the condition code as follows: 

00: Operands are equal (zero HI on) 
01: Operand 1 is low (gated B register bit 00 = 1, 

zero HI off) 
10: Operand 1 is high (gated B register bit 00 = 0, 

zero HI off) 
11: Not set. 
Note that program interrupts for significance 

exceptions or for exponent underflow or overflow 
cannot occur on a compare instruction. 

ADD AND SUBTRACT INSTRUCTIONS (LONG­
PRECISION OPERANDS) 

• Operand 2 is added to or subtracted from operand 
1. 

• The result, normalized if specified by the op code, 
is placed in the operand 1 location. 

• Both RR and RX formats are used. 

• The condition code is set to indicate the form of 
the results. 

00: Result fraction is zero or exponent under-
flow 

01: Result fraction is less than zero 
10: Result fraction is greater than zero 
11: Result exponent overflow. 

The floating-point add and subtract instructions are 
executed in the follOwing steps: 

1. Fetching of operands. 

2. Matching of characteristics (exponents) and 
addition of fractions. 

3. Recomplementing of fraction result (where 
necessary) . 

4. Correction of fraction overflow and normal­
ization of result (where specified by the op 
code). 

5. storage of result and setting of condition code. 

This sequence applies to both long-precision and 
short-precision operands, but the operations involved 
in each step depend on the operand length. 

The sequence for long-precision add and subtract 
instructions are shown in FEMD Figures 6331 to 6340. 
Only the major objectives of each of the above steps, 
and any pOints requiring explanation, are contained 
in the following description. 

The effect of the variable-precision feature on 
this operation is that all fetched operands have their 
low-order fraction bits truncated at the ABC funnel 
to the number of digits defined by the setting of the 
variable-precision console switch. The truncated 
positions are replaced by zeros and each operand is 
then handled as a long-precision operand. That is, 
14 digits in the fraction participate in all operations, 
including characteristic alignment and result normal­
ization cycles. 

The result may have significant bits in the digits 
outside the range of the defined precision. These 
bits are stored as part of the result and are seen if 
the result register is displayed in the console lights. 
However, when this result is fetched as an operand 
it is truncated at the ABC funnel. Thus, for pro­
gramming purposes, the result can be considered to 
be stored in the truncated form. 

Step 1 - Fetching of Operands 

• The operand 2 fraction and characteristic are 
fetched. 

• The operand 1 characteristic only is fetched. 

• Low-order fraction bits are truncated to the pre­
cision set by the console switch. 

• The operand 2 high-order fraction is placed in 
bits 08 to 31 of both AX and BX registers. 

• Operand 2 low-order fraction bits are placed in 
the A register and the inverse of these bits in the 
B register. 

• The partial difference of the second characteristic 
minus the first characteristic is formed in expo­
nent register B. 
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• This partial difference is analyzed to set the oper­
and 1 exponent HI latch, operand 1 exponent LO 
latch or exponents EQ latch. 

• Dc sets the shift counter to 14. 

• 'Complement add' latch is set when complement 
arithmetic is required. 

• Registers are reset under control of the operand 1 
exponent HI latch, operand 1 exponent LO latch 
or exponents EQ latch to prepare for the process 
of matching characteristics. 

The long-precision add and subtract instructions may 
be in either RR or RX format and the type of operand­
fetch cycles depends on the format. Note that a dc 
set of the BX register occurs which results in the 
low-order bits of the operand 2 fraction being left 
in inverted form. This form allows the fraction 
arithmetic to proceed with only one 32-bit inversion, 
depending on whether true or complement arithmetic 
is to be performed. 

The shift counter is set to 14 as there are now 14 
hexadecimal digits in the fraction, and more than 14 
hexadecimal shifts in the alignment process means 
that the operand being shifted has lost significance. 

Exponent register B contains the inverse of the 
EXOR of the two characteristics and is used to set 
the operand 1 exponent HI latch, operand 1 exponent 
LO latch or exponents EQ latch. Depending on which 

. latch is turned on, the registers are prepared for 
the alignment cycles. 

Operand 1 Exponent HI: Operand 2 to be shifted in 
characteristic matching process. 

A and AX registers: Reset 
B register Inverse operand 2 fraction 

low-order bits 
BX register Operand 2 fraction high-

order hits. 

Exponents EQ: No alignment process. 

Operand 1 Exponent LO: Operand 1 to be shifted in. 
characteristic matching process. 

A and AX registers: Operand 2 fractions bits 8 
to 63. 

Band BX registers: 'Complement add' latch on; 
set to ones. 'Complement 
add' latch off; reset to 
zeros. 
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step 2 - Matching of Characteristics and Adding 
of Fractions 

• Characteristic 2 minus characteristic 1 is formed 
in exponent register B. 

• For the exponents EQ case, the characteristics 
already match. 

• For the operand 1 exponent LO and operand 1 
exponent HI cases, the fraction (or inverse of the 
fraction if the 'complement add' latch is on) of 
the smaller operand is shifted right until either 
the characteristics are equal or 14 hexadecimal 
shifts have been performed. 

• The fractions are added or subtracted in two 
cycles; the carry from the low-order bits is used 
to set the subtract trigger carry-in for the high­
order bits. 

• The result in the B and BX registers is as follows: 
Operand 1 exponent HI Operand 1 ± oper-

Exponents EQ, Operand 1 

Exponent LO 

and 2. 
Operand 2 ± oper­

and 1. 

• The result exponent is set in exponent register B. 

• The result fraction is tested to set the zero HI and 
zero LO latches. 

• A fraction overflow into the characteristic field 
on a true add operation sets the 'shift-right-four 
required' latch. 

• A complement result causes a 'FPA recomplement 
required' signal (Figure 3-2). 

• If the 'FP A recomplement required' signal is on, 
a recomplement cycle is signalled; if the signal 
is off, the recomplement cycles are skipped. 

For the operand 1 exponent HI condition, the shift­
right-four operation for matching characteristics is 
performed with the operand 2 low-order bits in the 
B register and the operand 2 high-order bits in the 
BX register. For this operation, the BX to B shift­
right-four path is conditioned. Shifting of bits 00 to 
05 of the BX register is de-conditioned. 

The foregoing action has the effect of shifting the 
fraction down the BX register, across into the high- ( 

( 

\ 



order part of the B register and down the B register. 
Bits shifted out of the low-order position of the B 
register are lost. As the BX register bits 00 to 07 
at this time will be either all ones or all zeros, the 
effect of de-conditioning the shift input to bits 00 to 
05 of this register is to ensure that ones or zeros 
respectively will be shifted into the high-order posi­
tions of the fraction. 

Step 3 - Recomplementing of Fraction Result 

• The cycle is taken when the fraction result is in 
complement form. 

• This condition is detected by no-carry-out during 
the complement add cycles. 

• Recomplementing is made in two halves: the frac­
tion result low-order bits, followed by the frac­
tion result high-order bits. 

• The 'shift-right"';four required' latch is turned on 
if the result of the recomplement cycle overflows 
into the characteristic field. 

The logic for recomplementing the fraction result is 
shown in Figure 3-2. 

Step 4 - Correction of Fraction Overflow and 
Normalization of Result 

• If the 'shift-right-four required' latch is on, a 
shift-right-four operation is taken and the expo­
nent register B is incremented by one. 

• Normalizing cycles are required if the op code 
specifies normalization, the high-order digit of 
the fraction is zero (B register bits 08 to 11) and 
the fraction is not all zeros. 

• Shift-left-four operations (normalizing) are re­
peated until the high-order digit of the fraction 
becomes a significant digit. 

• The result characteristic in the exponent register 
B is decremented by one on each shift left of the 
fraction. 

• If an exponent underflow condition is caused by the 
normalizing process, both the characteristic and 
fraction of the result are set to zero. 

Step 5 - Storage of Results and Setting of Condition 
Code 

• The result characteristic is transferred from 
exponent register B to bits 00 to 08 of the B reg­
ister. 

• The result in the Band BX registers is stored in 
the operand 1 FPR. 

• The sign bit is analyzed and, where incorrect, 
is corrected by gating the B register bit 00 in 
inverted form to the output bus. 

• The condition code is set. 

• FP exception latches are set if an exception has 
occurred which is not masked. 

FP L Sub Op 
Not Recomp Latch 
Not FPA Operand 1 Exp 1 HI Latch 
FP L Add Op 
Recomp Latch 
FP L Compare Op 
Not FPA Operand 1 Exp 1 HI Latch 
FP L Sub Op 
Recomp Latch 
FPA Operand 1 Exp HI Latch 

* For Short Add, Subtract and 
Compare Operations 

- r-
A 

-
A FPA Gate BOO Inverted - OR 
A 

-
A 

-
..t.--

Figure 3-6. Logic for Gate BOO Inverted on long-PreCision Add, 
Subtract, Compare Operations 

Figure 3-6 shows the logic for gating the B register 
bit 00 in inverted form for the long-precision add, 
subtract (and compare) instructions. 

The fraction result and the gated B register sign 
are used to set the condition code as fonows: 

00: Result fraction is zero (zero HI and zero LO 
on) or exponent underflow. 

01: Result fraction is less than zero (either zero 
HI or zero LO off, and gated B register bit 
00 = 1). 

10: Result fraction is greater than zero (either 
zero HI or zero LO off, and gated B reg­
ister bit 00 = 0). 

11: Result exponent overflow. 
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A Reg AX Reg C Reg 8 Reg 8X Reg 

(SIc;i;A" 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

~ 

Opnd 2 HI to A and 8 Reg } 
ppnd 2,C, DO-51 Opnd 2,C, 00-5 

Set 8X Reg with all Ones 0 0 0 0 0 0 0 0 I I F F F F F F F F 

Reset A Reg 0 to 7 0 0 I Opnd 2,00-51 0 0 0 0 0 0 0 0 * I 
Opnd 2,C,00-5 

I F F F F F F F F 

Interchange A, AX and 8, 8X Reg} 

Reset ax Reg 0 to 7 0 0 0 0 0 0 0 0 0 0 10pnd 2, DO-51 F F F F F F F F 0 0 10pnd 2, DO-5 I 

Opnd 2 LO to A and 8 Reg I Opnd 2, D6-a I 
I 
I'~ Opnd 2, D6-a 

I 0 0 10pnd 2, DO-5 I 

State 8 

Reset a, 8X and C Reg 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Opnd 1 HI Fraction to 8, C Reg * o 10pnd 1,00-5 0 0 0 0 0 0 0 0 0 I 
10pnd 1, DO-5 Interchange 8 and 8X Reg 0 0 0 0 0 0 0 0 0 0 I 

Opnd 1 LO to 8, C Reg I 
O~nd I,D6-a 

I 0 0 10pnd 1,00-5 
I 

State C 

Fraction adjustment for } O~nd 1, Md OIOpnd I,Mdl * I I 0 0 0 Exponents Matching 

State D 

Set A Reg to 8, C Reg * (I Opnd 2,D6-a I) 

Gate CLA (I CLA I) 

A Reg + 8 Reg Result (LO) I 
UNRes,D6-13 I 

State D 

Interchange A, AX and 8, 8X Reg 0 0 I Opnd 2,00-51 10pnd 2, D6-a I * 0 0 0 Oppnd I,Md l I 
UNRes, D6-13 

I 

Set A Reg to 8, C Reg (0 0 epnd 2,DO-5 I) 1 Gate CLA (Possible Carry-In) (I CLA I) 

A Reg + 8 Reg Result (HI) 0 X IUNRes, DO-5 
I I 

UNRes,D6-13 
I 

State E 

Final Result I 
Res,C, DO-5 

I I 
Res, D6-13 

I 

,~ C Register and 8 Register contents are similar 

Legend: 
Opnd 1 
Opnd 2 
Res 

Operand 1 
Operand 2 
Result 
Characteristic 
EXOR'ed 

00-13 
a 
Md 
UN 

Hex Fraction Digits 0 to 13 
Precision Switch Specified Number 
Matched Fraction 

C Un-normalized 
V 

NOTE: The characteristic handling corresponds to the example in Figure 3-2 

Figure 3-7. Example of Long-Precision Add (Opnd 1 Exp LO Condition) 

Examples of Long-Precision Add/Subtract 

Example 1 

Figure 3-7 shows how the fractions are handled for 
two operations with exponents which give an operand 
1 exponent LO condition. The lettered states match 
those of "Examples of Short-Precision Add/Subtract" 
(Example 1 and Figure 3-4); the explanation of the 
characteristic arithmetic is given in that example. 
The bits 00 to 07 of the operands used in the example 
are: 

Operand 1 45 (hex) 
Operand 2 47 (hex) 

state A may be considered as the state of the reg­
isters immediately before entering the operands. 
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In state B, the exponent registers are analyzed h, 
set the operand 1 exponent HI, operand 1 exponent 
LO or exponents EQ latches (operand 1 exponent LO 
latch is set in this example). A true add operation 
is also decided at the same time, since both fraction 
signs are positive. 

The operand 2 fraction is in A, AX and B, BX 
registers. The high-order fraction part is in the 
AX and BX registers. The low-order parts (trun­
cated to the variable-precision switch specifications) 
which must be processed first are in the A re.gister, 
and in inverted form in the B register. These 
placings allow the requirements of any exponent HI, 
LO, or EQ latch condition or true-or-complement 
add operation to be met with the least possible data 
manipulation. 

, 
( 

( 

I 

" 



Since the operand 1 exponent LO latch is set, 
operand 1 must be shifted until the characteristics 
are matched. Therefore, operand 2 is unaltered in 
the A and AX registers, while the B, BX and C reg­
isters are reset. In state C, the operand 1 high­
order fraction is in BX register and operand 1 low­
order part (truncated as were those of operand 2) is 
in the B register. Both are ready for the shift-right­
four steps used for the exponents matching. To allow 
shifting with the high part following the low-order 
part, the shift-right-four pulse is suppressed on BX 
register positions 00 to 05. Thus the B register last 
positions, which are the fraction low-order positions, 
are shifted out and lost. A link between positions 
28 to 31 of the BX register and positions 00 to 03 of 
the B register is formed by the shift-right-four pulse 
acting on the B register bits 00 to 07. This pulse 
shifts the low digit of the high-order word into the 
high digit of the low-order word. 

In state D, the matching is completed and the add 
operation starts with the common add signal which 
gives sequentially: 

Set A register to ABC funnel (to Band C reg­
isters) 

De-condition C register 
Gate CLA output to ABC funnel (to B register). 

This is a normal add operation of A and B 
registers. 

The low-order fraction add result is obtained in 
state D', and the CO latch (adder carry-out bit) state 
is set into the subtract trigger; the trigger is used 
to store an adder carry-out bit from the low-order 
sum, and, to provide a carry into the high-order sum 
by forcing a carry-in to the CLA. Because of the 
shifts used for matching fractions, the precision of 
the result is higher than that specified by the variable­
precision switch. 

The same add operation now takes place between 
the high-order fraction parts after A, AX and B, BX 
registers interchange, and with a carry-in provided. 
where necessary, by the subtract trigger. 

The result obtained in state E might have an over­
flow out of the fraction field (X in Figure 3-7). In 
this case, a final shift-right-four occurs (accom­
panied by a corresponding incrementing of the char-:­
acteristic). The shifting is done without the special 
provision made during the matching, since the frac­
tion parts are now in the correct order. 

In the case of a normalized operation, the even­
tual high-order fraction hexadecimal zeros are 
shifted out by shift-left-four pulses. The character­
istic is corrected accordingly, the short-precision 
add operation (normalization) rules applying to the 
operation. 

The final result, which is stored, is obtained in 
the next step by gating the characteristic (exponent 
register B) to the B register positions 00 to 07. 

Example 2 

Figure 3-8 shows an example of a basic floating-point 
subtract operation, with recomplementation of the 
result if it is obtained in complement form. The 
characteristics used and the lettered states corre­
spond to those of the characteristic handling in 
"Examples of Short-Precision Add/Subtract" (Exam­
ple 2 and Figure 3-5). That is, the operand 1 char­
acteristic is 45 (hex) and the operand 2 character­
istic is 44 (hex). 

States A and B are reached in the same way as in 
the basic floating-point long-precision add operation. 

Since the operand 1 exponent HI latch is set in 
this case, operand 2 must be shifted until the char­
acteristics are matched. Operand 2 is thus left in 
the Band BX registers and operand 1 is set into A 
and AX registers. At the same time, a complement 
add operation is called (as the signs of the two oper­
ands are the same). Operand 2 low-order part is 
kept in inverted form in the B register. After the B 
and BX registers are interchanged (by gating the 
ones from the true/criss-cross to the Band C reg­
isters) the operand 2 high-order fraction is also 
inverted. 

At state C, operand 2 is thus in Band BX reg­
isters (because of the operand 1 exponent HI latch) 
and is in inverted form (because of the complement 
add operation). 

The same matching occurs as in the basic floating­
point long-precision add operation, with looping of 
the fraction hex bits from the BX register bits 28 
to 31 to the B register bits 00 to 03. 

In state D, the 'common add' signal is raised to 
add in B register the operand 1 low-order fraction 
(A register) to the two's complement of the operand 
2 low-order fraction. 

In state D', after interchanging the A, AX and B, 
BX registers, the same process as in state D occurs 
between operand HI fractions, the carry-in CLA bit 
reflecting the condition of the CO latch after the first 
addition. 

In state E, if the result is in true form (CO latch 
on), the operation is terminated as in the basic 
floating-point long-precision add operation. 

If the result is not in true form (CO latch off), a 
recomplementing process takes place. The A reg­
ister is reset, ones are gated to the Band C regis­
ters, and the 'common add' signal gates the CLA to 
the B register. The B and BX registers are inter­
changed to derive first the two's complement of the 
low-order fraction, so that an eventual adder carry­
out can be inserted as a carry-in to the high"':order 
fraction. The result obtained in state E is the two's 
complement of the first low-order result. 

In state G', the process is repeated with the high­
order result fraction (after a B, BX registers inter-
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change) with the subtract trigger (carry-in CLA) set 
to reflect the state of the CO latch. 

State H is reached with a normalized result if 
specified; note that, in recomplementing, it is not 
possible to have a fraction hexadecimal overflow. 
The operation ends by storing the final result which 
includes the characteristic gated from exponent reg­
ister B. 

COMPARE INSTRUCTIONS (LONG-PRECISION 
OPERANDS) 

• Operand 1 is compared with operand 2, and the 
condition code indicates the result of this com­
parison. 

• Comparison is arithmetic, the sign, fraction and 
characteristic being compared. 

• The rules of floating-point subtraction are used 
to establish the operand difference. 

• Instruction format can be either RR or RX. 

• The condition code setting is as follows: 
00 Operands are equal 
01 Operand 1 is low 
10 Operand 1 is high 
11 Not set. 

The compare operation follows the rules for floating­
point un-normalized subtraction and differs from 
that operation in only four major areas: 

A recomplement cycle is never taken. 
The arithmetic result of the subtraction is not 

stored. 
The meaning and setting of the conditioI]. code is 

different. 
Exponent overflow, exponent underflow or signifi­

cance exceptions cannot cause a program 
interrupt. 

The compare instruction is thus performed in the 
following steps: 

1. Fetching of operands. 
2. Matching of characteristics and subtraction of 

fractions. 
3. Analysis of result and setting of condition code. 

This sequence applies to both long-precision and 
short-precision operands, but the operations 
involved in each step depend on the operand length. 
Only the major objectives of each of the above steps, 
and any points requiring explanation, are contained 
in the following description. 

Refer to FEMD Figures 6331 to 6340 for the 
sequences of the long-precision compare instructions. 

The effect of the variable-precision feature on 
this operation is that all fetched operands are trun-

cated in a Similar manner to that for the long­
precision add and subtract instructions. 

Step 1 - Fetching of Operands 

• The operand 2 fraction and characteristic are 
fetched. 

• The operand 1 characteristic only is fetched. 

• The operand 2 high-order fraction is placed in 
bits 08 to 31 of both AX and BX registers. 

• The operand 2 low-order fraction is placed in the 
A register and the inverse of these bits in the B 
register. 

• The partial difference of the second character­
istic minus the first characteristic is formed in 
exponent register B. 

• This partial difference is analyzed to set the 
operand 1 exponent HI, operand 1 exponent LO or 
exponents EQ latches. 

• Dc sets the shift counter to 14. 

• The complement add latch is set when complement 
arithmetic is required. 

• Registers are reset under control of the operand 
1 exponent HI, operand 1 exponent LO or expo­
nents EQ latches to prepare for the process of 
matching characteristics. 

• Low-order fraction bits are truncated to the 
precision set by the console switch. 

The fetching of operands for long-precision add, 
subtract and compare instructions is similar. The 
contents of the internal registers are the same as 
for the add and subtract operations. 

Operand 1 Exponent HI: Operand 2 to be shifted in 
the process of matching characteristics. 

A and AX registers: Reset. 
B register: Inverse of operand 2 fraction low­

order bits. 
BX register: Operand 2 fraction high-order bits. 

Exponents EQ: No characteristic-matching process. 

Operand 1 Exponent LO: Operand 1 to be shifted in 
the process of matching characteristics. 

A and AX registers: Operand 2 fraction bits 8 to 
63 
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Band BX registers: Complement add latch off; 
reset to zeros. 
Complement add latch on; 
set to ones. 

Step 2 - Matching of Characteristics and Subtracting 
of Fractions 

• Characteristic 2 minus characteristic 1 is formed 
in exponent register B. 

• For the exponents EQ case, the characteristics 
already match. 

• For the operand 1 exponent 1.0 and operand 1 
exponent ill cases, the fraction (or inverse of the 
fraction if the complement add latch is on) of the 
smaller operand is shifted right until either the 
characteristics are equal or 14 hexadecimal 
shifts have been performed. 

• The fractions are subtracted in two cycles; the 
carry from the low-order bits is used to set the 
subtract trigger carry-in for the high-order bits. 

• The result in the B and BXregisters is as follows: 
Operand 1 exponent HI: operand 1 - operand 2. 
Operand 1 exponent LO, exponents EQ: oper­

and 2 - operand 1. 

• The result exponent is set in exponent register B. 

• The result fraction is tested to set the zero HI, 
zero LO latches. 

• A fraction overflow into the characteristic field 
on a true add operation sets the 'shift-right-four 
required' latch. 

• A complement result sets the recomplement 
latch on. 

• A recomplement cycle is inhibited on the compare 
instruction, but the recomplement latch remains 
on. 

Note that if the result of the subtraction of the frac­
tions is in complement form, the recomplement 
latch is turned on (Figure 3-2). However, the signal 
to start a recomplement cycle is degated by the 
compare operation. The recomplement latch is used 
as in long-precision add/subtract to determine the 
correct sign of the result. 

If the recomplement latch is on, the B register 
bits 00 to 07 are all ones and the Sign of exponent 
register B and the characteristic are inverted in the 
B register. 
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Step 3 - Analysis of Result and Setting of Condition 
Code 

• The characteristic result (with sign) is trans­
ferred from exponent register B to B register 
bits 00 to 07. 

• The B register sign bit is checked and, if it is 
incorrect, is gated in inverted form to the output 
bus. 

• The B register gated sign and the zero HI and 
zero LO latches are used to set the condition code. 

The sign in the B register is not necessarily the 
correct sign of the result. The logic for the 'gate 
BOO inverted' signal, for long-precision add, sub­
tract and compare instructions, is shown in Figure 
3-6. 

The zero HI, zero 1.0 latches and the B register 
gated sign are analyzed in the same manner as for 
long-precision add and subtract instructions. The 
condition code is set as follows: 

00 Operands are equal (zero HI and zero LO 
on). 

01 Operand 1 is low (either zero HI or zero 
LO off, and B register gated sign = 1). 

10 Operand 1 is high (either zero ill or zero 
La off, and B register gated sign = 0). 

11 Not set. 
Note that program interrupts cannot occur on a 
compare operation for significance exceptions, or 
for exponent underflow or overflow exceptions. 

MULTIPLY INSTRUCTIONS (SHORT-PRECISION 
OPERANDS) 

• The normalized long-precision product of oper­
and 2 (multiplier) and operand 1 (multiplicand) is 
placed in the operand 1 FPR. 

• Multiplication consists of a characteristic addi­
tion and a fraction multiplication. 

• The sum of the characteristics less 64 is the 
characteristic of the intermediate product. 

• The sign of the product is determined by the 
rules of arithmetic. 

• The intermediate product fraction is 14 digits 
wide and is held in long-precision format. 

• Pre-normalizing of the fractions is not necessary. 

• The intermediate product is post-normalized. 

\ 
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• Exponent underflow and exponent overflow excep­
tions can occur. 

• Significance exception is not tested. 

The objective of the multiply operation is to take the 
two operands, multiply their fractions and add their 
characteristics (exponents). 

The addition of the exponents is performed in the 
exponent register area, in parallel with the multi­
plication of the six hexadecimal digits of each frac­
tion in the A, B, BX, C registers. 

The multiplication of the fractions is performed 
in a similar manner to fixed-point multiplication 
(refer to "Fixed-Point Instructions, " Principles of 
Operation - Processing Unit, Form Y33-0002). 
The fraction multiplication uses the same group-of­
ones principle and the multiplication loop rules are 
also alike. Pre-normalizing of the fractions is not 
necessary because the full result can be contained 
in the B and BX registers. 

When the fraction multiplication is complete, the 
fraction is post-normalized, combined with the 
result exponent and stored in long-precision format. 

If the final product characteristic exceeds 127, 
an exponent overflow exception exists; the operation 
is therefore terminated and a program interrupt 
requested. Note that if the intermediate product 
characteristic exceeds 127, an overflow exception 
is not signalled should the result characteristic be 
subsequently reduced to 127 or less on the post­
normalization process. 

Exponent underflow occurs if the final product 
characteristic is less than zero. For this condition, 
both the characteristic and fraction of the product 
are made zero and an exponent underflow exception 
is signalled if the corresponding mask bit (PSW 2 
bit 6) is a one. 

When all 14 result fraction digits are zero, the 
product is made a true zero by forcing the product 
sign and characteristic to zero. For this condition, 
a significance exception is not signalled and the 
exponent overflow and underflow conditions are 
ignored. Thus a program interrupt for lost signifi­
cance is not taken for a multiply operation. 

The basic steps involved in the multiplication of 
short-precision operands can be summarized as 
follows: 

1. Fetching of operands and initialization. 
2. Fraction multiply cycles and addition of 

characteristics (exponents). 
3. Post-normalization of result. 
4. Storing the result. 
5. Test for FP exceptions. 

The instructional sequences and timings are shown 
in FEMD Figures 6341 to 6346. 

Step 1 - Fetching of Operands and Initialization 

• Operand 2 fraction (multiplier) is set to the A 
register. 

• Operand 1 fraction (multiplicand) is set to the BX 
register. 

• Operand 2 characteristic is set to exponent reg­
ister A. 

• The EXOR of the characteristics of operand 1 and 
operand 2 is formed in the exponent register B. 

• Dc sets the shift counter to 25. 

• A multiplier of zero sets the zero HI latch. 

• A multiplicand of zero sets the zero LO latch. 

The initial setup of the multiplier and multiplicand 
fraction is similar to the fixed-point multiply oper­
ation. The operand 2 fraction (multiplier) is set to 
bits 08 to 31 of the A register and the operand 1 
fraction (multiplicand) is set to bits 08 to 31 of the 
BX register. Bits 00 to 07 of both the A and BX 
registers are zero at the end of the setup cycles. 
If the multiplier is zero, the zero HI latch is set; if 
the multiplicand is zero, the zero LO latch is set. 

The characteristics of the two operands are com­
bined in the exponent register area in preparation 
for the addition of the exponents. 

Exponent register B (which was set to ones 
during I-fetch) is reset and the characteristics are 
gated to the exponent registers, so that exponent 
register B contains the EXOR of the two character­
istics and exponent register A contains one of the 
characteristics in preparation for the characteristic 
addition process. 

The shift counter is set to a value of 25 as the 
fraction multiplication concerns only 24 bits. 

Step 2 - Fraction Multiply Cycles and Addition of 
Characteristic s (Exponents) 

• The fractions are multiplied. 

• The addition of characteristics is completed. 

• The basic rules of fixed-point multiplication apply 
to the fraction multiplication. 

• Characteristic addition is performed using excess 
64 arithmetic. 

• For a multiplier of zero (zero HI), the multiply 
cycles are omitted. 
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The fraction multiplication is treated as two 24-bit 
positive numbers and the rules of fixed-point multi­
plication apply. The group-of-ones principle is 
used, while the type and length of cycle performed 
depends on the status of the multiplier digits in bits 
30, 31 of the BX register and the subtract trigger 
backup latch. However, since the fraction is always 
in true form, a positive sign is assumed and no 
special provision is made for the last cycle on which 
the shift counter becomes zero. Refer to "FP 
Common Multiply Cycles" in this chapter for a 
description of the common multiply loop. 

The characteristic addition is completed by 
gating the exponent CLA output to exponent register 
B to form the sum of the two characteristics; the 
exponent CLA high-order position is gated for excess 
64 arithmetic so that the sum developed is the arith­
metic sum of the two characteristics less 64. This 
arithmetic sum represents the result exponent plus 
64, which is the result characteristic. 

If the zero HI latch is on (multiplier of zero which 
would give a zero result), the multiply cycles and 
the majority of the characteristic handling are 
omitted. Refer to FEMD Figures 6344 and 6346. 

Step 3 - Post-Normalization of Product 

• The result of the fraction multiplication is nor­
malized. 

• Normalizing of the product is omitted if either 
the multiplier or multiplicand is zero. 

The result fraction is normalized by repeated shift­
left-four operations on the Band BX registers until 
a significant digit occurs in the high -order position 
of the fraction (B register bits 08 to 11). 

For each shift-left-four operation, exponent reg­
ister B is decremented by one to preserve the cor­
rect value of the result. 

Step 4 - Storing the Result 

• The result characteristic is combined with the 
result fraction. 

• For exponent underflow, the result is set to zero. 

• For a zero result fraction, the result character­
istic is set to zero. 

• The full double-word product is stored in FPR 
(Ra). 

Normally, the complete result is formed in the B 
and BX registers by gating exponent register B to 
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bits 00 to 07 of the B register. If the result fraction 
is zero, however, the gating does not occur and a 
true zero result is formed in the B register. 

If an exponent underflow has occurred, the B 
register is reset and a result of zero is stored in 
both halves of the FPR defined by the Ra register. 

For normal conditions, the long-format result in 
the Band BX registers is stored in the FPR defined 
by the Ra register, as shown in FEMD Figure 6368. 

Step 5 - Test for FP Exceptions 

• Exponent overflow condition sets the exponent 
overflow exception latch and a program interrupt 
is requested. 

• Exponent underflow condition sets the exponent 
underflow exception latch and requests a program 
interrupt, provided that the mask bit (PSW 2 bit 
6) is a one. 

• For a multiplier or multiplicand of zero, expo­
nent overflow or underflow conditions are ignored. 

• A significance exception is not tested. 

For conditions other than a zero multiplier or a 
zero multiplicand, the exponent overflow and expo­
nent underflow conditions are tested. For an expo­
nent overflow, the exponent overflow exception latch 
is set; this latch then generates a program-interrupt 
request. For an exponent underflow, the mask bit 
(PSW 2 bit 6) must be a one to allow the exponent 
underflow exception latch to set; this latch, when 
set, requests a program interrupt. 

INTRODUCTION TO MULTIPLY INSTRUCTIONS 
(LONG-PRECISION OPERANDS) 

The multiplication of the two operands follows the 
rules that exponents are added and fractions are 
multiplied. 

However, execution of fraction multiplication is 
complicated by the length of each fraction, which 
can vary from 32 to 56 bits (8 to 14 hexadecimal 
digits) dependent on the setting of the variable­
precision switch. The normal multiplication pro­
cess handles up to 32 bits and special proviSion has 
been made to develop products from fractions 
greater than 32 bits. Regardless of the fraction 
length, the maximum length of the product is 56 bits 
(14 hexadecimal digits). 

The manner in which the machine handles these 
long-precision fractions depends upon the precision 
chosen by the variable-preCision switch. 



Principles of Long-Precision Multiply 

• Multiplication is performed in four steps for pre­
cisions of 10, 12 and 14. 

• Multiplication is performed in one step for a pre­
cision of 8. 

• Fixed-point multiplication rules apply to each of 
the multiply steps. 

For the multiply operation, each operand is trun­
cated to the desired precision during fetching, pre­
normalized, then shifted-left eight bit positions so 
that the fraction is aligned to the left-hand end of the 
registers. 

The fractions are then split into high-order and 
low-order sections. The high-order section always 
contains 32 bits (8 hexadecimal digits); the low-order 
section contains 0, 8, 16 or 24 bits (0, 2, 4 or 6 
hexadecimal digits) according to the setting (8, 10, 
12 or 14 respectively) of the variable-precision 
switch. 

The multiplication is then performed in four sub­
routines when the precision is either 10, 12 or 14. 
For a precision of 8, the first three subroutines are 
skipped and only the fourth subroutine is executed. 
These four subroutines are shown in Figure 3-9, 
where all alphabetic figures represent 32 binary bits. 

Subroutine 1: The low-order bits are multiplied, 
with the B register set to zero, thus forming a pro­
duct, of which the low-order half (J) is discarded. 
The high-order half (H) is temporarily retained in 
the B register for subroutine 2. 

Subroutine 2: The first cross-multiplication is per­
formed and the product is developed on top of the 

Sub- Operation 
routine Description Summary Operation 

Operand 2 High-order ~ D 

Low-order ~ E DE 

Operand I High-order ~ F x 

Low-order ~G F G 

I Form Low-order product. (G x E) ~ HJ 
Truncate unwonted bits. H-

2 Form first cross-multiply product 
on result of subroutine 1. H + (G x D) ~ K L 
Store K for subroutine 3. L + (E x F) ~ - L 

3 Form second cross-multiply product 
on result of subroutine 2. L + (E x F) ~ MN 
Truncate unwanted bits. M-
Add K (from subroutine 2) to M. (K + M) ~ P -

4 Form high-order product 
on result of subroutine 3. P + (D x F) ~ Q R 
Resu It Product Q R 

Figure 3-9. Principles of Long-Precision Multiply 

information (H) left in the B register. The high­
order half (K) of the developed product is temporarily 
stored for later use and the low-order half (L) is 
left in the B register for subroutine 3. 

Subroutine 3: The second cross-multiplication is 
performed and the product is developed on top of the 
information (L) left in the B register. The low-order 
half (N) of this developed product is discarded and 
the information (K) temporarily stored in subroutine 
2, is added to the high-order half (M) of the product. 
The sum (P) is left in the B register for subroutine 
4. If there is a high-order carryon this add process, 
the fact is stored in a latch for subroutine 4. 

Subroutine 4: The high-order multiplication is per­
formed and the product (Q # R) is developed on top of 
the information (P) left in the B register. On the 
last multiply cycle, a one is added to the product if 
a high-order carry was present in subroutine 3. 

The result in the Band BX registers represents 
the fraction result of the complete multiply opera­
tion which is combined with the result exponent to 
form the complete result. 

EXECUTION OF LONG-PRECISION MULTIPLY 
(PRECISION = 10, 12, 14) 

The execution of the long-precision FP multiply 
instruction involves the four multiply subroutines 
(described previously) and data manipulation pre­
paratory to these subroutines. 

The instruction is performed in the following 
basic steps: 

1. Operand fetch and pre-normalization. 
2. Low-order product. 
3. First cross-product. 
4. Second cross-product. 
5. High-order product. 
6. Post-normalization, exception test and result 

store. 
Figure 3 -1 0 shows the contents of each of the main 

registers at the single-cycle points. Each cycle is 
defined by the controlling cycle latch or sequence 
latch(es). The legend used to define the register 
contents is shown, as are the constants used to define 
values which are dependent on the setting of the 
variable-precision switch. 

Note that manipulations may occur within a cycle 
which cause the contents of a register to alter during 
the effective part of the cycle, then to be further 
altered, reset or replaced as necessary. For 
cycles where multiplication takes place (sequences 
2B, 5B, 1D, 2D), only the contents at the end of the 
set of multiply cycles are shown. 

Expressions are shown at the bottom of Figure 
3-10 to indicate how the four products (PI to P4) 
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Cycle A Reg AX Reg 8 Reg 

RR Format only 
Seq lA Opnd 2,C,00-5 - -
R2 Cycle Opnd 2,C,00-5 - - Opnd 2,C,00-5 

RX Format only 

EA,EA,IA Opnd 2,C,00-5 

5A -
2A Opnd 2NL,OB-a 

Rl Opnd 2N, 00-7 

3A* Opnd 2N,00-7 

4A* Opnd 2N, 00-7 

18 Opnd 2N, 00-7 

38 Opnd 2NL, OB-a 

End 2B's Opnd 2NL, OB-a 

48 * Opnd 2N,OB-a 

38 Opnd 2N, 00-7 

End 58's Opnd 2N,00-7 

lC Opnd 2NL,OB-a 

2C P2,OB-a 

3C P2,OB-a 

5C P2,OB-a 

4C Opnd 1 N, 00-7 

End 10's Opnd 1 N, 00-7 

3D P2,00-7 

40* Opnd 2N,00-7 

End 20's Opnd 2N, 00-7 

50 Opnd 2N,00-7 

Rl Opnd 2N,00-7 

" Cycle CC 1 to CC 4 only 

Register Contents Legend: 

Opnd 1 : Operand 1 
Opnd 2 : Operand 2 

F : Fraction 
N : Normalized 
P : Product 

Constants Values: 

Precision 

10 12 

k:onstant a 9 11 

k:onstant b 5 3 

k:onstant c 9 17 

14 

13 

1 

25 

- Opnd 2,C,00-5 

- Opnd 2N,00-7 

- Opnd 2N,00-7 

Opnd 2NL, OB-a Opnd 1,06-a 

Opnd 2NL,OB-a Opnd 1 R, 00-5 

Opnd 2NL,OB-a Opnd 1 NR, 00-6 

Opnd 2NL,OB-a -
Opnd 2N,00-7 -
Opnd 2N,00-7 PI ,00-7 

Opnd 2N, 00-7 Opnd lNL,OB-a 

Opnd 2N,OB-a Opnd 1 NR, OB-a 

Opnd 2NL, OB-a P2,00-7 

Opnd 2N,00-7 Opnd 2NL, OB-a 

Opnd 2N,00-7 Opnd 2NL,OB-a 

Opnd 2N,00-7 -
Opnd 2N, 00-7 P2,OB-a 

Opnd 2N,00-7 P2R,OB-a 

Opnd 2N,00-7 P3,00-7 

Opnd 2N,00-7 P2+P3,00-7 

P2,00-7 Opnd 1 N, 00-7 

P2,00-7 P4,00-7 

P2,00-7 P4N,C,04-5 

P2,00-7 P4N,06-13 

00-13: Hex Fraction Digits 0 to 13 
C : Characteristic and Sign 
L : ~igits Left Aligned in Register 
R : Digits Right Aligned in Register 

a,b,c : Constants; see table below 

8X Reg 

-
Opnd 2,06-a 

Opnd 2,06-a 

Opnd 2NL,OB-a 

Opnd 2NL,OB-a 

-
Opnd 1,06-a 

Opnd lNL,07-a 

Opnd 1 NL OB-a 

Opnd 1 NR, OB-a 

-
PI ,00-7 

P1R,00-7 

-
P2,00-7 

P2,00-7 

Opnd 2NL OB-a 

Opnd 2NL,OB-a 

Opnd 2NR,08-a 

P3,OB-a 

-
P2+P3,00-7 

P4L,08-13 

P4N,06-13 

P4N, CN, 00-5 

Shift 
Scratch Reg Exp Reg A Exp Reg 8 Counter 

- - Opnd 2,C 
- - Opnd 2,C 

- - Opnd 2,C 

- - Opnd 2,CN 

Opnd 2NL,OB-a - Opnd 2,CN 

Opnd 2N,00-7 Opnd I,C Opnd I,C+2,CN 

- Opnd I,C Opnd I,C+2,CN 

- Opnd I,C Opnd I,CN+2 CN 

Opnd 1 N L OB-a Opnd 1 C P C 

Opnd 1 NL, OB-a Opnd 1 C P C 

Oond 1 NL OB-a Oond 1 C PC 

Opnd lNL,OB-a Opnd I,C P,C 

Opnd lNL,OB-a Opnd I,C P,C 

P2,OB-a Opnd I,C P C 

P2,OB-a Opnd I,C P,C 

- Opnd I,C P,C 

P2 00-7 Opnd 1 C P C 

P2,00-7 Opnd I,C PC 

P2,00-7 Opnd I,C P,C 

P2,00-7 Opnd I,C P,C 

PI ,00-7 Opnd 1 C PC 

PI ,00-7 Opnd I,C P,C 

Pl,00-7 Opnd I,C P,C 

Pl,00-7 Opnd I,C P,CN 

Pl,00-7 Opnd I,C peN 

Product Derivation: 

PI : (Opnd 2NL, 08-a) x (Opnd 1 NR, 08-a) 
P2 : PI ,00-7 + (Opnd 2N,00-7) x (Opnd 1 NR,08-a) 
P3 : P2,08-a + (Opnd 1 N, 00-7) x (Opnd 2NR,08-a) 
P4 : P2+P3, 00-7 + (Opnd 2 N, 00-7) x (Opnd 1 N, 00-7) 

-
-

-
-
-
-
-
-
b 

c 

0 

b 

c 

0 

0 

0 

b 

c 

c 

0 

33 

33 

0 

0 

0 

Figure 3-10. Single-Cycle Chart for Long-Precision Multiply (Precision = 10, 12, 14) 
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are derived from the data existing at the start of 
the multiply cycles. Derivation: 

Product (B, BX registers) = Multiplicand (A register) x 

Multiplier (BX register). 

Refer also to the corresponding instruction 
sequence diagrams (FEMD Figures 6347 to 6368) to 
enable the manipulation within a cycle to be deter­
mined. 

Step 1 - Operand Fetch and Pre-Normalization 

• Cycles are from the end of I-fetch to the end of 
sequence 4A. 

• At the end of sequence 4A, the operand 2 fraction 
(normalized and left-aligned to bit 00) is in the A 
and AX registers. 

• At the end of sequence 4A, the operand 1 fraction 
(normalized and left-aligned to bit 04) is in the B 
and BX registers. 

• The sum of the two characteristics is formed in 
exponent register B. 

Sequence lA, R2 Cycle (RR Format) 

Operand 2 high-order bits (characteristic and frac­
tion digits 0 to 5) are gated from the FPR defined 
by the Rb register and are set to the A and B reg­
isters. The Band BX registers are then inter­
changed. 

Operand 2 low-order bits (fraction digits 6 to 13) 
are read out of the operand 2 FPR, truncated to the 
precision defined by the variable-precision switch 
and set into the B register. The B and BX registers 
are then interchanged. 

Operand 2 characteristic is gated from the oper­
and 2 FPR defined by the Rb register to exponent 
register B. 

If operand 2 is zero, the second operand zero 
latch is set on. Refer to "Setting of Zero HI and LO 
Latches". 

Double EA Cycles, Sequence 1A (RX Format) 

Operand 2 high -order bits are read out of the storage 
location defined by the effective address and set into 
the A and BX registers. Operand 2 low-order bits 
are read out of storage, truncated to the precision 
defined by the variable-precision switch and set into 
the B register. The B and BX registers are then 
interchanged. 

Operand 2 characteristic is set into exponent 
register B from bits 00 to 07 of the A register. 

.If operand 2 is zero, the second operand zero 
l'atch is set on. Refer to "Setting of Zero HI and 
LO Latches". 

Sequence 5A 

The double-word operand 2 fraction is normalized in 
the B and BX registers and the resulting fraction is 
shifted-left two hex digit positions. This leaves 
digits 0 to 7 of the normalized fraction in the B 
register and the remaining digits of the fraction in 
the BX register. The number of digits remaining in 
the BX register is a function of the variable-precision 
switch and is 2, 4 or 6 for precisions of 10, 12 or 
14 respectively. 

As the digits in the BX register are aligned to 
the left -hand or high -order end of the register, the 
contents are described in Figure 3-10 as Opnd 2 NL, 
D8-a, (where N = Normalized; L = Left aligned; 
D = Hex fraction digits; a = 9, 11 or 13 for preci­
sions of 10, 12 or 14 respectively). 

The A register contents, which were used in the 
RX format to set the operand 2 characteristic 
(Opnd 2C) to the exponent register B, are now reset. 

The B register contains the high-order 32 bits of 
the normalized operand 2 fraction (Opnd 2N, DO-7). 

For the multiplication processes, the B register 
becomes the operand 2 high-order multiplier field 
and the BX register the operand 2 low-order multi­
plier field; refer to "Principles of Long-Precision 
Multiply" . 

Sequence 2A 

The operand 2 low-order multiplier field (Opnd 2 
NL, D8-a) is set to the A register from the BX reg­
ister via the scratch register. 

R1 Cycle 

Operand 1 low-order bits are read out of storage to 
the SDR. In parallel with this operation, the con­
tents of the various registers in the ALS are manip­
ulated in preparation for receiving this information. 

The A, AX and B, BX registers are interchanged, 
and the B register and scratch register are then 
reset. The BX register is then set to the scratch 
register and the BX register is then reset. The 
SDR is gated to the B register and the scratch reg­
ister is set to the A register. 

The result is that the operand 2 normalized frac­
tion is set in the A and AX registers while the BX 
register is free to receive the remaining section of 
operand 1 for pre-normalizing and left-adjusting. 

Principles of Operation 8/66 3-25 



In the exponent register area during this cycle, 
the operand 1 characteristic (Opnd 1C) has been 
gated from the operand 1 FPR defined by the Ra 
register to both exponent registers A and B. The 
exponent CLA output, gated for excess 64 arith­
metic, is then set to exponent register B, thus 
forming the excess 64 sum of the two characteristics 
of the normalized fractions. 

Sequence 3A 

The operand 1 fraction is prepared for pre­
normalizing by interchanging the low-order digits 
from the B register to the BX register. The com­
plete fraction is formed by gating the fraction digits 
o to 5 (bits 8 to 31) from the FPR defined by the Ra 
register to the B register. Since these digits are 
aligned to the right of the B register, the contents 
are represented in Figure 3-10 by Opnd 1R, DO-5. 

This sequence 3A is allowed to run only to CC 4 
time. 

If operand 1 is zero, both the zero HI and zero 
W latches will be on at the completion of this cycle. 
Refer to "Setting of Zero HI and LO Latches". 

Sequence 4A 

The operand 1 double-word fraction is normalized in 
the Band BX registers. When this process is com­
plete, the first shift-left-four operation is performed 
to left-align the fraction. Thus bits 00 to 03 of the 
B register are zero, followed by the normalized 
operand 1 fraction in the remainder of the B and BX 
registers. 

The contents are represented in Figure 3-10 as 
Opnd 1 NR, DO-6 in the B register and Opnd 1NL, 
D7 -a in the BX register. The second shift-left-four 
operation to completely left-align the operand 1 
normalized fraction is made at the start of the next 
cycle (Step 2). 

This sequence 4A is allowed to run only to CC 4 
time. 

Setting of Zero HI and LO Latches 

During the operand 2 fetch (sequence 1A cycle) 
operation, both the zero HI and zero LO latches are 
set if operand 2 has a zero fraction. This action 
causes the second operand zero latch to be set. If 

this latch is on at the end of sequence 5A, an R1 
cycle is called and zero is set to both halves of the 
operand 1 FPR; end execute is then signalled, 
terminating the multiply instruction. 

During the operand 1 fetch (sequences 2A and 3A), 
the zero HI and zero W latches are again set if the 
operand 1 fraction is zero. The 'on' state of these 
latches at this time does not cause the multiply 
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instruction to be terminated but instead, causes both 
the pre-normalization process in sequence 4A and 
the testing for exception conditions in sequence 5D 
to be skipped. For this condition, the multiply 
process continues but a zero product is automat­
ically developed. 

Step 2 - Low -Order Product 

• Cycles are from the start of sequence 1B to the 
end of sequence 2B cycle. 

• Operand 2 low-order bits are multiplied by oper­
and 1 low-order bits. 

• The product low-order bits are reset. 

Sequence 1B 

A second shift-left-four is performed to left-align 
the operand 1 normalized fraction correctly. The 
B register now contains the digits 0 to 7 of the 
operand 1 fraction; these digits are the operand 1 
high-order bits referred to in "Principles of Long­
Precision Multiply." The BX register contains 
fraction digits 8 to 9, 8 to 11, or 8 to 13 for preci­
sions of 10, 12 or 14 respectively; these digits are 
the operand 1 low-order bits referred to under the 
same heading. 

The high-order 32 bits of the operand 1 fraction 
are temporarily stored from the B register to the 
high-order section of operand 1 FPR defined by the 
Ra register for use in the later sequence 4C (in step 
4 of the instruction execution). 

The B register is then reset, the BX register is 
set to the scratch register and the shift counter is 
set to values of 5, 3 or 1 for precision settings of 
10, 12 or 14 respectively. These values will be 
used in the following sequence 3B to right-align the 
operand 1 low-order part in the BX register in pre­
paration for the multiplication process. 

In Figure 3-10, contents of exponent register B 
are shown at this time as P, C since they represent 
the characteristic of the product (result) prior to 
post-normalization. 

Sequence 3B 

The low-order digits of operand 1 are right-aligned 
in the BX register by a series of shift-right-four 
operations, one more than the value set into the 
shift counter on sequence lB. This shifting positions 
the digits in readiness to act as a multiplier. The 
shift counter is then set for the first multiply 
sequence to values 9, 17 or 25 for precision of 10, 
12 or 14 respectively. As with fixed-point multi-



plication, this setting represents one more than the 
number of multiplier digits. 

Sequence 2B 

This sequence is active for the complete low-order 
multiplication process. 

As the A register contains the operand 2 low­
order bits and the BX register contains the operand 
1 low-order bits, the product of the bits will be the 
first step in the multiplication process. These 
cycles are described in "FP Common Multiply 
Cycles." After the low-order product is formed, 
the BX register is reset, truncating unwanted bits. 
The result in the B register is shown in Figure 3-10 
as product 1, digits 0 to 7 (PI, DO -7). 

Step 3 - First Cross-Product 

• Cycles are from the start of sequence 4B to the 
end of sequence 5B cycles. 

• Operand 2 high-order bits are multiplied by oper­
and 1 low-order bits. 

• The product is formed on the first cross-multiply 

high-order bits. 

• The product low-order bits are stored for future 
use. 

Sequence 4B 

The B and BX registers are interchanged, placing 
product 1 digits 0 to 7 (PI, DO-7) in the BX register. 
The scratch register is then set to the B register 
and the shift counter is set to values of 5, 3 or 1 for 
precisions of 10, 12 or 14 respectively. These 
operations are preparatory to right-aligning the pro­
duct and the multiplicand digits for the first cross­
multiply operation. 

Sequence 4B is allowed to run only to CC 4 cycle 
time. 

Sequence 3B 

Shift-right-four operations are performed on the B 
and BX registers until the digits are right-aligned 
in the two registers (shift counter = 0). 

The A and AX registers are interchanged and the 
shift counter is set to 9, 17 or 25 for precisions of 
10, 12 or 14 respectively. These operations pre­
pare the fields for the first cross-multiply process. 

The contents of the registers are identified as 
follows: 

A register 

B register 

BX register 

Sequence 5B 

Operand 2 high-order digits (Opnd 
2 N, DO-7). 
Operand 1 low-order digits (Opnd 
1 NR, D8-a). 
Product 1 high -order digits (PI 
R, DO-7). 

This sequence is active for the complete multipli­
cation process of developing the first cross-product. 

Prior to the multiplication, the B and BX regis­
ters are interchanged, thus making operand 1 low­
order digits the multiplier (BX register) and oper­
and 2 high-order bits the multiplicand (A register). 
The product is formed on top of the product 1 high­
order bits (B register), the process being described 
in "FP Common Multiply Cycles." The result of the 
multiplication is called product 2. The low-order 
bits of this product are temporarily stored by 
clearing the scratch register, setting the BX reg­
ister to the scratch register then resetting the BX 
register. The second cross-product is later formed 
on these low-order bits. 

Step 4 - Second Cross-Product 

• Cycles are from the start of sequence 1C to the 
end of sequence 3D. 

• Operand 1 high-order bits are multiplied by 
operand 2 low-order bits. 

• The product is formed on the first cross­
product low-order bits. 

• The first and second cross-product low-order 
bits are added. 

• The second cross-product low-order bits are 
reset. 

A series of compute cycles are taken to re-align 
factors and set up the fields for the third and fourth 
multiply sequences. 

For the second cross-product, the operand 2 low­
order bits become the multiplier and these must be 
right-aligned in the BX register. As there are 
many fields which have to be retained and at any 
time only one spare ALS register exists, five 
sequences are required to prepare for the third 
multipli cation. 
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Sequence 1C 

The A, AX and B, BX registers are interchanged. 
The A register is then gated to the vacant B regi­
ster. 

Sequence 2C 

The A register is reset and set with the contents of 
the scratch register. The scratch register is then 
reset. 

Sequence 3C 

The BX register is set to the scratch register and 
the BX register is then reset. The shift counter is 
set to 5, 3 or 1 for precisions of 10, 12 or 14 
respectively, and the B and BX register inter­
changed. 

Sequence 5C 

The A register is gated to the B register. 

Sequence 4C 

Shift-right-four operations are performed on the B 
and BX registers until the shift counter is zero, 
right-aligning the digits in these registers in pre­
paration for the second cross-multiply operation. 
The A register is reset during the shift process. 

The shift counter is set to 9, 17 or 25 for preci­
sions of 10, 12 or 14 respectively, and the contents 
of the FPR defined by the Ra register (stored in 
sequence 1B) are read out to the A register. 

The digits and controls are now set up for the 
second cross-multiply operation. The contents of 
the relevant registers are as follows: 

A register Operand 1, high-order bits (Opnd 
IN, DO-7). 

BX register 

B register 

Sequence 1D 

Operand 2, low-order bits (Opnd 
2 NR, DS-a). 
Product 2, low-order bits (P2 R, 
DS -a). 

This sequence is active for the complete multipli­
cation process which develops the second cross­
product. The product is formed with the product 2 
low-order bits left in the B register after the pre­
vious cycle, as described in "FP Common Multiply 
Cycles. " 
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Sequence 3D 

The product 2 high-order bits are added to the pro­
duct 3 high-order bits by setting the B register into 
the C register, resetting the A register and gating 
the scratch register to the A, B and C registers. 
The addition is completed by gating the CLA to the 
B register. 

The shift counter is set to 33 in preparation for 
the fourth multiply sequence and the unwanted bits 
from the second cross-product are discarded by 
resetting the BX register. 

Step 5 - High-Order Product 

• Cycles are from the start of sequence 4D to the 
end of sequence 2D cycles. 

• Operand 2 high-order bits are multiplied by 
operand 1 high-order bits. 

• The product is formed on high-order bits of the 
two cross-multiply operations. 

Sequence 4D 

The A, AX and B, BX registers are interchanged 
and operand 1 high-order bits are once again read 
out of their temporary storage into FPR defined by 
the Ra register and set into the B register. 

If a high-order carry from sequence 3D is pre­
sent, it is latched up in the CO multiply correction 
latch for addition on a later cycle. 

This sequence 4D is allowed to run only to CC 4 
time. 

Sequence 2D 

This sequence is active for the complete multipli­
cation process which develops the high-order pro­
duct, as described in "FP Common Multiply Cycles. " 

The B and BX registers are first interchanged, 
leaving the contents of the relevant registers as 
follows: 

A register (multiplicand) 

BX register (multiplier) 

B register (initial factor) 

Operand 2, high­
order bits (Opnd 2N, 
DO-7) 
Operand 1, high­
order bits (Opnd IN, 
DO-7) . 
Sum of cross-product 
high-order bits 
(P2 + P3, DO-7). 



The multiplication is initiated and is a full 32-bit 
multiply. The product formed is 64 bits or 16 hex 
digits. This product, after normalization, will be 
the result and it is represented in Figure 3-10 by 
P4. 

As no guard digits are allowed for the normal­
izing process, the low-order byte (two digits) of the 
BX register is reset. 

Step 6 - Post-Normalization, Exception Test and 
Result Store 

• Cycles are from the start of sequence 5D to the 
end of R1 cycle. 

• Post-normalization is performed when necessary. 

• For exponent underflow conditions, the B register 
is set to zeros. 

• Exponent overflow or underflow exceptions are 
tested except for the 'operand 1 equals zero' 
condition. 

• The result characteristic and fraction are assem­
bled and stored in long-precision format in oper­
and 1 FPR. 

Sequence 5D 

As the final multiplication was performed with 32 
bits of normalized fraction, the number of zeros in 
the high-order position of the fraction will always 
be less than eight. This means that only one nor­
malization cycle is required. As it is also neces­
sary to align the high-order bit of the fraction in 
bits 08 to 11 of the B register (to leave room for the 
result characteristic) the two processes are com­
bined. 

The B and BX registers are given a shift-right­
four operation and a second shift-right-four oper­
ation is made only if B register bits 00 to 07 still 
contain a significant digit. 

If the zero HI and zero La latches are on (oper­
and 1 equals zero), no further action is taken; if 
neither or only one of them is on, the exponent is 
tested for overflow or underflow conditions. If 
there are no exception conditions, the result expo­
nent is gated from exponent register B to the B 
register. For exponent overflow conditions, the 
result exponent is also gated to the B register. For 
an exponent underflow, the result exponent is not 
set to the B register but the B register is reset to 
zeros. 

R1 Cycle 

The B register is set to the operand 1 FPR high­
order section, the B and BX registers are inter­
changed, and the B register is set to the SDR and 
stored in the low-order section of operand 1 FPR. 

For exponent underflow conditions, the B to BX 
register interchange is not taken and the zeros in 
the B register are stored in both halves of the FPR 
defined by the Ra register. 

For exponent overflow or underflow conditions 
with a mask bit of one, the appropriate FP excep­
tion latch is set and a program interrupt is 
requested. 

EXECUTION OF LONG-PRECISION MULTIPLY 
(PRECISION = 8) 

For operands with a preCision of 8, the length of the 
fraction is eight hex digits (32 binary bits). This 
means that fraction multiplication can be done in one 
32-bit multiply step and is, in effect, a high-order 
multiply process only. Thus, many cycles are 
saved in comparison with the long-precision multi­
ply process. 

The instruction sequence and timings for long­
precision multiply (shown in FEMD Figures 6347 to 
6368) apply to a precision of 8; the skipped sequences 
are shown in these Figures. A single-cycle chart 
for long-precision multiply (precision = 8) is given 
in Figure 3-11. 

step 1 - Operand Fetch and Pre-'Normalization 

• Cycles are from the end of I-fetch to the end of 
sequence 4A. 

• Operand 1 fraction, normalized and left-aligned 
to bit 00, is set in the A and AX registers. 

• Operand 2 fraction, normalized and left-aligned 
to bit 04, is set in the B and BX registers. 

The operations for the operand fetch and pre­
normalization cycles differ from those for preci­
sions of 10, 12 or 14 in that the low-order bits are 
truncated to hold only digits 6 and 7 in the BX reg­
ister. Therefore, after a full left-alignment of the 
8-digit fraction, the whole fraction can be contained 
in the full-word A or B register. Thus, at the end 
of these aligning cycles, the AX register is blank 
and the BX register contains only operand 1 digit 7; 
this digit is shifted into the B register at the start of 
the next cycle, leaving the BX register also blank. 
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Cycle A Reg 

RR Format only 

Seq. IA Opnd 2C, DO-5 

R2 Cycle Opnd 2C, D0-5 

RX Format only 

EA, EA, IA Opnd 2C, D0-5 

5A --
RI Opnd 2N, DO-7 

3A ~, Opnd 2N, DO-7 

4A ':' Opnd 2N, D0-7 

I B ':' Opnd 2N, DO-7 

End 2B's Opnd 2N, DO-7 

5B Opnd 2N, DO-7 

RI Opnd 2N, DO-7 

~, Cycle CC I to CC 4 only 

Register Contents Legend: 

Opnd I 
Opnd 2 
F 
N 
P 

: Operand I 
: Operand 2 
: Fraction 
: Normalized 
: Product 

Product Derivation: 

DO-13 
C 
L 
R 

AX Reg B Reg 

- -
- Opnd 2C, DO-5 

- Opnd 2C, DO-5 

- Opnd 2N, DO-l 

- Opnd I, D6-7 

- Opnd I, DO-5 

- Opnd 1 NR, DO-6 

- Opnd 1 N, DO-7 

- P, D0-7 

- PN,CN, DO-5 

- PN,D6-13 

Hex Fraction Digits 0 to 13 
Characteristic and Sign 

BX Reg 

Opnd 2C, DO-5 

Opnd 2,D6-1 

Opnd 2, D6-1 

-
-

Opnd I, D6-1 

Opnd lNL,D7 

-
P, D8-13 

PN, D6-13 

PN,CN, DO-5 

Digits Left Aligned in Register 
Digits Right Aligned in Register 

P + (Opnd 2N, DO-7) x (Opnd IN, DO-7) 

Shift 
Scratch Reg Exp Reg A Exp Reg B Counter 

- - Opnd 2, C -
- - Opnd 2, C -

- - Opnd 2, C -
- - Opnd 2, CN -

Opnd 2N, DO-7 Opnd I, C Opnd I, C+2, CN -
- Opnd I, C Opnd I,C+2,CN -
- Opnd I,C Opnd 1+2,CN -
- Opnd I,C P, C 33 

- Opnd I, C P,C -
- Opnd I, C PN,C -

- Opnd I, C PN,C -

Figure 3-11. Single-Cycle Chart for Long-Precision Multiply (Precision = 8) 

Step 2 - Multiplication 

• Cycles are from the start of sequence IB to the 
end of sequence 2B. 

• Operand 2 high-order bits are multiplied by oper­
and 1 high-order bits. 

Sequence IB 

The left alignment is completed with a shift-Ieft­
four operation and the BX register is then reset. 
The shift counter is set to 33 in preparation for the 
multiplication process. 

Sequence 2B 

This sequence controls the complete multiplication 
process. For details of the multiply cycles, refer 
to "FP Common Multiply Cycles". 

The B and BX registers are interchanged, the 
32-bit multiplication process is started and the 64-
bit product is formed. The low-order byte (two 
digits) of the BX register is reset, leaving a product 
of 14 digits. 
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Step 3 - Post-Normalization, Exception Test and 
Product Store 

• Cycles are from the start of sequence 5B to the 
end of R1 cycle. 

• Post-normalization is performed when neces­
sary. 

• Exponent underflow conditions cause the B regi­
ster to be set to zeros. 

• Exponent overflow or underflow exceptions are 
tested except for the 'operand 1 equals zero' 
condition. 

• The result characteristic and fraction are assem­
bled and stored in long-precision format in oper­
and 1 FPR. 

The operation differs from the long-precision multi­
plication (precisions of 10, 12 or 14) cases only in 
the controlling sequence for the post-normalization 
and exception test cycles. For a precision of 8, 
the sequence is sequence 5B. Refer to "Sequence 
5D" and "R1 Cycle" in Step 6 of the previous sec­
tion for details of the remaining cycles. 

l 
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FP COMMON MULTIPLY CYCLES 

• The principles of the FP multiply loop are simi­
lar to those for fixed-point multiply. 

• The number of multiply cycles is determined by 
the initial setting of the shift counter. 

• The multiply cycles continue until the shift coun­
ter equals zero. 

• The B register extension sign bit is used as a 
sign bit for the partial product field (B, BX 
registers) . 

• The state of the subtract trigger is used as a 
sign bit for the multiplicand field (A register). 

The FP multiply loop uses the same principles of 
operation as fixed-point multiply (refer to Principles 
of Operation - Processing Unit, Form Y33-0002). 

Summarized, these principles are as follows: 
1. The multiplier is located in the BX register; 

the multiplier digit in bit position 31. 
2. The multiplicand is located in the A register. 
3. The product is developed in the B register and 

a shift-right-one operation is performed at each 
multiply cycle, forming the complete result 
product in the B and BX registers. 

4. The "carry-look-ahead group-of-ones" principle 
is used, as with fixed-point multiply. 

5. The types of cycle for a multiplier digit of 1 
are: 
a. A one, part of a group of zeros 

shift. 
b. The first one of a group of ones 

and shift. 

Add and 

Subtract 

c. A one, part of a group of ones but not the 
first : Shift only. 

6. The types of cycle for a multiplier digit of 0 
are: 
a. A zero, part of a group of ones : Subtract 

and shift. 
b. A zero, the first after a group of ones : Add 

and shift. 
c. A zero, part of a group of zeros but not the 

first of a group of ones : Shift only. 
7. The subtract trigger is turned on when the first 

one of a group of ones becomes the multiplier 
bit (BX register bits 30, 31 = 1, 1). The trig­
ger turned off when the first zero after a group 
of ones becomes the multiplier bit (BX bits 30, 
31 = 0, 0). 

8. At the start of each cycle, the subtract trigger 
is copied into the subtract trigger backup. 
Thus the subtract trigger backup is on for the 
second one of a group of ones and remains on 

until the first zero after the group of ones. 
9. An arithmetic overflow on the arithmetic type 

of cycle is corrected during the shift-right-one 
that follows. 

As the multiplicand field can contain up to 32 bits of 
data, an extension sign bit position must be used on 
the A and B registers to determine the sign of par­
tial result fields participating in the arithmetic 
cycle. Since the A register and the subtract trigger 
are always inverted in parallel, the state of the sub­
tract trigger is used to indicate the A register sign. 

The basic CPU does not have a trigger or latch 
which can perform a similar function for the B reg­
ister. The special floating-point 'B register exten­
sion sign' bit is used for this purpose. Note that 
this bit does not take part in the normal arithmetic 
process and that the carry-out (CO latch) of the B 
register can be regarded as the carry-in to this 
extension sign bit position. 

At the start of each multiply cycle except the 
first, the B register is given a shift-right-one oper­
ation. The 'BOO shift-right-one insert' into the B 
register bit 00 position is the data bit that would 
normally be developed as a result bit (in the exten­
sion sign bit position) if it took part in the arith­
metic process. The bit inserted into the B register 
extension sign (on the same shift-right operation) 
is the sign bit that would be developed in a position 
one to the left of the extension sign position (over­
flow position) if two bits, equivalent to the exten­
sion sign bits, were to be assumed for this position. 
(Bits equal to the sign bit can be assumed at the 
left of System/360 signed data without altering the 
data value or sign.) 

The two bits that are inserted into the B register 
bit 00 and the B register extension sign, as described 
previously, are developed separately and are tem­
porarily stored in the FP mult/div bit store latch 
(refer to the instructional diagram, Figure 3-12). 
From this latch, each bit is shifted or set into the 
appropriate bit position. 

The data bit developed in the extension sign bit 
position which gives the 'BOO shift-right-one insert' 
is a one if either one or all three of the following is 
a one: B register extension sign bit, subtract trig­
ger (A register extension sign bit) and CO latch. The 
data bit condition is given by the EXOR of these 
three conditions as represented by the ODD blocks. 

The B register extension sign bit carry-out is a 
one if two or more of these same three conditions 
is a one. This carry-out provides a carry-in to the 
overflow position. As described previously, the 
overflow position can be assumed to contain bits 
equal to the bits in the extension sign bit positions. 
The result in the overflow position will be one if 
either one or all three of the following is a one: B 
register extension sign bit carry-out, B register 
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N 
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A 
CC I CP I 
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Seq 1 B Lch OR Ctrl IA Sign~tch B Reg Exn Sign Bit 
Not Divide Speed-Up Lch 

OR N FL Any Console Clock Ctrl 
Sequence 4B --- CC 3, CP I 

L-CJ 
Figure 3-12. Instructional Diagram of B Register Extension Sign Bit for Multiply Cycles 

extension sign bit and subtract trigger (A register 
extension sign bit). The sign bit condition is given 
by the EXOR of these three conditions as shown in 
Figure 3-12. 

The logic and timing of these decisions, together 
with the normal multiply logic, is shown in FEMD 
Figures 6395 and 6396. The initial shift counter 
values for each type of operation is shown in Figure 
3-13. 

On the last cycle, when the shift counter equals 
zero, a sign bit of zero can be assumed. As with 
fixed-point multiply operations, the zero sign bit 
causes an arithmetic cycle only if the subtract trig­
ger backup is on; this cycle will always be an add 
cycle. If the multiply sequence is the high-order 

Instruction Variable-Preci sion Controlling Initial Shift 
Precision Switch Value Sequence Counter Va lue 

Short - 2A 25 

i.ong 6 2D ~~ 
.N 

Long 1O 2B 9 
1O 5B 9 
1O ID 9 
1O 2D 33 

Lang 12 2B 17 
12 5B 17 
12 10 17 
12 2D 33 

Lang 14 2B 25 
I .. 5B 25 
I .. 1D 25 
I .. 2D 33 

Figure 3-13. Initial Shift Counter Values for Common Multiply Loop 
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multiply (sequence 2D) of a long-precision multiply 
instruction and the CO multiply correction latch is 
on, the correction of one is made in the last cycle 
by forcing a carry-in (subtract trigger on) for the 
add cycle. 

On the last cycle (shift counter equalling zero) 
of all but the high-order multiply (sequence 2D) of 
a long-multiply instruction, the A register is 
restored to its true condition if it is inverted. That 
is, the A register is re-inverted if the subtract 
trigger is on at the completion of this cycle. 

DIVIDE INSTRUCTIONS (SHORT-PRECISION 
OPERANDS) 

• The dividend (operand 1) is divided by the divisor 
(operand 2). 

• The quotient replaces the dividend in the operand 
1 field. 

• A remainder is not preserved. 

• The dividend, divisor and quotient are all short­
precision fields. 

• The low-order halves of the FPR's are ignored 
and remain unchanged. 

• The division process consists of a fraction divi­
sion and a characteristic subtraction. 

• The sign of the quotient is determined by the 
rules of arithmetic. 



• An exponent overflow exception occurs if the final 
quotient characteristic exceeds 127. 

• An exponent underflow exception occurs if the 
final quotient characteristic is less than zero and 
the corresponding mask bit is one. 

• For exponent underflow conditions, the charac­
teristic sign and fraction of the quotient are made 
zero. 

• When the divisor fraction is zero, the operation 
is suppressed and an FP divide exception is taken. 

• When the dividend fraction is zero, the quotient 
fraction will be zero and the quotient sign and 
characteristic will be made zero. 

• When the dividend fraction is zero, exceptions 
due to exponent underflow or overflow are not 
taken. 

• The significance exception is never set for FP 
divide operations. 

Instruction Execution 

• The divisor (operand 2) is pre-normalized and 
set into the A register. 

• The dividend (operand 1) is pre-normalized and 
set into the B register. 

• The quotient fraction developed is formed in the 
scratch register. 

• The quotient is normalized during the division 
process. 

• Six quotient digits are developed. 

The floating-point divide operation is executed in 
the A and B registers and the quotient is formed in 
the scratch register. 

The divisor (operand 2) is pre-normalized in the 
B register, then shifted-left one digit for initial 
alignment. If the divisor fraction is zero, an FP 
divide exception is signalled and a program interrupt 
requested. For normal conditions, the fraction is 
set into the A register. 

The dividend (operand 1) is then pre-normalized 
in preparation for the first divide cycle. If the 
dividend is zero, the divide operation proceeds (as 
for a normal non-zero dividend) and a quotient frac­
tion of zero results. The quotient fraction is stored 
but the quotient sign and characteristic are reset to 
give a true zero result. 

The quotient is developed in the scratch register. 
The rules of this divide operation are outlined in 
"FP Common Divide Cycles" in this chapter. The 
quotient fraction is always developed in a norma­
lized form, so that post-normalization cycles are 
not necessary. The quotient is formed from the 
quotient characteristic and sign (exponent register 
B) and the quotient fraction (scratch register) and 
is stored in the high-order half of the original oper­
and 1 FPR. 

For details of timing and sequence, refer to 
FEMD Figures 6369 to 6374, and 6398. 

Operand 2 Fetch and Pre-Normalizing Cycles 

• For RR format, the cycles involved are from the 
end of I-fetch to the end of sequence 5A (I-cycle, 
sequence lA, sequence 5A). 

• For RX format, the cycles involved are from the 
end of I-fetch to the end of sequence 5A (EA cycle 
and sequence lA, sequence 5A). 

• Operand 2 fraction digits are fetched, pre­
normalized, shifted-left one digit and placed in 
the BX register. 

• Operand 2 characteristic is placed in exponent 
register B. 

• Operand 1 characteristic is EXOR'ed into expo­
nent register B. 

• If operand 2 fraction is zero, the FP divide 
exception latch is turned on and end execute is 
signalled. 

• The shift counter is set to 24. 

Operand 2 is first read out and set to the B register. 
The operand 2 characteristic is set to exponent 
register B and the shift counter is set to 24. 

On sequence 5A, the operand 2 fraction (in the B 
register) is normalized by repeated shift-left-four 
operations until the bits 8 to 11 become significant. 
One more shift-left-four operation is performed to 
complete the initial alignment of the operand 2 frac­
tion; it is then placed in the BX register by a B to 
BX register interchange. 

The operand 1 characteristic is set to exponent 
register B, thus forming the partial difference of 
the operand 1 and operand 2 characteristics in that 
register. 

If the operand 2 fraction is zero, the zero HI and 
FP divide exception latches are set. This action 
causes normalization cycles on sequence 5A to be 
suspended and end execute to be signalled at CC 4 of 
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that cycle. A program interrupt request is gener­
ated. 

Operand 1 Fetch and Pre-Normalizing Cycles 

• The cycles involved are sequence 2A and 4A. 

• The operand 2 aligned fraction is placed in the 
A register via the scratch register. 

divide cycles are not skipped and a zero result is 
generated by the division. 

The difference between the operand 1 and oper­
and 2 characteristics is formed in exponent register 
B by gating the exponent CLA to that register. The 
scratch register is then gated to the A register via 
the HW funnel and the ABC funnel. 

• The operand 1 fraction is normalized and remains 
in the B register. 

The operand 1 fraction is normalized on sequence 
4A and, at the completion of this sequence, the 
operands are aligned in the registers in preparation 
for the divide cycles. 

• The excess 64 difference of the two character­
istics is formed in exponent register B. 

On sequence 2A, the operand 1 fraction is read out 
from the FPR defined by the Ra register and set to 
the B register. The BX register is cleared by 
transferring the operand 2 aligned fraction to the 
scratch register and resetting the BX register. 

If the operand 1 fraction is zero, the zero LO 
latch is set for later use. For this condition, the 

Cycle A Reg AX Reg 8 Reg 

RX Format a~ly 

EA, EA, IA I Opnd 2C, 00-5 - Opnd 2C, 00-5 

RR Format a~l~ 
IA Opnd 2,00-5 - Opnd 2,00-5 
R2 Opnd 2,00-5 - Opnd 2,00-5 

5A - - Opnd 2N 00-7 

2A Opnd 2N, 08-a - Opnd 2N, 08-a 

RI Opnd 2N, 00-7 Opnd 2N, 08-a Opnd 1,06-0 

3A Opnd 2N, 00-7 Opnd 2N, 08-a Opnd 1,00-5 

4A Opnd 2N, 00-7 Opnd 2N, 08-a Opnd I NR, 00-6 

Divide Cycles 

• Division is performed on sequence IB cycles. 

• The quotient is formed in the scratch register. 

• The quotient is developed in normalized form. 

The division cycles are a series of sequence IB 
compute clock cycles (for details, refer to "FP 
Common Divide Cycles"). At the end of these cycles 

Shift 
8X Reg Scratch Reg Exp Reg A Exp Reg 8 Caunter 

Opnd 2, 06-a - - Opnd 2,C 24 

- - - Opnd 2,C 24 
Opnd 2, 06-a - - Opnd 2,C 24 

Opnd 2N 08-a - - Opnd 2 C 24 

Opnd 2N, 00-7 Opnd 2N, 08-a - Opnd 2,C 24 

- Opnd 2N, 00-7 Opnd I, C Opnd IC-2C 24 

Opnd I, D6-a Opnd 2N, 00-7 Opnd I,C Opnd IC-2C 24 

Opnd IN, 07-a Opnd 2N, 00-7 Opnd I,C Opnd lC-2C 24 .. Opnd 2N, 00-7 Opnd 2N, 08-0 Partial Result QN,00-5 Opnd I, C Opnd IC-2C 0 

RI Opnd 2N, 00-7 Opnd 2N, 08-a - Partial Result QN,oo-5 

4B Opnd 2N, 00-7 Opnd 2N, OS-a - Partia I Resu It -
• RI Opnd 2N, 00-7 Opnd 2N,08-a Partial Result -.. Opnd 2N, 00-7 Opnd 2N, 08-a Remainder 

IC Opnd 2N, 00-7 Opnd 2N, 08-a QR, D6-a 

2C (N-IO) Opnd 2N, 00-7 Opnd 2N, 08-a Partial left Shift 

RI Opnd 2N, 00-7 Opnd 2N, 08-a Ql,06-a 

• This RI Cycle is shawn as a single-cycle stap for convenience. 
In practice the first Sequence 18 af the divide cyc Ie wi II be perfarmed in 
conjuction with this cycle. 

•• : End af Sequence 18 Cycles or Sequence 18, 28, 3B, Cycles 

Registers Contents legend: 
Opnd I Operand I 
Opnd 2 Operand 2 
Q Quotient 
N Normalized 

00-13 
C 
l 
R 

Hex Fraction ~igits 0 to 13 
Characteristic and Sign 
~igits left Aligned in Register 
~igits Right Aligned in Register 

- QR,06-a 

- QR,06-a 

- QR,06-a 

- QR,06-0 

Canstants Values: 

10 

Constant a 9 
Canstant b 16 

Figure 3-14. Single-Cycle Chart for Long-Precision Divide (Precision = 10, 12, 14) 
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Opnd I,C Opnd IC-2C b 

Opnd I, C QC b 

Opnd I C QC 0 
Opnd I,C QC 0 

Opnd I,C QC 0 

Opnd I,C QC 0 

Opnd I, C QC 0 

Precisian 

12 14 
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the normalized quotient is contained in the scratch 
register and the remainder in the B register. Expo­
nent register B contains the quotient characteristic 
and sign. 

Quotient Store Cycle 

• The cycle involved is a sequence 2B cycle. 

• The quotient is assembled and stored in the 
original operand 1 FPR. 

• For zero LO or exponent underflow conditions, 
the quotient is set to zero. 

• The remainder is not stored. 

• Exponent underflow and overflow exceptions are 
tested. 

The remainder in the B register is reset and the 
final shift-Ieft-one operation of the scratch register 
is performed. The quotient result is then assembled. 
If zero LO or an exponent underflow has occurred, 
then the result must be true zero and the reset B 
register represents the quotient to be stored. 

For all other conditions, the quotient is formed 
by gating exponent register B (bits 0 to 7) and the 
scratch register (bits 8 to 31) to the corresponding 
bits of the B register. The B register is then gated 
to the FPR defined by the Ra register, thus storing 
the quotient in the original operand 1 FPR. 

INTRODUCTION TO DIVIDE INSTRUCTIONS 
(LONG-PRECISION OPERANDS) 

• The dividend (operand 1) is divided by the divisor 
(operand 2). 

• The quotient replaces the dividend in the operand 
1 field. 

• A remainder is not preserved. 

• The dividend, divisor and quotient are all long­
precision fields. 

• The divisor process consists of a fraction division 
and a characteristic subtraction. 

• The sign of the quotient is determined by the rules 
of arithmetic. 

• An exponent overflow exception occurs if the final 
quotient characteristic exceeds 127. 

• An exponent underflow exception occurs if the 
final quotient characteristic is less than zero and 
the corresponding mask bit is one. 

• For exponent underflow conditions, the charac­
teristic sign and fraction of the quotient are made 
zero. 

• When the divisor fraction is zero, the operation 
is suppressed and an FP divide exception is taken. 

• When the dividend fraction is zero, the quotient 
fraction will be zero, and the quotient sign and 
characteristic will be made zero. 

• When the dividend fraction is zero, exceptions 
due to exponent underflow or overflow are not 
taken. 

• The Significance exception is never set for FP 
divide operations. 

EXECUTION OF LONG-PRECISION DIVIDE 
(PRECISION = 10, 12, 14) 

For details of the sequence and timing of the cycles 
described in the following steps, refer to FEMD 
Figures 6375 to 6392. For a summary of the reg­
ister contents at each major single-cycle point of 
the divide operation, refer to Figure 3-14. 

Step 1 - Operand 2 Fetch and Pre-Normalizing 

• Cycles are lA, R2, 5A and 2A (RR format) or 
EAEA lA, 5A and 2A (RX format). 

• Operand 2 is set to the B and BX registers and 
normalized. 

• Operand 2 characteristic is set to exponent reg­
ister B. 

• The shift counter is set to 24. 

• Operand 2 is tested for a zero divisor. 
-

EAEA Cycle with Sequence 1A (RX Format) 

On these cycles, the operand 2 is read out and set 
to the B and BX registers, the operand 2 high-order 
bits are set to the A register. the operand 2 charac­
teristic is set to exponent register B (from the A 
register) and the shift counter is set to 24. This 
action prepares the operand 2 fraction for the pre­
normalization process. 
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Sequence lA, R2 Cycle (RR Format) 

On these cycles the operand 2 is read out and set to 
the B and BX registers in preparation for normal­
ization, the operand 2 characteristic is gated to 
exponent register B and the shift counter is set to 24. 

NOTE: For both the above sets of cycles, the 
operand 2 zero latch and the FP divide exception 
latch are set if the operand 2 fraction is zero. 

Sequence 5A 

On this sequence, the operand 2 is pre-normalized 
until bits 08 to 11 of the B register are significant. 
The normalized fraction is then given two shift-left­
four commands to align the fraction into bit 00 of the 
B register; digits 0 to 7 of the normalized fraction 
are left in the B register and the remaining digits in 
the BX register. The A register is reset. 

If the divide exception latch was set in the previ-
0us cycle, end execute is signalled at CC 4 of this 
cycle and the divide instruction is terminated. 

Sequence 2A 

The low-order section of the normalized operand 2 
fraction is set into the A register by gating it via the 
scratch register. The B and BX registers are 
interchanged and the low-order bits, now in the B 
register, are tested to determine if they are zero; 
if zero, the divide speed-up latch is set. 

This latch indicates that the divisor is 32 bits or 
less and the division arithmetic cycles can be single 
cycles similar to those of the short-precision divide 
instruction (see "FP Common Divide Cycles"). If 
the divide speed-up latch is not on, the divisor con­
tains more than 32 bits and two separate arithmetic 
cycles are required for each addition and subtraction. 

Step 2 - Operand 1 Fetch and Pre-Normalizing 

• Cycles are Rl, 3A and 4A. 

• Operand 2 fraction (normalized and left-aligned) 
is placed in the A and AX registers. 

• Operand 1 fraction is fetched to the B and BX 
registers, normalized and shifted-left-four. 

• Operand 1 characteristic is gated to exponent 
registers A and B. 

• The difference (in excess 64 arithmetic) of the 
two characteristics is formed in exponent reg­
ister B. 

• Operand 1 (dividend) is tested for zero. 
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Rl Cycle 

The operand 1 low-order bits are read out to the 
SDR. The B register and the scratch register are 
reset, and the A, AX registers interchanged. 

The BX register is gated to the scratch register 
and reset. The SDR is gated to the B register via 
the ABC funnel, truncating unwanted bits as defined 
by the setting of the variable-precision switch. The 
scratch register is gated to the A register via the 
ABC funnel. Therefore, the operand 2 fraction, 
normalized and left-aligned, is contained in the A 
and AX registers. 

In parallel with these operations, the operand 1 
characteristic is gated to exponent registers A and 
B and the exponent CLA output is then gated to 
exponent register B to form the excess 64 difference 
of the two characteristics. If the B register is zero, 
the zero LO latch is set. 

Sequence 3A 

The Band BX registers are interchanged and oper­
and 1 fraction digits 0 to 5 are gated from the FPR 
to the B register. This means that operand 1 is 
now in the Band BX registers in preparation for 
normalization. 

If the B register is zero, the zero HI latch is set. 
Therefore, a zero dividend is signalled by both zero 
HI and zero LO being on. For this condition, the 
divide proceeds, but a zero result will be formed on 
a later cycle. 

Sequence 4A 

The operand 1 fraction in the B and BX registers is 
normalized, then shifted-left one digit position to 
ensure that the divisor is always numerically larger 
than the dividend for the divide cycles. 

Step 3 - Divide Cycles and High-Order Quotient Storing 

• Cycles are from the start of sequence lB to the 
end of the second set of divide cycles. 

• The high -order quotient is developed on the first 
set of divide cycles and stored in FPR (Ra) high­
order bits. 

• The low-order quotient is developed on the second 
set of divide cycles and stored in FPR (Ra) low­
order bits. 

• The divide cycles are sequence lB cycles for the 
divide speed-up 'on' condition. 

• The divide cycles are sets of sequence lB, 2B 
and 3B cycles for the divide speed-up 'off' 
condition. 

( 
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Sequence 1B or Sequences 1B, 2B, 3B 

These cycles are the division cycles to develop the 
high -order six digits of the quotient. They are 
either single or double arithmetic cycles, dependent 
on the condition of the divide speed-up latch (refer 
to "FP Common Divide Cycles"). 

R1 Cycle 

On this cycle, the partial result in the B register is 
temporarily stored in the low-order section of the 
operand 1 FPR to leave the B register free for 
sequence 4B. 

Sequence 4B 

The LO order quotient latch is set and the shift 
counter set for the low-order divide cycles. The 
shift counter values are 16, 24 or 32 for precisions 
of 10, 12 or 14 respectively. 

The high-order quotient is assembled in the B 
register by gating the scratch register bits 08 to 31 
to the corresponding positions of the B register and 
gating exponent register B to bits 00 to 07 of the B 
register. The B register is then stored in the high­
order half of the operand 1 FPR and the scratch 
register is reset. 

For a zero dividend (zero HI and zero W latches 
on) or exponent underflow condition, the scratch 
register is not gated to the B register and the zeros 
from the B register are stored as the quotient result. 

R1 Cycle 

The partial result stored on the preceding R1 cycle 
is read out to the B register, thus restoring the 
partial result remaining after the first set of divide 
cycles. 

Sequence 1B or Sequences 1B, 2B, 3B 

These cycles are the division cycles to develop the 
low-order digits uf the quotient and are similar to 
the cycles used for the high-order digits (refer to 
"FP Common Divide Cycles" in this chapter). 

Step 4 - Low-Order Quotient Storing and Testing for 
Exceptions 

• Cycles are sequence 1C, 2C (N = 10 only) and Rl. 

• The low-order quotient is aligned to the left-hand 
end of the B register and stored in the low-order 
operand 1 FPR. 

• Exponent underflow condition is tested. 

Sequence lC 

The final shift-left-one of the scratch register is 
performed to shift in the last quotient digit. The B 
and BX registers are interchanged and the BX reg­
ister is reset. The low-order quotient in the scratch 
register is then gated to the B register. 

The low-order quotient has to be aligned with 
bit 00 position prior to storing. This means that on 
subsequent cycles it must be shifted-left two or four 
digits for precisions of 12 or 10 respectively. 

Sequence 2C (N = 10 only) 

Two shift-left-four operations on this cycle align 
the quotient for the case where precision equals 10. 

R1 Cycle 

For precisions equal to 10 or 12, two shift-left-four 
operations are performed, completing the left­
alignment of the quotient. The low-order quotient in 
the B register is then gated to the SDR and stored in 
the low-order half of the operand 1 FPR. 

The exception conditions are now tested. If expo­
nent overflow conditions are present, the exponent 
overflow exception latch is turned on and a program 
interrupt is requested. If exponent underflow condi­
tions are present, the exponent underflow exception 
latch is turned on if the mask bit (PSW 2, bit 6) is a 
one; a program interrupt is similarly requested. 

EXECUTION OF LONG-PRECISION DIVIDE 
(PRECISION = 8) 

For details of the sequence and timing of the cycles 
described in the following steps, refer to FEMD 
Figures 6375 to 6384, 6387 and 6388, 6393 and 
6394. For a summary of the register contents at 
each major single-cycle point of the divide opera­
tion, refer to Figure 3-15. 

Step 1 - Operand 2 Fetch and Pre-Normalizing 

• Cycles are lA, R2, and 5A (RR format) or 
EAEA 1A and 5A (RX format). 

• Operand 2 is set to the B and BX registers and 
normalized. 

• Operand 2 characteristic is set to exponent reg­
ister B. 

• The shift counter is set to 32. 

• Operand 2 is tested for a zero divisor. 
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Cycle A Reg AX Reg B Reg 

RX Forma t on Ily 

EA,EA,IA Opnd 2C, 00-6 - Opnd 2C,00-5 

RR Format onl~ 
lA Opnd 2,00-6 - Opnd 2,00-5 
R2 Opnd 2,00-8 - Opnd 2,00-5 

5A - - Opnd 2N, 00-7 

Rl Opnd 2N,00-7 - Opnd 1,06-7 

3A Opnd 2N,00-7 - Opnd 1,00-5 

4A Opnd 2N, 00-7 - Opnd 1 N, 00-6 

End 1 B's Opnd 2N,00-7 - Remainder 

lC Opnd 2N, 00-7 - QR,00-7 

3C Opnd 2N,00-7 - QC,00-5 

Rl Opnd 2N, 00-7 - QL,D6-7 

Register Contents Legend: 

Opnd 1 : Operand 1 
Opnd 2 : Operand 2 

00-13 : Hex Fraction Oigi ts 0 to 13 
C : Characteristic and Sign 

BX Reg 

Opnd 2,06-7 

-
Opnd 2,06-7 

-
-

Opnd 1,06-7 

Opnd lNL,07 

-
-

QL,06-7 

QC,00-5 

Q : Quotient 
N : Normalized 

L : ~igits Left Aligned in Register 
R : ~igits Right Aligned in Register 

Scratch Reg Exp Reg A Exp Reg B Shift 
Counter 

- - Opnd 2,C 32 

- - Opnd 2,C 32 
- - Opnd 2,C 32 

- - Opnd 2,C 32 

Opnd 2N, 00-7 Opnd I,C Opnd lC-2C 32 

Opnd 2N,00-7 Opnd I,C Opnd lC-2C 32 

Opnd 2N, 00-7 Opnd I,C Opnd 1 C-2C 32 

QR,00-7 Opnd I,C QC 0 

QR,00-7 Opnd I,C QC 0 

QR,00-7 Opnd I,C QC 0 

QR,00-7 Opnd I,C QC 0 

Figure 3-15. Single-Cycle Chart for Long-Precision Divide (Precision = 8) 

The difference between these cycles and those for 
precisions of 10, 12 or 14 is that the shift counter is 
now set to 32, and that sequence 2A is not taken. 
The divide speed-up latch is automatically on when 
precision equals 8. 

Step 2 - Operand 1 Fetch and Pre-Normalizing 

• Cycles are R1, 3A and 4A. 

• The operand 2 fraction (normalized and left­
aligned) is placed in the A and AX registers. 

• The operand 1 fraction is fetched to the Band BX 
registers, normalized and shifted-left one digit 
position. 

• The operand 1 characteristic is gated to exponent 
registers A and B. 

• Operand 1 is tested for a zero dividend. 

These cycles do not differ from the operand 1 fetch 
and pre-normalize cycles for precisions of 10, 12 
or 14. 

Step 3 - Divide Cycles 

• Cycles are sequence 1B division cycles (divide 
speed-up latch on). 

• The eight-digit quotient is developed in the scratch 
register. 
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The division cycles use single arithmetic cycles 
since the divide speed-up latch is on. For details, 
refer to "FP Common Divide Cycles" in this chapter. 

Step 4 - Quotient Storing and Testing for Exceptions 

• Cycles are 1C, 3C and R1. 

• The quotient is assembled and stored in the 
operand 1 FPR. 

• For a zero result or exponent underflow condi­
tions' the quotient is set to zeros. 

• For exponent underflow or zero dividend, a zero 
quotient is stored. 

• Exponent underflow and overflow exceptions are 
tested. 

Sequence 1C 

The final shift-left of the scratch register is per­
formed to shift into this register the last quotient 
digit. The B and BX registers are interchanged and 
the BX register reset; this leaves the B register 
also in a reset condition. 

If there has not been either an exponent underflow 
or a zero dividend (zero HI and zero LO latches on), 
the eight-<iigit quotient in the scratch register is 
gated to the B register. 

\ 

/ 
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Sequence 3C 

The quotient is right-shifted two digit positions and, 
if there has not been either an exponent underflow or 
a zero dividend, exponent register B is gated to the 
B register bits 00 to 07. 

This sequence completes the assembly of the 
quotient result in the Band BX registers. Note that 
for exponent underflow or zero divisor conditions 
this result has been made zero. 

R1 Cycle 

The high-order quotient bits in the B register are 
stored in the high-order half of the operand 1 FPR. 
The B and BX registers are interchanged and the 
low-order quotient bits are set from the B register 
to the SDR and stored into the low-order half of the 
operand 1 FPR. 

If exponent overflow conditions are present, the 
exponent overflow exception latch is set and a pro­
gram interrupt requested. If exponent underflow 
conditions are present and the mask bit (PSW 2, bit 
6) is a one, the exponent underflow exception latch 
is set and a program interrupt is requested. 

If the divisor field is 32 bits or less, the divisor 
is contained in the A register alone so that the 
addition or subtraction of the divisor to the dividend 
field can be achieved in one cycle. The common 
divide loop is called the FP common divide - single 
arithmetic cyle. This type of cycle occurs on either 
short-precision divide, long-precision divide (when 
precision equals eight), or long-precision divide 
(when precision equals 10, 12 or 14 and the divide 
speed-up latch is on); for the precision equal to 10, 
12 or 14 case, the single arithmetic type of cycle 
is used for developing both the high-order and the 
low-order sections of the quotient. The initial 
values of the shift counter for each of these conditions 
is shown in Figure 3-16. 

Instruction Voriable-Preci sian Low-Order Initial Shift 

Preci sion Swi tch Value Quotient Lotch Counter Vo lue 

Short - .. 24 
Long 8 - 32 
Long 10 On 16 
Long 10 Off 24 
Long 12 On 24 
Long 12 Off 24 
Long 14 On 32 
Long 14 Off 24 

Figure 3-16. Initial Shift Counter Values for FP Common 

FP COMMON DIVIDE CYCLES Divide - Single Arithmetic Cycles 

• Single arithmetic type divide cycles are used if 
the divisor field is 32 bits or less. 

• Double arithmetic type divide cycles are used if 
the divisor field is greater than 32 bits. 

• The initial shift counter value depends on the pre­
set precision and the state of the La order quo­
tient latch. 

• The value of the shift counter is decreased on 
each divide loop. 

• Divide loops continue until the shift counter 
equals zero. 

The FP divide cycles loop is entered on each occa­
sion that it is required to develop a quotient during 
the execution of an FP divide instruction. 

The long-precision divide instruction, when pre­
cision equals 10, 12 or 14, twice enters a divide 
loop on each instruction execution. This is because 
the quotient of these long-precision divide instruc­
tions is developed in two sections: the high-order 
quotient (La order quotient latch off) and the low­
order quotient (La order quotient latch on). 

The type of arithmetic cycles used during the 
divide loop depends on the length of the divisor. 

When the divisor field is greater than 32 bits, 
each of the divide arithmetic cycles is made in two 
steps similar to those used for long-precision add 
or subtract instructions. This type of divide cycle 
is called the FP common divide - double arithmetic 
cycle, and is used for long-precision divide cycles 
when precision equals 10, 12 or 14 and the divide 
speed-up latch is off. These double arithmetic 
cycles are used for developing both the high-order 
and the low-order sections of the quotient. The 
initial value of the shift counter for each of these 
conditions is shown in Figure 3-17. 

The divide single arithmetic cycles USEl one com­
pute clock cycle for each loop (sequence 1B). The 
divide double arithmetic cycle loop uses three com­
pute clock cycles for each loop (sequences 1B, 2B 
and 3B). Two of these cycles are used for the 

VP Switch Value Low-Order Initial Shift 
(Long-Precision Operation) Quotient Latch Counter Value 

10 Off 24 
10 On 16 
12 Off 24 
12 On 24 
14 Off 24 
14 On 32 

Figure 3-17. Initial Shift Counter Values for FP Common 

Divide - Double Arithmetic Cycles 
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arithmetic cycles and the third cycle is used for set­
up and analysis. The shift counter is decremented 
on each loop and the divide cycles are completed 
when the shift counter equals zero. 

Principles of FP Divide 

• Principles of FP divide are similar to those used 
on fixed-point divide with positive dividend. 

• Division cycles are full reduction cycles when 
the dividend field is positive. 

• Division cycles are combined correction and 
reduction cycles when the dividend field is nega­
tive. 

• A quotient bit is developed if the result of the 
arithmetic cycle is positive. 

• No quotient bit is developed if the result of the 
arithmetic cycle is negative. 

• The type of arithmetic cycle is reversed if a full 
reduction cycle results in an overdraw (no quo­
tient bit) or a combined correction and reduction 
cycle results in a quotient bit. 

• The type of arithmetic cycle remains the same 
if a full reduction cycle is successful (quotient 
bit developed) or a combined correction and 
reduction cycle results in an overdraw (no quo­
tient bit). 

• The subtract trigger and B register extension 
sign bit are used respectively as divisor and 
dividend field sign bit. 

• The carry-out of the extension sign bit position is 
used to determine the sign of the dividend field 
after the arithmetic operation. 

The principles of floating-point divide are similar 
to those used in fixed-point divide for a positive 
dividend. That is, the original dividend field is 
positive and is reduced towards zero by the divisor 
field. Refer to Principles of Operation - Processing 
Unit, Form Y33-0002. 

If the result of this full reduction cycle is posi­
tive, the cycle is termed a successful reduction and 
a quotient bit is developed. If the result of the full 
reduction cycle is negative, the cycle is termed an 
overdraw and no quotient bit is developed. See 
Figure 3-18. 

Mter an overdraw, a combined correction and 
reduction cycle is performed as with fixed-point 
divide. Once again, if the result of this combined 
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Dividend Field 
+ 

(a) 

(b) 

(a) Successful Reduction (Quotient Bit) 

(b) Overdraw (No Quotient Bit) 

Figure 3-18. Example of Full Reduction Cycle 

cycle is positive, a successful reduction has 
occurred and a quotient bit is developed. See 
Figure 3-19. 

Thus a quotient bit is developed whenever the 
result of the divide arithmetic cycle is positive. 

The first cycle of the divide operation is a sub­
traction cycle, the type of cycle is reversed either 
when an overdraw occurs on a full reduction cycle, 
or when a successful reduction occurs on a com­
bined correction and reduction cycle. However, if 
the full reduction cycle is successful, or if the com­
bined correction and reduction cycle results in an 
overdraw, the type of divide arithmetic cycle 
remains the same. 

The floating-point fraction is always in true form 
and, when the fraction is placed in the arithmetic 
and logic section of the machine, the registers may 
contain up to 32 bits of data. Therefore, a sign bit 
position must be available, as an extension of the 
A and B registers to determine both the signs of the 
fields in these registers and the sign of the result. 

As the original divisor fraction is placed in the 
A register in true form and the A register and sub­
tract trigger are inverted in parallel, the state of 
the subtract trigger can be used to simulate an 
extension sign bit positon. That is, when the sub­
tract trigger is on, the A register is inverted and 
the sign bit is one; when the subtract trigger is off, 
the A register is in true form and the sign bit is 
zero. 

+ 

~ __ I......L_(a) 

Overdraw 

(a) Successful Reduction (Quotient Bit) 

(b) Overdraw (No Quotient Bit) 

+ 

Original 
Dividend Field 

I n 
I I I 

lJtl (b) 
I I 
I I 

Overd.raw 

Figure 3-19. Examples of Combined Correction and Reduction Cycle 
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The dividend field in the B register uses the FP 
mult/div bit store latch and the B register extension 
sign bit to perform the function of an extension sign 
for the B register. 

The FP mult/div bit store latch is used as a 
temporary storage for the data bit left-shifted from 
B register bit 00 to the B register extension sign 
bit. The data bit is stored so that the B register 
extension sign bit is not destroyed prematurely 
until all the analysis is performed which requires 
the state of the sign bit from the previous cycle. 
After this analysis, the content of the FP mult/div 
bit store latch is moved into the extension sign bit 
(Figure 3-20). 

B R B' 00 "!l It 

A OR 

As with the fixed-point divide instruction a carry­
out of the "sign bit" position during the arithmetic 
operation signifies a positive result and indicates 
that a quotient bit is developed. In fixed-point 
divide, this carry-out is the normal CO signal 
whereas in floating-point divide, the CO signal is 
only the carry-in to the extension sign bit position. 

Therefore, the carry-out of the extension sign 
bit position will occur if any two of the following are 
a one: B register extension sign bit, subtract trig­
ger (A register extension sign) or CO signal. Refer 
to Figure 3-20. No arithmetic is actually per­
-formed with the extension sign bit positions. The 
resultant sign bit is not set into the B register 

r-r.- } FP FP Mult/Div Bit Store Latch A '-- Mult 
Divide Op c:::r::::J Cond FL 
Seq lB or 3B I 
CC 6.CP 2 I 

A 

'---

Not B Reg Bit 00 A ---

Clear Data Flow 

r-;- OR } FP 
~ Multiply 

Long Divide ..-.-- L 
Seq lBCtrior Latch IA 

~ 
A 

Not Div Speed UP I 
OR 

r- } (Seauence 48) "-- r-;- OR FP Mult and Div 
Anv Console Clock Control C:::r:::J Multiply B Reg Sign Bit 

~--
FL 

CC3.CPl 
A 

r;- OR } FP 
c:::r::::J Multiply 

A 
r-- FPA Div Quotient Bit 

OR A 
CO r--f--
FPA Div Compl Add Conditions A 
(Subtract Trigger) '-- '--

Refer also to ALD page KT 531 

Figure 3-20. FP Quotient Bit Controls 
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extension sign bit since it would immediately be 
lost on the next shift-left operation. The true sign 
is determined by the carry-out of the extension sign 
bit position. 

There are two conditions where the type of 
arithmetic cycle is reversed by inverting the A 
register and subtract trigger. The first condition 
takes place after a full reduction cycle (subtract 
trigger on) which gives a negative result. The 
negative result is signalled by 'no carry-out' of the 
extension sign bit position. As the A register exten­
sion sign (subtract trigger) is a one, a no-carry 
from the extension sign bit position will occur only 
if both the CO bit and the B register extension sign 
bit are zero. 

The second condition occurs after a combined 
correction and reduction cycle (subtract trigger off) 
which gives a positive result. The positive result 
is signalled by a carry-out of the extension sign 
position. As the A register extension sign (subtract 
trigger) is zero, a carry-out of the extension sign 
position can occur only if both the CO bit and the B 
register extension sign bit are one. 

Thus the A register and subtract trigger are 
inverted for the following two conditions: 

Subtract trigger on: CO = 0, B reg extn sign bit 
= O. 

Subtract trigger off: CO = 1, B reg extn sign bit 
=1. 

The foregoing principles are used for both FP 
divide (single arithmetic cycles) and FP divide 
(double arithmetic cycles). 

FP Common Divide, Single Arithmetic Cycles 

• The controlling sequence is sequence lB. 

• The divisor is located in the A register. 

• The dividend field is located in the B and BX 
registers. 

• The quotient is developed in the scratch register. 

• The quotient is developed in normalized form. 

• All the principles of FP divide are followed. 

For the flow chart and timing of these cycles, refer 
to FEMD Figures 6397 and 6398. The flow chart 
shows that the divide cycle starts with an immediate 
shift-left-one of the B, BX and scratch registers. A 
decrement of the shift counter is performed in 
parallel. 
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For the first cycle of a divide instruction, the 'not 
first divide' latch is off and the A register and sub­
tract trigger are automatically inverted. For sub­
sequent divide cycles, the 'invert A register and 
subtract trigger' logic is as described in "Principles 
of FP Divide". That is, the inversion occurs if the 
subtract trigger is on and both the B register exten­
sion sign bit and the CO bit are zeros, or if the sub­
tract trigger is off and both the B register extension 
sign bit and the CO bit are ones. 

After the arithmetic process, which is performed 
under control of the common add signal, a carry-out 
of the extension sign position signifies that the 
result is positive and that a quotient bit has been 
developed. 

The conditions for this carry-out are described 
in "Principles of FP Divide" and occur when any 
two of the following are on: subtract trigger, CO 
signal or B register extension sign bit. The logic 
is used to condition the shift-left entry to the bit 31 
position of the scratch register. The quotient bit 
is entered into this position on the next shift-left-one 
operation at the beginning of the following cycle. 

If no quotient bits are developed on the first four 
cycles of the high-order divide (scratch register bits 
28 to 31 = 0, LO order quotient latch off), the value 
of the shift counter is increased by four and the 
value of the exponent is reduced by one. Division 
cycles recommence with the shift counter starting at 
its initial value. This process is repeated until the 
first quotient digit becomes significant. The divide 
loop then continues until the shift counter equals 
zero. 

At the end of each cycle, the B register bit 00 is 
set into the FP mult/div bit store latch; this bit 
would normally be shifted into the B register exten­
sion sign bit position. The bit is not set from the 
FP mult/div bit store latch into the B register exten­
sion sign bit until just prior to the arithmetic pro­
cess. Up to this time, the B register extension 
sign bit represents the original sign bit of the B 
register (from the previous cycle); the extension 
sign bit position does not take part in the arithmetic 
process as it is needed for the 'invert A register and 
subtract trigger' logic. 

Note that on the initial entry to the divide loop, 
both the FP mult/div bit store latch and the extension 
sign bit are off. Note also that the 'not first divide' 
latch is off at the beginning of the high-order divide 
cycles on a long-precision divide and is not reset 
between the high-order and low-order divide cycles. 

The quotient bit developed on the last divide cycle 
is inserted on a special shift-l eft-one operation of 
the scratch register on the cycle immediately fol­
lowing each of the common divide loops. 

\ 



FP Common Divide, Double Arithmetic Cycles 

• The controlling sequences are sequences 1B, 2B 
and 3B. 

• The divisor is located in the A and AX registers. 

• The dividend field is located in the B and BX 
registers. 

• The quotient is developed in the scratch register. 

• The quotient is developed in normalized form. 

• All the principles of FP divide are followed. 

• The arithmetic process is similar to that used in 
long-precision add or subtract instructions. 

For the flow chart and timing of these divide cycles 
refer to FEMD Figures 6399 and 6400. The flow 
chart shows that the divide cycle starts with an 
immediate shift-left-one of the B, BX and scratch 
registers. A decrement of the shift counter is per­
formed in parallel. 

For the first cycle of the high-order quotient 
cycles, the 'not first divide' latch is off and the A 
register and subtract trigger are automatically 
inverted. For subsequent divide loops, the 'invert 
A register and subtract trigger' logic (as described 
in "Principles of FP Divide") is used. 

Note that when invert conditions are present, 
both sections of the divisor have to be inverted. 
Note also that the subtract trigger is used to provide 
a carry-in to the high-order arithmetic process if a 
CO signal occurred on the first low-order arithmetic 
process. The actual state of the subtract trigger is 
preserved over this period by setting its condition 
into the complement add latch (refer to Figure 3-2). 
Thus the status of the complement add latch is used 
instead of the actual subtract trigger in the 'invert A 
register and subtract trigger' logic. This means 
that the inversion occurs if the complement add latch 
is on and both the CO and the B register extension 

sign bit latches are zeros, or if the complement add 
latch is off and both CO latch and the B register 
extension sign bit latch are ones. 

If, after the double arithmetic cycle, there is a 
carry-out of the extension sign position, a positive 
result is indicated and a quotient bit is developed. 
The conditions for this carry-out are described in 
"Principles of FP Divide" and occur when any two 
of the following are ones: complement add latch, 
CO latch, or B register extension sign bit. This 
logic is used to condition the shift left entry to the 
bit 31 position of the scratch register. The quotient 
bit is entered into this position on the next shift-Ieft­
one at the beginning of the following cycle. 

If no quotient bits are developed on the first four 
cycles of the high-order divide (scratch register 
bits 28 to 31 = 1, LO order quotient latch off), the 
value of the shift counter is increased by four and 
the division cycles recommence with the shift coun­
ter starting at its initial value. This process is 
repeated until the first quotient digit becomes sig­
nificant. The divide loop then continues until the 
shift counter becomes zero. The B register bit 00 
would normally be shifted into the B register exten­
sion sign bit position; however, at the end of each 
divide loop, the B register bit 00 is set into the FP 
mult/div bit store latch. The bit is then set from 
this latch to the extension sign bit just prior to the 
first arithmetic process. This transfer is delayed 
as the B register extension sign bit from the pre­
vious cycle is needed for the 'invert A register and 
subtract trigger' logic. 

Note that the B register extension Sign bit is not 
set with the Sign of the result of the arithmetic 
process but remains the original B register sign 
from the previous cycle. 

On the last divide cycle, when the shift counter 
equals zero with the LO order quotient latch on, the 
BX register is reset. The quotient bit developed on 
the cycles when the shift counter equals zero is 
inserted (in the scratch register), on a special 
shift-left-one operation of the scratch register, on 
the cycle immediately following each of the common 
divide loops. 
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APPENDIX A. POWERS OF 16 

16 -n 

1.0 

O. 0625 

O. 00390625 

O. 000 244 140 625 

O. 000 015 258 789 062 5 

O. 000 000 953 674316406 25 

O. 000 000 059 604 644 775 390625 

O. 000 000 003 725 290 298 461 9140625 

O. 000 000 000 232 830 643 653 869 628 906 25 

O. 000 000 000 014 551915228366 851806640625 

O. 000000000 000 909 494 701 711 0532379150390625 

O. 000 000 000 000 056 843 418 860808 014869689941406 25 

O. 000 000 000 000 003 552 713 678 800 500 929 355 621 377 890625 

O. 000 000 000 000 000 222 044 604 925 031 308 084 726 333 618 164 062 5 

O. 000 000 000 000 000 013 877 787 807 814 456755295395851 135 253 906 25 

O. 000 000 000 000 000 000 867 361737988403547205962240 695953369140 625 

O. 000 000 000 000 000 000 054 210 1~ 624 275221 700 372 640 043497085571 2890625 
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