
IBM
©

Programmed Instruction Course

IBM

Programmed Instruction Course

FORTRAN for the IBM 1130

Chapter 4

FORTRAN for the IBM 1130 Chapter 4

FOREWORD

The three previous chapters have introduced you to the three basic
elements of scientific programming languages - arithmetic, control,
and input/output - as they are programmed in the FORTRAN language.
The features presented in this chapter give considerable added
flexibility to the FORTRAN language through subprograms, which are
defined as program segments that are executed under control of another
program. These subprograms are usually tailored to perform some oft­
repeated set of operations: a subprogram is written only once, but may
be used again and again either in a single program set-up or in
different programs. In either case, duplication of effort is avoided
by eliminating the need for re-writing program segments to perform
these common operations.

Also included in this chapter are the Specification statements.
Specification statements differ from Arithmetic statements in that
they are not executed but merely provide the computer with necessary
information about the program.

Copies of this publication can be obtained through IBM Branch Offices.
Address comments concerning the contents of th is pub Ii cation to:
IBM DPD Education Development, Education Center, Endicott, New York.

@1965 by I nternati ona I Business Machines Corpora ti on

FORTRAN for the IBM 1130 Chapter 4

D

•

•

II

(10/65)

You have become familiar with mathematical expressions as used
in Arithmetic statements and IF statements. Through the use of
the Arithmetic statement we can tell the computer to perform all
kinds of basic mathematical operations •

Through the use of the basic arithmetic operations we can
perform many more complicated functions such as trigonometric
functions, logarithms, and roots. All of these types of
functions can be computed approximately with simple arithmetic
operations of addition, subtraction, multiplication, and
division. ·

Since many of these complicated functions can be represented by
a series of mathematical operations, it follows that these
operations can be programmed for a computer. With the FORTRAN
system of subprograms these functions can be made available to
any program which might use them.

Q. (True or False) A function such as the trigonometric sine
can be programmed for the computer •

•••
A. True

If every computer user wrote a program to compute, for example,
the trigonometric sine there would be an enormous amount of
duplication of effort, therefore many FORTRAN systems provide
a package of previously written programs to compute such
common functions for your programs.

Q. The programs that compute these functions are under control
of your program, and as such are called

•••
A. subprograms

FORTRAN for the IBM 1130 Chapter 4

•

•

The package of programs provided for FORTRAN users is called
a "library" and the programs contained in the library are called
"library functions" . 'rhe use of these library programs is very
simple and will be explained in the next few frames.

Q. FORTRAN provides a set of subprograms in the

•••
A. library

Every subprogram in the library has a particular name associated
with it. If you wish to make use of a subprogram---rn-the library
all you have to do is use its name in a FORTRAN expression in
the same fashion that you would use a variable name.

Q. A subprogram can be brought into use by mentioning its

•••
A. name

B It is actually that simple: if you wished to compute the
trigonometric sine for the value of X, for example, you might
write the statement Y = SIN(X) which would place the sine value
in Y. This statement in your program would automatically make
use of the sine program in the library.

Q. (True or False) The sine program as used in the example
above is a subprogram .

•••
A. 'rrue

B All library functions are programs which compute some functional
relation of a single quantity called an "argument". In the
example using the sine function, the argument is the angle whose
sine is to be computed; that is, in the statement Y = SIN(X)

(10/65)

the variable X is the argument.

Q. (True or False) The statement shown above is an Arithmetic
statement.

• ••
A. True

2

FORTRAN for the IBM 1130 Chapter 4

D All library functions have one or more arguments. The argument
is the quantity that the function uses to compute the desired
result. In a sense, the argument is an input quantity to the
subprogram.

Q. In the statement z = SIN(THETA) the argument is the variable

•••
A. THETA

Q When a function subprogram is called upon by mention of its
name in an expression, the computer actually stops executing
your program while it computes the function value. When the
subprogram is finished executing, the computer comes back to
your program with the computed result.

Q. In the statement Y = SIN(A) the value whose sine will be
computed is the variable

•••
A. A

m The function name may be used in an expression exactly like a
variable name. When computing the expression, the function's
value for the current value of the argument replaces the
function name in the expression; this is similar to the way a
variable works, with the value replacing the name.

Q. The statement Y = A*SIN(X)+B*SIN(Z) calls upon the sine
function (how many?) times .

•••
A. two

m The example Y = A*SIN(X)+B*SIN(Z), demonstrates the flexibility
of the function notation. More than one function may appear in
a single expression and the same function may be used more than
once in a single statement. In the above case, the value of the
sine of X will be multiplied by A, the value of the sine of z
will be multiplied by B and these values will be added.

(10/65)

Q. The final computed result of the expression shown above
will become the value of the variable

•••
A. y

3

FORTRAN for the IBM 1130 Chapter 4

• As mentioned before, every function has a unique name. When
the function is used in a statement, its name appears followed
by a pair of parentheses containing the argument. The examples
used in the preceding frames have shown one of these functions,
with its argument, as in SIN(X).

Q. The argument in the expression SQRT(ARG) is the variable

•••
A. ARG

Ill The argument may be a variable, constant, or any legal expression.
Thus, SIN(X), SIN(3.141592), or SIN(A**2+B**2) are legal examples
of arguments. In any case, when a function name appears in a
statement the value of the argument is determined first, then the
function is executed to obtain the result.

Q. The argument in the expression SIN(X**2) is

•••
A. X** 2

m As a matter of fact, the argument of a function can even be
another function itself: SIN(SQRT(X)) is an example of nested
functions. In cases like this, the innermost function (the one
that is also an argument) is evaluated first to obtain a value
for use of the outer function as an argument.

Q. In the example SIN(SQRT(X)) the function named
is an argument of another function •

•••
A. SQRT

Ill The stanqard library distributed with the 1130 system contains
many functions for mathematical computation. Some of these
appear on Panel 4.1 with explanations. Turn to Panel 4.1.

(10/65) 4

FORTRAN for the IBM 1130 Chapter 4

m As you can see, all the library functions have pre-assigned
names. Because these names refer to specific library routines,
you must avoid using these same names when you create your own
variable names. In fact, a good rule of thumb for beginners is
to avoid using all FORTRAN defined words like DO, FORMAT, READ,
etc., when creating variable names. If you create completely
new names there is no chance that either the computer or someone
looking at your program will misinterpret what you mean.

IEJ Two main points have been covered so far: 1. a set of cornmonly­
used subprograms in function form is available to your programs
in a library: 2. these function subprograms are brought into
use by the mention of the appropriate name in an ordinary
FORTRAN expression, using the name like a variable.

Q. (True or False) A function name must be accompanied by
the correct number of arguments •

•••
A. True

m The library functions illustrated on panel 4.1 are written to
use real arguments and yield real values for their result. This
means that they are intended to be used in real expressions
and must have real quantities for their argument.

Q. (True or False) The expression SIN(I) is legal •

•••
A. False (the argument of the SIN function program must be

real)

m Since the function's name is a part of an ordinary FORTRAN
expression and its value is used directly in the computation
indicated in the expression, it follows that the mode should
normally agree with the entire expression.

(10/65)

Q. (True or False) The statement Y = I*SIN(X-Y) does not mix

A.

modes.

• ••
False (the variable I is an integer quantity but SIN is
a real function)

5

FORTRAN for the IBM 1130 Chapter 4

Ell In general, then, library function names can be used in any way
which is legal for ordinary variables. In fact, their meaning
is very similar to that of a variable name: at the time the
expression in which a function name is contained is executed,
the current value for that function is computed and supplied to
the expression to be used as indicated, just as is the value of
a variable.

Q. Write a statement to compute the product of three quantities:
2.0 times the sine of X times the cosine of X, placing the
result in the variable ANSWR •

•••
A. ANSWR = 2.0*SIN(X)*COS(X)

m If your answer agrees with the one shown above, skip to frame
27; if your answer does not agree, go on to the next frame.

m The problem requires an Arithmetic statement with two function
names in the expression. The expression was to have computed
the product of three terms: 2.0, sin X, and cos X. The use of
the functions' names with their given arguments in an ordinary
expression is sufficient to solve this problem.

Q. (True or False) When an expression containing a function is
computed, the computed value of the function replaces the
function name in the expression •

•••
A. True

m The expression given in the preceding problem required the
computation of sin X and cos X. The functions in the library

(10/65)

to compute these quantities are SIN and COS; in this problem
they both had the argument x. Therefore, the complete
expression to solve for the product has to be 2.0*SIN(X)*COS(X).

Q. Given that· the sin(O.) = O. and that cos(O.) = 1.0, the
value of the expression 2.0*SIN(X)*COS(X) would be
when X has a value of 0 •

•••
A. 0. (2. 0 times 0. times 1.)

6

FORTRAN far the IBM 1130 Chapter 4

m Q. Try a similar problem requiring function notation: given

m

sin X .
that the tan X = cos X write a statement to place the

ian THETA in the variable TRIG .

•••
A. TRIG = SIN(THETA)/COS(THETA)

If your answer agrees with the one shown above, continue to the
next frame. If your answer <loes not agree, go back to frame 6
and review.

Another example of function notation using library function names
might be: Y = SIN(SQRT (ALOG(X(I)**2)))

This is a three-deep nesting of functions, where the log function
value is the argument for the square root function whose value is,
in turn, the_ argument for the sine function.

Q. The first computation executed by the computer in the above
example would be

•••
A. X (I) **2

EJI That example, Y = SIN(SQRT(ALOG(X(I)**2))), further illustrates the
fact that an argument can be any legal FORTRAN expression. The
computer treats 11 nested 11 functions by starting with the inner­
most point and computing its way out. Thus, X(I)**2 is computed
first; its value· is given to the log function whose result is

(l 0/65)

the argument to the square root function; the final result
becomes the value of Y.

Q. The entire argument of the sine function shown above is
(written out)

•••
A. (SQRT(ALOG(X(I)**2))), which is still a single quantity

7

FORTRAN for the IBM 1130 Chapter 4

m Function notation is not limited to expressions appearing in
Arithmetic statements either. For example, IF(SIN(OMEGA*T))l0,20,30
will tell the computer to compute the value of OMEGA*T, give
that result to the sine function, and, finally, test the final
result for negative, zero, or positive status.

m Perform Exercise 4.1 in your problem book.

Library functions represent only one type of function which may
be used in FORTRAN programs. The four kinds of function
~ubprograms are listed below. Their individual merits will soon
become clear.

1. Library or built-in functions
2. Arithmetic statement functions (also called statement functions)
3. FORTRAN-written FUNCTION subprograms
4. SUBROUTINE subprograms

IJI The library functions as described in the preceding frames are a
set of previously written programs available to your program at
execution time, being called into action wherever their particular
name appears in your program.

Q. Write a statement, using the appropriate function, to compute
the square root of the sum of A-squared and B-squared;
placing the in HYPTN.

• ••
A. HYPTN = SQRT(A**2+B**2)

m The question of the preceding frame demonstrates a typical use of
a library function. Note that the argument is itself an
expression, which is perfectly permissible. Incidentally, the
use of SQRT for computing square roots is more efficient than
using the notation **0.5

(10/65)

Q. (True or False) In the answer shown above, the value of the

A.

expression A**2+B**2 is computed before the function is
called into action to compute the square root •

•••
True

8

FORTRAN for the IBM 1130 Chapter 4

m If you use the same built-in function more than once in a
program, the actual subprogram segment appears only once.
This type of subprogram is called a "closed subprogram".

Q. The functions are examples of closed subprograms.

•••
A. built-in or library

m Actually, the other three types of functions are all of the
closed subprogram variety. This means that the subprogram
segment appears only once regardless of how many times it is
used in a given program:- The advantage of this approach is
that core storage is conserved •

•••
A. open

m All FORTRAN subprograms are named according to the same
convention: the function name may have from 1 to 5 alphanumeric
characters, the first of which must be alphabetic. (No special
characters may be used.)

Q. (True or False) The name ARF is a legal function name
according to the above definition •

•••
A. True

m The naming rules in the above frame should sound familiar to you.

(10/65)

Actually, these are the same rules used for constructing a
variable name. Of course, the library functions are already
named, but, even so, they are subject to the same set of
rules.

9

FORTRAN for the IBM 1130 Chapter 4

m The following frame contains a list of function names. Identify
the legal ones with a plus sign and the illegal ones with a minus
sign. Remember, they follow the same rules that govern the
naming of a variable.

m Q. Sample function names: (identify legal(+) and illegal (-)
ones)

A. SIN
OFF/
FOFXF

SIN
OFF/
FOFXF
FLOAT

FLOAT
FIRSTF
R23456
A*MQ?
FUNCTION

+

+
+
+
+

•••

FIRST
R2345
A*MQ?
FUNCTION

(contains special characters)

(contains special characters)
(greater than five characters)

m Let's take a moment to review the last few frames. You have been
told that there are four kinds of FORTRAN subprograms, but so
far only the library or built-in functions have been discussed.
You have also learned the rules for naming subprogr~ms, which
very conveniently are the same rules that apply to naming
variables.

Q. (True or False) FORTRAN subprograms are all governed by
the same naming rules •

•••
A. True

m The question of mode comes up with functions as well as with
variables and expressions. In the case of function subprograms,
mode conventions have to be observed on two counts: the
function value itself and the arguments. The mode of the
function value is denoted by the function name, as defined in
the next frame. ·

(10/65) 10

FORTRAN for the IBM 1130 Chapter 4

m The computed value of the function has a particular mode
associated with it, since it is used in an expression with other
quantities. Just as with variable names, the first letter of
a function name indicates its mode. Thus, function names that
begin with the letters I through N indicate integer mode, and
all other letters ~ndicate real mode. This mode-defining
convention is known as the implicit way of specifying mode.

Q. The function name ALOG (library function) indicates a
mode value for the function.

eee

A. real

lfl The argument or arguments of a function may be of either mode;
that is, the name of the function itself does not imply that an
argument is of a particular mode. When a function itself is
programmed, the mode of any arguments is defined, and it is up
to the user of a function to see that the argument supplied is
the correct one.

Q. (True or False) It is possible to have a real function
which uses an integer argument •

•••
A. True

[m It should be pointed out that normally the mode of a function
used in an expression matches the mode of the expression.

(l 0/65)

The mode required for the arguments, however, does not have
any bearing on the mode of the expression in which the function
appears.

Q. According to the above definitions, the statement
Y = A+B+FLOAT(I) is (legal or illegal)

.. . .
A. legal

11

FORTRAN for the IBM 1130 Chapter 4

m The following is a· list of points that you should be thoroughly
familiar with before continuing:

1. A function name appearing in a FORTRAN expression
results in the execution of a program.

2. This program has been previously written.
3. Each of these subprogram types is made available through

a library.
4. A function is recognized by its name.
5. A function name has 1 to 5 characters, the first of

which must be alphabetic.
6. The mode of the function is determined implicitly

by the first letter of its name.
7. The modes of function arguments need not be the same

as the function itself.

Ill So far, you have learned about the implicit method of specifying
modes for variables and functions. Mode in this method depends
upon the first letter of the name, and is a predetermined
convention of FORTRAN.

Q. The name QUICK implies the mode.

• ••
A. real

m Often, this implicit convention prevents us from using names
which start with the wrong mode letters when writing
expressions. For instance, if we wanted the name MASS to be
real, we would have to change it to XMASS or AMASS or some
other acceptable first-letter variation.

lfJ To solve this problem, 1130 FORTRAN provides us with a Type
statement which allows the programmer to specify the modes of
specific names regardless of their first letter. The Type
statement is a specification statement like the FORMAT
statement, and, as such provides information to the program
but is not executed.

Q. If the variable name ALPHA were to be defined as an
integer, a statement would be needed •

•••
A. Type

(10/65) 12

FORTRAN for the IBM 1130 Chapter 4

m There are two Type statements which affect mode: INTEGER and
REAL. The form of the Type statement is the word INTEGER or
REAL followed by a list of function or variable names
separated by conunas. All names in the list will assume the
mode of the Type statement because the implicit mode of their
first letters will be overridden. For example, the statement
INTEGER PEARS, APPLE, x, Yl23 would assign the integer mode
to PEARS, APPLE, x, and Yl23.

Q. Write a Type statement to assign the real mode to the
variables MINOR and .MAJOR •

•••
A. REAL MINOR, MAJOR

m a. Write the Type statements to assign the integer mode to
the variables EENY, MEENY, ZAP, and the real mode to
NUTS, PECAN, GRAPE.

• ••
A. INTEGER EENY, MEENY, ZAP; REAL NUTS, PECAN, GRAPE;

(Note that it is permissible to reassign the same mode
to a variable which is already defined implicitly, such­
as GRAPE)

Because we are explicitly assigning mode through the Type
statement, the form of mode assignment is known, quite naturally,
as explicit mode specification. Type statements must precede
all executable statements in the source program and must also
precede all other specification statements.

• To put the physical ordering of the source program in
·perspective, here's the way it might look at this point:

(10/65)

Type statements
FORMAT statements
Executable program steps
END

13

FORTRA~ for the IBM 1130 Chapter 4

m Perform Exercise 4.2 in your problem book.

The built-in library functions are automatically made available
to any program which makes use of the appropriate name. The
following frames will describe some more library functions
available with 1130 FORTRAN. These functions are in
addition to those illustrated on Panel 4.1. Incidentally, these
do not need to be committed to memory since they are written
up in reference manuals, but a familiarity and working knowledge
of these built-in functions will be helpful in their use.

Ill One of the simplest of the built-in functions provides
absolute value of a quantity. This means that the value of the
function will be the positive magnitude of the argument,
regardless of the original sign of the argument quantity. The
function is named ABS (or IABS for integer use) .

Q. By the above definition, the value of the expression ABS(X)
will always be (sign)

•••
A. positive (plus)

m Important note: this function, like every other function, does
nothing to the argument itself. For example, the statement
Y = ABS(A) uses the value of A to determine the value of the
function, but the value of A remains intact in its original form.

Q.. If A in the above example has a value of -1.234, the value
of Y after execution would be

•••
A. +l. 234

m Thus, you can see that the only operation performed by the ABS
or IABS functions is to set the sign of the argument value

(10/65)

(but not the argument itself) to positive. This can be
a valuable function, however simple it seems, as in the example
SQRT(ABS(X)) which assures that the argument to the square
root function is a positive quantity (which it indeed must be
to. avoid an error message).

Q. If you needed the absolute value of the variable NUMBR
you would write the expression:

A.

•••
IABS(NUMBR) (the IABS function must be used, since it is
designed to handle integer arguments)

14

FORTRAN for the IBM 1130 Chapter 4

m This last question brings up an important point: these built-in
functions are designed to handle arguments of a particular mode.
The mode of the argument does not necessarily agree with the
mode of the function, but in the case of IABS it does happen
to agree, and, in fact, must be written that way.

Q. (True or False) The statement Y = ABS(NUMBR) is legal •

•••
A. False (ABS is the name used with real arguments only)

m Perform Exercise 4.3 in your problem book.

A built-in function is available to change the mode of a
single argument; the value of this function is then the
argument's value in the opposite mode. The form FLOAT (argument)
is used to convert from integer to real; the form IFIX (argument)
is used for the opposite conversion.

Q. In which mode do you think the argument of IFIX should
be?

•••
A. real (this function converts from real to integer)

m As the last question implies, the FLOAT and IFIX forms must
have arguments of opposite mode to the name of the function:
thus, FLOAT(N) and IFIX(A) would be legal uses of these
functions, but the form FLOAT(A) or IFIX(K) would yield
meaningless numbers.

(10/65)

Q. (Yes or No) Is there any difference in the result of the
statements Y =Kand Y = FLOAT(K)?

A.

•••
No (either form will produce the real value of K for the
variable Y)

15

FORTRAN for the IBM 1130 Chapter 4

m The IFIX form can hold some surprises in store for you if you
forget that the integer mode contains only integers and the
conversion from real involves dropping (not rounding) the
fraction part. Thus, IFIX (1.999999) haS"a9 value of 1
(integer, truncated) .

. Q. If X has a value of 3.0, the value of Y after executing
Y = FLOAT(IFIX(X/2.0)) would be

•••
A. 1.0 (X/2.0 equals l.S;when this is truncated the value

becomes 1).

rmJ A built-in function is available to transfer the algebraic sign
from one quantity to another. The function SIGN (argument 1,
argument 2) will have as its value the absolute magnitude of the
first argument and the algebraic sign of the second argument.
(Both arguments are real.)

m This function has its counterpart in the integer form as
ISIGN (argl,arg2) which performs the same function for integer
quantities. Thus, for example, SIGN(-1.5,2.3) would equal
+l.5 after execution, while SIGN(-1. ,-5.) would have the
value -1.

Q. If L and M both have the value -10, the expression ISIGN(L,M)
will equal

•••
A. -10

rfl Panel 4.2 presents summaries of the built-in function types with
information concerning number and mode of arguments, mode of
function value, etc. Turn to Panel 4.2. This panel, together
with Panel 4.1, lists all library functions available with the
1130 version of FORTRAN.·

llJ The library subprograms discussed so far in this chapter are
of the previously-writte~ variety; that is, they already exist
as you read this text, with their own special names and function
programs.

(10/65) 16

FORTRAN for the IBM 1130 Chapter 4

m To repeat, the built-in functions are previously-written programs
of general interest. The next type of function, the Arithmetic
statement function, is used where no library function is available.
This type of function is defined by the programmer right in the
program in which it is to be used.

m Any functional relationship which can be expressed in a
single expression can be applied to an Arithmetic statement
function. To show a trivial example, suppose you desired a
function which would sum up its three arguments:

SUM(A,B,C) = A+B+C

Q. The three arguments in the example above are
, and ----

•••
A. A,B,C

m Every Arithmetic statement function is defined by a single
statement which consists of the selected name with its
arguments followed by an equals sign and followed in turn by
the FORTRAN expression which defines the desired functional
relationship. The example SUM(A,B,C) = A+B+C is such a
statement.

Q. The name of the function defined by SUM(A,B,C) = A+B+C
is

•••
A. SUM

m The single statement which defines the Arithmetic statement
function's relationships is called a "function defining statement".
When such a statement appears in a program, the indicated
operations will be performed wherever the function's name
appears in an expression elsewhere in the program.

Q. (True or False) The statement SUM(A,B,C) = A+B+C is a
function defining statement •

•••
A. True

(10/65) 17

FORTRAN for the IBM 1130 Chapter. 4

~ In other words, if you write the statement SUM(A,B,C) = A+B+C,
a function defining statement, in your program, you can use this
function simply by writing its name in an expression elsewhere in
the program, as, for example, Y = SUM(X,Y,Z)/SUM(P,Q,R). X, Y,
and Z (and P, Q, and R) will be operated on in the manner
prescribed by the arguments in the function <lef ining statement.

Q. If X, Y, and Z have the values 1., 3., and 2. respectively,
the value of SUM(X,Y,Z) is

•••
A. 6 • 0 (or 6 •)

m The function defining statement contains argument variables both
with the function name and also in the expression on the right of
the equals sign. When that function name then appears in an
expression elsewhere in the program, whatever quantities are
given there as arguments will be used in the manner prescribed
by the function defining statement.

Q. The expression FIRST(A,B) will provide the values of
and to the subprogram called FIRST •

•••
A. A, B

lfJI The variables listed as arguments in the function defining
statement, then, are dummy arguments, meaning that they are not
variables in the usual sense but rather are used to show what
is to be done with the values of the actual arguments as
indicated in the function notation elsewhere in the program.

(10/65)

Q. Given the statement SUM(A,B,C) = A+B+C, the expression
SUM(2.,2.,2.) has a value of

•••
A. 6.

18

FORTRAN for the IBM 1130 Chapter 4

fJI Any functional relationship which can be expressed in a single
expression can be expressed in the Arithmetic statement function
form. The expression on the right of the function defining
statement may contain variables (unsubscripted), constants, and
even other function names.

Q. (True or False) The statement CUTOF(X) = A(I)**2+X(I)**2
is a legal function defining statement •

•••
A. False (subscripted variables are not permitted in the

expression of a function defining statement)

fil The function defining statement's expression may make use of
ordinary variables in addition to the dummy argument variables
listed on the left. When this is the case, these ordinary
variables will contribute their current.values to the
computation of the function, while, of course, the argument
values will be supplied by the statement which called on the
function.

Q. In the statement SOMEF(X) = A*X**2 the expression contains
an argument (dununy) variable and an ordinary
variable

•••
A. X, A

fiil The function-defining statement SOMEF(X) = A*X**2 is an expression
containing an argument variable and an ordinary variable. A
statement elsewhere in the program such as Y = SOMEF(Z) will

(10/65)

cause the SOMEF function to be computed using the current value of
A; and the value of Z is used where X appears in the definition.

Q. Every statement containing the name SOMEF will call upon
the function defined above, specifying an argument
which will be treated like the variable in the
definition.

A. X

19

FORTRAN for the IBM 1130 Chapter 4

m All function defining statements must come before all executable
statements in your program. You see, this statement is not
executed in the same sense that an ordinary Arithmetic statement
is; it appears only once in the program but its indicated
operations are carried out each time its name appears in an
expression, and control remains with the statement which called
upon the function.

m The function defining statements are placed physically before any
executable statements in your source program. Here's how the
physical ordering of the source program might look at this point:

Type statements
FORMAT statements (may be placed elsewhere)
Function defining statements
Executable program steps
END

fZI Since the Arithmetic statement function is written by a
progranuner for his special application, it follows that he
must also assign a name to that function. The name must
conform to the usual function-naming convention: 1 to 5 alphanumeric
characters, first alphabetic, with the mode determined implicitly
by the first letter of the name, unless a Type statement overrides
the implicit convention.

Q. (True or False) The names NYOLD, SCOFF, XACT, and ONOFF
are all legal real function names •

•••
A. True

flJ Let's look at a practical example. Suppose you need to compute

the expression ~ x 2 + y 2 several times with different values
for the parameters. Rather than repeat this expression in

(10/65)

each statement that needs it, you can define a function called,
say, POLAR(X,Y) which can be used by name in each expression
that requires it. A suitable function defining statement would
be POLAR(X,Y) = SQRT(X**2+Y**2).

Q. Using the above definition, the value of POLAR(3.,4.),
would be

•••
A. 5.

20

FORTRAN for the IBM 1130 Chapter 4

m Q. Write a function defining statement using the name
ROOT(A,B,C) that will solve the expression

-b+V'b 2 -4ac:
2a

•••
A. ROOT(A,B,C) = (-B+SQRT(B**2-4.*A*C))/(2.*A)

flJ If your answer agrees with the one shown, skip to frame 101.
If you <lid not get the correct answer, continue to the next
frame.

m Given the relation -b+\/'b 2 - 4ac and the potential name of the
2a

function, ROOT, the writing of the function defining statement
should be a simple matter of filling in the blanks: name,
arguments, equals sign, and expression (the library SQRT is
permitted in the expression of a function defining statement).

Q. Write a function defining statement for DISCR(A,B,C) to
compute the square root in the above expression:

•••
A. DISCR(A,B,C) = SQRT(B**2-4.*A*C)

m The basic idea of these ArithMetic statement functions is to
program a commonly used set of operations in a form that can be
used with function notation throughout the program. For
example, a statement such as IF(DISCR(X,Y,Z))l0,20,30 used

(10/65)

in a program containing the above definition will carry out
those indicated operations without re-writing them, as many
times as you wish to use it.

Q. (True or False) Once an arithmetic statement function is

A.

defined by a function defining statement, it may be used
repeatedly throughout a program by referencing its name .

•••
True

21

FORTRAN far the IBM 1130 Chapter 4

mo. Try another case. Write a function defining statement for
a function called TRIG which will compute the square root
of the sine of the first argument and multiply this by the
second argument; use THETA and PHI for the argument variables •

•••
A. TRIG(THETA,PHI) = SQRT(SIN(THETA))*PHI

m If your answer agrees with the one shown, continue to the next
frame. If your answer is wrong, better go back to frame 65
and read carefully the material on Arithmetic statement functions.

m Perform Exercise 4.4 in your problem book.

You have now become familiar with two of the four types of
functions used in FORTRAN programs: the library or built-in, and
Arithmetic statement functions. The first type is available
automatically and consists of a specific set of pre-written
programs. The second type is written for a particular program's
use by the programmer himself.

Q. Since the name SOMEF does not belong to the set of library
or built-in functions, it must be an
function.

• ••
A. Arithmetic statement

m Most of the function usage can be satisfied by these two
function types. Occasionally, however, a function is needed
that is not in the library or built-in pac~ages and also cannot
be expressed in a single expression, as required for the
Arithmetic statement functions. For these cases, FORTRAN­
written subprograms are used.

(10/65)

Q. (True or False) Arithmetic statement functions can only

A.

be used where the function's value can be defined in a
single function defining statement •

•••
True

22

FORTRAN for the IBM 1130 Chapter 4

m The FORTRAN-written subprogram fulfills the same purpose that
the Arithmetic statement function does, except that this type
of function permits as many statements as necessary to fully
define the functional relationship for which the function is
being written.

Q. {True or False) The third type of function, the FORTRAN-
wri tten subprogram, permits only one statement in the
function definition.

• ••
A. False {as many statements as are needed are permitted)

m The FORTRAN-written subprograms are of two types: the FUNCTION
subprogram and the SUBROUTINE subprogram. To provide a mental
picture of all four subprograms in the overall subprogram
set-up, a diagram is shown below:

m .

(10/65)

FORTRAN SUBPROGRAMS {4 TYPES)

Arithmetic
Statement

Built-In
or Library
~-~~~~~--- --~~~~~--)

"""
Only these two have
been discussed so far.

FUNCTION
Subprograms

SUBROUTINE
Subprograms

Q. The two types of subprograms not yet covered in this text
are and

•••
A. FUNCTION subprograms, SUBROUTINE subprograms.

The FUNCTION subprogram {the capital letters are used intentionally
to distinguish this function type) is itself a complete program;
that is, it is written separately from any program which uses it
and even has its own END statement, which is used for all
programs to signify the last statement in the program.

Q. When a FUNCTION subprogram is written with another

A.

program, at least END statements are needed •

•••
two {one for each FUNCTION subprogram and one for the
other program)

23

FORTRAN for the IBM 1130 Chapter 4

m The FUNCTION subprogram is a completely separate segment of
programming from the program which makes use of the function.
This type of subprogramming enables you to write a complete
set of statements which will be executed only if another program
makes reference to the chosen name of the FUNCTION.

Q. (True or False) The FUNCTION is essentially the same in
use as the first two types of functions discussed •

•••
A. True

lf1I The FUNCTION subprogram, then, is used like a library function;
that is, it is a previously-written program which is executed
wherever its name appears in another program. In other words,
if you find you need a function and it is not available in the
library, you can write it yourself with FORTRAN statements in
FUNCTION form.

Q. (True or False) The FUNCTION subprogram is written
completely in FORTRAN language •

•••
A. True

IJI The FUNCTION subprogram is distinguished from an ordinary program
by the very first statement in the program. A special

(10/65)

statement is used, beginning with the word FUNCTION followed
by its name, an open parenthesis, a list of "dummy" arguments,
and a close parenthesis: e.g. FUNCTION NAME(ARG1,ARG2,ARG3).

Q. The FUNCTION statement shown above must be the
statement in the FUNCTION subprogram •

•••
A. first

24

FORTRAN for the IBM 1130 Chapter 4

fll Following the FUNCTION statement you may write any combination
of statements to properly define the functional relationship
between the argument quantities and the single result which
becomes the value of the function.

Q. A program beginning with the statement FUNCTION THING
(A,B,C) is a subprogram •

•••
A. FUNCTION

m In addition to identifying a program as a FUNCTION, the FUNCTION
statement itself fulfills two purposes: it defines the name
of the FUNCTION and also indicates, through the list of dummy
argument variables, the quantities whose values are to be
supplied by the program which uses the FUNCTION.

Q. The FUNCTION statement defines the
FUNCTION.

• ••
A. name

of the

m Functions of this third type have the same naming rules as the
other two function types: The name can have from 1 to 6
alphanumeric characters, the first of which must be alphabetic,
and no special characters may be used. In other words, the
third function type also has the same naming rules as ordinary
variables.

Q. (True or False) The name A would be a legal FUNCTION name .

•••
A. True

m You will remember that the mode of the library functions is pre­
defined while the mode of Arithmetic statement functions unless
overridden by a Type statement is determined implicitly by the
name. The mode of FUNCTION subprograms is determined just like
the Arithmetic statement functions.

Q. The FUNCTION subprogram name JUNK belongs to the mode.

• ••
A. integer

(10/65) 25

FORTRAN for the IBM 1130 Chapter 4

fZI In addition to the two ways of declaring the type of a FUNCTION
subprogram name (i.e. implicitly or explicitly), there is also
the option of explicitly assigning mode by preceding the word
FUNCTION with one of the following words: INTEGER or REAL. For
example, REAL FUNCTION NUMBR (X,Y,Z) would define the function
named NUMBR as a real FUNCTION.

Q. Identify the mode of the following FUNCTIONS:

Name

QUICK(X,Y)
IRATE(YES,SO)
INTEGER FUNCTION ALPHA (A,B)
LIMIT(Z)
REAL FUNCTION IBEX(Q)

•••
A. real, integer, integer, integer, real

Mode

f1J So far, then, you have seen that you can write your own FUNCTION
subprograms to be used by other programs of yours in exactly
the same manner that you use the library and other functions.
Unlike the Arithmetic statement functions, however, the
FUNCTION is a separate program segment headed by the FUNCTION
statement, followed by statements defining the function, and
terminated by its own END statement.

IJJ The FUNCTION statement which heads the FUNCTION subprogram
contains the name you have chosen for the FUNCTION and also
contains the list of dummy variables whose values are to be
supplied to the subprogram by the program which uses the
FUNCTION. The name is chosen by the same rules applied to
variables.

(10/65)

Q. (True or False) The statement FUNCTION ABCDEFG (X, Y ,.z)
is valid.

• ••
A. False (the FUNCTION name has too many characters)

26

FORTRAN for the IBM 1130 Chapter 4

IJJ All FUNCTION subprograms use a special statement to tell the
computer to return to the program which called on the FUNCTION
and pick up where it left off. When the FUNCTION subprogram
has finished its task of computing its particular value, the
RETURN statement signals the computer to go back to the other
program (consists of the word RETURN}.

Q. The RETURN statement sends the control back to the program
which used the of the FUNCTION .

•••
A. name

Im This brings the total of new statements in this chapter to two:
the FUNCTION statement and the RETURN statement. The RETUR~
statement is used in a subprogram where you might use a STOP
in a regular program; that is, as the last statement to be
executed (re~ember, the END statement is actually last}.

Q. The three statement types that must be included in every
FUNCTION subprogram are FUNCTION, , and END •

•••
A. RETURN

Im One other statement is required of every FUNCTION subprogram:
an Arithmetic statement which sets the name of the FUNCTION
equal to the final computed result, treating the name as
an ordinary variable (using only the name, without any
parentheses or arguments} . This may be placed anywhere
in the program, although it often comes just before the RETURN
statement, and it links the result with the other program.
Examples of this will be shown in future frames.

Im Now that the general framework has been defined, we can study
an example of a FUNCTION program and how it is used by
another program. The program on Panel 4.3 will provide as its
value the sum of the array specified as its first argument,
considering the array to be of length defined by the second
argument. Turn to Panel 4.3 now.

(10/65) 27

FORTRAN for the IBM 1130 Chapter 4

Im Because this subprogram involves an array, it is now necessary
to discuss the DIMENSION statement which is the second statement
of the subprogram. The DIMENSION statement is a specification
statement like the FORMAT and Type statements. As such, it is
not executed, but merely provides the computer with information.

Im The DIMENSION statement is used for specifying the size of arrays
used in the program. The statement consists of the word
DIMENSION followed by any number of array-size specifications
separated by conunas. Note: learn well the spelling of the
word DIMENSION, as the FORTRAN language accepts only the
correct forin!

Q. A DIMENSION statement must be used in all programs which
contain

•••
A. arrays

Im The array-size specifications consist of the name of the array
followed by a pair of parentheses containing a constant which
defines the size of the array: for example, an array of 100
numbers called A would have an array-size specification of
A(lOO).

Q. The DIMENSION statement to specify the array described
above would be

•••
A. DIMENSION A ('100)

Im If your program contains more than one array, you may specify all
the arrays in a single DIMENSION statement or use more than one
DIMENSION statement if you so choose. For example, a program
containing three arrajs called A, B, and C, each of which is 1000
numbers long, must have the statement DIMENSION A(lOOO), B(lOOO),
C(lOOO) included in the program.

Q. (True or False) The sequence of statements DIMENSION A(lOOO);
DIMENSION B(lOOO) ; DIMENSION C(lOOO) would be equivalent
to the statement shown in the example above •

•••
A. True

(10/65) 28

FORTRAN for the IBM 1130 Chapter 4

Im Every variable which is to be used with a subscript must appear
in a DIMENSION statement. If this rule is not followed, the
subscripted variable will look exactly like a FUNCTION name
with argument. In fact, it will be treated as exactly that if its
name is not listed in a DIMENSION.

Q. (True or False) The statement DIMENSION A(lO)B(20)C(30)D(40)
is legitimate.

• ••
A. False (conunas must be used to separate the individual

array-size specifications)

ID Sometimes the size needed for an array will vary from run to run6
In cases like these, an array size should be chosen that is
large enough for the maximum size of array you will need. In no
case should a subscript be allowed to exceed the size specified
for the array in the DIMENSION statement.

Q. The statement DIMENSION ARRAY(lOO), BLOCK(SOO) specifies
array sizes of and

•••
A. 100,500

Im When a dummy argument in a FUNCTION or SUBROUTINE is to be
treated as an array (that is, it will be used with subscripts),
the subprogram must also have a DIMENSION statement (in
addition to the DIMENSION statement that must appear in the
program that calls upon the subprogram) .

Q. (True or False) Any program that contains a subscripted
variable must list that variable in a DIMENSION statement •

•••
A. True

(10/65) 29

FORTRAN for the IBM 1130 Chapter 4

1111 Repeat: a FUNCTION that has a dummy argument which is an array
must have a DIMENSION statement containing that name (even
if the specified array size is different from that ·of the
calling program) to permit subscripted use of the variable.
Without this specification, the dummy array will be thought of
as a FUNCTION by the subprogram, which would obviously be
incorrect.

Q. If a subprogram FUNCTION SUM(A,N) refers to a 10-number
array A, the subprogram must contain the statement

889

A. DIMENSION A(lO)

1111 Basically, then, the DIMENSION statement is used to give the
computer some bookkeeping information. All variables that are
used with subscripts must appear in a DIMENSION statement in
the same program or subprogram; otherwise, the computer looks
for a non-existent FUNCTION subprogram and comes to a halt.

Q. The statement DIMENSION X(l5),Y(l00000) ,Z(SO) specifies
array sizes for the variables , and

•••
A. X,Y,Z

1111 An important note: the DIMENSION statement must appear before

(10/65)

any statements using the array names specified therein. In the
case of FUNCTION subprograms, the DIMENSION statement(s) follows
the subprogram heading statement which contains the word FUNCTION •.
In main programs, the DIMENSION statement(s) is placed before
any executable statements, and immediately follows the Type
statements. For example,

Subprogram:

FUNCTION GAMMA (A~B,C)
DIMENSION

RETURN
END

Main Program:

Type statements
DIMENSION
FORMAT
Function defining statements (arith)

END

30

FORTRAN for the IBM 1130 Chapter 4

1111 Now that you understand something about DIMENSION statements,
look again at Panel 4.3. The first statement in the subprogram
is, of course, the FUNCTION statement, defining the chosen name
and the dununy arguments. The second statement is the DIMENSION
statement, which de~ines the A array as being 100 numbers in
size. The actual statement is defined in the next three statements:
initialize the SUM and loop to keep adding successive numbers
in the array into SUM (notice that the FUNCTION name, SUM, is
treated like a variable). When the loop is completed, the RETURN
will take the computer back to whatever program has used the
FUNCTION.

Q. (True or False) The sample program would not be
complete without the END statement •

•••
A. True (all programs, even subprograms, require an END

statement)

1111 This example demonstrates another feature of FUNCTION subprograms
that is not available with the other types; the argument
quantities may be arrays (the argument, for example, of the
SIN library routine must be a single quantity). You must be
careful to treat the argument quantities accordingly, however!

Q. In this example, the program headed by FUNCTION SUM(A,N)
treated the argument named as an array •

•••
A. A

1111 It is important to understand that the arguments as specified in
the FUNCTION statement are dummy variables. This means that
their names are used in the subprogram without definition of
value, and the value used for any particular execution will be
supplied by the statement in the other program. For instance,
in the example the variable A was one of the dummy variables,
and anywhere the name A appeared in the FUNCTION the value of
the first argument in the other program would be used, even if
its name were not A.

~10/65) 31

FORTRAN for the IBM 1130 Chapter 4

1111 Turn to Panel 4.4. The panel shows two programs: the one on
the left is the same FUNCTION SUM(A,~described before. The
one on the right is part of another program which uses SUM.
Notice that the program on the right uses the arguments BLOCK and
KOUNT. This means that BLOCK and KOUNT will be used by the
FUNCTION wherever the names A and N appear; A and N are just
dwnmies (notice that the respective modes agree!).

Q. (True or False) Both programs on the panel must be
termi·nated by END statements as shown •

•••
A. True

1111 Suppose the program on the right has another statement
such as Z = SUM(VECTR,K). This simply means that-the FUNCTION
called SUM would be executed again, this time using the values
of VECTR and K where the dummy names A and N appear in the
FUNCTION.

Q. The statement in the program which uses the FUNCTION
name shown above must contain exactly arguments •

•••
A. two

1111 When you write a FUNCTION subprogram and use it in various
other programs with statements containing its name, make sure
that you specify the same number of argu.~ents in both places
(the FUNCTION statement and the expression in the other
program).· Also, make certain that the mode agrees with what
is expected. ~~

(10/65)

Q. (True or False) The statement Y = SUM(X,Y) would be
legal for the FUNCTION just described •

•••
A. False (the second argument must be integer)

32

FORTRAN for the IBM 1130 Chapter 4

llfJ Since subprograms of the FUNCTION type are written independently
of the program that makes use of them, there is no
correlation of variable names and statement numbers between
the programs. The only way a FUNCTION can make use of a
quantity in another program is through the dummy arguments.

Q. The statement Y = SUM(X,N) provides the subprogram SUM
with the values of and

•••
A. X, N

Im Thus, a program and an associated subprogram can both use the
same variable names and statement numbers without any conflict.
The only time a variable in a subprogram has a value related to
another program is when that subprogram variable is a dummy
argument.

Q. A program headed by the statement FUNCTION SQUAR(X,Y)
utilizes a total of quantities from the program
which uses the FUNCTION •

•••
A. two

fIED Here are some check points in the writing and using of FORTRAN
subprograms:

1.

2.

3.

4.

5.

(10/65)

Choose or define a name that is of the mode you desire.
Use the same -naming rules as for variables.

Make certain that all the information needed in the
FUNCTION is included in the list of arguments. The
arguments listed in the other program must agree in
number and mode with the FUNCTION.

Be sure that the FUNCTION has the proper FUNCTION,
RETURN, and END statements.

Include a statement in the FUNCTION that sets its name
equal to the desired result.

If the FUNCTION deals with arrays, include an appropriate
DIMENSION statement.

33

FORTRAN for the IBM 1130 Chapter 4

llD Q. With the FUNCTION SUM(A,N) as described in Panel 4.4, the
statement Y = SUM(X,3)/SUM(Z,4) would result in a value
of for Y if the X array contained the numbers 4.,
3., and 5., and the z array contained the values 1., 2.,
O., and 1.

• ••
A. 3.

Im If your answer agrees with the one given, skip to frame 145.
If you did not arrive at the correct answer, go- to the next
frame.

ml The FUNCTION SUM(A,N) performed the task of adding the N
quantities in the A array, giving the sum as the value of the
FUNCTION. Therefore, the statement Y = SUM(X,3)/SUM(Z,4)
is simply a statement which uses this FUNCTION twice and
divides the two results.

Q. When the expression SUM(X,3) is used, the value 3 is used
in the FUNCTION where the variable appeared •

•••
A. N

Im Given that the X array contained the three values of 4., 3., and
5., and that the Z array contained the four values 1., 2., 0.,

·and 1., you could tell by adding them that the expression
SUM(X,3)/SUM(Z,4) is nothing more than 12. divided by 4. giving
the result of 3. for the variable Y. ~ ~

(10/65)

Q. If the third number in the X array had been 9., the value
of the expression above would have been

•••
A. 4.

34

FORTRAN for the IBM 1130 Chapter 4

ml Q. Try a similar question: using the same FUNCTION SUM(A,N)
and given that the B array contains the integers 1. through
S. and the C array contains the integers 2. through 5.,
and K equals 5: what is the value of the expression
SUM(B,K)-SUM(C,K-1)?

ca• o

A. .1.

Im If you answered this question correctly, you are probably getting
the hang of the FUNCTION writing and usage. If not, go back to
frame 86 and review the material on FUNCTION subprograms.
If you feel confident of this material, go to the next frame.

ml Perform Exercise 4.5 in your problem book.

The fourth type of subprogram, the SUBROUTINE, which was
mentioned earlier in this chapter, is similar to the FUNCTION in
many respects: the naming rules are the same, they both require
a RETURN statement and an END statement, and they both contain
the same sort of dummy argument variables. Here the similarity
ends, as will be explained in the next several frames.

tlEIJj Like the FUNCTION, the SUBROUTINE is also a set of commonly­
used operations grouped in subprogram form to be used again
and again without re-writing, but it does not restrict itself
to a single value for the result, as does the FUNCTION. In
fact, a SUBROUTINE can be used for almost any operation with
as many results as desired.

Q. A SUBROUTINE, being a complete program segment, requires
an statement as the last statement •

• •••
A. END

(10/65) 35

FORTRAN for the IBM 1130 Chapter 4

IE The FUNCTION has a single value for its result which becomes
the value of the FUNCTION name in the expression in which the
name is used. Since the SUBROUTINE does not have just a single
result, the manner in which the SUBROUTINE is called into
action is different from the way the FUNCTION is called into
action.

Q. In the statement K = WOW(L,M,N)*I+J the value of the
FUNCTION will replace the name in computing the
expression.

• ••
A. WOW

lllJI As the last question illustrates, the FUNCTION is called into
action by mentioning its name in an expression. The SUBROUTINE
is called by a special statement: the CALL statement, which
consists of the word CALL followed by the name of the subprogram

: and its parenthesized list of arguments.

Q. (True or False) By the above definition, the statement
CALL MTMPY(A,B,N) is legal •

•••
A. True

IJD Remember, the name of a SUBROUTINE is chosen by the same
rules as those of the FUNCTION subprogram. They may have 1
to 5 alphanumeric characters, the first of which must be
alphabetic. Unlike the FUNCTION, however, there is no mode
associated with the SUBROUTINE name.

(J0/65)

Q. In the statement CALL MTMPY(A,B,N) the SUBROUTINE
name is'

•••
A. MTMPY

36

FORTRAN for the IBM 1130 Chapter 4

mJ A programmer usually selects the SUBROUTINE name in a
meaningful fashion. For example, the name MTMPY might be
aptly applied to a SUBROUTINE which computed the product of
two matrices. Since there is no numeric value associated with
the name (as with a FUNCTION) there is no concern about mode.

Q. If you want to make use of a SUBROUTINE for your program,
you must use a statement •

•••
A. CALL

1111 The SUBROUTINE itself is constructed with FORTRAN statements.
You may use any sort of statement combinations you wish to
perform the desired operations. Since the SUBROUTINE is a
separate subprogram the variables and statement numbers do
not relate to any other program (except the dummy argument
variables).

Q. A statement such as GO TO 15 in a subprogram requires
that the subprogram have a statement numbered

•••
A. 15 (such a statement would not send the computer to

statement number 15 in another program)

Im The SUBROUTINE subprogram must begin with a special statement,
like the FUNCTION statement. This statement consists of the
word SUBROUTINE followed by the subprogram name and its
parenthesized list of dummy argument variables, as, for
example SUBROUTINE ORDER(X,Y,N).

(10/65)

Q. The name of the -subprogram defined in the statement above
is

•••
A. ORDER

37

FORTRAN for the IBM 1130 Chapter 4

Im The SUBROUTINE subprogram must be headed by an appropriate
SUBROUTINE statement as described in the previous frame; it
must also end its execution with a RETURN statement, which,
like the FUNCTION program, directs the computer back to the
statement which called .the subprogram in another program.

Q. A SUBROUTINE, like a FUNCTION, must end its execution
with a statement.·

A. RETURN

ll1J Naturally, the last statement in a SUBROUTINE subprogram must
be an END statement. The END statement is the one which sets
off program segments as complete main programs or subprograms.
Panel 4.5 demonstrates a SUBROUTINE subprogram and a program
which calls upon it. The object of the subprogram is to simply
copy one array directly into another. Turn to Panel 4.5.

ml The program on the right is an ordinary main program. Eventually,
it executes the statement CALL COPY(X,Y,K) which will bring the
SUBROUTINE program on the left into action. As a result
the COPY subprogram will copy the X array into the Y array, K
numbers long. The statement SUBROUTINE COPY(A,B,N) in the
program on the left defines the operations performed on the dummy
arguments A, B, and N such that a DO-loop is executed N times
to copy the first given array into the second.

l!EI The preceding example demonstrates that the SUBROUTINE not
only receives information from the arguments but also defines
the value of some of the arguments. This is the way in which
the desired results are given back to the program which called
on the SUBROUTINE. Thus the argument list becomes a two-way
street.

(10/65)

Q. In this example, the dummy argument (array) called
had its values developed in the subprogram •

A.

•••
B(B is the dummy argument in the SUBR~UTINE; Y was the
actual argument in the calling program)

38

FORTRAN for the IBM 1130 Chapter 4

llDJI A SUBROUTINE subprogram (or a FUNCTION, too, fo~ that matter)
can call upon another subprogram of any kind: library or
built-in functions, Arithmetic statement functions, or other
SUBROUTINE or FUNCTION subprograms written in this subprogram
form.

Q. (True or False) The SQRT library function can be used in
any SUBROUTINE subprogram .

•••
A. . True

Subprograms can call on other subprograms to any desired number
of levels. The RETURN statement or its equivalent will always
send the computer back to the program which called on the
subprogram, so you are assured that control will eventually get
back to your main program.

Q. If a main program calls upon a SUBROUTINE which in turn
calls upon a FUNCTION, the RETURN statement in the
FUNCTION will send the computer back to the (main or
SUBROUTINE) program.

000

A. SUBROUTINE (the RETURN statement always takes the computer
back to the next program in sequence)

tmlJ A SUBROUTINE can be used for a large variety of jobs: sorting
arrays, matrix manipulation, input or output, polynomial
operations, etc. You should use a SUBROUTINE wherever you
encounter this general type of operation and need to perform it
more than once in a given problem. Panel 4.6 will show a
main program that reads an array from cards and calls on a
SUBROUTINE to sort the array in algebraic order. Turn to
Panel 4.6~

fllll The main program on the left side of the panel reads the N
numbers into the A array and calls in the ORDER routine to
do the sorting. It then prints out the sorted array. The
program on the right is the SUBROUTINE which does the sorting,
using the method of comparing adjacent numbers and swapping
their position if they're out of the desired order. Admittedly,
the sort operation is performed only once in this example, but
this is only a demonstration; in practice a SUBROUTINE would
be used only where its operation is required a number of times.

(10/65) 39

FORTRAN for the IBM 1130 Chapter 4

1111 Notice that the preceding example showed both the actual
arguments and the dummy arguments with the same name. This
was done to show that there is no harm in doing so, but the
use of the same variable name is merely coincidentala The
arguments in the SUBROUTINE are still dummies and are related
to the variables of the same name in the main program only by
virtue of their relative position in this argument list.

Q. (True or False) The variable I as used in both programs
in this example refers to a different quantity in each
program.

• ••
A. True

Im Here are some check points in the writing and using of
SUBROUTINE subprograms:

1. Choose a name that contains 1 to 5 alphanumeric characters,
the first of which is alphabetic.

2. Make certain that all the information needed in the
SUBROUTINE is included in the arguments.

3. Make certain that all the information to be given to the
calling program is also included.

4. Be sure that the SUBROUTINE has the required SUBROUTINE,
RETURN, and END statements.

5. The program that calls upon the SUBROUTINE does so with a
CALL statement.

6. The arguments in the calling program must agree in number
and mode with the SUBROUTINE.

Im So far, then, this chapter has introduced you to four types of
subprograms: library functions or built-in functions, Arithmetic
statement functions, FUNCTION subprograms, and SUBROUTINE
subprograms.

(10/65) 40

FORTRAN for the IBM 1130 Chapter 4

llfJ Turn to Panel 4.7. Here you see a summary of subprogram
characteristics. You may use this chart for review purposes
as you continue through this chapter. It is not necessary to
memorize the information on this panel because when you are
actually programming you will find similar information in
greater detail in the 1130 FORTRAN reference manual.

Q. Here are some questions regarding subprograms:

1. Which one is referenced by a CALL statement?
2. Which subprograms do not use RETURN and END statements?
3. If you wanted to return more than one value to the

main program, which subprogram would you use?

A. 1. SUBROUTINE subprogram
2. Library and Arithmetic statement functions
3. SUBROUTINE subprogram

EJI Perform Exercise 4.6 in your problem book.

In addition to the subprograms discussed so far, four special
FORTRAN-supplied SUBROUTINE subprograms are available to the
programmer. They are provided to perform special indicator
tests which are needed by many programs. Because they are
SUBROUTINE subprograms, they are all referenced by using a
CALL statement. The next few frames will discuss their use.

1111 SLITE and SLITET are two SUBROUTINES that manipulate and test
the status of sense lightso Normally, sense lights are lights
on a computer console that c~n be turned on and off and tested
by program statements. Ironically, the name "sense light"
is actually a misnomer for the 1130, because there are
physically no such lights! Sense lights do exist on many
computers, however, and the term "sense light" is simply a
holdover. Even thought there are no physical sense lights on
the 1130, the SLITE and SLITET routines simulate their functions~
thus the effect on the program is the same as if we actually had
them.

(10/65) 41

FORTRAN for the IBM 1130 Chapter 4

Im Because sense lights can be turned on and off by the program,
and because their status (i.e. on or off) can be tested by
the program, sense lights are used where it is possible for
the program itself to dictate a future branching condition.
To put it another way, sense lights can be used by the
progranuner to set up logical branches within his program.

Q. (True or False) The program can test to see whether a
"sense light" is on or off •

•••
A. True

ml There are four "sense lights" on the 1130. To turn them on,
the statement CALL SLITE (i) is used, where i is an integer
expression and may have the value O, 1, 2, 3,.or 4. If i = 1,
sense light 1 would be turned on. Similarly, if i = 2, 3, or 4,
the corresponding sense light would be turned on. If i = O, all
sense lights would be turned off.

Q. What sense light would turn on as a result of the CALL
SLITE (4) statement?

•••
A. sense light 4

BD o. Suppose sense lights 1 and 3 were on and the statement
CALL SLITE(O) were executed. What sense lights would be
on?

•••
A. None. CALL SLITE (0) turns them all off.

(J 0/65) 42

FORTRAN for the IBM 1130 Chapter 4

Im In addition to turning sense lights on and off, the progranuner
also needs to be able to test their status (i.e. on or off).
The SUBROUTINE to do this is SLITET. Its form is the word
SLITET, followed by an integer expression, a comma, and an
integer variable both enclosed in parentheses. For example,
CALL SLITET (3,IAB)

Q. The name of the SUBROUTINE that tests sense lights is

----, and in the above example, the integer variable
is

000

A. SLITET, IAB

lmmi] The integer expression (i = 1,2,3, or 4) indicates which light
is to be tested, and if the light is on, the integer variable
will be set to 1. If it is off, the integer variable will be
set to 2. For example, CALL SLITET (2,JAR) will test sense
light 2. If light 2 is on, JAR will equal 1. If light 2 is
off, JAR will equal 2.

(10/65)

Q. If sense light 4 is off, what value will MOP have after
the statement CALL SLITET (4,MOP) is executed?

000

A. 2

In addition to testing a sense light, the SLITET statement
will always turn off the tested light if it was on. For
example, if sense light 3 were on, and we executed CALL SLITET
(3,NUMBR), sense light 3 would be turned off. NUMBR, of
course, would have the value of 1.

Q. Write a statement to test sense light 1 and place its
tested value in JINX.

000

A. CALL SLITET (l,JINX)

43

FORTRAN for the IBM 1130 Chapter 4

Im To make use of the SLITET test, the progra~mer will often test
the value of the integer variable by an arithmetic IF statement.
To see how this might work, turn to panel 4.8. Here's the
explanation - sense light 2 is either turned on or left off
depending on previous calculations in the program. If it
is on, we want to compute the square root of Y later in
the program. If it is off, we want to compute the cube of Y.
The IF statement tests LINK to see if it equals one which would
mean that sense light 2 was on. If so, statement 20 is executed,
otherwise statement 10 would be executed.

Q. Would sense light 2 be on or off when statement 30 is
reached?

•••
A. Off. The action of the SLITET statement restores the

tested light to an off condition.

Im The 1130 has some indicators which will warn of possible
error conditions. These conditions are overflow, underflow,
and division by zero. If you understand the meaning of over­
flow and underflow you may skip to frame 160.

mJ Overflow is the condition which occurs when a number becomes
too large for the computer to handle due to some mathematical
operation. You have probably seen a desk calculator with the
adder register full of 9's and when l is added to this
quantity - zip! All digits go to zero with an imaginary

(10/65}

l overflowing to the left. The imaginary l has no place to
go and is therefore lost. This is exactly· equivalent to
overflow in the computera Underflow is the condition which
occurs when a number becomes too small for the computer to
handle, as in the case of extremely small fractional numbers.

Q. Overflow is the condition which occurs when a number
becomes too , while underflow occurs when a
number becomes too

•••
A. large, small

44

FORTRAN for the IBM 1130 Chapter 4

Im Consider a fictitious computer with room enough for a five-digit
number: the largest number this computer can handle is 99999.
Suppose that value (99999) has the quantity 10 added to it as the
result of a programmed operation - the result would be 1000009,
but our computer can only hold the lower five digits: 00009.
This computer would tell you that your answer was 00009,
which is not correct. This situation may occur on any computer
which has a limit to the size of number it can handle (limit on
the 113 0 is approximately 10 ± 3 8 for real numbers) .

Im On the 1130 if either an overflow or an underflow occurs
because of some arithmetic op~ration in the real mode, an
overflow/underflow indicator is set. This indicator can be
subsequently tested by a FORTRAN-supplied SUBROUTINE subprogram
named OVERFL.

Q. (True or False) The OVERFL routine will test for either
an overflow or an underflow condition •

•••
A. True

ml An overflow/underflow condition.; is tested by the statement
CALL OVERFL(j) where j is an integer variable name. If an
overflow condition exists, j is set to 1. If an underflow
condition exists, j is set to 3. If neither overflow or
underflow exists, j is set to 2.

(10/65)

Q. Given an underflow condition, what value will LAMB
have after the statement CALL OVERFL(LAMB) is
executed?

•••
A. 3

45

FORTRAN far the IBM 1130 Chapter 4

Im After execution the CALL OVERFL(j) statement will always reset
the computer to a no overflow condition. For example, if an
overflow/underflow condition exists and the OVERFL routine is
used, the computer will show a no overflow/underflow condition
after the test has been made.

Q. Given an overflow condition, what value will JIM have
after the two following statements are executed
sequentially?

CALL OVERFL(JIM)
CALL OVERFL(JIM)

•••
A. 2 (after the first test JIM has a value of 1, but the

computer is restored to a no overflow status. The second
test will set JIM to 2, thus reflecting no overflow).

lfll In practice, the integer variable which holds the overflow
status would typically be tested by a computed GO TO statement
to cause branching to an error routine. Perhaps the error
routine would cause a message to print, or it might halt the
computer. In any event, the OVERFL test is provided to
alert the progranuner to error conditions, and to allow him to
take appropriate action.

Im A serious error condition can exist if you accidentally try to
tell the computer to divide by the quantity zero. When this is
attempted, the division does not take place and an indicator
called "divide check'' is turned on. The program, however,
proceeds as if the division had been done correctly.

(10/65)

Q. The divide check indicator is turned on when an attempt
is made to divide by

•••
A. zero

46

FORTRAN for the IBM 1130 Chapter 4

m The statement CALL DVCHK(j) will test the status of the divide
check indicator. If the indicator is on, the integer variable j
will be set to 1. If the indicator is off, j will be set to 2.
For example, if the divide check indicator is on, and the state­
ment CALL DVCHK(NOON) is executed, NOON will have a value of 1.

Q. In the above example, what value would NOON have if divide
check was not on?

•••
A. 2

Im Just as with the OVERFL test, the DVCHK test will always restore
its indicator to the off condition after the test.

Q. (True or False) If a divide check occurs and is tested,
another divide check would have to occur in order to turn
the indicator on again .

•••
A. True

Im Remember the conditions of overflow/underflow and divide check
are not the same: the overflow/underflow condition.occurs when
the result of any calculation is a real number larger or
smaller than the computer can handle (1Qt3B on the 1130, for
example); the divide check condition occurs only when you
attempt to divide by zero.

(10/65)

Q. (True or False) When a divide check condition occurs,

A.

usually by accident, the numerical results are
incorrect because the divide operation does not take
place.

• ••
True

47

FORTRAN for the IBM 1130 Chapter 4

ml Q. To see if you understand DVCHK, try this problem. What
will be the next statement executed after the following
sequence of statements?

A = 0.
ANS = Y**2/A
CALL DVCHK(MILL)
IF(MILL-2) 34,14,14

•••
A. Statement 34. MILL has a value of 1 because a divide

check has occurred.

Im If you did not answer the preceding question correctly you
should return to frame 164 and review DVCHK.

lfil This concludes our discussion of special FORTRAN-supplied
SUBROUTINE'SUbprograms. You have learned about SLITE, SLITET,
OVERFL,, and DVHCK. These routines, allow the program to test
indicators and to alter its course based on the results of the
test.

ml The next topic to be discussed is the use of double subscripts
when dealing with matrices. You will remember that the
purpose of a subscript is simply to identify individual numbers
within a group or list of numbers. Double subscr'ipts serve
the same purpose except that now we are identifying a number
in a particular group when there is more than one list within
that group.

lfil FORTRAN permits a double-subscripting notation that is handy for
referring to matrices and other groups having similar cross-

(10/65)

ref erence notations. In this system, the variable name is
followed by the open parenthesis, as usual, and followed in
turn by two subscripts, separated by a conuna, and a close
parenthesis.

Q. (True or False) According to the above definition, A(I,J)
is a legitimate double-subscript notation .

•••
A. True

48

FORTRAN for the IBM 1130 Chapter 4

lfil The double-subscripted array is treated as a series of sub-arrays:
the first subscript denotes the position referred to within the
sub-array and the second subscript refers to the particular
sub-array. Thus, a 10 by 5 array called A is thought of as 5
blocks of 10 numbers each, and, for example, A(7,4) refers to
the seventh number in the fourth block.

Q. A 5 by 8 array would be thought of as being blocks
of numbers in length •

•••
A. eight, five

lfll In order to use double-subscripting notation with a variable,
it must be specified in a special way: the DIMENSION statement
for such a variable will have two constants in the array-size
specification. The first constant denotes the sub-array length,
and the second constant specifies the number of sub-arrays.

Q. (True or False) According to the above definition, the
specification of a 10 by 5 array called A must be
DIMENSION A(l0,5).

• ••
A. True

Im Thus, an array specified by DIMENSION A(l0,5) is actually a 50
number array divided into 5 blocks of 10 numbers each. Double­
subscript form can be used only with variables that are
double-dimensioned as above, and a variable can only be specified
one way or the other (for double or single subscripting).

Q. A reference to the variable A as specified above such as
A(8,3) refers to the number in the block
of the array.

• ••
A. Eighth, third

(10/65) 49

FORTRAN for the IBM 1130 Chapter 4

lfZI Any combination of double subscripts will refer to a unique
position in the overall array; that is, there is no ambiguity
such that two different combinations might refer to the same
quantity. The only limitation on the subscript values is
that they cannot exceed their corresponding DIMENSION constant.

Q. (True or False) With a specification of DIMENSION X(l0,10)
a reference to X(l2,S) is legal •

•••
A. False (the first subscript, 12, exceeds the first

DIMENSION constant, 10)

Im The array-size specifications in the DIMENSION statement must
be constants that fix the array size when the program is written.
The subscripts, however, may be variables or limited
expressions, as in single subscript form, as long as their
values are not permitted to exceed their corresponding
DIMENSION specification.

Q. With a specification of DIMENSION F(S,5) the reference of
F(K,5) is legal as long as K does not exceed

•••
A. 5

Im The term "limited expression" in the preceding frame refers to
the fact that either or both of the double subscripts may
be in any one of the following forms: constant, variable,
variable plus (or minus) a constant, constant times a
variable, or constant times a variable plus (or minus) a
constant.

Q. (True or False) The above-defined forms are the only
ones permitted for single or double subscripts •

•••
A. True

lfiJ The following examples represent legitimate uses of
double-subscripting form:

(10/65)

A(l,l)
Xl2(2*K,6)
VALUE (K, 5)
NUMBR(l,INDEX)

BLOCK(I,J)
ARRAY(N-1,M-l)
VECT(2*K-6,4*K+l)
LIST(S,4)

50

FORTRAN for the IBM 1130 Chapter 4

Im Whether or not a double subscript combinations involves
constants, variables, or "limited expressions", the resultant
values of the subscripts will make reference to a particular
quantity in the array. For example, with a specification of
DIMENSION A(S,5) a reference to A(I,J) with values of 3 and 4
for I and J respectively, will refer to the third number in the
fourth block of the A array.

Q. The A array as specified above contains a total of
numbers.

A. 25

1111 Double subscript notation is very useful for such arrays as
matrices. A matrix is nothing more than a group of numbers in
rows and columns· of a rectangular array. A 3 by 3 matrix is
shown on Panel 4.9 in symbols.

ml The matrix on Panel 4.9 uses double subscripts to denote row
and column position in the matrix. For example, a 23 is in the
second row and third column. You can see that a matrix could
be represented in FORTRAN notation with double subscripts in
the same fashion.

Q. An array A is a matrix; the reference to A(l,3) refers to
the row and the tii· column.

0 () 0

A. first, third

1111 A rectangular array, then, can be expressed in a single array
divided into groups of sub-arrays, where each sub-array is a
column (the first subscript is the row count). FORTRAN then
becomes a useful tool for matrix handling, which in turn is a
valuable tool for many mathematical problems.

(I 0/65)

Q. A 6 by 8 matrix called AMATR would be specified by the
statement

•••
A. DIMENSION AMATR(6,8)

51

FORTRAN for the IBM 1130 Chapter 4

ml A doubly-subscripted array is actually laid out in single-array
form in the following order (using a 3 by 4 array for illustration) :

A(l,l) A(2,l) A(3,l)
\)

'v"'

A(l,2) A(2,2) A(3,2)
\ I

""' first column second column

A (1 , 3) A (2 , 3) A. (3 , 3)
\ I

'v"'

A(l,4) A(2,4) A(3,4)
\ I

""' third column fourth column

Qo The first number in each column, collected together, makes
up a of the matrix •

•••
A. row

m Since the computer must treat these two-dimensional arrays as
single arrays partitioned into sub-arrays, it is important to
understand how such an array is ordered. The list in the
preceding frame shows this order, with the first subscript
in each column advancing more rapidly than the second subscript
as the numbers in the list are counted off.

Q. A double-subscripted reference to the fourth number in the
sixth sub-array (column) of a matrix called ARRAY would be

•••
A. ARRAY(4,6)

IE1I The 1130 version of FORTRAN also permits a three-dimensional
array notation. This is specified in a DIMENSION statement
with three constants. The size of such an array is determined
as in two-dimensional arrays, by the product of the DIMENSION
constants: a 10 by 10 by 10 array contains a total of 1000
numbers.

(10/65)

Q. The statement DIMENSION A(6,5,4) specifies a
dimensional array.

• ••
A. three (containing 120 numbers)

52

FORTRAN for the IBM 1130 Chapter 4 ·

Im Arrays which are specified in a DIMENSION statement as
three-dimensional arrays are referred to in the program with
triple-subscript form. The rules for such subscripts are the
same as for two-dimensional arrays: the same form can be used
for the subscripts themselves, and they are separated by commas.

ft'l!W
~

Q. (True or False) A reference such as ARRAY(I,J,K) is legal
in three-dimensional arrays •

•••
A. 'rrue

The three-dimensional array is treated by the computer as a
single array divided into sub-arrays, each of which is a two­
dimensional array sub-divided as usual. For example, a 2 by 3
by 4 array is a 24-number array consisting of four groups,
each of which is a 2 by 3 array. Each 2 by 3 array is, of
course, three groups of two numbers each.

Q. The references A(l), B(l,l), and C(l,1,1) all refer to the
(first or last) quantity in their respective arrays •

•••
A. first

Im The order of the equivalent single array of a three-dimensional
array is determined by a similar rule to that of two-dimensional
arrays: in counting off their positions, the first subscript

(10/65)

is advanced most rapidly; each time it reaches its limit, the
second subscript is advanced; each time the second subscript
reaches its limit, the third subscript is advanced. An example
showing this occurs in the next frame.

' Q. In a 4 by 5 by 6 array, the reference A(4,5,6) refers to
the (first or last) number in the array •

•••
A. last

53

FORTRAN for the IBM 1130 Chapter 4

Im The following list is the order (in single array form) of a
three-dimensional array, 2 by 3 by 4, using symbols:

A(l,1,1) A(2,l,l) A(l,2,1) A(2,2,l) A(l,3,1) A(2,3,l) A(l,1,2) A(2,l,2)
A(l,2,2) A(2,2,2) A(l,3,2) A(2,3,2) A(l,1,3) A(2,l,3) A(l,2,3) A(2,2,3)
A(l,3,3) A(2,3,3) A(l,1,4) A(2,1,4) A(l,2,4) A(2,2,4) A(l,3,4) A(2,3,4)

lf11 The multiple-subscripting form extends to self-indexed lists for
input and output· statements also. The double-subscript notation
used with self-indexed lists permits two index definitions acting
like nested DO-loops. This is denoted with parentheses within
parentheses, each pair containing an index definition.

lf1J An Input or Output statement may have two-dimensional arrays in
its list. The self-indexing form then contains two index
definitions. The format of this notation is: two open
parentheses, the variable name, two dummy subscripts (variables)
in parentheses, a comma, and an index definition for one of the
dummy subscripts, followed by a close parenthesis balancing the
innermost of the outside open-parentheses. Then comes a comma
and a second index definition for the other dummy subscript,
followed by the last parenthesis.

Q. (True or False) According to the above definition, the
statement READ(2,l) ((A(I,J) ,I = 1,10), J = 1,20) is a
legal example of two-dimensipnal self-indexing form.

008

A. True

Im The foregoing example: READ{2,l) ({A{I,J), I= 1,10), J = 1,20)
demonstrates the list which will read in a two-dimensional array
called A. As pointed out before, this double indexing behaves
like nested DO-loops, such that I in this example is cycled from
1 to 10, then~ is stepped by 1 before ~cycles again.

(10/65)

Q. The dummy subscripts in the example shown above are
and

•••
A. I, J

54

FORTRAN for the IBM 1130 Chapter 4

ml The statement READ(2,l) ((A(I,J) ,I= 1,10), J = 1,20) ~ill read
200 quantities into the A array in the following order: A(l,l),
A(2,l), A(3,l),. ,A(lO,l) A(l,2), A(2,2), A(3,2), .•. ,A(l0,20).
In other words, the innermost index definition corresponds to
the innermost DO-loop, cycling most rapidly.

Q. The 31st quantity read by the statement shown above will
be placed in A() .

•••
A. 1, 4 (the first number in the fourth block of. ten)

Im As the example READ(2,l) ((A(I,J), I = 1,10) ,J = 1,20) has
demonstrated, the double-subscripted version of self-indexed
lists is nothing more than an ordinary self-indexed sequence
(inner parentheses) which cycles normally and repeats its,
complete cycle according to the control of the second index
definition (outer parentheses). For every combination of
index values a specific reference is made to the indicated
array.

Q. (True or False) The outer parentheses enclosing the
second index definition must also enclose the entire
self-indexed sequence •

•••
A. True

Im Failure to place commas where required causes pr-oblems for
FORTRAN programmers. A statement such as READ(2,l) ((A(I,J),
I= 1,10),J = 1,20) has six commas, and every one of them is
absolutely required! Note their position, and be sure that you
include them, not only for this type of statement, but for all
statements which require commas.

Q. Punctuate the statement: WRITE(3 1) ((A(JK)J = 1 S)K = 1 8)

•••
A. WRITE (3, 1) ((A (J, K) , J = 1, 5) , K = 1, 8) (six commas in all)

(10/65) 55

FORTRAN for the IBM 1130 Chapter 4

Im While it seems perfectly natural to read double-subscripted
arrays by cycling the first subscript most rapidly in the
self-indexed notation, it is perfectly permissible to reverse
the index definitions, as follows: READ (2,1) ((A(I,J),J = 1,10),
I= 1,20) which will read A(l,l) ,A(l,2) ,A(l,3), etc. in that
order.

Q. Reversing the index definitions as given in the previous
example, the (first or second) subscript varies
most rapidly in the index cycling •

•••
A. second

Im Two dimensional arrays that are matrices are often read by a
statement such as READ(2,l) ((A(I,J) ,J = 1,10), I= 1,20) so that
the numbers can be punched on the cards in row order rather than
column order. Remember this statement reads in the order
A(l,l) ,A(l,2),A(l,3), etc., which corresponds to the row
designation ..

Q. The "normal" order of A(l,l) ,A(2,l) ,A(3,l), etc.
corresponds to (row or column) order for matrices .

•••
A. column

Im Any two-dimensional array that is thought of in terms of rows
and columns should certainly be printed in rows of numbers that
represent the rows of the matrix. The reverse indexing

(J0/65)

scheme just illustrated for reading is usually applied to
printing for this reason.

Q. Write a statement to print the matrix A using I and J
for dununy subscripts, printing the 10 by 10 array row-wise.
(Use 3 as the output reference number and 1 as the FORMAT
statement number).

• ••
A . WRITE (3 , 1) ((A (I , J) , J = 1 , 10) , I = 1 , 1 0)

56

FORTRAN for the IBM 1130 Chapter 4

EliifJ Like the single self-indexed list with one index, the double
indexed form can be used with more than one variable: for
example, READ(2,l)' ((X(I,J) ,Y(I,J) ,I = 1,10) ,. J = 1,100) will
read a pair of nu~bers for each combination in indices, cycling
them in the usual fashion.

Q. The third number read with the above statement will be
placed in () .

•••
A. x (2, 1) The first number in X(l,l), the second, in

Y(l,l).

ml Any Input or Output statement can have more than one self­
indexed list (single or double indexed) in a single statement
along with single variables if desired. For example, a list
can become as complicated as WRITE(3,l)M,N,(A(I),I = l,M),
((B(I,J) ,I = l,M) ,J=l,N) which contains two single variables
and single and double indexed lists.

Q. The third value printed with the above statement is (name)

•••
A. A(l)

ml So far, then, you have seen examples of double-subscript
notation, which can be used with any variable appearing in a
DIMENSION statement in two-dimensional form, used in arithmetic
expressions and in Input and Output statements. The latter
application requires two index definitions for the two dununy
subscripts in the list, with two sets of parentheses setting off
the inner and outer definitions. These double index specifi­
cations then behave like nested DO-loops, cycling the inner
index for each value of the outer.

(10/65) 57

FORTRAN for the IBM 1130 Chapter 4

El Q. Write a statement to read from the paper tape reader
according to FORMAT number 15, reading first a 20 x 20
array called BLOCK and then a 10 by 50 array called
ARRAY, reading the former in row-order (second subscript
cycled most rapidly) and the latter in column order.
Use I and J for the subscript-index variables •

•••
A. READ(4,15) ((BLOCK(I,J) ,J = 1,20), I = 1,20), ((ARRAY(I,J),

I= 1,10),J = 1,50)

mJ If your answer agrees exactly with the one shown (all twelve
conunas and fourteen parentheses required) you may skip to
frame 226. If your answer was incorrect, go to the next
frame.

E1ill The problem was to read paper tape with FORMAT number 15,
so the first part of the s~atement poses no difficulty:
READ(4,15) .• ; the real test is in constructing the two double
indexed lists correctly. The first array, named BLOCK, is
20 by 20 in size and is to be read row-wise, meaning that the
second dummy index is cycled by the inner index definition; as
in ((BLOCK(I,J),J = 1,20),I = 1,20).

Q. The third number read with the list shown above will
become the value of BLOCK () .

•••
A 1,3

~ The second array, named ARRAY, is 10 by 50 in size and is to be
read column-wise, meaning that its first dummy subscript is to
be cycled with the inner index definition (most rapidly). Thus
a double indexed list for this array looks like ((ARRAY(I,J),I =
1,10),J = 1,50). Since the problem stated that you were to read
the first array completely and then read the second array, the
two separate indexed lists appear in sequence in the input
statement.

Q. The third number read with the list shown above will
become the value of ARRAY () •

•••
A. 3,1

(10/65) 58

FORTRAN for the IBM 1130 Chapter 4

f.m Q. Try a similar problem. Write a statement to write on the ·
typewriter according to FORMAT number 1010, writing the
AMATR array, of dimension 30 by SO, row-wise followed by
the values of the variable X and Y. Use dummy subscripts
I and J as before.

000

A. WRITE(l,1010) ((AMATR(I,J) ,J=l,50) ,I=l,30) ,X,Y

Em If you answered this question correctly, you have probably
corrected your difficulties. If you still have problems with
double indexed lists, go back to frame 191 and review this
material.

~ Perform Exercise 4.7 in your problem book.

The last two specification statements to be covered in this
chapter are the EQUIVALENCE and the COMMON statements. These
statements are provided to give the programmer some control
over the assignment of variable names and the allocation of
storage locations to variables. Only some basic uses of these
statements will be covered in the following frames, as the more
complex forms are beyond the scope of this course. Additional
details can be found in the reference manuals for 1130 FORTRAN.

~ Because a computer has a limited number of storage locations,
a programmer will often want to write his program so that it
uses as few storage locations as possible. If this is not
done, the storage locations needed by the program may exceed
the storage capacity of the computer, thus forcing the
program to be rewritten more efficiently or to be broken into
smaller segments to be run at different times.

mll The total amount of storage needed for a given program is in
part composed of all of the storage needed for data (i.e.
variables and constants). Every time the programmer defines a
new variable name, storage locations are reserved for that
variable. As the program grows in size, more and more

(10/65)

locations are set aside for the storage of data that the program
uses when it is executed.

Q. (True or False) Each variable name reserves storage locations.

000

A. True

59

FORTRAN for the IBM 1130 Chapter 4

lflll One way of saving storage is to use the same storage locations for
storing more than one variable, thus in effect making the locations
do multiple duty. The EQUIVALENCE statement allows the
progranuner to assign different variables to the same storage
locations. ~~

Q. If the variable X, QUACK, and GO were to be assigned the
same storage location, the kind of specification statement
needed is

•••
A. EQUIVALENCE

IJll The form of the EQUIVALENCE statement consists of the word
EQUIVALENCE followed by sets of parentheses that contain any
immber of variables to be assigned the same storage locations.
The variables within the parentheses and the sets of parentheses
are separated by conunas. For example, the statement
EQUIVALENCE(A,B,CAD), (HAH,HUH,T) would assign the same
storage location to A, B, and CAD, and would assign another
storage location to HAH, HUH, and To

Q. Write an EQUIVALENCE statement to assign the same storage
location to the variables ALPHA, BETA, GAMMA, DELTA •

•••
A. EQUIVALENCE (ALPHA,BETA,GAMMA,DELTA)

BIJ The variables listed in an EQUIVALENCE statement may be
subscripted, as long as the subscript is an integer constant.
The variables may also be of different modes.

(J 0/65)

Q. (True or False) The s ta temen t EQUIVl\LENCE (JACK, G, HQ) ,
·(A (1) , B (K)) is legal.

•••
A. False (B(K) is not an integer constant subscript)

60

FORTRAN for the IBM 1130 Chapter 4

IJl1 When a subscripted variable is made equivalent to another
subscripted variable, an equivalence is thus established
between other elements of their arrays. Consider this
example:
EQUIVALENCE (A(4) ,I(2) ,D(l)). The equivalences established
would be

A (1)
A (2)
A(3)I(l) - Share the same location
A(4)I(2)D(l) - Share the same location
A(5)I(3)D(2) - Share the same location

- Share the same location
- Share the same location

Thus, A(3) and I(l) share the same location, A(4), I(2), D(l),
share the same location, A(5), I(3), D(2) share the same
location, and so on. Remember, all of this is the result of
just one EQUIVALENCE statement.

Q. Write an EQUIVALENCE statement to make the first 50
elements of the BOX array equivalent to the first 50
elements of the 100 element WOOD array •

•••
A. EQUIVALENCE (BOX (1) , WOOD (1))

- Q.
Let's try a variation. Write an EQUIVALENCE statement
to make the first 50 elements of the BOX array equivalent
to the last 50 elements of the 100 element WOOD array •

•••
A. EQUIVALENCE(BOX(l),WOOD(51))

ElfJ One important point must be kept in mind when using the
EQUIVALENCE statement. Because the same array location can be
referenced by different variable names, the progranuner must make
sure that the variables sharing that location are never needed
at the same time. In practice, equivalences might be set up
between variables used early in the program and never again
referenced, and variables used later in the program.

(10/65)

Q. (True or False) Variable names that are made equivalent

A.

must be referenced at completely separate and distinct
times within a program •

•••
True

61

FORTRAN for the IBM 1130 Chapter 4

EJll You have seen in the preceding frames that the EQUIVALENCE
statement will allow different variables within the same
program to share the same storage locations. Storage locations
can also be shared between subprogram variables and main
program variables through the use of the COM.~ON statement.

Q. Storage within the same program is shared through use of the
statement, but storage between subprograms

and main programs is shared through use of the
statement.

• ••
A. EQUIVALENCE, COMMON

fJil The COMMON statement consists of the word COMMON followed by
a list of variable or array names. The names in the list are
separated by commas. For example: COMMON APPLE, X, BETA, RHO

Q. (True or False) The statement COMMON, ALPHA, BETA is
correct.

• ••
A. False (there should be no comma after COMMON)

mJI A COMMON statement, like one scissors blade, is usually not used
alone. When a COMMON statement is used in a program or sub­
program, it will normally have at least one counterpart in
another program. For example, if a main program contains the
statement COMMON BREAD and a subprogram contains the statement
COMMON BUTTR, the variable names BREAD and BUTTR will refer
to the same storage location.

Q. (True or False) COMMON statements work together between
main programs and subprograms •

•••
A. True

(10/65) 62

FORTRAN for the IBM 1130 Chapter 4

ml As noted before, COMMON statements may contain more than one
variable name. When this happens, the variables will share
respective storage locations according to the order in which
they appear in the COMMON statements. For example, if the
main program contains the statement COMMON A,B,C and a subprogram
contains the statement COMMON X,Y,Z; then A will share the same
location as X; B will share the same location as Y; and C will
share the same location as z.

Q. Given the main program statement COMMON FUMAN,RAIN,GAMi.1\ffi
and the subprogram statement COMMON CHU,SPAIN,SWIFT show
which pairs of variables will share the same locations.

1.
2.
3.

A. 1. FUMAN, CHU
2. RAIN, SPAIN
3. GAMMA, SWIFT

• ••

ml Incidentally, there is no restriction as to the number of
programs that can have CO~U10N statements. Thus, storage
locations can be shared by many programs and subprograms.

(l 0/65)

Q. Given the following statements appearing in different
programs and subprograms, show which variable names will
share the same locations: COMMON BREAK,ABLE,SHORT; COMMON
CATS, FAST, SQUAR; COMMON UMBRA, CORN,QUEUE.

1.
2.
3.

A. 1. BREAK, CATS, UMBRA
2. ABLE, FAST, CORN
3. SHORT, SQUAR, QUEUE

• ••

63

FORTRAN for the IBM '1130 Chapter 4

mJ As the previous frame implies, the order in which variables
appear in a COMMON statement governs how they will be matched
with variables in other COMMON statements. Within a specific
program or subprogram, variables and arrays are assigned
storage locations in the sequence in which their names appear
in a COMMON statement.

Q. A subprogram contains the statement COM1"10N HYPER, BEND and
a main program has the variable ZETA which is to share the
same location as BEND. What position in the list of the
main- program COMMON statement should ZETA occupy?

•••
A. ZETA should be the second position in the list, i.e.,

COMMON ,ZETA.

ml In the previous frame, if there is no main program variable to
be made COMJ."10N to HYPER, a so-called "dummy" variable can be
used to allow ZETA to maintain its correct position in the list.
For example, assuming that X is the dununy variable, the main
program COMMON statement would be COM .. \10N X, ZETA. If ZETA had
to be the third name in the list, two dummy variables could be
used, e.g. , COMM.ON X, Y, ZETA where both X and Y are dummy
variables.

Q. (True or False) Dummy variables can be used to maintain
the relative positions of other variables in a COMMON
statement.

e e o

A. True

EID Variables used to pad out the COM.MON statements are called
durnmys because they are not referenced an~Nhere else in the
program. Their function is simply to allow the programmer to
position variable names that otherwise would be in the wrong
locations in a COMMON statement.

(10/65)

Q. A subprogram contains the statement COM.:.'10N AB,DROP,Q,ARRAY.

A.

A main program has a variable GROUP that is to share the
same storage locations as ARRAY. Write a CO~Il~ON statement
for the main program to accomplish this. (Make up your
own dummy variable names) .

•••
COMMON Al,Bl,Cl,GROUP. Al,Bl, and Cl are the dummy
variables in this statement. Other legitimate variable names
could have been used.

64

FORTRAN for the IBM 1130 Chapter 4

fm So far, you have seen that the COMMON statements allows the
sharing of storage between main programs and subprograms. The
savings in storage can be quite significant, particularly when
storage for arrays is being shared.

Em The COMMON statement does one more important thing, however.
Because subprograms and main programs now have access to
common storage locations, they have, in effect, a way of
communicating with each other. Thus, a value computed by a
subprogram can be placed in common storage and can be
grabbed by the main program, or for that matter, by another
subprogram. This facility is quite valuable in actual
practice, and together with storage saving, makes the co~~ON
statement. a useful programming tool.

Q. Give two important reasons for using the COMMON
statement.

A. 1. To save storage
2. To allow programs and subprograms to communicate

f1ll Just like all the other specification statements you have learned
in this course, the COMMON and EQUIVALENCE statements must
precede all executable statements in the source program, and

(10/65)

have a definite place among the specification statements.
COMMON statements follow DIMENSION statements, and EQUIVALENCE
follows COMMON. Here at last, is the final line-up of the
source deck as presented in this course:

Type statements
DIMENSION statements
COMMON statements
EQUIVALENCE statements
FORMAT statements (may be placed elsewhere)
Function defining statements
Executable program steps
END

65

FORTRAN for the IBM 1130 Chapter 4

E!RJ That concludes the material about the FORTRAN language covered
in this manual. The next several frames illustrate the ways
of preparing a written program for actual execution on the
computer. Naturally, not all points can be covered in detail,
but the general concepts will be covered. Computing centers
will be glad to furnish details and rules concerning their
handling of FORTRAN programs.

EIDJ All FORTRAN programs are written in basically the same language,
which, as you are probably aware, is not the natural language
of the computer. Consequently, each computer system must
have its own means of translating a FORTRAN program into its
own code system (language).

ml Fortunately, a program is supplied for the 1130 which
will do this translation from the FORTRAN language into the
computer's instruction code. This program is called the
FORTRAN compiler and it reads a FORTRAN program as its input
and produces a computer-coded program as output.

Q. The program which translates programs from FORTRAN
language into computer code is called a

•••
A. FORTRAN compiler

Em Once a program is written in FORTRAN language, the process of
executing the program on the computer becomes a two-stage
process: translating from FORTRAN to computer code and
running the computer-coded version to get the answers.

(10/65)

Q. (True or False) Before the program can be executed on a

A.

computer, it must first be translated into the computer's
own code.

• ••
True

66

FORTRAN for the IBM 1130 Chapter 4

mJ Every computer equipped to handle FORTRAN programs, then, must
have its own compiler which will read your FORTRAN program
and produce for you a program ready to execute on that computer
(or a similar computer).

Q. The input to the FORTRAN compiler is a

A. FORTRAN program

lf.IEI Obviously, there must be some way to transcribe your FORTRAN
program into a form that the compiler can read. This is
usually done by punching the statements on cards with a card­
punch machine. FORTRAN statements are usually punched one
statement per card (it is possible to have more than one card
per statement) with a card layout as shown on Panel 4.10. Turn
to it.

lfm In this type of card layout a statement number, if any, is
punched in columns 1 through 5 of the card, and the statement
itself is punched anywhere in columns 7 through 72. As long
as the statement appears in the proper field (columns 7 to 72)
there is no restriction as to which columns are used for any
part of the statement. You may use as many blanks as you like
to separate names and symbols, but it is not permissible to
have blanks within a name. Thus, GObbbbTOblS is legal, but
GbObTOblS is not because of the blank between the G and the O.

ml Turn to Panel 4.11. It shows two different ways of punching

(10/65)

the same FORTRAN statement. As far as the translating program
is concerned, one way is as good as the other. But from the
standpoint of writing the statement on the FORTRAN coding form
and punching it in the FORTRAN statement card, the second way is
obviously more practical than the other.

A FORTRAN program must be punched statement by statement into
cards in the format shown on Panel 4.11. It often helps to
have written the program on a coding sheet which is blocked
off like the card layout. You have been looking at pictures of
typical FORTRAN coding sheets in panels which illustrate
program segments.

67

FORTRAN for the IBM 1130 Chapter 4

mJ Blank or unpunched columns are also counted by the compiler
as being significant when they are included within the quotation
marks in a literal data format statement. You ·will remember
that this is the way of writing alphanumeric information, and
the blank is a legal character in this set. A statement such
as 1 FORJ.~T ('bTI-IISbISbTHEbOUTPUT') might be punched on a card
as shown on Panel 4.12. Turn to it.

EIIt Statements which are too long to fit in a single card can be
continued on up to five additional cards by placing a non­
zero punch in column 6 of the card for each card which is a
continuation of the preceding card (that is, the first card
in such a series does not have such a punch). Turn to Panel
4.13. -

mJ The Panel shows a FORMAT statement with a literal data field so
long that it requires three cards to contain the entire
statement. Notice that the first card is a normal card (no
continuation punch in column 6) but the next two have 1 and 2
respectively in this column, meaning that they are continuations
of the statement beginning on the first card. The character
chosen for the continuation mark is arbitrary: often the integers
1 to 5 are used to indicate the order. The effect of this punch
is to create an equivalent card image that places columns 6 to 72
of the continuation card inunediately after column 72 of the
preceding one.

1111 Turn to Panel 4.14. Any FORTRAN statement that has the letter C
punched in column 1 (normally reserved for statement numbers)
will not be included in the translated program. In fact, this
card can contain any sequence of punches you desire. This
permits you to intersperse comments that explain the program,
and these statements (with C in column 1) will be printed in
the copy of the FORTRAN statements that the computer produces
with the translation.

llfl Turn to Panel 4.15. The information found there will give
you an idea of the step-by-step procedure followed in developing
a total FORTRAN programming job.

(10/65) 68

FORTRAN for the IBM 1130 Chapter 4.

1111 This concludes this course in basic FORTRAN. You must
understand that· this course has covered only the elementary
features of the language, along with a few common techniques
of programming with FORTRAN. Many systems also provide
advanced features such as BOOLEAN algebra statements, complex
arithmetic, logical IF statements, special de-bugging aids,
monitoring of the job execution, etc •. It is hoped that
this course has given you sufficient background to understand
the language (our main objective) and, with exp·erience, to
make use of it properly.

Elli You may proceed to the examination for Chapter 4 on page 43 of
your problem book, after which you may report to your advisor.

(10/65) 69

FORTRAN for the IBM 1130

REFERENCE INDEX

(10/65)

SUBJECT

ABS function

Argument

Arithmetic statement function

CALL statement

Closed subprogram

COMMON statement

DIMENSION statement

Divide check

Double subscripts

Dummy arguments

Dummy variables in COMMON

DVCHK routine

END statement for subprogram

EQUIVALENCE statement

Explicit mode specification

FLOAT function

FORTRAN card

FORTRAN coding form

FORTRAN compiler

FUNCTION statement

FUNCTION subprogram
Mode assignment

IABS function

IFIX function

71

FRAMES

Note: II ff II means

53 ff

8, 13 ff I 21

64 ff

131

34

218 ff

103 ff

164

171 ff

70, 115

224

165

113, 137

212 ff

50

57 ff

234 ff

234 ff

231 ff

91 ff

87 ff I 121
96

53 ff

57 ff

Chapter 4

"following"

FORTRAN for the IBM 1130

(10/65)

SUBJECT

INTEGER Type statement

Library functions

Mode of arguments

Mode of subprograms

Name of a function

Names of arithmetic statement
functions

Names of FUNCTION subprograms

Names of SUBROUTINES

OVERFL routine

Overflow

REAL type statement

RETURN

Self-indexed I/O with subscripts

Sense lights

SIGN function

SLITE and SLITET

Source deck ordering

Subprogram naming rules

Subprograms

SUBROUTINE statement

SUBROUTINE subprograms

Subscripts, double

Three-dimensional arrays

Type statement

Underflow

72

FRAME

48

5, 8, 1 7, 31 ff

42 ff

40 ff

6, 10 ff, 21, 35

93

94

132

161 ff

158

48

99

191

149

60 ff

149 ff

228

35

3 ff, 30, 44, 121

135 ff

128 ff, 140, 145

171 ff

186 ff

47 ff

158

Chapter 4

R29-0104-0

Data Processing Division

112 East Post Road, White Plains, New York

•

