
Restri cted Di stri buti on

Field Engineering

Theory of Operation

(Manual of Instruction)

This manual is intended for internal use only and may not be
used by other than IBM personnel without IBM's written permission.

Specifications contained herein are subject to change without
notice. Revisions and/or supplements to this publication will be
issued periodi cally.

System/360 Model 44

Principles of Operation- Processing Unit

..

,

Restri cted Di stri bution

Field Engineering

Theory of Operation

(Manual of Instruction)

This manual is intended for internal use only and may not be
used by other than IBM personnel without IBM's written permission.

Specifications contained herein are subject to change without
notice. Revisions and/or supplements to this publication will be
issued periodi cally.

System/3S0 Model 44

Principles of Operation-Processing Unit

PREFACE

This volume contains the Principles of Operation for
the IBM 2044 Processing Unit, the processor for the
IBM System/360 Model 44. The manual describes
the operation of the machine instructions (other than
floating-point instructions) and program and machine
interrupts, for both the basic machine and the basic
machine with accelerator feature. Where the
description for the basic machine differs from that
for the accelerator feature, the relevant teXt is
indented and appropriately headed 'BASIC only' or
'ACCELERATOR only'.

The manual assumes knowledge of the System/360
as described in IBM System/360 Principles of
Operation, Form A22 -6821.

This volume is one of the manuals that constitute
the IBM Field Engineering Theory of Operation
manual for the IBM System/360 Model 44. The
other volumes and their form numbers are:

System/360 Model 44, Introduction and Functional Units,

Form Y33-0001: Gives a general outline of digital computers

and computing technique, defines the relationship of the

IBM 2044 to the Systelll/360 and describes the various parts

which form the processing unit.

Systelll/360 Model 44, Principles of Operation - Channels,

Form Y33-0003: Describes the Common Channel area, the

Multiplexor Channel 0 and the High Speed Multiplexor

Channel.

First Edition

These volumes are referenced in other volumes
by the main element of their titles.

Reference is also made in these volumes to the
following associated manuals:

Field Engineering Theory of Operation (FETOl, IBM System/360

Model 44, Floating Point Feature, Forlll Y33-0005: Gives

an introduction to floating-point arithmetic, describes the

functional implelllentation of floating-point arithmetic in

the 2044 and details the operation of floating-point

instructionS4

Field Engineering Theory of Operation (FETOl, IBM System/360

Model 44, Single Disk Storage Drive, Forlll Y33-0006:

Gives an introduction to the operation of the control unit

and describes in detail the functional parts and the operations

that lllay be performed.

Field Engineering Maintenance Manual (FEMM), IBM System/360

Model 44, Form Y33-0007: Contains information for

servicing the 2044 Processing Unit.

Field Engineering Maintenance Diagrams (FEMD), IBM System/

360 Model 44, Volume 2, Form Y33-0008: Contains

maintenance information in the following categories: Data

Flow Charts, Flow Charts, Timing Charts, MAP's.

Other related manuals that describe units used in
the System/360 Model 44 are:

Field Engineering Manual of Instruction (FEMI), 1052 Adapter,

Form 223-2808.

Field Engineering Maintenance Manual (FEMM) Single Disk

Storage/Direct Access, Forlll Y26-3663.

This manual makes obsolete Field Engineering Theory of Operation, System/360 Model 44,

Forllls 233-0003-0, 233-0004-0.

The manual is written baSically to Engineering Change Level 390049 and in SOllle cases anticipates

Engineering Change Level 390063. Significant changes or additions to the information in the manual

will be covered in subsequent revisions or FE supplements.

This publication was prepared by IBM European Laboratories, Product Publications. A form is provided

at the back of this manual for reader's comments. If the form has been removed, comments may be

addressed to: IBM Corporation, FE Manuals, Dept. P96, PO Box 390, Poughkeepsie, N. Y. 12602

© International Business Machines Corporation 1966

ii

"

CHAPTER 3A. PRINCIPLES OF OPERATION --

PROCESSING UNIT .

Introduction to Instruction Fetching

Instruction Format and Decoding

I-Fetch •

Instruction Read-Out

No Index Cycles •

One Index Cycle .

Two Index Cycles

Last Instruction Cycle Conditions

FIXED-POINT INSTRUCTIONS

Hallword Expansion •

Load Instructions •

Load, Load Halfword, Load and Test

RX Format.

RR Format.

Load Complement, Load Positive, Load Negative

Load Complement

Load Positive .

Load Negative

Result Storage Cycle

Store and Store-Halfword Instructions

Add, Subtract and Compare Instructions

Add, and Add Halfword Instructions •

Subtract, and Subtract Halfword Instructions

Compare, and Compare Halfword Instructions

Shift Arithmetic Instructions

Multiply and Multiply-Halfword Instructions .

Principles of Multiply Operation •

Instruction Objectives -- Multiply Instruction

Execution Sequence -- Multiply Instruction

Operand Fetch and Initialize Cycles .

.'

Multiply Cycles -- Shift Counter 31 to 1 Inclusive

Multiply Cycle, Shift Counter = 0

Product Store Cycles

Instruction Objectives, Multiply Halfword

Execution Sequence, Multiply Halfword

Operand Fetch and Initialize Cycles

Product Store Cycle

Divide Instruction

Principles of Division

Instruction Execution

Division Set-Up Cycles

Division Compute Cycles
Remainder Correction Cycle

Quotient Correction Cycle •

Quotient and Remainder Store Cycles

LOGICAL INSTRUCTIONS

OR, Exclusive OR and AND Instructions

OR Instructions

RR and RX Format

SI Format

Exclusive OR Instruction

RR and RX Format

SI Format

AND Instruction

RR and RX Formats

SI Format

3A-l
3A-1

3A-1

3A-3

3A-3

3A-4
3A-4

3A-5

3A-6

3A-7
3A-7

3A-8

3A-8

3A-8

3A-8

3A-8

3A-9

3A-9

3A-9

3A-9

3A-1O

3A-ll

3A-ll

3A-12

3A-12

3A-13

3A-15

3A-15

3A-17

3A-17

3A-17

3A-18

3A-20

3A-20

3A-20

3A-21

3A-21

3A-21

3A-22

3A-22

3A-24

3A-24

3A-25

3A-26

3A-27

3A-27

3A-31

3A-31

3A-31

3A-31

3A-31

3A-32

3A-32

3A-32

3A-33

3A-33

3A-33

Add Logical, Subtract Logical and Compare Logical

Instructions

Add Logical Instructions

Subtract Logical Instructions

Compare Logical Instructions

RR and RX Formats •

SI Format

Character Handling Instructions

Insert Character Instruction

Store Character Instruction

Test Under Mask •

Test and Set

Miscellaneous Logical Operations

Shift Logical Instructions

Load Address

Move Instruction •

BRANCHING INSTRUCTIONS

Instruction Formats

Branch On Condition

Branch and Link

Bmach On Count •

STA TUS SWITCHING INSTRUCTIONS

Set System Mask .

Set Program Mask

Supervisor Call

Load PSW

Diagnose Instruction

Instruction Format

Instruction Applications

Operation of Test Parity Latch

Instruction Execution

UPDATE INTERVAL TIMER

INTERRUPTS •

Accepting the Interrupt

Machine-Check Interrupt

Program Interrupt .

Program Interrupt Backup

Supervisor-Call Interrupt

External Interrupt •

External Machine Check

I/O Interrupts •
Interrupt Cycles

Cycle 1, New PSW 1 Period

Cycle 2, Old PSW 1 Period

Cycle 3, New PSW 2 Period

Cycle 4, Old PSW 2 Period

Summary of Interrupt Cycles

I/O Interrupts •

Storing the CSW •

Developing the Interrupt Code

Machine-Check Interrupt

Program Interrupt
Supervisor- Call Interrupt

External Interrupt

Input /Output Interrupt

Terminating the Interrupt Cycles.

Cancellation of an I/O Interrupt

CONTENTS

3A-34

3A-34

3A-34

3A-34

3A-35

3A-35

3A-35

3A-35

3A-36

3A-36

3A-37

3A-38

3A-38

3A-40

3A-40

3A-41

3A-41

3A-41

3A-41
3A-42

3A-43

3A-43

3A-43

3A-43

3A-43

3A-44

3A-44

3A-45

3A-45

3A-45

3A-46

3A-48

3A-50

3A-50

3A-50

3A-51

3A-51

3A-51

3A-51

3A-52
3A-52

3A-53

3A-53

3A-53

3A-53

3A-53

3A-53

3A-54

3A-54

3A-54

3A-54
3A-54

3A-54

3A-54

3A-54

3A-55

iii

ILLUSTRATIONS

Figure Title Page

3A-l Formats and Operation Registers 3A-2

3A-2 I-Fetch Timings, Double Index (Basic

Machine Only) 3A-5

3A-3 Halfword Expansion 3A-7

3A-4 Shift Operations - - Arithmetic 3A-14

3A-5 Sign Correction 3A-15

3A-6 Invert A Register and Subtract Trigger Logic 3A-18

3A-7 Compute Clock Control for Multiply

Operation 3A-19

3A-8 Multiply Conditions 3A-19

3A-9 Shift Right One Insert for Multiply

Operations 3A-19

3A-1O Instructional Multiply Flow Chart 3A-20

3A-ll Multiply Examples with Eight-Bit Multiplier 3A-21

3A-12 Illustration of Normal Reduction Cycle 3A-23

3A-13 Illustration of Combined Correction and

Reduction Cycles 3A-23

3A-14 Possible Zero Remainder Latch 3A-24

3A-15 Divide Exception and Remainder Connection 3A-25

3A-16 Invert A Register and Subtract Trigger for

Divide Instruction 3A-26

3A-17 Quotient Bit Logic 3A-26
3A-18 Example of Divide with Two Negative

Operands 3A-28

3A-19 Example of Divide with Remainder Correction

Required 3A-29

3A-20 Example of Divide with Remainder Correction

and PZR on 3A-30

3A-21 Shift Operations - - Logical 3A-39

3A-22 PSW 2 and HW Register to Funnel Logic 3A-46

3A-23 Mains Frequency Determination 3A-47

3A-24 Table of Interrupts • 3A-48

3A-25 Summary of Interrupt Control Latches 3A-49

3A-26 PSW and CSW Storage Locations 3A-52

iv

ABBREVIATIONS

The following abbreviations are used in this manual:

ac
CLA
CLI
dc
E-phase
EXOR
GPR
HW funnel
IC
I-cycle
I-fetch
ILC
I/o
IPL
Op
PSW
PZR
SAR
SDR

alternating current
Carry Look-ahead
Compare Logical Immediate
direct current
Execute -phase
Exclusive OR
General Purpose Register
Hardware funnel
Instruction Counter
Instruction -cycle
Instruction-fetch
Instruction Length Code
Input/Output
Initial Program Loading
Operation
Program Status Word
Possible Zero Remainder
Storage Address Register
Storage Data Register

v

.'

CHAPTER 3A. PRINCIPLES OF OPERATION -- PROCESSING UNIT

INTRODUCTION TO INSTRUCTION FETCHING

• Instructions are either one or two halfwords in
length.

• Instructions must be located on integral halfword
boundaries.

• Instruction-fetch reads out the instruction to
instruction registers and develops the effective
address for all but RR type instructions.

• SS format instructions are not used in the IBM
System/360 Model 44 instruction set.

The length of a machine instruction can be one or
two halfwords. The length is determined by the
number of storage addresses required to perform
the operation. An instruction of one halfword cannot
cause any reference to main storage because it is
the second halfword of an instruction, where present,
that contains the storage address in the form of a
base address followed by a displacement. Therefore,
an instruction two halfwords long is required to
provide one storage address. All instructions must
be located in storage on integral halfword, that is,
any 24-bit address whose low-order bit is zero.

The instruction field is read out from storage by
Instruction-fetch (I-fetch). The information brought
out is processed in preparation for the execution of
the instruction. This execution is carried out in the
Execute-phase (E-phase).

The System/360 Model 44 instruction set does
not contain any SS format instructions. Therefore,
no Model 44 instruction exceeds two halfwords in
length.

For RR format (one halfword long), the I-fetch
reads out the instruction from storage and sets it
into the instruction registers (Op, Ra, Rb and Rc).
For RX, RS and SI formats, the I-fetch reads out
the full-word instruction, sets the Op, Ra, Rb and
Rc registers with bits 00 to 19 of the instruction,
sets the 12-bit displacement to the B register and
develops the effective address in the B register.

For all instruction formats the Op register con­
tent is decoded to set the controls for the E-phase
of the instruction.

For two instructions the E-phase is overlapped

with the I-fetch. These are the supervisor-call
instruction and the branch-on-condition instruction
where the branch is not taken. These instructions
are described in the "Status Switching Instructions"
and "Branching Instructions" sections respectively.

For all other instructions and for branch-on­
condition where the branch is to be taken, the E­
phase always follows I-fetch.

I-fetch cannot begin if, at the end of E-phase, an
interrupt is pending or the interval timer requires
updating. If both these conditions are present, the
interrupt is taken and then the interval timer is
updated prior to the next I-fetch. (Refer to the
"Interrupts" section.)

Under normal operating conditions of running a
program, the machine stops processing at the end
of the E-phase (end-execute time) and after all
pending interrupts and interval-timer updates are
handled if any of the following conditions are present:

1. The wait bit, PSW 1 bit 14 is a one.
2. The console rate switch is in the INSN STEP

position.
3. The stop button has been pressed.
Condition 1 causes the machine to enter the wait

state and the interval timer is updated when
required. The machine can proceed only if an I/o
or external interrupt is requested.

Condition 2 is an operator intervention. The
machine enters the manual-stop state and the I-fetch
proceeds only when the start button is pressed. Any
interrupt or timer update requested while the machine
is in the manual-stop state remains pending until
the next end-execute time.

Condition 3 causes the machine to enter the
manual-stop state after all pending interrupts are
taken. Any I/o activity proceeds to termination
with the associated interrupt held pending.

A flow chart analyzing end -execute time is shown
in FElVID, Figure 6077/78 (Basic) and 6291/92
(Accelerator).

INSTRUCTION FORMAT AND DECODING

• Four instruction registers are used: Op, Ra, Rb
and Rc.

• Instruction format is defined by the op register
bits 0, 1.

Prin Op--Proc Unit 8/66 3A-l

There are four instruction registers used in the
IBM 2044 Processing Unit. These are:

Register Bits Format Contents

Op 00-07 RR Instruction op code

RX Instruction op code

RS Instruction op code

SI Instruction op code

Ra 08-11 RR First operand CPR address

RX First operand CPR address

RS First operand CPR address

SI Bits 0 to 3 of immediate' data

Rb 12-15 RR Second operand CPR address

RX Index register CPR address

RS Index register CPR address

SI Bits 4 to 7 of immediate data

Rc 16-19 RX Base CPR address

RS Base CPR address

SI Base CPR address

The alignment of the instruction with the instruction
registers is shown in Figure 3A-1.

The first byte of an instruction is the operation
(op) code. For convenience this is often expressed
in hexadecimal form, and given a mnemonic for
programming purposes, for example:

Mnemonic Hexadecimal Binary Instruction

NR 14 00010100 RR binary AND

N 54 01010100 RX binary AND

CLI 95 10010101 SI compare logical

The second byte, bits 8 to 15 of the instruction half­
word, is used as two four-bit registers in the RR,
RS and RX formats, and is used as an immediate
eight-bit operand in the SI format. These eight bits

Registers used during I-Fetch

Op Register Ro Rb Rc

Op Code R] R2 RR
,
I
I

Op Code I R] X2 B2 D2 RX

I
I
I

I I

I Op Code I R] R3 B2 D2 R5

I I

0 78]]]2]5:]6]9,20 31
I I
I I I

I I Op Code
1 1121 1

B2 D] 51

LHOlfword

]5\16

.... Halfword ~
Figure 3A-l. Formats and Operation Registers

3A-2 8/66 Model 44 FETO

of immediate data in SI format are held in the Ra
(4 bits) and Rb (4 bits) registers. When these reg­
isters are read out, there is a special data path to
convey the byte to the ABC funnel.

During I -fetch the eight bits of the op code are
decoded to enable decisions to be made as to the
format and the operation required.

The op decode is performed using the output from
four decode groupings of three bits of the op reg­
ister bits 0 to 7. The four combinations used are:

Op register bits 2, 4, 5
Op register bits 1, 3, 5
Op register bits 0, 6, 7
Op register bits 3, 6, 7

These lines are used to derive the controls necessary
to define fully the instruction and its type.

The op decode logic is contained in ALD Pages
DN 001 to 191. An example of op decoding for the
RX format compare instruction follows:

Bit positions 0 1 2 3 4 5 6 7
Op code of RX compare 0 1 0 1 1 0 0 1

In this example, bits 2, 4 and 5 are 0, 1 and O. The
following shows the output of op register encoder
positions for the four combinations used.

Bits 2,4,5 Bits 1,3,5 Bits 0,6,7 Bits 3,6, 7

000

001 X

010 X

011

100

101 X

110 X

111

Reference to ALD Pages DN 001 to 191 shows that
the following control lines are generated from these
encoded lines:

ALD

DN 021

DN 031

Op Decode Line Name

Compare Algebraic Op
Subt + Comp + Load C-N-P
Subt + Comp + Store + Test Set
Add + Subt + Comp

Load C-N-P + Arith + Log Ops
Add Alg + Subt Alg + Comp Alg

DN 101 Arith + Log + Load Ops
These lines and the 'not' condition of other-lines
from these ALD pages provide the control for the
instruction execution.

The op decode for all instructions is handled in a
similar manner.

"

If the op code is not part of the Model 44 instruc­
tion set or is for a feature that is not installed, an
'operation exception' is signalled, causing a pro­
gram interrupt (invalid operation).

If the op code represents a privileged instruction
and the machine is in the problem state (PSW 1 bit
15 equals 1), a privileged-operation exception is
signalled, again causing a program interrupt.

The Model 44 privileged instructions are:

Instruction Op Code Mnemonic

Halt I/O 9E HIO
Load PSW 82 LPSW
Diagnose 83 DIAG
Set System Mask 80 SSM
Start I/O 9C SIO
T est Channel 9F TCH
Test I/O 9D TIO

I-FETCH

• The instruction is read out of the locations defined
by the Instruction Counter (IC).

• The instruction is aligned in the data flow.

• The Op, Ra, Rb and Rc registers are set from
bits 0 to 19 of the data flow.

• The op decode is performed.

• Indexing, when required, is performed.

• Controls for E-phase are set up.

• In accelerator, I-fetch cycles are overlapped.

Instruction Read-Out

The conditions under which I-fetch can proceed have
been described previously (see "Introduction to
Instruction Fetching").

To start all I-fetch operations, an Instruction
cycle (I-cycle) is taken. During this I-cycle the IC
(PSW 2 bits 8 to 31) is used to address main storage,
and the instruction field is read out to the Storage
Data Register (SDR) as explained under "Main Stor­
age Addressing" in Introduction and Functional
Units, Form Y33-0001. The instruction is correctly
aligned in the SDR if the instruction address specifies
an address in the half of main storage addressed by
Storage Address Register (SAR) 1. However, if the
instruction address specifies an address in the half
of main storage addressed by SAR 2, a criss-cross

operation is performed to align the instruction cor­
rectly in the data flow.

The correctly aligned instruction is then available
at the true/criss-cross output.

At the start of the I-cycle, a 'clear data flow' line
is conditioned to reset all the internal registers and
controls in the arithmetic and logic section of the
machine. The Op, Ra, Rb and Rc registers are also
reset at this time.

When the aligned instruction is available at the
true/ criss-cross output, bits 00 to 19 are used to
set the Op, Ra, Rb and Rc registers.

Up to this stage, all instructions are treated alike
and it is only after the Op, Ra, Rb and Rc registers
have been set that instruction and op decoding can
proceed.

The Op register is immediately decoded to deter­
mine the instruction format and type.

If the op is invalid, the operation -exception latch
is turned on. If the op is a privileged operation and
the machine is in the problem state (PSW 1 bit 15
equals 1), the privileged-operation-exception latch
is turned on.

For both these exceptions an end-execute signal
is generated at the end of the I-cycle, and the I-fetch
is terminated. The machine then enters the end
execute time analysis, shown in FEMD, Figures
6077/78 (Basic) and 6291/92 (Accelerator). A pro­
gram interrupt would normally be taken under these
exception conditions.

If the op code is valid, the instruction format
together with the contents of the Rb and Rc registers
are used to determine if indexing cycles are required.

The instruction format decode output is also used
to determine if the displacement field should be gated
to the Band C registers.

If the instruction format is not RR, the true/criss­
cross output, bits 20 to 31, is gated through the ABC
funnel and is set into the B and C registers. Bits 20
to 31 represent the displacement, and they are set
into the Band C registers in readiness for the addi­
tion of the base address or the index field if indexing
is required.

The conditions which cause either no index cycles,
one index cycle or two index cycles are:

No Index
RR format All instructions
RX format Rc = 0, Rb = 0
RS, SI format Rc = 0

One Index
RX format Rb = 0, Rc F 0
RX format Rb F 0, Rc = 0
RS, SI format Rc F 0

Two Index
RX format Rb F 0, Rc F 0

Prin Op--Proc Unit 8/66 3A-3

No Index Cycles

3A-4

BASIC only: For the three conditions causing
no-index cycles, I-fetch can end at the comple­
tion of the I-cycle.

For the RR format, the information required
for the E-phase is located in the Op, Ra and
Rb registers. For the RX format, the infor­
mation required for the E -phase is located in
the Op, Ra, Rb, Rc and B registers. The B
register contains the displacement, which, as
no indexing cycles were required, is also the
effective address.

For the RS and SI formats, the information
required for the E-phase is located in the Op,
Ra, Rb and B registers. The B register con­
tents again represent the effective address.

For these no-index conditions the last­
instruction-cycle signal is generated during
the I-cycle and the op decode is used to set
the appropriate controls for the E-phase of the
instruction. (See "Last Instruction Cycle
Conditions" section.)

ACCELERATOR only: For the RR format,
indexing is never required. The op decode
output signals. that the instruction is in RR
format, identifies the op code, and the instruc­
tion execution is allowed to proceed.

As all operands in RR format are in GPR's,
no storage cycles are required and the instruc­
tion execution can be performed in parallel with
the remainder of the I -cycle on which the
instruction information in SDR is regenerated
in storage.

For RR instructions, the common signals
for I-fetch occur in the first part of the I-cycle
only. In FEMD, Figure 6201/2, the timing
charts for the RR I-fetch show these common
signals. The timing charts for all RR-type
instructions start at the beginning of I-fetch to
illustrate the overlap of I-fetch and E-phase
relevant to the instruction.

The common I-fetch signals for each instruc­
tion are not shown on the timing chart, but a
cross reference is made to the RR I-fetch
chart.

On the I-cycle, regardless of format, the
compute clock is started at RC4 time. This

. first run of the compute clock uses the 'I-time'
latch as a control, and a sequence latch is not
activated unless a second run of the compute
clock is required.

For the RX, SI or RS formats and the no­
index conditions previously listed, I-fetch can
be concluded, as the displacement in the B
register represents the effective address.

8/66 Model 44 FETO

As the E-phase of instructions in these
three formats can start after the I-cycle or
after one or two index cycles, the E -phase is
not normally overlapped with I-fetch.

For the no-index conditions, the E-phase
starts, using the controls set during the I-cycle
by the op decode networks.

A functional op decode flowchart is provided
in FEMD, Figure 6201/2 to enable controls set
at the end of I-fetch to be established.

One Index Cycle

BASIC only: For the one-index condition, a
B-cycle or an X-cycle is taken to read out the
appropriate General-Purpose Register (GPR)
contents to be added to the displacement. It
is only after this cycle is complete that I-fetch
can be ended.

The cycle taken for each of the one-index
conditions is as follows:

Format Conditions Cycle

RX Rb == 0, Rc I- 0 B-cycle
RX Rb I- 0, Rc == 0 X-cycle
RS, SI Rc I- 0 B-cycle

The .contents of the GPR defined by the address
in Rb for the X-cycle and Rc for the B-cycle
are read out to the SDR on this indexing cycle.

The SDR is then gated to the A, B and C
registers via the true/criss-cross and the ABC
funnel. The Carry Look-Ahead (CLA) output is
then gated to the B register, forming the sum
of the displacement and base or index register
contents in the B register.

Thus, at the end of this cycle, the effective
address is contained in the B register and the
I-fetch can be ended by signalling 'last instruc­
tion cycle' .

The controls set on this cycle in preparation
for the E-phase of the instruction are described
in the "Last Instruction Cycle Conditions" sec­
tion.

ACCELERATOR only: The conditions that
cause one index cycle have been listed previ­
ously.

If these conditions are present, the compute­
clock cycle started at WCl of the I -cycle is
used to add the index information to the dis­
placement.

For the RX format, if the Rb register is
zero, the base address is read from the GPR
defined by the Rc register, and if the Rc regis­
ter is zero, the indexing address is read from
the GPR defined by the Rb register.

o .25 .50 .75 1.0 1.25 1.50 1.75 2.0 2.25 2.50 2.75 3.0 jJ.S

R(W Clock Odd

R/W Clock Even . .
Reset SAR •• ...
IC to SAR ...
Rc to SAR ...-
Rb to SAR

Reset SDR ~~ I.,,~

Storage to SDR ~ --~ Reset Instruction Regs "'"
Set Instruction Regs

Increment IC (+ 2)
'"""'"

SD R to T ruel Cri ss-cross

Reset A, Band BX Regs ...
True/Criss-cross to Funnel
Funnel Output to B Reg
CLA to Funnel

I-Cycle B-Cycle

Figure 3A-2. I-Fetch Timings, Double Index (Basic Machine Only)

For RS or SI format, the base address is
read out of the GPR defined by the Rc register.

At the completion of the compute-clock
cycle, the first index latch is turned on and the
E-phase can start, using the controls set by
the op decode networks.

The flowchart and timing chart for these
cycles are shown in FEMD Figure 6203/4. A
flowchart for the controls set by the op decode
is also provided.

Two Index Cycles

BASIC only: For the two-index condition, both
the base address and the index field must be
added to the displacement before the I-fetch
can be ended. This requires a B-cycle and an
X -cycle, with the two cycles taken in that order.

The operation for the B-cycle is similar to
the one-index cycle in that the base register
defined by the Rc register is read and its con­
tents added to the displacement in the B reg­
ister.

The X -cycle uses the Rb register to define
the GPR to be read out to the SDR.

.
. .

'"' ~

...-

t ...

~.....,j

'"""'"

'"""'" t ..;.

X-Cycle

The arithmetic and logic section of the
machine is prepared for the second addition
process by resetting the A register and copying
the B register contents into the C register.

The indexing register content is then gated
from the SDR, via the true/criss-cross and
the ABC funnel, to the A, Band C registers.
The CLA output is then gated to the B register
to form the effective address in the B register.
The timing of these controls is shown in Figure
3A-2.

The last instruction cycle can then be gener­
ated and the controls generated for the E-phase
of the instruction. These controls are de­
scribed in the following section ..

ACCELERATOR only: As listed previously,
two-index conditions occur if Rb and Rc are
non-zero on an RX-format operation.

For these conditions, the compute-clock
cycle started at Wel of the I-cycle is used to
add the base register contents to the displace­
ment, and a second compute-clock cycle is
called to add the index register contents to the
displacement.

Prin Op--Proc Unit 8/66 3A-S

To define the cycles, the first index latch
is turned on near the completion of the first
compute-clock cycle, and the second index
latch is turned on near the completion of the
second compute-clock cycle.

At the completion of this second cycle, the
E-phase proceeds, using the controls set up by
the op decode network.

A flowchart and timing chart of the I-fetch
two-index conditions and a flowchart of the
controls set by the op decode are provided in
FEMD, Figures 6205/6 and 6207/8.

The last instruction cycle can then be
generated and the controls generated for the
E-phase of the instruction. These controls
are described in the following section.

Last Instruction Cycle Conditions

The last instruction cycle signal and the op decode
combine to set the controls required for the E-phase
of the instruction

The method of op decoding has been described
previously and the signals generated from this area
set the appropriate cycle and/or sequence controls
for the following cycle.

Flow charts and timing charts relating to I-fetch
are contained in FEMD, Figures 6001/2, 6003/4,
6005/6 and 6007/8 for basic machines and 6201/2,
6203/4, 6205/6 and 6207/8 for accelerator machines.
A functional op decode flowchart shows the controls
that are set on this last instruction cycle; it does not
show the actual method the machine uses to deter­
mine the controls to be set, but enables them to be
correctly established. The exact method can then be
determined from the ALD's.

3A-6 8/66 Model 44 FETO

HALFWORD EXPANSION

• Halfword is expanded to appear as a full word to
enter the ABC funnel.

• Halfword operation allows ones out of bits 0 to 15
of true/criss-cross.

• Admission of forced ones to ABC funnel is depen­
dent on bit 16 (sign bit).

Figure 3A-3 is a schematic representation of the
halfword expansion.

When an operand has been read out from main
storage to SDR, and analysis of the address and
operation code shows it to be a halfword operation,
the true/criss-cross is used to align the data in the
low-order 16 bits at the ABC funnel entry.

From Main Storage

I

12
SDR SDR

0 15 16

311

31

FIXED-POINT INSTRUCTIONS

The true/criss-cross is constructed in negative
logic so that if the high-order 16 bits are not con­
trolled for use, as during halfword operations, ones
are propagated from these unused positions. These
ones mayor may not be admitted to the ABC funnel,
depending on the state of bit position 16 (the sign bit)
of the halfword operand. If bit 16 is a zero (positive
sign), the forced ones are not used. If bit 16 is a
one (negative sign), the forced ones are allowed to
enter positions 0 to 15 of the funnel with the halfword
from main storage occupying the low-order bit
positions 16 to 31.

To summarize, a halfword from main storage
with a positive sign appears in the funnel in the form:

0000 0000 0000 0000 Q101 1011 1101 0111

A halfword with a negative sign appears in the form:

1111 1111 1111 1111 1101 1011 1101 0111

I
I

No control activated} I
means ones are allowed _I /

/

{
Gate SDR 16 to 31

/' / _ true if SAR 2
/ / bit 30; 1

to remo in in high-order I / /
positions : /' /' /

1,,/

Allow one. ta }
the funnel if _
bit 16; 1

{
Gate SDR 0 to 15

,.-+-_ across to 16 to 31
if SAR 2 bit 30; 0

DT-------L--~--~

16 to 31

Sign Bit 16

ABC Funnel

TO A, B or C REGISTERS

Figure 3A-3. Halfword Expansion

Prin Op--Proc Unit 8/66 3A-7

LOAD INSTRUCTIONS

Load, Load Halfword, Load and Test

• The load instruction is either RR or RX format.

• The respective op codes and mnemonics are 18
(LR) and 58 (L).

• The load -halfword instruction is RX format.

• The op code and mnemonic is 48 (LH).

• The load and test instruction is RR format.

• The op code and mnemonic is 12 (LTR).

• The second operand is placed in the first operand
location.

• The second operand remains unchanged.

• On load halfword, the halfword is expanded to a
full word by propagating the sign bit in the 16
high -order positions.

• The condition code is set only for 'load and test'
instructions as follows:

00 Result is zero
01 Result is less than zero
10 Result is greater than zero
11 Not set

• In accelerator, GPR's go to B register via HW
funnel.

3A-8

BASIC only: The load, load halfword and load
and test operations cause the second operand
to be read out of storage and set in the SDR.
From there it is gated through the true/criss­
cross to the Band C registers. The true/
criss-cross controls are set to gate SDR true
for the load, and load and test instructions.
For the load halfword instruction the true/
criss-cross controls are used to align the
halfword to the right-hand half of the B and C
registers, and to propagate the sign bit to the
left-hand half of these registers.

The first operand is then read out of stor­
age but is not gated to the SDR during the read
section of the storage cycle. Instead, the
second operand is gated from the B register to
the SDR, and is stored from there into the
first operand location during the write section
of the storage cycle.

The load and test instruction causes the B
register to be analyzed and the condition code
to be set.

8/66 Model 44 FETO

The sequence and timing of these instruc­
tions are shown in FEl\IJD, Figure 6009/10.

RX Format

ACCELERATOR only: The instructions of this
group in the RX format are load (op code 58)
and load halfword (op code 45).

For these instructions an EA-cycle is taken
and the second operand is read out to the SDR.
It is then gated to the B register (aligning and
expanding the operand for the halfword operand
condition).

From the B register, the second operand is
gated to the GPR defined by the Ra register and
'end execute' is signalled.

RR Format

ACCELERATOR only: The instructions of this
group in the RR format are load (op code 18)
and load and test (op code 12).

For these instructions, the second operand
is gated from the GPR defined by Rb and set
into the B register using the compute clock
started during I -time.

The compute clock is stopped at CC4 and
'end execute' is Signalled.

Sequence 2 is then called and the compute
clock restarted. The B register is gated to the
GPR defined by Ra and the condition code is set
for the load and test instruction early in this
compute cycle.

Note that 'end execute' is signalled prior to
starting the second compute cycle. This gives
an overlap of the next I-fetch or interrupt cycle
with the E-phase of this instruction

Load Complement, Load Positive, Load Negative

• The load complement, load positive, and load
negative instructions are in RR format.

• The respective op codes and mnemonics are
13 (LCR), 10 (LPR), 11 (LNR).

• The second operand is loaded into the first oper­
and GPR in the form specified by the instruction.

• The condition code is set from the result stored.

The load complement, load positive, or load negative
instructions cause the second operand to be read out
of storage and set into the SDR. The B and C reg­
isters are set to all ones, and the second operand
is gated to the A, Band C registers.

Thus, the A register contains the second operand
in true form and the Band C registers contain the
second operand Exclusive OR'ed with ones (that is,
the one's complement of the second operand).

The instruction is then analyzed to determine the
operation to be performed.

Load Complement

• The two's complement of the second operand is
stored.

For this operation the A register is reset and the
subtract trigger is set. A subtract operation is then
performed by adding the A register contents to the
B register contents with the carry-in forced by the
subtract trigger. This forms the two's complement
of the second operand in the B register.

Load Positive

• The absolute value of the second operand is
stored.

BASIC only: The SDR sign is tested. If it is
negative, the A register is reset and a subtract
operation is performed similar to that described
for load complement. Thus, if the second
operand is negative, it is complemented, the
result being formed in the B register.

If the SDR is positive, the Band C registers
are reset and the A register is gated via the
ABC funnel to the Band C registers.

Thus, the B register contains, in both cases,
the absolute value of the second operand.

ACCELERATOR only: The A register is
tested. If it is negative, the A register is reset
and a subtract operation. is performed similar
to that described for load complement. Thus,
if the second operand is negative, it is comple­
mented, the result being formed in the B
register.

If the A-register Sign is positive, the Band
C registers are reset and the A register is
gated via the ABC funnel to the B and C reg­
isters.

Thus the B register contains, in both cases,
the absolute value of the second operand.

Load Negative

• The two's complement of the absolute value is
stored.

BASIC only: The conditions that apply for load
positive are reversed for load negative. If the

sign of the second operand in the SDR is nega­
tive, the Band C registers are reset and the
A register is gated via the ABC funnel to the
Band C registers.

If the second operand in the SDRis positive,
the A register is reset and a subtract operation
is performed, forming the two's complement
of the second operand in the B register.

Thus, the B register will in both cases con­
tain the two's complement of the absolute value
of the second operand.

ACCELERATOR only: The conditions that apply
for load positive are reversed. If the sign of
the second operand in the A register is nega­
tive' the B and C registers are reset and the A
register is gated via the ABC funnel to the B
and C registers.

If the second operand in the A register is
positive, the A register is reset and a subtract
operation is performed, forming the two's
complement of the second operand in the B
register.

Thus the B register contains, in both cases,
the two's complement of the absolute value of
the second operand.

Result Storage Cycle

BASIC only: For all these instructions the first
operand is then read out, but not set to the SDR.
The content of the B register is set to the SDR.
The SDR is then stored in the first operand
location during the write section of the storage
cycle.

ACCELERATOR only: When 'end execute' is
signalled, the B register is gated to the GPR
defined by Ra.

The B register is also analyzed to determine the
setting of the condition code as follows:

Load Complement
00 Result is zero
01 Result is less than zero
10 Result is greater than zero
11 Fixed-point overflow

Load Positive
00 Result is zero
01 Not set
10 Result is greater than zero
11 Fixed-point overflow (CO! C1)

Load Negative
00 Result is zero
01 Result is less than zero
10 Not set
11 Not set

Prin Op--Proc Unit 8/66 3A-9

For the fixed-point overflow condition, the fixed­
point overflow exception latch is turned on if the
mask bit (PSW 2 bit 4) is a one. This latch generates
a program interrupt request (refer to "Interrupts"
section).

The sequence and timing of these instructions are
shown in FEMD, Figures 6011/12 (basic) and 6213/
14 (accelerator).

STORE AND STORE-HALFWORD INSTRUCTIONS

• The store and store-halfword instructions are
both in RX format.

• The respective op codes and mnemonics are
50 (ST) and 40 (STH).

• The first operand is stored in the second operand
location.

• The store-halfword instruction stores the 16 low­
order bits of the first operand GPR (bits 16 to 31).

• The condition code is not altered.

• In accelerator, GPR's enter the B register via
HW funnel.

3A-1O

BASIC only: The store and store-halfword
instructions are both in RX format. This means
that the developed effective address is in the B
register at the start of the E-phase of these
instructions.

The objective of these instructions is first
to read out the first-operand GPR, and then to
store the full 32 bits (store) or bits 16 to 31
(store halfword) into the storage location
defined by this effective address. This means
that the first cycle must be an Rl cycle, and
that the effective address must be stored out of
the main data flow during this cycle. The
second, or store cycle, is an EA cycle and for
this cycle the effective address is temporarily
returned to the data flow so that this informa­
tion can be set into the SAR's for addressing
purposes.

The sequence and timing of the store and
store-halfword instructions are shown in
FEMD, Figure 6013/14.

For the store instruction, the machine takes
an Rl cycle and reads out the GPR defined by
the Ra register from extension storage to the
SDR. The Band BX registers are interchanged,
placing the effective address in the BX register
and zeros in the B register.

The SDR is gated to the B register and the
Band BX registers are re-interchanged to

8/66 Model 44 FETO

place the effective address back in the B reg­
ister in preparation for the EA cycle.

The machine takes an EA cycle using the B
register to provide the information for the
SAR's. The full word defined by the effective
address is read out of main storage, and the
SDR reset, but the storage to SDR gate is
inhibited. The B register is gated to the SDR
and stored on the write section of the EA cycle.

For the store halfword instruction, the
machine takes an Rl cycle, reads out the GPR
defined by the Ra register to the SDR, and inter­
changes the B and BX registers in the same
way as described for the store instruction.

The halfword to be stored is contained in
bits 16 to 31 of the SDR. This is aligned to
the appropriate half of the B register by gating
SDR bits 16 to 31 true if BX bit 30 is a one,
and SDR bits 16 to 31 criss-cross if BX bit 31
is a zero. The Band BX registers are inter­
changed, placing the effective address back
into the B register in preparation for the EA
cycle.

The machine takes an EA cycle, as with the
store instruction, but only 16 bits of the SDR
are inhibited and the corresponding 16 bits of
the B register are gated to those positions of
the SDR.

If the SAR 2 bit 30 is a zero, the 16 bits are
bits 00 to 15; if it is a one, the 16 bits are
bits 16 to 31.

The SDR is then stored on the write section
of the EA cycle.

ACCELERATOR only: The store instructions
are started by the machine taking an EA cycle.

The SDR is not set with the effective-address
information. That is, for the store instruction
it is not set at all, while for the store-halfword
instruction, the halfword to be regenerated to
storage is set into the SDR.

The second operand information is gated to
the B register. For the store-halfword instruc­
tion the halfword is aligned to the appropriate
half of the B register by entering the Hardware
(HW) funnel, bits 00 to 15, into the ABC funnel,
bits 00 to 15 or 16 to 31 if the effective address
bit 30 is a zero or a one respectively.

At this time the EA cycle is split, the com­
pute clock is started and the required hits are
gated from the B register to the SDR.

The write clock is started at CC3 time and
the information in the SDR is written into the
storage locations defined by the effective
address.

As the E-phase is controlled by a storage
cycle, 'end execute' is signalled at WC4 time.

The flowchart and timing chart for these
instructions are provided in FEMD, Figure
6215/16.

ADD, SUBTRACT AND COMPARE INSTRUCTIONS

The Model 44 follows all the principles of fixed-point
binary operations, summarized as follows:

1. Halfword operands are expanded to full word
by propagating the sign bit (see also "Halfword
Expansion").

2. Positive binary numbers are represented in
their true form with a zero in their high -order sign
position.

3. Negative binary numbers are represented in
their two's complement form with a one in their high­
order sign position.

4. On add instructions, no complementing is
done because negative operands are already in com­
plement form. The two operands are true added.

5. On subtract instructions the second operand
is always complemented (or recomplemented if neg­
ative) and the two operands are added.

6. A fixed-point overflow occurs if the carry
into the sign position is not equal to the carry out
of the sign position.

NOTE: In accelerator machines, GPR's enter the
B register via the HW funnel.

Flow charts and timing charts of the add, subtract
and compare instructions are shown in FEMD, Fig­
ures 6015/16 and 6017/18 (basic) and 6217/18 to
6223/24 inclusive (accelerator).

ACCELERATOR only: For RR-format instruc­
tions, the E-phase is started during the I-cycle.
The compute clock is started at RC4 of the 1-
cycle and controls the read-out of the second
operand from the GPR defined by Rb, to the
A, B and C register.

A sequence-2 compute cycle starts and the
first operand is gated from the GPR defined
by Ra, via the HW and ABC funnels to the A,
B and C registers.

When 'end execute' is signalled, the B reg­
ister content goes to the GPR defined by Ra.
For RX-format instructions an EA-cycle is
taken to read out the second operand to the SDR.

Add, and Add Halfword Instructions

• The add instruction is in either RR or RX format.

• The respective op codes and mnemonics are lA
(AR) and 5A (A).

• The add halfword instruction is in RX format.

• The op code and mnemonic are 4A (AH)

• The second operand is added to the first operand,
and the result placed in the first-operand location.

• The result determines the setting of the condition
code as follows:

00: Result is zero
01: Result is less than zero
10: Result is greater than zero
11: Fixed -point overflow

• A fixed-point overflow occurs if the carry from
the high-order position (bit 1) fails to match a
carry from the sign position (bit 0).

The add operation is fully described under "Arith­
metic and Logic Section, and Registers" in Chapter
2 of Introduction and Functional Units, Form Y33-
0001. Briefly, the operation is: clear A, Band C
registers, set the second operand in Band C regis­
ters and then set the first operand into the A, Band
C registers. The A, Band C registers consist of
binary input triggers, so that the B and C registers
now contain the EXOR sum of the operand without
the carries. Carries are derived from the CLA unit
by EXOR'ing the A and C registers. The CLA unit
output is then EXOR' ed to the partial sum in the B
register to produce the final sum in the B register.
The state of the registers at the end of the operation
is therefore:

A register, operand 1
B register, complete total
C register, addition total less the carries (partial

sum).
BASIC only: Note that, as shown in FEMD
Figure 6015/16, the Rl cycle is a split cycle to
allow for the result to be formed before the
write section of this cycle.

Prin op- -Proc Unit 8/66 3A-ll

When a fixed-point overflow occurs, it is tested by
AND'ing with PSW 2 bit 4. If PSW 2 bit 4 is a one,
the 'fixed-point overflow exception' latch is set to
give a 'program interrupt request' .

Subtract, and Subtract Halfword Instructions

• The subtract instruction is in either RR or Rx
format.

• The respective op codes and mnemonics are IB
(SR) and 3B (S).

• The subtract halfword instruction is in RX formal.

• The op code and mnemonic are 4B (SH).

• The two's complement of the second operand is
added to the first operand and the result is placed
in the first-operand location.

• Halfword operands are expanded to full words.

• The result determines the setting of the condition
code as follows:

00: Result is zero
01: Result is less than zero
10: Result is greater than zero
11: Fixed-point overflow

• A fixed-point overflow occurs if the carry out
from the high-order position (bit 1) fails to match
a carry out from the sign position (bit 0).

A full description of the subtract operation is given
under "A:rithmetic and Logic Section and Registers"
in Chapter 2 of Introduction and Functional Units,
Form Y33-0001. Subtraction is achieved by adding
the two's complement of the second operand to oper­
and 1. The A register is set to zero and the Band
C registers are set to all ones. The second operand
is EXOR'ed into the Band C registers. The first
operand is gated into the A, B and C registers. The
state of the registers at the end of the operation is,
therefore:

A register, operand 1
B register, sum total
C register, inverse of partial sum.

3A-12 8/66 Model 44 FETO

The output of the B register is gated to the addressed
internal unit.

Compare, and Compare Halfword Instructions

• The compare instruction is in either RR or RX
format.

• The respective op codes and mnemonics are 19·
(CR) and 59 (C).

• The compare halfword instruction is in RX for­
mat.

• The op code and mnemonic is 49 (CH).

• The second operand is compared with the first·
operand and the result determines the setting of
the condition code.

• Operands remain unaltered in storage.

• Halfword operands are expanded to full words.

• The result determines the setting of the condition
code as follows:

00: Operands are equal
01: First operand is low
10: First operand is high
11: Not set

• The comparison is done by subtracting operand 2
from operand 1 and analyzing the result.

The compare operation starts in the same way as a
subtract operation, but differs in that the result is
not stored and the condition code has an altered mean­
ing.

BASIC only: In the compare operation, Rl is
not split because the result does not have to be
formed (the object of compare operation is
satisfied when the condition code is set). Both
operands are returned to storage unchanged.

ACCELERATOR only: The operands are gated
back to their original locations Unchanged.

I

\

(

SHIFT ARITHMETIC INSTRUCTIONS

• Instructions are in RS format.

• The R3 field is not used for these instructions.

• The low-order six bits of the developed effective
address define the number of positions to be
shifted (bits 26 to 31).

• The operands, which are signed integers, may be
either single or double words, and are contained
in the GPR or GPR pair defined by the R1 field
of the instruction.

• The op codes and their mnemonics for the shift
arithmetic instructions are:

Shift left single : SB (SLA)
Shift left double : SF (SLDA)
Shift right single: SA (SRA)
Shift right double: BE (SRDA)

• Shift single is a single-word operation and shift­
ing is done in the B register.

• Shift double is a double-word operation and shift­
ing is done in the Band BX registers.

• Multiple shift is a series of Single-shift operations.

• The shift counter is reduced by one for each shift
and shifting ends when the shift counter equals
zero.

• For shift-right operations, the original sign bit
is supplied to the high-order bit positions.

• For shift-left operations, zeros are supplied to
the low-order bit positions.

• The result is stored in the original operand reg­
isters.

• Shift overflow is checked on shift-left operations.

• The condition code is set as follows:
00: Result is zero
01: Result is less than zero
10: Result is greater than zero
11: Shift Left : Overflow

Shift Right: Not set

• In accelerator machines GPR's enter B register
via HW funnel.

The four shift operations are shown in Figure 3A-4.
Shifting is the operation of moving all the bits in

a word or double word to the right-hand or left-hand
adjacent bit position respectively without disturbing
their order.

Shift single is a full-word operation, and the
operand is fed into the B register. There is no limi­
tation for the addreSSing of the register.

Shift double is a double-word operation and the
operand is the pair of even and odd addressed reg­
isters. Addressing of the operand should always be
made on the even-numbered register, otherwise the
specification exception occurs and causes a program
interrupt. The machine automatically addresses the
next odd-numbered register. The even register
address contains zeros in bit positions 29, 30 and 31.
The odd address number is developed by forCing a 1
bit in SAR bit position 29 on the first-operand fetch.
cycle.

The odd-numbered register content, which is the
low-order word, is fed into the BX register via the
B register. The even-numbered register content,
which is the high-order word, is then fed to the B
register.

The low-order six bits (bits 26 to 31) of the in­
struction format indicate the number of shift places,
and are fed into the shift counter before the operand
is fetched.

Multiple shift is a series of Single-shift operations
in which the shift counter value is reduced by one at
each shift. Shifting ends when the shift counter is
zero.

On shift double, when the B register is shifted
right, bit 31 of the B register is shifted into the bit
00 position of the BX register. Bit 31 of the BX
register is defined as the low-order bit.

In shift-right operations the low-order bit is
shifted out without inspection and is lost. Bit 00 of
the B register (sign bit) goes to bit position 01 of
the B register in the same way as any other bit. A
bit equal to the original sign bit is supplied to the
vacated bit position 00 of the B register as follows.
The A register contains the original operand in a
shift-single operation or the high-order word in a
shift-double operation. Therefore, the original sign
bit is stored in bit position 00 of the A register and
this bit is fed into bit position 00 of the B register
by each shift.

In a shift-left operation, bit 00 of the BX regis­
ter is shifted into bit position 31 of the B register.
Bit 01 of the B register goes to bit position 00 of the
B register in the same way as any other bit. There­
for, if these two bit positions have different bit
status, the operand is changed from positive to nega­
tive or the reverse. Note that the sign bit is cor­
rected in the operand store cycle as explained later.

Bit positions 00 and 01 of the B register are exam­
ined for the overflow condition on every shift. If the
status of these bits is different on a shift-left, an

Prin Op--Proc Unit 8/66 3A-13

B Register
.-----.- If these bits are not alike, overflow occurs.

Lost ,------- Zero (0) is supplied
,--~-~-L,

o 2 29 30 31

(0) Shift Left Single

Lost _---J

0 2 29 30 31 0 2 29 30 31

(b) Shift Left Double

B Register

Bit equal to
the sign is
supplied. Lost

0 2 29 30 31

(c) Shift Right Single

B Register

Bit equal to
the sign is
supplied

(d) Shift Right Double

Figure 3A-4. Shift Operations -- Arithmetic

overflow occurs and sets the fixed -point overflow
exception latch if the corresponding mask bit is a
one. When the fixed-point overflow line becomes
active it is tested against PSW 2 bit 4. If PSW 2 bit
4 is a one the overflow exception latch is set to allow
a program interrupt request. (Refer to the "Check­
ing" section in Chapter 2 of Introduction and Func­
tional Units Form Y33-000l and the "Interrupts"
section in this manual.)

3A-14

BASIC only: When the shift counter is greater
than two, the compute clock wraps at CC2. In
both shift-left and shift-right operations, the B
and BX registers are shifted one position. In
either case the shift counter is reduced by one
for each wrapped cycle.

When the shift counter reaches two, the
compute clock runs to CC6 instead of wrapping,

8/66 Model 44 FETO

Zero (0)
is supplied

Lost

but still performs the shift twice, once at CC3,
CPl time and once at CC5, CPl time.

If the shift counter is set to two at the begin­
ning of this operation, the compute clock runs
to CC6, performing the shift operation twice,
once at CCl, CPl time and once at CC3, CPl
time. If the shift counter is set to one at the
beginning of the operation, the compute clock
runs to CC6, performing the shift operation
once at CCl, CPl time. If the shift counter
is set to zero, the compute clock runs to CC6,
but no shift takes place.

Zeros are supplied to the low-order position
(bit 31) for the shift-left operation. This is the
B register bit 31 for a shift-left-single and the
BX register for a shift-left-double operation.
The original sign bit is supplied into the bit 00
position of the B register in a shift-right opera-

(

+A Reg Bit 0

+B Reg Bit 0

+Active Rl Cycle Ctrl

_-_B_R--=eg:...-B_i_t 0_+---1 A
+B Reg 0 to SDR

OR

+B Reg Bit 0 A

Figure 3A- 5. Sign Correction

tion. The simplified diagram is shown in
Figure 3A-5.

The result is stored during the write section
of a second R1 cycle for single shifts, and dur­
ing the write section of a second set of double
R1 cycles for double shifts. The addressing
method is the same as in the operand-fetch
cycle previously described.

The condition code is set as follows:
00: Result is zero
01: Result is less than zero
10: Result is greater than zero
11: Fixed-point overflow (shift-left only;

not used on shift-right.)
During shift-left-double operation the condition
code is set at sequence latch 4 time. At this
time only the B register has been analyzed.
However, the BX register may contain a small
positive number so that if the condition code
setting is 00 (result is zero), a chance is given
to test again during sequence latch 5 time. The
result may remain zero or it may be amended
to 10 (result is greater than zero).

The flow charts and timing charts for each
of the shift operations are contained in FEMD
Figures 6019/20, 6021/22, 6023/24 and 6025/26.

ACCELERATOR only: When the shift counter
is greater than zero, the compute clock wraps
at CC2. In both shift-left and shift-right opera­
tions, the Band BX registers are shifted one
position. In either case the shift counter is
reduced by one for each wrapped cycle. When
the shift counter reaches zero, the compute
clock runs to CC6.

If the shift counter is set to one at the begin­
ning of this operation, the compute clock runs
to CC6, performing the shift operation at CCl,
CP1 time. If the shift counter is set to zero,
the compute clock runs to CC6, but no shift
takes place.

Zeros are supplied to the low-order position
(bit 31) for the shift-left operation. This is the
B register bit 31 for a shift-left-single and the

BX register bit 31 for a shift-left-double opera­
tion. The original sign bit is supplied into the
00 position of the B register in a shift-right
operation. A simplified diagram of the sign­
correction circuit is shown in Figure 3A-5.

The result is stored during the CC3 section
of the compute cycle for single shifts, and
during the CC3 section of both sequence-3 and
sequence-4 cycles for double shifts.

The condition code is set as follows:
00: Result is zero
01: Result is less than zero
10: Result is greater than zero
11: Fixed-point overflow (shift-left only;

not used on shift-right)
For fixed-point overflow conditions on the
shift-left instructions when the mask bit PSW 2
bit 4 is one, the 'fixed-point overflow excep­
tion' latch is set and a program interrupt is
requested. (Refer to the "Interrupts" section
of this manual.)

The flow charts and timing charts for each
of the shift instructions are contained in FEMD,
Figures 6225/26 to 6231/32 inclusive.

MULTIPLY AND MULTIPLY-HALFWORD INSTRUC­
TIONS

• The multiply instruction is either RR or R.X for­
mat.

• The respective op codes and mnemonics are 1C
(MR) and 5C (M).

• The multiply-halfword instruction is in R.X format.

• The op code and mnemonic is 4C (MH).

Principles of Multiply Operation

The multiply operation is performed by successively
shifting the multiplicand relative to the product, and
executing an arithmetic operation with the multipli­
cand on the product field as determined by the multi­
plier digit. The multiplier is scanned from right to
left, or low-order bit to high-order bit.

A simple binary multiply would cause an arith­
metic add of the multiplicand to the product field
each time the multiplier digit is a one, and, if the
multiplier digit is a zero, it would cause a shift to
the next position (no arithmetic operation).

This is illustrated in the following example:
21 x 10101 x
5 101

105 10101
10101
1101001

Prin Op--Proc Unit 8/66 3A-15

Note that, for this simple binary multiplication, the
number of combined shift and arithmetic cycles
equals the number of ones in the multiplier, and the
number of shift-only cycles equals the number of
zeros in the multiplier.

The number of cycles using this simple type of
multiply for some sample multipliers is shown as
follows:

Multiplier Cycles

Decimal Binary Shift and Arithmetic Shift Only

0000 0001 7

4 0000 0100 7
7 0000 0111 3 5

8 0000 1000 7

15 0000 1111 4 4

27 0001 1011 4 4

32 0010 0000 7

In the Model 44 the shift-only cycles can be per­
formed in 250 nanoseconds whereas the combined
shift and arithmetic cycle takes 750 nanoseconds.
This means that If the number of arithmetic cycles
is reduced, a significant saving in time is achieved.

The number of arithmetic cycles is reduced by
the use of the carry-look-ahead group-of-ones prin­
ciple.

Basically this principle means that if there is a
multiplier of, for example, + 15 (001111), a multi­
plier of 16 (010000) is used and added to the product
field and a multiplier of 1 (000001) is used and sub­
tracted from the product field.

This means that if a group of ones occurs in the
multiplier field, an arithmetic subtract operation
occurs when the multiplier digit is the first one of
the group (the subsequent ones of the group cause
shift-only cycles), and an arithmetic add operation
is performed for the first zero after the group of
ones.

Reviewing this for the preceding example of the
multiplier of 001111 (+ 15), the cycles are:

Multiplier Digit Cycle Type Effective Multiplier

1 Shift and Subtract - 1

o
o

Shift only 0

Shift only 0

Shift only

Shift and add

Shift only

o
+ 16

o

This gives an effective multiplier of + 15. Note that
only two arithmetic cycles are used as opposed to
the four that are required for the simple binary
multiply.

An extension of the above rule occurs when a
single zero appears within a group of ones. If an

3A-16 8/66 Model 44 FETO

example of +27 is taken (0011011), then using the
prinCiples described above, the cycles are:

Multiplier Digit Cycle Type Effecbve Multiplier

1 Subtract - 1

Shift only 0

0 Shift and add +4

1 Shift and subtract -8

Shift only 0

0 Sh ift and add + 32

0 Shift only 0

The effective multiplier is +27 and four arithmetic
cycles were taken.

If, however, the single zero within a group of
ones is regarded as only a temporary interruption
to the group, and each time such a zero becomes
the multiplier digit an arithmetic subtract cycle is
taken, then the same result is obtained with less
arithmetic cycles. (Note that the group of ones is
now considered to span over single zero after the
first two consecutive ones.)

Using the same multiplier of +27 the cycles are:

Multiplier Digit Cycle Type Effective Multiplier

1 Subtract - 1

1 Shift only 0

0 Shift and subtract -4
Shift only 0

1 Shift only 0

0 Shift and add + 32

0 Shift only 0

Once again the effective multiplier is + 27, but the
arithmetic cycles have been reduced to three.

For single zeros and ones outside the group of
ones, the simple rules of binary multiplication apply.

Thus, for a more complex multiplier of + 1869
(0111 0100 1101) the cycles are:

Multiplier Digit

1

o

o
o
1

o

o

Cycle Type

Add

Shift only

Shift and subtract

Shift only

Shift and add

Shift only

Shift and add

Shift only

Shift and subtract

Shift only

Shift only

Shift and add

The effective multiplier is:

Effecti ve Multiplier
+ 1 .

0

-4

0

+ 16

0

+64

0

- 256

0

0

+2048

(2048 + 64 + 16 + 1) - (256 + 4) = 2129 - 260 = + 1869
Note that with this example the saving in arithmetic
cycles is only one, but for multipliers with bigger
groups of ones a larger saving is achieved.

The principle holds true for negative multipliers,
as the sign-bit can always be regarded as the first

one of a group of ones, because, if additional high­
order positions are added to the multiplier field they
would be filled with bits equal to the sign-bit.

For example, a multiplier of 1101101 (-19) would
cause the following cycles:

Multiplier Digit Cycle Type Effective Multiplier

1 Add +1

0 Shift only 0

Shift and subtract -4

Shift only 0

0 Shift and subtract - 16

1 Shift only 0

Shift only 0

The effective multiplier is -19.
Another example, for a multiplier of 10011010

(-102), follows. This illustrates the use of the sign
bit as the first one of a group of ones. (The multi­
plier can be treated as being 1111 1011 1010, which
is also equal to -102.)

Multiplier Digit Cycle Type Effective MultiElier

0 0

1 Shift and add +2

0 Shift only 0

Shift and subtract -8

Shift only 0

0 Shift and add + 32

0 Shift only 0

Shift and subtract - 128

Thus the effective multiplier is -102.
The rules of multiplication in the Model 44 are

summarized in the follOwing paragraphs.
A group of ones is defined as two or more ones

together, scanning from right to left, which may be
interspersed with single zeros. A group commences
with two ones together and terminates with two zeros
together. For example, such a group is 0010101l.
The multiplication rules are:

1. If the multiplier digit is a one and is
(a) First of a group of ones: Subtract
(b) Not the first of a group of ones: Shift only
(c) An individual one: Add

2. If the multiplier digit is a zero, and is
(a) A zero within a group of zeros: Subtract
(b) A zero terminating a group of ones: Add
(c) A zero part of a group of zeros: Shift only

Note that, if the multiplier is shifted right in a reg­
ister on every cycle, the multiplier digits and the
next high-order digit of the multiplier will be con- .
tained in the two low-order positions of this register.
When both these positions become ones for the first
time, this signals the start of a group of ones. When
both these positions subsequently become zero, the
group of ones has been completed.

Thus, the number of arithmetic cycles required
on the multiply will be reduced to 16 or less. This
represents a considerable time saving, as shift-

only cycles take 250 nanoseconds whereas arithme­
tic cycles take 750 nanoseconds.

Instruction Objectives - Multiply Instruction

The multiply operation causes the product of the
multiplier (second operand) and the multiplicand
(first operand) to be generated and to be placed in
the multiplicand field. Both the multiplier and multi­
plicand are 32-bit signed integers. The product is
a 64-bit signed integer and is placed in the even/odd
register pair specified by the R1 field of the instruc­
tion. A specification exception occurs when R1
specifies an odd-numbered register.

The multiplicand is located in the odd register of
the even/odd register pair specified by Rl. The
original content of the even-numbered register is
ignored, except in the case of an RR format when

. the register is specified as the multiplier register.
The sign of the product is determined by the rules

of algebra from the multiplier and multiplicand signs,
with the exception that a zero product is always a
positive result. An overflow cannot occur since the
product can always be expressed as a 64-bit signed

Integer. The condition code will not be altered by
the multiply· operation.

Execution Sequence - Multiply Instruction

The multiply instruction is executed in the follOwing
steps:

1. Operand fetch and initialize cycles
2. Multiply cycles, shift counter 32 to 1 inclu­

sive.
3. Multiply cycle, shift counter = 0
4. Product store cycles.

The multiply instruction timing charts and asso­
ciated flow charts showing the sequence of the multi­
ply instruction are shown in FEMD, Figures 6027/28
to 6031/32 inclusive for basic machines and 6233/34
to 6237/38 inclusive for accelerator machines.

Operand Fetch and Initialize Cycles

• Fetches the multiplier and places it in the BX
register.

• Fetches the multiplicand and places it in the A
register.

• Initializes the multiply controls and sets the shift
counter to 32.

The multiply instruction can be in either the RR or
RX instruction format. For the RX format the multi­
plier is fetched from the storage location defined by
the developed effective address. For the RR format

Prin Op--Proc Unit 8/66 3A-17

the multiplier is fetched from the GPR defined by the
Rb field of the instruction. In both cases it is gated
to the B register and from there set in the BX reg­
ister by a B to BX register interchange.

For both formats the multiplicand is fetched from
the GPR defined by R1 field of the instruction and
gated to the A register.

During these operand-fetch cycles the multiply
controls are initialized and the shift counter is set
to a value of 32.

Multiply Cycles - Shift Counter 31 to 1 Inclusive

• Forms the partial product in the B register.

• Shifts right the partial product at the beginning of
all cycles except the first.

• Value of the shift counter reduced on each cycle.

• On each cycle the multiplicand is either ignored,
added to, or subtracted from the partial product
field under control of the multiplier digit.

• When the multiplicand is ignored, the cycle is a
right-shift only and the clock is wrapped at CC2.

• On arithmetic cycles (CC1 to CC6) the state of the
subtract trigger and the A register determines
whether an add or subtract is performed.

• Overflow conditions and negative results on the
arithmetic operation cause a high-order bit to be
inserted on the subsequent shift-right operation.

• The cycles are defined by the value of the shift
counter at the end of the cycle.

The operand-fetch cycles set the multiplicand to the
A register and the multiplier to the BX register.
The multiplier digit is in the BX register bit 31, and
the BX register bits 30 and 31 are used to signal the
beginning and end of a group of ones. The multiplier
digit and this group-of-ones condition are analyzed
to determine whether the multiply cycle is to be a
shift-only cycle, an add cycle or a subtract cycle.

For arithmetic cycles the multiplicand in the A
register is either added to, or subtracted from, the
partial product in the B register.

On each cycle except the first, the Band BX reg­
isters are shifted right and the partial product that
is progressively shifted into the BX register causes
a new multiplier digit to be placed into the EX reg­
ister bit 31 and the old multiplier digit to be lost.
The 64-bit product will eventually be formed in the
B and BX registers.

3A-18 8/66 Model 44 FETO

The BX register bits 30 and 31, in conjunction with
the subtract trigger and the subtract-trigger-backup
latch, provide the major controls for the multiply
operation. The subtract trigger is the trigger which
is used to provide the CLA carry-in and to signal
that complement arithmetic is being performed.
The subtract-trigger-backup latch is set to match
the status of the subtract trigger early in each cycle
and is used to hold, for a complete multiply cycle,
the condition of the subtract trigger from the pre­
ceding cycle. This is necessary as the state of the
subtract trigger from the preceding cycle is required
for analysis and may change before the analysis can
be performed.

The subtract trigger and the contents of the A
register are inverted together and when the subtract
trigger is on, and an arithmetic cycle is performed,
the cycle will be a subtract cycle. If the subtract
trigger is off the cycle will be an add cycle. The
logic for the inversion of the subtract trigger and
the A register is shown in Figure 3A-6. Two of the
four AND blocks are degated with 'shift counter equals
zero' and the logic of the remaining two AND blocks
causes the subtract trigger to be turned on when there
are two ones in bits 30 and 31 of the BX register.
This signals the beginning of a group of ones. Once
the subtract trigger is on, it will turn off only when
bits 30 and 31 both become zero. This signals the
end of a group of ones.

The condition of the subtract-trigger-backup latch
is delayed one cycle from the subtract trigger. It
will thus be on when the multiplier digit is the sec­
ond one of a group of ones, and remains on for the
remainder of the group of ones and for the first of
the two zeros signalling the end of a group of ones.
It will be off for the second of these zeros, the first
one of the group of ones, and for other digits that
are not part of a group of ones.

S bt t T . B k p u rae rigger ac u - -
Not Bit 30 of BX A
Not Bit 31 of BX
Not Subtract Trigger Backup -
Bit 30 of BX A
Bit 31 of BX I

~
- Invert A Register

OR
And Subt Trigger

A*
'-----

Shift Counter Equals 0

L r--

A*

I-'---

* Shift Counter Equals 0 only

Figure 3A-6. Invert A Register and Suqtract Trigger Logic

The conditions where no arithmetic cycle is
required (refer to "Principles of Multiply Opera­
tion") are:

Multiply digit of 1 in a group of ones, but not the
first.

Multiply digit of 0 which is not part of a group of
ones.

The first condition is equivalent to BX register bit
31 being a one and the subtract-trigger-backup latch
being on; the second is equivalent to the BX register
bit 31 being a zero and the subtract-trigger-backup
latch being off. This logic (Figure 3A-7) causes the
clock to wrap at 250 (CC2), thereby causing the
arithmetic operation to be skipped for that cycle.

Arithmetic cycles are performed when the clock
is not wrapped at CC2. They occur when:

BX register bit 31 = 1 and subtract-trigger­
backup off.

BX register bit 31 = 0 and subtract-trigger-
backup on.

The first of these two cases represents a multiplier
digit of one, which is either the first one of a group
of ones or a one not part of a group of ones. The
corresponding states of the subtract trigger are on
and off respectively. Thus, the multiplier digit that
is the first one of a group of ones causes a subtract
operation, and the multiplier digit of one that is not
part of a group of ones causes an add operation.
The second case represents a multiplier digit of
zero, which is either a single zero in a group of
ones or the first zero at the end of a group of ones.
The corresponding states of the subtract trigger are
on and off respectively. Thus, the multiplier digit
which is a single zero within a group of ones causes
a subtract operation, and the first zero at the end of
a group of ones causes an add operation.

These two cases correspond to the conditions
described under "Principles of the Multiply Opera­
tion." The rules governing these conditions are
summarized in Figure 3A-S.

On each multiply cycle, regardless of the type of
cycle, the shift counter is reduced by one very early
in the cycle, and on each cycle except the first the

Not Bit 31 BX Re

-"S~ub",-t--,-T,-"ri =e,--,r Bo=ck=u""-_--; A

Bit 31 BX Re
Not Subt Tri er Bocku A

First Oscillator

A

A

Figure 3A-7. Compute Clock Control for Multiply Operation

Subtract Trigger BX Register Effective Subtract
Bockup Bit 30 Bit 31 Arithmetic Cycle Trigger

Off 0 0 - 011

Off 1 0 - 011

Off 0 1 Add Off

Off 1 1 Subtract On

On 1 1 - On

On 0 1 - On

On 1 0 Subtract On

On 0 0 Add 011

Figure 3A-8. Multiply Conditions

Band BX registers are shifted right one position.
The shifting is an arithmetic shift with the added
facility that any arithmetic overflow from the pre­
vious arithmetic cycle can be corrected. The logic
for the 'shift-right-one insert' which controls the
digit shifted into the bit 00 position of the B register,
is shown in Figure 3A-9. A one is inserted on the
shift-right operation immediately following an arith­
metic cycle (CC1 to CC6) if the result was either
negative with no overflow conditions, or positive with
overflow conditions. On the shift-right operation
immediately following a cycle where there was no
arithmetic operation (CC1 to CC2), a one is inserted
if the B register is negative (i. e., bit 00 equals 1).

An instructional chart of the multiply cycles is
shown in Figure 3A-10. Each cycle is defined by
the value of the shift counter at the end of the cycle.
As the shift counter is reduced by one extremely
early in the cycle (special early CCl, CPl) this
also represents the value of the shift counter during
the effective part of that cycle.

FP Multiply - r-
CC6
Not CO ~ Cl A
CO Latch

-~

CO = CI
'----

A OR

l B Reg 00
Not Seq Latch 5
Shift Algebraic - ..--- Sh ift Right One Insert

A Reg Bit 00 A
FL -

Shift Right One Insert FPA
'-- -

Not Any CO CI Latch I A CC5 §3--
FP Mult Op OR

ALD KW711

Figure 3A-9. Shift Right One Insert for Multiply Operations

Prin Op- - Proe Unit 8/66 3A-19

Shift ctr = 32

register and
subtract
tri er

Set common
add ctl

Reset shift
right one
insert latch

Set shift right
one insert
latch

Shift right one
Band BX

Ta store cycles

{
Set A reg to ABC funnel.
De-condi tion C reg.
Set CLA to ABC funnel

Figure 3A-10. Instructional Multiply Flow Chart

Mul tiply Cycle, Shift Counter = 0

i
CC 1

CC 2

CC 3
CC 4

+ CC 5

CC 6

1
• The multiplier sign bit becomes the multiplier

digit.

• The clock is always allowed to run to CC6.

The cycle on which the shift counter becomes zero
is the last cycle, and the sign bit becomes the multi­
plier digit. The analysis for the 'invert A register
and subtract trigger' logic, and that for the signal-

3A-20 8/66 Model 44 FETO

ling of an arithmetic cycle, is performed only on
bit 31 of the BX register, as at this time bit 30 is
the low-order bit of the product. The effect of BX
register bit 30 on the logic for the 'invert A register
and subtract trigger' is removed by the addition of
the bottom two AND blocks which are conditioned
with 'shift count equals zero '. (See Figure 3A-6.)
This means that, for. this cycle, regardless of bit 30
of the BX register, the A register and subtract
trigger are inverted if either the subtract trigger is
off and bit 31 equals one, or the subtract trigger is
on and bit 31 equals zero. In both cases an arith­
metic cycle is performed by bringing up the common­
add control.

For the inverse of these conditions it is usual to
wrap the clock at CC2. For this last multiply cycle,
the clock is allowed to run to CC6 and, if no arith­
metic operation is required, the common-add control
is not conditioned. .

Since the carry latches (CO and C1) are usually
reset by the 'de-condition C regi.ster' signal during
an arithmetic cycle, special provision is made to
reset them on this last cycle if no arithmetic opera­
tion is performed. This prevents incorrect condi-'
tions being used to set the shift-right-one insert
logic on this last cycle. (See Figure 3A-9 for the
shift-right-one insert logic.)

Product Store Cycles

• The last shift right" of the product is performed.

• The product is stored, using two compute cycles
to the even/odd GPR pair defined by the Ra·
register.

The last shift-right-one is performed to move out the
multiplier sign and align the product in the B and
BX registers.

The high -order bits of the product are stored in
the GPR defined by Ra. The low-order bits are
interchanged from the BX to the B register and
stored in the GPR defined by Ra plus one.

Figure 3A-ll shows two multiply examples using
an eight-bit multiplier. The multiplier digits are
still labelled bits 30 and 31 for convenience in
relating to the text and the ALD's.

Instruction Objectives, Multiply Halfword

This operation differs only slightly from the multiply
instruction previously described. The only differ­
ences are:

Multiplies the full-word multiplicand by the half­
word multiplier.

Stores the low-order 32 bits of the product in the
inultiplicand field.

(

(

(

MULTIPLIER 01001011 (+75 dec.)

Shift Subt Trg After Shift CC2 CC3-CC6

Count & Backup Bit 30 Bit 31 Inv A&S CC Wrap S Trg A Reg

7 Off 1 1 X - On Inv

6 On 0 1 - X

5 On 1 0 - - On Inv

4 On 0 1 - X

3 On 0 0 X - Off True

2 Off 1 0 - X

1 Off 0 1 - - Off True

0 Off - 0 - X

MULTIPLIER 10010110 (-106 dec.)

Shift Subt Trg After Shift CC2 CC3-CC6

Count & Backup Bit 30 Bit 31 Inv A&S CC Wrap S Trg

7 Off 1 0 - X

6 Off 1 1 X - On

5 On 0 1 - X

4 On 1 0 - - On

3 On 0 1 - X

2 On 0 0 X - Off

1 Off 1 0 - X

0 Off - 1 X - On

Figure 3A-ll. Multiply Examples with Eight-Bit Multiplier

Execution Sequence, Multiply Halfword

The multiply halfword is executed in the following
steps:

1. Operand fetch and initialize cycles.
2. Multiply cycles, shift counter 15 to 0

inclusive.
3. Product store cycle.

A Reg

Inv

Inv

True

Inv

The multiply cycles, shift counter 15 to 0 inclusive
do 'not differ in any way from the normal multiply
instruction and are not described again. The
sequence and timing for the cycles listed in steps 1,
2 and 3 are detailed in FEMD, Figures 6033/34 to
6037/38 inclusive.

Operand Fetch and Initialize Cycles

• The multiplier is fetched from the halfword loca­
tion defined by the effective address.

• The multiplier is expanded to a full word by Sign
propagation to the high-order 16 bits.

• The multiplier is set to the BX register.

Operatian

Arith Ef Mply

Subt - 1

None

Subt - 4

Nane

Add +16

None

Add +64

None

Operation

Arith Ef Mply

None

Subt - 2

None

Subt - 8

None

Add + 32

None

Subt - 128

• Shift counter is set to 16.

• The multiplicand is fetched from the general­
purpose register defined by Ra.

• The multiplicand is set to the A register.

Product Store Cycle

• The final shift right is performed to remove the
multiplier sign bit from BX register bit 31.

• Four shift-left-four operations are performed to
align the low-order bit of the product with B
register bit 31.

• The low-order 32 bits of the product are placed
in the GPR defined by Ra.

Note that the low-order bit of the product is located
in bit 15 of the BX register after the calculation is
completed. To align this bit 15 to bit 31 of theB
register, four shift-left-four operations are
performed.

Prin op--Proc'Unit 8/66 3A-21

DIVIDE INSTRUCTION

• The instruction is in either RR or RX format.

• The respective op codes and mnemonics are lD
(DR) and 5D (D).

• The divisor, remainder and quotient are all 32-bi1
signed integers.

• The dividend is a 64-bit signed integer.

• The quotient sign is determined by the rules of
algebra.

• The remainder sign is the same as that of the
dividend, except for a zero remainder, when the
sign is always positive.

• The condition code is not altered by this instruc­
tion.

The divide instruction causes the dividend (first
operand) to be divided by the divisor (second operand)
and the remainder and quotient developed to be stored
in the original dividend field.

The dividend is a 64-bit signed integer and occu­
pies the even/odd pair of general-purpose registers
specified by the Rl field of the instruction. A 32-bit
signed remainder and a 32 -bit signed quotient replace
the dividend in the even-numbered and the odd­
numbered register respectively. A specification
exception occurs if Rl specifies an odd -numbered
register.

The divisor is a 32 -bit signed integer and it is
contained either in the register specified by the R2
field of the RR instruction, or in the full word speci­
fied by the effective address of the RX instruction.
Normal rules for address and specification excep­
tions apply to this operand.

The Sign of the quotient is determined by the rules
of algebra, and the Sign of the remainder is the same
as that of the dividend. An exception to this rule
occurs when either quotient or remainder is zero, in
which case the sign is always positive.

When the relative magnitude of the dividend and
divisor is such that the quotient cannot be expressed
as a 32 -bit integer, a fixed -point divide exception
occurs and the divide execution is stopped. The
divisor and dividend remain unchanged in the original
fields. A program interrupt is Signalled by this
condition. The condition code is not altered by the
divide operation.

3A-22 8/66 Model 44 FETO

Principles of Division

• For the division process the dividend is accepted
with its original sign.

• The dividend field is reduced towards zero by the
value of the divisor.

• A successful reduction occurs when the result of
the reduction has the same Sign as the original
dividend.

• An overdraw occurs when the result of the reduc­
tion is of opposite sign to that of the original
dividend.

• A correction cycle resulting from an overdraw is
combined with the subsequent reduction cycle by
shifting before correcting.

• The same rules apply to this combined cycle for
successful reduction and overdraw as are stated
for the other cycles.

• The quotient bit is developed for each successful
reduction.

• The dividend is placed in the Band BX registers.

• The divisor is placed in the A register.

• The quotient is developed in the BX register.

• The remainder is left in the B register.

The dividend is placed in the Band BX registers in
its original form, regardless of sign. The divisor
is placed in the A register, and the arithmetic opera­
tions are performed between the A and B registers.

After each arithmetic operation the B and BX
registers are shifted left one position and any quo­
tient bit developed is inserted in the low-order posi­
tions of the BX register.

Thus, the 64-bit dividend is reduced to a 32-bit
remainder as it travels leftward in the B and BX
registers and the quotient correspondingly increases
until it fills the BX register.

The dividend field in the B register is reduced
towards zero by the divisor field. A successful
reduction occurs if the result of this arithmetic
operation has the same sign as the original dividend.

This is illustrated in Figure 3A-12 by the repre­
sentation (a) for both positive and negative dividends.

.•

Dividend Value

(a) (b)

Positive Dividend

+

(a) Successful Reduction
- Quotient Digit

(b) Unsuccessful Reduction
- No Quotient Digit

o t-------+---
(b)

(a)

Dividend Value

Negative Dividend

Figure 3A-12. Illustrations of Normal Reduction Cycle

An overdraw occurs if the result of the arithmetic
operation has the opposite sign to the original divi­
dend. This is shown as representation (b).

Mer an overdraw has occurred the dividend field
is corrected by adding back the divisor and then
executing a trial reduction. The reduction is made
by shifting and then repeating the arithmetic process.

The shift left of the dividend field can be regarded
as a shift right (or halving) or the divisor, relative
to the dividend field (Figure 3A-13). This means
that if normal practice were followed, the divisor
would be restored to the dividend field and then it
would be reduced by half its value. This is shown as
representation (x).

If the shift (or halving) takes place before the
correction cycle, effectively only half the divisor is
added back. This is equivalent to adding back the
whole divisor and then reducing by half the divisor
value. This cycle is known as the combined correc­
tion and reduction cycle. This is shown as repre­
sentation (y).

+

o

Dividend Value

Result after
Overdraw

Positive Dividend

+

o

(x) Correction Cycle
followed by shift
and reduction

(y) Combined correction
shift and reduction cycle

Result after
.9ver~~ _

(x)

(y)

Dividend Value

Negative Dividend

Figure 3A-13. Illustration of Combined Correction

and Reduction Cycles

For this combined cycle, a successful reduction
occurs if the result sign is the same sign as the
original dividend, and an overdraw occurs if the
result has the opposite sign to the original dividend.

Where it is required to change the direction of
the arithmetic operation (after an overdraw on a
reduction cycle or a successful reduction after a
combined correction and reduction cycle), the divisor
(in the A register) and the subtract trigger are
inverted.

A quotient bit is developed for each successful
reduction, and on an overdraw no quotient bit is
inserted. The quotient is always developed in true
form and complemented at the end of the divide
operation if the divisor and dividend signs are unlike.

Zero is always positive; thus, a negative dividend
when the result of a reduction is zero in the B reg­
ister, is Signalled as an unsuccessful reduction
(overdraw), and no quotient bit is developed. How­
ever, if the whole of the dividend field (the B reg­
ister and the dividend part of the BX register) is
zero, the reduction is in fact a perfect reduction
cycle.

For the condition where the dividend is negative
and a reduction cycle results in zero in the B reg­
ister, the Possible Zero Remainder (PZR) latch is
set. This latch is reset if, during the subsequent
divide cycles, the BX register bit 00 is a one (Figure
3A-14).

Note that, for the condition where a perfect
reduction occurs, no quotient bit is developed at that
time and the next cycle will be a combined correction
and reduction cycle. On this and all subsequent
cycles the result in the B register will be negative,
and a quotient bit will always result.

If the PZR latch is on at the end of the divide
operation, the remainder is set to zero and a one is
added to the quotient. This one is propagated to the
position corresponding to the cycle on which the
perfect reduction occurred, due to the series of
ones developed in the quotient after that cycle.

Also, the divide exception, and the possibility of
developing a quotient which represents the maximum
negative number, provide further complications.

The basic principle used is that the quotient is
developed in true form. If a quotient bit is developed
on either of the first two of the 32 divide cycles, the
quotient cannot be expressed in a 32-bit signed
integer, and a divide exception occurs. The excep­
tion to this case is the condition when a quotient bit
is developed on the second cycle, the rest of the
quotient is zeros, and the quotient Sign is negative.
This condition represents the maximum negative
number, and the development of a quotient bit on the
second cycle is valid. For all other conditions, the
development of a quotient bit on the second cycle is
a divide exception, but the divide must proceed to

Prin Op--Proc Unit 8/66 3A-23

Ne Dividend
Se 2 Ctrl or 3 Ctrl
CC2. CP2 A PZR latch
Not PZR Backup Latch PZR Latch On

Fl

Not Se 4 ORt--"-_-L_-.J_-f-!P-"Z",-R~L~at~ch~O~ff
C~C=3~.~C~P1~----~A

Clear Data Flow

PZR Latch

CC5.CP1

PZR Backup Latch
I---!--...

Fl

PZR Backu Off

ALD KW 571

Figure 3A-14. Possible Zero Remainder Latch

determine whether the quotient is the maximum
negative number. To allow this condition to be
detected, the 'possible maximum negative ntlmber'
latch is added.

The use of this latch, in detecting a quotient
representing the maximum negative number, and the
application of the preceding rules in the Model 44,
are shown in the flow chart in FEMD, Figures 6041/
42 and 6043/44 (basic) and 6241/42 and 6243/44
(accelerator) .

Instruction Execution

The divide instruction is described in five major
steps:

1. Division set-up cycles.
2. Division compute cycles.
3. Remainder correction cycle.
4. Quotient correction cycle.
5. Quotient and remainder store cycle.
Step 1 consists of three storage cycles on which

the operands are fetched and positioned in the appro­
priate registers and the divide controls are initial­
ized.

Step 2 usually consists of 32 divide cycles during
which the quotient is developed.

Step 3 is a compute cycle that is always taken,
but it is used effectively only if an overdraw has
occurred on the last cycle and the PZR latch is off.
For this condition the remainder needs a full correc­
tion to restore it to the correct magnitude and sign.

Step 4 consists of a cycle on which the last quo­
tient bit is inserted, corrected and/or complemented
where necessary.

Step 5 consists of a cycle on which the remainder
is placed in the even-numbered GPR and the quotient

3A-24 8/66 Model 44 FETO

placed in the odd-numbered GPR of the original
dividend field.

The sequence and timing of cycles listed in steps
1, 3, 4 and 5 are shown in the flow charts and timing
charts in FEMD, Figures 6039/40 to 6043/44 (basic)
and 6239/40 to 6243/44 (accelerator).

Division Set-Up Cycles

• The divisor, or second operand, is fetched and
set in the A register.

• The 'divisor sign' latch is set from the A register
sign bit 00.

• The low-order 32 bits of the dividend are fetched
from the odd-numbered GPR defined by Ra, and
set into the BX register.

• The shift counter is set to a value of 33.

• The high -order 32 bits of the dividend are fetched
from the even-numbered GPR defined by Ra, and
set into the B register.

• The 'dividend sign'latch is set from the B reg­
ister Sign bit 00.

• A signal indicating the expected sign of the quo­
tient is developed from the 'dividend and divisor
sign' latches.

The divisor is fetched from the second operand
location and set into the A register. The divisor
sign is analyzed and set into the negative-divisor
latch.

(

(

Quotient Di it
D or DR Se 2
CCl AO

Shift Ctr = 32

Quotient Di it Possible Divide
Shift Ctr = 31
CC3.CPl

FL

Clear Data Flow

Last Div Latch

Positive Quotient
PZR Latch
Not B Re Zero Result

Quotient Di it
Not PZR _Latch Rem ind r rr cti n
D or DR Se 3 Required

AlD KW 911

Figure 3A-15. Divide Exception and Remainder Correction

The dividend low-order fetch cycle fetches the
32 bits from the dividend register specified by Ra
plus 1, and sets them in the B register. A 32-bit
interchange then occurs between the Band BX reg­
isters, transferringthese bits to the BX register.
Sequence latch 5 is active on this cycle. During this
cycle, the shift counter is reset and then set to a
value of 33.

The dividend high-order fetch cycle fetches the
32 bits from the register specified by Ra, and sets
them in the B register. On this cycle, sequence
latch 1 is active for the basic machine, and sequence
latch 2 is active for the accelerator.

During this cycle, the dividend sign is analyzed
and set in the negative-dividend latch. The negative­
divisor, and negative-dividend, sign latches are then
EXOR 'ed to form the quotient sign control signal.

Division Compute Cycles

• These are 32 compute cycles, the clock always
running from CC1 to CC6.

• The Band BX registers are shift-left-one on all
cycles except the first.

• The shift counter is reduced by one on all cycles,
in parallel with the arithmetic operation.

• Any quotient bit developed is inserted in BX reg­
ister bit 30 on the following cycle, after the shift
left has taken place.

• A quotient bit is developed if the sign of the result
in the B register is the same as the sign of the
original dividend.

Divide Exception

Division cycles are identified by the value of the
shift counter at the beginning of the cycle.

At the start of the first division cycle the shift
counter value is 33. This first cycle (33) is a trial
reduction cycle to test for a fixed-point divide excep­
tion. During this first effective division cycle (33)
the A register and subtract trigger are inverted if
the quotient sign control indicates a positive quotient
sign. The A register contents are then added to the
B register and the result tested to determine if a
quotient bit is developed. The shift counter is also
reduced by one during the cycle and the value is 32
at the end of the cycle.

If a quotient bit is developed on this first cycle,
then the quotient cannot be expressed as a 32 -bit
signed integer, and a fixed -point divide exception is
signalled, ending the divide operation (Figure 3A-15).

Sequence latch 2 is turned on during this first
cycle and is used for all division cycles until the
shift counter becomes zero.

The second divide cycle (shift counter = 32) per­
forms a shift followed by a combined correction and
reduction cycle, storing the result for subsequent
testing for a possible fixed-point divide exception
condition.

The B and BX registers are shifted left one posi­
tion at the start of the cycle. The shift counter is
reduced by one during the cycle and the value is 31
at the end of the cycle.

The 'invert A register and subtract trigger' logic
(Figure 3A-16) is used on the second divide cycle
and an invert A should always result, because the
alternative condition would have caused a divide
exception on the previous cycle.

If a quotient bit is developed on the second divide
cycle, it is not inserted in the quotient field but

Prin Op--Proc Unit 8/66 3A-25

Positive Quotient

=Sh~i~ft~C~t~rI~=_3~3~.-__________ ~ A
D or DR Se 3 Ctrl

~N~0~t~Sh~if~t~C~tr~=~3~3 __________ --1 A

AlD KW 551

Invert A Re ister
ORr--a-n~d~S~u~bt-~~c~t~Tr7ig-g-er

Figure 3A-16. Invert A Register and Subtract Trigger

for Divide Instruction

stored in the 'possible divide exception' latch. This
latch is tested at the end of the divide operation
because it represents a fixed-point divide exception
in all cases except one, that is, when the quotient
is the maximum negative number. (See Figure
3A-14.)

A series of division cycles (from cycle 31 to
cycle 1) progressively reduces the dividend field by
the divisor and develops a quotient in the BX register
and the remainder in the B register.

On each cycle the Band BX registers are shifted
left one position early in the cycle, the shift counter
is reduced by one, and the A register and subtract
trigger are inverted where necessary.

The conditions under which the A register and
subtract trigger are inverted are:

1. An overdraw on a full reduction cycle.
2. A successful reduction on a combined correc­

tion and reduction cycle.
For positive dividends:

Condition 1 is given by:
A register negative (bit 00 = 1)
and no carry-out (CO = 0)

Condition 2 is given by:
A register positive (bit 00 = 0)
and carry-out (CO = 1)

For negative dividends:
Condition 1 is given by:

A register positive (bit 00 = 0)
and carry-out (CO = 1)

Condition 2 is given by:
A register negative (bit 00 = 1)
and no carry-out (CO = 0)

These four cases can be formed by the EXOR of
the A register sign bit 00 and the CO latch.

On the type of arithmetic cycles being performed
during the divide operation, a carry-out of the sign
position (CO) represents a positive result, and a no
carry-out of this position represents a negative
result. The AND condition of CO with the dividend
sign produces the quotient bit (Figure 3A-17).

The CLA bit 0 carry is not available until late in
the cycle and so the quotient digit is inserted during
the following cycle into bit 30 of the BX register,
after the shift left has been performed.

3A-26 8/66 Model 44 FETO

On the divide cycle during which the shift counter
becomes zero, sequence 3 control is conditioned and
this signals the end of the effective division cycles.

The PZR latch is set and reset on each division
cycle from the PZR backup latch. (See Figure
3A-14.) The PZR latch is successively set in each
cycle if all previous B register bits were zero and
the sign of the original dividend was negative.

Remainder Correction Cycle

• This cycle is always taken, even if remainder
correction is not required.

• If a quotient bit was developed on the division
cycle with 'shift count equals zero', a quotient bit
is inserted in BX register bit 31.

• If a bit was not developed on the division cycle
with 'shift count equals zero', a remainder cor­
rection is required.

• No shift left takes place on this cycle.

• For a remainder correction, the normal 'A reg­
ister and subtract trigger' logic is used.

The quotient, developed on the division cycle during
which the shift counter becomes zero, is stored on
the remainder correction cycle. As there is no shift
left on this cycle the quotient bit is stored in bit 31
of the BX register.

If this quotient bit is zero, an overdraw has
occurred on the previous cycle and a full correction
must occur. (Refer to Figure 3A-14 for the remain-

N D"d d eQotlve IVI en
Not CO latch
D or DR Op A

L - OR Quotient Bit

Positive Dividend
FL

A
CO Latch

r-~U D or DR and Seq2
CC5.CPl IA

L....- OR
Clear Data Flow

'---

Quotient Bit ~

SeQuence 2 Control
CC2.CP2 A Set Bit 30 of BX
Not Shift Ctr = 31
Not Shift Ctr - 33 -
Quotient Bit
CC2. CP2 I A

Set Bit 31 of BX
Sequence 3 Control I

ALD KW 561

Figure 3A-17. Quotient Bit Logic

der correction logic.) The 'invert A register and
subtract trigger' logic is still active on this current
(remainder correction) cycle and the A register
contents are added to the B register if a remainder
correction is required. As there is no shift left on
this cycle, a full correction occurs.

The PZR latch is tested and, if found to be set,
the remainder should be zero; the B register is thus
reset to zero on this cycle.

The controlling sequence for this cycle is sequence 3.

Quotient Correction Cycle

• Divide exception is signalled if a quotient bit was
developed previously on the second divide cycle
and the quotient does not represent the maximum
negative number.

• If the quotient represents the maximum negative
number, the zero quotient is gated to SDR with
its sign bit inverted (100 - - - 00).

• For negative quotients the developed quotient is
complemented.

• For cases where the PZR latch is on, a one is
added to the quotient regardless of its sign.

This cycle is performed under the control of sequence
4 and is the cycle used for correcting the quotient
where necessary.

The quotient is placed in the B register by a B to
BX register interchange and is tested for a zero
quotient. If the quotient is zero, the PZR latch is
off, the quotient sign is negative and the possible­
divide-exception latch is on, the quotient represents
the maximum negative number. Under these condi­
tions the B register is reset and the sign bit is gated
in inverted form to the output bus (1000 - - - 00).

If the possible-divide-exception latch is on and
either the quotient sign is positive, or the B register
is not zero, or the PZR latch is on, the capacity of
the 32-bit register has been exceeded and a fixed­
point divide exception is signalled. (See Figure
3A-15.) This inhibits the store operation, termi­
nates the divide instruction, and requests a program
interrupt.

If the quotient is negative and the possible-divide­
exception latch is off, the quotient has to be con­
verted to two's complement form prior to storing.

If the PZR latch is on, a one has to be added to
the quotient, regardless of its sign. For negative
quotients this is included in the complementing pro­
cess.

The two's complementing process is achieved by
resetting the A register, gating one's to the B reg­
ister and then gating the CLA output to the B reg­
ister. Normally the subtract trigger is set on to
provide a CLA carry-in.

If the PZR latch is on, the magnitude of the quo­
tient is increased by one, by not setting the subtract
trigger for this complementing operation.

If the PZR latch is on and the quotient is positive,
the one is added by resetting the A register, setting
the subtract trigger on, and adding the A register to
the B register. The subtract trigger carry-in to the
CLA causes a one to be added to the B register.

Quotient and Remainder store Cycles

• BASIC only: The quotient is stored on an R1 cycle
into the odd-numbered GPR specified by Ra plus 1.

• ACCELERATOR only: The quotient is gated into
the odd -numbered GPR defined by Ra plus 1.

• The remainder is interchanged and placed in the
B register.

• BASIC only: On an R1 cycle, the remainder is
stored into the even-numbered GPR specified by
Ra.

• ACCELERATOR only: The remainder is gated
into the even-numbered GPR specified by Ra.

The remainder is placed in the B register by a B to
BX register interchange, and from there it is stored
in the GPR specified by Ra.

At the end of the remainder store cycle, the 'end
execute' is signalled and the divide instruction is
complete.

Three examples of print-outs from the simulate
program for single cycle divide are shown in Figures
3A-18, 19 and 20. These figures show the register
contents and the state of the controlling latches and
triggers at each single-cycle point. They should be
used in conjunction with the divide flow charts in
FEMD, Figures 6038 to 6043 (basic) and Figures
6239 to 6243 (accelerator).

Prin Op--Proc Unit 8/66 3A-27

ORIGINAL DIVIDEND IS
11111111 11111111 11111111 11111101 01010101 01010101 01010101 01010110

DIVIDEND SIGN LATCH ON
DIVISOR SIGN LATCH ON

A REG TRUE 11111111 11111111 11111111 11111000
A REG INVERTED 00000000 00000000 00000000 00000111

SHIFT POS QU(lT A 8 BX S
COUNTER ZERO BIT REG REG REG E

DEC BINARY REM L TCH ---------------~INARY-------------- HEX Q

5
33 100001 OFF OFF TRUE 00000000 00000000 00000000 00000000 55 55 55 56 1
32 100000 OFF OFF INVR 00000000 00000000 00000000 00000101 55 55 55 56 2
31 011111 [IFF OFF TRUE 00000000 00000000 00000000 00000010 AA AA AA AC 2
30 01111 0 OFF DN TRUE 11111111 111.11111 1111]lJ: 11111101 55 55 55 58 2
29 011101 OFF OFF INVR 00000000 00000000 00000000 00000010 AA AA AA 82 2
2e 011:00 OFF ON TRUE 11111111 11111111 11111111 11111101 55 55 55 64 2
27 011011 OFF OFF INVR 00000000 00000000 00000000 00000010 AA AA AA CA 2
26 011010 OFF ON TRUE 11111111 11111111 11111111 11111101 55 55 55 94 2
25 011001 OFF OFF INVR 00000000 00000000 00000000 00000010 AA AA Ml 2/\ 2
24 011000 OFF ON TRUE 11111111 11111111 11111111 11111101 55 55 56 5 t , 2
23 010111 OFF OFF INVR 00000000 00000000 00000000 00000010 AA AA AC AA 2
22 010110 OFF ON TRUE lIllllll llllEE lllE111 11111101 55 55 59 54 2
21 0)0101 OFF OFF INVR 00000000 00000000 00000000 00000010 AA AA 82 AA 2
20 010100 [IFF ON TRUE 11111111 11111111 11111111 11111101 55 55 65 54 2
19 010011 OFF OFF INVP. 00000000 00000000 00000000 00000010 AA AA CA AA 2
18 010010 OFF ON TRUE 111l111l 11l1l111 111lII11 11111101 55 55 95 54 2
17 010001 OFF OFF INVR 00000000 00000000 00000000 00000010 AA AB 2A AA 2
16 010000 OFF ClN TRUE 11111111 11111111 11111111 11111101 55 56 55 54 2
15 001111 OFF OFF INVR 00000000 00000000 00000000 00000010 AA AC AA AA 2
14 001110 OFF ON TRUE 11111111 11111111 11111111 11111101 55 59 55 5 t, 2
13 Doll 0 1 OFF OFF INVR 00000000 00000000 00000000 00000010 M B2 AA AA 2
12 001100 OFF ON TRUE 11111111 11111111 11111111 11111101 55 65 55 5 t , 2
11 OOlCll OFF OFF INVR 00000000 00000000 00000000 00000010 AA eA AA AA 2
10 001010 CFF ON TRUE 11111111 11111111 11111111 11111101 55 95 55 5't 2

q 00100l. OFF OFF I'JVR 00000000 00000000 00000000 00000010 AS 2A AA AA 2
8 001000 OF:' ClN TRUE 11111111 11111111 11111111 11111101 56 55 55 54 2
7 000111 OFF OFF INVR 00000000 00000000 00000000 00000010 AC AA AA AA 2
I> 00011 0 OFF ON TRUE 11111111 11111111 1111111 1 11111101 59 55 55 54 2
5 000101 OFF OFF INVR 00000000 00000000 00000000 00000010 82 AA AA AA 2
4 000100 OFF ON TRUE 11111111 11111111 11111111 11111101 65 55 55 54 2
3 000011 OFF ::IFF INVR 00000000 00000000 0000(\000 00000010 CA AA AA AA 2
2 000010 OFF ON TRUE 11111111 11111111 11111111 11111101 Q5 55 55 54 2
1 00000] OFF OFF INVR 00000000 00000000 00000000 00000011 2~ AA AA AA 2
0 000000 OFF ON TRUE 11111111 11111111 11111111 11111110 55 55 55 5 f , 2
0 000000 OFF INV" 11111111 11111111 11111111 11111110 5'5 55 55 55 3
0 000000 OFF RSET 01010101 01010101 01010101 01010101 FF FF FF FE 4
0 000000 OFF RS~T 11111111 11111111 1111111.1 11111110 55 55 55 55 4
0 000000 OFF RSET 01010101 01010101 01010101 01010101 FF FF FF FE 4

RESULT IN GRO GR1 SHOULD BE
11111111 11111111 11111111 11111110 01010101 01010101 01010101 01010101

RESLJLT OF DIVIDE IS
11111111 11111111 11111111 11111110 01010101 01010101 01010101 01010101

NOW MACHINE LOOPS IN DIVIDE OPERATION.
RESTART ~Y PSW RESTART. LOOP ADDRES$;HEX 000

Figure 3A-18. Example of Divide with Two Negative Operands

3A-28 8/66 Model 44 FETO

ORIGINAL DIVIDEND IS
11111111 11111111 11111111 11111100 00000000 00000000 0000000000000000

DIVIDEND SIGN LATCH ON
DIVISOR SIGN LATCH ON

A REG TRUE • 11111111 11111111 11111111 11110000
A REG INVERTED • 00000000 00000000 00000000 00001111

SHIFT POS QUOT A B ax S
COUNTER ZERO BIT REG REG REG E

DEC BINARY REM LTCH ---------------B1 NARY-------------- HEX Q

5
33 100001 OFF OFF TRUE 00000000 00000000 00000000 00000000 00 00 00 00 1
32 100000 OFF OFF INVR 00000000 00000000 00000000 00001100 00 00 00 00 2
31 011111 OFF OFF TRUE 00000000 00000000 00000000 00001000 00 00 00 00 2
30 01111 0 OFF OFF TRUE 00000000 00000000 00000000 00000000 00 00 00 00 2
29 011101 ON ON TRUE 11111111 11111111 11111111 11110000 00 00 00 00 2
2B 011100 ON ON INVR 11111111 11111111 11111111 11110000 00 00 00 02 2
21 011011 ON ON INVR IH11111 11111111 11111111 11110000 00 00 00 06 2
26 011010 ON ON INVR llU 11 11 11111111 11111111 1111 0000 00 00 00 DE 2
25 011001 ON ON INVR 11111111 11111111 11111111 11110000 00 00 00 IE 2
24 011000 ON ON INVR 11111111 11111111 11111111 11110000 00 00 00 3E 2
23 010111 ON ON INVR 11111111 11111111 11111111 11110000 00 00 00 1E 2
22 01011 0 ON ON INVR 11111111 11111111 11111111 11110000 00 00 00 FE 2
21 010101 ON ON INVR 11111111 11111111 11111111 11110000 00 00 01 FE 2
20 010100 ON ON INVR 11111111 11111111 11111111 11110000 00 00 03 FE 2
19 010011 ON ON INVR 11111111 11111111 11111111 1111 0000 00 00 01 FE 2
18 010010 ON ON INVR 11111111 11111111 11111111 11110000 00 00 OF FE 2
11 010001 ON ON INVR 11111111 11111111 11111111 11110000 00 00 IF FE 2
16 010000 ON ON INVR 11111111 11111111 11111111 11110000 00 00 3F FE 2
15 001111 ON ON INVR 11111111 11111111 11111111 llUoooo 00 00 7F FE 2
14 001110 ON ON INVR 11111111 11111111 11111111 11110000 00 00 FF FE 2
13 001101 ON ON INVR 11111111 11111111 11111111 11110000 00 01 FF FE 2
12 001100 ON ON INVR 11111111 11111111 11111111 11110000 00 03 FF FE 2
11 001011 ON ON INVR 11111111 11111111 11111111 11110000 00 01 FF FE 2
10 001010 ON ON INVR 11111111 11111111 11111111 11110000 00 OF FF FE 2

9 001001 ON ON INVR 11111111 11l1ll11 11111111 11110000 00 IF FF FE 2
8 001000 ON ON INVR 11111111 11111111 11111111 11110000 00 3F FF FE 2
1 000111 ON ON INVR 11111111 11111111 11111111 11110000 00 7F FF FE 2
6 000110 ON ON INVR 11111111 11111111 11111111 11110000 00 FF FF FE 2
5 000101 ON ON INVR 11111111~11111111 11111111 11110000 01 FF FF FE 2
It 000100 ON ON INVR 11111111 11111111 11111111 11110000 03 FF FF FE 2
3 000011 ON ON INVR 11111111 11111111 11111111 11110000 01 FF FF FE 2
2 000010 ON ON INVR 11111111 11111111 11111111 11110000 OF FF FF FE 2
1 000001 ON ON INVR 11111111 11111111 ll111n1 11110000 IF FF FF FE 2
0 000000 ON ON INVR 11111111 1111111L 11111111 11110000 3F FF FF FE 2

REMAINDER CORRECTION REQUIRED
DC RESET B REG

0 000000 ON INVR 00000000 00000000
ADO ONE ONLY

00000000 00000000 3F FF FF FF 3

0 000000 ON RSET 01000000 00000000 00000000 00000000 00 00 00 00 It
0 000000 ON RSET 00000000 00000000 00000000 00000000 40 00 00 00 It
0 000000 ON RSET 01000000 00000000 00000000 00000000 00 00 00 DO It

RESULT IN GRO G~1 SHOULD BE
00000000 00000000 00000000 00000000 01000000

RESULT OF DIVIDE IS
00000000 00000000 00000000

00000000 00000000 00000000 00000000 01000000 00000000 00000000 00000000

Figure 3A-19. Example of Divide with Remainder Correction Required

Prin Op--Proc Unit 8/66 3A-29

ORIGINAL DIVIDEND IS
11111111 11111111 11111111 11111100 00000000 00000000 00000000 00 .. 0100

DIVIDEND SIGN LAfCH DN
DIVISOR SIGN UTCH ON

A REG TRUE • 11111111 11111111 11111111 11111000
A REG INVERTED • 00000000 00000000 00000000 00000111

SHIFT PDS QUOT A B ex S
COUNTER ZERO BIT REG REG REG E

DEC BINARY REM LTCH ---------------BINARY-------------- HEX Q ,
33 100001 OFF OFF TRUE 00000000 00000000 00000000 00000000 00 00 00 04 1
32 100000 OFF OFF INVR 00000000 00000000 00000000 00000100 00 00 00 oft 2
31 011111 OFF OFF TRUE 00000000 00000000 00000000 00000000 00 00 00 08 2
30 011110 ON ON TRUE 11111111 11111111 11111111 111111)00 00 00 00 10 2
29 011101 ON ON INVR 11111111 11111111 11111111 11111000 00 00 00 22 2 28 011100 ON ON INVR 11111111 11111111 11111111 11111000 00 00 00 1t6 2
27 011011 ON ON INVR 11111111 11111111 11111111 11111000 00 00 00 BE 2 26 011010 ON ON INVR 11111111 11111111 11111111 11111000 00 00 01 IE 2
25 011001 ON ON INVR 11111111 11111111 11111111 11111000 00 00 02 3E 2
24 011000 0111 0111 IIIIVR 11111111 11111111 11111111 11111000 00 00 04 7E 2
23 010111 0111 0111 INVR 11111111 11111111 11111111 11111000 00 00 08 FE 2
22 01011 0 ON ON INVR 11111111 11111111 11111111 11111000 00 00 11 FE 2
21 010101 ON ON INVR 11111111 11111111 11111111 11111000 00 00 23 FE 2
20 010100 ON ON INVR 11111111 11111111 11111111 11111000 00 00 It7 FE 2
19 010011 ON ON INVR 11111111 11111111 11111111 11111000 00 00 8F FE 2
18 010010 ON ON INVR 11111111 11111111 11111111 11111000 00 01 IF FE 2
17 010001 ON ON INVR 11111111 11111111 11111111 111110DO 00 02 3F FE 2
16 010000 ON ON INVR 11111111 11111111 11111111 11111000 00 04 7F FE 2
15 001111 ON ON INVR 11111111 11111111 11111111 11111000 00 08 FF FE 2
lit 001110 ON ON INVR 11111111 11111111 11111111 11111000 00 11 FF FE 2
13 001101 ON ON INVR 11111111 11111111 11111111 11111000 00 23 FF FE 2
12 001100 ON ON INVR 11111111 11111111 11111111 11111000 00 47 FF FE 2
11 001011 ON ON INVR 11111111 11111111 11111111 11111000 00 8F FF FE 2
10 001010 ON ON INVR 11111111 11111111 11111111 11111000 01 IF FF FE 2

9 001001 ON ON INVR 11111111 11111111 11111111 11111000 02 3F FF FE 2
B 001000 ON 01\1 INVR 11111111 11111111 11111111 11111000 04 7F FF FE 2
7 000111 ON ON IIIIVR 11111111 lllJ.llll i1111111 11111000 08 FF FF FE 2
6 000110 ON ON INVR 11111111 11111111 11111111 11111000 11 FF FF FE 2
5 000101 ON ON INVR 11111111 11111111 11111111 11111000 23 FF FF FE 2 ,. 000100 ON ON INVR 11111111 11111111 11111111 11111000 47 FF FF FE 2
3 000011 OFF ON INVR 11111111 11111111 11111111 11111000 BF FF FF FE 2
2 000010 OFF ON INVR 11111111 11111111 11111111 11111001 IF FF FF FE 2
1 000001 OFF ON INVR 11111111 11111111 l1111111 11111010 3F FF FF FE 2
0 000000 OFF ON INVR 11111111 l1111111 11111111 11111100 7F FF FF FE 2
0 000000 OFF INVR 11111111 11111111 11111111 11111100 7F FF FF FF 3
0 000000 OFF RSET 01111111 11111111 11111111 11111111 FF FF FF FC ,.
0 000000 OFF RSET 11111111 11111111 11111111 11111100 7F FF FF FF 4
0 000000 OFF RSET 01111111 11111111 11111111 11111111 FF FF FF FC ,.

RESULT IN GRO GR1 SHOULD BE
11111111 11111111 11111111 11111100

RESULT OF DIVIDE IS
01111111 11111111 11111111 11111111

11111111 11111111 11111111 11111100 01111111 11111111 11111111 11111111

Figure 3A-20. Example of Divide with Remainder Correction and PZR On

3A-30 8/66 Model 44 FETO

OR, EXCLUSIVE OR AND AND INSTRUCTIONS

The following instructions differ for the basic and
accelerator in that GPR's are gated direct via the
HW funnel to the A, Band C registers.

OR Instructions

• The 'instruction is in either RR, RX or SI format.

• The respective op codes and mnemonics are 16
(OR), 56 (0) and 96 (OI).

• The first and second operands are combined, bit
by bit, in a logical OR function and the result
stored in the first operand location.

• The A register performs the logical OR function.

• The condition code is set as follows:
00 Result is zero
01 Result is non-zero
10 Not set
11 Not set

In the logical OR instruction, the corresponding bits
of each of the first and second operands are com­
bined in a logical OR function. This OR function is
summarized as follows:

First Operand Bi t
OR

0 1

Second 0 0 1
Operand

Bit 1 1 1

RR and RX Format

BASIC only: The machine takes an R2 or EA
cycle, depending on the format, and reads out
the second operand to the SDR. From here it
is gated to the A register. The first operand
is then read out to the SDR and is also gated to
the A register. The A register performs the
OR function shown in the above table. That is,
if either of the bits of input data is a one, the
latch turns on.

The result in the A register is gated to the
B register via the ABC funnel. The result is
then gated to the SDR from where it is stored
into the first-operand location on the write
section of the R1 cycle.

The result in the B register is analyzed and
if the result is zero the condition code is set to

LOGICAL INSTRUCTIONS

00. If the result is non-zero the condition code
is set to 01.

The sequence and timing of this instruction
are shown in FEMD, Figure 6046.
ACCELERATOR only: For RX format, the
machine takes an EA cycle and reads out the
second operand to the SDR. From here it is
gated to the A register. The first operand is
then set into the A register. Each position of
the A register is implemented in latches, and
the register performs the OR function as shown
in the example in the previous section "OR
Instruction." That is, if either of the bits of
input data is a one, the latch turns on.

The result in the A register is gated to the
B register via the ABC funnel. From here it
is gated to the GPR defined by Ra.

The result in the B register is analyzed
and, if the result is zero, the condition code is
set to 00. If the result is non-zero, the condi­
tion code is set to 01.

For RR format, the second operand is gated
out of the GPR defined by Rb, during the 1-
cycle, and set to the A, Band C registers.
The compute clock is then restarted under
sequence-2 control. The B register is reset
and the first operand is gated from the GPR
defined by Ra to the A and C registers.

As the A register is gated to the B register,
'end execute' is signalled.

The sequence and timing of this instruction
are shown in FEMD, Figure 6249.

SI Format

The immediate byte, operand 2, in registers Ra and
Rb is gated to the HW funnel. The effective address
of the first operand in the B register transfers to the
SAR, and an EA storage cycle is initiated causing
the first operand to enter the SDR. For the OR
operation the A register is conditioned and the B
register deconditioned so that the resultant OR func­
tion is developed in the A register.

Decoding of the last two bits of the storage
address, determines the correct byte address for
gating the one-byte operand 2 into the correct posi­
tion of the ABC funnel. Thus, the second operand
enters the A register. Similar byte positioning or
byte control occurs to gate the required byte of
operand 1 from the SDR to the ABC funnel. The
first-operand byte enters the A register where it is
OR'ed with the second-operand byte.

The B register is conditioned and the A register
contents are transferred via the ABC funnel to reg-

Prin op- -Proc Unit 8/66 3A-31

ister B. Byte control is again employed to reset
the appropriate byte of the SDR which still contains
the first operand. The resultant OR byte from the
B register is gated to the SDR under byte control,
and the complete word is stored in the first operand
location.

Analysis of the result in the B register causes
the appropriate condition code setting, after which,
the 'end execute' is performed. The sequence and
timing of the OR instruction are shown in FEl\ID,
Figure 6089.

Exclusive OR Instruction

• The instruction is in either RR, RX or SI format.

• The respective op codes and mnemonics are 17
(XR), 57 (X) and 97 (XI).

• The first and second operands are combined, bit
by bit, in an Exclusive OR function and the result
stored in the first-operand location.

• The B register performs the Exclusive OR
function.

• The condition code is set as follows:
00 Result is zero.
01 Result is non -zero.
10 Not set.
11 Not set.

In the logical Exclusive OR instruction, the corres­
ponding bits of each of the first and second operands
are combined in a logical EXOR function. This EXOR
function is summarized as follows:

First Operand Bit

EXOR
0 1

Second 0 0 1

Operand

Bit 1 1 0

RR and RX Format

3A-32

BASIC only: The machine takes an R2 or EA
cycle, depending on the format, and reads out
the second operand to the SDR. From here it
is gated to the A and B registers. The first
operand is then read out on an R1 cycle and
also gated to the A and B registers. As each
position of the B register is implemented in
binary-coupled triggers, the state of each
position of the B register changes every time a
bit is gated to that position. That is, the B
register performs the logical EXOR function on

8/66 Model 44 FETO

the two operands, as shown in the previous
table.

The result in the B register is gated to the
SDR from where it is stored in the first­
operand location on the write section of the R1
cycle.

The result in the B register is tested for a
zero result and, if it is zero, the condition code
is set to 00. If the result is non-zero, the
condition code is set to 01.

The sequence and timing of this instruction
are shown in FEl\ID, Figure 6045/6.
ACCELERA TOR only: For RX format, the
machine takes an EA cycle and reads out the
second operand to the SDR. From here it is
gated to the A and B registers. The first
operand is then set into the A and B registers.
Because each position of the B register is
implemented in binary-coupled triggers, the
state of each position of the B register changes
every time a bit is gated to that position. That
is, the B register performs the logical EXOR
function on the two operands as shown in the
example under the preceding section.

The result in the B register is stored in the
first-operand location.

The result in the B register is tested for a
zero result and, if it is zero, the condition
code is set to 00. If the result is non-zero,
the condition code is set to Ol.

For RR format, the second operand is gated
from the GPR defined by Rb during the I-cycle,
and set to the A, Band C registers.

The compute clock is restarted under
sequence-2 control and the first operand is
gated from the GPR defined by Ra, and set to
the A, Band C registers. At this point, the
OR of the two operands is in the A register and
the EXOR in the B register.

'End execute' is signalled and the B register
content is gated to the GPR defined by Ra.

The sequence and timing of this instruction
are shown in FEl\ID, Figures 6245/6 (RR) and
6247/8 (RX).

SI Format

For this operation, the A register is deconditioned
and is initially reset. The B register is initially
conditioned and the immediate operand (12) from the
Ra and Rb registers enters the B register via the
HW funnel and the ABC funnel under byte control.
An EA storage cycle reads out the first operand into
the SDR, and the byte address controls the byte
transferred from the SDR to the ABC funnel (byte
control). Operand 1 enters the deSignated byte of
the B register and is EXOR'ed with operand 2 by the

action of the binary-coupled input to the register.
The B register is then deconditioned to prevent
further inputs from changing the resultant EXOR.

Under byte control the appropriate byte of the
SDR is reset and then set with the resultant EXOR
byte from the B register. The SDR content is written
into storage during the split-cycle write phase, and
the condition code is set by analysis of the B register
contents. Finally, 'end execute' is signalled. The
sequence and timing for this instruction is shown
in FEMD, Figure 6089/90 (basic) and 6297/98
(accelerator).

AND Instruction

• The instruction is in either RR, RX or SI format.

• The respective op codes and mnemonics are 14
(NR), 54 (N) and 94 (NI).

• The first and second operands are combined, bit
by bit, in an AND function and the result stored in
the first-operand location.

• Both the A and B registers are used to perform
the AND function.

• The condition code is set as follows:
00 Result is zero.
01 Result is non-zero.
10 Not set.
H Not set.

In the logical AND instruction, the corresponding
bits of each of the first and second operands are
combined in a logical AND function. This AND
function is summarized as follows:

First Operand Bit

AND
0

Second 0 0 0

Operand

Bit 0

The AND function can be performed by the com­
bination of the OR and EXOR functions previously
described. If the result of the OR function is itself
EXOR'ed with the result of the EXOR function, then
the result is the AND function. This is demon­
strated, as follows, using two operands labelled X
and Y.

x Y X+Y X¥Y (X + Y) 'd'(X 'd'Y) X.Y

OR EXOR OR V EXOR AND

0 0 0 0 0 0

0 1 0 0

0 0 0

0 1

The AND function can be performed by forming
the OR function of the two operands in the Aregister,
the EXOR of the two operands in the B register, and
combining, or EXOR'ing, these two partial results
by gating the A register to the B register via the
ABC funnel. As demonstrated in the preceding
table, the result in the B register will be the AND
function of the two operands.

RR and RX Formats

BASIC only: The machine executes the AND
instruction by reading out the second operand
to the SDR on the R2 or EA cycle, and gating
it to the A and B registers. The first operand
is then read out to the SDR on an Rl cycle, and
gated from the SDR to the A and B registers.

The A register is then gated to the B reg­
ister, forming the result in the B register, as
described previously. The B register is then
set to the SDR from where it is stored in the
first-operand location on the write section of
the Rl cycle.

The result in the B register is tested and,
if it is zero, the condition code is set to 00.
If the result is non-zero, the condition code is
set to Ol.

The sequence and timing of this instruction
are shown in FEMD, Figure 6045/6.
ACCELERATOR only: The machine executes
the AND instruction by gating the second oper­
and to the A and B registers. The first oper­
and is then gated to the A and B registers, so
that the A register contains the OR of operands
1 and 2 and the B register contains the EXOR.

The A register is then gated to the B reg­
ister, forming the AND result in the B register
as previously described. The B register is
then set via SDR to the first-operand location.

The result in the B register is tested and,
if it is zero, the condition code is set to 00.
If the result is non-zero, the condition code is
set to Ol.

The sequence and timing of this instruction
are shown in FEMD, Figures 6253/4 (RR) and
6255/6 (RX).

SI Format

For this operation both the A and B registers are
conditioned. Thus, the immediate byte, operand 2,
from the Ra and Rb registers enters both the A and
B registers under byte control. The specified byte
of operand 1 (from SDR) also enters the A and B
registers under byte control. The two single-byte
operands are OR'ed in the A register and EXOR'ed
in the B register.

Prin Op--Proc Unit 8/66 3A-33

The OR content of the A register is now set into
the binary-coupled B register producing an EXOR of
the OR and EXOR functions of operands 1 and 2.
This result is equivalent to an AND function of oper­
and 1 and operand 2. The SDR is reset in the desig­
nated byte before the resultant AND byte is gated to
the SDR under byte control. The complete word in
the SDR is stored in the first-operand location, the
condition code is set, and 'end execute' is signalled.
The sequence and timing for this instruction are
shown in FEMD, Figures 6089/90 (basic) and 6297/98
(accelerator) .

ADD LOGICAL, SUBTRACT LOGICAL AND
COMPARE LOGICAL INSTRUCTIONS

Logical instructions are a separate set distinct from
arithmetic instructions. They differ in that the
operands are used as 32-bit unsigned binary integers.
In an arithmetic operation the operands keep the
high-order bit (00) as the sign indicator.

Add Logical Instructions

• The instruction is in either RR or RX format.

• The respective op codes and their mnemonics are
1A (ALR) and 5A (AL).

• The first operand is added to the second operand
and the result stored in the first-operand location.

• Operands are treated as 32 -bit unsigned binary
integers.

• The result and carry-out of bit 0 are recorded in
the condition code:

00 No carry: result is zero.
01 No carry: result is not zero.
10 Carry: result is zero.
11 Carry: result is not zero.

The principles of operation of the binary add opera­
tion are described in Chapter 1 of Introduction and
Functional Units, Form Y33-0001.

The sequence of operation is similar to the arith­
metic add instruction. The carry-out of bit 0 of
the result is used to set PSW 2 bit 2, and the B reg­
ister not zero is used to set PSW 2 bit 3. These
positions of PSW 2 are the condition code of the
PSW.

The add logical instruction may be used for the
addition of operands more than one word long; it is
used to add the low-order bits. The carry from this
operation is used to develop a carry-in for the addi­
tion of the high -order bits.

The sequence and timing of these instructions
are shown in FEMD, Figures 6015/6 for basic

3A-34 8/66 Model 44 FETO

machines and 6217/8 (RR), 6219/20 (RX) for the
accelerator.

Subtract Logical Instructions

• The instruction format is in either RR or RX
format.

• The respective" op codes and their mnemonics are
1F (SLR) and 5F (SL).

• The second operand is always complemented prior
to addition by dc setting the B and C registers to
ones."

• The" second operand is subtracted from the first
operand and the result is stored in the first­
operand location.

• Operands are treated as 32 -bit unsigned binary
integers.

• The result and carry-out of bit 0 is recorded in
the condition code.

The principles of operation of the binary subtract
operations are described in Chapter 1 of Introduction
and Functional Units, Form Y33-0001.

The sequence of operation is similar to the arith­
metic subtract instruction. The carry-out of the
bit 0 position and the B register not zero are used to
set the condition code in the PSW in a similar manner
to the add logical instruction.

The sequence and timing of these instructions are
shown in FEMD, Figures 6015/6 for basic machines
and 6217/8 (RR), 6219/20 (RX) for the accelerator.

Compare Logical Instructions

• Compare logical instructions can be in RR, RX or
SI format.

• The respective op codes and mnemonics are 15
(CLR), 55 (CL) and 95 (CLI).

• The two "operands are compared and the result is
indicated in the condition code.

• The two operands remain unaltered in storage.

• The operands are treated as two unsigned binary
fields.

• The condition code settings are as follows:
00 Operands equal.
01 First operand is low.
10 First operand is high.
11 Not set.

RR and RX Formats

The compare logical instructions of both RR and RX
formats caus e the 32 -bit first operand to be com­
pared with the 32-bit second operand. Each operand
is treated as an unsigned binary word, and the opera­
tion is executed by subtracting the second operand
from the first operand and analyzing the result.

The only differences between the compare logical
operation and the subtract logical operation are in
the conditions used to set the condition code and the
handling of the first operand.

In the compare logical operation the result of the
subtraction is not stored, but the first operand GPR
is regenerated in storage.

The sequence of operations for fetching the oper­
ands for the subtraction process has been described
previously. The result of the subtraction is obtained
in the B register, and it is this register that is
analyzed to determine the setting of the condition
code as follows:

B Register

Zero and CO = 1

Not CO = 1

Non zerO and CO = 1

Condition Code

00

01

10

11

Condition

Ope rands equal

First operand is low

First operand is high

Never set

The sequence and timing of these instructions are
shown in the FEMD, Figures 6017/8 for the basic
machines and 6221/2 (RR), 6223/4 (RX) for the
accelerator.

SI Format

The Compare Logical Immediate (CLI) instruction
causes the field of immediate data in the instruction
to be compared with the byte of data from storage
defined by the developed effective address. The
result of this comparison is used to set the condition
code.

The operation consists of subtracting the second
operand (immediate data) from the first operand
(storage byte) and analyzing the result,

In preparation for the subtraction, the Band C
registers are set to ones and the A register is reset.
Operand 1 is read out of storage and enters the SDR.
Analysis of the last two bits of the storage address
gives the byte address, which is used to gate the
correct byte of SDR to the ABC funnel and on to the
A, B and C registers. Note that SDR true is always
gated to the ABC funnel. Byte address analysis,
called byte control, is used to ensure that the cor­
rect bytes of operands 1 and 2 are gated to the ABC
funnel.

The byte of immediate data (operand 2) is set
from the Ra and Rb registers into the HW funnel in
positions 16 to 23 and 24 to 31. Under byte control,
the operand -2 byte is gated into its correct byte
position of the ABC funnel and so into the Band C
registers. This completes the partial sum in Band
C registers. The subtract operation is completed,
as described under subtract logical instruction, by
gating the CLA to the ABC funnel. The result
obtained in the B register is analyzed in the same
way, and the condition codes have the same meaning,
as for the RR and RX format described under
"Compare Logical Instructions."

The sequence and timing of the SI format compare
instruction are shown in FEMD, Figures 6089/90
for basic machines and 6297/98 for the accelerator.

CHARACTER HANDLING INSTRUCTIONS

Insert Character Instruction

• The instruction is in RX format.

• The op code and mnemonic is 43 (IC).

• The eight-bit character at the second operand
address is inserted into bit positions 24 to 31 of
the GPR specified by the R1 field.

• The remaining bits of the GPR (bits 0 to 23)
remain unchanged.

• The byte inserted is neither inspected nor altered.

• The condition code is not altered.

The word containing the selected character is read
out of storage to the SDR during an EA cycle. The
byte defined by the effective address is then aligned
into bits 24 to 31 of the B register by gating and
shifting as follows:

EA Bits 30,31 Gate SDR Shift Right Eight

00 Criss- cross Yes

01 Criss-cross No

10 True Yes

11 True No

BASIC only: An R1 cycle is taken and the GPR
read out of storage. Bits 0 to 23 of the GPR
content are set into the SDR bits 0 to 23, and
bits 24 to 31 of the B register are gated to the
SDR bits 24 to 31.

ACCELERATOR only: Bits 24 to 31 of the B
register are gated to bits 24 to 31 of the GPR
defined by the Ra register.

Prin Op--Proc Unit 8/66 3A-35

The SDR is then stored on the write section of the
R1 cycle.

Thus, the character (or byte) defined by the
developed effective address is stored in bits 24 to 31
of the GPR, leaving bits 0 to 23 of the GPR unaltered.

The timing and sequence of this instruction are
shown in FEMD, Figures 6051/52 (basic) and 6259/60
(accelerator).

Store Character Instruction

• The instruction is in RX format.

• The op code and mnemonic is 42 (STC).

• Bit positions 24 to 31 of the GPR defined by the
R1 field are placed in the byte defined by the
second operand address.

• The byte stored is neither inspected nor altered.

• The condition code is not altered.

3A-36

BASIC only: Instructions of the store type
require that the first operand be read out before
the second operand. This means that the
developed effective address has to be stored
temporarily in the BX register, out of the main
data flow, while the first operand is fetched.
This is done with a B to BX register inter­
change.

The first operand is read out of extension
storage into the SDR. Bits 24 to 31 are then
aligned to the byte defined by the effective
address, by the following operations:

EA Bits 30,31 Gate SDR Shift Left Eight

00 Criss- cross Yes
01 Criss- cross No
10 True Yes

11 True No

The effective address is brought back into
the B register by a re-interchange of the B and
BX registers, and an EA cycle is initiated.
The effective address is used to set the SAR on
this cycle and once again a B to BX register
interchange is performed.

The word defined by the effective address is
read out of storage, but only three bytes are
set to the SDR. The fourth byte, which is not
set to the SDR, is the byte defined by the effec­
tive address. This byte position in the SDR is
set from the corresponding B register byte, in

8/66 Model 44 FETO

which the first operand bits 24 to 31 have been
aligned.

The SDR is then stored on the write section
of the EA cycle.

The timing and sequence of this instruction
are shown in FEMD, Figures 6053/4.

ACCELERATOR only: Store instructions
require that the first operand be read out before
the second operand.

Operand 2 in the GPR is fed to the B register,
either by gating straight through, or gating bits
16 to 31 to bits 00 to 15 as required. The B
register is shifted-left-four twice if the effec­
tive address is an even number designated by
bit 31. The object is to align this byte to fill
the gap in the word brought into the SDR.

After alignment, the EA byte character of
the B register is set to the SDR, and the now
complete word, the entire contents of the SDR,
is stored.

The timing and sequence of this instruction
is shown in FEMD, Figure 6261/2.

Test Under Mask

• The instruction is in SI format.

• The op code and mnemonic is 91 (TM).

• The state of the first operand bits selected by the
mask is used to set the condition code.

• The immediate data field (12) of the instruction is
used as the mask.

• The first operand is the character, or byte,
defined by the effective address.

• A mask bit of one indicates that the corresponding
storage bit is to be selected.

• A mask bit of zero indicates that the corresponding
storage bit is to be ignored.

• The character in storage is not changed.

• Testing is performed between the Ra and Rb
registers and bits 00 to 07 of the B register.

• The condition code is set as follows:
00 Selected bits all zero; mask is all zero.
01 Selected bits mixed zero and one.
10 Not set.
11 Selected bits all one.

BASIC only: The first operand character is
fetched from storage and aligned to bits 0 to 7
of the B register. The controls are:

EA Bits 30,31 Gate SDR Shift Left Eight

00 True No
01 True Yes
10 Criss- cross No
11 Criss- cross Yes

Bits 0 to 7 of the B register, and the 12
field of the instruction from the Ra and Rb
registers, are analyzed in logic circuits.

The sequence and timing of this instruction
are shown in FEMD, Figure 6055/56.

ACCELERATOR only: The machine takes an
EA cycle, and operand 1 is read out to the
SDR. It is then gated to the B register, via
the true/criss-cross, and aligns the byte
(defined by the effective address) into either
bits 00 to 07, or bits 08 to 15 of the B register.

To perform the test, it is necessary to align
the first-operand byte to the B register bits 00
to 07. Thus, for the case where the effective
address is an odd address, the compute clock
is run under the control of sequence 5, and
two shift-left-four operations are performed.

When the first-operand byte has been cor­
rectly aligned, it is tested in logic circuits
under control of the mask, or 12 field of the
instruction, in the Ra and Rb registers.

If a bit in the mask field is a one, the cor­
responding bit in the first-operand byte is
selected for testing. If a bit in the mask field
is a zero, the corresponding bit in the first­
operand byte is ignored. The test is performed
by the logic circuit.

The sequence and timing of this instruction
is shown in FEMD, Figure 6263/64.

Test and Set

• The instruction is in SI format.

• The op code and mnemonic is 93 (TS).

• The high -order position of the byte defined by
the developed effective address is tested.

• The result of the test sets the condition code as
follows:

00
01
10

High-order bit is zero.
High-order bit is one.
Not set.

11 Not set.

• The original information in the tested byte is
replaced in storage by all ones.

• The immediate data (12) field of the instruction is
not used.

The machine reads out the word defined by the devel­
oped effective address into the SDR, on a split EA
cycle.

The selected byte is aligned into either bits 0 to 7
or 8 to 15 of the data flow and gated to the A register
as follows:

EA Bit 30

o

Gate SDR

True
Criss- cross

The B and C registers are set to all ones early in
the execution of this instruction.

The byte, defined by the low-order bits 30 and 31
of the effective address in SAR 2, is reset in the
SDR. Ones are then gated from the B register into
this SDR byte position. The SDR is then stored on
the write section of the EA storage cycle.

Prin Op--Proc Unit 8/66 3A-37

The A register is tested to determine the setting
of the condition code. Bit 00 is tested if the effective
address bit 31 is a zero, and bit 08 is tested if the
effective address bit 31 is a one.

If the bit tested is a one, the condition code is set
to 01, and if it is a zero, the condition code is set to
00.

The timing and sequence of this instruction are
shown in FEMD, Figures 6057/8 (basic) and 6265/66
(accelerator) .

MISCELLANEOUS LOGICAL OPERATIONS

Shift Logical Instructions

• Instructions are in RS format.

• The R3 field is not used for these instructions.

• The low-order six bits of the developed effective
address define the number of p0sitions to be
shifted (bits 26 to 31).

• The operands, which are unsigned integers, may
be either single or double words and are con­
tained in the GPR or GPR pair defined by the R1
field of the instruction.

• The op codes and their mnemonics for the shift
logical instructions are as follows:

Shift left single : 89 (SLL)
Shift left double : 8D (SLDL)
Shift right single : 88 (SRL)
Shift right double: 8C (SRDL)

• Shift single is a single-word operation and shifting
is done in the B register.

• Shift double is a double-word operation and
shifting is done in the B and BX registers.

• Multiple shift is a series of single-shift opera­
tions.

• The shift counter is reduced by one for each
shift, and shifting ends when the shift counter
equals zero.

• For all logical shifts, zeros are supplied to fill
vacated high or low-order bit positions.

• The result is stored in the original operand
register.

• The condition code is not altered.

3A-38 8/66 Model 44 FETO

The four logical shift operations are shown in
Figure 3A-21.

Shifting is the operation of moving all the bits in
a word or double word to the right-hand or left-hand
adjacent bit position without disturbing their order.

In these logical operations, the B register bit 00
is of no significance as a Sign bit and is treated as
an ordinary binary bit.

Shift single is a full-word operation and the oper­
and is read out of the register specified by Ra and
set into the B register.

Shift double is a double-word operation and the
operand is located in a pair of even and odd ad­
dressed registers. Addressing of the operand should
always be made on the even -numbered register,
otherwise, a specification exception occurs and
causes a program interrupt. The machine automati­
cally addresses the odd-numbered register. The
even -numbered register address contains zeros in
bit pOSitions 29, 30 and 31. The odd-numbered
register address is developed by forcing a· one in bit
position 29. (Set SAR to odd.)

The odd-numbered register content, which is a
low-order word, is fed into the BX register via the
B register. The even-numbered register content,
which is a high -order word, is then fed to the B
register.

The low-order six bits (bits 26 to 31) of the
developed effective address indicate the number of
shift places and are fed into the shift counter before
the operand is fetched.

Multiple shift is a series of single-shift opera­
tions in which the shift counter value is reduced by
one at each shift. Shifting ends when the shift coun­
ter is zero.

On shift double,when the B register is shifted
right, bit 31 of the B register is shifted into the
bit 00 position of the BX register. Bit 00 of the B
register is defined as the high-order bit, and bit 31
of the BX register as the low-order bit. In shift­
right operations, the low-order bit is shifted out
without inspection and is lost. A zero is supplied
in the high-order bit position.

In shift-left operations, the action is reversed.
Bit 00 of the BX register is shifted into the bit 31
position of the B register. The high-order bit is
shifted out without inspection and is lost.

When the shift counter is greater than two, the
shift is performed at CC1, CP1 time and the com­
pute clock is wrapped at CC2. In a shift-single
operation the B register is shifted and in a shift­
double operation the Band BX registers are shifted
one position. In either case the shift counter is
reduced by one for each cycle.

BASIC only: When th.e shift counter reaches
two, the compute clock runs to CC6, instead of

B Register

Lost - Zero (0). is supplied

o 2 29 30 31

(0) Shift Left Single

B Register BX Register

Lost

o 2 29 30 31 o 2 29 30 31

(b) Shift Left Double

B Register

Lost

o 2 29 30 31

(c) Shift Right Single

B Register BX Register

(d) Shift Right Double

Figure 3A-21. Shift Operations -- Logical

wrapping, and the shift is performed twice,
once at CC3, CP1 time and again at CC5, CP1
time.

If the shift counter is set to two at the
beginning of the operation, the compute clock
runs to CC6, performing the shift operation
twice, once at CC1, CP1 time and once at
CC3, CP1 time. If the shift counter is set to
one at the beginning of the operatIon, the com­
pute clock runs to CC6, performing the shift
operation once at CC1, CP1 time.

If the shift counter is set to zero, the com­
pute clock runs to CC6, but no shift takes
place. The condition code remains unchanged.

The result in the Band BX registers is
stored in the even and odd-numbered registers
respectively. The addressing method is the
same as in the operand-fetch cycle.

,---- Zero (0) i~

suppl ied

Lost

The sequence and timing of these shift
instructions are shown in FEMD, Figures 6019
to 6026.

ACCELERATOR only: When the shift counter
is greater than zero, the shift is performed at
CC1, CP1 time and the compute clock is
wrapped at CC2. In a shift-single operation
the B register is shifted and in a shift-double
operation, the Band BX registers are shifted
one position. In either case the shift counter
is reduced by one for each cycle. When the
shift counter reaches zero, the compute clock
runs to CC6.

If the shift counter is set to two at the
beginning of this operation, the compute clock
runs to CC6, performing the shift operation at
CC1, CP1 time. If the shift counter is set to

Prin Op- - Proc Unit 8/66 3A-39

zero, the compute clock runs to CC6, but no
shift takes place. The condition code remains
unchanged.

For shift double, the result in the B and
BX registers is gated to the even and odd­
numbered first-operand GPR's respectively.
For shift single the B register content is
gated to the first-operand GPR.

The sequence and timing of these shift
instructions is shown in FEMD, Figures 6225
to 6232.

Load Address

• The instruction is in RX format.

• The op code and mnemonic is 41 (LA).

• Loads bits 08 to 31 of the developed effective
address into bits 08 to 31 of the GPR specified by
the R1 register. Bits 00 to 07 of the word are
made zero.

• The condition code is not altered.

3A-40

BASIC only: The machine takes an R1 cycle,
the 'inhibit store to SDR' line is made active
and the SDR is reset.

Bits 00 to 07 of the B register, which con­
tains the effective address developed during
I-fetch, are reset and the B register is gated
to the SDR. From the SDR it is stored in the
GPR defined by the R1 field on the write sec~
tion of the storage cycle.

The sequence and timing of this instruction
are shown in FEMD, Figure 6059/60.

ACCELERATOR only: At the end of I-time in
this RX instruction, bits 00 to 07 of the B reg­
ister are reset and 'end execute' is signalled.
This leaves the developed effective address
bits 08 to 31 in the B register.

8/66 Model 44 FE TO

The compute clock is started under control
of sequence 2, and the B register is gated to
the GPR defined by the Ra register.

The sequence and timing of this instruction
is shown in FEMD, Figure 6267/68.

Move Instruction

• The instruction is in SI format.

• The op code and mnemonic is 92 (MVI).

• One byte of immediate information (operand 2) is
placed in operand-1 location.

• The condition code is not altered.

The move instruction contains the one-byte 12 field
(operand 2). This instruction causes the one byte
of immediate data (operand 2) to be stored at the
location specified by operand 1 (B1 + D1 in the
instruction). The condition code is not set at the
completion of this instruction.

The sequence and timing of the MVI instruction
are shown in FEMD, Figures 6089/90 (basic) and
6297/98 (accelerator). The immediate operand is
gated from the Ra and Rb registers to the ABC
funnel and enters the B register under byte control.
The A register is de conditioned (it was previously
reset so that the register contains zeros throughout
the operation). Mter receiving the operand-2 byte,
the B register is de conditioned to prevent the entry
of the operand-1 byte which follows. The degating
of the B register at this time is necessary owing to
the use of common logic for the instructions MVI,
NI, or and XI.

The designated byte of the SDR is reset and the
second operand byte in the B register is gated to the
SDR under byte control. The word in the SDR is
written into the operand-1 storage location and the
'end execute' is signalled.

Branching instructions are introduced to allow a
departure from the normal sequential execution of
instructions. The branch conditions cause the
Instruction Counter (IC) section of PSW 2 to be
replaced by the branch address. This address is
then used on the next instruction-fetch cycle. The
no-branch conditions cause the machine to proceed
to the next sequential instruction as defined by the
IC section of the current PSW 2.

Branching may be conditional or unconditional;
additional operations may be performed in conjunc­
tion with either of these conditions.

For further details, refer to IBM System/360
Principles of Operation, Form A22-6821 and Intro­
duction and Functional Units, Form Y33-0001.

Instruction Formats

• Branching instructions use either RR or RX
formats.

• For RR format, the R2 field (bits 12 to 15) define
the GPR containing the branch address; when this
field is zero, no branching takes place.

• Bits 8 to 11 of both instruction formats indicate
the M1, or mask, field (for branch on condition)
or the R1, or GPR address, field (for branch and
link, branch on count).

Branch On Condition

• The instruction is in either RR or RX format.

• The respective op codes and mnemonics are 07
(BCR) and 47 (BC).

• Bits 8 to 11 of the instruction are called the M1,
or mask, field.

• The M1 field is used as a four-bit mask to corre­
spond with the condition code as follows:

Condition Code Instruction Bit
00 8
01 9
10
11

10
11

• The branch is successful whenever the condition
code (PSW 2 bits 2 and 3) has a corresponding
mask bit of one.

• The condition code is not altered.

BRANCHING INSTRUCTIONS

During instruction fetch, the M1 field is set into the
Ra register. The current condition code (PSW 2 bits
2 and 3) and the Ra register are checked for matching
in an analysis circuit, and if they match, a branch
occurs. If they do not match, an 'end execute' signal
is developed at the end of I -fetch and the machine
proceeds to the next sequential instruction.

An M1 field of all ones causes an unconditional
branch because all condition codes are satisfied;
conversely, an M1 field of all zeros allows an 'end
execute' signal to be developed at the end of I-fetch
in the same way as an R2 field of zero (a no­
operation). Between these two extremes, one, two
or three conditions may be masked.

BASIC only: For branch conditions, if the
instruction is in RR format, an R2 cycle is
taken to read out the branch address from the
GPR and set it into the B register.

ACCELERATOR only: For branching condi­
tions, a compute cycle is taken and, if the
instruction is in RR format, the branch address
from the GPR is set into the B register.

For RX format the branch address (effective
address) is already in the B register.

From this point, both formats follow the same
sequence. The Band BX registers are interchanged
and the IC of the current PSW is replaced by bits 8
to 31 of the BX register. An' end execute' signal is
developed and the I-fetch proceeds, using the branch
address now located in the IC.

The sequence and timing of this operation is shown
in FEMD, Figures 6061/62 for basic machines and
6269/70 (RR) and 6271/72 (RX) for the accelerator.

Branch and Link

• The instruction is in either RR or RX format.

• The respective op codes and mnemonics are 05
(BALR) and 45 (BAL).

• The R1 field specifies the GPR into which the
current PSW 2 is stored as link information
(PSW 2 contains the IC).

• Branching is unconditional, except when the R2
field of an RR format instruction is zero.

• The condition code is not altered.

Prin Op--Proc Unit 8/66 3A-41

For RR format, the branch address is first fetched
and set to the B register. From this point the opera­
tion is similar for both formats, as the B register in
both cases now contains the branch address.

The Band BX registers are interchanged, causing
the branch address to be contained in the BX register.

BASIC only: The PSW 2 register is set to the
B register, and from there is gated to the SDR
and stored on the write section of the R1 cycle.

ACCELERATOR only: PSW 2 is set to the B
register, and from there is gated to the GPR
defined by the Ra register.

The BX register bits 8 to 31 are then set to the
IC (provided that Rb ~ 0) and an 'end execute' signal
is generated. The operation proceeds using the
branch address now located in the IC.

The sequence and timing of this instruction is
shown in FEMD, Figures 6065/66 for basic machines
and 6277/78 (RR) and 6279/80 (RX) for the accelera­
tor.

Branch On Count

• The instruction is in either RR or RX format.

• The respective op codes and mnemonics are 06
(BCTR) and 46 (BCT).

• The R1 field specifies the count GPR.

• The count GPR is arithmetically reduced by one
on each instruction execution.

• Branching occurs when the count is not equal to
zero.

• No branching occurs when the count is equal to
zero, and normal sequential instructions are
executed.

• Arithmetic overflow of the count is ignored.

• The condition code is not altered.

• Counting is performed without branching if the R2
field of the RR format is zero.

• Reduction of the count is achieved by adding the
number to all ones (-1). In preparation for this
operation, the BX register is set to all ones
during this instruction fetch.

3A-42

BASIC only: In the RR format, the contents of
the R2 register are sent to the B register.

8/66 Model 44 FE TO

ACCELERATOR only: In the RR format, the
content of the GPR defined by Rb register is
gated to the B register.

After this, with the B register containing the
branch address, the operation is the same for both
formats.

The branch address goes to the BX register by a
B to BX register interchange, in which the B reg­
ister is set to all ones from BX. The A register is
reset and the C register is set to the B register with
all ones.

BASIC only: The first operand is fetched and
set to the SDn and gated on to the A, Band C
registers.

ACCELERATOR only: The first operand is set
from the GPR defined by the Ra register to the
A, Band C registers.

The B register result is completed by the CLA
which is now the count reduced by one.

BASIC only: This result is set into the SDR
and is stored back into the GPR on the write
section of the Rl cycle.

ACCELERATOR only: This result is set into
the GPR.

If the result from either the B register or the Rb
register is zero, 'end execute' is generated and the
machine proceeds to the next sequential instruction.
However, if the result (count) is not zero, 'set IC
from BX' is generated. The branch address was
stored in BX at the beginning of the operation. After
it is transferred to IC, the machine can use it as
the address to fetch the next instruction.

The sequence and timing of this operation is
shown in the FEMD, Figures 6063/64 for basic
machines and 6273/74 (RR) and 6275/76 (RX) for the
accelerator.

Set System Mask

• The instruction is in SI format and is a privileged
instruction.

• The op code and mnemonic is 80 (SSM).

• The immediate data (12) field of the instruction is
not used.

• The byte at the location defined by the effective
address replaces the system mask bits of the
current PSW (PSW 1 bits 00 to 07).

• The condition code is not altered.

The operand is read out of storage and the required
byte aligned to bits 00 to 07 of the B register by
gating as follows:

EA Bits 30,31 Gate SDR Shift Left Eight

00 True No

01 True Yes

10 Criss-cross No
11 Criss- cross Yes

Bits 00 to 07 of the B register are then gated to
PSW 1 bits 00 to 07, and the 'end execute' condition
is signalled.

If this instruction is encountered when the machine
is in the problem state, a privileged-operation
exception is recognized and the operation is sup­
pressed.

The sequence and timing of this instruction is
shown in FEMD, Figures 6067/68 (basic) and 6281/
82 (accelerator).

Set Program Mask

• The instruction is in RR format.

• The op code and mnemonic is 04 (SPM).

• The R2 field is not used in this instruction.

• Bits 2 to 7 of the GPR specified by the R1 field
are used to replace the program mask bits of the
current PSW (PSW 2 bits 2 to 7).

• Bits 0 and 1 and bits 8 to 31 of the GPR are ig­
nored and the original content of the GPR remains
unchanged in extension storage.

• The condition code is set according to bits 2 and
3 of the GPR specified by Rl.

STATUS SWITCHING INSTRUCTIONS

BASIC only: The GPR containing the data is
read out of storage and gated from the SDR to
the B register.

ACCELERATOR only: The GPR containing the
data is gated to the B register. 'End execute'
is generated.

Bits 02 to 07 of the B register are then gated to
the PSW 2 bits 2 to 7, where they replace the condi­
tion code (bits 2 and 3) and the program mask (bits
4 to 7). The operation is then terminated by the
generation of an 'end execute' signal.

The sequence and timing of this instruction is
shown in FEMD, Figures 6069/70 (basic) and 6283/
84 (accelerator).

Supervisor Call

• The instruction is in RR format.

• The op code and mnemonic are OA (SVC).

• The instruction causes a supervisor-call interrupt.

• The R1 and R2 fields provide the interrupt code
for the subsequent interrupt.

• The condition code remains unchanged in the old
PSW.

This instruction forces a request for a supervisor­
call interrupt.

During this instruction fetch the supervisor-call
interrupt request is set and 'end execute' is sig­
nalled. This leaves the machine free to take the
pending supervisor-call interrupt.

The R1 and R2 fields in the Ra and Rb registers
provide the bits 24 to 31 of the interrupt code when
the old PSW is being stored. Except for when the
old PSW is being stored, the interrupt caused by the
supervisor-call instruction is similar to all other
interrupts. (See "Interrupts" section.)

The sequence and timing of signals generated
during this instruction fetch is shown in FEMD,
Figures 6071/72 (basic) and 6285/86 (accelerator).

Load PSW

• The instruction is in SI format and is a privileged
operation.

• The op code and mnemonic is 82 (LPSW).

Prin Op--Proc Unit 8/66 3A-43

• The immediate data (12) field of this instruction
is not used.

• The double word at the location defined by the
developed effective address replaces the current
PSW.

• The condition code is set according to bits 2 and
3 of the new PSW 2 loaded.

• A double EA cycle is required to fetch the PSW.

• PSW 1 bits 0 to 15 are set from the B register.

• PSW 1 bits 16 to 31 are not in registers; they are
the interrupt code inserted during the interrupt.

• PSW 2 bits 0 and 1 cannot be loaded; they reflect
only the state of op register bits 0 and 1.

• PSW 2 bits 2 to 7 are set from the B register.

• PSW 2 bits 8 to 31 are set from the BX register.

• The machine enters the problem state when the
load-PSW loads a double word with a one in bit
position 15.

• The machine enters the wait state if the load-PSW
loads a double word with a one in bit position 14.

The machine takes a double EA cycle for the load­
PSW instruction. On the first EA cycle, bits 0 to
31 of the new PSW are read out to the SDR and
gated to the B register. The PSW 1 is then set from
the B register. Only bits 0 to 15 are set into PSW 1,
as bits 16 to 31 are generated by an interrupt code
when the old PSW 1 is being stored (refer to
"Interrupts" section).

Bits 8 to 11 are also checked for zero when the
storage protection feature is not installed. If they
are not zero a specification exception occurs.

The double EA cycle latch causes another EA
cycle to occur consecutively without the possibility
of an intervening I/O storage cycle. It inhibits the
reset of the SAR and forces on bit 29 of each SAR
(increasing each SAR by four) for the second cycle.
Thus, the consecutive word is read out of storage
to the SDR on this cycle.

Bits 32 to 63 of the operand are gated from the
SDR to the B register; they are also set into the
BX register by a B to BX register interchange, in
which the BX to B path is inhibited.

The B register bits 2 to 7 are then gated to PSW 2
bits 2 to 7, and the BX register bits 8 to 31 are
gated to PSW 2 bits 8 to 31. The 'end execute'
signal is then generated and the machine proceeds,

3A-44 8/66 Model 44 FETO

using the new Ie address fetched on the load-PSW
instruction.

If this instruction is encountered when the machine
is in the problem state, a privileged-operation
exception is signalled and the operation is sup­
pressed.

The sequence and timing of this instruction is
shown in FE:MD, Figures 6073/74 (basic) and 6287/
88 (accelerator).

Diagnose Instruction

• The instruction is in RS format and is a privi-
1eged instruction.

• The op code and mnemonic is 83 (DIAG).

• Bits 12 to 15 of the instruction are used as a
mask field (M1).

• Storage accesses on the execute phase are to
extension storage.

• Acts as either a load or store operation depending
on mask bit 3.

• Turns on or off 'test parity equal to one' depending
on mask bit 2.

Instruction Format

The instruction is in RS format as follows:
DrAG

DIAG = Mnemonic. (For IBM internal use only.)
OP = Op code of 83.
R1 = Address of source or destination GPR

(according to M1 field).
M1 = Mask field.
B2 = Base register address.
D2 = Displacement.

The mask field is a four-bit field defined as follows:
Bit 0: Not used.
Bit 1: Not used.
Bit 2: Mask bit of zero turns off test parity latch.

Mask bit of one turns on test parity latch.
Bit 3: Mask bit of zero causes a load operation.

Mask bit of one causes a store operation.
The B2 and D2 fields are used to generate an

effective address, but this is converted to an access
to extension storage by turning on the extension
storage latch for the EA cycle of this instruction.

This instruction is treated as a privileged opera­
tion, and if it is encountered when the machine is in
the problem state a privileged -operation exception is
signalled and the operation is suppressed.

Instruction Applications

The use of this instruction is:
1. For extension storage worst-case and pattern

tests, using main storage programs to address
extension storage. (There is not enough room in the
32K machine to write a re10catab1e section to operate
in the storage extension alone.) This will allow the
optimum operating point voltage to be adjusted with
one program for storage extension and the main
storage.

2. To provide the ability to check the contents of
unit control words located in the storage extension.
This ability is used in certain multiplexor channel
diagnostics to check stacked-status operations.

3. To provide the ability to set and reset the
'test parity equals one' condition by program means,
in addition to the console switch facility.

Operation of Test Parity Latch

The state of Rb register bit 2 is tested at WC4, CP2
during a diagnose operation. If this bit is a one, the
test parity latch is turned on and remains on until
reset by a system reset or by another diagnose
instruction where the mask bit 2 is a zero. The
output is blocked during an interrupt cycle.

The effect of the latch is to allow a one to be
placed in the SDR parity bit position of a byte where
a B register to SDR transfer is being carried out.

The same effect may be obtained manually by
operating the 'test parity equals one' console switch.
In this case, the output of the test-parity latch is
activated by the switch as if the latch was set on.
This output remains active, blocked only by an
interrupt cycle, until the console switch is released.
The action of the switch completely overrides the
mask bit of the diagnose instruction. Operation of
the 'test parity equals one' switch illuminates the
test lamp. Whenever the output of the test-parity
latch is active, irrespective of the source, the
interval timer is suspended.

Instruction Execution

The execution of the diagnose instruction is depen­
dent on bit 3 of the mask field (M1) of the instruction.

If the mask bit is zero, a load operation is per­
formed similar to that described for the load instruc­
tion. If the mask bit is one, a store operation is
performed similar to that described for the store
instruction.

In both cases the extension storage latch is on for
the EA cycle, and the storage access is converted
from a main storage to an extension storage address.

For details of the sequence and timing of the
execute phase of this diagnose instruction, refer to
FEMD, Figure 6075/76 (basic) and 6289/90 (accel­
erator).

Prin Op--Proc Unit 8/66 3A-4S

UPDATE INTERVAL TIMER

• Timer value is contained in main storage fixed
location 50 hex.

• A real-timer constant is used to decrement the
timer value.

• A timer cycle request is generated once per
cycle of line input frequency.

• Timer value update can be disabled from the
console by 'disable interval timer' switch and
'test parity equals one' switch.

• Timer value update is suspended when the machiUE
is in either of the stopped states, during system
reset and during instruction step.

• When the timer value changes from positive to
negative an external interrupt is requested.

+ FPA Sc Re Bit 20

+Gote PSW2 to Funnel

-IC Bit 20

+ Gate HW Reg 11-23

-MSLS Bit 20

+ FPA Sc Reg Bit 21

-IC Bit 21

- MSLS Bit 21

-ICBit22

-MSLSBit22

+ SW for Timer 1
+ FPA Sc Reg Bit 23

- IC Bit 23

-MSLSBit23

+ SW for Timer 2

ALD RA321

Figure 3A-22. PSW 2 and HW Register to Funnel LogiC

3A-46 8/66 Model 44 FETO

A fixed storage location is set aside at location 50
hex where a full word of timer value may be inserted.
This value may be changed at any time by storing a
new value provided that the location is not protected.
The objective is to put in a value at location 50 hex
and produce a constant, at line frequency, to reduce
the value to a point where it changes from positive
to negative. At this point an external-interrupt
request is made. The maximum value of the full
word at location 50 hex is 15.5 hours realtime.

The timer update is initiated by a singleshot
driven by a 7v ac transformer. The singleshot gives
a pulse once per cycle. Thus, the opportunity to
update occurs either 50 or 60 times per second,
dependent on supply frequency. The output of the
singleshot sets the timer cycle request latch which
requests priority to inhibit I-cycle control and
reduce the timer value in storage. The timer cycle
request latch cannot be set if the disable interval
timer or force parity switches are active.

+ Bit 20 to Funnel

+Bit 21 to Funnel

+ Bit 22 10 Funnel

+ Bi I 23 10 Funnel

When the 'end execute' occurs, it sets the timer
cycle control latch if I/o or console operations are
not in progress. These two operations inhibit the
output of the active timer cycle control latch so that
this output is available to set the T-cycle latch when
I/o and console functions are complete. Address
50 hex is forced into SAR and the old timer value is
set into the SDR while the A, Band C registers are
reset. A subtract operation is started by the sub­
tract trigger to reduce the old timer value by the
constant. The value of this constant is - 600 hex for
50 cycles per second, and - 500 hex for 60 cycles per
second machines. (See Figure 3A-22 for the HW
funnel logic.)

The constant is allowed to be fed from the nega­
tive logic construction at the HW funnel. The output
of the HW funnel is logical ones, if not otherwise
gated, except that the line 'T-cycle not console
function' inhibits the one from bit 21 and, combined
with the choice of supply frequency, inhibits a one
from either bit 22 or 23. The net result is gated to
the Band C registers in complement form as
follows:

1111 1111 1111 1111 1111 1001 1111 1111 (- 600 hex) 50 cps

1111 1111 1111 1111 1111 1010 1111 1111 (- 500 hex) 60 cps

The choice of supply frequency is determined by a
switch card inserted on installation of the machine
(Figure 3A-23). In Figure 3A-22, note that both
the gate PSW 2 and gate hardware register lines
are negative, and the floating-point scratch register
output is positive when it is not gated onto its output
bus. As the constant is now in the Band C registers,
the old timer value is brought from the SDR into the
A, Band C registers.

With the subtract trigger set, an arithmetic cycle
takes place. The A and C registers set the CLA,

+ 60 Cycple,-,S,-"u=L.L""I

+ T C cle

-------,
Add Link for 50 D051
Cycle Supply I

I I

Ground B07 <>-{DOS:

Add Link for ; I
60 Cycle Supply :

Figure 3A-23. Main Frequency Determination

Bit 23
(for 60 Cycle)

Bit 22
(for 50 Cyc Ie)

and the result appears in the B register. This is
the new timer value, which goes from the B register
to the original location in storage to replace the old
timer value on the last write section of the T-cycle.

When the A register contains the old timer value
and the B register contains the new timer value, bit
00 of both registers is sampled at the final RC4
time.

If A register bit 00 is a positive sign and B reg­
ister bit 00 is a negative Sign, this implies that the
latest subtraction has brought about a change from a
small positive number to a negative number. An
external interrupt is then requested. This is the
only condition to cause an interrupt request. A
change from A register negative sign to B register
positive sign (an overflow condition) is ignored.

The sequence and timing of the operation is
shown in FEMD, Figures 6087/8 (basic) and 6295/96
(accelerator) .

Prin Op--Proc Unit 8/66 3A-47

INTERRUPTS

The interrupt system permits the CPU to change its
status as a result of conditions in the CPU itself,
conditions external to the system, or conditions in
I/O units. The five classes of interrupts and their
priorities are:

Class of Interrupt
Internal machine check
Supervisor call or program
External interrupt
External machine check
I/O

Priority
1
2*
3
4
5

*The program and supervisor-call interrupts are
mutually exclusive and cannot occur at the same
time.

At the end of each instruction execution, an 'end
execute' signal is generated and used to initiate
another instruction fetch if no inhibiting conditions
are present. One of the inhibiting conditions is a
pending interrupt request. To take the interrupt,
the interrupt request line has to be active before the
'end execute' signal. If the interrupt request line
is active, the 'end execute' signal is used to set the
interrupt cycle instead of the usual next I-cycle.
Thus, an interrupt, if pending, is always taken after
one instruction execution is finished and before a
new instruction is started.

Some interrupts may be masked off by the pro­
grammer. The I/O and external interrupts may be
masked by the system mask. Three of the ten pro­
gram interrupts may be masked by the program
mask, and the machine-check interrupt may be
masked by the machine-check mask (Figure 3A-24).

Interrupt Priori ty Source Interrupt Code Mask ILC Execution
Type Identi fi cati on PSW Bits 16 to 31 Bits SMT

I~PSW 1
2~PSW 2

Internal

Machine Check 1 CPU Control Check 0000 0000 0001 0000 1/13 x Terminate
SDR Check 0000 0000 0000 1000 1/13 x Terminate

Program 2 Operation 00000000 00000001 1,2,3 Suppress
Privi leged Operation 00000000 00000010 1,2 Suppress

Terminate
Addressing 00000000 00000101 0, I ,2,3 Suppress

Terminate

Sped fj cation 00000000 00000110 1,2,3 Suppress
Fixed-Point Overflow 00000000 00001000 2/5 1,2 Complete
Fixed-Point Divide 00000000 00001001 1,2 Suppress

Complete
Exponent Overflow 00000000 00001100 1,2 Terminate
Exponent Underflow 00000000 00001101 2/7 1,2 Complete
Signi fi cance 00000000 00001110 2/8 1,2 Complete
Floating-Point Divide 00000000 00001111 1,2 Suppress

SUf=,ervisor 2 Instruction Bi ts 00000000 rrrrrrrr I Complete
Call

External 3 External Signal I 00000000 xxxxxxxl 1/7 x Complete
External Signal 2 00000000 xxxxxxlx 1/7 x Complete
External Signal 3 00000000 xxxxxlxx 1/7 x Complete
External Signal 4 00000000 xxxxlxxx 1/7 x Complete
External Signal 5 00000000 xxxlxxxx 1/7 x Complete
External Signol 6 00000000 xxlxxxxx 1/7 x Complete
Interrupt Key 00000000 xlxxxxxx 1/7 x Complete
Timer 00000000 lxxxxxxx 1/7 x Complete

External 4 Channel 2 Error 1000 0001 OOOX X 000 1/13 x Terminate
Machine Check Channel I Error 1000 0010 OOOX XOOO x Terminate
(Channel Ctl) Channel 0 Error 1000 0100 OOOX XOOO x Terminate

External 4 Channel 2 Error 1000 0001 0000 0000 1/13 x Terminate
Machine Check Channel I Error 1000 0010 0000 0000 x Terminate
(Interface Ctl) Channel 0 Error 1000 0100 0000 0000 x Terminate

Input/Output 5 HSMPX Channel 2 00000010 00000000 1/2 x Complete
HSMPX Channel I 00000001 00000000 1/1 x Complete
Multiplexor Channel 00000000 00000000 1/0 x Complete

Notes

a Device Address Bits
Bits of RI and R2 Field of Supervisor Call

x Unpredictcthle

Figure 3A-24. Table of Interrupts

3A-48 8/66 Model 44 FETO

i
\

During execution of an instruction, more than one
interrupt-causing event may occur. The causes of
these interrupts are held in various latches until the
interrupt cycle is taken. If more than one class of
interrupt is pending at the end of instruction execu­
tion' the machine must decide which interrupt is to
be taken first.

The order of priority is shown in Figure 3A-24.
The program and supervisor-call interrupts are
mutually exclusive and cannot occur at the same
time.

The way in which the preceding instruction is
finished may be influenced by the cause of the inter­
rupt. The instruction is said to have been completed,
terminated or suppressed.

In the case of instruction completion, results are
stored and the condition code is set as for normal
instruction operation, although the result may be
influenced by the exception that has occurred.

In the case of instruction termination, all, part,
or none of the result may be stored. Therefore, the

Type of Priority Couse Exception
Interrupt Closs Irpt or

Check Latch

Internal - Sequence Check X
Machine 1 - Cycle Ctl Chk Any X
Check - SDR Pari ty Chk CPU X

- Console Forced Chk Error X

- Operation X
- Privi leged Op X
- Addressing X
- Specification X

Program 2 - Fixed-point Overflow mX
- Fixed-poi nt Divide X
- FP Exp Overflow X
- FP Exp Underflow mX
- Significance mX
- FP Divide X

Supervisor 2 - Supervisor Call Op
Coil

- External Signal 1
- External Signal 2
- External Signal 3

External 3 - External Signal 4
- External Signal 5
- External Signal 6
- Interrupt Key
- Timer

External 1 Channel 2 Interface Chk X
Machine 4 1 Channe I 2 Channel Ctl X
Check 2 Channell Interface Chk X

2 Channell Channel Ctl X
3 Channel 0 Interface Chk X
3 Channel 0 Channel Ctl X

Input 1 HSMPX Channel 2
Output 5 2 HSMPX Channell

3 MPX Channel

NOTES: C: Indicates that this latch is used to set the interrupt code.
m: The mask bit should be 1 to set the latch.

moo The output line is activated if mask bit of 1 is applied.
X: Indicates that this latch is'on.

Figure 3A-2S. Summary of Interrupt Control Latches

C
C
C

C
C
C
C
C
C
C
C
C
C

C
C
C
C
C
C

result data is unpredictable. The setting of the con­
dition code, if called for, may also be unpredictable.
In general, the results should not be used for further
computation.

In the case of instruction suppression, the execu­
tion proceeds as if no operation were specified. The
results are not stored and the condition code is not
changed.

The machine can handle only one class of interrupt
at a time, and when more than one interrupt is re­
quested, they must be taken in order of priority. The
interrupt class latches are set in the order, or pri­
ority, listed previously. An interrupt class latch
cannot be set unless all interrupt latches of higher
priority are off.

An interrupt cycle consists of storing the current
PSW as an old PSW and fetching the new PSW as a
current PSW. To exchange the PSW's, the CPU
takes four storage cycles.

An 'end execute' signal is active at the end of the
interrupt cycles in the same way as for normal

Request Accept Irpt Comment
Latch Latch Latch

X 'Machine check mask auxiliary'
X latch is set by 'machine check

mask on' giving 'allow machine
interrupt' .

The highest internal priority
interrupt is indicated in interrupt
code.

X

X X Interrupt code is set from the bits
8 to 15 of the instructions

X mo X C One mask bit controls all of the
X mo X C External interrupts
X mo X C
X mo X C X
X mo X C All accepted signals are
X mo X C indicated in interrupt code at the
X mo X C same time.
X mo X C

X Auxiliary latch is operative.
X Interrupt code (PSWI bi ts 27 & 28)
X indicate channel control check.
X X
X
X

X mo X Interrupt code is the channel
X mo X X address and the device address
X mo X

Prin Op--Proc Unit 8/66 3A-49

instruction execution. If another interrupt request
is pending, it will be taken at this time. Otherwise,
the next instruction is fetched, from the storage
location defined by the new value of the IC, and exe­
cuted. Machine status is indicated by the new PSW,
which now becomes a current PSW for subsequent
operations.

ACCEPTING THE INTERRUPT

• When multiple interrupts are present, only one
can be dealt with at one time.

• Simultaneously occurring interrupts of different
class are accepted in a predetermined priority.

• Some interrupts can be prevented from occurring
by mask bits in the current PSW.

The system used to establish the priority, and the
system of accepting each of the different classes of
interrupt are described in the following sections.
The latches and conditions used are summarized in
Figure 3A-25.

Machine-Check Interrupt

The machine check interrupt has the highest priority .
This interrupt can be masked on or off. If the

mask bit is 0 the interrupt is ignored; if the mask
bit is 1, a machine check causes a machine-check
interrupt.

The CPU errors which cause the machine-check
interrupts are:

1. SDR parity check
2. Sequence check
3. Cycle control check
4. Console-forced machine check.

The 'allow machine check' line must be conditioned
to allow a machine check to cause a machine -check
interrupt. For this line to be conditioned, the
machine-check mask must be 1, and the check con­
trol switch on the console must not be in either the
stop or the disable position.

When a machine check occurs, the 'allow machine
check' signal combines with the CPU error signal
and inhibits any wrapping of the compute clock that
may be occurring. At the next CC6 an 'end execute'
signal is generated which immediately terminates the
current operation. The signal generated by the CPU
error also initiates the machine-check interrupt
request, and is used to turn on the machine-check
interrupt latch to define the interrupt cycles being
performed.

Once the machine -check interrupt cycles are
started, the CPU error latches are reset. This
allows the machine to check for further CPU errors

3A-SO 8/66 Model 44 FETO

that may occur during the machine-check interrupt
cycles and subsequent operations.

If a machine-check interrupt is requested during
any interrupt cycle, the current interrupt cycle is
terminated at the next WC4 time by resetting the
interrupt latch and forcing the 'end execute' signal.
If the class of the terminated interrupt is other than
machine check, a machine-check interrupt is then
taken.

At the start of the machine-check interrupt, the
'double error sample' latch is set, and remains on
until near the end of the interrupt cycles. See
FEMD, Figures 6079/80 (basic) and 6293/94 (accel­
erator). This latch is set to avoid the possibility
of the machine permanently executing machine­
check interrupt cycles, if a machine check occurs
during the machine-check interrupt cycles. The
latch causes a machine hardstop condition if any
CPU errors occur during the machine-check inter­
rupt cycles.

Program Interrupt

This class of interrupt may be caused by up to ten
exception conditions; there is an internal priority
for these exceptions, and the exception with the high­
est priority has to be identified.

Each exception sets an individual exception latch.
Three of these exceptions need a mask bit of 1 to
allow the latch to be set: fixed-point overflow,
floating-point exponent underflow, and floating­
point significance. If the mask bit is zero, the
latches are prevented from setting and the interrupt
is ignored. The exception latch for the exception
with the highest internal priority is used to set the
interrupt code. The exception latch outputs are
OR'ed together, and used to request the interrupt
and to set the program interrupt latch. This pro­
gram interrupt latch is not set if the machine-check
interrupt request latch is on. Thus, the program
interrupt has a lower priority than the machine­
check interrupt.

If a machine-check interrupt is taken in priority
over a program interrupt, all the exception latches
are reset during the last interrupt period of the
machine-check interrupt. Accordingly, the program
interrupt does not remain pending and all conditions
are cleared.

During any interrupt cycle, a specification excep­
tion may occur if the protection feature is not in­
stalled, and a new PSW with a non-zero protection
key is loaded. A program interrupt is taken imme­
diately upon loading the new PSW, unless the machine­
check interrupt is pending. The protection key is
made zero when the PSW is stored. If the new PSW
again has a non-zero protection key, program inter­
rupts will continue to occur, and the process is

repeated with the CPU involved in a string of program
interrupts.

This string can be broken only by Initial Program
Loading (IPL) or system reset.

If the new PSW for the program interrupt has an
unacceptable instruction address, another program
interrupt occurs. As this second program interrupt
introduces the same unacceptable instruction address,
a string of program interrupts is established. This
string may be broken as before by IPL or system
reset, or by the machine-check, external, or I/O
interrupts. If these interrupts also have an unaccept­
able new PSW, new supervisor information must be
introduced by the IPL or by manual intervention.

When the machine encounters the following con­
ditions, the operation is suppressed, the 'end execute'
signal is forced and the program interrupt is taken:

1. Invalid op code is detected (operation speci-
fication) .

2. Specification exception is detected.
3. Invalid address is set (address specification).
4. Privileged operation exception in the problem

state.
5. Fixed-point divide exception.
6. Floating-point divide exception.

Program Interrupt Backup

ACCELERATOR only: On a basic machine
(GPR's in core storage) there is sufficient time
during instruction execution for a program
interrupt to be taken, and the normal execution
of the next instruction is inhibited.

MSLS GPR's execute instructions much faster
and in many cases the next I -fetch is started
while the previous instruction is terminating.
In a fixed-point overflow situation, the program
interrupt is recognized near the end of the cur­
rent instruction, and is too late to stop the next
instruction. There is time, however, to 'freeze'
the I-fetch operation and prevent CPU data from
being altered. A 'backup for interrupt' latch,
set by fixed-point overflow, performs this func­
tion and produces a dummy I-fetch with the
following effects:

Incrementing of the instruction counter is .
inhibited.

No address indexing occurs.
Set or reset of the op register is inhibited.
'End execute' is forced at the end of I-fetch.

The signal 'end execute' then permits the pro­
gram interrupt to be taken.

Supervisor-Call Interrupt

During I-fetch of the supervisor-call instruction the
supervisor-call request latch is set. This request

latch initiates the interrupt cycles and sets the
supervisor-call interrupt latch if both the machine­
check and the program interrupt latches are off.
These latches are reset during the last period of
the interrupt cycles. Thus, if a machine-check con­
dition occurs during the I-fetch of the supervisor­
call instruction, the machine-check interrupt is
taken in priority over the supervisor:"call interrupt.
The supervisor-call interrupt latch is reset during
the machine-check interrupt, and the supervisor­
call interrupt is cancelled.

External Interrupt

On the basic system there are only two external
interrupt signals: interrupt key from the console,
and timer update. They can be extended, with the
addition of six signal lines, to a special interface
which may be utilized by any equipment capable of
producing signals with a duration of 0.5 to 0.1 micro­
seconds.

There is a request latch and an accept latch for
each external-interrupt signal. An incoming signal
sets its appropriate request latch which stores the
request for an interrupt until the machine accepts it.
The output lines from the interrupt request latches
are OR'ed together to set the external-interrupt latch
at the beginning of the cycle where the interrupt is
taken. The external-interrupt request line is subject
to the one-state of mask bit 7. Thus, the external­
interrupt latch cannot be set if the mask bit is zero
or if a higher priority interrupt latch is on.

Shortly after the external-interrupt cycles are
started, a time is established when all pending
requests are accepted. The accept latch is set for
each request latch that is on at the time. The accept
latches are used to set the interrupt code in PSW 1
bits 16 to 31 and they represent the external-interrupt
requests that have been accepted.

Request latches are not immediately reset, to
allow the maximum-length input signal to fall. This
ensures that one signal does not set the request latch
twice.

The request latches are reset on the fourth inter­
rupt cycle when the corresponding accept latch is on.
This means that only the accepted requests have their
request latches reset. Also, requests that arrive at
the request latch while it is on, will be ignored if
they occur before the request latch is reset. This
complies with the architecture of System/360.

External Machine Check

An external machine check has an interrupt of pri-
0rity class four and comes after an external interrupt
and before an I/O interrupt. An external machine
check affects all I/O operations on the relevant chan-

Prin Op--Proc Unit 8/66 3A-51

nel. Errors causing an external machine check are
the interface control check and the channel control
check. The conditions leading to these checks are
set out in the Principles of Operation - Channels,
Form Y33-0003.

Detection of an external machine check condition
causes all interface activity to be terminated at the
next single-cycle point, and the channel to be denied
further access to main storage. The CPU and other
channels, if not in error, continue to operate and the
external machine check remains pending.

Conditions are set up for the external machine
check line to set the I/O machine check request
latch when the interrupt request sample appears at
'end execute' time. Also, to define that this is an
external check, bit 16 of the old PSW 1 interrupt
code is set to one. The channel that caused the error
is identified by a bit in position 23 for channel 2, a
bit in position 22 for channell and a bit in position
21 for channel O. Zeros in bit positions 27 and 28
of the old PSW IC indicate an interface control check.
Ones in these positions indicate that the interrupt
was due to a channel control check.

The on states of the I/O machine check request
latch combined with the set interrupt latches, set the
machine check interrupt latch on. From this point
the operation proceeds as for any machine check.
The old PSW 1 carries the external machine check
identity in bit position 16.

I/O Interrupts

The system of accepting I/O interrupts is in many
ways similar to that used for external interrupts.

There is both a channel interrupt request and an
accept latch for each of the three available channels.
When an interrupt request is sent from the channel,
the corresponding channel request latch is set. The
outputs of these latches are active only if the corres­
ponding mask bit is a one.

If the output of anyone of the three channel
request latches is active, a request for I/o interrupt
is generated at the next 'end execute' signal.

When the interrupt cycles are started, the I/O
interrupt latch is turned on, provided that no other
class of interrupt request is present. This gives
I/O interrupts the lowest priority of all the classes
of interrupts.

During the first interrupt cycle, the machine
accepts the channel interrupt request by turning on
the corresponding accept latch. When there is more
than one channel request latch on, only one request
is accepted. This acceptance is determined by
internal priority with the accept latches. The multi­
plex channel 0 accept latch cannot turn on if either
of the HS multiplex channel request latches is on,
and the HS multiplex channell accept latch cannot

3A-S2 8/66 Model 44 FETO

turn on if the HS multiplex channel 2 request latch is
on.

The internal priority is therefore:
1. High speed multiplexor channel 2
2. High speed multiplexor channell
3. Multiplexor channel 0

Near the completion of the interrupt cycles, a signal
is developed which is sent to the channel to cause a
reset of the channel interrupt request.

INTERRUPT CYCLES

• An interrupt routine consists of storing the cur­
rent PSW as an old PSW, and fetching a new PSW.

• Fixed -address locations are prOvided for both the
old and new PSW's.

• The interrupt codes are developed and stored as a
part of the old PSW.

An interrupt cycle consists of storing the current PSW
as an old PSW, and fetching the new PSW as a cur­
rent PSW. To exchange the PSW's, the CPU takes
four interrupt storage cycles.

The cause and class of the interrupt are identified,
so that the machine and the programmer can dis­
tinguish between the types of interrupts. The cause
of the interrupt is identified by setting a bit or bits
in the interrupt code of the old PSW; the class is
identified by addressing separate predetermined
locations for the new PSW and the old PSW (Figure
3A-26). Figure 3A-24 shows the cause of interrupts
within each class, the corresponding interrupt code
and, where applicable, mask bits.

ADDRESS
Length Purpose

Dec Hex Binary

24 18 0001 1000 Double Word External Old PSW

32 20 0010 0000 Double Word Supervisor Call Old PSW

40 28 0010 1000 Double Word Program Old PSW

48 30 0011 0000 Double Word Machine Check Old PSW

56 38 0011 1000 Double Word Input/Output Old PSW

64 40 0100 0000 Double Word Channel Status Word

88 58 0101 1000 Double Word External New PSW

96 60 0110 0000 Double Word Supervisor Call New PSW

104 68 0110 1000 Double Word Program New PSW

112 70 0111 0000 Double Word Machine Check New PSW

120 78 0111 1000 Double Word Input/Output New PSW

Figure 3A-26. PSW and CSW Storage Locations

Interrupts are taken after an instruction comes
to 'end execute' and before the next instruction is
started.

To exchange the PSW's, the CPU takes four inter­
rupt storage cycles: new PSW 1, old PSW 1, new
PSW 2 and old PSW 2, periods.

For the timing and sequence of these periods, see
FEMD, Figures 6079/80 (basic) and 6293/94 (accel­
erator).

The class of the interrupt is defined by the setting
of the appropriate interrupt class latch in the new
PSW 1 period. One of the functions of these latches
is to determine the addressing of the respective PSW
fixed locations.

Cycle 1, New PSW 1 Period

On this cycle, the new PSW 1 is fetched from storage.
The appropriate new PSW fixed address is set into
the SARIs, and the new PSW 1 is read out from stor­
age into the SDR. The A, B, C and EX registers
are reset and the SDR is gated via the ABC funnel to
the B register.

At the completion of this cycle therefore, the new
PSW 1 is contained in the B register.

For the external and I/O interrupts, the request
latches are copied to the accept latches early in this
cycle. For the machine-check interrupt, CPU error
conditions are also reset early in the cycle.

At this time the I/O interrupt halts the interrupt
storage cycle in order to store the CSW. This is
described later under "Storing the CSW." At the
completion of the store cycles, the I/O interrupt
proceeds with the old PSW 1 period in the same way
as all other types of interrupt.

Cycle 2, Old PSW 1 Period

On this cycle, the old PSW 1 is stored into the old
PSW fixed address location, and the new PSW 1
fetched in the previous cycle is set into the PSW 1
register.

The old PSW 1 is stored via the SDR. Bits 0 to
15 of the SDR are set from bits 0 to 15 of the cur­
rent PSW 1; bits 16 to 29 are not set except in the
case of an I/O interrupt; bits 24 to 31 are the inter­
rupt code and are set depending upon the cause of
the interrupt (the pattern of these bits is listed in
Figure 3A-24). The contents of the SDR are then
stored into the old PSW 1 location, as described
later under "Developing the Interrupt Code. "

On the later portion of this cycle, the B register
is gated to the PSW 1 register.

At the completion of this cycle, the current PSW
1 has been stored as an old PSW with the new inter­
rupt code in the old PSW 1 location, and the new
PSW 1 has been fetched and stored in the current
PSW 1 register.

Cycle 3, New PSW 2 Period

On this cycle, the new PSW 2 is fetched and prep­
aration is made to store the old PSW 2.

The new PSW 2 is fetched from the fixed address
location defined by the type of interrupt, and set into
the SDR. It is gated from there to the B register
and placed in the BX register by a B to BX inter­
change. During this cycle, the current PSW 2 is
gated via the HW funnel to the ABC funnel and to the
A register.

Thus, at the completion of this cycle, the new
PSW 2 is contained in the BX register, and the old
PSW 2 is contained in the A register.

Cycle 4, Old PSW 2 Period

On this cycle, the old PSW 2 is stored and the new
PSW 2 is set to the current PSW 2 register. The
old PSW 2 is fed from the A register, via the ABC
funnel and the B register, to the SDR, and stored in
the fixed address location. During this cycle, the
IC (PSW 2 bits 8 to 31) of the current PSW 2 is set
from the EX register. After the B register has been
set to the SDR, the B and BX registers are inter­
changed. PSW 2 bits 2 to 7 of the current PSW are
then set from the B register.

Bits 0 and 1 of PSW 2 are the Instruction Length
Code (ILC) and remain unchanged.

During this period the external and I/O request
latches are reset if the corresponding accept latch
is on. The accept latches are then reset.

Summary of Interrupt Cycles

At the completion of these cycles, the current PSW
has been stored as an old PSW, and the new PSW has
been fetched and set as the current PSW.

The old PSW contains the ILC of the instruction
last fetched and the address of the next instruction
that would have been executed if an interrupt had
not occurred.

The ILC is a network originating from the op reg­
ister. This register does not reset until the next
I-fetch, and during the interrupt cycle, the op reg­
ister contains the op code of the last instruction
fetched before the interrupt. Thus, the ILC remains
unchanged until the next I-fetch is taken.

I/O Interrupts

During the first interrupt cycle, the new PSW 1
period, the wait for I/O latch is turned on if the
interrupt class is an I/O interrupt. This latch inhib­
its the turning on of IRPT cycle control, and signals
to the appropriate channel (in conjunction with the
accept latch) that the storing of the CSW is to proceed.

Prin Op--Proc Unit 8/66 3A-S3

storing the CSW

• Four C-cycles are taken to store the CSW.

• The CSW is stored into the fixed storage locations
40 to 47 hex.

• If the sub channel is busy, the whole of the CSW is
stored.

• If the subchannel is free, only the status portion
of the CSW is stored.

• If the CSW information is available in the channel
area, it is stored from this area.

• If the CSW information is stacked in the device,
the device is selected to obtain this information.

When the accept interrupt signal is sent to the chan­
nel, it starts to re-select the device in order to fetch
the status. (The device is not re-selected for the
high speed multiplexor channel if the subchannel is
busy.) This selection is similar to initial selection
during a start I/O operation. Four C-cycles are
needed to store the CSW.

For multiplexor channel 0, the information is
taken from the selected sub channel in the extension
storage and loaded back into the main storage. The
status portion, however, is loaded from the channel
data register.

For the high speed multiplexor channels, the infor­
mation is loaded direct from the registers for the
selected subchannel. For further details refer to
the descriptions of "CSW Storing" in the multiplexor
channel 0 and high speed multiplexor channel sec­
tions in the Principles of Operation - Channels,
Form Y33-0003.

:Oeveloping the Interrupt Code

During the old PSW 1 period of exchanging the PSW's,
the interrupt code is developed and set into the old
PSW 1.

Machine-Check Interrupt

Bit 16 of the interrupt code is set directly from 'I/O
error' which identifies the machine check as exter­
nal in origin. The on state of bit 16 also lowers the
priority of the interrupt. Bits 21, 22 and 23 are set
from the channel check request latches. Bits 27 and
28, which signify the type of error, are set from the
exception latches. If the machine has more than one
check latch on at the same time, both bits may be
set at the same cycle .

3A-S4 8/66 Model 44 FETO

Program Interrupt

The program-interrupt code is set from the excep­
tion latches.

As it is possible to have more than one exception
latch on, the exception latch with the highest internal
priority is used to set the appropriate interrupt code.
(See Figures 3A-24, 25.)

All exception latches are reset during the interrupt
cycles so that the exceptions not identified in the
interrupt code are not held pending.

Bits 16 to 27 of the interrupt code are always made
zero.

Supervisor-Call Interrupt

Bits 24 to 31 of the interrupt code are obtained from
the Ra and Rb registers, which are set from bits 8 to
15 of the instruction during the I-fetch.

Bits 16 to 23 of the interrupt code are made zero.

External Interrupt

The accept latches are used to set the external­
interrupt codes, bits 24 to 31. If the latches are on,
the corresponding bit positions are set to ones. If
more than one accept latch is set, all the corres­
ponding interrupt code bits are set at the same time
on this interrupt cycle. (See Figure 3A-24.)

Bits 16 to 23 of the interrupt code are made zeros.

Input/Output Interrupt

Bits 21 to 23 and 24 to 31 of the I/O interrupt code
are the channel address and the device address
respectively, of the unit causing the interrupt. Bits
16 to 20 are made zeros.

Note that the condition in the device causing the
I/o interrupt is identified in the status section of the
CSW stored during the I/O interrupt.

TERMINATING THE INTERRUPT CYCLES

An interrupt is normally terminated by an 'end exe­
cute' signal in the same way as for instruction exe­
cution. The occurrence of a machine check during
the interrupt cycles also terminates the interrupt by
developing an 'end execute' signal, unless the
machine-check occurs during a machine-check
interrupt, in which case a hardstop occurs.

If there is another interrupt pending when the 'end
execute I signal· is developed, it is taken, otherwise
a new instruction is fetched, using the IC field of
the new PSW loaded during the interrupt cycles.

Special consideration must be given to the can­
cellation of an I/O interrupt, as there are some

conditions under which the interrupt is terminated
prio~ to the time at which the CSW store cycles
would normally occur.

Cancellation of an I/O Interrupt

• An interrupt is cancelled if the interface is work­
ing in burst mode at the time the channel tries to
re-select the device.

• If the interrupt is cancelled, the interrupt latches
in the channel and subchannel are reset.

• The I/O cancel interrupt signal forces the end­
execute latch on; the CPU continues with the next
sequential instruction.

If the interface is working in the burst mode when the
channel or subchannel tries to re-select the device,
the interrupt is cancelled (rather than hold the CPU
waiting for an interrupt until the burst mode opera­
tion is completed).

During the first interrupt cycle the new PSW 1 was
fetched from main storage and loaded into the B reg­
ister. At that time, no information in either the old
or current PSW was altered.

The I/o cancel interrupt line sets the end-execute
latch, and the CPU continues with the next sequential
instruction.

The I/o cancel interrupt line also resets the inter­
rupt latches in the channel and subchannel. When the
interface is next free, the device again sends a 're­
quest in' and the channel-interrupt latch is again set.

Prin Op--Proc Unit 8/66 3A-55

FROM

COMMENT SHEET

System/360, Model 44, Principles of Operation, Processing Unit
Field Engineering Theory of Operation Y33-0002

NAM E _________________________ OFF ICE /D EPT NO. ___ _

C I TV /STATE ______ ----____________ DA TE _________ _

To make this manual more useful to you, we want your comments: what
additional information should be included in the manual; what description
or figure could be clarified; what subject requires more explanation; what
presentation is particularly helpful to you; and so forth.

How do you rate this manual: Excellent __ Good __ Fair __ Poor __

Suggestions from IBM Employees giving specific solutions intended for award
considerations should be submitted through the IBM Suggestion Plan.

NO POSTAGE NECESSARY iF MAiLED iN U. S. A.

FOLD ON TWO LINES (LOCATED ON REVERSE SIDE.), STAPLE AND MAIL.

fold fold
,

ATTENTION: FE MANUALS, DEPT. B96

BUSINESS REPLY MAIL
NO POSTAGE NECESSARY IF MAILED IN THE UNITEQ STATES

POSTAGE WILL BE PAID BY ••.

IBM CORPORATION

P.O. BOX 390
POUGHKEEPSIE, N.Y. 12602

FIRST CLASS
PERMIT NO. 81

POUGHKEEPSIE, N.Y.

~ .

•• !' •••••••••••••••••••••••••••••••••• , •••••••••• :

fold fold

•

•

..

- - - - - - CUT H·ERE - - - - -

Y33-0002-0

~rn~
<!)

International Business Machines Corporation
Field Engineering llivision
112 East Post Road, White Plains, R Y_ 10601

I
I

__ ...I

II> -­w
~
3:
8.
!!.
t

(

