Systems Reference Library

IBM 1130 Disk Monitor System, Version 2,
Programming and Operator’s Guide

Program Numbers 1130-0S-005
1130-0S-006

This manual contains the operating and maintenance
procedures for the IBM 1130 Disk Monitor System,

Version 2, An introductory section acquaints the user
with the IBM 1130 System. A section on programming

tips and techniques assists the user in utilizing the Monitor
system,

Monitor system control records are described in detail,
An appendix contains all error messages generated by
the system.

File Number 1130-36
Form C26-3717-4

PREFACE

This publication provides the IBM 1130 System user
with the information required to operate and maintain
the IBM 1130 Disk Monitor programming system. It
is recommended that the user familiarize himself
with the terms contained in the Glossary at the back
of this manual. It is important that these terms be
understood in the context of the Monitor system.

All hexadecimal addresses in this manual are
shown in the form /XXXX.

Symbolic addresses rather than absolute addresses
are used throughout this manual., Certain constants
are also denoted symbolically., A table of equivalences
is provided in Appendix H, Resident Monitor,

$XXXX All symbolic labels whose first char-
acter is a dollar sign are found in the
Resident Communications Area
(COMMA)

#XXXX All symbolic labels whose first char-
acter is a pound sign are found in the
Disk Communications Area (DCOM).
@XXXX All symbolic labels whose first char-
acter is a commercial at sign are con-
sidered to have absolute values, i.e.,
@HDNG refers to the page heading
sector (sector 7) and thus has a value
of 7.

NOTE: The number sign (#) and commercial at
sign @ are not included in the 1403 Printer or 1132
Printer character set; therefore, an equal sign (=)
replaces the # and an apostrophe (') replaces the
@ in the printer listings.

MINIMUM SYSTEM CONFIGURATION

The minimum system configuration required to oper-
ate the 1130 Disk Monitor system is as follows:

Fourth Edition (Feb 1969)

This is a major revision of and makes obsolete C26-3717-3
Changes to the text and small changes to illustrations are in-
dicated by a vertical line to the left of the changej changed
or added illustrations are denoted by the symbol o to the left
of the caption,

This edition applies to version 2, modification 5 of IBM 1130
Disk Monitor Programming System, to Version 1, modification 1,
IBM 1130 Remote Job Entry Work Station Program, and to all
subsequent versions and modification until otherwise indicated in

© mtemational Business Machines Corporation 1966, 1968

IBM 1131 Central Processing Unit, Model 2, with
4096 words of core storage,and one of the following
input/output devices

IBM 1442 Card Read Punch, Model 6 or 7
IBM 2501 Card Reader, in combination with an

IBM 1442 Card Punch, Model 5, or an IBM 1442
Card Read Punch, Model 6 or 7

IBM 1134 Paper Tape Reader in combination with
an IBM 1055 Paper Tape Punch.

PUBLICATIONS

The following publications will assist the user in
utilizing the Monitor system.

IBM 1130 Functional Characteristics (Form
A26-5881)

IBM 1130 Computing System Input/Output Units
(Form A26-5890)

IBM 1130 Assembler Language (Form C26-5927)

IBM 1130/1800 Basic FORTRAN IV Language
(Form C26-3715)

IBM 1130 Subroutine Library (Form C26-5929)

IBM System/360 Operating System and 1130 Disk
Monitor System: System/360 1130 Data Trans-
mission for FORTRAN

(Form C27-6937)

IBM System/360 Operating System and 1130 Disk
Monitor System: User's Guide for Job Control
From an IBM 2250 Display Unit Attached to an
IBM 1130 System

(Form C27-6938)

new editions or Technical Newsletters, Changes are continually
made to the specifications herein; any such changes will be re-
ported in subsequent revisions or Technical Newsletters, Requests
for copies of IBM publications should be made to your IBM repre-
sentative or to the IBM branch office serving your locality,

A form is provided at the back of this publication for reader s comments,
If the form has been removed, comments may be addressed to IBM
Nordic Laboratory, Technical Communications, Box 962, 181 09 Lidingd,
Sweden.

INTRODUCTION

1130 SYSTEM FAMILIARIZATION
Readying the IBM 1130 Computing System
Using the 1130 with the Monitor System

DISK ORGANIZATION
System Cartridge
IBM System Area
| bpcom
User Area
Working Storage Area
Fixed Area
Non-System Cartridge

MONITOR PROGRAMS
Supervisor
Resident Monitor
Disk-Resident Supervisor Programs
Monitor Control Records
Supervisor Control Records
Supervisor Core Dump Program
Disk Utility Program (DUP)
General Flow
Information ‘fransfer and Format Conversion
Altering LET/FLET
DUP Control Records
Assembler
Card Operation
Keyboard/Paper Tape Operation
Crigins of Mainline
Assembler Control Records
FORTRAN Compiler
Keyboard Input of Data Records
Object Program Paper Tape Data Record Format
A-Conversion
FORTRAN I/O Errors
Core Load Builder
Core Load Construction
Transfer Vector
System Overlays
I LOCAL/SOCAL Flipper (FLIPR)
Core Image Loader
Fetching the Supervisor
Fetching a Link

PROGRAMMING TIPS AND TECHNIQUES

Stacked Input Arrangement

Using the Disk I/O Subroutines

Using Links to Aveid Overprinting

The Use of SOCALs

LOCAL Calls a LOCAL

I Disadvantages of Storing a Program in Disk Core Image

Format

Tips on Monitor Control

Maximum Performace of High Speed Devices

Tips for Assembler Language Users

Writing ISS and ILS

Reading a Core Map and a File Map

Locating FORTRAN Allocation Addresses

Initializing $$$$3$ Data Files for Use With FORTRAN
Unformatted 1/0

Use of Defined Files

Duplicate Program and Data File Names

w

11
12
12
12
14
15
15
15

17
17
17
18
18
22
25
27
27
27
27
27
37
37
38
38
38
42
46
46
46
46
47
47
49
49
50
50
50
50

53
53
53
54
54
56

56
56
57
58
58
60
61

61
62
62

— —

Names Conflicts

Restoring Destroyed Characters

Reeling

Mainline Programs that Use All of Core
Tips for FORTRAN Users

Converting from Version 1 to Version 2

TIPS FOR USE OF EQUAT RECORD

ISAM - File Index
ISAM -~ Prime Data Area
ISAM - Overflow Area

MONITOR SYSTEM LIBRARY
Adding and Removing Subroutines
System Library Subroutines
Pre-operative Errors
1442 Card Subroutine Error
2501 Card Subroutine Error
Console Printer Subroutine Error
Keyboard Subroutine Functions
Paper Tape Subroutines
System Library Mainline Programs
Disk Maintenance Programs
System Maintenance Program (MODIF)
MODIF Error Messages
Paper Tape Utility (PTUTL)
System Library Utility Subroutines

SYSTEM GENERATION AND SYSTEM RELOAD
Card System Pre-Load

Initial Load (Card System)

System Reload (Card System)

Initial Load (Paper Tape System)

System Reload (Paper Tape System)

Error Statistics

COLD START (CARD AND PAPER TAPE SYSTEM)

STAND-ALONE UTILITY PROGRAMS
Console Printer Core Dump
Printer Core Dump
Disk Cartridge Initialization Program (DCIP)
Paper Tape Reproducing Program
Stand-Alone Paper Tape Utility Program (PTUTL)

REMOTE JOB ENTRY PROGRAM
Machine and Device Requirements
Input at the Work Station
Output to the Work Station
Communication Considerations
Communication considerations for Switched lines
Operating Procedures
Work Station Startup
Null Command
Console Keyboard Procedures
Discontinuing Output
Continuing Output
Error Recovery Procedures
Restart Procedures

Console Entry Switches

Operator Messages
1130 RJE Messages
Messages Sent to Work Stations

62
62
62
63
63
63

63.1

64.3
64.3
64.3

65
65
65
65
66
67
68
68
68
69
69
72
74
75
78

81
81
82
84
87
89
20

91

93
93
93
93
99
99

100
100
100
100
101
101
102
102
102
102
103
103
103
103
104
104
108
109

User Exit Interface

JECL for the 1130 Work Station
End-of-File Indicator

Program Generation

APPENDIX A,

APPENDIX B.

APPENDIX C,

APPENDIX D,

APPENDIX E,

MONITOR SYSTEM ERROR AND OPERA-
TIONAL MESSAGES

CHARACTER CODE CHART

FORMATS

DISK STORAGE UNIT CONVERSION
FACTORS

DECIMAL AND HEXADECIMAL DISK
ADDRESSES

110
110
111
111
113

127

131

137

139

iv

APPENDIX F.,
APPENDIX G.

APPENDIX H.

APPENDIX 1.
APPENDIX J.
APPENDIX K.
| APPENDIX L,

GLOSSARY

INDEX

MONITOR SYSTEM LIBRARY LISTING
LET/FLET

RESIDENT MONITOR (INCLUDING TABLE
OF EQUIVALENCES)

SYSTEM LOCATION EQUIVALENCE TABLE
MONITOR SYSTEM SAMPLE PROGRAMS

BASIC DIFFERENCES BETWEEN 1130 DISK
MONITOR SYSTEM, VERSION 1 AND 2

FIELD TYPE EXAMPLES

141
145

149

167

169

179
180

The 1130 Disk Monitor System provides for the continu-
ous operation of the 1130 Computing System, with mini-
mal set-up time and operator intervention, in a stacked
job environment. The Monitor system consists of eight
distinct but interdependent elements -- Supervisor, Disk
Utility Program, Assembler, FORTRAN Compiler,
RPG compiler, Core Load Builder, Core Image Loa-
der, and System Library.

The Supervisor performs control functions for the
Monitor system and provides the linkage between user
programs and Monitor programs.

The Disk Utility Program (DUP) is a group of IBM-
supplied programs that performs operations involving
the disk such as storing, moving, deleting, and dumping
data and/or programs.

The Assembler converts source programs written in
Assembler language into machine-language object pro-
grams,

INTRODUCTION

The FORTRAN Compiler translates source programs
written in 1130 Basic FORTRAN IV language into
machine-language object programs,

The RPG Compiler translates program written in
1130 RPG language into machine-language programs.

The Core Load Builder constructs core image pro-
grams from mainline object programs. The main-
line programs and all necessary subprograms are
converted into Disk Core Image format from Disk
System format, and the resultant core load is built
for immediate execution or for storing for future
execution,

The Core Image Loader serves as both a loader
for core loads and as an interface for the Monitor
programs.

The System Library is a group of disk-resident
programs that perform 1/0, data conversion,
arithmetic, disk initialization, and maintenance
functions.

Introduction 1

The operating procedures for readying the system I/0
units are described below., Following these procedures
are instructions to the operator on the various ways of
actually getting data in and out of the system and how
these methods are utilized by the 1130 Disk Monitor
Programming System.

READYING THE IBM 1130 COMPUTING SYSTEM

This section describes the basic operator actions re-
quired to ready the IBM 1130 Computing System for
operation. The paragraphs on readying the I/0O units
should be sufficient to allow the operator to prepare
the units for selection by the system. Where neces~
sary, illustrations have been provided to supplement
the text.

Additional information regarding 1130 system and
unit displays and operator functions can be found in
the following publications.

IBM 1130 Functional Characteristics (Form A26-
5881)

IBM 1130 Input/Output Units (Form A26-5890)
IBM 2501 Card Reader, Models Al and A2 - Com~-
ponent Description and Operating Procedures

(Form A26-5892)
IBM Disk Pack Handling and Operator Procedures
(Form A26-5756)

1131 Central Processing Unit

Most operator action will occur at the console of the
1130 system. This console, as well as three 1/0
devices -- the Keyboard/Console Printer, the console
entry switches, and a single disk storage drive -- are
all located in or on the 1131 CPU.

System Power On. When the 1131 POWER switch is
turned on, the following console operator panel lights
will be on: DISK UNLOCK (no cartridge in single
disk storage drive) and FORMS CHECK (if there is
no paper in the Console Printer). If any other oper-
ator panel lights are on, press the RESET key.

To ready the Console Printer, perform the follow-
ing steps:

1. Open the Console Printer top cover.

2. Pull the paper pressure rod forward (the rod with
three rubber rollers that leans against the platen).
If the paper is to be pin fed, this rod should remain
in this position.

1130 SYSTEM FAMILIARIZATION

3. Lift up on the left and right platen pin feed pressure
plates.

4. Set the paper release lever in the forward position.
This lever is located on the top right rear corner
of the Console Printer. If the paper is to be pin
fed, this lever should remain in this position.

5. Feed the paper in from the rear and guide it under
the platen. Make sure that the paper lies over and
closes the forms check microswitch. This will
turn off the FORMS CHECK light on the console
operator panel.

6. Lay the paper back across the top of the Console
Printer and guide the paper so that the holes line
up with the pin feeds.

7. Close the pin feed pressure plates.

8. Looking directly down into the Console Printer,
set the left and right margins. The margin set-
tings can be read on the scale across the front of
the unit.

9. Close the top cover.

10. Press CARRIER RETURN.

The Console Printer is now ready to be selected.
To ready the single disk storage drive, perform the
following steps.

1. Open the single disk storage access cover located
at the front of the 1131 (to the right of the console).
The cover swings open to the right.

2. Grasp the handle of the access release mechanism
and pull out and down.

3. Pick up the cartridge and, holding the cartridge
with the IBM name towards you and on the left,
insert the cartridge into the slot.

4. When the cartridge is seated, raise the access
release handle to lock the cartridge into place.

5. Turn the DISK switch (leftmost switch on the panel
beneath the cartridge enclosure) to the ON position.
As the disk starts to turn, the DISK UNLOCK light
on the console operator panel will go out.

6. Close the access cover.

When the drive comes up to speed (approximately
90 seconds), the DISK READY indicator on the con-
sole operator panel will turn on. The single disk
storage drive is now ready to be selected.

1442 Model 6 and 7 Card Read Punch Ready Procedure

Pre-conditions. POWER ON light on, CHECK light off,
CHIP BOX light off, stacker not full, and covers closed.

When the system is first powered up, it is good
practice to press the NPRO key to ensure that no cards
are in the feed path.

1130 System Familiarization 3

Readying the Card Read Punch. When all pre-conditions
are met, place the cards to be processed in the hopper,
face down, 9-edge first, and press reader START.
When the first card is positioned at the read station,

the READY light will turn on. The card read punch

is now ready to be selected.

1442 Model 5 Card Punch Ready Procedure

Pre-conditions, POWER ON light on, CHECK light
off, and ATTENTION light off.

When the system is first powered up, the HOPPER
check light is lit. Press NPRO to turn this light off.
This action ensures the card path is clear.

Readying the Card Punch. When all pre-conditions

are met, place blank cards in the hopper, face down,

9-~edge first, and press punch START. Two card feed
ycles are taken and the first card is registered at

he punch station. When the punch READY light turns
»n, the card punch is ready to be selected.

2501 Card Reader Ready Procedure

Pre-conditions, POWER ON light on, READ CHECK
light off, FEED CHECK light off, and ATTENTION
light off.

When the system is first powered up, the FEED
CHECK light is lit. Press NPRO to turn this light
off. This action ensures that the card path is clear.

Readying the Card Reader. When all pre-conditions
are met, place the cards to be processed in the hop-
per, face down, 9-edge first, and press reader
START. When the first card is positioned at the
pre-read station, the READY light will turn on. The
card reader is now ready to be selected.

1134 Paper Tape Reader Ready Procedure

Pre-conditions. System power on.
Readying the Paper Tape Reader. Raise the lever
located at the top right side of the read head (see
illustration below). Load the reel containing the pro-
gram tape on the right hand drive and lock the reel in
place. The tape must be loaded so that the three-
hole side is nearest the operator. With both tension
arms in the up position, feed the tape across the
read head and position the tape on the drive sprocket.
Position a program tape so that a delete code (all
punches) beyond the program ID punched in the leader
is under the read starwheels.

Position a tape without a leader (or when starting in
the middle of a tape) so that the first character position
to be read is one position to the right of the read star-
wheels.

Lower the lever on the read head, thus bringing the
read starwheels in contact with the tape. Wind the
leader on the take-up reel and let down the tape tension
arms.

Read Head

Take-up Reel Supply Reel

Tape Tension Arms

The paper tape reader is now ready to be selected.

1055 Paper Tape Punch Ready Procedure

Pre-conditions. System power on.

Readying the Paper Tape Punch.

1. Place a reel of tape in the supply pan so that the
tape feeds out toward the punch die (see illustration
below).

2. With the punch die facing forward (unit name plate at
the front), pivot the tape pressure lever (right side
of die) up and to the right.

3. TFeed the tape from the supply pan over the first
tape guide, under the tape tension lever, and slide
the tape in under the punch die, tear guide, and
tape pressure lever.

4, 1If the punch has a take-up reel, guide the tape over
the side of the unit, over the outside of the side
guide, and back up towards the front of the unit.

5. The tape now makes a half turn towards the outside

and comes up and over the end guide.
6. The tape is then brought up and over to the left and
wound over the top of the take-up reel.

Tape Tension Lever

Take-up Reel

Supply Pan

Punch Die

Tape Pressure
Lever

Tear Guide

After the tape is loaded, a leader (all delete codes)
may be made by first pressing and holding the DELETE
key. Now press the FEED key and hold until a leader

of sufficient length has been punched. Release the

FEED key before releasing the DELETE key.

The

paper tape punch is now ready to be selected.

1132 Printer Ready Procedure

Pre-conditions.
switch on.

POWER ON light on and MOTOR
The FORMS CHECK light will be on if

there are no forms in the printer.

Readying the 1132 printer.

To load the forms into

the printer:

1.

Raise the top cover and disengage the PLATEN
CLUTCH (set it to OUT). This knob is located
on the right side of the print carriage (see illus-
tration below).

Turn the outside knob on the right end of the
carriage to ensure that the carriage is free.
Remove the spring loaded outfold guide bar (the
bar across the bottom front of the forms tractor,
directly behind the print wheels).

Open the left and right tractor pressure plates.
Now feed the forms from the rear of the printer
under the form stop bar (three levers) and down
under the tractor.

9.
10.

Tractor Assembly

Tr

Use a rocking motion to feed the paper under the
platen (if necessary raise the paper tension control
guide located in the center of the tractor).

When the paper appears in front of the platen, grasp
it firmly and pull it up so that it lies evenly across
the tractor.

Place the holes in the paper on the left and right
tractor pins and close the tractor pressure plates.
Reinsert the outfold guide bar.

Using the knob at the right end of the carriage, feed
the paper until a crease between two sheets appears
just above the print wheels.

To load the carriage control tape into the printer:

Raise the carriage cover directly above the platen
clutch knob.,

Raise the brush holder by pulling the lever on the
right side towards you.

Insert a carriage control tape (channel one to the

left) and close the brush holder.

Close the carriage cover.

Form Stop Bar

actor Guides

Plat en Clutch Holder Release

Platen Knob

1132 Carriage Familiarization

operator's panel.
IN) and close the printer top cover.

Press the CARRIAGE RESTORE key on the 1132
Engage the platen clutch (set to
Press printer

START. When the READY light comes on, the 1132
printer is ready to be selected.

1130 System Familiarization 35

1403 Printer Ready Procedure

Pre-conditions., System power on. The END OF
FORMS light will be on if there are no forms in the
printer,

Readying the 1403 Printer., To load the forms into
the printer:

1. Raise the printer cover and set the feed clutch
selector knob to neutral. This knob is located
on the right side of the print unit (see illustra-
tion below).

2. Unlock the print unit by pulling back on the re-
lease lever located on the left side of the unit.
The print unit will swing out to the right.

3. Open the upper and lower left and right tractor
guides.

4, Lift the forms up from their position below the
front of the printer and lay them back across the
arched rack at the top of the printer.

5. Line up the holes in the paper with the tractor
pins and close all four tractor guides.

6. Close the print unit and lock the print unit re-
lease level. The ribbon drive will activate when
the print unit is closed.

7. Using the PAPER ADVANCE knob located at the
right end of the print unit, advance the paper until
a crease between two forms is about 1/2 inch
above the print position indicator bar on the
print unit.

To load the carriage control tape in the printer:

1. Raise the carriage brush holder by pulling down
on the lever on the right side. The carriage
brush holder is located to the right and slightly
above the print unit (see illustration).

2. Insert the carriage tape (channel one to the left)
and close the brush holder.

3. Set the feed clutch selector knob to 6 or 8 lines
per inch, whichever is desired.

4. Close the printer cover.

Press the CARRIAGE RESTORE key on the 1403
operator's panel. Continue to restore until sufficient
paper has fed over the top arch to extend down the
back of the printer. Open the rear cover of the printer

-and ensure that this paper has fed down between the
-forms stacker guide and the printer. If the paper has
fed properly, the rollers on the forms stacker guide
will keep a constant downward pull on the paper. Close
the back cover.

Carriage Tape

Carriage Brush o

/ Holder Release

Paper

M’ Advance
Unit [Feed Clutch

Selector Knob

Upper and Lower Tractor Guides

Print Unit Forms Stacker Guide

FRONT

Forms
In Rollers

Forms Out

Press CHECK RESET and printer START on the
operator panel. When the PRINT READY light comes
on, the 1403 printer is ready. Set the ENABLE/
DISABLE switch on the 1133 to the ENABLE position
(READY light on). The 1403 Printer is now ready to
be selected.

2310 Disk Storage Ready Procedures

Pre-condition, System power on, CARTRIDGE UN-
LOCKED lights on the 2310 operator's panel on.

Readying the 2310 Disk Storage Drive.

1. Open the front door of the disk drive.

2. Grasp the handle of the access release mechanism
of the drive to be loaded (drive 1 or 3 on top, 2 or
4 on the bottom) and pull out and down.

3. Pick up the cartridge and, holding the cartridge
with the IBM name towards you and on the left,
insert the cartridge into the slot.

4. When the cartridge is seated, raise the access
release handle to lock the cartridge into place.
If desired, load the other drive on the 2310 disk
storage unit.

Close the front door of the disk storage unit. Turn
on the START/STOP switch for the desired drives.
The CARTRIDGE UNLOCKED lights will go out when
the drives start to turn. When the drives come up to
speed (approximately 90 seconds), the indicators
showing the drive numbers will light, thus showing
that the heads are loaded and the drives are ready.

When the drives are required by the system, set
the ENABLE/DISABLE switches on the 2310 disk
storage drives and on the 1133 to the ENABLE position
(1133 READY light on). The 2310 disk storage drives
are now ready to be selected. '

1627 Plotter Ready Procedure

Pre-conditions. System power on.

Readying the 1627 Plotter. Load the chart paper using
the following procedure.

1. Ensure the 1627 Power switch is OFF (1627 power
on indicator lamp out).

2. Remove the pen assembly, if installed, by loosen-
ing the knurled knob at the bottom of the pen holder
and lifting the assembly out of the carriage.

Caution

Use care when handling the pen assembly. This
assembly is manufactured to close tolerances for
optimum performance.

3. Rotate the right rear chart spool by hand until the
drive key is pointing upward.

4, Hold the new roll of chart paper so that the key
slot in the core is pointing upward. Place the
roll against the spring-loaded left rear idler spool
and force the spool to the left.

5. Lower the paper roll into the paper well and slide
the right end onto the drive spool. Make certain
the drive key engages the key slot in the core.
The paper should feed out from under the roll
and over the drum (see illustration).

6. Install a paper roll core on the front spool below
the drum, in the same manner as with the paper
roll.

7. Pull a short length of paper off the roll, slide the
end under the carriage rods, under the tear bar,
behind the core, and fasten it to the front side of
the core with two or three short pieces of cello-
phane tape. Wind one or two turns of paper onto
the core. Make certain the drum sprockets are
properly meshed with the sprocket holes on both
sides of the paper.

8. Reinstall the pen assembly in the carriage.

9. Turn the 1627 power switch to ON. The 1627
power on indicator will come on.

NOTE: The pen is down when the power is off; there-
fore, the pen assembly should be installed with the
carriage over an area outside the '"recording area''.

If the pen does not raise when power is turned on,

turn the pen switch to DOWN, then to UP.

\ O‘ Supply Roll

Take-up (A
Roll ‘)

With the pen in the UP position, use the drum (x axis)
and carriage (Y axis) controls to position the pen for the
first plot. The 1627 plotter is now ready to be selected.

1231 Optical Mark Page Reader Ready Procedure

Pre-conditions. System power on, RESET light on,
and READ light off. SYSTEM STOP light on if the
CPU is stopped.

Readying the Optical Mark Page Reader. Place the
data sheets in the hopper with the side to be read facing
up and the top edge positioned to feed first. Set the
FEED MODE switch to ON-DEMAND. The settings of
the other selector switches on the operator console are
dependent on the data being read.

Press PROGRAM LOAD on the 1231 operator's
console. This action clears the delay line and conditions
the machine for program loading. The PROGRAM LOAD
light turns on., Press 1231 RESET. This causes the
hopper to raise to the ready position. The RESET light
turns off and the 1231 START light turns on. Press

1130 System Familiarization 7

1231 START. The first data sheet in the hopper is
fed through the 1231, loading the delay line. The
first data sheet is now in the stacker. The PRO-
GRAM LOAD light turns off. Press 1231 START.
The 1231 START light turns off.

With all lights off on the 1231 operator's console
(the SYSTEM STOP light may he on), the 1231 op-
tical mark page reader is ready to be selected.

USING THE IBM 1130 WITH THE MONITOR SYSTEM
When all 1/0 units required for a job are on-line

and in a ready condition, the user may proceed as
follows.

Loading a Program from Card or Paper Tape
On the Console:

® Press IMM STOP (press PROGRAM STOP if
the Monitor system is running).

® DPress RESET.

® Check that the console Mode switch is set to
RUN mode.

® With the reader wired for IPL in a ready state,
press PROGRAM LOAD (if the system has a
2501 and a 1442-6 or -7, ensure that the 1442
is not ready). The first record (usually a
loader) is read into core starting at location
zero. Instructions on this record tell the sys-
tem what operation is to be performed next,
usually the loading of more records from the
input device.

® When a card reader goes not ready, press
reader START to read in the last card and pass
control to the loaded program. This action is
not required with paper tape input,

Altering or Displaying the Contents of a Selected
Core Location Using the Console Entry Switches

® With the system stopped, set the console Mode
switch to LOAD,

® Set the console entry switches to the desired
four-character hexadecimal core address.
Switches 0-3 constitute the first hexadecimal
character, 4-7 the second, etc.

¢ Press LOAD IAR (the selected address is dis-
played in the IAR),

To display the contents of the address:
® Set the console Mode switch to DISPLAY,
® Press PROGRAM START.

The contents of the selected location is di splayed in
the Storage Buffer Register. Succesive pressing of
the PROGRAM START key will display consecutive
core locations.
To alter the content§ of the address:

Set the new data word in the console entry

switches.

Set the console MODE switch to LOAD,

Press PROGRAM START.

To return to system operation:
Set the console Mode switch to RUN
Press PROGRAM START.

NOTE: At a Monitor system WAIT, the address of
instruction causing the WAIT is at the address dis-
played in the TAR minus 1.

Reading the Console Entry Switches Under User
Program Control

The setting of the console entry switches can be
read by an XIO read instruction at any time during
the execution of a user-written stored program.
The device code of the instruction is set to 00111,

Entering Programs from the Keyboard Under Mon-
itor System Control
A single Monitor control record or an entire pro-
gram including all required control records and
data records can be entered from the 1130 Key-
board using the Monitor System., Control is passed
to the Keyboard when a //TYP Monitor control
record is read from the principal input device.
Control is returned to the principal input device

| when a // TEND record is entered from the keyboard.

Keyboard Operation

When the //TYP Monitor control record is read,
the Console Printer performs a carrier return and
the KB SELECT light on the Feyboard operator!'s
panel turns on. The system is now ready to accept
input from the keyboard,

Enter all control records in the correct format.
Use the space bar for blanks. The records are printed
on the Console Printer as they are entered. Press
EOFT to end each record. An NL (new line) character
is entered, the carrier is restored to a new line, and
the keyboard is reselected. This sequence of events
continues until a // TEND record is entered.
Pressing EOF then returns control to the principal
input device.

Up to 80 characters can be entered in each record.
If an error is made when entering a record from the
Keyboard, the user can elect to backspace and correct
the entry or re-enter the entire record.

Backspace. When the backspace key («) is pressed,
the last graphic character entered is slashed and the
address of the next character to be read is decremented
by +1. 1If the backspace key is pressed twice consecu-
tively, the character address is decremented by +2,

but only the last graphic character is slashed. For
example, assume that *DELET has been entered and
the backspace key is pressed three times. The next

"~ graphic character replaces the L, but only the T is
slashed. If the characters FINE are used for replace-
ment, the paper would show *DELEXFINE, but *DEFINE
would be stored in the buffer.

Re-entry. When the ERASE FIELD key is pressed, a
character interrupt signals the interrupt response sub-
routine that the previously-entered Keyboard record
is in error and is to be re-entered. The subroutine
prints two slashes on the Console Printer, restores
the carrier to a new line, and prepares to replace the
old record in the I/0 area with the new record.

The new record overlays the previous record, charac-
ter by character. Blanks are placed in the buffer fol-
lowing the NL character which terminated the new
record.

Console Functions While Under Monitor System Control

PROGRAM STOP Key. Pressing this key causes a
level 5 interrupt and an entry to the PROGRAM STOP

key trap providing there are no user-written device
subroutines associated with level 5 currently in core.
The trap consists of a WAIT and a branch. When the
PROGRAM START key is pressed, the interrupt level
is turned off and execution resumes following the point
of the level 5 interrupt.

The PROGRAM STOP key trap allows the user to
stop the entire 1130 system with the ability to continue
execution without disturbing the system status or the
contents of core storage.

If a higher interrupt level is being serviced when
the PROGRAM STOP key is pressed, the PROGRAM
STOP key interrupt is masked until the current opera-
tion is completed.

INT REQ. Pressing the Interrupt Request key causes
the current job to be aborted. Control is returned to
the Supervisor, which then searches for the next JOB
record in the input stream, The user may program
this key differently if he desires.

IMM STOP. Do not press IMM STOP when running under

Monitor system control. The contents of a system cart-
ridge can be destroyed, necessitating a regeneration
of the system,

Manual Dump of the Monitor System

If a problem occurs during the execution of a core load
and the user desires to dump core storage, the dump
entry point in the Skeleton Supervisor can be entered
by a manually executed transfer to location zero or

to the dump entry entry point plus one (location
$DUMP+1). A dump of the entire contents of core
storage is given in hexadecimal and the dump pro-
gram (see Supervisor Core Dump Program) exe-
cutes a CALL EXIT thereby terminating the execu-
tion of the core load in progress.

If the dump was necessitated by the introduction of
bad data in a Monitor system program, the system may
loop rather than perform the dump. If this occurs when
DISKZ is in use, the user must manually clear SIOCT
and $DBSY before reinitiating the dump.

1130 System Familiarization 9

Before describing the contents of a Monitor system and
non-system cartridge, it is necessary to briefly des-
cribe the steps to initialize the cartridges for use on
the system.

® When the Monitor system is loaded by the System
Loader onto a disk cartridge that has been initialized
by the Disk Cartridge Initialization Program (DCIP),
that cartridge becomes a system cartridge.

e Placement of a system cartridge on any physical
drive readies the system for the user-initiated cold
start procedure. The cold start establishes the
physical drive on which the system cartridge has
been placed as logical drive 0, which is, by definition,
the system drive. The system cartridge on logical
drive 0 is then called the master cariridge.

e The other cartridges on the system (also initialized
by DCIP) are called non-system cartridges. If
desired, the IBM system can then be loaded on any
of these cartridges, thus making them system
cartridges. However, once a cold start has been
performed and a master cartridge established, all
other cartridges, system or non-system, are

called satellite cartridges,

The organization of programs and areas on system
and non-system cartridges is described and illustrated
below.

Sector @IDAD of any Cartridge

This sector, illustrated in Figure 1, contains the defec-
tive cylinder table, the cartridge ID, the cartridge copy
code, a reserved area, and an Error Message program.
The defective cylinder table contains the addresses
of the first sector on any cylinders on the cartridge
that are not capable of accurately storing data. The
Monitor system can be operated from a cartridge with
up to 3 defective cylinders.
The cartridge ID is a hexadecimal number in the
range /0001 - /TFFF that uniquely identifies the
cartridge.

DISK ORGANIZATION

The copy ID (updated by DCIP or COPY) gives the user
the ability to identify any given copy of a system or non-
system cartridge. Each time a copy is made, word 5
(initially 0) is incremented by one, i.e., word 5 of the
copy is always one greater than the source.

The reserved area of sector @IDAD is used by the
System Loader when the IBM System is loaded on the
cartridge (see Figure 2).

Following initialization by DCIP (or DISC), an error
message and the program that causes it to print are
stored in sector @IDAD. The error message -- NON-
SYST. CART. ERROR -- is printed if an attempt is
made to cold start a cartridge that is not a system
cartridge. This message and the program that prints
it are overlaid by the Cold Start program when the
Monitor system is loaded on the cartridge.

DCYL (Defective Cylinder Table)
CIDN (Cortridge ID)

COPY (Copy Code)

Reserved

DTYP (Disk Type)

V“‘Vr

Error Message
and Error Message
Program

Reserved

Words: 0 1 2 3 4 5 6 7 269 270 319

® Figure 1, Contents of Sector @IDAD after Initialization by
DCIP or DISC

DCYL (Defective Cylinder Table)
CIDN (Cartridge 1D)

COPY (Copy Code)

Reserved

DTYP (Disk Type)

) ¥

DISKZ (this copy of
DISKZ is used only §:°Id
during the cold start P"'-'"
procedure.) rogram

Reserved

Words: 0 1 2 3 4 5 6 7 29 30 269 270 319

@ Figure 2. Contents of Sector @IDAD after the IBM System is
on Disk

Disk Organization 11

SYSTEM CARTRIDGE

The system cartridge is divided into three logical areas,
which are illustrated in Figure 3. These areas are the
IBM System Area, the User Area, and the Working
Storage. In addition, the user may define a Fixed Area
on disk for the purpose of storing programs and/or

data files into permanent locations so they may be
referenced by sector address.

IBM SYSTEM AREA

During system generation, the IBM system decks are
loaded on disk by the System Loader. The disk areas
occupied by the IBM-supplied Monitor programs, and
the disk areas reserved for the use of these programs,
are collectively known as the IBM System Area.

The contents of the IBM System Area are listed below.

Cylinder 0

The contents of sector @IDAD have already been
described (see Figure 2), Sector @DCOM contains
the Disk Communications Area, which is described
below (see DCOM).

Sector @RIAD contains the Resident Image. The
Resident Image is a copy of the Resident Monitor with~
out a disk I/0 subroutine, that is, it is a reflection of
COMMA and the Skeleton Supervisor (see Resident
Monitor in the section Supervisor). The Resident
Image is used to initialize the Resident Monitor during

The System Location Equivalence Table (SLET) re-
sides on sectors @SLET and @SLET+1. SLET is com-
posed of an identification number, core loading address,
word count, and sector address for every phase of every
Monitor program.

Sector 5 is reserved.

Sector @QRTBL contains the Reload Table, which is
used by the System Loader during a program reload and
by the Disk Utility Program (DUP) when deleting the

| Assembler, FORTRAN Compiler, or RPG Compiler
The Reload Table is established during system gene-
ration when the System Loader reads the Type 81
System Loader control card,

Sector @HDNG is used to store the page heading that
appears at the top of each page printed by a Monitor
program,

DCOM

The Disk Communications area, located in sector
@DCOM of a system cartridge, contains the param-
eters that must be passed from one Monitor program
to another and that must be accessed through disk
storage (as opposed to core storage). Generally
speaking, parameters that are not required when
fetching a link stored in Disk Core Image format are
found in DCOM. A listing of DCOM is provided in
Appendix H, Resident Monitor.

DCOM is divided into two parts. The first part of
DCOM contains the parameters that are not related to
all the disk cartridges, for example, the core map
switch. The second part of DCOM contains the
cartridge-related parameters: cartridge ID, LET

a cold start. address, file protect address, etc. Each of the
System Device
16 16 Subroutines, DISKZ , 1,6 2 3 " s
Cyl. 0 | DUP | FOR™| AsSM "] SUP | CLB | DISK1,DISKN CIL {RPG“®|SCRA | FLET Fixed&Areo CIB" | LET | UserArea Workingzsztorage
\\) « ¢
\ \
I —~ y
~ Symbol Sector
~ ector
@ IDAD 0
ID an =~
Cold @ DCOM 1
Start Resident Reload | Page @ RIAD 2
Prog.|DCOM| Image |SLET | Reserved| Table |Heading @ SLET 3
0 1 2 3,4 5] 7 @ RTBL 6
@ HDNG 7

. Can be deleted from the system by the user

. Present only if a Fixed Area is defined for this cartridge by the user

. Optionally defined by the user

. May not be deleted by the user from a system cariridge.

. Initially contains only the System Library; user-written programs may be added
Optional Monitor program

O U W N e

e®Figure 3. Layout of a System Cartridge

12

parameters in the second part is in the form of a five-
word table, one word for the corresponding value for
each of the five possible cartridges. The five words

of each table, known as a quintuple, are arranged in the
order of logical drive numbers; that is, the first is for
logical drive 0, the second for logical drive 1, etc.

The parameters for the non-system cartridges are ob-
tained from the DCOM areas of those cartridges and stored
in the DCOM on the system cartridge through the use of a
merge operation. For example, the file protect address
quintuple on the master DCOM is composed of the file pro-
tect address from each of the other four logical drives,
plus its own file protect address.

The subroutine for performing the DCOM merge op-
eration is called SYSUP and must be called by the user
for the purpose of updating the DCOM parameters if
cartridges are changed during a job (see SYSUP in the
section System Utility Subroutines). A similar subrou-
tine is an integral part of the Monitor Control Record
Analyzer and is executed during JOB processing.

During the processing of a JOB record, the DCOMs
of only those cartridges listed on the JOB record are
merged into the master DCOM. The parameter tables
for the other drives are cleared to zero.

DCOM Indicator Words

In the following paragraphs, ''set'" means that a value
is stored in the word in question; ''reset' means that
it is cleared to zero.

Working Storage Indicator Word. DCOM contains a
Working Storage Indicator word for each cartridge on
the system. The Working Storage Indicator word for
a cartridge contains the disk block count of any DSF
program, DCI program, or Data File currently in
Working Storage on that cartridge.

The Working Storage Indicator word for a cartridge
is set (1) at the completion of a DUP operation in which
information is transferred to Working Storage and (2)
at the completion of any assembly or successful com-
pilation, at which time the Assembler, FORTRAN
Compiler, or RPG Compiler places the assembled/
compiled object program in Working Storage.

The Working Storage Indicator word for a specific
cartridge is reset 1) following any STORE operation to
the User Area on that cartridge and 2) following the
building of a core load that requires LOCALs and/or
SOCALs. Because the User Area is increased at the
expense of Working Storage, it is assumed that any
STORE operation to the User Area overlays a part of
the Working Storage area with that which was stored.
Therefore, the Working Storage Indicator word is reset.

Format Indicator Word. DCOM contains a Format
Indicator word for each cartridge on the system. The

Format Indicator word for a cartridge indicates the
format of any DSF program, DCI program, or Data
File currently in Working Storage on that cartridge.
The Format Indicator word for a cartridge is set
and reset under the same conditions as the Working
Storage Indicator word for the same cartridge.

Temporary Mode Indicator Word. The Temporary
Mode Indicator word in DCOM is set by the Supervisor
when temporary mode is indicated by the user in the

JOB record (see // JOB under Monitor Control Records).

Table 1 lists DUP operations and any restrictions that
apply when in temporary mode. The temporary mode
indicator is set/reset during JOB processing.

Monitor System Disk Areas

Following cylinder 0, the IBM System is loaded onto
disk in the order shown in Figure 3. The individual
programs are described in the section of this manual
entitled Monitor Programs; the disk areas are
described below.

System Device Subroutine Area. The System Device
Subroutine Area contains the following components.

o The subroutines used by the Monitor programs to
operate the following print devices.

1403 Printer
1132 Printer
Console Printer

Table 1, Restrictions on DUP Operations in Temporary Mode
DUP Operations Restrictions

DUMP None
DUMPDATA, DUMPDATAE None
STORE None
STORECI To UA only
STOREDATA, STOREDATAE To UA and WS only
STOREDATAC! To UA only
STOREMOD Not allowed
DUMPLET None
DUMPFLET None
DWADR Not allowed
DELETE Not allowed
DEFINE FIXED AREA Not allowed
DEFINE VOID ASSEMBLER Not allowed
DEFINE VOID FORTRAN Not allowed
DEFINE VOID RPG Not allowed

Disk Organization

13

e The subroutines used by the Monitor programs to
operate the following I/0 devices.
2501 Card Reader/1442 Card Punch, model 5, 6, or 7
1442 Card Read Punch, model 6 or 7
1134/1055 Paper Tape Reader/Punch
Keyboard/Console Printer

e The I/O character code conversion subroutines used
in conjunction with the I/O subroutine for the follow-
ing devices.

2501 Card Reader/1442 Card Punch
1134/1055 Paper Tape Reader/Punch
Keyboard/Console Printer

e The disk I/O subroutines.
DISKZ
DISK1
DISKN

All of the subroutines in the System Device Subrou-

tine Area, except the disk I/O subroutines, are naturally

relocatable and are intended for use only by Monitor
programs.

The disk I/0 subroutines are located in this area
rather than in the System Library because they are
processed by the Core Load Builder differently than
those stored in the System Library.

DISKZ is stored twice on the disk, once in sector
@IDAD with the Cold Start program, and once in the
System Device Subroutine Area with DISK1 and DISKN.
Cold Start initializes with the DISKZ in sector @IDAD,
in all other cases, DISKZ is fetched from the System
Device Subroutine Area.

Supervisor Control Record Area. The Supervisor
Control Record Area (SCRA) is the area in which
Supervisor control records (LOCAL, NOCAL,

FILES, G2250 and EQUAT) are saved, These records,
except the EQUAT record, are read from the input
stream (following an XEQ or STORECI control
record) and are stored in the SCRA for subsequent
processing by the Lore Load Builder. The processing
of the EQUAT record is simular to that of the other
Supervisor control records, but it is read from the
input stream following a JOB control record.

Fixed Location Equivalence Table (FLET). This table
is a directory to the contents of the Fixed Area for the
cartridge on which it appears. There is one FLET
entry for:

Each program stored in Disk Core Image format

Each Data File stored in Disk Data format

The padding required to permit a DCI program
or Data File to be stored on a sector boundary.

14

Each FLET entry specifies the name of the DCI pro-

gram or Data File, its format, and its size in disk blocks.

Each cartridge on the system having a Fixed Area
has a FLET. Regardless of the size of the Fixed Area
(one cylinder is the minimum requirement), the FLET
for a cartridge occupies the cylinder preceding the
fixed Area (a minimum of 2 cylinders of Fixed Area
may be initially defined. The first cylinder becomes
FLET).

The sector address of the first sector of FLET on
a given cartridge may be obtained from the LET on the
same cartridge. The last LET header contains this
sector address.

A FLET dump is illustrated in Appendix G.

Core Image Buffer (CIB). The CIB is the area on disk
in which the Core Load Builder builds any portion of a
core load that is to reside below location 4096. It is
also used by the Core Image Loader to save any COM-
MON defined below location 4096 during the transfer
of control from one link to the next.

Location Equivalence Table (LET). The LET on a
cartridge is a directory to the contents of the User
Area on that cartridge. There is one LET entry for:

e Each entry point for each program stored in Disk
System format

e Each program stored in Disk Core Image format
e Each Data File stored in Disk Data format

e The padding required to permit a DCI program or
Data File to be stored on a sector boundary.

Each LET entry specifies the name of an entry
point, DCI program, or Data File; its format; and
its size in disk blocks.

Each cartridge on the system has a LET. However,
a cartridge has a User Area only if there is an entry
in the LET on that cartridge other than a dummy entry
(IDUMY). On a system cartridge, LET occupies the
cylinder preceding the User Area.

COMMA contains the sector address of the first
sector of LET for each cartridge being used in a given
job.

A LET dump is illustrated in Appendix G.

USER AREA

The User Area (UA) is the area in which the user can
store programs in Disk System format or Disk Core
Image format and/or Data Files in Disk Data format.
The User Area is defined on any cartridge when the
cartridge is initialized. However, its size is 0 sectors
until the first DSF program, DCI program, or Data

File is stored in the User Area on that cartridge. The
User Area occupies as many sectors as are required
to contain the DSF programs, DCI programs, and Data
Files stored on that cartridge.

When a DSF program, DCI program, or Data File is
to be added to the User Area, it is stored at the start
of Working Storage, that is, immediately following the
end of the User Area. The area occupied by the new
DSF program, DCI program, or Data File is then
incorporated into the User Area, and Working Storage
is decreased by the size of that area.

DSF programs are stored in the User Area starting
at the beginning of a disk block; DCI programs and
Data Files are stored starting at the beginning of a
sector.

The User Area is packed when a DSF program,

DCI program, or Data File is deleted from the User
Area; that is, the DSF programs, DCI programs,
and/or Data Files in the User Area are moved so as

to occupy the vacancy (the area formerly occupied by
the deleted DSF program, DCI program, or Data File).
In packing, DSF programs are moved to the first disk
block boundary in the vacancy; DCI programs and Data
Files are moved to the first sector boundary in the
vacancy. All following DSF programs, DCI programs,
and Data Files are similarly packed.

The area gained by packing the User Area is re-
turned to Working Storage.

WORKING STORAGE AREA

Working Storage (WS) is that area on all cartridges
that is not defined as the User/Fixed Area and, on a
system cartridge, as the IBM System Area. Working
Storage is available to Monitor and user programs
alike as temporary disk storage. It extends from the
sector boundary immediately following the User Area
to the end of the cartridge (cylinder 199).

FIXED AREA

The Fixed Area (FX) is the area in which the user may
store programs in Disk Core Image format and/or
Data Files in Disk Data format if it is desired that
these programs and Data Files always occupy the same
sectors. The Fixed Area is optionally defined on any
cartridge by the use of the DUP operation, DEFINE
FIXED AREA. This operation is also used to increase
or decrease the size of the Fixed Area.

When a DCI program or Data File is stored in the
Fixed Area, it is stored starting at the beginning of a
sector. When a DCI program or Data File is deleted

from the Fixed Area, no packing of the Fixed Area
occurs. Hence, DCI programs and Data Files in this
area reside at fixed sector addresses and can be refer-
enced as such by the user.

NON-SYSTEM CARTRIDGE

Figure 4 shows the layout of a non-system cartridge,
a cartridge that contains no Monitor programs. Such
a cartridge on multi-drive 1130 systems can be used
exclusively for the storage of data and/or programs
and is called a satellite cartridge.
Except for cylinder 0, which is described below,
the definitions of the areas present on a non-system
cartridge are the same as those previously described
for a system cartridge.

Sector mIDAD of cylinder 0 on a non-system cartridge
contains the parameters established by DCIP or DISC
(see Sector @IDAD of any Cartridge). Note however
that the Error Message program has not been overlaid
since this is not a system cartridge. An attempt to
cold start a non-system cartridge will cause the error
message to be printed on the Console Printer. Sector
@DCOM of cylinder 0 contains only that information
from DCOM applicable to this non-system cartridge
(see DCOM).

The location equivalence table (LET) for the car-
tridge (see Location Equivalence Table), occupies the
remaining six sectors of cylinder 0.

Cyl. 0 |FLET1

I Fixed .e\reaz C‘Ig3 | User Area Working Storage
S s ¥ 1
R
~— ~
| —~—
—

[ID and ~—

Error —

Message
Prog. | DCOM LET
0 1 2-7

1. Present only if a Fixed Area is defined for this cartridge by the user

2. Optionally defined by the user

3. May be deleted by the user. However, a CIB must be present on at least
one of the cartridges on the system at any given time.

Figure 4. Layout of a Non-System Cartridge

Disk Organization 15

The Monitor programs: Supervisor, DUP, Assembler,
FORTRAN Compiler, (optionally, RPG Compiler,)
Core Load Builder, and Core Image Loader reside

in the IBM System Area on the master cartridge. The
following paragraphs briefly describe ‘these programs
and the subprograms within them that are of most in-
terest to the user,.

SUPERVISOR

The Supervisor is actually a group of programs and
areas which are responsible for the control functions
of the Monitor system. The Supervisor reads control
records included in the stacked job input, decodes
them, and calls the appropriate Monitor program to
perform the specified operation. The Supervisor
initially achieves control of the Monitor system
through the user-initiated cold start procedure
(see Cold Start).

A portion of the Supervisor is located in core
storage. This portion is called the Resident Monitor.

RESIDENT MONITOR

The resident portion of the Monitor system consists
of (1) a data area used for system parameters and for
communication between Monitor programs (COMMA),
(2) the Skeleton Supervisor, and (3) a disk I/O sub-
routine (either DISKZ, DISK1, or DISKN).

Core Communications Area (COMMA)

In general, COMMA consists of the parameters re-
quired by the Core Image Loader to process a CALL
LINK to a DCI program without referring to the Disk
Communications area (DCOM). This information is
interspersed with parts of the Skeleton Supervisor
(see Appendix H, Resident Monitor),

Skeleton Supervisor

On any entry to the Resident Monitor (EXIT, LINK,
or DUMP), the Skeleton Supervisor calls the Core
Image Loader, which determines where the Skeleton
Supervisor was entered and either calls the Super-
visor if the entry was at EXIT or DUMP or fetches
and transfers control to the core load specified in the
CALL LINK statement if the entry was at LINK, (If

MONITOR PROGRAMS

the link to be executed is in Disk System format, it
will be necessary to call the Core Load Builder before
transferring control to the core load itself.)

The use of the Core Image Loader as an intermediate
supervisor allows the Monitor system to achieve
efficient link-to-link transfer of control.

The Skeleton Supervisor, which is interspersed
with COMMA, consists of the entry points and sub-
routines described below.

LINK Entry Point. LINK is the entry point in the
Skeleton Supervisor that accomplishes link-to-link
transfer of control.

EXIT Entry Point. EXIT is the entry point in the
Skeleton Supervisor that accomplishes link-to-
Supervisor transfer of control,

DUMP Entry Point. DUMP is the entry point in the
Skeleton Supervisor that prints out the contents of
core storage between specified limits. Dynamic
dumps are obtained through the DUMP entry point;
terminal dumps are obtained through the DUMP entry
point plus 1.

ILS02 Subroutine. The ILS02 subroutine handles the
servicing of interrupts on level 2. Only the disk de-
vices on the system interrupt on level 2. Since the
Skeleton Supervisor requires the disk, the ILS02 sub-
routine is a part of the Resident Monitor.

11.S04 Subroutine. The ILS04 subroutine handles the

servicing of interrupts on level 4. One of the devices
that interrupt on level 4 is the Keyboard. Since the
user may perform a console interrupt request at any
time, the ILS04 subroutine is a part of the Resident
Monitor.

Preoperative Error Trap. The preoperative error
trap is entered by all ISS subroutines when an error

is detected before an operation has been initiated.

The trap consists of a WAIT and a branch. When the
PROGRAM START key is pressed, execution resumes
at the location following the branch to this trap. Under
certain conditions, this trap is entered when no error
has occurred, e.g., FORTRAN PAUSE.

Postoperative Error Traps. One of the postoperative
error traps (there is one for each interrupt level) is
entered by all ISS subroutines when an error is detected
after an operation has been initiated. Each trap con-
sists of a WAIT and a branch. When the PROGRAM

Monitor Programs 17

START key is pressed, control is returned to the ISS
subroutine, which may then retry the operation in error.

PROGRAM STOP Key Trap. The PROGRAM STOP key
trap is entered if a level 5 interrupt occurs and there
is no user-written device subroutine associated with
level 5 currently in core. The trap consists of a
WAIT and a branch. When the PROGRAM START key
is pressed, the interrupt level is turned off and execu-
tion resumes following the point of the level 5 interrupt.

This trap allows the user to stop the entire 1130
system with the ability to continue execution without
disturbing the system status or the contents of core
storage.

If a higher interrupt level is being serviced when
the PROGRAM STOP key is pressed, the PROGRAM
STOP key interrupt is masked until the current opera-
tion is completed.

Interrupt Request Key

When the INT REQ key is pressed, all busy indicators
are turned off and a switch in COMMA is set to instruct
the Supervisor to pass input records until a JOB record
is encountered. Parts of the Monitor which should not
be interrupted before completion, e.g., SYSUP, delay
the interrupt request until they have completed their
operation.

Disk I/0 Subroutine

The disk I/0 subroutine required by the program in
control resides in core storage following the Skeleton
Supervisor. The following table lists the disk I/0
subroutines, their approximate sizes, and the corre-
sponding addresses of the end of the Resident Monitor
plus 1.)

End of Resident Monitor +1

Subroutine (Core Location)

in Core Decimal Hexadecimal
DISKZ 480 /01E0
DISK1 660 /0294
DISKN 930 /03A2

DISKZ is the disk I/0O subroutine used by all system
programs. DISKZ is initially loaded with the Resident
Monitor.

Prior to the execution of a core load requiring
DISK1 or DISKN, the Core Image Loader overlays
DISKZ with the required disk I/O subroutine. When

18

control is returned to the Supervisor, the Core Image
Loader overlays the disk I/0 subroutine currently in
core (if DISK1 or DISKN) with DISKZ. User programs,
including those written in FORTRAN or RPG may use
any of the three disk I/O subroutines; however, only
one disk I/O subroutine may be referenced in a given
core load. In this context ""core load' includes column
19 of the XEQ record (the entry in column 19 of the
XEQ record specifies the version of the disk I/0 sub-
routine to be used by the core load during execution).

DISK-RESIDENT SUPERVISOR PROGRAMS

The programs described below are the disk-resident
programs that constitute the Supervisor. One of these
programs is fetched and given control by the Core
Image Loader, depending upon the entry made in the
Skeleton Supervisor; the Monitor Control Record
Analyzer is called following an EXIT entry, the DUMP
program following a DUMP entry.

Monitor Control Record Analyzer

The Monitor Control Record Analyzer (1) reads a
Monitor control record or Supervisor control record
from the input stream, (2) prints the control record
on the principal print device, and (3) fetches the re-
quired Monitor program and transfers control to it.
Supervisor control records are stored on disk in the
Supervisor Control Record Area.

MONITOR CONTROL RECORDS

Monitor control records perform the load and control

functions of the Monitor system. The individual con-

trol records are described in the paragraphs that follow.
Where shown in the control record format, the

character '"b'" indicates that the column must be blank.

Remarks may be punched in the card columns listed

as "not used'" in the control record formats,

// JOB

The JOB control record defines the start of a new job.
It causes the Supervisor to perform the job initialization
procedure, which includes:

o The initialization of COMMA

The initialization of the parameters in DCOM

The setting of the Temporary Mode Indicator ifa T
is present in column 8 of the JOB control record
(reset if no T in column 8), If set, the temporary
mode indicator causes all DSF programs, DCI pro-
grams, or Data files stored in the User Area by DUP
during the current job to be deleted automatically
from that area at the end of the job (that is, at the
beginning of the next job). See DCOM for DUP re-
strictions while in the temporary mode.

The definition of the cartridges to be used during
the current job. IDs 1 through 5 on the JOB control
record specify the cartridges to be used. These
cartridges may be mounted on the physical drives

in any order. The order of the IDs in the JOB con-
trol record specifies the logical assignments for

the cartridges. IDs 1 through 5 correspond to logi-
cal drives 0 through 4, and they must be specified
consecutively. If only three drives are to be used
IDs 1-3 only are specified. The cartridge-related
entries of COMMA and DCOM (quintuples) are filled
in according to the logical order specified by the
user. The first ID may be left blank, in which case
the master cartridge for the last JOB will also be the
master for this JOB.

The definition of the cartridge on which the Core
Image Buffer for the current job is to be found. The
ID of the cartridge containing the CIB must follow the
field of the fifth cartridge ID. If the CIB ID is omit-
ted, the CIB on the master cartridge is used. Core
image programs can be built faster if the CIB is
assigned to a cartridge other than the master
cartridge.

The definition of the cartridge containing the Work
ing Storage to be used by the Monitor programs
(System Working Storage). The ID of the cartridge
to be used for Working Storage by the Monitor Sys-
tem must follow the CIB ID. If the Working Storage
ID is omitted, all Monitor programs use the Work-
ing Storage on the master cartridge (except when
otherwise specified, see DUP Control Records).
Core Image programs can be built faster if the
System Working Storage is on a cartridge other than
the master cartridge. They can be built even faster
if the CIB, the system Working Storage, and the Mon-
itor system itself are all on separate cartridges.
Assemblies are also faster if System Working Stor-
age is on a separate cartridge. (See *FILES, page
23, for Working Storage for user programs.)

The definition of the cartridge containing the unfor-
matted I/0 ($3$$3) disk buffer area to be used with
this job.

The starting of a new page on the principal print de-
vice. A skip to channel 1 is executed on the 1132 or
1403 Printer; or five consecutive carriage returns
are made on the Console Printer. The page count

is reset to 1, and the surrent page heading is re-
placed with whatever appears in column 51-58
of the JOB control record. HDNG (assembler
language) statements and **(FORTRAN control
record) records will cause additional information
to be printed.

The reading of the Supervisor control records

of EQUAT type, if any, and writing them on

disk in the Supervisor Control Record Area

(SCRA).

The format of the JOB control record is as follows.

Card
Column Contents Notes
1-6 //bJOB
7 Reserved
8 Temporary mode T or blank, A T indocates that
indicator temporary mode is desired for this job,
9-10 Reserved
11-14 First ID This is the ID of the master cartridge
(logical drive 0),
15 Reserved
16-19 Second ID This is the ID of the cartridge on
logical drive 1,
20 Reserved
21-24 Third ID This is the ID of the cartridge on
logical drive 2,
25 Reserved
26-29 Fourth ID Thisg is the ID of the cartridge on
logical drive 3,
30 Reserved
31-34 Fifth ID This is the ID of the cartridge on
logical drive 4.
35 Reserved
36-39 CIB ID This is the ID of the cartridge con-
taining the CIB to be used during
this job.
40 Reserved
41-44 Working Storage This is the ID of the cartridge contain-
D ing the Working Storage to be used by
the monitor during this job, .See
*FILES, p. 23, for details on Working
Storage for user programs,
45 Reserved
46-49 Unformatted disk This is the ID of the cartridge contain-
1/0 1D ing the unformatted disk I/0 area to
be used during this job,
50 Reserved
51-58 Date, Name, etc, This information is printed at the top
of every page of the listing on the
principal print device during this job,
59 Not used
60-61 EQUAT record This number specifies how many
count EQUAT records follow this JOB
record.
62-80 Not used

Monitor Programs

19

// ASM The format of the ASM control record is as follows.

This control record causes the Supervisor to read the

Assembler into core storage and transfer control to it. Card

Any Assembler control records and the source state- Column Contents Notes
ments to be assembled must follow this control record. 1-6 //bASM

Comments control records (// *) may not follow this 780 Not used

control record. (See *FILES, p. 23 for working storage for user programs.)

19.1

// FOR

This control record causes the Supervisor to read the
FORTRAN Compiler into core storage and transfer
control to it. Any FORTRAN control records and the
source statements to be compiled must follow this
control record. Comments control records (// *) may
not follow this control record.

The format of the FOR control record is as follows.

Card

Column Contents Notes

1-6 //bFOR
7-80 | Not used

//RPG

This control record causes the Supervisor to read the
RPG Compiler into core storage and transfer control
to it. The RPG control card and RPG specification
statements to be compiled must follow this control
record. Comments control records (//*) may not
follow this control record.

The format of the RPG control record is as follows.

Card Contents Notes
Column

1-6 //bRPG

7-80 Not used

// DUP

This control record causes the Supervisor to read the
control portion of the Disk Utility Program into core
storage and transfer control to it. A DUP control
record must follow this control record. Only one
// DUP control record is required to process a stack
of DUP control records, provided no Monitor control
record other than the Comments control record (// *)
is encountered.

The format of the DUP Monitor control record is
as follows,

Card

Column Contents Notes

1-6 //bDUP
7-80 | Not used

20

// XEQ

This control record causes the Supervisor to initialize
for core load execution. If the name specified in this
control record (columns 8 through 12) is that of a
mainline program stored in Disk System format, the
Supervisor reads the Supervisor control records
(LOCAL, NOCAL, FILES, or G2250), if any, from
the input stream and writes them in the Supervisor
Control Record Area (SCRA). The Core Load
Builder is then called to build a core image program
from the mainline program.

If no name is specified on this control record, a
mainline program in Disk System format is assumed
to be stored in the Working Storage of the cartridge
specified in columns 21-24, The Supervisor then
processes the Supervisor control records and calls
the Core Load Builder via the LINK entry point in the
Resident Monitor.

After the Core Image program has been built, or if
the name in the control record is that of a program
already stored on disk in DCI format, the Core Image
Loader is called to read the core load into core storage
and transfer control to it.

If an L is punched in column 14 of this control rec-
ord, a core map is printed by the Core Load Builder
during the building of the core image program. In ad-
dition, a core map is printed for all DSF links during
the execution (see Reading a Core Map and a File Map
for an example of a core map). These core maps
include:

e The execution address of the mainline program

® The names and execution addresses of all subpro-
grams in the core load

¢ All file allocations, with the file number, sector
address (relative to first sector of Working Storage
for files in Working Storage, absolute otherwise),
sector count, and either cartridge ID or the address
of Working Storage. (If the file is in Working Stor-
age, the address of Working Storage will be in-
cluded; otherwise, the name of the file is printed.)

Columns 16 and 17 of this control record contain
the right-justified decimal count of Supervisor control
records to be read by the Supervisor before calling the
Core Load Builder.

Column 19 contains a character that identifies the
disk I/0O subroutine to be used by the core load during
execution. If column 19 contains zero or one, DISK1
is fetched by the Core Image Loader along with the core
load. If Column 19 contains an N, DISKN is fetched.
If column 19 contains a blank or a Z, no disk I/O sub-
routine is fetched (that is, DISKZ, which is in core
storage for use by the Monitor programs, is used by
the core load). Any other character is illegal and will
cause the execution to-be bypassed. All links in Disk
System format that are called during a given execution
must utilize the same disk I/O subroutine as the link
that precedes them in execution.

A punch in column 26 makes it possible for a
LOCAL to call another LOCAL, provided the re~
strictions listed in "Programming Tips and Tech~
niques'' are met.

A punch in column 28 indicates that special ILSs

are to be used for this core load. If column 28 is

blank, the standard set of ILSs is used. The spec-
ial ILSs, named with an X before the number (e.g. ,
1LSX4), save and restore index register 3 and set

index register 3 to point to the transfer vector, in
addition to the functions of the standard ILSs.

20.1

The use of special 1LSs opens up the possibility
of using index register 3 in programs. Special ILSs
require 5 more words per ILS than standard I1.Ss.
Note that level 2 and level 4 1LSs, which normally
are located in the Resident Monitor, will be loaded ,
together with other subroutines, as if they were
user-written ILSs. The user can replace either
ILS with a user-written ILS.

Comments control records (// *) may not follow
an XEQ control record.

The format of the XEQ control record is as fol -
lows.

Card
Column | Contents Notes
1-6 / /bXEQ
7 Reserved
8-12 Name This is the name (left-justified) of the
DSF program or DCI program to be executed,|
13 Reserved
14 Core Map |Lor blank, An L indicates that a core
Indicator map is to be printed for this and all fol-
lowing DSF links during this execution,
15 Reserved
16-17 | Count This is the right justified decimal number
of Supervisor contrel records (LOCAL,
NOCAL, FILES and G2250) that follow.
18 Reserved
19 Disk I/O This column specifies the disk I/0 sub-
subroutine }routine to be loaded into core by the
indicator Core Image Loader for use by the core
load during execution,
20 Reserved
21-24 | Cartridge The ID of the cartridge that contains the
ID mainline program in its Working Storage
(valid only if no name is specified in
columns 8-124 blanks in this field indi-
cate the System Working Storage).
25 Not used
26 LOCAL call | A punch in this column enables a LOCAL
LOCAL indi-| program to call another LOCAL, Without
cator a punch, a LOCAL cannot call another
LOCAL.
27 Not used
28 Special ILS | A punch in this column indicates that ILSs
indicator for this core load should be chosen from
the special ILSs,
29-80 { Not used
[/ PAUS

This control record causes the Supervisor to WAIT.
When PROGRAM START is pressed, the Super-
visor continues processing Monitor control records
from the input stream.

The format of the PAUS control record is as
follows.

Card
Column Contents Notes
1.7 //bPAUS
8-80 | Not used
// TYP

This control record causes the Supervisor to tem-
porarily assign the Keyboard as the principal input
device. The Keyboard replaces the card or paper
tape reader as the principal input device until a
TEND control record is entered from the Keyboard.

The format of the TYP control record is as
follows.

Card
Column Contents Notes
1-6 //bTYP
7-80 | Not used

With the Keyboard as the principal input device,
the keyboard functions are identical to those dis-
cussed for TYPEZ and TYPEO (System Library
Subroutines) with one exception. The END-OF-
MESSAGE character causes the rest of the buffer
to be filled with blanks. Therefore, at the comple-
tion of a new message, nothing will remain of any
previously - entered message.

// TEND

This control record causes the Supervisor to re-
assign the card or paper tape reader as the princi-
pal input device. The reassignment is to whichever
unit was the principal device prior to the detection
of a TYP control record.

The TEND control record must be entered from
the Keyboard. The format of the TEND control
record is as follows.

Card
Column Contents Notes
1-7 //PTEND
8-80 | Not used
//EJECT

This control record causes the 1403 Printer or 1132
Printer, whichever is the principal print device, to
skip to a new page and print the page header. When
Console Printer is assigned as principal - printer,
or a // CPRNT record has been processed a space
of 5 lines and printing of page header will be per-
formed. Control is then returned to the Supervisor,
which reads the next record in the input stream.

Monitor Programs 21

The EJECT control record itself is printed.

Card
Column Contents Notes
1-8 //bEJECT
9-80 | Not used

/ /* (comments

This control record allows the user to print alpha-
meric text on the listing printed on the principal
print device by the Supervisor and DUP, The Super-
visor and DUP simply print the control record and
continue reading control records from the input
stream. The Comments control record may not
immediately follow an XEQ, ASM, RPG, or FOR con-
trol record.

When Supervisor uses Console Printer to print
records and the principal printer is another printer,
DUP is going to print the comments on the princi-
pal printer and Supervisor on the Console Printer.

The format of the Comments control record
is as follows.

Card
[Column Contents Notes
1-4 /] o*

5-80 | User comments Any alphameric characters may be

used,

// CPRNT

This control record causes the Supervisor to print

all Monitor and Supervisor control records that it
reads on the Console Printer. Printing by all other
Monitor programs will be on the principal print device.

Once the CPRNT control record has taken effect,
all Monitor and Supervisor control records will be
printed as described above. To return the printing
of Monitor and Supervisor control records to the prin-
cipal print device, a reload function must be per-
formed by the System Loader to redefine the princi-
pal print device.

This control record causes the // EJECT record
to affect the Console Printer rather than the princi-
pal printer.

The format of the CPRNT control record is as
follows.

Card

Column Contents Notes

1-8 //bCPRNT
9-80 |Not used

22

SUPERVISOR CONTROL RECORDS

The control records described below (LOCAL, NOCAL,
FILES, EQUAT and G2250) are used by the Core Load
Builder to:

o Provide for subprogram overlays during execution
(LOCAL)

e Include subprograms not called in the core load
(NOCAL)

e Equate disk storage files defined in the mainline
program during compilation or assembly to specific
files stored on the disk (FILES)

e Provide Graphic Display Capabilities (G2250)

e Substitute a subroutine with another subroutine

The first four control records are placed in the
input stream following an XEQ Monitor control record
that names a mainline program stored in Disk System
format or following a STORECI control record. In
either case the control records are written on disk
in the Supervisor Control Record Area (SCRA), from
which the Core Load Builder reads them for processing.

The fifth type of control record (EQUAT) is placed
after a JOB Monitor control record and maintains its
function until the next Job Monitor control record is
met, Supervisor will read the EQUAT control records
and write them on disk in the SCRA, from which the
Core Load Builder reads them for processing.

Up to 99 Superviscr control records may follow
the XEQ or STORECI control record. There is no
specified order (by type) to be followed; however,
the types may not be intermixed.

*LOCAL

LOCAL (load-on-call) subprograms are subprograms
specified by the user to be read, one at a time, as they
are called during the execution, into a LOCAL overlay
area. The LOCAL subprograms are specified on the
LOCAL control record as follows:

[23 a5 57 2 000 1239 14 15 16 17 1819 20 21 22 23.24 25 26 27 28 29 30 31 32 33 34 3S I

ojee

L1 1})
T |
L1 1.}
1t 111
L1 1 11

- F F F

1§t
111
L1t
Pl g
| .

where

MAINL1 is the name of the mainline program
already stored on disk. SUBL through SUBn are
the names of the LOCAL subprograms used with
that mainline program.

In the case illustrated below, all the LOCAL control
records except the last end with a comma (continuation
character) and the mainline program name appears on
the first LOCAL control record only.

l‘ 2 3 4 5 6 7 8 9 |ﬁ||‘|2|! 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 :
L uSnBiL SIWBI2I 51 |

;Illllllllllll

§ I S | IS Y T O O O

kI O T T T T T

hal TN S N T T O O

[LIOCALSIUBM

|
1
1
1
i
1
|
i

L1
| I |
111t
11 1.1
) IS T T S I I | | S
| S0 T T T T | 1111
L1 1 1 & § 114 1111
| N T T T | | I

1
|
1
1
1
1
i
1 1
1 |
1 1

11 | N O T T O
[F T T I S N W Y
11) T T I I |
11 B S S T T W
[) D S T I |
11 | O T O A |
11 | S N I B |
14) N T |
[| R T T O R T |
11 | N T T R T T T T |

1t 1 |
1.1 1 |
111 I .|
111 11t |
| . | |
11t ||
L1 1 L1 11

Lo

The same results would have been obtained if the
records had been:

[2 3 4 5 s 7 8 5 1011 1213 14 15 16 17 18 19 20 21 22 23 24 25 2 27 28 20 30 31 32 33 34 38 :

IO YOO T S T N S T B O OO0 O O

P-J I RO A T T S N S N O S WY B A S W O

N [IS N (N TN N I 5 T T N N 1 TS O N T T (N T N T N Y O Y O |
L AN W UG YOO T T T U T N YO T T T T N O O O B B O
bl W W TN U TN N T Y 1 T N N T N S T O T T T Y I O T T
T T S T T S O T N B O B

FU TN N N O N U T NS O S N U N T T T T O O O N B B B
[N U 0 T T T T O S W T O T U T U T U B I 0 B O
P S T U U U T T T O N S N O T T T T WY
T I S S S N S S N T N T N T T DO T N I N I A B

All the LOCAL subprograms for each mainline pro-
gram in an execution must be specified on the LOCAL
control records that follow the XEQ Monitor control
record initiating the execution.

Separate LOCAL control records must be used for
each mainline program in the execution that calls
LOCAL subprograms. For example,

L2 3 ¢ s 6 7 8 9 1011 1213 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 3

ejeje1S

[N U (N W S N N T N N O T T S T T T T N O O W I B

[N W N TN TN VUK TN T S N U N N T W O Y T TN Y N T T Uy s |

where
MAIN? is a link called by MAIN1.
If the mainline program is to be executed from

Working Storage, the mainline program name must
be omitted from the LOCAL control record.

For example,

1 2 3 45 6 7 8 9 1011 1213 14 15 14 17 18 19 20 71 22 23 24 28 26 27 28 29 30 31 32 33 3 35 :

ﬁL,Q]QA.L,,ﬁ,Q.B.l SIWNBI2) 51 %121 uSWBIN
| TN N N T N T S T S TN OO N O T S T N N N T T N T T N T T Y T T
I T T T T T T T T O Y Y Y

This LOCAL control record format must be
used if LOCALSs are to be specified with the DUP
operation STORECI.

No embedded blanks are allowed in the LOCAL
control record.

*NOCAL

NOCAL (load-although-not-called) subprograms are
subprograms specified by the user to be included in
the core load, even though they are not called.
They are specified on NOCAL control records using
the same format that applies to LOCAL control
records except that *NOCAL is used in place of
*LOCAL.

Rules for LOCAL and NOCAL Usage

The user must observe the following rules in the
usage of LOCAL and NOCAL control records:

e A subprogram cannot be specified as a LOCAL
subprogram if it causes another subprogram,
also specified as a LOCAL subprogram in the
same mainline program, to be called. For ex-
ample, if A calls B and B calls C, and Ais a
LOCAL subprogram, neither B nor C can be
specified as a LOCAL subprogram for the same
mainline program. This restriction can be avoided
by using the LOCAL-calls-LOCAL option (see '//
XEQ control record™ and "Programming Tips and
Techniques').

e If a subprogram is specified as a LOCAL sub-
program and system overlays (SOCALs) are
employed, the subprogram is made a LOCAL
subprogram, even if it would otherwise have
been included in one of the SOCALs.

® If a subprogram is specified as a LOCAL sub-
program, it is included as a LOCAL subpro-
gram in the core image program even if it is
not otherwise called.

Monitor Programs 23

e The information on all the LOCAL control re~
cords for an execution may not exceed M+2(C+1),
where M is the number of mainlines and C is the
number of commas. This restriction also
applies to NOCAL control records.

e Only subprograms types 3, 4, 5 and 6 can be
named on LOCAL and NOCAL control records.
Subprogram types 3 and 5 are referenced by
LIBF statements, types 4 and 6 with CALL
statements. Types 5 and 6 are ISSs; types
3 and 4 are subprograms. See Appendix C
for a description of subprogram types.

e Conversion tables, e.g., EBPA, HOLTB, may
not be used as LOCALs.

*FILES

By means of FILES control records the file num-
bers specified in FORTRAN DEFINE FILE state-
ments or in Assembler FILE statements are equat-
ed to the names of Data Files stored in the User
and Fixed areas. FILES control records may also
be used to define Data Files in Working Storage
other than the master cartridge. All the User/
Fixed Area files to be used by all the core loads

in an execution must be defined in the FILES con-
trol records following the XEQ Monitor control
record initiating the execution. All the files thus
defined are available to each core load in the exe-
cution.

When Data Files are equated in a program stored
in DCI, successful execution of this program re-
quires that all cartridges on which these files are
stored must be in the same condition and on the
same logical drives as when the STORECI occurred,
This is necessary since the Core Load Builder
places an absolute sector address, including the
drive code, into the file table for each equated file.

The format of the FILES control record is as
follows.

[t 22 ¢35 67 s v wrinnuiswiiisneaznnsosnnsgninnusu Ao docsasssss

ol E),

111 L1l [

111 L1l |

Ll Ly

1 1

L114]

Ll 1l L1t

1
1
Ll
11
1l
1l
11

1
1
L1t
1
2

ALy L1 L

24

where

FILEL1 through FILEn are the file numbers
specified in the FORTRAN DEFINE FILE
statements or Assembler FILE statements.

NAME1 through NAMEn are the names of Data Files
already stored on disk. If the name is omitted

(2 commas are required in the control record for-
mat), the file is placed in Working Storage on the
specified cartridge.

CAR1 through CARn are the IDs of the cartridges
on which the respective Data Files are found. If
the cartridge ID is omitted, it is assumed that the
corresponding Data File has been defined on the
master cartridge.

Continuation of FILES control records may be in-
dicated by a comma following the last file defini-
tion on the control record, as follows:

[V 2 3 45 ¢ 7 8 9 1011 1213 14 151617 18 19 20 21 22 23 24 25 26 27 26 29 30 31 % 33 34 35 :

gl 11U 1) 111y

bl SN TN T T N T T T N N Y T T T A T N O O OO0

.ll]lllllllllllllIIIIIIIJIIIIlllllll

NN TS U N N U U U N T T T Y T T T T O 0 M0 A O OO O A O

Iﬂmmmnmmmwu;u
b S N N T N T Y OO O 0 U N N T T N T A T (N N T T O I T Y O |

The continuation comma may appear only immediately
after a right parenthesis.

No more than 159 files may be equated during an
execution.

No embedded blanks are allowed in the FILES
control record.

*G2250

G2250 is the name of the supervisor control record
which is used to give the user graphic capabilities.
The G2250 control record causes the Graphic Sub-
routine Package (GSP) communication module
(GCOM) to be included in the core load immediately
following the mainline program. (See IBM 1130/2250
Graphic Subroutine Package For Basic FORTRAN IV,
Form C27-6934, for instructions on properly
loading the mainline program.) Other supporting
subroutines are also loaded into this area depending
on the arguments described below. The format of
the G2250 control record is:

123456 78 910111213141516171819 2021 2223 24252627 28 29 30 31 32 33 34 353637 3839

*&z.;mwa NNNNN e
*GZZ‘SMLMNE e

et st M G " Abdd 4 d My

where MLMNE is the mainline program to be
executed. If the mainline program is executed
from working storage, the mainline name must
be omitted. The 1130/2250 user must enter a
G2250 control record for each program using GSP
to which he desires to link.

ggiﬁmn Contents Function

1-11 #G2250MLMNE | Specifies graphic support is required
for the named mainline program.
Loads GCOM immediately after the
mainline program.

13 U The character stroke subroutine con-
taining upper case, numeric, and special
characters is loaded.

blank The character stroke subroutine con-
taining upper case, lower case, numeric,
and special characters is loaded.

N No character stroke subroutine is loaded.

15 blank The scissoring subroutine is loaded.

N The scissoring subroutine is not loaded.

17 blank The ICA area expansion subroutine is
joaded.

N The ICA area expansion subroutine is
not loaded.

19 blank The index controlled entity subroutine
is loaded.

N The index controlled entity subroutine
is not loaded.

21 blank The level controlled direct entry sub-
routine is loaded.

N The level controlled direct entry sub-
routine is not loaded.

Information concerning the use of GSP subroutines
as LOCALs and core storage layout requirements
can be found in IBM 1130/2250 Graphic Subroutine
Package For Basic FORTRAN IV, Form C27-6934,

*EQUAT

With the EQUAT control record the user specifies that
subroutines will be substituted during the building of a
core load. The format of the control record is as
follows:

*EQUAT(SUB1,SUB2), ... (SUBN,SUBM)

where

SUBL is the na me of a subroutine which the Core
Load Builder replaces with the subroutine SUB2 during
the building of a Core Load.

Note that in the example given below the substitution
of SUB2 for SUBL1 is also accomplished in the
*STORECI operation.

2 4 6 8 10 12 14 16 18 20 22 24 50 62 64

llZ]lILQQllllllllllllllLllLAJ_J__L—L—

- NI I I AT A R S

RS W N T W W S0 U U W A S 00 WL S 1O W S VO S S U S0 R S S S O |
LT NN I 0 B W U U S A U U U S S B B0 B0 S N U AR R SR i
[/ XKEQ MANVMN 4 0y v v i)
.lﬂlillllllLlll‘,LALlJlllllJllll
.LLlLllllll!gtLAlAAlLllll Y W Y
‘llllgul?lllllllll!lllllllll N |

KSTORECT, , » WS VAN MAVN 2o]

The EQUAT control record may also be used to sub-
stitute symbloic names in DSA statements. (Assem-
bler programs only,) In this instance what has been
said above concerning subroutine names is also
applicable to symbolic names in DSA statements.

More than one control record can be used so long
as the exact number of control records used is
punched in the Job Monitor Control (See // Job).

In the Programming Tips and Techniques section,

information is found on how the EQUAT function is
used. (S8ee USE OF THE EQUAT RECORD).

Monitor Programs 25

SUPERVISOR CORE DUMP PROGRAM

The DUMP program provides the user with a hexa-
decimal printout of the contents of core storage. The
calling sequences for the DUMP and PDMP state-
ments are contained in the Assembler language man-
ual (Form C26-5927), FORTRAN programs access
the DUMP Program through the FORTRAN statement
CALL PDUMP (See FORTRAN language manual,
Form C26-3715).

Terminal and Dynamic Dumps

The DUMP entry point ($DUMP) in the Skeleton Sup-
ervisor (and thus the DUMP program in the Super-
visor) can be entered (1) by a BSI to the DUMP entry
point, (2) by a manually executed transfer to the

25.1

DUMP entry point plus 1, or (3) by a branch to loca-
tion zero, which contains an MDX to $DUMP+1.

When the DUMP entry point is entered, a dump
of the area of core storage bounded by the limit para-
meters is given in hexadecimal format. Execution of
the core load in progress then resumes at the loca-
tion following the last parameter of the call to the
DUMP entry point.

When $DUMP+1 is entered, a dump of the entire
contents of core storage is given in hexadecimal
format, The DUMP program then executes a CALL
EXIT, thereby terminating the execution of the core
load in progress.

A portion of a core dump is printed below.

ACCUMULATOR 4000

ACDR

0000
0010
0020
0030
0040
0050
0060
0070
0080
0090
00AQ
0080
00CO
0CDO
00EQ
0Q0F0
0100
0110
012¢C
0130
0140
0150
0160
0170
0180
0190
ClAQ
0180
ol1Co
0100
ClEO
01FQ
0200
0210
0220
0230
0240
0250
0260
0270
0280
0230
02A0
0280
02C0
0200
02E0
02F0
0300
0310
0320
0330
0340
0350

~
o~

TEBO
TECO
TEDO
TEEO
TEFO
7F00
TF10
TF20
TF30
7F40
750
TF60
1F70
1F80
TF90
TFAO
7FBO
TFCO
7FDO
TFEO
TFFO

26

*%%(0

703F
0000
4DCC
Q000
7400
0032
OOEE
€000
0C00
008D
cooc
0c00
4CCo
6109
0200
OGEF
6AED
6600
o198
5002
0400
0028
OCOE
4828
D23A
1C02
4810
4808
C247
0Co00
4480
7F33
0395
4480
4400
7CBO
4480
4C3F
6A5D
4C18
703C
0254
6A01L
7CB3
0C04
G398
0336
D845
D835
4C20
0398
40C5
4040
TBC3

4480
7926
4480
80AC
T0FD
D116
0000
0000
0000
0000
0000
ooco
0150
0oco
05A3
05F8
0Co00
coco
C000
1C64
0000

k%]

FEFB
5540
002
0000
0032
70FD
70F0C
0000
0000
000
€C00
G000
0083
0810
CFCO
FFOA
COFO
GOF2
7000
5004
0141
7034
800k
7006
EA43
4828
7002
7094
4820
€000
7089
6F00
4400
7088
C44c
928
7080
6600
7201
028D
D460
6105
c700
4C80
4CL8
c7co
7€0%
C84A
(83t
0315
4400
D5C4
4040
coc2

7083
6500
7CBA
1800
€091
83C0
00cu
6CCo
0CCo
ccco
ceou
0l1i0
0000
ccoo
CO0b
0030
0000
0000
000U
0000
0000

EXTENSION 78BD3

*EE2

0000
FFEF
4400
cool
TOFC
C880
4102
€000
30C0
3000
0000
€000
€001
1149
0000
0048
DOF4
0819
0001
FECO
0000
coD9
D018
ciol
D239
7088
F251
8440
4213
0000
0006
045A
0249
4480
6600
CAGL
€928
0378
6A13
4480
0398
€30A
032F
c2A9
0209
TF70
1810
0845
0835
colc
C3A7
4006
D3CS
C140

7414
1EA0
0200
1010
D116
D117
0000
0000
0000
D)
€000
1110
0000
€0C0
C568
0230
0000
coco
0000
€000
0040

*%x3

0000
c0co
COF2
0000
08D6
6580
0000
0000
4C80
4CCO
ccec
0051
9400
4580
0300
7400
7053
00C9
0140
0001
FFFF
1800
8OCA
80C2
EASO
1008
8230
DA3C
cA32
coco
6780
6F00
€302
7085
035A
€303
DA13
403C
1810
7088
70DE
4008
£7C0
€700
€700
180C
D400
6600
66C0
72FD
c40C
€640
E340
4C40

p8cs
cs8Bs
C0B4
ABAA
830¢C
4480
cooe
cgco0
cooc
1052
2222
0000
0000
0000
colo
0035
0000
0000
0000
0C00
COF2

TS

OFFA
0327
140C
0000
6902
C039
€000
0000
co81
Cco9l
0658
6906
002A
TFE8
0000
00EE
4C00
4850
OFFA
0080
cCcoc
c10l
D033
7401
G247
4828
CA34
4830
D9CO
0000
1FFC
02C0
1804
4480
6317
4480
4480
4480
D400
71925
02EC
740C
7925
TF68
TF6B
100C
0386
032F
032F
TOFA
0390
C4E4
78C3
1BE4

28CF
2001
DOAC
8115
o117
7087
Q000
C406
0000
ceco
3333
€000
ccoo
[elale]}
03C0
€230
0000
co00
0000
€000
7803

XR1 7FAQ

*¥ %5 *kkH
0140 0080
0008 Ccol
COEE 70FD
GC00 Coo00
C480 003F
C101 1800
0000 0000
0000 FFFF
C000 3000
0lbe CCOO
0658 0658
6A07 2807
D818 280E
2C00 6500
C000 ccoo
70FC 7002
ClBE 6908
T0EE C80D
0140 G004
€600 CO008
CC00 1810
1803 7040
80D6 8008
Clé6F 7201
D237 EA42
708C Cl01
4213 CA38
1810 824F
C23C 4808
0C00 €000
18A0 CFQO
€120 4C20
4C20 0Q20C
7DBS 4480
4C79 4480
7080 (€928
7088 7925
7085 6215
C39D 4400
6600 7792
613C C008
02A4 171FF
73FF 70FA
1004 1804
1004 1804
EC8C (2BE
4C00 O0lF1
630A 40A8
€30A T0EF
COol9 4C20
4Cl8 0287
C4D7 C603
C9C4 D540
D3CS5 E340
690C 6A09
4C80 7EBC
6BAD C301
9CA9 4C08
4480 7CBT
Cl12E 4C98
0000 0000
3040 00620
0000 0000
0000 0CO00
000F OARB
CCO00 FFFE
0020 CCGCO
ccoo oo00C
0015 0461
0037 C248
CCo0 7803
0000 0000
G000 0©coo
€000 (CO0COo
BB 0802

XR2 7803
*X%7

€000
TFAQ
T0F4
¢oocC
ooo1
c100
0000
0000
4C80
0000
0000
080A
690F
TFAQ
G000
00BA
0B1E
Dg00
950C
5000
DOA6
7401
80C7
10FS
8247
9400
DA34
D100
70€9
0000
0142
0307
ccoo
7085
7088
D206
4480
6E0C
03A7
€202
0500
TOFA
4C80
4Cls
9480
4C00
4480
4480
6827
0318
4480
C5€3
4040
4040

680¢€
435E
EOB3
TEEB
C12E
7€EDD
0000
0000
€000
00Q0¢
3333
0C00
ogoc
0060
co18
0039
7088
0000
0000
0000
7803

LY

TAED
D900
783F
7014
C8F3
D8BB
0000
0802
008s
0000
0000
4400
6A10
6600
€000
7015
6500
T4FF
0004
OFF8
T4FF
0032
D006
6600
024D
0094
4213
CA36
7500
0000
633C
c11D
0342
4480
7925
1800
7085
039F
1000
8400
7925
€003
029F
0209
02BE
0LFF
7085
7088
4400
c112
7088
4040
SBC6
786

6500
4480
0115
4480
4C98
1010
0000
0200
Cco¢o
1D52
0000
00Co
Q000C
0000
03Co
Qo00¢
0000
0000
0000
008D
110E

XR3 0000

*2%9

7C56
703F
300C
ccco
4460
6500
0000
occl
€Co0
0C00
6co0
OCF7
08le
7803
6cco
69CF
TFAD
00EE
$5CC
01cCC
0032
6500
62FD
00F2
EA4B
4818
€231
DA34
0140
ocoo
6FCC
4c28
£Co0
7085
405A
D207
4480
€400
ccoe
039¢C
TIFF
DCOA
0203
c7¢0
D400
c193
4480
7925
044C
9202
7925
4040
D7C1
D3CS

TFAQ
7CBA
4820
7CB4
TECF
D12E
0cCco
0000
ccol
ococ
0¢o0
0CeGo
0C00
0coo
001C
ccoo
CCo0
ccco
0C00
0080
7091

LE LT

0083
4000
4C80
1810
GOF2
o10C
ccoo
0000
3000
0140
¢Coo
6500
1002
€803
€000
6410
6600
703€
0122
Q701
1000
C004
6980
€230
D238
7014
0480
cio1l
€900
CCAO
1925
0283
TDA4
4480
6600
€305
7085
0398
0390
0400
T0FC
4480
6780
TF68
0386
4C10
7085
C845
6700
D112
7203
D3Cs
C440
E340

4C80
0100
Cc300
0050
1010
4F00
0C00
Geoo
0001
0000
0co0
cooo
¢o0C
0000
C5A3
0000
ccoo
€000
G004
0080
7A06

CVERFLOW OFF

3T

0000
7803
0028
7012
COFO
COFE
0000
(o] o]¢]
4C80
0000
0000
TFAQ
4C10
4CCo
0000
1008
7803
cg8l2
9600
0007
708C
€900
Clo01
£249
CA3C
1893
0198
EASO
DA32
3333
6300
c700
7004
7085
1925
4480
4480
D400
0916
G39C
6500
7088
TFFC
4C00
cé600
02€7
4098
pcoo
7925
1810
C202
E361l
4040
£2C3

7€B2
COFB
4C30
C89%6
D12E
0002
0000
0000
010A
0000
0000
o118
0009
Cc000
001F
0000
0000
0000
0568
008D
0640

*%x%C

00C4
00F2
003F
0001
7001
1890
ccoo
0000
0089
0000
¢CCOo
6600
00DO0
00C4
0Co0
D03C
4C80
COla
9400
000A
COE3
08C?
EOCB
D250
0A3A
180F
9101
D101
CA3C
016E
C193
TF70
ccoo
€400
6780
7080
7085
039C
4480
7203
TFAO
7925
€Ccoo
OlFF
00F8
7301
C110
7DA4
6680
D400
4C20
CeD3
78C6
€309

TE4F
0002
TEEQ
4400
4F00
0000
0000
occo
7800
0C00
0140
0000
0600
0000
05A3
0000
0coo
0000
0461
008D
1782

*2%D

0091
7400
0150
0004
COFO
4400
0000
0000
0000
0000
0000
7803
4480
4001
€C00
1800
00F7
4293
9781
009F
70CF
0800
D101
€400
D2E8
1002
4C20
4213
0900
0100
4c28
4C18
033
0386
TFFC
928
4036
6680
7087
T4FF
4C80
4C80
0394
€400
8400
6F00
4c28
4480
7FB4
0390
02E7
CSE3
D7C1
4005

6700
cos9
4480
00F2
0002
0000
0000
FFF6
0Co0
0106
0000
000C
0000
0000
0024
0000
0000
0000
T0FD
7C56
7925

CARRY

*akE

8C00
COEE
0cco
FEFF
poc7?
Q0F2
€000
0000
3000
0600
6cco
2000
0o02¢
4000
0011
D058
6500
1810
0EBA
FFFB
CoE8
1810
5400
0C9F
4828
EA3A
o116
c24D
108F
03¢0
OLF1
02€7
DCOO
4418
€302
DAOD
6600
TEFC
c4C0
039F
0284
0290
0800
7788
0398
0336
02FF
7DRD
7201
c112
70F2
CeD3
C440
D648

0000
7005
7084
7400
70FD
0000
0070
0coo
0000
0Coo
00C0
0000
0C00
0C00
0500
0000
cceo
0000
003F
TAEA
1985

OFF
*&&F

0000
TO0FD
0000
0000
7400
7400
ccoo
0000
4C80
3C00
0000
c802
FFFE
7803
0000
6211
0004
D480
Ol4l
9680
4400
1084
00A4
EA4E
708C
1800
CA3C
0235
0000
001C
6780
0400
7DA4
03€e7
4480
€306
0371
7206
039D
7001
4040
02F7
4480
6700
D400
T4FC
C84A
C83E
€202
D400
6000
CS5€3
4040
4040

=

6600
435€
005C
00EE
coso
0000
0001
0000
0000
€000
0000
€000
€000
cooo
0029
6000
0000
0000
0000
TAEA
7963

DISK UTILITY PROGRAM (DUP)

The Disk Utility Program (DUP) provides the user
with the ability to perform the following operations
through the use of control records.

e Store Disk System Format (DSF) programs, Disk
Core Image (DCI) programs, and Data Files on
the disk

o Make the DSF programs, DCI programs, and
Data Files on the disk available in printed,
punched card, or punched paper tape output

o Remove DSF programs, DCI programs, and Data
Files from the disk

e Determine the status of disk storage through a
printed copy of LET/FLET

o Modify the system
e Perform other disk maintenance functions
DUP control records are described in the section of

this manual entitled DUP Control Records. DUP
error messages are listed in Appendix A,

GENERAL FLOW

DUP is called into operation when the Supervisor
recognizes a DUP Monitor control record (// DUP).
The control portion of DUP is brought into core to
read the next record from the input stream, which
should be a DUP control record (*...). The DUP
control record is printed and analyzed. LET is
searched for the program specified, and switches
and indicators are set in accordance with the infor-
mation obtained from the control record. The DUP
program required to perform the requested operation
is then read into core from the disk and given control.
The DUP program performs its assigned tasks,
directed by the switches and indicators that were set
according to the information on the DUP control rec-
ord. Upon completion of its tasks, the DUP program
prints a message and returns control to the control
portion of DUP. The control portion indicates the
completion of the DUP operation with a printed mes-
sage and reads the next record from the input stream.
If the record read is a Monitor control record other
than comments, control is returned to the Supervisor
to process the record. If the record read is a DUP
control record, DUP maintains control and reads the
next record. Comments Monitor control records are
simply printed; blank records are passed.

INFORMATION TRANSFER AND FORMAT
CONVERSION

Table 2 summarizes the DUP operations that transfer
information from one area or medium to another area or
medium. In addition, the format conversions made dur-
ing the transfers of information are shown. The acronyms
for the various formats are described below. The formats
are described in Appendix C.

Acronym Format
DSF Disk System Format
DDF Disk Data Format
DCI Disk Core Image Format
CDS Card System Format
CDD Card Data Format
CDC Card Core Image Format
PTS Paper Tape System Format
PTD Paper Tape Data Format
PTC Paper Tape Core Image Format
PRD Printer Data Format

The user is advised to pay particular attention to Table 2
when performing save/restore operations, e.g., dumping
to cards and later using theé cards to store the information
back on the disk. Note that there may be more than one
way to dump and store data/programs, as in dumping a
DCI program to cards and later storing it back to disk.

ALTERING LET/FLET

The two tables LET and FLET constitute a directory
to the contents of the User and Fixed areas on disk.
The allocation of disk storage and, correspondingly,
the contents of LET/FLET can be altered by the user
only through the use of DUP.

Before storing any DSF program, DCI program,
or Data File, DUP searches LET/FLET to ensure that
the name of the DSF program, DCI program, or Data
File does not already appear in LET/FLET on the
cartridge specified on the DUP control record. (If
no cartridge is specified, the LET/FLET of every
cartridge specified on the last JOB record is searched.)
Disk storage is allocated to the DSF program, DCI
program, or Data File and a corresponding entry is
made in LET/FLET only if the name is not found.

When dumping or deleting a DSF program, DCI
program, or Data File from the User/Fixed Area, the
DSF program, DCI program, or Data File is located
through LET/FLET using the name specified by the
user in the DUP control record.

A LET/FLET printout and description is contained
in Appendix G.

DUP CONTROL RECORDS

DUP control records call IBM-supplied programs that
perform operations involving the disk such as storing,
moving, deleting, and dumping data and/or programs.
DUP control records generally follow the format
described below. Note that all fields in the control

Monitor Programs 27

Table 2, Summary of DUP Data Transfer Operations*

wron "
SEROM” Area TO™ Areo Symbols, with Formats
Symbols, with
Formats uA FX ws <o o7 R
DSF DDF] DDF el DSF DOF ol cDs coo ¢oe PTS PID PTC PRD
DSE DUMP | DUMPDATA DUMP | DUMPDATA DUMP | DUMPDATA oump
DUMFPDATA
buMP
DUMP DUMP DUMP
uA DOF DUMPDATA DUMPDATA DUMPDATA DUMPDATA
e DUMPDATA | pump DUMPDATA | DUMP DUMPDATA | Dump | DUMP
U DUMPDATA
DOF DUMP DUMP DUMP DUMP
DUMPDATA DUMPDATA DUMPDATA DUMPDATA
FX
oa DUMPDATA DUMP DUMPDATA DUMP DUMPDATA Dump bump
DUMPDATA
STORE DUMP
DSF STOREMOD | STOREDATA | STORECI | STOREDATA | STORECI DUMP | DUMPDATA DUMP | DUMPDATA OUMPDATA
ws ooF STOREMOD STOREMOD DUMP DpUMP DUMP
STOREDATA STOREDATA DUMPDATA DUMPDATA DUMPDATA
pct STOREDATA |STOREMOD STOREMOD bume
v REDATAC| STOREDATA [sropepaTaC DUMPDATA | DUMP DUMPDATA | DUMP | DUMPDATA
cDs STORE | STOREDATA | STORECI |STOREDATA | STORECI STORE | STOREDATA
c cop STOREDATA |STOREDATACI| STOREDATA |STOREDATACI| STOREDATA [STOREDATACI
coc STOREDATA [STOREDATACI| STOREDATA [STOREDATACI STOREDATA |STOREDATACI
PTS STORE | STOREDATA | STORECI |STOREDATA | STORECI STORE | STOREDATA
PT PTD STOREDATA [STOREDATACI| STOREDATA {STOREDATACI! STOREDATA [STOREDATACI:
PTC STOREDATA |STOREDATACI| STOREDATA |{STOREDATACI| STOREDATA |STOREDATACIH|

* For this chart DUMPDATAE and STOREDATAE are the same as
DUMPDATA and STOREDATA respectively,

record except the count field are always left-justified
and that unless otherwise stated, all fields are re-
quired.

Column 1. Column 1 always contains an *(asterisk).

Operation Field. Columns 2 through 12 (21 in the
case of the DEFINE operation) contain the name of

the desired DUP operation. Columns 2 through 6
identify the basic operation (STOREDATACI); col-
umns 7 through 12 (or 21) identify the extended oper-
ation (STOREDATACI). Where shown in the control
record format, a blank character (b) is required with-
in or following the operation name.

FROM and TO Fields. Columns 13 and 14 contain the
"FROM' symbol, that is, the symbol specifying the
disk area or I/0 device from which information is to be

28

obtained (the source).
"TO" symbol, that is, the symbol specifying the disk
area or 1/0 device to which information is to be trans-

ferred (the destination),

below.

Symbol

UA
FX
WS
CD

PT
PR

User Area, Disk

The symbols that must be
used as the "FROM'" and ""TO'" symbols are shown

Disk Area or 1/0 Device

Fixed Area, Disk
Working Storage, Disk
If the 1134 has
been defined as the principal input
device, CD is equivalent to PT.

Card I/0 device,

Paper Tape

Principal print device

Columns 17 and 18 contain the

When used, the symbols UA, FX, and WS each
specify an area on disk but do not identify the cartridge
on which the area is found.

Name Field. Columns 21 through 25 contain the name
of the DSF program, DCI program, or Data File in-
volved in the specified DUP operation. The name may
consist of up to five alphameric characters, and
must be left-justified within the field. The first
character must be alphabetic (A-Z, $), and no em-
bedded blank characters are allowed.

When referencing a DSF program, DCI program,
or Data File already stored on disk, the name must
be an exact duplicate of the LET/FLET entyy.

Count Field. Columns 27 through 30 contain the count,
The count is always a right-justified decimal integer.
The count field is defined in the individual control rec-
ord formats for those operations that require it.

FROM and TO Cartridge ID Fields. Columns 31
through 34 contain the cartridge ID of the cartridge
containing the disk area from which information is to
be obtained, that is, the "FROM" (source) cartridge
ID. Columns 37 through 40 contain the cartridge ID
of the cartridge containing the disk area to which in-
formation is to be transferred, that is, the "TO"
(destination) cartridge ID.

Either or both of these cartridge IDs may be omit-
ted. If a cartridge ID is omitted, and the correspond-
ing FROM or TO field is the User or Fixed Area, a
search is made of the LET/FLET on each cartridge
specified on the JOB record, starting with the cartridge
on logical drive zero (the master cartridge) and con-
tinuing through logical drive four. If the correspond-
ing FROM or TO field is Working Storage, then a
default to System Working Storage is made. If a
cartridge ID is specified, the LET/FLET on the
specified cartridge only is searched, or System Work-
ing Storage is used.

Use of the "FROM" and "TO" cartridge IDs makes
it possible for DUP (1) to transfer DSF programs, DCI
programs, and Data Files from one cartridge to another
without deleting them from the source cartridge, and
(2) to operate on a DSF program, DCI program, or
Data File even though the same name appears in the
LET/FLET on more than one cartridge.

Unused Columns. All unused columns between columns
2 and 40 must be left blank. Columns 41 through 80 are
ignored by DUP and are available for user's remarks.

DUP Operations and Control Record Formats

The following are descriptions of the various DUP
operations. FEach description consists of (1) a brief
description of the processing performed, (2) a break-

down of the control record for the operation, and (3) a
table of the transfers and format conversions possible
in the operation.

*DUMP

The DUMP operation moves information from the User/
Fixed Area on disk to Working Storage or makes infor-
mation from the User/Fixed Area and Working Storage
available as card, paper tape, or printed output. The
print format is illustrated in Appendix C.

The movement of DSF programs from the User/
Fixed Area to the output devices is accomplished in
two phases; that is, the information is first moved to
System Working Storage and then to the output device.
Hence, information residing in Working Storage on the
cartridge defined in the JOB Monitor control record
by the Working Storage ID (see // JOB under Monitor
Control Records) is destroyed during the DUMP oper-
ation. Data Files and DCI programs are moved directly
from the User/Fixed Area to the output devices.

The number of disk blocks to be dumped is obtained
from the LET/FLET entry, or, if the dump is from
Working Storage, from the appropriate Working Storage
Indicator in DCOM.

The format of the DUMP control record is as follows.

Card

Column Contents Notes

1-6 *DUMPbL
7-12 Reserved

13-14 "FROM" See chart below, If the dump is from
symbol Working Storage and the corresponding
Working Storage Indicator is zero, an
error message is printed (see DUP
error messages, Appendix A).
15-16 | Reserved

17-18 "TO" symbol Sec chart below. If the dump is to
cards and if a 1442-6 or 1442-7 is
utilized, each card is checked to see
that it is blank before it is punched.

If a non-blank card is read, the

System will WAIT at $PRET with /100F
displayed in the Accumulator after the
appropriate error message has been
printed (see DUP Error Messages,
Appendix A).

19-20 | Reserved
21-25 | Program name The name is required except when the
dump is from Working Storage to the

printer.
26-30 Reserved
31-34 | "FROM"
© cartridge

ID
35-36 Reserved
37-40 | "TO"

cartridge

D
41-80 | Not used

Monitor Programs 29

The following chart is a summary of the information
transfers and format conversions performed by DUMP.

Possible Sources, Possible Destinations,
Including Formats Including Formats
UA(DSF) WS§(DSF)
UA or WS (DSF) CI(CDS)
PT(PTS)
PR(PRD)
UA or FX (DDF) WS(DDF)
UA, FX, or WS (DDF) CD(CDD)
PT(PTD)
PR(PRD)
UA or FX (DCI) WS(DCI)
UA, FX, or WS (DCI) CIXCDC)
PT(PTC)
PR(PRD)
*DUMPDATA

The DUMPDATA operation moves information from
the User/Fixed Area on disk to Working Storage or
makes information from the User/Fixed Area and
Working Storage available in card, paper tape, or
printed output. The print format is similar to that

of DUMP (see Appendix C). The DUMPDATA oper-
ation differs from the DUMP operation in that the in-
formation, after transfer, is always in data format,
and the amount of information transferred is dependent
upon the count field of the DUMPDATA control record
rather than the actual length of the program or data.

Information is moved directly from the User/Fixed
Area or Working Storage to the output devices. The
contents of Working Storage are not changed.

The count field (columns 27-30) in the DUMPDATA
control record specifies the number of sectors to be
dumped. This number of sectors is dumped regard-
less of the length of the DSF program, DCI program,
or Data File, as indicated in the LET/FLET entry or
in the Working Storage Indicator.

The format of the DUMPDATA control record is
as follows.

Card
Column Contents Notes

1-10 *DUMPDAT Ab
11-12 Reserved
13-14 "FROM" symbol Sce chart below.
15-16 Reserved
17-18 | "TO" symbol Sce chart below, If the dump is to
cards, and if a 1442-6 or 1442-7 is
utilized, each card is checked to
see that it is blank before it is
punched,

19-20 Reserved
21.25 Program name The name is required except when
the dump is from Working Storage to
the printer,

26 Reserved

{continued)

30

Card
Column Contents Notes

27-30 } Count The count (right justified, decimal)
specifies the number of sectors to be
dumped, The count overrides the
contents of the Working Storage In-
dicator and the disk block count in
the LET/FLET entry,

31-34 | "FROM"

cartridge ID
35-36 Reserved
37-40 wTo"

cartridge ID

41-80 | Not used

The following chart is a summary of the information
transfers and format conversions performed by
DUMPDATA.

Possible Sources, Possible Destinations,
Including Formats Including Formats
UA(DSF) WS(DDF)
UA or WS(DSF) CI{CDD)
PT(PTD)
PR(PRD)
UA or FX (DDF) WS(DDF)
UA, FX, or WS(DDF) CD{CDD)
PT(PTD)
PR(PRD)
UA(DCI) or FX({DDF) WS(DDF)
UA, FX, or W§(DCI) CD(CDD)
PT(PTD)
PR(PRD)
*DUMPDATADBE

The DUMPDATADE operation moves information
from the User/Fixed Area on disk to Working
Storage or makes information from the User/Fixed
Area and Working Storage available in card or
printed output. The DUMPDATADE operation to an
output device differs from the DUMPDATA opera-
tion in that the information on disk, which is assumed
to be in packed EBCDIC form, 40 words per 80 card
columns, is converted to card image format. Thus,
the print-out is one line per source card, 80 posi-
tions, and the card output is an exact, full 80 column
duplicate of the input cards in the corresponding
STOREDATAE operation,

If the destination is Working Storage, no conver-
sion takes place.

Information is moved directly from the User/Fixed
Area or Working Storage to the output devices. The
contents of Working Storage are not changed.

The count field (columns 27-30) in the DUMP-
DATADE control record specifies the number of sec-
tors to be dumped. This number of sectors is
dumped regardless of the length of the Data File,
as indicated in the LET/FLET entry or in the
Working Storagq Indicator.

The format of the DUMPDATADE control record
is the same as that of DUMPDATA except that
col. 11 contains an E.

The following chart is a summarv of the infor-
mation transfers performed by DUMPDATADbE.

Possible Sources Possible Destinations

UA or FX WS
UA, I'X, or WS (@)]

PR_
*DUMPLET

The DUMPLET operation prints the contents of LET
on the principal print device. In addition, the contents
of FLET are also printed on the principal print device
if a Fixed Area has been defined by the user.

If the name of a DSF program, DCI program, or
Data File is specified in the DUMPLET control record,
only the LET/FLET entry corresponding to that name
is printed. If a cartridge ID is specified in the control

record, the LET/FLET on only that cartridge is printed.

If neither name nor cartridge ID are specified, the en-
tire contents of both LET and FLET on each cartridge
specified on the JOB record are printed. A sample

LET/FLET dump and description appears in Appendix G.

The format of the DUMPLET control record is as
follows.

[Card
Column Contents Notes

1-10 | *DUMPFLETDb
11-20 |} Reserved
21-25 | Program name Use of the name specifies that the
FLET entry for that name only is to be
printed,

26-30 | Reserved
31-34 "FROM"
cartridge ID

If an ID is specified, the FLET on
that cartridge only is printed.

35-80 | Not used

Card
Column Contents Notes

1-8 *DUMPLET

9-20 | Reserved
21-25 |} Program name Use of the name specifies that the
LET/FLET entry for that name only is
to be printed,

26-30 | Reserved
31-34 | "FROM"
cartridge ID

If an ID is specified, the LET/FLET
on that cartridge only is printed.

35-80. 1 Not used

DUMPTFLET

The DUMPF LET operation prints the contents of FLET
on the principal print device.

If the name of a DCI program or Data File is speci-
fied in the DUMPFLET control record, only the FLET
entry corresponding to that name is printed. If a
coriridge ID is specified in the control record, the
FLET on that cartridge only is printed. If neither.
name nor cartridge ID are specified, the entire con-~
tents of the FLET on each cartridge defined on the
JOB record are printed. A sample LET/FLET dump
and description appears in Appendix G.

The format of the DUMPFLET control record is
as follows.

*STORE

The STORE operation moves information from Work-
ing Storage to the User Area or accepts information
from the input devices and moves it to Working Stor-
age or the User Area.

All movement of information from the input devices
to the User Area is accomplished in two phases; that
is, the information is first moved to the System Work-
ing Storage and then to the User Area. Hence, infor-
mation residing in Working Storage on the cartridge
defined in the JOB Monitor control record by the
Working Storage ID (see // JOB under Monitor Control
Records) is destroyed during the STORE operation.

Since the User Area and Working Storage are ad-
jacent areas, and since the User Area expands as
needed into what had been Working Storage, DUP
assumes that on any STORE operation to the User
Area, the contents of that Working Storage are des-
troyed. Therefore, the appropriate Working Storage
Indicator is reset to zero following the STORE oper-
ation to the User Area.

DUP makes the required LET entry (or entries) for
each program stored. A LET entry is made for each
entry point in the program. DUP supplies the disk
block count required in the LET entry for the primary
entry point.

The format of the 3STORE control record is as
follows.

Card
Column Contents Notes
1-6 “STORE
7-10 Reserved
11 Subtype (for type See "System Overlays" under Core Load
3.4,5and 7 Butlder,
subprograms only
2 Reserved
(continued)

Monitor Programs 31

Card
Column Contents Notes
13-14 "FROM" symbol If the STORE operation is from Working
Storage and the corresponding Working
Storage Indicator is zero, an error mess-
age is printed (see DUP Error Messages,
Appendix A).
15-16 Reserved
17-18 "TO" symbol See Chart below
19-20 Reserved
21-25 |Program Name The name is required except when the
3TORE operation is to Working Storage.
26-30 Reserved
31-34 J"FROM" cartridge
D
35-36 |Reserved
37-40 |"TO" cartridge
1D
41-80 INot used

The following chart is a summary of the information
transfers and format conversions performed by STORE.

Card
Column Contents Notes
1-10 | *STOREDATA
11-12 Reserved
13-14 | "FROM" symbo! | See chart below.
15-16 Reserved
17-18 "TO" symbol See chart below,
19-20 | Reserved
21-25 Program name The name is not required when the
STORE operation is from cards or
paper tape to Working Storage.
26 Reserved
27-30 | Count If the source is Working Storage, the
count is the number (decimal) of
sectors of data to be stored, This
count overrides the contents of the
Working Storage Indicator, If the
source is cards, the count is the num-
ber (decimal) of cards to be read. If
the source is paper tape, the count is
the number (decimal) of paper tape
records to be read.
31-34 | "FROM"
cartridge ID
35-36 Reserved
37-40 | "TO"
cartridge ID
41-80 | Not used

The following chart is a summary of the information
transfers and format conversions performed by
STOREDATA.

Possible Destinations,
Including Formats

Possible Sources,
Including Formats

Possible Sources,
Including Formats

Possible Destinations,
Including Formats

WS(DSF) UA(DSF) WS(DSF, DDF, DCI) UA or FX(DDF)
lfq’?((g?ss)) UA or WS(DSF) cDp(CDS, CDD, CDC) UA, FX, or WS(DDF)
PT(PTS, PTD, PTC) UA, FX, or WS(DDF)
*STOREDATA

The STOREDATA operation moves information from
Working Storage to the User/Fixed Area or accepts
information from the input devices and moves it to
Working Storage or the User/Fixed Area. DUP as-
sumes that the input to the STOREDATA operation is
in data format; the output from the STOREDATA oper-
ation is always in data format.

Information is moved directly from the input devices
to the User/Fixed Area. The contents of Working Stor-
age are not changed except that when storing to the
User Area, the contents of Working Storage on that
drive are destroyed since the User Area and Working
Storage are adjacent areas,

DUP makes the required LET/FLET entry. The name
specified on the STOREDATA control record is the name
used to generate the LET/FLET entry and is the name
that must be used in all subsequent references to the
Data File. DUP supplies the disk block count required
in the LET/FLET entry if the source is cards or paper
tape. If the source is Working Storage, the sector count
specified in the STOREDATA control record is used.

The format of the STOREDATA control record is
as follows.

32

*STOREDATAE

The STOREDATAE operation moves information
from Working Storage to the User/Fixed Area or
accepts information from the card reader and moves
it to Working Storage or the User/Fixed Area. The
source cards are converted to packed EBCDIC for-
mat, that is two columns per word or 8 cards per
sector. Thus, the input is assumed to be in the
1130 character set, and in the card code.

When the source is Working Storage, no conver-
sion takes place.

Information is moved directly from the input device
to the User/Fixed Area. The contents of Working
'Storage are not changed except that when storing to
the User Area, the contents of Working Storage on
‘that drive are destroyed since the User Area and
Working Storage are adjacent areas.

DUP makes the required LET/FLET entry, The
name specified on the STOREDATAE control record
is the name used to generate the LET/FLET entry
and is the name that must be used in all subsequent
references to the Data File, DUP supplies the disk
block count required in the LET/FLET entry if the
source is cards or paper tape, If the source is Work-
ing Storage, the sector count specified in the STORE -
DATAE control record is used. '

Note that the corresponding dump operation, DUMP -
DATADE, transfers a whole number of sectors to cards,
To avoid not wanted output, the number of cards stored
should consequently be a multiple of 8 (blank cards can
be added for that purpose).

The format of the STOREDATAE control record is
the same as that of STOREDATA except that col, 11
contains an E,

The following chart is a summary of the infor-
mation transfers performed by STOREDATAE.,

Possible Sources Possible Destinations

ws UA or FX
CD UA, FX, or WS
*STOREDATACI

The STOREDATACI operation moves information from
Working Storage to the User/Fixed Area on disk or
accepts information from the input devices and moves
it to Working Storage or to the User/Fixed Area. If
the input is from cards or paper tape, the STORE-
DATACI operation assumes the input format to be

card or paper tape cotre image format, If the input

is from Working Storage (the information has been
previously dumped to Working Storage or stored in
Working Storage from an input device), the appropyiate
Format Indicator must indicate Disk Core Image format
(DCI); otherwise, no STORE operation is performed.
The output from the STOREDATACI operation is always
in Disk Core Image format.

All movement of information from the input devices
to the User/Fixed Area is done directly; that is, the
transfer is not made via Working Storage. Hence, the
contents of Working Storage are not changed by the
STOREDATACI operation when storing information from
an input device to the Fixed Area. Note, however,
that when storing to the User Area, the contents
of Working Storage on that drive are destroyed,

DUP makes the required LET/FLET entry. The
name specified on the STOREDATACI control record is
the name used to generate the LET/FLET entry and is
the name that must be used in all subsequent references
to the core image program., DUP computes the disk
block count required in the LET/FLET entry from the
count specified in the STOREDATACI control record.

The format of the STOREDATACI control record is
as follows.

Card

Column Contents Notes

1-12 | *STOREDATACI

13-14 | "FROM" symbol | See chart below,
15-16 | Reserved
17«18 | "TO" symbol See chart below,

19-20 | Reserved

21-25 | Program name If the STORE operation is to Working
Storage, the name is not required,

26 Reserved .

27-30 | Count The count (right justified, decimal)
is the mumber of records in the core
image input, The count is not re-
quired if the source is Working
Storage,

31-34 "FROM"

cartridge 1D
35-36 | Reserved
37-40 | "TO"

cartridge ID
41-80 | Not used

The following chart is a summary of the
information transfers and format conver-
sions performed by STOREDATACI.

Possible Sources
Including Formats

Possible Destinations,
Including Formats

WS(DCI) UA or FX(DCI)

c{CDe, CDD) UA, FX, or WS(DCI)

PT(PTC, PTD) UA, FX, or WS(DCI)

*STORECI

The STORECI operation obtains an object pro-
gram from Working Storage or from an input de-
vice, converts it into a core image program using
the Core Load Builder, and stores the core image
program into the User/Fixed Area.

The Core Load Builder is fetched to build a core
image program for the STORECI operation as if
execution were to follow; that is, that portion of
the core load residing above core location 4096
is placed in the System CIB, and LOCALs and/or
SOCALSs are placed in System Working Storage.
The STORECI operation stores all these portions
of the core image program into the "TO"
(destination) area.

The DCI program stored in the User/Fixed Area
includes the Transfer Vector built by the Core
Load Builder; however, neither the disk I/0
subroutine nor any COMMON area is included.
Figure 5 shows the layout of a DCI program as it
is stored in the User/Fixed Area. No scale is
intended in this illustration.

DUP makes the required LET/FLET entry for
the core image program as it is stored. The
name specified on the STORECI control record
is the name used to generate the LET/FLET
entry and is the name that must be used in all
subsequent references to the DCI program, DUP
outains the disk block count required in the
LET/FLET entrv from the Core Load Builder.

Monitor Programs 33

The format of the STORECI control record is as

follows.
Card Card
Column Contents Notes Column | Contents Notes
1-8 *STORECI 15-16 Reserved
9 Disk 1/0 sub- This column specifies the disk 17-18 "TO" symbol 3ee chart below.
routine indicator | I/O subroutine to be loaded in- 19-20 Reserved
to core by the Core Image Load- 2125 Program name
er for use by the core load dur- 26 Reserved
ing execution . X 27-30 Count The count is the number (deci-
Indicator Disk Subroutine mal) of FILES, NOCAL, LOCAL,
0,1 DISK 1 and G2250 control records that
N DISK N follow the STORECI control
blank or Z DISK Z record. These records are read
all others An error message by DUP for use by the Core
is printed (see Load Builder before the STORE
DUP Error Mess- operation is performed. Note
ages, Appendix A) that the mainline program
10 Reserved name must not be used on the
11 LOCAL-can A punch in this column enables 2250 control records. Data
call LOCAL a LOCAL program to call an- files named in FILES record
indicator other LOCAL, Without a punch, must be in Fixed Area.
this is not possible.
12 Special ILS A punch in this column indi -
indicator cates that ILSs for this core
load should be chosen from the
special ILSs (see also //XEQ).
13-14 "FROM" symbol See chart below. If the STORE 31-34 "FROM"
operation is from Working Stor- cartridge ID
age and the corresponding 35-36 Reserved
Working Storage Indicator is 37-40 NTOM cart-
zero, an error message is print- ridge ID
ed (See DUP Error Message, 41-80
Appendix A).

NOTE: The LOCAL-calls-LOCAL option is described in "Programming Tips and Techniques''.

LOCAL/
SOCAL LOCAL SOCAL
Mainline [Subprograms | Flipper Area Area COMMON

! a1
th

Transfer
Vector

LOCALs

SOCALs

b

Core Image Header

Figure 5. Layout of a Core Image Program Stored in the User/Fixed Area

34

The following chart is a summary of the information
transfers and format conversions performed by
STORECI.

The following chart is a summary of the information
transfers and format conversions performed by
STOREMOD.

Possible Destinations,
Including Formats

Possible Sources,
Including Formats

Possible Destinations,
Including Formats

Possible Sources,
Including Formats

WS(DSF) UA or FX(DCI) WS(DSF) UA(DSF)
CD(CDS) UA or. FX(DCI) WS(DDF) UA or FX(DDF)
PT(PTS) UA or FX(DCI) WS(DCI) UA or FX(DCI)
*STOREMOD
*DELETE

The STOREMOD operation moves information from
Working Storage into the User/Fixed Area. If the name
of the DSF program, DCI program, or Data File speci-
fied on the STOREMOD control record is identical to an
entry in LET/FLET (that is, a DSF program, DCI pro-
gram, or Data File of the same name already resides
in the User/Fixed Area), the information in Working
Storage overlays (replaces) that DSF program, DCI
program, or Data File in the User/Fixed Area. The
format of Working Storage must match the format of
the LET/FLET entry which is to be replaced.

If the name on the STOREMOD control record does
not match an entry in LET/FLET, a simple STORE
operation is performed (see *STORE).

The STOREMOD operation permits the user to mod-
ify a DSF program, DCI program, or Data File in the
User/Fixed Area without changing its name or relative
position within the area. However, the length of the
DSF program, DCI program, or Data File in Working
Storage cannot be greater than the length of the DSF
program, DCI program, or Data File that it replaces
in the User/Fixed Area. No change is made to the
LET/FLET entry as a result of this operation.

The format of the STOREMOD control record is as
follows.

Card
Column Contents Notes

1-10 | *STOREMODb
11-12 Reserved
13-14 | "FROM" symbol | The source is always Working Storage.
15-16 | Reserved -
17-18 | "TO" symbol
19-20 |} Reserved
21-25 Program name
26-30 | Reserved
3134 "FROM™"

See chart below.

cartridge ID
35-36 Reserved
37-40 | "TO"

cartridge ID

41-80 | Not used

The DELETE operation removes a specified DSF pro-
gram, DCI program, or Data File from the User/
Fixed Area. The deletion is accomplished by the
removal of the LET/FLET entry (or entries) for the
DSF program, DCI program, or Data File, including
the dummy entry for associated padding, if any.

If a DSF program, DCI program, or Data File is
deleted from the User Area, that area is packed so
that (1) the areas represented by LET entries are con-
tiguous, and (2) Working Storage can be increased by
the amount of disk storage formerly occupied by the
deleted DSF program, DCI program, or Data File,

If a DCI program or Data File is deleted from the
Fixed Area, no packing of that area occurs. The
FLET entry for the deleted DCI program or Data File,
including the dummy entry for associated padding, if
any, is replaced by a single dummy entry (IDUMY)
representing the area formerly occupied by the deleted
DCI program or Data File and its padding. DUP store
operations may be used to place new entries in the
Fixed Area. ,

The contents of Working Storage are not destroyed
by the DELETE operation.

The format of the DELETE control record is as
follows.,

Card
Column Contents Notes

1-8 *DELETEb

9-20 Reserved
21-25 Program name
26-30 Reserved
31-34 "FROM"
cartridge ID

The deletion is performed on the specified|
cartridge only, If no cartridge ID is
specified, and the program or data file
name (21-25) is present in LET/FLET of
more than one cartridge specified for this
JOB, the deletion will be from the first
logical drive on which the name is

found.

35-80 Not used

Monitor Programs 35

*DEFINE

The DEFINE operation (1) initially establishes the size
of the Fixed Area, (2) increases or decreases the size
of the Fixed Area, (3) deletes the Assembler or
FORTRAN Compiler, or both, from the System Area.

If the Assembler and/or FORTRAN Compiler is to be
deleted, this deletion must be performed prior to de-
fining the Fixed Area, (which is restricted to the master
cartridge), or after completely removing a defined
Fixed Area.

Definition of a Fixed Area on disk allows the user to
store DCI programs and Data Files in fixed locations,
which can subsequently be referred to by sector address.
The Fixed Area is defined in cylinder increments (one
cylinder minimum). When a FIXED AREA is defined,
one cylinder is always reserved for FLET, i.e., the
initial definition of the Fixed Area must be two cylinders.

Increases and decreases in the size of the Fixed
Area must also be made in cylinder units; however, the
Fixed Area cannot be decreased by a number greater
than the number of unused cylinders at the end of the
last program or data file in the Fixed Area. If all DCI
programs and Data Files have been deleted from the
Fixed Area (IDUMY entries) and the Fixed Area is de-
creased to less than two cylinders by a DEFINE FIXED
AREA control record, the remaining Fixed Area, as well
as FLET, is deleted. The Fixed Area and FLET will
likewise be deleted if the DEFINE FIXED AREA control
record specifies a decrease that exceeds the number of
cylinders of Fixed Area on the cartridge.

The control record format for definition of the Fixed
Area is described below.

Card
Column Contents Notes
1-8 *DEFINEb
9-18 | FIXEDbAREA
19-26 | Reserved
27-30 | Count In initial definition of the Fixed Area, the
count is the number (decimal) of cylinders
to be allocated as the Fixed Area which
must INCLUDE one cylinder for FLET, thus
a minimum of two cylinders must be speci~
fied. After initial definition, the count is
the number of cylinders by which the Fixed|
Area is to be increased or decreased,
31 Sign If the Fixed Area is being decreased, this
- column contains a minus sign; otherwise,
it is blank,
32-36 | Reserved
37-40 | Cartridge ID This ID specifies the cartridge which is to
be altered.
41-80 | Not used

Deletion of the Assembler and/or FORTRAN Com-
piler causes the specified Monitor programs to be
removed from the IBM System Area on the master

cartridge. The IBM System Area is then packed so
that following programs and areas occupy the areas
formerly occupied by the deleted Monitor programs.
SLET entries are updated to reflect the new disk stor-
age allocation for the Monitor programs. The reload
table is used to make adjustments in the programs
which use disk storage addresses from SLET. If the
Assembler and/or FORTRAN Compiler is to be deleted,
the user must perform this deletion before defining the
Fixed Area on the master cartridge, or after completely
removing the Fixed Area. After the Assembler and/or
FORTRAN Compiler have been deleted, neither can be
restored without performing an initial load.

The control record format for deletion of the Assem-
bler and/or FORTRAN Compiler is described below.

Card

Column Contents Notes
1-8 *DEFINEb
9-13 | VOIDb

14-22 | ASSEMBLER or

FORTRANbDD
23-80 | Not used
*DWADR

The DWADR control record causes a sector address to
be written on every sector of Working Storage on the
cartridge specified by the DWADR control record, or
if no ID is specified, on the System Working Storage.
The operation restores correct disk sector addresses
in Working Storage if they have been modified during
execution of a user's program.

The contents of Working Storage prior to the operation
are destroyed.

Following the sector address word (word 0), the first
240 words of each sector contain the sector address of
that sector, including the drive code. The remaining
80 words of each sector contain zeros.

A dummy //DUP record is printed on the principal
printer following the printing of the *DWADR control
record and the DUP exit message.

The format of DWADR control record is as follows.

Card

Column Contents Notes

1-6 *DWADR

7-36 Reserved
37-40 | Cartridge ID This ID specifies the cartridge on
which the Working Storage sector
addresses are to be rewritten,
41-80 Not used

ASSEMBLER

The basic language for the Assembler in the Monitor
system is described in the publication IBM 1130 Assem-
bler Language (Form C26-5927). Therefore, this sec-
tion contains only a general description of the Assem-
bler program and its operation. Assembler control
records are described in the section Assembler Control
Records; Assembler messages, error messages, and
error detection codes are listed in Appendix A.

The 1130 Monitor Assembler cannot be operated
independently of the Monitor system; however, the
Assembler can be deleted from the Monitor system if
desired (see *DEFINE under DUP Control Records).

An ASM Monitor control record is used to call the
Assembler into operation. The Assembler reads the
source program, including control records, from the
principal input device. After assembly, the object
program resides in System Working Storage. The
object program can now be (1) called for execution
with an XEQ Monitor control record, (2) stored in the
User/Fixed Area with a STORE or STORECI operation
(see DUP Control Records), or (3) punched as a binary
deck or tape with a DUMP operation (see DUP Control
Records).

If symbol table overflow exceeds the number of
sectors allocated for overflow by the OVERFLOW
SECTORS control record (a2 maximum of 32 sectors is
allowed), an Assembler error message is printed.

The approximate maximum size of the symbol table
(including overflow) and, hence, the maximum number
of symbols that can be defined in a program, is deter-
mined by the size of core storage as indicated below:

Size of Core Storage (Words) 4096 8192 16384 32768
Symbol Table Size 3500 4865 7595 13055

CARD OPERATION

The source deck (including Assembler control cards)
can be assembled either as part of a job or as a separate
job. In either case, the source deck must be preceded
by an ASM Monitor control record.

One-Pass Mode

In most cases, the source deck is passed through the
1442 Card Read Punch or 2501 Card Reader only once.
If the assembly is part of a stacked job, the assembly
proceeds without operator intervention. If the END
card of the source deck is the last card in the hopper,
press reader START when the reader goes not-ready.

The assembly of a program may start in one-pass
mode and then change to two-pass mode. This condi-
tion occurs when the intermediate output of pass 1
exceeds the capacity of Working Storage less the
number of overflow sectors specified. The system
WAITs at the preoperative error trap ($PRET) with
/100E (1442 input) or /400E (2501 input) displayed in
the Accumulator (see Assembler error messages,
Appendix A). If this assembly is part of a stacked
job, operator intervention is necessary to prevent the
Assembler from reading the Monitor control card fol-
lowing the END card of the source deck. Remove the
stacked input behind the END card and press PROGRAM
START. The assembly will continue in two-pass mode

Two~-Pass Mode

In some cases it may be known in advance that it is
necessary to assemble in two-pass mode, that is, pass
the source deck through the 1442 Card Read Punch or
the 2501 Card Reader twice. If a copy of the source
deck, including all Assembler control records, is
placed behind the original, the source deck will be read
twice, and a stacked job is again possible even when in
two-pass mode. Two-pass mode is not allowed with
1134 or Keyboard input.

It is important to note that when a deck is being
assembled in two-pass mode, the Assembler is ready
to read another card as soon as pass 1 processing of the
END card is completed. Therefore, a Monitor control
record must not follow the END card the first time (or
the first END card if the deck has been copied), or the
Assembler will trap this record and execute a CALL
EXIT.

If the deck has not been copied, the END card should
be the last card in the hopper. Press reader START to
process the last card and complete pass 1. The Assem-
bler will then try to read cards for pass 2; therefore,
the source deck (with its control cards) should be re-
moved from the stacker and placed in the hopper. Press
reader START to begin pass 2 of the assembly. Opera-
tion is continuous if the source deck is taken from the
stacker during pass 1 and placed in the hopper behind
the END card. If the END card is the last card in the
hopper, press reader START to complete the assembly.

Punch Symbol Table Option

If the *PUNCH SYMBOL TABLE Assembler control
card is used and the principal input device is the 1442
Card Read Punch, sufficient blank cards must be
placed after the END card and before the next Monitor
control record in the stacked job input. (If a non-blank
card is read when punching on the 1442-6, 7 the

Monitor Programs 37

Assembler will WAIT at the preoperative error trap
($PRET) with /100F displayed in the accumulator). In
estimating the number of blank cards required, allow
one card for each symbol used in the source deck.
Unnecessary blank cards will be passed until the next
Monitor control record is read.

If the system configuration is 2501/1442, place
blank cards in the 1442 hopper and press 1442 START
before beginning the assembly.

Note: Do not place non-blank cards in the 1442-5. The
punch may be damaged if an attempt is made to punch
a hole where a hole exists. No error is detected.

KEYBOARD/PAPER TAPE OPERATION

Most of the procedures for card input are also applicable
to keyboard/paper tape input. The LIST DECK, LIST
DECK E, PUNCH SYMBOL TABLE, and TWO PASS
MODE options are not allowed with keyboard/paper tape
input.

Note: The paper tape input to the Assembler is punched
in PTTC/8 code, one frame per character. The format
of the keyboard/paper tape control records is the same
as the card format. The format of the symbolic pro-
gram keyboard/paper tape records is the same as card
format except for the following:

e The record does not contain leading blanks corre-
sponding to card columns 1-20.

o The record does not contain blanks or data corre-
sponding to card columns 72-80.

o Trailing blanks need not be used. Therefore, up to
51 characters (corresponding to card columns 21-71)
can appear in the record.

The assembly is continuous, and at the end of the
assembly control is returned to the Supervisor, which
will then pass any delete codes between the Assembler
and the next Monitor control record. The assembler
will also pass any codes that may occur between paper
tape records of the source program.

The first record processed by the Assembler is
checked for an asterisk in column one. If an asterisk
is present in column one, this record is treated as an
Agsembler control record. This procedure continues
until the first non-asterisk character is detected in
column one. For this record, and all records follow-
ing (up to and including the END statement), column
one is treated as if it were column twenty-one; there-
fore, the first non-control record should not be an *
comments record.

38

ORIGIN OF MAINLINES

The origin of a relocatable program is always set at
zero unless otherwise specified in the source program,

The origin of an absolute mainline program, if not
otherwise specified in an ORG statement, is set to the
end of DISKN plus 30 (the core image header record is
30 words long).

If the program requires DISKZ, DISK1, or DISKN,
the origin may be set to the end of the requested disk
I/0 subroutine plus 30. ‘

If no disk I/O subroutine is used by the program,

the origin may be set as low as the end of DISKZ plus 30.

Note that if DISKZ is in core during execution (re-
quired or not), the ORG statement for the program being
executed must specify an even core address gredter
than or equal to the end of DISKZ plus 30. An ORG to
the end of DISKZ plus 30, followed by a BSS or a BES
of an odd number of locations is not allowed. This
sequence has the same effect as an ORG to an odd
location.

ASSEMBLER CONTROL RECORDS

Assembler control records are used to specify options
affecting an assembly and its output. These control
records must precede the source program and can be

in any order (see Figure 6). Assembler control records

Next
Monitor
Control
Record

Assembler Source
Statements

(// ASM
77 JOB

/ Assembler Control Records

Figure 6. Layout of an Assembler Input Deck

can be entered in card or paper tape form along with the
source program deck or tape or, unless otherwise
noted, may be entered from the Keyboard along with the
source statements (see // TYP under Monitor Control
Records).

All Assembler control records have the following
format:

Column 1: * (asterisk)
2-71: Option

If an Assembler control record contains an asterisk in
column 1, but the option does not agree, character for
character, with its valid format, as described below,
the asterisk is replaced by a2 minus sign on the control
record listing. The erroneous control record is ignored
and no other error occurs.

Assembler control records can be written in free
form; that is, any number of blanks may occur between
the characters of the option. However, only one blank
must separate the last character in the option, and the
first character of any required numeric field. Remarks
may be included in the control record following the
option or numeric field; however, at least one blank
must separate the last character of the option or numeric
field and the remarks.

*TWO PASS MODE

This control record causes the Assembler to read the
source deck twice. TWO PASS MODE must be specified
when:

e The user desires a list deck to be punched on the
1442 Card Read Punch, model 6 or 7 (see LIST DECK
and LIST DECK E).

e One-pass operation cannot be performed because the
intermediate output (source records) exceeds the
capacity of Working Storage.

This control record is ignored if source statements are
entered from the Keyboard or the 1134 Paper Tape
Reader.

The format of the TWO PASS MODE control record
is as follows.

*LIST

This control record causes the Assembler to provide a
printed listing on the principal print device (1403
Printer, 1132 Printer, or Console Printer). The format
of the printed listing corresponds to that of the list
deck (see Figure 7). If the LIST control record is not
used, only those statements in which assembly errors
are detected will be listed. All BSS, BES, ORG, and
EQU statements in which errors are detected will be
unconditionally listed in Pass 1 of the assembly.

A sample program listing appears in Appendix J.

The format of the LIST control record is as follows.

Card
Column Contents Notes
1 * Asterisk
2-71 LIST
72-80 Not used

Card

Column Contents Notes

1 *
2-71 TWO PASS MODE
72-80 | Not used

Asterisk

*LIST DECK

This control record causes the Assembler to punch a
list deck if the principal I/0 device is a 1442 model 6 or
7 Card Read Punch. This option requires two passes

of the source deck (TWO PASS MODE). The list deck
format is shown in Figure 7. Object information is
punched into columns 1-19 of the source deck during
pass 2.

This control record is ignored if entered from the
2501 Card Reader, the 1134 Paper Tape Reader, or the
Keyboard.

The format of the LIST DECK control record is as
follows.

Card

Column Contents Notes

1 *
2-71 LIST DECK
72-80 | Not used

Asterisk

*LIST DECK E

This control record causes the Assembler to punch
assembly error codes only (columns 18-19) in the list
deck output (see LIST DECK). The principal I/0 device
must be a 1442 model 6 or 7 Card Read Punch. The
Assembler error detection codes are listed in
Appendix A.

This control record is ignored if entered from the
2501 Card Reader, the 1134 Paper Tape Reader, or
the Keyboard.

Monitor Programs 39

1 Card
| {alslelz]s]o] T D2lis] T Tshzhielisf2ol2i] T T Tesleef2z] T Tsolsifs2]ss]aa]as] | [d41, Eoiomn
T T] X / / T)\
Blank Blank Blank Blank Blank Blank Blank
Format
Alids;z:z:ir:he First Word of Error Flags, Label Op Code
Address the és:‘en;\‘bled if any Tag
Assigned to ode
the Label, if any
Relocation Indicators; Second Word of
Col. 7 is Blank for One- the Assembled
Word Instructions or DC Code™
or
Exponent for an
XFLC Statement .
(
4 Card
del [TT T T T Tl TTTT T T Tl ol ITTTTTTT T bifradssl T 1111 fe0f Column
\% 4 D
Operands 1D and Seguence
Number, if any
Blank
*For EBC statements, columns 9-12 contain the number of EBC characters.
For BSS and BES statements, columns 9-12 contain the number of words reserved for the block.
For ENT, ILS, and ISS statements, columns 9-16 contain the entry label in packed EBCDIC code.
Figure 7. List Deck Format
The format of the LIST DECK E control record is as Card
follows: Column Contents Notes
1 * Asterisk
2-71 | PRINT SYMBOL
Card TABLE
Column Contents Notes 72-80 | Not used
1 * Asterisk
2-71 | LIST DECKE *PUNCH SYMBOL TABLE
72-80 | Not used

*PRINT SYMBOL TABLE

This control record causes the Assembler to provide a
printed listing of the symbol table on the principal print
device. Symbols are grouped five per line. Multiply-
defined symbols are preceded by the letter M; symbols
with absolute values in a relocatable program are pre-
ceded by the letter A. The M and A flags, however,
are not counted as assembly errors.

The format of the PRINT SYMBOL TABLE control
record is as follows.

40

This control record causes the Assembler to punch the
symbol table as a series of EQU source cards. Each
source card contains one symhbol. These cards can be
used as source input to the System Symbol Table when
the SAVE SYMBOL TABLE control record is used with
an assembly in which they are included:

This control record is ignored if entered from the
1134 Paper Tape Reader or the Keyboard.

The format of the PUNCH SYMBOL TABLE control
record is as follows.

Card
Column Contents Notes
1 * Asterisk
2-71 PUNCH SYMBOL
TABLE
72-80 | Not used

*SAVE SYMBOL TABLE

This control record causes the Assembler to save the
symbol table generated in this assembly on the disk as a
System Symbol Table. This System Symbol Table is
saved until the next assembly containing a SAVE
SYMBOL TABLE control record causes a new assembly-
generated symbol table to replace it. This control rec-
ord is also used with the SYSTEM SYMBOL TABLE con-
trol record to add symhols to the System Symbol Table.
The SAVE SYMBOL TABLE option requires that this
assembly be absolute. If any assembly errors are de-
tected, or if the symbol table exceeds 100 symbols, the
symbol table is not saved as a System Symbol Table,
and an assembly error message is printed (see Assem-
bler Error Messages, Appendix A).

The format of the SAVE SYMBOL TABLE control
record is as follows.

Card
Column Contents Notes
1 * Asterisk
2-71 SAVE SYMBOL
TABLE
72-80 Not used

*SYSTEM SYMBOL TABLE

This control record causes the Assembler to add the
System Symbol Table (previously built by a SAVE
SYMBOL TABLE assembly) to the symbol table for
this assembly as the assembly begins. This control
record is used when it is desired to refer to symbols
in the System Symbol Table without redefining those
symbols in the source program, or it is used together
with the SAVE SYMBOL TABLE control record when it
is desired to add symbols to the System Symbol Table.
All symbols in the System Symbol Table have absolute
values.

The format of the SYSTEM SYMBOL TABLE control
record is as follows.

than one interrupt level (for example, the 1442 Card
Read Punch), one LEVEL control record is required for
each interrupt level on which the device operates. At
least one blank must separate the word LEVEL and the
interrupt level number.

If a LEVEL control record is not used when assem~
bling an ISS subroutine, an Error Message is printed at
the end of the assembly (see Assembler Error Messages,
Appendix A).

The format of the LEVEL control record is as
follows.

Card

Column Contents Notes

1 *
2-71 LEVELbn

Asterisk
n is an interrupt level number

72-80 Not used

*OVERFLOW SECTORS

Card
Column Contents Notes
1 * Asterisk
2-71 SYSTEM SYMBOL
TABLE
72-80 | Not used

*LEVEL

This control record specifies the interrupt levels
serviced by an ISS and, hence, the associated ILS sub-
routines. It is required for the assembly of an ISS sub-
routine. The interrupt level number is a decimal num-
ber in the range 0-5. If the device operates on more

This control record specifies the number of sectors of
Working Storage to be used by the Assembler for sym-
bol table overflow, The number of overflow sectors (nn)
is a decimal number between 1 and 32. If the entry is
zero or blank, no overflow sectors are allowed. If the
entry is greater than 32, only 32 overflow sectors are
allowed, If this control record is not used, no overflow
sectors are allowed; if it is used, the Asgembler act-
ually allocates one more sector than the number speci-
fied. This additional sector is used as a working sector
when the Assembler is handling symbol table overflow.

The format of the OVERFLOW SECTORS control
record is as follows.

Card
Column Contents Notes
1 * Asterisk
2-71 OVERFLOW nn is the number of sectors assigned|
SECTORSbnn to symbol table overflow.
72-80 | Not used

*COMMON

This control record specifies the length (in words) of
COMMON as defined by a FORTRAN core load that is
to be executed prior to the execution of the program
being assembled, Use of this control record provides
for a COMMON area to be saved in linking between
FORTRAN mainlines and Assembler mainlines,

The format of the COMMON control record is as
follows.

Card

Column Contents Notes

1 * Asterisk
2-71 COMMONbDnnnnn | nnnnn is the number of words of
COMMON (decimal) to be saved
between links,

72-80] Not used

Monitor Programs 41

FORTRAN COMPILER

The basic language for the FORTRAN Compiler in the
Monitor system is described in the publication IBM
1130/1800 Basic FORTRAN IV Language (Form C26-
3715); therefore, this section contains only a general
description of the Compiler and its operation. The
FORTRAN Compiler control records are described in
the section FORTRAN Control Records; FORTRAN
messages and error messages are listed in Appendix A.

The FORTRAN Compiler cannot be operated inde-
pendently of the Monitor system; however, it can be
deleted from the Monitor system if desired (see
*DEFINE under DUP Control Records).

A FOR Monitor control record is used to call the
FORTRAN Compiler into operation. The Compiler
reads the source program, including control records,
from the principal input device. After compilation, the
object program resides in System Working Storage and
can be (1) called for execution with an XEQ Monitor
control record, (2) stored in the User/Fixed Area with
a STORE or STORECI operation (see DUP Control
Records), or (3) punched as a binary deck or tape with
a DUMP operation (see DUP Control Records).

The 1130 FORTRAN I/0 logical unit numbers and
record sizes are listed in Table 3.

//b RECORDS READ DURING THE EXECUTION OF
A FORTRAN PROGRAM

During the execution of a FORTRAN program, any //b
record encountered by CARDZ, READZ, or PAPTZ will
cause an immediate CALL EXIT. The Supervisor will
then search for the next valid Monitor control record
entered from the reader, Only the //b characters on
the record trapped by CARDZ, READZ, or PAPTZ are
recognized. Any other data entered in this record is
not available to programs in the Monitor system. The
record is not listed. For off-line listing purposes,
however, this record can contain comments (e.g.,

// END OF DATA).

FORTRAN CONTROL RECORDS

Before a FORTRAN program is compiled, the user can
specify certain options affecting both the compilation
and execution of the program by means of control rec-
ords. These control records must precede the source
program and can be in any order (see Figure 8).
FORTRAN control records can be entered in card
or paper tape form along with the source program deck
or tape, or they may be entered from the Keyboard
along with the source statements (see // TYP under

42

Monitor Control Records). The I0CS, NAME and
ORIGIN control records can be used only in mainline
programs; the others can be used in both mainline
programs and subprograms.

All FORTRAN control records have the following
format:

Column 1: *(asterisk)
2-72: Option

Table 3. FORTRAN 1/0 Logical Unit Designations and

Record Sizes
Logi?cl Devi Kind of Record Size
nit evice Transmission Allowed
Number
i Console Printer Output only 120
2 1442 Card Read Input/output 80
Punch
3 1132 Printer Output only 1 carriage
control + 120
4 1134/1055 Input/output 80, plus max. of
Paper Tape 80 case shifts for
Reader Punch PTTC/8 code,
plus NL code.
5 1403 Printer Output only 1 carriage
control + 120
6 Keyboard Input only 80
7 1627 Plotter Output only 120
8 2501 Card Reader Input only 80
9 1442 Card Punch Output only 80
10 UDISK Unformatted 320*
input/oufpur
without data
conversion

*Unformatted disk 1/O comprises 320 word records (including a two-word
header). The first word of the header must contain the count of the phys-
ical record within the logical record (see example following), The second
word of the header must contain the number of effective words in the in-
dividual physical record, The second word of the header of the last phys=
ical record within a logical record must have the sngn bit (<) on. Unform=~
atted disk characters are stored in as they appeor in core storage.

Example:
DIMENSION A (400) 800 words
WRITE (10) A

Physical records (maximum record
length 320 words due to disk sector size)

[1] 38 | pataworos |

| 2 | 318]DATA WORDS |

Logical record
(total number of
words to be written)

rs I'L"“ | DATA WORDS |

164 and sign bit (/80A4). N_o'/FFSC.

An end-of=file record occupies one sector. Word one of the header must
be 1 and word two must be a negative zero (/8000).

- Next Monitor
/ Control Record
(FORTRAN Source

Statements

f// FOR /(FORTRAN Control Records

'// JOB

RN

Figure 8, Layout of a FORTRAN Compiler Input Deck

If a FORTRAN control record contains an asterisk in
column 1, but the option does not agree, character for
character, with its valid format, as described below,
the asterisk is replaced by a minus sign on the control
record listing. The erroneous control record is ignored
in the compilation and the option is not performed; how-
ever, no error results.

The same action is taken if in an ORIGIN record
the address is not between 0 and 32767 (decimal) or
0000 and 7FFF (hexadecimal),

FORTRAN control records can be written in free

form; that is, any number of blanks may occur between
the characters of the option. No remarks are allowed.

*IOCS(. . .)

This control record is required to specify any I/0 de-
vice that is to be used during execution of the program;
however, only the devices required should be included.
Because the IOCS control record may appear only in the
mainline program, it must include all the 1/0 devices
used by all FORTRAN subprograms that are called.

The device names must be in parentheses with a comma
between each name. The valid names and the devices
to which they correspond are listed below:

Name Device
CARD 1442 Card Read Punch, Model 6 or 7

2501 READER 2501 Card Reader

1442 PUNCH 1442 Card Punch, Model 5 (1442
Model 6 or 7 if used as a punch only)

TYPEWRITER Console Printer

KEYBOARD Keyboard

1132 PRINTER 1132 Printer

1403 PRINTER 1403 Printer

PAPER TAPE 1134/1055 Paper Tape Reader/Punch

Name Device

PLOTTER 1627 Plotter
DISK Disk
UDISK Disk (unformatted disk I/0)

Note that CARD is used for the 1442 Card Read Punch,
Model 6 or 7 and that 1442 PUNCH is used for the 1442
Card Punch, Model 5 (1442 PUNCH may be used with a
1442 Model 6 or 7 if the function is punch only; 1442
PUNCH uses less core). These two names are mutually
exclusive; therefore, the use of both the CARD and 1442
PUNCH IOCS Control Records in the same compilation is
not allowed.

Subprograms that are a part of a FORTRAN core load
but are written in Assembler language can use any I1/0
subroutines for any device that is not specified on the
I0CS control record. Otherwise they must use the same
I/O subroutine as the FORTRAN subprogram.

Any number of IOCS control records can be used to
specify the required device names.

The format of the IOCS control record is as follows.

Card
Column Contents Notes
1 * Asterisk
2-72 | 10CS d is a valid device name selected
(4 dyeer,d) from the above list.
73~80 | Not used

*LIST SOURCE PROGRAM

This control record causes the Compiler to list the
source program on the principal print device as it is
read in.

The format of the LIST SOURCE PROGRAM control
record is as follows:

Card
Column Contents Notes
1 * Asterisk
2-72 LIST SOURCE
PROGRAM
73-80 | Not used

*LIST SUBPROGRAM NAMES

This control record causes the Compiler to list on the
principal print device the names of all subprograms
(including EXTERNAL subprograms) called directly by
the compiled program.

The format of the LIST SUBPROGRAM NAMES con-
trol record is as follows.

Card
Column Contents Notes
1 * Asterisk
2-72 | LIST
SUBPROGRAM
NAMES

73-80 | Not used

Monitor Programs 43

*LIST SYMBOL TABLE

This control record causes the Compiler to list the fol-
lowing items on the principal print device:

e Variable names and their absolute or re-
lative addresses

e Statement numbers and their absolute or re-
lative addresses

e Statement function names and their absolute or
relative addresses

@ Constants and their addresses

The format of the LIST SYMBOL TABLE control
record is as follows.

Card
Column Contents Notes
1 % Asterisk
2-72 | LIST SYMBOL
TABLE
73-80 Not used

*ONE WORD INTEGERS

This control record causes the Compiler to allocate one
word of storage for integer variables rather than the
same allocation (two or three words) used for real var-
iables. Whether this control record is used or not,
integer constants are always contained in one word.
When this control record is used, the program does not
conform to the USASI Basic FORTRAN standard for
data storage and may require modification in order to be
used with other FORTRAN systems.

The format of the ONE WORD INTEGERS control
record is as follows.

-

Card
Column Contents Notes
1 * Asterisk
2-72 ONE WORD
INTEGERS
73-80 Not used

*NAME

*LIST ALL

This control record causes the Compiler to list the
source program, subprogram names, and the symbol
table on the principal print device. If this control
record is used, the other LIST control records are not
required.

The format of the LIST ALL control record is as
follows.

Card
Column Contents Notes

This control record causes the Compiler to print the
specified program name at the end of the listing. The
name is five consecutive characters (including blanks)
starting at the first non-blank column following NAME.
At least one blank must separate the word NAME and

the mainline program name,
The format of the NAME control record is as
follows.

Card
Column Contents Notes

1 * Asterisk
2-72 | NAMEbxxxxx xxxxx is the name of the mainline
object program.

73-80 | Not used

1 * Asterisk
2-72 | LIST ALL
73-80 | Not used

*EXTENDED PRECISION

This control record causes the Compiler to store var-
iables and real constants in three words instead of two
and to generate linkage to extended precision subpro-
grams.

The format of the EXTENDED PRECISION control
record is as follows.

**(Header Information)

Card
Column Contents Notes

1 * Asterisk
2-72 | EXTENDED
PRECISION
73-80 | Not used

This column record causes the Compiler to print the
information in columns 3-72 at the top of each page of
compilation printout when a 1403 Printer or 1132
Printer is the prineipal print device. It initially causes
a skip to channel 1 when the first statement of the pro-
gram is read.

The format of the header control record is as

follows.
Card
Column Contents Notes
1 * Asterisk
2 * Asterisk
3-72 | Any string of
characters
73-80 | Not used

*ARITHMETIC TRACE

This control record causes the Compiler to generate
linkage to the trace subprograms, which are executed
whenever a value is assigned to a variable on the left of
an equal sign. If console entry switch 15 is on during
execution and program logic (see Optional Tracing) does
not prevent tracing, the value of the assigned variable is
printed as it is calculated.

If tracing is requested, an IOCS control record must
also be present to indicate that either the typewriter
(that is, the Console Printer), 1132 Printer, or 1403"
Printer is needed. If more than one print device is
specified in the IOCS control record, the fastest device
is used for tracing.

The traced value for a variable to the left of an equal
sign of an arithmetic statement is printed with one
leading asterisk.

The format of the ARITHMETIC TRACE control rec-
ord is as follows.

Card
Column Contents Notes
1 * Asterisk
2-72 | ARITHMETIC
TRACE
73-80 | Not used

*TRANSFER TRACE

This control record causes the Compiler to generate
linkage to the trace subprograms, which are executed
whenever an IF statement or computed GO TO statement
is encountered. If console entry switch 15 is on during
execution and program logic (see Optional Tracing) does
not prevent tracing, the value of the IF expression or
the value of the computed GO TO index is printed.

If tracing is requested, an IOCS control record must
also be present to indicate that either the typewriter
(that is, the Console Printer), 1132 Printer, or 1403
Printer is needed. If more than one print device is
specified in the IOCS control record, the fastest device
is used for tracing.

The traced value for the expression in an IF state-
ment is printed with two leading asterisks. The traced
value for the index of a computed GO TO statement is
printed with three leading asterisks.

The format of the TRANSFER TRACE control records
is as follows.

Card
Column Contents Notes
1 * Asterisk
2-72 | TRANSFER TRAC
73-80 | Not used

Optional Tracing

The user can elect to trace only selected parts of the
program by placing statements in the source program
logic flow to start and stop tracing. This is done by
executing a CALL TSTOP to stop tracing or a CALL
TSTRT to start tracing. Thus, tracing occurs only if:

e Console entry switch 15 is on (can be turned off at
any time)

o The trace control records were compiled with the
source program

e A CALL TSTOP has not been executed, or a CALL
TSTRT has been executed since the last CALL
TSTOP.

*ORIGIN ddddd or *ORIGIN/xxxx

This control record causes the compiler to output
absolute object code starting at the address specified,
The address should consist of 1-5 decimal digits or
1-4 hexadecimal digits preceded by a slash, Further-
more the address must be in the range 0-32767
(decimal), i.e. 0000-7FFF: (hexadecimal),

The ORIGIN dddd control record is as follows:

Card
Column Contents Notes
1 * Asterisk
2-72 ORIGIN ddddd ddddd is the decimal address
as specified above,
13-80 Not Used

The ORIGIN/xxxx control record is as follows:

Card Contents Notes
Column
1 * Asterisk
2-72 ORIGIN/xxxx xxxx is the hexadecimal address|
as specified above,

Operating Notes

A constant in a STOP or PAUSE statement is treated as
a hexadecimal number. This hexadecimal number and
its decimal equivalent appear in the list of constants,
The hexadecimal number is also displayed in the accu-
mulator when the system waits at $PRET during the
execution of the PAUSE or STOP statement,

Monitor Programs 45

Variables and constants that require more than one
word of storage have the address of the word nearest the
zero address of the machine. In the case of arrays, the
given address refers to the addressed word of the first
element. In the case of a two- or three~word integer,
the integer value is contained in the addressed word.
The first variable listed might not be addressed at 0000
because space may be required for generated temporary
storage locations.

The relative address for variables not in COMMON
would be the actual address if the program started at
storage location zero. The relative address for vari-

Monitor Programs 45,1

ables in COMMON would be the actual address if the ma-
chine had 32K storage. Variables in COMMON reside in
the high-order core location of the machine being used
(e.g., first COMMON variable will be loaded to /1FFF
on an 8K machine).

Any of the three versions of the disk I/O subroutines
may be used with a FORTRAN core load. However,
under normal circumstances no advantage in speed may
be gained, because the FORTRAN disk formatting sub-
routine operates with one sector at a time. SOCALs
may operate faster if DISKN is used.

KEYBOARD INPUT OF DATA RECORDS

Data records of up to 80 characters can be read
from the keyboard by a FORTRAN READ state-
ment, Data values must be right-justified in their
respective fields.

Keyboard Operation

If it is desirable to key in less than 80 characters,
the EOF key can be pressed to stop transmittal,
Also, the ERASE FIELD or BACKSPACE key can be
pressed to restart the record transmittal if an error

is detected while entering data, If the keyboard
appears to be locked up, press REST KB to restore

the keyboard. The correct case shift must be se-
lected before data is entered.

Buffer Status After Keyboard Input

Before entering each data record the buffer is filled
with blanks. Therefore, when the EOF key is pressed
prior to completing a full buffer load of 80 characters,
the rest of the buffer remains blank. If more data is
necessary to satisfy the list items, the remaining
numeric fields (I, E, or F) are stored in core as
zeros and remaining alphameric fields (A or H) are
stored as blanks. Processing is continous and no
errors result from the above condition,

Note: For information about buffer status after pre-
ssing the ERASE FIELD or BACKSPACE key, SUB-
ROUTINE FUNCTIONS, Re-entry concerning TYPEZ.

OBJECT PROGRAM PAPER
TAPE DATA RECORD FORMAT

Data records of up to 80 EBCDIC characters in
PTTC/8 code can be read or written by the FOR-
TRAN object programs, The delete and new-line
codes are recognized. Delete codes and case shifts
are not included in the count of characters. If a
new-line code is enountered before the 80th char-
acter is read, the record is terminated. If the 80th
character is not a new-line code, the 81st character
is read and assumed to be a new-line code. A new-
line code is punched at the end of each output record.

A-CONVERSION

Spacing, tabulating, and shifting on the Console Printer
can be controlled by outputting a unique value for the
operation desired. These values must be assigned as
integer constants and outputted through A-Conversion.

The operations that can be performed and the unique
values assigned to them are:

OPERATION VALUE
Backspace 5696
Carrier Return 5440
Line Feed 9536
Shift to print black 5184
Shift to print red 13632
Space 16448
Tabulate 1344

As an example of Console Printer
control, assume that a variable, X, is
to be printed in the existing black ribbon
shift and that another variable, Y, is to
be shifted back to black, This can be ac-
complished as follows:

I=1344
J=13632
K=5184
L-1
WRITE (L,3)X, I, J, Y, K
3 FORMAT (F12.6, 2A1, F12.6, Al)

FORTRAN logical unitl, as specified
in the WRITE statement, is the Console
Printer, The sequence of operations to be
performed are: print the variable X, tab-
ulate, shift to print red, print the variable
Y, shift to print black.

Each control variable counts as one
character and must be included in the count
of the maximum line length,

FORTRAN I/0 ERRORS

If input/output errors are detected during execution,
the program stops and execution should not be con-
tinued. The error is indicated by a display in the
accumulator. The error displays and meanings are
listed in Appendix A, Table 12,

When the output field is too small to contain
the number, the field is filled with asterisks and
execution is continued,

The input/output routines used by FORTRAN
(PAPTZ, CARDZ, PRNTZ, WRTYZ, TYPEZ, PNCHZ,
READZ, PRNZ) wait on any I/0O device error or device
not in a ready condition. When the devices are ready,
press PROGRAM START to execute the I/O operation.

Error detection in functional and arithmetic sub-
routines is possible by the use of source program state-
ments. Refer to "FORTRAN Machine and Program
Indicator Tests' in the manual, IBM 1130/1800
Basic FORTRAN IV Lar:lggap:e_ (Form C26-3715).

RPG

The RPG specifications are described in the publica-
tion IBM 1130 RPG Specifications, Form C21-5002;
therefore, this section contains only a general desc~
ription of the RPG program and its operation. The
RPG control and End of File cards are described
under the heading RPG Compiler Control. RPG errar
messages and error notes are described in Appendix
A

The RPG Compiler cannot be operated independent-
1y of the Monitor system; however, it can be deleted
from the Monitor system if desired (see *DEFINE
under DUP Control Records).

An RPG Monitor control record (// RPG) is used
to call the RPG Compiler into operation, The compi-
ler reads the source program, including the RPG
control card and End of File card, from the princi-
pal input device. After compilation, the object pro-
gram resides on disk Working Storage in Disk System
Format. The object program can then be (1) called
for execution with the XEQ Monitor control record,
(2) stored in the User/Fixed Area with a STORE or
STORECI operation (see DUP Control Records) or
(3) punched as a binary deck with a DUMP operation
(see DUP Control Records).

RPG COMPILER CONTROL

The RPG Compiler uses two special cards in its
operation. The first, the RPG control card, acts as
a header for the source deck and supplies operating
parameters to the compiler. The second, the RPG
End of File card, acts as a delimiter, and is requi-
red at the end of any input to the RPG compiler or to
an RPG data file,

RPG Control Card

The first card of an RPG source deck must be the
RPG control card. The layout of this card is inclu-
ded on the RPG Control Card and File Description
Specifications, form number X24-3347, A detailed
description of all entries on this card appears in the
1130 RPG Specifications manual,
For RPG Compiler operation, the entries in column
6 and column 11 of the RPG control card are basic.
e Column 6 of the RPG control card must contain an
H.
o Column 11 of the RPG control card indicates the
type of run required,
blank - Compilation with listing
B - Compilation only
D - Listing only
All other entries on the RPG control card are op-
tional,

End of File Card

The last card of an RPG source deck must be an End
of File card., The End of File card is also required
as the last card of a data file.

The format of the End of File card is as follows.

/* (slash in column 1; * in column 2)

Columns 3-80 of the End of File card are not used.

RPG PROGRAM OPERATION

Figure 8.1 illustrates the stacked input required to
compile an RPG source program, store the object
program in the Users Area and execute the object
program, If the // DUP and *STORE card were
omitted from the Monitor input, the program would
be executed from Working Storage; however, the
program would not be available for future execution
since it was not saved.

If the program being compiled is not executed
often, it may be advisable to store it in cards rather
than on disk. Figure 8.2 shows the input required
to compile an RPG program and punch an object deck.
Figure 8.3 lists the input required to execute the
object program from cards.

Most RPG programs require data input during
program execution. This data can be input on data
cards at execution time or it can be stored on a pre-
defined data file on disk at any time before execution,
Figure 8.4 shows how a data file may be built for
use with RPG, RPG files may be sequential or
indexed-sequential (ISAM). See RPG File Organiza-
tion in the section Programming Tips and Techniques
| for detailed information on RPG disk files.

The compiler will print out addresses for various
routines in the Key Addresses of Object Program
Table. For example, the "Close Files' routine
(which is approximately at the end of the mainline
program) is included in this table. This routine
may require from 2 to 16 additional words (hexa-
decimal) depending on the type and number of files
to be closed. The address of this routine can be
helpful when dealing with programs which exceed the
available core storage; by adding the number of ad-
ditional words to the address of the '"Close Files'
routine, the size of the generated mainline program
can be determined.

On an ISAM load function, the compiler prints
the following information:

Filename

Number of sectors required if no overflow is

desired.

Figure 8,1 Stacked Input to Compiler, Store and Execute an RPG Program.

“~—— RPG data file (if file not already stored

»
// XEQ PROGN XI
on disk)

>~ Execute the program. X or any other entry in column

28 will bring in the special ILS routines required by RPG
~—— Get PROGN (program name) from Working Storage

and store it in the User Area
~~—Disk Utility Program call

~~—— End of File signals end of data
card input file

~*~—End of File card for source deck

~——RPG source deck (specification statements)

. RPG control card

// JoB ~~—— Monitor control card to call the RPG Compiler
~~——Monitor control card to initicte the job
Figure 8.2 Stacked Input to Compile an RPG Program and Punch Figure 8.3 Stacked Input to execute an RPG Object Program

from Cards.
"~—— Punch the named program (PROGN} into Data File
cards . The program is in Working Storage
"~w~———Disk Utility Program call
“S~—— End of File card for source deck -
Object Deck
// bup l

~~——Store a program from cards to Working Storage

an Object Deck,

S~ End of File signals end of data

~— Blank cords for object program
card input file

~—RPG data file (if file not already stored
on disk)

|~ Execute the program. X or any other entry

in column 28 will bring in the special ILS

routines required by RPG

“~——RPG source deck (specification statements) “*~——RPG object program

“~——RPG control card

~~—— Monitor control card to call the RPG Compiler ~~——Disk Utility Program call

N~ Monitor control card to initiate the job S ~——Monitor control card to initiate the job

Figure 8.4 Reserving Space for and Storing an RPG File on Disk,

~—__End of File signals end of data
card input file

N Data cards stored on disk on FILE}

Execute object program. X or any other
entry in column 28 will bring in the special
ILS routines required by RPG

*STORE WS UA

~—Disk Utility Program call

~~End of File card for source deck

RPG source deck including control card. On File Descrip-
tion Specification, define input file as cards, output file as
disk. Object program to load data cards to FILET.

*STOREDATA WS
™ ~——Monitor control card to call the RPG Compiler

UA FILE1 100

~~—Reserve 100 sectors on disk and label this area FILE1

Disk Utility Program call

[~ Monitor control card to initiate the job

46. 2

Number of sectors required if ten percent over-
flow is desired. This information can be used to re-
serve file space for ISAM records.

The number of sectors needed for a sequential file
can be calculated by the following formula

Number of sectors required = Number of records/
/(640/record length)

RPG OBJECT PROGRAM CONSIDERATIONS

The RPG object program requires a special set of

ILS subroutines. The user must punch a non-blank
character in column 28 of the XEQ card and in column
12 of the STORECI card to assure that they will be
loaded. If the program is stored in core image, the
ILS subroutines are stored with the program on disk.

The storing of object programs in Disk Core Image
format.in the User of Fixed Area on disk is not reco-
mmended (see Disadvantages of Storing a Program in
Disk Core Image Format (DCI)).

Monitor Programs 46, 3

CORE LOAD BUILDER

The Core Load Builder builds a specified mainline
program into a core image program, The mainline
program, with its required programs (LOCALs

and SOCALs included), is converted from Disk
System format to Disk Core Image format, During
the conversion, the Core Load Builder also builds
the Core Image Header record and the Transfer
Vector, The resultant core image program is suit-
able for immediate execution or for storing on the
disk in Disk Image format for future execution. The
Core Load Builder can build a core load that refer-
ences up to approximately 375 different LIBF and
CALL entry points, e.g., 80 LIBFs plus 295 CALLs
{the maximum number of LIBFs allowable is 83 due
to the size of the LIBF Transfer Vector).

If the core load is built on an 1130 system with core
size 4K, the maximum number of different LIBF and
CALL entry points is approximately 110.

The Core Load Builder is called by:

® The Supervisor. After the Supervisor has de-
tected the XEQ Monitor control record in the in-
put stream and has read the Supervisor control
records, if any, and written them in the Super-
visor Control Record Area (SCRA) on disk, the
Supervisor dummys up a CALL LINK to the pro-
gram specified on the XEQ record unless the pro-
gram resides in Working Storage, in which case
the Supervisor calls the Core Load Builder di-
rectly. The Core Load Builder then builds the
core load and returns control to the Core Image
Loader to fetch the core load and transfer control
to it.

®*DUP. After DUP bas detected the STORECI con-
trol record, it reads the Supervisor control re-
cords, if any, and writes them in the Supervisor
Control Record Area (SCRA) on disk, Unless the
program is already in Working Storage, DUP
fetches the program, converts it to Disk System
format, if necessary, and stores it in Working
Storage. Next, the Core Load Builder is fetched
to construct the core image program (see Core
Load Construction). After the core image pro-
gram has been built, the Core Load Builder re-
turns control to DUP to store the core image
program in the User or Fixed Area.

® The Core Image Loader. When the Resident Mon-
itor is entered at the LINK entry point, the Core
Image Loader is called to transfer control to the
next link, The Core Image Loader determines
the format of the link from the LET/FLET entry
and, if the program to be executed is in Disk
System format, calls the Core Load Builder to

construct the core image program (see Core

Load Construction). After the core image pro-
gram has been built, the Core Load Builder re-
turns control tothe Core Image Loader to fetch the

core load and transfer control to it.
CORE LOAD CONSTRUCTION

The following paragraphs describe the functions of
the Core Load Builder during the construction of a
core image program. These functions are not nec-
essarily performed in the order in which they appear.

Figure 9 shows a core image program being
built.

Figure 5 (see *STORECI under DUP Control
Recordg shows a core image program stored on
disk.

Figure 11 (see Fetching a Link under Core Image
Loaden shows a core load ready for execution,

Processing the Contents of the SCRA

The LOCAL, NOCAL, FILES, G2250, and EQUAT
control records are read from the Supervisor Control
Record Area (SCRA) on disk and analyzed, Tables
are built from the information obtained from the re-
spective control record types. These tables are used
in later phases of the construction of the core image
program,

Conversion of the Mainline Program

The mainline program is converted from Disk
System format to Disk Core Image format. The
mainline is always converted before any other part
of the core load.

Working Storage Files
Defined in the

Core Load LOCALs SOCALs Not Used

p A

L I I | J

AN J

Y
Working Storage
That Part of the Core
Load Below 4096 Not Used Saved COMMON
A AL A

[1 i)

N J
Y

Core Image Buffer

Resident

Monitor Core Load Builder That Part of the Core Load Above 4095
— A A - A
Location End of DISKZ Location End
0000 4096 Ef
. ore
Y
Core Storage

Figure 9, Distribution of a Core Image Program being Built

Monitor Programs 47

Incorporation of Subprograms

All the subprograms called by the mailine program
and by other subprograms are included in the core
load, except for (1) the disk I/O subroutine, (2) any
LOCAL subprograms specified, and (3) SOCALs
(see System Overlays).

If LOCALs have been specified or if SOCALs are
employed by the Core Load Builder, the LOCAL/
SOCAL flipper (FLIPR) is included in the core load.
The order of conversion is generally NOCALs, fol-
lowed by the subprograms in the order they are
called, The order of processing when either
LOCALs or SOCALs are included is more compli-
cated and will not be discussed here.

By means of the function of the EQUAT control
record (see SUPERVISOR CONTROL RECORDS) a
subroutine, called in the core load that is being built,
can be replaced by another subroutine.
a symbolic name in a DSA statement can be replaced
by another symbolic name.

Provision for LOCALs and SOCALSs

If LOCALs have been specified, a LOCAL Area as
large as the largest LOCAL is reserved in the core
load, into which the LOCAL subprograms are read
by the LOCAL/SOCAL flipper. In addition, the sub-
programs specified on the LOCAL control records
are written in Working Storage following any files
defined in Working Storage. If the coreload is exe~
cuted immediately, each LOCAL is read, as it is
called, from Working Storage into the LOCAL Area
by the LOCAL/SOCAL flipper. If the core load is
stored in Disk Core Image format before it is exe-
cuted, the LOCALs are stored following the core
load. During execution, the LOCAL/SOCAL flipper
fetches them from the User/Fixed Area.

If SOCALs are employed by the Core Load Build-
er, a SOCAL Area as large as the largest SOCAL
(usually SOCAL 2) is reserved in the core load, into
which the SOCALs are read by the LOCAL/SOCAL
flipper. In addition, the subprograms comprising
the SOCALs are written in Working Storage following
any files defined in Working Storage and any LOCALs
stored there, If the core load is executed immedi-
ately, each SOCAL is read from Working Storage
into the SOCAL Area by the LOCAL/SOCAL flipper
as it is called. If the core load is stored in Disk
Core Image format before it is executed, the
SOCALs are stored following the core load and the
LOCALs, if any. During execution, the LOCAL/
SOCAL flipper fetches the SOCALs from the User/
Fixed Area.

Construction of the Core Image Header
During the construction of the Core Image program,
the Core Load Builder also constructs the Core

48

Furthermore,

Image Header, which contains the information re-
quired b the Core Image Loader to initialize the
core load for execution. This header becomes a
part of the core image program and resides in core
along with the rest of the core load during execution.
Since FORTRAN subroutines access this information
during execution, the header is not to be considered
a work area.

Processing Defined Files

The Core Load Builder uses the information in the
FILES control record to equate files defined in the
mainline program (by the FORTRAN DEFINE FILE
statement or by the Assembler FILE statement). to
Data Files on disk, The processing consists of com~
paring the file number in a 7-word DEFINE FILE
table entry with each of the file numbers from the
FILES control records, which have been stored in
the SCRA by the Supervisor or DUP, If a match
occurs, the name of the disk area associated with
the file number on the FILES control record is found
in LET/FLET, and the sector address of that disk
area (including the logical drive code) is placed in
word 5 of the DEFINE FILE table entry. If none of
the file numbers from the FILES control records
match the number in the DEFINE FILE table entry
or if no name is specified on the FILES control re-
cord, the Core Load Builder assigns an area in
Working Storage for the Data File, The sector ad-
dress of the Data File, relative to the start of Work-
ing Storage, is placed in word 5 of the DEFINE FILE
table entry, This procedure is repeated for each
7-word DEFINE FILE table entry in the mainline
program,

Use of the Core Image Buffer (CIB) and Working
Storage

The Core Load Builder places in the CIB any parts
of the core load which, when loaded, are to reside
below location 4096, Any parts of the core load that
are to reside above location 4095 are placed directly
into core storage.

Enough Working Storage is reserved by the Core
Load Builder to contain any Data Files assigned by
the Core Load Builder to Working Storage. All the
LOCAL subprograms and SOCALs, respectively,
are stored in Working Storage following any files
defined there, Figure 9 shows the distribution of a
core image program between core storage, the CIB,
and Working Storage, These diagrams depict a core
image program just after it has been built but before
it has been stored (STORECI).

Assignment of the Core Load Origin

The Core Load Builder origins core loads built from
relocatable mainline programs at the next higher-
addressed word above the end of the disk I/0 sub-
routine to be used by the core load plus 30,

Disk I/0O Core Load Origin

Subroutine in Core Decimal Hexadecimal
DISKZ 510 /01FE
DISK1 690 /02B2
DISKN 960 /03C0

The origins for core loads built from absolute
mainline programs are not controlled by the Core
Load Builder. Therefore, the user must origin ab-
solute mainline programs at 30 or more words above
the end of the disk I/0 subroutine to be used by the
core load (these 30 words are required for the Core
Image Header).

TRANSFER VECTOR

The Transfer Vector is a table included in each
core load that provides the linkage to the subpro-
grams, It is composed of the LIBF TV, the Trans-
fer Vector for subprograms referenced by LIBF
statements, and the CALL TV, the Transfer Vector
for subprograms referenced by CALL statements.

Each CALL TV entry is a single word containing
the absolute address of an entry point in a subpro-
gram included in the core load that is referenced
by a CALL statement. In the case of a subprogram
referenced by a CALL statement but specified as a
LOCAL, the CALL TV entry contains the address
of the special LOCAL linkage instead of the subpro-
gram entry point address, If SOCALs are required,
the CALL TV entries for function subprograms con-
tain the address of the special SOCAL linkage in-
stead of the subprogram entry point address.

Each LIBF TV entry consists of three words.
Word 1 is the link work in which the return address
is stored. Words 2 and 3 contain a branch to the
subprogram entry point. In the case of a subpro-
gram referenced by a LIBF statement but specified
as a LOCAL, the LIBF TV entry for its entry point
contains a branch to the special LOCAL linkage in-
stead of to the subprogram entry point address. The
Core load Builder inserts the address of word 1 of
the T.V. entry (link word) into Entry point +2 of the
associated LIBF subroutine, If SOCALSs are required,
the LIBF TV entry for a SOCAL subprogram contains
a branch to a special entry in the LIBF TV for the
SOCAL of which the subprogram is a part. This
special entry provides the linkage to the desired
SOCAL subprogram,

SYSTEM OVERLAYS

SOCALs (system-overlays-to-be-loaded-on-call)
are subprogram groups (by type and subtype) that
are made into overlays by the Core Load Builder.

They make it possible for many FORTRAN core
loads that would otherwise not fit into core to be

loaded and executed,
If, in constructing a core image program from a

FORTRAN mainline program, the Core Load Builder
determines that the core load will not fit into core,
SOCALSs are created by the Core Load Builder for
the core load. In addition, the LOCAL/SOCAL
flipper, which fetches the SOCALs when they are
required during execution, is included in the core
load along with the area into which the SOCALs are
loaded (the SOCAL Area).

The SOCALSs are created by subprogram type and
subtype (see the description of program type and
subtype under Disk System Format in Appendix C).

The following table describes the SOCALs.
Overlay

Subprogram Class Type Subtype (SOCAL Number)
Arithmetic 3 2 1
Function 4 8 1
Non-disk FORTRAN 3 3 2
1/O and "7" conver-
sion subroutines
"Z" device subroutines 5 3 2
Disk FORTRAN I/0O 3 1 3

There are two SOCAL options, The Core Load
Builder first attempts to make the core load fit
into core by using SOCALs 1 and 2 only (option 1),
If the core load still will not fit into core, SOCALs
1 and 2 and 3 are used (option 2). If the use of
option 2 still does not make it possible for the core
load to fit into core, an error message is printed
(see Core Load Builder Error Messages, Appendix
A).

Option 1 reduces the core requirement of the
core load by an amount equal to the size of the
smaller of the two SOCALs used, minus approxi-
mately 15 additional words required for the special
SOCAL linkage. Option 2 reduces the core require-
ment by an amount equal to the sum of the sizes
of the two smallest SOCALs minus approximately
20 additional words required for the special SOCAL
linkage., SOCAL 2 is usually the largest SOCAL.

Each SOCAL does not contain all the available
subprograms of the specified types and subtypes;
only those subprograms of the specified types and
subtypes required by the core load are contained
in the SOCAL.

If a subprogram that would otherwise be included
in a SOCAL is specified as a LOCAL subprogram,
that subprogram is made a LOCAL and is not in-
cluded in the SOCAL in which it would ordinarily
be found.

SOCALs are never built for core loads in which
the mainline program is written in Assembler or RPG
language.

Monitor Programs 49

LOCAL/SOCAL FLIPPER (FLIPR)

The LOCAL/SOCAL flipper is included in each
core load in which LOCAL usbprograms have been
specified and/or in which SOCALs have been em-
ployed. If execution of the core load immediately
follows the building of the core image program, this
subroutine reads a LOCAL/SOCAL from Working
Storage into the LOCAL/SOCAL Area as it is called
during execution. If the core image program was
stored in the User or Fixed Area in Disk Core
Image format prior to execution, the flipper reads
each LOCAL/SOCAL as it is called during execu-~
tion from the User or Fixed Area (where it was
stored following the core load) into the LOCAL/
SOCAL Area.

The flipper is entered via the special LOCAL/
SOCAL linkage. A check is made to determine if
the required LOCAL/SOCAL is already in core, If
it is not in core, the flipper reads the required
LOCAL/SOCAL into the LOCAL/SOCAL Area, and
transfers the LOCAL/SOCAL subprogram via the
special linkage.

CORE IMAGE LOADER

The Core Image Loader serves both as a loader for
core loads and as an interface for some parts of the
Monitor system,

On any entry to the Skeleton Supervisor, the
Core Image Loader is fetched and control is trans-
ferred to it. The Core Image Loader determines
where the Skeleton Supervisor was entered, i.e.,
at $EXIT , $DUMP, or $LINK.

FETCHING THE SUPERVISOR

If an entry was made to the Skeleton Supervisor at
the $EXIT entry point, the Core Image Loader first
fetches the disk I/0 subroutine used by the Monitor
programs (DISKZ), if it is not already in core.

It then fetches and transfers control to the Monitor
Control Record Analyzer to read Monitor control
records from the input stream.

If an entry was made to the Skeleton Supervisor
at the $DUMP entry point, the Core Image Loader
first saves words 6-4095 on the CIB and then fetches
and transfers control to the DUMP program to per-
form the core dump according to the parameters
specified. At the completion of the dump, the
DUMP program either restores c ore from the CIB
and transfers control back to the core load, or it
terminates the execution with a CALL EXIT (see
Terminal and Dynamic Dumps under Supervisor}.,

FETCHING A LINK

If an entry was made to the Skeleton Supervisor
at the $LINK entry point, the Core Image Loader
first saves low COMMON (locations 1536-1855 if
DISKN is in core, locations 1216-1535 if DISK1 is
in core, or locations 896-1215 if DISKZ is in core).
It then determines from COMMA the lowest-address-
ed word of COMMON, if any, defined by the core
load just executed. Any COMMON below location
4096 is saved in the CIB by the Core Image Loader.
Figure 10 illustrates the scheme used in saving
COMMON between links,

Core Image Buffer

50

(Core Load Built —A Saved COMMON)
—_—— -
Sector 1 2 3 4 5 6 7 10 11 12 13 14 15 16
| I R I/I//l/l | I/I/I/l/l J
/
YYD,
Ay A A A /
S S //
;< LS, <00 s //
SIS S,
A A A A A A A
S
// 7/ /S S S //

l/ I/ l/ l/ l/ l/ l/ l/ l/ I/ I/
Core | y T T T T T T T T 1
Location 896 1216 1536 1856 2176 2496 2816 3136 3456 3776 4096

Figure 10, Scheme for Saving COMMON between Links

The LET/FLET entry for the link to be fetched
is then located, and the Core Image Loader deter-
mines from it whether the link is in Disk Core
Image format or Disk System format, If the link
is in Disk Core Image format, the Core Image
Loader fetches the disk I/O subroutine required
by the core load, if it is not already in core. It
next restores low COMMON if it lies within the
COMMON defined by the core load just executed.
The core load is then fetched and control is trans-
ferred to it.

If the link is in Disk System format, the Core
Image Loader calls the Core Load Builder to con-
struct a core image program from the mainline
program. After the core image program has been
built, the Core Load Builder returns control to the
Core Image Loader, which then fetches the core
load, as described above, and transfers control to
it.

Figure 11 shows the layout of a core load loaded
into core, ready for execution

LOCAL/
Resident Monitor Mainline Subprograms SOCAL LOCAL Area SOCAL Area Unused Transfer Vector COMMON
1 P e Flipper A
t t t ¢ 1 F
Location L NOCALs End
0000 of

Core Image Header Core

Figure 11, Layout of a Core Load Loaded for Execution

Monitor Programs 51

The information presented in this section should
assist the user in achiever maximum utilization of
the Monitor system.

STACKED INPUT ARRANGEMENT

Input to the Monitor System consists of control
records, source programs, object programs, and
data arranged logically by job.

The following points must be considered when
arranging the input for any job.

1. Any number of comments records can be insert-
ed in front of (but not immediately following) ASM,
FOR, RPG, or XEQ monitor control records, and in
front of an following JOB or DUP monitor control
records,

2. Any records other than monitor control records
which remain after the execution of an ASM, FOR,

RPG, or XEQ subjob are passed until the next monitor

control record is read. After a DUP operation ,
records are passed until either a monitor control
record or another DUP control record is read.

3. If an error is detected in an assembly, FORT-
RAN compilation, RPG compilation or during loading
From Disk System format, the resulting object pro-
gram or any programs that follow within the job can-
not be executed. Also, if an error is detected in an

Iassembly, FORTRAN sompilation, RPG compilation,
or during a loading from Disk System format during
a STORECI function, all DUP functions are bypassed

| until the next valid ASM, FOR, RPG, or JOB record
is read.

| 4, If the FORTRAN compiler, RPG compiler, or

the assembler encounters a monitor control record,
control will be transferred to the Supervisor, i.e.,
the monitor control record will be trapped. The Su-
pervisor will correctly analyze the record after the
compilation or assembly has been abandoned. DUP
will not trap a monitor control record during a DUP
operation (refer to DUP Control Records).

PROGRAMMING TIPS AND TECHNIOUES

The stacked input arrangement shown in Figure
11.1 will assemble/compile, store, and execute
both Programs A and C, providing there are no
source program errors, and there is sufficient
room in the Working Storage Area (refer to Work-
ing Storage Area). A source program error
causes the DUP STORE operation (refer to DUP
Control Records) to be bypassed for that program,

and all following XE® requests preceding the next
JOB record are disregarded. Thus, if the success-
ful execution of one program depends upon the suc-
cessful completion of the previous program, both
programs should be considered as one job and the
XE® control records should not be separated by

a JOB record.

Job B calls in the Disk Utility Program, and
stores object program B on disk.

USING THE DISK I/0 SUBROUTINES

All core loads, whether they use disk I/0 or not
require one of the three disk I/0 subroutines. As

a minimum, this disk subroutine is used to read the
core load into core and execute CALL EXIT, CALL
LINK, CALL DUMP, and/or CALL PDUMP. Gen-
erally, DISKZ is used by FORTRAN and RPG core
loads and DISK1 or DISKN by Assembler-Language
core loads. DISKN provides faster operation than
DISK1 for operations involving more than 320 words,
as well as the simultaneous operation of disk drives.
DISKZ is intended for use only in an error-free envi-
ronment , because it does no preoperative parameter
checking, whereas DISK1 and DISKN do. DISKZ
also has a special calling sequence; DISK1 and
DISKN have the LIBF calling sequence. Bear in
mind that all three disk subroutines are assembled
as mainlines and are thus not the same as programs
stored in the System Library, even though DISK1
and DISKN (but not DISKZ) may be referenced with
the LIBF statement., They are described with li-
brary subroutines because they are similar in some
respects to library subroutines. Actually, they are
neither incorporated into the core load like library
subroutines nor are they stored in the System Li-
brary. A switch is set in COMMA to indicate

which version of disk I/0 is requested on the XEQ
record. The setting of this switch is not altered

53

until 1) a Monitor control record is read or 2) a
link that is stored in DCI is called. In the first
case the switch is set to indicate DISKZ, unless
the record was XE%), in which case the switch is
set to indicate whatever version is requested. In
the second case the switch is set to indicate the
version of disk I/O required by the link, In short,
each DSF link except the first in an execution must
utilize the same version of disk I/O as the preced-
ing link. The first link must, of course, utilize
the disk I/0O specified on the XEQ record.

In order to save core in Monitor programs, all
of which utilize DISKZ, DISKZ has been pared to a
minimum. The following is a list of functions that
are not available in DISKZ but are available in
DISK1 and/or DISKN,

e No validity checking of the word count and sec-
tor address

e No file protection

e No LIBF type calling sequence

e No validity checking of the function indicator
o No write without readback check option

o No write immediate function

e Word count may not be on an odd boundary

® No simultaneous disk operations

e DBoes not''make' the sector gap when reading or

writing more than 320 words
/

USING LINKS TQ AVOID OVERPRINTING

To prevent overprinting in a link to another program,
at least one space should be given prior to the link-
ing. This is due to the fact that the Core Load
Builder assumes that a space before printing is not
necessary, since all monitor programs have a space
after print,

54

THE USE OF SOCALs

Restrictions on Subroutines in SOCALs

A rule of prime importance regarding subroutines
in the SO CAL scheme is that none must cut across
SOCALs. That is, a given subroutine that is in one
SOCAL may not call a subroutine that is in another
SOCAL or cause another SOCAL to be brought into
core before the execution of the given subroutine is
completed. This is due to the fact that the IBM -~
supplied 1130 subroutines that go into the SOCAL
scheme are not re-enterable. It should also be
noted that disk I/0 is used every time a SOCAL is
brought into core. This means that disk I/0 will
sometimes be entered without the user's direct
knowledge.

When the 1627 Plotter is used in a program, the
following subroutines must not be in a SOCAL for
that program: EADD, FADD, FMPY, EMPY,
XMD, XMDS and FARC. They must instead be
in-core subroutines. This can be achieved by:

1. DUMP the programs to cards
2. DELETE the programs
3. STORE the programs with sub type zero

Decreasing Program Execution Time

When writing or modifying a program that is known
to require SOCALs, planning is required to minimize
the flipping of the various SOCALs in and out of core
during execution. Ideally the program should be
written in sections, each of which employs a single
SOCAL, e.g., input, computation, and output.

Even input and output should be carefully planned

so as to separate disk and non-disk operations
whenever possible,

(// JOB

(// XEQ C
*STORE C
(// DUP
Source Program C ——7/ /
FORTRAN Control Records ——/ >
(/CFOR
(// PAUS JoB C
// *comments
(// JOB
Object Program B _—7/ /
(*Q)RE B
f // DUP
(// PAUS
(// * comments JOB B
(// JOB
(// XEQ A
fSTORE A
{ // DUP

Source Program A

(

Assembler Control Records———y

(

(// ASM
(// PAUS
(//*commenfs

ﬁ/ JoB

Cold Start Card
(see Cold Start
Operating Procedure)

@ Figure 11,1 Example of Stacked Input (Three Jobs)

Programming Tips and Techniques 55

LOCAL CALLS A LOCAL

For the Assembler language programmer, it is
possible to execute DSF core loads in which a
LOCAL calls another LOCAL, This may be effect-
ed by punching column 26 of the XEQ record; this
will cause all DSF core loads for that execution to
allow LOCALs to call LOCALs. The user must
make provision in all CALL LOCALs (Type 4 or 6
subroutines) in a given LOCAL-Calls -LOCAL
chain to pass along the link word, which implies
that all such subroutines must be written in Assem-
bler language. This is necessary in order to return
from the last LOCAL in the chain to the place from
which the first LOCAL was called. There is no
way to pass along the link word in a FORTRAN-
written CALL subroutine, thus making this re-
striction necessary.

DISADVANTAGES OF STORING A PROGRAM IN
DISK CORE IMAGE FORMAT (DCI)

Before deciding to convert a program to DCI, one
should weigh the advantages gained in loading time
against some disadvantages, one of the most im-
portant of which involves maintenance. Suppose,
for example, that a DCI program contained a sub-
routine from the IBM-supplied System Library

that contained an error that was fixed after the core
load was built and stored. The correction would

be sent out, but it would be applied only to the sub-
routine itself; it would not be applied to the DCI
programs that have had the subroutine already

built into themselves, Such programs, to acquire
the fix, would have to be deleted and rebuilt
(STORECI) after the maintenance mod was installed,

Another important consideration concerns core
loads that contain references to non-Working
Storage disk files. Of course, the system disallows
STORECI if the core load references a file in the
User Area, because the location (sector address)
of that file may change (because of deleted pro -
grams). Any DCI core loads that reference such a
file will do so by the old sector address, and the
results are then unpredictable,

To & lesser extent the same danger exists if the
DCI program references a file in the Fixed Area,
even though that operation is allowed. The file
may be deleted after the DCI program is stored,
for example, and a new file or program stored in
its place. This is complicated by the fact that not
only are the sector addresses built into the DCI
program, but also the logical drive codes, which
implies that every time such a program is exe-
cuted the user must be certain that all disk cart-
ridges required are mounted on the same logical
drives as when the program was originally stored
in DCI.

TIPS ON MONITOR CONTROL

Temporary JOB Mode

In many cases DUP delete functions must be per-
formed to clear the User Area of old programs
before newly assembled or compiled programs
may be stored, The necessity for such deletions
is avoided by using the temporary mode when run-
ning jobs that contain programs that are likely to
be replaced at a later time, In the Temporary
mode all programs stored to the User Area are
automatically deleted when the next JOB record is
processed, This assures the user that his new
program is the one stored in the User Area and is
particularly useful while debugging.

EJECT Monitor Control Record

The EJECT record is used to control the beginning
of a new page on the principal print device during a
job. For example, messages to the operator of the
Monitor Comments control record type may be
placed in a more readable position if followed by
an EJECT record,

23456 78 910111213141516171819 20212223 24252627 28 29 30 31 3233 34 353637 3t

i P A a0

A i P S 4 Ad " " e
.
L i e 4o 4 k. " i
A P A " n . ki

Changing cartridges in the middle of a job is permis-

MAXIMUM PERFORMANCE OF HIGH SPEED
DEVICES

Double Buffering

The 2501 Card Reader model A2, rated at 1000 cards
per minute presents a special problem to the program-
mer who desires maximum performance from his
card I/O operations. If any conversion of the card
data is required, the reading speed is likely to drop
to 500 cards per minute, unless double-buffering is
used.

The principle involved, is to read into one buffer
while converting and processing the data from another
buffer. This scheme does cost core for the extra
buffer and additional programming involved, but in
most cases it should allow the card throughput for
the 2501 to remain at 1000 cards per minute. The
coding illustrated below shows the double-buffering
technique used for reading cards from the 2501, and
converting them to EBCDIC.

sible; however, great care must be exercised. A —
Label Operation (301 Operands & Remarks
sys‘tem updatg operation must always be performed. T RN T Y AT T YT T
This function is provided by the System Library sub- | ipe (188d, CARD. READING. THIS, READ . .
L D.C,
routine SYSUP, The subroutine should be called .
. . . . WEAD L.IBE
immediately following the loading of the new cart- 1 lpe, /1860 . . . MUNTIL. PREVIOUS, READ 1« .
ridge or cartridges as follows: SRS R A
L L.IBE Z 000 o 1 BRTO (EXECWTE (FAST, f"""'°T.‘|
A Co 21T o LiBM CAIRD (CODE TO EBCOLC | 1«
Labe! Operation | |F[T Operands & Remarks ET.2 ret
L 5| |z % Lz;, 55 © s P) 5 © o ET.3. | DG v
Jleadt WYSWP 4 CAL L DCOM WUPDATE: 1+ . 1. i c. F-X S s NOve s OE COLUMNS Ti0, CONMV.ERT, |
. L0 N T P! C.ALL uanr....C!O.N.V‘Eksr.aM.TAn:::QM:Z:LP.CD.
N NN L 1 P SRR SUSUE VTR B Y S Y S
ADDR C dadatit o GCART LD OF L OGLCAL B, — S0 16 o PN uANEE BUEEER apDRESS RS
N D.Co 1
R N Y DK s (CART TR OF L0G I CAL R . 1 o OME: o e bt et
PR Ko YV GCART LD OF (LO0GIICAL, 3, | sTO
. X ZZEZ 0 GCART (IO (QF L0GIICAL 41 . o $.T.0. ET3 0 MADDRESSES (FOR CIONMVERSTOMN
o —— R
w . . coprna [fo |
The IDs of cartridges to be used must be specified, - : : e o
even those that were previously specified except the . : e AT
master (logical 0), which if unspecified will be the . N) L P
previous master, Continuation of the job must be de- B READ e
1 .) L FERTSITERTTATING DT T S S WU SN ST R I S WY PN RO S RN ST SRR .. |
layed until all the newly loaded cartridges are ready. . T T T
Rules governing the specification of cartridges are RS LANT AND AR ABBRAS s
the same as those for the JOB Monitor control record. RS T ONSTARNT VALGE R T i
record. £1. | loc . 8f WORD COUNT .FOR CARD BFR L .|
PR B.S.S, |
. . . BULF.2, DC, .
For a tip on using SYSUP see REELING section JHass.
Programming, Tips and Techniques. - e
IaNG: PUOWIR: OF ADDRESSES ARE 1EXCHANGED
. . TWHROUGH, THE CARD READING (LOOP.
The FORTRAN calling sequence for SYSUP is T
described in the section of this manual entitled ¢'n. e : o MAKE, NEAT :L:ﬂtl‘lA-lT:I:O:Mt EEN
. 21 . i PR S U S (OF i R (1= % N
System Library Utility Subroutines. Burz . ADDRESS 0F CARD BUFEEA 4]

Programming Tips and Techniques 57

1403 Conversion Subroutines

. Two subroutines are provided with the Monitor system
that may be used by Assembler object programs to con-
vert EBCDIC to 1403 Printer Code. These subroutines
are EBPRT and ZIPCO.

Using the execution times listed in the Subroutine
Library manual, the average time EBPRT requires to
convert a 120 character line is 156 ms. This compares
with an estimate of 72 ms per line for ZIPCO.

Considering that the available times on the 1403
Printer are

Model 6 (340 LPM): 176 ms/line
Model 7 (600 LPM): 100 ms/line

it would be difficult or impossible to run the printer at
rated speed, depending on the model, using EBPRT. If
overlapped I/0 were attempted, it would be impossible
to run either model at rated speed.

The assembly language programmer is therefore ad-
vised to use ZIPCO for all EBCDIC to 1403 Printer code
conversions.

TIPS FOR ASSEMBLER LANGUAGE USERS

Grouping of Mnemonics

Assembler language programs can often be organized in
such a manner as to improve the assembly time. The
Assembler Program is divided into overlay phases, each
phase processing a certain group of mnemonics. By
grouping mnemonics of a common type in the source pro-
gram, fewer disk reads of overlay phases will be re-
quired by the Assembler. The following is a list of the
mnemonics as they are grouped within the Assembler
program:

A. ABS, FILE, ENT, ISS, ILS, SPR, EPR

B. DCs and imperative instructions (A, LD, EOR,
BSC, etc.)

DEC and XFLC

DMES

HDNG, ORG, EQU, BSS, BES, LIST, SPACE,
EJCT, DUMP, PDMP

F. LIBF, CALL, DSA, LINK, EXIT, EBC, DN

®mUoa

Each time a mnemonic is encountered during the
assembly process, the overlay phase required to proc-
ess it will be read into core, unless it is already resid-
ing in core.

58

Intermediate I/0

As the source records are read and processed by the
Assembler in Pass 1, each statement is packed and
saved on the disk in Working Storage. The part of the
record that is saved is from column 21 to the last non-
blank column. If no listing is specified, comments
records are not saved on the disk.

Each record saved on the disk is preceded by a pre-
fix word that contains the length of the associated rec-
ord plus one. Up to sixteen 38-column records are
saved on one sector.

WRITING ISS AND ILS

Interrupt Service Subroutines

The following rules must be adhered to when writing an
188S:

e Precede the ISS statement with an LIBR statement
if the subroutine is to be called by LIBF rather than
CALL.,

® Precede the subroutine with an EPR (extended) or an
SPR (standard) statement if precision specification
is necessary.

® Precede the subroutine with one ISS statement defin-
ing the entry point (one only), the ISS number, and
the ILS subroutines required. The device interrupt
level assignments, and the ISS numbers used in the
IBM-provided ISS and ILS routines, are shown in
Table 4. See the 1130 Assembler Language Manual
(Form C26-5927), for a description of the ISS state-
ment. Note that the ISS numbers assigned by the
IBM-supplied subroutine range from 1-11. ISS
numbers 12-20 are assignable by the user. (They
should be assigned from 20 downwards.)

o When assembling the ISS, an *LEVEL n control
card must be included for each interrupt level
associated with the device.

e The entry points of an ISS are defined by the related

ILS. This must be taken into consideration when a
user-written ISS is used with an IBM supplied ILS.
The ILS executes a Branch and Store I instruction
to the ISS at the ISS entry point plus n (see Table 4).
The ISS must return to the ILS via a BSC instruction
(not a BOSC).

Table 4, ISS/ILS Correspondence

iss Device Interrupt
Number Device Level Assignments n
! 1442 Card Reader Punch 0,4 +4, +7
2 Input Keyboard/Console 4 +4
Printer
3 1134/1055 Paper Tape 4 +4
Reader/Punch
4 2501 Card Reader 4 +4
5 Disk Storage 2 +5
6 1132 Printer 1 +4
7 1627 Plotter 3 +4
8 Synchronous Communi- 1 +4
cations Adapter
9 1403 Printer 4 +4
10 1231 Optical 4 +4
Mork Page Reader
1t 2250 Graphic Display 3 +4

Interrupt Level Subroutines

An ILS is included in a core load only if requested by an
ISS that is a part of the same core load. ILS02 and
IL.S04 are a part of the Resident Monitor unless they are
deleted from the System Library and replaced with user-
written subroutines. The following rules must be ad-
hered to when writing an ILS.

o Precede the subroutine with an ILS statement to
identify the interrupt level involved.

o Precede all instructions by an ISS branch table
and include one word per ILSW bit used. If the
ILSW is not to be scanned, (i.e., a single ISS
handles all interrupts on the level), then a one
word table is sufficient. The minimum table
size is one word. Table words must be non-zero.
A zero must follow the branch table.

Word Corresponding To

TLSW Bit 15
ILSW Bit 14

ISS Branch Table

ILSW Bit 0

The ISS branch table identifies both the ISS subroutine
and the point within the ISS which should be entered for

each bit used in the ILSW. The actual linkage is gener-
ated by the Core Load Builder. Basic to this generation

is the ISS number implied by bits 8-15 of the branch
table word and specified in the ISS statement. This
number identifies a core location in which the Core Load
Builder has stored the address of the called entry point
in the ISS. This entry point address is incremented by
the value in bits 0-7 of the branch table word, produc-
ing the interrupt entry point address. The Core Load
Builder replaces the ISS branch table word with the
interrupt entry point address.

During execution each address in the branch table
may be used with an indirect branch and store I (BSI)
instruction to reach the ISS corresponding to that ILSW
bit position. The ILSW bit that is ON can be determined
by the execution of a SLCA instruction. At the comple-
tion of this instruction, the index register specified
contains a relative value equivalent to the bit position
in the ISS branch table. An indirect, indexed BSI may
then be used to reach the appropriate ILS.

_Before processing by the Core Load Builder, each
word in the ISS branch table has the following format:

Bits 0-7 -- Increment added to the entry point named in
the ISS statement to obtain the interrupt entry point in
the ISS for this ILSW bit. (In IBM-written ISS subrou-
tines, this increment is +4 for the primary interrupt
level and +7 for the second interrupt level.)

Bits 8-15 -- @ISTV+ the ISS number for the ISS subrou-
tine for this ILSW bit.

o I'he ISS number for any entries in the IBT that
represent unused bits in the ILSW must have
the value @ ISTV.

e The ILS entry point must immediately follow the ISS
branch address table and must be loaded as a zero.
The Core Load Builder assumes that the first zero
word in the program is the end of the branch table
and is also the entry point of the ILS. (The table
must contain at least one entry.) The interrupt
results in a BSI to the ILS cntry point.

eTo clear the level, a user-written ILS, used with
an IBM-supplied ISS, should exit via the return
iinkage with a BOSC instruction.

e User-written ILS must replace the equivalent IBM-
supplied ILS. The user written ILS must be stored
as ILSOx, where x=0, 1, 2, 3, 4, or 5.

e The IBM-supplied ILS02 and ILS04 subroutines
are stored as subtype 1. User-written replacements
must be stored as subtype zero.

® The branch table for ILS04 may have no more than
J entries.

e The branch table for the IBM-~supplied version of
TLS04 may have no more than 9 entries. A user-
written version may support all 16 possible
entries.

Programming Tips and Techniques 59

READING A CORE MAP AND A FILE MAP

The core maps described below are taken from the
sample programs supplied with the Monitor system.
(The sample program listings and operating instructions
are printed in Appendix J.)

The core map for the Assembler-language sample
program indicates that there were /7904 words of core
storage not occupied by the core load (R41 is an infor-
mational message, not an error message). There was
only one CALL (FSQR), but there were several LIBFs,
e.g., FARC. The ILS02 and ILS04 subroutines are
required; however, their addresses indicate that they
are a part of the Resident Monitor and not in the core
load proper. The entry point to the mainline program
is /O1FE,

The principal difference in the core map printed for
the FORTRAN-language sample program is that it in-
cludes a file map. The file defined as file number 103
has been equated to a data file named FILEA, which be-
gins at sector /01AE, is one sector in length, and is
stored on a cartridge labeled 000F.

If file 103 had required more than the two sectors
available in FILEA, the record count would have been
reduced to make the file fit in FILEA, and the file
map entry would have been

103 01AE 0002 000F FILEA TRUNCATED

The files defined as 101 and 102 are files in Working
Storage because they do not appear in the *FILES rec-
ord. This can be determined by looking at the right-
most entry in the file map. For files defined in the
User/Fixed Area, for example, FILEA, this entry is
the name of the file; otherwise, it is the address of
Working Storage.

The second entry for a User/Fixed Area file is the
absolute sector address of the first sector of the file.
For files in Working Storage, this address is relative
to the first sector of Working Storage. Thus, the abso-
lute sector address of the first sector of file 101 is
/0000 + /01B0; for file 102 it is /0001 + /01BO.

Note that the 4K example requires both LOCALSs
and SOCALs. The LOCALs were, of course, requested
by the user, and the core map entries for the LOCAL
subroutines (FLOAT, FARC, and IFIX) have been flag-
ged. The presence of SOCALs, which were selected and
constructed by the Core Load Builder, are also indicated
by flags on the core map entries for the subroutines in-
cluded in the various SOCALs. The number following the
word "SOCAL" indicates in which of the SOCALs a par-
ticular subroutine is to be found. In this case SOCAL
Option 2 was employed. This can be deduced from the
fact that there are three SOCALs. Option 1 consists of
only two.

Several other facts about the 4K core load can be ex~
tracted from the core map. For one thing, the core

60

load exceeds the capacity of core storage (before
SOCALizing) by /03AB words (message R40). Further-
more messages R43, R44, and R45 indicate that
SOCALs 1, 2, and 3 require /0124, /06AC, and /02A2
words of core, respectively. This information indicates
that, for example, since SOCAL 2 is much larger than
SOCAL 1, more arithmetic and function subprograms
may be called at little extra cost in core. (It would be
necessary to reduce the dimension of the variable B

to realize this.) Message R41 says that, after
SOCALizing, there are only /0004 words of core that
are not used by this core load.

The RPG core map shows that the x version of the
ILS subroutines have been used. The x versions are
required by RPG and are called by punching any cha-
racter in column 28 of the // XEQ card.

Assembler Core Map

/7 XEQ L

R 41 7904 (HEX) WDS UNUSED B8Y CORE LOAD
CALL TRANSFER VECTOR
FSQR 0248

LIBF TRANSFER VECTOR
FARC 069E

XMDS 0682

HOLL 0632

PRTY 05E2

EBPA 0592

FADD 04El

FDIV 0540

FLD 048C

FADDX O04E7

FMPYX 04A2

FSTO 0470

FGETP 0456

NORM 042C

TYPEO 0312

EBPRT 02AC

IFIX 0280

FLOAT 0230
SYSTEM SUBROUTINES
ILS04 00C4

1LS02 0083

O1FE (HEX) IS THE EXECUTION ADDR

FORTRAN Sample 4K Core and File Map

// XEQ L 2
#LOCAL s FLOAT s FARCIFIX
#FILES(103sFILEA)
FILES ALLOCATION
103 01AE 0001 OOOF FILEA
101 0000 0001 OOOF O01BO
102 0001 0001 OOOF 0180
STORAGE ALLOCATION
R 40 03AB (HEX) ADDITIONAL CORE REQUIRD
R 43 0124 (HEX) ARITH/FUNC SOCAL WD CNT
R 44 O06AC (HEX) FI1/0s 1/0 SOCAL WD CNT
R 45 02A2 (HEX) DISK F1/0 SOCAL WD CNT
R 41 0004 (HEX) WDS UNUSED BY CORE LOAD
LIBF TRANSFER VECTOR
EBCTB OF53 SOCAL 2
HOLTR OF17 SOCAL
GETAD OED& SOCAL
XMDS 0982 SOCAL
HOLEZ OE9E SOCAL
NORM 07DC
FADDX 098D SOCAL
FSBRX 0934 SOCAL
FMPYX 0900 SOCAL
FDIV OBAE SOCAL
FSTOX 0788
FLDX 07 A4
SDCOM 0920 SOCAL
SDFX 08E6 SOCAL

e NN

w W

SDWRT 0984 SOCAL 8 // XEQ L R
ke O3aa socaL 2 R 41 73FA (HEX) WDS UNUSED BY CORE LOAD
S101 099E SOCAL 2 CALL TRANSFER VECTOR
sco wmas gocil 2 ROERR 0854
SRED 0880 SOCAL : EBPT3 099C
;E;O g;:: HLEBC O07F2
PRRTZ ODEG SOCAL 2 LIBF TRANSFER VECTOR
ot o sk 2 o onre
RGMVI OAIC
SDF10 0959 SOCAL 3
IFIX 087C LgCAL PRNT3 0872
FARC 087C LOCAL ZIPCO 0752
FLOAT 087C LOCAL
SYSTEM susnour?ﬁgs READO 06F2
;tgg; gg:; SYSTEM SUBROUTINES
ILSO1 OFSA ILSX4 0BB3
;t.;»g: g:;z 1LSX2 0BD5
0ADD (MEX) 1S THE EXECUTION ADDR 020F (HEX) IS THE EXECUTION ADDR

FORTRAN Sample 8K Core and File Map LOCATING FORTRAN ALLOCATION ADDRESSES

// XEQ L |
FILESCI03,FILEA)

The variable allocations listed below are taken from the

FILES ALLOCATION FORTRAN sample program in Appendix J.
103 OIAE 000! OOOF FILEA
101 00000001 00OF 0180 RANE NSRS xin reooraeoane ai 1e0200-002
V3(l)=020g M({I)1=020F L(I y=0210
STORAGE ALLOCATION L2(1 1=0214 N1(I)=0215 N2(1)=0216
R 41 0C9C (HEX) WDS UNUSED BY CORE LOAD KT)m021A IK(1 120218 11t 1=021C
LIBF TRANSFER VECTOR
EBCTB 12CD
HOLTB 1291 D(R)=020GA V1(1)=020C v2{1)=0200
GETAD |124E MI(I)m0211 M2(1)=0212 L1(1)=0213
NORM 1224 N(1)=0217 I(1 I=0218 JU1 1=0219
XMDS 1208
FARC I1E6
HOLEZ 11BO The variable array A is to be found between core loca-
FLOAT |1A6 tions /00DC + /001E + $ZEND and /0016 + /001E
IFIX 1IT7A + $ZEND, inclusive. Thatis, Aj is at /00DC + /001E
R loee + $ZEND, Ag at /00DB + /001E + $ZEND, etc. The

/001E term is the length of the Core Image Header and

EET\V’X :8?2 $ZEND is the address of the first core location follow-
FSTOX 101E ing DISKZ.
FLDX 103A The other allocation addresses, e.g., statement
SbCOM O7FE allocation, may be calculated in a similar manner.
SDFX 07C4
SDWRT 0832
Snen oah INITIALIZING $$$$$ DATA FILES FOR USE WITH
S101 OBIE , FORTRAN UNFORMATTED I/0O
SCoMP 0B02
SWRT 0A2B The user must define a Data File with the name $$$$$
SRED 0A30 prior to executing a FORTRAN mainline program or
FSTO 1022 subroutine that uses unformatted I/0O. This Data File
FLD 103k must be located in the Fixed Area. One file may be
Eigg% &Egg defined in the Fixed Area of each cartridge on the sys-
SFIO 0B2D tem; however, only one $$$$$ file may be referenced
SDFI0 0837 in any one job.

SYSTEM SUBROUT INES The following example shows a $$3$$ file being de-
1LS04 00C4 fined on a satellite cartridge.
1LS02 00B3
ILSOI 12D2 The satellite cartridge ID is 1004
ILS00 12ED The system cartridge ID is 1001

040D (HEX) IS THE EXECUTION ADDR A file of 100 sectors is desired

Programming Tips and Techniques 61

After the file is defined, program ML1 which uses un-
formatted I/0 can be executed. Note that no *FILES
card is required at execution time to define the $$$$$
file.

12345678 910111213141516171819 20212223 24252627282930 31323334 3536373839404
. .o0L . .. 1004 .

%DEFINE FAXED AREA B N

XEQMLL, e
.

Sample program 3, containing the statements END
FILE, BACKSPACE, and REWIND, is included in
Appendix J. The program writes three logical
records of different lengths to file $$$$$. Each

Programming Tips and Techniques 61.1

logical record begins at a sector boundary and ex-
tends into additional sectors as required. Refer to
unformatted disk I/O description in Table 3.

After completion of each WRITE (of records A,
B, and C), a pointer is "moved" to the beginning
of the next logical record, In the case of the END
FILE statement, the pointer is similarly positioned
beyond the record generated by END FILE. The
first BACKSPACE statement moves the pointer to
the beginning of record C, which is subsequently
read into area F, Following the REWIND statement,
which sets the pointer to logical record A, a READ
with no area specified is executed that has no effect
except to advance the pointer to record B, Only
the first half of B is read into E, since the record
lengths are in the ratio 2: 1.

USE OF DEFINED FILES

When an *FILES Supervisor control record is used
following a //XEQ Monitor control record, or a

* STORECI control record, the Core Load Builder
attempts to locate the file name by searching LET
or FLET. If the name is found, the sector address
of this Data File is inserted in the file table (creat-
ed as a result of the FORTRAN DEFINE FILE state-
ment or the Assembler FILE mnemonic) identified
by the file number specified on the *FILES record.
If the file name is not found in LET and FLET, the
Core Load Builder causes this file to be a Working
Storage file. A suggested way of initially allocat-
ing a disk area for a Data File is to perform a

* STOREDATA DUP operation from Working Stor-
age to the User or Fixed Area. The number of sec-
tors stored should be determined on the basis of
the number of records the file is to contain, and the
size of each record. Note that records do not con-
tinue across sector boundaries. Once the number
of sectors required has been determined, this num-
ber of sizctors should be specified on the * STORE
DAT A contrel record, provided the User Area or
Fixed Area is large enough to contain this file.

DUPLICATE PROGRAM AND DATA FILE NAMES

On a multi-drive system, it is possible to have more
than one program or data file with the same name.
This can cause problems when attempting to exe~
cute or delete the named program.

Example:

2 4 6 8 10 12 W 16 8 20 22 24 26 B 30 32 34 36 3B 40 4«

PR LT E U U N N U U U0 Y 0 00 S S T 0 W VAU T L O S0 S U0 S W0 S0 OO0 T ST U SO A B 0 §

r.L.u!L_LLLLu_J_uJ_LJ.J_LA_Lu_J_JJ_u_L.Lx_A_A_LLUJ_u_LLA

| S LTS W T S U B Y 0 B S S U D R A B U S S W W U B A AR AT I S

R ST AT SN U G S U0 U S0 U N T U U S A S S A0 S S A S U0 S R A WU U 00 U A

MU TN U S W U N SN N U0 U B U S U O N O AR U A O R S0 U S AT U U Y A Y A S
L

e o W I W Y HAW 1 ST 0 A0 B0 W W A5 0 W WY NS WS W W SR W W W WD S W D W I W W S B
A A A A 4 A s 2 3 4 4 2 1 A & 4 A A A A A A A A A 2 4 2 4 4 1 A A 4 2 LA 3 A A AL

This sequence of instructions will cause PROG1 on
the cartridge labeled 1111 to be executed when
PROGL on 2222 may have been desired. A similar
problem can occur on a DELETE operation. The
above DELETE instruction would delete the program
on 1111, not the one on 2222,

62

The answer to this problem is to avoid having two
programs or data files with the same name. If an
unknown cartridge is on line and it is not needed
for the job, disable it.

NAME CONFLICTS

In STORE and DELETE operations, care should be
taken to avoid name conflict with IBM-supplied pro-
grams. If the program to be stored or deleted
carries the same name as an IBM program, the
system may execute the operation on the wrong pro-
gram.

RESTORING DESTROYED CARTRIDGES

Cartridges that contain data and/or programs in
the User Area or Fixed Area, and which may be
difficuylt to replace, can sometimes be restored to
use after being rendered unusable. If only sector
addresses are affected, DCIP may be used to ini-
tialize sector addresses only. (See ''Stand-Alone
Utility Programs'").

If some part of the Monitor System has been des-
troyed (including LET, FLET, User Area and
Fixed Area), a reload function may be performed
with the System Loader. In this case, the entire
Monitor System deck, except the System Library,
should be processed by the System Loader.

In cases in which individual words on the disk have
been destroyed, the disk patch feature of DCIP may
prove very useful in restoring these words.

REELING

"Reeling", that is, continuing a long data file from
one cartridge to other cartridges can be done with
the aid of SYSUP and linking. Such an operation
might be performed as follows. Suppose a single-
drive user intends to process sequentially a long
data file that will not fit on one cartridge. The
first part of the file can be defined on one cartridge
and the second part on another. The programs that
access this file can be written as two links, the
first of which processes the first part of the file,
the second the rest of the file. Assuming that the
program is written in FORTRAN, the termination
of the first link would consist of a PAUSE (to allow
for mounting the second cartridge in place of the
first), followed by CALL SYSUP, followed by CALL
LINK to the second link, which then processes the
second part of the data file. When SYSUP is called,
DCOM and COMMA are changed to reflect certain
IBM System Area allocations of the second cart-
ridge.

The only constraint is that the second cartridge
must be a system cartridge. If the FORTRAN
Compiler is not present on the second cartridge,
the second link to be executed can be compiled on
the first cartridge, dumped to cards, and stored as
described on the second cartridge., The sample
program 5 in Appendix J illustrates how this could
be accomplished. In the sample, both cartridges
are system cartridges and both contain a Fixed Area
but only cartridge 1111 includes the FORTRAN Com-
piler. The second link was compiled, dumped to
cards, and stored on cartridge 2222, which con -
tains the second part of the file. A terminating
pattern (decimal 999) is written at the end of the
file on each cartridge and could be used as an end-
of-file indicator for subsequent operations on these
files.

One-word integers were specified in LINK1 so
that the next higher core location after L (2) would
be zero as a result of the L (1) equal 0 statement.
Since the array is stored in reverse order, SYSUP
will find cartridge ID 2222 (hex) followed by 0.
Refer to SYSUP, in "Monitor System Library" .
Another method, suitable to any FORTRAN pre-
cision, would utilize a call to an Assembly language
subroutine with undefined precision that subsequent-

ly calls SYSUP and includes the SYSUP list or array.

The sample program 6 in Appendix J illustrates
sequential file processing with two cartridges and
two disk drives. The multiple-drive user may avoid
the SYSUP/CALL LINK by naming both cartridges
on the // JOB record. Just as in the previous des-
cription, his program must be written so as to
process the two portions of the file separately,
even though they may both have the same name., In
such a case, the *FILES record could name two
files, both with the same name but with different
cartridge IDs.

All files referenced in a given core load must be
identified in LET/FLET by the Core Load Builder
when the core load is built, This applies alike to
DSA and *FILES references. If desired, the
program may be divided into links, each with its
own associated file, If sufficient drives are not
simultaneously available for all cartridges involved
to be specified, a reeling method must be used
whereby any cartridge with a data file named in an
*FILES record must be on-line at the time the
*FILES record is processed as a result of either a
// XEQ or *STORECI record, Similarly, a DCI
program that accesses files in a Fixed Area must
be executed in the same disk cartridge environment
in-which it was built, For example, if the sample
program 5 in Appendix J were stored in DCI for-

mat with cartridge 1111 on logical drive 0 and cart-
ridge 2222 on logical drive 1, ii must be executed
with those s ame cartridges on those same logical
drives. These requirements are due to the fact
that the Core Load Builder must assign absolute
sector addresses, including logical drive codes,
for UA/FXA files as the core load is built, and of
course it must find these addresses in LET/FLET:

MAINLINE PROGRAMS THAT USE ALL OF CORE

Before writing a program that occupies all or nearly
all of core, the user should weigh the advantage
gained against the possible later rewriting required
if IBM-supplied subroutines used by the core load
are expanded due to modification,

TIPS FOR FORTRAN LANGUAGE USERS

It is strongly recommended that the use of the 1130
device code be avoided in READ and WRITE state-
ments, the use of integer variables in such cases
allows for easier modification,

CONVERTING FROM VERSION 1 TO VERSION 2

® Data files and DSF programs must be dumped
from the Version 1 cartridge to cards or paper
tape and stored on the Version 2 cartridge under
DUP control,

e The five-character alphameric disk cartridge
labels used in Version 1 must be changed to
four-character hexadecimal labels.

s DCI programs on a Version 1 cartridge cannot

be dumped and stored on a DM2 cartridge.
They must be stored in DSF on the DM2 cart-
ridge and then converted to DCI under DUP
control, which implies that the original DSF
mainlines must be available.

e Since the FORTRAN I/0O device numbers are

fixed, some reprogramming is necessary when-
ever programs that use a given I/O device are
required to employ a different device. For
example, if a program that uses an 1132 Printer
is to use a 1403 Printer, the device numbers must
be changed in all READ and WRITE statements
that reference the printer.

For another solution see tips on EQUAT record
over page.

Programming Tips and Techniques 63

TIPS FOR USE OF EQUAT RECORD

The *EQUAT function is used to change LIBF/CALL
references in core loads that are to be built, with-
out the necessity of recompiling or reassembling
them, For example, suppose that one has a
FORTRAN mainline that prints on the 1132, but it is
desirable to have that print out on the 1403 instead.
Without the *EQUAT function it would be necessary
to change the *IOCS record and recompile the pro-
gram to change from 1132 to 1403 printout, With it
one has only to specify on the *EQUAT record that
PRNZ (the 1403 subroutine is to be substituted,
when the core load is built, for PRNTZ (the 1132
subroutine) . In such cases the Core Load Builder
compares each call it encounters with the name(s)
on the left of the equal sign (=) in the *EQUAT
record. Every time a match is made the Core

Load Builder substitutes the name on the right of
the equal sign for the name it has encountered in the
DSF code. Note that the *EQUAT function is associ-
ated with the JOB record, which implies that all
core loads that are built in a given job will be built
from the same substitution list.

The use of this function is not restricted to I/O sub-
stitutions. One might, for example, have several
versions of a subroutine, each stored under a
different name. With this function the effects of
using each of these subroutines in a core load

could easily be observed without resorting to
recompile/reassemble the calling program(s) .

The user should bear in mind that the calling
sequences of any substitute pair, i.e., the sub-

63.1

routines named 0On either side of an equal sign,

must be identical, since the Core Load Builder

does no more than substitute one call for the other.
Thus, CARDZ could not be substituted for PRNZ
because the 120-word count associated with PRNZ

is incompatible with the 80-column count associated
with CARDZ. The FORTRAN user must also become
aware of the subroutines that are evoked from *IOCS
record entries. The entries and the ISS subroutines
they imply are given below:

ENTRY CORRESPONDING SUBR:
CALL
CARD CARDZ
2501 READER READZ
1442 PUNCH PNCHZ
TYPEWRITER TYPEZ
KEYBOARD WRTYZ
1132 PRINTER PRNTZ
1403 PRINTER PRNZ
PAPER TAPE PAPTZ
PLOTTER PLOTX
DISK DISKZ
UDISK DISKZ

Another example of the use of the *EQUAT function
is where a FORTRAN program does its printing on
the 1132, and this program also exercises the Syn-
chronous Communication Adapter. These two I/O
devices cannot be overlapped unless the 1132 is
serviced by PRNT2, By using the *EQUAT function
to change PRNTZ (the Subroutine used by FORTRAN
1/0 for 1132 printing) to the name PRTZ2 (a special
subroutine to interface between PRNTZ and PRNT2),
1132 printing can then be performed by PRNT2, and
thus overlapped with the SCA.

DUMPING DATA FILES TO CARDS AND RESTORING

It is often advisable to dump important data files to
cards so that they may be restored if the cartridge
containing them is destroyed. DUP punches sequence
numbers in cc 73-80 of the data cards as the file is
dumped. The numbers start with one and are
incremented by one with each card., The last se-
quence number, then, is actually the number of

data cards dumped, a parameter that is required

on the STOREDATA card when restoring the file

to the UA/FXA,

COPYING AND INITIAL LOADING DISK CARTRIDGES

Prior to the introduction of the improvements in the
System Loader and DCIP in Modification 2, much
time was wasted in copying to a cartridge that con-
tained a faulty table of defective cylinders or invalid
cartridge ID. The same was true in initial loading
such cartridges. The improvements in the two pro-
grams include the setting and checking of a word in
sector @IDAD that tells the kind of cartridge it is.
This word, @DTYP, contains minus one if it is an
initialized DM1 cartridge minus two if it is a DM2
non-system cartridge, a zero if it is a DM1 system
cartridge, and a plus two if it is a DM2 system cart-
ridge. This word is checked by DCIP before a copy
is performed., DCIP expects to copy from a system
cartridge (zero or +2) to a non-system cartridge

(-1 or -2). The card System Loader checks to see
that this word indicates a DM2 system cartridge (+2)
before performing a reload operation. The user
should use the disk patch facility in DCIP to update
word @DTYP to the proper value for all cartridges
built with the aid of DPIR (DM1) or the first release
of DCIP. The System Library programs COPY and
DISC perform as the copy and initialize portions,
respectively, of DCIP with respect to word @DTYP,

CORE LOADS UTILIZING LOCALs

Core loads that utilize LOCALs will not necessarily
run the same way with LOCALs as they would on a
larger machine without LOCALs. This is due to the
fact that every time a LOCAL is fetched, it is
fetched in its initial state from the disk. Thus, un-
less it comprises read-only code, it will execute
differently the second and subsequent times it is
fetched. This same rationale applies equally well
to SOCALs, at least in theory, but the IBM-supplied
subroutines that are stored with SOCAL subtype
codes are read-only code.

64

USE OF INDEX REGISTER 3

Unless a special set of interrupt level subroutines

is used (see // XEQ)Y , it is not possible to use index
register 3 under certain conditions, even if it is
saved and restored. The conditions include core
loads that overlap I/0 operations and core loads

that use the Synchronous Communications Adaptor,
In general, this register is reserved to point to the
Transfer vector.

DISK FILE ORGANIZATION AND PROCESSING

The disk I/0 subroutines supplied with RPG: direct
access, sequential access, and Index-Sequential Ac-
cess Method (ISAM), can be used by RPG and Assem-
bler language programmers, The key to the use of
the disk 1/0 subroutines is an understanding of the
basic principles of disk file organization and disk file
processing.

File Organization

File Organization is the method of arranging data re-
cords on a direct access storage device, i.e., buil-
ding the file.

The two types of file organization available with
DM2 are sequential and indexed-sequential (ISAM).

Sequential File Organization, A sequential organized
file is one in which records are placed on the disk in
the same order they are read in, one after another,
Card files are always organized this way. That is,
record six cannot be written until record five is
written, record five until record four, etc. Sequen-
tial files may be processed sequential or randomly.

Index-Sequential (ISAM) File Organization, An index-

ed-sequential file is one in which records are placed
on the disk in ascending collating sequence by record
key. This key may be a part number, man number

or any other identifying information that is present
in the records on the file. In addition, the indexed-
sequential file uses an index to indicate to the proces-
sing program the general location of the desired reco-
rds. Each index entry contains a cylinder address
and the highest record key on that cylinder. All index
entries are formed into an index table., For cylinders
that have overflowed, the index also contains the over-
flow sector address and key of the first sector over-
flowed from that cylinder,

Index tables are analogous to the index card file
in a library. If you know the name of a book (record
key), you can look in the card file (index table) until
you find the card (entry) for that book. On the card
you will find a number (cylinder address) where the
book (record) is located., You go to the shelf (seek)
and find the number (cylinder address) you are look
ing for, Now you can search for the particular book
(record) by title (record key).

Records on an indexed-sequentially organized file
may be processed sequentially or randomly,

File Processing.

File processing is the method of retrieving data re-
cords from the file, i.e., using the file.

Four methods of file processing are available
with DM2 RPG:

1. Sequential processing of sequentially organized
files

2. Random processing of sequentially organized files

3. Sequential processing of indexed-sequentially or-
ganized (ISAM) files

4. Random processing of indexed-sequentially orga-
nized (ISAM) files.

Sequential Processing (Sequential Files). All rec-
ords in the file are processed in order starting with
the first physical record in the file,

Random Processing (Sequential Files). In random
processing the sequence of record processing is not
related to the physical sequence of records on the
file. To find a record in a sequentially organized
file, the record number must be supplied to the pro-
gram., The record number indicates the relative po-
sition (sequential location) of the record in the file.
The disk I/O routine calculates the sector address
from the record number and reads the proper record.

Sequential Processing (Indexed-Sequential Files), All
records in an ISAM file are available in a sequence
determined by record key. Processing may start at
the beginning of the file or at any point within the file.

Random Processing (Indexed-Sequential Files). To
find a random record in an ISAM file, the files index
is searched using the record™s key. The matching
entry in the index points to the cylinder containing

the record, That cylinder is then searched for the
desired record. The match is again made by record
key. This kind of processing may be called process-
ing in a random sequence with record keys.

CALCULATING SEQUENTIALLY ORGANIZED AND
ISAM FILE SIZE

The file is initially established on the disk by using
a DUP STOREDATA function. STOREDATA sets
aside a specified number of sectors for the file and
enters the file name in LET or FLET. This file
name must be used in all future references to this
file.

Sequentially Organized Files

The number of sectors needed for a file depends on
record size and number of records, The records
are fixed length and can be defined as any size be-
tween 320 words (640 characters) and 1 word (2
characters). Note that records cannot extend across
sector boundaries. Thus a 320 word record (one
sector) and a 161 word record would each require
one sector of disk space. Careful planning is re-
quired in calculating optimum record size for your
file.

Output file size in sectors=number of records Anum-
ber of records that can be contained in each sector).
Output record size in words=numbers of records+1/
(number of records that can be contained in each sector).
Note 1. If the above formulae produce answers with
fractional parts, the file and record size are obtained
by rounding off to the next higher whole number.

Note 2. The number of records that can be contained
in each sector (the denominators of the first two for-
mulae)=320/(record size in words). _The remainder,
if any must be ignored. 320 is the number of words
per sector.

To change record sizes or add records to a se-
quential file the file must be rebuilt. If the revised
file requires additional sectors it must be redefined
and rebuilt. A sequentially organized file is built
using the sequential access routine. It may be pro-
cessed by either the sequential access routine or
the direct access routine. These routines are de-
scribed in the 1130 Subroutine Library manual,
Form C26-5929.

ISAM Files

The number of sectors required for an ISAM file is
computed by the following formula. (The remainder
in all cases should be disregarded.)
Prime data sectors + Index sectors + Overflow
sectors + 1 (File label)

64,1

Where:
Prime data sectors =
Approximate number of records in file + number

of records per sector - 1
Number of records per sector

320
Record size +2

Number of records per sector =

The maximum record size is 318 words. Records

cannot cross sector boundaries.

Index sectors =

Number of prime data cyliners + number of index
entries per sector - 1
Number of index entries per sector

Number of prime data cylinders =

Number of prime data sectors +7
8

Number of index entries per sector =
320
Index entry size

Index entry size = 2 (key length in words) + 3

Key length is a maximum of 25 words (50 charac-
ters). If the length of the key in characters is odd
add one when calculating the number of words,
i.e., 49 characters require 25 words.

Overflow sectors =The number of sectors the user
wishes to allot to record over-
flow before the file must be re-
built, The overflow area is
automatically assigned to start
at the sector following the last
sector of prime data, This
assignment is done by the ISAM
load (close) routine.

When computing file size always add one sector

for the file label.
If desired, an assembler language program can be

64.2

used to perform the above calculations. The pro-
grammer need only know the index entry size (calcu-
lation shown above), the length of a record in words,
the approximate number of records in the file and an
estimate of the number of sectors of overflow area
needed,

A program to calculate all values computed above
is included in this manual as sample program 7 in
Appendix J. The values calculated by the program
or by the manual method will be required as entries
in the Disk File Information (DFI) tables for the ISAM
routines.

An indexed-sequential file is built using the ISAM
load routine, expanded using the ISAM add routine
and processed by either the ISAM sequential or ISAM
random routine. These routines are described in the
1130 Subroutine Library manual, Form C26-5929,

CONTENTS OF AN ISAM FILE

An ISAM file comprises the following: file label;
file index; prime data area; overflow area.

File Index Prime Data Area Overflow Area

Label

The relative position of these components within
the ISAM file is as follows

File

Label Index

Prime Data Area Overflow Area

ISAM File Label, The first sector of any ISAM file
contains the file label. This label contains informa-
tion required by the ISAM routines for all future pro-
cessing of the file. The file label is built by the
ISAM load function, updated by ISAM add, and used
by ISAM random and sequential, All label operations
are performed automatically by the ISAM routines.
The user need perform no label operation other than
reserving one sector for the label when the file is
initially defined.

The format of the ISAM label is shown in
Figure 11.2.

®Figure 11,2, Format of an ISAM Label

Word Number Label Entry Description

Key length

Record length

Number of index entries per sector
Index entry length

Number of records per sector

Record number of last prime data record
Index entry number of last entry in file
Sector address of last prime data record
Sector address of last index entry
Sector address of next overflow record
Record number of next overflow record

— =0 ONOCNPARWN—

-0

ISAM File Index. The ability to read or write rec-
ords anywhere in a file is provided by the file index.
An entry in this index contains a cylinder address
and the highest key that is associated with that cyl-
inder. The ISAM routines locate a given record by
searching the index for the key and then searching
the specified cylinder for the desired record, again
searching by key. To increase the efficiency of the
ISAM routines, one sector of the index is retained
in core storage for each file,

The key may be a part number or an employee
name or any other identifying information that is
contained in any record of the file. The key entries
in the index are the numbers of the highest key on
each cylinder in ascending collating sequence. The
end of file record key is the key with the highest
possible value, i.e., all bits are ones.

A portion of an index or index table is shown
below. Note that each entry contains two sets of the
same information, The second set is overlayed to
show overflow data when the effected cylinder over-
flows.

z
Key |First Key |First f Key | Second | Key |Overflow |Record
15" [cylinder [15 [cylinder [o |30 [cylinder |31 | sector number
address address s address address
normal entry overflow entry
z z
Key | Third Key |Third ellkll |nth all n th e
45 | cylinder |45 |[cylinder | |1 cylinder || 1 cylinder |
address address ? its | address |bits | address s°

v v

normal entry last entry in index

Prime Data Area. This area contains the data rec-
ords placed in the file by the ISAM load routine., The
records must all be the same length (maximum 318
words). ISAM adds a two~word control field to each
record. This control field, called the sequence-
link control field, is used in the overflow area as a
chaining indicator. It is used in the prime data area
to indicate whether or not a cylinder has overflowed.
Prime data area records appear as follows.

Datg record

1 word 1 word
4 1

Key 1Zeros |Zeros
75 | |
| 1
1 1
[—
Sequence-link
control field.
Data record on a prime
data cylinder.
Data record 1 word l'l word
i
Key | Zeros |X'FFFF.
520 1 |
| [}
1 1
——
Sequential=-link
control field.
- _—

Last data record on @
prime data cylinder
that has overflowed.

Overflow Area. When a new record is added to an
indexed- sequential file it is placed according to key
sequence, If records were to remain in precise
physical order the insertion of each new record
would require all records with higher keys to be
shifted up. However, because ISAM files have an
overflow area, a new record can be entered into its
proper position on a cylinder and only cause records
with higher keys on that cylinder to be shifted. The
record that is forced off the end of the cylinder by
the addition of the new record is written in the over-
flow area.

The index entry of any cylinder that has over
flowed points to the overflow sector address and
record number of the overflowed record in the over-
flow area, If two or more records in key order are
added, the overflowed records are chained together
in the overflow area through the entries in their
sequence-link control field. The entry in the first
record points to the second, the second to the third,
etc. The last overflow record in the chain has a
sequence-link control field of all zeros,

The number of cylinders to be allotted to the over-
flow area must be determined by the programmer
when the file is initially defined. Records are pla-
ced in the overflow area in the order they have over-
flowed , not in key sequence.

To illustrate the overflow area, assume that on
cylinder six of a defined file the last three entries
have keys 150, 152 and 154, Key 154 would iden-
tify cylinder six in the index. Now we add a record
with key 153, a record on another cylinder and a
record with key 151. The overflow area would ap-
pear as shown below, Key 152 would identify cylin-
der six in the index. The overflow entry for cylinder
six in the index would point to the overflow area.

Programming Tips and Techniques 64.3

Overflow area.

I T
Key | |
154
| |
| 1

|Zeros |Zeros

! |
\Zeros | Zeros

T]
|Overfolw |
|sector lRe .
jaddr . l00 1
| H

Key
153

I\

7\

First record overflowed.
The sequence-link con-

Record overflowed from
another cylinder.

trol field is zeros indica-

ting the end of a chain.

Last record overflowed.
The sequence-link con-
trol field points to the
next key in sequence.

In this case its key 154
in the overflow area.

DELETING DUPLICATE RECORDS CAUSED BY A
DISK ERROR DURING AN ISAM ADD OPERATION

If a disk error occurs during an ISAM add (error code
code/5004 in the accumulator) it may cause a record
to be duplicated on the file. To check for a dupli-
cate record, list the file or part of the file using
ISAM sequential retrieve. If there is a duplicate
record, one copy must be deleted.

To determine which record to delete, dump the
file using a DUP DUMP and check the index entry for

64,4

the affected cylinder. If the key of the duplicate
record is less than or equal to the first key in the
index entry, delete the second of the two records. If
the key of the duplicate record is greater than the
first key in the index entry, delete the first of the
two records. In both cases, the remaining record
is the one that will be processed by the ISAM random
retrieve function. :
Note that the duplicate record cannot be physically
deleted. It is ""Deleted" by performing a sequential
read and flagging the copy that is no longer to be used.

The System Library is a group of disk-resident sub-
programs and mainline programs that perform I/0,
conversion, arithmetic, and disk initialization and
disk maintenance functions. A paper tape utility pro-
gram (PTUTL) is also included in the System Library.
Appendix F is a listing of the Monitor System Library.

ADDING AND REMOVING SUBROUTINES

Subroutines can be added to or deleted from the Monitor
System Library as desired by the user. The DUP con-
trol record STORE is used to add a subroutine and the
DUP control record DELETE is used to remove a pro-
gram (see DUP Control Records). Each program in the
IBM-supplied system deck is preceded by a DUP STORE
control record.

The user should not remove subroutines that are
called by other subroutines left in the System Library
(refer to Appendix F for a list of subroutines called by
other subroutines). Neither should he delete any of the
mainline programs, since they may be required by
Monitor programs.

SYSTEM LIBRARY SUBROUTINES

The 1130 Monitor System Library contains a group of
programs that aid the programmer in making efficient
use of the 1130 Computing System. Descriptions of the
programs and methods for programming them are con-
tained in the publication, IBM 1130 Subroutine Library
(Form C26-5929). From an operational standpoint, the
programs of particular interest are the ISSs, which
manipulate the I/0 devices attached to the 1130 Comput-
ing System and handle all programming details peculiar
to each device. Table 5 lists the ISSs supplied with the
1130 Monitor system.

NOTE: User-written ISSs should be numbered from 20
down to avoid conflict with IBM-assigned ISS numbers
(see Digit 1 under Preoperative Errors).

NOTE: Although the disk subroutines are technically not
1SSs, they have most of the characteristics of an ISS.

The following paragraphs describe the use of some of

the IBM-supplied ISS subroutines and discuss preoper-
ative errors and I/O error restarts in which special
handling is required. All addresses are given in sym-
bolic form. See the table of equivalence in the listing of
the Resident Monitor (Appendix H) to equate the symbolic
to the absolute addresses. ISS preoperative error WAIT's
are listed in Appendix A.

MONITOR SYSTEM LIBRARY

PREOPERATIVE ERRORS

A preoperative error is an error condition detected
before an I/0 operation is started. It denotes either an
illegal parameter, an illegal specification in the 1/0
area, or a device not-ready condition. This error
causes a trap to $PRET and the following conditions:

o The Instruction Address Register displays the
address $PRET+1.

e The Accumulator displays an error code repre-
sented by four hexadecimal digits.

Digit 1 identifies the ISS called:

1 - CARDx or PNCHx
2 - TYPEx or WRTYx

3 - PAPTx

4 - READx

5 - DISKx

6 - PRNT1, PRNT2, or PRNTZ
7 - PLOT1

8 - SCATx

9 - PRNT3 or PRNZ

A - OMPR1

Digits 2 and 3 are not used.
Digit 4 identifies the error:

0 - Device not ready
1 - Illegal parameter or illegal specification in
I/0 area

Table 5, 1130 Disk Monitor System ISS Names

Device

Subroutine

1442 Card Read Punch
2501 Card Reader

1442 Card Punch

Disk

1132 Printer

1403 Printer
Keyboard/Console Printer
Console Printer

1134/1055 Paper Tape Reader
Punch

1627 Plotter
1231 Optical Mark Page Reader

Synchr. Comm. Adapter

CARDZ, CARDO, or CARDI
READZ, READO, or READ1

PNCHZ, PNCHO, or PNCH1
DISKZ, DISK1, or DISKN

PRNTZ, PRNT1, or PRNT2

PRNZ, or PRNT3

TYPEZ, or TYPEO

WRTYZ, or WRTYO

PAPTZ, PAPT1, PAPTN, OR PAPTX

PLOTI
OMPR1

SCAT1, SCAT2, or SCAT3

65

o $PRET contains the address of the call in
question.

The ISS is set up to attempt initiation of the operation
a second time if the CALL is re-executed. Pressing the
PROGRAM START key will return control to the ISS for
a re-execution of the call.

When a preoperative error is encountered the operator
can:

o Correct the error condition if possible and press
PROGRAM START, or

e Note the contents of the Accumulator and location

$PRET, dump core storage, and proceed with the
next job.

1442 CARD SUBROUTINE ERRORS
(CARDx AND PNCHx)

Error Parameters

CARDZ, CARDO, PNCHZ, or PNCHO. There is no
error parameter. If an error is detected during proc-
essing of an operation-complete interrupt, the subrou-
tine traps to $PST4, with interrupt level 4 on. After
the 1442 is made ready, pressing the PROGRAM START
key will cause the operation to be reinitiated.

CARD1 or PNCH1. There is an error parameter. If
an error is detected during processing of an operation-
complete interrupt, the user program can elect to
terminate (clear ''subroutine busy indicator' and turn
off the interrupt level) or to retry. A retry consists of
waiting at $PST4 with interrupt level 4 on and then re-
initiating the function.

Last Card. A read or feed function requested after the
last card has been detected causes the last card to be
ejected, and a trap to $PRET occurs. A punch function
will punch and then eject the last card with a normal exit.

1442 Errors and Operator Procedures

If a 1442 error occurs, the 1442 becomes not-ready
until the operator has intervened. Unless the stop is
caused by a stacker full (no indicator) or chip box indi-
cation, the 1442 card path must be cleared before pro-
ceeding. The 1442 error indicators and the position of
the cards in the feed path should be used to determine
which cards must be placed back in the hopper.

For the card subroutines, a retry consists of position-
ing the cards (i.e., skipping the first card in the hopper,

66

if necessary, on a read or feed operation) and reiniti-
ating the function whenever the card reader becomes
ready.

Read errors do not apply to the 1442-5.

Hopper Misfeed. Indicates that card 2 failed to pass
properly from the hopper to the read station during
the card 1 feed cycle.

Card positions after error:

Punch Sfarionl Read Station
Corner ——gmf m
Stacker — ! @ fg— Hopper

HOPR

When program halts, press
NPRO to eject card 1, place
card 1 in hopper before card
2, and ready the 1442.

Error indicator:
Operator procedure:

Feed Check (punch station). Indicates that card 1 is
improperly positioned in the punch station at the com-
pletion of its feed cycle.

Card positions after error:

Punch Sfaﬁonl Read Station

Corner ——s» E]
Stacker ——a»] [<¢—— Hopper

PUNCH STA

When program halts, empty
hopper, clear 1442 card path,
place cards 1.and 2 in hopper
before card 3 and ready the
1442.

Error indicator:
Operator procedure:

Transport. Indicates that card 1 has jammed in the
stacker during the feed cycle for card 2.
Card positions after error:

Punch S’taﬁonl Read Station

Corner ——» 0
Stacker —#» f@——Hopper

Error indicator: TRANS

Operator procedure: When program halts, empty
hopper, clear 1442 card path,
place cards 2 and 3 in hopper
before card 4, and ready the
1442,

Feed Cycle., Indicates that the 1442 took an unre-
quested feed cycle and, therefore, cards 1, 2, and 3
are each one station farther ahead in the 1442 card
path than they should be.

Card positions after error:

Punch Stufion—l Read Station

Corner ——»]

Stacker —— m le——Hopper

Error indicator: FEED CLU

Operator procedure: When program halts, empty
hopper, press NPRO to eject
cards 2 and 3, place cards 1,
2, and 3 in hopper before
card 4, and ready the 1442.

Feed Check (read station), Indicates that card 1 failed
to eject from the read station during its feed cycle.
Card positions after error:

Read Station

+
oH

Stacker —u] lee—— Hopper

Punch Station 1

Corner ——#»]

Error indicator: READ STA

Operator procedure: When program halts, empty
hopper, clear 1442 card path,
place cards 1 and 2 in hopper
before card 3, and ready the
1442,

Read Registration. Indicates incorrect card registra-
tion or a difference between the first and second reading
of a column,

Card positions after error:

Punch Staﬁon—l Read Station

Corner ———)

o]

Stacker —] |[——Hopper

READ REG

See Feed check (punch station).
Repeated failures of this type
might indicate a machine mal-
function.

Error indicator:
Operator procedure:

Punch Check. Indicates an error in output punching.
Card positions after error:

Read Station

i

Punch Sfai'ion—l

Corner ——=} m

Stacker ——w]

le@——— Hopper

[s]

PUNCH

When program halts, empty
hopper, check card position
and press NPRO to clear 1442
card path. If necessary, cor-
rect card 1 to prepunched state.
Place (corrected) card 1 and
card 2 in hopper before card 3
and ready the 1442.

Error indicator:
Operator procedure:

2501 CARD SUBROUTINE ERRORS (READX)

Error Parameters

READZ or READO. There is no error parameter. If an
error is detected during processing of an operation-
complete interrupt, the subroutine traps to $PST4, with
interrupt level 4 on. After the 2501 is made ready,
pressing the PROGRAM START key will cause the
operation to be reinitiated.

READ1, There is an error parameter. If an error is
detected during processing of an operation-complete

Monitor System Library 67

interrupt, the user program can elect to terminate
(clear "subroutine busy indicator' and turn off the
interrupt level) or to retry. A retry consists of waiting
at $PST4 with interrupt level 4 on until the 2501 be-
comes ready, and then reinitiating the function.

Last Card. A read function requested after the last
card has been detected causes a trap to $SPRET.

2501 Errors and Operator Procedures

If a 2501 error occurs, the 2501 becomes not-ready
until the operator has intervened. Unless the stop is
caused by a stacker full or cover open (ATTENTION),
the 2501 card path must be cleared before proceeding.
The 2501 error indicators and the position of the cards
in the feed path should be used to determine which
cards must be placed back in the hopper.

For the card subroutines, a retry consists of posi-
tioning the cards (i.e., skipping the first card in the
hopper, if necessary) and reinitiating the read function
whenever the card reader becomes ready.

FEED CHECK. A feed check indicates that a card is
mispositioned in the feed path or a card has failed to
feed from the hopper.

When the program traps to $PST4, empty the hopper
and clear the 2501 card path. If a card is improperly
positioned at the pre-read station (it has not been read),
place this card ahead of the cards remaining to be
read, place the deck back in the hopper, and ready the
2501.

READ CHECK. A read check indicates incorrect
card registration or a difference between the first and
second reading of a column,

When the program traps to $PST4, empty the hopper,
NPRO, place the last two cards in the stacker ahead of
the deck remaining to be read, place this deck back in
the hopper, and ready the reader.

CONSOLE PRINTER SUBROUTINE ERRORS
(TYPEZ, TYPEO, WRTYZ, and WRTYO0)

If the carrier attempts to print beyond the manually
positioned margins, a carrier restore (independent of
the program) occurs.

Subroutine printing begins wherever the carrier is
positioned as a result of the previous print operation.
There is no automatic carrier return as a result of a
call to the subroutine.

If the Console Printer indicates a not-ready condi-
tion after printing has begun, the subroutine traps to
$PST4 with interrupt level 4 on., After the Console
Printer is made ready, pressing the PROGRAM START
key will cause the operation to be reinitiated.

68

KEYBOARD SUBROUTINE FUNCTIONS
(TYPEZ and TYPEO)

Re-entg

When the ERASE FIELD key is pressed, a character
interrupt signals the interrupt response subroutine that
the previously-entered Keyboard message is in error
and will be re-entered. The subroutine prints two
slashes on the Console Printer, restores the carrier to
a new line, and prepares to replace the old message in
the I/0 area with the new message. The operator then
enters the new message. The old message in the I/0
area is not cleared. The new message overlays the
previous message, character by character. If the
previous message was longer than the new message,

. characters from the previous message remain (followin

the NL character which terminated the new message).

When the interrupt response subroutine recognizes
the end-of-message control character, it assumes the
message has been completed, stores an NL character
in the I/O area, and terminates the operation.

TYPEZ does not print two slashes when ERASE FIELD
key is pressed.

Backspace

When the backspace key is pressed, the last graphic
character entered is slashed and the address of the next
character to be read is decremented by +1. If the back-
space key is pressed twice consecutively, the character
address is decremented by +2, but only the last graphic
character is slashed. For example, assume that
ABCDE has been entered and the backspace key pressed
three times. The next graphic character replaces the C
but only the E is slashed. If the character F had been
used for replacement, the paper would show ABCDE FF1
but ABFFF would be stored in the buffer.

TYPEZ treats the backspace key as if it were the
erase field key.

PAPER TAPE SUBROUTINES (PAPTX)

If the reader or punch becomes not ready during an
1/0O operation, the subroutines exit to the user via the
error parameter. The user can request the subroutine
to terminate (clear device busy on the interrupt level)
or to wait at $PST4 (postoperative error trap) waiting
for operator intervention (interrupt level 4 on).

If the 1134/1055 indicates a not-ready condition after
an operation has been initiated, the subroutines trap to
$PST4 with interrupt level 4 on, After the device has
been made ready, pressing the PROGRAM START key
will cause the operation to be reinitiated.

SYSTEM LIBRARY MAINLINE PROGRAMS

The 1130 System Library mainline programs provide
the user with the ability to perform disk maintenance
and paper tape utility functions by requesting execu-
tion of the appropriate program directly through the

job stream.

DISK MAINTENANCE PROGRAMS

The disk maintenance programs are mainline programs
that are a part of the System Library and that initialize
and modify disk cartridge IDs, addresses, and tables
required by the Monitor system. Normally, they should
never be deleted from the System Library.

The disk maintenance mainline programs are:

IDENT - Print Cartridge ID

DISC - Satellite Disk Initialization*

DSLET - Dump System Location Equivalence
Table

D - Change Cartridge ID

COPY - Disk Copy

ADRWS - Write Sector Addresses in
Working Storage

DLCIB - Delete CIB

MODIF - Monitor System Update

The disk maintenance programs (except ADRWS)
are called by an XEQ monitor control record. Some
disk maintenance programs also require an ID control
record. The format and use of the ID control record
is described under the program descriptions which
follow.

IDENT (Print Cartridge ID)

This program prints the ID and physical drive number
of each cartridge mounted on the system. The program
overrides any cartridge IDs specified on the JOB card
and operates with all ready drives, IDENT will read
and print illegal IDs including negative numbers.

The calling sequence for IDENT is:

1.2 3 4 5 6 7 8 9 10 1) 12 13 1 1s 16 17 18 19 20 21 22 23 24 25 26 27 28 25 30 3t 32 3 34 35 :

Al XEQ (LDEAT 1 4 1 111 111 [S

NS O N T N S T T N S T N N T T o | | N S T T T T

) O S N TS T I |

i
Lt o1y
1
1

) N TN U N T O N N O T U O N T U I o |

1 L[.f

1 1.1
) I D NS N T N S W S T T O O N I U O O O I I O O |

1 | N T Y A N S O T I |

1 | I

| NN W O T Y O U O T T O N O Y) T W Y I

*All new cartridges must be initialized with DCIP before any operation
is performed under Monitor control. DCIP also provides a disk copy
function similar to the COPY program in the System Library.

Printout
PHYSICAL DRIVE CART.ID
00 XXXX
01 XXXX
02 XXXX
03 XXXX
04 XXXX

where

XXXX is the cardridge ID. Only the IDs on ready
drives are printed.

DISC (Satellite Disk Initialization)

This program re-initializes up to four satellite
cartridges -- all but the master cartridge (see DCIP).
DISC gives the user the ability to re-initialize a disk
cartridge on line, It writes the sector addresses,
defective cylinder addresses, a cartridge ID, a LET, a
DCOM, an error message program, and a CIB on each
cartridge initialized,

DISC overrides all cartridge IDs specified on the
JOB card except the master cartridge ID.

The calling sequence for DISC is:

12 3 4 5 ¢ 7 8 9 10 1) 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36
0,0
) VN N T O T T Y T N N e T T Y O e |) I O T |
B 1N W OO T TN NN U N T T N U N U N N S N U S N T N O T TN O (NS N T o |
| S0 T TN TN N N T T N (N S S N I T S T N T Y S N o |
where

FID1 through FIDn are the IDs currently on the
satellite cartridges to be re-initialized (identified
by IDENT or a JOB record).

TID1 through TIDn are the IDs to be written on the
satellite cartridges by this program. A valid
cartridge ID is a number between /0001 and /TFFF,

DISC Operation

DISC causes all selected satellite drives to seek home.
The program then writes sector addresses and three
distinct bit patterns (/AAAA, /5555, and /0000) on all
sectors on the first cylinder of the first disk cartridge
being reinitialized. The program reads back each pat-
tern after it is written. If no error occurs on any of
the patterns, DISC continues to the next cylinder.

This procedure is repeated until all 203 cylinders have
been checked. The program then starts reinitialization
on the next cartridge selected, If a read error occurs,
the cylinder on which the error occurred is rewritten

Monitor System Library 69

and reread 50 times using the same pattern that caused
the error to appear. If a second error occurs, the first
sector address of the cylinder is placed in the defective
cylinder table in word 1 of sector @IDAD. If a second
and third defective cylinder are found, their cylinder
addresses are written in words 2 and 3 of sector
@IDAD. If there are no defective cylinders on the
cartridge, words 1, 2, and 3 contain /0658. The
cartridge ID is written in word 4 and the copy ID is
written in word 5 of sector @IDAD. An error message
(NON-SYST. CART. ERROR) and the program to print
it on the Console Printer is also stored in sector
@IDAD. The error message is printed if a cold start
is attempted on this non-system cartridge.

»

Printout

When DISC is executed, the user punched *ID record
is printed on the principal print device. Following this
printout one or more of the following error messages
may be printed.

CARTRIDGE XXXX INVALID...LOGO0 CARD ID

The ID of the master cartridge (logical drive 0)
has been specified as a current ID on the *ID card.

CARTRIDGE XXXX NEW LABEL IS INVALID

A new ID is outside of the range /0001 - /7FFF.
CARTRIDGE XXXX IS NOT AVAILABLE

A selected cartridge is not on the system

CARTRIDGE XXXX IS DEFECTIVE

Sector @IDAD or more than 3 cylinders are defective
on a satellite cartridge being reinitialized (to identify
the defective cylinders, initialize the cartridge using
DCIP).

Following the reinitialization of the selected cartridges,
the following message is printed.

XXXXYYYY NOT DONE

or

COMPLETE
XXXX is the old (FID1) cartridge ID
YYYY is the new (TID1) cartridge ID

70

One line is printed for each satellite cartridge that is
reinitialized., A NOT DONE message should appear only
if an error message has previously been printed,

DSLET (Dump System Location Equivalence Table)

This program dumps the contents of SLET to the principal

print device, Each entry printed consists of a symbolic

name, phase ID, core address, word count, and disk

sector address. A SLET dump is shown in Appendix I.
The calling sequence for DSLET is:

12 3 4 5 & 7 8 9 10 1) 1213 14 15 14 17 18 19 20 2t 22 23 24 25 26 27 28 29 30 31 32 33 34 38 :
/) XE@ OISWET 11 b gt
S NN TN N SO N DU NN WA VU SN NS (OO NN N N N S T Y S S N O N T A T T N S |
PR T T T T S W T U N W T O Y S 00 U 0 O A 0 0 B O B O
| WK VO W VNN VN SO N VN VN WO O W N YO W TN T O T T TN T W N U T T Iy

ID (Change Cartridge ID)

This program changes the ID on up to four satellite
cartridges.
The calling sequence for ID is:

|130567"|0L|_l2|_l|4l$|(l71."20"1’22324252677”2’30“4211Mu“
I A7 5 S W TR I U 0 0 VA T Y 0 W A Y O Y B N0 B AT B 00 A O A

0,0
T TN T T N YOO N YN T O U W0 W N S N T N U 0 O 0 O A O Y B |
TN S U VN U T YOO WO VA U T YA 0 YO O T T 0 W T S N A T 0 A O O
T U T T A T O D U T VO O W Y O B T O B T O G

where

FID1 through FIDn are the IDs currently on the
satellite cartridges being changed (these IDs
must be in the same logical order as the entries
on the JOB card),

TID1 through TIDn are the new IDs to be written
on the selected satellite cartridges. A valid
cartridge ID is a number between /0001 and /7FFF.

Printout
FFFF TTTT NOT DONE
or

COMPLETE

where

FFFF is the FROM ID

TTTT is the TO ID

NOT DONE is printed if a selected cartridge is not
found on the system.

One line is printed for each cartridge ID that is changed
(maximum 4).

COPY (Disk Copy)

This program copies the contents (except the defective
cylinder table and the cartridge ID) of one cartridge onto
another. The copy ID (word 5 of sector @IDAD) is incre-
mented by one on the destination cartridge. The cart-
ridge to be copied onto must have previously been initi-
alized (see DISC or DCIP).

The calling sequence for COPY is:

V2 3 4 5 6 7 8 9 1011 12 13 14 18 16 17 18 19 20 2) 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36

/L XIEQ COPY 1 3 0 1t by

| S T N S T N N N VS T N U T T O B) | O T T T Nt S |
[T WS WA N OO TN OO N N OO NN N VO S N O T N T T O S S O N T |
NN S TN U OO N O NN W N T U TN T N N O N Y s e

where

FID1 through FIDn are the IDs of the cartridges
to be copied,

TID1 through TIDn are the IDs of the cartridges
onto which the copies are to be made.

If multiple copies are to be made from a single
master, FID1 through FIDn will all contain the same ID,

If a system cartridge from a system with a different
configuration is copied, it will be necessary to reconfigure
the cartridge before a Cold Start can be performed (see

System Reload).

Printout
FFFF TTTT NOT DONE
or
COMPLETE
or
NOT PRES
or

NO. ERROR

where

FFFF is the FROM ID

TTTT is the TO ID

NOT PRES indicates that the ID requested was not
found.

NO. ERROR indicates that the ID requested exceeded
/TFFF.

One line is printed for each copy requested on the *ID
record. The printout occurs at the end of the job.

ADRWS (Write Sector Addresses in Working Storage)

This program, linked to from DUP on detection of the
DUP control record, DWADR, writes the sector address
on each sector of Working Storage of the disk cartridge
specified in the DWADR control record (see *DWADR

in DUP Control Records). ADRWS is intended for sys-
tem use only.

DLCIB (Delete Core Image Buffer)

This program deletes the CIB from a non-system
cartridge. If a User Area is defined, it is moved two
cylinders closer to cylinder 0. The new addresses of
disk areas moved as the result of the deletion of the
CIB are reflected in DCOM on the master cartridge,
on the non-system cartridge from which the CIB is
deleted, and in COMMA,

The calling sequence for DLCIB is:

IIi‘IM!'Iﬂll‘JlISMI!M"lll’nﬂﬂﬂu”uz72'2’30!l31303‘3!1
TN T U N TN A SN N O N VO TN N N N T O N I T Y
S N WO W TS TN N OO N (VN SN VN N TV S U SN O N U N Y S Y T T (O
[O T O T NS VA (N 1 N N TN U Y N T N T T T O 5 N T N I Oy O s v
LlllllIllllllllllllllllllIllll||lll
'S NS N YK N W O W U NN TN N TN N TN U T T I T T N O M 4
where
CART is the ID of the non-system cartridge from
which the CIB is to be deleted.
Printout
CART UA/FX FPAD
XXXX YYYY NNNN
or
XXXX ERROR

Monitor System Library 71

where

XXXX is the cartridge ID

YYYY is the User Area sector address

NNNN is the File Protect Address

ERROR is printed if the CIB was not deleted
(cartridge not found on system or cartridge not
specified on JOB card)

MODIF--SYSTEM MAINTENANCE PROGRAM

Included in the System Library is a system maintenance
program, MODIF, that provides the user with the ability
to update the Monitor system on the master cartridge.
This program makes changes to the version and modi-
fication level word in DCOM, and can be used to update
both System Programs and/or the System Library. A
card deck or paper tape containing corrections to update
the Monitor system to the latest version and modifica~
tion level is supplied by IBM. Every modification must
be run to update the version and modification level, even
if the affected program has been deleted from the system.

NOTE: The replacement of a system program phase that
contains reload entries (references to SLET generated
by the System Loader during an initial or reload opera-
tion) cannot be performed by MODIF. MODIF does not
update the System Reload Table. The replacement
phase must be loaded by a system reload.

The calling sequence for MODIF is:

12 3 4 5 6 7 8 9 10 10 12 13 14 15 16 17 18 19 20 21 22 20 24 25 26 27 28 29 30 31 32 33 34 35 @

/iy XEQ MODITE 3+ 3 143y v it 1y 1)

F I Y N W T N O U N Y O (O N U T O N T 1 N W O Y U O TN N N S Y I

| N N Y T TN N 10 VONS T N T J N F J F

W SR N0 TN T T TN N N TN T T W N N N W [N U A A D S I I I |

System Program Maintenance

Typical input for System Program update is shown in
Figure 12,

(//...

(// DEND

-¢———— Next Monitor Control
Record

<~¢q—— MODIF Define End Record

Following System Program
Maintenance Control Records
and Data Records (if any).

Data Records
// XEQ MODIF

~¢———— System Program Maintenance
Control Record

“@—— System Maintenance Program Call

Figure 12, Layout of an Input Deck for a System Program
Update

System Program Maintenance (Patch) Control Record

Each Monitor program phase to be changed requires a
patch control record. If MODIF determines in analyzing
SLET that the FORTRAN Compiler or the Assembler ha
been voided from the disk, modifications to these pro-
grams are not made; however, the version and modifi-
cation levels for these programs are updated in DCOM.
The format of the patch control record is as follows.

Card

Column Contents Notes

]
These characters identify a system patch

to the FORTRAN Compiler, RPG Compiler,
Assembler, DUP, Supervisor, Core Load
Builder, System Device Subroutines”,

or Core Image Loader

1-5 *MON

5 blank
6-8 vmm The version (v) and modification
level (mm) are specified in hexa-
decimal.
9 0 or GorR 0 = System Modification I{‘pdate
G = General temporary fix
R = Restricted temporary fix5
10 blank
11-14 XXXX The SLET ID of the Monitor
program phase to which the patch
is to be made is specified in hexa-
decimal. 0000 indicates an absolute
patch (see columns 28-31, 33-36).
15 blank
16-19 nnnn “nnnn” specifies (in hex) the number
of data ds following this
patch control record.
20 blank
21 B or H This character identifies the format
of the patch data records (binary
system format or hex patch format)
22 blank
23-26 pPPPP “pppp” specifies (in hex) the total

number of patch control records to
be processed. This parameter is
required on the first patch control
record only.2

27 blank
28-31 dsss The drive code (d) and sector ad-
dress (sss) of the program to be
patched are specified in hexadeci-
mal, ‘This field is used only when
the SLET ID (columns 11-14) is 0.

32 blank
33-36 cece “ccee” specifies (in hex) the core
address of the first word of this
sector. This field is used only whe
the SLET ID (columns 11-14) is 0,
37-80 Not used
Notes:
1. Modifications to subroutines in the System Device Subroutine
Area must be made with a *MON patch, not a *SUB DELETE
and STORE.

2, A MODIF job may perform both System Program and System
Library maintenance (see System Library Maintenance). In such
a case the number in columns 23-26 must include the *SUB
card in the count. Only one_subroutine control:record is
allowed in any MODIF job, and it must be the last MODIF
control record (not counting // DEND) in the stacked input.

3, Core addresses can be obtained from the microfiche listing.

4, This fix can only be installed on a system with<the same level
or one higher than that indicated in *MON or *SUB card. It
will not change the level of the system.

5. This fix can only be installed on a system with the same level
as indicated in a kMON or *SUB card.

Patch Data Record Formats

Patch Data Records may not contain CALLs or LIBFs,
nor will the relocation indicators be used.

Binary System Format,

Word Contents
1 Location
2 Checksum
3 Type Code (first 8 bits) 00001010
4-9 Relocation Indicators

10-54 Data words 1 through 45
55-60 ID and sequence number or may be blank

Hex Patch Format.

Card
Column Contents Notes
14 aaaa ""aaaa" specifies (in hex) the core
address (origin) of the patch, Each
patch record must have a core
address,
5 blank
6-9, Each 4-column field contains one
11-14, word of patch data (in hex), Up to
16-19, 13 words of patch data can be speci-
ete, fied per record, A blank column
follows each word,
66-68,
73-80 Not used

Hex patch cards may contain ID/sequence numbers,
Zeros must be punched as leading blanks will not be
assumed,

System Library Maintenance

Changes to the System Library require the deletion of
the old program and the storing of the new one.

MODIF updates the version and modification level word;

the actual operation is performed by a DUP DELETE
operation, followed by a DUP STORE operation.

Typical input for System Library maintenance is
shown in Figure 13.

Next Monitor Control Record

MODIF Define End Record

;'/}4—-—Nexy DELETE and STORE and New

A
MODIF
Job

// XEQ MODIF I

Figure 13, Layout of an Input Deck for a System Library Update

“#— New Version of System
Library Program XXXXX

//‘—DUP Control Records

«@——— System Library Maintenance
Control Record

I

System Maintenance
Program Cell

Version of System Library Program, ...

System Library Maintenance (Subroutine)
Control Recor

Only one subroutine control record may appear in a
MODIF job; however, any number of DELETEs and
STOREs may be performed with that control record.
System Library maintenance may also be performed
concurrently with System Program maintenance (see
note 2, columns 23-26 of *MON card).

The format of a subroutine control record is as
follows

Card
Column Contents Notes
1-4 *SUB These characters identify a system
patch to the System Library.
5 blank
6-8 vmm The version (v) and modification
level (mm) are specified in hexa-
decimal.
9 0 Reserved
10-15 blank
16-19 | nnon "nnmn" specifies (in hex) the number
of deletes and stores to be processed.
20-80 | Not used

All Maintenance

Define End Record

All MODIF jobs must end with a card punched as follows.

Card

Column Contents Notes

1-7 //bDEND
8-80 Not used

This card terminates MODIF execution and passes
control to the Supervisor.

Operating Procedures

The card deck or paper tape supplied by IBM is to be
run as a Monitor job.

When a modification is completed successfully, the

following messages are printed on the principal printer.

MODIF EXECUTION 0WXX
MODIF TERMINATION 0YZZ

where

WXX is the old version and modification number, and

YZZ is the new version and modification number.

Monitor System Library

73

MODIF Error Messages

If an error occurs during MODIF execution, an error
message is printed on the principal printer.
format of the error message is as follows.

\ Table 6, MODIF Error Messages.

ERROR# XXXX XXXX

The

Following the printing of the error message, the systen
will WAIT. All MODIF errors and their recovery pro-
cedures are listed in table 6.

Error Second Hex Number
Number Description Recovery Options* First Hex Number Printed Printed
Invalid patch control record A. Correct error and reread from corrected patch
(*MON or *SUB) control record. (If the error has occurred
1 on the first patch control record, restart
the modiFication.)
B. Terminate modification, CALL EXIT.,
Checksum error on binary A. Rechecksum and reread from preceding patch Amount of checksum difference. Number of binary records
patch data record. control record. (if the error has occurred read after patch header
on the first patch control record, restart (including record in error).
2 the modification.)
B. Terminate modification, CALL EXIT.
C. Reread card in error (cards may be out
of order).
Invalid hex data record. A. Correct error and reread from preceding patch
3 control record.
B, Terminate modification, CALL EXIT,
C. Reread card in error.
Modification level error in A. Correct error and reread from corrected patch Present version and modification Level of version and modifica-
4 system modification update. control record. level (from DCOM on disk). tion (from patch control
B, Terminate modification, CALL EXIT. record).
New modification level A, Correct error and reread from corrected patch Present version and modification Level of version and modifica-
5 lower than current level control record. level (from DCOM on disk). tion (from patch control
in system modification up- | B, Terminate modification, CALL EXIT. record).
date. C. Reduce level and continue,
Monitor control record or A. Read new patch control record. Number of patches not installed.
6 // DEND card read before B, Terminate modification, CALL EXIT,
required number of patches
read.

DCOM configuration indica-
7 tors do not agree with SLET
or, Required system 1/O
routine missi