File' No. 1130-36
“Order No. GC26-3717-9

Systems Reference Library

IBM 1130 Disk Monitor System, Version 2,
Programmer's and Operator's Guide

Program Numbers: 1130-05-005
1130-05-006

Tenth Edition (May 1972)

This is a major revision of, and obsoletes, GC26-3717-8. Technical changes or additions to the text and
illustrations are indicated by a vertical line to the left of the changes.

This edition applies to version 2, modification 11, of the IBM 1130 Disk Monitor Programming System;
to version 1, modification 5, of the IBM 1130 Remote Job Entry Work Station Program, and to all
subsequent versions and modifications until otherwise indicated in new editions or Technical Newsletters.
Changes are periodically made to the information herein. Before using this publication in connection
with the operation of IBM systems, consult the latest SRL Newsletter, GN20-1130, for the editions

that are applicable and current.

Text for this manual has been prepared with the IBM Selectric ® Composer.

Some illustrations in this manual have a code number in the lower corner. This is a publishing con\
number and is not related to the subject matter. .

Requests for copies of IBM publications should be made to your IBM representatlve or to th
branch office serving your locality.

A form for readers’ comments is provided at the back of this publication. If the form ha*‘
send your comments to IBM Corporation, Systems Publications, Department 27T, P. O!
Boca Raton, Florida 33432. .

E

© Copyright International Business Machines Corporation 1966, 1968, 1969, 1970, ¥

Preface

This publication contains reference information for controlling and operating the 1130
Disk Monitor System, Version 2. The publication assumes you are familiar with the pro-
gramming language needed to do your jobs.

Chapter 1 of this publication describes how you use this book. The rest of the chapters:
Describe the disk monitor system (DM2) programs and disk areas
Describe the control records for controlling the functions of the disk monitor system

.
.

® Provide tips and techniques for more efficient use of DM2

® Provide sample operating procedures for loading, reloading, and using DM2
°

Describe the 1130 RJE Work Station Program

The minimum system configuration required to operate the IBM 1130 Disk Monitor
System, Version 2, Program Number 1130-0S-005 (card input/output) is:

e An IBM 1131 Central Processing Unit, Model 2A or 4A (with an internal single disk
storage drive and 4096 words of core storage)

e An IBM 1442 Card Read Punch, Model 6 or 7, or an IBM 1442 Card Reader, in
combination with an IBM 1442 Card Punch, Model 5

or
e An IBM 1131 Central Processing Unit, Model 1B (with 8192 words of core storage)
e An IBM 1133 Multiplex Control Enclosure '
e An IBM 2311 Disk Storage Drive, Model 12

e An IBM 1442 Card Read Punch, Model 6 or 7, or an IBM 2501 Card Reader, in
combination with an IBM 1442 Card Punch, Model 5

The minimum system configuration required to operate the IBM 1130 Disk Monitor
System, Version 2, Program Number 1130-0S-006 (paper tape input/output) is:

e An IBM 1131 Central Processing Unit, Model 2A (with an internal single disk storage
drive and 4096 words of core storage)

e An IBM 1134 Paper Tape Reader

e An IBM 1055 Paper Tape Punch
The following publications provide further information about the 1130 computing system:

IBM 1130 Functional Characteristics, GA26-5881

IBM 1130 Operating Procedures, GA26-5717

IBM 1130/1800 Assembler Language, GC26-3778

IBM 1130/1800 Basic FORTRAN IV Language, GC26-3715

IBM 1130 RPG Language, GC21-5002

IBM 1130 Subroutine Library, GC26-5929

IBM 1130 MTCA I0CS Subroutines, GC33-3002

IBM 1130 Synchronous Communications Adapter Subroutines, GC26-3706

1BM 1130/1800 Plotter Subroutines, GC26-3755

IBM System/360 Operating System and 1130 Disk Monitor System: System/360 1130
Data Transmission for FORTRAN, GC27-6937

IBM System/360 Operating System and 1130 Disk Monitor System: User’s Guide for Job
Control from an IBM 2250 Display Unit Attached to an IBM 1130 System, GC27-6938

IBM System/360 Operating System: Remote Job Entry, GC30-2006

Publications that provide information about IBM 1130 COBOL, a program product, are:

IBM 1130 COBOL General Information Manual, GH20-0799
IBM 1130 COBOL Language Specifications Manual, SH20-0816

Preface iii

Contents

Summary of Amendments vii Supervisor Control Records 5-12
*LOCAL. 5-13
Chapter 1. How to Use This Publication 1-1 *NOCAL 5-14
*FILES . 5-15
Chapter 2. Disk Organization 2-1 *(G2250 . 5-16
System Cartridge . F 2-4 *EQUAT 3-17
Cylinder 0 on a System Cartrldge L. 2-4 DUP Control Records . . 5-18
IBM System Area on a System Cartndge e 2-6 Altering LET and FLET 5-20
Fixed Area o 29 Information Transfer and Format Conversnon 5-20
User Area and Working Storage o 29 Restrictions Caused by Temporary Mode 5-22
Nonsystem Cartridge 2-12 :D UMP ., . oo Co 5-22
Cylinder O on a Nonsystem Cartndge L. 2-12 *DUMPDATA . 5-24
IBM System Area on a Nonsystem Cartridge . . . 2-13 *ggﬁgggg AE g'gg
Summary of the Contents of Disk Cartridges 2-14 *DUMPFLET 529
; *STORE . . 5-30
(S:hapter 3. Monitor System Programs 2-; *STOREDATA . 5.33
upervisor - *STOREDATAE 5-34
Resident Monitor 3-2 *STOREDATACI 5-37
Disk-resident Supervisor Programs 33 *STORECI 5-38
Disk Utility Program . 3-4 *STOREMOD 5-42
General Functions of DUP 34 *DELETE 5-44
Assembler . 3-5 *DEFINE 5-45
FORTRAN Compller 3-6 *DWADR 5-47
RPG Compiler . 3-6 *DFILE . . 5-48
Core Load Builder . . 3-7 *MACRO UPDATE 5-49
Construction of a Core Load . 3-7 Assembler Control Records 5-50
Core Image Loader . 3-13 *TWO PASS MODE 5-52
*LIST 5-53
Chapter 4. Monitor System Library . 4-1 *XREF 5-56
System Library ISS Subroutines 42 *LIST DECK . 5-51
System Library Utility Subroutines 4-4 *LIST DECKE . . 5-59
System Library Mainline Programs 4-5 *PRINT SYMBOL TABLE 5-59
IDENT . 4-5 *PUNCH SYMBOL TABLE 5-59
DISC . 4-6 *SAVE SYMBOL TABLE . . 5-60
DSLET 4-7 *SYSTEM SYMBOL TABLE . 5-60
D . 47 *LEVEL . . . 5-61
COPY 4-7 *QVERFLOW SECTORS 5-61
ADRWS . 4-8 *COMMON . 5-63
DLCIB 4-8 *MACLIB . 5-63
MODIF . 4-8 FORTRAN Control Records 5-64
MODSF . 4-14 *J0CS . . . 5-65
DFCNV . 4-20 *LIST SOURCE PROGRAM .. 5-66
PTUTL 4-25 *LIST SUBPROGRAM NAMES . 5-66
*LIST SYMBOL TABLE . 5-67
Chapter 5. Control Records 5-1 *LIST ALL . . 5-67
Monitor C 1 Record 51 *EXTENDED PRECISION 5-68
onitor Control Records - *ONE WORD INTEGERS 5-68
/[JOB 5-2 *NAME 5-69
/| ASM 5-5 % ; ’
// FOR 56 (Header Informatlon) 5-69
I/ RPG 56 * ARITHMETIC TRACE 5-70
: *TRANSFER TRACE . 5-70
// COBOL 56 *ORIGIN 571
// DUP 5-6 :
1/ XEQ : 57 RPS} g?trol Card . . . 5-74
] * (Comments) 59 End-o '1le Control Card 5-74
// PAUS . 5-10
/| TYP . 5-10
// TEND . 5-10
// EJECT 5-11
// CPRNT 5-11
// CEND . 5-11

iv

Chapter 6. Programming Tips and Techniques .

Tips on Monitor Control and Usage
Stacked Job Input Arrangement .
How to Use Temporary Job Mode
Using the Disk I/O Subroutines
Restoring Destroyed Cartridges
How to Avoid Overprinting When Usmg // CPRNT
How to Avoid Overprinting When Linking Between
Programs . .
Usage of the EJECT Momtor Control Record
Duplicate Program and Data File Names
Disadvantages of Storing a Program in DCI Format
Size Discrepancies in Stored Programs
Dumping and Restoring Data Files
Use of Defined Files . .
Mainline Programs that Use All of Core .
The Use of LOCALs ..
LOCAL-Calls-a-LOCAL . .
LOCAL and NOCAL Control Record Usage
The Use of NOCALs
The Use of SOCALs .
Reading a Core Map and a Frle Map P
Locating FORTRAN Allocation Addresses .
Reading the Transfer Vector .
SYSUP R
Data File Processing .
FORTRAN Disk File Orgamzatron and Processrng
Assembler and RPG Disk File Organization and
Processing . .
Calculating Sequentrally Orgamzed and ISAM Frle
Sizes . .
Contents of an ISAM Frle P
Deleting Duplicate Records Caused by a Drsk Error
During an ISAM Add Operation Lo
Tips for Assembler Language Programmers
Grouping of Assembler Mnemonics .
Assembler Program Use of Index Register 3
Double Buffering in Assembler Programs
Assembler Program Use of 1403 Conversion
Subroutines . .
Writing ISSs and ILSs .
Assembler INT REQ Service Subroutme
Tips for FORTRAN Programmers .
Tips for Use of the EQUAT Control Record
Invalid Characters in FORTRAN Source Cards .

FORTRAN Object Program Paper Tape Data Record '

Format

Keyboard Int;ut of Data Records Durmg FORTRAN .

Program Execution . .

FORTRAN Program Control of the Console Prmter

Length of FORTRAN DATA Statement

// Records Read During FORTRAN Program
Execution . . .

FORTRANI/O Errors ..

Dumping FORTRAN DSF Programs to Cards

RPG Object Program Considerations .

Chapter 7. Operating the 1130 Disk Monitor System .

Readying the 1131 Central Processing Unit .
Readying the 2310 Disk Storage Drive
Readying the 2311 Disk Storage Drive
Readying the 1132 Printer .

Readying the 1403 Printer . . .

Readying the 1442 Model 6 and 7 Card Read Punch
Readying the 1442 Model 5 Card Punch .
Readying the 2501 Card Reader

Readying the 1134 Paper Tape Reader
Readying the 1055 Paper Tape Punch
Readying the 1627 Plotter . .

7-5
7-5
7-6
7-7

Readying the 1231 Optical Mark Page Reader
Cold Start Procedure . . .
Card System Cold Start Procedure .o
Paper Tape System Cold Start Procedure
Using the 1130 with the Monitor System
Entering Jobs from the Card Reader . .
Entering Jobs from the Paper Tape Reader .
Entering Jobs from the Console Keyboard
Functions of Console Operator Keys During Momtor
System Control

Displaying or Altering the Contents of a Selected Core

Location
Manual Dump of Core Storage

Chapter 8. Monitor System Initial Load and System
Reload . .o .

IBM-Supplied System Loader Control Records .
SCON and TERM Control Records . .
Phase Identification (PHID) Control Records
Type 81 Control Record .

System Loader Control Records that you Punch
Load Mode Control Record ..
System Configuration Control Records .
CORE Control Record .

Preparation of Load Mode and System Conﬁguratron

Control Tapes . .
Card System Initial Load Operatmg Procedure .
Card System Reload Operating Procedure
Card System Preload Operating Procedure
Paper Tape System Initial Load Operating Procedure
Paper Tape System Reload Operating Procedure

Chapter 9. Stand-alone Utility Programs

Console Printer Core Dump
Printer Core Dump Program .
Disk Cartridge Initialization Program (DCIP)
Disk Initialization Subroutine
Disk Copy Subroutine .
Disk Dump Subroutine
Disk Patch Subroutine .
Disk Analysis Subroutine .
Disk Compare Subroutine .
DCIP Operating Procedures
Paper Tape Reproducing Program . .
Stand-alone Paper Tape Utility Program (PTUTL)

Chapter 10. Remote Job Entry Program

Machine and Device Requirements
Communication Considerations
Communication Considerations for Swrtched Lmes
Input at the Work Station .
Generation of the 1130 RJE Work Statron Program
JECL for the 1130 Work Station . .
End-of-File Indicators .
OQutput to the Work Station
Discontinuing and Continuing Output
User-Exit Subroutine
Operating Procedures
Work Station Startup
The Null Command ..
Console Keyboard Procedures
Error Recovery Procedures
Restart Procedures .
Messages Sent to Work Statrons
RIJE Program Console Entry Switches
Error Statistics . ..

9-4

9-8
9-8
9-9
9-9
9-9
9-9
9-9
9-42
9-46

10-1

10-1
10-1
102
10-2
10-3
10-5
10-6
10-6
10-7
108
109
109
10-10
10-10
10-11
10-11
10-12
10-12
10-12

Contents v

Appendix A. Monitor System Operatlonal and Error
Messages . e e e

Assembler Error Codes and Messages .
FORTRAN Messages and Error Codes

DUP and MUP Messages and Error Messages .
System Loader Messages and Error Messages
Satellite Graphic Job Processor Error Messages .
RIJE Messages and Error Messages .

Supervisor Messages and Error Messages .

RPG Compiler Messages and Error Notes

Core Load Builder Messages ..
Auxiliary Supervisor Error Messages .

Monitor System Library Mainline Programs Messages and

Error Messages . .
IDENT Messages
DISC Messages and Error Messages
ID Messages and Error Messages
COPY Messages and Error Messages
DLCIB Messages and Error Messages .
MODIF Messages and Error Messages .
MODSF Messages and Error Messages
DFCNV Messages and Error Messages

Appendix B. Monitor System Error Wait Codes

Cold Start Program Error Waits .
ISS Subroutine Preoperative Error Waits .
I/O Device Subroutine Errors .

1442 Card Subroutine Errors .

2501 Card Subroutine Errors .

Console Printer Subroutine Errors

Paper Tape Subroutine Errors

Card Core Image Loader Wait Code . .
Paper Tape Utility Program (PTUTL) Error Walt Codes
FORTRAN I/0O Wait Codes ce .
RPG Object Program Wait Codes .

Appendix C. Monitor System Library Listing

Appendix D. LET/FLET .

LET/FLET Disk Format
LET/FLET Dump Format .

Appendix E. System Location Equivalence Table (SLET) .

vi

A-1

A-2

AT
A-13
A-22
A-26
A-27
A-35
A-38
A-54
A-58

A-59
A-59
A-59
A-60
A-60
A-61
A-61
A-65
A-67

B-1

B-1
B-2
B-5
B-5
B-8
B-8
B-9
B-9
B9
B-10
B-12

D-1

D-1
D-2

Appendix F. Core Dump .

Appendix G. Resident Monitor (Including Table of
Equivalences) C e e e e e e

Appendix H. Monitor System Sample Programs

1. FORTRAN Sample Program .
FORTRAN Sample Program Run on 4K
FORTRAN Sample Program Run on 8K
2. Assembler Sample Program ..
3. RPG Sample Program . .
4. Using FORTRAN Unformatted I/O .
5. Processing on One Disk Drive a File that Extends over
Two Cartridges . .
6. Processing on Two Disk Dnves a F11e that Extends over
Two Cartridges. .
7. Calculatmg ISAM F11e Parameters

Appendix I. Formats

Disk Formats
Card Formats
Paper Tape Formats
Print Formats
Data Formats

Appendix J. Field Type Examples for DFCNV .

I-Field Type .
J-Field Type .
R-Field Type
B-Field Type
C-Field Type
D-Field Type
E-Field Type
F-Field Type
X-Field Type

Appendix K. Decimal and Hexadecimal Disk Addresses
Appendix L. Disk Storage Unit Conversion Factors
Appendix M. Character Code Set

Glossary-Index

F-1

G1

H-1
H-1
H-2
H-5
H-7
H-9
H-12

H-13

H-16
H-17

I-1

I-2
I-6
I-11
I-13
I-15

J1

J1
J-2
32

Summary of Amendments

GC26-3717-9 UPDATED BY VERSION 2 MODIFICATION 11
2311 Disk Storage Drive

New Hardware Feature. The 2311 Disk Storage Drive is a new feature that adds a larger
online storage capacity and quicker online storage retrieval.

DCIP Function
New Programming Feature. The DCIP initialize and copy functions now have a wait for
verifying that the console entry switches you turn on for the physical drive number and

cartridge ID are correct before initialization and copying begins.

FORTRAN Messages

New Programming Feature. Messages describing errors in FORTRAN statements now indi-
cate which statement is in error.

Summary of Amendments vii

viii

Chapter 1. How to Use This Publication

Chapters 2, 3, and 4 include information for the systems planner who is interested in the
contents and organization of disks, core storage, and the functions of the programs and
storage areas that comprise the IBM 1130 Disk Monitor System, Version 2. The information
in these chapters assists you in planning the contents of your disks, as well as

maintaining them. The disk maintenance programs are described in Chapter 4.

Chapters 5 and 6 contain information that is frequently referenced by programmers.
Chapter 5 contains descriptions of all control records that control the functions of the
disk monitor system (DM2). Use the programming tips and techniques in Chapter 6 for
more efficient use of DM2.

Chapters 7, 8, and 9 include operating information for using the disk monitor system.
Chapter 7 contains procedures for readying the devices that are a part of your computing
system, for performing a cold start of the monitor system, for entering jobs and for
displaying, altering, and dumping core storage.

Sample procedures for loading and reloading the system are shown in Chapter 8. You may
use these operating procedures as they are presented, or modify them to meet the needs
of your computing system.

Chapter 9 describes stand-alone utility programs. These programs provide for dumping
core storage to a print device, for initializing, copying, patching, analyzing, dumping and
comparing disks, and for punching paper tapes. Operating procedures for using

the utility programs are listed.

The functions of the flowchart blocks that are used in the sample procedures in Chapters
7,8,and 9 are:

The steps of the procedure that
you perform. Each block contains
a heading that describes the
purpose of the block.

| A system action that occurs |
I during a procedure.

|
[
I —

References procedures that
are described elsewhere in
this publication.

How to Use This Publication 1-1

Chapter 10 describes the 1130 RJE Work Station Program.

When errors occur during monitor system processing, refer to Appendix A for error
messages and codes, and to Appendix B for wait codes displayed on the console display
panel.

The remaining appendixes contain information that you will need to reference at various
times, such as, the names of the programs and subroutines in the system library and
listings of LET, FLET, SLET, the resident monitor, and sample programs.

The terms disk, disk cartridge, and cartridge are used in this publication to refer to the
single disk in an IBM 2315 Disk Cartridge or to any one of the 3 or 5 usable disks in
an IBM 1316 Disk Pack, Model 12 or 11, respectively. Each usable disk in a 1316 Disk
Pack is treated by DM2 as one 2315 disk, thus:

A disk in an |BM 1316 Disk Pack is the same as one |1BM 2315 Disk Cartridge.

Each disk in the 1131 CPU and 2310 Disk Storage or 2311 Disk Storage Drive is assigned
a physical drive number when the devices of an 1130 computing system are installed.
Physical drive numbers are assigned in this order:

Disk locations

Physical drive number 1131 CPU 2310 Disk Storage or 2311 Disk Storage Drive
0 Internal disk
1 First 2310, first disk First 2311, first disk
2 First 2310, second disk First 2311, second disk
3* Second 2310, first disk First 2311, third disk*
4* Second 2310, second disk | First 2311, fourth disk*
5 First 2311, fifth disk
6 Second 2311, first disk
7 Second 2311, second disk
8* Second 2311, third disk*
9* Second 2311, fourth disk*

10 Second 2311, fifth disk

*Not used when a 2311 Disk Storage Drive is a Model 12

From one to 5 of these disks, depending on the configuration of your computing system,
can be specified for use by assigning logical drive numbers to them. You assign logical
drive numbers to disks with a // JOB monitor control record or when you code your pro-
gram to call SYSUP (see ““// JOB” in Chapter S and “SYSUP” in Chapter 6). The logical
drive numbers do not have to be assigned in the same order as the physical drive numbers
The organization of disks is discussed in Chapter 2.

All hexadecimal addresses in this manual are shown in the form /xxxx.

Symbolic addresses rather than absolute addresses are used throughout this publication.
Certain constants are also denoted symbolically. Appendix G contains a listing of the resi-
dent monitor.

$xxxx All symbolic labels whose first character is a dollar sign ($) are found in the
core communications area (COMMA).
#HXxXX All symbolic labels whose first character is a number sign (#) are found in the

disk communications area (DCOM).

@XXXX All symbolic labels whose first character is a commercial at sign (@) are con-
sidered to have absolute values (such as @HDNG refers to the page heading
sector, sector 7, and thus has a value of 7).

Note. The number sign and commercial at sign are not included in the 1403 Printer or
1132 Printer character set; therefore, an equal sign (=) replaces the # and an apostrophe
() replaces the @ in printer listings.

How To Use This Publication 1-3

Chapter 2. Disk Organization

Two disk devices are used by the IBM 1130 Disk Monitor System, Version 2 (DM2):

o The IBM 2315 Disk Cartridge in an IBM 1131 Centraﬂ)rocessing Unit internal disk
drive and in IBM 2310 Disk Storage drives

e The IBM 1316 Disk Pack in IBM 2311 Disk Storage Drives, Models 11 and 12

An IBM 2315 Disk Cartridge contains a single disk on which DM?2 stores information on
the top and bottom surfaces.

An IBM 1316 Disk Pack contains 6 disks mounted on a vertical shaft. The top surface of
the top disk and the bottom surface of the bottom disk cannot be used for recording data,
which leaves 10 possible recording surfaces. The monitor system programs consider the
lower surface of one disk and the top surface of the disk immediately below as a disk

(disk cartridge or cartridge). The arrangement of disks in a 1316 Disk Pack is illustrated by:

Top surface; not used

First disk
Second disk
*Third disk

*Fourth disk
Fifth disk

Bottom surface; not used

*The third and fourth disks are not used if
the 2311 Disk Storage Drive is a Model 12.

Disk Organization 2-1

2-2

The storage area of all disks used by DM2 is arranged into circular patterns called tracks.
Two tracks one above the other constitute a ¢ylinder. A disk contains 203 concentric
cylinders; 200 of these are available to the monitor system. The 3 remaining are reserved
for use if defective cylinders are detected. The following illustrates the innermost and the
outermost cylinders on a disk.

Innermost cylinder

203 two-track

Upper surface track ™ cylinders N

Lower surface track

Outermost cylinder / |
Upper surface track I

Lower surface track \

Note. The thickness of the disk has been greatly exaggerated in order to
show the relative positions of the upper and lower surface tracks.

To complete the picture, the 201 intermediate cylinders, or pairs of tracks, should be
visualized; they are omitted for the sake of clarity of the diagram.

For convenience in transferring data between core storage and disk storage, each track is
divided into 4 equal segments. These segments are called sectors. Thus, each cylinder con-
sists of eight sectors. Sectors O through 3 divide the upper surface track and 4 through 7
divide the lower. The following illustrates how sectors are numbered.

Sectors 0 through 3
(upper surface tracks)

Sectors 4 through 7

————————
(lower surface tracks)

A sector contains 321 data words. The first data word is used for the sector address. This
address is the number of that sector, counted in sequence from sector 0 on cylinder 0.
Another unit of storage within a sector is the disk block. Each sector is divided into 16
disk blocks, each 20 words long. A disk storage word contains 16 data bits. The organiza-
tional components of disk storage are shown by the following chart.

Word Disk block Sector Track Cylinder Disk
Bits 16 320 5,112 20,480 40,960 8,192,000
Data words 20 320 ' 1,280 2,560 512,000
Disk blocks 16 64 128 25,600
Sectors 4 8 1,600
Tracks 2 400 }
Cylinders 200

These follow the first actual word of each sector, which is used for the address.

Before continuing with the descriptions of the contents of disk cartridges used by the
monitor system, several terms must be defined.

o System cartridge. An initialized cartridge that contains the IBM 1130 Disk Monitor
System. If your 1130 has only one disk (the internal disk in the 1131 CPU), all
cartridges must be system cartridges.

o Nonsystem cartridge. An initialized cartridge that does not contain the monitor system.

® Master cartridge. A system cartridge that is designated as logical drive O by the cold
start program, or by a monitor // JOB control record. This cartridge continues in use
until another cold start, another // JOB control record, or a CALL instruction to
SYSUP switches control to a different system cartridge. The disk on an 1130 with
only one disk drive (the internal disk in the 1131 CPU) is both a system and a master
cartridge.

® Note: If your system has only one disk drive (the internal disk in the 1131 CPU, or
one 2311), you should cold start after changing cartridges, or packs, to avoid possible
errors in the location of disk areas on system cartridges.

o Satellite cartridge. On an 1130 with more than one disk drive, this is any cartridge that
is not the master cartridge. This cartridge can be either a system or a nonsystem car-
tridge.

The organization of programs and areas on system and nonsystem cartridges is described
and illustrated in the following text.

Disk Organization 2-3

SYSTEM CARTRIDGE
A system cartridge is divided into 5 logical areas as illustrated by the following:

Fixed User Working
Cyi 0 area area storage

=

IBM
system area

Each area is described in the following text. The last section of this chapter, “Summary of
the Contents of Disk Cartridges,” contains a chart that indicates when these areas are
present, or can be removed, on system cartridges.

Cylinder 0 on a System Cartridge
The contents of cylinder 0 on a system cartridge are defined during disk initialization and
system load. The contents of cylinder O are as follows:

Cyl0
Sector Label
T e —— 0 @IDAD
] T - 1 @ DCOM
Se— —
ID and — 2 @ RIAD
cold 3,4,5 @SLET
start Resident Reload | Page 6 @RTBL
prog. DCOM |} image SLET table heading 7 @ HDNG
Sector 0 1 2 3,45 6 7

2-4

sector @IDAD

The following is a discussion of each sector.
Sector @IDAD on a system cartridge consists of:
The defective cylinder table

The cartridge ID

The cartridge copy code

The disk type

A reserved area

The DISKZ system device subroutine

The cold start program

The contents of sector @IDAD on a system cartridge are shown in the following illustra-
tion.

DCYL (defective cylinder table)
CIDN (cartridge 1D)

COPY (copy code)

Reserved

= DTYP (disk type)

A Y YYVYVYY

DISKZ (this copy of
Resorveq | DISKZ is used only Cold
during the cold start start
procedure.) program
Words: 0 1 2 3 4 5 6 7 29 30 269 270 319

The defective cylinder table (DCYL) contains the addresses of the first sector of any
cylinders that are not capable of accurately storing data. This table is defined during disk
initialization, If no defective cylinders are found, each of the 3 words of DCYL contains
/0658 (hexadecimal). A cartridge with a maximum of 3 defective cylinders can be used
by the monitor system.

The cartridge ID (CIDN) is a hexadecimal number in the range /0001 through /7FFF

that uniquely identifies the cartridge. The ID is placed on a cartridge when the cartride is
initialized.

The cartridge copy code (COPY) identifies the copy number of a cartridge that has been
copied from another cartridge. When a disk is initialized, this word is zero. Each time the
disk is copied, word 5 of the cartridge being copied to is incremented by one; that is, the
copy code of the receiving disk is one greater than the copy code of the source cartridge.
The reserved areas of sector @IDAD are for possible future expansion.

The disk type (DTYP) is a code that indicates whether or not the disk is a system cartridge.
The appropriate code is placed in DTYP when the cartridge is initialized by DCIP or DISC
and when the monitor system is ioaded onto the disk.

The DISKZ subroutine is stored in sector @IDAD and in the system device subroutine
area in the IBM system area (see “IBM System Area on a System Cartridge” in this chap-
ter) when the monitor system is loaded on the disk. The cold start program uses DISKZ
stored in sector @IDAD. All other times that DISKZ is called, the copy stored in the sys-
tem device subroutine area is used.

The cold start program is placed in sector @IDAD when the monitor system is loaded onto
the disk.

Disk Organization 2-5

2-6

sector @DCOM

sector @RIAD

SLET

sector @RTBL

sector @HDNG

(1]
(2]

Sector 1 contains the disk communications area (@DCOM). This area contains parameters
that are passed from one monitor program to another. These parameters contain informa-
tion such as:

The number of LOCAL: associated with the program in working storage

The temporary job indicator switch

.
°

® The cartridge IDs for cartridges on the system

® The format of programs in working storage for all cartridges on the system
L

The block count of the programs in working storage for all cartridges on the system

These parameters are listed in Appendix I. They are set and reset during the processing of
JOB monitor control records or during the DCOM update operation called SYSUP. The
parameters obtained from nonsystem disks are merged into DCOM on the master cartridge
during one of the previous operations. The parameter table entries for the nonsystem disks
are cleared to zero.

Sector 2 contains the resident image (@RIAD). The resident image is a copy of the skele-
ton supervisor and the COMMA portion of the resident monitor. (A description of the
resident monitor is in Chapter 3, “Monitor System Programs.”) The resident image is used
to initialize the resident monitor during a cold start.

Sectors 3, 4, and 5 are the system location equivalence table (@SLET). SLET is composed
of an identification number, core loading address, word count, and sector address for
every phase of every monitor program. Chapter 4 contains information about obtaining a
listing of SLET, and a sample of a SLET printout is in Appendix E.

Sector 6 is the reload table (@RTBL). This table is established during an initial system
load. @RTBL contains a 3-word entry for each monitor system program phase that re-
quests SLET information during a load or reload operation. Each entry consists of the ID
number of the requesting phase, the location in the requesting phase where the SLET in-
formation is to be placed, and the number of SLET entries to be inserted. The reload
table is updated during a system reload when phases that request SLET information are
added or modified. The last entry in the reload table is followed by the hexadecimal word
/FFFF.

Sector 7 (@HDNG) is used to store the heading that appears at the top of each page printed
by monitor programs other than RPG.

IBM System Area on a System Cartridge

Monitor programs and disk areas are loaded onto a disk during a system load. This entire
area is called the IBM system area, and is illustrated by the following:

System device
subroutines, DISK1,
DISKN, DISKZ

cLB CIL

DUP Cushion d
COB |suP RPG| part 2] ASM|area SCRAJFL

Program product

N

system area

FLET is contained on a disk only if a fixed area is defined on the disk.
See ""Fixed Area’’ in this chapter.

system device
subroutine area

cushion area

SCRA

The monitor programs in this area are described in Chapter 3. These programs are:
Disk utility program (DUP)

FORTRAN compiler (FOR)

COBOL compiler (COB) program product

Supervisor (SUP)

Core load builder (CLB)

Core image loader (CIL)

RPG compiler (RPG)

Assembler (ASM)

The disk areas of the IBM system area are described in the following text.

The system device subroutine area consists of the following:
® The subroutines used by the monitor programs to operate these print devices

1403 Printer
1132 Printer
Console Printer

® The subroutines used by the monitor programs to operate these I/0 devices

2501 Card Reader/1442 Card Punch, Model 5,6, 0r 7
1442 Card Read/Punch, Model 6 or 7

1134 Paper Tape Reader/1055 Paper Tape Punch
Console Keyboard/Printer

® The I/0 character code conversion subroutines used in conjunction with the I/O sub-
routines for these devices

2501 Card Reader/1442 Card Punch
1134 Paper Tape Reader/1055 Paper Tape Punch
Console Keyboard/Printer

® The disk I/O subroutines

DISKZ
DISK 1
DISKN

All of the subroutines in the system device subroutine area, except the disk I/O sub-
routines, are naturally relocatable and are intended for use only by monitor programs. The
disk I/O subroutines are located in this area rather than in the monitor system library
because they are processed by the core load builder differently from subroutines stored

in the monitor system library,

DISKZ is stored twice on a system cartridge; once in sector @IDAD with the cold start
program, and once in the system device subroutine area with DISK1 and DISKN. Cold
start uses DISKZ in sector @IDAD; all other times that DISKZ is called, the copy that is
stored in the system device subroutine area is used.

The cushion area immediately follows the system programs and provides for the possible
expansion of the monitor system programs in a reload operation. This area occupies the
remaining sectors of the last cylinder occupied by the system programs, plus the next
complete cylinder.

The supervisor control record area (SCRA) is the area in which supervisor control records
(LOCAL, NOCAL, FILES, G2250, and EQUAT) are saved. These records, except the
EQUAT record, are read from the input stream (following an XEQ or STORECI control
record) and are stored in the SCRA for subsequent processing by the core load builder.
The processing of the EQUAT record is similar to that of the other supervisor control
records, butit is read from the input stream following a JOB control record.

Disk Organization 2-7

FLET The fixed location equivalence table (FLET) is a directory to the contents of the fixed
area for the cartridge on which it appears. There is one FLET entry for:

® Fach program stored in disk core image (DCI) format
® Each data file stored in disk data format (DDF)

® The padding required to permit a DCI program or data file to be stored beginning on
a sector boundary

Each FLET entry includes:

® The name of the DCI program or the data file

® The format of the program or data file

® The size, in disk blocks, of the program or data file

The disk block address of the program or data file

Each cartridge on which you define a fixed area has a FLET (see “Fixed Area” in this
chapter). Regardless of the fixed area sizes FLET occupies the cylinder preceding the be-
ginning of the fixed area.

The sector address of the first sector of FLET on a given cartridge is obtained from the
location equivalence table (LET). The last item (#FLET) in the first header line of a
LET dump contains this sector address. A listing of a LET/FLET dump is in Appendix D,

CiB The core image buffer (CIB)is the disk area in which the portion of a core load that is
to reside in core storage below decimal location 4096 in a 4K system (decimal location
5056 in larger systems) is built by the core load builder. The CIB is also used by the core
image loader during the transfer of control from one link to the next to save any COMMON
defined below decimal location 4096 or 5056.

LET The location equivalence table (LET) is a directory to the contents of the user area on the
: cartridge. On a system cartridge, LET occupies the cylinder preceding the user area. There
is one LET entry for: '

® Each program stored in disk system format (DSF)
® FEach program stored in disk core image (DCI) format
Each data file stored in disk data format (DDF)

® The padding required to permit a DCI program or data file to be stored beginning on
a sector boundary

Each LET entry includes:

® The name of the program or data file

® The format of the program (DSF or DCI) or data file
® The size in disk blocks of the program or data file
The disk block address of the program or data file

A listing of a LET/FLET dump is contained in Appendix D. The starting location of the
beginning of LET on each disk on the system is included in the resident monitor,

UA

Fixed Area

The fixed area (FX) is the area in which you store programs and data files when you want
them to occupy the same sectors at all times. Programs stored in this area must be in

disk core image (DCI) format. This is an optional area and is defined on any 1130 cartridge
by the use of the DEFINE FIXED AREA operation of the Disk Utility Program (DUP).
This DUP operation is also used to increase or decrease the size of the fixed area. (See
Chapter 3, “Monitor System Programs’ for a description of DUP operations.) The contents
of the fixed area are illustrated by the following:

Fixed area

Your programs
and data files

A program or data file stored in the fixed area starts at the beginning of a sector. When a
program or a data file is deleted from this area, the fixed area is not packed. Programs and
data files stored in this area reside at fixed sector addresses and can be referred to by
sector address.

User Area and Working Storage

The user area (UA) on a system cartridge contains the monitor system library and programs
and data files that you write and store there. Programs are stored in this area in disk

system format (DSF) or in disk core image (DCI) format. Data files are stored in disk

data format (DDF). The following illustrates the user area and working storage.

Working
User area storage

b

Monitor system
library

Your programs
and data files

Disk Organization 2-9

The user area is defined on any 1130 cartridge during disk initialization. The monitor
system library is placed in this area during an initial system load. This area occupies as
many sectors as are required to contain the system library plus any user programs and/or
data files that are stored there.

When a program or a data file is entered, it is placed at the beginning of working storage;
that is, immediately following the end of the user area. The area occupied by the new pro-
gram or data file is then incorporated into the user area during a store operation. Working
storage is decreased by the size of the program or data file. The following illustrates the
contents of the user area and working storage before and after a store operation.

Floating
boundary
User area Working storage
r Ny N
Before a \\\\
store Unused
operation a -
> Y 1\l I
| Programs and data | Pfogram' |
previously stored |0f data l
' to be '
' 'stored | |
I Floating l
l boundary '
I I I
| User area l l Working storage |
! A H AL |
" I N N\
After a \\\\&
store Unused
operation A \
\ Y)

Programs and
data now stored

DSF programs are stored in the user area starting at the beginnning of a disk block; DCI
programs and data files are stored starting at the beginning of a sector.

WS

The user area is packed when a program or data file is deleted from this area; that is, the
programs and data files are moved so as to occupy the area formerly occupied by the
deleted program or data file. During packing, DSF programs are moved to the first disk
block boundary in the vacancy; DCI programs and data files are moved to the first sector
boundary. All remaining programs and data files are similarly packed. The area gained by
packing the user area is returned to working storage as illustrated by:

Floating
boundary
User area Working storage
AL {' A
e a Y

Z4)

oot \\u\\wd\
operation \\\\\\

e 1 J |

| Y ' I
| Stored programs | |
| and data | | 1
| | l
| 1 | |
| Floating '

l boundary |
| | working |
| User area | | storage |
| A { LA |
4 my 4 v N
After a \ \

delete Unused
operation \

R |

L\ ' I\ S

Y B
Programs and
data now stored
Area made
available by

delete operation

On all cartridges, working storage (WS) is the area that is not defined as cylinder 0, the
IBM system area, the fixed area, or the user area. Working storage is available to monitor
programs and user programs alike as temporary disk storage. This area extends from the
sector boundary immediately following the user area to the end of the cartridge.

Disk Organization 2-11

NONSYSTEM CARTRIDGE

2-12

A nonsystem cartridge on an 1130 that has more than one disk drive can be used exclu-
sively for the storage of data and/or programs, and is called a satellite cartridge. The 5
logical areas of a nonsystem cartridge are: '

Working
Cyi0 Fixed area User area storage

system area

The contents of cylinder O and the IBM system area are described in the following sections.
The contents of the fixed area, the user area, and working storage are the same as described
for system cartridges, except that the user area does not contain the monitor system
library. The last section of this chapter, “Summary of the Contents of Disk Cartridges,”
contains a chart that indicates when these areas are present or can be removed.

Cylinder 0 on a Nonsystem Cartridge

The contents of cylinder 0 on a nonsystem cartridge are established when the cartridge is
initialized, and are illustrated by:

Cyl 0

|
~
I —~
~~
I ~
~~
| ID and ~
error =~
message
program DCOM LET
Sector 0 1 2-7

sector @IDAD

sector @DCOM

LET

FLET

ciB

The first 8 words of sector @IDAD on a nonsystem cartridge are the same as described for
a system cartridge. The remaining words of this sector are a reserved area, an error message
program, and an error message. The error message is printed if an attempt is made to cold
start a nonsystem cartridge. This message and the program that prints it plus part of the
reserved area are overlaid by the cold start program and the DISKZ subroutine when the
monitor system is loaded onto a cartridge. Sector @IDAD on a nonsystem cartridge con-
sists of:

DCYL (defective cylinder table)
CIDN (cartridge 1D)

COPY (copy code)

Reserved

— DTYP (disk type)

Error message
Reserved and error
message program

Words: 0 1 2 3 4 5 6 7 269 270 319

The information in sector @DCOM of cylinder O on a nonsystem cartridge is similar to a
system cartridge. The difference is that the information on a nonsystem cartridge applies
only to that cartridge.

The remaining sectors of cylinder O are the location equivalence table (LET) for the car-
tridge. The contents of LET are described under the description of the IBM system area
on a system cartridge.

IBM System Area on a Nonsystem Cartridge

The IBM system area of a nonsystem cartridge can contain the fixed location equivalence
table (FLET) and the core image buffer (CIB). This area is illustrated by:

1BM
system area

FLET is described under the description of the IBM system area on a system cartridge.
This table is on a nonsystem cartridge only if you define a fixed area on the cartridge.

The CIB is described under the description of the IBM system area on a system cartridge.
This area is optional on a nonsystem cartridge, and can be deleted with the disk mainten-
ance program called DLCIB (see Chapter 4).

Disk Organization 2-13

SUMMARY OF THE CONTENTS OF DISK CARTRIDGES

Figure 2-1 is a chart of the contents of the 5 logical areas of system and nonsystem car-
tridges. This chart indicates when these areas are present on system and nonsystem car-

tridges, and when it can be removed if the area is optional.

Logical area Subareas Present
Cylinder O On system and nonsystem cartridges
IBM system area Dup Only on system cartridges

SuUP

CLB

System device subroutines
CiL
Cushion area

SCRA

cig On system and nonsystem cartridges;
can be removed from nonsystem
cartridges

Assembler Only on system cartridges; can be

removed

FORTRAN compiler

Only on system cartridges; can be
removed

RPG compiler

Only on system cartridges; can be
removed

COBOL compiler
(program product)

Only on system cartridges; can be
removed

LET

On system and nonsystem cartridges

FLET

Only if a fixed area is defined by user

Fixed area (FX)

User programs
User data files

Only if defined by user

User area (UA)

Monitor system library
(only on system
cartridges)

User programs

User data files

On system and nonsystem cartridges.
As the result of a system load, the
UA contains the monitor system
library.

Working
storage (WS)

On system and nonsystem cartridges

Figure 2-1. The 5 logical areas of disk cartridges

Chapter 3. Monitor System Programs

The IBM 1130 Disk Monitor System provides continuous operation of the 1130 com-
puting system with minimal setup time and operator intervention. The monitor system
consists of a system library and 7 interdependent system programs. The monitor system
programs perform monitor control functions and include:

® The supervisor (SUP), which performs the control functions of the monitor system
and provides the linkage between user programs and monitor programs.

® The Disk Utility Program (DUP), which performs operations that involve the disk,
such as storing, moving, deleting, and dumping programs or data files or both.

® The assembler (ASM), which translates source programs written in 1130 Assembler
language into object programs.

® The FORTRAN compiler (FOR), which translates source programs written in 1130
basic FORTRAN 1V language into object programs.

® The RPG compiler, which translates programs written in 1130 RPG language into ob-
ject programs.

® The core load builder (CLB), which constructs an executable core load from programs
in disk system format (DSF). The DSF program and all associated subprograms are
converted into disk core image (DCI) format, and the resultant core load is ready for
immediate execution or for storing as a core image program.

® The core image loader (CIL), which transfers core loads into core storage for execution
and serves as an interface between some monitor programs.

Although the COBOL compiler (COB) resides in the IBM system area when the monitor
system is loaded onto a cartridge, the COBOL compiler is not a monitor program. It is
an IBM program product.

A flowchart of the general logic flow of the monitor system programs is included under
“Logic Flow of the Monitor System” at the end of this chapter. The monitor system
library is a group of disk resident programs that performs I/O functions, data conversion,
arithmetic functions, disk initialization, and maintenance functions. This library is
discussed in Chapter 4, and the monitor system programs are discussed in the following
text. The disk placement of these programs is shown by the following.

Monitor system

programs

..

System device
subroutines, DISK1,
SUP | CLB | DISKN, DISKZ

...

SCRA|FLET CIB | LET

IBM
system area

o

Program product

Monitor System Programs 3-1

SUPERVISOR

COMMA

skeleton supervisor

The supervisor is 2 groups of programs that control the monitor system and link the user
and monitor programs. One portion of the supervisor, the skeleton supervisor, is stored in
sector @RIAD of cylinder 0. The other portion of the supervisor is stored in the IBM
system area.

The skeleton supervisor initially gains control of the monitor system through the cold start
program. During a cold start, the skeleton supervisor is loaded from sector @RIAD into
the resident monitor section of core storage.

Resident Monitor

The resident monitor resides at the beginning of core storage and contains (1) the core
communications area (COMMA), (2) the skeleton supervisor, and (3) a disk I/O sub-
routine (DISKZ, DISK1, or DISKN). Appendix G is a listing of the resident monitor.

The core communications ares (COMMA) consists of parameters required by the core
image loader to link from one core image program to another. These parameters are
interspersed with parts of the skeleton supervisor in the resident monitor.

The skeleton supervisor is interspersed with COMMA in the resident monitor and is com-
posed of:

® Entry points for linking from one core load to another (§LINK), for linking from a
core load to monitor system programs ($EXIT), and for dumping core storage (SDUMP).

® Interrupt level subroutines (ILS02 and ILS04) for handling interrupts on levels 2 and
4, Disk devices interrupt on level 2, and since disks are used in all operations of the
monitor system, ILS02 is included. Since the console keyboard INT REQ key inter-
rupts on level 4 and can be pressed at any time, the ILS04 subroutine for handling
level 4 interrupts is included.

® A preoperative error trap that is entered by all interrupt service subroutines (ISS) when
an error is detected before an operation is performed. The trap consists of a WAIT
instruction and a branch instruction. (The address of $PRET+1 is displayed in the
INSTRUCTION ADDRESS indicator on the console display panel during the wait.)
Pressing PROGRAM START causes the branch to be taken, and execution resumes.
(Under certain conditions, such as a FORTRAN PAUSE statement, this trap is entered
when an error has not occurred.)

® Postoperative error traps (one for each interrupt level) that are entered by all ISS sub-
routines when an error is detected after an I/O operation has been started. Each trap
consists of a WAIT instruction and a branch instruction. (The address of $PST1,
$PST2, $PST3, or $PST4 plus one is displayed in the INSTRUCTION ADDRESS indi-
cator on the console display panel during the wait.) Pressing PROGRAM START re-
turns control to the ISS subroutine, which may retry the operation in error.

® The PROGRAM STOP key error trap that is entered when the PROGRAM STOP key
is pressed (unless a user-written subroutine associated with interrupt level 5 is in core).
If a higher level interrupt level is being serviced when PROGRAM STOP is pressed,
the PROGRAM STOP interrupt is masked until the current operation is complete.
This trap consists of a WAIT instruction and a branch instruction. (The address of
$STOP+1 is displayed in the INSTRUCTION ADDRESS indicator on the console
display panel during the wait.) Pressing PROGRAM START continues execution of
the monitor system.

disk 1/0 subroutine

monitor control
record analyzer

supervisor control
record analyzer

auxiliary supervisor

Supervisor Core
Dump Program

The disk I/O subroutine (DISKZ, DISK 1, or DISKN) required by the program in control
resides in core storage immediately following the skeleton supervisor. DISKZ is the sub-
routine used by all system programs. DISKZ is initially loaded into core storage with the
resident image during a cold start.

Prior to the execution of a core load that requires DISK1 or DISKN, the core image

loader overlays DISKZ with the required disk I/O subroutine. When control is returned

to the supervisor, the core image loader overlays the disk I/O subroutine currently in

core (if DISK1 or DISKN) with DISKZ. Source programs written in assembler, FORTRAN,
RPG, or COBOL can call any of the 3 I/O subroutines; however, only one disk I/O sub-
routine can be referenced in a given core load. The entry in column 19 of an XEQ moni-
tor control record specifies the version of the subroutine to be used during execution of
the core load. (Monitor control records are described in Chapter 5.)

Disk-resident Supervisor Programs

The portion of the supervisor that resides in the IBM system area includes programs that
analyze monitor and supervisor control records and perform the functions specified, the
auxiliary supervisor, and the System Core Dump Program.

The monitor control record analyzer (1) reads a monitor control record from the input
stream, (2) prints the control record on the principal print device, and (3) calls the re-
quired monitor system program and transfers control to it.

The supervisor control record analyzer reads a supervisor control record from the input
stream, and stores the information in the control record in the supervisor control record
area (SCRA) on disk.

The auxiliary supervisor is used by the Cold Start Program, I1.S04 subroutine, core image
loader, and system loader as a pre-entry to the monitor control record analyzer. The
auxiliary supervisor is entered via the SDUMP entry point in the skeleton supervisor.

This program sets appropriate parameters in COMMA, writes dummy monitor control
records (such as the JOB monitor control record printed during a cold start), and prints
error messages for errors detected by the core image loader. Control is then transferred to
the monitor control record analyzer through the $EXIT entry point in the skeleton
supervisor.

The Supervisor Core Dump Program provides a hexadecimal printout of the contents of
core storage. (A portion of a core dump is shown in Appendix F.) This program is entered
through the $SDUMP entry point in the skeleton supervisor in 2 ways.

® A special calling sequence during execution of an Assembler or FORTRAN program
(see the publications IBM 1130 Assembler Language, GC26-3778, and IBM 1130/1800
Basic FORTRAN 1V Language, GC26-3715). The portion of core storage specified in
the assembler or FORTRAN statements, or all of core storage if limits are not specified,
is dumped. Execution of the core load in process then continues with the statement
following the one that called the dump.

® A manual dump of core storage through $SDUMP+1 (see “Manual Dump of Core
Storage” in Chapter 7). The contents of core storage are dumped, and the dump program
executes a CALL EXIT, which terminates the execution of the core load in progress.

Monitor System Programs 3-3

DISK UTILITY PROGRAM

The Disk Utility Program (DUP) allows you to perform the following operations through
the use of DUP control records:

® Store programs and data files on disks

® Make programs and data files on a disk available as printed, punched card, or punched
paper tape output

Delete programs and data files from a disk

Determine the status of disk storage areas through a printed copy of LET and FLET
Define a fixed area on a disk, and delete monitor system programs from a disk
Maintain disk macro libraries

Reassign sector addresses on a disk

Reserve space for a data file or macro library

DUP control records are described in Chapter 6. DUP error messages are listed in
Appendix A.

General Functions of DUP

DUP is called into operation when a DUP monitor control record (// DUP) is recognized
by the supervisor. The control portion of DUP is brought into core to read the next
DUP control record from the input stream. The DUP control record is printed and analyzed.

The DUP program required to perform the operation specified in the control record is
read into core storage from the disk and assumes control. The DUP program performs the
functions specified in the control record, and when complete, a message is printed on

the principal printer, and control is returned to the control portion of DUP. The next
control record is read from the input stream.

If the next record is a monitor control record, other than a comments control record

(/| *), system control is retumned to the supervisor to process the record. Comments moni-
tor control records are printed; blank records are passed. If the record is a DUP control
record, DUP maintains control and reads the next record.

ASSEMBLER

The source language and macro capabilities for the assembler are described in the publi-
cation IBM 1130/1800 Assembler Language, GC26-3778. This section of this chapter con-
tains only a general description of the Monitor System Assembler Program. Assembler
control records are described in Chapter 6. Assembler error detection codes and error
messages are listed in Appendix A.

The assembler can be deleted from the monitor system if desired (see “*DEFINE” under
“DUP Control Records” in Chapter 5). The assembler cannot, however, be operated
independently of the monitor system.

A monitor control record, // ASM, is used to call the assembler into operation. The
assembler reads assembler control records and the source deck from the principal input
device. The assembler interprets and performs the functions specified in the control
records and translates the source program into an object program. Control records cause
the assembler to:

Pass the source deck through the assembler twice

List the source deck and cross-reference symbol table on the principal printer
Punch object decks into cards

Print the symbol table on the principal printer, or punch the symbol table into cards
Save and add to the symbol table on disk

Specify the interrupt level for assembly of ISS subroutines

Specify additional sectors for overflow of the symbol table

Specify the length of COMMON used when linking between FORTRAN and assembler
programs

® Specify the use of the macro library during assembly

After assembly is complete, the object program resides in working storage. The program
can now be (1) called for execution, (2) stored in either the user area or the fixed area,
or (3) punched as a binary deck or tape.

Monitor System Programs 3-5

FORTRAN COMPILER

RPG COMPILER

3-6

The source language for the FORTRAN compiler is described in the publication IBM
1130/1800 Basic FORTRAN IV Language, GC26-3715. This section of this chapter con-
tains only a general description of the monitor system FORTRAN compiler. FORTRAN
compiler control records are described in Chapter 6. FORTRAN error codes and error
messages are listed in Appendix A.

The FORTRAN compiler can be deleted from the monitor system if desired (see “*DE-
FINE” under “DUP Control Records” in Chapter 5). The FORTRAN compiler, however,
cannot be operated independently of the monitor system.

A monitor control record, // FOR, is used to call the FORTRAN compiler into operation.
The compiler reads FORTRAN compiler control records and the source program from
the principal input device. The compiler interprets and performs the functions specified
in the control records and translates the source program into an object program. Control
records cause the compiler to:

® Specify the I/O devices to be used during program.execution

® List the source program, the names of all subprograms associated with the source
program, and symbol table information on the principal print device

® Specify that all variables and real constants are stored in 3 words instead of 2
® Specify that all integer variables are stored in one word instead of the standard 2 words

® Print header information at the top of each printed page, and print the program name
at the end of a listing

® Trace the values of variables, IF expressions, and computed GO TO statements during
program execution

® Specify the origin of an absolute program

After compilation is complete, the program resides in working storage in disk system
format (DSF). The program can now be (1) called for execution, (2) stored in the user
area or fixed area, or (3) punched in binary form into cards or paper tape.

The source language specifications for the RPG compiler are described in the publication
IBM 1130 RPG Language, GC21-5002. This section of this chapter contains a general
description of the monitor system RPG compiler. RPG compiler control cards are des-
cribed in Chapter 6, RPG error messages and error notes are described in Appendix A.

The RPG compiler can be deleted from the monitor system if desired (see “*DEFINE”
under “DUP Control Records” in Chapter 5). The compiler, however, cannot be operated
independently of the monitor system.

A monitor control record, // RPG, is used to call the compiler into operation. The com-
piler reads the RPG compiler control card and the source program from the principal
input device. The compiler interprets and performs the functions specified in the control
card and translates the source program into an object program. After compilation is
complete, the object program, in disk system format (DSF), resides in working storage.
The program can now be (1) called for execution, (2) stored in the user area or the fixed
area, or (3) punched in binary form into cards.

CORE LOAD BUILDER

CLB use of the CIB

The core load builder constructs an executable core load from a program in disk system
format (DSF). The DSF program and all required subroutines (including any LOCALSs,
SOCALs, and NOCALSs) are converted from disk system format into disk core image
(DCI) format. The resultant core load is ready for immediate execution or for storing.

The core load builder is called by any of the following programs.

® Supervisor. When an XEQ monitor control record is read by the supervisor, the infor-
mation specified in any supervisor control records that follow is written in the super-
visor control record area (SCRA). Then, the core load builder is called to begin con-
struction of the core load. When the core load is complete, the core image loader
transfers the core load into core for execution.

® Disk Utility Program. When a STORECI control record is read by the Disk Utility Pro-
gram (DUP), information specified in any supervisor control records that follow are
written in the supervisor control record area (SCRA). Then, if the specified program
is not in working storage, the program is loaded into working storage, and the core
load builder is called to begin construction of the core load. When the core load is com-
plete, DUP stores it as a core image program in the user area or fixed area as specified
in the STORECI control record.

® Core Inuge Loader. When a core load calls for a link to another, the core image loader
determines the format of the program from its LET or FLET entry. If the format is
DSF, the core load builder is called to begin construction of the core image program.
When the core load is complete, the core image loader transfers the core load for
execution.

Construction of a Core Load

When the core load builder (CLB) is called by one of the previous monitor programs, the
core load is constructed by the functions described in this section. The core load builder
uses 3 storage areas while constructing a core load. These areas are the core image buffer
(CIB), working storage (WS), and core storage.

The core load builder places in the core image buffer the parts of a core load that are to
reside below core location 4096 (decimal) for a 4K system, or 5056 for larger systems,
during execution. These parts can be the core image header, the main-line program, and
subroutines. The contents of the CIB during core load construction are illustrated by:

That part of COMMON saved
core load below Not used from last core
4096 (or 5056) load

2]
¥

Core image buffer

Monitor System Programs 3-7

CLB use of WS

CLB use of core

storage
Resident monitor Mainline
)) -7
LG
Location

0000

3-8

The core load builder reserves enough space in working storage for any data files that are
specified for use by the core load, as well as any LOCAL and/or SOCAL subroutines that
are referenced by the core load (see “Processing Data Files” and “Incorporating Sub-
routines™ in this section). The contents of working storage during core load construction
are shown by:

Data files
defined by
core load

LOCAL SOCAL
subroutines | subprograms

Not used

Working storage

In systems larger than 4K, the core load builder places in core storage the parts of a

core load that are to reside above core location 5055 during execution. These parts of

a core load can be subroutines and the transfer vector. The contents of core storage during
construction of a core load are illustrated by:

Core Core
location End of location End
0 DISKZ 5056 of core

That part of core
above 5055

Resident | Core load
monitor builder

Core storage

When construction of a core load is finished and is executed immediately, the core image
loader is called to transfer it into core storage. The layout of a core load in core that is
ready for execution is illustrated by:

LOCAL/
Subprograms | SOCAL LOCAL area | SOCAL area | Unused | Transfer vector | COMMON
flipper
))
{ L

End
of
core

NOCALs

Core image header

When a core load is stored immediately following construction, it is placed in the user
area or the fixed area as follows:

LOCAL/
SOCAL LOCAL | SOCAL] Transfer
Mainiine | NOCALs | Subprograms | flipper area area vector LOCALs | SOCALs
))))
! IS8 ((

e CoTE imiage header

When the core load builder is called, the core load is built by the following functions, but
not necessarily in the order described.

Construction of the Core Image Header

The core image header is established at the beginning of the construction of a core load.
Throughout the building of a core load, information is placed in this header. The infor-
mation placed in the header is used by the core image loader to transfer the core load into
core storage and start program execution. The core image header is a part of the core

load and resides in core storage during execution.

Note. The area of core storage occupied by the core image header should not be considered
as a work area, because FORTRAN subroutines access information in the header during
execution.

Assignment of the Origin of a Core Load

The core location where the core image loader begins loading a relocatable core image pro-
gram is assigned by the core load builder. This loading address is placed in the core image
header, and is called the origin. The origin is determined by adding decimat 30 to the next
higher-addressed word above the end of the disk I/O subroutine used by the core load.
The following chart lists the origin locations (in decimal and hexadecimal) used by the
core load builder.

Disk 1/0 Core load origin

subroutine

in core Decimal Hexadecimal
DIsSKZz 510 101FE
DISK1 690 /02B2
DISKN 960 /03CO0

Monitor System Programs 3-9

3-10

Subroutines in general

The origin of absolute programs is assigned by the assembler or FORTRAN programmer,
not by the core load builder. The assembler programmer assigns the origin of a program
with the ORG statement in his program. The FORTRAN programmer defines the origin of
his program with an *ORIGIN control record. The origin that you define must not be

less than those in the preceding chart, depending on the disk I/O subroutine used by the
core load. When the programmer assigns an origin, the addresses printed in a program
listing are absolute; thus, he can see exactly where his statements and constants are in

core during execution.

Note, When DISKZ is in core, the assembler programmer must specify an even address
in an ORG statement. Also, an ORG statement specifying an even address must not be
followed by a BSS or BES statement of an odd number of locations.

Processing the Contents of the SCRA

The core load builder analyzes the LOCAL, NOCAL, FILES, G2250, and EQUAT con-
trol records stored in the SCRA on disk, and builds tables for the respective control
record types from the information specified. The information placed in these tables

is used in later phases of the construction of the core load.

Processing Data Files

The core load builder uses the information in the FILES control records stored in the
supervisor control record area (SCRA) to equate data files defined in the mainline
program to data files stored on disk. The mainline program statements that define these
files are the FORTRAN DEFINE FILE statement and the assembler FILE statement.
During compilation or assembly, a define file table is built from the DEFINE FILE
statements or FILE statements.

The core load builder compares a file number from a define file table entry with the file
numbers specified in the FILES supervisor control records stored in the SCRA. If

a match occurs, the name of the disk area associated with the file number on the FILES
control record is found in LET or FLET, and the sector address of that disk area (including
the logical drive code) is placed in the corresponding define file table entry. If the number
in the define file table entry does not match any of the file numbers for FILES control
records or if a name is not specified on the FILES control record, the core load builder
assigns an area in working storage for the data file. The sector address of the data file,
relative to the start of working storage, is placed in the define file table entry. This
procedure is repeated for each define file table entry in the mainline program.

Conversion of the Mainline Program

The mainline program is converted from disk system format into disk core image format.
The mainline is always converted before any of the other portions of the core load.

Incorporating Subrou tines

All the subroutines called by other subroutines, by the mainline program and all sub-
routines specified as NOCALs are included in the core load, except for (1) the disk I/O
subroutine, (2) any LOCAL subroutines specified, and (3) SOCAL subroutines employed.

EQUAT subroutines
or symbolic names

FLIPR

CLB provision
for LOCALs

CLB provision for
SOCALs

Subroutines called by the core load that is being built can be replaced if indicated in
EQUAT monitor control records stored in the SCRA. Symbolic names in assembler DSA
statements are replaced by other symbolic names if so indicated in EQUAT control records.

The LOCAL/SOCAL flipper, FLIPR, is included in each core load in which LOCAL sub-
routines are specified or in which SOCAL subroutines are employed. FLIPR is entered
by special LOCAL/SOCAL linkage through the transfer vector. FLIPR checks to deter-
mine if the required LOCAL or SOCAL is already in core. If not, FLIPR reads the re-
quired LOCAL or SOCAL into the LOCAL or SOCAL area in core. If the subroutine or
subprogram is already in the LOCAL or SOCAL area of core, FLIPR transfers execution
control to them,

When execution immediately follows the building of a core load, FLIPR reads a LOCAL or
SOCAL, asit is called, from working storage into the LOCAL or SOCAL area of core.

If the core image program was stored following the building of a core load, FLIPR

reads a LOCAL or SOCAL, as it is called, from the user area or the fixed area (where it
was stored following construction of the core load) into the LOCAL or SOCAL area

of core,

LOCALs (load-on-call) are subroutines that you specify as overlays with LOCAL
supervisor control records when error messages indicate that a core load is too large to*
fit into core.

If LOCAL: are specified for use by a core load, the core load builder reserves an area in
the core load as large as the largest LOCAL subroutine specified. LOCAL subroutines
will be read by FLIPR into this area as required during execution. LOCAL subroutines are

- stored in working storage following any data files stored there. If the core load is executed

immediately, each LOCAL subroutine is read as it is called from working storage into
the LOCAL area by FLIPR. If the core load is stored in disk core image format before
it is executed, LOCAL subroutines are stored following the core load, and will be read
from the storage area, user area, or fixed area, during execution.

SOCALs (system-overlays-to-be-loaded-on-call) are groups of subroutines (by class, type,
and subtype) that are made into overlays by the core load builder. SOCALs make it
possible for FORTRAN core loads that are too large to fit into core to be loaded and
executed. (SOCALs are not built for mainline programs written in assembler or RPG
language.)

If, in constructing a core image program from a FORTRAN mainline program, the core
load builder determines that the core load will not fit into core, SOCALSs are created. An
area as large as the largest SOCAL overlay (usually SOCAL 2) is reserved in the core
load. SOCAL overlays will be read by flipper into this area as required during execution.
The SOCAL overlays are placed in working storage following any data files and LOCALs
stored there. If the core load is executed immediately, each SOCAL overlay is read,

as it is called, from working storage into the SOCAL area by flipper. If the core load is
stored in disk core image format before it is executed, SOCALSs are stored following the
core load and any LOCALSs. SOCALSs are then read from the storage area, user area, or
fixed area, during execution.

Monitor System Programs 3-11

The core load builder creates SOCAL overlays by subroutine class, type, and subtype
(program types and subtypes are described under “Disk System Format” in Appendix L.)
SOCAL overlays are numbered 1, 2, and 3. The classes of subroutines, their types and
subtypes, that can be included in each SOCAL overlay are:

SOCAL overlay Subroutine class Type Sub-
type
!number! includes
1 Arithmetic 3 2
Function 4 8
2 Nondisk FORTRAN 3 3
1/0 and ““Z"* conver-
sion subroutines
"2'" device 5 3
subroutines
3 Disk FORTRAN 3 1
/10

Each SOCAL overlay does not contain all the subroutines of the specified classes, types,
and subtypes that are available in the monitor system library; only those subroutines
required by the core load are included in the SOCAL. The names of the subroutines
included in the SOCALSs associated with a program are listed in a core map. A printout of
the core map is obtained by placing an L in column 14 of an XEQ monitor control
record (see “Reading a Core Map and File Map™ in Chapter 6).

Two options are used by the core load builder in creating SOCAL overlays.

SOCAL Option 1. An attempt is made to make the core load fit into core by using
SOCAL overlays 1 and 2. This option reserves enough space in the core load for

the largest of the 2 SOCALS (usually SOCAL 2) and approximately 115 additional
words that are required for the special SOCAL linkage. SOCALs 1 and 2 are placed in
working storage. When this option has been tried and the core load still does not fit
into core, the second option is used.

SOCAL Option 2. An attempt is made to make the core load fit into core by using
SOCAL overlays 1, 2, and 3. This option reserves enough space in the core load for the
largest of the 3 SOCALSs (usually SOCAL 2) and approximately 120 additional words
that are required for the special SOCAL linkage. If, after both SOCAL options have
been tried, the core load still does not fit into core, an error message is printed.

If you specify as a LOCAL subroutine a subroutine that would usually be included in a
SOCAL, the core load builder makes that subroutine a LOCAL and does not include it in
the SOCAL in which it would ordinarily be placed. Further information is contained

in

“The Use of SOCALs” in Chapter 6.

CORE IMAGE LOADER

$EXIT entry

$DUMP entry

Transfer Vector

The transfer vector (TV) is a table included in each core load that provides linkage to
subroutines. This table is composed of:

® CALL TV—the transfer vector for subroutines referenced by CALL statements
® [LIBF TV—the transfer vector for subroutines referenced by LIBF statements

Each CALL TV entry is a single word containing the absolute address of an entry point
in a subroutine included in the core load that is referenced by a CALL statement, In the
case of a subroutine referenced by a CALL statement but specified as a LOCAL, the
CALL TV entry contains the address of the special LOCAL linkage instead of the sub-
routine entry point address. If SOCALSs are required, the CALL TV entries for function
subroutines contain the address of the special SOCAL linkage instead of the subroutine
entry pointaddress.

Each LIBF TV entry consists of 3 words. Word 1 is the link word in which the return
address is stored; words 2 and 3 contain a branch to the subroutine entry point. In the
case of a subroutine referenced by a LIBF statement but specified as a LOCAL, the
LIBF TV entry contains a branch to the special LOCAL linkage instead of to the sub-
routine entry point address. The core load builder inserts the address in word 1 of the
transfer vector entry (link word) into the entry point+2 of the associated LIBF sub-
routine, If SOCALSs are required, the LIBF TV entry for a SOCAL subroutine contains
a branch to a special entry in the LIBF TV for the SOCAL of which the subroutine is
a part. This special entry provides the linkage to the desired SOCAL.

The core load builder can build a core load that references up to approximately 375
different LIBF and CALL entry points; 80 LIBFs plus 295 CALLs (the maximum
number of LIBFs allowable is 83 due to the size of the LIBF TV). If the core load is
built on an 1130 system with core size of 4K, the maximum number of different LIBF
and CALL entry points is approximately 110.

See “Reading the Transfer Vector” in Chapter 6 for more information.

The core image loader (CIL) has 2 functions:
® Transfer control between some monitor programs
® Transfer core loads into core for execution

On an entry to the skeleton supervisor at $SEXIT, SDUMP, or $LINK, the core image
loader is called and control transferred to it. The core image loader determines where the
skeleton supervisor was entered and calls the appropriate monitor or mainline program.

When the skeleton supervisor is entered at the $EXIT entry point, the core image loader
calls the DISKZ I/0 subroutine if DISKZ is not already in core. Then, the CIL calls and
transfers control to the monitor control record analyzer to read monitor control records
from the input stream.

When the skeleton supervisor is entered at the SDUMP entry point, the core image loader
saves words 6 through 4095 (decimal) in the core image buffer. Then the CIL calls and
transfers control to the Supervisor Core Dump Program. When the dump is complete,

the dump program either restores core from the CIB and transfers control back to the
core load in process or terminates execution with a CALL EXIT (see “Disk Resident
Supervisor Programs” in this chapter).

Monitor System Programs 3-13

$LINK entry When an entry is made to the skeleton supervisor at the $LINK entry point, the eore image
loader saves the sector of core referred to as low COMMON. The sector saved depends on
the disk I/O subroutine that is in core; locations (in decimal) 896 through 1215 if DISKZ,
1216 through 1535 if DISK 1, or 1536 through 1855 if DISKN. Then the CIL determines
from COMMA the lowest-addressed word of COMMON if any was defined by the core
load just executed. Any COMMON in core below location 4096 (4K system) or 5056 in
larger systems is saved in the CIB. The following illustrates the saving of COMMON.

Core address Core storage Sector Core image buffer
0000 1
2
3
4 Core load
5
6
if DISKZ 896 7
If DISK1 1216 8
If DISKN 1536 9
1856 10
2176 11 k
2496 12k Saved COMMON
2816 13
3136 14
3456 15
3776 16
4096

Next, the CIL determines from the LET or FLET entry for the program being called
whether the program is in disk system format or in disk core image format.

If the called program is in disk system format, the core load builder is called to construct
a core load from the mainline program. After the core load is built, the core image loader
is called to transfer the core load into core for execution.

If the called mainline program is stored in disk core image format, the disk I/O subroutine
required by the core load is called, if it is not already in core. Any COMMON defined by
the core load just executed and saved in the CIB is restored, and the called core load is
transferred into core for execution.

The following illustration is the layout of a core load in core ready for execution.

LOCAL/
Resident monitor Mainline Subprograms | SOCAL LOCAL area | SOCAL area | Unused | Transfer vector | COMMON
flipper
)) J) JL . J
L LY e {f{ ¢
ocation End
NOCALs _ of

core

Core image header

3-14

surergo1g wiolsAS 10Uy

ST-¢

LOGIC FLOW OF THE MONITOR SYSTEM

Cold start
record

Cold start program
(sets negative param-
eter for DUMP entry)

Subroutine
library

LINK entry. DUMP entry EXIT entry
Skeleton
supervisor
Core image loader
determines where
skeleton supervisor
was entered
I 1 | L 1
EXIT LINK DUMP DUMP LINK
entry entry, entry, entry, entry,
OSF negative positive DCI
program parameter parameter program
Monitor
contro! record
analyzer Auxiliary DUMP
[supervisor Program
I | |
JOB DuUP FOR RPG ASM XEQ t
record record record record record record T erml inal Dynamic
dump dump
USER
DCI DSF EXECUTION
program program
4 JV
. Disk Utility FORTRAN RPG Assembler Core load
Supervisor . . .
Program(DUPﬂ compiler compiler Program builder
R! { ! ! { { o {
EXIT EXIT EXIT EXIT EXIT LINK LINK EXIT EXIT LINK DUMP EXIT
DCI positive
program parameter

3-16

Chapter 4. Monitor System Library

The monitor system library is a group of mainline programs and subroutines that performs
the following functions for the monitor system:

Input/output

Data conversion

[J

.

® Arithmetic functions
® Disk initialization

® Disk maintenance

® Paper tape utility

Appendix C is a listing of the names, types and subtypes, required subroutines, and ID
fields for the programs and subroutines in the monitor system library.

Monitor system subroutines can be added to or deleted from the monitor system library.
You add or delete them with Disk Utility Program (DUP) store and delete functions (see
“*STORE” and “*DELETE” under “DUP Control Records” in Chapter 5). Each program
in the IBM-supplied system deck used in an initial load is preceded by a DUP *STORE
control record.

This chapter contains general information about:
® System library ISS subroutines

® System library utility subroutines

® System library mainline programs

Additional and more detailed information about the system library is contained in the
publication ZBM 1130 Subroutine Library, GC26-5929.

Monitor System Library 4-1

1SS Subroutines

SYSTEM LIBRARY ISS SUBROUTINES

nameZ

name0

namel

The interrupt service subroutines (ISS), in the monitor system library, manipulate the
I/0 devices that are part of the computer configuration. Each subroutine has a symbolic
name that must be used when the subroutine is available, although only one for each
I/O device can be selected for use in any one program (including subroutines). The fol-
lowing is a list of the devices available on the 1130 and the names of the ISS subroutines

that are available for each device.

1/O device

1442 Card Read Punch

2501 Card Reader

1442 Card Punch

Disk

1132 Printer

1403 Printer

Console keyboard/printer
Console printer

1134/1055 Paper Tape Reader Punch
1627 Plotter

1231 Optical Mark Page Reader

Synchronous Communications
Adapter

1/0 device subroutine
CARDZ, CARDO, or CARD1
READZ, READO, or READ1
PNCHZ, PNCHO, or PNCH1
DISKZ, DISK1, or DISKN
PRNTZ, PRNT1, PRNT2
PRNZ, or PRNT3

TYPEZ, or TYPEO

WRTYZ, or WRTYO
PAPTZ,PAPT1, PAPTN, or PAPTX
PLOT1, or PLOTX

OMPR1

SCAT1,SCAT2, or SCAT3

The last character or digit (Z, 0, 1, or N) of an ISS name indicates the general character-

istics of the subroutine:

The nameZ versions are designed for use in an error-free environment; preoperative error
checking is not provided. FORTRAN and RPG use the nameZ versions of the ISS sub-

routines.

The name0 versions are shorter and less complicated than the namel or nameN versions.
The nameO versions handle error conditions automatically.

Use the namel versions rather than the nameO versions when you write an error exit. The
name0 versions handle error conditions automatically.

nameN

ISS Subroutines

The nameN versions are available to operate the 1134/1055 Paper Tape Reader/Punch
simultaneously and to minimize extra disk revolutions when transferring more than 320
words to or from the disk. DISKN offers more options than DISK 1. Depending on your
computer configuration, it also offers simultaneous operation of any one of the following
disk combinations.

e Up to five 2315 Disk Cartridges

e One 2315 Disk Cartridge (the 1131 CPU internal disk) and one disk in each of one or
two 1316 Disk Packs

o One disk in each of two 1316 Disk Packs
Preoperative and postoperative errors that occur during the operations of the I/O device
subroutines are included in Appendix B.

Extra space on a system cartridge can be gained by deleting the 1/O device subroutines that
are in the system library for devices that are not a part of your computer configuration.
The following is a list of the subroutines that can be deleted for each device:

Disk blocks
Device not in 1/0 device subroutines gained
configuration that can be deleted (hexadecimal)
1442 Card Read Punch CARDO, CARD1, CARDZ /4E
(input/output)
2501 Card Reader READO, READ1, READZ /62
1442 Card Punch PNCHO, PNCH1, PNCHZ /22
1134/1055 Paper Tape PAPT1,PAPTN, PAPTX, PAPTZ, /75
Reader/Punch PAPEB, PAPPR, PAPHL,
1132 Printer PRNT1,PRNT2, PRTZ2, PRNTZ, /69
DMPD1
1403 Printer PRNT3,PRNZ, EPTP3, CPPT3, /40
HLPT3, PT3EB, PT3CP, PTHOL
1627 Plotter PLOT1, PLOTI, PLOTX, FCHRX, /80
ECHRX, SCALF, SCALE, FGRID,
EGRID, FCHAR, ECHAR, FPLOT,
EPLOT, FRULE, ERULE, POINT,
XYPLT
Synchronous SCAT1,SCAT2, SCAT3,PRNT2, /FA
Communications PRTZ2,10.0G, EBC48, HOL48,
Adapter HXCV, STRTB, HOLCA
1231 Optical Mark OMPR1 /15
Page Reader
MTCA MTCAOQ, MTCAZ, TSM41, TSTTY, /9A
FEB41

Monitor System Library 4-3

Utility Subroutines

You should not delete subroutines that are called by subroutines left in the monitor system
library (see Appendix C for lists of the subroutines called by each subroutine in the moni-
tor system library). '

The mainline programs required for devices not on the system that can be deleted from
the system library are:

Disk blocks
Device not in Mainline programs that gained
configuration can be deleted (hexadecimal)
1134/1055 Paper Tape PTUTL - /0A
Reader/Punch
2310 Disk Storage or DLCIB, ID, COPY, DISC, /9D
2311 Disk Storage Drive IDENT

SYSTEM LIBRARY UTILITY SUBROUTINES

A group of subroutines that perform utility functions for the monitor system are included
in the monitor system library. These subroutines are:

4-4

SYSUP, disk communications area (DCOM) update subroutine, that you call in an
assembler or FORTRAN program when you need to change disk cartridges or packs
during execution of a core load. This subroutine updates DCOM on the master cart-
ridge with the IDs and DCOM information from all satellite cartridges that are mount-
ed on the system and that are specified in the special SYSUP calling sequence. Uses
and calling sequences of SYSUP are discussed in Chapter 6.

CALPR, call system print subroutine, that calls the print subroutines into core storage
for printing information on the principal printer.

FLIPR, LOCAL/SOCAL flipper overlay subroutine, that calls LOCAL (load-on-call) and
SOCAL (system-load-on-call) subroutines into core storage during execution of a core
load. LOCALs, SOCALs, and FLIPR are discussed under “Incorporating Subroutines”
in Chapter 3 and in Chapter 6, “Programming Tips and Techniques”.

FSLEN, fetch phase IDs and fetch system subroutines, that performs 2 functions. The
first function obtains system program phase ID headers from SLET as requested by
monitor system programs. The second function calls system subroutines into core
storage as needed.

RDREC, Read *ID Record, that is called by the disk maintenance programs, discussed
in this chapter, to read *ID control records.

Note. SYSUP is the only one of these utility subroutines that can be called by FORTRAN

programs. The other subroutines are called as needed by monitor system programs or by
assembler language programs.

Disk Maintenance Programs
IDENT

SYSTEM LIBRARY MAINLINE PROGRAMS

disk maintenance
programs

PTUTL program

messages and
halt codes

The 1130 system library mainline programs provide for disk maintenance and paper tape
utility functions. These programs (except the disk maintenance program, ADRWS) are
called for execution with a monitor XEQ control record, and are described in the following
sections of this chapter. These programs can be executed in a stacked job stream.,

The disk maintenance programs reinitialize cartridges, modify the contents of cartridges,
and print information from cartridges. The disk maintenance programs are:

IDENT that prints cartridge IDs

DISC that reinitializes satellite cartridges

DSLET that prints the contents of the system location equivalence table
ID that changes cartridge IDs

COPY that copies the contents of one cartridge onto another

ADRWS that writes sector address in working storage

DLCIB that deletes the core image buffer from a nonsystem cartridge
MODIF that modifies the monitor system programs

MODSEF that modifies programs and subroutines in the system library

DFCNV that converts 1130 FORTRAN and/or commercial subroutine package (1130-
SE-25X) disk data files to disk files acceptable to 1130 RPG programs.

For execution, some disk maintenance programs require in addition to the monitor XEQ
control record, special control records. The fields and uses of these special control records
are described when required in the descriptions of these programs in this chapter.

The Paper Tape Utility (PTUTL) Program accepts input from the paper tape reader or
console keyboard and provides output to the console printer and/or the paper tape punch.

Messages printed by the disk maintenance programs are described in Appendix A. Halt
codes displayed in the console ACCUMULATOR are described in Appendix B.

The following sections of this chapter describe the functions and calling sequences of the
system library mainline programs.

IDENT

The Print Cartridge ID (IDENT) mainline program prints the cartridge ID and physical
drive number of each disk cartridge that is mounted on the system and is ready, not just
the cartridges that are specified in the current JOB monitor control record (see “Monitor
Control Records” in Chapter 5). Invalid cartridge IDs, including negative numbers, are
printed.

The IDENT program is called for execution with a monitor XEQ control record:

1 5 10 15 20 25 30 35 40 45 50

/| XEIQ |1 DIEWMT

Monitor System Library 4-5

Disk Maintenance Programs

DISC

46

*ID fields

DISC

The Satellite Disk Initialization (DISC) mainline program requires at least 8K of core stor-
age to run. DISC reinitializes from one to four satellite cartridges; all but the master cartridge.
(All new cartridges must be initialized with the stand-alone DCIP utility program, see

Chapter 9). On each cartridge being reinitialized, the DISC program:

® Tests disk sectors to determine which, if any, are defective, and fills in the defective
cylinder table accordingly

Writes a sector address on every sector, including defective sectors
Establishes a file-protected area for the cartridge

Places an ID on the cartridge

Establishes a disk communications area, sector @DCOM, a location equivalence table
(LET), and a core image buffer (CIB)

If an error occurs during testing, the cylinder on which the error occurred is retested. If
the error occurs again, the address of the first sector on that cylinder is written in the
defective cylinder table. The monitor system I/O subroutines operate with up to 3
defective cylinders on a cartridge. That is, 3 cylinders that contain one or more defective
sectors. A cartridge cannot be initialized if cylinder 0 is defective, or if a sector address
cannot be written on every sector.

A message and the program that prints it are written in sector @RIAD. The message is:
NONSYST. CART. ERROR

This message is printed when an attempt is made to cold start a nonsystem cartridge that
is initialized with DISC.

The DISC program is called for execution with a monitor XEQ control record followed by
an *ID control record:

1 5 10 15 20 25 30 35 40 45 50
A/ IXE /l8l¢ .
K NDA DL D [AADIZ, iTlDle]) - L L IFL/ DInl | 711 (D1

FID1 Through FIDn. Replace FID1 through FIDn with the current IDs on the satellite
cartridges that are being reinitialized. This program overrides the cartridges that are
specified in the current JOB monitor control record.

TID1 Through TIDn. Replace TID1 through TIDn with the new IDs to be placed on the
satellite cartridges during initialization. A valid cartridge ID is a hexadecimal number from
/0001 to /7FFF.

Disk Maintenance Programs
DSLET 1D
COoPY

DSLET

The Dump System Location Equivalence Table (DSLET) mainline program prints the
contents of SLET on the principal printer. Each SLET entry printed includes a symbolic
name, phase ID, core address, word count, and disk sector address. Appendix E is a
printout of a SLET dump.

The DSLET program is called for execution with a monitor XEQ control record:

1 5 10 15 20 25 30 35 40 45 50

M XEI@ IDSILIAT]

ID

The Change Cartridge ID (ID) mainline program changes the ID on from one to four
satellite cartridges. The ID program is called for execution with a monitor XEQ control
record followed by an *ID control record:

1 5 10 15 20 25 30 35 40 45 50
|/ /1D
(DA DL DL FlND2L T D2l L - L 1F D al |71 DA

*1D fields FID1 Through FIDn. Replace FID1 through FIDn with the IDs currently on the satellite
cartridges that are to be changed. These IDs must be coded in the same logical order as
those coded in the current JOB monitor control record.

TID1 Through TIDn. Replace TID1 through TIDn with new IDs that you want placed on
the satellite cartridges. A valid cartridge ID is a hexadecimal number between /0001 and
[7FFF.

CoPY

l The Disk Copy (COPY) mainline program requires at least 8K of core storage to run. COPY
copies the contents from one cartridge (source) onto another (object cartridge). The
defective cylinder data and cartridge ID are not copied. The copy code (word 5 of sector
@IDAD) on the object cartridge is incremented to one greater than the copy code on the
source cartridge. (The stand-alone DCIP program described in Chapter 9 provides a
similar disk copy function.)

If a copy is made of a system cartridge from a system with a different configuration, the
object cartridge must be reconfigured before a cold start can be performed (see Chapter
8 for information about reconfiguration).

The COPY program is called for execution with a monitor XEQ control record followed
by an *ID control record:

1 5 10 15 20 25 ‘ 30 35 40 45 50
/| IXEEIQl [cloPv]
[DF|DI2s T N AL 1DI2L s |71/ D12] s | - |- | -1 s FL/ D)5 [7]/ D}

Monitor System Library 4-7

Disk Maintenance Programs
ADRWS DLCIB
* MODIF

*1D fields FID1 Through FIDn. Replace FID1 through FIDn with the IDs of the cartridges that are
being copied. When multiple copies are being made from a single cartridge, replace FID1
through FIDn with the same cartridge ID. This program overrides the cartridges that are
specified on the current JOB monitor control record.

TID1 Through TIDn. Replace TID1 through TIDn with the IDs of the object cartridges.

ADRWS

The Write Sector Addresses in Working Storage (ADRWS) mainline program writes a
sector address on every sector of working storage of a cartridge. This program is not
executed with an XEQ monitor control record as the other disk maintenance mainline
programs are. ADRWS is linked to from the Disk Utility Program (DUP) when a DWADR
DUP control record is read from the job stream. (The DWADR control record is described
under “DUP Control Records” in Chapter 5.)

DLCIB

The Delete Core Image Buffer (DLCIB) mainline program deletes the CIB from a nonsystem
cartridge. The areas on the cartridge that followed the CIB before it was deleted are moved
back 2 cylinders closer to cylinder 0. The new addresses of the areas moved are placed in
DCOM on the master cartridge and in COMMA on the cartridge from which the CIB was
deleted.

The DLCIB program is called for execution with a monitor XEQ control record followed
by an *ID control record:

1 5 10 15 20 25 30 35 40 45 50

[/ IXElQ| IDILIc]/|B
X /IDCIAIRT]

><

*1D field CART. Replace CART with the cartridge ID of the nonsystem cartridge from which the
CIB is being deleted.

MODIF

The System Maintenance (MODIF) mainline program allows you to make updates to the
monitor system programs and/or the system library. This program changes the word of

the disk communications area (DCOM) that contains the version and modification level

of the monitor system. (Information stored in the user area in disk system format can

also be changed with the MODSF disk maintenance program described later in this chapter.)

A card deck or paper tape containing corrections to update the monitor system to the
latest version and modification level is supplied by IBM. All modifications included must
be run, even if an affected program has been deleted from the system, to update the
version and modification level.

Disk Maintenance Programs
MODIF control records

The MODIF program is called for execution with a monitor XEQ control record:

oy
(3]
-
[=]

15 20 25 30 35 40 45 50

Note. A system program phase that contains reload table entries (references to other
entries in SLET generated by the system loader during an initial load or reload operation)
cannot be replaced with MODIF; a system reload must be used (see Chapter 8 for reload
information). MODIF cannot be used if temporary mode is indicated in the current
monitor JOB control record. A cold start procedure is recommended prior to a system
reload if the reload precedes the execution of MODIF, as in a system modification update.

MODIF Patch Control and Data Records
The MODIF patch control records that can follow the monitor XEQ control record are:
o *MON that identifies a monitor program phase that is being modified

e *SUB that identifies a change to the system library
e // DEND that specifies the end of MODIF execution

*MON patch The *MON patch control record, patch data records, and a // DEND control record
control record modify monitor program phases. A typical input card deck for system program mainten-
ance is:

[//...

// DEND

| j—— Next monitor control record

A MODIF job f¢=——— MODIF define end record

Following system program maintenance.control
records and data records (if any)

(*MON
Data records

// XEQ MODIF

|__J<¢——— System program maintenance control record

¢— System maintenance program call

Each program phase that is changed requires a *MON control record and patch data
records that specify the changes. If MODIF determines from SLET that the FORTRAN
compiler or the assembler has been deleted from the disk, any modifications that are
included for these programs cannot be made; however, the version and modification levels
for these programs are updated in DCOM.

Monitor System Library 4-9

Disk Maintenance Programs
MODIF control records

*MON patch Card column Contents Explanation
control record
format 1 through 4 *MON These characters identify a patch to

any of the monitor system programs
and/or the system device subroutines.

5 Blank

6 through 8 vmm A hexadecimal number;
v is the monitor version, and
mm is the monitor modification
level.

9 OorGorR 0 indicates system modification
update.
G indicates general temporary fix.
R indicates restricted temporary
fix.

10 Blank

11 through 14 XXXX The SLET ID (in hexadecimal) of
the monitor program phase to which
the patch is being made. 0000
indicates an absolute patch (see
columns 28 through 31 and 33
through 36).

15 Blank

16 through 19 nnnn The numbers (in hexadecimal) of
patch data records that follow this
control record.

20 Blank

21 BorH This character identifies the format
of the patch data records that follow.
B indicates binary system format.
H indicates hexadecimal patch format.

22 Blank

23 through 26 PPPP A hexadecimal number that specifies
the total number of patch control
records to be processed. This field is
required only on the first patch
control record.

27 Blank

28 through 31 dsss A hexadecimal number;

d is the disk drive code, and

sss is the sector address of the
program being patched. Use this
field only when columns 11 through
14 contain 0000.

4-10

additional field

information

patch data
records

hexadecimal
patch data
record format

Disk Maintenance Programs
MODIF data records

Card column Contents Explanation
32 Blank
33 through 36 ccce A hexadecimal number that specifies:

the core address of the sector
specified in columns 28 through 31.
Use this field only when columns 11
through 14 contain 0000.

37 through 80 Not used

*MON. The programs that can be patched are: the FORTRAN compiler, RPG compiler,
COBOL compiler (program product), assembler, Disk Utility Program, supervisor, core
load builder, core image loader, and the system device subroutines. Modifications to the
system device subroutines must be made with a *MON patch, not a *SUB, *DELETE, and
*STORE patch.

0or G or R. A system modification update (0) can be made only on a system of one level
lower than the level indicated in columns 6 through 8. A general temporary fix (G) can
be made only on a system of the same or one higher level than the level indicated in
columns 6 through 8. A general temporary. fix does not change the level of the system.

A restricted fix (R) can be made only on a system of the same level as the level indicated
in columns 6 through 8.

pppp. A MODIF job can modify more than one system program and can modify both
system programs and the system library.

In the latter case, the specified count in columns 23 through 26 must include the *SUB
patch control record. The // DEND control record is not included in this count.

ccce, Core addresses can be obtained from the microfiche listings.

Patch data records are in either hexadecimal patch format or binary system format. These
data records specify the beginning address of the patch, and the new data for the patch.
Patch data records cannot contain CALLs or LIBFs, and the relocation indicators will
not be used.

Card column Contents Explanation

The beginning core address (in
hexadecimal) of the patch. Each
patch data record must contain the
core address.

1 through 4 aaaa

5 Blank

6 through 9, Each 4-column field is one word of
11 through 14, . patch data (in hexadecimal). Up to
16 through 19, 13 words of patch data can be in-

cluded in one data record. A blank
must separate each word of data.

66 through 69
70 through 72 Blank

73 through 80 Not used

Monitor System Library 4-11

Disk Maintenance Programs
MODIF control records

Hexadecimal patch records can contain ID/sequence numbers in columns 73 through 80.
Zeros must be punched; leading blanks are not assumed.

binary system Word Contents
patch data '
record format 1 , Location
2 Checksum
3 Type code (first 8 bits) 00001010
4 through 9 Relocation indicators
10 through 54 Data words 1 through 45
55 through 60 ID and sequence number or blanks

Note: Checksum verification is not made if word 2 is blank.

*SUB patch The *SUB patch control record, DUP *DELETE and *STORE functions, new versions of
control record system library programs and subroutines, and a // DEND control record are used to modify
the system library. A typical input card deck for system library maintenance is:

(//...

(//DEND

-

< Next monitor control record

|¢=————— MODIF define end record

A MODIF job

Next DELETE and STORE and new
version of system library program, .. .

*STORE XXXXX
(New version of system library program XXXXX

r*DELETEXXXXX

(*sus

// XEQ MODIF

DUP control records

System library maintenance control record

g~ System maintenance program call

4-12

Disk Maintenance Programs
MODIF control records

Only one *SUB control record is used in a MODIF job; however, any number of deletes
and stores can be included after a *SUB control record. When a MODIF job is used to
modify system programs and the system library, the *SUB control record must be the
last patch control record before // DEND in the MODIF job. The *SUB control record
is also included in the count of MODIF patch control records coded in columns 23
through 26 of the *MON control record.

*SUB patch Card column Contents Explanation
control record
format 1 through 4 *SUB These characters identify a patch
to the monitor system library.
5 Blank
6 through 8 vmm A hexadecimal number;
v is the monitor version, and
mm is the monitor modification
level.
9 OorGorR 0 indicates system modification
update.
G indicates general temporary fix.
R indicates restricted temporary
fix.
10 through 15 Blanks
16 through 19 nnnn The number (in hexadecimal) of
delete and store control records
that follow this control record.
20 through 80 Not used
additional field 0 or G or R, A system modification update (0) can be made only on a system of one level
information lower than the level indicated in columns 6 through 8.

A general temporary fix (G) can be made only on a system of the same or one higher level
than the level indicated in columns 6 through 8. A general temporary fix does not change
the level of the system.

A restricted fix (R) can be made only on a system of the same level as the level indicated
in columns 6 through 8.

// DEND patch All MODIF jobs must end with a define end control record (// DEND). This record termin-
control record ates MODIF execution and passes control to the supervisor.
// DEND patch Card column Contents Explanation
control record
format 1 through 7 //6DEND b indicates biank.
8 through 80 Not used

Monitor System Library 4-13

Disk Maintenance Programs
MODIF exampie
MODSF

4-14

MODIF Example

This example illustrates how to change an instruction in the 1134/1055 system subroutine.
The following data is used to make the change:

The SLET phase ID of the subroutine is /0091.

Hexadecimal patch format is used.

The instruction address (from an assembly listing) is /0023.

The instruction is /0000.

The instruction is to be changed to /7002.

The new modification level is 8.

One patch data record is required.

Only one patch control record (// DEND) follows the *MON control record.
The coding sequence for making this change is:

1 5 10 15 20 25 30 35 40 45 50
1 o
/11 XElal Molols
2 1 1| |4 [oidlalz
23| [7ldlz i
/1] Iolewlp |
{ :

When execution is complete, the following messages are printed on the principal printer:

MODIF EXECUTION 0207 The execution of MODIF is started on Disk Monitor
System Version 2, level 7.

MODIF TERMINATION 0208 The patch is installed; the new level is 8.

MODSF

The Library Maintenance (MODSF) mainline program allows you to update programs
that are stored in the user area in disk system format. (Monitor system programs are modi-
fied or replaced with the MODIF program discussed in the previous section of this chapter.)

MODSF updates a program by replacing existing code and/or inserting additional code
at the end of the program. Existing code is replaced in the program as it resides in the
user area. The existing code of several programs can be updated in one MODSF job,

but code can only be added to the last program included in the MODSF job. When
additional code is added to a program, MODSF moves the program into working storage
before inserting the new code. The modified program is still in working storage when
MODSF execution is finished and can be transferred back to the user area with DUP
*DELETE and *STORE functions.

On the basis of where the addresses you specify are in the program being modified, MODSF
determines whether a particular update is a replacement or an addition of code. A maxi-
mum of 31 words can be updated in one MODSF job.

The MODSF program is called for execution with a monitor XEQ control record:

1 5 10 15 20 25 30 35 40 45 50

/| XIEIQ wODls]

Disk Maintenance Programs
MODSF control records

MODSF Patch Control and Data Records)

The MODSF patch control records that can follow the monitor XEQ control record are:
e *PRO that identifies the program that is being modified.

o *END that specifies the end of MODSF execution.

*PRO patch The *PRO patch control record, patch data records, and an *END control record are used
control record to modify programs and subroutines stored in the user area. A typical input card deck
for library program maintenance is:

{ *STORE WS UA

*DELETE

These DUP control records are
included only if last program
was expanded.

¢—— MODSF terminator record

Any number of programs may be

updated, but only the last may be
Patch data expanded.
records
*PRO
(Patch control
record) Patch control and data records
if second program is to be updated.
Patch data
records
*PRO
(Patch control Patch control and data records for
record) modification of first (or only) program.
{ // XEQ MODSF

/1 JoB

Each program or subroutine that is being modified requires a *PRO control record and
patch data records that specify the changes being made.

Monitor System Library 4-15

Disk Maintenance Programs
MODSF control records

4-16

*PRO patch
control record
format

Card column

1 through 4

5

6 through 8

9

10 through 14

15

16 through 19

20

21

22

23 through 26

27,37,417,57

28 through 31
38 through 41
48 through 51
58 through 61

32,42, 52, 62
33 through 36
43 through 46

53 through 56
63 through 66

67 through 72

73 through 80

Contents

*PRO

Blank

vmm

Blank

pname

Blank

nnnn

Blank

Blank

XXXX

Blanks

aaaa
aaaa
aaaa
aaaa

Blanks
VWW
wwv

WV
wWwv

Reserved

Not used

Explanation

These characters identify a MODSF
patch control record.

A hexadecimal number;
v is the current monitor version, and

mm is the current monitor modification
level.

The name of the DSF program being
updated. (If the program has
secondary entry points, this must be
the name of the primary entry point.)

The number (in hexadecimal) of
patch data records that follow this
control record.

Indicates addressing mode, where
mis:

P for program-address mode, or

D for disk-displacement mode.

Cartridge |D of the cartridge on
which the program being modified
is stored. (A cartridge ID is not
necessary if the program is stored
on the master cartridge.)

Each of these optional fields specifies
an address (in hexadecimal) at which
the current content of the program
is compared with the values specified
beginning in column 33.

The value (in hexadecimal) that is
being compared with the program
content at the addresses specified
beginning in column 28. These
optional fields are used when

the aaaa fields are used.

additional field
information

patch data
records

Disk Maintenance Programs
MODSF data records

m. Addresses at which modifications are being made to the program are expressed as
either P for P-mode (program-address) or D for D-mode (disk-displacement). In P-mode,
each address represents a relative address within the program such as is printed on the left
of an assembly listing.

In D-mode, each address represents a relative location on a disk; a location that the number
of words indicated by the displacement beyond word 0 of the DSF program header. Each
D-mode address corresponds to an address on a DUP *DUMP of the program to the printer.

Note. D-mode should be used if the program or subroutine being updated contains a back-
ward origin. If P-mode is used when a program contains a backward origin, the results of
MODSEF execution are unpredictable.

aaaa. . . and vvvy . . . These optional fields allow you to verify whether or not a specific
update has been made by checking the contents of the program at specified addresses
(aaaa . . .) with specified values (vvvv .. .). If the contents of the words checked are not
exactly as specified, the MODSF job is terminated. The addresses (aaaa . . .) are inter-
preted by MODSF as P-mode or D-mode according to the addressing mode specified in
column 21 of this control record.

Note. The second word of a LIBF or CALL cannot be verified.

Code can be replaced or added in either P-mode or D-mode. You specify the addressing
mode in column 21 of the ¥*PRO control record. The patch data records for MODSF are
in either P-mode or D-mode format. For the patch data records, choose the format
according to the addressing mode you specify in the *PRO control record.

In P-mode, you can update any word in a program, including the relocation code for

that word. (You cannot update the program header or any data header in the program
text because these are not a part of the program.) You can add words to the end of a
program; a relocation code must be specified for each new word. The program length and
the disk block count in the program header are automatically updated by MODSF when
an addition is made.

Because the object code of a LIBF occupies 2 words as stored on disk but only one
word in a subsequent core load of the program, you can only replace a LIBF with another
LIBF.

Monitor System Library 4-17

Disk Maintenance Programs
MODSF data records

P-mode patch data Card column
record format
1 through 4
5
6
7

8 through 11

12

13

14

15 through 18
64 through 67

68 through 72

73 through 80

4-18

Contents

aaaa

Blank

Blank

XXXX

Blank

Blank

XXXX

Reserved

Not used

Explanation

The address (in hexadecimal) in the
program of the first word being
changed.

Relocation code of the first word
being changed; enter:

A for an absolute expression or the
second word of an LIBF or a CALL
(relocation code 0),

R for a relocatable expression or the
second word of a DSA statement
(relocation code 1),

L for the first word of an LIBF
(relocation code 2)—an update with
an L relocation code must be im-
mediately followed (on the same
patch data record) by a second update
word with an A relocation code,

C for the first word of a CALL or
DSA statement (relocation code 3).

The value (in hexadecimal)} that is
being inserted in the first location.

Relocation code of the second word
being changed (see column 6).

The value that is being inserted in the
next location. As many as 9 con-
secutive words can be updated with
one data record. A relocation code
must precede each value specified,
and a blank must separate a relocation
code from a value.

D-mode data
control record
format

*END patch
control record

*END control
record format

Disk Maintenance Programs
MODSF control records

In D-mode, you can change any word in a program. You can also change the program
header or any data headers in the program text. You must update the program length and
the disk block count in the program header when you add code to the end of a program.
You must also modify any data headers and indicator data words affected by your changes
or additions. Be careful to change only the required information in headers.

Card column

1 through 4

5

6 through 9

10
11 through 14
66 through 69

70 through 72

73 through 80

Contents

aaaa

Blank

XXXX

Blank

XXXX

Reserved

Not used

Explanation

Disk disptacement (in hexadecimal) of
the first word being changed with this
data record.

The value (in hexadecimal) that is
being inserted in the location
specified by columns 1 through 4.

The next value that is being inserted
in the next location. As many as

13 consecutive words can be updated
with one data control record. Each
value specified must be separated
from the next with a blank.

All MODSF jobs must end with a MODSF terminator record (*END). This record termin-
ates MODSF execution and passes control the the supervisor.

Card column

1 through 4

5 through 72

73 through 80

Contents

*END

Reserved

Not used

Explanation

These characters signify the end
of input for MODSF.

Monitor System Library 4-19

Disk Maintenance Programs
MODSF example
DFCNV

MODSF Example
This example illustrates how to change three instructions to NOP instructions. The fol-
lowing data is used to make the changes:

® The name of the program is FADD.

® The instruction addresses (from an assembly listing) are 001B, 001C, and 001D
(hexadecimal).

® The values that are compared with the contents at these locations are C900, D839, and
18DO, respectively.

The instructions are all changed to 1000.
The addressing mode is P.

One P-mode patch data record is used.

The modification level is 9.

The coding sequence for making these changes is:

25 30 35 40 45 50 55 60 65 72

i
S
S

Y V7]

~ O

B Sk NN
S
=

4-20

When execution is complete, the following messages are printed on the principal printer:
MODIFICATIONS MADE

SUCCESSFUL COMPLETION This message is printed when the *END record is read
and the program is not expanded.

The changes are made and did not expand the program.

DFCNV

The Disk Data File Conversion (DFCNV) mainline program converts 1130 FORTRAN and/
or commercial subroutine package (1130-SE-25X) disk data files to disk files acceptable

to 1130 RPG. The program operates in a minimum 8K core DM2 system and uses DISK1
and the system device subroutines for the principal input device and principal printer.

DFCNYV accepts all FORTRAN and commercial subroutine package (CSP) disk data for-
mats for conversion to acceptable RPG disk data format. FORTRAN or CSP input to
DFCNYV can be a disk file created with or without 2-word integers, or a deck of cards
produced by a DUP *DUMPDATA operation.

Prior to executing DFCNV, use a DUP *STOREDATA or *DFILE operation to reserve
an output file in the user or fixed area and to enter its file name in LET or FLET. The
DFCNYV output file can be defined on the same disk as the input file or on a cartridge
residing on another drive. DFCNV converts one input file to one output file; subsequent
DFCNV program executions must be performed to convert more than one file.

RPG programs can process the converted files séquentially or randomly, but not as in-
dexed sequential access method (ISAM) files.

Note. The disk file protection indicators SFPAD-$FPAD+4 in COMMA are modified
during the conversion portion of DFCNV. These modified indicators must be restored
prior to further monitor processing if unforseen problems, such as accidentally pressing
IMM STOP, cause abnormal ending of DFCNV. Normally, these indicators are restored
by DFCNV after a successful file conversion.

Disk Maintenance Programs
DFCNV control records

The DFCNV program is called for execution with a monitor XEQ control record:

1 5 10 15 20 25 30 35 40 45 50
//| XEQ| DFCWV| 1
DFCNYV Control Records

Three types of control records are required by the conversion program:

® File description
o Field specification
o End-of-file

A file description control record is required and must immediately follow the XEQ con-
trol record. Only one file description record is used. A typical input card deck for the con-

version program is:

file description
control record

/*

=

(s End of file card

|
(| Field specification card
// XEQ DFCNV 1

. J<¢—— File description card

Monitor System Library 4-21

Disk Maintenance Programs
DFCNV control records

4-22

file description

control record
format

The file description control record contains the following information.

Card column

1 through 5

6

7 through 11

12

13 through 17

18

19 through 21

22

23 through 25

26

27

28

29

30

31

32

33

34 through 71

72

73 through 80

Contents

Name

Blank

RPG name

Blank
Number of
input records
Blank
Input-file
record size,
in words
Blank

RPG file
record size,
in characters

Blank

SorE

Blank

1 or blank

Blank

C or blank

Blank

W or blank

Blanks

Not used

Explanation

The file name (left-justified) of the
file whose data is being converted.
This field is ignored if card input is
specified in column 31.

The file name (left-justified) of the
file where the RPG data is to be placed.

A right-justified decimal number with
leading zeros or blanks and in the
range 1 through 32767.

A right-justified decimal number with
leading zeros or blanks and in the
range 1 through 320.

A right-justified decimal number with
leading zeros or blanks and in the
range 1 through 640.

S indicates standard precision.

E indicates extended precision.

1 indicates one-word integers are
used.

C indicates input from cards.

Blank indicates that input is from disk.

W indicates that an object time
warning message is to be printed if
areal number (see “R-Field Type'’ in
Appendix J) is out of range upon
conversion.

Blank indicates that the object time
warning message is not printed.

This character identifies this record as
a file description record.

additional field
information

computing
file sizes

Disk Maintenance Programs
computing DFCNV file sizes

Name. Use the exact name of the FORTRAN or CSP file that is being converted.

RPG name. The RPG file name cannot contain any special characters, although the input
file name can contain the character §. DFCNV does not check the RPG file name for §.

Both the input and RPG file sizes are calculated from the information that you specify
in the file description control record. These computed sizes are checked against their
corresponding LET or FLET entries for correct size. The following formulas are used
to calculate the input and output file sizes.

1. Compute the number of words (L) in a record:

C
L=—7
2
where
C is the record size in characters. Round the answer to the next higher number
if the answer has a remainder.

2. Compute the number of records (V) that can be contained in one sector:

=320
N==T

where
L is the length in words of each record computed in Step 1, and 320 is the
number of words in a sector. Disregard the remainder, if any.

3. Compute the input file size (/) in sectors:
R

I=—+

N

where
R is the number of records in the file, and NV is the number of records per
sector computed in Step 2. Round the answer to the next higher number if
the answer has a remainder.

4, Compute the output file size (O) in sectors:

_Rt1
0=
where
R is the number of records in the file, and N is the number of records per
sector computed in Step 2. Round the answer to the next higher number if
the answer has a remainder.

These are the same formulas that you use to calculate record and file sizes of sequentially
organized files, see “File Processing™ in Chapter 6.

Monitor System Library 4-23

Disk Maintenance Programs
DFCNV control records

field specification
control record

The second required control record, field specification, describes the RPG fields for the
converted data, Descriptions and examples of each field type supported by the program
are in Appendix J.

Caution: DFCNV does not check data format; therefore, you must know in detail the
format of the fields of your FORTRAN or CSP input file.

You can use as many complete field specifications on a field specification control record
as can be placed in columns 1 through 71. Column 72 of each record must contain an S.
Field specifications must be placed on the control records in the same order as the cor-
responding fields of the input record. Each field specification must be separated from
the next with a comma. Blanks embedded in specifications or blanks between specifica-
tions are not allowed. The following is an example of a field specification control record:

—
o
—
o
—
W

25 30 35 40 45 50 55 60 65 72

5)»[2| 1] -[Bi8]. |12][3iA-1Ti8] . |2 : S

repeat specification
option

optional control
record

4-24

Selected field conversion can be done by using the X-field type. See Appendix J for a
description of this field type. Data can be rearranged and field size can be modified with
the m term of field types. When data is rearranged or fields are expanded, you must pre-
vent data overlay in the converted field.

Identical fields that are sequentially repeated can be specified with only one field specifi-
cation for any field type except the X-field type. You specify the repeat option by im-
mediately following the specification being repeated with the character R and the total
number of identical fields. Each repeat field begins in the first vacant output column after
the previous field; that is, columns are not skipped when the repeat specification is used.

For example, the following field specification describes three integer fields, the first
beginning in column 15 of the RPG record. Each field is packed and is five characters long
with 2 places to the right of the decimal point:

15-15.2(P)R3

The 3 resulting output fieldsstart in the eighth word of the output record as:

Word: 8 9 10 11 12
Contents: XXX0 OFXY YOOF 77720 0F40

where
XXX, YYY, and ZZZ represent the three integer fields.

When any F-field type conversions are specified on the field specification control record,
an optional control record is required. This control record must contain the 40 character
translation table for CSP A3 format and the character A in column 72. This control record
immediately precedes the first field specification control record that specifies F-field

type conversion, Only one conversion table is allowed per file; if more than one is in-
cluded in the control records, the additional tables are ignored. The conversion table

must correspond to the original table used to convert to CSP A3 format.

end-of-file
control record

Paper Tape Utility Program
PTUTL

The third required control record for DFCNV is the end-of-file control record. All other
DFCNYV control records must precede the end-of-file (/*) control record.

DFCNYV Example

This example illustrates how to convert the FORTRAN file named FORFL to an RPG
file named RPGFL. The FORTRAN file contains 1,000 records, each 10 words long.
The file is standard precision with one-word integers. One such FORTRAN record is as
follows:

Word: 1 2 3 4 5 6 7
Content: 3A7E D64B 40D5 D540 D4Cl1 BCOO 0080
Word: 8 9 10

Content: 03C8 C000 0083

The RPG file consists of records 40 characters long. The coding for converting the
FORTRAN file is:

1 5 10 15 20 25 30 35 40 65 72|
/\/] 1Jo/B |
XEIQ DFICNV 1

FoRFL RIPGIFIL 40 1 s I D
1-1R3).|#ls15]- 1714 - 11]-1212]- [R}7]. |5]5 [2/2]-1BS - 12] 5| 3~ 718 . 12 3
/

|

T

After conversion, the RPG record that corresponds to the previous FORTRAN record is
stored on disk as:

Word: 1 2 3 4 5 6 7 8
Content: FOFO0O D440 F9F6 F8FO 4040 40F0 FOF5 F3F1
Word: 9 10 11 12 13 14 15 16
Content: F2D5 4040 D4C1 D540 40D5 D64B 40F0 F1F4
Word: 17 18 19 20

Content: F9F7 F4F0 F040 4040

PTUTL

The Paper Tape Utility (PTUTL) mainline program accepts input from the keyboard or
the 1134 Paper Tape Reader and provides output on the console printer and/or the 1055
Paper Tape Punch. You can make changes and/or additions to FORTRAN and assembler
language source records and monitor control records with PTUTL.

The PTUTL program is called for execution with a monitor XEQ control record:

1 5 10 15 20 25 30 35 40 45 50

/| XE L , I

The PTUTL program is also available as an IBM-supplied stand-alone program on tape
BP17. The operating procedure for both PTUTL programs is in Figure 9-12, Chapter 9.
An example of using this program is also included under “Stand-alone Paper Tape Utility
Program (PTUTL)” in Chapter 9.

Monitor System Library 4-25

4-26

Monitor Control Records
how to code

Chapter 5. Control Records

You use control records to specify operations performed by the Disk Monitor 2 System.
The use of these control records provides for stacked jobs with a minimum of operator
intervention. The order of control records, source statements, and data in stacked jobs
is described under ““Stacked Input Arrangement” in Chapter 6.

The control records in this chapter are grouped according to the monitor program that
they are associated with. These groups are:

Monitor control records
Supervisor control records
‘DUP control records
Assembler control records
FORTRAN control records
RPG control records

Each section of this chapter consists of a general function description, the order in which
the control records are placed in the input stream, general coding considerations, and a
description of each control record.

Other less frequently used control records are included in Chapter 4, “Monitor System
Library.” The control records described in Chapter 4 apply to specific, infrequently per-
formed procedures.

MONITOR CONTROL RECORDS

functions

coding

The monitor control records described in this section define control and load functions

that are performed by the monitor system. These functions are:

® [nitializing jobs

® Loading the assembler, the language compilers, or the Disk Utility Program into core
for execution

® Starting the execution of your programs

® Printing comments during monitor system operations

® Changing print devices during monitor system operations

The JOB monitor control record defines and initializes the beginning of jobs. Other
monitor control records are placed behind the JOB control record to specify the operations
to be performed during a job. A detailed description of the order of control records, pro-
gram statements, and data files in the input stream is in Chapter 6 under “Stacked Input
Arrangement.”

Information must be coded in the indicated card columns in monitor control record for-
mats. Columns 1 and 2 always contain slashes (//). The character B and reserved card
columns indicate that the columns must be blank. You can replace card columns shown as
not used with comments.

Control Records 5-1

Monitor Control Records

/1 J0B

52

general function

format

/1 JoB

A JOB monitor control record defines the start of a new job. This control record causes
the supervisor to initialize a job, which includes:

® The initialization of parameters in the core communications area (COMMA) and in

sector @DCOM

® The setting of the temporary mode indicator if the job is executed in temporary mode

® The definition of the cartridges to be used during the current job

® The definition of the cartridge that contains the core image buffer used for the current

job

® The definition of the cartridge that contains working storage used during the current

job

® The definition of the cartridge that contains the unformatted I/O disk buffer area for

use during the current FORTRAN job

® The definition of a new heading printed on each page printed by the principal print

device

® The reading of EQUAT supervisor control records into the supervisor control record

area (SCRA)

Card column
1 through 6
7

8

9 through 10

11 through 14

15

16 through 19

20

21 through 24

25

26 through 29

30

31 through 34

35

36 through 39

Contents

/1%JOB

Reserved
Temporary mode
indicator
Reserved

First 1D

Reserved

Second ID

Reserved

Third 1D

Reserved

Fourth ID

Reserved

Fifth ID

Reserved

CiB ID

Explanation

T or blank. A T indicates that
temporary mode is desired for
this job.

This is the ID of the master cartridge
(logical drive 0).

This is the ID of the cartridge on
logical drive 1.

This is the ID of the cartridge on
logical drive 2.

This is the ID of the cartridge on
logical drive 3.

This is the ID of the cartridge on
logical drive 4.

This is the ID of the cartridge con-
taining the CIB to be used during
this job.

Card column
40

41 through 44

45

46 through 49

50

51 through 58

59

60 and 61

62 through 80

Contents
Reserved

Working
storage ID

Reserved
Unformatted disk
/O 1D

Reserved

Date, name, etc.

Not used

EQUAT
record count

Not used

Monitor Control Records
// JOB

Explanation

This is the ID of the cartridge con-
taining the working storage to be
used by the monitor during this job.
See *FILES, for details on working
storage for your programs.

This is the ID of the cartridge con-
taining the unformatted disk 1/0
area to be used during this job.

This information is printed at the top
of every page of the listing on the
principal print device during this job.

This number specifies how many
EQUAT records follow this JOB
record.

Control Records 5-3

Monitor Control Records

/] JOB

54

additional field
information

Temporary Mode Indicator. A T in column 8 causes all programs and/or data files stored
by DUP in the user area during the current job to be deleted from the user area when the
next // JOB control record is read. Temporary mode places restrictions on some of the
DUP operations as shown in the followng chart:

DUP operations Restrictions
DUMP None
DUMPDATA, DUMPDATAUKE None

STORE None
STORECI To UA only
STOREDATA, STOREDATAE To UA and WS only
STOREDATACI ToUAonly
STOREMOD Not allowed
DUMPLET None
DUMPFLET None
DWADR Not allowed
DELETE Not allowed
DEFINE FIXED AREA Not allowed
DEFINE VOID ASSEMBLER Not allowed
DEFINE VOID FORTRAN Not allowed
DEFINE VOID RPG Not allowed
DEFINE VOID COBOL Not allowed
DFILE To UA only
MACRO UPDATE Not allowed

First ID through Fifth ID. These IDs define the cartridges that are used during the current
job. These cartridges can be mounted on the physical disk drives in any order; the order of
the IDs on the JOB control record specifies the logical assignments for the cartridges.

The first through the fifth IDs correspond to logical drives O through 4, and must be speci-
fied consecutively. When 3 drives are being used, only the first through the third IDs are
specified.

The cartridge-related entries of the core communications area (COMMA) and sector @DCOM
are filled according to the logical order specified by the JOB control record. The first ID can
be left blank, in which case the master cartridge for the last JOB will also be the master
cartridge for the current JOB. A cartridge ID is not required when only one cartridge is used
during the current JOB. In this case, the master cartridge from the last JOB or that was
specified during a cold start is used.

The first cartridge ID can be used to define a system cartridge that is different from the one
currently being used as logical drive 0. The specified cartridge must be the same monitor
modification level as the one it replaces. :

CIB ID. This is the ID of the cartridge that contains the core image buffer to be used
during the current job. The CIB ID is optional. If this ID is omitted, the CIB on the master
cartridge is assumed by the system. If the CIB on the specified cartridge has been deleted,
the CIB on the master cartridge is assumed for the current job. Core image programs are
built faster when the specified CIB is on a cartridge other than the master cartridge.

Working Storage ID, This field specifies the cartridge that contains the working storage
that is used during the current job. The working storage ID is optional. If this ID is
omitted, working storage on the master cartridge is used except when otherwise specified
on DUP control records (see “DUP Control Records” in this chapter).

Core image programs are built faster when the specified working storage is on a cartridge
other than the master cartridge. They can be built even faster when the IBM system area,
the CIB, and working storage are all on separate cartridges.

®00Q

Monitor Control Records
/1 JOB
// ASM

Programs are assembled or compiled faster when system working storage is on another car-
tridge. (See “*FILES” under “Supervisor Control Records” in this chapter for specifying
working storage for use by your programs.)

Unformatted Disk I/0 ID., This field specifies the cartridge that contains the unformatted
I/0O disk buffer area to be used during the current job. The unformatted disk I/O ID is
specified when only unformatted I/O (data file named $$$$8$) is used during execution
of a FORTRAN program. (See “Initializing $$$$$ Data Files for Use With FORTRAN
Unformatted I/O” in Chapter 6 for more information.)

Date, Name, Etc, This information is printed on the top of each page printed by monitor
system programs, except RPG. This causes a skip to channel 1 on the 1132 or 1403 printer
or 5 consecutive carriage returns on the console printer. The page count is reset to one,
and the current page heading is replaced with whatever appears in columns 51 through

58 of the JOB control record. HDNG statements (assembler language) and ** records
(FORTRAN header control record) cause additional information to be printed.

EQUAT Record Count. This parameter specifies the number of EQUAT supervisor con-
trol records (if any) that follow the JOB control record. These records are read and
written in the supervisor control record area (SCRA).

® OO0

// JOB Examples
1 5 10 15 20 25 30 35 40 45 50 55 60 65
/| WioB
[/ W08 |7 AME A
/71 Vo ¢ Irﬂ‘é[w erie qrs 1|¢ I

This is all that is necessary for a one-drive system.

This specifies temporary mode for the current job, a heading

for each printed page, and that 2 EQUAT control records

follow.

This specifies disk |Ds 1004, 1005, and 1006 on logical drives
0, 1, and 2, respectively, and that 1005 contains the CIB and

1006 contains working storage for this job.

o Tttt

general function

format

I O

ANINnEN

S Tt

HH

T

/l ASM

This control record causes the supervisor to read into core storage and transfer control to

the assembler. Any assembler control records used and the source program statements to
be assembled must follow an ASM control record. Monitor comments control records

(// *) cannot follow an ASM control record.

Card column Contents Explanation
1 through 6 //6ASM
7 through 80 Not used

Control Records 5-5

Monitor Control Records
// FOR !/ RPG
// COBOL // DUP

general function

format

general function

format

general function

format

general function

format

// FOR

This control record causes the supervisor to read into core storage and transfer control to
the FORTRAN compiler. Any FORTRAN control records used and the source statements
being compiled must follow a FOR control record. Monitor comments control records

(/] *) cannot follow this control record.

Card column Contents Explanation
1 through 6 //6FOR

7 through 80 Not used

!/ RPG

This control record causes the supervisor to read into core storage and transfer control to
the RPG compiler. RPG control cards and specification statements must follow an

RPG control record. Monitor comments control records (// *) cannot follow an RPG
control record.

Card column Contents Explanation
1 through 6 //6RPG

7 through 80 Not used

// COBOL

This control record causes the supervisor to read into core storage and transfer control to
the COBOL compiler (a program product). Monitor comments (// *) control records
cannot follow a COBOL control record.

Card column Contents Explanation
1 through 8 //6COBOL

9 through 80 Not used

// DUP

This control record causes the supervisor to read into core storage and transfer control to
the control portion of the Disk Utility Program (DUP). A DUP control record (see “DUP
Control Records” in this chapter) must follow this control record. Only one // DUP moni-
tor control record is required to process any number of DUP control records. Monitor
comments control records (// *) can follow the DUP monitor control record.

Card column Contents Explanation
1 through 6 //6DUP
7 through 80 Not used

general function

format

/l XEQ

Monitor Control Records

/] XEQ

This control record causes the supervisor to initialize for execution of a core load.

Comments control records (// *) can follow an XEQ control record if supervisor control
records do not follow and if data is not entered through the principal input device
during execution. The comments control records are printed after execution is complete.

Card column
1 through 6
7

8 through 12

13

14

15

16 and 17

18

19

20

21 through 24

25

26

27

28

29 through 80

Contents
//IBXEQ
Reserved

Name

Reserved

Core map
indicator

Reserved

Count

Reserved
Disk /O
subroutine
indicator

Reserved

Cartridge 1D

Not used
LOCAL<all-
LOCAL indicator
Not used

Special ILS

indicator

Not used

Explanation

This is the name (left-justified) of the
DSF program or DCI| program to be
executed.

L or blank. An L indicates that a core
map is to be printed for this and all
DSF programs linked to during this
execution.

A decimal number (right-justified)
that indicates the number of
supervisor control records that follow.

This specifies the disk |/0O subroutine
to be loaded into core by the core
image loader for use by the core load
during execution.

The ID of the cartridge that contains
the mainline program in its working
storage (valid only if a name is not
specified in columns 8 through 12;
blanks in this field indicate that the
program is in system working storage
when a name is not specified in
columns 8 through 12).

A punch in this column enables a
LOCAL subroutine to call another
LOCAL.

A punch in this column indicates that
ILSs for this core load should be
chosen from the special ILSs.

Note: When column 14 is blank, no warning is given if a file is truncated while a
FORTRAN core load is being built.

Control Records

5-7

Monitor Control Records

/1 XEQ

5-8

additional field
information

Name. This is the name of the program, stored in the user area or fixed area, that is execu-
ted.

When this field is omitted, the program to be executed is assumed to be stored in system
working storage, or in working storage on the cartridge specified in columns 21 through
24 of this control record.

Core Map Indicator. An L punched in column 14 of this control record causes the printing
of a core map for the program being executed and for all programs linked to during
execution (see “Reading a Core Map and a File Map” in Chapter 6 for examples of core
maps).

Count, A right-justified decimal number in columns 16 and 17 indicates the number of
supervisor control records (LOCAL, NOCAL, FILES, and G2250) that follow this control
record.

Disk I/O Subroutine Indicator. A decimal number in column 19 identifies the disk I/O
subroutine used by the core load during execution.

Column 19 Disk 1/O subroutine
blank or Z DISKZ
Oorl DISK1
N DISKN

Any other character is invalid and causes execution to be bypassed. All DSF programs that
are linked to during execution must use the same disk I/O subroutine as the program that
calls them, '

LOCAL-Call-LOCAL Indicator. A punch (any character) in column 26 provides for a
LOCAL subroutine to call another LOCAL subroutine during execution, provided the
restrictions listed under “LOCAL-Calls-a-LLOCAL” in Chapter 6 are met.

Special ILS Indicator. A punch (any character) in column 28 indicates that special interrupt
level subroutines (ILSs named with an X before the number, as ILSX4) are used for this
core load. If column 28 is blank, the standard set of ILSs is used.

In addition to the functions of the standard ILSs, special ILSs at the beginning of their
execution save the contents of index register 3 and set this register to point to the trans-
fer vector. Special ILSs restore the original contents of index register 3 at the end of their
execution. Because the special ILSs save and restore the contents of index register 3,

you can use this register in your programs,

Special ILSs require 5 more words of core storage per ILS than standard ILSs. The special
ILSs for interrupt levels 2 and 4 are loaded, together with other subroutines, as part of
the core load. You can write ILSs to replace any of the IBM-supplied ILSs, standard or
special.

Monitor Control Records
/l XEQ
/1 * {comments)

// XEQ Examples
1 5 10 15 2 25 30 35 40 45 s
O [/]X
@ |// Kal WaME 2 X X
© [/ de L AN

o

This specifies execution of the program stored in working
storage on the master cartridge.

This specifies that the named program (in the UA or WS) is
to be executed, that two supervisor controi records follow,
that a LOCAL calls another LOCAL, and that the special
ILSs are to be used for this core load.

()

0 This specifies the printing of a core map, and that the pro-
gram stored in working storage on disk 1004 is to be

exectued.
I N N N U AN N N NN OO N N N O N NN NN N NN N N N Y IO NN NN NN TN N N SN N U N T
RERRRRRRRRRRRRRRRRRRRRRRRRRRRRNEREEE
/! * (Comments)
general function This control record causes the alphameric comments contained on the // * control record

to be printed on the principal print device. The information is read and printed, and the
next control record is read from the input streamn. Comments control records can be used
preceding a PAUS monitor control record to instruct the operator as to what he is to do
during the pause in monitor system operations.

When the console printer is used to print monitor and supervisor control records as a
result of a CPRNT monitor control record, comments control records are printed on the
principal printer.

Comments control records cannot immediately follow an ASM, RPG, FOR, or COBOL
monitor control record. Comments control records can follow an XEQ control record if
supervisor control records do not follow and if data is not entered from the principal input
device during execution.

format Card column Contents Explanation
1 through 4 11%*
5 through 80 Comments Any alphameric characters can be used.

Control Records 5-9

Monitor Control Records
// PAUS /I TYP
// TEND

general function

format

general function

format

general function

format

// PAUS

This control record causes the supervisor to pause at a WAIT instruction. Supervisor opera-
tion continues when you press PROGRAM START on the console. This pause allows you
to perform operator actions, such as add cards to the card reader, change satellite disk
cartridges, or change paper tapes within a JOB stream. The status of the monitor system

is not changed during a pause.

Monitor comments control records (// *) preceding a PAUS control record can describe
the operator actions performed during the pause.

Card colurﬁn Contents Explanation
1 through 7 //BPAUS

8 through 80 Not used

1/ TYP

This control record temporarily assigns the console keyboard as the principal input device.
The keyboard replaces the card or paper tape reader as the principal input device until a
TEND monitor control record is entered through the keyboard.

The use of the keyboard as the principal input device for entering control records, program
statements, and data is described under “Entering Jobs from the Console Keyboard” in
Chapter 7.

Card column Contents Explanation
1 through 6 //BTYP

7 through 80 Not used

// TEND

This control record reassigns the card or paper tape reader as the principal input device.
The reassignment is to the device that was the principal device before the TYP monitor
control record was read.

A TEND control record can be entered only from the keyboard.

Card column Contents Explanation
1 through 7 : //BWTEND
8 through 80 Not used

Monitor Control Records
/] EJECT // CPRNT
// CEND

/] EJECT

general function This control record causes the 1403 Printer or 1132 Printer, whichever is the principal
print device, to skip to a new page and print the page header. When the console printer is
assigned as the principal printer, or when a CPRNT monitor control record has been
processed, 5 lines are skipped and the page header is printed.

format Card column Contents Explanation
1 through 8 //BEJECT
9 through 80 Not used
// CPRNT
general function This control record causes monitor and supervisor control records that follow CPRNT to be

printed on the console printer. All other control records and monitor comments control
records are printed on the principal print device.

An EJECT monitor control record read after a CPRNT affects the console printer rather
than the principal print device.

A CEND monitor control record is used to return the printing of monitor and supervisor
control records to the principal print device. A system reload and/or the DEFINE VOID
function of the Disk Utility Program (DUP) also restores the original principal print

device.
format Card column Contents Explanation
1 through 8 /CPRNT
9 through 80 Not used
// CEND
general function This control record restores the printing device that was the principal printer before a

CPRNT monitor control record was processed.

format Card column Contents Explanation
1 through 7 //BCEND
8 through 80 Not used

Control Records 5-11

Supervisor Control Records

how to code

SUPERVISOR CONTROL RECORDS

5-12

functions

coding

Supervisor control records are used by the core load builder to:
e Provide for subroutine overlays during execution, *LOCAL
® Include in the core load subroutines that are not called, *NOCAL

® Equate disk storage data files defined in a mainline program during compilation or
assembly to specific files that are stored on disk, *FILES

® Provide graphic display capabilities, *G2250
® Substitute a subroutine with another subroutine, *EQUAT

LOCAL, NOCAL, FILES, and G2250 supervisor control records are placed in the input
stream following an XEQ monitor control record, which names a mainline program stored
in disk system format, or following a STORECI DUP control record.

(*62250] (*G2250
f’FILES] {*FILES
(*NOCAL ' { *NOCAL
r *LOCAL . ' { *LOCAL
// XEQ 04 *STORECI 04

In either case, the control records are written on disk in the supervisor control record
area (SCRA), from which the core load builder reads them for processing during con-
struction of a core load.

Up to 99 supervisor control records can follow an XEQ or STORECI control record.
Supervisor control records do not have to be placed in any special order by type; how-
ever, all the control records of one type must be kept together.

EQUAT control records are placed after a JOB monitor control record and maintain
their function until the next JOB control record is read from the input stream.

{ *EQUAT

//J0B 01

The supervisor reads EQUAT control records and writes them into the SCRA, from which
the core load builder reads them for processing during construction of a core load.

An asterisk (*) is coded in column one of all supervisor control records. The rest of the
information specified in supervisor control records, except the G2250 control record, is
coded continuously; that is, blanks (referred to as embedded blanks) cannot be coded
within the characters in a record. Information specified in the G2250 control record must
be coded in the fields indicated in the G2250 format description in this section.

The program name that is coded in all types of supervisor control records can be either
the primary entry point name or any secondary entry point name in the program.

Supervisor Control Records
*LOCAL

*LOCAL

general function This control record specifies the names of LOCAL (load-on-call) subroutines that are to
be read, when called during execution, into the LOCAL overlay area of a core load.
(See “Rules for LOCAL and NOCAL Usage” and “LOCAL-Calls-a-LOCAL” in Chapter 6.)

1 10 15 20 25 30 35 40 45 50

5
format *[0 AA}M 1IN aSUBI SU 2,'°'95U
il

I
Note: Embedded blanks are not atlowed in a LOCAL control record.

additional field MAINI. You replace MAIN1 with the name of the DSF mainline program that is already
information stored in the user area on disk.

,SUB1,SUB2, . .. SUBn. You replace SUB1 through SUBn with the names of the sub-
routines that are used as LOCALs with the specified mainline program.

continuation The specification of LOCAL subroutines can be continued from one LOCAL control

records record to another by placing a comma after the last subroutine specified on each LOCAL
control record, except the last. The name of the mainline program is not included on the
continuation control records.

1 5 10 15 20 2 30 35 4 pe 0
continuation XILIOCIAL wial /W25 1]0IBl 21, |5UIBI2]
example YLOICIAIL BB s
j]!. ClAILiS|UB
1

The results would be the same if the control records were:

1 5 10 15 20 25 30 35 40 45 50
Lole]AlLIMAl M 1] 5 |SluUiBL1 '
ﬁL&AL 1 Wl1l,18lUBl2

Control Records 5-13

Supervisor Control Records
*LOCAL
*NOCAL

5-14

coding for
linked programs

example

mainline program in
working storage

example

general function

format
examples

All LOCAL subroutines that are used by each mainline program during execution must be
specified on LOCAL control records following the XEQ monitor control record that
starts execution.

Separate LOCAL control records must be used for each mainline program that calls
LOCAL subroutines during execution.

1 10 15 20 25 30 35 40 45 50

5
XLloClAlLMAL M1, 180iBLL] |51/1BI2] [SIUBLS] o] -] -]-
XLloclAlLiMAl/M2], [SlUB 3]s [slUBl]s |- [s[sluBe

-
-
[V
S
]
&

-

MAIN2. You replace MAIN2 with the name of a mainline program that is called by the
program represented by MAIN1.

When the mainline program is to be executed from working storage, the name of the
mainline program is omitted from LOCAL control records. This same format is used when
LOCAL control records are specified with the Disk Utility Program (DUP) STORECI
operation.

1 5 10 15 20 30 35 40 45 50

25
XLoCAlL, 1sluiBl2], S8luiBl2ls - |- - 15l 14
|

*NOCAL

This control record specifies the names of NOCAL (load-although-not-called) subroutines
that are to be associated with a specified mainline program. NOCAL subroutines are in-
cluded in the core load even though they are not called. (See “The Use of NOCALs” and
“Rules for LOCAL and NOCAL Usage” in Chapter 6.)

NOCAL control records are coded in the same format as LOCAL supervisor control
records, except that *NOCAL is coded in place of *LOCAL.

1 5 10 15 20 25 30 35 40 45 50
£|M(JC'ALMAIAII »(8018111,18ulBl2[,|.|.1-1,[8lu8

OICIAIL! s |SlUBl215 |S|UIB 25 - |- |- |2 |3|UBIn

In the first format example, the specified NOCAL subroutines are included in the core
load built for the stored mainline program, MAINI. In the second format example, the
specified NOCAL subroutines are included in the core load built for a mainline program
in working storage. See “*LOCAL” for information about continuing a control record
to another, and coding for linking between programs.

general function

format

additional field
information

continuation
records

continuation
example

Supervisor Control Records
*FILES

*FILES

This control record equates the file numbers specified in FORTRAN DEFINE FILE state-
ments or in assembler FILE statements to the names of data files that are stored in the
user area and fixed area, or in working storage other than system working storage.

All the data files in the user area or fixed area that are used by core loads during execution
must be defined on FILES control records following the XEQ monitor control record

that starts execution. All files thus defined are available for use by each core load in the
execution.

Data files that are equated for a program that is stored in disk core image (DCI) format
must be stored in fixed areas for successful execution of the program. (See “Disadvan-
tages of Storing a Program in Disk Core Image Format” in Chapter 6.) When data files
are equated for a DCI program and are stored on other cartridges, the data files must be
stored in the same location on the other cartridges as they were when the DCI program
was stored for successful program execution. Also, the other cartridges must be on the
same logical drives as they were when the DCI program was stored. These restrictions are
necessary because the core load builder places in the define file table in the DCI program
header an absolute sector address, including the drive code, for each equated data file.

No more than 159 data files can be equated for one execution.

1 5 10 15 20 25 30 35 40 45 50
FLESIC A L E 2] MAMEND TS T Ts I [l L] s Ml MIETR]) |
XALIESIOIALILIE L WAMEL S MR]) o - |- |- | [(|Fl/ ILlEn] s WA MIETR] 5 []4le]n])

KA /LIEISI(IA/ILIEN a5 CAIRLL) (5] | - - | | (|F]/IL [Eln| o | 2| €14 1R)7])

Note: Embedded blanks are not allowed in a FILES control record.

FILE] Through FILEn. You replace these with the file numbers that are specified in the
FORTRAN DEFINE FILE statements or assembler FILE statements in your program,

NAME1 Through NAMEn. You replace these with the names of the data files that are
stored on disk. Names can be omitted as in the third *FILES record in the format. When
omitted, 2 commas are required in the control record foimat, and the file is placed in
working storage on the specified disk.

CARI1 Through CARn. These are the IDs of the cartridges on which the respective data
files are stored. The cartridge ID can be omitted. When omitted, the corresponding data
file is assumed to be on the cartridge on the lowest logical drive.

The specification of data files can be continued from one *FILES control record to
another by placing a comma after the last right parenthesis on each *FILES control record,
except the last.

1 5 10 15 20 25 30 35 40 45 50
KA/ ILELS|(FL I leL2], IMAlAEL 2]
AA/ILIEIS|A T LIE12s MaMEZslc|alRIZ) |

Control Records 5-15

Supervisor Control Records
*G2250

*G2250

general function This control record causes the graphic subroutine package (GSP) communication module
(GCOM) to be included in a core load immediately following the mainline program, Other
supporting subroutines are also loaded into this area depending on the parameters speci-
fied in the *G2250 control record. (See the publication IBM 1130/2250 Graphic Sub-
routine Package for Basic FORTRAN IV, GC27-6934, for instructions on properly
loading the mainline program, and for information concerning the use of GSP subroutines
as LOCALs and core storage layout requirements.

format Card column Contents Explanation

1 through 11 *G2250mimne Specifies that graphic support is
required for the named mainline
program. You replace m/mne with
the name of the program. If the
program being executed is in
working storage, the program name
is omitted.

12 Reserved

13 U, blank, or N U indicates the character stroke
subroutine containing upper case,
numeric, and special characters is
loaded.

Blank indicates the character stroke
subroutine containing upper case,
lower case, numeric, and special
characters is loaded.

N indicates that a character stroke
subroutine is not loaded.

14 Reserved
15 Blank or N Blank indicates the scissoring

subroutine is loaded.

N indicates the scissoring subroutine
is not loaded.

16 Reserved

17 Blank or N Blank indicates the ICA area
expansion subroutine is loaded.

N indicates the ICA area expansion
subroutine is not loaded.

18 Reserved

19 Blank or N Blank indicates the index controlled
entity subroutine is loaded.

N indicates the index controlled
entity subroutine is not loaded.

20 Reserved

21 Blank or N Blank indicates the level controlled
direct entry subroutine is loaded.

N indicates the level controlled
direct entry subroutine is not loaded.

22 through 80 Not used

5-16

examples

general function

format

additional field
information

example

Supervisor Control Records

*G2250
*EQUAT
1 5 10 15 20 25 30 35 40 45 50
KORZZSWMILIMNIEL NI IN] IN] IN| N
#6225 LMN]E] U
61212\5[gMLIMNE
*EQUAT

With this control record, you specify the substitution of subroutines during the building of
a core load. This control record can also substitute symbolic names in assembler language
DSA statements (limited to assembler programs). The EQUAT control record cannot be
used to substitute subroutines for RPG programs.

More than one EQUAT control record can be used if the exact number of records used
is punched in columns 60 and 61 of the preceding // JOB monitor control record. (Infor-
mation about using EQUAT control records is under “Use of the EQUAT Record” in
Chapter 6.)

1 5 10 15 20 25 30 35 40 45 50

FEQUAITI(SIUBL 2L [SIUIBI2D) sl oL - [([S1UBIm{o[S|UBIN])

SUBI Through SUBm. You replace these with the names of the subroutines that you want
the core load builder to substitute for the subroutines represented by SUB2 through SUBn
during the building of a core load. This same order of substitution is used when substituting
symbolic names for DSA statements.

Note, The maximum number of pairs of subroutines that can be specified is 25.

Dun'ng the following functions, the substitution of SUB2 for SUBI is accomplished in the
execution of the mainline program from working storage and the storing of MAIN.

1 5 10 15 20 25 50 55 60 65

7100 7
QUAI7|(1S|V1Bl2],8/B|2])

—~

Control Records 5-17

DUP Control Records
how to code

DUP CONTROL RECORDS

functions DUP control records are used to specify operations to be performed by the Disk Utility
Program. The types of operations that DUP control records specify are:

® Dumping and deleting programs and data files from disk
® Storing programs and data files on disk

e Printing the contents of the fixed location equivalence table (FLET) and the location
equivalence table (LET)

Rewriting sector addresses in working storage
Defining a fixed area on disk

Deleting monitor system programs from disk

Allocating disk space for data files and macro libraries
® Calling the Macro Update Program (MUP) into operation

DUP control records are placed in the input stream after a DUP monitor control record
(// DUP) as follows:

Data cards —%-‘:—_-__ = 7

(*STOREDATA i

(*STORE PROG

Source program

Assembler control records

(// ASM

{ /I PAUS

(// *comments

/1 JoB

coding DUP control records generally follow the format described in the following text. All fields
in the control record, except the count field, are leftjustified and, unless otherwise
stated, are required. Additional field information is included, when necessary, in the
description of the specific control record.

5-18

DUP Control Records
how to code

Column 1, Column 1 always contains-an asterisk (¥).

Operation Field, Code the name of the desired DUP operation in columns 2 through 12
(2 through 21 for the DEFINE operation, and 2 through 13 for the MACRO UPDATE
operation). Columns 2 through 6 identify the basic operation (STOREDATACI);
columns 7 through 12 (or 21) identify the extended operation (STOREDATACI). Where
shown in the control record format, a blank character () is required within or following
the operation name.

From and To Fields. Code the from symbol in columns 13 and 14, that is, the symbol
specifying the disk area or I/O device from which information is to be obtained (the
source). Code the to symbol in columns 17 and 18; that is, the symbol specifying the
disk area or I/O device to which information is to be transferred (the destination). The
valid from and to symbols are:

Symbol Disk area or 1/0 device
UA User area on disk
FX Fixed area on disk
ws Working storage on disk
CD Card 1/0 device. If the 1134 Paper Tape Reader is defined as the principal input
device, CD is equivalent to PT.)
PT Paper tape
PR Principal print device

Note. The symbols UA, FX, and WS, when used, each specify an area on disk but do not identify
the cartridge on which the area is found.

Name Field, Code the name of the program, data file, or macro library involved in the
specified operation in columns 21 through 25. The name that you specify in this field
for a store operation is the name assigned to the program, data file, or macro library, and
is used to generate or search for a LET or FLET entry. The name can consist of up to 5
alphameric characters, and must be left-justified in the field. The first character must be
alphabetic (A-Z, $, #, @), and blanks (embedded blanks) are not allowed between charac-
ters of the name.

When referencing a program or data file stored on disk, the specified name must be an
exact duplicate of the LET or FLET entry.

Count Field, The count coded in columns 27 through 30 is a right-justified decimal inte-
ger. The function of the count field is defined in the individual control record formats
for those operations that require it.

From and To Cartridge ID Fields, Code the from cartridge ID in columns 31 through 34;
that is, the ID of the cartridge that contains the disk area from which information is to
be obtained. Code the to cartridge ID in columns 37 through 40; that is, the ID of the
cartridge that contains the disk area to which information is to be transferred.

Either or both of these cartridge IDs can be omitted. When a cartridge ID is omitted, and
the corresponding from or to field (columns 13 and 14 or 17 and 18) is the user area or
fixed area, a search is made of the LET (and FLET) on each cartridge specified in the
current JOB monitor control record. The search starts with the cartridge on logical drive
zero (the master cartridge) and continues through logical drive 4. If the from or to field
(columns 13 and 14 or 17 and 18) is working storage, a default to system working
storage is made when cartridge IDs are omitted. When a cartridge ID is specified, the
LET (and FLET) only on the specified cartridge is searched, or working storage on the
specified cartridge is used.

Control Records 5-19

DUP Control Records
altering LET/FLET
summary of operations

5-20

The use of the from and to cartridge IDs makes it possible for DUP (1) to transfer
programs and data files from one cartridge to another without deleting them from the
source cartridge, and (2) to process a program or data file even though the same name
appears in the LET or FLET on more than one cartridge.

Unused Columns. All columns indicated as reserved between column 2 and the last format
field on each control record must be left blank. The columns between the last format field
and column 80 are not used by DUP and are available for your remarks.

Altering LET and FLET

The 2 tables, location equivalence table (LET) and fixed location equivalence table (FLET),
are directories to the contents of the user area and fixed area, respectively, on disk. You
can alter the contents of these 2 tables through the use of DUP store and delete operations
only.

Before storing a program or data file, DUP searches LET and FLET for the name specified
in the control record. When a cartridge is specified in the to cartridge ID field on the con-
trol record, LET (and FLET) on only that disk is searched for the specified name. When a
to cartridge ID is not specified, LET (and FLET) on all cartridges defined in the current
JOB monitor control record is searched. If the specified name is not found in any LET or
FLET, disk storage is allocated for the program or data file. The specified name is assigned
to the program or data file and is used to generate a new entry in LET or FLET.

When dumping or deleting a program or data file from the user area or fixed area, the
name specified in the control record is searched for in LET and FLET in the same order
as the search before a store operation. If the specified name is found, the program or data
file is dumped or deleted as specified in the control record.

Information Transfer and Format Conversion

Figure 5-1 summarizes the DUP operations that transfer infromation from one device or
disk area to another device or disk area. In addition, the format covnersions that are made
during the transfer of information are shown. The different formats are described in
Appendix I. The acronyms used in Figure 5-1 for the various formats are:

Acronym Format
DSF Disk system format
DDF Disk data format
DCI Disk core image format
CDS Card system format
CDD Card data format
cbhC Card core image format
PTS Paper tape system format
PTD Paper tape data format
PTC Paper tape core image format
PRD Printer data format
NCF Name code format

You should pay particular attention to Figure 5-1 when performing dump, store, and
delete operations, such as, dumping to cards and later using the cards to store the infor-
mation back on the disk. Note that more than one way to dump and store data and por-
grams is allowed, such as dumping a program to cards and later storing it back to disk.

suonerado UOISIOAUO) pue I9Jsuel) 4 JO Arewiwing ‘-G aInSij

From Area To Area Symbois, with Formats
Symbols, with
Formats vA FX ws co PT PR
DSF DDF pci DDF ocl DSF DDF ocl cos cpo coc PTS PTD PTC PRD
' DUMP
DSF DUMP DUMPDATA pumpP DUMPDATA puMP DUMPDATA DUMPDATA
UA DDF PDUMP DUMP DUMP DUMP
DUMPDATA DUMPDATA DUMPDATA DUMPDATA
ouMP
bct DUMPDATA DUMP DUMPDATA DUMP DUMPDATA DUMP DOMPDATA
DDF DUMP DUMP DUMP DUMP
DUMPDATA DUMPDATA DUMPDATA DUMPDATA
FX
DUMP
ocl DUMPDATA DUMP DUMPDATA DUMP DUMPDATA DUMP DUMPDATA
STORE DUMP
DSF STOREMOD | STOREDATA[STORECI |STOREDATA| STORECI DUMP DUMPDATA DUMP DUMPDATA DUMPDATA
ws DDF STOREMOD STOREMOD DUMP DUMP DUMP
STOREDATA STOREDATA DUMPDATA DUMPDATA DUMPDATA
STOREMOD STOREMOD DUMP
pcl STOREDATA | 31 REDATACI| STOREDATA! SIORENOD o DUMPDATA DUMP DUMPDATA DUMP DUMPDATA
cos STORE STOREDATA| STOREC!I |[STOREDATA| STOREC STORE STOREDATA
co DD STOREDATA | STOREDATACI | STOREDATA| STOREDATAC! STOREDATA | STOREDATACI
cbc STOREDATA | STOREDATACI | STOREDATA| STOREDATACH STOREDATA | STOREDATACI
PTS STORE STOREDATA| STOREC! . |STOREDATA| STORECI STORE STOREDATA
PT PTD STOREDATA | STOREDATACI| STOREDATA | STOREDATAC! STOREDATA | STOREDATAC!
PTC STOREDATA |STOREDATACI| STOREDATA | STOREDATAC) STOREDATA | STOREDATACI

Note: DUMPDATA E and STOREDATAE are the same as DUMPDATA and STOREDATA,

spI099Yy (0T U0)

12-$

respectively, except that information on disk for DUMPDATA E is assumed to be in packed
EBCDIC format, and input for STOREDATAE is converted to packed EBCDIC format.

suopiesado Jo Alewwns

spJ023aYy |041U0)) dNA

DUP Control Records
restrictions in T-mode

*DUMP
Restrictions Caused by Temporary Mode
When temporary mode is indicated in the current JOB monitor control record, some DUP
operations are restricted or not allowed. The following chart shows the restriction, if any,
on DUP operations when temporary mode is indicated.
DUP operations Restrictions
DUMP None
DUMPDATA, DUMPDATABE None
STORE None
STORECI To UA only
STOREDATA, STOREDATAE To UA and WS only
STOREDATACI To UA only
STOREMOD Not allowed
DUMPLET None
DUMPFLET None
DWADR Not allowed
DELETE Not allowed
DEFINE FIXED AREA Not allowed
DEFINE VOID ASSEMBLER Not allowed
DEFINE VOID FORTRAN Not allowed
DEFINE VOID RPG Not allowed
DEFINE VOID COBOL Not allowed
DFILE To UA only
MACRO UPDATE Not allowed
*DUMP

general function This control record (1) transfers information from the user area or fixed area to working

storage, or (2) makes information from the user area, fixed area, or working storage
available as card, paper tape, or printed output. Card, paper tape, and print formats are
illustrated in Appendix I.

DSF programs are transferred from the user area or fixed area to output devices in 2 phases.
The programs are first moved to system working storage, then to the output device. As a
result, information residing in working storage before the DUMP operation is destroyed.

DCI programs and data files are transferred directly from the user area or fixed area to the
output device. The contents of working storage remain unchanged.

5-22

format

*DUMP
summary chart

DUP Control Records
*DUMP

DUP obtains the number of disk blocks to be dumped from the LET or FLET entry for a
DSF program or a data file, or from the appropriate working storage indicator in sector
@DCOM if the dump is from working storage. The actual core load length in words of a
DCI program is dumped. The word count is obtained from the core image header. Dumps
of a DSF program and a DCI program are contained in Appendix 1.

Card c_olumn
1 through 6
7 through 12
13 and 14
15 and 16
17 and 18
19 and 20

21 through 25
26 through 30
31 through 34

35 and 36

37 through 40

41 through 80

Contents
*DUMPH
Reserved
From symbol
Reserved

fo symbol
Reserved

Name

Reserved

From
cartridge ID

Reserved

To
cartridge 1D

Not used

Explanation

See the following summary chart.

See the following summary chart.

A name is required except when the
dump is from working storage to the
printer.

The following chart is a summary of the information transfers and format conversions per-
formed by the DUMP operation.

From symbols,
including formats

UA(DSF)

UA or WS(DSF)

UA or FX(DDF)

UA, FX, or WS(DDF)

UA or FX(DC1)

UA, FX, or WS(DCI)

To symbols,

including formats

WS(DSF)

CD(CDs)
PT(PTS)
PR(PRD)

WS(DDF)
CD(CDD)
PT(PTD)
PR(PRD)
Ws(DClI)
CD(CDC)

PT(PTC)
PR(PRD)

Control Records 5-23

DUP Control Records
*DUMP
*DUMPDATA

5-24

additional field
information

general function

From Symbol, When a dump is from working storage and the corresponding working
storage indicator is zero, an error message is printed.

To Symbol, When a dump is to cards and a 1442, Model 6 or 7, is used, each card is
checked to see that it is blank before it is punched. If a nonblank card is read, the monitor
system prints an error message and waits at $PRET with /100F displayed in the ACCUMU-
LATOR.

Note 1. The program name in a DSF mainline program header is cleared to zeros when the
program is transferred from the user area to working storage.

Note 2. The subtypein a subroutine header is set to zero when the subroutine is dumped
from the user area to carde

*DUMP Examples
1 5 10 15 20 25 30 35 40 45 50
Q M Wsl [PR
(2) *Dul D VAL [[wisl | ImialsIv
© [XDUMP FIXL L WS| | MIAL NI 11@(013

This dumps a program from working storage to the printer.

This dumps a program named MAIN from the user area to
working storage.

® 09

This dumps a program named MAIN1 from the fixed area
on disk 1003 to system vyorking storage.

I

|

VI S T S WO I S S PO S S A S T N S S SUON N ST SN S S ST PR

T e T

*DUMPDATA

This control record (1) transfers information from the user area or fixed area on disk to
working storage, or (2) makes information from the user area, fixed area, or working
storage available as card, paper tape, or printed output. Card, paper tape, and print formats
are illustrated in Appendix I.

The contents of working storage are not changed when dumping to output devices, be-
cause information is transferred from the user area, fixed area, or working storage directly
to the output devices.

The DUMPDATA operation differs from the DUMP operation in that the information is
always in data format after transfer. Also, the amount of information transferred depends

on the count field of the DUMPDATA control record rather than the block count of the
program or data file,

format

*DUMPDATA
summary chart

Card column
1 through 10
11 and 12
13 and 14
15 and 16
17 and 18
19 and 20

21 through 25

26

27 through 30

31 through 34

35 and 36

37 through 40

41 through 80

Contents
*DUMPDATAbB
Reserved

From symbol
Reserved

To symbot
Reserved

Name

Reserved

Count

From
cartridge ID

Reserved

To
cartridge ID

Not used

DUP Control Records
*DUMPDATA

Explanation

See the following summary chart.

See the following summary chart.

A name is required except when the
dump is from working storage to the
printer.

The count (a right-adjusted decimal
number) specifies the number of
sectors to be dumped.

The following chart is a summary of the information transfers and format conversions
performed by DUMPDATA.

From symbols,
including formats

UA(DSF)

UA or WS(DSF)

UA or FX(DDF)

UA, FX, or WS(DDF)

UA(DCI) or FX(DDF)

UA, FX, or WS(DCI)

To symbols,

including formats

WS(DDF)

CD(CDD})
PT(PTD)
PR(PRD)

WS(DDF)
CD(CDD)
PT(PTD)

PR(PRD)
WS(DDF)
CD(CDD)

PT(PTD)
PR(PRD)

Control Records 5-25

DUP Control Records
*DUMPDATA
*DUMPDATA E

additional field
information

general function

5-26

To Symbol, When a dump is to cards and a 1442, Model 6 or 7, is used, each card is
checked to see that it is blank before it is punched. If a nonblank card is read, the monitor
system prints a message and waits at SPRET with /100F displayed in the ACCUMULATOR.

Count. This field specifies the number of sectors to be dumped. The count overrides the
contents of the working storage indicator or the disk block count in the LET or FLET
entry; this number of sectors is dumped regardless of the length of the program or data
file.

*DUMPDATA Examples

1 5 10 15 20 25 30 35 40 45 50
(1) ¥DU{MIIPDA Al T T Tulal T Jeo] T Dlaltla
(2] XUIM'“PDATA FIX[T wisl | lalT]alL 1 l@ 1047,
© [DUMPDIAT] | S| | Pl TIAZ 1 | 2

This dumps a data file named DATA from the user area to cards.

cartridge 1003 to working storage on cartridge 1007.

@ This dumps a data file named DATA1 from the fixed area on

This dumps a data file named DATA2 from working storage
on cartridge 1002 to paper tape.

EEEERE

EEEE R EEEERREE

VI ! Jrlt_JLTI

Tt

*DUMPDATAE

This control record (1) transfers information from the user area or fixed area to working
storage, or (2) makes information from the user area, fixed area, or working storage
available as card or printed output.

The DUMPDATA E operation to output devices differs from the DUMPDATA operation
in that the information on disk, which is assumed to be in packed EBCDIC form, 40
words per 80 card columns, is converted to card image format. Thus, the information
printed on a printer is one line per source card (80 print positions), and card output is an
exact, full 80 column duplicate of the input cards in the corresponding STOREDATAE
operation. When the destination is working storage, format conversion does not occur.

DUP Control Records
*DUMPDATA E

The contents of working storage are not changed when dumping to output devices, be-
cause information is transferred from the user area, fixed area or working storage directly
to the output devices.

format Card column Contents Explanation

1 through 11 *DUMPDATABE

12 Reserved

13 and 14 From symbol See the following summary chart.

16 and 16 Reserved

17 and 18 To symbol See the following summary chart.

19 and 20 Reserved

21 through 25 Name A name is required except when the
dump is from working storage to the
printer.

26 Reserved

27 through 30 Count The count (a right-adjusted decimal

number) specifies the number of
sectors to be dumped.

31 through 34 From
cartridge ID
35 and 36 Reserved
37 through 40 To
cartridge ID
41 through 80 Not used

The following chart is a summary of the information transfers performed by DUMPDATA

E.
*DUMPDATA E From symbols To symbols
summary chart

UA or FX WS

UA, FX, or WS CcD

PR

additional field To Symbol, When a dump is to cards and a 1442, Model 6 or 7, is used, each card is
information checked to see that it is blank before it is punched. If a nonblank card is read, the system

prints a message and waits at $PRET with /100F displayed in the ACCUMULATOR.

Count, This field specifies the number of sectors to be dumped. The count overrides the
contents of the working storage indicator and the disk block count in the LET or FLET
entry; this number of sectors is dumped regardless of the length of the program or data
file.

Control Records 5-27

DUP Control Records
*DUMPDATA E
*DUMPLET

5-28

general function

format

additional field
information

*DUMPDATA E Examples

As)
>
9
Y
<
>
=
(92
(=]
>
3

=
=
=
—
>
™
]
><
(oY
i)
=
>
—
>
[
—
=

(1)
(2]
©

ISie
=
Ny
=
>
™

—

This dumps a data file named DATA from the user area to
working storage.

cards.

e This dumps a data file named DATA1 from the fixed area to

This dumps a data file from working storage to the printer.

[F IO T T | 14 [) W S

EEEEEEEREEEREEREEEEEEEEEREERRERRRREREN

*DUMPLET

This operation prints the contents of the location equivalence table (LET) on the principal
print device. Also, the contents of the fixed location equivalence table (FLET) are

printed if a fixed area has been defined on the disk. A program name or data file name can
be specified in this control record to dump only the LET or FLET entry for that program
or data file. A printout of a DUMPLET operation is in Appendix D.

Card column Contents Explanation

1 through 8 *DUMPLET

9 through 20 Reserved

21 through 25 Name Name specifies that only the LET

or FLET entry for that program or
data file is printed.

26 through 30 Reserved
31 through 34 From The cartridge 1D specifies that only
cartridge iD the LET (and FLET) on that
cartridge is dumped.
35 through 80 Not used

Name, This optional field specifies the name of a program or data file whose LET or FLET
entry is to be printed. LET and FLET on all cartridges defined in the current JOB monitor
control record are searched unless a cartridge ID is specified in columns 31 through 34.
When the name field is omitted, the entire contents of LET (and FLET) are printed.

From Cartridge ID. The from cartridge ID specifies that only the LET (and FLET) on
that cartridge is printed or searched when a name is specified in columns 21 through 25.
When the from cartridge ID field is omitted, LET (and FLET) on all cartridges defined by
the current JOB monitor control record are printed or searched.

DUP Control Records

*DUMPLET
*DUMPFLET
*DUMPLET Examples
1 5 10 15 20 25 30 35 40 45 50
(1] *D{u IP LIEMT]
(2] *D[Ufﬂ[D'LET 1 W
l
© XpuMPILELT] Wil v
I
o This dumps LET (and FLET) from the disks defined by the
current JOB monitor control record.
@ This dumps LET (and FLET) from cartridge 1004.
e This dumps the LET (or FLET) entry for the program named
MAIN.
NN N
rrrrrrryrrrrrryrrrrer ety ey TrrreTi
*DUMPFLET
general function This operation prints the contents of the fixed location equivalence table (FLET) on the

principal print device. A program name or data file name can be specified in this control
record to dump the FLET entry only for that program or data file.

format Card column Contents Explanation
1 through 10 *DUMPFLETY
11 through 20 Reserved
21 through 25 Name Name specifies that only the FLET
entry for that program or data file
is printed.
26 through 30 Reserved
31 through 34 From The cartridge ID specifies that only
cartridge ID the FLET on that cartridge is printed.
35 through 80 Not used
additional field Name, This optional field specifies the name of a program or data file whose FLET entry
information is to be printed. FLET on all cartridges defined in the current JOB monitor control

record is searched for the name unless a cartridge ID is specified in columns 31 through
34. When the name field is omitted, the entire contents of FLET are printed.

From Cartridge ID. The from cartridge ID specifies that only the FLET on that cartridge

is printed or searched when a name is specified in columns 21 through 25. When the car-

tridge ID field is omitted, the FLET on all cartridges defined by the current JOB monitor
control record is printed or searched.

Control Records 5-29

DUP Control Records
*DUMPFLET
*STORE

5-30

general function

*DUMPFLET Examples
1 5 10 15 20 25 30 35 40 45 50
(1) *DIUMD)FLET
(2] *DI[UIMIPFLET M{MM
© XDUMPIFILET iM}Amz 1¢I¢z

This dumps FLET from the disks defined by the current

JOB monitor control record.

9 This dumps the FLET entry for the program named MAIN1.

This dumps the FLET entry for the program named MAIN2

~ from cartridge 1002.

*STORE

This operation (1) transfers information from working storage to the user area, or (2)
accepts information from the input devices and transfers it to working storage or the user
area.

All transfer of information from the input devices to the user area is accomplished in 2
phases. The information is first moved to system working storage, then to the user area.
Because of this, information residing in working storage before the STORE operation is
destroyed, and the appropriate working storage indicator in sector @DCOM is set to zero.

The Disk Utility Program (DUP) makes the required LET entry for the program being
stored. The name you specify in columns 21 through 25 is assigned to the program and

is used to generate the LET entry. The LET entry includes the program name, the format
of the program, the number of disk blocks the program occupies, and the disk block
address. An entry is also made in LET for each entry point in the program being stored.

DUP Control Records

*STORE
format Card column Contents Explanation
1 through 6 *STORE
7 through 10 Reserved
1 Subtype (0, 1, For type 3, 4, 5, and 7 subroutines
2,3,0r8) only.
12 Reserved
13 and 14 From symbol See the following summary chart.
15 and 16 Reserved
17 and 18 To symbol See the following summary chart.
19 and 20 Reserved
21 through 25 Name A name is required except when the
STORE operation is to working
storage.
26 through 30 Reserved
31 through 34 From
cartridge ID
35 and 36 Reserved
37 through 40 To
cartridge ID
41 through 80 Not used

The following chart is a summary of the information transfers and format conversions
performed by the STORE operation.

*STORE summary chart From symbols, To symbols,
inf:luding formats including formats
"~ WS(DSF) UA(DSF)
CD(CDS) UA or WS(DSF)
PT(PTS) UA or WS(DSF)

Control Records 5-31

DUP Control Records
*STORE

additional field
information

5-32

Subtype. This optional field places a subtype number in the header of a subroutine, type
3,4,5, or 7. The subtype number that can be specified for each type of subroutine is:

Code in

Subroutine description Type subtype field
In-core subroutines 3,4 0
Disk FORTRAN 1/0 subroutines 3 1
Arithmetic subroutines 3 2
Nondisk FORTRAN 1/O and 2" 3 3
*2" device subroutines 5 3
Function subroutines 4 8
Dummy 11802, IL.S04 stored in 7 1
monitor system library

User-written 1LS02, ILS04 that 7 0

replace dummy ILS02, ILS04

From Symbol. 1f the STORE operation is from working storage and the corresponding
working storage indicator is zero, an error message is printed.

*STORE Examples

35 40

1

1
b

@ [HS|ToRel wis] | Julal | maliv
X

l

® © @

This reads a program from cards and stores it in working
storage.

This names a program in working storage MAIN and stores
it in the user area.)

This reads from cards an 1LS04 you have written and stores
it in the user area.

{J'_}%!L+HII_IIIIIIIII+JI%J_L{{J_I

L L f
T Trrd

|
IR

general function

format

DUP Control Records
*STOREDATA

*STOREDATA

This control record (1) transfers information from working storage to the user area or
fixed are, or (2) accepts information from input devices and moves it to working storage,
the user area, or fixed area. DUP assumes that input to this operation is in data format;
output from this operation is always in data format. '

Information is transferred directly from the input devices to the user area or fixed area.
Thus, the contents of working storage remain the same if the STORE operation is to the
fixed area. Because the boundary between the user area and working storage is moved by
store and delete operations, a STOREDATA operation to the user area destroys informa-
tion residing in working storage before the STOREDATA operation.

DUP makes the required LET or FLET entry. The name you specify in columns 21 through

- 25 is assigned to the data file or macro library and is used to generate the LET or FLET

entry. DUP also supplies the disk block count required in the LET or FLET entry if the
source is cards or paper tape. If the source is working storage, the sector count coded
in the STOREDATA control record is used.

Card column Contents Explanation

1 through 10 *STOREDATA

11and 12 Reserved

13 and 14 From symbol See the following sdmmary chart.
15and 16 Reserved

17 and 18 To symbol See the following summary chart.
19 and 20 Reserved

21 through 25 Name A name is not required when the

STOREDATA operation is from cards
or paper tape to working storage.

26 ' Reserved
27 through 30 Count If the source is working storage, the
count is the number (in decimal) of
sectors of data to be stored. This
count overrides the contents of the
working storage indicator. If the
source is cards, the count is the number
(in decimal) of cards to be read. If
the source is paper tape, the count is
the number (in decimal) of paper tape
records to be read.
31 through 34 From
cartridge 1D
35 and 36 Reserved
37 through 40 To
cartridge 1D
41 through 80 Not used

Control Records 5-33

DUP Control Records
*STOREDATA
*STOREDATAE

5-34

*STOREDATA
summary chart

general function

The following chart is a summary of the information transfers and format conversions per-
formed by STOREDATA.

From symbols, 70 symbols,
including formats including formats
WS(DSF, DDF, DCI) UA or FX(DDF)
CD(CDs, CDD, CDC) UA, FX, or WS(DDF)
PT(PTS, PTD, PTC) UA, FX, or WS(DDF)

Note. When temporary mode is indicated in column 8 of
the current JOB monitor control record, the STOREDATA
operation is restricted to storing in the UA and WS only.

*STOREDATA Examples

1 5 10 15 20 25 30 35 40 45 50
@ [HSToRED]AA] T P | s 0 wj
@ [¥siToRlEDIATAl | Ms| [ulal | IFli[LEl1] 1gldid]s s
© [HSToREDATIA | (el | WA [Fli e[[dZ0
o This reads a data file from paper tape, and stores it in system
working storage. ‘
0 This transfers a data file named FILE1 that occupies 5 ‘
sectors from system working storage to the user area on i
cartridge 1005. :
i
9 This reads a data file named FILE2 from cards, and stores |
it in the user area. 200 cards are read. |
I N 1 T T) O
rrrtrrrrrrrrrrrrrrerrrr ey rrrrrrirrrririt
*STOREDATAE

This control record (1) transfers information from working storage to the user area or
fixed area, or (2) accepts information from the card reader and transfers it to working
storage, the user area, or fixed area.

When input is from cards, the source cards are converted to packed EBCDIC format, that
is 2 columns per word, or 8 cards per sector. Thus, the input is assumed to be any of the
256 EBCDIC characters in card code. When the source is working storage, no conversion
takes place.

Information is transferred directly from the input device to the user area or fixed area.
Thus, when the STOREDATAE operation is to the fixed area, the contents of working
storage are not changed. When the STOREDATAE operation is to the user area, the
contents of working storage are destroyed because the boundary between the user area and
working storage is moved back and forth by delete and store operations,

DUP Contro! Records
*STOREDATAE

The Disk Utility Program (DUP) makes the required LET or FLET entry. The name that
you specify in columns 21 through 25 is assigned to the data file and is used to generate
the LET or FLET entry. Also, DUP supplies the disk block count required in the LET or
FLET entry if the source is cards or paper tape. If the source is working storage, the
sector count specified in the STOREDATAE control record is used.

format Card column Contents Explanation
1 through 11 *STOREDATAE
12 Reserved
13and 14 From symbol See the following summary chart.
15 and 16 Reserved
17 and 18 To symbol See the following summary chart.
19 and 20 Reserved
21 through 25 Name A name is not required when the

STOREDATAE operation is from
cards to working storage.

26 Reserved
27 through 30 Count If the source is working storage,
the count is the number (in decimai)
of sectors of data to be stored. This
count overrides the contents of the
working storage indicator. If the
source is cards, the count is the
number (in decimal) of cards to be
read.
31 through 34 From
cartridge ID
\ 35 and 36 Reserved
37 through 40 To
cartridge ID
41 through 80 Not used

The following chart is a summary of the information transfers performed by STOREDATAE.

*STOREDATAE From symbols, To symbols,
summary chart including formats including formats
WS UA or FX
cD UA, FX, or WS

Note. When temporary mode is indicated in column 8
of the current JOB monitor control record, the
STOREDATAE operation is restricted to storing in the
UA and WS only.

Control Records 5-35

DUP Control Records

*STOREDATAE
additional field ~ Count, The corresponding dump operation, DUMPDATA E, transfers a whole number of
information sectors to cards. To avoid unwanted output, the number of cards stored should conse-

quently be a multiple of 8 (blank cards can be added for that purpose).

*STOREDATAE Examples
1 5 10 15 20 25 30 35 40 45 50
© KsirlarleialTialEl WS | [Fix| | [FliiLES }pllgsz
@ [YSTIOREDATAE (CD| | Wis didsi 1/gldl3!
1 i i

to the fixed area. The file occupies 2 sectors.

o This transfers a data file named FI LES from working storage

This reads a data file of 56 cards into working storage on
“cartridge 1003.

I A
R RERRRRERE

—+

TN O A I O O O A
EERERRRRRERRRRRERARREE

5-36

general function

format

DUP Control Records
*STOREDATACI

*STOREDATACI

This control record (1) transfers information from working storage to the user area or
fixed area on disk, or (2) accepts information from input devices and moves it to working
storage, the user area, or fixed area.

If the input is from cards or paper tape, the STOREDATACI operation assumes the input
is in card or paper tape core image format. If the input is from working storage (the
information has been previously dumped to working storage or stored in working storage
from an input device), the appropriate working storage indicator must indicate disk core
image (DCI) format; otherwise, the STOREDATACI operation is not performed. Output
from the STOREDATACI operation is always in disk core image format.

All transfer of information from input devices to the user area or fixed area is done directly;
that is, the transfer is not made via working storage. Thus, when the STOREDATACI
operation stores information from an input device to the fixed area, the contents of
working storage are not destroyed. Note, however, the contents of working storage are
destroyed when storing from an input device to the user area because the boundary
between the user area and working storage is moved back and forth by delete and store
operations.

The Disk Utility Program (DUP) makes the required LET or FLET entry. The name that
you specify in columns 21 through 25 is assigned to the data file and is used to generate

the LET or FLET entry. Also, DUP computes the disk block count required in the LET

or FLET entry from the count specified in the STOREDATACI control record.

Card column Contents Explanation

1 through 12 *STOREDATACI

13 and 14 From symbol See the following summary chart.
15and 16 Reserved

17 and 18 To symbol See the following summary chart.
19 and 20 Reserved

21 through 25 Name A name is not required when the

STOREDATACI operation is to
working storage.

26 Reserved
27 through 30 Count The count (a right-justified decimal
number) is the number of records
(sectors, cards, or paper tape
records) in the core image input. The
count is not required if the source is
working storage; however, when used
in this case, the count overrides the
contents of the working storage
indicator.
31 through 34 From
cartridge 1D
35 and 36 Reserved
37 through 40 To
cartridge ID
41 through 80 Not used

Control Records = 5-37

DUP Contro! Records
*STOREDATAC!I
*STORECI

5-38

*STOREDATACI
summary chart

general function

The following chart is a summary of the information transfers and format conversions
performed by STOREDATACI.

From symbols, To symbols,
including formats including formats
WS(DCl) UA or FX(DCI)
cD(cDC, CDbD) UA, FX, or WS(DCI)
PT(PTC,PTD) UA, FX, or WS(DCI)

Note, When temporary mode is indicated in column 8
of the current JOB monitor control record, the
STOREDATACI operation is restricted to storing in
the UA only.

*STOREDATAC! Examples

1 5 10 15 20 25 30 35 40 45 50
(1) %lropsv AI[C S[T FIXT T TFI/ILIE 11dlo]1
@ X3ToREDATAC/ICD | WS 1
] 1]

B
—

o This transfers the data file, FILES5, from working storage on
cartridge 1001 to the fixed area on the system cartridge.

This reads a data file from cards and stores it in working
storage. 108 cards are read.

T T T B |
FrrrrrrrrrrrrTTTrT

*STORECI

This control record obtains an object program from working storage or from an input de-
vice, converts it into a core image program using the core load builder, and stores the core
image program in the user area or fixed area.

The core load builder (CLB) is called to build a core image program for the STORECI
operation as if execution were to follow; that is, that portion of the core load residing below
core location 4096 (decimal) in 4K systems, or 5056 in larger systems, is placed in the sys-
tem core image buffer, and LOCALs and/or SOCALSs are placed in system working storage.
(See “Construction of a Core Load” in Chapter 3.) The STORECI operation stores all

these portions of the core image program in the user area, fixed area, or working storage.

A DCI program stored in the user area or fixed area includes the transfer vector built by the
core load builder; however, neither the disk I/O subroutine nor COMMON, if any, is in-
cluded.

format

DUP Control Records

*STORECI

The Disk Utility Program (DUP) makes the required LET br FLET entry for the core image
program as it is stored. The name that you specify in tolumns 21 through 25 is assigned
to the DCI program and is used to generate the LET or FLET entry. Also, DUP obtains

the disk block count required in the LET or FLET entry from the core load builder.

Card column
1 through 8

9

10

1

12

13 and 14

15 and 16

17 and 18

19 and 20

21 through 25
26

27 through 30

31 through 34

35 and 36

37 through 40

1

42

43 through 80

Contents
*STORECI
Disk 1/0
subroutine
indicator
Reserved
LOCAL-can-
call-LOCAL

indicator

Special ILS
indicator

From symbol
Reserved

To symbol
Reserved
Name
Reserved

Count

From
cartridge ID

Reserved

To
cartridge 1D

Reserved

Core map
indicator

Not used

Explanation

This column specifies the disk 1/0
subroutine to be used by the core
load during execution.

A punch (any character) in this
column enables a LOCAL sub-
routine to call another LOCAL.

A punch (any character) in this
column indicates that ILSs for this
core load shouid be chosen from
the special ILSs.

See the following summary chart. -

See the following summary chart.

A decimal number (right-justified)
that indicates the number of
supervisor control records (FILES,
LOCAL, NOCAL, and G2250) that
follow.

N or blank. An N indicates that a core
map is not to be printed for this core
load. A blank causes a core map to be
printed.

Control Records

5-39

DUP Contro! Records
*STORECI

540

*STORECI
summary chart

additional field
information

The following chart is a summary of the information transfers and format conversions per-

- formed by STORECL.

From symbols, To symbols,
including formats including formats
WS(DSF) UA or FX(DCI)
CD(CDS) . UA or FX(DCI)
PT(PTS) UA or FX(DCI)

Note. When temporary mode is indicated in column 8
of the current JOB monitor control record, the
STORECI operation is restricted to storing in the UA
only.

Disk I/O Subroutine Indicator, This column specifies the disk I/O subroutine that is loaded
into core by the core image loader for use by the core load during execution. The charac-
ter punched in this column for each disk I/O subroutine is:

Column 9 Disk I/O subroutine
Oorl DISK1
N DISKN
blank or Z DISKZ

Any other character is invalid and causes the printing of an error message.

LOCAL-Call-LOCAL Indicator. A punch (any character) in column 11 allows a LOCAL
subroutine to call another LOCAL subroutine during execution if the restrictions listed
under “LOCAL-Calls-a-LOCAL” in Chapter 6 are met.

Special ILS Indicator. A punch (any character) in column 12 indicates that special interrupt
level subroutines (ILSs named with an X before the number, as ILSX4) are to be used for
this core load. If column 12 is blank, the standard set of ILSs is used.

In addition to the functions of the standard ILSs, special ILSs at the beginning of their
execution save the contents of index register 3 and set this register to point to the trans-
fer vector. Special ILSs restore the original contents of index register 3 at the end of
their execution. Because the special ILSs save and restore the contents of index register 3,
you can use this register in your programs.

Special ILSs require 5 more words of core storage per ILS than standard ILSs. The special
ILSs for interrupt levels 2 and 4 are loaded, together with other subroutines, as part of the
core load. You can write ILSs to replace any of the IBM-supplied ILSs, standard or special.

DUP Control Records
*STORECI

Count, A right-justified number in columns 27 through'30 that indicates the number of
supervisor control records following this control record. DUP reads these control records
for use by the core load builder before the STORECI operation is performed. The program
name (columns 21 through 25 of this control record) must not be used on the LOCAL,
NOCAL, and G2250 control records. Data files specified in the FILES supervisor control
records that follow must be stored in the fixed area (see “Use of Defined Files” in Chapter
6).

¥*STOREC! Examples
1 5 10 15 20 25 30 35 40 45 50
© [HSToREL! s | VAL | IMA]I N4
@ [XSToRIEC L | XieD T IFX[| MAIINZ] 1d¢l3] N
© MSTorERh| | X P [LA | MAINZl g2
| F i

@ This converts the DSF program, MAIN1, into DCI format
and transfers it from working storage to the user area.

Q This specifies that DISK1 is to be used by this core load,
" and that special ILSs are to be used. The program,
MAIN?7, is read from cards and stored in the fixed area
on cartridge 1003. N in column 42 suppresses the
printing of a core map.

0 This reads program MAIN2 from paper tape and stores
it in the user area. The X in column 11 indicates that a
LOCAL calls another, and 0002 in 27-30 indicates that
two supervisor control records follow.

Control Records 5-41

DUP Control Records
*STOREMOD

542

general function

format

STOREMOD

This control record transfers information from working storage into the user area or fixed
area.

If the name specified in columns 21 through 25 is identical to an entry in LET or FLET,
the information in working storage overlays the DSF program, DCI program, or data file
in the user area or fixed area for that entry. The format of working storage must match
the format of the LET or FLET entry that is replaced.

The STOREMOD operation permits you to modify a DSF program, DCI program, or

data file stored in the user area or fixed area without changing its name or relative posi-
tion within the storage area. However, the length of the program or data file in working
storage after being changed cannot be greater than the length of the old version of the
program or data file that it replaces in the user area or fixed area. No change is made to the
LET or FLET entry as a result of this operation.

If the name on the STOREMOD control record does not match an entry in LET or FLET,
a simple STORE operation is performed (see “*STORE” in this section). The STOREMOD
operation is not allowed when temporary mode is indicated in the current JOB monitor
control record.

Card column Contents Explanation
1 through 10 *STOREMODbB
11 and 12 ‘ Reserved
13 and 14 From symbol The source is a/ways working storage.
15 and 16 Reserved
17 and 18 To symbol See the following summary chart.
19 and 20 Reserved
21 through 25 ‘ Name
26 through 30 Reserved
31 through 34 From
cartridge 1D
35 and 36 Reserved
37 through 40 To
cartridge ID
41 through 80 Not used

DUP Control Records
*STOREMOD

The following chart is a summary of the information transfers and format conversions

performed by STOREMOD.
*STOREMOD From symbols, To symbols,
summary chart including formats including formats
WS(DSF) UA(DSF)
WS(DDF) UA or FX(DDF)
Ws(DCl) UA or FX(DCI)

Note: The format and size indicators of a data file in working storage must match those

of the existing LET or FLET entry. Since the execution of your program that references
data files stored in working storage does not set these indicators, a subsequent STOREMOD
does not work, These indicators can be set prior to execution by performing a DUMPDATA
operation of the stored data file to WS.

*STOREMOD Examples

1 5 10 15 20 25 30 35 40 45 50
(1) *sron&%mov [WS UA [MATLNY
(2] *STORE%MOD WisL [IFX | IF[LIE]L 1¢|¢2 1|Mi3

This replaces the program, MAIN1, stored in the user area
with an updated version from working storage.

@

@ This replaces the data file, FILE 1, stored in the fixed area
on cartridge 1002 with an updated version from working
storage on cartridge 1003.

Control Records 5-43

DUP Control Records
*DELETE

544

general function

format

*DELETE

This operation removes a specified DSF program, DCI program, or data file from the user
area or fixed area. The deletion is accomplished by the removal of the program or data
file LET or FLET entry, including the dummy entry for associated padding, if any. The
DELETE operation is not allowed if temporary mode is indicated in the current JOB
monitor control record.

When a program or data file is deleted from the user area, that area is packed so that

(1) the areas represented by the remaining LET entries are contigious, and (2) working
storage is increased by the amount of disk storage formerly occupied by the deleted
program or data file. The contents of working storage are not destroyed by the DELETE
operation.

When a DCI program or a data file is deleted from the fixed area, that area is not packed.
The FLET entry for the deleted DCI program or data file, including the dummy entry

for associated padding, if anys, is replaced by a single dummy entry (1DUMY). This 1DUMY
entry represents the area formerly occupied by the deleted DCI program or data file, and
its padding. DUP store operations can place new entries in the deleted areas of the fixed
area.

Card column Contents Explanation

1 through 8 *DELETEW

9 through 20 Reserved

21 through 25 Name

26 through 30 Reserved

31 through 34 From The deletion is performed on the
cartridge |D specified cartridge only. If a

cartridge {D is not specified, and the
program or data file name (columns
21 through 25) is present in LET or
FLET of more than one cartridge
specified for this JOB, deletion is from
the first logical drive on which the
name is found.

35 through 80 Not used
*DELETE Examples
1 5 10 15 20 25 30 35 40 45 50
© [XDELE[ME MIATIN4
@ DDELENE Flt L4 1¢|¢4

o This deletes LET or FLET entry for the program, MAIN1,
from the cartridge on the first logical drive where the name
is found.

9 This deletes the data file, FILE1, from cartridge 1004.

ST T S T S G

H T

general function

define a FX

increase or
decrease the FX

format of
DEFINE
FIXED
AREA

DUP Control Records
*DEFINE FIXED AREA

*DEFINE

This control record performs 3 functions.

® [t initially establishes the fixed area and its size on disk.
® [t increases or decreases the size of the fixed area.

®]t deletes the assembler, FORTRAN compiler, RPG compiler, or COBOL compiler, or
any combination of these 4 programs from the IBM system area on the master cartridge.

The definition of a fixed area on disk allows you to store in fixed locations the programs
and data files, which you can subsequently refer to by their sector addresses. The fixed
area is defined in cylinder increments; the minimum required storage space is one cylinder.
When a fixed area is defined, the system uses one cylinder for the fixed location equiva-
lence table (FLET). This cylinder used for FLET is included in the total size of the fixed
area; therefore, the initial definition of the fixed area must be at least 2 cylinders.

Increases and decreases in the size of the fixed area must also be made in cylinder incre-
ments, The fixed area cannot be decreased by a number greater than the number of unused
cylinders after the last program or data file stored in the fixed area. If all DCI programs
and data files have been deleted from the fixed area, and a DEFINE FIXED AREA control
record decreases the fixed area to less than 2 cylinders, the fixed area and FLET are
deleted from the cartridge. The fixed area and FLET are also deleted if the DEFINE
FIXED AREA control record specifies a decrease that exceeds the number of cylinders of
the fixed area.

Card column Contents Explanation

1 through 8 *DEFINEB

9 through 18 FIXEDBAREA

19 through 26 Reserved

27 through 30 Count In initial definition of the fixed area,

the count is the number (in decimal)
of cylinders to be allocated as the
fixed area; a minimum of 2 must be
specified. After initial definition, the
count is the number of cylinders by
which the fixed area is to be increased
or decreased.

31 Sign Blank if the fixed area is being increased;
a minus sign if the fixed area is being
decreased.

32 through 36 Reserved

37 through 40 Cartridge ID This ID specifies the cartridge that is

being altered; when omitted, the system
cartridge is assumed.

41 through 80 Not used

Note. The DEFINE FIXED AREA operation is not allowed if temporary mode is
indicated in the current JOB monitor control record.

Control Records 545

DUP Control Records
*DEFINE FIXED AREA
*DEFINE VOID

delete the assembler
or compiler

format of
DEFINE
VOID

546

*Define Fixed Area Examples

1 5 10 15 2 25 30 35 40 45 50
© [FDEFNINE FLXED AREA quﬁF
(2] *DIEFIINE FlI[X[ED| AREA I¢5|[eq[¢;z- 1¢mz

This defines a 5 cylinder fixed area on the master cartridge.

0 This decreases the size of the fixed area on cartridge 1002
by 2 cylinders.

Deletion of the assembler, FORTRAN compiler, RPG compiler, or COBOL compiler
causes the specified monitor program to be removed from the IBM system area on the
master cartridge. The IBM system area is then packed so-that remaining programs and
areas occupy the area formerly occupied by the deleted monitor program. SLET entries
are updated to reflect the new disk storage allocations for the monitor programs. The
reload table is used to make adjustments in the programs that use disk storage addresses
from SLET.

When 'the assembler, FORTRAN compiler, RPG compiler, or COBOL compiler is to be
deleted, you must perform this deletion before defining a fixed area on the cartridge, or
after completely removing a defined fixed area (see the previous discussion of decreasing
the size of the fixed area). Once one of these programs is deleted, it can be restored by

‘performing an initial load only.

Card column Contents Explanation
1 through 8 *DEFINEW®
9 through 13 VOIDb

14 through 22

23 through'80

ASSEMBLER or
FORTRANBWY or
RPGBBBBGY or
COBOLB®YY

Not used

Note. The DEFINE VOID operation is not allowed when temporary
mode is indicated in the current JOB monitor control record.

The processing of a DEFINE VOID operation restores the original system principal
printer if a CPRNT monitor control record has specified that monitor and supervisor
control records be printed on the console printer.

general function

format

DUP Control Records
*DWADR

*DWADR

This operation causes a sector address to be written on every sector of working storage

on the cartridge specified by the DWADR control record or, if a cartridge ID is not speci-
fied, on every sector of system working storage. The operation restores correct disk sector
addresses in working storage if they have been modified during execution of your program.
The contents of working storage prior to the DWADR operation are destroyed.

A dummy // DUP monitor control record is printed on the principal printer following the
printing of the *DWADR control record and the DUP exit message.

Card column k Contents Explanation

1 through 6 *DWADR

7 through 36 Reserved

37 through 40 Cartridge 1D This 1D specifies the cartridge

on which the working storage
sector addresses are to be re-
written.

41 through 80 Not used

Note. The DWADR operation is not allowed if temporary mode is indicated in the current
JOB monitor control record.

Control Records 5-47

DUP Control Records
*DFILE

5-48

general function

format

*DFILE

This operation reserves disk space in either the user area or fixed area as a named data file
or macro library, Data is not moved as a result of the DFILE operation; this function pro-
vides disk space allocation only. The contents of working storage are not changed except
when defining space in the user area; the contents of working storage on that drive are
destroyed since the user area and working storage are adjacent areas. (See “Use of Defined
Files” in Chapter 6 for a suggested use of this control record.)

DUP makes the required LET or FLET entry. The name specified on the DFILE control
record is assigned to the area and is used to generate the LET or FLET entry, DUP uses
the sector count specified on the DFILE control record to supply the disk block count in
the LET or FLET entry.

Card column Contents Explanation

1 through 6 *DFILE

7 through 16 Reserved

17 and 18 To symbol Area in which the file is to be

reserved: UA for user area,
FX for fixed area.

19 and 20 Reserved

21 through 25 File name The name assigned to the area
reserved for the data file or
macro library.

26 Reserved

27 through 30 Count The number (in decimal) of
sectors to be reserved

31 through 36 Reserved

37 through 40 To

cartridge ID
41 through 80 Not used

Note. The DFILE operation is restricted to reserving space only in the UA when
temporary mode is indicated in the current JOB monitor control record.

general function

format

DUP Control Records
*MACRO UPDATE

*MACRO UPDATE

This operation causes execution of the Macro Update Program (MUP). The MUP performs:
Initialization of a macro library

Physical or logical concatenation of macro libraries

Addition, deletion, or name redefinition of stored macros

Statement addition or deletion within a stored macro

Punching of stored macros into cards

® Listing of macro library contents either at statement or macro level

The functions to be performed by MUP are indicated by means of MUP control statements, -

The format and functions of these control statements are described in the publication
IBM 1130/1800 Assembler Language, GC26-3778. The MUP control statements immedi-
ately follow the MACRO UPDATE DUP control record in the job stream.

The Macro Update Program requires an IBM 1131 Central Processing Unit, Model 2 or 3,
with 8192 (decimal) or more words of core storage. If the MACRO UPDATE DUP control
record is read by a system with 4096 words of core storage, it is considered an invalid con-
trol record. The MUP cannot be used if temporary mode is indicated in the current JOB
monitor control record.

Card column Contents Explanaﬁon
1 through 13 *MACROBUPDATE

14 through 36 Reserved

37 through 80 Not used

Note. Keyboard or paper tape input to the MUP of the Disk Utility Program assumes a
one-to-one relationship with any corresponding card input record. Thus, position 1 of
assembler statements that are input record for MUP corresponds to card column 1 and not
to column21.

Control Records 5-49

" Assembler Control Records

ASSEMBLER CONTROL RECORDS

functions Assembler control records are used to specify optional operations that affect the assembler
and assembly output. These control records are placed in the input stream as follows:

| Next monitor
control record

Assembler source statements

]Assembler control records

Assembler control records can be entered in card or paper tape form along with the source
program card deck or paper tape, or they can be entered from the console keyboard (see
“Entering Jobs From the Console Keyboard” in Chapter 7).

In most cases, the source program is passed through the assembler only once. This is always
true when input is from the keyboard or paper tape reader. When input is from cards,
passing the source deck through the assembler a second time (2-pass mode) may be re-
quired. Further information about 2-pass mode is presented in the descriptions of the

TWO PASS MODE, LIST DECK, and LIST DECK E control records in this section. These
3 control records and the PUNCH SYMBOL TABLE control record are ignored when en-
tered from the keyboard or paper tape reader.

5-50

coding assembler
control records

coding keyboard and
paper tape input

Assembler Control Records
how to code

All assembler control records have the following format:

Card column Contents Explanation

1 * Asterisk

2 through 71 Option Replace option with the key-
words for the control record
being used.

72 through 80 Not used

Note. Assembler control records are coded in free form; that is, any number of
blanks can occur between the characters of the option. However, only one blank
can separate the last character of the option and the first character of any required
numeric field. Remarks can be included after the option or numeric field; how-
ever, at least one blank must separate the last character of the option or numeric
field and the remarks.

If an assembler control record contains an asterisk in column one, but the option is not
identical with the format shown for the control record, the control record followed by an
assembler error message is printed in the control record listing. The control record in error
is ignored; an error does not resuit, but the specified option is not performed.

Assembler control records are coded the same for card, paper tape, and keyboard input.
Assembler language source statements are coded the same for keyboard and paper tape
input as for cards, with the following exceptions:

® The source statements do not contain leading blanks corresponding to card columns
1 through 20.

® The source statements are limited to 60 characters

The first record processed by the assembler is checked for an asterisk as the first character.
If an asterisk is the first character, the record is considered an assembler control record.
This procedure continues until the first nonasterisk character is detected as the first charac-
ter. For this record, and all following records (up to and including the END statement),
the first character of each record is treated as if it were in card column 21; therefore, the
first noncontrol record should not be an * comments statement.

Note 1. Paper tape input to the assembler is punched into paper tape in PTTC/8 code, one
frame per character. Any delete codes punched in paper tape are passed over by the
assembler; assembly is continuous until the end.

Note 2. Keyboard and paper tape input to the Macro Update Program (MUP) of DUP
assumes a one-to-one relationship with the corresponding card input. Thus, position one
of assembler statements that are input for MUP corresponds to card column 1 and not to
column 21.

Control Records 5-51

Assembler Control Records
*TWO PASS MODE

*TWO PASS MODE

general function This control record causes the assembler to read the source program deck twice, TWO
PASS MODE must be specified when:

® You want a list deck punched by the 1442 Card Read Punch, Model 6 or 7 (see “*LIST
DECK” and “*LIST DECK E” in this chapter).

® A one-pass operation cannot be performed because the intermediate output (source
records) exceeds the capacity of working storage.

This control record is ignored if source statements are entered through the keyboard or the
paper tape reader.

format Card column Contents Explanation
1 * Asterisk
2 through 71 TWO PASS
MODE
72 through 80 Not used

If a copy of the source deck, including all assembler control records, is placed behind the
original, the source deck is read twice, and a stacked job is possible in 2-pass mode.

When a deck is being assembled in 2-pass mode, the assembler is ready to read another card

as soon as pass one processing of the END card is completed. Therefore, the source deck

or a copy of the source deck must be placed immediately behind the END card of the

first-pass deck. A monitor control record after the first END card causes the assembler to

execute a CALL EXIT; the assembly is not completed.

If the source deck has not been copied, the END card must be the last card in the hopper.

To continue:

1. Press START on the card reader and PROGRAM START on the console to process
the END card when the reader goes not ready.

2. Remove the source deck from the stacker and place it in the hopper.
3. Press START on the card reader and PROGRAM START on the console again.

The operation can be made continuous if you remove the source cards from the stacker
during pass one and place them behind the END card in the hopper.

To complete the assembly at the end of pass 2, press START on the card reader and
PROGRAM START on the console to process the END card for the second pass.

5-52

general function

format

Assembler Contro! Records
*LIST

*LIST

This control record causes the assembler to provide a printed listing of the source program
on the principal print device (1403 Printer, 1132 Printer, or console printer). If a LIST
control record is not used, only those statements in which assembly errors are detected
are listed. When 2-pass mode is specified, all BSS, BES, ORG, and EQU statements that
contain errors are listed during pass one of the assembly.

Card column Contents Explanation
1 A * Asterisk

2 through 71 | LIST

72 through 80 Not used

Control Records 5-53

Assembler Control Records
*LIST

The format of a printed listing for an 8K or larger system is shown by:

000 ¢ ®

0000
AALALA

100F 0 AB81l4 c0018 M D SAVE+ DIVIDE BY (I+J)
1010 0 8012 00019 M A SAVE+1 AND ADD (A+B)/C
1011 0 3000 00020 WAIT

1012 0 6038 00021 EXIT

1014 0000 00022 BSS E O

1014 00 0000C000 00023 B DEC 49152

1016 00 0000EQOO0O0 00024 F OEC 57344

o Address of the instruction; address of the label, if any
e Relocation indicators

e One of the following:
a. First word of the assembled code
b. For EBC statements, the number of EBC characters
¢. For BSS and BES statements, the number of words reserved for the block
d. For ENT, ILS, and ISS statements, eand eare the entry label in name code
e. For LIBF and CALL statements, o and e are the name of the subroutine in name code

o One of the foliowing:
a. Second word of assembled code
b. For ENT, ILS, and ISS statements, e ande are the entry label in name code
c. For LIBF and CALL statements, e and o are the name of the subroutine in name code

e Statement number

G Error flags, if any

0 Macro code indicator, if any

e Label

9 Operation code
@ Format
m Tag

@ Operands (and your comments)

@ ID and sequence number, if any

5-54

Assembler Control Records
*LIST

When LIST is specified for a 4K system, or with 2-pass mode, the format of the printed
listing is:

100F 0 ABl4 M D SAVE+2 DIVIDE BY (I+J)
1010 0 8012 M A SAVE+1 AND ADD (A+B)/C
1011 0 3000 WAILT

1012 0 6038 EXIT

1014 0000 Bss E O

1014 00 0000C000. 8 DEC 49152

1016 00 0000EOQOO F DEC 57344

o Address of the instruction; address assigned to the label, if any
o Relocation indicators

e One of the following:
a. First word of the assembled code
b. For EBC statements, the number of EBC characters
c. For BSS and BES statements, the number of words reserved for the block
d. For ENT, ILS, and ISS statements, eand o'are the entry label in name code
For LIBF and CALL statements, eand oare the name of the subroutine in name code

One of the following:

a. Second word of assembled code

b. For ENT, ILS, and ISS statements, eand o are the entry label in name code

c. For LIBF and CALL statements,e and Oare the name of the subroutine in name code

e Error flags, if any

e Macro code indicator, if~any

o Label

e Operation code

0 Operands (and your comments)

@ ID and sequence number, if any

A complete sample program listing is in Appendix H.

Control Records 5-55

Assembler Control Records
*XREF

*XREF

general function This control record causes the assembler to produce a statement numbered listing and a
statement numbered cross-reference symbol table on the principal print device if the core
size is 8K or larger. This control record is invalid if the core size is 4K, and, if detected,
is ignored. A warning message is printed.

A LIST control record is not needed when XREF is used. When neither an XREF nor a
LIST control record is used, only those statements in which assembly errors or warnings
are detected are listed. When 2-pass mode is specified, all BSS, BES, ORG, and EQU state-
ments that contain errors are listed during pass one of the assembly.

The cross-reference symbol table is not printed if 2-pass mode is specified or if symbol
table overflow occurs during assembly. When either of these conditions occur, the XREF
control record produces only a listing.

The assembler does not assign sequence numbers to comments statements when a LIST
OFF statement in your program is in effect. Because of this, the statement numbers in a
cross-reference symbol table listing for the same program may be different from one assem-
bly to another, depending on whether or not the program contains LIST OFF (and LIST
ON) statements. '

format Card column Contents Explanation
1 * Asterisk
2 through 71 XREF

72 through 80 Not used

5-56

Assembler Control Records
*XREF
*LIST DECK

The format of the statement-numbered listing is the same as the format shown under
“*LIST” for a system with a core size of 8K or larger. The format of the cross-reference
symbol table is:

Kl 105D 0 00071 00007sR 000134R 000389R 000579R 00063sR
K1lé 106C 0 00083 001239R

K20 105€ 0 00072

K32 105F 0 00073

K&0 1060 0 00074 000654R

K640 1061 0 00075 00003sR 00019R

L INE 159F 0 00131 000444R 001169R 001174R 001214R
LINES 1064 0 00078 000629R 200649M 000689M

LOOP 1022 0 00026 0004098

o Symbol

9 Value of the symbol

e Relocation indicator

°Statement number of statement that defines the symbol

GStatement numbers and associated reference type indicators (B for branch to, M for modification,
or R for reference to) for the statements that use the symbols

general function

format

Multiply defined symbols are flagged in the cross-reference symbol table with the message
MULTIPLY-DEFINED, Undefined symbols are listed separately under the header
[JNDEFINED SYMBOLS, Symbols that refer to the system symbol table are
flagged with SYSMB in the statement number field of the cross-reference entry.

A list of the statement numbers of all statements flagged with errors or warmnings is printed
at the end of the statement numbered listing under the header: ERROR STATEMENT
LINE NUMBERS.

*LIST DECK

This control record causes a list deck to be punched when the principal I/O device is a
1442 Model 6 or 7 Card Read Punch. This control record is ignored if entered from the
2501 Card Reader, the paper tape reader, or the keyboard.

Card column Contents Explanation
1 * o Asterisk

2 through 71 LIST DECK

72 through 80 Not used

Control Records 5-57

Assembler Control Records
*LIST DECK

The LIST DECK option requires 2 passes of the source deck (TWO PASS MODE) through
the assembler. Object information is punched into columns 1 through 19 during pass two.

5-58

The card column contents of a punched list deck card are:

Card column

1 through 4

6and 7
8

9 through 12

13 through 16

17

18and 19

20

21 through 25
26

27 through 30
31

32

33

34

35 through 71
72

73 through 80

Contents

Address of the instruction; address assigned to the
label, if any.

Blank
Relocation indicators
Blank

One of the following:

1. First word of the assembled code.

2. For EBC statements, the number of EBC
characters.

3. For BSS and BES statements, the number of
words reserved for the block.

4. For ENT, ILS, and ISS statements, columns
9 through 16 contain the entry label in name
code.

5. For LIBF and CALL statements, columns 9
through 16 contain the name of the subroutine
in name code.

One of the following:

1. Second word of the assembled code.

2. For ENT, ILS, and ISS statements, columns
9 through 16 contain the entry label in name
code.

3. For LIBF and CALL statements, columns 9
through 16 contain the name of the subroutine
in name code.

Blank

Error flags, if any

Macro code indicator, if any

Label

Blank

Operation code

Blank

Format

Tag

Blank

Operands (and your comments)

Blank

1D and sequence number, if any

general function

format

general function

format

general function

format

Assembler Control Records
*LIST DECK E
*PRINT SYMBOL TABLE
*PUNCH SYMBOL TABLE

*LIST DECK E

This control record causes a list deck to be punched when the principal 1/O device is a
1442 Model 6 or 7 Card Read Punch. This control record is ignored if entered from a
2501 Card Reader, paper tape reader, or the keyboard.

The LIST DECK E option requires 2 passes of the source deck (TWO PASS MODE) through
the assembler. Only error flags, if any, are punched (columns 18 and 19) during the second
pass. Assembler error detection codes are described in Appendix A.

Card column Contents Explanation
1 * Asterisk

2 through 71 LIST DECK E

72 through 80 Not used

*PRINT SYMBOL TABLE

This control record causes the assembler to print a listing of the symbol table on the prin-
cipal print device. The printed symbols are grouped 5 per line. Multiply defined symbols
are preceded by the letter M. Symbols with absolute values in a relocatable program are
preceded by the letter A. These M and A flags are not counted as assembly errors.

Card column Contents Explanation
1 * Asterisk
2 through 71 PRINT
SYMBOL
TABLE
72 through 80 Not used
*PUNCH SYMBOL TABLE

This control record causes the symbol table to be punched as a series of EQU source cards.
Each source card contains one symbol. These cards can be used as source input to the
system symbol table when the SAVE SYMBOL TABLE control record is used with an
assembly in which they are included.

This control record is ignored if entered from the paper tape reader or the keyboard.

Card column Contents Explanation
1 * Asterisk
2 through 71 PUNCH
SYMBOL
TABLE
72 through 80 Not used

Control Records 5-59

Assembler Control Records
*SAVE SYMBOL TABLE
*SYSTEM SYMBOL TABLE

5-60

general function

format

general function

format

If the principal input device is the 1442 Model 6 or 7 Card Read Punch, sufficient blank
cards must be placed between the source program END card and the next monitor control
record when stacked job input is being used. In estimating the number of blank cards re-
quired, allow one card for each symbol used in the source program. Unnecessary blank
cards are passed. (If a nonblank card is read when punching on the 1442 Model 6 or 7, the
assembler waits at SPRET with /100F displayed in the ACCUMULATOR.)

If the system configuration is 2501/1442, place blank cards in the 1442 hopper and press
START on the 1442 before beginning the assembly.

Note, Do not place nonblank cards in the 1442 Model 5. The punch may be damaged if
an attempt is made to punch a hole where a hole exists. An error is not detected.

*SAVE SYMBOL TABLE

This control record causes the symbol table generated by this assembly to be saved on
disk as a system symbol table. This system symbol table is saved until another assembly
with a SAVE SYMBOL TABLE control record causes a new system symbol table to re-
place the old one. This control record is also used with the SYSTEM SYMBOL TABLE
control record to add symbols to the system symbol table.

Note. The SAVE SYMBOL TABLE requires that the assembly be absolute (an ORG state-
ment defining the core load origin must be used in your program). Thus, all symbols in the
system symbol table have absolute values.

When the symbol table punched by a PUNCH SYMBOL TABLE control record is included
in the system symbol table being generated by this assembly, place the punched EQU cards
after the SAVE SYMBOL TABLE control record.

If any assembly errors are detected, or if the symbol table exceeds 100 symbols, the sys-
tem symbol table is not saved, and an assembler error message is printed.

Card column Contents Explanation
1 * Asterisk
2 through 71 SAVE SYMBOL
TABLE
72 through 80 Not used
*SYSTEM SYMBOL TABLE

This control record causes a previously built system symbol table to be added to the sym-
bol table for this assembly as the assembly begins. This allows you to refer to symbols in
the system symbol table without redefining the symbols in your source program. Also,
this control record can be used with a SAVE SYMBOL TABLE control record to add
symbols from this assembly to the system symbol table.

Note. All symbols in the system symbol table have absolute values.

Card column Contents Explanation
1 * Asterisk
2 through 71 SYSTEM
SYMBOL
TABLE
72 through 80 Not used

Assembler Control Records

*LEVEL
*OVERFLOW SECTORS
*LEVEL
general function This control record specifies the interrupt levels serviced by an ISS and the associated ILS

subroutines. This control record is required for the assembly of an ISS subroutine. The
interrupt level number is a decimal number in the range O through 5. If the device operates
on 2 interrupt levels (for example, the 1442 Card Read Punch), one LEVEL control
record is required for each interrupt level on which the device operates. The assembler
accepts no more than 2 interrupt levels for a device. At least one blank must separate

the word LEVEL and the interrupt level number.

If a LEVEL control record is not used when assembling an ISS subroutine, an error message
is printed at the end of the assembly.

format Card column Contents Explanation
1 * Asterisk
2 through 71 LEVELWBN n is an interrupt level number
(decimal)
72 through 80 - Not used
*OVERFLOW SECTORS
general function This control record allows you to specify the number of sectors of working storage to be

used by the assembler for symbol table overflow and/or macro processing. When this con-
trol record is used, the assembler allocates.one more sector than the total number speci-
fied. This additional sector is used as a working sector by the assembler.

If more than one OVERFLOW SECTORS control record is used, the last record is used to
allocate the overflow sectors.

format Card column ~ Contents Explanation
1 * Asterisk
2 through 71 OVERFLOW n1 is the number of sectors for
SECTORSH symbol table overfiow; n2 is the
nt, n2,n3 number of sectors for macro

parameter list overflow; n3 is
the number of sectors for temp-
orary macro definition.

72 through 80 Not used

Note. If any of the number fields are not specified in an OVERFLOW SECTORS
control record, the commas within the record cannot be eliminated.

Control Records 5-61

Assembler Control Records
*OVERFLOW SECTORS

5-62

additional field
information

ni

n2

compute largest
parameter list size

compute n2

n3

compute n3

OVERFLOW SECTORS. The decimal numbers coded after OVERFLOW SECTORS specify
the number of sectors to be allocated for (1) symbol table overflow, nl, (2) macro param-
eter list overflow, n2, and (3) temporary macro definition overflow, n3.

The number of sectors (n) reserved for symbol table overflow is specified as a decimal
number in the range O through 32. When the entry is zero or not specified, symbol table
overflow is not allowed. If the entry is greater than 32, only 32 sectors are assigned for
symbol table overflow. If, during assembly, the symbol table overflow exceeds the number
of sectors allocated by the OVERFLOW SECTORS control record, an error message is
printed. The approximate maximum number of symbols that can be defined in a program
is determined by the size of core storage:

Size of core storage Approximate maximum
(in decimal words) number of symbols
4096 3500
8192 4165
16384 6895
32768 12355

The macro processor portion of the assembler uses working storage to contain macro
parameter list overflow. The OVERFLOW SECTORS control record specifies the number
of sectors (n2) to be reserved. If n2 is zero or not specified, a comma must be coded, but
macro parameter list overflow is not allowed.

The size (in words) of the total parameter list storage required for an assembly is the size
of the largest parameter list within the assembly. The size of a parameter list (in words)
can be estimated by using the following formula:

N
Number of words = 3+N+ ¥ %(mj+1)

i=1
where

N is the number of parameters, including nested macros, within a macro call.
Mj is the number of characters per parameter.

For example, the macro call:
EXPND APHA BETA,C is computed as 3+3+%(5+1 y+%(4+1 y+4(1+1)=12 words.

If the computed size of the largest parameter list within an assembly does not exceed 100
words, parameter list overflow sectors are not required. Otherwise, the number of sectors
(n2) required can be computed with the following formula:

n2=1/100(x~100)

where
x equals the size (in words) of the largest parameter list.

The macro processor portion of the assembler uses working storage to store temporary
macro definitions (macros that apply only to the assembly in which they are defined). The
OVERFLOW SECTORS control record specifies the number of sectors (n3) to be reserved
for storing the temporary macros. If n3 is zero or not specified, a comma must be coded,
but storage of temporary macro definitions is not allowed.

The number of working storage sectors (n3) required for storing temporary macro defini-
tions is calculated as: K/40

where
K is the sum of the number of statements in each temporary macro definition.

general function

format

general function

format

additional field
information

Assembler Control Records
*COMMON
*MACLIB

*COMMON

This control record allows you to specify the length (in words) of COMMON that is shared
by the program being assembled and a FORTRAN program compiled prior to this assembly.
The number of words of COMMON used by the FORTRAN program can be obtained from
a listing of the program. The use of this control record provides for the saving of COMMON
when linking between FORTRAN mainlines and assembler mainlines.

Card column Contents Explanation
1 * Asterisk
2 through 71 COMMONI nnnnn is the number (in deci-
nnnnn mal) of words of COMMON
to be saved between links.
72 through 80 Not used

*MACLIB

This control record specifies that the macro library is used during assembly. The MACLIB
control record is invalid on 4K systems and with both LIST DECK options.

Card column
1
2 through 8

9 through 13

Contents

*

MACLIBb

Macro library

name
14 through 71 Reserved
72 through 80 Not used

Explanation

Asterisk

Macro library name. This name must be an exact duplicate of the name given to the macro
library when it was defined by a STOREDATA or DFILE DUP control record. A MACLIB
control record is ignored if an invalid macro library name is specified.

Control Records 5-63

FORTRAN Control Records
how to code

FORTRAN CONTROL RECORDS

functions FORTRAN control records specify optional operations that affect the FORTRAN com-
piler and program execution. These control records are placed in the input stream as fol-
lows:

e NXt MoONIitor
control record

FORTRAN source statements

FORTRAN control records

FORTRAN control records can be entered in card or paper tape form along with the
source program deck or tape, or they can be entered from the console keyboard (see
“Entering Jobs from the Console Keyboard” in Chapter 7).

The IOCS, NAME, and ORIGIN control records can be used only with mainline programs;
the others can be used with both mainline programs and subprograms.

coding All FORTRAN control records have the following format:
Card column Contents Explanation
1 * Asterisk
2 through 72 Option Replace option with the

keywords for the control
record being used.

73 through 80 Not used

Note. FORTRAN control records are coded in free form; that is, any number
of blanks can occur between the characters of the option. Remarks are not
allowed.

If a FORTRAN control record contains an asterisk in column one, but the option is not
identical with the format shown for the control record, the asterisk is replaced with a minus
sign on the control record listing. The control record in error is ignored; an error does not
result, but the specified option is not performed. This same action is taken if the specified
address is not valid in an ORIGIN control record.

5-64

FORTRAN Control Records
*10CS

*10Cs

general function This control record specifies the I/O devices that are used during execution of a FORTRAN
core load. Only the devices required should be included. Any number of IOCS control
records can be used to specify the required devices.

All I/O devices that are used by FORTRAN subprograms called in a FORTRAN core load
must be included on the IOCS control records associated with the mainline FORTRAN
program. Assembler language subroutines that are included in a FORTRAN core load can
use any of the other I/O device subroutines in addition to those specified on the IOCS
control records for the FORTRAN mainline program.

format Card column Contents Explanation
1 *
2 through 72 10CS d is a valid device name
(d,d,...,d) selected from the following
list.
73 through 80 Not used

Names for I/O devices to be used are specified in the IOCS control record. These names
are enclosed in parentheses and separated by commas, The devices, their associated IOCS
names, and the I/O subroutines called for each device are:

Device *10CS device name Subroutine called
1442 Card Read/Punch, CARD CARDZ

Model 6 or 7

2501 Card Reader 2501 READER READZ

1442 Card Punch, Model 5 1442 PUNCH PNCHZ

(1442 Model 6 or 7 if used
as a punch only)

Console printer TYPEWRITER TYPEZ
Keyboard KEYBOARD WRTYZ
1132 Printer 1132 PRINTER PRNTZ
1403 Printer 1403 PRINTER PRNZ
1134/1055 Paper Tape PAPER TAPE PAPTZ
Reader/Punch

1627 Plotter PLOTTER PLOTX
Disk DISK DISKZ
Disk (unformatted disk 1/0) UDISK DISKZ

Note. CARD is used for the 1442 Card Read/Punch, Model 6 or 7, and 1442 PUNCH is
used for the 1442 Card Punch, Model 5 (1442 PUNCH can be used for a 1442, Model 6
or 7, if the function is punch only; 1442 PUNCH uses fess core storage). CARD and
1442 PUNCH are mutually exclusive; therefore, the use of both of these names in IOCS
control records for the same compilation is not allowed.

Control Records 5-65

FORTRAN Control Records
*L.IST SOURCE PROGRAM
*LIST SUBPROGRAM NAMES

general function

format

general function

format

5-66

*JOCS Examples
1 5 10 15 20 25 30 35 40 45 50
X [0lCIS|(ICIARD],|114013] PRI N[TIER]s D]t [s|K)

*LIST SOURCE PROGRAM

This control record causes the source program, as it is entered, to be listed on the princi-
pal print device.

Card column Contents Explanation
1 * Asterisk
2 through 72 LIST SOURCE
PROGRAM
73 through 80 Not used

*LIST SUBPROGRAM NAMES

This control record causes the names of all subprograms (including subprograms called
by EXTERNAL statements) called by the compiled program to be listed on the principal
print device.

Card column Contents Explanation
1 * Asterisk
2 through 72 LIST
SUBPROGRAM
NAMES
73 through 80 Not used

FORTRAN Control Records
*LIST SYMBOL TABLE
*LIST ALL

*LIST SYMBOL TABLE

general function This control record causes the absolute or relative addresses for the following items to be
listed on the principal print device.

® Variable names

® Numbered statements
® Statement functions
® Constants

The addresses are relative unless an ORIGIN control record specifies the core address where
the first word of the core load is placed for execution.

A constant in a STOP or PAUSE statement is treated as a hexadecimal number. This hexa-
decimal number and its decimal equivalent appear in the list of constants. The hexadeci-
mal number is displayed in the ACCUMULATOR when the system waits at SPRET during
the execution of the PAUSE or STOP statement.

format Card column Contents Explanation
1 * Asterisk
2 through 72 LIST
SYMBOL
TABLE
73 through 80 ~ Not used
*LIST ALL
general function This control record causes the source program, associated subprogram names, and the sym-

bol table to be listed on the principal print device. When this control record is used, the
previously described LIST SOURCE PROGRAM, LIST SUBPROGRAM NAMES, and
LIST SYMBOL TABLE control records are not required.

format Card column Contents Explanation
1 * Asterisk
2 through 72 LIST ALL
73 through 80 Not used

The FORTRAN sample program in Appendix H is listed by a LIST ALL control record.

Control Records 5-67

FORTRAN Control Records
*EXTENDED PRECISION
*ONE WORD INTEGERS

*EXTENDED PRECISION

general function This control record allocates 3 words of core storage for arithmetic values (real and integer)
instead of the standard two and generates linkage to the extended precision subprograms.

The FORTRAN compiler normally operates in standard precision; that is, 2 words (a sign,
23 significant bits, and an exponent) of core storage are allocated for each arithmetic
value. Through the use of the EXTENDED PRECISION control record, the compiler can
be made to yield 31 significant bits by allocating 3 words of core storage for each arith-
metic value.

Standard precision, extended precision, and arithmetic subprograms are discussed in the
publication IBM 1130 Subroutine Library, GC26-5929.

format Card column Contents Explanation
1 * Asterisk
2 through 72 EXTENDED
PRECISION
73 through 80 Not used

*ONE WORD INTEGERS

general function The FORTRAN compiler normally assigns 2 words of core storage for each real and inte-
ger value (see the previous discussion of the EXTENDED PRECISION control record).
The ONE WORD INTEGERS control record causes all integer values to be assigned one
word of core rather than the standard 2 words, or 3 words when an EXTENDED PRECI-
SION control record is used.

An 1130 FORTRAN integer can have any value in the range of —215+1 to 2!5—1. Any
value in this range can be contained in one word (16 bits) of core storage; therefore, inte-
ger values can contribute rather significantly to inefficient use of core storage because of
the extra word allocated for standard or extended precision. Because of this, the use of
the ONE WORD INTEGERS control record conserves core.

Note, If this control record is used, the program does not conform to the USASI Basic
FORTRAN standard for data storage, and will require modification for use with non-

1130 FORTRAN systems.
format Card column Contents Explanation
1 * Asterisks
2 through 72 ONE WORD
INTEGERS
73 through 80 Not used

5-68

general function

format

general function

format

FORTRAN Control Records
*NAME
**(header information)

*NAME

This control record causes the specified program name to be printed at the end of the pro-
gram listing,

Card column Contents Explanation
1 * Asterisk
2 through 72 NAMEBxxxxx xxxxx is the name of the

mainline program and is five
consecutive characters (includ-
ing blanks) starting in the first
nonblank column after NAME.
At least one blank must separ-
ate NAME and the mainline
program name.

73 through 80 Not used

** (Header Information)

This control record causes the information specified in columns 3 through 72 to be printed
at the top of each page printed during compilation when a 1403 Printer or 1132 Printer

is the principal print device. When the first statement of the program is read, the printer
skips to a new page (a skip to channel 1), prints the heading, and begins listing the program
statements.

Card column Contents Explanation
1and 2 *E Asterisks
3 through 72 Any string of
characters
73 through 80 Not used

Control Records 5-69

FORTRAN Contro! Records
*ARITHMETIC TRACE
*TRANSFER TRACE

*ARITHMETIC TRACE

general function This control record causes the value of each variable to be printed each time it is changed
during program execution. An asterisk immediately precedes each printed value.

Console entry switch 15 must be turned on, and an IOCS control record specifying the
console printer, 1132 Printer, or 1403 Printer must be included in the FORTRAN con-
trol records. When more than one of these print devices is specified, the fastest device is
used for printing the traced values. Tracing is stopped if console entry switch 15 is turned
off. This provides for tracing only a part of a program. Tracing can be restarted by turning
console entry switch 15 back on.

You can trace selected portions of your program by placing statements that start and stop
tracing in the source program, These statements, CALL TSTRT and CALL TSTOP, are
placed where needed in the program. In addition to these statements, console entry switch
15 must be on and an IOCS control record specifying a print device and an ARITHMETIC
TRACE control record must be included in the FORTRAN control records.

format Card column Contents Explanation
1 * Asterisk
2 through 72 ARITHMETIC
TRACE
73 through 80 Not used
*TRANSFER TRACE
general function This control record causes the values of IF expressions and computed GO TO indexes to

be printed during program execution. Two asterisks immediately precede each printed
value of an IF statement. Three asterisks immediately precede the value printed for the
index of a computed GO TO statement.

Console entry switch 15 must be turned on, and an IOCS control record specifying the
console printer, 1132 Printer, or 1403 Printer must be included in the FORTRAN control
records. When more than one of these print devices is specified, the fastest device is used
for printing the traced values, Tracing is stopped if console entry switch 15 is turned off.
This provides for tracing only a part of a program. Tracing can be restarted by turning
console entry switch 15 back on.

You can trace selected portions of your program by placing statements that start and stop
tracing in the source program. These statements, CALL TSTRT and CALL TSTOP, are
placed where needed in the program. In addition to these statements, console entry switch
15 must be on and an IOCS control record specifying a print device and a TRANSFER
TRACE control record must be included in the FORTRAN control records.

format Card column Contents Explanation
1 * Asterisk
2 through 72 TRANSFER
TRACE
73 through 80 Not used

5-70

general function

format

additional field
information

RPG CONTROL CARDS

functions

FORTRAN Control Records
*ORIGIN
RPG Control Cards

*ORIGIN

This control record allows you to specify the core address where the core image loader
starts loading a program into core for execution. When an ORIGIN control record is used,
absolute addresses are printed in the listing that is produced by the compiler. This allows
you to see exactly where the program statements and constants are during execution.

Card column Contents Explanation

1 * Asterisk

2 through 72 ORIGINpddddd or This is the starting core address
ORIGIN/xxxx expressed as a decimal number

(ddddd) of 3 to 5 digits or as a
4 hexadecimal number {/xxxx)
of 1 to 4 digits preceded by a
slash.

73 through 80 Not used

ORIGIN. The origin of a program cannot be specified below the disk I/O subroutine that
is used by the core load. The origin is determined by adding decimal 30 to the next higher
addressed word above the end of the disk I/O subroutine used by the core load. If the
address you specify is an odd number, the system uses the next highest even address as
the origin. The following chart lists the lowest possible origins. If an invalid address is
specified, the control record is ignored.

Disk 1/0 Core load origin

subroutine

in core Decimal Hexadecimal
DISKZ 510 /01FE
DISK1 690 /02B2
DISKN 960 /03C0

Two RPG control cards specify operations to be performed by the RPG compiler. The
first, the RPG control card, acts as a header for the source deck. Information coded in this
control card indicates the compiler operations to be performed.

The second control card, the RPG end-of-file control card, is required as the last card of a
source program or a data file.

The RPG control cards are placed in the input stream as follows:

Source program

Control Records 5-71

RPG Control Cards

The following illustrates the stacked input required to compile an RPG source program,
store the object program in the user area, and execute the object program:

rData file

le—End of file signals end of data card input file

l // XEQ PROGN X

*STORE WS UA
PROGN

<¢—— RPG data file (if file not already stored on disk)

Execute the program. X or any other entry in column 28
will bring in the special ILS routines required by RPG.
Get PROGN (program name) from working storage and

o

-

store it in the user area.

J‘__- Disk utility program call

=== End of file card for source deck

RPG source deck (specification statements)
lg—— RPG control card

}e=— Monitor control card to call the RPG compiier

-+ Monitor control card to initiate the job

It the // DUP and *STORE records are omitted, the program is executed from working
storage; however, the program is not available for future execution because it is not saved.

If the program being compiled is not executed often, storing it on cards rather than on disk
may be advisable. The following illustrates the stacked input required to compile an RPG
program and punch an object deck:

Blank cards

*DUMP WS CD
PROGN

Blank cards for object program

Punch the named program (PROGN) into cards.

The program is in working storage.

5-72

l |}~ Disk utility program call

‘ lt—— End of file card for source deck

RPG source deck (specification statements)

|__J<—— RPG control card

<= Monitor control card to call the RPG compiler

Monitor control card to initiate the job

RPG Control Cards

Then, the input stacked required to execute the object program from cards is illustrated

by:
{"
Y =i
=
gn A [<e—— End of file signals end of data card input file
f Data file i
{// XEQ X |.| RPG data file (if file not already stored on disk)

¢ Execute the program. X or any other entry in column 28
will bring in the special | LS routines required by RPG.

Object deck

#*
(STORE CD WS RPG object program
{ // DUP
// JOB | _}— Store a program from cards to working storage.
|__|<e——— Disk utility program call

=€~ Monitor control card to initiate the job

Most RPG programs require input data during program execution. This data can be on
data cards at execution time or can be stored at any time before execution in a predefined

data file on disk. The following illustrates how a data file can be built on disk by an RPG
program:

Data file

<= End of file signals end of data card input file.

I/l XEQ PROGN X

(*STORE WS UA

Data cards to be stored on disk in FILE1.

PROGN Execute object program. X or any other entry in column 28
(// DUP = will bring in the special |LS routines required by RPG.
L T L)< Store object program
E —== |__}<e—— Disk utility program call
(H j¢— End of file card for source deck
(/I RPG (I RPG source deck including control card. On the File Description
m y Specifications forms, define input file as cards, output file as disk.
DFILE Object program to load data cards to FILE1.
UA FILE1 100
|__J—— Monitor control card to call the RPG compiler

P
(/Iy ‘ Reserve 100 sectors on disk and label this area FILE1; *STOREDATA
//JoB e’ can also be used to reserve the disk storage space.

| Disk utility program call

<= Monitor control card to initiate the job

Control Records 5-73

RPG Control Cards
RPG control card
end-of-file card

5-74

general function

format

general function

format

The RPG compiler prints addresses of various routines in the key addresses of object pro-
gram table. For example, the close files routine (located near the end of the mainline
program) is included in this table. This routine may require from 2 to 16 additional words
(hexadecimal) depending on the type and number of files to be closed. The address of this
routine can be helpful when dealing with programs that exceed the available core storage.
By adding the number of additional words to the address of the close files routine, the
size of the generated mainline program can be determined.

RPG data files may be sequential or indexed-sequential (ISAM). On an ISAM load function,
the compiler prints the following information:

® Filename
® Number of sectors required if overflow is not needed
® Number of sectors required if 10 percent overflow is needed

This information can be used to reserve file space for ISAM records. See “Assembler and
RPG Disk File Organization and Processing™ in Chapter 6 for detailed information about
RPG disk data files.

RPG Control Card

This first card of an RPG source program immediately following the RPG monitor control
record must be an RPG control card. The information coded in columns 6 and 11 of this
card indicate the functions that are to be performed by the RPG compiler. All other entries
in the control card are described in the publication IBM 1130 RPG Language, GC21-5002.

Card column Contents Explanation

1 through 5 Described in /18M
1130 RPG Language

6 H Identifies this card as an
RPG control card

7 through 10 Reserved

1" Blank, B, or D Blank indicates compilation
with a listing of the program.
B indicates compilation only.
D indicates a listing only.

12 through 80 Described in /18M

1130 RPG Language

End-of-File Control Card

This control card designates the end of an RPG source program and an RPG data file;
therefore, an end-of-file control card must be the last card of an RPG source program and
an RPG data file.

Card column Contents Explanation
1and 2 /*
3 through 80 Not used

Monitor Control
stacked job input

Chapter 6. Programming Tips and Techniques

The information in this chapter is planned to help you use the 1130 Disk Monitor System,
version 2, more efficiently, The information is presented in the following order:

DA W -

General tips on monjtor control and usage
Data file processing

Tips for the assembler programmer

Tips for the FORTRAN programmer
RPG object program considerations

TIPS ON MONITOR CONTROL AND USAGE

The tips in this section are of general interest to all programmers of the 1130 DM2 system.
These tips include:

Arranging stacked jobs

Using temporary job mode

Using the disk I/O subroutines

Restoring destroyed cartridges

Avoiding overprinting

Using programs and data files more efficiently
Using LOCALSs, NOCALs, and SOCALs
Reading core maps and file maps

Reading the transfer vector

Using SYSUP for changing cartridges during program execution

Stacked Job Input Arrangement

Input to the monitor system includes control records, source programs, object programs,
and data that are arranged logically by job. The monitor JOB control record designates
the start of a job. You should consider the following when arranging the input for any
job:

Any number of comments (// ¥) control records can be used before ASM, RPG, FOR,
COBOL,DUP, or XEQ monitor control records. Comments control records cannot
immediately follow ASM, RPG, FOR, or COBOL control records.

When an *EQUAT supervisor control record is used after a JOB monitor control
record, a comments control record cannot be placed between the JOB record and the
EQUAT record. A comments control record cannot be placed between a // DUP con-
trol record and the following DUP control record (*...).

When supervisor control records are used after an XEQ or STORECI control record,
comments control records cannot be placed between the XEQ or STORECI and the
following supervisor control records.

Any records other than monitor control records that remain after completion of an
assembly, compilation, or a subjob (XEQ) are passed until the next monitor control
record is read. Also, after a Disk Utility Program (DUP) operation is completed, any
records other than monitor control records or other DUP control records are bypassed.

Programming Tips and Techniques 6-1

Monitor Control

stacked job input

® If an error is detected in an assembly or compilation or during the building of a core
load for execution (XEQ), the resulting object program and any program or programs
that follow within the current job are not executed. Also, all DUP functions are passed
until the next valid ASM, FOR, RPG, or JOB control record is read if an error is de-
tected in an assembly or compilation or during the building of a core load because of a
DUP 3TOREC! function,

® If a monitor control record is read by the assembler, by one of the compilers, or during
Macro Update Program (MUP) operations, execution of the assembler, compiler, or MUP
is ended. The function indicated by the monitor control record is performed.

The following stacked input arrangement assembles or compiles, stores, and executes pro-
grams A and C, if source program errors do not occur and if working storage is large
enough.

Monitor Control
stacked job input

(/1 JOB

(/I XEQ €
' *STORE C
{ // DUP
Source program C ——f;‘—'—’— =
FORTRAN control records = =
(// FOR Job C
{ /1 PAUS
ﬁ/ *comments
(/1 JOB

Object program B —f —

(*STORE B

J 1/ DUP

(/] PAUS

r// *comments

{ *STORE A

p/ DUP
Source program A —-f =
Assembler i
control ——-f —
records { -

{ /1 ASM

{ // PAUS

{ /] *comments

(/1 JOB

Cold start card (see cold
start operating procedure)

Programming Tips and Techniques 6-3

Monitor Control

temporary job mode
disk 1/0 subroutines

6-4

uses and how
to call

functions

If an error occurs in one of the source programs, the DUP *STORE operation is not per-
formed for that program, and all following XEQ requests before the next JOB control re-
cords are bypassed. Thus, if the successful completion of one program depends upon the
successful completion of the previous one, both programs should be considered as one
job and the XEQ control records should not be separated by a JOB record.

How to Use Temporary Job Mode

Temporary job mode (indicated by a T in column 8 of a monitor JOB control record)
causes all programs stored in the user area during the temporary job to be deleted auto-
matically when the next JOB control record is processed.

In some cases, the available space in the user area may not be large enough for storage of a
newly assembled or compiled program. When this happens, you must use the DUP delete
function to clear the user area of old programs, and then store the new program, The nec-
essity for such deletions can be avoided by using temporary mode when running jobs that
included programs likely to be replaced at a later time, or that are infrequently used.

Temporary mode is particularly useful when debugging a new program.

Using the Disk 1/0 Subroutines

All core loads, whether they use disk I/O or not, require one of the 3 disk I/O subroutines.
As a minimum, a disk subroutine reads the core load into core and executes CALL EXIT,
CALL LINK, CALL DUMP, and/or CALL PDUMP.

Source programs written in assembler, FORTRAN, RPG, or COBOL can call any of the

3 I/0 subroutines; however, only one disk I/O subroutine can be referenced in a given
core load. Because of this, all programs and subroutines linked to in a core load must use
the same disk I/O subroutine. The subroutine used by a core load is indicated in an XEQ
monitor control record or a STORECI DUP control record. (Control records are described
in Chapter 5.) Generally, DISKZ is used by FORTRAN, RPG, and COBOL core loads

and DISK1 or DISKN by assembler language core loads,

DISKZ is intended for use in an error-free environment, because it does no preoperative
error checking. DISKZ is the shortest of the disk subroutines.

DISK1 and DISKN provide more functions than DISKZ. These additional functions in-
clude:

Validity checking of word count and sector addresses
File protection

LIBF-type calling sequence

Validity checking of the function indicator

Write without readback check option

Write immediate

Word count can be on an odd boundary

DISKN provides 2 more functions than those just listed:

e Simultaneous operation of as many as 5 disks

® Faster operation when transferring more than 320 words

More detailed information about the disk I/O subroutines is in the publication IBM 1130
Subroutine Library, GC26-5929.

use DCIP
disk analysis

use a system
reload

use DCIP patch

Monitor Control
restoring cartridges
printer control

Restoring Destroyed Cartridges

Cartridges containing data and/or programs in the user or fixed area that are difficult to
replace can sometimes be restored for use after access to information on the cartridge is
destroyed.

Use the disk analysis function of the stand-alone utility program DCIP to restore sector
addresses if only sector addresses are affected. (DCIP is described in Chapter 9.)

A system reload can be performed if part of the monitor system (except LET, FLET, user
and fixed area) is destroyed. Include in the reload the entire monitor system, except the
system library.

Use the patch function of the stand-alone utility program DCIP to restore individual words
that are destroyed on a cartridge.

How to Avoid Overprinting When Using // CPRNT

In order to avoid overprinting when using the monitor CPRNT control record, the FOR-
TRAN programmer should provide for spacing an extra line after the last output state-
ment in a program,

The assembler programmer should provide for spacing after printing following the last
output statement in the program.

How to Avoid Overprinting When Linking Between Programs

Overprinting when linking between programs can be avoided by coding your program to
space one line before linking to another program. This should be done because the core

load builder assumes that a space before printing is not necessary; all monitor programs

have a space after print. Overprinting should be avoided because an important core load
builder message may not be readable.

Usage of the EJECT Monitor Control Record

An EJECT monitor control record is used during a job to start printing of a new page on
the principal printer. For example, comments control records can be placed in a more
readable position for the operator if followed by an EJECT control record.

1 5 10 15 20 25 30 35 40 45 50
T TIoB
W CHESSAGE T DPERATORD
N EdEaT
/| PAIS

Programming Tips and Techniques 6-5

Monitor Control
store functions

6-6

Duplicate Program and Data File Names

Names that are duplicates of IBM-supplied programs should be avoided in DUP store and
delete operations. (The names of IBM-supplied programs are in Appendix C.) If a program
being stored or deleted has the same name as an IBM program, the results of subsequent
operations are not predictable.

Because the DUP store functions check for duplicate names, 2 programs or data files with
the same name cannot be stored on one disk. Two programs or data files can, however, have
the same name if stored on separate disks. If your system has more than one disk drive,
having programs with the same name on more than one disk on the system can cause
problems when an attempt is made to execute or delete the riamed program.

1 5 10 15 20 25 30 35 40 45 50
/ 111(111) 12121212
7D

STioR RERER RN
UG

370 PROG 2222
J/ XER PROGE

i | | !] 4| gﬁj 1

7/ DUl

DELETE PROGH

|

This sequence of control records cause PROG1 on the cartridge labeled 1111 to be exe-
cuted when you may have wanted PROG1 on 2222 executed. A similar problem can occur
in the delete operation. In this example, PROGI on 1111 is deleted; you may have wanted
to delete the program on 2222,

To avoid this problem:
® Assign a unique name to each program and data file.

® If you do not know the contents of a cartridge that is on the system, and the cartridge
is not needed for your job, make the drive not ready.

system maintenance

size of working storage

data files not in
working storage

difference in
core size

Monitor Control
store functions

Disadvantages of Storing a Program in DCI Format

Before you decide to convert to and store a program in disk core image (DCI) format, con-
sider the advantages gained in loading time of a DCI program against the following dis-
advantages.

An important consideration is the effect that system maintenance can have on a DCI pro-
gram. Subroutines from the IBM-supplied system library that are called by a program are
stored with a program in DCI format. If system maintenance changes a subroutine after

a DCI program is stored, the subroutine in the system library is changed; however, the
copy stored with the DCI program is not. In this case, the DCI program must be deleted
and rebuilt (STORECI) after the maintenance modification is made.

If the user or fixed area is expanded after a DCI program is stored, working storage files
that are referenced by the DCI program may extend beyond the available working storage
during execution. This problem is not recognized until an attempt is made to perform
disk I/O operations past the end of the cartridge.

Another important consideration concerns DCI programs that reference files that are not
placed in working storage during execution. An error occurs if an attempt is made to
store in DCI format a program that references a file in the user area, because the location
(sector address) of the referenced file may change as a result of program deletions. The
DCI program subsequently references such a file by the old sector address. The results
are unpredictable.

A similar problem can occur if the DCI program references a file stored in the fixed area,
even though the operation is allowed. The file might be deleted and another stored in its
place after the DCI program is stored. This problem can be complicated by the fact that
not only are sector addresses built into a DCI program, but the logical drive codes are
also. In this case, you must make certain that every time the program is executed that all
the required disk cartridges are mounted on the same logical drives as when the program
was originally stored.

A DCI program can be executed on a system with a configured core size different from the
system on which the core load was built, if the size of the core load does not exceed the
different core size.

Size Discrepancies in Stored Programs

The disk block count of a program is printed and becomes a part of the LET or FLET
entry when the program is stored. When a program is stored from cards to the user or
fixed area, the disk block count can be greater than when the same program is stored from
working storage. The reason for this discrepancy is that a DSF header is created for each
card when a program is stored from cards to disk. Therefore, any 2 headers in the stored
file are a maximum of 51 words apart. When the program is stored from working storage,
the distance between headers is limited by the disk buffer size, 320 words.

The increased disk block count noted when the program is stored from cards accommo-
dates the expanded size of the file caused by the additional headers.

Programming Tips and Techniques 6-7

Monitor Control
store functions

Dumping and Restoring Data Files

Dumping of important data files to cards is often advisable so that the files can be restored
later if the cartridge containing them is destroyed. The DUP DUMPDATA function punches
sequence numbers in columns 73 through 80 of the data cards as the file is dumped. The
numbers start with one and are incremented by one on each card. Thus, the last sequence
number is the actual number of data cards; that is, the count field you specify on the
STOREDATA control record when restoring the file to the user area or fixed area.

DUMPDATA dumps by sector count. Therefore, the control record:

1 5 10 15 20 25 30 35 40 45 50

UMPDATIAL | | W VA 1

causes one sector to be dumped to 6 cards; 5 cards of 54 words and one card of 50 words.
The last 4 words of card 6 are not used.

STOREDATA stores by card count. The record:

1 5 10 15 20 25 30 35 40 45 50

OREDATIA | ICD | VAl | IMA g6

causes the contents ofthe 6 cards, excluding the 4 unused words on card 6, to be stored
back in one sector. The 4 unused words exceeding the 320 that can be contained in a
sector are truncated. When a STOREDATA follows a DUMPDATA for the same file,
truncated words do not cause a problem, because these words do not contain data. How-
ever, if the card file being stored by a STOREDATA is produced by a function other than
a DUMPDATA, words of the source file may be lost if every word of every card contains
data. To prevent the possible loss of data, calculate the card count to be specified in the
STOREDATA control record as follows:

Cx 54
320

1. Use the formula: =8
where
C is the actual number of cards; 54 is the number of data words that can be
contained in a card;320 is the number of words that can be contained in a
sector, and S is the number of sectors required for the file.
2. If this formula produces a remainder that is less than 54 and not zero, add one to
the card count to be specified in the STOREDATA control record, and place a
blank card at the end of the data deck.

6-8

Monitor Control
defined files
use of LOCALs

Use of Defined Files

When an *FILES supervisor control record follows a // XEQ monitor control record, the
core load builder searches LET and/or FLET for a specified file name. If the name is
found, the sector address of the file is inserted in the file table identified by the associated
file number specified on the *FILES control record. (A file table is created during program
assembly or compilation by the assembler FILE statement or the FORTRAN DEFINE
FILE statement, respectively.) If the file name is not found in LET or FLET, the file is
defined in working storage.

An *FILES control record after an *STORECI DUP control record is processed in the
same way, except that files found in the user area are flagged as invalid.

A suggested way of initially allocating a disk area for a data file in the user area or fixed
area is to use the DUP *DFILE function. The number of sectors to be reserved is deter-
mined on the basis of the number of records the file is to contain, and the size of each
record. Use the following to calculate the number of required sectors for a file:

1. Compute the number (N) of records that can be contained in one sector:

N 2320

L
where
L is the length in words of each record in the file. Disregard the remainder,
if any.

2. Compute the number of required sectors (S):

M
S=N
where

M is the total number of records in the file.

N is the number of records computed in Step 1.

Round the answer to the next higher number if the answer has a
remainder. This answer is the sector count that you specify in an
*DFILE control record to reserve file space in the user area or fixed
area.

Mainline Programs that Use All of Core

Before you write a program that occupies all of core storage, consider that extensive re-
writing may be required if IBM-supplied subroutines called by the core load are expanded
due to modifications.

The Use of LOCALs

A core load that is too large to fit into core for execution can be executed by specifying
as LOCALSs some of the subroutines called by the core load. Since a core load that utilizes
LOCALs does not execute as fast as it does without LOCALS, keep the following in mind
when specifying LOCALs:

® Specify infrequently called subroutines as LOCALS.

® Plan your program so as to minimize the number of times that LOCALs are called into
core.

® Keep the number of specified LOCALs to a minimum,

Programming Tips and Techniques 6-9

Monitor Control
use of LOCALs
use of NOCALs

LOCAL-Calls-a-LOCAL

The assembler language programmer can execute core loads in which a LOCAL calls another
LOCAL. Any character punched in column 26 of the XEQ control record causes all DSF
core loads for that execution to allow LOCALSs to call LOCALSs. In a series of LOCAL-
call-LOCAL subroutines, you must pass the link word (mainline program return address)

in all LOCALS (type 4 or 6 subroutines) that are referenced by CALL statements. The
return address must be passed in order to return from the last LOCAL to the place from
which the first LOCAL was called. Assembler is the only language that allows the return
address to be passed. Therefore, LOCAL-calls-a-LOCAL is restricted to assembler lan-

guage use.

LOCAL and NOCAL Control Record Usage
When using LOCAL and NOCAL control records, keep the following in mind:

® A subroutine cannot be specified as a LOCAL if it calls another subroutine also speci-
fied as a LOCAL. For example, if A is a LOCAL subroutine and A calls B and B calls
C, neither B nor C can be specified as LOCAL subroutines for the same program. The
assembler programmer can avoid this restriction by using the LOCAL-calls-a-LOCAL
option discussed in the previous section of this chapter.

® [Ifa subroutine is specified as a LOCAL and SOCALSs are employed, the subroutine is m
made a LOCAL even though it otherwise would have been included in one of the
SOCAL overlays.

e If a subroutine is specified as a LOCAL, it is included in the core image program even
if it is not called.

® When using LOCAL control records, the total number of mainlines and subroutines
specified cannot exceed: ’

3M +28 <640

where
M is the total number of mainlines specified in the LOCAL control records.
S is the total number of subrouitnes specified in the LOCAL control records.

If execution is from working storage, the mainline program in working storage is
counted as one, although it is not specified on a LOCAL record. This restriction also
applies to NOCAL control records.

® Only subroutine types 3, 4, 5, and 6 can be named on LOCAL and NOCAL control
records. (A description of subprogram types is included in Appendix I1.) Subprogram
types 3 and 5 are referenced by LIBF statements, and types 4 and 6 with CALL state-
ments. Types S and 6 are ISSs; types 3 and 4 are subprograms.

® Conversion tables, such as EBPA and HOLTB, cannot be used as LOCALSs. The conver-
sion tables are listed in Appendix C.

® SCATI, SCAT?2, and SCATS3 cannot be used as LOCALs.

6-10

manually executed
debug subroutines

ISS trace subroutine
using NOCAL

Monitor Control
use of NOCALs

The Use of NOCALs

NOCAL:s provide a method of including a subroutine in a core load even though the sub-
routine is not called. The advantages of NOCALSs can be illustrated by the following.

You can write debugging subroutines, such as a specialized dump subroutine, and include
them in a core load as NOCALs, Then during program execution, you can execute the
debugging subroutine by manually branching to its entry point.

If an interrupt service subroutine (ISS) for level 5 is made a NOCAL during a core load,
you can execute it by pressing PROGRAM STOP; an interrupt on level 5 is made, and
PROGRAM START returns execution to the mainline program. A subroutine to monitor
execution of a mainline program or to gather statistical information can be designed.

The following sample trace subroutine for interrupt level 5, ILS0S, determines when the
contents of a core location are destroyed by being changed to zero. Location /0500 is

used in the example. This subroutine is written and stored as subtype zero in the user

area. The sample ISS is assembled as level 5 and stored in the user area. The ISS trace
subroutine is specified as a NOCAL when the mainline program is executed; the ISS and
associated ILSOS are included as a part of the core load. During a WAIT instruction in

the mainline program, the console mode switch is turned to INT RUN to cause a level 5
interrupt after execution of each mainline statement. The trace subroutine is entered

and, in this example, waits when core location /0500 becomes zero. A dump of the program
can be used to determine the conditions that caused the change to zero.

Programming Tips and Techniques 6-11

Monitor Control

NOCAL example

Label Operation FIT Operands & Remarks
21 25 27 30| B2[33 |35 40 45 50 55 60 65 70
Cu3 Pt R WA FAd Fa a T W7 ¥d Pad Fad Fad Fad AT badPadtadat bt batraTeaT et s Cadrat tadvatval Ladeasasradtas Fattastas odbattudtattatbuttatt deadvaseaitalnd

*Ill

1 i 1

IlllllllLlllll]llllllllllllllllllll]*

X
AMPLIE
0

l | | IEX OF lllLJSI ISIUIBIDIOIUITI/IMEI IFIOlDI lLIEIVlEILl l51 i1 1 1 1 11 1
l 11 ITO lAl/—lL W TPIAICI/INIGI lDlUIDI/INIGI I/INITIEIEIPIUIDITI IDIUIM MIOIDLEI L1 1t I
lljl 1 1 1 lIIlIIlIllIIIIIlllllllllllllllllllll
*l *1*196)(ray le\‘l%l\l X ; X ;{ %‘1)(15(1)6*&6%6(1)([%&*;%66 x%lxlxlx*l*lxb(l)(l?ﬁ*l*lxl*l*l*lxl**l*lx%
L1 1 i /llsl 5 | I I T S I N SO I N N SN N U N U N NN I U N VN NN S W S W AN VNN N D N D A T - |
AIDIDIDI chl 1 I¢I¢I4I7l | 1S O N S O N N T OO O (N U OO U TN T N T N U T N N T N Y N N N |
X . AP=eNT| DT REL T.0 /.55 BEG AND, 47="/8TV+155 NO .,
XiNITl ICODIEI I/- D BL)D(IPI)(IPIUI-,'ISI lAlClTlUIAILI IE|/VITI lplTl IQFI II '5’L 1 I/INI IAJ_DIDJPI
/lll 1] Wt .y 0 IO (N U N A U 2N (N N TS VRO T O N O VOO 1 N T OO O N O WO U OO WO SO Y N |
| I | '5'17-IDI 7-IEI/WI’:)I | I . | ISIAIVIEI IAGCI_IEIXITI I N S T O N U T Y A Y T A |
11 I L SI TISI QLEI TIL/HZ?I 11 1 1 ISIAI VIEI ISI7AI 7.I(/I*S'l L1 1 1 L L1 1 L1 1 1 1 | 1
| S T . | 'S:TIXI 1)Gpl-lffl.zl 11 1 1 151A:V|E| l>(l12111 F I Y TR TSN (